Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/61685
Title: Shadows in coxeter groups
Author(s): Graeber, Marius
Schwer, Petra
Issue Date: 2020
Type: Article
Language: English
URN: urn:nbn:de:gbv:ma9:1-1981185920-636362
Subjects: Coxeter group
Deligne-Lusztig varieties
Algebraic structures
Abstract: For a given w in a Coxeter group W, the elements u smaller than w in Bruhat order can be seen as the end alcoves of stammering galleries of type w in the Coxeter complex Σ. We generalize this notion and consider sets of end alcoves of galleries that are positively folded with respect to certain orientation φ of Σ.We call these sets shadows. Positively folded galleries are closely related to the geometric study of affine Deligne– Lusztig varieties, MV polytopes, Hall–Littlewood polynomials, and many more algebraic structures. In this paper, we will introduce various notions of orientations and hence shadows and study some of their algorithmic properties.
URI: https://opendata.uni-halle.de//handle/1981185920/63636
http://dx.doi.org/10.25673/61685
Open Access: Open access publication
License: (CC BY 4.0) Creative Commons Attribution 4.0(CC BY 4.0) Creative Commons Attribution 4.0
Sponsor/Funder: Projekt DEAL 2020
Journal Title: Annals of combinatorics
Publisher: [Springer International Publishing AG]
Publisher Place: [Cham (ZG)]
Volume: 24
Issue: 1
Original Publication: 10.1007/s00026-019-00485-0
Page Start: 119
Page End: 147
Appears in Collections:Fakultät für Mathematik (OA)

Files in This Item:
File Description SizeFormat 
Graeber et al._Shadows in_2021.pdfZweitveröffentlichung693.07 kBAdobe PDFThumbnail
View/Open