Please use this identifier to cite or link to this item:
http://dx.doi.org/10.25673/1585
Title: | Non-normality in financial markets and the measurement of risk |
Author(s): | Lau, Christian |
Referee(s): | Laitenberger, Jörg, Prof. Dr. Becker, Claudia, Prof. Dr. |
Granting Institution: | Martin-Luther-Universität Halle-Wittenberg |
Issue Date: | 2015 |
Extent: | Online-Ressource (94 Bl. = 0,89 mb) |
Type: | Hochschulschrift |
Type: | PhDThesis |
Exam Date: | 2015-06-23 |
Language: | English |
Publisher: | Universitäts- und Landesbibliothek Sachsen-Anhalt |
URN: | urn:nbn:de:gbv:3:4-15685 |
Subjects: | Online-Publikation Hochschulschrift |
Abstract: | Diese Dissertation ist in drei Kapitel sowie eine Einleitung unterteilt. Die Einleitung führt in das Themengebiet ein, fasst die Kapitel zusammen und zeigt deren Zusammenhänge auf. Jedes Kapitel beschäftigt sich mit der Analyse von Finanzzeitreihen. Dabei wird insbesondere den „stylized facts“ von Finanzzeitreihen Rechnung getragen. Am Ende der Kapitel erfolgt jeweils eine Value at Risk-Berechnung. Im ersten Kapitel wird die Verteilung von Renditen europäischer Staatsanleihen untersucht. Aufgrund von „fat tails“ und Schiefe ist es notwendig, Verteilungen zu benutzen, die beides abzubilden vermögen. Das zweite Kapitel widmet sich der Modellierung von Forwards auf Strom. Autoregressive Charakteristika zeigen sich sowohl im ersten als auch zweiten Moment und müssen in der Modellierung Berücksichtigung finden. Auf der Grundlage von Intraday Daten des DAX zeigt das letzte Kapitel einen neuen Ansatz, den Value at Risk zu berechnen, auf. Mit Hilfe von Prognosen der höheren Momente wird über die Momentenmethode die normal-inverse Gauss-Verteilung parametrisiert; über die Umkehrfunktion lässt sich im Anschluss der Value at Risk berechnen. This thesis consists of three chapters including an introduction. The introduction familiarizes the topic, summarizes the chapters and links them together. Each chapter deals with the analysis of financial time series. Close attention is paid to the stylized facts of financial time series. At the end of each chapter a value at risk calculation is carried out. The first chapter examines the distribution of European government bonds. Due to heavy tails and skewness, the use of distributions accounting for both higher moments is necessary. The second chapter concerns the modelling of electricity forwards. Autoregressive features appear to be an issue in the first moment as well as the second and therefore, have to be considered during the modelling. Based on intraday data of the DAX the last chapter shows a new approach to calculate value at risk. Conducting forecasts for the higher moments the normal inverse distribution is parameterized with the method of moments; subsequently, with the application of the inverse function, the value at risk can be calculated. |
URI: | https://opendata.uni-halle.de//handle/1981185920/8356 http://dx.doi.org/10.25673/1585 |
Open Access: | Open access publication |
License: | In Copyright |
Appears in Collections: | Wirtschaft |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Lau_Diss_Abgabe.pdf | 914.98 kB | Adobe PDF | View/Open |