Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/35092
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWeber, Tobias-
dc.contributor.authorSager, Sebastian-
dc.contributor.authorGleixner, Ambros M.-
dc.date.accessioned2020-11-19T14:09:07Z-
dc.date.available2020-11-19T14:09:07Z-
dc.date.issued2020-
dc.date.submitted2019-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/35295-
dc.identifier.urihttp://dx.doi.org/10.25673/35092-
dc.description.abstractQuadratic optimization problems (QPs) are ubiquitous, and solution algorithms have matured to a reliable technology. However, the precision of solutions is usually limited due to the underlying floating-point operations. This may cause inconveniences when solutions are used for rigorous reasoning. We contribute on three levels to overcome this issue. First, we present a novel refinement algorithm to solve QPs to arbitrary precision. It iteratively solves refined QPs, assuming a floating-point QP solver oracle. We prove linear convergence of residuals and primal errors. Second, we provide an efficient implementation, based on SoPlex and qpOASES that is publicly available in source code. Third, we give precise reference solutions for the Maros and Mészáros benchmark library.eng
dc.format.extent1 Online-Ressource (35 Seiten)-
dc.language.isoeng-
dc.publisherSpringer, Berlin-
dc.rights.urihttps://creativecommons.org/licenses/by 4.0/-
dc.subjectQuadratic programmingeng
dc.subjectIterative refinementeng
dc.subjectActive seteng
dc.subjectRational calculationseng
dc.subject.ddc519.6-
dc.titleSolving quadratic programs to high precision using scaled iterative refinementeng
dc.typeArticle-
dc.identifier.urnurn:nbn:de:gbv:ma9:1-1981185920-352954-
dc.relation.referenceshttps://www.springer.com/journal/12532-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleMathematical programming computation-
local.bibliographicCitation.volume11-
local.bibliographicCitation.issue2019-
local.bibliographicCitation.pagestart421-
local.bibliographicCitation.pageend455-
local.bibliographicCitation.publishernameSpringer-
local.bibliographicCitation.publisherplaceBerlin-
local.bibliographicCitation.doi10.1007/s12532-019-00154-6-
local.openaccesstrue-
dc.identifier.ppn1739171152-
local.publication.countryXA-DE-
cbs.sru.importDate2020-11-19T14:04:18Z-
local.bibliographicCitationSonderdruck aus Mathematical programming computation-
local.accessrights.dnbfree-
Appears in Collections:Fakultät für Mathematik (OA)

Files in This Item:
File Description SizeFormat 
Sager _et al._Mathematical Programming Computation_2020.pdfZweitveröffentlichung368.57 kBAdobe PDFThumbnail
View/Open