Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/115985
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSturzenegger-Münch, Judith-
dc.contributor.authorDietz, Niklas-
dc.contributor.authorBarber-Zucker, Shiran-
dc.contributor.authorSeifert, Franziska-
dc.contributor.authorMatschi, Susanne-
dc.contributor.authorPüllmann, Pascal-
dc.contributor.authorFleishman, Sarel J.-
dc.contributor.authorWeissenborn, Martin J.-
dc.date.accessioned2024-05-08T05:30:39Z-
dc.date.available2024-05-08T05:30:39Z-
dc.date.issued2024-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/117940-
dc.identifier.urihttp://dx.doi.org/10.25673/115985-
dc.description.abstractUnspecific peroxygenases (UPOs) are fungal enzymes that attract significant attention for their ability to perform versatile oxyfunctionalization reactions using H2O2. Unlike other oxygenases, UPOs do not require additional reductive equivalents or electron transfer chains that complicate basic and applied research. Nevertheless, UPOs generally exhibit low to no heterologous production levels and only four UPO structures have been determined to date by crystallography limiting their usefulness and obstructing research. To overcome this bottleneck, we implemented a workflow that applies PROSS stability design to AlphaFold2 model structures of 10 unique and diverse UPOs followed by a signal peptide shuffling to enable heterologous production. Nine UPOs were functionally produced in Pichia pastoris, including the recalcitrant CciUPO and three UPOs derived from oomycetes─the first nonfungal UPOs to be experimentally characterized. We conclude that the high accuracy and reliability of new modeling and design workflows dramatically expand the pool of enzymes for basic and applied research.eng
dc.language.isoeng-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subject.ddc540-
dc.titleFunctionally diverse peroxygenases by AlphaFold2, design, and signal peptide shufflingeng
dc.typeArticle-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleACS catalysis-
local.bibliographicCitation.volume14-
local.bibliographicCitation.issue7-
local.bibliographicCitation.pagestart4738-
local.bibliographicCitation.pageend4748-
local.bibliographicCitation.publishernameACS-
local.bibliographicCitation.publisherplaceWashington, DC-
local.bibliographicCitation.doi10.1021/acscatal.4c00883-
local.openaccesstrue-
dc.identifier.ppn1888090448-
cbs.publication.displayform2024-
local.bibliographicCitation.year2024-
cbs.sru.importDate2024-05-08T05:30:18Z-
local.bibliographicCitationEnthalten in ACS catalysis - Washington, DC : ACS, 2011-
local.accessrights.dnbfree-
Appears in Collections:Open Access Publikationen der MLU