Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/86231
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWehnert, Sabine-
dc.contributor.authorSudhi, Viju-
dc.contributor.authorDureja, Shipra-
dc.contributor.authorKutty, Libin-
dc.contributor.authorShahania, Saijal-
dc.contributor.authorDe Luca, Ernesto William-
dc.date.accessioned2022-06-16T10:06:30Z-
dc.date.available2022-06-16T10:06:30Z-
dc.date.issued2021-
dc.date.submitted2021-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/88183-
dc.identifier.urihttp://dx.doi.org/10.25673/86231-
dc.description.abstractIn this work, we examine variations of the BERT model on the statute law retrieval task of the COLIEE competition. This includes approaches to leverage BERT’s contextual word embeddings, finetuning the model, combining it with TF-IDF vectorization, adding external knowledge to the statutes and data augmentation. Our ensemble of Sentence-BERT with two different TF-IDF representations and document enrichment exhibits the best performance on this task regarding the F2 score. This is followed by a fine-tuned LEGAL-BERT with TF-IDF and data augmentation and our third approach with the BERTScore. As a result, we show that there are significant differences between the chosen BERT approaches and discuss several design decisions in the context of statute law retrieval.eng
dc.description.sponsorshipTransformationsvertrag-
dc.language.isoeng-
dc.relation.ispartof10.1145/3462757-
dc.rights.urihttps://creativecommons.org/licenses/by-sa/4.0/-
dc.subjectApplied computingeng
dc.subjectLaweng
dc.subjectInformation systemseng
dc.subjectDocument representationeng
dc.subjectComputing methodologieseng
dc.subject.ddc000-
dc.titleLegal norm retrieval with variations of the bert model combined with TF-IDF vectorizationeng
dc.typeConference Object-
dc.identifier.urnurn:nbn:de:gbv:ma9:1-1981185920-881832-
local.versionTypepublishedVersion-
local.openaccesstrue-
dc.identifier.ppn1806840170-
local.bibliographicCitation.year2021-
cbs.sru.importDate2022-06-16T10:02:14Z-
local.bibliographicCitationEnthalten in Proceedings of the Eighteenth International Conference on Artificial Intelligence and Law - New York,NY,United States : Association for Computing Machinery, 2021-
local.accessrights.dnbfree-
Appears in Collections:Fakultät für Informatik (OA)

Files in This Item:
File Description SizeFormat 
Wehnert et al._Legal norm_2021.pdfZweitveröffentlichung671.85 kBAdobe PDFThumbnail
View/Open