Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/35094
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBürger, Adrian-
dc.contributor.authorZeile, Clemens-
dc.contributor.authorAltmann-Dieses, Angelika-
dc.contributor.authorSager, Sebastian-
dc.contributor.authorDiehl, Moritz-
dc.date.accessioned2020-11-20T07:11:02Z-
dc.date.available2020-11-20T07:11:02Z-
dc.date.issued2020-
dc.date.submitted2019-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/35297-
dc.identifier.urihttp://dx.doi.org/10.25673/35094-
dc.description.abstractWithin this work, we present a warm-started algorithm for Model Predictive Control (MPC) of switched nonlinear systems under combinatorial constraints based on Combinatorial Integral Approximation (CIA). To facilitate high-speed solutions, we introduce a preprocessing step for complexity reduction of CIA problems, and include this approach within a new toolbox for solution of CIA problems with special focus on MPC. The proposed algorithm is implemented and utilized within an MPC simulation study for a solar thermal climate system with nonlinear system behavior and uncertain operation conditions. The results are analyzed in terms of solution quality, constraint satisfaction and runtime of the solution steps, showing the applicability of the proposed algorithm and implementations.eng
dc.format.extent1 Online-Ressource (16 Seiten)-
dc.language.isoeng-
dc.publisherElsevier, Oxford-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectModel predictive controleng
dc.subjectSwitched dynamic systemseng
dc.subjectMixed-integer nonlinear programmingeng
dc.subjectApproximation methods and heuristicseng
dc.subjectOptimal controleng
dc.subject.ddc519.6-
dc.titleDesign, implementation and simulation of an MPC algorithm for switched nonlinear systems under combinatorial constraintseng
dc.typeArticle-
dc.identifier.urnurn:nbn:de:gbv:ma9:1-1981185920-352978-
dc.relation.referenceshttps://www.journals.elsevier.com/journal-of-process-control-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleJournal of process control-
local.bibliographicCitation.volume81-
local.bibliographicCitation.issue2020-
local.bibliographicCitation.pagestart15-
local.bibliographicCitation.pageend30-
local.bibliographicCitation.publishernameElsevier-
local.bibliographicCitation.publisherplaceOxford-
local.bibliographicCitation.doi10.1016/j.jprocont.2019.05.016-
local.openaccesstrue-
dc.identifier.ppn174019523X-
local.publication.countryXA-GB-
cbs.sru.importDate2020-11-20T07:05:07Z-
local.bibliographicCitationSonderdruck aus Journal of process control-
local.accessrights.dnbfree-
Appears in Collections:Fakultät für Mathematik (OA)

Files in This Item:
File Description SizeFormat 
Sager_et al._J. of Process Control_2020.pdfZweitveröffentlichung3.42 MBAdobe PDFThumbnail
View/Open