Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/35017
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTetschke, Manuel-
dc.contributor.authorLilienthal, Patrick-
dc.contributor.authorPottgiesser, Torben-
dc.contributor.authorFischer, Thomas-
dc.contributor.authorSchalk, Enrico-
dc.contributor.authorSager, Sebastian-
dc.date.accessioned2020-11-11T09:05:35Z-
dc.date.available2020-11-11T09:05:35Z-
dc.date.issued2020-
dc.date.submitted2018-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/35219-
dc.identifier.urihttp://dx.doi.org/10.25673/35017-
dc.description.abstractThe regeneration of red blood cells (RBCs) after blood loss is an individual complex process. We present a novel simple compartment model which is able to capture the most important features and can be personalized using parameter estimation. We compare predictions of the proposed and personalized model to a more sophisticated state-of-the-art model for erythropoiesis, and to clinical data from healthy subjects. We discuss the choice of model parameters with respect to identifiability. We give an outlook on how extensions of this novel mathematical model could have an important impact for personalized clinical decision support in the case of polycythemia vera (PV). PV is a slow-growing type of blood cancer, where especially the production of RBCs is increased. The principal treatment targeting the symptoms of PV is bloodletting (phlebotomy), at regular intervals that are based on personal experiences of the physicians. Model-based decision support might help to identify optimal and individualized phlebotomy schedules.eng
dc.format.extent1 Online-Ressource (29 Seiten, 1,2 MB)-
dc.language.isoeng-
dc.publisherMDPI, Basel-
dc.rights.urihttps://creativecommons.org/licenses/by-sa/4.0/-
dc.subjectErythropoiesiseng
dc.subjectPhlebotomyeng
dc.subjectParameter estimationeng
dc.subjectNumerical simulationeng
dc.subject.ddc519.6-
dc.titleMathematical modeling of RBC count dynamics after blood losseng
dc.typeArticle-
dc.identifier.urnurn:nbn:de:gbv:ma9:1-1981185920-352196-
dc.relation.referenceshttp://www.mdpi.com/journal/processes-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleProcesses-
local.bibliographicCitation.volume5-
local.bibliographicCitation.issue9-
local.bibliographicCitation.pagestart1-
local.bibliographicCitation.pageend29-
local.bibliographicCitation.publishernameMDPI-
local.bibliographicCitation.publisherplaceBasel, Switzerland-
local.bibliographicCitation.doi10.3390/pr6090157-
local.openaccesstrue-
dc.identifier.ppn1738412873-
local.publication.countryXA-CH-
cbs.sru.importDate2020-11-11T08:57:58Z-
local.bibliographicCitationSonderdruck aus Processes-
local.accessrights.dnbfree-
Appears in Collections:Fakultät für Mathematik (OA)

Files in This Item:
File Description SizeFormat 
Sager_et al._processes2_2020.pdfZweitveröffentlichung1.2 MBAdobe PDFThumbnail
View/Open