Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/116456
Full metadata record
DC FieldValueLanguage
dc.contributor.authorConte, Dajana-
dc.contributor.authorMoradi, Leila-
dc.contributor.authorPaternoster, Beatrice-
dc.contributor.authorPodhaisky, Helmut-
dc.date.accessioned2024-07-01T07:16:54Z-
dc.date.available2024-07-01T07:16:54Z-
dc.date.issued2024-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/118411-
dc.identifier.urihttp://dx.doi.org/10.25673/116456-
dc.description.abstractThis work is devoted to the numerical solution of second kind nonlinear Volterra integral equations with highly oscillatory kernel. We use a collocation approach by discretizing the oscillatory integrals in the collocation equation using a Filon-type quadrature rule. We investigate the convergence of the numerical method in terms of step length h and frequency ω. As h decreases, the suggested technique converges with order d, while its asymptotic order as the frequency increase, is at least 1 and may reach 2 in some cases. Numerical experiments validate theoretical results.eng
dc.language.isoeng-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subject.ddc510-
dc.titleCollocation methods for nonlinear Volterra integral equations with oscillatory kerneleng
dc.typeArticle-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleApplied numerical mathematics-
local.bibliographicCitation.volume203-
local.bibliographicCitation.pagestart1-
local.bibliographicCitation.pageend15-
local.bibliographicCitation.publishernameElsevier-
local.bibliographicCitation.publisherplaceAmsterdam [u.a.]-
local.bibliographicCitation.doi10.1016/j.apnum.2024.05.002-
local.openaccesstrue-
dc.identifier.ppn189275486X-
cbs.publication.displayform2024-
local.bibliographicCitation.year2024-
cbs.sru.importDate2024-07-01T07:16:29Z-
local.bibliographicCitationEnthalten in Applied numerical mathematics - Amsterdam [u.a.] : Elsevier, 1985-
local.accessrights.dnbfree-
Appears in Collections:Open Access Publikationen der MLU

Files in This Item:
File Description SizeFormat 
1-s2.0-S0168927424001089-main.pdf1.46 MBAdobe PDFThumbnail
View/Open