Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/92722
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSarstedt, Marko-
dc.contributor.authorDanks, Nicholas P.-
dc.date.accessioned2022-11-14T09:49:54Z-
dc.date.available2022-11-14T09:49:54Z-
dc.date.issued2022-
dc.date.submitted2022-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/94678-
dc.identifier.urihttp://dx.doi.org/10.25673/92722-
dc.description.abstractThere are broadly two dimensions on which researchers can evaluate their statistical models: explanatory power and predictive power. Using data on job satisfaction in ageing workforces, we empirically highlight the importance of distinguishing between these two dimensions clearly by showing that a model with a certain degree of explanatory power can produce vastly different levels of predictive power and vice versa—in the same and different contexts. In a further step, we review all the papers published in three top‐tier human resource management journals between 2014 and 2018 to show that researchers generally confuse explanation and prediction. Specifically, while almost all authors rely solely on explanatory power assessments (i.e., assessing whether the coefficients are significant and in the hypothesised direction), they also derive practical recommendations, which inherently result from a predictive scenario. Based on our results, we provide HRM researchers recommendations on how to improve the rigour of their explanatory studies.eng
dc.description.sponsorshipProjekt DEAL 2021-
dc.language.isoeng-
dc.relation.ispartof10.1111/(ISSN)1748-8583-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectExplanatory powereng
dc.subjectGeneralisabilityeng
dc.subjectPredictive powereng
dc.subjectRelevanceeng
dc.subject.ddc330-
dc.titlePrediction in HRM research : a gap between rhetoric and realityeng
dc.typeArticle-
dc.identifier.urnurn:nbn:de:gbv:ma9:1-1981185920-946781-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleHuman resource management journal-
local.bibliographicCitation.volume32-
local.bibliographicCitation.issue2-
local.bibliographicCitation.pagestart485-
local.bibliographicCitation.pageend513-
local.bibliographicCitation.publishernameEclipse-
local.bibliographicCitation.publisherplaceLondon-
local.bibliographicCitation.doi10.1111/1748-8583.12400-
local.openaccesstrue-
dc.identifier.ppn1800568819-
local.bibliographicCitation.year2022-
cbs.sru.importDate2022-11-14T09:43:43Z-
local.bibliographicCitationEnthalten in Human resource management journal - London : Eclipse, 1990-
local.accessrights.dnbfree-
Appears in Collections:Fakultät für Wirtschaftswissenschaft (OA)

Files in This Item:
File Description SizeFormat 
Sarstedt et al._Prediction in HRM research_2022.pdfZweitveröffentlichung4.04 MBAdobe PDFThumbnail
View/Open