Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/118516
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBöhmer, Martin-
dc.contributor.authorKuehnel, Stephan-
dc.contributor.authorDamarowsky, Johannes-
dc.contributor.authorBrendel, Alfred Benedikt-
dc.date.accessioned2025-03-10T15:05:28Z-
dc.date.available2025-03-10T15:05:28Z-
dc.date.issued2025-08-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/120474-
dc.identifier.urihttp://dx.doi.org/10.25673/118516-
dc.description.abstractThis paper addresses the need for ethical and effective use of synthetic image data in digital health computer vision. It explores the design requirements and design principles for both responsible use of artificial intelligence in digital health and model robustness, focusing on privacy, ethical compliance, and domain adaptation. Using the design science research paradigm along with value-sensitive design and sociotechnical systems theory, this study presents a design theory that provides actionable guidance for the generation, selection, and integration of synthetic data in digital health. Through heuristic theorizing over two design cycles, the work provides a robust theory artifact and conceptual model to ensure ethical use and improve model performance in digital health through appropriate domain adaptation, generalization, and accuracy. In addition to contributing to theoretical knowledge, this research offers practical implications for health authorities to promote ethical standards and performance in synthetically trained AI applications.eng
dc.language.isoeng-
dc.publisherUniversitäts- und Landesbibliothek Sachsen-Anhalt-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectArtificial Intelligenceeng
dc.subjectDigital Ethics-
dc.subjectSynthetic Data-
dc.subjectDeep Learning-
dc.subjectDesign Theory-
dc.subject.ddcDDC::6** Technik, Medizin, angewandte Wissenschaften-
dc.subject.ddcDDC::0** Informatik, Informationswissenschaft, allgemeine Werke-
dc.subject.ddcDDC::1** Philosophie und Psychologie::17* Ethik-
dc.titleSynthEthics: Ensuring Digital Ethics and Performance with a Design Theory for Using Synthetic Image Data in Digital Health Deep Learningeng
dc.typePreprint-
local.versionTypeacceptedVersion-
local.bibliographicCitation.journaltitleThe DATA BASE for Advances in Information Systems-
local.openaccesstrue-
dc.identifier.doiAssigned in the course of publication by the ACM Digital Library.-
local.accessrights.dnbfree-
Appears in Collections:Lehrstuhl für Betriebliches Informationsmanagement

Files in This Item:
File Description SizeFormat 
Bohmer_Pre_Press.pdfCaution: The DOI will be assigned in the course of publication by the ACM Digital Library!3.8 MBAdobe PDFThumbnail
View/Open