Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/35016
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEngelhart, Michael-
dc.contributor.authorFunke, Joachim-
dc.contributor.authorSager, Sebastian-
dc.date.accessioned2020-11-11T06:56:28Z-
dc.date.available2020-11-11T06:56:28Z-
dc.date.issued2020-
dc.date.submitted2017-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/35218-
dc.identifier.urihttp://dx.doi.org/10.25673/35016-
dc.description.abstractThe question “How can humans learn efficiently to make decisions in a complex, dynamic, and uncertain envi- ronment” is still a very open question. We investigate what effects arise when feedback is given in a computer- simulated microworld that is controlled by participants. This has a direct impact on training simulators that are already in standard use in many professions, e.g., flight simulators for pilots, and a potential impact on a better understanding of human decision making in general. Our study is based on a benchmark microworld with an economic framing, the IWR Tailorshop . N=94 partic- ipants played four rounds of the microworld, each 10 months, via a web interface. We propose a new approach to quantify performance and learning, which is based on a mathematical model of the microworld and optimiza- tion. Six participant groups receive different kinds of feedback in a training phase, then results in a perfor- mance phase without feedback are analyzed. As a main result, feedback of optimal solutions in training rounds im- proved model knowledge, early learning, and performance, especially when this information is encoded in a graphical representation (arrows).eng
dc.format.extent1 Online-Ressource (23 Seiten, 1,23 MB)-
dc.language.isoeng-
dc.publisherUniversitätsbibliothek, Heidelberg-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectComplex problem solvingeng
dc.subjectTrainingeng
dc.subjectDdynamic decision makingeng
dc.subjectFeedbackeng
dc.subjectMixed-integer nonlinear optimizationeng
dc.subject.ddc519.6-
dc.titleA web-based feedback study on optimization-based training and analysis of human decision makingeng
dc.typeArticle-
dc.identifier.urnurn:nbn:de:gbv:ma9:1-1981185920-352182-
dc.relation.referenceshttp://journals.ub.uni-heidelberg.de/index.php/jddm-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleJournal of dynamic decision making-
local.bibliographicCitation.volume3-
local.bibliographicCitation.issue2017-
local.bibliographicCitation.pagestart1-
local.bibliographicCitation.pageend23-
local.bibliographicCitation.publishernameUniversitätsbibliothek Heidelberg-
local.bibliographicCitation.publisherplaceHeidelberg-
local.bibliographicCitation.doi10.11588/jddm.2017.1.34608-
local.openaccesstrue-
dc.identifier.ppn1738390179-
local.publication.countryXA-DE-
cbs.sru.importDate2020-11-11T06:51:01Z-
local.bibliographicCitationSonderdruck aus Journal of dynamic decision making-
local.accessrights.dnbfree-
Appears in Collections:Fakultät für Mathematik (OA)

Files in This Item:
File Description SizeFormat 
Sager_et al._JDDM_2020.pdfZweitveröffentlichung1.23 MBAdobe PDFThumbnail
View/Open