Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/116806
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAlsawaf, Ahmad-
dc.contributor.authorLehnen, Anne-Catherine-
dc.contributor.authorDolynchuk, Oleksandr-
dc.contributor.authorBapolisi, Alain M.-
dc.contributor.authorBeresowski, Christina-
dc.contributor.authorBöker, Alexander-
dc.contributor.authorBald, Ilko-
dc.contributor.authorHartlieb, Matthias-
dc.date.accessioned2024-10-08T12:17:17Z-
dc.date.available2024-10-08T12:17:17Z-
dc.date.issued2024-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/118766-
dc.identifier.urihttp://dx.doi.org/10.25673/116806-
dc.description.abstractMembrane-active antimicrobial materials are promising substances to fight antimicrobial resistance. Herein, crystallization-driven self-assembly (CDSA) is employed for the preparation of nanoparticles with different morphologies, and their bioactivity is explored. Block copolymers (BCPs) featuring a crystallizable and antimicrobial block were synthesized using a combination of ring-opening and photoiniferter RAFT polymerizations. Subsequently formed nanostructures formed by CDSA could not be deprotected without degradation of the structures. CDSA of deprotected BCPs yielded 2D diamond-shaped nanoplatelets in MeOH, while spherical nanostructures were observed for assembly in water. Platelets exhibited improved antibacterial capabilities against two Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) compared to their spherical counterparts. The absence of hemolytic activity leads to the excellent selectivity of platelets. A mechanism based on membrane permeabilization was confirmed via dye-leakage assays. This study emphasized the impact of the shape of nanostructures on their interaction with bacterial cells and how a controlled assembly can improve bioactivity.eng
dc.language.isoeng-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subject.ddc530-
dc.titleAntibacterial nanoplatelets via crystallization-driven self-assembly of poly(l-lactide)-based block copolymerseng
dc.typeArticle-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleBiomacromolecules-
local.bibliographicCitation.volume25-
local.bibliographicCitation.issue9-
local.bibliographicCitation.pagestart6103-
local.bibliographicCitation.pageend6114-
local.bibliographicCitation.publishernameAmerican Chemical Soc.-
local.bibliographicCitation.publisherplaceColumbus, Ohio-
local.bibliographicCitation.doi10.1021/acs.biomac.4c00767-
local.openaccesstrue-
dc.identifier.ppn1902604881-
cbs.publication.displayform2024-
local.bibliographicCitation.year2024-
cbs.sru.importDate2024-10-08T12:16:52Z-
local.bibliographicCitationEnthalten in Biomacromolecules - Columbus, Ohio : American Chemical Soc., 2000-
local.accessrights.dnbfree-
Appears in Collections:Open Access Publikationen der MLU