Please use this identifier to cite or link to this item:
http://dx.doi.org/10.25673/42131
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gugushvili, Shota | - |
dc.contributor.author | Mariucci, Ester | - |
dc.contributor.author | Meulen, Frank | - |
dc.date.accessioned | 2021-12-14T06:40:10Z | - |
dc.date.available | 2021-12-14T06:40:10Z | - |
dc.date.issued | 2020 | - |
dc.date.submitted | 2020 | - |
dc.identifier.uri | https://opendata.uni-halle.de//handle/1981185920/44085 | - |
dc.identifier.uri | http://dx.doi.org/10.25673/42131 | - |
dc.description.abstract | Suppose that a compound Poisson process is observed discretely in time and assume that its jump distribution is supported on the set of natural numbers. In this paper we propose a nonparametric Bayesian approach to estimate the intensity of the underlying Poisson process and the distribution of the jumps. We provide a Markov chain Monte Carlo scheme for obtaining samples from the posterior. We apply our method on both simulated and real data examples, and compare its performance with the frequentist plug-in estimator proposed by Buchmann and Grübel. On a theoretical side, we study the posterior from the frequentist point of view and prove that as the sample size n→∞, it contracts around the “true,” data-generating parameters at rate 1/𝑛⎯⎯√, up to a log𝑛 factor. | eng |
dc.description.sponsorship | Projekt DEAL 2019 | - |
dc.language.iso | eng | - |
dc.relation.ispartof | https://doi.org/10.1111/(ISSN)1467-9469 | - |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | - |
dc.subject | Poisson process | eng |
dc.subject | Nonparametric Bayesian approach | eng |
dc.subject | Markov chain Monte Carlo scheme | eng |
dc.subject.ddc | 510.72 | - |
dc.title | Decompounding discrete distributions : a nonparametric Bayesian approach | eng |
dc.type | Article | - |
dc.identifier.urn | urn:nbn:de:gbv:ma9:1-1981185920-440853 | - |
local.versionType | publishedVersion | - |
local.bibliographicCitation.journaltitle | Scandinavian journal of statistics | - |
local.bibliographicCitation.volume | 47 | - |
local.bibliographicCitation.issue | 2 | - |
local.bibliographicCitation.pagestart | 464 | - |
local.bibliographicCitation.pageend | 492 | - |
local.bibliographicCitation.publishername | Wiley-Blackwell | - |
local.bibliographicCitation.publisherplace | Oxford | - |
local.bibliographicCitation.doi | 10.1111/sjos.12413 | - |
local.openaccess | true | - |
dc.identifier.ppn | 1774178095 | - |
local.bibliographicCitation.year | 2020 | - |
cbs.sru.importDate | 2021-12-14T06:33:45Z | - |
local.bibliographicCitation | Enthalten in Scandinavian journal of statistics - Oxford : Wiley-Blackwell, 1974 | - |
local.accessrights.dnb | free | - |
Appears in Collections: | Fakultät für Mathematik (OA) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Gugushvili et al._Decompounding_2020.pdf | Zweitveröffentlichung | 1.11 MB | Adobe PDF | View/Open |