Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/35020
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZeile, Clemens-
dc.contributor.authorRobuschi, Nicolò-
dc.contributor.authorSager, Sebastian-
dc.date.accessioned2020-11-11T10:48:50Z-
dc.date.available2020-11-11T10:48:50Z-
dc.date.issued2021-
dc.date.submitted2020-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/35222-
dc.identifier.urihttp://dx.doi.org/10.25673/35020-
dc.description.abstractTailored Mixed-Integer Optimal Control policies for real-world applications usually have to avoid very short successive changes of the active integer control. Minimum dwell time (MDT) constraints express this requirement and can be included into the combinatorial integral approximation decomposition, which solves mixed-integer optimal control problems (MIOCPs) to -optimality by solving one continuous nonlinear program and one mixed-integer linear program (MILP). Within this work, we analyze the integrality gap of MIOCPs under MDT constraints by providing tight upper bounds on the MILP subproblem. We suggest different rounding schemes for constructing MDT feasible control solutions, e.g., we propose a modification of Sum Up Rounding. A numerical study supplements the theoretical results and compares objective values of integer feasible and relaxed solutions.eng
dc.format.extent1 Online-Ressource (42 Seiten, 858,85 MB)-
dc.language.isoeng-
dc.publisherSpringer Nature, Berlin-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectMixed-integer linear programmingeng
dc.subjectOptimal controleng
dc.subjectDiscrete approximationseng
dc.subjectSwitched dynamic systemseng
dc.subjectApproximation methods and heuristicseng
dc.subjectMinimum dwell time constraintseng
dc.subject.ddc519.6-
dc.titleMixed-integer optimal control under minimum dwell time constraintseng
dc.typeArticle-
dc.identifier.urnurn:nbn:de:gbv:ma9:1-1981185920-352228-
dc.relation.referenceshttp://link.springer.com/journal/10107-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleMathematical programming-
local.bibliographicCitation.issue2020-
local.bibliographicCitation.pagestart653-
local.bibliographicCitation.pageend694-
local.bibliographicCitation.publishernameSpringer Nature-
local.bibliographicCitation.publisherplaceBerlin-
local.bibliographicCitation.doi10.1007/s10107-020-01533-x-
local.openaccesstrue-
dc.identifier.ppn1738428664-
local.publication.countryXA-DE-
cbs.sru.importDate2020-11-11T10:41:56Z-
local.bibliographicCitationSonderdruck aus Mathematical programming-
local.accessrights.dnbfree-
Appears in Collections:Fakultät für Mathematik (OA)

Files in This Item:
File Description SizeFormat 
Sager_et al._Mathematical Programming_2020.pdfZweitveröffentlichung858.85 kBAdobe PDFThumbnail
View/Open