Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/98382
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDassow, Jürgen-
dc.date.accessioned2023-01-24T13:29:24Z-
dc.date.available2023-01-24T13:29:24Z-
dc.date.issued2022-
dc.date.submitted2022-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/100338-
dc.identifier.urihttp://dx.doi.org/10.25673/98382-
dc.description.abstractFor a set A of Boolean functions, a closure operator c and an involution i, let Nc,i (A) be the number of sets which can be obtained from A by repeated applications of c and i . The orbit O(c, i ) is defined as the set of all these numbers. We determine the orbits O(S, i ) where S is the closure defined by superposition and i is the complement or the duality. For the negation non, the orbit O(S, non) is almost determined. Especially, we show that the orbit in all these cases contains at most seven numbers. Moreover, we present some closure operators where the orbit with respect to duality and negation is arbitrarily large.eng
dc.description.sponsorshipProjekt DEAL 2021-
dc.language.isoeng-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectKuratowski’s closure-complement theoremeng
dc.subjectSuperposition of Boolean functionseng
dc.subjectComplement and negation and duality of sets of Boolean functionseng
dc.subject.ddc000-
dc.titleThe orbit of closure-involution operations : the case of Boolean functionseng
dc.typeArticle-
dc.identifier.urnurn:nbn:de:gbv:ma9:1-1981185920-1003386-
dc.relation.issupplementedbyhttp://link.springer.com/journal/13366-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleBeiträge zur Algebra und Geometrie-
local.bibliographicCitation.volume63-
local.bibliographicCitation.pagestart321-
local.bibliographicCitation.pageend334-
local.bibliographicCitation.publishernameSpringer-
local.bibliographicCitation.publisherplaceBerlin-
local.bibliographicCitation.doi10.1007/s13366-021-00584-1-
local.openaccesstrue-
dc.identifier.ppn1831599082-
local.bibliographicCitation.year2022-
cbs.sru.importDate2023-01-24T13:25:52Z-
local.bibliographicCitationEnthalten in Beiträge zur Algebra und Geometrie - Berlin : Springer, 1993-
local.accessrights.dnbfree-
Appears in Collections:Fakultät für Informatik (OA)

Files in This Item:
File Description SizeFormat 
Dassow_Juergen_The orbit_2022.pdfZweitveröffentlichung263.58 kBAdobe PDFThumbnail
View/Open