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Abstract (English) 

The exploration of anthropogenic deposits is of increasing relevance in times of fluctuating world 
market prices, limited resource availabilities and increasing demands for raw materials. Aside 
from landfills of mining residuals, secondary deposits encompass dump sites of industrial by-
products. The iron- and steel industry is one of the most important basic industries and iron- and 
steelmaking is accompanied by a large variety of different by-products. Especially dump sites 
associated with iron and steel plants with long reaching history and manifold applied procedures 
may comprise a variety of secondary materials that have not been treated with present standards. 
Such materials are potentially rich in economically relevant materials that are valuable for 
extraction and reuse in today's world market situation (e.g. various metals, constituents that might 
be used as fertiliser, or materials suitable for the construction industry). 

The exploration of historic iron- and steelworks dump sites is challenging due to the anthropo-
technogenic material deposition, which is often not well-documented, and the heterogeneous 
chemical and mineralogical composition of different material types. Furthermore, such materials 
are hardly discriminable in situ due to similar visual appearance in many cases. Consequently, the 
exploration of such deposits requires comprehensive sampling campaigns, and extensive 
laboratory analyses for material typification and geochemical characterisation. These procedures 
are time consuming and cost-intensive. Thus, new and innovative approaches are required to aid 
the exploration of iron- and steelworks dump sites, to assist material typification and the 
assessment of relevant chemical properties within urban mining applications. 

As non-contact method, reflectance spectroscopy has been widely applied within the exploration 
of natural deposits and for quali- as well as quantitative spectral analyses of geological materials. 
In contrast to the profound knowledge of spectral properties of minerals and natural rocks, the 
number of studies on the specific spectral characteristics of the variety of iron- and steelworks 
by-products is limited within the remote sensing community. Most slags and other by-products 
show a differing mineralogy and chemistry compared to natural rocks. Thus, existing information 
on spectra of monomineralic samples or natural formations cannot be directly transferred to such 
“industrial rocks” in every case. However, profound knowledge about the spectral properties of 
potential target materials is the prerequisite for their successful spectral detection and analyses. 

Thus, this thesis aims to extend the knowledge of reflectance properties of common iron- and 
steelworks by-products that might be found at historic dump sites related to this industrial 
branch. Focus is put on two relevant wavelength ranges for spectral measurements within remote 
sensing applications: the visible light, near and shortwave infrared (VNIR/SWIR, 350-2500 nm) 
as well as the mid- and longwave infrared (MWIR/LWIR, 2500-15000 nm). The work follows a 
deductive approach and the main objectives are: a) the analysis of the feasibility of using 
reflectance data for spectrally discriminating a large variety of iron- and steelworks by-product 
types; b) the comprehensive characterisation of the spectral properties of these materials and c) 
analysing the potential for spectrally assessing the quantities of relevant chemical constituents. 

The data basis for this work is a pool comprising 102 samples, of which the majority was 
collected at the dump site of the Stahlwerk Thüringen GmbH at Unterwellenborn, Germany. The 
sample pool comprises various historic as well as recent slags from iron- and steelmaking, 
different dusts, sludges and mixed materials. The spectral separability analyses encompassed 
principal component analyses and hierarchical clustering. Furthermore, the general potential for 
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spectral classification and separation of the different by-products was analysed using Support 
Vector Machine Classification, Spectral Feature Fitting and Spectral Angle Mapper. The impact 
of moisture and sample preparation on the reflectance signatures was studied as this is of 
relevance for the transferability of obtained results at the laboratory scale to field applications. 
For the spectral quantification of relevant chemical constituents typically used to characterise 
iron- and steelworks by-products, Partial Least Square Regression (PLSR) was applied. 

The outcome of this thesis reveals a high potential for the spectral discrimination of a large 
variety of recent and historic iron- and steelworks by-products that are potentially present at 
dump sites. These findings are of considerable relevance for improving the classification and 
typification of visually similar by-products. Utilising generalised separability approaches based on 
full spectral ranges, the VNIR/SWIR range provided a better separability of most by-product 
types compared to the more complex MWIR/LWIR. This thesis is further novel in providing 
detailed information on the spectral properties of various slags and other by-products for the 
VNIR/SWIR as well as for the MWIR/LWIR in a spectral-library-like manner. This contributes 
to a better understanding of the reflectance properties of such materials and may be used within 
spectral analyses and material detection applications. The results of PLSR modelling indicated a 
high potential for the spectral prediction of relevant chemical constituents commonly used to 
characterise iron- and steelworks by-products. Robust predictions (R²val > 0.8) were achieved for 
CaO, Fetotal, Fe2O3, TIC, SiO2 and the sum of various metals. The errors for these predictions 
were moderate to low (2-4 m%), indicating that accurate predictions of these parameters can be 
obtained utilising spectral methods. For other constituents, comprising Al2O3 and MgO, less 
robust but still promising results were obtained. Solid predictions for CaO, Fe2O3 and Fetotal were 
obtained using the VNIR/SWIR data, while the robust prediction of SiO2 and TIC required 
MWIR/LWIR data due to the specific spectral properties of these constituents not found in the 
VNIR/SWIR. The combination of both spectral ranges improved the predictive performance of 
the PLSR models but was in some cases achieved at the cost of higher model complexity. 
Especially for CaO, reliable estimations can be accomplished based on spectra of prepared and 
homogenised sample material and based on spectra of material near in situ conditions as well. 

In summary, non-invasive reflectance measurements and spectral analyses related to remote 
sensing applications were found to be suitable tools for discriminating and qualitatively as well as 
quantitatively characterising iron- and steelworks by-products. Considering that such 
measurements can be conducted quickly and results derived rapidly, a strong capability for aiding 
the exploration of anthropogenic deposits related to the iron and steel industry was found. This 
offers a great potential for reducing the required number of samples as well as the extent of cost-
intensive and time-consuming chemical and mineralogical analysis within urban mining 
applications. The obtained results further promote VNIR/SWIR and MWIR/LWIR reflectance 
spectroscopy - and subsequently remote sensing methods using these ranges - for analytical 
purposes of iron- and steelworks by-products in general, and for various screening applications 
within the exploration of secondary deposits related to this industry in particular. The results 
benefit material detection and analyses and a variety of possible applications arise. These 
comprise the sole laboratory usage for spectral-chemical material characterisation, in situ 
screenings using field-portable instruments or terrestrial or airborne imaging spectroscopy for 
discriminating and spatially mapping different material types of interest. Subsequently, the 
achieved results offer the potential to substantially benefit urban mining workflows aiming at 
finding and characterising materials of (economic) interest, their subsequent extraction and reuse.
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Abstract (German) 

Die Exploration anthropogener Lagerstätten gewinnt in Zeiten fluktuierender Weltmarktpreise, 
begrenzter Ressourcenverfügbarkeiten und steigender Rohstoffnachfrage zunehmend an 
Bedeutung. Neben Bergbauhalden umfassen sekundäre Lagerstätten Deponien industrieller 
Nebenerzeugnisse. Insbesondere Halden von Eisen- und Stahlwerken mit langer Historie und 
vielfältigen angewandten Verfahren können eine Fülle von Sekundärmaterialien beinhalten, die 
nicht nach derzeitigen Aufbereitungsstandards behandelt wurden. Solche Materialien sind 
potentiell reich an wirtschaftlich relevanten Stoffen, deren Extraktion und Wiederverwertung in 
der gegenwärtigen Weltmarktsituation von Interesse sind (z. B. verschiedene Metalle und 
Materialien, die als Dünger oder für die Baustoffindustrie verwendet werden können). 

Infolge lückenhaft dokumentierter Ablagerungsvorgänge sowie der heterogenen chemischen und 
mineralogischen Zusammensetzung verschiedener Materialtypen stellt die Erkundung 
historischer Eisen- und Stahlwerkshalden eine Herausforderung dar. Darüber hinaus sind viele 
Materialien aufgrund ähnlichen Erscheinungsbildes in vielen Fällen selbst für Experten kaum im 
Gelände zu unterscheiden. Die Exploration solcher Lagerstätten erfordert daher umfangreiche 
Probenahmekampagnen sowie zeit- und kostenintensive Laboranalysen zur Charakterisierung der 
abgelagerten Stoffe. Daher sind neue und innovative Ansätze erforderlich, um die Untersuchung 
von Halden der Eisen- und Stahlindustrie im Rahmen des Urban Mining zu unterstützen sowie 
die Typisierung verschiedener Materialien und die quantitative Einschätzung relevanter 
chemischer Eigenschaften zu erleichtern. 

Reflexionsspektrometrie ist ein etabliertes, nicht-invasives Verfahren zur Exploration natürlicher 
Lagerstätten sowie für quali- und quantitative geochemische Analysen. Im Gegensatz zu 
bestehenden umfangreichen Kenntnissen der spektralen Eigenschaften von Mineralen und 
natürlichen Gesteinen, ist die Anzahl der Studien über die spezifischen spektralen Charakteristika 
verschiedener Eisen- und Stahlwerksnebenprodukte im Kontext fernerkundungsrelevanter 
Anwendungen begrenzt. Die meisten Schlacken und andere Nebenprodukte weisen im Vergleich 
zu natürlichen Gesteinen unterschiedliche mineralogische und chemische Eigenschaften auf. 
Somit können bestehende spektrale Informationen zu monomineralischen Proben oder 
natürlichen Gesteinen aus Referenzdatenbanken nicht direkt auf diese “industriellen Gesteine“ 
übertragen werden. Die Kenntnis der spektralen Eigenschaften potentieller Zielmaterialien ist 
jedoch zwingende Voraussetzung für deren erfolgreiche spektrale Detektion und Analyse. 

Diese Arbeit zielt daher darauf ab, die Wissensbasis zu Reflexionseigenschaften von Eisen- und 
Stahlwerksnebenprodukten zu erweitern. Der Schwerpunkt liegt auf zwei in der geologischen 
Fernerkundung relevanten Wellenlängenbereichen: dem sichtbaren Licht, nahen und 
kurzwelligen Infrarot (VNIR/SWIR, 350-2500 nm) sowie dem mittel- und langwelligen Infrarot 
(MWIR/LWIR, 2500-15000 nm). Die Arbeit folgt einem deduktiven Ansatz und die Hauptziele 
sind: a) die Analyse der generellen spektralen Differenzierbarkeit einer Vielzahl verschiedener 
Typen von Eisen- und Stahlwerks-Nebenprodukten; b) die umfassende Charakterisierung der 
spektralen Eigenschaften dieser Materialien und c) die Analyse des Potentials 
reflexionsspektrometrischer Methoden zur quantitativen Abschätzung der Mengen relevanter 
chemischer Bestandteile. 

Die Datengrundlage für diese Arbeit bilden 102 Proben, die zum Großteil auf der Halde der 
Stahlwerk Thüringen GmbH in Unterwellenborn (Deutschland), erhoben wurden. Diese 
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umfassen verschiedene historische Schlacken, Stäube und Schlämme sowie Materialien aus der 
aktuellen Stahlerzeugung. Die spektrale Trennbarkeit wurde mittels Hauptkomponenten- und 
hierarchischen Clusteranalysen untersucht. Darüber hinaus wurde das Potential zur spektralen 
Klassifizierung und Trennung verschiedener Nebenprodukte mittels Support Vector Machine 
Klassifikation, Spectral Feature Fitting und Spectral Angle Mapper analysiert. Spektrale Merkmale 
verschiedener Materialtypen wurden umfassend im VNIR/SWIR und MWIR/LWIR erfasst und 
interpretiert. Der Einfluss von Feuchtigkeit und Probenaufbereitung auf die spektralen 
Signaturen wurde untersucht, da dies für die Übertragbarkeit der auf Laborebene generierten 
Ergebnisse auf Feldanwendungen von Bedeutung ist. Zur spektralen Quantifizierung relevanter 
chemischer Bestandteile, die zur Charakterisierung von Eisen- und Stahlwerksnebenprodukten 
verwendet werden, wurde das Partial-Least-Square-Regressions-Verfahren (PLSR) angewendet. 

Im Ergebnis dieser Arbeit konnten verschiedene Haldenmaterialien über ihre spektralen 
Signaturen differenziert und detektiert werden. Dabei zeigte sich im Rahmen der generalisierten 
Trennbarkeitsanalysen eine bessere Differenzierbarkeit der Materialien unter Verwendung des 
vollständigen VNIR/SWIR-Bereichs im Vergleich zum komplexeren MWIR/LWIR. Ein weiterer 
wesentlicher Beitrag dieser Arbeit ist die detaillierte Beschreibung der spektralen Eigenschaften 
verschiedener Nebenprodukte. Diese Informationen wurden erstmals in Form einer Spektral-
bibliothek und von Übersichtsschemata präsentiert. Diese tragen zu einem besseren Verständnis 
der Reflexionseigenschaften solcher Materialien bei und können als Basis für fortführende 
Spektralanalysen und für die Materialdetektion verwendet werden. Basierend auf PLSR-Modellen 
wurden robuste Vorhersagen (R²val > 0.8) mit niedrigem Schätzfehler für CaO, Fegesamt, Fe2O3, 
TIC, SiO2 und die Summe verschiedener Metalle erzielt. Auch für Al2O3 und MgO wurden 
vielversprechende Ergebnisse generiert. Solide Vorhersagen für CaO, Fe2O3 und Fegesamt konnten 
unter Verwendung des VNIR/SWIR erzielt werden. Für die robuste Schätzung von SiO2 und 
TIC wurden MWIR/LWIR-Daten benötigt. Die Kombination beider Spektralbereiche verbes-
serte die Güte der modellgestützen Vorhersagen, wurde in einigen Fällen aber auf Kosten einer 
höheren Modellkomplexität erreicht. Insbesondere für CaO wurden zuverlässige Schätzungen auf 
der Basis von Spektren homogenisierten als auch unaufbereiteten Probenmaterials erzielt. 

In dieser Arbeit wurden reflexionsspektrometrische Messungen im Bereich des VNIR/SWIR und 
MWIR/LWIR und anschließende Spektralanalysen als geeignete Werkzeuge zur Differenzierung, 
Detektion und quantitativen Analyse von Eisen- und Stahlwerksneben-produkten aufgezeigt. Da 
entsprechende Messungen rasch durchgeführt und Ergebnisse mit geringem Zeitaufwand 
abgeleitet werden können, hat dieser Ansatz erhebliches Potential zur Unterstützung explorativer 
Screenings von Halden der Eisen- und Stahlindustrie, zur Optimierung von 
Probenahmestrategien und zur Reduzierung des Umfangs von kosten- und zeitintensiven 
Laboranalysen. Die Ergebnisse der Arbeiten tragen damit auch zur weiteren Etablierung 
bildgebender fernerkundlicher Methoden zur Analyse von Materialien der Eisen- und 
Stahlindustrie sowie zur Untersuchung entsprechender Halden bei. Dadurch ergibt sich eine 
Vielzahl von Anschlussoptionen. Diese umfassen den Einsatz reflexionsspektrometrischer 
Verfahren im Rahmen rein laborbasierter Analysen von Eisen- und Stahlwerks-Nebenprodukten, 
in-situ-Screenings mittels tragbarer Feldinstrumente sowie die terrestrische oder flugzeuggestützte 
Fernerkundung zur Erfassung der räumlichen Verteilung von Materialien und deren 
Eigenschaften auf Halden. Damit haben die erzielten Ergebnisse das Potential, Urban-Mining- 
Workflows zu optimieren, die auf die Detektion und anschließende Rückgewinnung von 
Materialien von (wirtschaftlichem) Interesse abzielen.   



1.1 Background and Motivation - Exploration of Anthropogenic Deposits 

1 

1. Introduction 

1.1 Background and Motivation - Exploration of Anthropogenic Deposits 

Today’s world market situation is characterised by an increasing demand for energy and 
resources, increasing difficulty to acquire raw materials, fluctuating prices and variable resource 
availabilities. This affects various primary materials and causes an increasing demand for securing 
a sustainable raw material supply (e.g. BMWi 2010, Drobe and Killiches 2014, Arndt et al. 2015, 
BMUB 2015, BMUB 2016, BGR 2017). As a consequence, the exploitation of new resource 
deposits is crucial to assure raw material supply for basic but also high-tech industries, which has 
been broadly debated within economy and society. The exploitation of new deposits is not 
restricted to natural resources and therefore exploration of anthropogenic deposits and 
subsequent reuse of secondary resources is gaining increasing relevance (e.g. Wittmer 2006, 
Graedel 2009, BMWi 2010, Klinglmair and Fellner 2010, Krook and Baas 2013, BMUB 2016). As 
the conventional mining of natural deposits is often accompanied with high landscape and energy 
consumption (e.g. Priester and Dolega 2015), the exploitation of anthropogenic secondary 
deposits and the subsequent reuse of raw materials in existing anthropogenic metal stocks is of 
increasing importance considering the sustainable use of georesources (e.g. Wittmer 2006, 
Graedel 2009). Mining residuals represent one type of anthropogenic deposits. In 2012, the total 
amount of residuals of quarrying and mining activities in the EU was estimated to be 
> 700 million tonnes (European Union 2016). Also, industrial dump sites or landfills play an 
important role in the context of urban mining (see e.g. Dürkoop et al. 2016). The iron and steel 
industry is an essential industry and steel can be considered the most significant metallic base 
material (IPCC 2007, Remus et al. 2013), with a crude steel production of 1630 million tonnes in 
the year 2016 (World Steel Association 2017). The production of iron and steel is accompanied 
by the generation of various by-products. As such, more than 400 million tonnes of iron and steel 
slags as well as dusts, sludges and other secondary products are generated per year (World Steel 
Association 2016). Such materials have been widely used for different purposes (Geiseler 1996), 
e.g. the fabrication of bricks and ceramics (e.g. Das et al. 2007), for cement manufacturing or as 
construction material (e.g. Heußen and Markus 2013, Merkel 2014), as landfill liners (e.g. Diener 
et al. 2007, Herrmann et al. 2010) and fertiliser (e.g. Motz and Geiseler 2001, Dohlen and 
Steinweg 2009). In Europe, North America and Japan, current recycling and reuse rates of recent 
iron and steel slags reach nearly 100% to reduce landfill waste, CO2 emissions and preserving 
natural resources (Chiang and Pan 2017, World Steel Association 2016). In contrast, the reuse 
rates in other countries are much lower (e.g. 22% reuse of steel slag in China 2012, Yi et al. 2012). 
However, historical iron- and steelworks dump sites encompass materials not treated with 
present standards that can be rich in materials of economic interest. These materials comprise 
residuals from metallurgical smelting processes like slags, but also sludges, dusts or ashes that 
might be reusable in the cement industry, as construction material, fertiliser or contain relevant 
quantities of metals. For Germany, the total number of larger dumps has been estimated as 
greater than 1000, comprising a maximum theoretical potential of 45 million tonnes of iron in 
dump sites (Mrotzek-Blöß et al. 2016). 

Not only the origin of iron- and steelworks by-products is technogenic, but also their deposition 
is realised on an industrial scale and thus not comparable to natural depositional environments. 
The deposition of recent secondary products is usually conducted in a well-documented 
systematic way. However, with changes in production and deposition technology throughout the 
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existence of iron- and steelworks and due to material movements, the complexity of disposed 
materials and the structure of dump sites can substantially increase. The composition of the 
materials found at historic iron- and steelworks dump sites encompasses a multitude of slags 
from primary and secondary processes accompanied by sludges and dusts, e.g. from cleaning 
procedures of flue gases. Deposited materials might further comprise refractories, demolition 
material, soil, sand and others. The above-mentioned issues explain the arising difficulties for the 
exploration of dump sites associated with the iron and steel industry. Typically, the in situ 
assessment or mapping of historic by-products at dump sites is difficult, as different by-products 
or other materials tend to be similar in their visual appearance but show contrasting geochemical 
properties. In other cases, visually different materials might be assigned to different material 
classes but show nearly identical mineralogical or chemical properties. Thus, the detection of 
materials of interest requires comprehensive sampling campaigns with subsequent geochemical 
analyses in order to assess material types and their corresponding chemical composition. Such 
efforts are time consuming, cost-intensive and cannot provide spatially comprehensive 
information on the overall material distribution at dump sites (Jandewerth et al. 2013; Mrotzek-
Blöß et al. 2016; Nühlen et al. 2016a, 2016b, 2016c). Further information might be provided by 
drill-core analyses, but such approaches are known to be difficult to conduct on iron- and 
steelworks dump sites and provide only point-based information (e.g. Ullrich 2005, Tinz 2006). 
Analyses of historical maps, archived documents and aerial photographs as well as local experts' 
knowledge provide valuable information on the historical material. However, it was found that 
even after elaborating detailed mass flows based on archive data and analyses of historical aerial 
photographs, the specific material composition at dump sites could not be fully reconstructed 
and remains unclear in many cases (Jandewerth et al. 2013, Mrotzek-Blöß et al. 2016). Here, one 
must also consider that such detailed information is not available in all cases, resulting in a less 
documented historic treatment and tipping of iron- and steelworks by-products and an unknown 
material composition. 

For the successful exploration of anthropogenic deposits in general and for iron- and steelworks 
dumps in particular, the origin and composition of the disposed secondary materials must be 
precisely determined, and their content of relevant constituents estimated. Therefore, innovative 
approaches are required for explorative screenings of historical disposal sites, aiming at 
improving material typification and detection, as well as for quantitatively assessing properties of 
such materials. This is supposed to consequently aid raw material recovery, to reduce costs for 
sample collection and analyses and benefit the overall workflow of reusing or recycling industrial 
by-products (e.g. Jandewerth et al. 2013, Krook and Baas 2013, Mrotzek-Blöß et al. 2016). 

As non-invasive methods, reflectance spectroscopy and hyperspectral remote sensing are well 
established tools for the remote exploration of natural deposits (e.g. Goetz and Rowan 1981, van 
der Meer et al. 2012). Such methods are applied in a plurality of mining related fields, e.g. for 
analyses of acid mine drainage phenomena (e.g. Swayze et al. 2000, Montero et al. 2005), mining 
accidents (e.g. Kemper and Sommer 2002, Fernandes et al. 2016), for monitoring post-mining 
landscapes (e.g. Schmidt and Glaesser 1998, Gläßer et al. 2011) and tailing sites as well as for 
mine waste analyses (e.g. Gannouni et al. 2012, Buzzi et al. 2014, Mielke et al. 2014). Despite the 
growing variety of application fields, which encompass also urban materials (e.g. Rashed and 
Jürgens 2010, Yang 2011) or industrial applications (e.g. Tatzer et al. 2005), only few studies 
focussed on the utilisation of hyperspectral methods for analysing nonferrous materials or within 
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the steel foundry process (e.g. Picón et al. 2009, 2012, 2017; Gutiérrez et al. 2010). Even less 
research was conducted with focus on the remote spectral exploration of iron- and steelworks 
dump sites and the characterisation of heterogeneous historical materials based on reflectance 
spectroscopy using field portable instruments (Denk et al. 2015). 

The knowledge of the spectral characteristics of the target materials is a prerequisite for the 
qualitative and quantitative analysis of spectroscopic measurements and subsequently remote 
sensing data. Thus, profound studies on the spectral properties of minerals and rocks have been 
established for several decades (e.g. Estep-Barnes 1977, Hunt 1977, Clark 1999). Today, various 
digital spectral libraries for minerals and also partially for rocks are available (Clark et al. 2007, 
Baldridge et al. 2009, Kokaly et al. 2017). With the technological advancement and increasing 
number of instruments to acquire high-resolution information in the thermal infrared (e.g. 
Hecker et al. 2011), this wavelength range gains further relevance in remote sensing applications, 
due to better discrimination and analytical capabilities for several mineralogical and chemical 
constituents, e.g. silicates (e.g. Hunt 1980). Iron- and steelworks by-products, particularly slags, 
represent industrial high-temperature formations that show a differing chemical as well as 
mineralogical composition compared to naturally occurring rocks and can thus be considered as 
“industrial” or “anthropogenic rocks” (Drissen 2004). As such, their spectral properties are 
different from natural rocks. However, several spectral properties of high temperature minerals 
and silicates might also occur in slags were studied by various authors (e.g. spinels and chromites 
by Cloutis et al. 2004; silicates by Launer 1952, Moenke 1962, Ghosh and Chatterjee 1974). A 
multitude of works exists on the spectral properties of natural and technogenic silicate glasses 
(see King et al. 2004b and references therein), which show similarities to glass-like solidified slags. 
For analyses of slags and melts, especially transmittance measurements in the mid- and longwave 
infrared on the laboratory scale are established analytical tools (see e.g. Waseda and Toguri 1998; 
Park et al. 2002, 2012). 

In contrast to the aforementioned plurality of studies on the spectral properties of various 
geological and technogenic materials, the reflectance properties of the large variety of chemically 
and mineralogically different by-products potentially occurring at historic iron- and steelworks 
dump sites have - to the best of the author’s knowledge - not yet been comprehensively 
described combining information from the visible light to the longwave infrared. Furthermore, 
the capabilities for spectrally discriminating these materials as well as for quantifying chemical 
constituents of such heterogeneous material compositions with potential application for the 
remote exploration of iron- and steelworks dump sites have not been shown previously. This 
underlines the necessity for building a more detailed knowledge base of the reflectance properties 
of common historical as well as recent iron- and steelworks by-products for the visible light, near 
and shortwave infrared as well as for the mid- and longwave infrared, as these ranges are 
commonly utilised in laboratory as well as in in situ spectroscopy with portable instruments as 
well as within the field of geological remote sensing (e.g. Hecker et al. 2011, van der Meer et al. 
2012). Furthermore, the feasibility for spectrally differentiating various by-product types and for 
spectral quantification of relevant chemical constituents in order to assist material discrimination 
and characterisation within urban mining applications still needs to be assessed.   
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1.2 Objectives, Scope and Research Questions 

Against the described background, this thesis aims to provide extensive information on the 
reflectance characteristics of a variety of typical iron- and steelworks by-products, analyse the 
spectral separability of such materials and assess the potential for spectrally quantifying their 
chemical constituents. The work incorporates the common wavelength range utilised in optical 
geological remote sensing (350-2500 nm) as well as the mid-and longwave infrared range (2500-
15000 nm), as this wavelength region is known to provide more detailed information on several 
constituents (e.g. silicates; cf. Schodlok et al. 2016). Apart from the different wavelength ranges, 
different spectra types (i.e. spectral preprocessings), are utilised in order to address that the 
reflectance intensity as well as specific spectral features (reflectance maxima and minima) might 
be relevant for discriminating and analysing the secondary materials. Although this work is 
conducted based on laboratory data, it will also analyse the possibilities to support field 
exploration of iron- and steelworks dump sites using spectral methods. Thus, the analyses 
incorporate the impacts of moisture and grain size on the qualitative and quantitative information 
that can be derived from the spectral measurements, as these are two of the major factors known 
to affect reflectance signatures. 

Because of the little available information on the specific spectral characteristics of iron- and 
steelworks by-products in reflectance data covering the analysed wavelength ranges, this work 
follows a deductive approach to investigate the following objectives and arising research 
questions: 

I. Analysis of the spectral differentiability of typical iron- and steelworks by-products 

Ia Which potential does reflectance spectroscopy offer for discriminating iron- and steelworks by-products? 

Ib Which spectral range and spectral preprocessings are preferable? 

II. Building a spectral library for major iron- and steelworks by-products and characterising 
reflectance properties as well as major spectral features occurring in the spectra 

IIa What are the spectral properties of common iron- and steelworks by-products? 

IIb Which relationships between spectral features and chemical constituents can be observed? 

IIc What is the impact of moisture and sample preparation on spectra of iron- and steelworks by-products? 

III. Spectral quantification of chemical constituents of iron- and steelworks by-products 

IIIa Which chemical constituents of iron- and steelworks by-products can be spectrally predicted? 

IIIb Which spectral range provides the best results for which constituent? 

IIIc Which impacts do different preprocessings have on the model performance? 

IIId Which variables are important for the spectral prediction of chemical constituents? 

IIIe Which prediction results can be obtained based on spectra of materials near in situ conditions? 
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1.3 Structure of this Work 

The structure of this thesis is schematically visualised in Fig. 1.1. Chapter 2 comprises two major 
parts: the first will provide background information on iron- and steelmaking procedures, 
associated by-products and their chemical and mineralogical composition. The second addresses 
basic principles of reflectance spectroscopy of rocks and minerals, causes of features occurring in 
mineral spectra and physicochemical factors influencing spectral signatures. An introduction to 
spectral properties of high-temperature formations with relevance for this work and a brief 
review on geological remote sensing of rocks and minerals will close this chapter. Most of the 
samples used in this work were collected at the dump site of the Stahlwerk Thüringen GmbH in 
Unterwellenborn (Thuringia, Germany). As the structure and composition of this dump is 
strongly linked to the local history of iron- and steelmaking in Unterwellenborn, Chapter 3 will 
introduce the geographical and geological setting of this area, describe former mining activities, 
introduce the dump site and the history of iron and steel production at this location. 

 

Fig. 1.1: General structure of this thesis. 

Chapter 4 will focus on the utilised data and methods, encompassing sample collection and 
preparation, chemical and mineralogical analyses, reflectance measurements as well as quali- and 
quantitative spectral analyses. Results are presented and discussed in Chapter 5, wherein 
Chapter 5.1-5.3 focus on the chemical and mineralogical properties of the samples. Results of the 
spectral separability analyses are reported in Chapter 5.4. In Chapter 5.5, reflectance spectra of 
common iron- and steelworks by-products are presented and discussed, encompassing analyses 
of spectral variations within by-product classes and impacts of moisture and sample preparation 
on the spectra. Chapter 5.6 provides results of the quantification of chemical constituents, 
comprising results achieved using spectra of homogenised samples as well as results based on 
spectra of samples with near in situ conditions. A summary of the results, general discussions and 
an outlook on subsequent research and possible applications are presented in Chapter 6. 
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2. Background Information and State of Research 

2.1 Iron- and Steelmaking Processes, By-Products and their Properties 

2.1.1 Major Iron- and Steelmaking Processes and By-Products 

In 2016, world crude steel production was 1630 million tonnes, which is nearly twice the amount 
produced in the year 2000 (850 million tonnes). In the year 2000, Europe was the world’s most 
relevant steel producer (25%) followed by North America (16%) and China (15%). In contrast, 
China (50%) is by far the most important steel producer today, followed by Europe (12%), North 
America (7%), Japan (6%) and India (6%) (World Steel Association 2017, Figure 2.1). 

 

Fig. 2.1: Production of crude steel in the year 2000 (left) and 2016 (right) (after World Steel Association 2017). 

The earliest steel discoveries reach back to 2000 B.C. and to the present, various iron- and 
steelmaking procedures have been utilised (World Steel Association 2012). Today, the two most 
important procedures are the primary or blast furnace basic oxygen furnace route (BF-BOF) and 
steelmaking via the electric arc furnace (EAF) route. The BF-BOF route encompasses the 
reduction of iron ore to iron in blast furnaces (BF) utilising mainly the raw materials iron ore, 
coal (coke) and limestone. The so produced iron is subsequently processed into crude steel via 
basic oxygen furnaces (BOF). This route is applied in ca. 50 countries and more than 2/3 of the 
world's steel production is based on this procedure. The second route comprises the melting of 
scrap metal in electric arc furnaces (EAF) via electricity and graphite electrodes (IPCC 2007, 
World Steel Association 2012, Remus et al. 2013). The energy consumption of the secondary 
route is 30-40% lower compared to the primary route (Beer et al. 1998). Variations of both routes 
might be applied as well (e.g. World Steel Association 2018). 

As it is out of scope of this work to provide a complete overview of all iron- and steelmaking 
procedures, only major recent procedures and the associated by-products and historical processes 
and secondary materials of relevance for this work are introduced in the following paragraphs. 
For further and more comprehensive information on iron and steel production, by-products and 
their utilisation see e.g. Ghosh and Chatterjee (2008) and VDEh (2015).  
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Ore preparation – Pelletising, sintering, Krupp-Renn procedure 

For the BF-BOF route, iron ore can be used in form of lumpy iron ore, sinter or pellets. While 
lumpy ore can directly be used for iron making in the blast furnace, fine ore requires preparation 
via pelletising or sintering (e.g. World Steel Association 2018). Pelletising means the compacting 
of fine ore by adding binder materials (typically limestone or dolomite), imbuing and subsequent 
burning the mixture at temperatures > 1000°C in rotary or shaft furnaces to produce pellets with 
a purity of 63-65% iron (e.g. Ruge 1987, Remus et al. 2013, Singh et al. 2015). Sintering is realised 
in belt type sintering plants. Here, firstly a mixture of fine iron ore, coke dust and various 
additives, called sinter cake, is produced. Afterwards, the coke is burned, and air is blown through 
the sinter cake. The temperatures in this process are kept below the melting point of iron but lead 
to an aggregation of the fine particles to sinter. The sintering process generates dusts mainly 
composed of iron oxides and other components. Depending on the dedusting process and their 
composition, filtered dusts are reused within the sintering process or deposited (e.g. Ruge 1987, 
Geschichtsverein Maxhütte e.V. 2005, Fernández-González et al. 2017). 

The Krupp-Renn process is a pre-treatment procedure invented in 1930 (Ruge 1987). The 
procedure was utilised to prepare acidic low-grad iron ore in large rotary furnaces, resulting in 
iron-rich blooms. The rotary furnaces were loaded with iron ore or iron-rich by-products and 
coke breeze for iron reduction. Accompanying elements in the ore served as slag former. The 
furnace temperature was between 500-1300°C. The resulting iron-slag mixture was quenched 
with water and subsequently air-cooled. After pestling the mixture, iron blooms could be 
separated via magnets and used for ironmaking in the blast furnace. The procedure lost 
importance in the 1960s (Geschichtsverein Maxhütte e.V. 2005). 

Iron production in the blast furnace 

The main function of a blast furnace is to reduce and liquidise iron. Blast furnaces are loaded 
from top to bottom in alternating layers of coke (used as reducing agent) and a mixture of sinter, 
pellets, iron ore and additives called burden (German: “Möller”). The additives are mainly 
composed of limestone and dolomite and are supposed to bind the non-metallic ore 
components, the so-called gangue. From the bottom of the blast furnace, air with temperatures 
of > 1200°C is blown through these layers, which must exhibit certain porosity in order to allow 
the hot air to pass through. This explains the necessity for preparing fine grained ores 
beforehand. The liquid iron, i.e. hot metal (HM), and slag are collected at the bottom of the blast 
furnace. After extraction through a taphole, the mixture runs through a slag runner and is 
separated in a skimmer by different densities (e.g. Ruge 1987). The hot metal is directly 
transferred to steel plants or cast into ingots. The product of the latter procedure is called pig 
iron, which typically shows high carbon contents, contains Mn, P and Si from the iron ore as well 
as sulphur from the coke. To increase the hot forming properties of the produced hot metal and 
to reduce the sulphur content, hot metal is typically further processed by adding additives, 
resulting in desulphurisation slag (see e.g. Ruge 1987, Chiang and Pan 2017). Current blast 
furnaces reach heights of 40 m, provide capacities of up to 5000 m³ and a daily production of up 
to 10000 t iron (Ruge and Wohlfart 2013). About 900 kg of slag per ton of HM was an average 
figure in the 1940s, but decreased to about 300 kg/t HM in recent past, due to process 
optimisation (VDEh 2016). An illustration of a blast furnace and the ongoing chemical processes 
is given in Fig. 2.2. 
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Fig. 2.2: Iron production in a blast furnace and ongoing chemical reactions (after Ruge 1987, VDEh 2015). 

Relevant solid by-products of the blast furnace iron production are blast furnace slag (BFS) and 
blast furnace flue (BFF) dust and sludge (e.g. Das et al. 2002, Das et al. 2007). Blast furnace slags 
are calcium aluminium silicates, which are generated in the reaction of iron ore and additives. 
Iron ore rich in aluminium silicates is charged with CaO-rich additives and lime-rich ore is 
charged with additives rich in SiO2 and Al2O3 (Ehrenberg 2006a). Depending on how the blast 
furnace slag is cooled, one differentiates into two major types of slag. Air cooled BFS results 
from slowly cooling the liquid blast furnace slag at slag yards and is mostly crystalline. This slag is 
mainly used for road and track construction (e.g. Merkel 2017). In contrast, granulated blast 
furnace slag (GBFS) is generated by quickly cooling blast furnace slag with water. GBFS is an 
important raw material for the cement industry (e.g. Ehrenberg 2006a, 2006b; Merkel 2017). Blast 
furnace flue dust is typically cleaned using mechanical and wet de-dusting techniques. Coarse 
fractions are reused in sinter plants, whereas most of the fine fractions are disposed (see e.g. Gara 
and Schrimpf 1998, Das et al. 2002, Drissen and Algermissen 2016). 

Steel production 

Steel production aims to minimise carbon and impurities contained in hot metal (e.g. manganese, 
silica and sulphur) by oxidative reactions. Starting from the 1860s, the Bessemer-Thomas 
procedure, and from the 1870s, the Siemens-Martin procedure were the dominant steelmaking 
procedures applied. Since the 1960s, the basic oxygen furnace (BOF) (Linz-Donawitz, LD) 
procedure became the dominating steelmaking process apart from steelmaking in the electric arc 
furnace (see Fig. 2.3; e.g. Ruge 1987, World Steel Association 2012). 
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The Bessemer procedure comprised the removal of unwanted impurities from hot metal in an 
egg-shaped converter encased with acidic linings (German: “Bessemer-Birne”) by injecting air 
through the molten iron (see Figure 2.4 for an illustration of a Bessemer converter). The Thomas 
procedure was a further development of the Bessemer approach. Thomas converters were 
encased with dolomite bricks instead of the clay linings in Bessemer converters, allowing the 
processing of alkaline phosphate-rich iron ore (Ruge 1987, World Steel Association 2012). Slag 
resulting from the Thomas process is rich in phosphate and has been used as fertiliser (e.g. Motz 
and Geiseler 2001). In 1976, the last Thomas converter in Germany was shut down (Ruge 1987). 

 

Fig. 2.3: Development of the different steelmaking procedures (modified from Borvan53, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=13284004). 

The Siemens-Martin open hearth furnace procedure was developed by Carl Wilhelm Siemens and 
further advanced by Pierre-Emile Martin in the mid-1860s. The advantage of this procedure 
compared to the Bessemer process was an improved temperature control allowing the 
production of higher quality steel at the cost of a higher energy demand and longer process times 
(World Steel Association 2012). Figure 2.4 provides a scheme of a Siemens-Martin furnace. 

Steelmaking via basic oxygen furnaces (BOF), also known as the Linz-Donawitz (LD) procedure 
(named after the Austrian cities Linz and Donawitz), was established starting in the 1950s (see 
Fig. 2.3). Within this procedure, a LD-converter is first loaded with scrap metal and subsequently 
filled with hot metal. Carbon in the hot metal is oxidised to CO and unwanted impurities like Si, 
Mn and P are captured by adding slag formers like limestone (CaCO3) or dolomite CaMg(CO3)2. 
The resulting slag from this procedure is called basic-oxygen-furnace slag (BOF) (Yildirim and 
Prezzi 2011). Instead of air like in the Bessemer process, the BOF procedure uses oxygen 
injected via an “oxygen lance” to reduce carbon and other unwanted impurities in the hot metal 
to produce steel. The process is exothermal due to the oxidative reactions of C, Mn, P and Si. 
The presence of scrap metal in the BOF is relevant for adjusting the temperature. A modern 
BOF is able to melt 350 tonnes of iron into steel within 40 minutes, while up to 12 hours were 
required for a charge in an open-hearth furnace (World Steel Association 2012). 

With increasing amounts of scrap metal in the 1960s, steelmaking via electric arc furnaces (EAF) 
gained importance as this procedure allowed to melt steel scrap. The required heat for this 
process is provided by electric energy via electrodes and the purification of the steel is managed 
by injecting oxygen. An advantage of EAF compared to BOF is that they do not require hot 
metal (World Steel Association 2012). Typically, one (DC) or three (AC) graphite electrodes are 
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in operation, and ca. 300 kWh are required to melt one tonne of scrap metal. The melting point 
of scrap metal is at 1520 °C and the EAF is lined with refractory bricks to protect the furnace 
shell against the temperatures that can reach 1800 °C in the melt (e.g. Chiang and Pan 2017). 
CaO, a result of the burning of carbonate-rich slag formers, reacts with oxidised impurities (e.g. 
Al, C, Mn, Si) and forms slag (Yildirim and Prezzi 2011). The resulting slag of the EAF procedure 
is called electric arc furnace slag (EAFS). The formation of CO during this process leads to a 
foaming of the slag (e.g. Juhart et al. 2001, Yildirim and Prezzi 2011, Liukkonen et al. 2012). 

 
Fig. 2.4: Historical steelmaking furnaces. Left: Bessemer converter (Source: Public Domain, 

https://commons.wikimedia.org/w/index.php?curid=91836), right: Siemens furnace from 1895 (Public Domain, 
https://commons.wikimedia.org/w/index.php?curid=508236). 

Steel refinement 

After the BOF or EAF process - the primary steelmaking - (liquid) crude steel can be transferred 
to other vessels to apply refinement procedures, so-called secondary steelmaking operations. 
These procedures are especially relevant for the production of high-grade steels and primarily aim 
to increase the quality of the steel and modify its chemical properties. The most important 
processes are desulphurisation, degassing (H, N2 and O2), the removal of impurities and 
decarburisation and temperature adjustment prior to casting. The function of ladle furnaces is to 
reheat the crude steel utilising graphite electrodes and to control the temperature and chemical 
composition of the liquid steel. During the steel refinement processes in the ladle furnace, again 
limestone (CaCO3) or dolomite CaMg(CO3)2 act as slag formers. Additionally, Ca, Mg, CaSi and 
CaC2 might be added as desulphurising agents. Si and Al aid the deoxidisation by forming SiO2 
and Al2O3, which are absorbed by the slag (Yildirim and Prezzi 2011). Another important steel 
refinement procedure is stainless steelmaking, i.e. producing steel with high amounts of Cr as 
alloying element. After melting of high-alloy steel scrap, the crude steel is submitted to the so-
called AOD- (argon oxygen decarburisation) or VOD-process (vacuum oxygen decarburisation). 
Both aim at decarburisation with oxygen by simultaneously preventing oxidation of Cr. By-
products of these processes are AOD reduction and desulphurisation slags. These are utilised e.g. 
for reuse of chrome (see e.g. Krivsky 1973, Adamczyk et al. 2008, Yan et al. 2014, Chiang and 
Pan 2017). Slags generated in stainless steelmaking are summarised as stainless steel slag (SSS). 

The current annual production of by-products associated with the iron and steel industry is more 
than 400 million tonnes, of which ca. 90% are iron and steel slags. Aside from slags, sludges and 
dusts are relevant solid by-products. Per tonne of produced crude steel via the BF/BF-BOF 
route, ca. 400 kg of by-products are generated and per tonne of crude steel produced via the EAF 
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route, ca. 200 kg (World Steel Association 2016). In previous studies, 500 kg by-products per 
tonne of crude steel were reported (375 kg slag, up to 65 kg dust and sludge, 4% deposited; Gara 
and Schrimpf 1998). Reuse rates of recent by-products in France, Germany, Japan and in the 
USA reach nearly 100% (Chiang and Pan 2017). However, in China, the current world leader in 
steel production, the slag reutilisation rate in 2012 was only 22% (Yi et al. 2012). A diagram of 
major iron- and steelmaking procedures and resulting by-products is given in Figure 2.5. 

 

Fig. 2.5: Major iron- and steelmaking and refinement procedures and associated by-products (after Yildirim and 
Prezzi 2011 and World Steel Association 2018).   
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2.1.2 Types, Chemical Composition and Utilisation of Iron- and Steelworks By-Products 

As described in the previous chapter, the manifold iron- and steelmaking as well as steel 
refinement procedures generate different by-products (Tab. 2.1). The main by-products are slags. 
Blast furnace slags (BFS) are differentiated in air-cooled BFS and granulated blast furnace slag 
(GBFS) (e.g. Drissen 2004). Steelworks slags (SWS) summarise slags from electric arc furnaces 
(EAFS), LD converter slags (LDS, i.e. BOS), stainless steel slags (SSS) and various slag qualities 
from secondary steelmaking (e.g. ladle furnace (LF) slags) (see e.g. Schüler et al. 2016). 

Tab. 2.1: By-products associated with iron- and steelmaking procedures (modified after Chiang and Pan 2017). 

Blast furnace (BF) Basic oxygen furnace Steelmaking shop Electric arc furnace (EAF) Rolling mills 

Air cooled BFS 
Basic oxygen furnace slag 
(BOFS, also LD-slag) 

Secondary metallurgical slags 
(SECS, including LFS) EAF slag (EAFS) Mill sludge 

Granulated BFS  Ladle furnace sludge EAF dust Mill scale 

BF (flue) dust  Refractory bricks   

BF (flue) sludge  Fly ash   

Aside from slags, further solid by-products are generated during processes associated with iron- 
and steelmaking. These are dusts and sludges generated in the different production steps and mill 
scale generated in casting and rolling of steel. Table 2.2 summarises information on the chemical 
composition and utilisation of iron- and steelworks slags and for corresponding information on 
dusts and sludges associated with the iron and steel industry see Table 2.3. 

Chemical composition and utilisation of iron- and steelworks slags 

Iron- and steelworks slags are by-products of smelting and refinement processes in the iron and 
steel industry and thus anthropogenic materials by nature. Except for the granulated blast furnace 
slag (“slag sand”), which is rapidly cooled by quenching with water, most slags are tipped from 
the furnaces and transferred into slag beds for cooling. Liquid slags solidify in these beds over 
several days and form crystalline, relatively homogeneous bodies, in which escaping gases can 
produce prominent cavities (Fig. 2.6). Compared to natural rocks, the technogenic formation of 
slags occurs in a relatively short period of time, but the formation conditions and structure of 
slags show a certain similarity to magmatic, particularly volcanic rocks (Drissen 2004). 

 

Fig. 2.6: Slag samples. Left: Electric arc furnace slag from high-alloy steelmaking with distinct degassing marks as a 
result of slow cooling in the slag bed. Right: Top view of a cooling crust of an AOD converter slag sample. 

ca. 8 cm 
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The chemical composition of slags is largely variable and related to the specific iron- and 
steelmaking process applied (see Tab. 2.1). In general, the chemistry of slags is characterised by 
lower SiO2 but higher CaO contents compared to natural rocks. In contrast, except for the blast 
furnace slag, slags typically show higher Fe and Mn contents. Stainless steel slags also exhibit 
higher Cr contents due to the addition of alloying elements. While Al2O3 is in most cases on a 
comparable level to natural rocks, alkaline materials are of less relevance in iron and steel slags. 
Figure 2.7 presents the differences in the chemical composition of various iron- and steelworks 
slags compared to the chemistry of natural rocks in a CaO+MgO-SiO2-Al2O3+Fe2O3+Cr2O3 
pseudo-ternary plot (Drissen 2004, a similar diagram is provided e.g. in Chiang and Pan 2017). 

 

Fig. 2.7: Comparison of the chemistry of iron- and steelworks slags and natural rocks (after Drissen 2004). 

By-products of the BF are mainly BF slag, BF off-gas as well as dusts from cleaning the blast 
furnace's flue. Blast furnace flue gas is mainly used for heating and power generation (Ramírez-
Santos et al. 2017). Air-cooled and granulated BFS are mainly composed of CaO and SiO2 (each 
ca. 30-40%), up to ca. 10% Al2O3 and 10% MgO (Gara and Schrimpf 1998, Drissen 2004, Das et 
al. 2007). In contrast to the comparably slowly air-cooled BFS, the granulated BFS shows a glassy 
structure due to its quick cooling (Drissen 2004). In 2016, ca. 8.1 million tonnes of BFS were 
produced in Germany, of which granulated blast furnace slag represented the vast majority (92%) 
and was almost completely used as raw material for the cement industry. Air-cooled BFS was 
mainly used as aggregate in road construction (see Fig. 2.8, Merkel 2017). 

The composition of steelworks slags is strongly variable depending on the specific process, the 
raw materials used and the quality of the produced steel. Due to the nature of the main slag 
formers (limestone and dolomite), the composition of steelworks slags is dominated by CaO, 
followed by SiO2, MgO and Al2O3 and a varying content of Fe and various heavy metals as trace 
elements. Stainless steel slags are characterised by higher amounts of Cr and other trace elements 
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compared to other slags, as these metals are used as alloying elements (e.g. Gara and Schrimpf 
1998, Drissen 2004, Rekersdrees et al. 2014; Tab. 2.2). By-products from stainless steelmaking are 
typically rich in valuable metals (e.g. Huaiwei and Xin 2011), which are mainly retrieved and 
reused within steelmaking processes (Guldan 2013). Secondary metallurgical slags are partially 
reused within steelmaking processes as substitute for lime due to their high CaO content or as 
construction material (e.g. Das et al. 2007, Setién et al. 2009). In 2016, 5.1 million tonnes of steel 
slag were produced in Germany, of which 53% were utilised as construction material, 7% as 
fertiliser, 11% were recycled and reused, 9% were intermediately deposited and 15% of the 
steelworks slags were deposited in landfills (Fig. 2.8, Merkel 2017). 

 

Fig. 2.8: Produced amounts and utilisation of blast furnace slag (BFS, BFSgr = granulated blast furnace slag) and 
steelworks slag in Germany in 2016 (data from Merkel 2017). 

Thomas slag is the major by-product of the Bessemer-Thomas procedure and characterised by its 
high P2O5 content. It was mainly used as fertiliser. Today, Thomas slag is not available anymore 
(Motz and Geiseler 2001, Dohlen and Steinweg 2009, Drissen 2012). Further details on the 
composition of slags and their utilisation are aggregated in Tab. 2.2. More detailed information 
on the chemistry of slags is given in VDEh (1995). 

Chemical composition and utilisation of dusts, sludges and other by-products 

Aside from slags, various dusts and sludges are of relevance for material reuse (Tab 2.3). Typical 
by-products of sinter facilities are sludges and dusts, of which especially the dusts are potentially 
rich in iron (up to > 50% Fetotal). However, they might also contain heavy metals and alkaline 
elements that are unwanted components in the blast furnace. Thus, sinter dusts are mainly reused 
within the sinter process (Gara and Schrimpf 1998). LD converter sludges as well as blast furnace 
flue dusts are potentially rich in iron and might thus be used in sinter facilities as well (Gara and 
Schrimpf 1998, Das et al. 2007). Mill scale represents a material formed at hot rolled steel. It 
mainly consists of iron oxides (Fetotal 65-70%, FeO 40-70%, Fe3O4 20-30%) (Gara and Schrimpf 
1998) and its reuse rate in Germany is 100% (Drissen 2011). For further information on other 
by-products, which may include also dusts from production halls, filter facilities and others, see 
e.g. Gara and Schrimpf 1998, Das et al. 2002, Dippenaar 2004, Das et al. 2007, Yi et al. 2012 and 
Chiang and Pan 2017 and Table 2.3.  
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Tab. 2.2: Composition and utilisation of iron- and steelwork slags (modified after Mrotzek-Blöß et al. 2016).* 

Iron- and steel-
making procedure 

By-product 
Chemical constituents 
(>2 m%) Utilisation 

Blast furnace 

Air cooled BFS  SiO2  34-37 
CaO  39-41 
Al2O3 10-12 
MgO 7-12 
(Drissen 2004) 

Cement industry, fabrication of bricks (Das 
et al. 2007) 

Granulated BFS 
(“slag sand”)  

Mainly cement industry (Merkel 2017) 

Electric arc furnace 

EAF slag 
(no/low-alloy 
steel) 

Fe 24-40 
CaO 26-38 
SiO2 11-16 
Al2O3 3-6 
MgO 3-10 
(Drissen 2004) 

Construction material (Heußen and Markus 
2013) 

EAF slag (high-
alloy steel) 

CaO  37-40 
SiO2  14-28 
MgO  7-13 
Mntotal 2.6-4.1 
Fetotal 6-7 
Al2O3  5-13 
Cr2O3  5-19 
(Drissen 2004) 

LD converter 
(BOF) 

LD-converter slag 
(BOFS)  

Fetotal 18-24 
CaO 36-50 
SiO2 10-15 
Al2O3 1.0-3.5 
MgO 4-8 
MnO 5 
(Gara and Schrimpf 1998) 

Construction material, fertiliser (Bartusch et 
al. 2013) 
Potential substitute for limestone in blast 
furnaces (Das et al. 2007) 

Thomas converter Thomas slag  

CaO  45 
SiO2  5 
Fe  14 
P2O5  12 - 17 
MnO 2 – 4 
(results within this study) 

Fertiliser (Dohlen and Steinweg 2009, Motz 
and Geiseler 2001) 

Ladle furnace 
Ladle furnace slag 
(LF slag) 

CaO 50.5–57.5 
SiO2 12.6–19.8 
Al2O3 4.3–18.6 
MgO 7.5–11.9 
Fe2O3 1.6–3.3 
CaOfree 3.5–19 
(Setién et al. 2009) 

Construction material (Setién et al. 2009) 

Other secondary 
metallurgy 

Secondary 
metallurgical slag 
(SECS) 

FeO < 3 
CaO 30-60 
SiO2 5-18 
Al2O3 20-40 
MgO 4-14 
(Rekersdrees et al. 2014) 

Potential substitute for limestone, re-use of 
scrap metal for EAF (Rekersdrees et al 2014) 

Stainless steel 
production Stainless steel slag 

Fetotal 0.7-10.4 
CaO 25-56 
SiO2 14-33 
Al2O3 1.5-9.6 
MgO 4.6-12.3 
MnO 0.4-6.8 
F 0.8-5.1 
Cr2O3 0.5-20.4 
(Drissen 2004) 

Recovery of alloy metals (e.g. Cr, Ni, Mo), 
Construction material (Guldan 2013)  
 

*It must be strongly considered that especially by-products found at historic dump sites may vary in their 
composition and differ from the data given above. For example, blast furnace slags from the beginning 20th century 
often showed higher CaO and F contents compared to recent by-products (Interview with P. Drissen, FEhS, 2018). 
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Tab. 2.3: Composition and utilisation of dusts and sludges from iron- and steelmaking (modified after Heite 2015). 

Procedure By-product  
Chemical constituents  
(>2 m%) 

Typical Utilisation  

Sinter plant Sinter dust 

CaO  1.2 – 14 
C 1.5 – 10 
Fetotal  35 – 56 
MgO  0.1 – 11 
Pb  0.04 – 10 
SiO2  0.6 – 8 
Stotal  0.2 – 4 
(Gara and Schrimpf 1998) 

Reuse in the sinter plant (Gara and 
Schrimpf 1998) 

Blast furnace 

Blast furnace flue 
dust 

Al2O3 3 – 5 
C 29-34 
CaO 2.5 – 5 
Fetotal ~51 
SiO2 6 - 8 
(Das et al. 2002) 

Reuse in the sinter plant (Gara and 
Schrimpf 1998) 

Blast furnace flue 
sludge 

Al2O3 2 – 4 
C 25 – 40 
CaO 4 – 6 
Fetotal 25 – 35 
Pb 0.5 – 3 
SiO2 5 – 8 
Zn 1 – 8 
(Gara and Schrimpf 1998) 

Disposal (Gara and Schrimpf 1998) 

LD converter LD converter 
sludge 

Fetotal 61-64 
CaO 9-11 
(Das et al. 2007) 

Reuse in the sinter plant (Das et al. 2007) 

Electric arc furnace 
Electric arc furnace 
dust 

C 1-5 
CaO 3-10 
Cl 1-5 
FeO 20-45 
Pb 2-8 
SiO2 3-6 
Zn 14-35 
(Rütten 2006) 

Waelz-procedure (Pichler et al. 2013) 
Re-use in EAF (Gara and Schrimpf 1998) 

Bloom Mill scale  

Fetotal 65-70 
FeO 40-70 
Fe3O4 20-30 
(Gara and Schrimpf 1998) 

100% re-use within the plant internal 
material cycle (Drissen 2011) 
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2.1.3 Mineralogical Composition of Iron- and Steelworks By-Products 

As a result of the specific chemical composition, the mineralogy of slags is also different from the 
mineralogical composition of natural rocks. However, most of the minerals found in slags are 
known from natural rocks and minerals (Drissen 2004). The mineralogy of slags is not only 
determined by their chemical composition, but also by their cooling rate and slags tend to show 
non-crystalline properties, especially when rapidly cooled (Yildirim and Prezzi 2011). Non-
crystalline means the lack of long range positional order. Here, one differentiates amorphous 
solids and glasses (Gupta 1996). The structure of glassy materials can be understood as “frozen 
liquid”, which is the result of rapid solidification of a liquid melt due to quenching (e.g. King et 
al. 2004b). As such, rapidly cooled slag might solidify in a glass-like amorphous structure, like for 
example the granulated blast furnace slag (Drissen 2004, Tossavainen et al. 2007, Shimoda et al. 
2008). Quantitative analysis of blast furnace slags indicated that the quantity of amorphous 
constituents can reach > 90 % (Westphal 2007). LF slag was found to show a high amount of 
glass when rapidly cooled, while BOF and EAF slags are of a high crystallinity when either slowly 
air-cooled or rapidly quenched (Tossavainen et al. 2007). According to the literature, slags require 
extreme high cooling rates for a glassy state (Liu et al. 2017). 

Due to the nature of the used raw materials (ore, scrap) and slag formers (calcium or magnesium 
carbonates) the resulting crystalline slags from iron and steel production are mainly composed of 
calcium or aluminium silicates (e.g. Drissen 2004). The typical mineralogical composition of iron- 
and steelworks slags is presented in Table 2.4.  

Typical minerals in air-cooled BFS are akermanite (Ca2Mg(Si2O7)) and gehlenite (Ca2Al(AlSi)O7), 
which are assigned to the melilite group, as well as merwinite (Ca3Mg(SiO4)2). These phases can 
also occur in EAF slags (Drissen 2004). Monticellite (CaMgSiO4) is a further mineral commonly 
found in BFS (Ghosh and Chatterjee 2008), but also in EAFS (Diener 2006). 

Tab. 2.4: Minerals in iron- and steelworks slags (after Drissen 2004, Diener 2006, Drissen and Mudersbach 2012). 
BFS (air-c.) = air-cooled blast furnace slag, BOFS = basic oxygen furnace slag, EAFS = electric arc furnace slag (cs 
= carbon, i.e. low-alloy, steelmaking, ha = high-alloy steelmaking), SECS = slags from secondary steelmaking). 

Mineral phase Formula BFS (air-c.) BOFS EAFS(cs) EAFS (ha) SECS 
Akermanite Ca2Mg(Si2O7) x  x x  
Bredigite Ca7Mg(SiO4)4   x   
Brownmillerite Ca2(Al,Fe)2O5   x   
Cuspidine Ca4(Si2O7)(F,OH)2     x 
Dicalcium ferrite 2CaO*Fe2O3  x    
Fluorite, Oldhamite CaF2, CaS     x 
Free lime CaO  x    
Gehlenite Ca2Al(AlSi)O7 x  x x  
Jasmundite Ca11(SiO4)4O2S)     x 
Mayenite Ca12Al14O33   x  x 
Merwinite Ca3Mg(SiO4)2 x   x  
Monticellite CaMgSiO4   x   
Periclase MgO  x x x  
Spinel MgAl2O4   x x  
Wüstite FeOx  x x   
β-dicalcium silicate β-Ca2SiO4  x x  x 
γ-dicalcium silicate γ-Ca2SiO4     x 

Steelworks slags are characterised by different calcium aluminium silicates and iron oxides. Tri-
calcium silicate usually only occurs in rapidly cooled lime-rich BOF slags. In contrast, β-dicalcium 
silicate (β-Ca2SiO4, also referred as β-C2S) is a major constituent of steel slags. In some cases, γ-
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dicalcium silicate (γ-Ca2SiO4) is formed out of β-C2S during cooling of secondary metallurgical 
slags (SECS). Due to the relatively high amount of iron, calcium ferrites may occur, e.g. 
Brownmillerite (Ca2(Al,Fe)2O5) in Al2O3-rich EAF slags and dicalcium ferrite (2CaO*Fe2O3) in 
BOF slags. The high iron content further benefits the formation of wüstite (FeOx) and spinels 
(MgAl2O4). Free lime and periclase (free MgO) may occur in steelworks slags related to the 
utilisation of limestone and dolomite as slag formers. Secondary metallurgical slags (SECS) are 
mainly used for desulphurisation and deoxidisation of steel. The high CaO and relatively high 
Al2O3 contents benefit the formation of tricalcium aluminate and mayenite (Ca12Al14O33). Further 
major mineral components of SECS are β-Ca2SiO4 and y-Ca2SiO4. Gehlenite-akermanite, 
merwinite, rankinite (Ca3Si2O7), cuspidine (Ca4(Si2O7)(F,OH)2), oldhamite (CaS) and jasmundite 
(Ca11(SiO4)4O2S) are other typical constituents of SECS (Drissen 2004). Fluorite (CaF2) is used to 
improve the liquefaction of highly calcium-rich slags and might thus be present in SECS, too 
(Yildirim and Prezzi 2011). For further details on the mineralogy of iron- and steelworks slags see 
e.g. Drissen (2004), Diener (2006), Das et al. (2007), Ghosh and Chatterjee (2008). 

Slags might contain unstable mineral phases, mainly free lime (CaOfree) and periclase (MgOfree). 
“Free” refers to the fact that CaO or MgO are not bound as silicate or ferrite in the solid slag. 
Free CaO in solidified, cold slags can react with water (or water vapour) and form portlandite 
(Ca(OH)2) within a few days, which is accompanied with a volume increase. In contrast, free 
MgO hydrates at much slower rates (e.g. Ramachandran et al. 1964, Yildirim and Prezzi 2011). 
Another type of “instability” is related to dicalcium silicate, a common mineral in slags from iron- 
and steelmaking and is called dicalcium silicate decomposition. This process is due to the 
transformation of β-Ca2SiO4 (larnite) to γ-Ca2SiO4 (calcio-olivine) at temperatures < 500°C, 
resulting in a volume increase of 10-12%. Due to the homogeneous distribution of β -C2S within 
the slag, this process leads to a complete destruction of the slag-aggregate and results in a “self-
dusting-effect”, that is known e.g. for LF slag (e.g. Drissen and Arlt 2000, Shi 2002, Yildirim and 
Prezzi 2011, Drissen et al. 2012). This process was also observed for an AODS sample, which 
disintegrated into powder after several days, revealing metal shots (Fig. 2.9). Such phase 
transformations can be blocked by rapid cooling or by inhibitors like phosphorous (Pontikes et 
al. 2010). 

 
Fig. 2.9: Left: Fresh AOD converter reduction slag with metal granules. Right: Self-pulverisation of the sample due 

to dicalcium silicate decomposition leaving only the formerly embedded granulated metal shots. 
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2.2 Reflectance Spectroscopy of Minerals 

2.2.1 Basic Principles and Terminology 

The following chapter will summarise basic principles of reflectance spectroscopy and define the 
relevant terminology later used in this work. For more comprehensive descriptions of the 
fundamentals of geological remote sensing see e.g. Hunt 1980, Hunt 1982, Clark 1999, 
Hirschmugl 2004 and Gupta 2018. The basic interactions of electromagnetic radiation with 
objects are: absorption, transmission or scattering (Clark 1999, Gupta 2018). According to the 
Law of Conservation of Energy, the relation of incoming (Eiλ), absorbed (Eaλ), transmitted (Etλ) 
and reflected radiation (Erλ) as a function of wavelength can be described by the formula (1): 

Eiλ= Eaλ + Etλ + Erλ (see e.g. Gupta 2018).  (1) 

Transmission, absorption and reflectance processes are strongly related to the material 
composition and wavelength-specific, which constitutes the basis for spectroscopic applications 
and subsequently remote sensing (Clark 1999, Gupta 2018). Consequently, Clark (1999) defined 
spectroscopy as the “[...] the study of light as a function of wavelength that has been emitted, 
reflected or scattered from a solid, liquid, or gas”. Minerals show a large variety of wavelength-
related absorption processes caused by their mineralogical and structural composition. Thus, 
measuring reflected radiation allows drawing conclusions about the chemical and mineralogical 
composition of minerals and mineral mixtures. The emission of radiation in the thermal infrared 
is negligible under laboratory conditions when using a sufficient illumination source (Clark 1999). 

Reflection on surfaces can occur as specular reflection at which the incident angle corresponds to 
the angle of the reflected radiation (Fig. 2.10a). This type of reflection is usually observed for 
mirror-like surfaces. Diffuse Lambertian reflectance on rough surfaces describes the scattering of 
radiation equally in all directions independent of the incident angle (Fig. 2.10b). Typically, natural 
surfaces show neither only specular nor Lambertian reflectance but a mixture of both, the former 
constituting the major part of reflected light (Fig. 2.10c; Albertz 2009, Gupta 2018). 

 
Fig. 2.10: Reflection mechanisms. a) specular reflection from a plane surface; b) Lambertian reflection from a rough 

surface (diffuse reflection); c) semi-diffuse reflection (natural bodies) (modified after Gupta 2018). 
 

Reflectance measurements are usually conducted as bidirectional measurements, i.e. the incident 
illumination and the observation of reflected radiation occur at two different directions (Fig. 2.11, 
Gupta 2018). Usually, the reflectance measured at a sensor is influenced by various parameters: 
the spectral properties of the materials themselves caused by their specific composition (see 
Chapter 2.2.2), grain size (see Chapter 2.2.3) and mixtures of different minerals. An additional 
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important factor impacting spectral measurements is the viewing geometry of the utilised set-up, 
which comprises the angles of the incident and reflected radiation. Changes in the measurement 
geometry might result in variations of shadowing and the relation of single to multiple scattering 
(see Chapter 2.2.3, Fig. 2.11) (Clark 1999, Hapke 2012). Thus, measurements from different 
angles might provide different results for the same target surface (Gupta 2018). The complex 
interactions of different factors affecting reflectance properties of surfaces are described using 
the bidirectional reflectance distribution function (BRDF), for which first definitions and various 
theories reach back until the 1960s (e.g. Nicodemus 1965, Torrance and Sparrow 1967). Theories 
elaborated in the 1980s further improved the BRDF theories (Hapke 1981, Goguen 1981, 
Lumme and Bowell 1981) by considering also shadowing occurring between the grains of 
particulate surfaces. The approach provided by Hapke (1981), which also incorporated mixtures, 
can be considered the predominant theory utilised in the field of remote sensing (Clark 1999). 
Comprehensive details of this theory are provided in Hapke (2012). 

 
Fig. 2.11: Bidirectional reflectance measurement set-up as typically used in spectrometry and occurring scattering 

processes (modified from Gupta 2018). 
 
Measured reflected radiation may be utilised for qualitative analyses of the composition of 
materials and for quantitative purposes, as the strength of absorptions is linked to the amount of 
the absorbing constituent. This can be described according to the Beer-Lambert's Law (2): 
 

I = Ioe
-kx   (2) 

 
where I is the intensity of the measured radiation, Io is the original intensity, k is an absorption 
coefficient and x is the distance photons travel through the medium (see e.g. Clark 1999). 
 
The characteristics of such absorption features (e.g. position, shape, etc.) can be linked to the 
crystal and chemical structure of minerals (e.g. Clark and Roush 1984, Clark 1999, van der Meer 
2004) and thus used for qualitative and mineral identification analyses. Wold et al. (2001) 
mentioned that “[...] the spectrum of a sample is the sum of the spectra of the constituents 
multiplied by their concentrations in the sample”. Consequently, spectroscopy has been applied 
in various studies for quantifying constituents in soils (e.g. Vohland et al. 2009, Riedel et al. 2018) 
and rocks (e.g. Ruff et al. 1997, Schodlok 2004, Hecker et al. 2012). 
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As mentioned before, the basic interactions of radiation and matter are transmittance, emittance 
and scattering/reflection. Consequently, the spectroscopic acquisition of absorbance, reflectance, 
transmittance or emittance data provides different information of the spectral properties of a 
sample (e.g. Hecker et al. 2010, Ramsey 2004). However, attention has to be paid when 
transferring observations made in one spectrum type to another as the interdependencies 
between the different types are not yet completely understood (Gupta 2018). While the 
wavelength units nm or µm are typically utilised in the remote sensing community, wavenumbers 
(cm-1) are commonly used in laboratory infrared spectroscopy, as this unit is proportional to the 
frequency (see e.g. Schodlok 2004). This thesis will solely focus on reflectance measurements and 
provide wavelength units in nm. Consequently, wavenumbers given in the literature were 
transformed in nanometres for better comparability according to the following equation (3): 

nm = (1/cm-1)*107  (3) 

The “classical” wavelength region utilised in remote sensing-associated studies covers the range 
of 350-2500 nm. However, relevant rock-forming minerals, especially silicates, exhibit no 
distinctive spectral features in this wavelength region but show diagnostic characteristics in the 
thermal infrared (e.g. Salisbury et al. 1987, Schodlok et al. 2016, Gupta 2018; see the following 
Chapter 2.2.2). Thus, a large number of remote sensing studies focussed on this wavelength range 
and successfully demonstrated the capacities of such spectral data for the qualitative and 
quantitative determination of the mineral composition of rocks (e.g. Salisbury and D’Aria 1992a; 
Feely and Christensen 1999; Vaughan et al. 2003, 2005; Hecker et al. 2012). 

The reflectance measurements in this thesis were conducted using two different spectrometers 
covering different parts of the electromagnetic spectrum: the wavelength range of 350-2500 nm 
as well as the range of ca. 2000-15000 nm (see Chapter 4.6.1). These wavelength ranges 
encompass parts of the ultraviolet, the visible light and infrared. The infrared is further 
differentiated into sub-regions that are known as near-infrared, shortwave infrared, mid-infrared, 
longwave infrared, far infrared and thermal infrared. Confusingly, these terms are not fixed and 
vary depending on the literature and the user group (see e.g. Clark 1999, Hirschmugl 2004, 
Hecker et al. 2010). For this thesis, considering the wavelength ranges covered by the two utilised 
spectrometers and following the subdivision of the electromagnetic spectrum and terminology 
used e.g. in Eisele et al. (2015), ranges and terms were defined as shown in Table 2.5. 

Tab. 2.5: Wavelength ranges and terminology used in this thesis. The most frequently used terms are in bold letters. 

Wavelength range (name) Wavelength range (nm) Abbreviation 

Visible light 350-700 VIS 

Near infrared 700-1300 NIR 

Visible light and near infrared 350-1300 VNIR 

Shortwave infrared 1300-2500 SWIR 

Visible light, near and shortwave infrared 350-2500 VNIR/SWIR 

Midwave infrared 2500-5000 MWIR 

Longwave infrared 5000-15000 LWIR 

Mid- and longwave infrared ~2500-15000 MWIR/LWIR 

Visible light to longwave infrared ~350-15000 VNIR-LWIR 



2.2 Reflectance Spectroscopy of Minerals 

22 

2.2.2 Causes of Mineral Spectral Features 

2.2.2.1 Electronic Processes 

The absorption features present in mineral spectra can be caused by electronic or vibrational 
processes. These processes have been comprehensively described in various works, of which the 
books by Farmer (1974) and Burns (2005) can be considered as two of the most fundamental 
works. Summarising descriptions of the causes of features in mineral spectra are for example 
provided e.g. in Hunt (1977, 1980, 1982), Clark (1999) and Gupta (2018). 

Electronic processes summarise the effects that can occur when the energy state of isolated 
atoms or ions is changed due to the absorption and subsequent emission of photons. Features 
related to such processes mainly occur in the ultraviolet, visible light and near infrared (Clark 
1999). These processes are further differentiated into four categories: 

Crystal field effects are the most common electronic processes causing absorptions in mineral 
spectra (Clark 1999). In minerals, the energy levels of electrons in the outer shell of transition 
elements (e.g. Cr, Cu, Fe, Mn, Ni, Ti, V) are influenced by interactions with neighbouring ions 
and the energy level for one ion might vary in different crystal fields (Hunt 1980, Clark 1999, 
Gupta 2018). The transition of electrons between different energy levels is influenced mainly by 
the valence state of the ion, the coordination number and site symmetry (Clark 1999). Transitions 
of electrons cause absorption features occurring at wavelengths corresponding to the energy 
required for the electron transition (Schläfer and Gliemann 1980). 

Charge transfer absorptions are caused when the energy provided by photons leads to the 
migration of electrons between neighbouring ions. This process is known to produce strong 
absorptions in the ultraviolet and visible light. The commonly observed falloff in reflectance of 
mineral spectra towards the “blue” is caused by the Fe-O charge transfer (Hunt 1980, Clark 
1999). Gupta (2018) also provides the example of carnotite, for which the charge-transfer of the 
UO2

2+ ion causes absorptions < 500 µm and the typical yellow colour of the mineral. 

In some minerals showing periodic lattices, the energy levels at which electrons can exist are 
differentiated in a higher energy conduction band and a lower energy valence band. The 
difference between the two bands is called band gap and is different for metals, dielectrics and 
semiconductors. In some of the latter, absorption processes can occur, which are related to the 
specific interaction of the material´s band gap and VNIR radiation. Such features are called 
conduction bands. Examples for minerals affected by this process are sulphur and cinnabar, 
showing sharp absorption edge effects in their spectra (Hunt 1977, Hunt 1980, Clark 1999). 

Natural crystals typically show defects or irregularities in their mineral lattice, for example due to 
impurities, which cause discrete energy levels. Irradiation on such “imperfect” crystals might 
induce the binding of electrons into these defects. The described phenomenon is called colour 
centre and produces absorptions and consequently colours of minerals which cannot be 
explained by their chemical composition. For example, the colours observed for fluorites are 
related to colour centre absorptions (Hunt 1980, Clark 1999). 

Hunt (1977) presented an often-cited diagram illustrating the wavelength positions and widths of 
features due to electronic processes, which is presented in a slightly modified version in Fig. 2.12. 
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Fig. 2.12: Overview of absorption features due to electronic and vibrational processes in the VNIR/SWIR for 
selected minerals and corresponding functional groups. The black bars indicate the wavelength position and width of 

the absorption features (modified after Clark 2004 and Hunt 1977). 

Absorption features due to electronic processes are described in a multitude of works reaching 
back to the 1950s-1970s (e.g. McClure 1957, Burns 1970). In the following, a brief summary of 
this subject is provided, focussing on metals to be expected in iron- and steelworks by-products. 
Absorptions caused by the ferrous iron can occur near 430, 450, 510, 550-570 nm and 1000 nm 
as well as in the range of 1800-2000 nm (Hunt et al. 1971a, Burns 2005, Gupta 2018). Features 
related to the ferric iron are typically present at 350, 500 and 870 nm (Gupta 2018). For soils, 
absorptions related to the presence of the Fe3+-ion were reported at 404, 430, 444, 480, 520, 650, 
850 and 940 nm (Demattê et al. 2016). The presence of copper might produce features near 
800 nm, while chromium might cause a feature at 550 nm with two sharp absorptions near 350 
and 450 nm. Spectral characteristics associated with the presence of nickel are known to be found 
near 400, 740 and 1250 nm (Hunt 1977, Hunt 1980, Gupta 2018). Manganese (Mn2+) might show 
absorptions near 340, 370, 410, 450 and 550 nm (Gupta 2018). Hunt (1977) summarised several 
studies of the late 1960s and early 1970s concerning absorption features caused by the Ti3+ ion 
and listed features present at 450, 550, 600 and 640 nm. However, according to Rossman (2014) 
several of the features described for Ti3+ in the earlier studies are more likely to be caused by 
Fe2+-Ti4+ interactions. Due to the lack of valence d-electrons, Ti4+ does not produce absorption 
features itself (Hunt 1977, Rossman 2014). The absorption bands of trivalent vanadium are 
described as similar to the features caused by Cr3+ (Schmetzer 1982, Rossman 2014). Features at 
445 and 680 nm were reported for V-bearing pyroxenes (Cloutis 2002). The manifold 
absorptions due to ferric and ferrous iron, chromium, titanium and vanadium occurring in 
minerals is comprehensively described using the example of garnets in Izawa et al. (2018). This 
indicates the challenges of interpreting and specifically assigning such features in samples 
containing high amounts of different metals and representing mineral mixtures. 
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Figure 2.13 provides reflectance spectra of the common iron oxides goethite, hematite and 
magnetite with distinctly visible absorption features due to electronic processes in the VNIR. For 
more comprehensive details on features due to electronic process (encompassing also cobalt, rare 
earth elements and uranium) see e.g. Farmer (1974), Burns (2005) and Rossman (2014). 

 

Fig. 2.13: VNIR/SWIR and MWIR/LWIR reflectance spectra of the iron oxides goethite, hematite and magnetite. 
Goethite shows distinct features near 480, 670 and 970 nm due to electronic processes, hematite near 570, 670 and 

880 nm. Magnetite is basically featureless in both wavelength ranges (spectra from Kokaly et al. 2017). 

 

2.2.2.2 Vibrational Processes 

The absorption of energy by molecules causes vibrations of the molecular system, where the 
strength of the bonds and the masses of each molecular component determine the frequency of 
the vibration (Clark 1999). The number of atoms in a molecule defines the number of different 
vibrational modes of a molecule. Except for linear molecules, the possible motions of a molecule 
comprise three constitute translations and rotations each. Thus, in a molecule of n atoms, there 
are 3n-6 possible vibrations, which are called fundamentals and typically labelled with v1, v2, v3, 
etc. (Hunt 1980). Overtones (e.g. 2v1, 3v1, 2v2) of such fundamentals might occur at multiples of 
the frequency of the original vibration, while the concurrence of various vibrational modes can 
produce so-called combinations (e.g. v1+v2, v2+v3, v1+v2+v3, Clark 1999). Features caused by 
fundamental vibrations are typically found in the mid- and longwave infrared and overtones and 
combinations in the shortwave infrared (Gupta 2018). These absorptions can be measured and 
utilised for diagnostic purposes (Clark 1999). For detailed information on vibrational features in 
minerals see the fundamental works provided by Famer (1974) and Estep-Barnes (1977). 

Absorption features caused by vibrational processes at the atomic-molecular level occur in 
carbonates, hydroxyls, sulphates and other mineral components, of which most are present in the 
majority of rock-forming minerals. The following lines will briefly summarise the vibrational 
features caused by the major functional groups. 

Carbonates 

The CO3
-2 ion can exhibit four fundamental vibrational modes: the symmetric stretch 

(v1: 9407 nm), the out-of-plane bend (v2: 11376 nm), the asymmetric stretch (v3: 7067 nm), and the 
in-plane bend (v4: 14700 nm). The v1 vibration is not infrared active (Clark 1999). Combination 
and overtone bands of these fundamental vibrations occur in the shortwave infrared near 1850-
1870, 1970-2000, 2120-2160, 2300-2350 nm and 2500-2550 nm (Clark 1999). As shown in several 
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studies, the wavelength position of the absorption maxima depends on the mineral composition, 
allowing for example the differentiation of the spectrally similar calcite and dolomite (e.g. Hunt 
and Salisbury 1971, Gaffey 1986). Calcite is a weathering product to be expected in iron- and 
steelworks by-products and VNIR/SWIR and MWIR/LWIR spectra are provided in Fig. 2.14. 

 

Fig. 2.14: VNIR/SWIR (left) and MWIR/LWIR (right) reflectance spectra of calcite (spectra from Kokaly et al. 
2017). The SWIR range shows multiple diagnostic features with the most prominent one near 2330 nm. The 

MWIR/LWIR spectrum exhibits various distinct features. 

Water and hydroxyl 

The fundamental vibrations of the water molecule produce absorptions near 3106 nm (v1, 
symmetric stretch), at 2903 nm (v2, H-O-H bend) and close to 6080 nm (v3, asymmetric stretch). 
Absorptions due to combinations and overtones of these fundamental vibrations might occur at 
942, 1135, 1380, 1454 and 1875 nm (Hunt 1980). The only fundamental vibration of the hydroxyl 
ion can be found near 2770 nm and its first overtone appears near 1440 nm (Hunt 1980, Clark 
1999). However, the exact wavelength position of the hydroxyl fundamental is related to the ion 
that is bound to the OH group and may vary between 2670-3450 nm while typically occurring 
near 2700-2800 nm in OH-bearing minerals (Clark et al. 1990b, Clark 1999, Anderson et al. 
2005). Combination absorptions related to Al-OH typically appear near 2200 nm and related to 
Mg-OH near 2300 nm. This is particularly helpful as it allows to spectrally discriminate different 
clay minerals, e.g. kaolinite, muscovite and specimen of the illite group (Gupta 2018). According 
to Rossman (1996), also anhydrous silicates and oxides often contain hydroxide or water 
molecules. This has also been mentioned by Clark (1999), who pointed out that even though the 
presence of hydroxyl is not reflected in the chemical formula of a mineral, it might still be present 
in the crystal and produce spectral features, as for example known for quartz (Clark 1999). 

Silicates 

While many silicate minerals contain OH-groups producing absorptions in the shortwave 
infrared as described above (e.g. Hunt and Salisbury 1970), most silicate features are not visible in 
the VNIR/SWIR but occur in the mid- and longwave infrared. Especially the region of 8000-
15000 nm shows several features indicative for silicates, of which the most prominent features 
were described to occur near 10000 nm (e.g. Launer 1952, Moenke 1962, Ghosh and Chatterjee 
1974). Hunt (1980) differentiated the spectral ranges in which features in silicate spectra appear as 
follows: 
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7000-9000 nm: In transmission or emission spectra of silicates, a distinct peak is typically 
observed in the region of 7000-9000 nm. This transmission maximum corresponds to a 
reflectance minimum and is called Christiansen feature (CF). This feature is related to the 
strongest molecular vibrational feature and can be usually observed before the dominant Si-O 
stretching features in silicates (Fig.15; Hunt 1980; Salisbury et al. 1988, 1991). The position of the 
Christiansen feature is related to the refraction index (n) of a material and occurs at the 
wavelength where N = 1 (Christiansen frequency; Clark 1999). The position of the Christiansen 
feature is helpful for analysing rocks and minerals (Conel 1969, Cooper et al. 2002, Gupta 2018). 

 

Fig. 2.15: Overview of the locations and causes of features found in mid- and longwave infrared spectra of silicates 
(modified after Clark 2004 and Hunt 1982). 

8500-12000 nm: According to Hunt (1980), this region is commonly known as the “Si-O 
stretching region”, at which silicate spectra might show multiple features, which are mainly due to 
asymmetric O-Si-O, Si-O-Si or O--Si-O- stretching vibrations of SiO4 tetrahedra. The specific 
wavelength position of these features depends on the mineral structure (tectosilicates, disilicates, 
etc.) and the molecular groups, which is schematically visualised in Figure 2.16. This region is also 
known as the reststrahlen region (see e.g. Salisbury and Wald 1992), where the strongest features 
typically occurs near 10000 nm due to Si-O vibrations. The position of the reststrahlen bands is 
close to 9000 nm for framework silicates and for felsic minerals near 11500 nm (Gupta 2018). 
Features near 11000 nm are typically related to H-O-Al vibrations (Hunt 1980, 1982). 
Reststrahlen features of silicates occur as reflectance peaks (Salisbury and Wald 1992). They are 
usually only weakly expressed in spectra of fine powders of minerals (e.g. Salisbury et al. 1991), 
yet still present and of potential diagnostic character (Salisbury 1993). 

12000-15000 nm: Features present in this wavelength region are mainly due to symmetric 
stretches of Si-O-Si and Al-O-Si vibrations as they are occurring in tectosilicates (Hunt 1980, 
Gupta 2018, see Figures 2.15 and 2.16). 
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Structure type Tectosilicate Disilicate Metasilicate Pyrosilicate Orthosilicate 

Tetrahedral unit TO2 T2O5 TO3 T2O7 TO4 

Molecular group =Si= ≡SiO =SiO2 -SiO3 SiO4 

Q-species Q4 Q3 Q2 Q1 Q0 

NBO/T NBO/T = 0 NBO/T = 1 NBO/T = 2 NBO/T = 3 NBO/T = 4 

IR band (nm, ca.) v = 6660-8330, 
9100-10000 

v = 9100-10000 v =10000-11100
~11100-12500 

~12500(-14300) 

Fig. 2.16: Structural units and features likely to be present in silicate glasses (modified after King et al. 2004b). 

Arsenates, borates, halides, phosphates, sulphates and vanadates 

Spectral features found in the infrared spectra of arsenates, phosphates and vanadates, which are 
not related to the presence of H2O or OH, are mainly caused by the fundamental vibrations of 
the XO4

3- ion. In arsenates, spectral features might be present near 11400, 11900, 22200 and at 
28600 nm. Phosphates show characteristics at 9250, 10300, 18200 and 27800 nm. In sulphates, 
the SO4

2- ion is known to produce features in the mid- and longwave infrared wavelengths near 
9060, 10190, 16310 and 22170 nm, but usually not in VNIR/SWIR (Hunt et al. 1972, Hunt 
1980). Features present in the VNIR/SWIR spectrum of gypsum are for example caused by 
overtones and combinations of H2O groups while the VNIR/SWIR spectrum of anhydrite is 
nearly featureless (see e.g. Kokaly et al. 2017). Further details on sulphates can be found among 
others in Adler and Kerr (1965) and Hunt et al. (1971b). 

Organic compounds 

Especially relevant for soil sciences is the analysis of organic compounds (amines, aromatic 
carbons, alkyls, carboxylic acids, etc.) which produce spectral characteristics due to for example 
C=O and C-H stretches in the VNIR (e.g. near 850 and 1100 nm) as well as throughout the 
SWIR and MWIR/LWIR ranges (see Demattê et al. (2016) for a comprehensive feature list). 
Considering the multitude of historical materials collected at the Unterwellenborn dump site, the 
presence of organic constituents in individual samples cannot be excluded.   
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2.2.3 Physicochemical Impact Factors on Reflectance Spectra 

Rocks are typically assemblages of various minerals (which is also true for iron and steel slags). 
Subsequently, spectra of natural or “anthropogenic” rocks represent spectral mixtures of their 
individual components. Such signatures show more complex properties compared to spectra of 
monomineralic samples, making their interpretation challenging, and less well-defined features 
are to be expected compared to spectra of “pure” minerals (e.g. Hunt 1980, Gupta 2018). In 
addition, spectra acquired from samples near in situ conditions may show impacts of moisture, 
different grain sizes and surface roughness, sample aggregation or weathering (Geerken 1991, 
Schodlok 2004, Metternicht and Zinck 2009, Gupta 2018). Thus, such spectra might differ from 
spectra provided in spectral libraries, which are often recorded under controlled laboratory 
conditions of homogenised powders of mono-mineralic samples at specific grain size fractions. 
In the following, known impacts of particle size and moisture are briefly discussed as these are 
important factors to be considered in application-oriented experiments. 

Particle size 

The reflectance of minerals is affected by particle size and texture (Hapke 1981, Clark and Roush 
1984, Arnold and Wagner 1988). The physical principals behind these effects are two major 
processes known as volume and surface scattering. Surface scattering occurs directly at the 
surface of grains and can be further differentiated into single- and multi-surface scattering. 
Volume scattering describes the processes of scattering of radiation that has penetrated grains 
and is refracted within them before leaving the grain again (Vincent and Hunt 1968, Clark 1999). 
These effects are illustrated in Figure 2.17. 

 

Fig. 2.17: Surface (1: single scattering, 2: multiple scattering) and volume scattering (3) at particulate surfaces 
(modified after Vincent and Hunt 1968). 

Which of the two processes dominates is mainly dependent on the grain size and the absorption 
coefficient of the material. Also, the ratio of grain size to the wavelength of the incident radiation 
must be considered. At larger grain sizes, the ratio from surface to volume scattering is shifted 
towards the latter, as the scattering and refraction of photons in larger grains is more intense 
compared to grains of smaller diameters. In the visible light, near and shortwave infrared, the 
grain size is usually larger than the wavelength of the radiation and multiple scattering is 
predominant, causing an increase of reflectance with decreasing grain size of the mineral sample. 
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In contrast, as the absorption coefficients of materials are typically stronger in the mid- and 
longer infrared and the refraction index more variable at the Christiansen frequencies, the 
scattering processes of radiation at particulate materials in this wavelength region are more 
complex. Thus, in some cases, in the MWIR/LWIR, the opposite spectral behaviour of samples 
of certain grain sizes compared to VNIR/SWIR region can be observed (Clark 1999). 

As described in Nash et al. (1993) and summarised in Eisele (2014), the processes of surface and 
volume scattering in the mid- and longwave infrared for silicates can be differentiated as follows: 
the 4000-7000 nm wavelength region is dominated by volume scattering, while between 7000-
9500 nm surface scattering is predominant (except for the Christiansen feature); scattering 
processes in the 9500-12000 nm region are strongly depended on the grain size of the material 
and very fine powders might show a feature that is known as transparency feature (Salisbury et al. 
1991). The intensity of the reststrahlen bands is affected by volume scattering and decreases with 
decreasing grain sizes (Salisbury and Wald 1992). According to Salisbury et al. (1988) “SiO bands 
are greatly diminished and distorted in reflectance spectra of powdered rocks” but remain 
identifiable for some minerals in spectra of fine powdered samples. Between 12000 and 25000 
nm surface scattering is dominant. 

Studies conducted on carbonates demonstrated that spectra of geological or mineralogical 
samples can be obtained from powders or hand rock samples likewise, but sample reflectivity and 
absolute depths of absorptions are a function of particle size. The overall “brightness” (i.e. 
reflectivity) tends to increase with increasing particle size, while the absolute depths of absorption 
features will decrease (Gaffey 1986, van der Meer 1995). In another study focussing on 
carbonates, it was found that calcite features might change from reflectance peaks to reflectance 
minima with very fine grain sizes in the longwave infrared (Zaini et al. 2012). Other studies on 
the impact of grain size and weathering crusts on mineral spectra revealed that weathering crusts 
might mask mineral features that are diagnostic in unweathered samples (Geerken 1991, Salisbury 
and D’Aria 1992a). Studies on the properties of fresh and weathered rocks pointed out that the 
geochemical as well as the spectral properties are variable depending on the rock type (Zhou and 
Wang 2017). In the MWIR/LWIR, it must be further considered that voids and pores between 
grains might act as black bodies and decrease the overall spectral contrast and the shape and 
intensity of reststrahlen bands (Salisbury and Wald 1992; “cavity effect”). The above listed effects 
highlight that grain size might have distinct impacts on mineral spectra, which must be 
considered in qualitative as well as quantitative spectral analyses. 

Moisture 

As described before, molecular water is known to produce strong absorption features near 1400, 
1900, 2900 and 6100 nm and several minor features in the near infrared (e.g. Hunt 1980, see 
Chapter 2.2.2.2). Studies on the impact of moisture on soil spectra showed a decrease in the 
overall reflectance intensity concomitant with no major alteration of the general shape of the 
spectrum (e.g. Bowers and Hanks 1965, Baumgardner et al. 1986). However, other studies (e.g. 
Mulders 1987) found that moisture might mask for example the hydroxyl features of clay 
minerals near 2200 nm, hampering the identification of these constituents in spectra of samples 
with relatively high in situ moisture. For soils, it was reported that moisture will decrease the 
spectral contrast of quartz features in the LWIR range (Salisbury and D’Aria 1992b). 
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2.2.4 Spectroscopy of High-Temperature Formations (Meteorites, Glasses and Melts) 

As discussed before, only few studies on the VNIR/SWIR as well as MWIR/LWIR reflectance 
properties of iron- and steelworks by-products or on the exploration of dump sites related to the 
iron and steel industry are available within the remote sensing community. However, as slags 
represent solidified silicate melts, studies on spectral properties of high-temperature minerals are 
relevant for this thesis. Furthermore, as slags might be of glass-like structure, studies on silicate 
glasses and similar materials are of particular interest for this thesis. Laboratory analyses of slags 
often comprise spectroscopic techniques. Thus, the next chapter will provide findings in such 
studies concerning spectral characteristics of potential relevance for this thesis as well. 

Spectroscopic studies on high-temperature minerals, meteorites, impactites, silicate classes and melts 

Gehlenite is a high-temperature mineral often found in blast furnace slags (e.g. Drissen 2004). 
This mineral is known to show various vibrational features, encompassing absorption features 
due to H2O near 2900 nm and 6200 nm. Si-O-Si features might occur near 9800 nm, Si-O-Al 
features near 9900 nm and various (Si, Al)2O7 vibrational modes were reported towards the longer 
wavelengths (Marincea et al. 2011). Cloutis et al. (2004) analysed VNIR/SWIR and 
MWIR/LWIR reflectance spectra of spinels and chromites and found that e.g. the wavelength 
position of spinel features near 460, 930, 2800 and 12300 nm correlated with the Fe2+ content. Al 
and Fe3+ showed strong correlations to the position of a feature near 930 nm and the depth of a 
feature near 550 nm was correlated with the Cr content. In spectra of chromites, the positions of 
features at ca. 490, 590 and 2000 nm show correlations with Cr, the position of the feature at 
1300 nm varied with the Fe2+ and Mg content and the position of the feature at 2000 nm was 
correlated with the Al content (Cloutis et al. 2004). VNIR/SWIR spectra of melilite, another 
mineral found in blast furnace slag, exhibits features near 1400 nm and in the range 1600-
2000 nm due to ferrous iron transitions. Garnet spectra have features related to Fe2+ and Fe3+ 

near 430, 600, 800 and 1000 nm (Cloutis and Gaffey 1993). Magnetite is known to show opaque 
spectral behaviour and thus a basically featureless spectrum of low reflectance (Hunt et al. 1971a). 
Studies focussing on the spectra of meteorites and other materials found that magnetite tends to 
appear dark and show low reflectance intensities as well (Miyamoto et al. 1982, Cloutis et al. 
1990). Hunt et al. (1975) analysed meteorite spectra in the VNIR/SWIR range and showed that 
most absorptions were due to ferrous iron of which the most prominent one was located near 
1000 nm while ferric iron produced features near 500 nm in other cases. Furthermore, large 
amounts of opaque material caused samples to exhibit nearly featureless spectra of low 
reflectance (Hunt et al. 1975). Other studies on meteorite spectra indicated that amorphous 
carbon caused overall low reflectance (Miyamoto et al. 1981). This is of relevance for this work as 
sludges from the iron and steel industry might contain amorphous carbon as well. The spectrum 
of artificial wüstite, another common slag mineral, was found to be spectrally similar to chondrite 
metal and is characterised by few absorption features and low reflectance (Cloutis et al. 1990). 

Besides spectroscopic studies on meteorites and for extraplanetary applications, comprehensive 
research has been conducted on basaltic and rhyolithic lavas and glasses (see e.g. the numerous 
references in King et al. 2004b). For example, Ramsey and Fink (1999) studied silicic lava and 
reported an absorption band near 9250 nm present in emission spectra as diagnostic of glass to 
be caused by stretching vibrations of silica tetrahedra. Smith et al. 2017 studied VNIR/SWIR 
reflectance spectra of basaltic materials, whereas Si-O stretching and bending features were found 
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to occur in the longer infrared region. Morlok et al. (2016) analysed mid-longwave infrared 
spectra of impactites (suevites and glasses) from the Nördlinger Ries. These materials showed 
water bands near 2770 and 6100 nm, Christiansen features between ~7000-8000 nm, Reststrahlen 
bands between ca. 8900 and 10300 nm as well as transparency features near 11000-1200 nm. 
Farrand et al. (2016) found features in basaltic glasses indicative for hydration near 1900 and 
3000 nm and due to ferric oxide near 480 nm in VNIR/SWIR reflectance data. For 
MWIR/LWIR emission spectra, these authors reported a doublet with centres near 9500 and 
11000 nm related to SiO4. Rice et al. (2013) conducted a comprehensive study on silica-rich 
materials with implications for the detection of similar materials on mars utilising VNIR/SWIR 
spectra. These authors reported features near 950, 1140, 1410, 1780 and 1910 nm due to OH and 
H2O and a feature due to Si-OH near 2210-2260 nm. Faulques et al. (2001) described (amongst 
others) features near 2200 nm in natural silica-rich glasses, which are due to water trapped in the 
structure (as e.g. also described in Adams 1961). Features due to Si-OH and H2O near 2200 nm 
as well as further characteristics related to water occurring at other wavelenthgs in the mid- and 
longwave infrared are also discussed in Efimov et al. (2003). King et al. (2004b) provide a 
comprehensive work on infrared spectroscopy of natural and technogenic silicate glasses and 
elaborated a profound compilation of species and vibrations found in spectra of such materials 
based on reviews of the works of various authors (see Table 2.6). For further information on 
properties of glasses and melts see for example Wong and Angell (1970, 1971), Efimov (1995) 
and Stebbins et al. (1995). 

Tab. 2.6: Overview of spectral features in infrared spectra of natural and synthetic glasses and related functional 
groups (modified from King et al. 2004b, see references therein; original cm-1 units translated to nm). 

Species Vibration Wavelength range (nm) 

Si-O 

Overtone, comb. νas Si-O ~5260 

νas Si-O 9009-10000 

Asymmetric stretching 8000-8333 

νas Si-O stretching 11111 

νas Si-O ~11100-12500 

νas O-Si or OAlO-Si 12500-14286 

(Si)-Al-O 

νas (Si, Al)-O stretching ~9090 

ν Al-OH or H-AlOSi ~11100 

νas Al-O 14706 

H-O 

2ν OH (in H2O and OH) ~1410 

δ HOH + ν OH 1905-1984 

ν OH + νas(Si, Al)-O 2198- 2299 

ν OH + ν O-metal ~2500 

νss HOH + 2δ HOH + νss Si-OH 2632-3333 

δ HOH 6061-6211 

νss (Si, Al)-OH 10309 

CO32- 

δ C-O out of plane 11364-11628 

δ C-O in plane 13514-14706 

ν C-O 6623-7092 
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Spectroscopic studies on slags and cement minerals 

Following Waseda and Toguri (1998), spectroscopic techniques, including infrared and Raman 
spectroscopy, can be considered as established methods to analyse silicate glasses and melts. As 
such, various studies on the structural and chemical analyses of slags comprised spectroscopic 
measurements. Features due to Si-O, Si-OH, Al-O-Al, Si-O-Si bending and stretching vibrations 
are typically observed in Raman and infrared spectra of silicate minerals in slags, whereas the 
identification of specific vibrational modes is complex and increasingly challenging with higher 
numbers of constituents and subsequent spectral contributions (Mohassab and Sohn 2015). The 
transmittance spectrum of blast furnace slag was found to exhibit distinct features near 11100 
and 14300 nm due to Si-O stretching vibrations and near 22200 nm due to MO4 in the study of 
Song et al. (2017). Titanium-bearing blast furnace slags with differing CaO/SiO2 and Al2O3 

contents showed features due to symmetric stretching vibrations of SiO4
4- tetrahedra between 

8300-13300 nm in FTIR transmittance spectra (Feng et al. 2016). Bláhová et al. (2015) reported 
various spectral features for blast furnace slag. Here, features between ca. 9100-11800 nm were 
due to vibrations of Si-O, Si-O-Si and Si-O-Al bonds. The carbonate ion was found to cause a 
feature near 7100 nm. Spectral characteristics related to structural OH-vibrations were 
determined near 2830 nm and due to the presence of water at 2920 nm. Bláhová et al. (2015) also 
spectrally characterised steelmaking slag. Although less rich in silicates compared to the BFS, 
silicates showed features in form of a broad band with several shoulders in the range 9100–
12500 nm. Features near 5560, 7000 and 11440 nm indicated the presence of calcite. A feature 
near 3080 nm was supposed to be caused by OH-groups and again the presence of water was 
indicated by features at ca. 2900 and 6200 nm (Bláhová et al. 2015). A feature due to OH in 
Ca(OH)2 was reported to occur at 2745 nm in another study on the spectral characteristics of 
steel slag (Aimoto et al. 2015). FTIR transmittance spectra of CaO-SiO2 as well as of CaO-SiO2-
CaF2 slags were reported in several studies and showed features mainly due to stretches of SiO4-
tetrahedra, asymmetric Si-O-Si bending and Si-O-Si rocking in the range of ca. 7000-25000 nm 
(Park et al. 2002, 2012). For LF slag, features near 11500 nm related to mayenite and for periclase 
near 2650, 4200, 4560, 4870 and 6800 nm were reported in a transmittance spectrum (Rađenović 
et al. 2013). Another study analysing transmittance spectra of LF slag reported features due to 
calcite-vaterite near 2820, 3970, 5560, 6830, 11430 and 14000 nm (Setién et al. 2009). In the study 
of Diener (2006) similar features related to calcite were reported for LF slag. In that study, the 
precise assignment of features related to calcium silicate and calcium aluminate phases was found 
difficult. However, features near 10300 nm were determined to be related to the presence of 
calcium silicates while iron, aluminium and magnesium oxides produced Al-O stretching 
vibrations between ca. 10500-12500 nm with maxima near 11550 nm for the studied LF slag and 
near 11600 for EAF slag (Diener 2006). Anhydrous calcium silicates are also known to show 
features near 10900 nm as well as in longer wavelength ranges (Gomes and Ferreira 2005). Aside 
from transmission spectra, several studies comprised infrared emission and UV/VIS reflectance 
spectroscopy for analysing the crystallisation processes and oxidation states of slags (e.g. 
Mausbach et al. 1997a, 1997b; Nowack et al. 2001, 2007). 

Apart from studies on slags from iron- and steelmaking, several works provided information on 
the spectral properties of other slags. For example, spectra of slags produced from radioactive 
waste were found to exhibit features due to OH near 2900 and 3400 nm as well as vibrations 
related to silicates (Si-O-Si, Si-O) in the longwave infrared (Malinina and Stefanovsky 2014). A 
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study on the infrared spectra of coal slags described features near 1200, 1800 due to Fe2+ and at 
2800 nm due to OH, as well as a broad reflectance peak due to Si-O vibrations at 9000 nm 
(Goodwin and Mitchner 1986). 

Ghosh and Chatterjee (1974) studied features in the infrared transmission and reflectance spectra 
of a variety of cement minerals, including β- and γ-C2S. These phases are common in steelwork 
slags as well. For C2S, the most distinct absorption characteristics were reported near 10500, 
11800 and 17700 nm. Launer (1952) reported similar features between 10000-12000 nm for β-
Ca2SiO4. Infrared spectra of anhydrous clinker phases are known to exhibit multiple features due 
to Si-O vibrations near 10000 nm, and Al-O might produce features near 11100 nm. Hydrated 
clinker phases might show additional features due to OH near 2750 nm, and due to H2O at 2980 
and 6040 nm (Horgnies et al. 2013). 

The selected examples listed above demonstrated that the majority of research involving 
spectroscopic measurements of slags was conducted for the purpose of laboratory chemical 
analyses of solid slags or in terms of analytical applications for high-temperature liquid slags. 
These studies showed little relation to the spectral exploration of historic iron- and steelworks 
dump sites, aiming for discriminating a large variety of different by-products as well as for the 
quantification of relevant chemical constituents as aspired by this work. Furthermore, most of the 
studies were realised as transmittance or emission set-ups covering the LWIR range and fewer on 
the UV/VIS range. As mentioned earlier, attention must be paid when translating features in 
transmittance and emittance spectra into characteristics observable in reflectance spectra. 
However, the information on spectral features provided in the mentioned studies is a solid basis 
for the analysis of the reflectance signatures of iron- and steelworks by-products in this thesis. As 
the underlying fundamental mechanics of vibrational and electronic processes are associated to 
specific functional groups, the features described in the spectra of slags are in general agreement 
with the features reported for spectra of “naturally” occurring minerals and rocks, meteorites and 
planetary surfaces as well as silicate glasses (see Table 2.6). In summary, features of relevance are: 
various absorptions due to electronic processes in the VNIR range; absorptions due to H2O and 
OH near 1400, 1900, 2200, 2900 and 6100 nm; characteristics caused by carbonates near 4000, 
5600, 7000 and 11400 nm and a variety of features due to silicates in the region > 8000 nm. 
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2.3 Reflectance Spectroscopy and Geological Remote Sensing – A Review 

Geological and mineralogical spectral libraries 

As indicated in the previous chapter, the features observed in mineral spectra are caused by their 
specific chemical and structural composition. As a result, most minerals show specific patterns of 
shoulders, minima and maxima in their spectral signatures that are unique to a certain degree and 
can be understood as “spectral fingerprints”. These specific spectral characteristics allow the 
qualitative characterisation of samples and the identification of mineral phases (see. e.g. Clark and 
Roush 1984, Clark 1999, van der Meer 2004). The research of such spectral characteristics of 
minerals and rocks reaches back to the beginning of the 20th century (e.g. Schaefer et al. 1926) 
and major works were established in the 1950s and 1960s, (e.g. Launer 1952; Hunt and Turner 
1953; Adler and Kerr 1962, 1963a, 1963b; Lyon and Burns 1963; Lyon 1965). Other 
comprehensive studies on the VNIR/SWIR spectra of major rock forming minerals and rocks 
have been published in the 1970s and 1980s (e.g. the works by Hunt 1977, 1980, 1982; Hunt and 
Salisbury 1970, 1971, 1976a, 1976b; as well as Hunt et al. between 1971-1975). Since the late 
1980s, an increasing number of studies has been published on mineral reflectance spectra in the 
MWIR/LWIR (e.g. Salisbury et al. 1987, 1988; 1991; Salisbury 1992, 1993). Today, several 
compilations of hundreds of mineral spectra are available as digital libraries, e.g. by the United 
States Geological Survey (USGS, e.g. Clark et al. 2007, Kokaly et al. 2017) and the ASTER digital 
spectra library (Baldridge et al. 2009). Both the USGS and ASTER spectral libraries comprise 
VNIR/SWIR as well as MWIR/LWIR reflectance signatures of the majority of rock forming 
minerals and additionally provide spectra of other materials, including vegetation, ice, water and 
various anthropogenic materials (see Baldridge et al. 2009, Kokaly et al. 2017). Schodlok et al. 
(2016) recently presented a high-resolution library of thermal infrared reflectance mineral data. 
Spectral libraries establish an important knowledge base for the analysis and interpretation of 
samples with unknown mineralogy in laboratory applications as well as in geological remote 
sensing. Comparing unknown to reference spectra can be realised in many different ways, ranging 
from the empirical assessment of spectroscopic data to (semi or fully) automated approaches. 
Widely known mineral mapping approaches based on feature fitting techniques of unknown to 
reference spectra are the Tri- and Tetracorder algorithms by the USGS (Clark et al. 2003) and the 
recent development EnGeoMAP 2.0 by Mielke et al. (2016). 

Despite the number of existing spectral libraries and compilations of reflectance spectra of 
minerals and rocks, no comprehensive compilations of the VNIR/SWIR and MWIR/LWIR 
reflectance characteristics of the variety of by-products typically found at iron- and steelworks 
dump sites have been reported so far in remote sensing-associated publications. This underlines 
the necessity for building a spectral database for such “anthropogenic rocks” for spectroscopic 
analyses as well as for potential remote sensing applications using imaging data. 

Geological and mineralogical remote sensing 

As a non-contact and non-invasive technique, reflectance spectroscopy found its way into the 
imaging domain and has been widely used for a diverse range of applications in the field of 
mineralogical and geological remote sensing starting decades ago (e.g. Abrams et al. 1977, Goetz 
and Rowan 1981, Goetz et al. 1983, Goetz 2009). Depending on the spectral resolution (the 
number and width of bands at which spectral information is recorded), one differentiates multi-
spectral (low spectral resolution) and hyperspectral instruments (high spectral resolution, up to 
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several hundreds of spectral bands). Today, a large variety of multispectral spaceborne and 
hyperspectral airborne sensors is available, and a plurality of research fields are established. This 
comprises the exploration of natural deposits and geological mapping (e.g. Goetz et al. 1983, 
Sadeghi et al. 2008, Mshiu et al. 2015, Mielke et al. 2016), the analysis of phenomena related to 
acid mine drainage (e.g. Anderson and Robbins 1998, Swayze et al. 2000, Williams et al. 2002, 
Montero et al. 2005, Zabcic et al. 2014), monitoring of tailing sites and analysis of mine waste 
(e.g. Intera Kenting Ltd. 1992, Riaza et al. 2010, Gannouni et al. 2012, Buzzi et al. 2014, Mielke et 
al. 2014, Glanville and Chang 2015) and the study of mining accidents (e.g. Kemper and Sommer 
2002, Fernandes et al. 2016). Further common applications for remote sensing methods are the 
observation of the whole mining cycle, including the monitoring of post-mining landscapes (e.g. 
Schmidt and Glaesser 1998, Gläßer 2004, Gläßer et al. 2011, Götze et al. 2016). Numerous 
studies were published in the field of planetary remote sensing (e.g. Sprague et al. 2000, Cloutis 
and Bell 2004, Cloutis et al. 2008, Cloutis et al. 2010, Horgan and Bell 2012, Horgan et al. 2014). 
A relatively recent development and research field is the terrestrial application of hyperspectral 
imaging at close-range in geology and mining (e.g. Kurz et al. 2012, 2013; Murphy and Monteiro 
2013; Boesche et al. 2015) and the scanning of drill cores with hyperspectral instruments (e.g. 
Koerting et al. 2015). Much more profound information on geological remote sensing, sensors, 
methods and applications are for example provided in the reviews by Cloutis (1996) and van der 
Meer et al. (2012). For hyperthermal applications see Hecker et al. (2011), Kuenzer and Dech 
(2013) and Tang and Li (2014). A review of research topics in soil remote sensing is provided by 
Ben-Dor et al. (2009), and for vegetation remote sensing see Thenkabail et al. (2012). Besides the 
mentioned topics, various studies focussed on urban materials (e.g. Roberts and Herold 2004, 
Roessner et al. 2011, Kotthaus et al. 2014) and industrial applications (e.g. Tatzer et al. 2005), 
including the food industry (e.g. Sun 2010). 

In contrast to the plurality of applications of reflectance spectroscopy and (hyperspectral) remote 
sensing described before, only very few studies are available focussing on the analysis of by-
products and dumps sites related to the iron and steel industry using such methods. Picón et al. 
(2009, 2012) published studies on the application of hyperspectral techniques for the 
classification of non-ferrous materials. Rodriguez et al. (2010) presented a study on the 
automated slag characaterisation using hyperspectral methods. Gutiérrez et al. (2010) proposed 
the application of hyperspectral methods during the steel foundry process and Picón et al. (2017) 
recently presented a study on the application of hyperspectral methods for the quantification of 
chemical constituents of LF slag for optimising metallurgical processes. However, these studies 
did not aim for the exploration of dump sites and the detailed spectral characterisation of the 
variety of iron- and steelworks by-products. Denk et al. (2015) conducted an in situ case study at 
an iron- and steelworks dump site and demonstrated the application of hyperspectral methods 
for the differentiation of a variety of recent and historic materials found at such sites and 
provided spectral characteristics of selected materials. As mentioned, no comprehensive 
compilations of the reflectance properties of common iron- and steelworks by-products covering 
both the VNIR/SWIR as well as the MWIR/LWIR have been reported so far. However, the 
understanding of the reflectance characteristics of the plurality of by-products commonly found 
at iron- and steelworks dump sites is important for their spectral detection and quantification 
purposes at the laboratory and field scale as well as for remote analyses of dump sites using 
hyper- or multispectral instruments.  
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3. Test Site 

The test site of this research is the dump site of the Stahlwerk Thüringen GmbH, formerly 
known as Maxhütte, situated in Unterwellenborn in southern Thuringia, Germany (see Fig. 3.1). 
This site is a representative iron and steel site with a production history reaching back to the 
second half of the 19th century. Since then, a large variety of the major iron- and steelmaking and 
treatment technologies were applied, and the site changed from an ironworks to an integrated 
iron and steel plant to today’s electric steel plant. The resulting by-products of these different 
procedures changed concomitant with the changes in iron and steel production and processing 
technologies. Thus, the dump site affiliated to the today’s Stahlwerk Thüringen GmbH comprises 
a large variety of historical as well as recent iron- and steelworks by-products. Considering the 
basic research-oriented character of this thesis, the dump site of this iron and steel plant must be 
understood as a model site, which provided the basis for the generation of a large and 
heterogeneous sample pool that was supposed to cover an extensive range of typical iron- and 
steelworks by-products. Secondary products not present at this study site were added to the 
sample pool (see Chapters 4.1 and 4.2), aiming at extending the pool for the development of 
generalised models on a heterogeneous dataset. 

Due to the model character of this dump site and based on the fact that the dump and studied 
by-products are anthropogenic by nature, the relevance of the natural conditions for the spectral 
analysis of the dumped materials is limited. Thus, only a brief geographical overview and 
description of the geological setting and mining history of the area around Unterwellenborn will 
be given. Instead, the following chapters will focus on the specific local mining history as local 
iron ore was used for iron production in former times. The descriptions will further provide 
details on the history of iron and steel production and the structure of the dump site. 

 

3.1 Geographical Overview 

The dump site of the Stahlwerk Thüringen GmbH is located close to the city Unterwellenborn 
(31.12.2016: 5928 inhabitants, TLS 2018) in Thuringia. Unterwellenborn is located approximately 
7 km east of Saalfeld und around 12 km west of Pößneck and is situated on the federal highway 
281. The average ground elevation in Unterwellenborn is ca. 270 m above sea level and the centre 
coordinates of the dump site are 50.652° N and 11.418° E. An overview map of 
Unterwellenborn and its surroundings is presented in Figure 3.1. 

Unterwellenborn is located within the Orla depression landscape unit, a subunit of the 
“Zechstein belt at the mountain edges”, which is located between the Saale-Sandstone plate (as 
part of the Buntsandstein rolling country) in the north and the upper Saale valley and the east 
Thuringian slate mountains/Vogtland (as part of the low mountain range unit) in the south 
(Grundmann 2001, Hiekel et al. 2004). The Orla depression was created by leaching processes of 
Zechstein sediments and reaches about 32 km from Saalfeld to Triptis and its north-south 
expansion varies between three and five kilometres. Overall, this landscape unit is nearly free of 
forests and characterised by agriculture. Along the federal highway 281, several industrial and 
commercial areas can be found (Hiekel et al. 2004). 
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Within the Orla depression, most of the Zechstein bedrock is karstified, resulting in the quick 
drainage of precipitation, the presence of only minor streams and springs with strongly varying 
discharges. In the Orla depression, the depth of discharge varies between 80-150 mm, the 
catchment yield factor between 2.6-4.2 l*(s·km²)-1 and the drainage system density is 0.8 km*km-² 
(Hiekel et al. 2004). In Unterwellenborn, only one minor stream, the Weira, can be found. The 
closest major river is the Saale, which is dammed about 6 km to the south of Unterwellenborn in 
the Hohenwarte and the Eichicht reservoirs, and afterwards passes Saalfeld in northern direction. 

The dominant soil types in this region are brown calcareous soils (“Braunerde”) and rendzina 
soils (“Rendzina”), while mixed rendzina (“Pararendzina” and “Braunerde-Pseudogley”) 
represent less dominant soil types (Seidel 2003, BGR 2015). More detailed descriptions of the 
prevalent soil types in the Orla depression can be found in Hiekel et al. (2004), who further 
specify Silt-Vega (“Schluff-Vega”) and Loam-Vega (“Lehm-Vega”) as typical soil types for the 
loess-like floodplain sediments of the small streams like the Weira. 

The Orla depression is located on the lee side of the Thuringian Slate Mountains and is thus 
characterised by relatively low amounts of precipitation (Hiekel et al. 2004). The long-term 
average annual precipitation is 568 mm, with average values of 60-70 mm in the months May to 
August and a maximum in July (1981-2010, values of the DWD station 4332 at Saalfeld, DWD 
2015). The average annual air temperature is 8-8.5 °C (1971-2010, TLUGa). The test site can be 
assigned to the climate district “Thüringisch-Sächsisches Mittelgebirgsvorland” within the 
“Mitteldeutsches Berg- und Hügellandklima” climate area (Hiekel et al. 2004). Furthermore, the 
region belongs to the climate sectors “Erzgebirge, Thüringer und Bayerischer Wald” and 
“Südostdeutsche Becken und Hügel” (TLUGb). Further geographical details of the Orla depress-
sion, encompassing flora and fauna, are given in Hiekel et al. (2004) and Zündorf et al. (2006). 

 
Fig. 3.1: Large-scale overview map of Unterwellenborn in southern Thuringia (see Appendix 3.1 for a larger version). 
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3.2 Geology and Mining History 

The basis for the long reaching mining history in the Saalfeld-Kamsdorf area is a large ore field, 
reaching from Saalfeld (west) to Könitz (east), which has its centre near Kamsdorf close to 
Unterwellenborn. This deposit is the most important historical ore mining area in Thuringia, both 
in terms of its spatial extent as well as of its economic relevance (Grundmann 2001). The ore 
field is located within the Zechstein outcrop along the northern edge of the Thuringian Slate 
Mountains and at the southern border of the Thuringian Basin (TLUG 2005). The ore-bearing 
layers belong to the Werra layers, which represent the oldest layers of the central European 
Zechstein sediments. The Zechstein layers are discordant to the basement rock, which consists of 
folded layers of argillaceous slate and greywacke from the Lower Carboniferous that were eroded 
and reddened within a longer lasting continental period. The Zechstein layers strike towards 
ENE-WSW and the inclination is 5-10° towards NNW (Decker and Rüger 1991, Rüger and 
Decker 1992). 

A schematic representation of the geological setting of the area near Unterwellenborn is given in 
Fig. 3.2. The stratigraphy of the Saalfeld-Kamsdorf deposit in presented in App. 3.2. Today´s 
bedrock in the surrounding of Unterwellenborn is composed of Zechstein strata of the Werra, 
Leine and Fulda formations (e.g. Werra dolomite, “Leinekarbonat”, “Oberer Bröckelschiefer”), 
reworked loess and solifluidal deposits from the Pleistocene. Within the Weira Valley, Holocene 
flood plain sediments can be found. The range of hills to the north of Unterwellenborn mainly 
encompasses strata from the Bernburg and Calvörde formation of the Lower Buntsandstein and 
strata from several formations of the Middle Buntsandstein (TLUG 2001). 

 

Fig. 3.2: Diagram of the geological setting at Unterwellenborn (modified after Wagenbreth and Steiner 2015). 

A multitude of geological faults present in the Zechstein layers and in the underlying basement 
rock were the prerequisite for the formation of the Saalfeld-Kamsdorf ore deposits. These faults 
were caused by impacts of the Saxonian tectonic processes, which affected the underlying layers 
of the Thuringian Slate Mountains that had already been deformed by the Variscan orogeny 
(Rüger and Decker 1992). Hydrothermal solutions ascended along these faults and dykes and led 
to the formation of copper-, silver, nickel- and cobalt-bearing veins in the layers of the Lower 
Zechstein. These mineralisations occurred in the “Lower Slate”, better known as Kupferschiefer 
(which is in this region poor in ore compared to the Mansfeld region) and the “Upper Slate”, 
another bituminous layer. Along these veins, Zechstein limestone was altered to siderite and 
ankerite. In the Upper Werra Dolomite, the limestone was transformed to ferriferous dolomitic 
limestone by iron-manganese-magnesium metasomatism. After erosion of the covering 
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Buntsandstein layers in the Quaternary, the Zechstein sediments weathered and limonite with 
contents of up to 52% iron and 10% manganese was formed out of the ferriferous and 
mineralised limestone along with various minerals (Rüger and Decker 1992, Grundmann 2001, 
TLUG 2005). Despite the previous descriptions, Rüger and Decker (1992) pointed out, that there 
are several theories on the formation of the deposit and that the genesis of the Saalfeld-Kamsdorf 
ore field is not yet conclusively clarified. 

Analyses of archaeological findings prove that the area at Unterwellenborn has been characterised 
by mining and metallurgical activities since the Bronze Age (Rüger and Decker 1992, Grundmann 
2001). The origin of iron production reaches back to the La-Téne culture, approximately 450 
B.C. until 0, when iron was mainly used for manufacturing weapons and tools (Rüger and Decker 
1992). Coinages from the middle of the 11th century most likely indicate the first finding and 
usage of silver ore poor in copper in the area near Saalfeld. The invention of the Saiger 
procedure, which allowed separating copper and silver, intensified the copper and silver mining 
in the 15th and 16th century and various new ore deposits were tapped. The most profitable silver 
ore bodies were mined at the end of the 16th century. Within the Thirty Years' War, most of the 
ore pits and smelteries were demolished. In the 17th and 18th centuries, copper and cobalt mining 
gained economic importance (Rüger and Decker 1992, TLUG 2005). However, cobalt mining 
ended in 1848 and silver ore mining in 1867 (Rüger and Decker 1992, Grundmann 2001). 

While the mining of iron ore in the Kamsdorf-Könitz mining area was of negligible relevance 
during the middle ages, it became increasingly important in the early modern period (Rüger and 
Decker 1992, Grundmann 2001). The local Kamsdorf iron ore played an important role for the 
production of iron in small ironworks along the upper Saale and various tributary rivers. The 
“Eisenstraße” is a relic of these times and received its name from the transport of iron ore along 
the Rennsteig (Grundmann 2001). With the beginning of the 18th century, the iron ore mining 
focused on brown iron ore, which was easily reducible and thus well suited for iron production. 
In the early 19th century also siderite was mined (Rüger and Decker 1992, TLUG 2005). Starting 
in the midst of the 19th century, the charcoal powered blast furnaces of the small ironworks in the 
Thuringian valley struggled heavily with the lack of wood, increasing wood prices and missing 
railroads for the transportation of coke. In addition, ironworks abroad (e.g. England, France) 
were already based on hard coal. As a consequence, most of the charcoal powered blast furnaces 
were shut down and the iron ore mining at Kamsdorf was closed in 1867. However, iron ore 
mining continued in the Könitz mining area (Rüger and Decker 1992, Grundmann 2001). The 
mining claims and mining shares of the “Vereinigte Reviere Kamsdorf” trade union, which was 
founded in the 19th century, were acquired by the Bavarian “Eisenwerk-Gesellschaft 
Maximilianshütte” in 1869, who re-established iron ore mining in Kamsdorf in the early 1870s 
and continued the mining of the ferriferous limestone. From 1869 until 1958, the mining was 
realised belowground and starting from 1949 in more efficient open-pit mines (Rüger and Decker 
1992, Grundmann 2001, TLUG 2005). In 1963, mining of ferriferous limestone was started in an 
open pit approximately 4 km to the east of Unterwellenborn at Kamsdorf, aiming at providing 
aggregate material for the iron producing industry in the GDR (see Fig. 3.1). While the 
production of aggregate limestone became less important in late 1960s, the production of 
agricultural lime gained economic relevance (Rüger and Decker 1992, Grundmann 2001). Today, 
limestone and dolomite as well as greywacke and argillaceous shale are mined and used for the 
production of agricultural lime and building materials (Großtagebau Kamsdorf GmbH). 
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3.3 Local History of Iron and Steel Production 

The history of iron and steel production in Unterwellenborn reaches back to the middle of the 
19th century. Since then, the iron- and steelmaking technologies along with the used raw materials 
and resulting primary and secondary products have changed significantly. Profound descriptions 
of the history of the “Maxhütte” are given in the comprehensive book series published by the 
historical society of the Maximilianshütte/Maxhütte (Geschichtsverein Maxhütte e.V. 1997-
2012). Furthermore, Grundmann (2001) as well as Rüger and Decker (1992) provide information 
on the local history. Based on the aforementioned references, interviews with local experts and 
extensive analyses of historical archive data of the Stahlwerk Thüringen GmbH, Mrotzek-Blöß et 
al. (2016) elaborated a detailed overview of the history of the former iron- and steelmaking in 
Unterwellenborn and the dump site, including material flow models for relevant periods. The 
Stahlwerk Thüringen GmbH offers a brief summary of the history (SWT 2017). This chapter will 
present the local historical developments summarising information given in the references 
mentioned above, as the structure of the dump site and the materials found there are closely 
linked to the history of iron- and steelmaking in Unterwellenborn  and thus of paramount 
importance in this thesis. 

Early stages of iron- and steelmaking in Unterwellenborn (1869 to the early 20th century) 

The origin of iron- and steelmaking in Unterwellenborn is strongly connected with the 
metallurgical and metalworking industry in Haidhof, Bavaria. To secure the raw material supply 
for the iron- and steelworks in Haidhof, the Eisenwerk-Gesellschaft Maximilianshütte acquired 
mining claims for the ore deposits at Saalfeld-Kamsdorf and Schmiedefeld in 1869. In 1872, the 
Eisenwerk-Gesellschaft Maximilianshütte received the permission to build a metallurgical plant 
for iron production in Unterwellenborn. The first blast furnace was completed in 1873 and a 
second one went into operation in 1878. The resulting blast furnace slag was partially granulated 
or cut to blocks, which were used for construction purposes. In the same year, steel production 
began based on the Bessemer process and was realised using two converters of five tons capacity 
resulting in an average daily steel production of 50 t. The local deposits in Kamsdorf provided 
large amounts of manganiferous iron ore in form of sparry iron ore (siderite: Fe 39.4 m%, Mn 
10 m%) and brown iron ore (limonite: Fe 48.9 m%, Mn 4.85 m%). These ores were almost free 
of phosphorous and thus important raw materials for ironmaking based on the Bessemer process 
(Rüger and Decker 1992, Geschichtsverein Maxhütte e.V. 1997, Grundmann 2001, SWT 2017). 

At the end of the 19th century, the iron- and steelworks were modernised, and two blast furnaces 
were replaced with more efficient units (daily production of 150 t each instead of 100 t). The 
blast furnace slag was granulated and transported to the dump site using a cable way system. As 
the formerly used local iron ore, which only showed low contents of phosphate, declined, the 
Bessemer steelmaking procedure was closed down in 1898. Instead, the meanwhile established 
Thomas procedure was introduced. This procedure required iron ore rich in phosphate, which 
was still present in the local deposits at Kamsdorf. In order to remove the phosphorous, scrap 
metal and limestone were added during the steelmaking process. The slag from iron production 
in the blast furnaces was used as a basis for cement production in a cement plant in 
Unterwellenborn starting in 1907 (Geschichtsverein Maxhütte e.V. 1997, Grundmann 2001, 
Mrotzek-Blöß et al. 2016).  
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World War I until World War II 

During World War I, iron and steel production was regressive. Between the years 1921 and 1928, 
the iron- and steelworks were modernised, encompassing the building of four new blast furnaces 
and rebuilding of the Thomas steelworks. At this time, the local phosphate rich iron from the 
mining pits in Schmiedefeld was utilised for iron and steel production. The slag from the Thomas 
steelmaking was broken and ground and the resulting Thomas ground basic slag was used as 
fertiliser due to its high phosphate content of up to 14%. The Eisenwerk-Gesellschaft 
Maximilianshütte and subsequently the iron- and steelworks at Unterwellenborn as well as the 
local mining were heavily affected by the world finance crisis of the late 1920s. As a result, the 
nearby mining sites at Kamsdorf and Schmiedefeld were closed at the end of 1931. Prior to this, 
the Thomas steelworks was closed, and iron was produced only in one blast furnace 
(Geschichtsverein Maxhütte e.V. 1998, Grundmann 2001, Mrotzek-Blöß et al. 2016, SWT 2017). 

In the early 1930s, the steel mill in Unterwellenborn re-commenced production and in 1934, a 
second blast furnace went operational. In 1936 and 1938, two 17.5 t rotary current arc furnaces 
went into operation for high-grade steel production. In the following years, various production 
and processing facilities were modernised. As a consequence of the efforts to process German 
iron ore, ore was processed in a blast furnace to pre-smelted iron, which was rich in sulphur and 
silicate, and afterwards re-smelted to Thomas iron. The slag of these processes was used for 
cement production and road construction. During the last years of World War II, the supply 
chain of slag formers and other materials was hampered, obstructing the iron and steel 
production in Unterwellenborn. As a result, the production of Thomas iron decreased from ca. 
250000 t in the year 1943 to less than 50000 t in 1945. In April 1945, the iron- and steelworks 
stopped production after bomb strikes and American troops entered the facilities peacefully 
(Geschichtsverein Maxhütte e.V. 1998, Grundmann 2001, Mrotzek-Blöß et al. 2016, SWT 2017). 

Post-war period 

At the end of 1945, the production of iron and steel was continued under supervision of the Red 
Army. However, a continuous production was not possible due to the lack of supplementary 
materials in the supply chain, especially coke. As the supply chain was unstable, a low shaft 
furnace was used for the processing of local ore with relatively low contents of iron (up to 24%) 
and high amounts of silica (up to 40%) starting in 1951. In 1950, the production numbers for 
iron reached 337300 t, 275600 t for the roll mill, 218400 t for the Thomas steel production and 
43700 t of electric steel (Geschichtsverein Maxhütte e.V. 2004, Mrotzek-Blöß et al. 2016). 

In 1948/49, the initiative Max needs water (“Max braucht Wasser”) was launched by the Free 
German Youth (FDJ). In this campaign, a water pipeline to secure cooling water supply for the 
iron works was constructed within 90 days by more than 2700 adolescents and students. In later 
years, further initiatives were launched under the slogans Max needs scrap metal (“Max braucht 
Schrott”) and Max needs bones (“Max braucht Knochen”) (Grundmann 2001). In August 1945, the 
slag brickworks started reusing materials from the slag dump site for stone production and the 
cement industry. Furthermore, a facility for the production of slag wool was erected 
(Geschichtsverein Maxhütte e.V. 2004). Slag wool is artificial wool of fine slag fibres, which is 
produced by blowing a high-pressure stream of air or steam through liquid slag, and mainly used 
for thermal insulation in the building industry or as electrical insulator (e.g. Zhao et al. 2014). 
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1950 to 1960 

To overcome the lack of scrap metal and high-grade iron ore during the GDR period and to 
increase the usage of local resources, a sintering plant and two Renn furnaces were put into 
operation in 1951, 1953 and 1954, respectively. In Unterwellenborn, concentrated ore from the 
Renn facility, blast furnace dust, fine-grained ore from local mining and further materials were 
used within the sinter process. The Krupp-Renn procedure aimed for processing acidic ore poor 
in iron, which could not be utilised otherwise in the blast furnace, in a rotary furnace. In 
Unterwellenborn, five tonnes of input materials (iron ore from Eisenberg and Badeleben, pyrite 
cinder, converter dedusting sludge, lime stone from Kamsdorf and coke breeze) were required 
for the production of one tonne of loop. The daily production of sinter was 750 to 1000 t. The 
coarse fraction of the resulting slag was utilised for the construction industry while the fraction 
< 1 mm was deposited at the dump site. The steelmaking processes were optimised by utilising 
oxygen instead of air, resulting in higher quality steel and reduced smelting times as well as less 
amounts of needed alloying additions within the electric steel plant. Further improvements were 
applied to the blast furnace gas cleaning system and henceforth blast furnace gas was used as 
main source for heat-requiring processes in the iron- and steelworks (Geschichtsverein Maxhütte 
e.V. 2005, Mrotzek-Blöß et al. 2016). An overview of the utilisation of the slags from the 
different iron- and steelmaking processes in the 1950s is given in Appendix 3.3. 

1961 until 1982 

Despite the modernisation of the blast furnaces and other facilities in the early 1960s, the iron- 
and steelworks in Unterwellenborn struggled due to the suboptimal infrastructure connection - 
no nearby waterways and ports - and due to the unprofitable local ore reserves within this period. 
After the local ore grounds at Wittmannsgereuth and Schmiedefeld were closed in the late 1960s, 
the iron- and steelworks processed imported iron ore from abroad and coke from the former 
Czechoslovakia. The ore crunching facilities, the roasting and Renn furnaces as well as the low 
shaft furnaces were closed down. Subsequently, also the production of slag wool ended 
(Geschichtsverein Maxhütte e.V. 2005, 2011, Mrotzek-Blöß et al. 2016). In the early 1970s, the 
blooming mill as well as the Thomas steel plant were reconstructed and modernised. 
Furthermore, filtering facilities for cleaning the blast furnace top gases and dedusting systems in 
the electric and converter steel plants were installed. The resulting sludges of these cleaning 
processes were transported to the dump site for temporary storage and drying in various basins 
(see Chapter 3.4.2). Starting in 1975, a new roll line was initialised, which was modernised in the 
following years and which played an important role for the future of the steel plant. As the 
introduction of the LD steelmaking procedure was postponed in the GDR, the QEK procedure 
(“Qualitäts- und Edelstahl-Kombinat”) was introduced (Geschichtsverein Maxhütte e.V. 2011, 
Mrotzek-Blöß et al. 2016, SWT 2017). 

1982 until today 

In the 1980s, great efforts were undertaken to increase production efficiency. The rolling mill was 
extended and a combined section rolling mill (KFS – “Kombinierte Formstahlstraße”) was ready 
for production in the mid of 1985 (SWT 2017). Furthermore, several converters were adapted to 
more modern procedures (Geschichtsverein Maxhütte e.V. 2011, Mrotzek-Blöß et al. 2016). 
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In the course of increasing world market prices for raw and construction materials, the reuse of 
dump site materials gained economic relevance. Thus, great efforts existed for reclaiming and 
reusing the disposed materials from the Unterwellenborn dump site. Consequently, several 
measures have been taken. These encompassed the introduction of the magnet separation of 
scrap metal from slag, which allowed the extraction of up to 4000 t of scrap metal per year, and 
the production of fertiliser based on ground Thomas slag starting in 1983. In 1989, 230000 t of 
blast furnace slag and nearly the complete annual production of Thomas slag (in form of Thomas 
ground slag, 76000 t of 83000 t) were sold. To further increase material reuse, exploration 
investigations were conducted and provided promising results. However, further undertakings 
were cancelled due to the foreseeable political turn at the end of the GDR times 
(Geschichtsverein Maxhütte e.V. 2011, 2012; Mrotzek-Blöß et al. 2016). Until 1989, electricity 
and air blast for the Thomas converters were produced from seven generators in the Gas Engine 
Central (“Gasmaschinenzentrale”) based on blast furnace top gas. The Gas Engine Central is a 
further relic of the long history of iron and steel production in Unterwellenborn and can today be 
visited as a museum (Förderverein Schaudenkmal Gaszentrale Unterwellenborn e.V.). 

Until 1987, a prison labour camp for convicts and political prisoners existed in Unterwellenborn 
(Sonntag 2011). In 1990, the formerly VEB Maxhütte became the Maxhütte Unterwellenborn 
GmbH. To improve the company’s competitiveness, the electric steel plant was closed in 1991 
and various production facilities as well as several attendant facilities were partially privatised. In 
1992, the blast furnaces, the basic oxygen steelmaking plant and the blooming train were shut 
down. On July 1st, 1992, the today´s Stahlwerk Thüringen GmbH was founded, and 
comprehensive modernisation works were conducted in the following years. In 1995, a new 
electric steel plant went into operation with an electric arc furnace of 120 t capacity. In 2006, after 
fusion of Arcelor and Mittal Steel, the Spanish group Alfonso Gallardo became new owner of the 
Stahlwerk Thüringen GmbH. Since 2012, the Stahlwerk Thüringen has belonged to the Brazilian 
company Companhia Siderúrgica Nacional (CSN) (Grundmann 2001, Geschichtsverein 
Maxhütte e.V. 2012, Mrotzek-Blöß et al. 2016, SWT 2017). Today, the Stahlwerk Thüringen 
GmbH has about 700 employees and the annual steel production exceeds 900000 t of carbon 
steel (i.e. low-alloyed steel). The steel production is based solely on scrap metal and the steel is 
exported to over 60 countries. The electric arc furnace allows the melting of 135 tonnes of scrap 
metal within one hour using 100 MW. After production in the electric arc furnace, the crude steel 
is transferred to ladle furnaces for further processing (SWT 2017). For the most part, the EAF 
slag is prepared and marketed by the RGA GmbH & Co. KG. A summary of the major iron- and 
steelmaking procedures, primary and secondary products and their utilisation is given in Tab. 3.1. 

Tab. 3.1: Overview of major iron- and steelmaking procedures applied in the Unterwellenborn (iron- and) steel-
works, associated by-products and their utilisation (after Grundmann 2001, Mrotzek-Blöß et al. 2016, SWT 2017) 

Year Process Primary product By-product Usage 

1878–1945 
1946–1992 Blast furnace Pig iron 

BF slag (and 
dust) 

Blast furnace cement
Construction material 
Slag wool 

1878–1898 
1898–1945 

Bessemer procedure 
Thomas procedure Thomas steel Thomas slag 

Thomas phosphate 
(Fertiliser) 

1995–today 
Electric arc furnace Crude steel EAF slag 

Construction material, 
interim storage 

Ladle Furnace Processed Steel LF slag Disposal 
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3.4 Dump Site Characterisation 

The diversified past of the affiliated dump site, which has its origin in 1872, reflects the more 
than 100 years lasting history of iron and steel production in Unterwellenborn, starting from the 
ironworks to an integrated iron and steel plant to today´s steel processing based on electric arc 
furnaces and converters. The basis of the dump site is the original ground surface and is formed 
of Zechstein sediments. The historic parts of the dump are mainly formed by blast furnace slag, 
linings and refractories, construction rubble and further materials (Tinz et al. 1996). Aside from 
the multitude of by-products of former iron- and steelmaking procedures, the dump comprises 
by-products of the recent steel production as well. 

A comprehensive and detailed description of the historical development of the dump site is given 
in the report by Mrotzek-Blöß et al. (2016). Thus, the following chapters will provide an overview 
of the major structures of today´s dump site and introduce areas that were of relevance within the 
sampling campaigns, encompassing sections, which were directly accessible from the dump 
surface as well as structures that were accessed using excavator prospectings. 

 

Fig. 3.3: Structure of the dump site of the Stahlwerk Thüringen GmbH (modified after Mrotzek-Blöß et al. 2016). 
See Appendix 3.4 for a larger and more detailed map. 

The dimensions of the dump site are approximately 1.5 km from east to west and 0.5 km in 
north-south direction and it covers an area of about 0.62 km². In 1995, the total amount of 
disposed material at the dump site was estimated at 12 million tonnes of slag and further by-
products (Tinz et al. 1996). According to Tinz and Stamm (1996) and Tinz et al. (1996), the 
dump site can be structured in three plateaus based on their average elevation level (Fig. 3.3). 
These plateaus are: “Plateau 274” which represents the northern part of the dump site, the 
“Plateau 312”, representing the central area and the “Hochhalde” in the southern part of the 
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dump site. The dump site morphology is characterised by numerous slopes and further plateaus. 
The differences in altitude occurring between the different plateaus and especially the steep 
slopes present at the northern part of the dump site are visualised in Appendices 3.5 and 3.6. 

At the western part of the dump site, the Arcelor Mittal steel cutting plant can be found. The 
factory premises are situated at the former train station of the Maxhütte. This area can already be 
assigned to Gorndorf, the largest district of Saalfeld. The areas north and south of the dump site 
are utilised as agricultural sites. The premises of the Stahlwerk Thüringen GmbH are located to 
the northeast of the dump site. Unterwellenborn, with its settlement Röblitz, is situated a little 
further to the north. In the south of the Stahlwerk Thüringen and to the east of the dump site, 
several commercial and industrial areas can be found. The area directly to the south of the dump 
is intended for the expansion of the current by-product disposal site. The basins in the south-
west of the dump site represent water reservoirs and infiltration basins (Fig. 3.3). 

 

3.4.1 “Hochhalde” 

The “Hochhalde” has its origin at the beginning of the 20th century. Using a cableway system, 
especially blast furnace slag and blast furnace dusts as well as demolition materials from the 
Maxhütte were deposited. The disposal site reached heights of up to 345 m above sea level 
(Mrotzek-Blöß et al. 2016). Today, major parts of this area are used for the disposal of recent by-
products, mainly ladle furnace slag and dusts from the steelmaking facilities as well as electric arc 
furnace slag of larger grain sizes (Fig. 3.4, left). Between the 1950s and 1970s, major parts of the 
recent slag disposal site were used for the deposition of slag from the Renn procedure. According 
to the analyses of historical records and aerial photographs conducted by Mrotzek-Blöß et al. 
(2016) and the report from EPC (1996), the Renn slag dump reached dimensions of at least 
4.7 ha and an altitude of 377 m above sea level. After closing down the Renn facilities in 1968, 
the Renn slag was quarried for production of hollow blocks (Mrotzek-Blöß et al. 2016). Results 
of drillings indicate that remains of slag from the Krupp-Renn procedure are partly still present in 
the underground of the current by-product disposal site (Ullrich 2005). 

A former monofill of fine sludge from cleaning procedures of the blast furnace top gas is still 
present in the western part of the today´s Hochhalde. This monofill was built in 1985 and covers 
an area of approximately 0.5 ha (Mrotzek-Blöß et al. 2016). The average thickness of the layers in 
the monofill is 3 to 6 m and the volume 11250 m³. The former monofill has been recultivated. 
Today, it is covered by layers of excavated soil, demolition waste, electric arc furnace and ladle 
furnace slag (Tinz and Stamm 1998a, Dyck 2004). Analyses of the deposited sludges indicated 
iron contents of 15-25%, up to 13.9% zinc and 3.3% lead (EPC 1996, Tinz and Stamm 1998a). 

In the eastern part of the “Hochhalde”, a plateau mainly consisting of blast furnace slag, 
pervaded by individual layers of brick fragments from demolition works can be found (Tinz 
2006, Mrotzek-Blöß et al. 2016). This plateau is separated from the by-product dumping site by 
an access ramp. As a result of the construction activities, multiple layers of several historic by-
products have been laid open at both sides of the driveway, which were used for the collection of 
samples (Fig. 3.4, right). Originally, blast furnace slag, partially covered with Thomas slag and 
blast furnace flue dust, could be found in the eastern part of the “Hochhalde”, but these 
materials were reused for the stone and cement industry (Mrotzek-Blöß et al. 2016). In the 
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northern part of the “Hochhalde”, mixtures of blast furnace slag and blast furnace dusts are 
present (Tinz et al. 1996). An area of around 8000 m² at approximately 330 m a.s.l. is located in 
the western part of the “Hochhalde”, which has been used for the disposal of different 
metallurgical by-products, refractories and demolition waste (Mrotzek-Blöß et al. 2016). Today, 
parts of this area are recultivated and partially covered with asphalt. Thus, this area was assigned 
as “no-go area” and not available for sample collection. 

 

Fig. 3.4: Field impressions of the “Hochhalde”: The current by-product disposal site (left) and an access road to the 
“Hochhalde”, revealing a variety of historic by-products and a distinct basin-like structure (right). 

 

3.4.2 “Plateau 312” 

The “Plateau 312” (see Fig. 3.3) is a result of multiple backfillings of various dips in the northern, 
eastern and western slope areas to the “Hochhalde” with slag, demolition materials, refractories 
and excavated soil (EPC-1996, Mrotzek-Blöß et al. 2016). Similar to the “Hochhalde”, the 
“Plateau 312” has a long history of deposition and dismantling. It was primarily used as 
temporary storage and transhipment point. In addition, deposited historical blast furnace slag was 
dismantled and partially re-used for block stone fabrication. After 1979, the “Plateau 312” was 
extended due to the recovery and reuse of blast furnace slag in the eastern part of the 
“Hochhalde”. To the east of the “Hochhalde”, a distinctive “valley” can be found that is known 
as the “Canyon” (Fig. 3.5, left). This structure was created in order to provide access to the 
southern parts of the dump site. In the northern parts of the “Canyon”, Thomas slag can still be 
found. After 1984, no further materials were disposed at the “Plateau 312” (Mrotzek-Blöß et al. 
2016). Today, the western parts of the “Plateau 312” are used for slag preparation and a 
composting plant can be found further to the west. Three former settling basins are located 
directly at the northern steep slope of the “Hochhalde”. Until 1992, these basins were used for 
temporary storing and drying of sludge from wet cleaning procedures of the flues from the 
electric and the converter steelworks. The maximum thickness of the deposited material was 10 
m. Until 1978, minor quantities of sludge from the fine gas cleaning of the blast furnaces tops 
were disposed in these basins (Tinz and Stamm 1996). 
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Fig. 3.6: Impression of the “Plateau 274”. 

 

Fig. 3.5: Field impressions of the “Plateau 312”: View through the “Canyon” - a structure mainly formed of historic 
blast furnace slag - in northern direction (left), the eastern converter (dedusting) sludge basin (right). 

The underground and the dams of the basins are made of different residues of metallurgical 
processes like linings, slag, refractory materials and building rubble. The basins were originally 
used for temporary storing and drying of the sludge before transporting the material to the close-
by municipal landfill of Kamsdorf or other areas of the dump site (Tinz et al. 1996, Tinz and 
Stamm 1996, VTI 1997, Mrotzek-Blöß et al. 2016). Today, the eastern and the western basins are 
still intact. The area of the former middle basin is currently used as interim storage for mill scale. 

A further settling basin, also known as “Teich-Teich”, with an approximate former area of 
2400 m² can be found to the east of the “Hochhalde” (e.g. Tinz and Stamm 1998b). The basin 
was established in 1974, and analogous to the fillings of the formerly described three settling 
basins, the sludges deposited in the “Teich-Teich” are by-products of cleaning procedures of 
dusts and off-gases from the electric and converter steel production facilities (Tinz and Stamm 
1996). Today, the basin is covered by construction rubble, excavated soil and slag and is used as 
temporary storage for electric arc furnace slag (Mrotzek-Blöß et al. 2016). The historic reddish 
converter sludges resulted from cleaning flue gases and dusts from the electric steelworks and the 
converter plant and should not be confused with the red sludges from aluminium processing. 

 

3.4.3 “Plateau 274” 

The metallurgical facilities were originally located in the 
northern part of the dump site, known as “Plateau 274” 
(Fig. 3.3). The original train station of the iron- and 
steelworks was situated in the western part of this area. 
The plateau was used as temporary storage and loading 
area for iron ore, aggregates, coke and other materials. 
The original slopes were backfilled with materials like 
slag, excavated soil and construction waste. Today, the 
“Plateau 274” is remediated and re-cultivated and not 
used for slag disposal anymore (Mrotzek-Blöß et al. 
2016, Fig. 3.6). An excavator prospecting was 
conducted at the former “Sinterhang” in this area (Ch. 4.1).  
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4. Data and Methods 

4.1 Sampling Approach, Analytical Strategy and Workflow 

Despite the comprehensive research of the local history of the dump site and even though its 
major structures and units were known (see Chapter 3.4), the exact location of disposed historic 
by-products, the extension of individual layers, and the exact composition of these materials was 
unknown in many cases for various areas of the dump site. Furthermore, due to the anthropo-
technogenic material deposition, the spatial distribution of the dumped materials did not follow 
natural gradients as they occur in soils or as they are present in natural deposits. Thus, no 
established sampling strategies, such as raster or transect sampling as described, for example, in 
Soil Survey Staff (2009) and BGR (2005), could be applied. Instead, a knowledge-based approach 
was chosen to determine sampling locations. This approach encompassed the development of an 
up-to-date overview map of the dump site (Fig. 4.1), which was based on multiple site visits and 
interviews of local experts from the Stahlwerk Thüringen GmbH as well as on analyses of archive 
data and historical records. This map highlighted the current material distribution at the dump 
surface as well as known historic subsurface structures. It further allowed determining suitable 
sampling locations where by-products of interest of recent and historic processes were expected. 
The map was developed in cooperation with Fraunhofer UMSICHT (see Jandewerth et al. 2013, 
Mrotzek-Blöß et al. 2016, Nühlen et al. 2016a-c). 

 

Fig. 4.1: Overview map of the dump site of the Stahlwerk Thüringen GmbH with relevant structural areas and 
highlighted sampling locations (modified after Mrotzek-Blöß et al. 2016). See Appendix A3.4 for more information. 

Based on this map and the acquired expert information, sampling locations at the dump surface 
and along existing outcrops as well as locations for excavator prospectings were assigned. The 
aim was to collect representative samples of the majority of the different iron- and steelworks by-
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products present at the dump site, including recent by-products but focussing mainly on the 
multitude of historical materials from the different former iron- and steelmaking phases applied 
in Unterwellenborn. Covered and rehabilitation areas were defined as not accessible areas and 
excluded from the sampling campaigns. More detailed descriptions of the sampling locations and 
sample collection are given in Chapter 4.2. 

As the aim was the generation of a comprehensive spectral dataset of typical iron- and steelworks 
by-products, sampling focussed on the collection of a wide range of materials regardless of the 
content of potential valuable materials (e.g. iron, phosphate, etc.). In contrast, industrial-driven 
dump site exploration usually focusses on materials that are potentially rich in economically 
relevant components. Furthermore, the typical procedures for sampling and subsequent analysis 
of iron- and steelworks by-products within industrial applications differ from the typical sampling 
in the field of geological, mineralogical and soil remote sensing, both in terms of the type of 
sampling was well as the amount of collected material. Thus, a common analysis and sampling 
strategy was developed in cooperation with FEhS. This approach comprised the collection of 
larger amounts of material from mixed layers at the excavator prospectings and at other major 
sampling locations as well as the acquisition of minor amounts of material by hand surface 
excavation. Subsamples of the bulk samples were taken on-site for subsequent spectral laboratory 
measurements in order to assess potential impacts of moisture and sample aggregation on the 
spectra of these materials. Retained samples of prepared materials (crushed, sieved < 0.09 mm), 
which were utilised for the chemical and mineralogical analyses, were provided by FEhS. 

 
Fig. 4.2: Sampling and analytical approach and general workflow utilised in this thesis. 

The spectra of the homogenised samples formed the basis for most of the quali- and quantitative 
spectral analyses, as they could be directly linked to the chemical and mineralogical composition 
of the prepared samples. Additionally, for selected samples, retained material of < 10 mm (that 
was used for eluate investigations), was provided for further analysis of grain size effects on the 
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spectral characteristics of the studied by-products. The results of the chemical and mineralogical 
analyses were essential for the qualitative as well as for the quantitative spectral analyses. Here, 
the mineral phases determined via XRD analysis (see Chapter 4.4) were utilised as reference for 
the spectral identification of minerals and the determination of functional groups potentially 
causing absorptions. The chemical composition of the samples was required for the multivariate 
spectral modelling. Figure 4.2 summarises the described workflow. 

 

4.2 Sample Collection and Generation of a Heterogeneous Sample Dataset 

The dataset for the analyses conducted in this thesis comprised 102 samples. Most of these 
samples were gathered at the slag disposal site of the Stahlwerk Thüringen GmbH within 
sampling campaigns at April 19th and June 18th-20th in 2013. These campaigns comprised the 
collection of samples directly at the dump surface as well as at artificially generated outcrops from 
excavator prospectings. The selection of sampling locations was based on the map described in 
Chapter 4.1 (see Fig. 4.1). The excavator prospectings were conducted at six locations for which 
the opening of relevant historical materials was promising: 

- In the “Canyon”, where the phosphate-rich Thomas slag was supposed to be found (Fig. 4.3a) 

- Close to the former “Sinterhang”, where several historical layers could be laid open (Fig. 4.3b) 

- At the “Teich-Teich” (Fig. 4.3c) and at a slope in the NE part of the Plateau 312 (Fig. 4.3d) 

- At the Plateau 274, where several layers of BFS could be accessed (Fig. 4.3e) 

- At the western part of the today´s slag disposal site at the “Hochhalde”, aiming at assessing 
remains of the formerly deposited slag from the Renn procedure (Fig. 4.3f) 

The sampling of the major layers accessed via the excavator prospectings was conducted by 
FEhS according to DIN EN 932-1, which comprised the collection of multiple kilogrammes of 
material for mineralogical and chemical analyses. Subsamples of these bulk samples were taken 
and stored in sealed polyethylene bags for subsequent spectral measurements of fresh and 
unprepared material for the systematic analysis of grain size and moisture effects on the by-
product spectra. 

In addition to the samples collected at the above mentioned artificial trenches, further samples 
were collected by hand sampling. At the northern edge of the “Hochhalde” (see Chapter 3.4.1), 
samples thought to comprise blast furnace flue dust were collected, while EAF and LF slag from 
recent steelmaking were sampled at the current slag disposal site (Fig. 4.4a). Further sampling was 
carried out to both sides of the access road to the current disposal site where a large variety of 
historical materials was laid open (Fig. 4.4b). These materials comprised granulated blast furnace 
slag (GBFS) but also several layers of materials that could not be identified in situ. The mentioned 
outcrop was selected for the case study conducted by Denk et al. (2015).  
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Fig. 4.3: Excavator prospectings: a) in the “Canyon”, b) close to the former “Sinterhang”, c) in the “Teich-Teich”, 
d) at the eastern part of the Plateau 312, e) at the Plateau 274 and f) at the western part of the “Hochhalde”. 

   
Fig. 4.4: Hand surface sampling at the Unterwellenborn dump site: a) Electric arc furnace slag (foreground) and 
(amongst others) ladle furnace slag (background) at the current slag disposal site of the Stahlwerk Thüringen GmbH, 
b) multiple layers of unspecified historical iron- and steelworks by-products present at the western slope of a small 
plateau at the east of the “Hochhalde”, c) red dedusting sludge in the former middle “converter sludge” basin. 

a) b) 

d) 

c)

e) 

a) b) c)

f)
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Additional samples were collected in the eastern basin and at the remains of the former middle 
converter dedusting sludge settling basins, which are located at the northern steep slope of the 
“Hochhalde” and which contained sludge from cleaning procedures of the flues from the electric and 
the converter steel plants (Fig. 4.4c; see Chapter 3.4.2). In the area of the former middle converter 
sludge basin, temporarily stored mill scale was sampled. 
In general, sampling took differences in colour, structure and texture of the materials as well as their 
magnetic properties into account. The sampling locations were captured with a Garmin GPSMAP 
60CSx and photographically documented. 
Besides the samples collected at the dump site of the Stahlwerk Thüringen GmbH, the sample pool 
was enriched with samples provided by FEhS from other iron and steel plants. These materials 
comprised different slags from high-alloy steel production (stainless steel slag, electric arc furnace 
slag, foamed electric arc furnace slag) and EAF slag from former production of medium-alloyed steel. 
These materials were not present at the Unterwellenborn test site. 

 
4.3 Sample Preparation 

Sample preparation for mineralogical and chemical analyses was realised by FEhS and followed 
internal protocols. After drying the samples, the physical separation of slag and metallic 
components was conducted utilising a vibratory disc mill and metallic mesh sieves with grid 
widths of 0.5 mm to 0.09 mm. Based on the different ductility of slag and metal, the fractions 
< 0.5 mm (metal-rich), 0.5–0.09 mm (poor in metal) and < 0.09 mm (free of metal) were 
extracted by grinding until weight constancy and continuous sieving. No further treatment of 
these metallic components was conducted, as only three samples showed fractions poor in metal 
with 1-2 m% (see also Mrotzek-Blöß et al. 2016). The < 0.09 mm fractions of the samples were 
used for chemical and mineralogical analyses. In addition, retained samples of air-dried and 
crushed material < 10 mm (which was prepared for eluate analyses following DIN EN 12457‐4 
as conducted in the project REStrateGIS) were provided for 36 samples. 

 
4.4 Mineralogical and Chemical Analyses 

As described in Chapters 2.1.2 and 2.1.3, the various iron- and steelworks by-products show a diverse 
chemical composition and mineralogy. Thus, assessing the chemical and the mineralogical properties 
was crucial for the typification of the samples, especially as the in situ identification of the disposed 
historic materials based on visual inspection was challenging even for experts. The entire chemical 
and mineralogical analyses were conducted by FEhS and provided for this thesis. 

In order to assess the mineralogical composition of the sampled iron- and steelworks by-products, X-
ray diffraction (XRD) analysis was conducted using a PANalytical X’Pert PRO powder 
diffractometer. Instrumental parameters are summarized in Appendix 4.1.  

X-Ray powder diffraction is an established method for determining crystalline phases in organic and 
inorganic samples. Furthermore, quantitative phase analysis can be performed, too, applying different 
approaches like RIR (Hubbard and Synder 1988) - or the Rietveld method (Rietveld 1969). The 
advantages of the Rietveld method are the possibility to determine the quantitative phase assemblages 
based on the crystal structures of the present phases and to determine the amorphous contents using 
inner (Madsen et al. 2001) or outer standard (Jansen et al. 2011) procedures. Therefore, the analytical 
method is utilised in various scientific disciplines (e.g. Das et al. 2014, Bunaciu et al. 2015). It is based 
on the principle that crystalline materials produce specific diffraction patterns when irradiated with 
monochromatic X-rays depending on their atomic composition and crystalline structure, as described 
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by Bragg´s law (Bragg and Bragg 1913). The determination of mineral phases was realised with the 
software X'Pert HighScore Plus from PANalytical (Version 2.2.5) utilising the PDF-1 database from 
the International Centre for Diffraction Data. For selected samples, the determined phases were 
roughly quantified based on Reference Intensity Ratios (see e.g. Snyder 1992) and categorised into 
major (> 20%), minor (5-20%) and trace (< 5%) constituents. This information only refers to the 
crystalline part of the samples. Amorphous constituents have not been quantified. The XRD data 
provided the basis for the qualitative spectral analysis of the collected samples (see Chapter 4.7.2). For 
more details on the theoretical background and XRD procedures see for example Allmann (2003), 
Spieß et al. (2009) and Waseda et al. (2011). 

The determination of chemical main, minor and trace constituents of the sampled by-products was 
based on wet chemical procedures after microwave digestion (EN 13656). Oxidic and metallic 
components that could not be physically separated as described in Ch. 4.3, were analysed using the 
bromine-methanol process (Kraft and Fischer 1963). The elementary analysis of the samples was 
realised using inductively coupled-plasma optical emission spectrometry (ICP-OES, Spectro Ciros 
CCD instrument, analysis according to EN ISO 11885 (2009-09)), which is a well-established 
approach for analysing the chemical composition of samples (Brenner and Taylor 1992, Hall 1992, 
Ghosh et al. 2013). The SiO2 content was analysed according to DIN EN 196-2 (2013-10). Free lime 
and the Stotal were determined according to DIN EN 1744-1: 2009+A1:2012. See App. 4.2 for an 
overview of analysed constituents, used methods and DIN standards. 

The results of the before mentioned analyses provided the basis for the chemical characterisation of 
the samples (see Chapter 5.3) as well as for the qualitative and quantitative spectral investigations (see 
Chapters 5.5 and 5.6). In total, 40 chemical parameters were analysed. Due to financial restrictions, 
not all samples could be analysed for all constituents. 

 
4.5 Statistical Analysis of the Chemical Data 

For assessing the amplitude of chemical constituents present in the collected samples, basic 
descriptive statistics were calculated. These parameters comprised the mean (MN), median (MD), 
standard deviation (SD), minimum (MIN) and maximum (MAX) values as well as the resulting 
ranges. In addition, the kurtosis and skew of the data distribution function were calculated to assess 
its form. Shapiro-Wilk tests were conducted to analyse the data for normal distribution as this 
method is robust for sets with relatively low numbers of samples. 

In order to investigate potential intercorrelations among the chemical parameters and to assess the 
strength and direction of these correlations, principal component analysis (PCA, Pearson 1901, 
Hotelling 1933) was conducted. This widely used multivariate approach aims to structure and simplify 
complex data by transforming multiple highly correlated variables into uncorrelated variables, so-
called principal components (PC). These PC are formed successively by linear combinations of the 
original data and each new component aims at describing the maximum variance still present in the 
data (e.g. Eckey et al. 2002, Jolliffe 2002, Dormann 2017). 

Descriptive statistical parameters and intercorrelation matrices were calculated and visualised in R 
(version 3.4.2, R Core Team) and R Studio (version 1.1.383, RStudio Team 2017), utilising the 
packages “psych” by Revelle (2017), “MASS” by Venables and Ripley (2002) and “corrplot” by Wie 
and Simko (2017). The PCA was calculated using the “stats” package integrated in R. Additionally, 
ternary plots, as they are typically used for visualisation of the chemical composition of natural rocks 
as well as iron- and steelworks slags (e.g. Drissen 2004), were created using the R package “ggtern” by 
Hamilton (2017), an extension to “ggplot2” by Wickham (2009). 
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4.6 Spectral Measurements and Spectral Preprocessing 

4.6.1 Spectroscopic Measurements 

4.6.1.1 Acquisition of Spectra in the Visible Light, Near and Shortwave Infrared 

Diffuse reflectance measurements were conducted using a FieldSpec Pro FR spectroradiometer 
from Analytical Spectral Devices Inc. (ASD, ASD 2002). The instrument covers a wavelength 
range of 350 to 2500 nm, which comprises parts of the ultraviolet (UV, 350-400 nm), the visible 
light (VIS, 400-700 nm), the near infrared (NIR, 700-1300 nm) and the shortwave infrared 
(SWIR, 1300-2500 nm). The instrument records reflectance values utilising three individual 
detectors with different spectral resolutions and sampling intervals (see Table 4.1). 

Tab. 4.1: Selected technical characteristics of the ASD FieldSpec Pro spectroradiometer (ASD 2002). 

Detector Spectral range Sensor type 
Spectral 
sampling 

Spectral 
resolution 

1 350-1050 nm 
512-channel silicon photodiode 
array overlaid with separation filter

1.4 nm 3 nm at 700 nm 

2 900-1850 nm InGaAs photodiode detector 2 nm 10-12 nm 

3 1700-2500 nm InGaAs photodiode detector 2 nm 10-12 nm 

Figure 4.5 illustrates the measurement set-up. An ASD Pro Lamp, equipped with a 50 W bulb, 
served as illumination source (45° incident angle). The distance from the lamp to the 
measurement object was approximately 30 cm. For the measurements, the bare fibre optic with a 
Field of View (FOV) of 25° has been located approximately 15 cm above the measurement 
object, resulting in a measurement diameter of about 6.7 cm. On the one hand, this measurement 
field size ensured measuring a representative sample spot as the utilised petri dishes had a 
diameter of around 8.8 cm. On the other hand, it could be avoided to record the edges of the 
dish, potential shadowing or the underlying material outside of the sample dishes. The 
measurements were conducted in the spectroscopy laboratory of the Department of Remote 
Sensing and Cartography at the Institute of Geosciences and Geography of the MLU Halle. This 
chamber is equipped with black painted walls and curtains in order to minimise unwanted diffuse 
reflectance of non-target materials. The warm-up times of the lamp and spectrometer were at 
least 30 minutes and the underlying plate of the sample dish showed a flat reflectance signal 
(~5%) over the whole recorded wavelength range. This was important as spectrally unsuitable 
background materials and light sources as well as insufficient warm-up times might cause 
unwanted effects on collected spectral data (see e.g. Jung et al. 2012, Götze et al. 2017). A 
Spectralon white reference panel of nearly 99% reflectivity was used for calibration purposes. 
Spectralon is made of polytetrafluoroethylene (PTFE) and shows Lambertian reflectance 
properties (e.g. Weidner and Hsia 1981, Bruegge et al. 1993, Stiegman et al. 1993). 

The software RS³ (version 6.0), provided by ASD, was used for operating the FieldSpec Pro FR. 
The integration times, gain and offset-values of the individual detectors as well as the dark 
current were defined during the automatic optimisation process of the instrument to adjust the 
detectors to the current illumination conditions. Fifty measurements were internally averaged 
before saving each spectrum file. According to ASD (2002) and as mentioned in Jarmer (2005), 
increasing the number of internally averaged spectra will significantly increase the signal-to-noise 
level of the resulting spectrum. After saving three spectra per sample, the sample position was 
rotated by 90° before collecting another three spectra. This procedure was repeated three times 
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to acquire reflectance spectra for different sample positions, aiming to take possibly varying 
illumination and texture effects into account. Thus, twelve spectra were recorded in total for 
every sample (three spectra per each of the four sample positions). 

 

Fig. 4.5: Setup for the spectral laboratory measurements carried out with the ASD FieldSpec Pro FR. 

 

4.6.1.2 Acquisition of Spectra in the Mid- and Longwave Infrared 

To record reflectance properties of the samples in the mid-wave 
(MWIR) and longwave infrared (LWIR), an Agilent 4300 Handheld 
Fourier-transform infrared (FTIR) spectrometer was utilised. The 
instrument covers the wavelength range of ca. 2000 to 15400 nm 
with a spectral resolution of 16 cm-1 (Agilent 2017). In contrast to the 
measurements performed with the ASD FieldSpec Pro FR, the 
Agilent 4300 Handheld FTIR provides an internal energy source 
(ceramic heating element of 1000°C) and only contact measurements 
could be conducted utilising a diffuse reflectance sample interface. 
The saved spectra were based on 64 internally averaged 
measurements and three spectra were saved per sample. A gold 
reflector cap was utilised for calibrating the spectrometer. For further 
details on the basic principles of FTIR measurements and 
instruments as well as information on potential background 
contributors see for example Smith (1996), Marks (2009) and King et 
al. (2004a). The measurement set-up is presented in Figure 4.6. To assess the accuracy of the 
measurements, samples comprising minerals with distinct spectral features (e.g. quartz, gypsum) 
were measured. The results indicated good matches to reference spectra (see Appendix 4.2).

Fig. 4.6: Spectral measure-
ments with the Agilent 4300 
Handheld FTIR. 
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4.6.2 Spectroscopic Preprocessing 

4.6.2.1 Basic Spectral Preprocessing 

Spectra collected with the ASD FieldSpec Pro FR were preprocessed using the software 
ViewSpec Pro by ASD (version 6.0). Preprocessing encompassed the averaging of the twelve 
repetition spectra per sample as well as the correction of splices in the spectra. Such splices might 
occur at the transition zones between the detectors due to the different field of views of the 
individual fibres in the fibre optic cable (e.g. MacArthur et al. 2012, Hueni and Bialek 2017). 
After averaging and splice correction, the individual spectra were compiled into a digital spectral 
library file using the software ENVI (by Exelis Visual Information Solutions, Inc., a subsidiary of 
Harris Corporation; version 4.7-5.4.1). The spectral library was used as basis for subsequent 
qualitative and quantitative spectral analysis (see Chapter 4.7). The spectra recorded with the 
Agilent 4300 Handheld FTIR instrument were preprocessed using the software Spekwin32 
(version 1.72.0, 06/2016, Menges 2016). The three repetition spectra per sample were averaged 
and all individual average spectra were compiled into one file. Afterwards, the spectra were 
transformed from wavenumber units (cm−1) in nanometres (nm). The spectral library files 
compiled in ENVI and Spekwin32 were exported in common data formats like CSV for 
subsequent data analysis. 

 

4.6.2.2 Spectral Smoothing 

While major errors in spectroscopic measurements caused by external factors can be easily 
avoided by proper measurement set-ups (see for example Götze et al. 2017), spectroscopic data 
usually contains a certain amount of random noise caused by the instruments themselves (ASD 
2002). Thus, various smoothing and filtering approaches are commonly applied, aiming at 
reducing random noise while maintaining the actual information contained in the spectral data 
(Maesschalck et al. 1999). Amongst the multitude of existing filtering and smoothing methods, 
e.g. moving average, median and Gaussian filtering, the approach developed by Savitzky and 
Golay (1964) is the most commonly used in chemometrics according to Maesschalck et al. (1999). 
Thus, the Savitzy-Golay filter was utilised for data smoothing within this thesis. This procedure 
encompasses the application of a polynomial function to a number of equidistant values to the 
left and to the right of the data point to be smoothed, to calculate a new data value (Savitzky and 
Golay 1964). Conservative filter-settings (widths 15, third degree polynomial function) were set 
for smoothing the VNIR/SWIR data to minimise changes in the original data and to prevent a 
loss of information. The smoothed VNIR/SWIR spectra were utilised solely for qualitative 
analysis and visualisation purposes. As the spectral resolution of the MWIR/LWIR spectra was 
significantly lower compared to the VNIR/SWIR data (585 data points for the range 2000-
15400 nm compared to 2151 data points for the range 350-2500 nm), even conservative filter-
settings lead to the loss of minor spectral features that might be relevant in terms of qualitative 
spectral analysis. Thus, no smoothing was applied to MWIR/LWIR spectra, although these 
spectra were considerably noisy at in the wavelength region > 12000 nm.   
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4.6.2.3 Spectral Normalisations and Transformations 

According to Rinnan et al. (2009), spectroscopic data is often affected by unwanted non-
linearities and baseline shifts caused by light scattering. Thus, preprocessing techniques are often 
applied to minimise such effects before utilising spectral data for chemometrical modelling 
approaches like PLSR (see Chapter 4.7.3, Rinnan et al. 2009). Preprocessing of the input data can 
potentially remove such non-linearities and provide more robust models (de Noord 1994). 
However, studies demonstrated that the results of PLSR modelling might differ depending on the 
type of preprocessing applied to the input spectra (e.g. Riedel et al. 2018). As such, no universal 
normalisation or transformation technique exists and identifying “the best” procedure is 
challenging and case-specific (Maesschalck et al. 1999, Rinnan et al. 2009). 

Well-known normalisation and transformation procedures comprise the standard normal variate 
procedure (SNV, Barnes et al. 1989, Barnes et al. 1993) with subsequent de-trending as well as 
multiplicative scatter correction (MSC, Geladi et al. 1985, Isaksson and Næs 1988, Naes et al. 
1990). While both methods aim at removing scatter effects, SNV is based on calculating the 
average value and the standard deviation of each spectrum, while MSC is performed by 
calculating the average spectrum based on a given set of spectra to generate a reference spectrum 
for the subsequent scatter correction of each individual spectrum (Kooistra et al. 2001, Rinnan et 
al. 2009). Another method to reduce non-linearities is the transformation of the original 
reflectance data into absorbance values (Maesschalck et al. 1999). A well-established technique in 
spectral analyses is called continuum removal (CR). This approach was originally introduced by 
Clark and Roush (1984) and is particularly useful for the analysis and parameterisation of mineral 
absorption characteristics (e.g. van der Meer 2004). The continuum represents a convex hull 
consisting of a number of segments, which fits the original spectrum at several local maxima. By 
transforming this convex hull against a baseline, even spurious absorption features that are barely 
visible otherwise, are highlighted (Clark and Roush 1984). This technique removes the influence 
of different reflectance intensities and allows the parameterisation of absorption features for 
subsequent analysis (see e.g. van der Meer 2004). 

Within this thesis, aside from utilising the reflectance spectra, continuum removal was applied for 
absorption feature analyses. For this purpose, the continuum removal function as integrated in 
the software ENVI was applied. Furthermore, these spectra were utilised as input for the 
chemometrical modelling (see Chapter 4.7.2). In addition, the original reflectance spectra were 
transformed in absorbance spectra according to formula (4): 

A = -log10(R)  (4) 

   



4.7 Spectral Analysis 

58 

4.7 Spectral Analysis 

4.7.1 Separability Analyses and Classification 

To initially assess the spectral separability of the different by-products, focus was put on methods 
that do not require prior knowledge about the spectral properties of these materials. Thus, 
generalised approaches were chosen, including principal component analysis (PCA) as described 
in Chapter 4.5. Furthermore, hierarchical cluster analysis (HCA) of the spectral and the chemical 
data was conducted in order to group spectrally (and chemically, respectively) similar materials in 
clusters that were subsequently compared. The hierarchical clustering requires the definition of a 
measure of distance for the characteristics of the individual objects to be clustered (e.g. Euclidian 
distance, Manhattan distance, etc.). Furthermore, a linkage criterion for determining the distance 
between sets of observations needs to be defined. Amongst others (e.g. complete- or single-
linkage), the agglomerative, minimum variance method by Ward (1963) was used. The number of 
clusters in which the samples should be divided was determined by the number of different 
material types found within the sample pool. A support vector machine classification (SVMC) 
(see e.g. Boser et al. 1992, Cortes and Vapnik 1995) was conducted based on the R packages 
“e1071” (Meyer et al. 2017) and “caret” (Kuhn et al. 2017). SVMC is a machine learning 
approach, aiming to find hyperplanes for optimal separation of different classes. As linear 
functions are often not suitable for separation of the data, the original data is mapped in a new 
feature space using a kernel function in a way that the distance between the samples belonging to 
different classes is maximised. Samples at the “border” between two classes that are optimal for 
separating them form so-called support vectors (CAMO 2013, Hsu et al. 2016). The listed 
procedures (PCA, HCA, SVMC) were conducted based on the VNIR/SWIR and MWIR/LWIR 
spectra as well as on the combination of both ranges to assess the most suitable wavelength 
region for discriminating the different material types. For visualisation of the results, the R 
package “factoextra” (Kassambara and Mundt 2017) was utilised. 

Other methods, like SAM and SFF (see the next chapter), are commonly utilised for matching 
unkown sample spectra with reference spectra, but typically require the definition of specific 
spectral characteristics or wavelength ranges for comparative purposes. Thus, no major focus was 
laid on these procedures, but they were applied using the complete VNIR/SWIR and 
MWIR/LWIR spectra to further assess the discriminability of the samples. 

4.7.2 Qualitative Spectral Analyses 

The major objective of the qualitative spectral analyses of the collected samples was to provide a 
comprehensive characterisation of the reflectance properties of typical iron- and steelworks by-
products in the visible light, near and shortwave infrared as well as in the mid- and longwave 
infrared. For this purpose, the spectral properties of the collected samples were examined in 
terms of reflectance intensities, the general shape of the spectra as well as the presence and shape 
of the absorption features or reflectance maxima. 

Determination and Parameterisation of Absorption Features 

Absorption features in the spectra were identified and parameterised based on continuum 
removed spectra (see Chapter 4.6.2.3). Relevant parameters for characterising absorption features 
are: the wavelength position at the local absorption maximum; the absorption depth, which is the 
strength of an absorption in relation to the continuum hull; the width of the absorption, which 
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can be understood as the distance between the left and right shoulder; the area and asymmetry 
(e.g. van der Meer 1995, van der Meer 2004, Jarmer 2005, Fig. 4.7). For the VNIR/SWIR spectra, 
absorption features and the above-mentioned parameters were determined using ENVI and the 
IDL based tool DISPEC (version 3.6). DISPEC was developed by Harald van der Werff and 
kindly provided by the Faculty of Geo-Information Science and Earth Observation (ITC) of the 
University of Twente. Here, local maxima as well as inflection points were utilised to determine 
feature shoulder positions for applying the continuum removal normalisation and the subsequent 
feature characterisation. Feature positions and absorptions depths in the MWIR/LWIR spectra 
were determined empirically by applying continuum removal to specific wavelength intervals. 

 
Fig. 4.7: Parameterisation of absorption features based on continuum removed spectra (after van der Meer 2004). 

Spectral Identification of Mineral Phases 

Spectral features identified in the spectra were interpreted in a semi-automated empirical 
approach using the XRD verified mineral phases (see Chapter 4.4) as reference. However, 
attention must be paid at this point as a known advantage of reflectance spectroscopy is that it is 
sensitive to crystalline as well as amorphous constituents in contrast to X-ray diffraction analysis 
(Clark 1999). Thus, spectra might indicate certain constituents not determined via XRD analysis. 
On the other hand, mineral phases determined with X-ray diffraction might not be spectrally 
active or cannot be determined due to overlapping or only weakly pronounced spectral features. 

The algorithms Spectral Feature Fitting (SFF) and Spectral Angle Mapper (SAM) were 
supportingly utilised for the identification of mineral absorption features. Both methods are 
integrated in ENVI and represent established methods in the field of geological remote sensing 
(van der Meer et al. 2012). SFF is based on a least square fitting procedure to compare measured 
spectra to reference spectra (Clark et al. 1990a). SAM treats the spectra as vectors and compares 
the angle between them, where a smaller angle means more similar spectra (Kruse et al. 1993). 
SAM and SFF were additionally utilised to assess the spectral separability of the samples and to 
compare measured spectra with reference spectra from digital libraries provided with ENVI (e.g. 
Baldridge et al. 2009, Kokaly et al. 2017). However, the interpretation was mainly based on the 
information on spectral features given in the literature. These works encompassed e.g. the 
fundamental works of Hunt (1977), Hunt and Salisbury (1970, 1971), Hunt et al. (1971-1975), 
Clark et al. (1990b), Clark (1999), the spectra compilations in Hauff (2005, 2008) as well as the 
USGS (Clark et al. 2007, Kokaly et al. 2017) and ASTER spectral libraries (Baldridge et al. 2009). 
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4.7.3 Quantitative Spectral Analyses 

The quantitative spectral analyses aimed at finding relationships between the spectral data and the 
chemical constituents. In a first step, correlations between the measured spectra and the chemical 
constituents were calculated. As described e.g. in Vohland et al. (2009), this approach is helpful 
for identifying spectrally sensitive wavelength ranges, which are directly or indirectly affected by 
or linked to the analysed chemical constituent. Furthermore, multivariate statistical models based 
on Partial Least Squares Regression (PLSR) were calculated on a defined calibration dataset and 
afterwards applied to a set of independent validation samples to predict chemical constituents. 
Afterwards, model performance and robustness were statistically assessed. 

Creation of Calibration and Validation Datasets 

There are different established methods for the selection of calibration and validation data in 
chemometrical modelling. In this context, Maesschalck et al. (1999) discussed amongst others: 
random sampling, the procedure developed by Kennard and Stone (1969), the cluster-based 
method introduced by Næs (1987) and the DUPLEX algorithm (Snee 1977). Within this thesis, 
the DUPLEX approach was selected. It is a modification of the Kennard-Stone procedure and 
an iterative process that starts by selecting two points that show the greatest distance to each 
other in a given data cluster (PC1 vs PC2 of the spectral data) for the calibration set. Afterwards, 
two of the remaining points that are again furthest away from each other are selected for 
validation samples. The next steps comprise the alternate selection of remaining points for the 
calibration as well as the validation set, which show again the greatest distance to the previously 
selected samples (Maesschalck et al. 1999). According to Maesschalck et al. (1999), this procedure 
“[…] selects representative calibration and test data sets of equal size” and can be considered as 
“[…] the best way to select representative calibration and test data sets in a validation context” 
(Maesschalck et al. 1999, p. 24). The DUPLEX algorithm was applied in R using the “prospectr” 
package by Sevents and Ramirez–Lopez (2014). In order to avoid that samples with extreme 
values of chemical constituents negatively affect the results of the latter conducted statistical 
modelling, they were initially removed utilising the “outliers” package for R by Komsta (2011) 
based on chi-squared scores and a probability threshold of 0.95. 

Partial Least Squares Regression 

Besides Principal Components Regression (PCR), Partial Least Squares Regression (PLSR) is one 
of the most used multivariate statistical approaches in spectroscopic modelling. Additionally to its 
original application in the field of chemometrics, it is also an established tool for quantitative 
analyses in the field of soil spectroscopy (e.g. Udelhoven et al. 2003, Siebielec et al. 2004, Viscarra 
Rossel et al. 2006, Vohland et al. 2009, Demattê et al. 2016, Kanning et al. 2016) as well as in 
mineralogical and geological spectroscopy (e.g. Goetz et al. 2009, Hecker et al. 2012). The 
procedure is suitable for analysis of complex data with potentially intercorrelated variables and is 
capable of handling missing or noisy data (Geladi and Kowalksi 1986, Wold et al. 2001). The 
main principle of PLSR is relating two data matrices, the depended or predictor variables and the 
independent response variables (Wold et al. 2001). Similar to Principal Component Analysis 
(PCA) (see e.g. Esbensen et al. 2012 for a comparison), PLSR transforms a large set of predictor 
variables into new, latent variables, so-called factors, and aims to explain the variation of the 
response variable(s) by using a certain number of weighted factors (Wold et al. 2001, Esbensen et 
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al. 2012). Even though several other regression techniques exist, e.g. Support Vector Regression 
(SVR) or Random Forest Regression (RFR), PLSR proved to be less susceptible to overfitting 
and outperformed other regression approaches depending on the chosen validation method in 
the study of Siegmann and Jarmer (2015). 

For the PLSR approach, the VNIR/SWIR and the MWIR/LWIR spectra of sample material 
< 0.09 mm as well as a combination of both spectral ranges were utilised as predictor variables 
while the chemical constituents of the different iron- and steelworks by-products represented the 
response variables. Additionally, the spectra of unprepared samples with near in situ moisture as 
well as the spectra of unprepared but air-dried samples were utilised in order to assess the general 
impacts of in situ moisture and sample aggregation on the modelling results. 

Chemical constituents with strongly asymmetric distributions are often normalised before 
calculating the PLSR Wold et al. (2001). However, PLSR does not require normally distributed 
data and initial model runs indicated that normalisation of the selected chemical constituents for 
modelling was not necessary. Thus, no normalisation or transformation of the chemical 
constituents was applied. The maximum number of latent variables for the calibration models 
was limited to 30 and calibration models were validated by leave-one-out cross-validation. The 
selection of calibration models for predicting chemical constituents for the test datasets was 
based on Akaike’s Information Criterion (AIC, Akaike 1974). The calibration model providing 
the lowest AIC was selected for model validation. The AIC was calculated as given in formula 5: 

AIC = n [ln(RSS/n)]+2݇  (5) 

Where N = the number of samples, k = the number of factors and RSS = Residual Sum of 
Squares. To assess the performance and robustness of the calibration models and the validation 
results, coefficients of determination (R²), root mean square errors (RMSE) and residual 
prediction deviation (RPD) were calculated according to Martens and Næs (1989). As the 
residuals of PLSR models can be used for assessing model quality (Wold et al. 2001), the residuals 
(= observed values - predicted values) of the model validation were analysed for normal 
distribution using Shapiro-Wilk tests and two-tailed t-tests for analysing the mean of the residuals 
(which should ideally not significantly differ from zero). PLSR calculations were realised in R 
utilising the “pls” package by Mevik and Wehrens (2007). 

There are different approaches for assessing influencing variables of PLSR models. Common are 
analyses of loading weights of the first factors used in a model as they are supposed to explain 
most of the variance occurring in the data (e.g. Rumpel et al. 2001, Forrester et al. 2015). Another 
approach is the analysis of regression coefficients as for example conducted by Viscarra Rossel et 
al. (2006), Eisele et al. 2012, Hecker et al (2012). Loading-weights explain the impact of individual 
wavelengths on specific factors and wavelength-specific regression coefficients represent the 
importance of the predictor variables for the entire model. In this thesis, another approach has 
been chosen and comprised the analysis of so-called VIP scores (variable importance in 
projection) as described by Chong et al. 2005 and implemented in R by Mevik (2007). VIP scores 
can be understood as the summed-up contribution of a variable across all model factors. They are 
calculated as weighted sum of squared correlations between the model factors and the original 
variable (e.g. Liu et al. 2014, Kawamura et al. 2017, Pinheiro et al. 2017).  
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5. Results and Discussion 

5.1 Types of Iron- and Steelworks By-Products Analysed in this Study 

The following chapter will address the typification of the collected samples, as these categories 
were used as reference for the subsequent spectral discrimination. Recent secondary products of 
the carbon steelmaking procedures of the Stahlwerk Thüringen GmbH (EAF and LF slag as well 
as mill scale) could be easily identified already in situ based on the knowledge of the local experts. 
Aside from these by-products, additional samples from recent high-alloy steelmaking procedures 
applied at other iron and steel plants that were not present at the Unterwellenborn dump site 
enriched the sample pool (stainless steel slag, EAF slag, AOD slag; see Chapter 4.2). 

Apart from the selection of recent by-products, the sampling campaigns underlying this thesis 
focussed on by-products from past iron- and steelmaking processes applied at the 
Unterwellenborn site. Historical by-products that were still present in clearly delineated 
structures, like the converter (dedusting) sludge in various basins, or granulated blast furnace slag 
at the eastern part of the “Hochhalde”, can be regarded as relatively pure. However, a large 
number of the samples was not present at the dump surface and could only be accessed via 
excavator prospectings. In these prospectings, several relatively well distinguishable layers were 
found (see Fig. 4.3 and 4.4 in Chapter 4.2), but the unambiguous assignment of these materials to 
specific types of iron- and steelworks by-products was not possible in most cases in situ. Based on 
the mineralogical and chemical analyses and subsequent expert interpretation conducted by 
FEhS, the pool of samples was differentiated into four major by-product types: a) blast furnace 
slags, b) steelworks slags, c) dusts/sludges and d) other materials (see also Mrotzek-Blöß et al. 
2016). If possible, these classes were further differentiated into subclasses within this thesis (see 
Tab. 5.1). These categories were used as the basis for the subsequent spectral-analytical approach 
for differentiation and classification of the samples. However, it must be taken into consideration 
that the samples from historical layers of the Unterwellenborn dump site that were assigned to 
these categories might contain impurities of other by-product types to a certain degree. This 
might be in particular the case for the “blast furnace slag” and “blast furnace flue dust”. 

Tab. 5.1: Typification of the 102 samples in four major by-product classes and several sub-classes (the numbers in 
brackets represent the sample count for the specific material classes, + means a high probability of mixtures). 

1 Blast furnace slag (29) 2 Steelworks slags (32) 3 Dusts/Sludges (19) 4 Others (22) 

1.1 BFS+ (23) 
(either granulated or air 
cooled BFS or mixtures) 

2.1 Thomas slag (14) 3.1 Blast furnace flue 
dust+ (2) 

4.1 Mill scale (1) 

1.2 Granulated BFS (6) 
(“slag sands”) 

2.2 EAF slag (3) 
(carbon/low-alloy steelmaking) 

3.2 Converter 
(dedusting) sludge (7) 

4.2 Mixtures with high amounts 
of sand (7) 

 2.3 EAF slag* (2) 
(medium-alloy steelmaking) 

3.3 Unspecified dusts 
and sludges (10) 4.3 Limestone+sand (1) 

 
2.4 EAF slag* (1) 
(high-alloy steelmaking)  

4.4 Unspecified other (13) 
(mixtures with sand, soil, fire-
bricks, construction rubble, etc.) 

 2.5 LF slag (3)   

 2.6 Unspecified sws (2)   

 2.7 Stainless steel slag* (5)   

 2.8 EAF foam slag* (1)   

 2.9 AOD slag* (1)   

* These materials were not present at the dump site of the Stahlwerk Thüringen GmbH and were provided by FEhS
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The category “blast furnace slag” comprised 29 samples. While six samples collected at the 
surface at the eastern part of the “Hochhalde” could be identified as GBFS (“slag sands”), the 
majority of samples represented mixtures of air-cooled blast furnaces slags, granulated blast 
furnace slags or comprised further materials that could not be clearly assigned. All BFS samples 
represent historic materials and might thus contain impurities. The samples collected at the 
“Canyon” could be clearly identified as by-products of the Thomas steelmaking procedure 
(Thomas slag, 14 samples) and were thus assigned to the steelworks slags. Each three samples of 
EAF and LF slag were recent by-products of the carbon steelmaking of the Stahlwerk Thüringen 
GmbH. Two further samples found at the Unterwellenborn dump site represented most likely 
steelworks slags that could not be clearly categorised. The additional samples constituting by-
products from high-alloy steelmaking comprised EAF slags, AOD slag and five samples of 
stainless steel slag. Two samples are EAF slags from former medium-alloy steelmaking. 

The category “dusts and sludges” encompassed seven samples of historical converter dedusting 
sludge. Two of these samples were collected in the eastern basin and five samples at the middle 
of the three basins at the northern slope of the “Hochhalde”. Two samples collected at the 
northern edge of the “Hochhalde” were supposed to contain BF flue dust. Ten further samples, 
which most likely represented not clearly specified dusts or sludges, were mainly found at the 
eastern part of the “Hochhalde”. The category “others” comprised one sample of mill scale, but 
also unspecified material mixtures, of which several samples might potentially contain 
construction rubble, soil or refractories to a certain degree. Seven samples showed high amounts 
of natural sand. One sample was identified as limestone. 

 

5.2 Mineralogical Composition of the Samples 

This chapter provides an overview of the results of the XRD analysis as provided by FEhS. Table 
5.2 summarises the mineral phases (including the formulae) present in the by-product types 
considered relatively “pure” (see Tab. 5.1). The complete list of all mineral phases determined by 
XRD analysis for the 102 samples is given in Appendix 5.1. The following aspect is crucial: A 
plurality of samples contained X-ray amorphous components, including most of the (granulated) 
blast furnace slag samples, the converter dedusting sludge and several of the unspecified material 
mixtures found at the eastern part of the “Hochhalde”. These amorphous components of the 
samples - if present - were not quantified. This needs to be considered when interpreting the 
XRD results (Tab. 5.2) as especially the granulated blast furnace slag is mainly of glas-like 
structure. A brief description of the mineralogical composition of a selection of samples collected 
at the dump site of the Stahlwerk Thüringen GmbH is also given in Denk et al. (2015). 

Carbonates 

Calcite was present in the majority of samples as minor or major mineral constituent. It was 
found to be the dominant mineral phase in the crystalline part of the granulated blast furnace slag 
(GBFS). Calcite was not present in the mill scale and the EAF slag from the stainless steel 
production. The calcium carbonate modification vaterite was present in only few samples 
representing GBFS. While calcite is usually not found in fresh slags, it is formed by reaction of 
calcium silicates, calcium oxide or calcium hydroxides with moisture and CO2 over time. This 
process is known as carbonatisation and causes the hardening of deposited by-products (see e.g. 
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Bialucha and Spanka 2014). The presence of calcite in the majority of samples collected at the 
dump site of the Stahlwerk Thüringen GmbH is thus an indicator for the relatively high age of 
these disposed by-products. Dolomite was determined in various samples, encompassing blast 
furnace slag collected at different excavator prospectings and was present in all converter 
dedusting sludge samples. 

Oxides/Hydroxides 

Brucite was present in only few samples collected at the “Sinterhang” excavator outcrop and in 
one sample collected at the outcrop at the plateau 274 as minor or spurious constituent. Goethite 
was found in only few samples, including the two samples supposed to contain blast furnace flue 
dust, in undefined material mixtures collected at the prospecting close to the “Sinterhang” and in 
samples from the eastern part of the “Hochhalde”. In contrast, hematite was present in 29 
samples and was one of the major mineral phases of the red converter sludge and the mill scale. 

Representatives of the spinel group (e.g. magnetite, jacobsite or franklinite), were present in 
several samples as minor constituents, encompassing BFS samples collected at the prospectings 
at the plateaus 274 and 312 as well as in unspecified mixtures collected in the prospectings close 
to the “Sinterhang” and at the eastern part of the “Hochhalde”. Representatives of the spinel 
group were further present in the BF flue dust, the EAF slag from carbon steelmaking in 
Unterwellenborn, in the stainless steel slag and the EAF slag samples from the high-alloy 
steelmaking. Spinels were major constituents in the converter dedusting sludge and the mill scale. 

Mayenite was present as a minor constituent in the stainless steel slag samples, the LFS and in the 
samples of the EAFS from medium-alloy steelmaking that were additionally added to the sample 
pool. Brownmillerite was found only in these two samples as minor constituent. Periclase was 
present e.g. in the LFS as minor constituent and in the stainless steel slag samples. Portlandite 
could be determined as minor component in the AODS, the samples from the stainless steel 
production and in the Thomas slag. Srebrodolskite was present in all of the collected Thomas 
slag samples as a minor mineralogical component, too. Wüstite constituted a minor phase in a 
large variety of the collected materials, including individual converter sludge and Thomas slag 
samples. Wüstite was a major component of the mill scale and the EAFS from carbon 
steelmaking. 

Phosphates 

Apatite was found to be one of the major mineral constituents of the Thomas slag samples and 
was further found in several samples collected at the eastern slope of the access ramp to the 
current slag disposal site at the Unterwellenborn dump. Besides apatite, silicocarnotite was 
another dominant mineral phase in all of the Thomas slag samples. 

Silicates 

The samples contained a variety of silicates, mainly nesosilicates (formed of insular SiO4 groups) 
and sorosilicates (formed of isolated Si2O7 groups). The latter encompassed members of the 
melilite group, which are commonly found in BF and EAF slags (e.g. Drissen 2004) and which 
were present in the BF slag, stainless steel slag, EAF and LF slag samples in this thesis as well. 
Melilites were a major constituent of several unspecified samples collected at the eastern part of 
the “Hochhalde”. Rankinite was present in the stainless steel slag and was a major phase of the 
electric arc furnace slag from the stainless steel production. 
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Tab. 5.2: Mineralogical composition of by-product classes considered relatively “pure” (x = major constituent, o = 
minor constituent, + = trace constituent, this rough semi-quantitative estimate refers exclusively to the crystalline 
part; yes = amorphous constituents present (not quantified). Light grey font indicates phases that were only observed 
in individual cases within the by-product classes. Mineralogical analyses were conducted and provided by FEhS. 

Mineral phase (formula) BFS+ GBFS TS 
EAFS 

LFS SSS AODS CDS BFFD MS 
cs ma ha haf 

Andalusite Al[6]Al[5][O|SiO4]    o           

Anhydrite Ca[SO4] +          +   

Apatite Ca5[(F,Cl,OH)|(PO4)3]     x                   

Baryte Ba[SO4]  o o                       

Bredigite Ca7Mg[SiO4]4       o/x                   

Brownmillerite Ca2(Al,Fe)2O5         o                 

Calcite Ca[CO3] +/o/x x +/o/x  o o   o  o + o  o/x o   

Calcium-fluor-silicates                 o o       

Dolomite CaMg[CO3]2 +/o/x                   o     

Ettringite  
Ca6Al2[(OH)12|(SO4)3] *(24+2)H2O 

+ o                       

Feldspars o   o                     

Fluorite CaF2                 + o       

Free lime CaO                           

Melilites  +/o/x     o/x   o x  o o o   o   

Goethite α -FeOOH +                     o   

Gypsum Ca[SO4]*2H2O +/o                   +/o     

Hematite Fe2O3 +/o                   x o x 

Hydrogarnet Ca3Al2(OH)12     o                     

Hydromagnesite  
Mg5[(OH)2|(CO3)4] *4H2O 

    o                     

Iron (met.)  +                   +   + 

Larnite β -Ca2[SiO4]      x x  x     x o          

Marcasite FeS2 o                         

Mayenite Ca12Al14O33         o     o o         

Merwinite Ca3Mg[SiO4]2 +/o/x x         o             

Micas +                       

Monticellite CaMg[SiO4] o                         

Periclase MgO         o     o o         

Portlandite Ca(OH)2     o           +  o       

Potassium sulphate K2SO4                       o   

Quartz SiO2 o/x +/o     o     +     +/o x   

Rankinite Ca3[Si2O7] x         x     o         

Silicocarnotite Ca5(PO4)2[SiO4]     x                     

Spinels* +/o    + o o  o +   + o o/x o x 

Srebrodolskite Ca2Fe2O5     +/o                     

Wollastonite Ca3[Si3O9]           x     o         

Wüstite FeO +    +/o x o +   +     o   x 

X-ray amorphous yes yes                 yes     

γ-dicalcium silicate γ-Ca2[SiO]4     o         x o x       

BFS+ = blast furnace slag (most likely not “pure”), GBFS = granulated blast furnace slag, TS = Thomas slag, EAFS = electric arc 
furnace slag (cs = carbon steelmaking, ma = medium-alloy steelmaking, ha = high-alloy steelmaking, haf = foamed EAF slag), 
LFS = ladle furnace slag, SSS = stainless steel slag, AODS = AOD slag, CDS = converter dedusting sludge, BFFD = blast 
furnace fue dust, MS = mill scale; *magnetite/franklinite/jacobsite  
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Nesosilicates comprised andalusite, which was found in four of the Thomas slag samples as 
minor constituent. Bredigite was present in the EAF slag from carbon steelmaking. Stainless steel 
slags typically contain β-dicalcium silicate (e.g. Drissen and Mudersbach 2012), which was present 
as Larnite in the stainless steel slag samples studied in this work as well. The mineral phase was 
further found in samples representing EAF slag from medium-alloy steel production. Larnite was 
a major constituent of few samples, encompassing LF slag and one sample each of Thomas slag 
and EAF slag found at the Unterwellenborn dump site.  

γ-dicalcium silicate, which is typical for slags from secondary steelmaking (e.g. Drissen 2004), was 
present in the stainless steel slag and a major phase of the AOD slag. It was further present in the 
LF slag samples. Merwinite was a major constituent in individual “slag sand” samples and present 
in EAFS foam slag from high-alloy steelmaking. 

A variety of other silicate mineral phases was determined within the sample pool. Feldspars 
(tectosilicates) were present as minor constituent in multiple samples, encompassing mainly 
historical blast furnace slag. Micas (phyllosilicates) were present as minor or trace component in 
several samples, of which most represented blast furnace slag collected at the prospecting at the 
plateau 312 and unspecified material mixtures collected close to the “Sinterhang”. Wollastonite 
(inosilicate) was found as a minor mineral phase in four of the stainless steel slag samples and as a 
major mineral phase in the EAF slag from high-alloy steelmaking. 

Even though not a typical mineral phase of iron- and steelworks by-products, quartz 
(tectosilicate) was present in the majority of samples, ranging from a minor to a major mineral 
component. This is due to the anthropogenic nature of the dump site and the large variety of 
materials deposited during the long history of iron and steel production in Unterwellenborn. For 
example, the two samples considered to be blast furnace flue dust collected at the northern edge 
of the “Hochhalde” contained high amounts of quartz. The finding of quartz is related to the 
presence of natural sand, soil, demolition waste and other materials that were disposed of at the 
dump site. Thus, many of the historical by-products found at the Unterwellenborn dump cannot 
be considered “pure” but are material mixtures. 

Sulfides and Sulphates 

Anhydrite was present in two of the converter dedusting sludge samples. Half-hydrate was found 
in a variety of historical materials most likely representing granulated BFS or mixtures of BFS and 
other materials. Gypsum was present in multiple samples from the prospecting near the 
“Sinterhang“, in the converter dedusting sludge as well as in individual BFS samples. Ettringite 
was present in few samples, encompassing e.g. two GBFS samples. Baryte was found as a minor 
constituent only in few samples as well. Marcasite was present in four samples from the 
prospecting at the plateau 312 as a minor constituent. Minor amounts of potassium sulphate were 
present in the two samples containing blast furnace flue dust and jarosite was present in one 
sample from the eastern part of the “Hochhalde”. 

Others 

Metallic iron was present in several samples as minor or trace component, amongst the converter 
dedusting sludge samples and materials collected at the eastern part of the current slag disposal 
site. Fluorite was found only in the stainless steel slags and the AOD slag as minor or trace 
mineralogical constituent.  
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5.3 Chemical Composition of the Samples 

5.3.1 Descriptive Statistics of the Chemical Composition of the Samples 

The major chemical constituents of the 102 samples were (average values, see Tab. 5.3): CaO 
(26.6 m%), SiO2 (21.1 m%), Fetotal (11.2 m%), TIC (8.6 m%), H2O (7.8 m%), Al2O3 (6.7 m%), 
MgO (5.2 m%), P2O5 (3.0 m%), CaOfree (2.3 m%) and MnO (2.0 m%). For selected samples, iron 
was further differentiated into Fe2O3, FeO and Femetallic. These parameters were 11.0 m%, 3.6 m% 
and 1.6 m%, respectively, on average. The amounts of several metallic components (Mo, Ni, V, 
Zn, Al, Cr, Fe, Mn) were combined in a sum-parameter for assessing the overall metal content of 
the samples (10.2 m% on average). Due to budgetary restrictions, not all constituents could be 
determined for all samples. Furthermore, various constituents showed values below the detection 
limit or could not be precisely determined (e.g. < 0.05 m%). This explains the variation in “N”. 
The large variety of different by-product types within the sample ensemble is reflected by the 
variability of the chemical parameters and by the wide data ranges as given in Figure 5.1. 

Tab. 5.3: Descriptive statistics of the major chemical constituents of the sample pool (average m% > 1) (chemical 
analyses by FEhS). 

Parameter N Mean SD MD Min Max Skew SE p***

Al2O3 101 6.69 4.22 6.54 0.40 19.10 0.25 0.42 < 0.01
CaO 102 26.59 12.81 25.10 0.05 57.10 0.30 1.27 < 0.01
CaOfree 66 2.30 2.77 0.95 0.21 10.00 1.46 0.34 < 0.01
Fe2O3 37 11.03 8.31 9.61 1.24 47.80 2.33 1.37 < 0.01
Femetallic 42 1.64 1.28 1.12 0.35 5.06 1.20 0.20 < 0.01
FeO 37 3.58 3.14 2.74 0.14 13.60 1.60 0.52 < 0.01
Fetotal 102 11.19 11.02 8.60 0.33 62.59 1.83 1.09 < 0.01
H2O 100 7.78 4.92 6.80 0.10 23.60 1.08 0.49 < 0.01
LOI(CO2, H2O)* 102 16.23 10.43 14.65 0.18 61.60 0.96 1.03 < 0.01
MgO 101 5.16 3.01 5.25 0.80 17.40 0.80 0.30 < 0.01
MnO 102 2.04 1.61 1.46 0.13 9.85 1.79 0.16 < 0.01
P2O5 93 2.96 4.87 0.86 0.01 16.80 1.75 0.50 < 0.01
SiO2 102 21.12 12.18 21.29 0.37 55.04 0.68 1.21 < 0.01
TIC 102 8.59 7.22 7.40 0.17 46.70 1.76 0.72 < 0.01
∑(metals)** 44 10.17 8.17 8.95 1.06 39.30 1.22 1.23 < 0.01

*Loss on ignition, **∑(Mo, Ni, V, Zn, Al, Cr, Fe, Mn), *** p-value of the Shapiro-Wilk test for normal distribution 

 

Fig. 5.1: Boxplots of the ten major chemical constituents of the sample ensemble (> 3 m% on average) (chemical 
analyses by FEhS). 
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The multitude of different iron- and steelworks by-products and the explorative character of the 
sampling campaigns led to unbalanced numbers of representative samples for each material class 
and is the reason for the skewed histograms (see Table 5.3). Except for Al2O3, CaO and SiO2, 
which are relatively close to normal distributions, the skew for the other chemical components 
differed largely from zero and Shapiro-Wilk tests indicated that none of the parameters was 
normally distributed (see p-values in Table 5.3). 

For CaO, Fetotal, SiO2 and TIC, the constituent contents ranged between almost zero and up to 
nearly 60 m%. The constituents Al2O3, H2O, MgO and P2O5 (highest for the Thomas slag) varied 
between nearly zero and up to 20 m%, depending on the material type. Fe2O3, FeO and Femetallic 
reached nearly 48 m%, 14 m% and 5 m% in individual samples, respectively. The summed metal 
constituents varied between 1.1 and 39.3 m%. 

The descriptive statistics of chemical constituents that were below one mass percent on average, 
but which reached maximum values of greater 0.5 to ca. 5 m%, are presented in Table 5.4 and in 
Figure 5.2. The p-values determined by Shapiro-Wilk tests indicate that again none of these 
parameters was normally distributed. 

Tab. 5.4: Descriptive statistics of minor chemical constituents of the sample pool (max. m% > 0.5 - ~5) (chemical 
analyses by FEhS). 

Parameter N Mean SD MD Min Max Skew SE p** 

Almetallic 43 0.78 0.53 0.64 0.13 3.13 2.85 0.08 < 0.01 
Cr2O3 83 0.81 1.27 0.11 0.01 5.24 2.07 0.14 < 0.01 

Crmetallic 43 0.13 0.14 0.07 0.01 0.55 1.60 0.02 < 0.01 

Fluorite 28 0.16 0.15 0.08 0.02 0.55 1.28 0.03 < 0.01 

K2O 102 0.84 0.98 0.52 0.00 4.32 1.30 0.10 < 0.01 

Na2O 97 0.20 0.13 0.17 0.01 0.58 0.94 0.01 < 0.01 

Pb 39 0.17 0.25 0.02 0.00 0.82 1.29 0.04 < 0.01 

Stotal 102 0.69 0.67 0.50 0.03 3.62 2.11 0.07 < 0.01 

TiO2 102 0.37 0.29 0.33 0.00 1.69 2.10 0.03 < 0.01 

V2O5 101 0.11 0.14 0.04 0.00 0.65 1.93 0.01 < 0.01 

Zn 98 0.61 1.02 0.04 0.00 4.13 1.90 0.10 < 0.01 

ZnO 77 0.96 1.36 0.15 0.00 5.14 1.58 0.16 < 0.01 
* p-value of the Shapiro-Wilk test for normal distribution 

 

Fig. 5.2: Boxplots of ten minor chemical constituents of the sample ensemble (chemical analyses by FEhS). 
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The parameters Almetallic, Cr2O3, Femetallic, K2O, Stotal, Zn, ZnO reached maximum values of three to 
around five mass percent. The TiO2 content was on average 0.4 m% but reached up to 1.7 m% in 
the stainless steel slag samples. Crmetallic, Fluorite, Na2O, Pb and V2O5 were < 1 m% in general. 

A ternary plot based on the parameters SiO2, CaO+MgO and Al2O3+Fetotal+Cr2O3 (see Fig. 5.3) 
gives a graphical overview of the chemical variety of the samples and allows the determination of 
potential material clusters. In this plot, the Thomas slag samples form an isolated cluster in the 
lower left due to relatively high CaO+MgO contents in contrast to low SiO2 as well as Al2O3, 
Fetotal and Cr2O3 concentrations. Several samples representing unspecified material mixtures can 
be found in the top of the ternary plot as a result of their high amounts of natural sand (high 
quartz contents and subsequently high SiO2 contents), while CaO+MgO contents are low and the 
Al2O3+Fetotal+Cr2O3 contents are average. 

 

Fig. 5.3: Ternary plot of the chemical composition of the samples. It is important to consider that the given 
percentages do not represent absolute but relative constituent contents (chemical analyses by FEhS). 

The EAFS and LFS samples from the carbon steel production conducted in the Stahlwerk 
Thüringen GmbH are located in the lower centre of the diagram and can be easily differentiated. 
While the SiO2 contents of both types are comparable, the EAF slag samples show much higher 
total iron contents and can thus be found further to the right in the plot. The samples from the 
stainless steel production (stainless steel slag = SSS, EAF (foam) slag and AOD slag) can be 
found in the left of the ternary plot. These materials are characterised by (absolute) CaO contents 
of 40 to 50 m%, SiO2 contents of 20 to 40 m% and low total iron contents (max. 1.5 m%). The 
left-centre of the plot is dominated by blast furnace slags, including air-cooled blast furnace slags, 
granulated blast furnace slags as well as mixtures of both types. The absolute CaO contents for 
the samples assigned to blast furnace slags ranged from ca. 13 to 35 m%, the SiO2 contents from 

Thomas slag 

EAFS (cs) 

LFS (cs) 

Sand-rich 
mixtures 

Mill scale 

SSS AODS 

EAFS (has) 

EAFSf 
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16 to 34 m% and the total iron contents from 0.3 to 20 m%. The large ranges of these chemical 
constituents reflect the heterogeneity of this by-product class. The GBFS and most of the BFS 
samples found at the eastern part of the “Hochhalde” showed distinctively lower iron contents. 
The converter sludge samples are located in the lower right area of the plot as these materials 
showed relatively low CaO (ca. 11 to 14 m%) and SiO2 contents (ca. 5 to 18 m%) but very high 
total iron contents of 20 to 38 m%. The only materials that showed even higher iron contents 
were the mill scale (basically free of CaO and SiO2, Fetotal 63 m%), which is found on the far 
bottom right in the plot, and a sample that could not be unequivocally assigned to any specific 
by-product type (also in the right of the plot). The two samples representing blast furnace flue 
dust as well as further unspecified materials (most likely dusts or sludges) are located in the centre 
of the ternary plot. The extreme sample found to the far bottom left of the ternary plot showed 
the highest MgO content of all samples (17.4 m%). It could not be clearly typified but represents 
most likely a lime carrier (“Dolokalk”). Overall, the distribution of the samples in the ternary plot 
is in agreement with the results provided by other authors (Drissen 2004, Chiang and Pan 2017). 

An overview of the chemical constituents Al2O3, CaO, Fetotal and SiO2 for the individual by-
product types is given in Table 5.5. More detailed information on the major, minor and trace 
chemical components of the samples grouped by by-product type are given in Appendix 5.2. 
Histograms, densities and normal fits for each parameter are provided in Appendix 5.3. 

Tab. 5.5: Al2O3, CaO, Fetotal and SiO2 contents (MN = mean, SD = standard deviation) of the 18 material types (the 
numbers in brackets represent the sample count for the specific material classes) (analyses by FEhS). 

 CaO SiO2 Al2O3 Fetotal 

By-product type MN SD MN SD MN SD MN SD 

BFS+ (23) 24.8 4.5 26.0 4.7 9.5 2.8 6.9 4.3 

GBFS (6) 28.2 3.9 24.4 2.6 10.6 2.2 1.7 1.2 

Thomas slag (14) 44.6 1.8 5.1 0.4 0.6 0.1 14.4 1.6 

EAF slag (cs) (3) 24.9 0.6 12.4 1.1 5.5 0.3 35.6 1.0 

EAF slag (mas) (2) 22.5 2.2 19.0 3.5 8.8 1.1 19.4 0.1 

EAF slag (has) (1) 48.0 - 40.3 - 0.7 - 0.5 - 

LF slag (3) 40.4 3.2 16.9 0.2 12.4 0.5 8.4 2.7 

Unspecified sws (2)  35.1 4.0 19.5 6.1 10.3 12.4 9.6 10.9 

Stainless steel slag (5) 46.6 4.1 26.6 2.4 4.1 0.6 1.4 0.6 

Foam slag (1) 39.7 - 34.6 - 5.5 - 0.3 - 

AOD slag (1) 57.1 - 23.6 - 1.4 - 2.5 - 

Blast furnace flue dust (2) 14.2 2.8 32.0 4.2 6.6 1.4 16.4 4.3 

Converter sludge (7) 12.8 0.9 11.4 5.1 4.5 1.7 27.3 6.8 

Unsp. dust/sludge (10) 16.8 3.8 17.3 3.6 7.0 2.1 11.0 7.4 

Mill scale (1) 0.1 - 0.4 - < 0.01 - 62.6 - 

Mixtures with sand (7) 9.7 2.9 50.2 4.9 10.7 1.0 4.6 1.5 

Limestone+sand (1) 25.3 - 40.7 - 2.1 - 5.4 - 

Unspecified other (13) 21.5 8.9 17.9 7.6 5.7 3.3 10.7 12.4 
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5.3.2 Inter-Correlations of the Chemical Constituents 

As none of the chemical parameters was normally distributed, spearman rank correlations were 
calculated in order to assess possible inter-correlations between the individual components. A 
correlation matrix encompassing 23 major and minor chemical constituents is given in Figure 5.4. 

 

Fig. 5.4: Inter-correlations (Spearman rank correlation coefficients) between 23 major and minor components. 
Crossed-out numbers represent not significant correlations at the 0.05 significance level. 

Strong positive correlations (R > 0.7) were found only in a few cases, encompassing a strong 
relationship between Fetotal and Fe2O3 (R = 0.95) as well as between Fetotal and the sum of metals 
(R = 0.76). Further strong correlations were present between the parameters Fe2O3 and the sum 
of metals (R = 0.81) and between TIC and Zn (R = 0.73). The observed strong correlations of 
Fetotal with other metal-parameters can be explained as Fetotal comprises iron contained in both 
Fe2O3 and FeO. Also, the sum parameter, which encompasses the metals Mo, Ni, V, Zn, Al, Cr, 
Fe, Mn, is obviously mainly driven by the general high total iron contents. ZnO is the oxidised 
form of Zn and thus explains the high rank correlation coefficient (R = 1). 

Negative correlations were present between multiple chemical constituents, of which the 
strongest (R = 0.7-0.9) occurred between K2O and Cr2O3 (R = -0.82), Al2O3 and P2O5 (R = -0.78) 
and CaO and K2O (R = -0.73). Further moderately strong negative correlations were observed 
for Cr2O3 and Stotal (R = -0.69), between CaO and Zn (R = -0.69) as well as between MgO and 
P2O5 (R = -0.66) (see Fig. 5.4). Moderate positive inter-correlations (R > 0.5-0.7) were observed 
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for a variety of chemical constituents comprising CaO and CaOfree; MnO and Femetallic as well as 
between MnO and Cr2O3; between SiO2 and Al2O3; between K2O and TiO2; between Fetotal and 
FeO as well as P2O5; between Fe2O3 and P2O5, ZnO, Cr2O3. ∑ (Mo, Ni, V, Zn, Al, Cr, Fe, Mn) 
showed moderate correlations with P2O5, Femetallic and ZnO. See Figure 5.4 for further details. 

The observed inter-correlations reflect the variety of the different by-product types, which are 
associated with specific production processes and utilised additives. For example, the Thomas 
slag samples were the only samples containing higher amounts of P2O5 (ca. 13-15 m%) while 
showing also distinctively higher V2O5 contents (ca. 0.3-0.5 m%) compared to the majority of the 
samples. The Thomas slag samples further showed the lowest Al2O3 contents (< 1 m%) 
compared to the remaining sample ensemble, which explains the strong negative correlations 
between P2O5 and this constituent. The steelworks slags, encompassing the EAF slag samples 
and especially the stainless steel slags showed the highest Cr2O3 contents but relatively low Stotal 

and very low K2O contents at the same time, which can be considered as an explanation for the 
observed negative correlations. 

 
5.3.3 Principal Component and Cluster Analysis of the Chemical Data 

The results of a principal component analysis performed on 15 chemical constituents are given in 
Figure 5.5a (scatter plots of the principal component scores) and in Figure 5.5b (explained 
variance by the first 10 components as well as the contributions of the variables to each PC). The 
first principal component (PC) explained ca. 40% of the variance in the data, the second 
component ca. 19% and components three and four around 12% and 8%, respectively. The 
variables mainly contributing to PC1 were V2O5, P2O5 as well as Al2O3, SiO2 and K2O. While the 
first mentioned chemical constituents were highly concentrated in the Thomas slag, Al2O3, K2O 
and SiO2 contents were low in this by-product type. Consequently, the Thomas slag samples 
form a well-separated point cluster in the left part of the scatter plot of PCs 1 and 2 (and are also 
clearly visible in the scatter plots of PC 1/3 and 1/4). Samples relatively rich in SiO2, K2O, Na2O 
and TiO2 are found in the lower part of the lower right quadrant of the PC 1/2 scatter plot, while 
samples rich in Al2O3 are located in the upper part of this sector. The main contributors to PC2 
were Zn, TIC and TiO2. Samples rich in these constituents are visible in the right upper quadrant 
of the scatter plot of PCs 1/2. These materials mainly comprise several blast furnace slag samples 
as well as the converter dedusting sludge. The variables mostly contributing to PC3 were H2O 
and Stotal. Several samples rich in Stotal were collected at the prospecting close to the “Sinterhang”. 
These samples are visible as point cluster in the scatter plot of PC2 and PC3 (upper left 
quadrant). PC4 was characterised by high loadings of the Fetotal content and Na2O. The scatter 
plot of PC1/4 thus highlights iron-rich samples in the lower left quadrant, encompassing EAF 
slag and the converter dedusting sludge collected at the dump site in Unterwellenborn. 
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Fig. 5.5a: Results of the principal component analysis of 15 chemical constituents after square root adjustment of the 
sample ensemble (N = 102). The direction of the arrows indicates positive or negative correlations of the variables 
with the principal components (PC), the length of the arrows represents the strength of the correlation of the 
variables with the PC axes and the colours visualise the contribution of each variable to the PC. 

 

Fig. 5.5b: Explained variance of the first 10 components of the principal component analysis of 15 chemical 
constituents of the sample ensemble (left) and contributions of each variable to the first four PCs (right). 



5.3 Chemical Composition of the Samples 

74 

The dendrogram given in Figure 5.6 summarises the results from the chemical analyses and 
represents the variety in by-products types. Thomas slag as well as further slags from recent steel 
production, encompassing the various electric arc furnace slags from the carbon steel, medium- 
and high-alloy steelmaking, ladle furnace slag, stainless steel and AOD slags could be well 
separated based on their chemical composition. The converter dedusting sludges and certain 
unspecified dusts and sludges form another branch in the dendrogram. The mixtures with high 
amounts of natural sand form another distinctively separated cluster. Hence, the different 
samples collected within this thesis could be well-separated and grouped to specific clusters based 
on their chemical composition. 

 

Fig. 5.6: Results of the hierarchical cluster analysis of 15 chemical constituents (Manhattan distances, Ward method, 
18 clusters, square-root-normalised constituents). Samples are labelled according to their material type: AOD = 
argon oxygen decarburization slag, BFF = blast furnace flue dust, BFS = (unspecified) blast furnace slag, BFSgraN = 
granulated blast furnace slag (“slag sand”), CM = converter (dedusting) sludge, dust/sludge = unspecified dusts or 
sludges, EAF = Electric arc furnace slag (las = low-alloy/carbon steelmaking, mas = medium-alloy steelmaking, has 
= high-alloy steelmaking), Foam = foam slag, LF = ladle furnace slag, Mns = mixture containing high amounts of 
natural sand, MS = mill scale, Oth = unspecified material (including mixtures with soil, construction rubble, 
firebricks, etc.), SSS = stainless steel slag, SWS = unspecified steel work slag, TS = Thomas slag. 
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5.4 Spectral Separability Analysis of Iron- and Steelworks By-Products

Results of principal component analyses (PCA) conducted on the VNIR/SWIR, MWIR/LWIR 
and on the combination of both spectral ranges are presented in Ch. 5.4.1-5.4.3 to assess the 
general spectral separability of the different iron- and steelworks by-products. Scatterplots of the 
first principal components (PCs) are interpreted, as they typically explain most of the variance 
occurring in the data. Additional plots of further PCs are presented in App. 5.4.1-5.4.9 and axis 
loadings of the variables are given in App. 5.4.10-5.4.12. Besides the visual interpretation of PCA 
results, the outcomes of hierarchical cluster analysis (HCA) are presented and discussed in Ch. 
5.4.5. Results of a support vector machine classification (SVMC) of a selection of major by-
product types are shown in Ch. 5.4.6. The chosen PCA, HCA and SVMC approaches can be 
understood as unsupervised procedures that do not require pre-existing knowledge about the by-
product-specific spectral properties. The results of assessing the spectral separability using SAM 
and SFF are given in App. 5.5.4. Summarising conclusions on this part are given in Ch. 5.4.7. 

 

5.4.1 Spectral Separability based on PCA of VNIR/SWIR Spectra 

Results of the principal component analyses of VNIR/SWIR reflectance, absorbance and 
continuum removed spectra are visualised in Fig. 5.7. The first two principal components of the 
reflectance data explained almost 99 % of the variance in the data (PC1: 93.6 %, PC2: 5.1 %). 
The scatter plot of these PCs (Fig. 5.7a) indicates a relatively good separability of the Thomas slag 
and the ladle furnace slag samples. Furthermore, the AOD slag sample can be clearly separated 
from the point cloud. The samples representing GBFS and stainless steel slag are found in the 
right part of the point cloud whereas the mill scale, samples representing materials associated 
with ironmaking (blast furnace slag, blast furnace flue dust, and several mixed materials), and the 
converter dedusting sludge samples are located in the left part of the point cloud as these 
materials showed negative loadings on the axis of PC2. The latter material types are characterised 
by (relatively) high iron contents and overall low reflectance (Ch. 5.5.1). However, a clear 
clustering of these material types within the point cloud of these PCs is hardly visible. The afore 
mentioned GBFS, Thomas slag, ladle furnace slag and SSS show higher reflectance intensities. 

Similar results can be observed by studying the scatter plot of the first components of the PCA 
based on absorbance spectra (Fig. 5.7b). Again, almost 99% of the variance occurring in the data 
is explained by the first two principal components (PC 1: 95.7%, PC2: 3.3%). The separability of 
the Thomas, EAF and LF slag samples is more distinct compared to the analysis based on 
reflectance data. In addition, the mill scale sample is clearly recognisable as individual point in the 
left part of the plot. Furthermore, the converter sludge samples and several samples most likely 
representing blast furnace slags with relatively high iron contents are more separated from the 
point cloud compared to the scatter plot of the principal components of the reflectance data. 
These materials can be better separated using the scatterplot of PC1 and PC3 (0.8% explained 
variance), in which they are located in the lower left quadrant (see Appendix 5.4.2). 

The results of the PCA based on the continuum removed spectra (Fig. 5.7c) indicate that more 
principal components are needed for explaining the variations in material specific absorption 
feature characteristics compared to the variability in reflectance or absorption values. Here, the 
first two components explain 64.7% (PC1) and 9.9% (PC2) of the variance in the data. In 
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contrast to the results discussed before, the samples representing the converter dedusting sludge 
are clearly differing from the major point cloud in the score plot of PC1 and PC2 (Fig. 5.7c), 
while the majority of samples are staggered along PC1. The Thomas slag samples form a point 
cluster in the upper left quadrant in the scatter plot of PC1 and PC3 (7.4% explained variance, 
Fig. 5.7d). These two PCs further allow the differentiation of the GBFS samples (lower part of 
the plot) and the slags from high-alloy steel production are positively correlated with the PC2 
axis. The remaining material types are clustered around the origin of the scatter plot and thus 
cannot be determined using these PCs of this spectra type (see also Appendix 5.4.3). 

 

 

   
Fig. 5.7: Results of the PCA analysis of VNIR/SWIR spectra. Samples are grouped based on the by-product type 

(large symbols represent calculated cluster centres, Dim = principal component (PC)). Upper row: Scatterplots of PC 
scores based on reflectance (a) and absorbance spectra (b). Middle row: Scatterplots of PC scores based on 

continuum removed spectra (c, d). Bottom row: Explained variance by the PCs (e-g). 

a) b)

c) d)

e) f) g)
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5.4.2 Spectral Separability based on PCA of MWIR/LWIR Spectra 

The first two components of the MWIR/LWIR reflectance spectra explain 85.7% of the variance 
in the data (Figure 5.8e), which is less compared to the VNIW/SWIR reflectance spectra. The 
score plot of PC1 (60.3% explained variance) and PC2 (25.4% explained variance) shows a less 
clustered point cloud compared to the score plot of PC1/2 based on the VNIR/SWIR 
reflectance data and a distinct separation of specific by-product types is difficult (Fig. 5.8a). The 
slag samples from high-alloy steelmaking are located in the lower right part of the scatter plot, 
except for the AOD slag, which can be found in the upper right quadrant together with the 
GBFS samples. Several unspecified dusts and sludges as well as unspecified other materials are 
depicted in the upper left section. The iron-rich mill scale is represented in the lower left part of 
the scatter plot, as well as the EAF slag from carbon steelmaking, blast furnace flue dust and the 
converter dedusting sludge. However, the samples assigned to the mentioned by-product types as 
well as the remaining material types are generally located near the origin of the PCA plot and thus 
cannot be spectrally discriminated utilising these PCs. The Thomas slag samples can hardly be 
separated based on scatter plots of the scores of PC1 and PC2 but form a more distinct cluster 
when utilising PC4 (3.7% explained variance, see Appendix 5.4.4). 

The score plot of the first two principal components of the MWIR/LWIR absorbance spectra 
(explained variance PC1: 58.8%, PC2 29.2%, Fig. 5.8b) shows a similar point distribution. In 
contrast, the scatter plots of PC1 and PC3 show a good separability of the EAF slag from the 
carbon steel production (left upper quadrant), the Thomas slag (right upper quadrant) and the 
samples containing high amounts of natural sand (lower right quadrant) as demonstrated in 
Appendix 5.4.5. 

The principal components of the continuum removed spectra (Fig. 5.8c and 5.8d) provide a 
better separated point cloud compared to the reflectance and absorbance spectra. PC1 (67% 
explained variance) and PC2 (18% explained variance) allow a relatively good separation of the 
EAF slag (carbon steel production), the converter dedusting sludge, blast furnace flue dust and 
the mill scale from the remaining point cloud. These four by-product types can be found in the 
upper left quadrant of the scatter plot (Fig. 5.8c), as their spectral properties were negatively 
correlated with the axis of PC2 and positively with the axis of PC1. The third principal 
component of the continuum removed spectra explains 3.8% of the variance in the data. The 
LFS, stainless steel slag and AOD slag samples are present in the upper left sector of the scatter 
plot of PC2 and PC3 while the Thomas slag samples are located mainly in the lower left sector 
(Fig. 5.8d). The utilisation of PC1 and PC4 (2.1% explained variance) allows the distinct 
separation of the EAF slag samples from medium alloy-steelmaking and the EAF slag samples 
from carbon steelmaking are more distinctly clustered than before (see Appendix 5.4.6). 
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Fig. 5.8: Results of the PCA analysis of MWIR/LWIR spectra. Samples are grouped based on the by-product type 
(large symbols represent calculated cluster centres, Dim = principal component (PC)). Upper row: Scatterplots of PC 

scores based on reflectance (a) and absorbance spectra (b). Middle row: Scatterplots of PC scores based on 
continuum removed spectra (c, d). Bottom row: Explained variance by the PCs (e-g). 

   

a) b)

c) d)

e) f) g)
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5.4.3 Spectral Separability based on PCA of VNIR-LWIR Spectra 

The first two components of the VNIR-LWIR reflectance data explain ca. 92% of the variance of 
the data (Fig. 5.9e), which is less compared to the PCA of the VNIR/SWIR (ca. 99%) data but 
around 7% more than for the MWIR/LWIR data. The explained variance of the PCs based on 
absorbance spectra is very similar to the PCA outcomes based on reflectance data. The scatter 
plots of the first two PCs of the reflectance, and more distinct in case of the absorbance data, 
show that the slag samples related to high-alloy steelmaking (AODS, EAFS (foam), SSS) and the 

 

 

   

Fig. 5.9: Results of the PCA analysis MWIR/LWIR spectra. Samples are grouped based on the by-product type (large 
symbols represent calculated cluster centres, Dim = principal component (PC)). Upper row: Scatterplots of PC 
scores based on reflectance (a) and absorbance spectra (b). Middle row: Scatterplots of PC scores based on 
continuum removed spectra (c, d). Bottom row: Explained variance by the PCs (e-g). 

a) b)

c) d)

e) f) g)
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sand-rich mixtures can be found mostly in the lower right part, granulated blast furnace slag in 
the upper right part and the mill scale, EAF slag, unspecified dusts and sludges and blast furnace 
slag are located on the right (Fig. 5.9a and 5.9b). Here, the spectral properties of the iron-rich 
material types were seemingly negatively correlated to the axis of PC2. The Thomas slag, LF slag 
and stainless steel slag can be more clearly differentiated from the point cloud by utilising the 
third principal component of the reflectance or absorbance data (see scatter plots of PC1 and 
PC3 as well as PC2 and PC 3 in Appendix 5.4.7). The EAF slag samples from the medium-alloy 
as well as from carbon steel production can be distinctively separated from the point cloud based 
on PC1 and PC4 (0.9% explained variance) of the absorbance spectra and form well-separated 
clusters in the upper left quadrant of the corresponding scatter plots (see App. 5.4.8). 

The first two components of the continuum removed VNIR-LWIR data explain 57.3% and 
15.3% of the variance in the spectra, respectively. While most of the data points are clumped 
along the axis of PC1, the mill scale, converter sludge and the EAF slag from carbon steelmaking 
can be more clearly identified in the lower and upper right quadrants of the scatter plot (Fig. 
5.9c), meaning that the spectra properties of these iron-rich materials are positively correlated 
with the axis of PC1. The scatter plot of PC2 and PC3 (7.5% variance) allows a better separation 
of by-products from the stainless steel production (found in lower left quadrant), Thomas slag 
(lower right quadrant) and granulated blast furnace slags (upper right quadrant). Several material 
mixtures, the LF slag samples as well as the blast furnace slag are found close to the centre of this 
PCA plot (Fig. 5.9d) and thus cannot be spectrally discriminated using these two PCs. 

 

5.4.4 PCA Results and Major Chemical Constituents 

Based on the scatter plots of the PC1 and PC2 of the VNIR/SWIR absorbance spectra, which 
showed an overall good separability of several major by-product types, the major chemical 
constituents Al2O3, CaO, Fetotal and SiO2 were assigned as colour gradients to the point cloud 
instead of the by-product classes (Figure 5.10). The scatter plots show that the point distribution 
clearly corresponds to the chemical composition of the samples. The Thomas slag samples form 
a cluster in the VNIR/SWIR absorbance spectra in the upper right quadrant while the samples 
from secondary and stainless steelmaking (LF slag, stainless steel slag, AOD and EAF-foam slag) 
are found in the lower right quadrant (Fig. 5.10a). These material groups are characterised by the 
highest CaO contents in the sample pool. Samples with lower CaO contents are clustered along 
the axis of PC2 (Fig. 5.10a). The low SiO2 content of the Thomas slag samples is clearly 
recognisable, while the majority of samples showing higher SiO2 contents can be found relatively 
close to the positive part of the vertical axis indicating their strong correlation with PC1 (Fig. 
5.10b). As Al2O3 and SiO2 are moderately positively correlated (see Chapter 5.3.2), the colour 
pattern in the point cloud for Al2O3 is similar to SiO2, with clustered Thomas slag samples 
showing low Al2O3 contents in the upper right quadrant while samples with intermediate Al2O3 
contents are found in the left part of the scatter plot. Samples with moderate to high Al2O3 
contents are found in the right part of the point cloud (Fig. 5.10c). 

The mill scale represents the sample with the highest Fetotal content and can be clearly identified 
as individual point in the left of the scatter plot in Figure 5.10d. The three EAF slag samples 
from the carbon steel fabrication in Unterwellenborn show high amounts of total iron as well and 
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form a cluster in the lower left quadrant. Samples with intermediate to high iron contents, 
encompassing blast furnace flue dust, converter dedusting sludge, several unspecified sludges and 
dusts as well as individual blast furnace slag samples are mainly presented in the left part of the 
point cloud. In contrast, by-products with low or very low total iron contents are located in the 
lower part of the upper right as well as in the lower right quadrant (Fig. 5.10d). The samples 
found there mainly represent by-product types from the stainless steel production (AODS, EAF-
foam slag and stainless steel slag), LF slag as well as the granulated blast furnace slag. 

 

Fig. 5.10: Results of the PCA analysis of VNIR/SWIR absorbance spectra (PC1 and PC2) colour-coded based on the 
Al2O3, CaO, Fetotal and SiO2 contents of the samples. 

 

5.4.5 Spectral Separability Analysis based on Hierarchical Cluster Analysis 

The outcome of the hierarchical clustering of the spectral data supports the PCA results. Again, 
in agreement with the findings beforehand, the separation of individual by-product types was 
variable depending on the wavelength range and spectrum type used as input for the clustering 

a) b)

c) d)
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approach (see Appendices 5.5.1-5.5.3). HCA based on preprocessed spectra provided a better 
separation of the different material types compared to the results obtained using reflectance data. 
A solid overall discrimination for most of the by-product types was achieved based on the 
VNIR/SWIR continuum removed spectra (Fig. 5.11). Here, most of the Thomas slag samples 
and all of the samples from high-alloy steel production could be grouped in separate sub-trees. 
The latter was further differentiated into sub-trees containing each the AOD, EAF-foam, and 
EAF slag while the five stainless steel slag samples are located in another sub-tree. The six 
samples of granulated blast furnace slag can be found in one sub-tree together with two further 
samples assigned to the blast furnace slag class. The EAF slag from carbon steel production and 
the converter dedusting sludge samples, which can be further differentiated into sludge from two 
different basins at the dump site, can be found in sub-trees in the right part of the dendrogram. 
The dendrogram of the VNIR-LWIR continuum removed spectra provided a slightly more 
accurate differentiation of these iron-rich material types and also the three LF slag samples were 
grouped at one common subtree utilising the combined wavelength ranges. The dendrograms 
based on HCA of the MWIR/LWIR absorbance data indicated a good separability of the 
mixtures containing natural sand and provided promising results also in terms of the separability 
of the EAF slag from medium-alloy steel production (see Appendices 5.5.1-5.5.3). 

 
Fig. 5.11: Dendrogram obtained from hierarchical cluster analysis (Manhattan distance, ward.D2 method, 18 classes) 
of VNIR/SWIR continuum removed spectra. The samples are labelled according to the by-product type. AOD = 
argon oxygen decarburization slag, BFS = (unspecified) blast furnace slag, BFSgraN = granulated blast furnace slag 
(“slag sand”), CM = converter dedusting sludge, EAF = Electric arc furnace slag (las = carbon steelmaking, mas = 
medium-alloy steelmaking, has = high-alloy steelmaking), Foam = EAF foam slag, LF = ladle furnace slag, Msa = 
mixture containing high amounts of natural sand, MS = mill scale, Oth = unspecified material, Sludge/dust = 
unspecified sludges or dusts, SSS = stainless steel slag, SWS = unspecified steel work slag, TS = Thomas slag. 

 

5.4.6 Spectral Separability Analysis based on Support Vector Machine Classification 

In addition to the presented results of principal component and hierarchical cluster analysis, a 
support vector machine classification (SVMC) was conducted based on seven by-product types 
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(blast furnace slag, granulated blast furnace slag, converter dedusting sludge, EAF and LF slag as 
well as stainless steel and Thomas slag) to analyse the capabilities for spectral classification of 
major iron- and steelworks by-product types. Unspecified material mixtures and by-product types 
for which less than three samples were available were excluded from this approach. 

The results of the support vector machine classification are provided in Table 5.6. Solid results 
were attained for spectrally discriminating the selected iron- and steelworks by-products based on 
the VNIR/SWIR data. The best calibration results were achieved based on the continuum 
removed spectra (overall accuracy 89%), followed by absorbance (overall accuracy 79%) and 
reflectance spectra (73%). In contrast, the validation results were comparable for all spectra types 
(75-76% overall accuracy). 

The calibration results for the classification based on the MWIR/LWIR spectra are slightly 
superior compared the VNIR/SWIR data. Again, the best calibration results were obtained 
utilising the continuum removed spectra (89% overall accuracy). The overall accuracies for the 
classification based on absorbance and reflectance data were identical (79%). The validation 
results for the SVM classification were best for the continuum removed spectra with an overall 
accuracy of 84%, which is better than the validation result based on the VNIR/SWIR continuum 
removed spectra. In contrast, the validation results for the classification of the MWIR/LWIR 
reflectance and absorbance spectra was slightly worse compared to the corresponding 
VNIR/SWIR spectra (76% and 72% respectively). 

Tab. 5.6: SVM classification results for separability analysis of seven major by-product types. 

Spectral range Spectrum type Accuracy(cal)* Accuracy(val)* NSV** Cost Gamma 

VNIR/SWIR 

Reflectance 0.73 0.76 19 1 0.00047 

Absorbance 0.79 0.76 19 1 0.00047 

CR 0.89 0.75 19 1 0.00047 

MWIR/LWIR 

Reflectance 0.79 0.72 19 1 0.00173 

Absorbance 0.79 0.76 18 1 0.00173 

CR 0.89 0.84 19 1 0.001730 

VNIR-LWIR 

Reflectance 0.79 0.80 19 1 0.000391 

Absorbance 0.84 0.88 19 1 000391 

CR 0.89 0.88 19 1 0.000391 

* By-product types and numbers of cal/val samples: Blast furnace slag (3/3), Converter sludge (3/4) EAF slag (low 
alloy steel production) (2/1), Ladle furnace slag (2/1), Thomas slag (3/11), GBFS (3/3), Stainless steel slag (3/2) 
** Number of support vectors 

Overall, the best classification results were achieved using the combination of the VNIR/SWIR 
and MWIR/LWIR data. The accuracies for the calibration based on the VNIR-LWIR reflectance, 
absorbance and continuum removed spectra were 79%, 84% and 89% and the corresponding 
results for the validation were 80%, 88% and 88%, respectively. 

The described results indicate a high potential of VNIR/SWIR and MWIR/LWIR data for 
spectrally discriminating and classifying several types of iron- and steelworks by-products. 
However, the high number of support vectors in relation to the few training samples indicated a 
risk of overfitting of the SVM. Thus, no further tuning of the classifier was conducted. Hence, 
while the general spectral separability of the different by-product types has been successfully 
demonstrated, the transferability of the observed classification accuracies based on this selection 
of seven by-product types on larger datasets needs to be analysed in future studies. 
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5.4.7 Conclusions on the Spectral Separability Analyses 

Based on visual interpretation of the PCA scatter plots, a good spectral separability was found for 
the Thomas slag, the EAF slag (from carbon steel, medium- and high-alloy steel production), the 
stainless steel slag, AODS, the GBFS, the converter dedusting sludge, the mil scale and sand-rich 
mixtures. The clear separation of the blast furnace slags was difficult, which is related to the more 
heterogeneous composition of this class compared to the before mentioned by-product types. 

Following the PCA outcome, the spectral separability of most of the by-product types was more 
distinct based on the VNIR/SWIR spectral range compared to the MWIR/LWIR range. This 
indicates that most of the analysed by-products show an overall higher spectral dissimilarity in the 
visible light, near and shortwave infrared region compared to the mid- and longwave infrared. 
However, especially the EAF slag from medium-alloy steelmaking and the sand-rich mixtures 
could be more distinctively differentiated using the MWIR/LWIR range. The HCA of the 
spectral data provided sample clusters in high agreement with the by-product types derived from 
the chemical and mineralogical analyses. Again, the majority of by-products could be separated 
well based on the VNIR/SWIR data, except for the samples containing high amounts of sand 
and the EAF slag from medium-alloy steel production, which could be more clearly differentiated 
based on the MWIR/SWIR range. The results further imply that the spectral separability of the 
materials depends on the utilised spectral range and the spectrum type (reflectance, absorbance or 
continuum removed data). Thus, certain material types tend to be better separated from each 
other based on their reflectance or absorbance intensities while other by-product types show a 
better separability based on their specific absorption feature characteristics, which are highlighted 
by applying continuum removal normalisation. The continuum removed and absorbance spectra 
provided likewise a better separability of the by-product types than the reflectance spectra for the 
PCA and HCA. This observation was further confirmed by the results of the SVMC, which 
demonstrated the potential for spectrally classifying typical iron- and steelworks by-products 
based on supervised machine learning algorithms. Again, best classification results were achieved 
based on the continuum removed and absorbance spectra. Results obtained using Spectral 
Feature Fitting (SFF) and Spectral Angle Mapper (SAM) proved that reference spectra can be 
used for the successful detection of major by-product types (see Appendix 5.4). In agreement 
with the findings mentioned afore, differing results were obtained depending on the wavelength 
ranges with better results for the VNIR/SWIR spectra. Furthermore, varying results were 
achieved depending on the algorithm utilised. 

When comparing the outcomes of the used approaches (PCA, HCA, SMVC; SFF and SAM, see 
App. 5.4) utilising the complete VNIR/SWIR and MWIR/LWIR spectra, one has to consider 
that the MWIR/LWIR covers a much wider wavelength range. Subsequently, the MWIR/LWIR 
by-product spectra contain a higher number of spectral characteristics compared to the 
VNIR/SWIR. These comprise features potentially shared by various by-product types while 
others might be unique for specific materials. Utilising all this information without defining 
“diagnostic” features or wavelength ranges might hamper the outcome. This is in agreement with 
the study conducted by Denk et al. (2015), who already demonstrated in a case study based on in 
situ spectral data that the differentiation and detection of various iron- and steelworks by-
products based on SFF and SAM provided varying results for different by-product types and that 
the successful detection and differentiation of large pools of different by-product types requires 
the material-specific optimisation of detection procedures. Thus, the results do not mean that the 
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MWIR/LWIR data contains less relevant information for material discrimination, but highlights 
that a “closer look” at such spectra is required. This is realised in the following chapter. 

The tanglegram in Fig. 5.12 summarises the observations described beforehand and links results 
from hierarchical cluster analyses based on chemical data and VNIR-LWIR continuum removed 
spectra. Groups of samples found in common sub-trees in both dendrograms are linked with 
parallel lines and well-matching clusters are obvious for the Thomas slag, EAF slag from carbon 
steel and medium-alloy steelmaking, the stainless steel slag, the LF slag, the granulated blast 
furnace slag and mixtures containing high amounts of natural sand. 

 
Fig. 5.12: Tanglegram of results from hierarchical cluster analysis (Manhattan dist., ward.D2 method, 18 classes) of 
VNIR-LWIR continuum removed spectra (right dendrogram) and chemical constituents after square root adjustment 
(left dendrogram). The samples are labelled according to the by-product type, whereas no-individual sample labels 
were assigned in order to highlight only the matching of by-product classes. Samples from identical material types are 
linked in both trees. Parallel lines connecting the samples on both sides indicate well matching clusters. 

AOD = argon oxygen decarburization slag, BFS = blast furnace slag, BFSgr = granulated blast furnace slag, BFF = blast furnace flue dust, CM = 
converter dedusting sludge, EAF = Electric arc furnace slag (las/mas/has = carbon/medium-/high-alloy steelmaking), Foam = EAF foam slag, 
LF = ladle furnace slag, Msa = mixture containing high amounts of natural sand, MS = mill scale, Oth = unspecified material, 
dust/sludge = unspecified dusts or sludges, SSS = stainless steel slag, SWS = unspecified steel work slag, TS = Thomas slag. 
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5.5 Spectral Characteristics of Iron- and Steelworks By-products 

5.5.1 Spectral Library (VNIR-LWIR) of Major By-Product Types 

The following chapter will present the spectral characteristics of a selection of major iron- and 
steelworks by-products found within the sample ensemble of this thesis. Here, the spectra of 
representative samples of each by-product class considered relatively “pure” (see Chapter 5.1) are 
shown. The descriptions and plots cover the visible light, near and shortwave infrared 
(VNIR/SWIR) as well as the mid- and long-wave infrared (MWIR/LWIR). The spectra were 
acquired from material of < 90 µm grain size, which was also used for the chemical and 
mineralogical analyses. The results of these analyses and photographs (dish diameter = 8.8 cm) of 
material in different grain sizes are supplementary provided for the representative samples 
following the example of other spectral libraries and compilations (e.g. Chukanov 2014, 
Chukanov and Chervonnyi 2016 and Kokaly et al. 2017). The chemical composition of these 
samples is supplementary shown as provided by FEhS. The results of the mineralogical analyses 
as conducted and provided by FEhS for the corresponding samples is given in Appendix. 5.1.  

The individual by-product descriptions will focus on the reflectance intensities and list the 
observed spectral features. As many materials showed individual or multiple common spectral 
characteristics, a summing-up interpretation and discussion of the observed features is given in 
Chapter 5.5.2.2 to avoid redundancies in the descriptions. The spectra and supplementary 
photographs for all 102 samples are given in Appendix 5.6. 

The following aspects must be considered: 

a) The presented spectra are representative of the by-product types within the sample pool 
analysed in this thesis. However, by-products collected at other dump sites or iron and steel 
plants might be of varying chemical and mineralogical composition, even if they are assigned to 
the same by-product type. This might result in differing spectral properties. 

b) Continuum removal (see Chapter 4.7.2) was applied on the whole VNIR/SWIR as well as on 
the MWIR/LWIR range for highlighting absorption features that might be hardly visible 
otherwise. As apparent in several plots, not every individual reflectance minimum could be 
successfully normalised using the so applied algorithm. 

c) The presented MWIR/LWIR spectra were cut at wavelengths > 12000 nm, as the overall low 
reflectance, sensor noise and only few available data points hampered the spectral interpretation 
in this range. Features distinctively visible in the longer wavelengths not visible in the plots are 
discussed in Chapter 5.5.2.2. In some cases, the VNIR/SWIR spectra showed noise-induced 
artefacts in the wavelengths > 2400 nm, which should not be confused with absorption features. 

d) Focus is put on highlighting present absorption features (reflectance minima). However, 
especially in the wavelength range > 10000 nm, features related to e.g. silicates might be visible as 
reflectance maxima (see Chapter 2.2.2). Due to the general low reflectance observed in the range 
> 9000 nm and little contrast of the present spectral features, only prominent reflectance maxima 
were highlighted and will be addressed in Chapter 5.5.2.2. A list of all prominent reflectance 
maxima in the longwave infrared present in the reference samples is provided in Appendix 5.7.
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5.5.1.1 Blast Furnace Slag (historic material, most likely not “pure”) 

The VNIR/SWIR spectrum of the historic blast furnace slag sample (14-1) collected at the 
excavator prospecting at the “Plateau 312” is characterised by low reflectance of around 10%, 
which decreases towards the blue part of the visible light (Figure 5.13, left plot). The continuum 
removed spectrum exhibits a strong absorption near 400 nm and less distinct features at 1927 
and 2225 nm. Minor absorption features are present at 873, 1027, 1294 and 1763 nm. 

In the MWIR/LWIR (Fig. 5.13, right), the blast furnace slag also shows reflectance intensities of 
~10%, which decrease in the longer wavelengths (> 9000 nm). In contrast to the VNIR/SWIR 
spectrum, more and stronger pronounced absorption features are present. Distinct features are 
located at 2872, 6097 and 6809 nm. Weaker features are present at 3981, 4808, 5566, 11368 and 
11767 nm. Only faintly visible features are located at e.g. 3413, 9003 and 10995 nm. 

 

Fig. 5.13: Reflectance and continuum removed spectra of a historic blast furnace slag sample (14-1, < 90 µm) in the 
VNIR/SWIR (left) and MWIR/LWIR (right). The numbers presented on top of the plots highlight the wavelength 

position of reflectance minima or maxima. 

Tab. 5.7: Chemical constituents (> 1 m%) and photographs of a blast furnace slag sample (14-1) (analyses by FEhS). 

Constituent m% Sample photo (< 10 mm material) Sample photo (< 90 µm material) 

SiO2 21.8 
CaO 20.4 
TIC 14.5 
Fetotal 8.4 
Al2O3 8.1 
H2O 7.1 
MgO 5.5 
Zn 2.7 

FeO 2.6 
K2O 2.4 
MnO 1.4 

CaOfree 1.3 
P2O5 1.1 
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5.5.1.2 Granulated Blast Furnace Slag (“Slag Sand”, historic by-product) 

The sample representing granulated blast furnace slag, also known as “slag sand”, shows high 
reflectance intensities of around 60% in the VNIR/SWIR, but a strong drop of the reflectance 
values towards the shorter wavelengths in the visible part of the spectrum (Figure 5.14, left plot). 
Distinct absorption features are present at 396, 1434, 1928 and 2243 nm. Minor spectral features 
are visible at 519, 633 and 740 nm as well as at 1161, 1781 and 2476 nm. 

The MWIR/LWIR spectrum (Fig. 5.14, right plot) shows relatively broad features at 2922, 6097, 
and 6809 nm, while sharp features are present at 3981 and 5566 nm. Weakly pronounced features 
are located at e.g. 3345, 3475 and 4674 nm. The range > 9000 nm appears nearly flat and shows 
only faintly pronounced features. 

 

Fig. 5.14: Reflectance and continuum removed spectra of a historic granulated blast furnace slag sample (W2-21b, 
< 90 µm) in the VNIR/SWIR (left) and MWIR/LWIR (right). The numbers presented on top of the plots highlight 

the wavelength position of reflectance minima or maxima. 

Tab. 5.8: Chemical constituents (> 1 m%) and photographs of a granulated blast furnace slag sample (W2-21b) 
(analyses by FEhS). 

Constituent m% Sample photo (ca. < 10 mm material) Sample photo (< 90 µm material) 

CaO 28.60 

SiO2 28.21 

Al2O3 14.00 

H2O 11.00 

MgO 9.64 

TIC 6.30 

Stotal 1.04 
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5.5.1.3 Thomas Slag 

The presented Thomas slag spectrum was recorded from a sample collected in the “Canyon” at 
the Unterwellenborn dump site, where all Thomas slag samples were found. The VNIR/SWIR 
spectrum shows a strong increase in reflectance from below 5% in the “blue wavelengths” to ca. 
20% in the “red”, which further increases in the near (30%) and shortwave infrared (> 40%; 
Figure 5.15, left plot). Besides a strong absorption at 392 nm, further distinct features are visible 
at 711, 1152, 1416, 1767, 1946 and 2247 nm. Another weak feature can be found at 2397 nm. 

The MWIR/LWIR spectrum exhibits common characteristics with the blast furnace slag with 
major features at 2948, 3980, 5566, 6097, 6809 and 8768 nm. Lesser pronounced absorptions are 
present at 3413, 3502 and 3844 nm. The three minor minima at 4707, 4860 and 5024 nm were 
only found in the Thomas slag samples. Furthermore, a distinct reflectance peak near 10200 nm 
and further minor features at e.g. 9251, 11368 and 11767 nm were observed (Fig. 5.15, left). 

 
Fig. 5.15: Reflectance and continuum removed spectra of a Thomas slag sample (29-th, < 90 µm) in the 

VNIR/SWIR (left) and MWIR/LWIR (right). The numbers presented on top of the plots highlight the wavelength 
position of reflectance minima or maxima. 

Tab. 5.9: Chemical constituents (> 1 m%) and photographs of a Thomas slag sample (29-th) (analyses by FEhS). 

Constituent m% Sample photo (< 10 mm material) Sample photo (< 90 µm material) 

CaO 41 

Fetotal 16.7 

P2O5 14 

TIC 5.4 

H2O 4.98 

SiO2 4.67 

MnO 3.26 

CaOfree 2.3 

MgO 1.98 

Cr2O3 1.14 
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5.5.1.4 Electric Arc Furnace Slag (carbon steel production) 

The VNIR/SWIR spectrum of an electric arc furnace slag (EAFS) sample from the recent carbon 
steel production of the Stahlwerk Thüringen GmbH is characterised by low reflectance intensities 
(< 10%; Figure 5.16, left plot). However, the continuum removed spectrum indicates the 
presence of minor absorption features at 394, 493, 1774 and 1917 nm. A distinct absorption is 
present at 2217 nm. 

In the mid- and longwave infrared (Fig. 5.16, right plot), the sample shows reflectance intensities 
of < 10 % as well. The most dominant absorption feature is present at 6809 nm and another 
distinct feature is located at 2950 nm. Weakly pronounced spectral features are present at 5590 
and 6125 nm. A multitude of minor minima and maxima can be found in the range > 8000 nm 
with maxima near 9600 and 11200 nm as well as minima at 9447, 10399, 11368 and 11767 nm. 

 

Fig. 5.16: Reflectance and continuum removed spectra of an EAFS sample from carbon steelmaking (sample EAFS-
2, < 90 µm) in the VNIR/SWIR (left) and MWIR/LWIR (right). The numbers presented on top of the plots 

highlight the wavelength position of reflectance minima or maxima. 

Tab. 5.10: Chemical constituents (> 1 m%) and photos of an EAFS sample from carbon steelmaking (EAFS-2) 
(analyses by FEhS). 

Constituent m% Sample photo Sample photo (< 90 µm material) 

Fe 36.93 

CaO 24.1 

SiO2 10.95 

MnO 5.89 

Al2O3 5.22 

MgO 4.93 

TIC 3.92 

MnO 3.59 

H2O 3.17 

Femetallic 1.73 

Cr2O3 1.22 
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5.5.1.5 Electric Arc Furnace Slag (medium-alloy steelmaking) 

The EAF slag from medium-alloy steelmaking (mas) is similar to the EAF slag from carbon 
steelmaking (cs) in terms of the reflectance intensities (~10%) (Fig. 5.17, left plot). In contrast to 
the weakly pronounced absorptions in the visible light of the EAF slag (cs), two clearly 
recognisable features at 367 and 500 nm are present in this material type (and one barely visible 
feature at 630 nm). The features at 1401, 1929 and 2226 nm are similar to the EAFS (cs). 

The slightly higher reflectance in the MWIR/LWIR for this sample compared to the VNIR-
SWIR range is presumably caused by the different measurement procedures of the two 
instruments. In contrast to the EAF slag from carbon steelmaking, this sample shows more 
diversified spectral characteristics in the MWIR/LWIR. Distinct features can be observed at 2897 
and 6741 nm while less deep but sharply shaped absorptions are present at 3981 and 5566 nm. 
Further features are located at 5005, 5344, 5566 and 6125 nm. A distinct reflectance maximum at 
9251 nm is followed by a considerable absorption at 11368 nm (Fig. 5.17, right plot). 

 
Fig. 5.17: Reflectance and continuum removed spectra of an EAFS sample from medium-alloy steelmaking (sample 

K1a, < 90 µm) in the VNIR/SWIR (left) and MWIR/LWIR (right). The numbers presented on top of the plots 
highlight the wavelength position of reflectance minima or maxima. 

Tab. 5.11: Chemical constituents (> 1 m%) and photos of an EAFS sample from medium alloy steelmaking (K1a) 
(analyses by FEhS). 

Constituent m% Sample photo (2-5 mm material) Sample photo (< 90 µm material) 

CaO 24.0 

Fe 19.3 

SiO2 16.5 

MgO 9.54 

Al2O3 9.54 

MgO 4.93 

Cr2O3 2.36 
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5.5.1.6 Electric Arc Furnace Slag (high-alloy steelmaking) 

While the EAFS samples from the carbon and medium-alloy steelmaking show low reflectance 
intensities of ca. 10 %, the powdered EAFS sample from high-alloy steelmaking is characterised 
by reflectance values of ~25% in the visible light to nearly 50% in the SWIR (Fig. 5.18, left plot). 
The absorption characteristics are distinctively different to the two other EAF slag types analysed 
in this study and features are present at 449, 598, 706, 846, 1043, 1526, 1977 and 2226 nm. 

The MWIR/LWIR spectrum exhibits strongly pronounced features at 2935 and 6809 nm. Minor 
minima can be observed - amongst others - at 3992, 5260, 5733, 6182, 10906 and 11767 nm. 
Between ca. 5300 and 6000 nm, numerous weakly prominent features were present, which might 
be related to noise to a certain degree. In contrast to the nearly flat spectra in the range 
> 8000 nm for many other material types, this sample shows distinct reflectance maxima near 
8800, 10200 and 10400 nm (Fig. 5.18, right plot). 

 
Fig. 5.18: Reflectance and continuum removed spectra of an EAFS sample from high-alloy steelmaking (T-EAFSn, 
< 90 µm) in the VNIR/SWIR (left) and MWIR/LWIR (right). The numbers presented on top of the plots highlight 

the wavelength position of reflectance minima or maxima. 

Tab. 5.12: Chemical constituents (> 1 m%) and photos of an EAFS sample from high-alloy steelmaking (T-EAFSn) 
(analyses by FEhS). 

Constituent m% Sample photo Sample photo (< 90 µm material) 

CaO 48.0 

SiO2 40.3 

Cr2O3 3.35 

MnO 2.68 

MgO 2.35 
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5.5.1.7 Foamed Electric Arc Furnace Slag (high-alloy steelmaking) 

The powdered EAF foam slag from high-alloy steelmaking shows a reflectance of ~30% in the 
VIS and up to ~55% in the shortwave infrared (Fig. 5.19, left plot). Similar to the stainless steel 
slag (see 5.5.1.8), distinct absorption features are present at 432, 589, 698, 1007, 1957 and 
2223 nm while weak absorptions can be located at 1412, 1680 and 2377 nm. 

In the mid- and longwave infrared spectrum (Fig. 5.19, right), the foam slag shows the highest 
reflectance of the discussed samples in this chapter (50-60 % in the range 2000-4000 nm). Major 
absorption features are present at 2929, 5387, 6043 and 7023 nm. Minor features can be found at 
3981, 5179and 5566 nm. The wavelength range between 8000-11000 nm is characterised by the 
presence of multiple distinct minima (8943, 9514, 10011, 10399, 10906 and 11466 nm) and 
corresponding maxima (9251, 9762, 10162 and 10646 nm). These characteristics could not be 
observed in the same pronounced way for any other material in this thesis´ sample ensemble. 

 

Fig. 5.19: Reflectance and continuum removed spectra of an EAF foam slag sample (T-EAFSf, < 90 µm) in the 
VNIR/SWIR (left) and MWIR/LWIR (right). The numbers presented on top of the plots highlight the wavelength 

position of reflectance minima or maxima. 

Tab. 5.13: Chemical constituents (> 1 m%) and photographs of an EAF foam slag sample (T-EAFSf) (analyses by 
FEhS). 

Constituent m% Sample photo (< 10 mm material) Sample photo (< 90 µm material) 

CaO 39.7 

SiO2 34.59 

MgO 9.06 

Al2O3 5.51 

Cr2O3 3.74 

MnO 3.43 

TiO2 1.69 
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5.5.1.8 Ladle Furnace Slag 

The ladle furnace slag sample collected at the current slag disposal site of the Stahlwerk 
Thüringen GmbH shows a reflectance of ca. 20 % in the VNIR/SWIR (Figure 5.20, left plot). 
Minor absorptions in the spectrum are visible at 375, 524, 636, 1403, 1684, 1770 and 2461 nm, 
while stronger absorption features are present at 1934 and 2229 nm. 

The reflectance intensities in the MWIR/LWIR continue at a level of ca. 15% and continuously 
decrease until < 5% in wavelength range >9000 nm (Fig. 5.20, right plot). Dominant features are 
found at 2872 and 6741 nm and less strong but sharply pronounced characteristics are present at 
3981, 5566, 6125 nm. Minor maxima and minima can be determined in the longer wavelength 
infrared range, at which the feature at 11368 nm is the strongest pronounced absorption. 

 

Fig. 5.20: Reflectance and continuum removed spectra of a ladle furnace slag sample (LFS-3, < 90 µm) in the 
VNIR/SWIR (left) and MWIR/LWIR (right). The numbers presented on top of the plots highlight the wavelength 

position of reflectance minima or maxima. 

Tab. 5.14: Chemical constituents (> 1 m%) and photographs of a ladle furnace slag sample (LFS-3) (analyses by 
FEhS). 

Constituent m% Sample photo (< 10 mm material) Sample photo (< 90 µm material) 

CaO 36.8 

 

SiO2 16.65 

Al2O3 11.7 

Fe 11.69 

MgO 6.5 

H2O 5.03 

MnO 2.66 

TIC 2.6 

Cr2O3 1.04 
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5.5.1.9 Stainless Steel Slag 

The stainless steel slag shows an average reflectance of ~35% in the VNIR/SWIR range (Figure 
5.21, left plot). Multiple distinct features are present in the visible light at 379, 418, 590 and 
693 nm. Weakly pronounced features are located at 873 and 997 nm. Further, only faintly visible, 
features are present at 1130 and 1350 nm. A sharp absorption is seen at 1411 nm, a less 
pronounced one at 1679 nm and more distinct features are visible at 1948, 2225 and 2391 nm. 

The MWIR/LWIR spectrum (Fig. 5.21, right plot) is characterised by relatively high reflectance 
values (~35% at 4500 nm) as well. Major absorption features are present at 2935, 3981, 5566, 
6097, 6809 and 11368 nm. Minor features are located at 2543 nm and a sharp one at 2743 nm. 
Weakly pronounced features are located at 3345 and 3475 nm and at 3850, 4674 and 10818 nm. 

 
Fig. 5.21: Reflectance and continuum removed spectra of a stainless steel slag sample (T5, < 90 µm) in the 

VNIR/SWIR (left) and MWIR/LWIR (right). The numbers presented on top of the plots highlight the wavelength 
position of reflectance minima or maxima. 

Tab. 5.15: Chemical constituents (> 1 m%) and photographs of a stainless steel slag sample (T5) (analyses by FEhS). 

Constituent m% Sample photo (< 10 mm material) Sample photo (< 90 µm material) 

CaO 49.6 

SiO2 24.0 

MgO 5.46 

CaOfree 4.8 

Cr2O3 4.32 

Al2O3 4.2 

H2O 3.7 

TIC 2.12 

Fe 1.51 

MnO 1.36 
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5.5.1.10 AOD (Desulphurisation) Slag 

The AOD desulphurisation slag sample, which had a whitish colour, shows the highest observed 
reflectance of all the introduced material types in the VNIR/SWIR (VNIR: 40-50%, SWIR ~60 
%; Fig. 5.22, left plot). The continuum removed spectrum exhibits multiple features, of which the 
most prominent ones are located at 376, 431, 597, 709, 1411, 1797, 1937, 2214 and 2386 nm. 
Less pronounced features are visible at 966, 1006, 1680 and near 2310 nm. 

Despite the highest reflectance in the VNIR/SWIR, the AODS sample (Fig. 5.22, right plot) is of 
lower reflectance in the MWIR/LWIR compared to the foam slag (5.5.1.9). The most prominent 
absorption features are located at 2545, 2824, 3992, 6125, 6741, 7799 and 11368 nm. Minor and 
partly sharply pronounced features are present at 2743, 3475, 5719, 5453, 5566, 5684 nm. 

 

Fig. 5.22: Reflectance and continuum removed spectra of an AOD slag sample (T-AODS, < 90 µm) in the 
VNIR/SWIR (left) and MWIR/LWIR (right). The numbers presented on top of the plots highlight the wavelength 

position of reflectance minima or maxima. 

Tab. 5.16: Chemical constituents (> 1 m%) and photographs of an AOD slag sample (T-AODS) (analyses by FEhS). 

Constituent m% Sample photo Sample photo (< 90 µm material) 

CaO 57.1 

 

SiO2 23.62 

CaOfree 5.5 

H2O 4.89 

TIC 3.5 

MgO 2.51 

Cr2O3 1.45 

Al2O3 1.39 
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5.5.1.11 Blast Furnace Flue Dust (mixture, not “pure”) 

The sample comprising blast furnace flue dust shows reflectance values of around 10% and 
similar spectral characteristics as the blast furnace slag (see Chapter 5.5.1.1) in the VNIR/SWIR 
(Figure 5.23, left plot). Differences are visible in the strong absorption in the visible range, which 
shows two maxima at 384 and 486 nm. Further distinct features are visible at 900, 1023, 1777, 
1924 and 2217 nm. Faintly pronounced absorptions are located at 1292 and 1693 nm. 

While the reflectance intensities in the MWIR/LWIR of this sample are again comparable to the 
blast furnace slag, distinct differences are visible in terms of the spectral features in this 
wavelength range (Fig. 5.23, right plot). Besides the prominent absorption bands located at 2910, 
6125 and 6741 nm, two distinct reflectance peaks at 8180 and 9251 nm accompanied by an 
absorption at 8654 nm are visible. The spectrum further exhibits multiple, partially sharply 
shaped, features at 4987, 5344, 5566, 6950, 7098, 9721, 10818, 11179, 11368 and 11871 nm. 

 
Fig. 5.23: Reflectance and continuum removed spectra of a blast furnace flue dust sample (24-A) in the VNIR/SWIR 

(left) and MWIR/LWIR (right). The numbers presented on top of the plots highlight the wavelength position of 
reflectance minima or maxima. 

Tab. 5.17: Chemical constituents (> 1 m%) and photographs of a blast furnace flue dust sample (24-A) (analyses by 
FEhS). 

Constituent m% Sample photo (< 10 mm material) Sample photo (< 90 µm material) 

SiO2 35 

CaO 16.2 

Fetotal 13.3 

TIC 9.3 

Al2O3 7.57 

H2O 5.66 

MgO 3.5 

FeO 2.59 

MnO 1.25 

CaOfree 1.1 

P2O5 1.05 

ZnO 1.04 
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5.5.1.12 Converter (Dedusting) Sludge 

The reddish converter dedusting sludge sample shows generally low reflectance values in the 
VNIR/SWIR spectrum (< 10%) with a prominent maximum near 750 nm (Fig. 5.24, left plot). 
The spectrum exhibits only few absorption features, of which a major feature at 488 nm as well 
as a broad feature with a maximum at 1481 nm can be assigned. Less pronounced characteristics 
are present at 1905, 2212 and close to 2450 nm. 

In the MWIR/LWIR, the converter sludge sample shows reflectance values comparable to the 
VNIR/SWIR (ca. 10%; Fig. 5.24, right plot), but exhibits more spectral features. The most 
prominent absorptions are located at 2922, 6125, 6879 and 11368 nm. Less distinct features can 
be found at 3379, 3957, 5566, 8654, 9003, 9721, 10646, 10906 and 11767 nm. 

 

Fig. 5.24: Reflectance and continuum removed spectra of a converter dedusting sludge sample (27) in the 
VNIR/SWIR (left) and MWIR/LWIR (right). The numbers presented on top of the plots highlight the wavelength 

position of reflectance minima or maxima. 

Tab. 5.18: Chemical constituents (> 1 m%) and photographs of a converter dedusting sludge sample (27) (analyses 
by FEhS). 

Constituent m% Sample photo (< 10 mm material) Sample photo (< 90 µm material) 

Fe 23.1 

TIC 18.6 

SiO2 15.33 

CaO 14.1 

H2O 8.13 

FeO 7.61 

Al2O3 5.57 

MgO 3.16 

ZnO 2.17 

P2O5 1.362 
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5.5.1.13 Mill Scale 

The mill scale sample showed reflectance values < 3% in the whole VNIR/SWIR range. This 
was the lowest reflectance of all analysed samples (Figure 5.25, left plot). Due to the low 
reflectance, the spectrum is characterised by a relatively high amount of noise. However, the 
apparently flat reflectance curve exhibits a few absorption features, of which the strongest one is 
a broad absorption band covering the range ~700 to ~2100 nm with a maximum at 1224 nm. 
Further distinct features are located at 524 and 2216 nm. Further features were determined at 
375 nm and between 2400 and 2500 nm, which are most likely related to noise. 

The MWIR/LWIR spectrum is characterised by low reflectance values and a high noise level as 
well (Fig. 5.25, right plot). The spectrum is basically featureless with potential weak absorptions at 
2950 and 6810 nm. 

 

Fig. 5.25: Reflectance and continuum removed spectra of a mill scale sample (19) in the VNIR/SWIR (left) and 
MWIR/LWIR (right). The numbers presented on top of the plots highlight the wavelength position of reflectance 

minima or maxima. 

Tab. 5.19: Chemical constituents (> 1 m%) and photographs of a mill scale sample (19) (analyses by FEhS). 

Constituent m% Sample photo Sample photo (< 90 µm material) 

Fetotal 62.59 

 

TIC 3.9 

H2O 2.03 
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5.5.2 Interpretation and Discussion of the Spectral Characteristics of the By-Products 

5.5.2.1 Reflectance Intensities 

The reflectance properties of the iron- and steelworks by-products described in the chapters 
beforehand were largely variable. In the VNIR/SWIR region, reflectance intensities ranged from 
< 10% for several by-product types (mill scale, EAF slag from carbon steel production, converter 
sludge) to nearly 60% for the AOD slag and “slag sand” samples. In general, samples of high 
reflectance in the VNIR/SWIR also exhibited a similar spectral behaviour in the MWIR. 
Noticeably, nearly all materials were of very low overall reflectance in the range > ~9000 nm. 

Correlations calculated between the spectra and the contents of the four major chemical 
constituents (Al2O3, CaO, Fetotal, SiO2) highlight the impact of these parameters on the spectra 
(Fig. 5.26). As the chemical constituents were not normally distributed, these correlations are not 
statistically robust. It must further be considered that the sample pool is composed of a mixture 
of different by-products, which in turn are composed of different minerals, varying amounts of 
amorphous materials and partially contain opaque materials resulting in varying reflectivity and 
spectral features. Thus, the calculated correlation spectra indicate general trends and highlight 
relationships present within the sample pool, but are affected by extreme samples to a certain 
degree and do not necessarily reflect causalities. 

Obviously, Al2O3, CaO and SiO2 are positively correlated with the reflectance values of the 
samples at the VNIR/SWIR wavelengths, meaning higher contents of these constituents are 
potentially associated with higher reflectance of the samples. Here, CaO showed the strongest 
impact also in the shortwave infrared. This is especially obvious for the CaO-rich stainless steel 
slag samples, which showed the highest reflectivity as well (see Ch. 5.5.1.9). 

 
Fig. 5.26: Correlations between the VNIR/SWIR (left) and MWIR/LWIR (right) reflectance spectra of all samples 

(N = 102) and the content of the constituents Al2O3, CaO, Fetotal and SiO2. 

The by-product types with high or intermediate amounts of iron also showed the lowest 
reflectance intensities. This caused the strong negative correlation (R ~ -0.7) between the total 
iron content and the reflectance intensities of the samples as observed for the VNIR/SWIR 
range (Fig. 5.26, left plot) and is especially discernible for the mill scale sample, which showed the 
highest total iron, but also true for the EAF slag from carbon steel fabrication and the historic 
converter dedusting sludges. In contrast, the samples with the lowest iron contents tended to 
show the highest reflectance intensities (e.g. stainless steel slags, AOD and foam slag). 
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For the MWIR/LWIR, the correlations between the spectra and the chemical constituents are 
generally more diverse and challenging to interpret (Fig. 5.26, right plot, App. 5.8). The Al2O3 
content was moderately negatively correlated with the spectra and the strongest relationships 
were found near the water absorption at 6100 nm and close to 8300, 10100 and 12400 nm, which 
are wavelengths at which silicate features occur (e.g. Hunt 1982; see Chapter 2.2.2). For CaO, 
positive correlations were observed in the range of 2500-6000 nm with distinct maxima near 
2700, 5340 and 5780 nm, while moderately negative relationships occurred near 6800, 9300 and 
11370 nm. The distinct drop in the correlation curve at 6880 nm to negative values and the 
subsequent increase to positive values towards 8000 nm as well as the minimum near 11400 nm 
are located at wavelengths known for the presence of vibrational features of the carbonate ion 
(see Chapter 2.2.2). A distinct reflectance maximum occurred in the sample spectra between 7300 
and 8700 nm. The reflectance values at this wavelength were positively correlated with the CaO 
content. The Fetotal content negatively impacted reflectivity to ca. 6000 nm but was positively 
correlated with the longer wavelengths. SiO2 showed a similar curve progression like the one for 
Al2O3 and was positively correlated to the wavelengths near 3500 nm and moderately negatively 
with the range of 7000-10000 nm. For further correlation spectra see Appendix 5.8. 

To underline the relationship between the Fetotal content and the reflectivity of the samples, 
reflectance values at 1600 and 4500 nm (the samples showed high reflectance at these 
wavelengths) were determined for all samples and plotted against the total iron content (Fig. 
5.27). No linear trends could be observed, but the samples rich in iron showed a distinctively 
lower reflectance. This effect was more pronounced at 1600 nm compared to 4500 nm, most 
likely due to the generally lower reflectance of the samples in the MWIR/LWIR. 

 

Fig. 5.27: Relation between the Fetotal content and the reflectivity of the samples determined at 1600 and 4500 nm. 

Apart from Fetotal and the presence of specific mineral phases (e.g. magnetite), the low reflectance 
of the samples towards the wavelength range > 9000 nm is presumably related to opaque 
materials and metallic iron present in the samples, as such materials are known to cause very low 
reflectance (e.g. as described for meteorites in Salisbury 1993, Cooper et al. 2002). Furthermore, 
the fine grain size might distinctively contribute to the low reflectance (see Ch. 5.5.4). For 
sludges, the presence of amorphous carbon (see e.g. Miyamoto et al. 1981) might cause the low 
reflectivity to a certain degree. The drop in reflectance towards the “blue part” of the VIS as 
observed in all spectra, is related to the presence of iron (Hunt et al. 1971a). The constituents Cd, 
Pb and Zn were strongly negatively correlated with the VNIR/SWIR. Other metals (e.g. Cr2O3, 
Ni) showed positive relations to the VNIR, emphasising that the sample reflectivity is the result 
of complex concurrences of the spectral behaviour of individual constituents (see App. 5.8). 
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5.5.2.2 Spectral Features 

The major spectral features observed in the VNIR/SWIR as well as in the MWIR/LWIR spectra 
of the reference samples for each by-product class are schematically presented in the Figures 5.28 
and 5.29 following the example of other authors (e.g. Drake 1995). These charts allow a better 
assessment of characteristics occurring in all spectra or of features that are unique for specific 
material types. While focussing on the absorption features, the positions of distinct reflectance 
maxima in MWIR/LWIR spectra are highlighted as well. Functional groups, which were thought 
to be causing the observed features, are provided and - if possible - specific minerals were 
assigned to the determined features. As mentioned before, all spectra showed very low 
reflectance intensities in the wavelength region exceeding 9000 nm with only few well 
pronounced features. Furthermore, the decreasing signal-to-noise ratio and resolution of the 
spectra towards the longer wavelengths additionally hampered the qualitative interpretation of the 
LWIR data. The XRD verified mineral phases (see Chapter 5.2) represented the basis for the 
analysis of the spectral identifiability of specific minerals. However, they only provide 
information on the crystalline components, but many samples contained amorphous constituents, 
which might also contain functional groups contributing to the observed features in the spectra. 

Absorptions caused by electronic processes 

Nearly all of the sample spectra exhibited distinct absorption features in the visible light and near 
infrared. This wavelength region is known to show features due to electronic processes in metal 
cations (see Chapter 2.2.2.1). The chemical analysis revealed that the samples contain multiple 
metal species (e.g. Cr, Fe, Mn, Ni, Pb, Ti, Zn, etc., see Chapter 5.3.1), of which various species 
might produce features at specific wavelengths. These in turn might shift in shape and position 
depending on the specific metal contents. Furthermore, features due to electronic processes 
occurring in different transition metals might produce features at similar wavelengths and 
consequently overlapping absorptions (e.g. Hunt 1977, Rossman 1988, Burns 2005). Thus, the 
specific assignment of all determined absorption features in the VNIR could not be unravelled 
with absolute certainty. However, several features appeared at wavelength positions that are 
typically assigned to specific constituents. As such, the absorptions at 700 and 870 nm observed 
in the blast furnace slag and the stainless steel slag spectra are most likely related to the presence 
of Fe3+ (e.g. Hunt et al. 1971a, Burns 2005, Gupta 2018). The AOD slag, stainless steel slag, LF 
slag and EAF slag from medium-alloy steelmaking exhibited features near 380 nm also due to the 
ferric iron (see e.g. Rossman 2014). Features occurring near 430, 450 and 520 nm in several 
samples were most likely related to Fe3+ as well (see e.g. Demattê et al. 2016). Furthermore, the 
features near 480 nm might be another indicator of Fe3+ (see e.g. Farrand et al. 2016). The spectra 
of the blast furnace slag, EAF slag from high-alloy steelmaking, the stainless steel slag, the foam 
and AOD slag as well as the blast furnace flue dust exhibited features near 1000 nm. Features at 
these wavelengths are often assigned to Fe2+ in the literature (e.g. Gupta 2018). Fe2+ might have 
also contributed to the distinct absorptions near 1920 nm as such contributions were reported 
e.g. for basalts (Anbazhagan and Arivazhagan 2009). Several of the features reported in the 
VNIR might be caused or contributed by Fe2+ as well (e.g. Gupta 2018). As mentioned, the 
multitude of different metals in the samples might contribute to one observed feature or produce 
overlapping features. For example, the features near 450 and 700 nm might also be affected by 
Mn3+ (Rossman 2014). Most samples from high-alloy steel production showed lower iron 
contents but higher Cr2O3 and TiO2 contents compared to the majority of samples and their 
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spectra exhibited features near 590-600 nm. As features near 600 nm are potentially related to 
Ti3+ or Fe2+-Ti4+ interactions (Hunt 1977, Rossman 2014), it is possible that titanium contributed 
to these absorptions. In spinels, which were present in various samples, e.g. in the stainless steel 
slags, chromium might replace Fe3+ (Drissen 2004). The stainless steel slags also showed relatively 
high Cr2O3 contents and features at 410-450 nm. Thus, these features might be related to 
chromium, as chromium features at such wavelengths are described e.g. in Rossman (2014). 

Besides the total iron content, the presence of specific iron oxides must be considered as an 
influencing factor on the general shape of the spectra. For example, magnetite was verified with 
XRD analysis for the mill scale, EAF slag from carbon steelmaking and the converter sludges. As 
described earlier, this mineral phase is known to show a nearly featureless spectrum and very low 
reflectance (e.g. Hunt et al. 1971a, see Chapter 2.2.2) and thus potentially masks absorption 
features that might be visible otherwise. Even though the converter dedusting sludge samples 
were found to comprise larger amounts of hematite, the typical feature pattern associated with 
this mineral was not found and the spectra were dominated by absorptions near 490 nm, a 
distinct reflectance peak at 770 nm, followed by a broad absorption feature ranging to ~2100 nm. 

H2O and OH features 

Except for the mill scale, all of the studied major by-product classes exhibited absorption features 
between ca. 1900-1940 nm. This feature is most likely due to vibrational features of the water 
molecule (e.g. Hunt 1977, Hunt 1980, Hunt 1982, Clark 1999, Gupta 2018). As the samples were 
dried, moisture can be mostly excluded as impacting factor on the spectra, indicating that the 
observed features are related to water within the mineral lattice or impurities. The weak 
absorptions present in several spectra at 970 nm (e.g. in the AOD slag spectrum) as well as the 
minor features found at 1220 nm and close to 1770 nm are likely related to H2O as well (e.g. 
Bowers and Smith 1972, Baumgardner et al. 1986). The minor absorption near 1150 nm found in 
the spectra of the Thomas slag and the GBFS are also due to combinations of H2O vibrations 
(Hunt 1977). The relatively sharp absorptions near 1410 nm, which were distinctively present 
especially in the AOD and stainless steel slag spectra, are related to overtone vibrations of OH, 
while broader features near 1400 nm, as for example present in the GBFS spectrum, indicate the 
presence of water or combinations of OH and H2O overtones (e.g. Hunt 1980). In the 
MWIR/LWIR, most of the samples showed distinct absorptions near 2900 and 6100 nm which 
are caused by H2O vibrations (e.g. Hunt 1977, Prince et al. 2007, Marincea et al. 2011), of which 
the broad feature near 2900 nm is due to O-H stretching vibrations of water not fixed in the 
crystal lattice and the feature at 6100 nm due to H-O-H bending vibrations (Salisbury et al. 1987). 

The distinct absorption that was basically present in all samples near 2220 nm is likely caused by 
combinations of metal-OH bends and OH-stretches, as they are known to produce features near 
2200-2300 nm (Hunt 1977, Clark 1999, King et al. 2004b). Al-OH is known to produce features 
near 2200 nm (Gupta 2018), e.g. in form of doublets for example in kaolinite (see Baldridge et al. 
2009, Kokaly et al. 2017), and features found near 2300 nm are typically related to Mg-OH (e.g. 
Gupta 2018). The observed features near 2220 nm might also be related to Si-OH as such 
features were found in other silica-rich materials (e.g. Rice et al. 2013). In studies on natural silica-
rich glasses, features near 2200 nm were associated to water trapped in the material structure (e.g. 
Adams 1961). Thus, the observed feature near 2200 nm is most probably caused by OH and/or 
H2O. The AOD and stainless steel slag showed sharp absorptions near 2740 nm, which are 
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interpreted as the OH fundamental vibrational feature (e.g. Hunt and Salisbury 1970). While the 
assignment of specific OH-bearing minerals based on the observed features was generally 
difficult, the presence of portlandite, which was determined as minor mineral phase in several 
samples (e.g. Thomas slag, stainless steel slag, EAF slag from carbon and medium-alloy steel 
fabrication), was clearly indicated by a feature near 2390 nm. Such a feature is also present in the 
portlandite spectrum of the USGS spectral library (Clark et al. 2007, Kokaly et al. 2017). 

Carbonates 

Although the XRD results confirmed that calcite is a constituent of the majority of samples (see 
Chapter 5.2) and this mineral is known to show several distinct features in the shortwave infrared 
(typically between 1800 and 2500 nm, e.g. Hunt and Salisbury 1971, van der Meer 1995; see 
Chapter 2.2.2.2), no distinct carbonate absorption features were found in the VNIR/SWIR 
spectra of the presented reference samples. For dolomite, which was found to be a minor mineral 
phase in individual samples (blast furnace slag, converter dedusting sludge) and which typically 
shows features similar to calcite with variations in the position of the absorption maxima (Hunt 
and Salisbury 1971, Clark 1999), no distinct absorptions could be determined either. The absence 
of carbonate features in the VNIR/SWIR might be related to the low grain size, as calcite spectra 
of fine-grained powders (see e.g. the examples in the ASTER spectral library; Baldridge et al. 
2009) show weaker expressed characteristics. These features might be further suppressed in the 
homogenised powders, by (metallic) iron or due to the glass-like character of individual materials. 

In contrast, the MWIR/LWIR spectra of the majority of samples showed characteristics due to 
vibrational features of the carbonate ion: the AOD and stainless steel slag showed minor 
absorptions near 2530 nm that are described for calcite (e.g. Gaffey 1986, Clark 1999, Baldridge 
et al. 2009). Various sample spectra exhibited sharp but only weakly expressed absorptions at 
3345 and 3475 nm, representing a carbonate doublet feature (Salisbury et al. 1988). Nearly all 
samples showed distinct, sharp features at 3982 nm, which was in some cases present as a 
doublet, and at 5566 nm that are also present in a calcite spectrum of the USGS digital spectral 
library (Clark et al. 2007) and described by several authors for spectra of natural rocks and 
minerals as well as for slags (e.g. Salisbury et al. 1988, Prince et al. 2007, Setién et al. 2009, 
Bláhová et al. 2015). The distinct feature found at 6800 nm in nearly all samples corresponds to 
the fundamental vibration of the carbonate ion (degenerate antisymmetric C-O stretch, Hunt 
1977, Clark 1999). Its position varied between ca. 6700-7300 nm. Furthermore, nearly every 
sample showed a minor feature at 11368 nm, which is most likely related to the out-of-plane 
bending mode of the carbonate ion (Hunt 1977, Clark 1999, Prince et al. 2007, Gupta 2018). The 
feature found near 11700 nm in a variety of sample spectra is present in a calcite reference 
spectrum in the USGS spectral library (Kokaly et al. 2017) as well and thus considered to be 
related to the carbonates. The features near 3980, 5560, 6800 and near 11400 nm present in the 
LF slag spectrum are in agreement with the findings in other studies on the spectral properties of 
such slags and are due to calcite (e.g. Setién et al. 2009). Diener (2006) also reported the broad 
feature between 6700-7400 nm due to C-O stretching vibrations of the carbonate ion as well as 
further carbonate features near 11360 and 14100 nm. At this point it must be strongly 
considered, that depending on the grain size, carbonate features in the LWIR might appear as 
reflectance maxima or minima (e.g. Zaini et al. 2012, Green and Schodlok 2016). Thus, the 
observed reflectance minima due to calcite in the longwave infrared might be visible as peaks in 
spectra of larger grain sizes. 
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Silicates 

Except for the potential Si-OH feature near 2220 nm, no distinct spectral indicator in this 
wavelength region for silicates was found. In contrast, multiple features due to silicates – 
although only weakly expressed in most cases - were found in the longwave infrared region 
> 8000 nm, which is a region known to be dominated by silicate features (e.g. Hunt 1980, Gupta 
2018). Also, silicate glasses are known to show features due to asymmetric stretching of Si-O 
bonds between 8000-12000 nm, overlapping with (Si, Al)-O stretchings near 9000 nm (e.g. King 
et al. 2004b). However, several authors found that the assignment of features occurring in this 
wavelength range to specific mineral species or functional groups is challenging for natural and 
technogenic glasses as well as for melts of small grain size (e.g. Mohassab and Sohn 2015, Morlok 
et al. 2016). This can be confirmed in this study. Here, the low reflectance of all samples and little 
contrast of spectral features in the LWIR hampered the qualitative spectral analysis. The most 
distinct silicate-related feature was found in the spectra of the samples comprising blast furnace 
flue dust. This spectrum showed a distinct reflectance peak at 8180 nm and an absorption feature 
at 8654 nm that are typical spectral indicators for the presence of quartz (e.g. Clark 1999, 
Baldridge et al. 2009, Kokaly et al. 2017). Quartz was verified as minor mineral phase with XRD 
analysis for this sample and considered an impurity. Such features were also present in the 
samples assigned to the category “mixtures with high amounts of natural sand” and are a possible 
explanation for the good spectral separability of these materials as observed in the PCA and 
cluster analyses (see Chapter 5.4; see Appendix 5.6 for spectra of these materials). 

As mentioned, most of the studied by-product types showed either no clearly determinable or 
only weakly expressed features in the LWIR region. However, a variety of the minor maxima in 
this wavelength region might resemble weakly pronounced reststrahlen bands of silicates. Here 
minor reflectance maxima were observed in a variety of samples near 10100-10300 nm, e.g. in the 
Thomas slag and the EAF slag from carbon and stainless steelmaking. These maxima are 
interpreted as Si-O features as similar features were reported for different slags in the literature to 
be related to calcium silicates (e.g. Diener 2006). Minor reflectance maxima observed in several 
samples near 11000 nm might be due to Al-O vibrations. Again, similar features were reported 
for LF and EAF slag spectra (Diener 2006). The EAF slag from high-alloy steelmaking and the 
EAF foam slag showed a variety of well pronounced features in the LWIR range. For the EAF 
slag, a reflectance maximum near 10300 nm followed by a minor absorption near 10900 nm and a 
broad reflectance shoulder with a maximum near 13000 nm was observed (see Appendix 5.6 for 
the full spectra of the samples T-EAFSn and T-EAFSf). These characteristics exhibit similarities 
to the spectrum of wollastonite presented in several spectral libraries (Clark et al. 2007, Baldridge 
et al. 2009, Kokaly et al. 2017). Wollastonite was also confirmed as major mineral phase of the 
sample with XRD analysis. Of the entire sample spectra presented in Chapter 5.5.1, the foam slag 
spectrum was the only one showing a pattern of distinct minima at 8943, 9513, 10010 and 10399 
nm (and corresponding maxima). Furthermore, the EAF foam slag was found to contain melilites 
(gehlenite-akermanite) as major mineral phase. It further contained merwinite as minor mineral 
phase, but other by-products containing merwinite as well did not exhibit such features. 
However, as other samples rich in gehlenite-akermanite showed the mentioned feature pattern 
(see samples 30-HOS, GPS, W3-Ref5, W3-Ref1-2, W3Ref-14, W3-Ref22 in App. 5.6), it is most 
likely that the observed features are related to this mineral phase. 
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Most silicates exhibit a well pronounced reflectance minimum near 8000 nm, which is known as 
the Christiansen feature (e.g. Hunt 1982, see Chapter 2.2.2.2). The position of the CF was found 
to be correlated with the silica content in several studies on silicate glasses and impactites, where 
the position of the CF shifted towards shorter wavelengths for minerals with high silica content 
(e.g. Logan et al. 1973, Lucey et al. 2017). The samples in this study did not show such a distinct 
minimum near 8000 nm but instead exhibited a broad reflectance maximum at this spectral range. 

Others 

The Thomas slag samples showed reflectance minima at 4674, 4878 and 5024 nm, which were 
found in a similar pattern in the USGS library spectrum for hydroxyl-apatite (Clark et al. 2007) 
and the apatite spectra in the ASTER spectral library (Baldridge et al. 2009). Furthermore, the 
minor absorption present in the Thomas slag spectra near 3844 nm as well as the feature at ca. 
9200 nm also occur in the aforementioned (hydroxyl-)apatite reference spectra. Thus, the 
observed features indicate the presence of the phosphates apatite and/or silicocarnotite 
determined via XRD analysis for these samples. Furthermore, the USGS VNIR/SWIR spectrum 
for hydroxyl-apatite showed a distinct reflectance increase from the VNIR towards the SWIR, 
which was also observed in all Thomas slag spectra and interpreted as another potential spectral 
indicator for the presence of this phosphate-rich by-product type. 

The spectra of most by-products showed small peaks between 4200 and 4300 nm (typically near 
4230 nm). These features might be caused by CO2 as this gas can produce sharp bands near 
4300 nm when trapped as impurity (Salisbury et al. 1987). However, it is more likely that this 
effect is related to impacts of CO2 as a potential background contributor (e.g. King et al. 2004a, 
Prince et al. 2007). As the FTIR measurements were conducted using a handheld instrument, it 
seems likely that exhaled air in the measurement surrounding contributed to these features.
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5.5.2.3 Relationships between Major Absorption Features and Chemical constituents 

For dominant spectral features that were present in a larger number of samples, absorption 
characteristics were determined based on continuum removed spectral subsets and plotted 
against the contents of the chemical constituents in order to analyse potential quantitative 
relationships. As shown before, the absorption features occurring in the VNIR due to electronic 
processes were strongly variable for different by-product types and the number of samples with 
common features was limited. Thus, feature variations occurring in the visible light and near 
infrared will be discussed in more detail in Ch. 5.5.3 for specific by-product types. The following 
paragraph will focus on the variations of the absorptions at 1930 and 2230 nm (Fig. 5.30). 

 

Fig. 5.30: Characteristics of dominant features in the VNIR/SWIR spectra versus contents of chemical constituents. 

The feature found at 1930 nm is typically assigned to overtones of fundamental vibrations of the 
water molecule (e.g. Clark 1999, see Chapter 5.5.2.2). The relationship of the feature depths and 
the corresponding water contents is visualised in Figure 5.30a. While samples with higher water 
contents tended to show stronger absorption depths near 1930 nm, the relation was not very 
strong, and the point cloud clearly scattered. It was further found that the position of this feature 
tended to shift towards the longer wavelengths with increasing CaO content (Fig. 5.30b). 
Furthermore, the depths of the 1930 nm absorption feature decreased with higher FeO content 
of the samples (Fig. 5.30c). This indicates that Fe2+ is related to the characteristics of this feature. 
Basically, all sample spectra were characterised by a distinct feature near 2230 nm, which was 
most likely due to Si- or metal-OH overtones and combinations or due to H2O (see Chapter 
5.5.2.2). However, the depth of this feature showed only weak relations to the contents of the 
chemical constituents, as presented using the example of Fe2O3 (Fig. 5.30d) in the figure above. 

N = 95 N = 95

N = 36 N = 36

a) b) 

d) c) 
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The five most dominant absorptions present in the entirety of the MWIR/LWIR spectra were 
the features due to H2O vibrational modes near 2930 and 6100 nm as well as the absorptions at 
3980, 5560 and 6880 nm, which are related to vibrations of the carbonate ion (see Chapter 
5.5.2.2). The H2O content was moderately positively correlated to the strength of the absorptions 
near 2930 and 6100 nm (R = 0.51 and R = 0.53, respectively; Fig. 5.31a and 5.31b), which were 
already discussed as fundamental vibrational features of the water molecule (e.g. Hunt 1977). The 
depth of the sharp and well pronounced absorptions occurring at 3980 and 5560 nm showed no 
discernible relationship to the CaO (R =0.12 and 0.13, respectively) or the TIC content (R = 0.23 
and R = 0.1), respectively. In contrast, the depth of the dominant absorption feature near 
6880 nm that is known to be related to the fundamental vibration of the carbonate ion (e.g. Hunt 
1980, Clark 1999) showed a strong positive correlation to the CaO content (R = 0.77, Fig. 5.31c), 
whereas the wavelength position of this feature was not distinctively correlated to any of the 
major chemical constituents. Also, the depth of the minor absorption near 11400 nm, which was 
interpreted to be related to carbonates too, showed a moderate relation to the CaO content (R = 
0.51). Fetotal was moderately negatively correlated to the depth of most analysed features and the 
strongest relationship (R = -0.59) was found for the feature at 6100 nm (Fig. 5.31d). 

 
Fig. 5.31: Relative depths of features in the MWIR/LWIR versus contents of chemical constituents. 

Overall, the observed relationships between characteristics of dominant features shared by the 
majority of samples and the chemical constituents were low or only moderate. This is interpreted 
as the result of the largely variable material composition within the sample pool. The example of 
the depth of the feature at 6100 nm and its relation to the H2O and Fetotal contents demonstrated 
that chemical constituents might contribute opposingly to feature characteristics. Implications of 
this matter on the spectral quantification of by-product constituents are discussed in Ch. 5.6.4. 
Results of initial analyses conducted in this work did not indicate a strong relation between the 
calcite content from XRD analysis and the depth of absorptions related to the CO3

2- ion. 

N = 99 N = 99

N = 101

N = 101

a) b) 

c) d) 
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5.5.3 Spectral Variations within By-Product Classes 

For the iron- and steelworks by-product types for which at least five samples were available that 
could be explicitly assigned, the class-specific spectral variations were analysed both in terms of 
reflectance intensities and the absorption feature characteristics. As all samples were dried and 
homogenised, impacts of different grain sizes or moisture as explanation for the observed 
variations could be minimised. Thus, the occurring spectral deviations were considered to be 
mainly driven by differences in the mineralogical and chemical composition. In order to highlight 
wavelength ranges at which the largest variations both in reflectivity as well as in the absorption 
features occurred, the mean, minimum, maximum, standard deviation as well as the coefficient of 
variation were calculated for the reflectance and continuum removed spectra. Furthermore, 
absorption characteristics (e.g. position, depth, width, area and asymmetry) were determined for 
the VNIR/SWIR range (see also the tables provided in Appendix 5.9). For major features 
occurring in the MWIR/LWIR spectra, the relative absorption depths were determined as well. 
The majority of observed variations occurred at wavelengths associated with features caused by 
electronic processes (VNIR range), water (1400, 1900, 2900, 6100 nm), carbonates (near 3980, 
5560, 6900 nm) or silicates (range > 8000 nm). The feature parameters, e.g. absorption depths, 
are expected to correspond to the amount of the absorbent following the Beer-Lambert-Law (see 
Chapter 2.2.1) and were plotted against the contents of chemical constituents found to be related 
to the observed variations (e.g. CaO, Fetotal, H2O, TIC). While the low number of samples per by-
product type prohibited statistical analyses, this approach aimed to highlight general trends in the 
feature-chemistry relationship and was conducted in similar way by e.g. Cloutis et al. (2004). 
 

5.5.3.1 Blast Furnace Slag 

The spectral variability of six samples defined as BFS, which were collected in the excavator 
prospecting at the “Plateau 312” and thus considered comparable, is presented in Fig. 5.32a and 
5.32b. The coefficient of variation of the reflectance intensities (CVref) was consistent (25-30%) in 
the whole VNIR/SWIR. This is considered to be mainly driven by the differences in CaO 
content (MD= 22.6, SD = 3.1 m%) as this parameter was found to be strongly related to the 
reflectivity at all VNIR/SWIR wavelengths in similar intensity (see Ch. 5.5.2.1). In contrast, the 
CV curve of the continuum removed spectra (CVcr) indicated only minor variability, for which 
the largest deviations (CV max. 5%) were occurring at the feature near 400 nm. While no distinct 
relationships of the depth of this feature to the total iron content could be observed, the weaker 
pronounced feature near 880 nm showed a discernible trend of increasing depth with increasing 
Fetotal content (MN= 9.8 m%, SD = 2.6 m%). Another trend was found between the variations in 
the depth of the 1930 nm feature and the H2O content (MN = 7.0 m%, SD = 5.91 m%). 

In the MWIR/LWIR, CVref and CVcr were of larger variability (Fig. 5.32a). The variations 
occurring near 2900 and 6100 nm were found to be related to differences in the H2O content 
(Fig. 5.32b). The variation in CVcr at 2740 nm was interpreted to be related to the hydroxyl ion. 
The depth of the potential carbonate feature near 6880 nm showed a positive relationship to the 
variations in CaO content. It was further negatively correlated with the TIC content. High CVref 
and CVcr values were determined in the range of 8000-12000 nm, which is typically referred to as 
the region dominated by silicate features (see 5.5.2.2) and thus likely related to variations in 
silicate minerals and/or in SiO2 content (MN = 17.9 m%, SD = 2.4 m%) or other constituents. 
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Fig. 5.32a: Variations in reflectance and continuum removed spectra of selected blast furnace slag samples (N = 6). 

 

Fig. 5.32b: Spectral feature variations of blast furnace slag samples versus contents of chemical constituents (N = 6). 
Depicted feature depths are relative depths. 

 
5.5.3.2 Granulated Blast Furnace Slag 

In contrast to the blast furnace slag, the variations in the reflectance intensities for the samples 
identified as granulated blast furnace slag (“slag sand”) were not homogeneous over the whole 
VNIR/SWIR range but largest in the VNIR and decreasing towards the SWIR (Fig. 5.33a). The 
continuum removed spectra showed large deviations near 420 nm corresponding to the observed 
absorption features due to electronic processes. However, the feature depth at ca. 420 nm 
showed no discernible trend to the Fetotal content (MN = 1.7 m%, SD = 1.2 m%; Fig. 5.33b). The 
variations of the feature at 1930 nm were found to show no clear relation to the variability in 
water content (MN = 13.7 m%, SD = 4.2 m%) of the samples as well. In the MWIR/LWIR, the 
distinct sharp peaks in the CVref and CVcr curves at 3980 and 5566 nm, which were assigned to 
carbonate features (Ch. 5.5.2.2), showed discernibly relations to the TIC content of the samples 
(MN = 8.7, SD = 3.3 m%). The deviations in the range > 8000 nm might be due to variations in 
SiO2 content (MN = 24.4 m%, SD = 2.6 m%), CaO, Al2O3 or TIC (see Ch. 5.5.2.1, App. 5.8). 
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Fig. 5.33a: Variations in the reflectance and continuum removed spectra of selected GBFS samples (N = 6). 

 

Fig. 5.33b: Spectral feature variations of selected GBFS samples versus contents of chemical constituents (N = 6). 
Depicted feature depths are relative depths. 

 

5.5.3.3 Thomas Slag 

The Thomas slag VNIR/SWIR spectra showed the strongest variations in reflectivity in the 
visible light and the CVcr was highest at the broad absorption near 400 nm, at the minor feature 
near 710 nm and at ca. 1400 nm (Fig. 5.34a). Again, no clear relation of the absorption feature 
parameters near 400 nm to Fetotal was found. By trend, the width of the feature at 710 nm 
increased with higher Fetotal content (MN = 14.4 m%, SD =1.6 m%; Fig. 5.34b). In the 
MWIR/LWIR, the CV of the reflectance and continuum removed spectra was consistently low 
(ca. 10%), except for the range near 6800 nm. Here, CVref and CVcr increased up to nearly 60%. 
However, the depth of the 6800 nm feature did not show a clear relation to the CaO or TIC 
contents but a trend of increasing feature depth with increasing MnO (as well as Cr2O3) content. 
The little variable CaO and/or SiO2 content (MN =5.07 m%, SD = 0.42 m%) potentially 
explained the lower variability in the range > 8000 nm compared to the other by-product classes. 
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Fig. 5.34a: Variations in the reflectance and continuum removed spectra of the Thomas slag samples (N = 14). 

 
Fig. 5.34b: Spectral feature variations of Thomas slag samples versus contents of chemical constituents (N = 14). 

Depicted feature depths are relative depths. 

 

5.5.3.4 Stainless Steel Slag 

The reflectance spectra of the stainless steel slag samples showed nearly consistent CVref of 
ca. 10% in the VNIR/SWIR, again most likely related to minor variations in the CaO content 
(MN = 46.6 m%, SD = 4.1 m%, Fig. 5.35a). The CVcr was generally very low (< 1%) and the 
variations in the features due to electronic processes showed no clear relationship to the Fetotal 

content, which was generally low (MN = 1.4 m%, SD = 0.6 m%). For the feature at 1400 nm, a 
trend of increasing depth with increasing water content (MN = 2.6 m%, SD = 0.8 m%) could be 
observed (Fig. 5.35b). In the MWIR/LWIR, spectral variations were considerably stronger. The 
depth of the broad absorption near 2930 nm could be related to the H2O content and the depth 
of the sharp absorption at 5566 nm was found to be positively related to the TIC (and CaO) 
content. The absorption at 6900 nm was deeper for samples with higher TIC content as well. The 
variations occurring > 8000 nm are possibly due to variations in silicates and subsequently SiO2 
content (MN = 26.6 m%, SD = 2.4 m%). 
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Fig. 5.35a: Variations in the reflectance and continuum removed spectra of the stainless steel slag samples (N = 5). 

 

Fig. 5.35b: Spectral feature variations of stainless steel slag samples versus contents of chemical constituents (N = 5). 
Depicted feature depths are relative depths. 

 

5.5.3.5 Converter Dedusting Sludge 

The converter dedusting sludge samples were largely variable in their reflectivity in the VNIR, 
with CVref maxima near 490 nm and at the distinct reflectance peak near 750 nm (Fig. 5.36a). The 
coefficient of variation of the continuum removed spectra showed maxima near 490 nm, 
corresponding to the major absorption feature observed at these wavelengths. A further 
maximum in the CVcr curve was observed near 1500 nm related to the large variability of the 
absorption maximum found at these wavelengths. The depths of these features were found to be 
strongly related with the total iron content (MN = 27.31 m%, SD = 6.84 m%; Fig. 5.36b). In the 
MWIR/SWIR spectra, the largest variations in the absorptions as well as in the reflectance 
intensities were observed for the water feature near 2900 nm, the reflectance minimum near 
6900 nm and within the range > 8000 nm. However, the feature at 2925 nm showed no clear 
relation to the water content of the samples (MN = 10.6 m%, SD = 3.8 m%). The depth of the 
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absorption at 6870 nm was less strong in samples with higher TIC contents (MN = 20.3 m%, SD 
= 3.2 m%). In contrast to the other by-product types, the carbonate absorption feature near 
11400 nm was stronger pronounced in the CVref and CVcr., but the depth of this feature showed 
no discernible relation to the CaO or the TIC content. 

 
Fig. 5.36a: Variations in the reflectance and continuum removed spectra of the converter sludge samples (N = 7). 

 

Fig. 5.36b: Spectral feature variations of converter sludge samples versus contents of chemical constituents (N = 5). 
Depicted feature depths are relative depths. 

In summary: Relationships between specific chemical constituents and spectral characteristics 
present in the spectra of several by-product types could be observed. For example, between the 
Fetotal content and the strength of absorptions occurring in the VNIR spectra of the converter 
dedusting sludge and the blast furnace slag; between the H2O content and the features occurring 
at 1400, 1900 and 2900 nm, as well as relations between TIC - and in some cases also for CaO - 
for the carbonate features near 3980, 5566 and 6800-6900 nm. In some cases, the observed 
negative intercorrelations between CaO and TIC (see Chapter 5.3.2) were also reflected by the 
variations occurring in feature depths. However, these trends were not linear and differ for the 
various by-product types. This confirms, as discussed in Ch. 5.5.2.1 (see also App. 5.8) and 
5.5.2.3, the complex spectral interactions of the manifold components.   
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5.5.4 Impacts of Moisture and Sample Preparation 

A comparison of VNIR/SWIR spectra of unprepared samples with near in situ moisture, of air-
dried samples and of prepared samples with grain sizes of < 10 mm and < 90 µm is provided in 
Figures 5.37 and 5.38 using the examples of selected by-products. In most cases, the drying and 
subsequent preparation of the samples led to changes in their spectral characteristics as known 
from literature. Here, most of the samples showed a distinctive increase in reflectance after air 
drying and less strong absorptions at the wavelengths near 1400 and 1900 nm. The lower 
reflectance of the moist material is related to the absorption of energy caused by water molecules 
and the mentioned features are the two major absorptions related to molecular water in the 
VNIR/SWIR (e.g. Hunt 1977, Gupta 2018). Although sample moisture was not quantified, the 
field observation indicated that the moisture was differing for individual samples. Consequently, 
the observed increases in reflectance after air drying of the material varied as well. 

Crushing and sieving the samples distinctively increased the sample reflectance but decreased the 
depth of the absorption features. This is related to the increasing amount of surface scattering 
occurring in powders of small grain sizes compared to the higher amount of volume scattering at 
coarser particles (e.g. Salisbury et al. 1987, Salisbury et al. 1988, Hapke 2012). The presented blast 
furnace slag sample showed an increase in reflectance from ca. five to nearly ten percent after air 
drying (Figure 5.37a). Crushing this sample to a grain size < 10 mm led to a further increase in 
reflectance of twelve percent while the material < 90 µm showed a reflectance comparable to the 
air-dried sample, most likely as a result of sample homogenisation. The absorptions at 1400 and 
1900 nm were strongest for the moist and weakest for the powdered sample. 

The moist GBFS sample showed a reflectance of around 28% at 1100 nm, ca. 20% at 1700 nm 
and 12% at 2200 nm (Fig. 5.37b). The reflectance partially increased to ca. 35% in the spectrum 
of the air-dried sample and to ca. 40% in the spectrum of the < 10 mm material. After crushing 
and sieving the sample to grain sizes < 90 µm, the reflectance further increased to overall ~60%, 
which is more than two times higher compared to the unprepared sample with in situ moisture. 
Again, distinct changes in the feature depths and widths were observed for the absorptions near 
1400 and 1900 nm. In addition, the two minor features near 970 and 1200 nm that were present 
in the spectrum of the moist sample and related to H2O absorptions (e.g. Bowers and Smith 
1972, Baumgardner et al. 1986) disappeared in the spectra of the dried and prepared materials. 
Such features were also described in Denk et al. (2015) for a spectrum of a moist LF slag. 

A Thomas slag sample (Fig. 5.37c) showed a systematic increase in reflectance from ca. ten 
percent on average for the moist sample to more than 40% for the spectra of the < 90 µm 
powder. The most distinct changes in the shape of the absorption features were again related to 
the decrease in moisture during the drying process of the material. Apart from the features at 
1400 and 1900 nm, the drying also affected the shape of the prominent feature in the visible light. 
The spectrum of the unprepared sample exhibited a much wider feature near 1400 nm compared 
to the relatively narrow feature in the spectrum of the air-dried and further prepared samples. 
Such effects are due to liquid water and might mask features visible in spectra of material of 
lower moisture content. Mulders (1987) described the masking effect of water on hydroxyl 
features in the SWIR of clay minerals in soils. This indicates that qualitative (e.g. the identifiability 
of mineral phases) as well as quantitative spectral analysis of iron- and steelworks by-products 
might be hampered when utilising spectra of material with relatively high in situ moisture. 
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Fig. 5.37: Reflectance and continuum removed spectra of unprepared samples with in situ moisture, air-dried 
samples and samples < 10 mm and < 90 µm. a) Blast furnace slag, b) GBFS, c) Thomas slag, d) converter dedusting 

sludge. 

The converter dedusting sludge sample (Fig. 5.37d) showed a consistent increase in reflectance 
after air-drying and subsequent sample homogenisation from ca. five percent to ca. ten percent at 
the distinct maximum at 750 nm. Except for the more pronounced water feature near 1900 nm in 
the spectrum of the moist sample, the general spectral shape and the characteristics of the 
absorption features remained mostly unchanged after drying and preparing the sample. While the 
powdered samples usually showed the highest reflectance and less deep absorptions, the 
spectrum of the material < 90 µm also showed the strongest absorptions. This might be 
explained as the iron-rich converter sludge might comprise opaque materials, which are known to 
show an opposite spectral behaviour compared to transparent materials (Irons et al. 1989). 

For individual samples, a larger variety of grain size fractions was produced, allowing more 
comprehensive observations of the impact of differing grain sizes on the sample spectra. This is 
demonstrated for the example of a stainless steel slag sample. Again, the typical spectral 
behaviour was observed for the VNIR/SWIR region as discussed before and a consistent 
increase in reflectivity with decreasing grain size could be determined. The absorption features 
remained mainly unchanged. However, the feature near 600 nm was expressed as a doublet with 
minima near 590 and 620 nm in the spectra of larger grain size fractions but barely visible in the 
spectra of fine powdered material (see Fig. 5.38, left plot). As such, the 620 nm feature was hardly 
visible in the spectra of the prepared sample material < 90 µm presented in Chapter 5.5.1.9. 

a) b) 

c) d) 
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For the stainless steel slag, also MWIR/LWIR spectra could be acquired of the different grain 
size fractions (Fig. 5.38, right plot). The finer material was of higher reflectance in general, while 
only minimal differences could be observed for the wavelength region > 9000 nm. This finding is 
related to the mentioned wavelength specific effects of volume and surface scattering (Ch. 2.2.3). 

 

Fig. 5.38: VNIR/SWIR (left) and MWIR/LWIR (right) reflectance and continuum removed spectra of a stainless 
steel slag sample of different grain sizes. 

In contrast to the examples described beforehand, individual samples showed a differing spectral 
behaviour after drying and sample preparation (Figure 5.39). For example, a sample collected at 
the excavator prospecting close to the “Sinterhang” at the “Plateau 272” of the Unterwellenborn 
dump, which most likely represents a mixture of blast furnace slag with other materials, showed a 
group of absorption features between 1400 and 1550 nm as well as between 2220 and 2270 nm 
that are caused by water vibrations and typical for gypsum (see e.g. Hunt et al. 1971b, Fig. 5.39a). 
These features are faintly visible in the spectrum of the moist sample and more pronounced in 
the spectrum of the air-dried sample. These distinct features are not visible in the spectrum of the 
< 90 µm material, although gypsum has been verified via XRD analysis to be a minor mineral 
phase of this sample (see Appendix 5.1 for XRD results, sample 21-3). 

 

Fig. 5.39: Reflectance and continuum removed spectra of unprepared samples near in situ moisture, air-dried samples 
and crushed samples < 10 mm and < 90 µm. a) Sample most likely representing a mixture comprising blast furnace 
slag and other materials, b) EAF slag (carbon steelmaking). 

a) b) 
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This indicates that in individual cases, features of specific mineral phases present in the sample 
might be spectrally detectable in the unprepared samples but not in the homogenised samples. 
Possibly, gypsum was formed as a weathering product and formed a spectrally dominant coating 
that was destroyed by crushing the sample and thus spectrally less dominant in the homogenised 
powder. Noticeable observations were also made for the EAF slag from carbon steelmaking (Fig. 
5.39b). The unprepared sample was of higher reflectance compared to the prepared samples, 
which might be related to the arrangement of the larger sample specimen and the illumination 
geometry. Furthermore, distinct changes in the absorption features were observed. The EAF slag 
exhibited a distinct feature at 680 nm most likely related to Fe3+ in the spectra of the moist and 
the air-dried sample. This feature was not present in the spectrum of the powdered sample 
anymore. Most likely, an oxide-crust covered the hand-samples, which was not spectrally 
detectable after sample preparation and homogenisation. 

While the impact of weathering was not exhaustively studied within this work, effects of 
weathering crusts on spectral analyses of rocks and minerals were for example mentioned in 
Geerken (1991), who pointed out that such crusts might mask spectral characteristics that are 
visible in prepared samples. Zhou and Wang (2017) discussed weathering products of natural 
rocks and showed that weathering crusts might be similar or different to the spectral properties 
of a fresh rock. The examples provided in this chapter indicate that such findings are also true for 
anthropogenic materials found at iron- and steelworks disposal sites to a certain degree. 

According to Salisbury et al. (1988), the spectral features of silicates tend to be nearly diminished 
at very fine grain sizes and only strong reststrahlen bands remain detectable. This might be a 
further explanation of the very low reflectance intensities observed for the wavelength range 
> 9000 nm and the low contrast of the spectral features in this range. However, as demonstrated 
in Figure 5.38, the general presence of the absorption features and their shape did not 
substantially change in the exemplarily studied sample at different grain sizes. As already 
mentioned earlier, spectral features might invert from reflectance peaks to troughs at specific 
grain sizes (Zaini et al. 2012). However, at least for the example described above, no such effects 
were observed. 

The < 90 µm material mainly used in this study granted an optimal comparability of the samples 
in terms of their grain size and allowed to optimally link the results of the spectral measurement 
to the results of the chemical and mineralogical analysis as both were conducted on the same 
material. However, the described observations imply that the grain size of < 90 µm might not be 
preferable in every case for qualitative and thus potentially also for quantitative spectral analysis 
of iron- and steelworks by-products. Coarser fractions, e.g. the commonly used fraction > 2 mm 
in the case of soil spectroscopy, might be more suitable in certain situations. However, the 
specific impacts of moisture and grain size on the spectral identification of the mineral phases in 
iron- and steelworks by-products require further research. To assess the impact of moisture and 
sample aggregation for the quantification of chemical constituents in iron- and steelworks by-
products, the spectra of unprepared and moist samples were additionally used as input for the 
PLSR model runs (see Chapter 5.6.6). 
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5.6 Spectral Quantification of Iron- and Steelworks By-Product Constituents 

This chapter will present the PLSR results achieved using the VNIR/SWIR, MWIR/LWIR and 
VNIR-LWIR ranges. Among the plurality of chemical constituents, parameters were selected 
which were present in considerable amounts in all samples (> 3 m% on average) and for which at 
least 30 calibration as well as validation samples were available. These parameters comprised 
major constituents used to characterise iron- and steelworks by-products (e.g. Al2O3, CaO, Fetotal, 
MgO, H2O, TIC). Additionally, Fe2O3, FeO and ∑(Mo, Ni, V, Zn, Al, Cr, Fe, Mn) were included, 
as these are parameters often analysed in spectral-geochemical studies or of potential relevance 
for assessing the raw material potential of iron- and steelworks by-products. For these 
constituents, fewer samples were available. The formation of the calibration and validation pools 
was realised using the DUPLEX sampling algorithm as described in Chapter 4.7.2.1. The mill 
scale sample was excluded from the PLSR modelling as this spectrum was basically flat, showed 
noticeable noise and caused outliers and unnecessary model complexity. The applied outlier 
removal procedure (see Ch. 4.7.2.1) further caused a minor decrease of the available samples 
compared to the numbers given in previous tables (e.g. Tab. 5.3 in Chapter. 5.3). 
 

5.6.1 Modelling Results Based on VNIR/SWIR Spectra 

Based on the VNIR/SWIR data, solid prediction results were obtained for CaO (R²val = 0.78), 
Fetotal (R²val = 0.81) and Fe2O3 (R²val = 0.83) (Tab. 5.33). The number of factors used in these 
models varied from seven to eight. Thus, the model complexity used for predicting these 
constituents was considered moderate. The RMSEval for CaO was 5.85 m%, for Fetotal 3.14 m% 
and for Fe2O3 2.79 m%. Regarding the ranges of the contents of these constituents (CaO = 
54.46 m%, Fetotal = 46.90 m%, Fe2O3 = 46.56 m%), the achieved prediction errors were 
considered low. For MgO, the overall model performance was moderate. The validation 
outcomes for the remaining parameters did not indicate reliable prediction capabilities. Scatter 
plots showing the PLSR validation results for CaO, Fetotal and Fe2O3 are given in Fig. 5.40. The 
residuals of the predicted and observed values were normally distributed for all reliable models 
(R²val > 0.6), and the mean of the residuals did not significantly differ from zero. The only 
exception was CaO. Here, the scatter plot revealed that individual outliers caused this effect. 

Tab. 5.20: PLSR results based on VNIR/SWIR spectra for 10 by-product constituents (cal = calibration, 
val = validation, NF = number of PLSR factors, CR = continuum removal). Residuals were evaluated using Shapiro-

Wilk tests for normal distribution (see psh-values) and Student´s t-test for mean analyses (see pt-values). 

 N 
Preprocessing

R² RMSE RPD Residuals 
 N NF cal val cal val cal val psh pt 

Al2O3 49 4 CR 0.53 0.44 3.96 2.80 1.47 1.29 0.74 0.73 

CaO 50 8 Absorbance 0.75 0.78 7.37 5.85 2.03 2.01 0.40 0.02 

Fetotal 47 7 Absorbance 0.76 0.81 4.45 3.14 2.07 2.20 0.38 0.09 

Fe2O3 18 7 CR 0.70 0.83 4.68 2.79 1.87 2.13 0.34 0.03 

FeO 17 4 CR 0.67 0.39 3.46 1.67 1.80 1.11 0.71 0.90 

H2O 47 4 Absorbance 0.27 0.17 3.52 3.71 1.18 1.05 0.00 0.21 

MgO 49 4 CR 0.50 0.62 2.08 1.69 1.42 1.62 0.68 0.49 

SiO2 48 6 Reflectance 0.48 0.46 9.64 7.59 1.40 1.35 0.02 0.75 

TIC 49 4 Absorbance 0.46 0.49 5.10 3.96 1.38 1.40 0.69 0.68 

∑metals* 21 3 Absorbance 0.55 0.28 6.76 5.77 1.52 1.18 0.05 0.85 

                      *∑(Mo, Ni, V, Zn, Al, Cr, Fe, Mn) 
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Fig. 5.40: PLSR results based on VNIR/SWIR spectra for selected iron- and steelworks by-product constituents. 

 

5.6.2 Modelling Results Based on MWIR/LWIR Spectra 

PLSR results obtained using the MWIR/LWIR spectra are provided in Table 5.34. In comparison 
to the VNIR/SWIR predictions, distinctively better validation results were observed for Al2O3 

(R²val = 0.68), SiO2 (R²val = 0.82), TIC (R²val = 0.77) and ∑(Mo, Ni, V, Zn, Al, Cr, Fe, Mn) (R²val = 
0.78), indicating more powerful prediction capabilities of PLSR models based on the mid- and 
longwave infrared spectra for these constituents. The prediction results for CaO could be 
improved (R²val = 0.89, RMSEval = 4.74 m%), for which a less complex model (5 factors instead 
of 8) was required compared to the VNIR/SWIR range. For Al2O3, an increase in model 
performance (R²val = 0.68, RMSEval = 2.28 m%) was obtained at the cost of a more complex 
PLSR model (8 factors instead of 4). The results for Fetotal were only slightly worse (R²val = 0.79, 
RMSEval = 3.27 m%) but fewer factors were necessary to build this prediction model. In contrast, 
the predictive capabilities for Fe2O3 were distinctively worse compared to the VNIR/SWIR 
spectra based PLSR models. Thus, most of the constituents could be more precisely estimated 
using MWIR/LWIR data, but individual components (Fe2O3) could be distinctively better 
estimated based on VNIR/SWIR data. Scatter plots for the six best prediction results obtained 
using the MWIR/LWIR range are given in Figure 5.41. For CaO, the trend and target lines nearly 
matched, indicating a well fitted and robust prediction model. For the other parameters the slope 
and offset of the trend lines showed larger deviations from the expected line. Comparable to the 
results obtained based on the VNIR/SWIR spectra driven PLSR models, the predicted values for 
samples with very low contents were negative in a few cases (Al2O3, Fetotal), which is a result of 
the prediction uncertainty. 
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Tab. 5.21: PLSR results based on MWIR/LWIR spectra for 10 by-product constituents (cal = calibration, 
val = validation, NF = number of PLSR factors, CR = continuum removal). Residuals were evaluated using Shapiro-

Wilk tests for normal distribution (see psh-values) and Student´s t-test for mean analyses (see pt-values). 

 N 
Preprocessing

R² RMSE RPD Residuals 
 N NF cal val cal val cal val psh pt 

Al2O3 49 8 Absorbance 0.74 0.68 2.53 2.28 1.98 1.72 0.06 0.88 

CaO 49 5 Absorbance 0.88 0.89 9.31 4.04 2.93 2.91 0.72 0.60 

Fetotal 47 5 Absorbance 0.70 0.79 5.27 3.27 1.86 2.12 0.59 0.13 

Fe2O3 18 4 Absorbance 0.71 0.28 3.57 5.78 1.90 1.00 0.35 0.04 

FeO 17 2 CR 0.77 0.27 1.28 1.89 2.17 1.12 0.03 0.70 

H2O 46 2 Reflectance 0.46 0.39 3.33 2.98 1.37 1.28 0.77 0.77 

MgO 48 6 Absorbance 0.65 0.50 2.04 1.97 1.70 1.30 0.02 0.03 

SiO2 47 4 CR 0.70 0.82 7.11 4.44 1.83 2.33 0.54 0.54 

TIC 48 6 Absorbance 0.72 0.77 3.54 3.00 1.92 2.00 0.03 0.07 

∑metals* 21 3 CR 0.63 0.78 5.89 3.42 1.68 2.15 0.84 0.94 

   *∑(Mo, Ni, V, Zn, Al, Cr, Fe, Mn) 

 

 

 

Fig. 5.41: PLSR results based on MWIR/LWIR spectra for selected iron- and steelworks by-product constituents. 
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5.6.3 Modelling Results Based on VNIR-LWIR Spectra 

Table 5.35 provides the best PLSR modelling results obtained using the combined information of 
the VNIR/SWIR and the MWIR/LWIR range. The most solid prediction models were obtained 
for CaO (R²val = 0.95), Fetotal (R²val = 0.90), TIC (R²val = 0.85), SiO2 (R²val = 0.80) and ∑(Mo, Ni, V, 
Zn, Al, Cr, Fe, Mn) (R²val = 0.80). Validation results with an R²val between 0.62 and 0.72 were 
achieved for the constituents Al2O3, Fe2O3 and MgO. In contrast to the model performances for 
H2O utilising either the VNIR/SWIR or the MWIR/LWIR range, the results from PLSR 
modelling based on the combined ranges lead to moderate results (R²val = 0.56). For FeO, the 
predictive performance could be improved as well. However, the validation results still did not 
indicate a robust prediction capacity. The number of factors (components) used for the models 
varied between one and nine, whereas higher numbers of factors indicate more complex models. 
The best CaO calibration model was slightly more complex (six factors) compared to the 
MWIR/LWIR based model (5 factors). Thus, the improvements in model performance for 
predicting individual constituents in the models using the combined wavelength ranges came at 
the cost of higher model complexity in some cases. 

Tab. 5.22: PLSR results based on VNIR-LWIR spectra for 10 by-product constituents (cal = calibration, 
val = validation, NF = number of PLSR factors, CR = continuum removal). Residuals were evaluated using Shapiro-

Wilk tests for normal distribution (see psh-values) and Student´s t-test for mean analyses (see pt-values). 

 N 
Preprocessing

R² RMSE RPD Residuals 
 N NF cal val cal val cal val psh pt 

Al2O3 49 5 CR 0.71 0.67 3.47 2.29 1.88 1.72 0.24 0.13 

CaO 49 6 Absorbance 0.91 0.95 6.21 2.82 3.44 4.54 0.65 0.94 

Fetotal 47 5 Absorbance 0.76 0.90 4.79 2.21 2.06 3.08 0.20 0.33 

Fe2O3 18 4 CR 0.86 0.72 3.58 2.65 2.72 1.86 0.63 0.24 

FeO 17 1 Reflectance 0.53 0.47 1.29 2.46 1.50 1.02 0.21 0.01 

H2O 46 5 CR 0.54 0.56 3.21 2.57 1.50 1.46 0.17 0.06 

MgO 48 9 Reflectance 0.61 0.62 2.56 1.76 1.62 1.43 0.17 0.57 

SiO2 47 9 Absorbance 0.86 0.80 7.89 4.07 2.67 2.25 0.20 0.50 

TIC 48 7 CR 0.73 0.85 4.32 2.14 1.95 2.62 0.32 0.54 

∑metals* 21 4 CR 0.71 0.80 4.73 3.26 1.90 2.20 0.38 0.27 

   *∑(Mo, Ni, V, Zn, Al, Cr, Fe, Mn) 

For the PLSR models assumed to provide solid estimations (R²val > ca. 0.8), the root mean square 
errors (RMSEval, see Table 5.35) were ca. 2 m% for TIC and Fetotal, and between ca. 2.8 and 
4.1 m% for CaO, SiO2 and ∑(Mo, Ni, V, Zn, Al, Cr, Fe, Mn). This is considered low and thus 
indicates suitable predictive capabilities for these constituents. In general, RPD values of 2-2.5 are 
assumed to provide suitable “approximate quantitative predictions”, models with RPD values of 
2.5-3 can be considered as good and RPD values > 3 indicate high prediction capabilities (see 
Zornoza et al. 2008). According to this classification and regarding the calibration as well as the 
validation accuracies of the most promising results obtained in this set-up, the predictive 
capabilities of the formed PLSR models can be considered in the range of “moderate” (Fetotal, 
SiO2, TIC, ∑(Mo, Ni, V, Zn, Al, Cr, Fe, Mn) to very precise (CaO). It should be mentioned at 
this point that the utilisation of the RPD for assessing predictive performances of statistical 
models is critically discussed by individual authors (Minasny and McBratney 2013). 
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The scatterplots of predicted and observed values are provided in Figure 5.42. These plots 
indicate good fitted models for CaO, TIC and SiO2, as the trend lines nearly fit the target lines. 
The outcome of the statistical analysis of the model residuals showed that all residuals were 
normally distributed and their mean value did not significantly differ from zero (see psh and pt 
values in Tab. 5.35). This means, that the models do not contain systematic errors, e.g. systematic 
over- or underestimations, which confirms the robustness of the developed prediction models. 

 

 

 
Fig. 5.42: PLSR results based on VNIR-LWIR spectra for selected iron- and steelworks by-product constituents. The 

spectral preprocessings correspond to Table 5.35.   
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5.6.4 Important Variables for the Prediction 

This chapter will focus on the importance of the predictor variables (i.e. the wavelengths), for the 
PLSR models based on VIP scores (Variable Importance in Projection, see Chapter 4.7.3). As the 
complete analysis of the important variables for the entirety of all calculated PLSR models, 
considering all chemical constituents, preprocessings and wavelength ranges, is out of scope of 
this work, the following paragraphs will provide the VIP scores for a selection of relevant 
chemical parameters for which the best models were obtained per wavelength range (Fig. 5.43, 
see Appendix A5.13 for further plots). For orientation, a horizontal line at VIP scores of one is 
added to the plots, as this value is commonly used to separate important from less important 
variables for the prediction (see e.g. Liu et al. 2014, Kawamura et al. 2017, Pinheiro et al. 2017). 

Among the plurality of different wavelength ranges found to be influential in the predictions of 
the various constituents, several wavelengths could be assigned to specific absorption features 
discussed earlier. As such, the absorption features near 1400 and 1900 nm, which are typically 
associated with OH and H2O vibrations (e.g. Hunt 1980), respectively, were found to be largely 
influential in the VNIR/SWIR PLSR models for estimating Al2O3 and of less relevance for 
modelling CaO, Fe2O3 and SiO2 (Fig. 5.43). These wavelengths were of subordinate relevance in 
the models calculated using the combined spectral ranges. The visible light (and partially the near 
infrared) was relevant for the prediction of Fetotal, Fe2O3 and ∑(Mo, Ni, V, Zn, Al, Cr, Fe, Mn). 
This is plausible as metals are known to show distinct absorptions due to electronic processes in 
the VNIR range or indirectly affect the VIS, e.g. the distinct drop in reflectance due to iron (see 
Chapter 2.2.2.1). As discussed earlier, it has to be considered that most of the samples contain a 
variety of different metals in larger quantities and the observed peaks in the VIP scores might 
reflect potentially overlapping features or contributions from various electronic processes, which 
hampers the assignment to individual metals. The PLSR predictions for the other parameters 
based on VNIR/SWIR spectra were mainly driven by VNIR wavelengths as well (see Fig. 5.43), 
indicating indirect relations of these chemical constituents to this spectral region. 

The important wavelengths in the MWIR/LWIR were found to be much more variable 
compared to the VNIR/SWIR. In this range, distinct relations between peaks in the VIP scores 
and absorption features in the spectra were found as well. As such, the prominent H2O features 
near 2900 and 6100 nm (e.g. Hunt 1977) were found to be influential for the prediction of 
various constituents (e.g. TIC). The sharp peak in the VIP-scores near 2740 nm resembles most 
likely the fundamental hydroxyl feature. Even though hardly visible in most of the sample 
spectra, the OH fundamental was interpreted to be of considerable relevance for the prediction 
of e.g. Fe2O3, TIC and the summed metal parameter. Minor maxima in the VIP scores near 3890 
and 5560 nm, the broader maximum occurring near 7000 nm and the peak close to 11400 nm are 
corresponding to carbonate features (see Ch. 5.5.2.2). These wavelengths were relevant for 
predicting e.g. CaO and TIC, which are considered to be related to the carbonate content. The 
VIP scores indicated that the VNIR/SWIR range is of distinctly lower importance for the 
prediction of SiO2 compared to the MWIR/LWIR range in the models using the combined 
wavelength ranges. This is plausible as silicates are known to show distinct features preferably in 
mid- and longwave infrared (see Chapters 2.2.2.2 and 5.5.2.2). In fact, the models for the 
prediction of SiO2 were mainly driven by the wavelength range > 6000 nm. The PLSR 
predictions of Fetotal based on the MWIR/LWIR and VNIR-LWIR range were driven mainly by 
wavelengths near 6000 nm and between ca. 8000 and 10000 nm. 
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Fig. 5.43: VIP scores for the best PLSR models obtained for Al2O3, CaO, Fetotal, Fe2O3, SiO2, TIC and ∑(Mo, Ni, V, 
Zn, Al, Cr, Fe, Mn) using VNIR/SWIR, MWIR/LWIR as well as VNIR-LWIR spectra. R²val values and the 

preprocessing type (CR = continuum removal) utilised for building the specific models are additionally provided. 

Overall, the interpretation of the VIP scores emphasised the findings described earlier in this 
work. As such, only moderate correlations between the contents of the chemical constituents and 
the depths of spectral features, which were shared by the majority of samples, were found 
(Chapter 5.5.2.3). In some cases, distinct trends between feature characteristics and chemical 
constituents were noticeable while the variations of the same features could not be related to 
identical constituents for other by-products types (see Chapter 5.5.3). Thus, the VIP scores and 
as such the influential wavelengths for the prediction of the chemical constituents reflected the 
large heterogeneity of material types with varying spectral signatures and largely differing 
composition. Consequently, the influential wavelengths as determined using the VIP scores are 
not necessarily related to individual or multiple absorption features present in the spectra and 
might reflect purely statistical relationships to a certain degree. The VIP scores provide a basis for 
the selection of specific variables, i.e. wavelengths, for a subsequent model optimisation. 
However, the overall model complexity was already considered moderate (see Ch. 5.6.1-5.6.3). 
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PLSR is supposedly robust to noise and thus only the lower and upper wavelengths of the spectra 
were removed in order to use as much spectral information as possible. However, noise might 
have contributed to the models especially in the range > 12000 nm. It must be further considered 
that the VIP scores of the models are different depending on the preprocessing applied to the 
spectra, making the interpretation of important variables for the predictions more complex. In 
order to avoid altering the original spectral information recorded by two different spectrometers 
used in this work, no adjustment of the VNIR/SWIR and MWIR/LWIR data was conducted to 
match the border area of the spectra. While not observed in the VIP scores, these regions might 
have been influential for the prediction in individual cases. An adjustment of the spectra to match 
the reflectance values might reduce this effect but would alter the original data. 

 
5.6.5 Summarised Model Assessment and Discussion  

The predictive capabilities (R²val, RMSEval) of the PLSR models based on the VNIR/SWIR, 
MWIR/LWIR or the VNIR-LWIR data are summarised in Table 5.36. The models based on 
VNIR/SWIR data showed a better performance for predicting Fetotal and Fe2O3 than the 
MWIR/LWIR models. This can be explained by the fact that metal ions are known to produce 
features due to electronic processes in the VNIR (see Chapters 2.2.2.2 and 5.5.2.2). The high 
influence of the VNIR wavelengths as visible in the VIP scores in VNIR/SWIR models (see 
Chapter 5.6.4) underlines this assumption. Distinctly better results with the MWIR/LWIR range 
were achieved for SiO2, TIC and the summed metal parameter. An explanation for the better 
predictive capabilities for the estimation of the SiO2 content is that silicates are known to show 
distinct spectral characteristics mainly in the MWIR-LWIR (e.g. Hunt 1980). The superior 
performance of the models based on MWIR/LWIR data for predicting the TIC content is related 
to the presence of various carbonate absorption features in the MWIR/LWIR range. In contrast, 
the VNIR/SWIR spectra did not exhibit distinct characteristics related to carbonates (see 
Chapter 5.5.2.2). Less strong but still considerable improvements were achieved for predicting 
Al2O3 and CaO. The combination of the VNIR/SWIR and MWIR/LWIR ranges provided larger 
R²val in six cases and lower RMSEval for seven of the 10 studied constituents. As mentioned 
earlier, this increase in prediction accuracy comes at the cost of higher model complexity in some 
cases, i.e. higher numbers of factors used in the PLSR models. 

Tab. 5.23: R²val and RMSEval of the PLSR models using VNIR/SWIR, MWIR/LWIR or VNIR-LWIR spectra. 

Parameter 
 R²val  RMSEval (m%) 

 VNIR/SWIR MWIR/LWIR VNIR-LWIR  VNIR/SWIR MWIR/LWIR VNIR-LWIR 

Al2O3  0.44 0.68 0.67  2.80 2.28 2.29 
CaO  0.78 0.89 0.95  5.85 4.04 2.82 

Fetotal  0.81 0.79 0.90  3.14 3.27 2.21 

Fe2O3  0.83 0.28 0.72  2.79 5.78 2.65 

FeO  0.39 0.27 0.47  1.67 1.89 2.46 

H2O  0.17 0.39 0.56  3.71 2.98 2.57 

MgO  0.62 0.50 0.62  1.69 1.97 1.76 

SiO2  0.46 0.82 0.80  7.59 4.44 4.07 

TIC  0.49 0.77 0.85  3.96 3.00 2.14 

∑metals*  0.28 0.78 0.80  5.77 3.42 3.26 

   *∑(Mo, Ni, V, Zn, Al, Cr, Fe, Mn) 

The number of studies available on the quantitative prediction of chemical constituents of large 
heterogeneous pools of iron- and steelworks by-products utilising reflectance spectra covering 
different wavelength ranges is limited. Therefore, the observed results are briefly discussed 
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considering studies on soil parameters. Various studies found better predictions for metal 
constituents like Cd, Cu, Pb and Zn utilising MWIR/LWIR data compared to the VNIR/SWIR 
range, while for other parameters opposing results were obtained (e.g. Siebielec et al. 2004, Dong 
et al. 2011). In works of other authors, better capabilities for estimating the contents of metallic 
trace elements based on VNIR/SWIR spectra were found (e.g. Moros et al. 2009, Song et al. 
2012). In Riedel et al. (2018), the prediction results for various metals were distinctively better in 
the models based on MWIR/LWIR spectra compared to the results achieved using VNIR/SWIR 
spectra in PLSR models. In this work, the results for ∑(Mo, Ni, V, Zn, Al, Cr, Fe, Mn) were 
more promising based on MWIR/LWIR spectra models, while Fetotal and Fe2O3 could be better 
predicted using the VNIR/SWIR data. In Eisele (2014), promising results for predicting SiO2 and 
Al2O3 using MWIR/LWIR data were found, which was observed in this work as well. The solid 
results obtained for predicting CaO and MgO in this study are comparable to the results obtained 
in Picón et al. (2017), despite that study focussed solely on LF slag. 

In summary, the outcome of the PLSR modelling conducted in this thesis demonstrated that 
attention must be paid when providing generalised recommendations on which wavelength range 
to use for the spectral estimation of chemical constituents typically found in iron- and steelworks 
by-products. It was found that the successful quantitative assessment of such parameters is 
dependent on the specific chemical constituent to be estimated. According to the observed 
results, the robust prediction of individual constituents requires MWIR/LWIR data, especially for 
SiO2, TIC and ∑(Mo, Ni, V, Zn, Al, Cr, Fe, Mn. In contrast, PLSR models based on the 
VNIR/SWIR spectra are suggested to be used for predicting Fe2O3. For other constituents, e.g. 
CaO and Fetotal, reliable predictions can be achieved using either the VNIR/SWIR range or the 
MWIR/LWIR. For most of the studied chemical constituents, the highest prediction accuracies 
in terms of R²val and RMSEval were obtained using the combined VNIR/SWIR and MWIR/LWIR 
data. However, while the differences in performance of the PLSR models based on either the 
VNIR/SWIR or the MWIR/LWIR data were substantial for various constituents, the observed 
improvements after combination of the two spectral ranges were less distinct. 

The PLSR results further indicated that model outcomes vary not only depending on the utilised 
wavelength range but also on the preprocessing applied to the spectra. The models fitted to 
preprocessed spectra outperformed the PLSR models utilising the unmodified reflectance data in 
most cases. Here, different preprocessings provided differing results for the individual 
wavelength ranges. This can be explained, as one parameter might be better estimated based on 
the general reflectance or absorbance properties e.g. in the VNIR/SWIR, while continuum 
removal might highlight relevant spectral features in the MWIR/LWIR wavelength range. 
However, making generalised statements or recommendations for which preprocessing to use is 
difficult. These findings are in agreement with observations made in various studies focussing on 
the spectral quantification of soil parameters. Here, the modelling results varied depending on the 
spectral preprocessing and the wavelength range used as well (e.g. Kooistra et al. 2001, Moros et 
al. 2009, Riedel et al. 2018). The observations within the specific set-up applied in this work, 
comprising a heterogeneous sample pool and different wavelength ranges, indicated that the 
answer on the question “which preprocessing to choose” is case-dependent. The utilisation of 
absorbance and continuum removed spectra in addition to the unmodified reflectance spectra 
was found recommendable in order to assess the full potential of VNIR/SWIR and 
MWIR/LWIR data for quantifying typical constituents of iron- and steelworks by-products.
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5.6.6 Modelling Results Based on Spectra of Unprepared Samples 

This work focussed on the utilisation of VNIR/SWIR and MWIR/LWIR laboratory reflectance 
spectra of homogenised samples in order to provide a better understanding of the general 
potential of such data for quantifying chemical constituents of iron- and steelworks by-products. 
To assess the predictive capabilities of PLSR models based on spectra of materials closer to field 
conditions, model runs were conducted based on spectra of sample material with near in situ 
moisture as well as of air-dried but not further prepared material in addition to the models based 
on the spectra of homogenised powders < 90 µm. As MWIR/LWIR spectra could only be 
acquired of the powdered samples (see Chapter 4.6.1.2), this approach was realised solely on 
VNIR/SWIR spectra. Unprepared samples that were only present in form of larger unique 
specimen were excluded from this approach, resulting in partly lower numbers of samples 
compared to the models presented in Ch. 5.6.1-5.6.3. The focus was put on Al2O3, CaO, Fetotal 
and MgO, as these are relevant chemical constituents for characterising by-products associated 
with the iron and steel industry and moderate to promising prediction results for these 
constituents were achieved on the spectra of powdered sample material. 

Based on the spectra of air-dried but not further prepared samples, solid modelling results could 
be obtained for CaO (R²val = 0.76; Table 5.37). For Al2O3 and MgO, the results were moderate to 
promising (R²val = 0.57 and R²val = 0.67, respectively). While promising calibration results were 
obtained for Fetotal (R²cal = 0.60), the validation results did not indicate reliable predictive 
capabilities (R²val = 0.41). Scatter plots for the two best results are given in Figure 5.44. The 
RMSEval for CaO was 5.65 m%. This is nearly identical to the results achieved on the spectra of 
the < 90 µm material and indicates that reliable estimations for this constituent can also be made 
using spectra of air-dried but not further prepared material. 

Tab. 5.24: PLSR results based on spectra of air-dried samples for selected chemical parameters (cal = calibration, 
val = validation, F = number of PLSR factors, CR = continuum removal). Residuals were evaluated using Shapiro-

Wilk tests for normal distribution (see psh-values) and Student´s t-test for mean analyses (see pt-values). 

 N 
Preprocessing 

R² RMSE RPD Residuals 
 N F cal val cal val cal val psh pt 

Al2O3 35 5 Absorbance 0.61 0.57 3.78 2.59 1.61 1.52 0.62 0.30 

CaO 36 6 Absorbance 0.80 0.76 9.12 5.65 2.29 1.94 0.97 0.04 

Fetotal 34 2 CR 0.60 0.41 4.65 5.74 1.61 1.30 0.01 0.39 

MgO 35 6 CR 0.63 0.67 2.04 1.63 1.66 1.69 0.69 0.88 
 

 

 

Fig. 5.44: PLSR results based on VNIR/SWIR spectra of air-dried samples for the constituents CaO and MgO. The 
spectral preprocessings correspond to Table 5.37. 
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The PLSR results based on spectra of unprepared material with near in situ moisture are given in 
Tab. 5.38 and Fig. 5.45. Again, the most reliable predictions were found for CaO (R²val = 0.78). 
The model statistics for the other parameters were comparable to the model outcomes using air-
dried samples and are considered moderate. In relation to the model runs performed on the 
spectra of < 90 µm material, the results for Fetotal were distinctly worse using the spectra of the 
unprepared sample material. Possible reasons are related to the smaller number of samples which 
might be not optimal for the applied sample division approach and the formation of weathering 
crusts that might mask features relevant for predicting Fetotal to a certain degree. Furthermore, the 
subsamples taken in situ from the bulk samples (which were used for homogenisation and 
subsequent chemical analysis) might have encompassed minor local variations in iron content. In 
contrast, the results for Al2O3 and MgO were on a similar level to the results obtained using the 
air-dried samples and comparable to the PLSR outcome based on spectra of < 90 µm material. 

Table 5.25: PLSR results based on spectra of samples with near in situ moisture (cal = calibration, val = validation, 
F = number of PLSR factors). Residuals were evaluated using Shapiro-Wilk tests for normal distribution (see psh-

values) and Student´s t-test for mean analyses (see pt-values). 

 N 
Preprocessing

R² RMSE RPD Residuals 
 N F cal val cal val cal val psh pt 

Al2O3 35 4 CR 0.53 0.57 3.14 2.72 1.49 1.55 0.40 0.83 

CaO 36 6 Absorbance 0.78 0.78 9.21 5.84 2.14 2.04 0.06 0.25 

Fetotal 34 1 CR 0.66 0.49 6.92 4.52 1.75 1.39 0.14 0.26 

MgO 35 4 CR 0.64 0.68 2.27 1.46 1.69 1.74 0.05 0.15 

 

Fig. 5.45: PLSR results based on VNIR/SWIR spectra of unprepared samples for the constituents CaO and MgO. 
The spectral preprocessings correspond to Table 5.38. 

The model outcomes obtained for CaO were not only comparable to the results observed for the 
prediction based on air-dried sample material, but on a similar level to the CaO prediction based 
on the VNIR/SWIR spectra of homogenised samples < 90 µm as well. This was true in terms of 
R²val, RMSEval as well as RPDval. These findings are similar to results observed in a study on the 
PLSR-based prediction of the CaO content of limestone ore using spectra of wet and dry 
samples by Oh et al. (2017). These authors found that the most influential wavelengths for 
predicting CaO were 2350-2500 nm, which were less affected by moisture. In this thesis, the 
most influential wavelengths for predicting CaO using VNIR/SWIR spectra (of material 
< 90 µm, moist and air-dried samples) were found in the visible light and close to 2400 nm. 
These ranges were less affected by moisture as well. In summary, the obtained results 
demonstrate that for several chemical constituents typically used to characterise iron and steel 
industry by-products, especially CaO, reliable estimations can be achieved using VNIR/SWIR 
spectra of prepared samples as well as utilising spectra of material near in situ conditions. 
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6. Synthesis 

6.1 Summary and Discussion of the Research Questions 

As only few studies have focussed on this subject so far, this work contributes to extending the 
knowledge of reflectance properties of a variety of recent and historical iron- and steelworks by-
products that might be found at dump sites. Reflectance spectra covering the visible light, near 
and shortwave infrared (VNIR-SWIR) as well as the mid- and longwave infrared (MWIR/LWIR) 
region were recorded utilising field-portable instruments typically used in remote sensing or 
industrial applications. These spectra were comprehensively characterised. This thesis further 
assessed the spectral separability of various iron- and steelworks by-products and analysed the 
feasibility of the spectral quantification of chemical constituents of such materials using the 
individual wavelength regions and the combination of both ranges. 

The spectral analyses in this thesis relied on a heterogeneous pool of 102 samples representing a 
variety of recent and historic by-products of the iron and steel industry, encompassing blast 
furnace slag, granulated blast furnace slag, different electric arc furnace slags, ladle furnace slag, 
stainless steel slag as well as various dusts and sludges and material mixtures. This pool was 
formed based on multiple sampling campaigns conducted at the dump site of the today´s 
Stahlwerk Thüringen GmbH and was extended by selected materials not present at this site. 
Mineralogical and chemical constituents were determined and provided the basis for the 
typification of the collected materials as well as for the qualitative and quantitative spectral 
analyses. Spectral measurements were realised in the laboratory on prepared sample material 
< 90 µm. Further spectra of unprepared samples with near in situ conditions (unprepared moist 
and air-dried material) were acquired in the VNIR/SWIR range. 

The spectral analyses conducted in this thesis followed a deductive approach, which comprised 
three major objectives: 

1) A generalised spectral separability analysis to assess the potential for spectral discrimination of 
the different by-product types. This was achieved utilising principal component analysis (PCA), 
hierarchical clustering (HCA) and a support vector machine classification (SVMC). Additionally, 
the spectral detectability of selected by-product types was assessed using Spectral Feature Fitting 
(SFF) and Spectral Angle Mapper (SAM). 

2) The characterisation of the spectral properties of the major material types was conducted 
considering reflectance intensities, the presence of spectral features and the linking of parameters 
of these features to the chemical composition of the samples in order to assess potential 
relationships. This part further comprised the analyses of spectral variations occurring within by-
product classes considered relatively pure and the analysis of impacts of moisture and sample 
preparation on the spectra. 

3) The potential for spectrally quantifying chemical constituents of iron- and steelworks by-
products was assessed in the last part of this thesis. It was realised using partial least squares 
regression (PLSR) after separating the sample pool in calibration and validation data. Important 
variables, i.e. wavelength ranges, for the predictions were assessed using VIP scores. In order to 
analyse the possibilities for predicting chemical constituents based on material near in situ 
conditions, further PLSR model runs were performed utilising spectra of moist and unprepared 
sample material as well as spectra of air-dried, but not further prepared samples.  
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In the following, the outcome of this work will be summarised by answering the initially posed 
research questions (see Chapter 1.2): 

Objective I: Generalised spectral separability analysis of typical iron- and steelworks by-products 

Ia Which potential does reflectance spectroscopy offer for discriminating iron- and steelworks by-products? 

 Utilising PCA and HCA, the by-product types considered as relatively “pure” within the 
sample pool could be spectrally discriminated. The distinct separation of the blast furnace 
slag samples and several unspecified material mixtures was difficult, which is related to the 
more heterogeneous composition of these material types compared to the chemically and 
mineralogically (and spectrally) more homogeneous by-product classes (Ch. 5.4.1-5.4.3). 

 The results of the HCA (Ch. 5.4.5 and App. 5.5.1-5.5.3) of the spectral data showed a high 
agreement with the by-product types derived from the chemical and mineralogical analyses. 
This indicates a large suitability of the spectral discrimination of such materials. 

 SVMC results demonstrated the general classifiability of different iron- and steelworks by-
products (Ch. 5.4.6). Results based on SFF and SAM indicated a high potential of spectrally 
detecting major by-product types out of a variety of heterogeneous materials (App. 5.5.4). 

Ib Which spectral range and preprocessings are preferable? 

 The separability was more distinct based on the VNIR/SWIR spectra compared to the 
MWIR/LWIR data for most by-product types (Ch. 5.4). This indicates that the analysed by-
products showed a higher general spectral dissimilarity in the visible light, near and 
shortwave infrared region compared to the mid- and longwave infrared. In contrast, 
individual material types, e.g. the EAFS from medium-alloy steelmaking and sand-rich 
mixtures could be more clearly differentiated using the MWIR/LWIR range. Thus, it is 
recommendable to utilise both the VNIR/SWIR and MWIR/LWIR ranges for spectrally 
separating the large variety of materials potentially occurring at historic iron- and steelworks 
dump sites. However, a solid discrimination of the vast majority of different historical as well 
as recent by-products of iron- and steelmaking processes could be realised based only on the 
VNIR/SWIR range, which is covered by common field-portable spectrometers utilised in 
remote sensing applications. 

 The apparently poorer discrimination results obtained using the MWIR/LWIR spectra 
compared to the VNIR/SWIR data should not be misinterpreted, taking into account that 
the MWIR/LWIR covers a much wider wavelength range (ca. 2000-15000 nm) compared to 
the VNIR/SWIR (350-2500 nm). Consequently, the MWIR/LWIR data potentially comprise 
more information, i.e. spectral characteristics, of which some might be shared by a variety of 
materials while others might be unique. Utilising all this information without defining 
wavelength ranges of interest or diagnostic spectral features might hamper the spectral 
discrimination utilising generalised approaches. Especially SFF and SAM results 
demonstrated that the group internal spectral variability in the MWIR/LWIR was larger 
compared to the VNIR/SWIR and that minor variations in chemistry and mineralogy were 
stronger reflected in the MWIR/LWIR range (App. 5.5.4). The large spectral variations 
occurring within one material type might “blur the lines” between different material types. 
Thus, the outcomes of the generalised separability approaches based on the MWIR/LWIR 
data observed in this work do not necessarily mean that this region contains less relevant 
spectral information for material discrimination but that variable selection might be required. 
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 Aside from the wavelength range, the spectral separability of the studied by-products was 
variable depending on the spectrum type (reflectance, absorbance or continuum removed). 
Thus, certain material types (e.g. Thomas slag, AOD and EAF-foam slag) could be better 
separated from each other based on their reflectance or absorbance intensities while other 
by-product types (e.g. the converter sludge, granulated blast furnace slag) showed a better 
separability based on their absorption features. Overall, the spectral separability was for most 
materials best based on CR spectra, followed by absorbance and reflectance data (Ch. 5.4). 

Objective II: Building a spectral library for major iron- and steelworks by-products and 
characterising reflectance properties as well as major spectral features occurring in the spectra 

IIa What are the spectral properties of common iron- and steelworks by-products? 

 The reflectance of the different by-products varied strongly. Several material types showed 
reflectance intensities < 10% (e.g. the mill scale, the converter sludge, the EAF slag from 
carbon steelmaking). Other by-products, e.g. the GBFS and the slags from high-alloy 
steelmaking revealed high reflectance (up to > 50 % in the VNIR/SWIR; Ch. 5.5.1). 

 All samples were of low reflectance in the range > 9000 nm with only few well pronounced 
visible features. The low crystallinity of various material types, the presence of metallic iron 
and other opaque materials, and particularly the small grain size of the samples (< 90 µm) are 
likely to have contributed to this issue. In sludges, amorphous carbon is a further potential 
contributor to the overall low reflectivity (Ch. 5.5.2.1). 

 The large variety of differing chemical constituents impacted the reflectance intensities of the 
studied by-products and - as also true for soils and natural rocks - the spectrum of the by-
products is the result of the spectral properties of the individual constituents. For example, 
samples rich in CaO were found to show higher reflectance intensities than samples low in 
CaO. In contrast, Fetotal showed a strong negative impact on the sample reflectance and 
samples rich in iron were found to be of low reflectance, as especially obvious for the mill 
scale and the converter dedusting sludge (Ch. 5.5.2.1). 

 The dominant features in the VNIR were due to electronic processes in transition metals. 
Absorptions occurring near 380, 480, 700 and 870 nm could be linked to Fe3+ and features 
occurring near 1000 nm to Fe2+. The precise assignment of all observed absorptions was 
difficult due to the plurality of metals that potentially contribute to these features. Most 
spectra exhibited features near 1410 and 1920 nm related to OH and H2O. A distinct 
absorption near 2220 nm was present in almost all samples and was interpreted as hydroxyl 
or H2O feature. Although calcite was confirmed in the majority of samples via XRD analysis, 
no distinct carbonate features were found in the VNIR/SWIR (Ch. 5.5.2.2). 

 The MWIR/LWIR spectra of most samples exhibited a variety of carbonate features (at 
3980, 5560, 6800, 11360 and near 11700 nm). Minor carbonate features were present near 
3345 and 3475 nm for individual samples. Dominant H2O features were found in most 
sample spectra near 2900 and 6100 nm. Due to the low reflectance in the wavelength range 
> 9000 nm, the determination of features related to silicates was difficult. However, distinct 
patterns of reflectance maxima and absorption features could be assigned to wollastonite and 
gehlenite-akermanite. Quartz, which is considered an impurity, and which was found in 
several of the historic materials, could be identified based on a distinct reflectance maximum 
at 8180 nm and an absorption feature at 8654 nm. The spectra of the phosphate-rich 
Thomas slag samples showed features at 4674, 4878 and 5024 nm that were similar to 
features found in apatite reference spectra (Ch. 5.5.2.2). 
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IIb Which relationships between spectral features and chemical constituents can be observed? 

 Analyses of dominant features shared by most samples indicated moderate relationships for 
the depth of the H2O features at 1400, 1900, 2900 and 6100 nm and the H2O (crystal water) 
content. The position of the feature near 1900 nm was further found to shift towards longer 
wavelengths with increasing CaO content. The dominant carbonate absorption feature near 
6800 nm showed a distinct increase in depth with increasing CaO content. The Fetotal content 
negatively impacted the depth of the H2O feature at 6100 nm (Ch. 5.5.2.3). 

 Linking variations in spectral features observed within individual by-product classes to 
variations in their chemical composition provided strongly differing results. The strength of 
the VNIR absorptions present in selected blast furnace slag samples and the converter 
sludges showed positive relationships with the Fetotal content. For the H2O features at 1400 
and 1900 nm, a distinct increase in depth with increasing water content was found for the 
BFS and the stainless steel slag samples. The CaO content was positively related to the 
strength of the absorption near 6880 nm in the BFS. For the samples considered relatively 
“pure” historic GBFS, a positive relation between the depth of the feature at 3980 nm and 
the TIC content was observed. For the stainless steel slag samples, a positive relation was 
visible for the TIC content and the depths of the carbonate features near 5566 and 6900 nm. 
The variations in the major absorption features present in the spectra of the Thomas slag 
samples could not be clearly linked to variations in their chemistry (Ch. 5.5.3). 

 The contrasting observations are interpreted as a result of varying sample mineralogy and the 
multitude of chemical constituents, which are present in the different by-product types in 
strongly varying amounts and which might have opposing effects on the spectra. 
Furthermore, the differences in the chemical constituents within individual by-product types 
might have been too small to be reflected in the absorption feature characteristics. 

 The coefficients of variation of the reflectance and continuum removed spectra indicated a 
generally higher spectral variability in the MWIR/LWIR compared to the VNIR/SWIR. This 
affirms the findings of the spectral separability analyses, where a higher group-internal 
spectral variability is likely to have caused the worse discriminability using the complete mid- 
and longwave infrared spectra compared to the VNIR/SWIR data (Ch. 5.5.3). 

 These findings indicate that a direct linking of absorption depths to contents of chemical 
constituents is not suitable for their quantification based on a very heterogeneous sample 
pool as utilised in this work. This underlines the necessity for the chosen multivariate 
approach in order to quantify chemical constituents based on the recorded spectral data. 

IIc What is the impact of moisture and sample preparation on spectra of iron- and steelworks by-products? 
 Air-drying and the subsequent decrease in sample moisture led to an increase in reflectance 

and to lesser depths of the water absorptions near 1400 and 1900 nm as known from the 
literature (e.g. Bowers and Hanks 1965, Baumgardner et al. 1986) (Ch. 5.5.4). 

 Sample homogenisation and sieving to grain sizes < 90 µm caused a distinct increase in 
reflectance and a decrease in contrast of spectral features in both wavelength ranges due to 
shifts in the ratio of volume and surface scattering with decreasing grain size (Ch. 5.5.4). 

 While the general shape of the spectra was not distinctly altered in most cases by air-drying 
or sample preparation, individual materials showed masking effects due to moisture and 
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spectral deviations after preparation. This has potential implications on qualitative and 
quantitative analyses of by-products based on field data (Ch. 5.5.4). 

 The spectra of the homogenised materials < 90 µm allowed an optimal linkage of the 
chemical and spectral properties as identical materials were used for the chemical, 
mineralogical and spectral measurements. However, individual spectral features were more 
pronounced in the spectra of material of larger grain sizes and nearly diminished in the 
spectra of the powdered samples. For example, Si-O features in silicates are known to be 
“[...] greatly diminished and distorted in reflectance spectra of powdered rocks” (Salisbury et 
al. 1988). For carbonates, inversions of reflectance maxima to minima were observed with 
small grain sizes in the study by Zaini et al. 2012. This indicates that the < 90 µm fraction 
might not be ideal for spectral analyses in every case.  

 The small grain size is likely to have contributed to the low reflectance intensities in the 
range > 9000 nm, as small grains cause micro-shadowing and the voids between the particles 
might induce a so-called cavity effect (Salisbury and Wald 1992; Ch. 5.5.4). However, spectra 
of individual samples of larger grain size indicated that the general presence and shape of 
features in the MWIR/LWIR did not substantially change for the different grain size 
fractions in this work (Ch. 5.5.4). 

Objective III: Spectral quantification of constituents of iron- and steelworks by-products 

IIIa Which chemical constituents of iron- and steelworks by-products can be spectrally predicted? 

 For a variety of major iron- and steelworks by-product constituents, robust PLSR prediction 
results (R²val = 0.8-~0.9) were obtained. These comprise: CaO, Fetotal, Fe2O3, SiO2 TIC and 
∑(Mo, Ni, V, Zn, Al, Cr, Fe, Mn). For further parameters, including Al2O3 and MgO, 
promising PLSR results (R²val = 0.6-0.7) were achieved, indicating suitable spectral predictive 
capabilities for these constituents (Ch. 5.6.1-5.6.3). 

 The RMSEs for the best validated prediction results ranged between ca. 2-3 m% for Al2O3, 
CaO, Fetotal, Fe2O3, MgO and TIC; and between ca. 3-4 m% for SiO2 and ∑(Mo, Ni, V, Zn, 
Al, Cr, Fe, Mn). These prediction errors are considered low, which indicates a high suitability 
and promising accuracies of the spectral predictions for screening applications (Ch. 5.6). 

 RPD values for the models ranged between ca. 2-3 for SiO2, TIC and Fetotal, and reached 4.5 
for CaO. This implies a reliable model robustness and indicates a high potential for the 
utilisation of spectral predictions of these constituents (Ch. 5.6.1-5.6.3). 

IIIb Which spectral range provides the best results for which constituent? 

 For Fetotal and Fe2O3, the PLSR models based on VNIR/SWIR spectra provided the best 
results. The MWIR/LWIR data provided better prediction capabilities for the other chemical 
constituents. However, for Al2O3, CaO and MgO, promising predictions could be realised 
based on VNIR/SWIR data with relatively high accuracy as well (Ch. 5.6.1-5.6.5). 

 The combination of both spectral ranges increased the R²val and decreased the RMSEval for 
most of the parameters compared to the model results obtained using either the 
VNIR/SWIR or the MWIR/LWIR. However, these improvements in model performance 
were not as strong as between the individual wavelength ranges and came at the cost of 
higher model complexity in some cases (Ch. 5.6.1-5.6.5). 
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IIIc Which impacts do different preprocessings have on the model performance? 

 Similar to the outcome of the spectral separability analyses, distinct differences in the PLSR 
model performance were observed depending on the spectral preprocessings and the chosen 
wavelength range as a result of the material-specific spectral properties (Ch. 5.6.1-5.6.5). 

 In general, the application of continuum removal and absorbance preprocessing in addition 
to the utilisation of the unmodified spectra was found recommendable to assess the full 
potential of the spectral data for quantifying the chemical by-product constituents. 

IIId Which variables are important for the spectral prediction of chemical constituents? 

 Individual or multiple wavelength regions associated with specific spectral features as well as 
wavelengths with no visible relation to absorption features or reflectance maxima 
contributed to the PLSR models, indicating indirect statistical relations (Ch. 5.6.4). 

 Wavelengths associated with H2O features near 2900 and 6100 nm were found to be relevant 
for the prediction of various constituents. The sharp peak in the VIP-scores near 2740 nm 
was interpreted to be related to the hydroxyl fundamental vibration and was of considerable 
relevance for the prediction of e.g. CaO, and SiO2. The carbonate features at 3890, 5560, 
7000 and near 11400 nm were relevant for predicting CaO and TIC. For predicting CaO and 

Fetotal using the VNIR/SWIR spectra, the VIS was of high relevance (Ch. 5.6.4). 

IIIe Which prediction results can be obtained based on spectra of materials near in situ conditions? 

 As discussed in IIc, sample preparation and in situ moisture had noticeable impacts on the 
spectra of the by-products with potential implications for quantification purposes. 

 The prediction results for CaO, one of the most commonly used constituents to chemically 
characterise iron- and steelworks by-products, were found to be basically unaffected by 
moisture and sample preparation, both in terms of R²val and RMSEval. This indicates that 
robust predictions with relatively small errors that are comparable to laboratory experiments 
using homogenised sample material can also be achieved based on material near in situ 
conditions. Further promising results were obtained for Al2O3 and MgO. The results for 
Fetotal were less robust (Ch. 5.6.6). 
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6.2 Conclusions, Assessment of the Results and Possible Applications 

General Conclusions 

The outcome of this thesis indicates a high potential of reflectance spectroscopy covering the 
visible light to the longwave infrared for discriminating the heterogeneous materials potentially 
found at historic iron- and steelworks dump sites and for the quantification of a variety of 
chemical constituents typically used to characterise such materials. Thus, reflectance 
measurements and subsequent spectral analyses were found suitable tools for the qualitative as 
well as quantitative characterisation of iron- and steelworks by-products. The results 
demonstrated that different materials that are hardly distinguishable based on visual inspection 
can be spectrally grouped, typified and their chemical properties estimated with solid accuracies. 
Subsequently, such methods offer a large potential to assist the exploration of iron- and 
steelworks dump sites and landfills in terms of material discrimination, characterisation and the 
assessment of their geochemical properties. Considering that spectral measurements are non-
invasive techniques that can be realised within minutes and estimations on the material type and 
chemical properties can be derived quickly, such methods provide a high capability for reducing 
the number of samples for cost- and labour-intensive chemical and mineralogical analyses for 
general material characterisation and in screening applications. The PLSR results demonstrated 
that this can be achieved using VNIR/SWIR spectra of prepared samples as well as spectra of 
material approximating field conditions for various constituents. 

This work shows that the formation of statistical models for the estimation of certain chemical 
constituents can be realised based on a pool of relatively few samples of heterogeneous 
composition. The applied PLSR models indicate good predictive capabilities for various chemical 
constituents, encompassing Al2O3, CaO, SiO2 and TIC, which are typically used to characterise 
slags and other by-products (see Ch. 2.1.2). The results verify that these prediction models are 
suitable for screening applications, allowing a quick general chemical characterisation of materials. 

The utilisation of the VNIR/SWIR and the MWIR/LWIR range was found recommendable for 
the spectral discrimination of different by-product types and for the quantification of most 
chemical constituents. However, the results of this work demonstrated that the spectral 
separation of different material types and the quantification of chemical constituents does not 
necessarily require both ranges. Hence, material typification and reliable estimations for several 
chemical parameters can be achieved either based on VNIR/SWIR or MWIR/LWIR data. This 
is of relevance as it cannot be assumed that field-portable instruments or imaging sensors 
covering both ranges are available for every research institution or company. 

Relevance of spectral methods for assessing recent iron- and steelworks by-products 

The outcome of this work is of considerable relevance for general laboratory analyses of iron- 
and steelworks by-products. The observed accuracies for the spectral prediction of e.g. CaO, 
Fetotal, SiO2 and TIC as well as for other constituents allow the quick assessment of these 
properties, enhancing the assessment of the chemical and mineralogical properties of slags and 
other by-products. Other studies already demonstrated the applicability of (hyper)spectral 
methods for optimising the steel foundry process or for slag characterisation (Rodriguez et al. 
2010, Gutiérrez et al. 2010, Picón et al. 2017). The established spectral library and knowledge 
base offers the potential to further optimise such procedures. Spectral methods might further be 
utilised as an alternative quality control technique for slags. A similar approach was proposed by 
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Zaini et al. (2016) for Portland cement-grade limestone. Thus, the achieved results are considered 
of promising relevance for such industrial applications. However, the by-products of recent iron- 
and steelmaking are very homogeneous due to the industrial-technogenic nature of these 
processes and the expected chemical variations occurring within slags might be small. Thus, while 
there is potential for laboratory analyses of recent materials, the main application is seen in the 
context of the (remote) exploration of historical iron- and steelworks dump sites. 

Relevance of spectral methods for exploring anthropogenic secondary iron- and steelworks deposits 

It can be assumed that the need for raw materials and the search for new deposits will further 
increase in the future. Thus, man-made secondary deposits will continue to play an important 
role in urban mining, meaning the detection, qualitative and quantitative characterisation of 
materials of economic interest and their subsequent reuse. This is reflected by the increasing 
number of calls for and programmes focussing on raw materials, which comprise among others 
the exploration of anthropogenic deposits (e.g. the R³ and R4 initiatives of the BMBF and the 
Strategic Implementation Plan of the European Innovation Partnership on Raw 
Materials/Horizon 2020). Furthermore, the high amounts of mining residuals (2012: > 700 MT, 
European Union 2016), the number of dump sites and landfills (in Germany > 1000, Mrotzek-
Blöß et al. 2016) and generated industrial by-products (e.g. >400 MT of by-products from the 
iron and steel industry per year, World Steel Association 2016) can be assumed to further 
increase. Additionally, although recycling rates of recent by-products are high in western 
countries, lower reuse rates are found in other countries (Yi et al. 2012). 

While reflectance spectroscopy and remote sensing certainly cannot replace established 
geochemical and mineralogical methods, the results of this work successfully demonstrated the 
high potential of spectral methods for the qualitative and quantitative characterisation of 
materials commonly found at anthropogenic deposits from the iron and steel industry. Thus, 
such methods may be applied beneficially in the exploration of historic dump sites. The formed 
knowledge base can be integrated into existing workflows and thus support the derivation of 
reliable information on different material types and the assessment of their general chemical 
properties. As initially discussed, one is confronted with a variety of challenges when exploring 
iron- and steelworks dump sites. Aside from the heterogeneous material deposition, dumped 
materials might be similar to the human eye despite them representing different material types. In 
other cases, materials might seem different but are actually identical, as minor variations e.g. in 
iron content can substantially change the colours of soils and other substrates (e.g. Schwertmann 
and Lentze 1966, Karmanova 1981, Cornell and Schwertmann 2003). As such, many historic 
materials are hardly distinguishable in situ, even by experts (see Fig. 6.1), and time-consuming 
sampling campaigns with subsequent laboratory analyses are required for chemical 
characterisation. Here, spectroscopy can quickly provide information on the similarity of 
materials (in situ or in the laboratory), allow the assignment of samples to specific classes and help 
assessing chemical properties. Apart from the utilisation of non-imaging spectrometers for 
material discrimination and assessment in situ or in the laboratory, the developed spectral library 
and gathered knowledge on the spectral separability can benefit spectral-based material-sorting 
applications in industrial contexts, as described e.g. by Picón et al. (2009, 2012); Gutiérrez et al. 
(2010) and Rodriguez et al. (2010) with relation to metals and by-products of the iron and steel 
industry, or as presented in Dalm et al. (2014) for copper ore. 



6.2 Conclusions, Assessment of the Results and Possible Applications 

140 

 
Fig. 6.1: Differences in visual material characterisation and application of spectral measurements. Left: The outcrop 
generated at the “Canyon” at the Unterwellenborn dump site. Based on expert information and in situ interpretation 
of visible differences in material colour, four layers supposed to comprise different materials were assigned, of which 
layer II was assumed to comprise Thomas slag. Spectral measurements shortly after sample collection indicated a 
high similarity of these materials and subsequent chemical analysis confirmed that all four layers actually were 
Thomas slag. Here, the compiled spectral library supports a quicker material identification. Right: Multiple layers of 
historical materials laid open at the excavator prospecting near the former “Sinterhang” at the Unterwellenborn 
dump site. Several greyish layers could be easily categorised in materials with similar or different spectral and 
subsequently chemical properties, which was barely possible based on visual interpretation. Here, a spectral library of 
these materials and the knowledge about the associated chemical properties help to identify such by-products at 
other sites of one dump site or at other dump sites. 

Transferability of the results to other dump sites 

The heterogeneous sample pool used in this thesis was supposed to represent a “real life 
situation”, comprising a variety of diverse materials that might be found in a similar way on other 
dump sites. However, the sample pool was obviously dominated by the chemical composition 
and the spectral properties of the specific materials present at the test dump site and did for 
example not include BOF slag. Thus, a general transferability of the results achieved in this study 
to other dump sites is assumed but deviations are expected for other sites with differing histories 
of iron- and steelmaking. Furthermore, although the dataset was separated into calibration and 
validation samples for the PLSR modelling, most of the samples were from the Unterwellenborn 
dump site and thus not completely independent. Here, it would be interesting to test the 
predictive capabilities of calibration models developed with this sample pool for estimating the 
composition of materials found at other dump sites. When exploring industrial deposits, a variety 
of legal obstacles might hamper the exploration of dump sites. However, these are general issues 
that are not specific for the proposed spectral approach (Mrotzek-Blöß et al. 2016). 

Transferability of the results to (imaging) remote sensing data under field conditions 

The analyses in this thesis were conducted at the laboratory scale, utilising mainly prepared and 
homogenised samples of very fine grain sizes. However, the potential of the used methods for 
field applications was addressed by utilising spectra of moist and air-dried samples without any 
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preparation for the PLSR model runs. Here, results showing suitable screening capabilities for 
assessing chemical characteristics of iron- and steelworks by-products were found as well, 
likewise indicating a high potential for field applications. These results were achieved based on 
VNIR/SWIR data. The predictive capability of PLSR models based on MWIR/LWIR spectra of 
material near field conditions remains to be tested.  

For the transfer of the achieved results to imaging data under laboratory conditions, e.g. for 
material sorting using hyperspectral imaging as described earlier, no major impacts of 
atmospheric conditions are expected. In contrast, when using imaging sensors under field 
conditions, atmospheric bands have to be considered, i.e. wavelength ranges where radiation is 
absorbed by atmospheric gases and thus not available for remote sensing applications. The VIP 
scores of the built prediction models showed that regions near 1400, 1900, 2900 and between 
5500-7500 nm were of relevance for the prediction of several constituents. Due to the nearly 
complete absorption of energy by H2O or CO2, these ranges are characterised by noise and do 
not provide useful information in remote sensing data. This does not necessarily mean that the 
achieved results cannot be transferred to field conditions, but deviations from the outcomes in 
this work are expected when utilising remote sensing data. However, the capabilities of terrestrial 
hyperspectral imaging for in situ discriminating different iron- and steelworks by-products were 
already successfully demonstrated in a case study conducted at the Unterwellenborn dump and 
hyperspectral airborne data allowed the spectral discrimination of various materials found at the 
dump surface as well (see Denk et al. 2015, Mrotzek-Blöß et al. 2016). 

The measurements for covering the mid- and longwave infrared were realised as laboratory 
reflectance set-up in this thesis. These measurements were affected by “atmospheric” influences 
only to a minor degree (e.g. CO2 peaks near 4300 nm) and the radiation for these measurements 
was provided by the powerful heating element in the instrument. In contrast, data recorded by 
thermal infrared imaging instruments in remote sensing applications is affected by atmospheric 
influences on a much stronger degree (atmospheric windows and bands, see the paragraph 
above) and typically emissivity or temperature information is derived from such data. The 
processing of such data is more complex compared to laboratory measurements and requires the 
removal of atmospheric influences (e.g. Kuenzer and  Dech 2013). Thus, in contrast to the 
VNIR/SWIR data, the diffuse reflectance MWIR/LWIR data acquired using the handheld FTIR 
instrument in this thesis cannot be directly compared to (hyper)thermal remote sensing 
(emissivity) data but provide a comprehensive basis for various applications as well. 

Proposed multi-scale contributions of (hyper)spectral methods for exploring iron- and steelworks dump sites 

The great advantage of hyperspectral (or -thermal) remote sensing is that it allows the acquisition 
of spatial information for large areas. However, these methods are restricted to the reflected (or 
emitted) radiation by surfaces. As such, the manifold material types and the heterogeneous 
material composition at historic dump sites cannot be comprehensively assessed solely based on 
airborne (or spaceborne) data. Furthermore, vegetation cover might hamper the acquisition of 
comprehensive spectral information via airborne instruments. However, the spectral information 
of vegetation may be a useful indicator for the geochemical properties of the materials beneath. 
Additionally, factors like moisture, material mixtures, weathering products and vegetation lead to 
more complex spectra that are difficult to interpret (e.g. Siegal and Goetz 1977, Gupta 2018). 

Thus, a multiscale approach for spectrally exploring iron- and steelworks dump sites is suggested 
as conducted in similar way in Mrotzek-Blöß et al. (2016) and as presented in Figure 6.2: 
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Fig. 6.2: Major outcomes of this thesis and potential application fields. 

In detail, such an approach might comprise the following: 

a) Field and laboratory reflectance measurements using non-imaging portable instruments for 
spectrally assessing material types and chemical properties of iron- and steelworks by-products. 

b) Material sorting and classification (see e.g. Picón et al. 2009, 2012, Gutiérrez et al. 2010, 
Rodriguez et al. 2010), and determination of sample chemistry (similar to the study by Zaini et al. 
2014 for carbonate rock chemistry) using laboratory-based hyperspectral imaging. This could also 
be applied for spectral analyses of drill cores acquired at dump sites. 

c) The application of terrestrial imaging spectroscopy at outcrops of a dump site for mapping the 
spatial distribution and chemical properties of materials of interest (see Denk et al. 2015). 

d) The utilisation of hyperspectral airborne (aircraft and/or UAV) or even spaceborne data of 
current multispectral or future hyperspectral missions (like EnMap) for analysing larger regions 
with multiple dump sites (as conducted in similar way in Mrotzek-Blöß et al. 2016). 

f) Furthermore, geophysical approaches in combination with hyperspectral measurements might 
provide relevant information suitable to support the exploration of iron- and steelworks dump 
sites (see e.g. Schulz et al. 2015, Günther and Martin 2016). 

Such multi-scale information would allow the formation of more reliable deposit-models of the 
complex structure of historic dump sites of the iron and steel industry and thus benefit their 
exploration within urban mining applications.   
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6.3 Outlook 

The outcome of this thesis represents a bridging function to further promote VNIR/SWIR as 
well as MWIR/LWIR reflectance spectroscopy to analyse iron- and steelworks by-products. 
Thus, this work subsequently promoted hyperspectral/hyperthermal remote sensing as promising 
tools to support the exploration of anthropogenic deposits in general and of historic iron- and 
steelworks dump sites and landfills in particular. Naturally, connection and optimisation 
possibilities arise, which are briefly described in the following section. 

Material discrimination vs. identification 

As discussed e.g. in Kirkland et al. (2002) and Hecker (2012), one has to consider the difference 
between discriminating different materials and identifying them. The analyses conducted in this 
work focussed on the spectral discrimination of various iron- and steelworks by-products but 
also indicated the possibility of their spectral identifiability among a plurality of heterogeneous 
materials. However, more research needs to be conducted on the detectability of such materials 
considering the presence of other materials (e.g. soil, natural rocks, other industrial by-products 
or other anthropogenic materials), which may occur at dump sites and might be recorded in 
remote sensing data of such areas. Here, the elaborated knowledge base of the spectral properties 
of the studied by-products is thought to be helpful for the selection of relevant features to be 
uses within established mapping approaches, allow the development of decision trees or other 
approaches. 

Spectral feature analyses 

As presented in Chapter 5.5.2.2, most of the major absorption features identified in the spectra 
could be assigned to specific functional groups. However, especially the interpretation of the 
features present in the VNIR, which are due to electronic processes, was difficult. Here, future 
studies might provide more specific assignments. Furthermore, among the plurality of features 
observed in the MWIR/LWIR range, several of the minor reflectance maxima and minima 
described in this work are yet to be interpreted. 

The limited number of samples per by-product class did not allow statistical analyses to find 
correlations between chemical constituents and spectral feature parameters and only general 
trends were reported. At this point, further studies might focus on the impact of chemical 
constituents or the mineral composition on spectral feature parameters using a higher number of 
samples per by-product type. 

Optimisation of prediction models 

The study of the influential wavelengths for the PLSR predictions (see Chapter 5.6.4) provides a 
basis for the selection of specific variables, i.e. wavelengths, for subsequent reduction of used 
variables leading to less complex and possibly more robust models. As the elaborated PLSR 
models utilised the full spectral ranges provided by the portable instruments, they also included 
wavelength ranges that are affected by absorptions by atmospheric gases, e.g. due to H2O (near 
1400, 1900 and between ca. 5500-7500 nm) and CO2 (near 2900 and 4200 nm) (see e.g. Lillesand 
et al. 2008). While relevant information within these ranges can be acquired under laboratory 
conditions or using contact measurements in the field, they are not available in data of non-
contact field measurements or in air- or spaceborne data. Hence, model runs should be 
performed excluding these ranges in order to assess possible restrictions.  
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Further topics for future research might be the quantification of minerals based on multivariate 
methods or the assessment of material types based on such procedures. The PLSR modelling in 
this work focussed on constituents > 3 m% on average. However, promising initial results were 
also found for a variety of other constituents, which were partly present in much lower contents, 
comprising Cr2O3, K2O, P2O5 and Stotal. The potential for spectrally estimating such constituents 
could be evaluated in future studies. Furthermore, weak but noticeable relationships between the 
contents of constituents like As, Cd, Cu, Pb and Zn and the spectral data were observed. These 
constituents might be of relevance for studies focussing on environmental aspects at other sites 
and thus worthwhile to be studied in future research as well. 

Impacts of moisture, grain size and sample preparation 

In this study, the spectral discrimination, qualitative and quantitative spectral analyses were 
conducted based on spectra of materials < 90 µm. Furthermore, the general feasibility of PLSR 
predictions using spectra of material near in situ conditions could be successfully demonstrated. 
However, future work should focus on a larger variety of grain size fractions in order to assess 
impacts on spectral features and for qualitative as well as quantitative spectral analyses. 

Transfer to imaging data 

In addition to the few existing studies that successfully demonstrated the potential of terrestrial as 
well as airborne hyperspectral imaging methods for the in situ discrimination of iron- and 
steelworks by-products found at historic dump sites (Denk et al. 2015, Mrotzek-Blöß et al. 2016), 
further research is required to assess the full potential of such techniques for screening 
applications, including material detection as well as the quantification of chemical constituents. 
This may be applied at other dump sites following the proposed multi-scale approach shown in 
Figure 6.2. This may encompass measurements and analyses at the laboratory scale in terms of 
material sorting and assessment of chemical properties, in situ scans at already existing or 
artificially created cross-sections or the hyperspectral airborne exploration including the 
VNIR/SWIR range and the thermal infrared. Airborne remote sensing might comprise aircraft- 
but also UAV-carried sensors. UAV-based remote sensing might especially be helpful in 
acquiring information at steep slopes that are barely accessible and might not be properly covered 
in data from aircraft-carried sensors. Furthermore, UAVs are more flexible in terms of weather 
conditions. Thus, aside from heap volume estimations using e.g. lidar data or photogrammetrical 
approaches, UAV-based remote sensing is considered a promising tool for spectrally exploring 
iron- and steelworks dumps as well. 

Concluding remarks 

This work provides a basis for the aforementioned possible applications. Thus, it subsequently 
highlights hyperspectral and hyperthermal remote sensing as promising tools to support the 
exploration of anthropogenic deposits in general and of historic iron- and steelworks dump sites 
and landfills in particular. Considering the significance of urban mining for the sustainable use of 
resources, subsequent related research will become increasingly important in the future. 
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A3.2: Stratigraphy of the Saalfeld-Kamsdorf deposit (Rüger & Decker 1992) 

Series Layers Thickness (m) 
Zechstein 1 Middle Werra Clay 6-8
 Werra Dolomite/Riff Dolomite 20-30 
 Upper Zechstein Limestone 18-23 
 Upper Slate 0.3-0-6 
 Lower Zechstein Limestone 2-55
 Lower Slate (Kupferschiefer) 0-3.5 
 “Mutterflöz”, dolomitic limestone 0-4
Permian Rotliegend conglomerate 0-10
Carboniferous Argillaceous slate and greywacke -

 

A3.3 Utilisation of the iron- and steelmaking by-products of the Maxhütte in the 1950s (after Mrotzek-Blöß et al. 
2016, data from Geschichtsverein Maxhütte e.V. 2005) 

Process Type of Usage Amount used (1955) 

Blast furnace 
The blast furnace slag was almost completely 
used for the cement industry and slag block 
stone production 

155040 t cement industry 
56000 t slag block stones 

Low shaft furnace 
Most of the slag was deposited, only minor 
amounts used for slag wool production 

2435 t slag wool 

Renn furnace 

Most of the slag was deposited; 
partial rebuild of the dump site and material 
reuse for the production of building materials 
starting in the 1970s 

328460 t were used as 
construction material and for 
sale 

Thomas steelmaking Thomas phosphate was used as fertiliser 65100 ton 
Electric steelmaking Most of the slag was deposited -
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A3.5: Differences in altitude occurring at the dump site of the Stahlwerk Thüringen GmbH. 

 

A3.6: Differences in slope occurring at the dump site of the Stahlwerk Thüringen GmbH. 
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A4.1: Instrumental parameters of the XRD measurements as conducted by FEhS. 

Parameters Values 

Goniometer radius 240 mm 

Radiation Copper (Cu Kα)  

Power, Amperage 45 kV, 40 mA 

Geometry θ/θ diffractometer 

Detector Proportional counter 

A4.2: DIN standards utilised for analysing the different chemical constituents by FEhS. 

Constituent DIN/Procedure 

Aluminium metallic Handbuch Eisenhüttenlabor, Bd. 1A 

Aluminium oxide ICP-OES EN ISO 11885 (2009-09) 

Arsenic ICP-OES EN ISO 11885 (2009-09) 

Lead ICP-OES EN ISO 11885 (2009-09) 

Cadmium ICP-OES EN ISO 11885 (2009-09) 

Calcium oxide ICP-OES EN ISO 11885 (2009-09) 

Chromium metallic Handbuch Eisenhüttenlabor, Bd. 1A 

Chromium (III) oxide ICP-OES EN ISO 11885 (2009-09) 

Irontotal DIN 51418-2 [2015-03]; DIN EN ISO 12677 [2013-02] 

Iron metallic Handbuch Eisenhüttenlabor, Bd. 1A 

Iron (II) oxide ICP-OES EN ISO 11885 (2009-09) 

Iron (III) oxide ICP-OES EN ISO 11885 (2009-09) 

Fluoride DIN 51084 (1990-07) 

Free lime DIN EN 1744-1: 2009 + A1: 2012 

Total inorganic carbon (TIC) DIN EN 15936 (2012-11) 

Loss on ignition (550 °C) DIN EN 12879: 2000 

Loss on ignition (CO2 + H2O) Berechnung Hausmethode 

Potassium oxide ICP-OES EN ISO 11885 (2009-09) 

Copper ICP-OES EN ISO 11885 (2009-09) 

Copper oxide ICP-OES EN ISO 11885 (2009-09) 

Lithium oxide ICP-OES EN ISO 11885 (2009-09) 

Magnesium oxide ICP-OES EN ISO 11885 (2009-09) 

Manganese (II) oxide ICP-OES EN ISO 11885 (2009-09) 

Molybdenum ICP-OES EN ISO 11885 (2009-09) 

Molybdenum metallic Handbuch Eisenhüttenlabor, Bd. 1A 

Sodium oxide ICP-OES EN ISO 11885 (2009-09) 

Nickel ICP-OES EN ISO 11885 (2009-09) 

Nickel metallic Handbuch Eisenhüttenlabor, Bd. 1A 

Phosphorus pentoxide ICP-OES EN ISO 11885 (2009-09) 

Sulphur, total DIN EN 1744-1: 2009 + A1: 2012 

Selenium ICP-OES EN ISO 11885 (2009-09) 

Silver ICP-OES EN ISO 11885 (2009-09) 

Silicon oxide DIN EN 196-2 (2013-10) 

Titanium oxide ICP-OES EN ISO 11885 (2009-09) 

Vanadium ICP-OES EN ISO 11885 (2009-09) 

Vanadium pentoxide ICP-OES EN ISO 11885 (2009-09) 

Water hauseigene PA 

Wolfram ICP-OES EN ISO 11885 (2009-09) 

Zinc ICP-OES EN ISO 11885 (2009-09) 

Zinc oxide ICP-OES EN ISO 11885 (2009-09) 
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A4.3: Comparison of MWIR/LWIR spectra recorded with the Agilent 4300 Handheld FTIR spectrometer of 
samples showing distinct diagnostic spectral features with corresponding reference spectra from Kokaly et al. (2017). 

Left: Gypsum, Right: Quartz-rich sample. 
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A5.1: Mineralogical composition of the samples, sorted by by-product class (x = major constituent, o = minor 
constituent, + = trace constituent, this semi-quantitative information refers exclusively to the crystalline part; yes = 
amorphous constituents present (not quantified). Mineralogical analyses were conducted and provided by FEhS. 

A5.1.1: Mineralogical composition of the “BFS+” samples (historical material, not pure) (I) (analyses by FEhS). 

Mineral 14-1 14-2 14-3 14-4 14-5 14-6 30-ho 31-1 31-2 16-4 16-5 

Anhydrite 

Baryte 

Calcite x x x x x o + x o o + 

Dolomite o o o o x o x o o 

Iron (met.) + 

Ettringite o + + 

Feldspars o o o o 

Melilites*  x x o x o o x + + + 

Gypsum o 

Micas + + + 

Goethite + 

Hematite o o o o o o + + 

Spinels** o o o o + + + 

Marcasite o o o o 

Merwinite + + 

Monticellite o 

Quartz x x x x x x o o x x x 

Rankinite x 

X-ray amorphous yes yes yes yes yes yes yes yes 

Vertumnite + 

Wüstite + 
*Gehlenite-Akermanite system, **Magnetite/Jacobsite/Franklinite 

A5.1.1: Mineralogical composition of the “BFS+” samples (historical material, not pure) (II) (analyses by FEhS). 
Mineral 16-6 16-7 21-3 W3-R3 W3-R5 W3-R1-2 W3-R14 W3-R16 W3-R20 W3-R21 W3-R22 W3-R23

Anhydrite   +      +    

Baryte    o    o o o   

Calcite x o x x o o  x x x o x 

Dolomite + o           

Iron (met.)        +     

Ettringite +            

Feldspars o o o o         

Melilites*     x x x    x x 

Gypsum   o   o     o  

Micas + +      o     

Goethite             

Hematite +            

Spinells** +          o  

Marcasite             

Merwinite     o  o   x   

Monticellite      o o      

Quartz o x o x o o  x o o o  

Rankinite             

X-ray amorphous    yes    yes yes yes  yes 

Vertumnite             

Wüstite     +        
*Gehlenite-Akermanite system, **Magnetite/Jacobsite/Franklinite 
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A5.1.2: Mineralogical composition of the “granulated blast furnace slag” samples (analyses by FEhS). 

Mineral W2-20a W2-20b W2-21a W2-21b W2-22a W2-22b 

Baryte 
 

o o 

Calcite x x x x x x 

CSH phases 
 

+ 
 

Ettringite 
 

o o 

Merwinite 
 

x x 

Quartz + o o o 

X-ray amorphous yes yes yes yes yes yes 

A5.1.3: Mineralogical composition of the “converter dedusting sludge” samples (analyses by FEhS). 

Mineral 26 27 17 18a 18b 18c 18d 

Anhydrite + + 
 

Calcite x x x o o x x 

Dolomite o o o o o o o 

Iron (met.) + + + + + + + 

Gypsum o + o o o 

Hematite x o x x x x x 

Spinels** x o x x o o o 

Quartz + o + o o o o 

X-ray amorphous yes yes yes yes yes yes 

Wüstite o o o o o o 

*Gehlenite-Akermanite system, **Magnetite/Jacobsite/Franklinite 

A5.1.4: Mineralogical composition of the “stainless steel slag” samples (analyses by FEhS). 

Mineral T1 T2 T3 T4 T5

β-dicalcium silicate o o o o o 

Calcite + + + + + 

Calcium-Fluor-Silicate o o o 

Fluorite + + + + + 

Melilites* o o o o o 

Mayenite o o o + o 

Periclase o o o x o 

Portlandite + + + + + 

Quartz + 

Rankinite o o o o o 

Spinels** + + + + + 

Wollastonite o o o o 

γ-dicalcium silicate o o o o o 

*Gehlenite-Akermanite system, **Magnetite/Franklinite/Jacobsite 
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A5.1.5: Mineralogical composition of the “EAFS (carbon steel)” samples (analyses by FEhS). 

Mineral EAFS-1 EAFS-2 EAFS-3

Bredigite x o x 

Calcite + o o 

Melilites* x o x 

Larnite x 

Spinels** o o o 

Wüstite x x x 

*Gehlenite-Akermanite system, **Magnetite/Jacobsite/Franklinite 

A5.1.6: Mineralogical composition of the “ladle furnace slag” samples (analyses by FEhS). 

Mineral LFS-1 LFS-2 LFS-3

Calcite o o o 

Melilites* o o o 

Larnite x x x 

Mayenite o o o 

Periclase o o o 

Quartz + + + 

Wüstite + + + 

γ-dicalcium silicate x x x 

*Gehlenite-Akermanite system, **Magnetite/Jacobsite/Franklinite 

A5.1.7: Mineralogical composition of the “EAFS (medium-alloy steel)” samples (analyses by FEhS). 

Mineral K1a K2a 

β-dicalcium silicate x x 

Browmillerite o o 

Calcite o o 

Cristobalit + 

Mayenite o o 

Periclase o o 

Quartz o o 

Spinels** o o 

Wüstite o o 

*Gehlenite-Akermanite system, **Magnetite/Jacobsite/Franklinite 

A5.1.8: Mineralogical composition of the “EAFS (high-alloy steel)” samples (analyses by FEhS). 

Mineral T-EAFS-n

Melilites* o 

Spinels** o 

Rankinite x 

Wollastonite x 

Wüstite + 

*Gehlenite-Akermanite system, **Magnetite/Jacobsite/Franklinite 
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A5.1.9: Mineralogical composition of the “EAF foam slag” sample (analyses by FEhS). 

Mineral T-EAFS-f

Calcite o 

Melilites* x 

Spinels** + 

Merwinite o 

*Gehlenite-Akermanite system, **Magnetite/Jacobsite/Franklinite 

A5.1.10: Mineralogical composition of the “AOD slag” sample (analyses by FEhS). 

Mineral T-AODS 

Calcite o 

Calcium-Fluor-Silicate o 

Fluorite o 

Melilites* o 

Portlandite o 

γ-dicalcium silicate x 

*Gehlenite-Akermanite system 

A5.1.11: Mineralogical composition of the “unspecified steelworks slag” samples (analyses by FEhS). 

Mineral 21-9 GPS 

Brucite + 

Calcite x o 

Ettringite + 

Melilites* x 

Hydrotalcite + 

Spinels** + 

Merwinite o x 

Periclase + 

Portlandite o 

Quartz o 

*Gehlenite-Akermanite system, **Magnetite/Jacobsite/Franklinite 

A5.1.12: Mineralogical composition of the “blast furnace flue dust” samples (analyses by FEhS). 

Mineral 24-A 24-B

Calcite o o 

Melilites* o o 

Goethite o o 

Hematite o o 

Potassium sulphate o o 

Spinels** o o 

Quartz x x 

*Gehlenite-Akermanite system, **Magnetite/Jacobsite/Franklinite 
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A5.1.13: Mineralogical composition of the “Thomas slag” samples (I) (analyses by FEhS). 

Mineral 29-ho 29-hu 29-bg 29-th W1-R1 W1-R3s W1-R3b W1-R3g 

Andalusite 
 

o 
 

Apatite x x x x x x x x 

Calcite + o o o 
 

Hydrogarnet o o o o o 
 

Hydromagnesite 
 

o o o 

Larnite 
 

o 
 

Portlandite o o o o o o o o 

Quartz + 
 

Silicocarnotite x x x x x x x x 

Srebrodolskite o o o o o + o o 

Wüstite o + o + o + + 

   

A5.1.13: Mineralogical composition of the “Thomas slag” samples (II) (analyses by FEhS). 

Mineral W1-R5 W1-R6 W1-R7o W1-RV7m T-VK W1-R7u 

Andalusite  o   o o 

Apatite x x x x o x 

Calcite o    x o 

Hydrogarnet       

Hydromagnesite  o o o   

Larnite       

Spinels**      + 

Portlandite o o o o o o 

Quartz       

Silicocarnotite x x x x x x 

Srebrodolskite o o o o  o 

Wüstite   o +  + 

γ-dicalcium silicate     o  

 **Magnetite/Jacobsite/Franklinite 

A5.1.14: Mineralogical composition of the “mill scale” sample (analyses by FEhS). 

Mineral 19 

Iron (met.) + 

Hematite o 

Spinels** x 

Wüstite x 

**Magnetite/Jacobsite/Franklinite 
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A5.1.15: Mineralogical composition of the “mixtures with high amounts of sand” samples (analyses by FEhS). 

Mineral 16-3 21-10 21-11 21-4 21-5 21-7 W3-R19 

Calcite o + + + + + o 

Dolomite o + + + o 

Ettringite + 

Feldspars o o o o o o o 

Gypsum + + + 

Micas + + + + + + + 

Hematite + 

Spinels** + + + 

Quartz x x x x x x x 

Rankinite + 

*Gehlenite-Akermanite system, **Magnetite/Franklinite/Jacobsite 

   

A5.1.16: Mineralogical composition of the “unspecified dusts and sludges” samples (analyses by FEhS). 

Mineral W3-R10 W3-R11 W3-R12 W3-R13 W3-R15 W3-R18 W3-R2 W3-R4 W3-R6 15 

Apatite x 
 

o 
 

x 

Calcite x o x x x x x x o 

Dolomite 
 

o o o x o 
 

x 

Iron (met.) 
  

+ o 
  

Feldspars 
  

+ 
  

Half-hydrate 
  

o o 
  

Goethite 
  

o 
  

Hematite o 
 

o o o o 
 

o 

Hydrotalcite 
  

o 
  

Spinels** 
  

o o o o 

Mulite 
 

x 
  

Quartz o x o o x x o o + o 

X-ray amorphous yes yes yes yes yes yes yes yes yes 
 

Wüstite 
 

o 
 

o 

**Magnetite/Franklinite/Jacobsite 
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A5.1.17: Mineralogical composition of the “unspecified others” samples (analyses by FEhS). 

Mineral 30-df 21-12 21-13 21-14 21-15 21-6 21-8 DK W3-R8 W3-R9 W3-
R1

W3-
R17 

W3-
R7 

Alabandite 
   

o 
 

Alumohydrocalcite 
   

+ 
 

Apatite o 
  

+ x 
  

Baryte 
 

o o x 
  

Brucite 
 

o 
 

o 
  

Calcite x o x o x o x x x x o o x 

Iron (met.) o 
  

o 
 

Ettringite 
 

+ 
 

+ + 
  

Feldspars 
   

o 
 

o 

Melilites* 
   

+ x 
  

Gypsum 
  

o + 
  

Goethite 
   

+ o 
 

Half-hydrate 
   

o 
  

Hematite o 
  

o o 
  

Hydrogarnet 
     

Hydromagnesite 
   

o 
  

Hydrotalcite 
   

+ + 
 

o 

Spinels** 
   

+ + o o o 
 

Merwinite 
   

o o 
  

Portlandite 
 

x 
 

x 
  

Quartz x + 
 

o o o x o x x x 

Rapidcreekite 
 

o 
   

X-ray amorphous yes 
 

yes yes yes yes yes yes yes yes 

Sillimanite o 
    

Wüstite 
   

o 
 

*Gehlenite-Akermanite system, **Magnetite/Franklinite/Jacobsite 

A5.1.18: Mineralogical composition of the “limestone+natural sand” sample (analyses by FEhS). 

Mineral W1-R3r

Calcite o 

Feldspars o 

Micas + 

Hydromagnesite o 

Portlandite + 

Quartz x 

Silicocarnotite o 

Srebrodolskite o 
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A5.2: Statistics on the chemical composition (m%) of the major by-product classes (I).* 

 
Bast furnace slag (+) (N = 23) Granulated BFS (N =6) Thomas slag (N =14) 

 
Mean Max Min SD Mean Max Min SD Mean Max Min SD 

CaO 24.813 35.400 17.000 4.543 28.217 34.500 23.600 3.917 44.564 46.800 41.000 1.794 

SiO2 26.033 33.940 17.520 4.673 24.385 28.210 21.000 2.625 5.065 5.900 4.220 0.424 

MgO 6.267 10.200 3.290 1.535 7.867 9.640 5.930 1.401 1.266 2.100 0.870 0.351 

Al2O3 9.508 17.200 5.330 2.778 10.545 14.000 7.640 2.211 0.637 0.920 0.400 0.134 

Fe 6.884 18.100 0.474 4.289 1.690 3.239 0.350 1.169 14.371 18.060 12.300 1.561 

FeO 2.985 4.880 1.370 0.985     0.442 1.010 0.140 0.337 

Fe2O3 8.278 15.100 3.911 3.281     16.300 19.500 13.700 2.092 

MnO 1.628 4.430 0.210 1.033 1.422 2.800 0.380 0.838 3.440 4.070 2.840 0.331 

Cr2O3 0.098 0.500 0.010 0.128 0.037 0.040 0.030 0.005 1.206 1.560 0.940 0.201 

TiO2 0.504 1.370 0.270 0.224 0.410 0.530 0.320 0.075 0.160 0.190 0.130 0.019 

Femetallic 1.391 4.430 0.410 1.153     2.928 3.740 2.230 0.538 

Almetallic 0.851 3.130 0.130 0.669     0.495 0.640 0.370 0.099 

Crmetallic 0.059 0.140 0.011 0.034  0.000 0.000  0.323 0.390 0.210 0.075 

K2O 1.238 2.950 0.290 0.778 0.543 0.970 0.280 0.245 0.027 0.050 0.010 0.011 

CuO 0.026 0.050 0.010 0.011 0.010 0.010 0.010 0.000 0.003 0.010 0.000 0.004 

Li2O 0.024 0.050 0.010 0.012 0.038 0.060 0.030 0.011  0.000 0.000  

Na2O 0.247 0.490 0.070 0.139 0.092 0.150 0.070 0.029 0.186 0.400 0.060 0.081 

P2O5 0.613 1.620 0.100 0.386 0.108 0.140 0.080 0.025 14.014 16.800 12.900 1.185 

V2O5 0.043 0.100 0.010 0.029 0.013 0.020 0.010 0.005 0.371 0.510 0.260 0.072 

ZnO 0.542 3.340 0.020 0.764 0.128 0.250 0.050 0.075 0.010 0.010 0.010 0.000 

CaOfree 0.814 1.300 0.440 0.297 0.655 1.000 0.310 0.345 5.616 10.000 0.920 2.784 

CO2+H2O 16.711 35.900 0.700 8.398 22.400 28.900 14.300 5.412 9.798 13.200 6.770 1.655 

TIC 10.391 22.600 0.500 5.768 8.683 14.000 4.300 3.344 3.054 10.300 0.580 2.645 

H2O 6.297 13.200 0.200 3.089 13.713 22.300 9.980 4.196 6.734 9.100 2.870 1.681 

Fluorite 0.116 0.310 0.050 0.064         

Stotal 1.135 3.620 0.217 0.737 1.036 1.380 0.649 0.248 0.180 0.254 0.134 0.029 

As 0.004 0.008 0.002 0.002     0.001 0.001 0.001 0.000 

Cd 0.003 0.016 0.000 0.004     0.000 0.000 0.000 0.000 

Cu 0.020 0.042 0.007 0.009     0.004 0.006 0.004 0.001 

Mo 0.001 0.003 0.000 0.001     0.004 0.006 0.003 0.001 

Ni 0.005 0.010 0.002 0.002     0.001 0.002 0.001 0.000 

V 0.030 0.055 0.012 0.015     0.207 0.239 0.168 0.026 

W 0.024 0.086 0.008 0.026     0.000 0.000 0.000 0.000 

Pb 0.263 0.819 0.005 0.287     0.002 0.004 0.001 0.001 

Zn 0.436 2.685 0.017 0.615 0.069 0.203 0.001 0.069 0.004 0.009 0.001 0.002 

Ag 0.001 0.002 0.001 0.000 0.001 0.001 0.001 0.000 0.004 0.005 0.001 0.001 

Σ(metals) 7.497 17.277 2.001 4.795     18.486 20.258 17.846 1.024 

*Chemical analyses by FEhS 
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A5.2: Statistics on the chemical composition (m%) of the major by-product classes (II).* 

 
EAFS (carbon steelm.) (N = 3) EAFS (med.-alloy steelm.) (N = 2) EAFS (high-alloy st.) (N = 1) 

 
Mean Max Min SD Mean Max Min SD 

 

CaO 24.900 25.500 24.100 0.589 22.450 24.000 20.900 1.550 48.000 

SiO2 12.407 13.680 10.950 1.122 18.950 21.400 16.500 2.450 40.300 

MgO 4.303 4.930 3.940 0.445 8.770 9.540 8.000 0.770 2.350 

Al2O3 5.523 5.990 5.220 0.335 8.775 9.540 8.010 0.765 0.650 

Fe 35.633 36.930 34.700 0.946 19.400 19.500 19.300 0.100 0.498 

FeO  
0.000 0.000 13.200 13.600 12.800 0.400 

 

Fe2O3  
0.000 0.000 11.050 11.200 10.900 0.150 

 

MnO 6.117 6.700 5.760 0.416 3.430 3.590 3.270 0.160 2.680 

Cr2O3 2.443 2.680 2.290 0.170 1.235 1.250 1.220 0.015 3.350 

TiO2 0.383 0.430 0.340 0.037 0.290 0.300 0.280 0.010 0.220 

Femetallic    
1.395 1.730 1.060 0.335 

 

Almetallic    
1.025 1.360 0.690 0.335 

 

Crmetallic    
0.085 0.090 0.080 0.005 

 

K2O 0.020 0.020 0.020 0.000 0.150 0.180 0.120 0.030 0.010 

CuO 0.033 0.040 0.030 0.005 0.010 0.010 0.010 0.000 
 

Li2O  
0.000 0.000 0.260 0.270 0.250 0.010 

 

Na2O 0.073 0.090 0.050 0.017 0.250 0.300 0.200 0.050 0.010 

P2O5 0.480 0.550 0.430 0.051 0.215 0.220 0.210 0.005 
 

V2O5 0.133 0.180 0.110 0.033 0.130 0.130 0.130 0.000 0.050 

ZnO 0.017 0.020 0.010 0.005 0.955 1.210 0.700 0.255 
 

CaOfree    
0.460 0.540 0.380 0.080 

 

CO2+H2O 0.563 0.670 0.450 0.090 6.830 7.090 6.570 0.260 0.180 

TIC 0.353 0.360 0.350 0.005 3.980 4.040 3.920 0.060 0.170 

H2O 0.210 0.320 0.100 0.090 2.850 3.170 2.530 0.320 
 

Fluorite     

Stotal 0.156 0.175 0.145 0.013 0.415 0.530 0.300 0.115 0.086 

As     

Cd    
0.000 0.001 0.000 0.000 

 

Cu    
0.017 0.018 0.017 0.001 

 

Mo    
0.006 0.006 0.006 0.000 

 

Ni    
0.017 0.018 0.015 0.001 

 

V    
0.029 0.054 0.004 0.025 

 

W    
0.036 0.038 0.033 0.003 

 

Pb    
0.032 0.044 0.020 0.012 

 

Zn 0.015 0.018 0.011 0.003 1.033 1.267 0.799 0.234 
 

Ag    
0.001 0.001 0.001 0.000 

 

Σ(metals)    
25.113 25.686 24.540 0.573 

 
*Chemical analyses by FEhS 
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A5.2: Statistics on the chemical composition (m%) of the major by-product classes (III).* 

 
LF slag (N = 3) Unspecified SWS (N = 2) Stainless steel slag (N = 5) 

 
Mean Max Min SD Mean Max Min SD Mean Max Min SD 

CaO 40.433 44.500 36.800 3.158 35.100 37.900 32.300 2.800 46.600 51.000 40.500 4.066 

SiO2 16.897 17.150 16.650 0.204 19.490 23.810 15.170 4.320 26.640 30.800 24.000 2.365 

MgO 6.737 6.940 6.500 0.181 5.250 6.510 3.990 1.260 6.604 11.300 4.490 2.436 

Al2O3 12.367 12.800 11.700 0.478 10.305 19.100 1.510 8.795 4.100 5.120 3.270 0.636 

Fe 8.398 11.690 5.179 2.659 9.606 17.320 1.892 7.714 1.420 2.510 0.730 0.615 

FeO    
6.190 6.190 6.190 0.000 

  

Fe2O3    
10.650 10.650 10.650 0.000 

  

MnO 1.950 2.660 1.530 0.505 2.925 5.590 0.260 2.665 1.810 2.320 1.360 0.321 

Cr2O3 0.760 1.040 0.600 0.199 0.570 0.570 0.570 0.000 4.746 5.240 4.320 0.364 

TiO2 0.330 0.330 0.330 0.000 0.440 0.580 0.300 0.140 1.106 1.390 0.940 0.178 

Femetallic    
5.060 5.060 5.060 0.000 1.398 2.490 0.700 0.623 

Almetallic    
0.540 0.540 0.540 0.000 0.824 1.130 0.460 0.220 

Crmetallic    
0.120 0.120 0.120 0.000 0.400 0.550 0.280 0.102 

K2O 0.033 0.040 0.030 0.005 0.195 0.230 0.160 0.035 0.018 0.030 0.010 0.007 

CuO 0.010 0.010 0.010 0.000 0.020 0.020 0.020 0.000 0.010 0.010 0.010 0.000 

Li2O    
0.000 0.000 0.156 0.210 0.120 0.032 

Na2O 0.080 0.080 0.080 0.000 0.070 0.080 0.060 0.010 
  

P2O5 0.097 0.120 0.080 0.017 3.855 7.650 0.060 3.795 0.010 0.010 0.010 0.000 

V2O5 0.047 0.060 0.040 0.009 0.325 0.650 0.000 0.325 0.084 0.100 0.070 0.012 

ZnO 0.027 0.030 0.020 0.005 0.160 0.160 0.160 0.000 
  

CaOfree 0.493 0.540 0.440 0.041 2.255 3.700 0.810 1.445 3.420 5.300 1.800 1.423 

CO2+H2O 7.780 8.330 7.410 0.397 11.610 14.100 9.120 2.490 4.172 5.820 2.700 1.179 

TIC 2.567 2.700 2.400 0.125 6.150 7.600 4.700 1.450 1.620 2.120 1.140 0.383 

H2O 5.203 5.620 4.960 0.296 5.445 6.440 4.450 0.995 2.552 3.700 1.560 0.844 

Fluorite      

Stotal 0.679 0.754 0.595 0.065 0.583 0.884 0.282 0.301 0.142 0.170 0.100 0.028 

As    
0.003 0.003 0.003 0.000 0.001 0.002 0.001 0.000 

Cd    
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Cu    
0.015 0.015 0.015 0.000 0.005 0.009 0.003 0.002 

Mo    
0.000 0.000 0.000 0.000 0.019 0.032 0.009 0.009 

Ni    
0.007 0.007 0.007 0.000 0.115 0.204 0.039 0.060 

V    
0.365 0.365 0.365 0.000 0.037 0.047 0.030 0.006 

W    
0.011 0.011 0.011 

  

Pb    
0.003 0.003 0.003 

  

Zn 0.023 0.026 0.020 0.002 0.066 0.127 0.005 0.061 0.003 0.004 0.002 0.001 

Ag    
0.002 0.002 0.002 

  

Σ(metals)    
10.873 10.873 10.873 0.000 7.550 8.936 6.526 0.847 

*Chemical analyses by FEhS 
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A5.2: Statistics on the chemical composition (m%) of the major by-product classes (IV).* 

 

Foam slag 
(high-alloy 

steelm.) (N = 1)

AODS (high-
alloy steelm.)   

(N = 1) 
Blast furnace flue dust (N = 2) Converter dedusting sludge (N = 7) 

 
  Mean Max Min SD Mean Max Min SD 

CaO 39.700 57.100 14.200 16.200 12.200 2.000 12.757 14.100 11.200 0.939 

SiO2 34.590 23.620 32.005 35.000 29.010 2.995 11.433 18.280 4.100 5.055 

MgO 9.060 2.510 3.525 3.550 3.500 0.025 2.553 3.380 1.180 0.818 

Al2O3 5.510 1.390 6.610 7.570 5.650 0.960 4.523 6.160 1.850 1.648 

Fe 0.327 0.579 16.350 19.400 13.300 3.050 27.314 37.630 20.350 6.835 

FeO   
3.520 4.450 2.590 0.930 5.890 7.610 4.170 1.720 

Fe2O3   
14.450 16.500 12.400 2.050 35.750 47.800 23.700 12.050 

MnO 3.430 0.910 1.210 1.250 1.170 0.040 1.089 1.510 0.870 0.233 

Cr2O3 3.740 1.450 0.110 0.130 0.090 0.020 0.137 0.240 0.090 0.051 

TiO2 1.690 0.470 0.415 0.440 0.390 0.025 0.167 0.240 0.060 0.070 

Femetallic   
3.490 4.360 2.620 0.870 0.550 0.570 0.530 0.020 

Almetallic   
0.575 0.590 0.560 0.015 0.755 0.810 0.700 0.055 

Crmetallic   
0.073 0.090 0.055 0.018 0.030 0.040 0.020 0.010 

K2O 0.020 0.010 1.100 1.210 0.990 0.110 0.513 0.920 0.150 0.259 

CuO   
0.035 0.040 0.030 0.005 0.053 0.080 0.040 0.012 

Li2O   
0.000 0.000 0.000 0.000 

Na2O 0.050 0.020 0.530 0.580 0.480 0.050 0.267 0.410 0.130 0.099 

P2O5   
1.160 1.270 1.050 0.110 1.376 2.230 1.150 0.357 

V2O5 0.090 0.030 0.045 0.050 0.040 0.005 0.036 0.060 0.030 0.010 

ZnO   
0.965 1.040 0.890 0.075 2.950 4.500 1.410 1.170 

CaOfree  
5.500 1.100 1.100 1.100 0.000 0.398 0.520 0.290 0.084 

CO2+H2O 0.310 8.340 17.250 19.500 15.000 2.250 30.943 37.000 23.700 5.359 

TIC 0.300 3.500 10.650 12.000 9.300 1.350 20.329 26.800 17.400 3.160 

H2O  
4.890 6.575 7.490 5.660 0.915 10.609 16.000 5.030 3.779 

Fluorite   
0.325 0.390 0.260 0.065 0.475 0.550 0.400 0.075 

Stotal 0.077 0.205 0.402 0.510 0.294 0.108 0.604 0.939 0.146 0.299 

As   0.003 0.003 0.002 0.001 0.003 0.003 0.003 0.000 

Cd   0.008 0.009 0.008 0.000 0.017 0.017 0.017 0.000 

Cu   0.027 0.031 0.023 0.004 0.051 0.066 0.036 0.015 

Mo   0.003 0.005 0.002 0.001 0.002 0.002 0.002 0.000 

Ni   0.017 0.019 0.015 0.002 0.024 0.030 0.018 0.006 

V   0.025 0.029 0.020 0.004 0.020 0.025 0.015 0.005 

W   0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Pb   0.219 0.262 0.176 0.043 0.465 0.565 0.364 0.101 

Zn 0.000 0.002 0.776 0.833 0.719 0.057 2.370 3.612 1.135 0.938 

Ag   0.000 0.000 0.000 0.000 0.003 0.006 0.002 0.002 

Σ(metals) 39.700 57.100 16.103 18.326 13.881 2.223 29.980 39.297 20.664 9.317 

*Chemical analyses by FEhS 
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A5.2: Statistics on the chemical composition (m%) of the major by-product classes (V).* 

 
Not specified dust/sludge (N = 10)

Mill scale 
(N =1) 

Mixture containing sand (N = 7) 

 
Mean Max Min SD Mean Max Min SD 

CaO 16.828 21.000 8.680 3.819 0.050 9.683 13.500 4.870 2.890 

SiO2 17.248 23.140 10.690 3.644 0.370 50.167 55.040 42.710 4.908 

MgO 7.191 10.600 3.100 2.344 3.431 4.110 2.370 0.551 

Al2O3 6.945 10.500 3.300 2.061 10.714 12.700 9.510 1.040 

Fe 10.991 22.700 1.208 7.362 62.590 4.637 7.400 2.907 1.522 

FeO 7.330 7.330 7.330 0.000 1.583 3.310 0.650 0.911 

Fe2O3 19.600 19.600 19.600 0.000 4.465 5.887 2.323 1.173 

MnO 0.988 1.350 0.630 0.251 0.830 0.874 1.620 0.290 0.386 

Cr2O3 0.030 0.070 0.020 0.018 0.090 0.038 0.060 0.010 0.020 

TiO2 0.142 0.220 0.030 0.056 0.000 0.446 0.600 0.380 0.073 

Femetallic 1.430 1.430 1.430 0.572 0.840 0.350 0.164 

Almetallic 0.550 0.550 0.550 0.595 0.870 0.350 0.176 

Crmetallic 0.007 0.007 0.007 0.000 0.080 0.120 0.051 0.023 

K2O 1.334 2.850 0.360 0.719 0.000 3.024 4.320 2.340 0.660 

CuO 0.025 0.050 0.010 0.011 0.300 0.010 0.010 0.010 0.000 

Li2O 0.108 0.230 0.010 0.076 0.012 0.020 0.010 0.004 

Na2O 0.192 0.320 0.080 0.095 0.010 0.261 0.430 0.170 0.089 

P2O5 1.229 3.820 0.300 0.964 0.220 0.486 0.890 0.190 0.246 

V2O5 0.026 0.040 0.000 0.012 0.010 0.044 0.080 0.010 0.022 

ZnO 2.661 5.140 0.830 1.497 0.030 0.040 0.110 0.010 0.039 

CaOfree 0.584 1.300 0.210 0.340 0.537 0.750 0.340 0.168 

CO2+H2O 23.560 31.400 16.200 5.013 5.930 10.666 15.400 6.520 2.593 

TIC 13.540 20.100 9.000 3.271 3.900 4.729 9.300 2.700 2.099 

H2O 10.023 16.300 4.090 3.805 2.030 5.930 7.930 3.290 1.511 

Fluorite 0.380 0.380 0.380 0.058 0.071 0.044 0.009 

Stotal 0.676 1.450 0.173 0.361 0.028 0.377 0.523 0.173 0.119 

As 0.005 0.005 0.005 0.002 0.003 0.001 0.001 

Cd 0.007 0.007 0.007 0.000 0.000 0.000 0.000 

Cu 0.026 0.026 0.026 0.006 0.011 0.001 0.003 

Mo 0.003 0.003 0.003 0.000 0.000 0.000 0.000 

Ni 0.013 0.013 0.013 0.004 0.005 0.002 0.001 

V 0.018 0.018 0.018 0.027 0.046 0.015 0.011 

W   
0.015 0.020 0.009 0.004 

Pb 0.557 0.557 0.557 0.009 0.021 0.003 0.006 

Zn 2.138 4.128 0.667 1.203 0.025 0.032 0.090 0.008 0.031 

Ag 0.005 0.008 0.002 0.002 
  

Σ(metals) 17.077 17.077 17.077 2.046 2.632 1.060 0.556 

*Chemical analyses by FEhS 
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A5.2: Statistics on the chemical composition (m%) of the major by-product classes (VI).* 

 
Limestone+sand 

(N =1) 
Unspecified other (N = 13) 

Mean Max Min SD 

CaO 25.300 21.539 34.300 3.640 8.913 

SiO2 40.680 17.923 30.370 1.470 7.547 

MgO 1.120 6.325 17.400 0.800 4.199 

Al2O3 2.110 5.673 11.600 0.570 3.266 

Fe 5.384 10.710 47.230 0.450 12.419

FeO 4.100 8.620 1.010 2.912 

Fe2O3 9.470 18.129 1.237 6.429 

MnO 1.240 2.512 9.850 0.130 2.568 

Cr2O3 0.440 0.130 0.460 0.010 0.170 

TiO2 0.100 0.287 0.540 0.020 0.154 

Femetallic 1.958 4.150 1.000 1.212 

Almetallic 1.015 2.570 0.460 0.791 

Crmetallic 0.055 0.100 0.013 0.032 

K2O 0.740 0.898 2.910 0.030 0.936 

CuO 0.023 0.070 0.010 0.017 

Li2O 0.062 0.170 0.010 0.056 

Na2O 0.230 0.168 0.520 0.050 0.151 

P2O5 4.810 1.794 6.910 0.060 1.928 

V2O5 0.150 0.109 0.590 0.000 0.167 

ZnO 0.010 0.770 3.970 0.000 1.181 

CaOfree 0.380 2.646 9.100 0.230 3.375 

CO2+H2O 12.200 25.231 61.600 13.100 12.051

TIC 9.700 11.931 46.700 5.500 10.208

H2O 2.420 13.295 23.600 5.860 6.178 

Fluorite 0.135 0.490 0.023 0.178 

Stotal 0.076 1.173 3.280 0.090 0.996 

As 0.003 0.007 0.001 0.002 

Cd 0.001 0.001 0.000 0.001 

Cu 0.008 0.020 0.001 0.007 

Mo 0.001 0.001 0.000 0.000 

Ni 0.005 0.011 0.001 0.003 

V 0.096 0.330 0.004 0.115 

W 0.008 0.015 0.002 0.004 

Pb 0.107 0.712 0.002 0.247 

Zn 0.012 0.571 3.188 0.004 0.925 

Ag 0.001 0.001 0.001 0.001 0.000 

Σ(metals) 6.892 13.720 1.821 4.147 

*Chemical analyses by FEhS  
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A5.3: Histograms, density and normal fits for the analysed chemical constituents (I).* 

 

*Chemical analyses by FEhS 
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A5.3: Histograms, density and normal fits for the analysed chemical constituents (II).* 

 

*Chemical analyses by FEhS 
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A5.4.1: Results of the PCA of VNIR/SWIR reflectance spectra.  
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A5.4.2: Results of the PCA of VNIR/SWIR absorbance spectra.  
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A5.4.3: Results of the PCA of VNIR/SWIR continuum removed spectra.  
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A5.4.4: Results of the PCA of MWIR/LWIR reflectance spectra. 
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A5.4.5: Results of the PCA of MWIR/LWIR absorbance spectra.  
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A5.4.6: Results of the PCA of MWIR/LWIR continuum removed spectra. 
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A5.4.7: Results of the PCA of VNIR-LWIR reflectance spectra.  



Appendices Chapter 5 

203 

 

A5.4.8: Results of the PCA of VNIR-LWIR absorbance spectra.  
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A5.4.9: Results of the PCA of VNIR-LWIR continuum removed spectra.  
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A5.4.10: Axis loadings of the PCA based on VNIR/SWIR spectra. 

Reflectance 

Absorbance 

Continuum removal 
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A5.4.11: Axis loadings of the PCA based on MWIR/LWIR spectra. 

Reflectance 

Absorbance 

Continuum removal 
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A5.4.12: Axis loadings of the PCA based on VNIR-LWIR spectra. 

Reflectance 

Absorbance 

Continuum removal 
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A5.5.1: Results of the HCA based on VNIR/SWIR spectra (Manhattan distance, ward.D2 method). 

Reflectance spectra 

Absorbance spectra 

Continuum removed 
spectra 
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A5.5.2: Results of the HCA based on MWIR/LWIR spectra (Manhattan distance, ward.D2 method). 

Reflectance spectra 

Absorbance spectra 

Continuum removed 
spectra 
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A5.5.3: Results of the HCA based on VNIR-LWIR spectra (Manhattan distance, ward.D2 method). 

Reflectance spectra 

Absorbance spectra 

Continuum removed 
spectra 
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A5.5.4 Results obtained using Spectral Feature Fitting (SFF) and Spectral Angle Mapper (SAM). 

For five relatively “pure” material classes, reference spectra were defined, which were afterwards 
compared with the complete spectral library of all samples (N = 102) using SFF and SAM. For 
each sample and for each algorithm, a similarity score was calculated, for which a higher score 
means a higher similarity to the defined reference spectrum (maximum = 1, minimum = 0). 
Based on the results of both methods (weight 1:1), a summed total similarity score was calculated. 
For this initial approach, the complete spectra were utilised., i.e. no specific spectral region for 
the comparison was defined. The resulting scores of the first 10 samples (20 in case of the 
Thomas slag) are presented in the following tables. Ideally, all samples belonging to one material 
type would show the highest similarity to the reference sample and samples related to other 
material types distinctly lower scores. This was the case using the VNIR/SWIR spectra, where all 
sample spectra related to one material type showed the highest similarity scores to the defined 
reference spectrum for this class (except for three of the 14 Thomas slag samples). This indicates 
a high potential for spectrally detecting the studied by-product types out of a variety of other 
material types. Based on the MWIR/LWIR spectra, the assignment of the sample spectra to the 
reference spectrum was not as clear as using the VNIR/SWIR spectra and the similarity scores 
were generally lower. This means that the overall spectral variability in the MWIR/LWIR within 
specific by-product types is distinctly larger compared to the VNIR/SWIR. Obviously, even 
minor differences in mineralogy and chemistry are stronger reflected in the MWIR/LWIR 
compared to the VNIR/SWIR and cause spectral deviations that hamper the precise spectral 
assignment of samples to one material type. As such, when utilising the complete spectra, 
material discrimination and detection is more promising using the VNIR/SWIR. However, 
usually specific wavelength ranges or individual spectral features are defined for such approaches. 

A5.5.4.1: SFF and SAM scores of the converter dedusting sludge spectra (N = 7, in italics: sample of differing type). 

VNIR/SWIR MWIR/LWIR 

Sample spectra Scores Sample spectra Scores 

Reference 18a Total SAM SFF Reference 18a Score SAM SFF 

18a 2 1 1 18a 2 1 1 

18c 1.442 0.679 0.763 18b 1.149 0.502 0.647 

18d 1.403 0.629 0.774 14-6 1.105 0.493 0.612 

27 1.28 0.567 0.713 15 0.865 0.281 0.584 

17 1.054 0.239 0.815 30df 0.858 0.354 0.504 

18b 1.004 0.211 0.793 18d 0.676 0.038 0.638 

26 0.781 0.027 0.754 27 0.653 0 0.653 

W3-R4 0.688 0.172 0.515 17 0.595 0.01 0.584 

W1-R3s 0.551 0 0.551 18c 0.594 0 0.594 

W1-R1 0.518 0 0.518 24B 0.527 0 0.527 

A5.5.4.2: SFF and SAM scores of the stainless steel slag spectra (N = 5, in italics: sample of differing type). 

VNIR/SWIR MWIR/LWIR 

Sample spectra Scores Sample spectra Scores 

Reference T1 Total SAM SFF Reference T1 Score SAM SFF 

T1 2 1 1 T1 2 1 1 

T3 1.857 0.89 0.967 T4 0.954 0.375 0.579 

T2 1.857 0.89 0.967 T5 0.842 0.345 0.496 

T4 1.824 0.851 0.973 T2 0.809 0.336 0.473 

T5 1.64 0.669 0.971 W3-R1-2 0.493 0.219 0.273 

T-AODS 1.589 0.67 0.919 LFS-2 0.414 0.087 0.327 

31-1 1.392 0.487 0.905 T3 0.307 0 0.307 

W3-R5 1.385 0.467 0.918 31-1 0.255 0 0.255 

31-2 1.36 0.466 0.894 21-9 0.239 0.102 0.137 

21-14 1.351 0.432 0.918 W3-R22 0.193 0 0.193 
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A5.5.4.3: SFF and SAM scores of the EAFS from carbon steelm. spectra (N = 3, in italics: sample of differing type). 

VNIR/SWIR MWIR/LWIR 

Sample spectra Scores Sample spectra Scores 

Reference EAFS-1 Total SAM SFF Reference EAFS-1 Score SAM SFF 

EAFS-1 2 1 1 EAFS-1 2 1 1 

EAFS-2 1.767 0.851 0.916 EAFS-3 0.981 0.507 0.474 

EAFS-3 1.652 0.691 0.961 EAFS-2 0.777 0.24 0.537 

LFS-3 1.287 0.462 0.826 26 0.007 0 0.007 

LFS-2 1.125 0.39 0.735 19 0 0 0 

K1a 1.092 0.254 0.839 

LFS-1 1.039 0.309 0.73 

K2a 0.993 0.191 0.802 

DK 0.762 0 0.762 

31-21 0.761 0 0.761 

A5.5.4.4: SFF and SAM -scores of the LFS spectra (N = 3, in italics: sample of differing type). 

VNIR/SWIR MWIR/LWIR 

Sample spectra Scores Sample spectra Scores 

Reference LFS-1 Total SAM SFF Reference LFS-1 Score SAM SFF 

LFS-1 2 1 1 LFS-1 2 1 1 

LFS-2 1.849 0.863 0.986 LFS-2 1.027 0.47 0.557 

LFS-3 1.718 0.763 0.955 14-5 0.793 0.286 0.507 

16-6 1.582 0.661 0.922 21-6 0.767 0.324 0.444 

21-14 1.545 0.645 0.9 W3-R22 0.761 0.337 0.424 

21-12 1.542 0.655 0.888 21-14 0.658 0.251 0.407 

W3-R5 1.437 0.54 0.897 W1-R3bg 0.645 0.256 0.389 

T-AODS 1.397 0.525 0.872 GPS 0.641 0.143 0.498 

T5 1.359 0.501 0.858 W3-R15 0.584 0.152 0.431 

K2a 1.329 0.43 0.899 W3-R10 0.582 0.177 0.405 

A5.5.4.5: SFF and SAM scores of the Thomas slag spectra (N = 14, in italics: sample of differing type). 

VNIR/SWIR MWIR/LWIR 

Sample spectra Scores Sample spectra Scores 

Reference 29-Th Total SAM SFF Reference 29-Th Score SAM SFF 

29-Th 2 1 1 29-Th 2 1 1 

W1-R7u 1.766 0.872 0.894 W1-R7u 1.35 0.694 0.656 

29-bg 1.742 0.832 0.91 W1-R5a 1.287 0.623 0.665 

W1-R5 1.625 0.737 0.888 W1-VK 1.202 0.596 0.606 

W1-R7o 1.621 0.795 0.826 29-bg 1.138 0.475 0.662 

29-Ho 1.615 0.724 0.892 W1-R1 0.941 0.379 0.562 

W1-VK 1.589 0.772 0.817 W1-R7m 0.918 0.457 0.46 

W1-R3-b 1.552 0.713 0.839 W1-R3b 0.883 0.4 0.482 

W1-R7m 1.543 0.741 0.802 29-Ho 0.779 0.336 0.443 

29-Hu 1.367 0.504 0.863 29-Hu 0.663 0.209 0.454 

W1-R3g 1.259 0.49 0.769 W1-R7o 0.658 0.237 0.421 

W3-R21 1.082 0.345 0.736 21-8 0.639 0.088 0.552 

W3-R20 0.864 0.36 0.505 W1-R3b 0.614 0.24 0.374 

W3-R3 0.85 0.114 0.736 W3-R16 0.6 0.19 0.41 

W3-R7 0.792 0 0.792 W3-R13 0.576 0.211 0.366 

21-4 0.767 0 0.767 21-14 0.537 0.155 0.382 

21-5 0.764 0 0.764 W3-R15 0.513 0.165 0.347 

21-11 0.74 0 0.74 W3-R21 0.501 0.05 0.45 

W3-R17 0.729 0 0.729 W3-R 0.473 0.158 0.315 

21-7 0.728 0 0.728 22a 0.399 0 0.399 
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A5.6.1: VNIR/SWIR and MWIR/LWIR spectra of the blast furnace slag samples (not “pure”). 

ID Sample photo Spectrum 350-2500 nm 
(Reflectance/Wavelength in nm) 

Spectrum 2500-15000 nm 
(Reflectance/Wavelength in nm) 

14-1 

     

14-2 

     

14-3 

     

14-4 
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ID Sample photo Spectrum 350-2500 nm 
(Reflectance/Wavelength in nm) 

Spectrum 2500-15000 nm 
(Reflectance/Wavelength in nm) 

14-5 

     

14-6 

   

 

16-4o 

     

16-5 
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ID Sample photo Spectrum 350-2500 nm 
(Reflectance/Wavelength in nm) 

Spectrum 2500-15000 nm 
(Reflectance/Wavelength in nm) 

16-6 

   

 

16-7 

     

21-3 

  v 

 

30-ho 
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ID Sample photo Spectrum 350-2500 nm 
(Reflectance/Wavelength in nm) 

Spectrum 2500-15000 nm 
(Reflectance/Wavelength in nm) 

31-1 

   

 

31-2 

     

W3-
R1-2 

   

 

W3-
R3 
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ID Sample photo Spectrum 350-2500 nm 
(Reflectance/Wavelength in nm) 

Spectrum 2500-15000 nm 
(Reflectance/Wavelength in nm) 

W3-
R5 

     

W3-
R14 

   

 

W3-
R16 

     

W3-
R20 
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ID Sample photo Spectrum 350-2500 nm 
(Reflectance/Wavelength in nm) 

Spectrum 2500-15000 nm 
(Reflectance/Wavelength in nm) 

W3-
R21 

     

W3-
R22 

   

 

W3-
R23 
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A5.6.2: VNIR/SWIR and MWIR/LWIR spectra of the “granulated blast furnace slag” samples. 

ID Sample photo Spectrum 350-2500 nm 
(Reflectance/Wavelength in nm) 

Spectrum 2500-15000 nm 
(Reflectance/Wavelength in nm)

W2-
20a 

   

 

W2-
20b 

   

 

W2-21a 

     

W2-
21b 
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ID Sample photo Spectrum 350-2500 nm 
(Reflectance/Wavelength in nm) 

Spectrum 2500-15000 nm 
(Reflectance/Wavelength in nm)

W2-
22a 

   

 

W2-
22b 
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A5.6.3: VNIR/SWIR and MWIR/LWIR spectra of the “Thomas slag” samples. 

ID Sample photo Spectrum 350-2500 nm 
(Reflectance/Wavelength in nm) 

Spectrum 2500-15000 nm 
(Reflectance/Wavelength in nm) 

29-bg 

     

19-ho 

   

 

29-hu 

   

 

29th 
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ID Sample photo Spectrum 350-2500 nm 
(Reflectance/Wavelength in nm) 

Spectrum 2500-15000 nm 
(Reflectance/Wavelength in nm) 

W1-
R1 

     

W1-
R3b 

   

 

W1-
R3g 

   

 

W1-
R3s 
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ID Sample photo Spectrum 350-2500 nm 
(Reflectance/Wavelength in nm) 

Spectrum 2500-15000 nm 
(Reflectance/Wavelength in nm) 

W1-
R5 

     

W1-
R6 

   

 

W1-
R7m 

   

 

W1-
R7o 
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ID Sample photo Spectrum 350-2500 nm 
(Reflectance/Wavelength in nm) 

Spectrum 2500-15000 nm 
(Reflectance/Wavelength in nm) 

W1-
R7u 

     

W1-
VK 
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A5.6.4: VNIR/SWIR and MWIR/LWIR spectra of the “EAFS (carbon steelmaking)” samples. 

ID Sample photo Spectrum 350-2500 nm 
(Reflectance/Wavelength in nm) 

Spectrum 2500-15000 nm 
(Reflectance/Wavelength in nm) 

EAFS
-las1 

     

EAFS
-las2 

   

 

EAFS
-las3 

   

 

  



Appendices Chapter 5 

226 

A5.6.5: VNIR/SWIR and MWIR/LWIR spectra of the “EAFS (medium-alloy steelmaking)” samples. 

ID Sample photo Spectrum 350-2500 nm 
(Reflectance/Wavelength in nm) 

Spectrum 2500-15000 nm 
(Reflectance/Wavelength in nm) 

K1a 

   

 

K2a 

   

 

A5.6.6: VNIR/SWIR and MWIR/LWIR spectra of the “EAFS (high-alloy steelmaking)” samples. 

ID Sample photo Spectrum 350-2500 nm 
(Reflectance/Wavelength in nm) 

Spectrum 2500-15000 nm 
(Reflectance/Wavelength in nm) 

T-
EAFS

-n 
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A5.6.7: VNIR/SWIR and MWIR/LWIR spectra of the “EAF foam slag” sample. 

ID Sample photo Spectrum 350-2500 nm 
(Reflectance/Wavelength in nm) 

Spectrum 2500-15000 nm 
(Reflectance/Wavelength in nm) 

T-
EAFS

-f 

   

 

A5.6.8: VNIR/SWIR and MWIR/LWIR spectra of the “AOD slag” sample. 

ID Sample photo 
Spectrum 350-2500 nm 

(Reflectance/Wavelength in nm)
Spectrum 2500-15000 nm 

(Reflectance/Wavelength in nm)

T-
AOD

S 

   

 

A5.6.9: VNIR/SWIR and MWIR/LWIR spectra of the “stainless steel slag” sample. 

  

ID Sample photo Spectrum 350-2500 nm 
(Reflectance/Wavelength in nm) 

Spectrum 2500-15000 nm 
(Reflectance/Wavelength in nm) 

T1 
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ID Sample photo Spectrum 350-2500 nm 
(Reflectance/Wavelength in nm) 

Spectrum 2500-15000 nm 
(Reflectance/Wavelength in nm) 

T2 

     

T3 

   

 

T4 

   

 

T5 
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A5.6.10: VNIR/SWIR and MWIR/LWIR spectra of the “ladle furnace slag” sample. 

ID Sample photo Spectrum 350-2500 nm 
(Reflectance/Wavelength in nm) 

Spectrum 2500-15000 nm 
(Reflectance/Wavelength in nm) 

LFS-1 

     

LFS-2 

   

 

LFS-3 
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A5.6.11: VNIR/SWIR and MWIR/LWIR spectra of the “Unspecified steelworks slag” samples. 

ID Sample photo Spectrum 350-2500 nm 
(Reflectance/Wavelength in nm) 

Spectrum 2500-15000 nm 
(Reflectance/Wavelength in nm) 

21-9 

   

 

GPS 
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A5.6.12: VNIR/SWIR and MWIR/LWIR spectra of the “blast furnace flue dust” samples. 

ID Sample photo Spectrum 350-2500 nm 
(Reflectance/Wavelength in nm) 

Spectrum 2500-15000 nm 
(Reflectance/Wavelength in nm) 

24-A 

     

24-B 
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A5.6.13: VNIR/SWIR and MWIR/LWIR spectra of the “unspecified dusts/sludges” samples. 

ID Sample photo Spectrum 350-2500 nm 
(Reflectance/Wavelength in nm) 

Spectrum 2500-15000 nm 
(Reflectance/Wavelength in nm) 

15 

   

 

W3-
R2 

   

 

W3-
R4 

     

W3-
R6 
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ID Sample photo Spectrum 350-2500 nm 
(Reflectance/Wavelength in nm) 

Spectrum 2500-15000 nm 
(Reflectance/Wavelength in nm) 

W3-
R10 

     

W3-
R11 

   

 

W3-
R12 

   

Missing measurement 

W3-
R13 

   

 

 



Appendices Chapter 5 

234 

ID Sample photo Spectrum 350-2500 nm 
(Reflectance/Wavelength in nm) 

Spectrum 2500-15000 nm 
(Reflectance/Wavelength in nm) 

W3-
R15 

     

W3-
R18 
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A5.6.14: VNIR/SWIR and MWIR/LWIR spectra of the “converter dedusting sludge” samples. 

ID Sample photo Spectrum 350-2500 nm 
(Reflectance/Wavelength in nm) 

Spectrum 2500-15000 nm 
(Reflectance/Wavelength in nm) 

17 

     

18a 

   

 

18b 

   

 

18c 
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ID Sample photo Spectrum 350-2500 nm 
(Reflectance/Wavelength in nm) 

Spectrum 2500-15000 nm 
(Reflectance/Wavelength in nm) 

18d 

     

26 

   

 

27 
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A5.6.15: VNIR/SWIR and MWIR/LWIR spectra of the “mill scale” sample. 

ID Sample photo Spectrum 350-2500 nm 
(Reflectance/Wavelength in nm) 

Spectrum 2500-15000 nm 
(Reflectance/Wavelength in nm) 

19 

   

 

 

A5.6.16: VNIR/SWIR and MWIR/LWIR spectra of the “mixtures with natural sand” samples. 

ID Sample photo Spectrum 350-2500 nm 
(Reflectance/Wavelength in nm) 

Spectrum 2500-15000 nm 
(Reflectance/Wavelength in nm) 

16-3 

     

21-4 
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ID Sample photo Spectrum 350-2500 nm 
(Reflectance/Wavelength in nm) 

Spectrum 2500-15000 nm 
(Reflectance/Wavelength in nm) 

21-5 

   

 

21-7 

     

21-10 

     

21-11 
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A5.6.17: VNIR/SWIR and MWIR/LWIR spectra of the “limestone+sand” sample. 

ID Sample photo Spectrum 350-2500 nm 
(Reflectance/Wavelength in nm) 

Spectrum 2500-15000 nm 
(Reflectance/Wavelength in nm) 

W1-
R3r 

   

 

A5.6.18: VNIR/SWIR and MWIR/LWIR spectra of the “unspecified other” samples. 

ID Sample photo Spectrum 350-2500 nm 
(Reflectance/Wavelength in nm) 

Spectrum 2500-15000 nm 
(Reflectance/Wavelength in nm) 

21-6 

     

21-8 
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ID Sample photo Spectrum 350-2500 nm 
(Reflectance/Wavelength in nm) 

Spectrum 2500-15000 nm 
(Reflectance/Wavelength in nm)

21-12 

   

 

21-13 

   

 

21-14 

     

21-15 
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ID Sample photo Spectrum 350-2500 nm 
(Reflectance/Wavelength in nm) 

Spectrum 2500-15000 nm 
(Reflectance/Wavelength in nm)

30-df 

     

DK 

   

 

W3-
R1 

     

W3-
R7 
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ID Sample photo Spectrum 350-2500 nm 
(Reflectance/Wavelength in nm) 

Spectrum 2500-15000 nm 
(Reflectance/Wavelength in nm)

W3-
R8 

   

 

W3-
R9 

     

W3-
R17 
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A5.7: List of the reflectance maxima observed in the LWIR spectra of the reference samples of the by-product 
classes considered relatively “pure” (positions in nm). 

BFS GBFS TS EAFScs EAFSmas EAFShas EAFShlf LFS SSS AODS BFFD CDS 

7622 6388 6268 7452 7665 7371 7370 7579 7536 7536 8180 7754 

11179 7709 7709 8130 9251 8825 9251 11564 10162 7891 9251 8884 

11665 11665 8825 9125 10732 9721 9792 12567 10646 11086 11665 11273 

  
10162 9582 10995 10162 10162 11179 12085 

 
11564 

  
11564 10906 

 
10399 10646  12085 12537 

 
12776 

  
12421 12776 

 
11086 11871  12537 13829 

  

  
14120 

 
11665 12898 13282 

  

  
14741 

 
13282 13151 

  

  
15072 

 
 13550 

  
BFS = Blast furnace slag, GBFS = granulated BFS, TS = Thomas slag, EAFScs = EAF slag from carbon steelmaking, EAFSmas = EAF slag 
from medium-alloy steelmaking, EAFShas = EAF slag from high-alloy steelmaking, EAFShlf = foamed EAF slag from high-alloy steelmaking, 
LFS = ladle furnace slag, SSS = stainless steel slag, AODS = AOD slag, BFFD = blast furnace flue dust, CDS = converter dedusting sludge 

 

A5.8a: Correlations between the contents of Cd, Cr2O3, Ni, Pb and Zn and the reflectance values of the samples 
(left: VNIR/SWIR, right: MWIR/LWIR). 

 

A5.8b: Correlations between the contents of H2O, MgO, P2O5, TIC and ∑(Mo, Ni, V, Zn, Al, Cr, Fe, Mn) and the 
reflectance values of the samples (left: VNIR/SWIR, right: MWIR/LWIR). 
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A5.9.1: Variations of major absorption features in the VNIR/SWIR spectra of blast furnace slag samples (N = 6). 

Feature 
 

Position (nm) Depth Width (nm) Area Asymmetry 

~ 400 nm 

Mean 422 12.13 140.47 1710.39 0.33 

Min 400 7.39 120.95 894.11 -0.21 

Max 515 16.03 160.91 2075.27 0.49 

~ 880 nm 

Mean 880 0.55 122.85 74.15 0.32 

Min 873 0.26 93.49 23.86 0.14 

Max 884 1.16 170.89 198.36 0.45 

~ 1290 nm 

Mean 1292.8 0.11 55.52 7.90 -0.33 

Min 1287 0.07 31.32 2.15 -0.82 

Max 1296 0.20 140.55 28.70 -0.08 

~ 1770 nm 

Mean 1769.7 0.75 313.95 253.91 -0.72 

Min 1762 0.19 35.26 6.85 -0.97 

Max 1779 1.74 760.04 532.38 -0.50 

~ 1930 nm 

Mean 1926.5 5.34 377.40 1972.52 -0.46 

Min 1922 4.03 261.43 1732.00 -0.57 

Max 1930 6.72 468.40 2549.26 -0.31 

~ 2220 nm 

Mean 2224.7 2.42 125.79 304.96 0.22 

Min 2216 2.35 121.80 296.22 0.04 

Max 2235 2.51 129.07 316.65 0.34 

 

A.5.9.2: Variations of major absorption features in the VNIR/SWIR spectra of “slag sand” samples (N = 6). 

Feature 
 

Position (nm) Depth Width (nm) Area Asymmetry 

~ 400 nm 

Mean 410 15.09 117.57 1816.36 0.30 

Min 396 9.69 73.14 991.11 0.13 

Max 418 21.59 138.74 2978.61 0.37 

~ 1430 nm 

Mean 1431 4.29 120.94 535.24 0.35 

Min 1426 1.96 97.60 191.42 0.21 

Max 1443 6.10 137.97 841.40 0.39 

~ 1780 nm 

Mean 1781.5 0.27 65.04 16.25 -0.41 

Min 1778 0.07 55.80 6.57 -0.92 

Max 1788 0.42 98.48 23.50 -0.12 

~ 1930 nm 

Mean 1928.5 17.26 141.09 2446.43 0.24 

Min 1925 12.05 124.76 1515.48 0.02 

Max 1934 20.47 171.05 3501.59 0.38 

~ 2240 nm 

Mean 2240 3.62 95.14 343.49 0.02 

Min 2234 2.48 79.29 196.66 -0.04 

Max 2243 4.70 108.97 453.14 0.07 

~ 2475 nm 

Mean 2474 0.98 50.72 50.91 -0.30 

Min 2467 0.58 42.47 24.67 -0.36 

Max 2480 1.43 58.01 82.96 -0.16 
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A.5.9.3: Variations of major absorption features in the VNIR/SWIR spectra of Thomas slag samples (N = 14). 

Feature 
 

Position (nm) Depth Width (nm) Area Asymmetry 

~ 413 nm 

Mean 413 16.04 173.02 3050.18 0.51 

Min 353 0.07 6.62 0.44 -0.16 

Max 505 32.44 257.22 6535.22 0.82 

~ 714 nm 

Mean 714 1.99 56.99 117.52 0.15 

Min 710 0.45 43.93 20.24 0.05 

Max 720 3.11 63.10 192.51 0.29 

~ 1134 nm 

Mean 1134 0.91 186.84 203.54 0.04 

Min 1075 0.05 41.55 1.91 -0.90 

Max 1162 2.11 240.94 507.96 0.83 

~ 1413 nm 

Mean 1413 2.44 114.37 535.94 0.13 

Min 1412 0.71 32.82 34.49 -0.22 

Max 1416 7.44 498.79 3713.21 0.44 

~ 1940 nm 

Mean 1940 2.91 184.68 451.11 0.24 

Min 1900 0.21 129.06 131.34 -0.06 

Max 1949 4.67 620.72 763.93 0.99 

~ 2244 nm 

Mean 2244 2.04 126.64 258.74 0.07 

Min 2225 1.75 122.99 218.64 -0.09 

Max 2261 2.45 138.08 338.72 0.28 

 

A.5.9.4 Variations of major absorption features in the VNIR/SWIR spectra of stainless steel slag samples (N = 5) I. 

Feature 
 

Position (nm) Depth Width (nm) Area Asymmetry 

~ 378 nm 

Mean 377.8 2.68 92.69 248.00 0.58 

Min 374 2.31 73.63 188.70 0.56 

Max 381 3.21 102.91 289.88 0.65 

~ 424 nm 

Mean 424.2 0.56 79.29 38.96 0.73 

Min 418 0.21 60.01 26.34 0.66 

Max 431 0.78 141.29 50.89 0.96 

~ 592 nm 

Mean 592.4 1.65 58.53 96.50 -0.01 

Min 590 1.53 57.20 90.91 -0.03 

Max 594 1.77 60.10 106.08 0.03 

~ 697 nm 

Mean 698 3.00 107.82 323.42 -0.37 

Min 693 2.33 101.95 246.38 -0.40 

Max 701 3.33 111.35 371.07 -0.35 

~ 1207 nm 

Mean 1208 0.00 8.78 0.01 0.04 

Min 1202 0.00 7.71 0.01 -0.15 

Max 1212 0.00 10.27 0.03 0.14 

~ 1412 nm 

Mean 1411.6 0.88 32.29 28.21 0.02 

Min 1411 0.30 24.93 7.58 -0.16 

Max 1413 1.39 40.25 42.29 0.13 
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A5.9.4: Variations of major absorption features in the VNIR/SWIR spectra of stainless steel slag samples (N = 5) II. 

Feature 
 

Position (nm) Depth Width (nm) Area Asymmetry 

~ 1953 nm 

Mean 1953.8 2.94 203.02 591.50 -0.06 

Min 1948 2.47 166.39 440.76 -0.35 

Max 1957 3.84 278.73 745.54 0.09 

~ 2225 nm 

Mean 2224.4 2.49 145.72 362.14 0.30 

Min 2224 2.39 134.50 339.68 0.23 

Max 2225 2.53 155.23 383.60 0.35 

~ 2390 nm 

Mean 2390 0.49 31.75 17.04 0.21 

Min 2388 0.08 17.94 1.47 0.01 

Max 2392 0.89 37.68 31.31 0.51 

 

A5.9.5: Variations of major absorption features in the VNIR/SWIR spectra of converter sludge samples (N = 7). 

Feature 
 

Position (nm) Depth Width (nm) Area Asymmetry 

~ 494 nm 

Mean 494 29.90 164.89 5317.80 -0.06 

Min 484 11.47 123.50 1416.84 -0.13 

Max 516 57.60 204.41 11774.09 -0.01 

~ 1480 nm 

Mean 1479.6 18.97 986.19 18830.29 0.15 

Min 1448 9.46 941.88 9322.47 0.11 

Max 1529 30.58 1029.62 31194.00 0.19 

~ 2201 nm 

Mean 2201.2 1.97 128.37 265.57 0.40 

Min 2183 0.88 48.97 43.00 -0.49 

Max 2212 2.45 195.70 347.96 0.82 
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A5.10: PLSR results based on VNIR/SWIR spectra for selected iron- and steelworks by-product constituents. 
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A5.11: PLSR results based on MWIR/LWIR spectra for selected iron- and steelworks by-product constituents. 

 

 

A5.12: PLSR results based on VNIR-LWIR spectra for selected iron- and steelworks by-product constituents. 
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A5.13: VIP scores for the best PLSR models obtained for Fetotal, H2O and MgO using VNIR/SWIR, MWIR/LWIR 
as well as VNIR-LWIR spectra. R²val values and the prepropcessing type (CR = continuum removal) utilised for 

building the specific models are additionally provided. 

 

A5.14: VIP scores for the best PLSR models obtained for Al2O3, CaO, Fetotal and MgO using VNIR/SWIR spectra 
of air-dried but not further prepared sample material. R²val values and the prepropcessing type (CR = continuum 

removal) utilised for building the specific models are additionally provided. 
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A5.15: VIP scores for the best PLSR models obtained for Al2O3, CaO, Fetotal and MgO using VNIR/SWIR spectra 
of sample material with near in situ moisture. R²val values and the prepropcessing type (CR = continuum removal) 

utilised for building the specific models are additionally provided. 
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