Please use this identifier to cite or link to this item:
http://dx.doi.org/10.25673/86231
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wehnert, Sabine | - |
dc.contributor.author | Sudhi, Viju | - |
dc.contributor.author | Dureja, Shipra | - |
dc.contributor.author | Kutty, Libin | - |
dc.contributor.author | Shahania, Saijal | - |
dc.contributor.author | De Luca, Ernesto William | - |
dc.date.accessioned | 2022-06-16T10:06:30Z | - |
dc.date.available | 2022-06-16T10:06:30Z | - |
dc.date.issued | 2021 | - |
dc.date.submitted | 2021 | - |
dc.identifier.uri | https://opendata.uni-halle.de//handle/1981185920/88183 | - |
dc.identifier.uri | http://dx.doi.org/10.25673/86231 | - |
dc.description.abstract | In this work, we examine variations of the BERT model on the statute law retrieval task of the COLIEE competition. This includes approaches to leverage BERT’s contextual word embeddings, finetuning the model, combining it with TF-IDF vectorization, adding external knowledge to the statutes and data augmentation. Our ensemble of Sentence-BERT with two different TF-IDF representations and document enrichment exhibits the best performance on this task regarding the F2 score. This is followed by a fine-tuned LEGAL-BERT with TF-IDF and data augmentation and our third approach with the BERTScore. As a result, we show that there are significant differences between the chosen BERT approaches and discuss several design decisions in the context of statute law retrieval. | eng |
dc.description.sponsorship | Transformationsvertrag | - |
dc.language.iso | eng | - |
dc.relation.ispartof | 10.1145/3462757 | - |
dc.rights.uri | https://creativecommons.org/licenses/by-sa/4.0/ | - |
dc.subject | Applied computing | eng |
dc.subject | Law | eng |
dc.subject | Information systems | eng |
dc.subject | Document representation | eng |
dc.subject | Computing methodologies | eng |
dc.subject.ddc | 000 | - |
dc.title | Legal norm retrieval with variations of the bert model combined with TF-IDF vectorization | eng |
dc.type | Conference Object | - |
dc.identifier.urn | urn:nbn:de:gbv:ma9:1-1981185920-881832 | - |
local.versionType | publishedVersion | - |
local.openaccess | true | - |
dc.identifier.ppn | 1806840170 | - |
local.bibliographicCitation.year | 2021 | - |
cbs.sru.importDate | 2022-06-16T10:02:14Z | - |
local.bibliographicCitation | Enthalten in Proceedings of the Eighteenth International Conference on Artificial Intelligence and Law - New York,NY,United States : Association for Computing Machinery, 2021 | - |
local.accessrights.dnb | free | - |
Appears in Collections: | Fakultät für Informatik (OA) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Wehnert et al._Legal norm_2021.pdf | Zweitveröffentlichung | 671.85 kB | Adobe PDF | View/Open |