Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/36371
Title: Second order expansions for high-dimension low-sample-size data statistics in random setting
Author(s): Christoph, Gerd
Ulyanov, Vladimir V.
Issue Date: 2020
Type: Article
Language: English
URN: urn:nbn:de:gbv:ma9:1-1981185920-366038
Subjects: Second order expansions
High-dimensional
Low sample size
Random sample size
Laplace distribution
Student’s t-distribution
Abstract: We consider high-dimension low-sample-size data taken from the standard multivariate normal distribution under assumption that dimension is a random variable. The second order Chebyshev–Edgeworth expansions for distributions of an angle between two sample observations and corresponding sample correlation coefficient are constructed with error bounds. Depending on the type of normalization, we get three different limit distributions: Normal, Student’s t-, or Laplace distributions. The paper continues studies of the authors on approximation of statistics for random size samples.
URI: https://opendata.uni-halle.de//handle/1981185920/36603
http://dx.doi.org/10.25673/36371
Open Access: Open access publication
License: (CC BY 4.0) Creative Commons Attribution 4.0(CC BY 4.0) Creative Commons Attribution 4.0
Sponsor/Funder: OVGU-Publikationsfonds 2021
Journal Title: Mathematics
Publisher: MDPI
Publisher Place: Basel
Volume: 8
Issue: 7
Original Publication: 10.3390/math8071151
Page Start: 1
Page End: 28
Appears in Collections:Fakultät für Mathematik (OA)

Files in This Item:
File Description SizeFormat 
Christoph et al._Second order_2020.pdfZweitveröffentlichung518 kBAdobe PDFThumbnail
View/Open