Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/76928
Full metadata record
DC FieldValueLanguage
dc.contributor.authorShushlevska, Martina-
dc.contributor.authorEfnusheva, Danijela-
dc.contributor.authorJakimovski, Goran-
dc.contributor.authorTodorov, Zdravko-
dc.date.accessioned2022-03-16T10:57:39Z-
dc.date.available2022-03-16T10:57:39Z-
dc.date.issued2022-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/78880-
dc.identifier.urihttp://dx.doi.org/10.25673/76928-
dc.description.abstractThe exponential growth of computers and devices connected to the Internet and the variety of commercial services offered creates the need to protect Internet users. As a result, intrusion detection systems (IDS) are becoming an essential part of each computer-communication system, detecting and responding to malicious network traffic and computer abuse. In this paper, an IDS based on the UNSW-NB15 dataset has been implemented. The results obtained indicate F1 Score and Recall values of 76.1% and 85.3% for the Naive Bayes algorithm, 78.2% and 96.1% for Logistic Regression algorithm, 88.3% and 95.4% for Decision Tree classifier, and 89.3% and 98.5% for Random Forest.-
dc.language.isoeng-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subject.ddc004-
dc.titleAnomaly detection with various Machine Learning classification techniques over UNSW-NB15 dataset-
local.versionTypepublishedVersion-
local.openaccesstrue-
dc.identifier.ppn1795592214-
local.bibliographicCitation.year2022-
cbs.sru.importDate2022-03-16T10:55:54Z-
local.bibliographicCitationEnthalten in Proceedings of the 10th International Conference on Applied Innovations in IT - Koethen, Germany : Edition Hochschule Anhalt, 2022-
local.accessrights.dnbfree-
Appears in Collections:International Conference on Applied Innovations in IT (ICAIIT)

Files in This Item:
File Description SizeFormat 
1_4 Shushlevska.pdf508.31 kBAdobe PDFThumbnail
View/Open