Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/42131
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGugushvili, Shota-
dc.contributor.authorMariucci, Ester-
dc.contributor.authorMeulen, Frank-
dc.date.accessioned2021-12-14T06:40:10Z-
dc.date.available2021-12-14T06:40:10Z-
dc.date.issued2020-
dc.date.submitted2020-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/44085-
dc.identifier.urihttp://dx.doi.org/10.25673/42131-
dc.description.abstractSuppose that a compound Poisson process is observed discretely in time and assume that its jump distribution is supported on the set of natural numbers. In this paper we propose a nonparametric Bayesian approach to estimate the intensity of the underlying Poisson process and the distribution of the jumps. We provide a Markov chain Monte Carlo scheme for obtaining samples from the posterior. We apply our method on both simulated and real data examples, and compare its performance with the frequentist plug-in estimator proposed by Buchmann and Grübel. On a theoretical side, we study the posterior from the frequentist point of view and prove that as the sample size n→∞, it contracts around the “true,” data-generating parameters at rate 1/𝑛⎯⎯√, up to a log𝑛 factor.eng
dc.description.sponsorshipProjekt DEAL 2019-
dc.language.isoeng-
dc.relation.ispartofhttps://doi.org/10.1111/(ISSN)1467-9469-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectPoisson processeng
dc.subjectNonparametric Bayesian approacheng
dc.subjectMarkov chain Monte Carlo schemeeng
dc.subject.ddc510.72-
dc.titleDecompounding discrete distributions : a nonparametric Bayesian approacheng
dc.typeArticle-
dc.identifier.urnurn:nbn:de:gbv:ma9:1-1981185920-440853-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleScandinavian journal of statistics-
local.bibliographicCitation.volume47-
local.bibliographicCitation.issue2-
local.bibliographicCitation.pagestart464-
local.bibliographicCitation.pageend492-
local.bibliographicCitation.publishernameWiley-Blackwell-
local.bibliographicCitation.publisherplaceOxford-
local.bibliographicCitation.doi10.1111/sjos.12413-
local.openaccesstrue-
dc.identifier.ppn1774178095-
local.bibliographicCitation.year2020-
cbs.sru.importDate2021-12-14T06:33:45Z-
local.bibliographicCitationEnthalten in Scandinavian journal of statistics - Oxford : Wiley-Blackwell, 1974-
local.accessrights.dnbfree-
Appears in Collections:Fakultät für Mathematik (OA)

Files in This Item:
File Description SizeFormat 
Gugushvili et al._Decompounding_2020.pdfZweitveröffentlichung1.11 MBAdobe PDFThumbnail
View/Open