
Markov Chain Monte Carlo Algorithms for the Uniform
Sampling of Combinatorial Objects

Dissertation

zur Erlangung des
Doktorgrades der Naturwissenschaften (Dr. rer. nat.)

der

Naturwissenschaftlichen Fakultät III

der Martin-Luther-Universität
Halle-Wittenberg,

vorgelegt

von Herrn Steffen Rechner
geb. am 02.12.1986 in Bad Frankenhausen

Gutachter:
Prof. Dr. Matthias Müller-Hannemann

Prof. Dr. Ulrik Brandes

Tag der Verteidigung: 04.06.2018

Acknowledgements

I wish to thank Matthias Müller-Hannemann for his always prompt feedback and
valuable suggestions. I very much appreciate our regular discussions and your helpful
advice.

No less thanks to Annabell Berger for her many years of support, for our joint work,
and for her numerous ideas, which enhanced my thesis in many ways. Thank you
for introducing me to this challenging research topic.

I thank Louise Molitor, Hjalmar Boulouednine, Benjamin Schmidt, and Linda Stro-
wick for writing their final theses under my supervision. Furthermore, I thank
Hjalmar Boulouednine for his reliable work as student assistant.

I thank my friends and colleagues for their support and for the plentiful distrac-
tions during the last years. Many thanks to Sascha Heße for his very thorough
proofreading.

Last but not least, I wish to thank Jördis-Ann Schüler, who reacted to my regular
extra hours with much understanding and support.

Abstract

The random sampling of combinatorial objects is an integral part of scientific com-
puting. We discuss a family of sampling methods known as Markov chain Monte
Carlo (MCMC) algorithms. Such an algorithm can be seen as a random walk on the
state graph of an associated Markov chain. In our discussion, we lay a particular
focus on the efficiency of such methods, which primarily depends on the length of
the random walk. As the total mixing time of the associated Markov chain provides
an upper bound on the necessary number of steps, it is of large interest in many
applications. However, deriving a sharp upper bound on this quantity is often a
difficult challenge.

To support the analysis of MCMC sampling algorithms, we developed the software
tool marathon, designed to determine properties of Markov chains that are usually
hard to find analytically. As one of several applications, our software allows us
to systematically study the total mixing time of Markov chains on a large set of
instances. We apply our software to assess the efficiency of several MCMC algorithms
from three sampling applications. In doing so, we derive several non-trivial insights
into the nature of these methods.

First, we assess the efficiency of three well-known MCMC algorithms for the uniform
sampling of bipartite graphs with fixed degrees. In a set of experiments, we deter-
mine the total mixing time of the classical switch chain, the edge switch chain, and
the recently suggested curveball chain. By processing a large number of ecological
real-world instances, we show that the edge switch chain is superior to the other
chains in the majority of cases. Finally, we show how the sampling problem can be
accelerated by a clever preprocessing of the vertex degrees.

Motivated by the work with incomplete data, we next address the uniform sampling
of bipartite graphs whose degrees lie in prescribed intervals. After introducing two
new Markov chains, we prove the correctness of the associated sampling algorithms.
By experimentally assessing the efficiency of these methods, we find that the first
chain is superior to the second when the degrees of the bipartite graphs are near-
regular, while the second chain works best for the degrees of scale-free networks. As
an interesting side-result, we present an efficient algorithm for the construction of a
bipartite graph whose degrees lie in prescribed intervals.

Finally, we address the uniform sampling of perfect matchings in bipartite graphs.
In a set of experiments with two special classes of bipartite graphs, we identify
initial states that require either a polynomial or an exponential number of steps.
Our findings highlight the influence of the initial state on the efficiency of MCMC
methods.

Contents

1 Introduction 1

1.1 Markov Chain Monte Carlo Sampling 3

1.2 Contribution and Overview . 4

2 Preliminaries 9

2.1 Ergodic Markov Chains . 9

2.2 Total Mixing Time . 13

2.3 Empirical Mixing Time . 15

2.4 Convergence of Sample Means . 18

2.5 Summary . 19

3 The marathon Software 20

3.1 Main Features . 20

3.2 Software Design . 21

3.2.1 Random Sampling . 23

3.2.2 State Graphs . 25

3.3 Implementation Details . 27

3.4 Summary . 31

4 Bipartite Graphs with Fixed Degrees 32

4.1 Definitions and Notation . 33

4.2 Markov Chains . 35

4.2.1 Classical Switch Chain . 36

4.2.2 Edge Switch Chain . 39

4.2.3 Curveball . 40

4.3 Experiments on Mixing Time . 42

4.3.1 Structural Properties of State Graphs 44

4.3.2 Influence of Loops . 51

4.3.3 Quality of Bounding Techniques 57

4.3.4 Empirical Mixing Time . 59

4.3.5 Running Time . 64

4.4 Preprocessing . 67

4.4.1 Methodology . 67

i

4.4.2 Decomposition Algorithm . 72
4.4.3 Experimental Evaluation . 73

4.5 Summary . 74

5 Bipartite Graphs with Bounded Degrees 76
5.1 Definitions and Notation . 77
5.2 Markov Chains . 78

5.2.1 Simple Markov Chain . 79
5.2.2 Informed Markov Chain . 86
5.2.3 Dynamic Adjustment of Probability 90

5.3 Experimental Results and Discussion 92
5.3.1 State Graph Analysis . 92
5.3.2 Convergence of Sample Means 95
5.3.3 Sampling Application . 99

5.4 An Optimal Realization Algorithm 104
5.4.1 Phase One . 106
5.4.2 Phase Two . 109
5.4.3 Edge-Minimality . 111

5.5 Summary . 112

6 Perfect and Near-Perfect Matchings in Bipartite Graphs 113
6.1 Markov Chains . 114

6.1.1 Broder’s Chain . 115
6.1.2 JSV chain . 115

6.2 Experiments on Mixing Time . 117
6.2.1 Total Mixing Time . 119
6.2.2 Influence of Initial State . 125
6.2.3 Quality of Bounding Techniques 129
6.2.4 Induced Subgraphs . 129

6.3 Summary . 136

7 Conclusion and Future Work 138
7.1 Conclusion . 138
7.2 Open Problems and Future Work . 140

Bibliography 143

Appendices 151
Appendix A Index to Notations . 151
Appendix B Data Sets . 153
Appendix C Auxiliary Functions . 160
Appendix D Additional Figures . 162

ii

Chapter 1

Introduction

A fundamental task in scientific computing is the evaluation of the expected value

Eπ[f(X)] :=
∑

x∈Ω

π(x)f(x) (1.1)

of a function f : Ω → R on a large but finite set Ω of combinatorial objects with
respect to a probability distribution function π : Ω→ [0, 1]. In many applications, Ω
is a set of high-dimensional combinatorial objects like graphs or matrices with well-
defined properties. Due to the complex nature of these objects, and as Ω is too
large to be enumerated, the exact evaluation of the expected value is infeasible
in nearly all practical applications. However, by randomly drawing independent
samples x1, x2, . . . , xN according to the specified probability distribution function π,
we may approximate the expected value by the sample mean

µπ[f(X)] := N−1
N∑

i=1

f(xi). (1.2)

By the law of large numbers, the sample mean µπ[f(X)] approaches its associated
expected value when N → ∞. The approximation of a certain value of interest
with the help of randomly sampled objects established a large family of algorithms
known as Monte Carlo methods (see Refs. [1, 2, 3] for a general introduction on the
topic). Today, such methods are an essential part of statistics and applied sciences,
including the following applications.

• In null-network analysis, the structure of an observed network is typically
compared with the structure that would be expected “from chance” if edges
were distributed randomly. In this case, Ω is defined as a set of so-called null-
networks that share specific properties with the network y ∈ Ω of interest.
If g : Ω → R is an arbitrary function quantifying the structure of a network,
we may define

f(x) =

{
1, if g(x) ≥ g(y)

0, else.

1

Then, the expected value Eπ[f(X)] describes the probability of observing a
random network that is at least “as structured” as the observed one. If this
probability is small, we will conclude that the structure of the observed network
is unlikely to be created by chance. In the last decades, null-network analysis
evolved into an integral part of ecology and other life-sciences [4, 5, 6].

• By setting f(x) = π(x)−1, the expected value Eπ[f(X)] is equal to the total
number of objects in Ω. This quantity is often known as normalizing constant
or partition function and is of high interest in statistical physics, including
spinning models and monomer-dimer systems [7]. In computer science, it
is equivalent to the number of solutions of the associated decision problem.
While the exact calculation of |Ω| is often #P-complete [8], the number of
solutions of a self-reducible problem can be approximated in polynomial time
using randomly sampled objects [9].

• In combinatorial optimization, famous meta-heuristics like simulated anneal-
ing [10, 11] are widely used to find near-optimal solutions of typically hard op-
timization problems. Based on the Metropolis algorithm that will be specified
soon, this method defines Ω as the set of valid solutions of an optimization
problem. Starting with an arbitrary initial solution, the method iteratively
randomizes the current solution x to create a solution y ∈ Ω. Based on the
objective values of x and y, and on the current temperature of the system, the
method either moves to y, or stays at x. In doing so, the method produces
a random solution according to a target distribution π that favors solutions
with a near-optimal objective value.

• Many real-life systems are too complex to be analysed analytically. Examples
of such systems come from economics, physics, engineering, chemistry, and
many more. A widely adapted approach to study the properties of such sys-
tems is stochastic simulation. After building a simplified model of the complex
system, its properties can be analysed by computer simulation. For this pur-
pose, models typically include some randomness. By the simulation of such
a model on a computer, we produce random samples from a highly complex
sample space Ω of model configurations [2, 12].

• In the running time analysis of deterministic algorithms, one typically con-
structs a worst-case instance for which the algorithm behaves poorly. To
counter this so-called adversary argument, it is sometimes better to consider
a randomized algorithm [13, 14]. As such algorithms make use of randomly
sampled objects, their running time is a random variable. While an adversary
may show that a deterministic algorithm behaves poorly for a single worst-case
instance, it is often hard to show that a randomized algorithm behaves poorly
on average.

These and other applications highlight the importance of Monte Carlo sampling.

2

However, the construction of random objects according to a specified target proba-
bility distribution π is often a challenging algorithmic problem.

1.1 Markov Chain Monte Carlo Sampling

In 1953, Metropolis et al. [15] suggested a general method designed to construct
random samples according to an arbitrary probability distribution that is specified
by the weight function w : Ω → R+. This method became later known as the
Metropolis algorithm (see Alg. 1.1).

Algorithm 1.1: Metropolis Algorithm

Input: initial state s ∈ Ω, weight function w : Ω→ R+, integer t ∈ Z+.
Output: state x ∈ Ω with probability π(x) ∝ w(x).

1 x← s
2 for i = 1, 2, . . . , t do
3 randomly modify x to create y ∈ Ω // candidate selection

4 select a real number u ∈ [0, 1) uniformly at random
5 if u < w(y)/w(x) then // Metropolis rule

6 x← y
7 end

8 end
9 return x

As will be specified in Chapter 2, the Metropolis algorithm simulates a random
walk on the state graph of a well-defined Markov chain, whose state space is the
set Ω from which we want to draw samples, and whose stationary distribution is
proportional to the weight function w : Ω→ R+.

Starting at an arbitrary initial state s ∈ Ω, the algorithm iteratively transforms the
current state x into a state y ∈ Ω by applying some random modification on x.
Depending on the weights w(x) and w(y), the algorithm will move to y or will stay
at the current state x. After a certain number of steps specified by the parameter t,
the algorithm returns the final state as a random sample. By design, the random
sample produced by Alg. 1.1 will depend on the initial state s. One of the major
challenges of the MCMC method is to choose the number t of steps large enough
such that the final state is “sufficiently random” for practical purpose.

Scope In this thesis, we discuss MCMC sampling algorithms that can be seen as
special cases of Alg. 1.1. In our discussion, we lay a particular focus on the efficiency
of these methods. Essentially, the running time of Alg. 1.1 depends on two aspects.

• Primarily, the number t of steps must be chosen large enough such that the
final state is sufficiently random. The number of steps required to sample

3

from a probability distribution which is “close” (in some well-defined sense) to
the target distribution π is known as the total mixing time of the associated
Markov chain, and is of high interest for the running time of such sampling
algorithms. However, it is hard to establish a general upper bound on the total
mixing time of non-trivial Markov chains.

• In addition to the number of steps, the random modification in Line 3 of
Alg. 1.1 requires special attention as it determines the running time spent in
each step. Intuitively, if a Markov chain applies very small modifications on
the current state in each step, it will need a large number of steps to produce
independent samples. In contrast, the more complex the random modification
is in each step, the less steps will be needed to produce samples. Both aspects
have to be balanced carefully to gain an efficient sampling method.

As the total mixing time of non-trivial Markov chains is typically hard to assess
analytically, it is in practical applications often completely unclear how to choose
the number t of steps. For that reason, the parameter t is usually chosen empirically,
e.g. as a linear function on the length of the input. As we will show in Chapters 4
and 6, this will in many cases be insufficient and thus leads to a sample that is not
as random as desired. As a consequence, the sampling application might behave
unexpectedly or might even be incorrect. Thus, our key motivation is to assess the
difficult question of how to derive a more reliable bound in practical applications.

In some cases, techniques like the canonical path method [16] can be applied to
gain an upper bound on the total mixing time of a Markov chain. When applied
successfully, a thereby established upper bound is often a high-degree polynomial
on the size of the input [17, 18, 19]. Unfortunately, this is far too large to be of
practical use. However, as such bounding techniques are fairly general, and worst-
case instances in terms of total mixing time are unknown, most scientist would
assume that there must be a considerable gap between the total mixing time and
the established upper bound. Thus, we try to assess whether the total mixing time
is really as large as proposed by the upper bounds, or if they are too pessimistic.

1.2 Contribution and Overview

To support the analysis of MCMC based sampling methods, we developed a software
tool called marathon [20]. This tool serves several purposes.

• First of all, our software allows to experimentally derive properties of interest
that are usually hard to find in theory. In particular, we can exactly calculate
the total mixing time of a Markov chain on certain input instances, the value of
the second-largest eigenvalue of its transition matrix, or the associated average
loop probability. Thereby, we can precisely calculate the necessary number of
steps for an MCMC sampling algorithm on a certain input instance.

4

• In addition, our software allows to systematically test hypotheses on properties
of Markov chains by running experiments on a large number of instances. In
doing so, we may quickly reject an incorrect conjecture on a certain property
of interest, thereby actively assisting the analysis of Markov chains.

• Furthermore, we can precisely assess the effect of parameters on the efficiency
of the sampling methods. For example, we can study the influence of the initial
state s, or the effect of the number t of steps. Thereby, we can determine
whether or not an intended improvement on an existing sampling algorithm
pays off.

• Last but not least, we can assess and compare the efficiency of MCMC methods
by running the algorithms and determining the associated running time. In
doing so, we can fairly compare the efficiency of competing algorithms on
real-world instances.

In summary, marathon is designed to accompany theoretical studies with practical
experiments. For this purpose, the software needs to be versatile enough to embrace
several sampling methods of various applications. In addition, it has to be easily
expandable to allow the integration of additional Markov chains. Last but not
least, the implemented algorithms and data structures need to be efficient enough to
support the analysis of large state graphs. Based on our software, we experimentally
assessed the efficiency of several MCMC algorithms from three sampling problems.

Structure In the remainder of this chapter, we describe the structure of this thesis
and briefly summarize our main results.

1. The first chapter contains this introduction.

2. In the next chapter, we summarize the mathematical foundation on which our
methods are built on. This includes well-known theorems from Markov chain
theory as well as the concept of total mixing time. Central to our discussion is
the so-called state graph of a Markov chain, from which we calculate various
properties of the associated sampling method. In addition to a review of the
literature, we introduce the concept of empirical mixing time, and show how
it can efficiently be approximated to derive a lower bound on the total mixing
time of a Markov chain.

3. In Chapter 3, we present our software tool marathon that has been designed
to support the analysis of MCMC algorithms. Our software has two main
applications. First, it contains optimized sampling routines that can be used
to produce random samples in practical applications. Second, marathon can
be used to construct and analyse the state graph of a Markov chain. Alongside
with a short discussion of the software design, we describe essential algorithms
for the construction and analysis of a Markov chain’s state graph. In particular,

5

we show how to calculate the total mixing time of the associated Markov chain,
and how to derive lower or upper bounds on the total mixing time.

4. The following chapters are dedicated to three sampling problems. Chapter 4
discusses the uniform sampling of bipartite graphs with prescribed degrees.
This is a classical problem that has been in the focus of research for many
years. From the large set of sampling algorithms, we address the classical
switch chain [17, 21], the edge switch chain [22], and the recently introduced
curveball algorithm [23]. We assess the efficiency of each sampling algorithm
in a set of experiments.

(a) By experimentally calculating the total mixing time of each Markov chain
on a large set of input instances, we determine how the total mixing time
depends on the size of the input instance. In doing so, we show that the
total mixing time of both switch chain variants is often a super-linear
function on the size of the input. In some cases, we find that even a
quadratic number of steps does not suffice to produce a random sample.

(b) In an additional experiment, we assess the quality of several methods
designed to derive lower and upper bounds on the total mixing time of
a Markov chain. In particular, we focus on the famous canonical path
method [16] that is often applied to derive general upper bounds on the
total mixing time of a certain Markov chain. By applying the method
to concrete state graphs, we show how sharp such bounds may be if full
information about state graphs were available. In doing so, we find that
the canonical path method is unlikely to produce sharp bounds, as its
quality decreases fast. Our findings indicate that existing upper bounds
on the total mixing time of the classical switch chain seem to be too
pessimistic.

(c) To compare the efficiency of the three sampling algorithms on real-world
instances, we experimentally determine the number of steps each algo-
rithm is required to produce “similarly random” samples. By measuring
the running time of each sampling algorithm on a large set of ecologi-
cal instances, we assess the efficiency of the sampling algorithms from a
practical point of view. Our experiments show that the edge switch chain
is superior to the other chains in the majority of cases. In contrast, the
classical switch chain is least efficient.

We close this chapter by showing how the sampling problem can be accelerated
by a clever preprocessing of the input instance. Our algorithm decomposes an
input instance into a set of primitive instances that can be processed inde-
pendently from each other. In an experimental evaluation, we show that our
method significantly accelerates the sampling process.

5. A variation of the classical sampling problem is considered in Chapter 5, where
we address the uniform sampling of bipartite graphs whose degrees lie within

6

prescribed bounds. Motivated by the work with incomplete data, we introduce
two new Markov chains. While the first chain affects a constant number of
edges per step, the second Markov chain is designed to affect a large number
of edges. In doing so, we intend to reduce the total mixing time of the second
chain at the cost of a larger running time spent in each step. In a series of
theorems, we show that the stationary distribution of both Markov chains is
uniform, thereby proving the correctness of the sampling algorithms. After-
wards, we assess the efficiency of both Markov chains in a set of experiments.

(a) By experimenting with the degrees of scale-free and regular graphs, we
show that the first chain is superior to the second if the degrees of a
bipartite graph are near-regular. In contrast, the second chain works
best when the degrees are distributed scale-free.

(b) In a sampling application, we demonstrate how our methods can be ap-
plied to study the expected properties of partially observed networks. By
assuming that several edges of an imaginary “true” network remained
unobserved, we model the true network to be an unknown element of a
set of graphs whose degrees may exceed the observed ones by a certain
constant. We apply our sampling algorithms to approximate the expected
properties of the assumed true network. Our experiments show that the
presence of unobserved edges may largely influence the structure of the
network.

We conclude this chapter by addressing the problem of constructing a bipartite
graph whose degrees lie in prescribed intervals. This is a sub-problem of the
associated sampling problem, when no initial state is known. After presenting
a realization algorithm, we give a proof of its correctness and show that its
running time is superior to that of existing algorithms.

6. In Chapter 6, we address the uniform sampling of perfect matchings in bipartite
graphs. As it is difficult to directly sample from the set of perfect matchings,
a common approach is to extend the sample space by enclosing near-perfect
matchings. In this chapter, we experimentally analyse the total mixing time
of two famous MCMC algorithms. While the total mixing time of Broder’s
chain [24] is known be an exponential function on the size of the underlying
bipartite graph, the Markov chain presented by Jerrum et al. [19] is proven
to possess a polynomial total mixing time. In a set of experiments with two
special classes of bipartite graphs, we investigate the influence of the initial
state on the efficiency of the sampling methods.

(a) By processing several bipartite graphs from each graph class, we experi-
mentally determine how the growing rate of the mixing time depends on
the initial state. In doing so, we identify states that lead to an exponen-
tial mixing time, and states whose mixing time can be described by a
polynomial function.

7

(b) In a final experiment, we evaluate a strategy to derive a lower bound
on the total mixing time of a Markov chain when the construction of
state graphs is infeasible. Our method is based on the eigenvalues of the
weighted adjacency matrix of a state graph’s induced subgraph. However,
our experiments show that the lower bound gained by this method is likely
to be too small to be of use in practical sampling applications.

7. We close our discussion with a summary of our essential results and briefly
point out open problems for future work.

This thesis builds on and extends the following publications, which are joint work
with Annabell Berger, Linda Strowick, and Matthias Müller-Hannemann.

A. Berger and S. Rechner. Broder’s Chain Is Not Rapidly Mixing. arXiv
preprint (2014). arXiv: 1404.4249v1 [cs.DM] [25]

S. Rechner and A. Berger. Marathon: An open source software library for the
analysis of Markov-Chain Monte Carlo algorithms. PLOS ONE 11 (2016).
doi: 10.1371/journal.pone.0147935 [20]

S. Rechner, L. Strowick, and M. Müller-Hannemann. Uniform sampling of
bipartite graphs with degrees in prescribed intervals. Journal of Complex Net-
works (2017). doi: 10.1093/comnet/cnx059 [26]

S. Rechner. An Optimal Realization Algorithm for Bipartite Graphs with De-
grees in Prescribed Intervals. arXiv preprint (2017). arXiv: 1708.05520v1

[cs.DS] [27]

8

http://arxiv.org/abs/1404.4249v1
http://dx.doi.org/10.1371/journal.pone.0147935
http://dx.doi.org/10.1093/comnet/cnx059
http://arxiv.org/abs/1708.05520v1
http://arxiv.org/abs/1708.05520v1

Chapter 2

Preliminaries

In this chapter, we summarize the mathematical background on which the remaining
chapters are built on. We assume the reader to have some basic understanding of
graph and probability theory. While Diestel [28] gives a comprehensive introduction
into graph theory, the classic work of Feller [29] is a good starting point to learn
about probability theory.

2.1 Ergodic Markov Chains

An important tool for understanding MCMC based sampling processes are Markov
chains. The following definitions and theorems are classical results of Markov chain
theory and can be found in standard textbooks like the one by Levin, Peres, and
Wilmer [30].

Definition 2.1 (time-homogeneous Markov chain). Let X = (X0, X1, . . .) be a se-
quence of random variables from a finite state space Ω = {x1, x2, . . . , x|Ω|}. The
random variables X are called Markov chain if and only if the so-called Markov
property holds.

∀t ∈ N : Pr[Xt+1 = x|X0 = xi0 , X1 = xi1 , . . . , Xt = xit] = Pr[Xt+1 = x|Xt = xit].

A Markov chain is called time-homogeneous if and only if

∀t ∈ N : Pr[Xt+1 = x|Xt = y] = Pr[Xt = x|Xt−1 = y].

As the probability of the next state depends solely on the present state and not
on any previous state, the transition probability p : Ω × Ω → [0, 1] of passing from
state x to state y in a time-homogeneous Markov chain can be summarized by a
transition matrix P = (pij), defined by

pij := p(xi, xj) = Pr[Xt+1 = xj |Xt = xi],

for each i, j ∈ {1, 2, . . . , |Ω|}. As for each state x ∈ Ω, the sum
∑

y∈Ω p(x, y) equals
one, the transition matrix P is a stochastic matrix. Thus, the elements of each row

9

sum to one. The matrix can be interpreted as the weighted adjacency matrix of a
directed graph Γ = (Ω,Ψ) whose vertices correspond to the state space Ω. Such a
graph is called state graph.

Definition 2.2 (state graph). Let X = (X0, X1, . . .) be a time-homogeneous Markov
chain with state space Ω and transition probability p : Ω × Ω → [0, 1]. The directed
graph Γ = (Ω,Ψ) with Ψ := {(x, y) ∈ Ω × Ω: p(x, y) > 0} is called state graph of
the associated Markov chain.

In this context, Alg. 1.1 can be seen as a random walk on the state graph of a well-
defined Markov chain. Starting at an arbitrary vertex s ∈ Ω, the algorithm selects
a random vertex y ∈ Ω that is adjacent to the current vertex and moves to y with
probability min(1, w(y)/w(x)). Thus, the associated transition probability p(x, y)
can be described by

p(x, y) = κ(x, y) ·min

(
1,
w(y)

w(x)

)
,

where κ : Ω× Ω→ [0, 1] is the proposal probability of transforming state x into y in
Line 3 of Alg. 1.1.

Stationary Distribution We denote by p
(t)
s (x) the probability of being at state x ∈

Ω after t steps of a random walk starting at state s ∈ Ω, i.e.

p(t)
s (x) := Pr[Xt = x|X0 = s].

The probability distribution function p
(t)
s is known as the t-step probability distribu-

tion of the associated Markov chain. By the law of total probability, p
(t+1)
s is derived

from p
(t)
s by

p(t+1)
s (x) =

∑

y∈Ω

p(t)
s (y) · p(y, x). (2.1)

Under certain conditions, the t-step distribution of a Markov chain converges to the
associated stationary distribution when t→∞.

Definition 2.3 (stationary distribution). Let p : Ω × Ω → [0, 1] denote the tran-
sition probability of a time-homogeneous Markov chain. A probability distribution
function π is called stationary distribution of the associated Markov chain if and
only if

∀x ∈ Ω: π(x) =
∑

y∈Ω

π(y) · p(y, x).

In other words, once a Markov chain has reached a stationary distribution, the
distribution will not change by the further evolution of the chain. It is well-known
under which conditions such a stationary distribution exists.

10

Definition 2.4 (irreducibility, aperiodicity, ergodicity). Let Γ = (Ω,Ψ) the state
graph of a Markov chain X = (X0, X1, . . .) with state space Ω. The Markov chain
is called irreducible if Γ is strongly connected. It is called aperiodic if Γ is not
bipartite. It is called ergodic if it is both irreducible and aperiodic.

If a Markov chain is not aperiodic, it can easily be transformed into an aperiodic
chain by adding an artificial loop transition. In each step, a so-called lazy Markov
chain stays at its current state with probability 0 < α < 1. As the associated state
graph contains a loop arc, it cannot be bipartite. Thus, the lazy version of any
Markov chain is aperiodic.

The following classical result is of central importance for the correctness of MCMC
algorithms.

Theorem 2.1 (fundamental theorem). Let X = (X0, X1, . . .) be an ergodic Markov

chain. Let s ∈ Ω be an arbitrary initial state and let p
(t)
s be the associated t-step

probability distribution. Then, there is a unique stationary distribution π such that

∀x ∈ Ω: lim
t→∞

pts(x) = π(x).

The fundamental theorem is the theoretical foundation of the MCMC approach.
As the t-step distribution of an ergodic Markov chain approaches the associated
stationary distribution independently from the initial state s, an MCMC algorithm
will produce a random sample distributed by π after an infinite number of steps,
regardless of at which state the algorithm started.

We can easily identify the stationary distribution π of an ergodic Markov chain by
showing that the Markov chain is reversible with respect to this distribution.

Definition 2.5 (reversibility). A time-homogeneous Markov chain with transition
probability p : Ω × Ω → [0, 1] is called reversible with respect to a probability distri-
bution function π if and only

∀x, y ∈ Ω: π(x) · p(x, y) = π(y) · p(y, x). (2.2)

Eq. 2.2 is known as detailed balance condition. We can prove that a probability
function π is the stationary distribution of a Markov chain by showing that Eq. 2.2
holds.

Theorem 2.2. Let X = (X0, X1, . . .) be an ergodic Markov chain with transition
probability p : Ω × Ω → [0, 1] and let π be a probability distribution function on Ω.
When X is reversible with respect to π, then π is its stationary distribution.

Proof. By Eq. 2.1, one step of a Markov chain transforms the probability distribution
function π into

π̄(x) =
∑

y∈Ω

π(y)p(y, x) =
∑

y∈Ω

π(x)p(x, y) = π(x)
∑

y∈Ω

p(x, y) = π(x).

Thus, π is stationary.

11

Nicholas Metropolis [15] proved the following theorem which states that Alg. 1.1
produces random samples proportionally to the weight function w, whenever the
proposal probabilities κ are symmetric.

Theorem 2.3. If κ : Ω × Ω → [0, 1] is a symmetric proposal probability function,
then the stationary distribution of the Markov chain defined by Alg. 1.1 is given
by π(x) = w(x)/Z, where Z :=

∑
y∈Ωw(y).

Proof. We show that the detailed balance condition holds. Without loss of gen-
erality, we may assume w(y) < w(x). Then, the following equations hold for
each x, y ∈ Ω.

π(x) · p(x, y) =
w(x)

Z
· κ(x, y) ·min

(
1,
w(y)

w(x)

)

=
w(y)

Z
· κ(x, y)

= π(y) · κ(y, x)

= π(y) · κ(y, x) ·min

(
1,
w(x)

w(y)

)

= π(y) · p(y, x).

In 1970, Hastings generalized Alg. 1.1 to allow non-symmetric proposal probabili-
ties [31]. This extension is known as the Metropolis-Hastings algorithm.

Uniform Sampling A special but practically important case is the uniform sam-
pling of combinatorial objects. In this case, the target probability distribution π
is the uniform distribution on Ω, i.e. π(x) = |Ω|−1 for each x ∈ Ω. In such cases,
Alg. 1.1 can be simplified as w(x) is constant and thus, the Metropolis rule in Line 5
never rejects the transition of moving to state y. The transition probability p(x, y)
is in such cases identical with the proposal probability κ(x, y). Thus, the station-
ary distribution of a Markov chain will automatically be uniform if the transition
probability function is symmetric.

Corollary 2.4. Let X = (X0, X1, . . .) be an ergodic Markov chain with state space Ω
and symmetric transition probability function p : Ω×Ω→ [0, 1]. Then, the stationary
distribution of X is the uniform distribution on Ω.

Proof. As p(x, y) = p(y, x) holds for each x, y ∈ Ω, X is reversible with respect to
the uniform distribution π(x) = |Ω|−1 as the detailed balance condition holds.

∀x, y ∈ Ω: π(x) · p(x, y) = π(x) · p(y, x) = |Ω|−1 · p(y, x) = π(y) · p(y, x).

By Theorem 2.2, the stationary distribution π is the uniform distribution on Ω.

In other words, if the target distribution π of an MCMC sampling algorithm is
supposed to be the uniform distribution on Ω, it suffices to show that the transition
probability function the underlying Markov chain is symmetric.

12

Summary The methods presented in this section provide a methodical foundation
for the construction of MCMC sampling algorithms. To create a sampling algorithm,
we need to define the transition rules of an ergodic Markov chain whose state space
is the set Ω from which we want to draw samples. By showing that the associated
transition probability function κ : Ω×Ω→ [0, 1] is symmetric, Alg. 1.1 will generate
random samples from Ω according to any target distribution π(x) ∝ w(x).

2.2 Total Mixing Time

By Theorem 2.1, an infinite number of steps will lead to a truly random sample.
But what happens if we stop the random walk after a finite number of steps? In
this case, the random sample will be distributed according to a probability function
that is “close” to the target distribution π. We can measure the distance between
two probability distributions by the total variation distance.

Definition 2.6 (total variation distance). Let µ and η be probability distribution
functions on a common set Ω. The total variation distance ||µ− η|| is defined by

||µ− η|| = 1

2

∑

x∈Ω

|µ(x)− η(x)|. (2.3)

Following from Theorem 2.1, the total variation distance ||p(t)
s −π|| approaches zero

when t→∞. The number of steps required to reach a probability distribution with
a total variation distance of ε or less is known as the mixing time of a Markov chain,
and is of high interest for the running time of the associated sampling algorithm.

Definition 2.7 (mixing time, total mixing time). Let s ∈ Ω be an arbitrary initial
state. The mixing time τs : [0, 1]→ N of a Markov chain is defined by

τs(ε) := min{t ∈ N : ||p(t)
s − π|| ≤ ε}. (2.4)

We define the total mixing time τmax : [0, 1]→ N by

τmax(ε) := max
s∈Ω
{τs(ε)}. (2.5)

The total mixing time provides a formal measure for the efficiency of a Markov
chain. A Markov chain is called rapidly mixing, if τmax(ε) can be bounded from
above by a polynomial which depends on the input size and the parameter ε−1.
The total mixing time can be bounded by several techniques, from which we present
some important ones. An overview about several bounding techniques is given by
Sinclair [16].

13

Spectral Bounds Let P the transition matrix of an ergodic Markov chain. It
is easy to show that P has the eigenvalue 1 corresponding to the eigenvector v =
(v1, v2, . . . , v|Ω|) defined by vi := π(xi). (By Def. 2.3, vP = 1 · v holds as π is a
stationary distribution.) In addition, as the Markov chain is aperiodic (and the state
graph is therefore not bipartite), the eigenvalue −1 cannot occur. Furthermore, we
assume for now that P is a symmetric matrix. In this case, its eigenvalues are
real and can be ordered non-increasingly. As P is stochastic, the Perron-Frobenius
theorem [32, 33] shows that its eigenvalues lie in the range

1 = λ1 > λ2 ≥ . . . ≥ λ|Ω| > −1.

Let λmax := max{λ2, |λ|Ω||}. The quantity (1 − λmax) is known as the spectral gap
of the transition matrix P . It can be used to bound the total mixing time of the
associated Markov chain.

Theorem 2.5 (spectral bounds [16]). Let P be a symmetric transition matrix of an
ergodic Markov chain with stationary distribution π. Let λmax := max{λ2, |λ|Ω||}.
Then, the total mixing time τmax(ε) can be bounded by

τmax(ε) ≤ 1

1− λmax
· ln(ε · πmin)−1 (2.6)

τmax(ε) ≥ 1

2
· λmax

1− λmax
· ln(2ε)−1, (2.7)

where πmin := minx∈Ω{π(x)}.

If the stationary distribution π of an ergodic Markov chain is not uniform, the asso-
ciated transition matrix P will not be symmetric. However, it can be transformed
into a symmetric matrix P ′ by calculating

P ′ := D−1/2 · P ·D1/2, (2.8)

where

D1/2 := diag
(√

π(x1),
√
π(x2), . . . ,

√
π(x|Ω|)

)
, and

D−1/2 := diag
(√

π(x1)−1,
√
π(x2)−1, . . . ,

√
π(x|Ω|)−1

)

are |Ω| × |Ω| matrices with positive values on their main diagonal. It is straight-
forward to show that P ′ has the same eigenvalues as P .

Congestion Bound The canonical path method [16] is an elegant technique to
gain upper bounds on the total mixing time of a Markov chain. Let

P := {pxy : x 6= y ∈ Ω}

14

be a family of simple paths in Γ, where each pxy is a simple path from x to y. Let

Puv := {pxy ∈ P : (u, v) ∈ pxy}

be the subset of paths that contain the arc (u, v) ∈ Ψ. Then, the maximum load
congestion ρ(P) is defined as

ρ(P) := max
(u,v)∈Ψ

∑
pxy∈Puv

π(x)π(y)|pxy|
π(u)p(u, v)

, (2.9)

where |pxy| denotes the number of arcs in pxy. For any path system P, the total mix-
ing time of a reversible Markov chain can be bounded from above by the congestion
bound.

Theorem 2.6 (congestion bound [16]). Let ρ(P) be the maximal load congestion of
an arbitrary family of paths P in the state graph of an ergodic Markov chain. Then,
the total mixing time τmax(ε) is bounded from above by

τmax(ε) ≤ ρ(P) · ln(ε · πmin)−1. (2.10)

For various applications, the congestion bound has successfully been applied to gain
an upper bound on the total mixing time [17, 18, 19]. To show that a Markov
chain is rapidly mixing, it suffices to define a set of paths such that the maximal
load congestion ρ(P) can be bounded from above by a polynomial function. This,
however, is often a demanding challenge.

2.3 Empirical Mixing Time

The mathematical concepts presented in the previous section can be used to assess
the efficiency of an MCMC algorithm. In particular, we can calculate the total
mixing time τmax(ε) to determine the number of steps after which a Markov chain is
“close” to its stationary distribution. However, the calculation of the total mixing
is infeasible in many practical applications as it requires the construction of the
associated state graph. For that reason, we introduce a generalized concept of mixing
time which can be approximated through simulation. This technique is based on
the evaluation of an arbitrary auxiliary function

f : Ω→ R.

Let η be a probability distribution on R such that η(y) describes the probability of
observing y = f(x) when x ∈ Ω is distributed according to π, i.e.

η(y) := Pr[f(X) = y|X ∼ π].

Analogously, the probability distribution function q
(t)
s describes the probability that f(x)

equals y when x ∈ Ω is distributed according to p
(t)
s , i.e.

q(t)
s (y) := Pr[f(X) = y|X ∼ p(t)

s].

15

Definition 2.8 (empirical mixing time). Let f : Ω → R be an arbitrary auxiliary
function and let s ∈ Ω be an initial state. The empirical mixing time τ̄s : [0, 1]→ N
(with respect to f) is defined by

τ̄s(ε) := min{t ∈ N : ||q(t)
s − η|| ≤ ε}.

It is easy to show that the empirical mixing time τ̄s(ε) is a lower bound for the total
mixing time τmax(ε).

Theorem 2.7. Let X = (X0, X1, ...) be an ergodic Markov chain with state space Ω
and total mixing time τmax(ε). Let s ∈ Ω be an arbitrary initial state and f : Ω→ R
be an auxiliary function. Then, τ̄s(ε) is a lower bound on τmax(ε).

Proof. We prove the theorem by showing that ||q(t)
s − η|| ≤ ||p(t)

s − π|| holds for
all t ∈ N. The application of the function f partitions the domain Ω into disjoint
subsets Ω1,Ω2, . . . ,Ωk that share a common function value, i.e.

∀i ∈ {1, . . . , k} : ∀x1, x2 ∈ Ωi : f(x1) = f(x2) =: yi.

By the law of total probability, η and q
(t)
s are calculated by

η(yi) =
∑

x∈Ωi

π(x) and q(t)
s (yi) =

∑

x∈Ωi

p(t)
s (x).

Thus, we can express the variation distance ||q(t)
s − η|| by

||q(t)
s − η|| =

1

2

∑

y∈R

∣∣∣q(t)
s (y)− η(y)

∣∣∣

=
1

2

k∑

i=1

∣∣∣∣∣∣
∑

x∈Ωi

(
p(t)
s (x)− π(x)

)
∣∣∣∣∣∣
.

By the triangle inequality, the variation distance can be bounded from above by

||q(t)
s − η|| ≤

1

2

k∑

i=1

∑

x∈Ωi

∣∣∣p(t)
s (x)− π(x)

∣∣∣

=
1

2

∑

x∈Ω

∣∣∣p(t)
s (x)− π(x)

∣∣∣

= ||p(t)
s − π||.

Thus, τ̄s(ε) ≤ τs(ε) ≤ τmax(ε), which completes the proof.

The quality of the lower bound depends on the auxiliary function f : Ω → R and
the initial state s. In Section 4.3, we assess the quality of several functions on the
empirical mixing time. Here, we briefly discuss two extreme cases.

16

• If f : Ω → R is an injective function, then τ̄s(ε) is equal to τs(ε) as each Ωi

contains a single element and thus, ||p(t)
s − π|| = ||q(t)

s − η|| for all t ∈ N.

• If there is a constant c ∈ R such that f(x) = c for all x ∈ Ω, then τ̄s(ε) = 0 as

q(t)
s (y) = η(y) =

{
1, if y = c,

0, else

holds for all s ∈ Ω and t ∈ N.

Approximation The empirical mixing time τ̄s(ε) can be approximated by the
simulation of the associated Markov chain. For this purpose, we need to approximate

the t-step-distributions q
(t)
s for increasing values of t, and the limiting distribution η.

1. To approximate the t-step-distribution q
(t)
s , we may simulate t steps of the

associated Markov chain (starting at initial state s ∈ Ω) to create a random

sample x ∈ Ω with probability p
(t)
s (x). By evaluating the auxiliary function f

on x, the real number y = f(x) is consequently distributed according to q
(t)
s (y).

By repeating this process N times (always starting at state s ∈ Ω), we cre-
ate a sequence of independent and identically distributed random samples
y1, y2, . . . , yN , from which we construct a sampling histogram as an approxi-

mation for the t-step-distribution q
(t)
s .

2. To approximate the limiting distribution η, we may use one of several strate-
gies.

(a) If |Ω| is not too large, we may enumerate the whole state space and
precisely calculate the limiting distribution η by evaluating y = f(x) for
each x ∈ Ω. This is feasible only if Ω is comparably small.

(b) If the enumeration of the state space Ω is infeasible, we may instead use
an exact sampling algorithm to produce N independent random samples
from the target distribution π and to construct a sampling histogram
that approximates η. Although the asymptotic running time of such al-
gorithms is typically unpleasantly large, they can be surprisingly efficient
for small and medium-sized real-world instances [34].

(c) If exact sampling accoring to the target distribution π is infeasible, it
can sometimes be more efficient to create a random sample x according
to a different distribution π̃, and to subsequently calculate the probabil-
ity π(x) of interest. In particular, it has been show that methods based
on importance sampling are very efficient for this purpose. [35].

(d) If none of the previous techniques is feasible, we can approximate the
limiting distribution η using an MCMC sampling algorithm to iteratively

produce random samples according to a t-step-distribution p
(t)
s , where t

17

is a large number and s is the final state from the previous run. To
determine the number t of steps for each MCMC run, we can use an
experimental procedure based on trial and error. In this process, we
iteratively construct sampling histograms for several large values of t until
the variation distance of two succeeding sampling histograms becomes
neglectable.

In summary, we can approximate the empirical mixing time by the simulation of the
associated Markov chain. This does not require the construction of a state graph
and can therefore be executed for instances in which the exact calculation of the
mixing time is infeasible.

2.4 Convergence of Sample Means

By the approximation of a Markov chain’s empirical mixing time, we can efficiently
calculate a lower bound on the Markov chain’s total mixing time. However, con-

structing the sampling distributions q
(t)
s and η may still be infeasible for large input

instances as we need to draw a large number of samples to construct an accurate
approximation of the probability distributions. For that reason, a rather simpli-
fied variant of the empirical mixing time is often used to experimentally assess the
efficiency of MCMC methods (see Refs. [36, 37, 38, 39] for examples).

By simulating t steps of an ergodic Markov chain with state space Ω and initial

state s ∈ Ω, we produce the sample x ∈ Ω with probability p
(t)
s (x) . Repeating

this experiment N times – always starting at state s – we produce a sequence of
independent and identically distributed random samples x1, x2, . . . , xN according to

the t-step probability p
(t)
s . By evaluating an arbitrary auxiliary function f : Ω→ R

on each random sample and calculating the sample mean

µ
p
(t)
s

[f(X)] := N−1
N∑

i=1

f (xi) ,

we approximate the expected value

E
p
(t)
s

[f(X)] =
∑

x∈Ω

p(t)
s (x)f(x)

of the function f with respect to the t-step distribution p
(t)
s . By Theorem 2.1 and

the law of large numbers, the sample mean µ
(t)
s [f(X)] will approach the expected

value
Eπ[f(X)] =

∑

x∈Ω

π(x)f(x)

as t,N →∞. By letting t grow and observing the sample means µ
p
(t)
s

[f(X)], we can

determine the number of steps after which the sample means stabilize. This number
can be used as an indicator for the efficiency of a Markov chain.

18

In contrast to the empirical mixing time, this technique does not require sampling
histograms for increasing values of t. As the approximation of an expected value
requires less samples than the construction of the associated sampling histogram,
we can apply this technique to instances for which the calculation of the empirical
mixing time would be too time-consuming.

Unfortunately, there seems to be no direct way to use the convergence of the sample
means to derive a lower bound on the total mixing time of the associated Markov
chain. Thus, this method is not as well-founded as the empirical mixing time dis-
cussed previously.

2.5 Summary

In this chapter, we introduced the mathematical concepts for our following discus-
sion. After reviewing fundamental definitions and theorems on Markov chains and
mixing time, we introduced the concept of empirical mixing time and showed that
it is a lower bound on the total mixing time of a Markov chain. As the empirical
mixing time can be approximated by the simulation of the associated Markov chain,
it can efficiently be evaluated even if the construction of a state graph is infeasible.

In cases where even the approximation of the empirical mixing time is too costly,
a simplified variant based on the approximation of expected values can be used to
assess the efficiency of MCMC algorithms. As the approximation of an expected
value requires less samples than the construction of a sampling histogram, it can be
carried out more efficiently in practical applications.

19

Chapter 3

The marathon Software

This thesis involves a large number of practical experiments that require efficient
implementations of highly non-trivial algorithms. As these algorithms proved to be
very useful for both the analysis of Markov chains and for practical sampling applica-
tions, we compiled a software library called marathon that contains implementations
of the methods that are discussed in this thesis. The source code is written in C++
and is freely available at https://github.com/srechner/marathon. In this chap-
ter, we introduce the main features of the library. It provides two main applications.

1. First, marathon is a collection of efficient sampling routines that can be used
to create random samples for several applications. In particular, each Markov
chain discussed in this thesis is implemented within marathon and can be
simulated to produce random samples. This is useful for scientists who want
to integrate random sampling functionality into their applications. In addition,
such methods can be used to study the convergence behavior of the associated
Markov chains (see Section 2.3).

2. Second, marathon is designed to study structural properties of Markov chains,
respectively their corresponding state graphs. These methods include the com-
putation of the total mixing time, its lower and upper bounds, and many more.
By experimentally analysing a Markov chain’s state graph, one can learn about
properties which are typically hard to find in theory. This makes marathon
useful for theoretical scientists who want to study the properties of Markov
chains.

3.1 Main Features

Our software library is designed to support the simulation and analysis of MCMC
algorithms that follow the generic principle outlined in Alg. 1.1. In this thesis, we
cover three sampling problems. Each problem asks for a uniformly drawn sample
from its associated sample space Ω. The sample space Ω depends on the type of
problem and is defined as

20

https://github.com/srechner/marathon

(a) the set of bipartite graphs with fixed degrees (discussed in Chp. 4),

(b) the set of bipartite graphs with bounded degrees (discussed in Chp. 5),

(c) the set of perfect matchings in a bipartite graph (discussed in Chp. 6).

For each type of sampling problem, marathon provides the following set of features.

• A family of RandomGenerator classes implements several sampling algorithms
designed to construct random samples from their sample space Ω. Most of
these algorithms are based on the MCMC approach and thus, require assump-
tions on the necessary number of steps. In addition, a set of exact sampling
algorithms can be used to create unbiased samples. These methods are proven
to create uniformly distributed samples and do not rely on a given number
of steps. However, the running time of these methods is typically larger than
that of the MCMC algorithms.

• As one of its central applications, marathon can be used to construct and
analyse the state graphs of each Markov chain discussed in this thesis. In par-
ticular, it can calculate the total mixing time, or its lower and upper bounds.
Of high importance for the construction and analysis of state graphs are the
classes MarkovChain and StateGraph that will be specified soon.

• Our software provides Enumerator classes designed to enumerate the sample
space Ω. As this can be carried out via backtracking, the enumeration of states
is more efficient than the construction of state graphs. Enumerating the set
of states can be used to exactly calculate expected values without the need of
random sampling.

• A set of Counter classes is designed to calculate the exact size of the state
space Ω. By exploiting symmetries and through the use of memoization tech-
niques, the size |Ω| of the sample space can in practice be determined more
efficiently than by the enumeration. Such methods are the basis of the exact
sampling methods that are designed to produce unbiased samples.

3.2 Software Design

The marathon software has been designed with several goals in mind.

• To analyse Markov chains for very diverse sampling problems, the software
has to be oblivious to specific applications. For that reason, we require an
abstract Markov chain representation that is general enough to include a large
range of sampling problems.

• The software is designed to be easily expandable by adding additional Markov
chains and analysis methods. To simplify the programming effort and to hide
complexity from the developer, a hierarchy of classes and interfaces is used to
iteratively derive specialized sub-classes from abstract base classes.

21

• Our software must be efficient enough to process large state graphs with several
million states. For this reason, we chose the C++ programming language and
integrated efficient third-party libraries to accelerate the computation.

In the following discussion, we present marathon’s class structure. To represent a
diverse set of MCMC algorithms, we use a system of abstract classes that define
which methods must be implemented by its sub-classes.

States In this thesis, we focus on three sampling problems. Each problem uses its
own class to represent the states of its associated Markov chains. While the states
of applications (a) and (b) are represented by binary matrices, the states of Markov
chains from application (c) are bipartite matchings. To unify the use of different
types, an abstract base class State models the general representation of a state
object. If a Markov chain is designed to be solely used for simulation purpose, we
do not specify any requirement to a state sub-class at all. For the construction of
state graphs, however, a sub-class must implement the following abstract methods.

• As states will be stored in hash maps, the method size t hashValue() must
be implemented to calculate a hash value of the corresponding state object.
The better the quality of the hash function, the more efficient the construction
of the state graphs will be.

• To construct a total order on Ω, each State sub-class must implement the
method

int compareTo(const State*)

to support the pairwise comparison of two state objects x, y ∈ Ω. The method
must be implemented to return 0 if and only if x = y. If x and y are not
identical, the method must decide which state is lesser with respect to an
arbitrary total order < on Ω. For this purpose, it must return a negative value
if x < y, and a positive value if y < x.

• To create a copy of a state, the method

State* copy()

must be implemented to return a new state object that is identical to the
original one.

Derived from the base class State, the classes BinaryMatrix and Bipartite-

Matching are specialized (see Fig. 3.1).

Markov Chains As the focus of this thesis is on the analysis of MCMC algorithms,
the heart of marathon is a hierarchy of classes representing Markov chains (see
Fig. 3.2). The abstract base class MarkovChain defines which methods a Markov
chain sub-class must implement and provides basic functionality that is common to

22

marathon

binary_matrix
matching

Transition

State* from
State* to
Rational p

StateGraph

vector<State*> states
vector<Transition> arcs

StateGraph(MarkovChain*)
Rational getProbability(State*, State*)

State

size_t hashValue()
int compareTo(State* s)
State* copy()

BinaryMatrix

bool[] bits
int nrow, ncol

bool get(int, int)
void set(int, int, bool)

size_t hashValue()
int compareTo(State* s)
State* copy()

BipartiteMatching

int[] mates
int nvertices

int getMate(int)
void setMate(int, int)
bool isPerfect()
bool isNearPerfect()

size_t hashValue()
int compareTo(State* s)
State* copy()

Figure 3.1: State and StateGraph classes.

each chain. Each MarkovChain object holds a single state which is modified by the
simulation of the chain. Derived from this base class, a set of several Markov chains
can be analysed or simluated to produce random samples. New Markov chains can
easily be implemented by adding a new class to the hierarchy. Depending on the
application of the chain, a new sub-class must implement one or more of the abstract
methods defined by MarkovChain.

3.2.1 Random Sampling

As its most basic application, a Markov chain can be used for the construction of
random samples according to the associated target distribution. For this purpose, a
MarkovChain sub-class needs to implement the method

void step(),

which applies a single step of the associated Markov chain to its current state. After
this method has been implemented, the predefined method

State* randomize(int steps)

can be used to simulate a random walk with a certain number of steps. The appli-
cation of this methods requires an initial state that can be specified when creating
a MarkovChain object. If no state is known in advance, an initial state must be
constructed in the initialisation of a MarkovChain object. For this purpose, the
method

State* initialState(string inst, int strategy)

23

m
a
ra
th
o
n

b
in
a
ry
_m

a
trix

in
te
rv
a
l_m

a
rg

in

fi
x
e
d
_m

a
rg

in
m
a
tc
h
in
g

M
a
rko

v
C

h
a
in

S
ta

te
* sta

te

S
ta

te
* ra

n
d

o
m

ize
(in

t)
S

ta
te

* in
itia

lS
ta

te
(...)

v
o
id

 ste
p

()
v
o
id

 a
d

ja
ce

n
tS

ta
te

s(...)
R

a
tio

n
a
l g

e
tW

e
ig

h
t(S

ta
te

*)

M
a
rko

v
C

h
a
in

in
t[] lo

w
e
r_ro

w
su

m
in

t[] u
p
p

e
r_ro

w
su

m
in

t[] lo
w

e
r_co

lsu
m

in
t[] u

p
p

e
r_co

lsu
m

in
t[] cu

rre
n
t_ro

w
su

m
in

t[] cu
rre

n
t_co

lsu
m

S
ta

te
* in

itia
lS

ta
te

(...)

S
im

p
le

C
h
a
in

v
o
id

 ste
p

()
v
o
id

 a
d

ja
ce

n
tS

ta
te

s(...)

In
fo

rm
e
d

C
h
a
in

v
o
id

 ste
p
()

v
o
id

 a
d

ja
ce

n
tS

ta
te

s(...)

S
im

p
le

C
h
a
in

D
y
n

d
o
u
b
le

 p
_sw

itch
d

o
u
b
le

 p
_sh

ift
d

o
u
b
le

 p
_fl

ip

v
o
id

 ste
p

()

In
fo

rm
e
d

C
h
a
in

D
y
n

d
o
u
b

le
 p

_tra
d

e
d

o
u
b

le
 p

_m
u
ltish

ift
d

o
u
b

le
 p

_m
u
ltifl

ip

v
o
id

 ste
p

()

M
a
rko

v
C

h
a
in

in
t[] ro

w
su

m
in

t[] co
lsu

m

S
ta

te
* in

itia
lS

ta
te

(...)

S
w

itch
C

h
a
in

v
o
id

 ste
p
()

v
o
id

 a
d

ja
ce

n
tS

ta
te

s(...)

E
d

g
e
S

w
itch

C
h
a
in

E
d
g
e
[] e

d
g
e
s

v
o
id

 ste
p
()

v
o
id

 a
d

ja
ce

n
tS

ta
te

s(...)

C
u
rv

e
b

a
ll

v
o
id

 ste
p
()

v
o
id

 a
d

ja
ce

n
tS

ta
te

s(...)

M
a
rko

v
C

h
a
in

B
ip

a
rtite

G
ra

p
h
 g

S
ta

te
* in

itia
lS

ta
te

(...)

B
ro

d
e
rC

h
a
in

v
o
id

 ste
p
()

v
o
id

 a
d

ja
ce

n
tS

ta
te

s(...)

JS
V

C
h
a
in

C
o
u
n
te

r cn
t

v
o
id

 ste
p
()

v
o
id

 a
d

ja
ce

n
tS

ta
te

s(...)
v
o
id

 g
e
tW

e
ig

h
t(S

ta
te

*)

F
igu

re
3.2:

T
h

e
M
a
r
k
o
v
C
h
a
i
n

class
h

ierarch
y.

24

may be implemented to produce an initial state from a problem-specific instance
description. If more than one strategy for the construction of an initial state is
implemented, the parameter strategy can be used to determine which algorithm is
used.

3.2.2 State Graphs

Several interesting properties of a Markov chain require the construction of the
Markov chain’s state graph. For that reason, we use the class StateGraph to repre-
sent the state graph of a Markov chain as a weighted directed graph (see Fig. 3.1).
While Ω is used as the vertex set of this graph, the set Ψ of directed arcs is imple-
mented as a vector of three-tuples (x, y, p), where x and y are states from Ω and p
is the associated transition probability p(x, y). The data type Rational is used to
store the transition probability as a rational number with arbitrary precision.

State Graph Construction As will be further specified in Section 3.3, the con-
struction of state graphs is based on iterated calls of the abstract method

void adjacentStates(State* x, function<void(State*, Rational)> f),

that must be implemented to enumerate the set

N(x) := {(y, p(x, y)) : y ∈ Ω ∧ p(x, y) > 0}

of states y ∈ Ω that are adjacent to the state x ∈ Ω, alongside with the associated
transition probability p(x, y) of transforming x into y. Enumerating this set can
typically be achieved by simulating each possible random choice according to a
Markov chain’s set of transition rules.

To support non-uniform stationary distributions, each state x ∈ Ω may possess a
weight w(x) that is proportional to the target probability π(x). Thus, the abstract
method

Rational getWeight(State* x)

of the MarkovChain base class can be overridden to return the weight w(x) of
the state x ∈ Ω. Unless otherwise specified, the default implementation of the
MarkovChain base class returns a unit weight of w(x) = 1 for each state x ∈ Ω.

State Graph Analysis To analyse properties of a state graph, a family of classes
can be used to compute properties like the total mixing time or its upper bounds
(see Fig. 3.3). The precision of the calculation can be controlled by the template
parameter T. Most methods provide single (T=float), double (T=double), and un-
limited precision (T=Rational). The latter one eliminates problems arising from
floating point accuracy at the cost of a larger running time. The necessary precision
primarily depends on the size |Ω| of a state graph and on the parameter ε. While the

25

marathon

binary_matrix::fixed_margin matching

CongestionBoundCalculator
T

StateGraph* sg
PathConstructionScheme* pcs

T upperCongestionBound(T eps)

MixingTimeCalculator
T

StateGraph* sg

int mixingTime(int x, T eps)
int totalMixingTime(T eps)

SpectralBoundCalculator
T

StateGraph* sg

T lowerSpectralBound(T eps)
T upperSpectralBound(T eps)

PathConstructionScheme

void directFlow(int x, int y, int[] path)

KannanPath

void directFlow(int x, int y, int[] path)

JS89Path

void directFlow(int x, int y, int[] path)

Figure 3.3: Classes for the analysis of state graphs.

usage of the float type may easily cause significant inaccuracy, double precision
proved to be sufficient for most of the experiments discussed in this thesis.

Beneath others, it is possible to compute the following quantities from a state graph.

• The mixing time τs(ε) as defined by Eq. 2.4.

• The total mixing time τmax(ε) as defined by Eq. 2.5.

• The lower and upper spectral bound via Ineq. 2.6 and 2.7.

• The upper congestion bound via Ineq. 2.10.

The computation of the congestion bound via Ineq. 2.10 requires a canonical path
construction scheme that defines how to construct a directed path between each pair
of states of a state graph. Such a construction scheme is in marathon represented
by a class that extends the abstract base class PathConstructionScheme. For this
purpose, the method

void directFlow(int i, int j, int[] path)

can be implemented to construct a directed path p from xi to xj . The indices of the
vertices in p are stored in the reference parameter path. In Sections 4.3.3 and 6.2.3,
we analyse the quality of two construction schemes known from literature.

Our representation of the state graphs is versatile enough to allow the integration of
arbitrary graph algorithms. As state graphs can be seen as weighted directed graphs,
all kinds of graph algorithms can be integrated into marathon. As an example, we
added functions for computing the diameter of a state graph, the average path
length, as well as several clustering coefficients and centrality measures.

26

3.3 Implementation Details

As marathon is designed to process large state graphs with several million states,
our methods need to be implemented efficiently. Thus, a major challenge in the
development of marathon was the design of efficient algorithms for the construc-
tion and analysis of state graphs. In this section, we give a detailed description of
fundamental algorithms that are essential to our experiments.

State Graph Construction The first step in many experiments is the construc-
tion of the state graph of an associated Markov chain. Alg. 3.1 constructs a sparse
representation of the state graph Γ = (Ω,Ψ).

Algorithm 3.1: State Graph Construction

Input: instance description I.
Output: state graph Γ = (Ω,Ψ) of an associated Markov chain.

1 s← initialState(I)
2 Ω← {s} // set of nodes

3 Ψ← ∅ // set of weighted arcs

4 S ← ∅ // set of marked nodes

5 while Ω \ S 6= ∅ do // while there is an unmarked node

6 select an arbitrary state x ∈ Ω \ S // select unmarked node

7 N(x)← adjacentStates(x) // create adjacent states

8 for (y, pxy) ∈ N(x) do
9 Ω← Ω ∪ {y}

10 Ψ← Ψ ∪ {(x, y, px,y)}
11 end
12 S ← S ∪ {x} // mark node x

13 end
14 return (Ω,Ψ)

The algorithm is based on iterated calls of the adjacentStates method, which
enumerates a state’s neighborhood. Starting with a trivial graph consisting of one
node, the algorithm iteratively expands the existing graph by adding new nodes and
arcs. In each step, the algorithm selects an unmarked node x ∈ Ω and enumerates
its neighborhood N(x). For each element (y, pxy) of N(x), the state y is added
to the vertex set Ω and a weighted arc going from x to y is added to Ψ. After x
has been marked, the algorithm continues the expansion until every node has been
marked. The algorithm relies on the connectedness of the state graph, which is given
whenever the associated Markov chain is irreducible.

Apart from the insert operation in Line 9, all set operations of Alg. 3.1 can be
implemented with constant time. In contrast, to efficiently support the insertion in
Line 9, the algorithm needs to determine whether the state y is already included
in Ω. For this purpose, we use a hash set representation of Ω. Assuming that each

27

neighborhood set N(x) can be constructed in Θ(|N(x)|) time, and further assuming
that each of the remaining operations has a running time of Θ(1), the construction
of a state graph requires Θ(|Ω|+ |Ψ|) time. Assuming that each state has constant
size, we can store an adjacency list representation of the final state graph Γ = (Ω,Ψ)
within Θ(|Ω|+ |Ψ|) space.

Mixing Time In marathon, the mixing time τs(ε) of a Markov chain is calculated
by the iterated application of Eq. 2.1 (see Alg. 3.2).

Algorithm 3.2: Computation of Mixing Time

Input: state graph Γ = (Ω,Ψ), initial state s = xk ∈ Ω, real ε ∈ [0, 1].
Output: mixing time τs(ε).

1 t← 0 // will be returned

2 v← [0]|Ω| // v = (v1, v2, . . . , v|Ω|)

3 vk ← 1 // invariant: ∀i : vi = p
(t)
s (xi)

4 while ||v − π|| > ε do // while ||p(t)
s − π|| > ε

5 w← [0]|Ω| // w = (w1, w2, . . . , w|Ω|)

6 for i = 1, 2, . . . , |Ω| do // calculate wi = p
(t+1)
s (xi)

7 wi ← 0 // evaluate Eq. 2.1

8 for (xj , xi) ∈ Ψ do
9 wi ← wi + vj · p(xj , xi)

10 end

11 end
12 v← w
13 t← t+ 1 // invariant restored

14 end
15 return t

Starting from a one-point-distribution p
(0)
s defined by

p(0)
s (x) =

{
1, if x = s

0, else,

the algorithm iteratively evaluates Eq. 2.1 to construct the probability distribu-

tion p
(t)
s for increasing values of t. In each step, the algorithm calculates the total

variation distance to the stationary distribution. The process stops if the distance
is smaller or equal than ε.

By passing through the sorted arc set Ψ, the running time of the for loop in Line 8 of
Alg. 3.2 is proportional to the number of states xj that can be transformed into xi.
As this number can be as large as |Ω|, Alg. 3.2 calculates the mixing time τs(ε)
in O(τs(ε) · |Ω|2) time and Θ(|Ω|) space.

28

Total Mixing Time In marathon, the total mixing time τmax(ε) can be computed
by two different strategies. Most simple, Alg. 3.3 evaluates the mixing time τs(ε) for
each initial state s ∈ Ω and returns the maximal one. This strategy has a running
time of O(τmax(ε) · |Ω|3) and requires Θ(|Ω|) space.

Algorithm 3.3: Computation of Total Mixing Time (1)

Input: state graph Γ = (Ω,Ψ), real ε ∈ [0, 1].
Output: total mixing time τmax(ε).

1 tmax ← 0 // will be returned

2 for k = 1, 2, . . . , |Ω| do // for each xk ∈ Ω
3 t← τxk(ε) // calculate mixing time

4 tmax ← max(tmax, t)

5 end
6 return tmax

The second strategy is superior to the first one in terms of efficiency. By interpret-

ing p
(t)
s and p

(t+1)
s as row vectors of length |Ω|, we may understand Eq. 2.1 as the

application of the vector-matrix multiplication

p(t+1)
s := p(t)

s · P,

where P = (pij) is the transition matrix of the Markov chain. Iterating this argu-
ment, the t-step distribution of a Markov chain can be calculated by

p(t)
s := p(0)

s · P t.

Thus, the i-th row of the matrix P t represents the t-step distribution p
(t)
xi . The

total mixing time τmax(ε) can therefore be computed from P by iterated matrix
multiplication. As a classical result following from the coupling lemma [40], it is

well-known that ||p(t)
s −π|| decreases monotonically with t. Thus, we can find τmax(ε)

with a two-step procedure (see Alg. 3.4).

1. In the first step, the algorithm determines the smallest integer d such that

2d−1 < τmax(ε) ≤ 2d

holds. Starting with d = 0, the algorithm iteratively increments d until

max
s∈Ω
||p(2d)

s − π|| ≤ ε

becomes true. This requires a sequence of d = dlog2(τmax(ε))e matrix squaring

operations to compute the matrices P 2, P 4, P 8, . . . , P 2d .

29

Algorithm 3.4: Computation of Total Mixing Time (2)

Input: transition matrix P = (pij), real ε ∈ [0, 1].
Output: total mixing time τmax(ε).

1 /* step one */

2 d← 0

3 M ← P // invariant: M = P 2d

4 ∆← max1≤i≤|Ω| ||Mi,· − π|| // Mi,· denotes the i-th row of M

5 while ∆ > ε do // while maxs∈Ω ||p(2d)
s − π|| > ε

6 d← d+ 1
7 M ←M ·M // M = P 1, P 2, P 4, P 8, . . .
8 ∆← max1≤i≤|Ω| ||Mi,· − π||
9 end

10

11 /* step two */

12 (l, r)← (2d−1, 2d) // invariant: l < τmax(ε) ≤ r
13 M ← P l // invariant: M = P l

14 while l < r − 1 do
15 m← b(l + r)/2c // half search space

16 A←M · Pm−l // A = P lP (m−l) = Pm

17 ∆← max1≤i≤|Ω| ||Ai,· − π|| // Ai,· denotes i-th row of A

18 if ∆ > ε then
19 l← m // update lower bound

20 M ← A

21 else
22 r ← m // update upper bound

23 end

24 end
25 return r

30

2. In the second step, we apply binary search to find τmax(ε). Two variables l
and r represent lower and upper bounds on the total mixing time. Iteratively,
we calculate Pm = P l · Pm−l with m = b(l+ r)/2c, and evaluate the maximal

total variation distance maxx∈Ω ||p(m)
x − π||. Maintaining the invariant

max
x∈Ω
||p(l)

x − π|| > ε ≥ max
x∈Ω
||p(r)

x − π||,

we either update the lower bound l or the upper bound r. We stop when l ≥
r − 1. The value of r is the total mixing time τmax(ε). As the search space is
halved in each step, the number of iterations in the second phase is

log2(2d − 2d−1) = log2(2d−1) = d− 1 = dlog2(τmax(ε))e − 1.

The running time of this strategy is Θ(log(τmax(ε)) · |Ω|ω), where 2 ≤ ω ≤ 3 is the
exponent of the best-known matrix multiplication algorithm. In practice, we use
highly optimized BLAS routines for matrix multiplication to vastly accelerate the
computation of the total mixing time. Thus, this strategy is clearly superior to the
first one in terms of efficiency. However, as a major drawback, it requires Θ(|Ω|2)
space to store densely filled matrices. Hence, the second strategy is only applicable
for small graphs (|Ω| ≤ 105, depending on the available main memory).

Spectral Bound The difference between the largest and the second largest eigen-
value (1− λmax) of a Markov chain’s transition matrix is known as the spectral gap
and can be used to bound the total mixing time via Ineq. 2.6 and 2.7. To cal-
culate λmax, we use the linear algebra library Armadillo [41]. This library offers
procedures to compute the k largest real eigenvalues of a sparsely packed symmetric
matrix and is therefore well-applicable for our purpose. In case of non-symmetric
transition rules, we first transform the transition matrix P into a symmetrical ma-
trix via Eq. 2.8. Having calculated the two eigenvalues with the largest magnitude,
we use the smaller one to compute the upper and lower spectral bound via Ineq. 2.6
and 2.7. As this method requires only a sparse representation of the transition
matrix, it is applicable to large state graphs with several million states.

3.4 Summary

In this chapter, we presented the marathon software, a tool designed to support
the analysis of MCMC based sampling algorithms. Our software has two main
applications. First, it contains sampling algorithms that can be used to create
random samples for several applications. Second, marathon is designed to study
properties of the associated sampling methods. By the construction and analysis of
a Markov chain’s state graph, marathon can be used to calculate the total mixing
time or its lower and upper bounds. Our software is designed to be expandable and to
be versatile enough to study MCMC algorithms of various applications. After giving
a description of marathon’s class structure, we showed how the software constructs
state graphs and calculates the associated total mixing time.

31

Chapter 4

Bipartite Graphs with Fixed
Degrees

Bipartite graphs are widely used to describe the interactions or relations between
two different groups of objects. Such graphs can be used to model the relation
between films and actors, authors and publications, products and customers, and
many more [42, 43, 44, 45]. In ecology, bipartite graphs model the interaction
between species like plants and pollinators, or the presence or absence of species
in geographical regions [46, 47]. The latter type of data is commonly represented
as a presence-absence table, in which rows represent species and columns represent
sites. If a species is present at a certain site, the associated table entry is set to one,
otherwise it is zero. Prominent presence-absence tables like the famous “Darwin’s
finches” data set (see Table 4.1) have been objects of intense study in the last
decades [48, 49, 34].

To study structural properties of networks, Connor and Simberloff [50] suggested
statistical hypothesis testing. In such tests, the structure of an observed network is
compared with that of randomly sampled null-networks. To quantify how structured
an observed network is, a scientist may ask for the probability of randomly selecting
a network that is at least “as structured” as the observed one. If this probability
is small, the scientist will conclude that the structure of the observed network is
unlikely to be created by pure chance.

A much-discussed question is the choice of an appropriate null model that describes
how properties of an observed network are reflected by the null-networks. To preserve
the characteristics of the observed network, Connor and Simberloff suggested the
uniform distribution over the set of bipartite graphs whose degrees match those of
the observed one. Different null-models with various advantages and disadvantages
have been discussed during the last decades [4, 5]. However, the basic null-model
suggested by Connor and Simberloff is still widely applied. This kind of network
analysis requires a method for the uniform sampling from a set of graphs with
predefined degrees. In this chapter, we focus on this classical sampling problem.

32

Table 4.1: “Darwin’s finches”: Presence of 13 finch species on 17 islands of the
Galápagos archipelago (data from Ref. [49]).

Island
Species 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 r

A 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 14
B 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0 0 13
C 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 14
D 0 0 1 1 1 0 0 1 0 1 0 1 1 0 1 1 1 10
E 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 0 0 12
F 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 2
G 0 0 1 1 1 1 1 1 1 0 0 1 0 1 1 0 0 10
H 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
I 0 0 1 1 1 1 1 1 1 1 0 1 0 0 1 0 0 10
J 0 0 1 1 1 1 1 1 1 1 0 1 0 1 1 0 0 11
K 0 0 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 6
L 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2
M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 17

c 4 4 11 10 10 8 9 10 8 9 3 10 4 7 9 3 3 122

Parts of this chapter have previously been published in the following papers. How-
ever, most of the material has been rearranged for the purpose of this thesis.

S. Rechner and A. Berger. Marathon: An open source software library for the
analysis of Markov-Chain Monte Carlo algorithms. PLOS ONE 11 (2016).
doi: 10.1371/journal.pone.0147935 [20]

S. Rechner, L. Strowick, and M. Müller-Hannemann. Uniform sampling of
bipartite graphs with degrees in prescribed intervals. Journal of Complex Net-
works (2017). doi: 10.1093/comnet/cnx059 [26]

4.1 Definitions and Notation

While we consider the term network to refer to an “informal concept describing
an object composed of elements and interactions” [51], we use the term graph to
denote an abstract mathematical representation of such objects. In such a represen-
tation, we neglect the original interpretation of the data and focus on its underlying
structure.

33

http://dx.doi.org/10.1371/journal.pone.0147935
http://dx.doi.org/10.1093/comnet/cnx059

Definition 4.1 (bipartite graph). We define the term bipartite graph to describe a
three-tuple G = (U, V,E), where U := {u1, u2, . . . , u|U |} and V := {v1, v2, . . . , v|V |}
are disjoint vertex sets, and E := {e1, e2, . . . , e|E|} ⊆ U × V is a set of edges.

When G = (U, V,E) is a bipartite graph, we denote by δG : U ∪ V → N0 the degree
of a vertex in G.

Problem Definition Let m and n be positive integers and let

r = (r1, r2, . . . , rm) and c = (c1, c2, . . . , cn)

be integer vectors of length m and n. We define Ω(r, c) as the set of bipartite graphs
whose degrees match the integers in r and c, i.e.

Ω(r, c) := {G = (U, V,E) : |U | = m ∧ |V | = n

∧ ∀i ∈ {1, 2, . . . ,m} : δG(ui) = ri

∧ ∀j ∈ {1, 2, . . . , n} : δG(vj) = cj}.

The problem discussed in this chapter is to uniformly sample from the set Ω(r, c).

Binary Matrices A bipartite graph G = (U, V,E) can uniquely be represented
by an m × n binary matrix M = (mij). This matrix is called bi-adjacency matrix
of G and is defined by

mij =

{
1, if {ui, vj} ∈ E
0, otherwise.

Vice versa, each binary matrix can be interpreted as the bi-adjacency matrix of a
bipartite graph. Thus, the problem discussed in this chapter can equivalently be
reformulated as the uniform sampling of a binary matrix M ∈ {0, 1}m×n with row
sums r and column sums c.

Bipartite Graph Realization In parts of this chapter, we will utilize concepts
from the graph realization problem. This is a classical combinatorial problem that
asks whether there is a graph whose degrees match a given vector of integers. In
our context, we focus on the bipartite version of the graph realization problem:
Given a pair of integer vectors (r, c), is there a bipartite graph G = (U, V,E) such
that δG(ui) = ri for each i ∈ {1, 2, . . . ,m} and δG(vj) = cj for each j ∈ {1, 2, . . . , n}?
In other words, the problem asks whether or not Ω(r, c) is empty.

Definition 4.2 (bi-graphical, realization). A pair (r, c) of integer vectors is called
bi-graphical if and only if Ω(r, c) 6= ∅. If (r, c) is bi-graphical, any graph G ∈ Ω(r, c)
is called realization of the associated vector pair.

In the following, we will summarize under which conditions a pair of integer vectors
is bi-graphical. These theorems are classical results from combinatorial graph theory.

34

Definition 4.3. An integer vector r = (r1, r2, . . . , rm) is called non-increasing if
and only if ri ≥ ri+1 for 1 ≤ i < m. If r and r̄ are integer vectors of length m, we
write r ≤ r̄ if and only if ri ≤ r̄i holds for all i in range 1 ≤ i ≤ m.

Definition 4.4 (conjugate sequence). Let c = (c1, c2, . . . , cn) be an integer vector
of length n. We define the infinite sequence of integers c′ = (c′1, c

′
2, . . .) to be called

conjugate sequence of c if and only if

∀j ∈ N : c′j := |{i ∈ {1, 2, . . . , n} : ci ≥ j}|.

When c′ = (c′1, c
′
2, . . .) is the conjugate sequence of a non-increasing integer vec-

tor c ∈ Nn, than c′′ = (c′′1, c
′′
2, . . .) is called double conjugate sequence of c. It is

straight-forward to show that c′′i = ci holds for each i in the range 1 ≤ i ≤ n.

For convenience, we will abbreviate the sum
∑k

i=1 ri by Σk
r and define Σr to be the

sequence of partial sums of r, i.e. Σr = (Σ1
r,Σ

2
r, . . .).

Definition 4.5 (domination). Let r = (r1, r2, . . . , rm) and c = (c1, c2, . . . , cn) be
integer vectors and let c′ = (c′1, c

′
2, . . .) be the conjugate sequence of c. We say that c′

dominates r and write r E c′ if and only if Σk
r ≤ Σk

c′ holds for each 1 ≤ k ≤ m.

Finally, the following famous theorem shows under which conditions a pair of integer
vectors is bi-graphical.

Theorem 4.1 (Gale [52], Ryser [53]). Let r = (r1, r2, . . . , rm) be a non-increasing
integer vector and let c = (c1, c2, . . . , cn) be an integer vector. The vector pair (r, c)
is bi-graphical if and only if Σm

r = Σm
c′ and r E c′.

To find a realization of a bi-graphical vector pair, Ryser’s [53] famous algorithm can
be used to construct a bipartite graph G = (U, V,E) ∈ Ω(r, c) in O(|U |+ |V |+ |E|)
time (see Alg. 4.1).

4.2 Markov Chains

Due to its high importance for network analysis, the uniform sampling of bipar-
tite graphs with fixed degrees has received much attention within the last decades.
Hence, a large number of sampling algorithms has been proposed, from which we
will briefly review the most important ideas. Such methods can roughly be divided
into two groups.

The first group of algorithms [54, 37, 49, 55, 35] use approaches like rejection sam-
pling or importance sampling to create random samples that are proven to be dis-
tributed according a certain target distribution, without having to rely on a neces-
sary number of steps. In our discussion, we will call such algorithms exact sampling
methods. Although they do not necessarily produce uniformly distributed samples,
they can often be used for the unbiased estimation of expected values via Eq. 1.2.
Harrison and Miller [35] showed that sequential importance sampling can be very

35

Algorithm 4.1: Ryser’s algorithm for constructing a bi-graphical realization

Input: bi-graphical pair (r, c) of integer vectors.
Output: bipartite graph G = (U, V,E) ∈ Ω(r, c).

1 U ← {ui : 1 ≤ i ≤ m}
2 V ← {vj : 1 ≤ j ≤ n}
3 E ← ∅
4 for i = 1, . . . ,m do
5 for k = 1, . . . , ri do
6 j ← arg max{cj : j ∈ {1, . . . , n} ∧ {ui, vj} 6∈ E}
7 E ← E ∪ {{ui, vj}}
8 cj ← cj − 1

9 end

10 end
11 return G = (U, V,E)

efficient in practice, although there are counter examples in which the approach be-
haves poorly [56]. Exploiting the connection between counting and sampling, Miller
and Harrison [34] showed that the exact sampling of bipartite graphs is feasible for
many small-sized presence-absence tables.

In this thesis, we will focus on a second group of algorithms based on the MCMC
approach. In contrast to the exact sampling algorithms, MCMC methods typically
produce near-uniform samples, i.e. they create samples according to a probabil-
ity distribution that is arbitrary close to the uniform distribution. Currently, two
MCMC-based methods are proven to produce near-uniformly distributed samples
from Ω(r, c) in polynomial running time.

• Bezáková et al. [57] presented a simulated annealing algorithm whose worst
case running time is bounded from above by O((m+ n)11 ln5(m+ n)).

• Tutte [58] showed how to transform the sampling problem into an associated
perfect matching sampling problem. As we will specify in Chapter 6, the
uniform sampling of perfect matchings can be processed in polynomial running
time [19]. Thus, a bipartite graph can be sampled in polynomial time, too.

As the above-mentioned approaches are fairly complicated, they are primarily of
theoretical interest. In contrast, a family of simple and intuitive Markov chains is
widely used in practice.

4.2.1 Classical Switch Chain

The classical switch chain [17] has been used for decades to construct random bi-
partite graphs. It is based on its name-giving classical switch operation.

36

ui uk

vj vl

⇐⇒

ui uk

vj vl

Figure 4.1: Illustration of a switch operation.

Definition 4.6 (classical switch). Let G be a bipartite graph with bi-adjacency ma-
trix M = (mij).

1. Select four integers 1 ≤ i < k ≤ m and 1 ≤ j < l ≤ n uniformly at random.

2. Consider the 2× 2 sub-matrix

A :=

[
mij mil

mkj mkl

]
.

3. If A is either [
0 1
1 0

]
or

[
1 0
0 1

]
,

switch the matrix entries mij ↔ mkj and mil ↔ mkl, otherwise do nothing.

4. Return G.

Fig. 4.1 illustrates the switch operation.

Definition 4.7 (classical switch chain). Let G ∈ Ω(r, c).

1. Apply a classical switch operation to transform G into G′

2. If the maximal number of steps has been reached, return G′.

3. Set G← G′ and go to Step 1.

The classical switch chain produces a sequence of random variables X = (X0, X1, . . .)
from Ω(r, c). As each state is constructed from the previous one, the Markov prop-
erty holds and thus, the classical switch chain is indeed a Markov chain.

Irreducibility As a switch operation does not change the degree of any vertex, it
never produces an element G 6∈ Ω(r, c). It is folklore that all bipartite graphs with
fixed degree can be generated by iterated application of switches [59]. Thus, the
classical switch chain is irreducible.

37

Aperiodicity Excluding one single exception, the classical switch chain is aperi-
odic whenever m > 1 and n > 1. The exception occurs if and only if r = c = (1, 1).
In this case, there is just one way to choose the sub-matrix A. As A will always have
one of the requested forms, the random walk will oscillate between the two realiza-
tions. In all other cases however, a classical switch may choose a row or column with
two entries being zero, or two entries being one. In such cases, the Markov chain
will stay at the current state. As thus the associated state graph contains at least
one loop, it is not bipartite. Consequently, the classical switch chain is aperiodic for
all non-trivial instances.

Symmetry When two different states x ∈ Ω(r, c) and y ∈ Ω(r, c) can be trans-
formed into each other by a classical switch operation, the associated transition
probability p(x, y) is

p(x, y) =

(
m

2

)−1(n
2

)−1

= p(y, x),

as the random integers in Step 1 are chosen uniformly. Consequently, Corollary 2.4
shows that the classical switch chain’s stationary distribution is the uniform distri-
bution on Ω(r, c).

Discussion By representing the bipartite graph G by its bi-adjacency matrix, a
classical switch operation can be implemented to have a constant running time.
However, the associated sampling algorithm has a memory requirement of Θ(mn).

Kannan et al. [17] successfully applied the canonical path method to show that the
classical switch chain is rapidly mixing whenever the bipartite graph is regular. In
doing so, they bounded the total mixing time of the classical switch chain from
above by

τmax(ε) ≤ 8(nk)12 · ln
(
|Ω| · ε−1

)
, (4.1)

where k is the degree of each node in a regular bipartite graph with 2n vertices.
Miklós et al. [60] extended the class of rapidly mixing instances by half-regular
bipartite graphs, in which only one of both vertex sets needs to be regular. Recently,
Erdős et al. [61, 62] showed that the classical switch chain is rapidly mixing even
when the bipartite graph is almost regular. However, it is still unknown whether
this is true in general.

The classical switch chain has been customized for the uniform sampling of non-
bipartite graphs, multi-graphs, and directed graphs with fixed degrees [21]. It is
unclear whether these variants are rapidly mixing in general, although special cases
are known, in which the total mixing time can be bounded from above by high-degree
polynomials [63, 64].

38

4.2.2 Edge Switch Chain

There are several variants of the classical switch chain that aim at improving its
efficiency by avoiding the random vertex selection in Step 1. For example, the so-
called edge switch chain replaces Step 1 of the classical switch operation by a more
informed edge selection [22, 65]. The chain is based on an arbitrary order of the
edge set E = {e1, e2, . . . , e|E|}.

Definition 4.8 (edge switch). Let G = (U, V,E) be a bipartite graph.

1. Select two integers 1 ≤ a < b ≤ |E| uniformly at random.

2. Consider the edges ea = {ui, vj} ∈ E and eb = {uk, vl} ∈ E.

3. (a) If e′a := {ui, vl} 6∈ E and e′b := {uk, vj} 6∈ E, create the edge set

E′ := (E \ {ea, eb}) ∪
{
e′a, e

′
b

}
.

(b) Otherwise set E′ := E.

4. Return G′ := (U, V,E′)

Definition 4.9 (edge switch chain). Let G = (U, V,E) ∈ Ω(r, c).

1. Apply an edge switch operation to transform G into G′.

2. If the maximal number of steps has been reached, return G′.

3. Set G← G′ and go to Step 1.

Irreducibility The state graph of the edge switch chain is structurally identical
to that of the classical switch chain. Following from the definition of the Markov
chains, two states x 6= y ∈ Ω(r, c) can be transformed into each other by a classical
switch whenever they can be transformed into each other by an edge switch. More
precisely, if

A =

[
mij mil

mkj mkl

]
=

[
1 0
0 1

]

is a sub-matrix considered in Step 2 of a classical switch operation, then the two
edges ea = {ui, vj} ∈ E and eb = {uk, vl} ∈ E can also be selected by an edge
switch. Replacing the edges ea and eb by e′a and e′b is therefore equivalent to the
classical switch. The case A = [0 1

1 0] is symmetric. As the classical switch chain is
irreducible, the edge switch chain is irreducible, too.

39

Aperiodicity The edge switch chain is aperiodic whenever G contains a vertex
of degree two or more, as in this case, an edge switch operation may select ea ∈ E
an eb ∈ E to have a common vertex. As the condition in Step 3 (a) will fail in such
cases, the state graph contains a loop and thus, cannot be bipartite.

In the special cases where each node has a degree of one, however, the vertex pairs e′a
and e′b cannot be included in E, and thus, the condition in Step 3 (a) will never fail.
The state graph of the edge switch chain will then be bipartite. However, if every
node has a degree of one, the vertex sets U and V must be of equal size. The
sampling problem is then equivalent to the uniform sampling of a perfect matching
in the complete bipartite graph with m + n = 2m = 2n nodes. As each perfect
matching corresponds to an n × n permutation matrix, we can easily address this
problem by using a classical permutation algorithm like the Fisher-Yates shuffle [66].

Thus, the edge switch chain is aperiodic for all non-trivial cases.

Symmetry Whenever two different states x ∈ Ω(r, c) and y ∈ Ω(r, c) can be
transformed into each other via a single edge switch operation, the associated tran-
sition probability is

p(x, y) =

(|E|
2

)−1

= p(y, x).

As the number of edges is constant, the transition probability function is symmetric.
By Corollary 2.4, the stationary distribution of the edge switch chain is the uniform
distribution on Ω(r, c).

Discussion To efficiently select two edges at random in Step 2, the edge switch
chain requires an additional data structure that keeps track of the edge set E. This
data structure needs to be updated after each randomization step. As the number
of edges is constant, we represent E by an array of integer pairs. To switch two
edges, it suffices to modify the array entries at the positions a and b. An edge
switch replaces ea = {ui, vj} by e′a = {ui, vl}, and eb = {uk, vl} by e′b = {uk, vj},
thus swapping the second component of each pair.

To still support the query of the existence of the edges e′a and e′b in Step 3 (a)
in constant time, the edge switch chain additionally requires a binary matrix rep-
resentation of the bipartite graph. Thus, an edge switch operation can be imple-
mented with constant running time at the cost of an increased memory complexity
of Θ(mn) + Θ(|E|). This is in practical applications often about twice as large as
the memory requirement of the classical switch chain.

4.2.3 Curveball

Recently, improvements to the classical switch chain like the curveball algorithm
presented by Strona et al. [23] or the algorithm presented by Verhelst [67] received

40

ui uk

v1 v2 v3 v4 v5 v6

⇐⇒

ui uk

v1 v2 v3 v4 v5 v6

Figure 4.2: Visualization of a trade operation. Transforming the left graph into the
right: Vi = {v1, v2} (gray, solid border), Vk = {v4, v5, v6} (gray, dashed border). The
set S = {v4, v5} of size |Vi| was chosen uniformly at random from Vi ∪ Vk.

much attention. Such algorithms try to improve the efficiency of the sampling pro-
cess by affecting multiple edges in each step. The key idea of the curveball algorithm
is to replace the switch operation by the more complex trade operation.

Definition 4.10 (trade). Let G = (U, V,E) be a bipartite graph.

1. Select two integers 1 ≤ i < k ≤ m uniformly at random.

2. Determine two disjoint vertex sets Vi ⊆ V and Vk ⊆ V defined by

Vi := {v ∈ V : {ui, v} ∈ E ∧ {uk, v} 6∈ E} ,
Vk := {v ∈ V : {uk, v} ∈ E ∧ {ui, v} 6∈ E} .

3. Select a subset S ⊆ Vi ∪ Vk of size |S| = |Vi| uniformly at random.

4. Create a new edge set E′ by defining

Ei := {{ui, v} : v ∈ S} ,
Ek := {{uk, v} : v ∈ (Vi ∪ Vk) \ S} ,
E0 := {{ui, v}, {uk, v} : v ∈ Vi ∪ Vk}
E′ := (E \ E0) ∪ Ei ∪ Ek.

5. Return G′ := (U, V,E′).

Fig. 4.2 illustrates a trade operation. By design, a trade operation does not change
the degree of any node in G as the set S is chosen to possess the same size as Vi.

Definition 4.11 (curveball). Let G ∈ Ω(r, c).

1. Apply a trade operation to transform G into G′.

2. If the maximal number of steps has been reached, return G′.

3. Set G← G′ and go to Step 1.

41

Irreducibility Carstens [68] showed that the curveball chain is irreducible. When-
ever the set S in Step 3 is chosen such that |S \ Vi| = 1, the trade operation is
equivalent to a classical switch. Thus, each classical switch operation that can be
applied to a bipartite graph G ∈ Ω(r, c) can be simulated by an equivalent trade
operation. Hence, the state graph of the classical switch chain is a subgraph of the
corresponding state graph of the curveball chain. Consequently, as the state graph
of the switch chain is strongly connected, so is the state graph of the curveball chain.

Aperiodicity A trade may return G′ = G when S is chosen in Step 3 to be
identical with Vi. Thus, each state has a positive loop probability of

p(x, x) =
∑

1≤i<k≤m

(
m

2

)−1(|Vi ∪ Vk|
|Vi|

)−1

.

Consequently, the curveball chain is aperiodic.

Symmetry When x ∈ Ω(r, c) and y ∈ Ω(r, c) are two different bipartite graphs
that can be transformed into each other via a single trade operation, then the bi-
adjacency matrices of x and y differ only at rows i and k. The probability of
transforming x into y is thus equal to

p(x, y) =

(
m

2

)−1(|Vi ∪ Vk|
|Vi|

)−1

.

Carstens [68] showed that p(x, y) = p(y, x) holds for every pair of states. Thus,
the transition probability function is symmetric. By Corollary 2.4, the stationary
distribution of the curveball chain is the uniform distribution on Ω(r, c).

Discussion In contrast to the classical switch and to the edge switch operation,
the trade operation is designed to possess a running time of O(|V |). To support the
efficient construction of the edge and vertex sets during a trade operation, we use
the bi-adjacency matrix representation of G. Thus, the curveball algorithm has a
memory complexity of Θ(mn). Recently, Carstens and Kleer [65] proved that the
curveball Markov chain is rapidly mixing, whenever the classical switch chain is.

4.3 Experiments on Mixing Time

In this section, we experimentally study the efficiency of the introduced algorithms
for the uniform sampling of bipartite graphs with fixed vertex degrees. The effi-
ciency of these sampling algorithms has often been assessed experimentally (see e.g.
Refs. [36, 37, 38, 39] for variants of the switch chain and Refs. [23, 69] for the curve-
ball algorithm). In most cases, such experiments are based on the observation of
samples means as described in Section 2.4. However, none of the existing experimen-
tal surveys has yet systematically studied properties like the total mixing time of the

42

associated Markov chains on a large set of instances. In addition, the running time
spent in each step is often ignored in experimental studies. Thus, our experiments
complement existing results by a more solid methodological foundation.

In this set of experiments we will address the following main questions.

1. First, we want to study how the total mixing time of the Markov chains de-
pends on the number m+ n of nodes in the bipartite graph.

2. Furthermore, how do properties of state graphs relate with the total mixing
time of each Markov chain? Can we identify a certain property of the state
graph that induces a large total mixing time?

3. Finally, we compare the efficiency of the three sampling algorithms to examine
which chain is suited best for the randomization of bipartite graphs.

Data Sets We assessed the efficiency of each sampling method on the following
data sets.

• To systematically study the properties of state graphs, we compiled a list of
bi-graphical vector pairs describing the degrees of small bipartite graphs with
up to 6+6 vertices. In doing so, we created a list of 1326 small instances.

• To examine the relation between the size m+ n of an input instance and the
associated total mixing time, we created a couple of scalable instance classes.
Each class of vector pairs has a parameter n ∈ N that defines the length of the
vector c.

Type A: r = (n− 1, n− 2, 1, 1, 1), c = (2, 2, . . . , 2)

Type B: r = (n− 1, n− 2, 2, 1), c = (2, 2, . . . , 2)

Type C: r = (n− 1, n− 2, 3), c = (2, 2, . . . , 2)

Type D: r = (n− 1, n− 1, 1, 1), c = (2, 2, . . . , 2)

Type E: r = (n− 2, n− 2, 2, 2), c = (2, 2, . . . , 2)

Type F:1 r = (dn/2e, bn/2c), c = (1, 1, . . . , 1︸ ︷︷ ︸
n times

)

As the members of each instance class are half-regular, the classical switch
chain is known to be rapidly mixing [60]. As shown by Carstens and Kleer [65],
the curveball chain is rapidly mixing, too. Thus, the total mixing time of the
associated Markov chains can be bounded from above a polynomial function
on m+ n and ε−1.

Instance class F is designed such that the state graph of the curveball Markov
chain is the complete directed graph on |Ω(r, c)| vertices. In each trade op-
eration, the set V0 ∪ V1 is equal to the vertex set V of the bipartite graph

1We thank Annabell Berger for bringing this class to our attention.

43

G = (U, V,E). As a trade operation selects a subset S ⊆ V uniformly at
random, each state x ∈ Ω(r, c) is equally likely the result of an operation.
Consequently, the total mixing time of the curveball chain is exactly one for
all members of class F.

• Bipartite networks like “Darwin’s finches” (see Table 4.1) have been objects
of study in ecological null model analysis for many years. We compiled a list
of bi-graphical vector pairs that correspond to the degrees of the 62 binary
bipartite networks in Bascompte’s web-of-life [70] data set (see Table B.2 in
Appendix B). The number m + n of vertices of these networks range from 6
to 1500.

4.3.1 Structural Properties of State Graphs

We started our experimental analysis by relating the total mixing time of each
Markov chain with structural properties that can be calculated from a state graph.
In this set of experiment, we focused on the following basic properties.

• The size m+ n of the input instance.

• The number |Ω(r, c)| of states of the state graph.

• The total mixing time τmax(ε) for ε = 0.01.

• The average loop probability

` :=
∑

x∈Ω(r,c)

π(x) · p(x, x) = |Ω(r, c)|−1
∑

x∈Ω(r,c)

p(x, x).

Experiment 4.1 To gain an impression concerning the dimension of the total
mixing time and its relation to other properties, we processed each of the small
instances. Even though the vector pairs are small, the resulting state graphs can be
large. For example, the largest state graph processed in this experiment corresponds
to the integer vectors r = c = (3, 3, 3, 3, 3, 3) and has |Ω(r, c)| = 297, 200 states.
Fig. 4.3 shows how the properties of the state graphs relate. We will discuss some
essential observations.

• We observe that the total mixing time of both switch chains is significantly
larger than that of the curveball chain. However, as a single step of the curve-
ball is more expensive than that of the other chains, our observations do not
yet imply the efficiency of the curveball in practice. We will assess the practical
efficiency of the sampling algorithms in a different set of experiments.

• By comparing the size |Ω(r, c)| of the state graphs with the total mixing time,
we find that certain instances with comparably small state graphs have a high
total mixing time. This observation holds for each type of Markov chain.

44

5 7 9 11

0

50

100

150

200

250

300

Classical Switch Chain

n+m

τ
m

a
x
(ε

)

5 7 9 11

0

50

100

150

200

Edge Switch Chain

n+m

τ
m

a
x
(ε

)

4 6 8 10 12

0

10

20

30

40

50

60

Curveball

n+m

τ
m

a
x
(ε

)

0

50

100

150

200

250

300

Classical Switch Chain

number of states

τ
m

a
x
(ε

)

10
1

10
2

10
3

10
4

10
5

0

50

100

150

200

Edge Switch Chain

number of states

τ
m

a
x
(ε

)

10
1

10
2

10
3

10
4

10
5

0

10

20

30

40

50

60

Curveball

number of states

τ
m

a
x
(ε

)

10
1

10
2

10
3

10
4

10
5

0.0 0.4 0.8

0

50

100

150

200

250

300

Classical Switch Chain

average loop probability

τ
m

a
x
(ε

)

0.0 0.4 0.8

0

50

100

150

200

Edge Switch Chain

average loop probability

τ
m

a
x
(ε

)

0.0 0.4 0.8

0

10

20

30

40

50

60

Curveball

average loop probability

τ
m

a
x
(ε

)

Figure 4.3: Number m+ n of nodes, total mixing time τmax(ε), average loop proba-
bility `, and number |Ω(r, c)| of states for the set of small instances (ε = 0.01).

45

• By comparing the total mixing time of each Markov chain with the associated
average loop probability, we found that there is a strong correlation between
both quantities. In general, the larger the average loop probability, the larger is
the total mixing time. In addition, we found that the classical switch chain has
a higher loop probability than the other chains. May the small loop probability
be the reason for the efficiency of the curveball chain? We will study the
influence of the loops in a subsequent set of experiments.

Experiment 4.2 Next, we further investigated how the total mixing time depends
on the instance size m + n. For this purpose, we considered the scalable instance
classes. By letting the parameter n grow, we produced several members of each
instance class, for which we constructed the associated state graphs and calculated
the total mixing time. Figs. 4.4 and 4.5 show the results of this experiment. We
summarize some important observations.

• We observe that the total mixing time of the curveball chain grows considerably
slower than that of the other Markov chains. This observations holds for each
instance class. We will further assess the growth rate of the total mixing time
in a forthcoming experiment.

• In addition, we observe that the total mixing time of the edge switch chain is
smaller than that of the classical switch chain in most cases. Exceptions occur
for the instances of type C and F.

In case of class C, the edge switch chain’s total mixing time is higher than that
of the classical switch chain. This may be explained by the observation that
its average loop probability exceeds that of the classical switch chain for this
class of instances.

For class F, the total mixing time of the classical and the edge switch chain
align, as their associated state graphs are identical.

• By considering the average loop probability, we find that the classical and edge
switch chain’s loop probability increases with growing instance size, while it
decreases for the curveball chain. We will further investigate the connection
between the average loop probability and the total mixing time in a following
set of experiments.

Experiment 4.3 As the members of each instance class are half-regular, and as ε
is constant, the total mixing time can be bounded from above by a polynomial
function on the input size m + n. Assuming that this upper bound is sharp, we
model the total mixing time to be a function of the form

f(m+ n) = c · (m+ n)k

⇔ ln f(m+ n) = ln c+ k ln(m+ n).

46

10 15 20 25

0

200

400

600

800

1000

Type A

n+m

τ
m

a
x
(ε

)

10 15 20 25 30

0

200

400

600

800

1000

Type B

n+m

τ
m

a
x
(ε

)

10 20 30 40

100

200

300

400

Type C

n+m

τ
m

a
x
(ε

)

10 30 50 70

0.0

0.2

0.4

0.6

0.8

1.0

Type A

n+m

a
v
e
ra

g
e
 l
o
o
p
 p

ro
b
a
b
ili

ty

20 40 60 80

0.0

0.2

0.4

0.6

0.8

1.0

Type B

n+m

a
v
e
ra

g
e
 l
o
o
p
 p

ro
b
a
b
ili

ty

20 40 60 80

0.0

0.2

0.4

0.6

0.8

1.0

Type C

n+m

a
v
e
ra

g
e
 l
o
o
p
 p

ro
b
a
b
ili

ty

10 30 50 70

Type A

n+m

n
u
m

b
e
r

o
f
s
ta

te
s

10
2

10
3

10
4

10
5

10
6

20 40 60 80

Type B

n+m

n
u
m

b
e
r

o
f
s
ta

te
s

10
1

10
2

10
3

10
4

10
5

10
6

20 40 60 80

Type C

n+m

n
u
m

b
e
r

o
f
s
ta

te
s

10
1

10
2

10
3

10
4

10
5

1Figure 4.4: Total mixing time, average loop probability, and number of states for
members of instance classes A, B, C. Red: classical switch chain. Green: edge switch
chain. Blue: curveball chain. (ε = 0.01).

47

20 60 100

Type D

n+m

τ
m

a
x
(ε

)

0

5000

10000

15000

20000

25000

30000

8 10 12 14 16

50

100

150

Type E

n+m

τ
m

a
x
(ε

)

5 10 15 20

0

10

20

30

40

Type F

n+m

τ
m

a
x
(ε

)

50 100 150

0.0

0.2

0.4

0.6

0.8

1.0

Type D

n+m

a
v
e
ra

g
e
 l
o
o
p
 p

ro
b
a
b
ili

ty

8 10 12 14 16

0.0

0.2

0.4

0.6

0.8

1.0

Type E

n+m

a
v
e
ra

g
e
 l
o
o
p
 p

ro
b
a
b
ili

ty

0.0

0.2

0.4

0.6

0.8

1.0

Type F

n+m

a
v
e
ra

g
e
 l
o
o
p
 p

ro
b
a
b
ili

ty

6 9 12 15 18

50 100 150

Type D

n+m

n
u
m

b
e
r

o
f
s
ta

te
s

10
1

10
2

10
3

10
4

10
5

8 10 12 14 16

Type E

n+m

n
u
m

b
e
r

o
f
s
ta

te
s

10
2

10
3

10
4

5 10 15 20 25

Type F

n+m

n
u
m

b
e
r

o
f
s
ta

te
s

10
1

10
3

10
5

10
7

1Figure 4.5: Total mixing time, average loop probability, and number of states for
members of instance classes D, E, F. Red: classical switch chain. Green: edge switch
chain. Blue: curveball chain. (ε = 0.01). In case of class F, the total mixing time
of the classical and edge switch chain align.

48

In this experiment, we experimentally determined the degree k that describes the
asymptotic growth of the total mixing time for each of our instance classes. Having
calculated the total mixing time of several members of a certain instance class, we
gained a set of data points

(x1, y1), (x2, y2), . . . , (xN , yN),

where xi denotes the number m+ n of nodes of the i-th processed instances, and yi
is the associated total mixing time. Based on these data points, we applied the
following two-step procedure to estimate the degree k of the polynomial that fits
best to our observations.

1. First, we evaluated whether our assumption is valid, i.e. whether the polyno-
mial model fits well to our data. For this purpose, we transformed each data
point by taking the natural logarithm of the number m+n of nodes, and of the
associated total mixing time. If the transformed data looks clearly non-linear,
we must reject our assumption of polynomial mixing time.

2. When our assumption of polynomial mixing time is justified, we applied a
conjugate-gradient method to estimate the model parameters c and k that
minimize the sum of squared errors

min

N∑

i=1

(
yi − c · (xi)k

)2
.

For this purpose, we used the general-purpose optimization method optim

from the R software framework.

Fig. 4.6 shows the transformed data points. We discuss some essential observations.

• Ignoring the first few data points of each class, we observe that the polynomial
model fits well to the classical and the edge switch chain, as the transformed
data relates in a linear manner. The deviation of the first few data points may
be explained by the lack of terms of minor degree in our very simple model.

• As the polynomial model fits well to our observations in case of the classical and
edge switch chain, we estimated the degree k of the polynomials describing the
associated total mixing time (see Table 4.2, Figs. D.1 and D.2 in Appendix D
show the estimated polynomials).

• We observe that the total mixing time grows super-linearly in most cases.
Consequently, a linear number of switches must ultimately fail and will result
in a non-random sample. In many cases, even a quadratic number of switches
would not be sufficient. As the number |E| of edges is a linear function on the
number m+n of vertices for our instances, our observations imply that even a
number of O(|E|) steps of both switch chain variants is insufficient to produce
random samples.

49

2.2 2.6 3.0

3

4

5

6

7

Type A

log (m+n)

lo
g

τ
m

a
x
(ε

)

2.0 2.5 3.0

3

4

5

6

7

Type B

log (m+n)

lo
g

τ
m

a
x
(ε

)

2.0 2.5 3.0 3.5

2

3

4

5

6

Type C

log (m+n)
lo

g

τ
m

a
x
(ε

)

2.0 3.0 4.0

4

6

8

10

Type D

log (m+n)

lo
g

τ
m

a
x
(ε

)

2.0 2.4 2.8

3.0

3.5

4.0

4.5

5.0

5.5

Type E

log (m+n)

lo
g

τ
m

a
x
(ε

)

1.6 2.0 2.4 2.8

0

1

2

3

Type F

log (m+n)

lo
g

τ
m

a
x
(ε

)

1
Figure 4.6: Number of nodes and associated total mixing time of the classical switch
chain (red), edge switch chain (green), and the curveball chain (blue). (ε = 0.01.)

50

Table 4.2: Estimated degrees k of polynomials.

Type Classical Switch Edge Switch

A 2.68 2.65
B 2.48 2.44
C 1.28 1.25
D 2.12 2.11
E 2.28 2.23
F 1.59 1.59

• In contrast to the switch chain variants, we observe that the polynomial model
poorly describes the total mixing time of curveball chain, as the transformed
data points grow sub-linearly. Consequently, the total mixing time of the
curveball must be a sub-linear function on the instance size m + n for all
instance classes considered here. A more refined experiment shows that the
total mixing time of the curveball chain is almost constant for these instances.
This observation is plausible as the instances classes considered here possess
a vertex set U of constant size. We will assess the efficiency of the sampling
methods on more realistic instances in a further set of experiments.

Summary In this set of experiments, we investigated the efficiency of three sam-
pling algorithms on a set of instances by calculating the total mixing time of the
associated Markov chains. In doing so, we found that the total mixing time of the
curveball chain is significantly smaller than that of the other chains. Our findings
qualitatively agree with existing experimental results [23, 69].

By relating the total mixing time with properties of the associated state graphs,
we found that the total mixing time in our experiments does not correlate with the
number of states. In the contrary, we found that the largest total mixing time occurs
when the number of states is small.

We assessed the growing behavior of the Markov chain’s total mixing time on spe-
cial classes of scalable instances by experimentally determining the degree k of the
polynomial functions that describe how the total mixing time relates to the input
size. In doing so, we found that the classical and the edge switch chain require
a super-linear number of steps, while the total mixing time of the curveball chain
is almost constant. We conclude that the curveball chain is superior to the other
chains in terms of iterations.

4.3.2 Influence of Loops

The previous experiments showed that the total mixing time of the curveball chain is
smaller than that of the other chains. This may have several reasons. For example,

51

its efficiency may be caused by its small loop probability. As an alternative expla-
nation, the complex structure of the state graphs may accelerate the convergence
of the curveball chain. In this set of experiments, we addressed the reason for the
efficiency of the curveball chain by assessing the influence of the loops on the total
mixing time.

Methodology To assess the influence of the loop probability, we artificially ma-
nipulated the state graphs Γ = (Ω,Ψ) of the three Markov chains. For this purpose,
we applied a two-step procedure to modify the weights p : Ω × Ω → [0, 1] of the
transition arcs so that the average loop probability becomes equal to a predefined
constant `.

1. In the first step, we chose a real number α ∈ (0, 1) and reduced the weight of
all loop arcs in Ψ by that quantity. In doing so, we created the modified edge
weights p′ : Ω× Ω→ [0, 1] with

p′(x, y) :=

{
p(x, y), if x 6= y,

p(x, y)− α, else.

2. By reducing the loop probability, the transition matrix of the associated Markov
chain is not longer stochastic, as each row sums to

∑

y∈Ω

p′(x, y) = 1− α.

To fix this problem, we applied a second step to rescale the weight of all
transitions (x, y) ∈ Ψ to q : Ω× Ω→ [0, 1] such that

∀(x, y) ∈ Ψ: q(x, y) :=
p′(x, y)

1− α .

It is easy to see that the transition probability q : Ω×Ω→ [0, 1] is symmetric
whenever p is. Thus, the edge weights q of the modified state graph define an
ergodic Markov chain whose stationary distribution is uniform.

By reducing the weight of the loops, we can inflate and deflate the average loop
probability of a state graph to values within a certain range. For this purpose we
have to determine the amount α by which the weight of each loop arc must be
reduced such that the average loop probability of the state graphs becomes equal to
a constant `. We can calculate α by using the following equation.

` =
1

|Ω|
∑

x∈Ω

q(x, x)

⇔ `|Ω| =
∑

x∈Ω

q(x, x) =
∑

x∈Ω

p′(x, x)

1− α =
∑

x∈Ω

p(x, x)− α
1− α =

S − |Ω|α
1− α ,

52

where S :=
∑

x∈Ω p(x, x) is the trace of the original transition matrix P . Solving this
equation for α gives the amount by which the weight of each loop must be reduced
such that the average transition probability of the modified state graph becomes
equal to `:

α =
S − |Ω|`
|Ω| − |Ω|` .

As we must ensure that each arc weight is non-negative, the variable α must not be
chosen larger than pmin := min{p(x, x) : x ∈ Ω}. It is easy to show that the smallest
possible value `min, to which the average loop probability ` may be scaled to, is

`min :=
S − |Ω|pmin

|Ω| − |Ω|pmin
.

By scaling the average loop probability to a constant of ` ≥ `min and calculating
the total mixing time of the modified state graphs, we may gain insights into the
influence of the loops on the total mixing time.

Experiment 4.4 We started this set of experiments by evaluating the influence of
the loops on the total mixing time of each Markov chain. For this purpose, we scaled
the average loop probability of each state graph to a set of values ` ∈ [`min, 1) and
calculated the total mixing time of the modified state graph. Fig. 4.7 shows how the
total mixing time depends on the average loop probability of four exemplary small
instances.

• As the state graphs of the classical switch chain and the edge switch chain are
structurally identical, the corresponding curves align perfectly.

• Interestingly, the total mixing time behaves non-monotonically for a few in-
stances in which the number of states is small (see Fig. 4.7, bottom right).
Although this may seem counter-intuitive at first sight, there is a plausible
explanation, as the corresponding state graph is “almost” bipartite when the
loop probability is small. In such a case, Alg. 1.1 oscillates between two dis-
joint sets of states until a rarely occurring loop is used. For most instances,
however, we observed that the total mixing time grows monotonically.

• By considering the logarithmic scale of the y-axis, we observe that the total
mixing time of the Markov chains appears to be an exponential function on
the average loop probability for most instances.

• In addition, we observe that if scaled to the same average loop probability,
the total mixing times of the switch chain variants and the curveball chain are
very close.

We conclude that the average loop probability has a large influence on the total
mixing time of a Markov chain.

53

0.2 0.4 0.6 0.8 1.0

r=(2,2,2,2,1,1), c=(3,2,2,2,1)

average loop probability

τ
m

a
x
(ε

)

10
1

10
2

10
3

0.0 0.2 0.4 0.6 0.8 1.0

r=(2,2,2,2,2), c=(2,2,2,2,2)

average loop probability

τ
m

a
x
(ε

)

10
1

10
2

10
3

0.0 0.2 0.4 0.6 0.8 1.0

r=(2,2,2,2), c=(2,2,2,2)

average loop probability

τ
m

a
x
(ε

)

10
1

10
2

10
3

0.0 0.2 0.4 0.6 0.8 1.0

r=(2,2,2), c=(2,2,2)

average loop probability

τ
m

a
x
(ε

)

10
0

10
1

10
2

10
3

1
Figure 4.7: Average loop probability and total mixing time of the classical switch
chain (red), edge switch chain (green), and curveball chain (blue) on four exemplary
instances. The three points indicate the original average loop probability of each
Markov chain. (ε = 0.01.)

54

Experiment 4.5 To assess whether the small loop probability of the curveball
chain is the primary reason for its efficiency, we applied a refined experiment. In this
experiment, we modified the state graphs of the classical switch and the curveball
Markov chain such that their average loop probability becomes ` = 1/2. (The choice
of this constant is purely arbitrary and does not influence the qualitative result of
this experiment.) As before, we calculated the total mixing time of the modified
state graphs. Here, we denote by τ switch

max (ε) and τ curve
max (ε) the total mixing time of

the switch chain and the curveball Markov chain, respectively. Then, the quotient

q(ε) :=
τ switch

max (ε)

τ curve
max (ε)

describes the speedup of the curveball in comparison to the switch chain. If this
quotient is larger than one, the curveball mixes faster. We calculated the ratio q(ε)
with ε = 0.01 for several members of our scalable instance classes. Fig. 4.8 shows
the result of this experiment.

• We observe that the modified switch chain is typically superior to the modified
curveball when n is small, as the ratio q is smaller than one. In contrast, when
the size of the instances grows larger, the curveball chain becomes more and
more efficient.

• In case of the instance classes C and E, the total mixing time of the curveball
chain is only fairly smaller than that of the switch chain and we cannot observe
a clear trend.

As the average loop probability of the modified state graphs is identical, we can ex-
clude the influence of the loops on the total mixing time. Consequently, we conclude
that the complex structure of the curveball’s state graph has a positive effect on the
efficiency of this Markov chain.

Summary In this set of experiments, we addressed the influence of the loops on
the total mixing time of the Markov chains. In a first experiment, we artificially
scaled the average loop probability of each Markov chain to a set of values between
zero and one, and calculated the total mixing time of the modified chains. In doing
so, we found that the average loop probability has a huge influence on the total
mixing time.

In a second experiment, we analysed whether the small loop probability is the pri-
mary reason for the efficiency of the curveball chain. For this purpose, we scaled the
average loop probability of the switch and curveball chain to a common constant
and calculated the total mixing time of the modified chains. In doing so, we found
that due to its more complex structure, the curveball Markov chain is superior to
the switch chain when the size of the instances is sufficiently large. We conclude that
its small loop probability is an important but not the sole reason for the efficiency
of the curveball chain.

55

10 15 20 25

0.8

0.9

1.0

1.1

1.2

1.3

1.4

Type A

m+n

q
(.

0
1
)

10 15 20 25 30 35

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Type B

m+n

q
(.

0
1
)

10 20 30 40 50

1.00

1.05

1.10

1.15

1.20

Type C

m+n

q
(.

0
1
)

10 15 20 25 30 35

1.0

1.5

2.0

2.5

3.0

Type D

m+n

q
(.

0
1
)

8 10 12 14 16 18

0.80

0.85

0.90

0.95

1.00

1.05

Type E

m+n

q
(.

0
1
)

6 8 10 12 14 16 18

1

2

3

4

5

Type F

m+n

q
(.

0
1
)

Figure 4.8: Quotients of the total mixing time of the modified curveball and modified
classical switch chain. (ε = 0.01.)

56

4.3.3 Quality of Bounding Techniques

In some cases, techniques like the canonical path method can successfully be applied
to gain a general upper bound on the total mixing time of a particular Markov
chain. When applied successfully, such upper bounds most often are high-degree
polynomials on the size of the input (see Ineq. 4.1). Such upper bounds are far
too large to be applicable in practice, where more than a linear number of steps is
infeasible when the input size is sufficiently large.

However, it might be the case that an upper bound on the total mixing time is just
too pessimistic. Since the bounding techniques in Markov chain analysis are often
fairly general and worst-case instances in terms of total mixing time are not known,
it is not clear, whether the upper bounds gained by such methods are tight for some
worst-case instance. For practical applicability, however, it is of eminent importance
to find as sharp bounds as possible. In general, there is very little knowledge about
the gap between the so established upper bounds and tight bounds for actual worst-
case instances. Probably most researches will suspect that a considerable real gap
exists, but for specific Markov chains it is unknown how many orders of magnitude
this gap may be large. For that reason, we believe that the true total mixing time
might be much smaller than proven by theoretical methods. Therefore, we address
the following questions in a set of experiments.

1. Is the total mixing time as large as the bounding methods propose, or is it
possible that the bounding methods are just not precise enough to tightly
bound the total mixing time? The latter case would support the thesis that
the total mixing time actually is far smaller than known in theory.

2. Which bounding method has the best potential and could lead to better results
when further information about the structure of state graphs is given?

Experiment 4.6 In a first experiment, we processed the set of small instances
and computed the following quantities from the associated state graphs

• the total mixing time τmax(ε) for ε = 0.01,

• its lower and upper spectral bound for ε = 0.01 via Ineq. 2.6 and 2.7, and

• the canonical path congestion bound for ε = 0.01 via Ineq. 2.10.

To compute the congestion bound via Ineq. 2.10, we applied the path con-
struction scheme presented by Kannan et al. [17] to concrete state graphs. As
this path construction scheme was used to gain theoretical bounds without
full knowledge of a Markov chain’s structure, applying it to concrete state
graphs shows how sharp such bounds could be if full structural information
were available. Consequently, the general upper bounds can not be better than
the bounds gained by applying the scheme on an actual state graph.

57

Classical Switch Chain

number of states

q
u

a
lit

y
 o

f
b

o
u

n
d

10
0

10
2

10
4

10
6

10
−1

10
0

10
1

10
2

Edge Switch Chain

number of states

q
u

a
lit

y
 o

f
b

o
u

n
d

10
0

10
2

10
4

10
6

10
−1

10
0

10
1

10
2

Curveball

number of states

q
u

a
lit

y
 o

f
b

o
u

n
d

10
0

10
2

10
4

10
6

10
−1

10
0

10
1

10
2

10
3

1
Figure 4.9: Quotient of congestion bound (orange), upper spectral bound (red), and
lower spectral bound (violet) with total mixing time for the set of small instances.

We use the quotient of a lower or upper bound and the total mixing time to assess
the quality of the bounding method. Fig. 4.9 shows the results of this experiment.

• We immediately observe that the lower and upper spectral bound are quite
close to the total mixing time for all instances as the quotient is near one in
all cases.

• In contrast, the congestion bound is far larger than the total mixing time, and
its quality decreases with the growing size of a state graph. In case of the
curveball chain, the congestion bound is up to several hundred times larger
than the associated total mixing time for this set of instances.

Experiment 4.7 In a second experiment, we applied the previous experimental
setup to members of the scalable instance classes. While Fig. 4.10 exemplarily shows
the results of this experiment for instance class C, Figs. D.3 and D.4 in Appendix D
show the results for all instance classes.

• We observe that the gap between the congestion bound and the total mixing
time grows with the input size m+n for each Markov chain. The same is true
for the upper spectral bound, but in a much slower way.

• Comparing the lower spectral bound with the total mixing time of both switch
chain variants, we observe that these quantities have an almost linear relation-
ship for some of our instance classes (see Fig. D.5 and D.6 in Appendix D).
Thus, the lower spectral bound can be used as a very good approximation for
the total mixing time. The reason for this close relationship is an interesting
topic for future studies. In contrast, the relationship between the total mixing
time and its lower spectral bound is more complicated in case of the curveball.

58

Classical Switch Chain

m+n

q
u
a
lit

y
 o

f
b
o
u
n
d

10 20 30 40

10
−1

10
0

10
1

10
2

Edge Switch Chain

m+n
q
u
a
lit

y
 o

f
b
o
u
n
d

10 20 30 40

10
−1

10
0

10
1

10
2

Curveball

m+n

q
u
a
lit

y
 o

f
b
o
u
n
d

10 20 30 40

10
−1

10
0

10
1

10
2

T
yp

e
C

1
Figure 4.10: Quotient of congestion bound (orange), upper spectral bound (red),
and lower spectral bound (violet) with total mixing time for the scalable instance
class C.

Summary Our observations indicate that the theoretical bounds gained by the
canonical path method are likely too pessimistic. Moreover, although we know the
exact structure of a state graph in our experiments (which can never be the case in
a normal practical scenario) the congestion bound is far larger than the total mixing
time. Thus, the canonical path method will not lead to tight bounds, even when
further information about a state graphs structure is included. This gives hope to
the hypothesis that the true total mixing time is smaller than existing theory is able
to prove.

4.3.4 Empirical Mixing Time

In the next set of experiments, we assessed the efficiency of the sampling algorithms
on larger instances, for which the construction of state graphs in infeasible. Without
a state graph, we can neither calculate the exact mixing time nor its lower or upper
spectral bounds. Instead, we approximate the empirical mixing time. In doing so,
we can process much larger instances for which the construction of the state graph
is infeasible.

Methodology To evaluate the empirical mixing time, we need to approximate

the t-step-distributions q
(t)
s for increasing values of t, and the limiting distribution η

with respect to an auxiliary function f : Ω(r, c) → R. To approximate the t-step
distributions, we simulated t steps of each Markov chain to produce N = 106 random

samples from Ω(r, c) according to p
(t)
s . By evaluating the auxiliary function on each

random sample, we gain an approximation of q
(t)
s . To approximate the limiting

distribution η, we evaluated the auxiliary function on 106 random samples generated
by an exact sampling algorithm similar to that suggested by Miller and Harrison [34].

59

0.0

0.2

0.4

0.6

0.8

1.0

Classical Switch Chain

number t of steps

10
0

10
1

10
2

10
3

10
4

||
 q

s(t
) −

 η
 |
|

0.0

0.2

0.4

0.6

0.8

1.0

Edge Switch Chain

number t of steps

10
0

10
1

10
2

10
3

10
4

||
 q

s(t
) −

 η
 |
|

0.0

0.2

0.4

0.6

0.8

1.0

Curveball Chain

number t of steps

10
0

10
1

10
2

10
3

||
 q

s(t
) −

 η
 |
|

Hamming distance

std::hash

S
2

Snest

checker board rate

NODF

spectral radius

1
Figure 4.11: Total variation distance to limiting distributions of several auxiliary
functions for the “Darwin’s finches” instance. The definitions of the metrics can be
found in Appendix C.

Initial State The empirical mixing time requires a fixed initial state s ∈ Ω(r, c).
As we will show later in Chapter 6, the choice of the initial state may have a large
influence on the efficiency of the sampling methods. In this chapter, however, we
ignore the question of what makes a good initial state and use a deterministically
constructed bipartite graph as a common initial state for each Markov chain. For this
purpose, we use Ryser’s algorithm [53] to construct a realization of the bi-graphical
vector pairs (r, c).

Experiment 4.8 The empirical mixing time τ̄s(ε) is defined with respect to an
auxiliary function f : Ω(r, c)→ R that is evaluated on a large set of random samples.
In a first experiment, we tested several auxiliary functions, whose definitions can be
found in Appendix C, on a large set of instances (see Fig. 4.11 for the example of
“Darwin’s finches”).

• We observe that the Hamming distance metric is the slowest to approach zero.
This metric is defined as the function f(x) := h(s, x), where s is the initial
state of the Markov chain and h : {0, 1}m×n×{0, 1}m×n → N is the Hamming
distance between matrices.

As the Hamming distance to the initial state gives the sharpest approximation of
the total mixing time, we will further use this metric as the auxiliary function in all
subsequent experiments.

60

20 40 60 80 100

0

1000

2000

3000

4000

5000

Type A

m+n

τ
s
(ε

)

50 100 150

0

500

1000

1500

2000

2500

Type B

m+n

τ
s
(ε

)
0 50 100 150 200

0

500

1000

1500

2000

Type C

m+n

τ
s
(ε

)

20 40 60 80 100

0

500

1000

1500

2000

2500

3000

3500

Type D

m+n

τ
s
(ε

)

20 40 60 80 100

0

1000

2000

3000

4000

5000

6000

Type E

m+n

τ
s
(ε

)

0 50 150 250

0

200

400

600

800

1000

Type F

m+n

τ
s
(ε

)

1
Figure 4.12: Empirical mixing time τ̄s(ε) of the scalable instance classes with respect
to the Hamming distance metric. Red: classical switch chain. Green: edge switch
chain. Blue: curveball chain. (ε = 0.01, N = 106 samples).

Experiment 4.9 Next, we approximated the empirical mixing time τ̄s(ε) for mem-
bers of the scalable instance classes. As before, we used N = 106 random samples

to approximate the probability distributions q
(t)
s and η. In doing so, we could easily

process instances for which the construction of a state graph is infeasible. Fig. 4.12
shows the result of this experiment.

• The experiment qualitatively confirms our previous observations made while
assessing the total mixing time of the scalable instance classes. In particular,
the classical switch chain is least efficient for the classes A,B,D, and E, while
the curveball requires just a few steps to produce random samples.

• Similar as before, the empirical mixing time of the classical switch chain is
smaller than that of the edge switch chain in case of class C. In addition, the
empirical mixing times of both chains align for instances of class F.

61

10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Type A

m+n

τ
s
(ε

)
/

τ
s
(ε

)

10 20 30 40 50 60

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Type B

m+n

τ
s
(ε

)
/

τ
s
(ε

)
20 40 60 80

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Type C

m+n

τ
s
(ε

)
/

τ
s
(ε

)

20 60 100

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Type D

m+n

τ
s
(ε

)
/

τ
s
(ε

)

10 20 30

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Type E

m+n

τ
s
(ε

)
/

τ
s
(ε

)

5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Type F

m+n

τ
s
(ε

)
/

τ
s
(ε

)

1
Figure 4.13: Quality of empirical mixing time τ̄s(ε) for the scalable instance classes
with respect to the Hamming distance metric. Red: classical switch chain. Green:
edge switch chain. Blue: curveball chain. (ε = 0.01, N = 106 samples).

From our observations, we conclude that the use of τ̄s(ε) instead of τmax(ε) does not
change the qualitative results of our experiments.

Experiment 4.10 To quantify the quality of the lower bound τ̄s(ε), we calculated
the ratio rs(ε) := τ̄s(ε)/τs(ε) for several members of each instance class. Fig. 4.13
shows how the quality of the lower bound depends on the size m+n of the instances.

• As τ̄s(ε) is a lower bound of τs(ε), the ratio rs(ε) can in theory not be larger
than one. However, we observe that it is sometimes slightly larger than one.
This is caused by the fact that we do not calculate the empirical mixing
time τ̄s(ε) precisely but rather use an approximation. We could improve the
quality of our approximation by increasing the number N of samples used to
create the sampling histograms.

62

• Considering the switch chain variants, we observe that the quality of the lower
bound depends on the type of the instances. For instance classes A, B, D,
and E, the ratio rs(ε) rapidly decreases, while it stays constant for instance
classes C and F.

• Considering the curveball chain, we observe that the empirical mixing time
is very tight in all cases. This is most likely caused by the small scale of
its total mixing time induced by the constant size of vertex set U . To test
this hypothesis, we repeated this experiment with inversed roles of r and c
(see Fig. D.7 in Appendix D). In doing so, we found that the quality of τ̄s(ε)
decreases even faster in case of the curveball. Thus, we conclude that the
constant quality of the ratio rs(ε) is a result of the way we defined our instance
classes.

We will briefly discuss the implications of our observations. As we observed that the
quality of the empirical mixing time τ̄s(ε) depends on the type of Markov chain, we
have to assume that the random samples produced after τ̄s(ε) steps of each chain
will not be “similarly random”.

More precisely, our observations suggest that the distance ||p(τ̄s(ε))
s −π|| between the

stationary distribution π and the τ̄s(ε)-step probability distribution of the curveball
chain is approximately ε, as the ratio rs(ε) is near one. In contrast, the total

variation distance ||p(τ̄s(ε))
s − π|| exceeds ε for the classical and edge switch chain.

Consequently, the τ̄s(ε)-step distribution p
(τ̄s(ε))
s of the curveball chain may be very

different from that of the classical and edge switch chain.

However, as the distance ||q(τ̄s(ε))
s − η|| is less or equal to ε for each type of Markov

chain, we may still assess the efficiency of the sampling algorithms by comparing
their associated empirical mixing time τ̄s(ε). In doing so, we assess the number of
steps that are required to produce a random sample from R according to a distri-

bution q
(τ̄s(ε))
s that is close up to ε to the limiting distribution η.

Experiment 4.11 To evaluate the efficiency of the sampling algorithms on real-
world instances, we approximated the empirical mixing time of each chain on the
set of ecological instances. Similar as before, we approximated the t-step probability

distributions q
(t)
s for increasing values of t by producing N = 106 random samples

from each Markov chain. However, as the exact sampling methods are infeasible
for many of the ecological instances, we approximated the limiting distribution η by
an experimental approach similar to that sketched in Sec. 2.3. Fig. 4.14 shows the
result of this experiment.

• We observe that the classical switch chain is least efficient for most of the
ecological instances as its empirical mixing time is multiple orders of magnitude
larger than that of the other chains. In contrast, we observe that the curveball
chain is superior to the other chains in most cases.

63

Classical vs.

Edge Switch Chain

τs(ε) (classical switch)

10
3

10
5

10
7

10
2

10
3

10
4

10
5

τ
s
(ε

)
(e

d
g

e
 s

w
it
c
h

)
Classical Switch vs.

Curveball

τs(ε) (classical switch)

10
3

10
5

10
7

10
2

10
3

τ
s
(ε

)
(c

u
rv

e
b

a
ll)

Edge Switch vs.

Curveball

τs(ε) (edge switch)

10
2

10
3

10
4

10
5

10
2

10
3

τ
s
(ε

)
(c

u
rv

e
b

a
ll)

1
Figure 4.14: Empirical mixing time τ̄s(ε) for the ecological instances with respect to
the Hamming distance metric. The black lines separate the areas where one chain
is superior to the other. (ε = 0.01, N = 106.)

• There are a few exceptions to our observations. In some cases, the empirical
mixing time of the edge switch chain is similar to that of the classical switch
chain. In others, the edge switch chain is similarly efficient as the curveball
chain.

Summary In this set of experiments, we approximated the empirical mixing time
of each Markov chain. We started our experiments by evaluating several auxiliary
functions and found that the Hamming distance metric gives the best approximation
to the total mixing time. Subsequently, we calculated the empirical mixing time for
members of our scalable instances and found the qualitative results from previous
experiments confirmed. By assessing the quality of τ̄s(ε) as a lower bound on the
mixing time τs(ε), we found the quality of the lower bounds depends on the type
of Markov chain and instance class. Finally, we processed the real-life instances
from the web-of-life data set and observed that curveball is most efficient in terms
of τ̄s(ε).

4.3.5 Running Time

We close this section by addressing the efficiency of the sampling methods in practice.
The previous experiments did not consider the running time of each step. However,
this aspect is obviously of crucial importance for the total running time of a sampling
algorithm.

Experiment 4.12 By simulating τs(ε) steps of a Markov chain, we produce a

random sample according to a probability distribution p
(τs(ε))
s (x) that is “close” to

the uniform distribution up to ε. As each Markov chain needs a different number of
steps to reach this distribution, we can fairly compare the efficiency of the sampling

64

10 20 30 40 50

0

100

200

300

400

Type A

n+m

T
s
(ε

)
in

 µ
s

10 20 30 40 50 60

0

50

100

150

200

250

300

Type B

n+m

T
s
(ε

)
in

 µ
s

20 40 60 80

0

10

20

30

40

50

Type C

n+m

T
s
(ε

)
in

 µ
s

20 60 100

0

500

1000

1500

2000

Type D

n+m

T
s
(ε

)
in

 µ
s

10 20 30

0

20

40

60

80

Type E

n+m

T
s
(ε

)
in

 µ
s

5 10 15 20 25

0

1

2

3

4

5

6

Type F

n+m

T
s
(ε

)
in

 µ
s

1
Figure 4.15: Running time Ts(ε) for τs(ε) steps of each Markov chain. Red: classical
switch chain. Green: edge switch chain. Blue: curveball chain. (ε = 0.01, average
running time of 106 runs.)

algorithms by measuring the running time Ts(ε) required for τs(ε) steps of the asso-
ciated chain. Fig. 4.15 shows the running time Ts(ε) of each Markov chain for our
scalable instance classes. We discuss some important observations.

• We observe that the classical switch chain is least efficient in terms of running
time, similarly as it was in terms of iterations. Even in case of class C, where
we found the total mixing time of the classical switch chain to be smaller than
that of the edge switch chain, we observe that the classical switch is least
efficient. The reason for this observation lies in the definition of the classical
switch operation. As each classical switch needs to draw four random numbers
(instead of two in case of an edge switch), the running time of a classical switch
exceeds that of an edge switch.

• Considering the instance classes A,B,D, and E, the edge switch chain is superior

65

Classical Switch vs.

Edge Switch

Ts(ε) (classical switch)

10
1

10
3

10
5

10
1

10
2

10
3

T
s
(ε

)
(e

d
g

e
 s

w
it
c
h

)
Classical Switch vs.

Curveball

Ts(ε) (classical switch)

10
1

10
3

10
5

10
1

10
2

10
3

10
4

T
s
(ε

)
(c

u
rv

e
b

a
ll)

Edge Switch vs.

Curveball

Ts(ε) (edge switch)

10
1

10
2

10
3

10
1

10
2

10
3

10
4

T
s
(ε

)
(c

u
rv

e
b

a
ll)

1
Figure 4.16: Running time T s(ε) in µs for τ̄s(ε) steps of each Markov chain for the
web-of-life instances. The black line separates the areas where one chain is superior
to the other. (ε = 0.01, N = 106, average running time of 106 runs.)

to the other chains when the number of nodes is small. However, when n grows,
the curveball Markov chains becomes more efficient. In case of classes C and F,
we find the curveball chain superior for all instances.

Our experiment suggests that the curveball chain is superior to the other chains
if the size of an instance is sufficiently large. However, we should take this with a
grain of salt as our instance classes are constructed favorably for the curveball chain.
Being specific, the number |V | is designed to grow linearly, while the number |U | is
constant. As the ratio |V |/|U | is rarely that extreme in real-world applications, our
observations may not hold in practice. Thus, we will next discuss the efficiency of
the sampling algorithms for more realistic instances.

Experiment 4.13 In a final experiment, we assessed efficiency of the Markov
chains for the instances of the web-of-life data set. As the construction of state
graphs is infeasible for most ecological instances, we measure the running time T s(ε)
required for τ̄s(ε) steps of each Markov chain. Fig. 4.16 shows the result of this
experiment.

• We observe that the classical switch chain is least efficient in terms of run-
ning time for all of the ecological instances. This coincides with our previous
observations on the scalable instances.

• In contrast to the scalable instances, we observe that the edge switch chain is
now superior to the curveball chain for the majority of real-world instances.
By quantifying the speedup of the edge switch chain, we observe that it out-
performs the curveball chain by a factor of up to 73.

As we observed in the previous experiment that the quality of τ̄s(ε) differs between
the Markov chains, our observations do not prove the efficiency of the Markov chains

66

for the original sampling problems. However, they show that the edge switch chain
is suited best for the approximation of expected values via Eq. 1.2.

Summary In this set of experiments, we assessed the efficiency of the Markov
chains from a practical point of view. For this purpose, we measured the running
time of each chain that is required to produce random samples according to proba-
bility distributions that are similarly close to a common limiting distribution. Our
observations indicate that the classical switch chain is clearly least efficient, while
the curveball chain is superior to the other chains when the vertex set V is large. By
considering ecological real-world instances from the web-of-life data set, we found
that the edge switch chain outperforms the curveball chain in the majority of cases.
Our experiments suggest that the edge switch chain is suited best for the uniform
sampling of bipartite graphs with fixed vertex degrees, with the curveball chain
being superior to the other chains if one vertex set is far larger than the other.

4.4 Preprocessing

Naively applying an MCMC algorithm to produce random samples may result in
a poor running time as the mixing time of the underlying Markov chain can be
unpleasantly large. However, we can sometimes accelerate the sampling process
by a clever preprocessing of the problem instance. For example, considering the
“Darwin’s Finches” instance shown in Table 4.1, we observe that each entry of the
last row must be set to one as the associated row sum is 17 and is thereby equal
to the number of columns. Consequently, we can speed-up the sampling process by
fixing the entries of the last row to one and omitting them from sampling. In doing
so, we replace the original problem of size 13× 17 by a sub-problem of size 12× 17
that can be solved more efficiently. In the following section, we will generalize this
idea and show how to simplify a sampling problem by replacing it by an equivalent
set of sub-problems.

In practical applications, obvious preprocessing techniques like the removal of trivial
rows or columns are commonly used to accelerate the sampling process [49, 34]. Our
method contains these obvious techniques as special cases and augments them by
exploiting a more systematic approach.

4.4.1 Methodology

The algorithm described in this section iteratively divides a bi-graphical pair of
integer vectors into so-called partitions. For the following definition, let vw describe
the concatenation of two vectors v and w.

Definition 4.12 (partition). Let r = (r1, r2, . . . , rm) and c = (c1, c2, . . . , cn) be
integer vectors. We say that ((r̄, c̄), (r̂, ĉ)) is a partition of (r, c) if and only if

a) c = c̄ĉ and ri = r̄i + r̂i for each i ∈ {1, 2, . . . ,m}, or

67

b) r = r̄r̂ and ci = c̄i + ĉi for each i ∈ {1, 2, . . . , n}.

Example The following sets of integer vectors (and many more) are partitions of
the vector pair r = (4, 4, 2, 1) and c = (3, 3, 3, 1, 1).

r̄ = (4, 4), r̂ = (2, 1), c̄ = (3, 2, 1, 1, 1), ĉ = (0, 1, 2, 0, 0),

r̄ = (4, 4), r̂ = (2, 1), c̄ = (2, 2, 2, 1, 1), ĉ = (1, 1, 1, 0, 0),

r̄ = (2, 1, 2, 0), r̂ = (2, 3, 0, 1), c̄ = (3, 3, 3, 1), ĉ = (1).

The technique described in this section is based on the partitioning of a bi-graphical
vector pair (r, c) into a pair ((r̄, c̄), (r̂, ĉ)) of vector pairs such that r̄, r̂, c̄, and ĉ
are non-increasing, and (r̄, c̄) and (r̂, ĉ) are again bi-graphical. The following lemma
shows under which conditions we may find such a partition.

Lemma 4.2. Let r = (r1, r2, . . . , rm) be a non-increasing integer vector and let c =
(c1, c2, . . . , cn) be an integer vector such that (r, c) is bi-graphical. Let k < m be an
arbitrary positive integer such that Σk

r = Σk
c′ holds. Let

r̄ = (r̄1, r̄2, . . . , r̄k), r̂ = (r̂1, r̂2, . . . , r̂m−k)

x̄ = (x̄1, x̄2, . . . , x̄k), x̂ = (x̂1, x̂2, . . . , x̂m−k)

be integer vectors defined by

r̄i := ri and x̄i := c′i for 1 ≤ i ≤ k,
r̂i := ri+k and x̂i := c′i+k for 1 ≤ i ≤ m− k.

Finally, let c̄ = (c̄1, c̄2, . . . , c̄n) and ĉ = (ĉ1, ĉ2, . . . , ĉn) be integer vectors defined by

c̄i := x̄′i and ĉi := x̂′i for 1 ≤ i ≤ n.

Then, (r̄, c̄) and (r̂, ĉ) are bi-graphical, and ((r̄, c̄), (r̂, ĉ)) is a partition of (r, c).

Example To apply Lemma 4.2 to the integer vectors r = (4, 4, 2, 1) and c =
(3, 3, 3, 1, 1), we set-up the associated conjugate sequences and partial sums.

r = (4, 4, 2, 1) c = (3, 3, 3, 1, 1)

Σr = (4, 8, 10, 11) Σc = (3, 6, 9, 10, 11)

r′ = (4, 3, 2, 2, 0, . . .) c′ = (5, 3, 3, 0, . . .)

Σr′ = (4, 7, 9, 11, 11, . . .) Σc′ = (5, 8, 11, 11, . . .).

We observe that Σk
r = Σk

c′ holds for k = 2. Thus, we define

r̄ = (4, 4) r̂ = (2, 1)

x̄ = (5, 3) x̂ = (3, 0)

c̄ = (2, 2, 2, 1, 1) ĉ = (1, 1, 1, 0, 0).

68

We can easily verify that ((r̄, c̄), (r̂, ĉ)) is a partition of (r, c). In addition, Theo-
rem 4.1 shows that (r̄, c̄) and (r̂, ĉ) are bi-graphical.

r̄ = (4, 4) c̄ = (2, 2, 2, 1, 1) r̂ = (2, 1) ĉ = (1, 1, 1, 0, 0)

Σr̄ = (4, 8) c̄′ = (5, 3, 0, . . .) Σr̂ = (2, 3) ĉ′ = (3, 0, . . .)

Σc̄′ = (5, 8, 8, . . .) Σc̄′ = (3, 3, . . .).

Proof of Lemma 4.2. We start by showing that ((r̄, c̄), (r̂, ĉ)) is a partition of (r, c).
As r = r̄r̂ holds by construction, it suffices to show ci = c̄i + ĉi for each i ∈
{1, 2, . . . , n}. As

c̄i = x̄′i = |{j ∈ {1, . . . , k} : x̄j ≥ i}| =
∣∣{j ∈ {1, . . . , k} : c′j ≥ i}

∣∣

and

ĉi = x̂′i = |{j ∈ {1, . . . ,m− k} : x̂j ≥ i}|
=
∣∣{j ∈ {1, . . . ,m− k} : c′j+k ≥ i}

∣∣
=
∣∣{j ∈ {k + 1, . . . ,m} : c′j ≥ i}

∣∣ ,

the sum c̄i + ĉi can be written as

c̄i + ĉi =
∣∣{j ∈ {1, . . . , k} : c′j ≥ i}

∣∣+
∣∣{j ∈ {k + 1, . . . ,m} : c′j ≥ i}

∣∣
=
∣∣{j ∈ {1, . . . ,m} : c′j ≥ i}

∣∣ = c′′i = ci.

Thus, ((r̄, c̄), (r̂, ĉ)) is a partition of (r, c). It remains to show that (r̄, c̄) and (r̂, ĉ)
are bi-graphical. We start by observing that r̄ and r̂ are non-increasing by con-
struction. We first show that (r̄, c̄) is bi-graphical. From Σk

r = Σk
c′ and x̄i = x̄′′i we

conclude
k∑

i=1

r̄i =
k∑

i=1

ri =
k∑

i=1

c′i =
k∑

i=1

x̄i =
k∑

i=1

x̄′′i =
k∑

i=1

c̄′i

and thus Σk
r̄ = Σk

c̄′ . In addition, as (r, c) is bi-graphical, Σj
r ≤ Σj

c′ holds for each j
in range 1 ≤ j ≤ m. Hence,

j∑

i=1

r̄i =

j∑

i=1

ri ≤
j∑

i=1

c′i =

j∑

i=1

x̄i =

j∑

i=1

x̄′′i =

j∑

i=1

c̄′i

holds for each j in range 1 ≤ j ≤ k. Consequently, r̄ E c̄′ holds, too. By
Theorem 4.1, (r̄, c̄) is bi-graphical. Similarly, we show that (r̂, ĉ) is bi-graphical.
As Σm

r = Σm
c′ and Σk

r = Σk
c′ , we conclude

m−k∑

i=1

r̂i =

m−k∑

i=1

ri+k =

m∑

i=1

ri −
k∑

i=1

ri =

m∑

i=1

c′i −
k∑

i=1

c′i

=
m−k∑

i=1

c′i+k =
m−k∑

i=1

x̂i =
m−k∑

i=1

x̂′′i =
m−k∑

i=1

ĉ′i.

69

In addition, as Σj
r ≤ Σi

c′ for 1 ≤ j ≤ m, it follows that

j∑

i=1

r̂i =

j∑

i=1

ri+k =

k+j∑

i=k+1

ri =

k+j∑

i=1

ri −
k∑

i=1

ri =

k+j∑

i=1

ri −
k∑

i=1

c′i

≤
k+j∑

i=1

c′i −
k∑

i=1

c′i =

k+j∑

i=k+1

c′i =

j∑

i=1

c′i+k =

j∑

i=1

x̂i =

j∑

i=1

x̂′′i =

j∑

i=1

ĉ′i.

holds for each 1 ≤ j ≤ m− k. Thus, (r̂, ĉ) is bi-graphical by Theorem 4.1.

From Lemma 4.2, we derive a simple algorithm (see Alg. 4.2) that can be used for
the partitioning of a vector pair (r, c).

Algorithm 4.2: Partition

Input: bi-graphical vector pair (r, c) with r ∈ Nm and c ∈ Nn such that r is
non-inreasing, integer k with Σk

r = Σk
c′

Output: non-increasing integer vectors r̄, r̂, c̄, and ĉ such that ((r̄, c̄), (r̂, ĉ))
is a partition of (r, c), and (r̄, c̄) and (r̂, ĉ) are bi-graphical

1 (r̄, r̂)← ((r1, r2, . . . , rk), (rk+1, rk+2, . . . , rm))
2 (x̄, x̂)← ((c′1, c

′
2, . . . , c

′
k), (c

′
k+1, c

′
k+2, . . . , c

′
m))

3 c̄← (x̄′1, x̄
′
2, . . . , x̄

′
n) // (r̄, c̄) is bi-graphical

4 ĉ← (x̂′1, x̂
′
2, . . . , x̂

′
n) // (r̂, ĉ) is bi-graphical

5 return ((r̄, c̄), (r̂, ĉ))

Observation If r and c are the row and column sums of an m × n binary ma-
trix M = (mij), the partitioning of (r, c) via Lemma 4.2 divides M into two disjoint
sub-matrices M̄ = (m̄ij) and M̂ = (m̂ij) of size k×n and (m−k)×n (see Fig. 4.17):

m̄ij := mij , for 1 ≤ i ≤ k and 1 ≤ j ≤ n
m̂ij := m(i+k)j , for 1 ≤ i ≤ m− k and 1 ≤ j ≤ n.

By construction, the row and column sums of M̄ and M̂ are identical to (r̄, c̄)
and (r̂, ĉ). As (r̄, c̄) and (r̂, ĉ) are bi-graphical by Lemma 4.2, both sub-matrices
can be processed independently from each other.

For simplicity, Lemma 4.2 has been defined asymmetrically with respect to the
vectors r and c. The following theorem corrects this flaw and generalizes the concept
of partitioning to a set of so-called composite vector pairs.

Definition 4.13 (primitive, composite). Let r = (r1, r2, . . . , rm) and c = (c1, c2,
. . . , cn) be non-increasing integer vectors such that (r, c) is bi-graphical. The vector
pair (r, c) is called primitive if and only if Σk1

c′ > Σk1
r and Σk2

r′ > Σk2
c hold for

each k1 ∈ {1, . . . ,m− 1} and k2 ∈ {1, . . . , n− 1}. Otherwise, it is called composite.

70

4

4

2

1

3 3 3 1 1

4

4

2 2 2 1 1

2

1

1 1 1 0 0

Figure 4.17: Partitioning of r = (4, 4, 2, 1) and c = (3, 3, 3, 1, 1) into r̄ = (4, 4),
r̂ = (2, 1), c̄ = (2, 2, 2, 1, 1), and ĉ = (1, 1, 1, 0, 0).

Theorem 4.3. Let r = (r1, r2, . . . , rm) and c = (c1, c2, . . . , cn) be non-increasing
integer vectors such that (r, c) is bi-graphical and composite. Then, we can parti-
tion (r, c) into ((r̄, c̄), (r̂, ĉ)) such that (r̄, c̄) and (r̂, ĉ) are bi-graphical.

Proof. As (r, c) is composite, at least one of two cases must occur:

a) ∃k1 ∈ {1, 2, . . . ,m− 1} : Σk1
r = Σk1

c′ , or

b) ∃k2 ∈ {1, 2, . . . , n− 1} : Σk2
c = Σk2

r′ .

In the first case, we can directly apply Lemma 4.2 to create a partition ((r̄, c̄), (r̂, ĉ))
such that (r̄, c̄) and (r̂, ĉ) are bi-graphical. In the latter case, we may switch the
roles of r and c to create the bi-graphical vector pair (c, r). Now we can apply
Lemma 4.2 to create the partition ((c̄, r̄), (ĉ, r̂)) such that (c̄, r̄) and (ĉ, r̂) are bi-
graphical. After switching back to the original roles, ((r̄, c̄), (r̂, ĉ)) is a partition such
that (r̄, c̄) and (r̂, ĉ) are bi-graphical.

Remark If (r, c) is bi-graphical, it is possible that there are two integers k1 ∈
{1, 2, . . . ,m−1} and k2 ∈ {1, 2, . . . , n−1} such that both Σk1

r = Σk1
c′ and Σk2

c = Σk2
r′

hold, as it is the case in the example above for k1 = 2 and k2 = 3. In such cases, we
may apply Lemma 4.2 to either (r, c) or (c, r). Each way will produce a different
set of bi-graphical vector pairs. In the example above, we may alternatively create
the integer vectors (r̄, c̄) and (r̂, ĉ) defined by

r̄ = (3, 3, 2, 1) r̂ = (1, 1, 0, 0) c̄ = (3, 3, 3) ĉ = (1, 1).

While in the previous case the associated binary matrix is partitioned vertically, the
alternative choice results in a horizontal matrix partition.

71

4.4.2 Decomposition Algorithm

By iterated application of Theorem 4.3, we can decompose a bi-graphical pair of
integer vectors into a set of primitive vector pairs. In this process, the associated
binary matrix is partitioned into disjoint sub-matrices that correspond to indepen-
dent instances of the sampling problem. The following algorithm (see Alg. 4.3)
summarizes the ideas of this section and shows how a bi-graphical pair (r, c) can be
decomposed into its primitive components. The algorithm assumes that r and c are
already ordered non-increasingly.

Algorithm 4.3: Decompose

Input: bi-graphical pair (r, c) with r ∈ Nm and c ∈ Nn
Output: decomposition of (r, c) into a set of primitive bi-graphical pairs

1 k1 ← min{i ∈ {1, 2, . . . ,m} : Σi
r = Σi

c′}
2 k2 ← min{j ∈ {1, 2, . . . , n} : Σj

c = Σj
r′}

3 if k1 = m and k2 = n then // (r, c) is primitive

4 return {(r, c)}
5 else // (r, c) is composite

6 if k1 < m then // Σk1
r = Σk1

c′

7 ((r̄, c̄), (r̂, ĉ))← Partition((r, c), k1)

8 else // Σk2
c = Σk2

r′

9 ((c̄, r̄), (ĉ, r̂))← Partition((c, r), k2)
10 end
11 return Decompose(r̄, c̄) ∪ Decompose(r̂, ĉ)

12 end

Example Alg. 4.3 decomposes our exemplary instance (r, c) with r = (4, 4, 2, 1)
and c = (3, 3, 3, 1, 1) into the following multi-set of twelve primitives vector pairs
that can be divided into four groups:

4× r = (0), c = (0) 1× r = (1, 1), c = (1, 1)

6× r = (1), c = (1) 1× r = (2, 1), c = (1, 1, 1)

In this process, the associated binary matrix is divided into twelve disjoint sub-
matrices (see Fig. 4.18). From the example, we may derive several interesting ob-
servations:

• By decomposing the vector pair into primitives, we replace the original sam-
pling problem by a set of twelve independent sub-problems.

• Ten out of twelve sub-problems are trivial as they possess just one realization.
Consequently, we may fix several entries of the associated matrix to zero or
one and exclude them from sampling.

72

4

4

2

1

3 3 3 1 1

1 1 1

1 1 1

0 0

0 0

A

B

1

1

1

0

0

0

1

1

1 1

A
1

2

1 1 1

B

Figure 4.18: Decomposition of r = (4, 4, 2, 1) and c = (3, 3, 3, 1, 1).

• The remaining two non-trivial sub-problems are significantly smaller than the
original one. We could easily enumerate all realizations of these tiny instances
and select one randomly to produce exactly uniformly distributed samples
of each sub-problem. As the sub-problems can be processed independently,
we can combine the samples of the sub-problems to produce a uniformly dis-
tributed sample of the original problem.

In summary, this exemplary sampling problem could be significantly simplified.

4.4.3 Experimental Evaluation

To examine how useful this technique is for ecological real-world instances, we de-
composed the 62 instances of the web-of-life data set (see Table B.2 in Appendix B)
into their primitive components. We obtained the following observations:

• We found that most instances (52 of 62) are primitive and thus, cannot further
be decomposed.

• In two of the remaining ten cases, the associated sampling problem could be
replaced by a set of trivial sub-problems. As a consequence, the whole sampling
problem is trivial in these two cases as there is just a single realization of the
original problem.

• Each of the remaining eight instances could be replaced by a set of sub-
problems containing exactly one non-trivial sub-problem. After omitting the
trivial sub-problems, the remaining problem can be solved more efficiently due
to its reduced instance size.

For example, we could replace the instance A_PH_007 of size 5× 64 by a non-
trivial sub-problem of size 4 × 19. Hence, almost 75% of the original matrix
entries can be excluded from sampling. Consequently, the sampling methods
perform more efficiently (see Fig. 4.19). As the decomposition can be carried
out fast, the sampling process can be largely accelerated.

Summary Instance decomposition is a technique that can be used to pre-process
integer vectors before starting the sampling algorithm. It is designed to detect

73

0 2000 4000 6000 8000

0

0.2

0.4

0.6

0.8

1

||
 q

s(t
) −

 η
 |
|

A_PH_007

number t of steps

0 200 400 600 800

0

0.2

0.4

0.6

0.8

1

||
 q

s(t
) −

 η
 |
|

A_PH_007

running time (in µs)

1Figure 4.19: Distance to limiting distribution of the Hamming distance metric on
the A_PH_007 instance. Red line: classical switch chain applied to the original
instance. Blue line: classical switch chain applied to the preprocessed instance. For
this example, the empirical mixing time τ̄s(ε) of the classical switch chain decreased
from 6460 to 325. The decomposition required 134 microseconds, after which the
actual sampling process started. (N = 106, ε = 0.01.)

matrix entries that are fixed to either zero or one in each realization of the given
integer vector. Such entries may be excluded from sampling. Hence, the original
sampling problem may be replaced by a set of sub-problems that can be solved
independently of each other in parallel.

In an experimental evaluation with 62 real-world instances from ecology, we found
that we can simplify the sampling problem in ten out of 62 cases. In one case,
instance decomposition could reduce the number of matrix entries by almost 75%.
As the running time of the instance decomposition is small, we conclude that it is
worth applying in practice.

4.5 Summary

In this chapter, we assessed the efficiency of three well-known sampling algorithms
for the uniform sampling of bipartite graphs with fixed vertex degrees.

After summarizing established knowledge about the classical switch, the edge switch,
and the curveball Markov chain, we experimentally analysed properties of the as-
sociated state graphs on various input instances. In doing so, we found that the
curveball algorithm mixes significantly faster than both switch chain variants at
the cost of a larger running time in each step. By experimentally determining the
Markov chain’s total mixing time on scalable instance classes, we established lower
bounds on the total mixing time of the associated Markov chains. In particular, we
showed that for several instance classes, the necessary number of steps is for both
switch chain variants a quadratic function on the number m+ n of nodes.

In the following set of experiments, we further studied properties of the Markov

74

chains by assessing the influence of the average loop probability on the total mixing
time. For this purpose, we artificially scaled the average loop probability of the
Markov chain’s state graphs to a common value, thereby eliminating the influence
of the loop probabilities. In doing so, we found that the small loop probability of
the curveball chain is an important but not exclusive reason for its efficiency.

By calculating lower and upper bounds on the total mixing time, we assessed how
sharp such bounds may be if full information about state graphs was available. While
we found that the quality of the upper congestion bound decreases fast, the lower
and upper spectral bound remain tight for much longer. Our experiments suggest
that the canonical path method is unlikely to gain sharp upper bounds on the total
mixing time of a Markov chain.

As the construction of state graphs is infeasible if the number of states is large,
we cannot calculate the total mixing time or its lower and upper spectral bounds
in most practical sampling applications. To still derive some lower bound on the
total mixing time, we showed that the empirical mixing time may be approximated
efficiently even if the construction of state graphs is infeasible.

By assessing the running time spent in each step of the random walk on a set of
ecological instances, we found that the edge switch chain is most efficient in the
majority of cases. In contrast, the classical switch chain is least efficient.

We closed this chapter by showing how a bi-graphical pair of integer vectors can
be preprocessed to accelerate the sampling process. For this purpose, we described
an algorithm that decomposes a vector pair into its primitive components, which
can subsequently be processed independently. Experimentally, we showed that our
preprocessing method can largely accelerate the sampling process.

75

Chapter 5

Bipartite Graphs with Bounded
Degrees

In this chapter, we further pursue our study of methods for the randomization of
bipartite graphs. While in the previous chapter, we considered the degrees of a
bipartite graph to be fixed, we now allow them to vary in prescribed intervals. This
variant of the classical sampling problem is motivated by the work with ecological
data.

In sciences like ecology, empirical networks are typically constructed by the obser-
vation and classification of species in the field. In this process, a group of ecologists
patiently monitor a certain geographical spot and record the interaction of species.
Due to limited resources however, ecologists can only spend a restricted amount on
time to the data collection. Thus, despite all effort and carefulness, the collected
data are typically imperfect [71]. Consequently, in present-absence tables like the
one of “Darwin’s finches” (see Table 4.1), rarely occurring species may falsely be
declared absent in certain regions. On the other hand, potential misclassification of
species may introduce interactions that are not present in reality. As a consequence,
an observed ecological network will often differ at least slightly from the unknown
“true” network.

One way to deal with such problems is to incorporate the imperfectness of the data in
the network analysis [72, 73]. For example, by assuming that some edges of the true
network remained unobserved, we can model the true network to be an unknown
element of a set of graphs

a) with the same node set as the observed graph,

b) whose edge set includes the observed edges, and

c) whose degrees may exceed those of the observed graph by predefined constants.

Then, the expected structure of the true network can be approximated by drawing
uniformly distributed samples from this set. Based on our confidence in the data,

76

we may chose the gap between the lower and upper bounds on the degrees smaller
or larger. The application of such a procedure requires a method for the uniform
sampling of bipartite graphs whose degrees lie in prescribed intervals. In this chapter,
we focus on such sampling algorithms.

This chapter is based on joint work with Linda Strowick and Matthias Müller-
Hannemann. Preliminary results presented in Ref. [74] were largely revised and
enhanced. A research article based on this work was recently published in the
Journal of Complex Networks.

S. Rechner, L. Strowick, and M. Müller-Hannemann. Uniform sampling of
bipartite graphs with degrees in prescribed intervals. Journal of Complex Net-
works (2017). doi: 10.1093/comnet/cnx059 [26]

5.1 Definitions and Notation

As the sampling problem considered in this chapter is a variant of the previously
discussed problem, we adopt and extend the notation of Chapter 4. For this purpose,
let m and n be positive integers and let

r̃ = (r̃1, r̃2, . . . , r̃m) c̃ = (c̃1, c̃2, . . . , c̃n)

r̄ = (r̄1, r̄2, . . . , r̄m) c̄ = (c̄1, c̄2, . . . , c̄n)

be integer vectors of length m and n. We denote by Ω(r̃, r̄, c̃, c̄) the set of bipartite
graphs whose degrees are bounded from below by r̃ and c̃, and which are bounded
from above by r̄ and c̄, i.e.

Ω(r̃, r̄, c̃, c̄) := {G = (U, V,E) : |U | = m ∧ |V | = n

∧ ∀i ∈ {1, 2, . . . ,m} : r̃i ≤ δG(ui) ≤ r̄i
∧ ∀j ∈ {1, 2, . . . , n} : c̃j ≤ δG(vj) ≤ c̄j}.

The problem discussed in this chapter is to draw samples from Ω(r̃, r̄, c̃, c̄) uniformly
at random. Exploiting the connection between bipartite graphs and binary matrices,
the problem can equivalently be reformulated as the uniform sampling of an m× n
binary matrix with r̃ and r̄ being lower and upper bounds on its row sums, and c̃
and c̄ being lower and upper bounds on its column sums.

Definition 5.1 (realizable, realization). We say that a four-tuple (r̃, r̄, c̃, c̄) of in-
teger vectors is realizable if and only if Ω(r̃, r̄, c̃, c̄) 6= ∅. If (r̃, r̄, c̃, c̄) is realizable,
we call any bipartite graph G ∈ Ω(r̃, r̄, c̃, c̄) a realization.

In many cases we do not need to distinguish between vertices from U and V . For
that reason, we define d̃ : U ∪ V → Z and d̄ : U ∪ V → Z as functions of lower and
upper bounds, i.e.

d̃(ui) := r̃i and d̄(ui) := r̄i for each i ∈ {1, 2, . . . ,m},
d̃(vj) := c̃j and d̄(vj) := c̄j for each j ∈ {1, 2, . . . , n}.

77

http://dx.doi.org/10.1093/comnet/cnx059

When G = (U, V,E) and G′ = (U, V,E′) are bipartite graphs from Ω(r̃, r̄, c̃, c̄), we
denote by G4G′ the symmetric difference of the edge sets E and E′, i.e.

G4G′ := (E \ E′) ∪ (E′ \ E).

A sequence of nodes p = (v1, v2, . . . , vk) is called alternating path (in G4G′) if each
unordered pair {vi, vi+1} of consecutive vertices in p is an edge alternatingly included
in E \ E′ and E′ \ E. An alternating path p is called non-extendable if there is no
alternating path in G4G′ that contains p as a proper subpath. An alternating path
is called simple if vi 6= vj for 1 ≤ i 6= j ≤ k.

A closed sequence of nodes c = (v1, v2, . . . , vk, v1) is called alternating cycle (inG4G′)
if (v1, v2, . . . , vk) is an alternating path. An alternating cycle is called simple if it
does not contain a smaller alternating cycle.

Related Work In contrast to the uniform sampling of bipartite graphs with fixed
degrees, this variant of the classical sampling problem did not attract much attention
in the past. We will still discuss some related literature.

In ecological null-network analysis, several methods have been discussed to create
random bipartite graphs whose degrees are allowed to vary from those of an observed
graph. As one of the simplest algorithms, the EE-algorithm [75] randomly distributes
edges equiprobably between each pair of vertices. Thereby, it produces bipartite
graphs that possess the same edge total as the observed network but whose vertex
degrees may vary entirely at random.

To approximately preserve the degrees of the observed network, a family of so-called
PP-algorithms can be used to produce bipartite graphs, in which the probability
of an edge is proportional to the corresponding vertex degrees in the observed net-
work [76]. Ulrich and Gotelli [6] present a PP-algorithm that produces random
bipartite graphs, whose degrees may vary freely, but in which the expected values of
the degrees are intended to match those of the observed network. Thus, the degrees
of a sample will be distributed randomly around the observed ones.

In contrast, our methods are not intended to produce random samples with the
same edge total as an observed network. Instead, we do allow the edge total to vary
within the margins specified by the intervals.

5.2 Markov Chains

In this section, we present two Markov chains that are generalizations of the classical
switch chain and the curveball chain discussed in Chapter 4. The state space of both
Markov chains is the set Ω(r̃, r̄, c̃, c̄) from which we want do draw samples. In a series
of theorems, we show that the stationary distribution of both chains is the uniform
distribution on Ω(r̃, r̄, c̃, c̄). In contrast to previously discussed chains, each Markov
chain presented in this section is based on a set of three operations.

78

u

v

⇐⇒

u

v

u

v

w

⇐⇒

u

v

w

Figure 5.1: Visualization of a flip (left), and shift operation (right).

5.2.1 Simple Markov Chain

Our first Markov chain is based on the operations classical switch (here simply called
switch), flip, and shift.

Definition 5.2 (flip). Let G = (U, V,E) be a bipartite graph.

1. Choose two vertices u ∈ U and v ∈ V uniformly at random.

2. If {u, v} ∈ E, set E′ := E \ {{u, v}}, otherwise set E′ := E ∪ {{u, v}}.

3. Set G′ := (U, V,E′).

4. If d̃(x) ≤ δG′(x) ≤ d̄(x) holds for each x ∈ {u, v}, return G′.

5. Otherwise, return G.

Fig. 5.1 (left) visualizes the flip operation. Unlike the switch, a flip operation in-
creases or decreases the total number of edges in G. In doing so, it increments or
decrements the degrees of the vertices u and v and leaves the degrees of all other
vertices unchanged.

Definition 5.3 (shift). Let G = (U, V,E) be a bipartite graph.

1. Choose two vertices u ∈ U and v ∈ V uniformly at random.

2. Choose a vertex w from (U ∪ V) \ {u, v} uniformly at random.

3. If w ∈ V , switch the roles of u and v.

4. (a) If {u, v} 6∈ E and {v, w} ∈ E, set E′ := (E \ {{v, w}}) ∪ {{u, v}}.
(b) Else, if {u, v} ∈ E and {v, w} 6∈ E, set E′ := (E \ {{u, v}}) ∪ {{v, w}}.
(c) In all other cases return G.

5. Set G′ := (U, V,E′).

6. If d̃(x) ≤ δG′(x) ≤ d̄(x) holds for each x ∈ {u,w} return G′.

7. Otherwise, return G.

79

Fig. 5.1 (right) visualizes the shift operation. A shift operation does not change the
total number of edges in G. However, it affects the degrees of the vertices u and w.
In contrast, the degree of vertex v is unchanged.

We will now define the first Markov chain for the uniform sampling from Ω(r̃, r̄, c̃, c̄).
It is based on an arbitrary probability function

q : {switch,flip, shift} → (0, 1),

that assigns positive probability to each type of operation.

Definition 5.4 (simple chain). Let G = (U, V,E) ∈ Ω(r̃, r̄, c̃, c̄).

1. Randomly select a type of operation with respect to q.

2. Apply the operation to transform G into G′.

3. If the maximal number of steps has been reached, return G′.

4. Set G← G′ and go to Step 1.

Theorem 5.1. The stationary distribution of the simple chain is the uniform dis-
tribution on Ω(r̃, r̄, c̃, c̄).

In the remainder of this section, we give a proof for Theorem 5.1. By Corollary 2.4,
we need to show that the simple chain is irreducible, aperiodic, and reversible with
respect to the uniform distribution on Ω(r̃, r̄, c̃, c̄).

Irreducibility We start by proving the irreducibility of the Markov chain. For this
purpose, we show that we can iteratively transform two bipartite graphs G and G′

from Ω(r̃, r̄, c̃, c̄) into each other via a series switch, flip, and shift operations. More
precisely, we show that we can strictly reduce the symmetric difference G4G′ by
iterated application of a switch, flip, or shift operation.

In the special case of r̃ = r̄ and c̃ = c̄ discussed in Chapter 4, it is well-known that
the symmetric difference G4G′ can be partitioned into a set of simple alternating
cycles [59]. Then, the graphs G and G′ can be transformed into each other by at
most |G4G′|/2 switch operations. We will now prove a similar result for our more
general scenario.

For the following theorems, let G = (U, V,E) and G′ = (U, V,E′) be arbitrary
bipartite graphs from Ω(r̃, r̄, c̃, c̄).

Lemma 5.2. Let c = (v1, v2, . . . , vk, v1) be a simple alternating cycle in G4G′. We
can apply a switch operation to G or G′ to reduce the size |G4G′| of the symmetric
difference by two or more.

80

v1 v2

v3 v4

⇐⇒

v1 v2

v3 v4

Figure 5.2: An alternating cycle of length k = 4. Straight lines are present in G,
dashed lines are present in G′.

v1 v2

v3 v4

v5 v6

v1 v2

v3 v4

v5 v6

v1 v2

v3 v4

v5 v6

v1 v2

v3 v4

v5 v6

Figure 5.3: Example of an alternating cycle c = (v1, v2, . . . , v6, v1) of length k = 6.
Straight lines are present in G, dashed lines are present in G′. From left to right:
cases one to four of Lemma 5.2.

Proof. We prove the theorem inductively by the length k of the alternating cycle.
For the matter of this proof, assume that {v1, v2} ∈ E and {vk−1, vk} ∈ E, otherwise
switch the roles of G and G′.

If k = 4 (see Fig. 5.2), we can apply a switch to G to gain Ḡ := (U, V, Ē) with

Ē := (E \ {{v1, v2}, {v3, v4}}) ∪ {{v1, v4}, {v2, v3}}.

As a consequence, |G4G′| − |Ḡ4G′| = 4.

Now let k > 4 and assume the theorem to be proven for alternating cycles of
length i < k. Depending on whether or not the edge {v1, v4} exists in G and G′, we
discuss four cases (see Fig. 5.3).

1. If {v1, v4} 6∈ E and {v1, v4} 6∈ E′, we can replace the edges {v1, v2} ∈ E
and {v3, v4} ∈ E by {v1, v4} and {v2, v3}. Thus, a switch operation may
transform G into Ḡ = (U, V, Ē) with

Ē := (E \ {{v1, v2}, {v3, v4}}) ∪ {{v1, v4}, {v2, v3}}).

Consequently, |G4G′| − |Ḡ4G′| = 2.

2. If {v1, v4} 6∈ E and {v1, v4} ∈ E′, we can replace the edges {v1, v2} ∈ E
and {v3, v4} ∈ E by {v1, v4} and {v2, v3}. Thus, a switch operation may
transform G into Ḡ = (U, V, Ē) with

Ē := (E \ {{v1, v2}, {v3, v4}}) ∪ {{v1, v4}, {v2, v3}}).

Consequently, |G4G′| − |Ḡ4G′| = 4.

81

3. If {v1, v4} ∈ E and {v1, v4} 6∈ E′, we do not directly find an applicable
switch operation. However, there is an alternating cycle (v1, v4, . . . , vk, v1)
of length k − 2. Thus, by the induction hypothesis, we can find a switch op-
eration that reduces the size of the symmetric difference G4G′ by at least
two.

4. If {v1, v4} ∈ E and {v1, v4} ∈ E′, we can replace the edges {v1, v4} ∈ E′

and {v2, v3} ∈ E′ by {v1, v2} and {v3, v4}. Thus, a switch operation may
transform G′ into Ḡ′ = (U, V, Ē′) with

Ē′ := (E′ \ {{v1, v4}, {v2, v3}}) ∪ {{v1, v2}, {v3, v4}} .
Consequently, |G4G′| − |G4Ḡ′| = 2.

Lemma 5.3. Let (v1, v2, . . . , vk) be a simple non-extendable alternating path in G4G′.
a) If {v1, v2} ∈ E, we may remove an edge {v1, ·} from E or add a new edge {v1, ·}

to E′ without violating the lower and upper bounds on the degree of v1.

b) If {v1, v2} ∈ E′, we may add a new edge {v1, ·} to E or remove an edge {v1, ·}
from E′ without violating the lower and upper bounds on the degree of v1.

Proof. Assume {v1, v2} ∈ E, otherwise switch the roles of G and G′. As the path is
simple and non-extendable, there is no edge {v1, ·} ∈ E′ \ E that can be appended
to p without violating its alternating structure. Thus, δG(v1) exceeds δG′(v1) by at
least one. Since G and G′ are valid realizations and so do not violate the lower and
upper bounds on the degree of v1, the inequalities

d̃(v1) ≤ δG′(v1) < δG(v1) ≤ d̄(v1)

must hold. Hence, by adding an additional edge {v1, ·} to E′ or removing an
edge {v1, ·} from E, the lower and upper bounds on the degree of v1 are not vi-
olated.

Lemma 5.4. Let p = (v1, v2, . . . , vk−1, vk) be a simple non-extendable alternating
path in G4G′. We can apply a series of at most two operations to G or G′ to reduce
the size |G4G′| of the symmetric difference by one or more.

Proof. First, let p be of odd length, thus k is even. Assume that {v1, v2} ∈ E
and {vk−1, vk} ∈ E, otherwise switch the roles of G and G′. Depending on the
existence of the edge {v1, vk} in G and G′ we discuss four cases (see Fig. 5.4).

1. If {v1, vk} 6∈ E and {v1, vk} 6∈ E′, Lemma 5.3 allows to add the edge {v1, vk}
to E′. Thus, a flip operation may transform G′ into G̃′ = (U, V, Ẽ′) with

Ẽ′ := E′ ∪ {{v1, vk}} .
In doing so, we temporarily create a situation with |G4G′| − |G4G̃′| = −1.
However, we additionally construct the alternating cycle c = (v1, v2, . . . , vk, v1)
in G4G̃′. By Lemma 5.2, we can find a switch operation that transforms G
into Ḡ, or G̃′ into Ḡ′ such that |G4G′| − |Ḡ4Ḡ′| ≥ 1.

82

v1 v2

v3 v4

v5 v6

v1 v2

v3 v4

v5 v6

v1 v2

v3 v4

v5 v6

v1 v2

v3 v4

v5 v6

Figure 5.4: Example of a non-extendable alternating path p = (v1, v2, . . . , v6) of odd
length (k = 6). Straight lines are present in G, dashed lines are present in G′. From
left to right: cases one to four of the first part of Lemma 5.4.

2. If {v1, vk} 6∈ E and {v1, vk} ∈ E′ the closed path (v1, v2, . . . , vk, v1) is a simple
alternating cycle in G4G′. By Lemma 5.2, we can find a switch operation
that transforms G into Ḡ, or G′ into Ḡ′ such that |G4G′| − |Ḡ4Ḡ′| ≥ 2.

3. If {v1, vk} ∈ E and {v1, vk} 6∈ E′, Lemma 5.3 allows to remove the edge {v1, vk}
from E. Thus, a flip operation may transform G into Ḡ = (U, V, Ē) with

Ē := E \ {{v1, vk}}.

Consequently, |G4G′| − |Ḡ4G′| = 1.

4. If {v1, vk} ∈ E and {v1, vk} ∈ E′, Lemma 5.3 allows to remove the edge {v1, vk}
from E. Thus, a flip operation may transform G into G̃ = (U, V, Ẽ) with

Ẽ := E \ {{v1, vk}}.

In doing so, we temporarily create a situation in which |G4G′|−|G̃4G′| = −1.
However, we also create the alternating cycle c = (v1, v2, . . . , vk, v1) in G̃4G′.
By Lemma 5.2, we can find a switch operation that transforms G̃ into Ḡ, or
G′ into Ḡ′ such that |G4G′| − |Ḡ4Ḡ′| ≥ 1.

Now let p be of even length, thus k is odd. In this case, the edge {v1, vk} can neither
exist in E nor in E′ since v1 and vk are in the same vertex set. However, it suffices
to focus on the existence of the edge {v1, vk−1} in G and G′. As before, we discuss
four cases (see Fig. 5.5).

1. If {v1, vk−1} 6∈ E and {v1, vk−1} 6∈ E′, Lemma 5.3 allows to replace {vk−1, vk} ∈
E′ by {vk−1, v1}. Thus, a shift operation may transform G′ into G̃′ = (U, V, Ẽ′)
with

Ẽ′ := (E′ \ {{vk−1, vk}}) ∪ {{vk−1, v1}} .
While this leads to a situation where |G4G′| − |G4G̃′| = 0, we also create
the alternating cycle (v1, . . . , vk−1, v1) in G4G̃′. By Lemma 5.2, we can find a
switch operation that transforms G into Ḡ, or G̃′ into Ḡ′ such that |G4G′| −
|Ḡ4Ḡ′| ≥ 2.

83

v1 v2

v3 v4

v5

v1 v2

v3 v4

v5

v1 v2

v3 v4

v5

v1 v2

v3 v4

v5

Figure 5.5: Example of a non-extendable alternating path p = (v1, v2, . . . , v5) of
even length (k = 5). Straight lines are present in G, dashed lines are present in G′.
From left to right: cases one to four of the second part of Lemma 5.4.

2. If {v1, vk−1} 6∈ E and {v1, vk−1} ∈ E′, the closed path (v1, v2, . . . , vk−1, v1)
is a simple alternating cycle in G4G′. By Lemma 5.2, we can find a switch
operation that transforms G into Ḡ, or G′ into Ḡ′ with |G4G′| − |Ḡ4Ḡ′| ≥ 2.

3. If {v1, vk−1} ∈ E and {v1, vk−1} 6∈ E′, Lemma 5.3 allows to replace {v1, vk−1} ∈
E by {vk, vk−1}. Thus, a shift operation transforms G into Ḡ = (U, V, Ē) with

Ē = (E \ {{v1, vk−1}}) ∪ {{vk−1, vk}} .

Consequently, |G4G′| − |Ḡ4G′| = 2.

4. If {v1, vk−1} ∈ E and {v1, vk−1} ∈ E′, Lemma 5.3 allows to replace {v1, vk−1} ∈
E by {vk, vk−1}. Thus, a shift operation transforms G into G̃ = (U, V, Ẽ) with

Ẽ = (E \ {{v1, vk−1}}) ∪ {{vk, vk−1}} .

While this leads to a situation where |G4G′| − |G̃4G′| = 0, we also create
the alternating cycle (v1, . . . , vk−1, v1) in G̃4G′. By Lemma 5.2, we can find a
switch operation that transforms G̃ into Ḡ, or G′ into Ḡ′ such that |G4G′| −
|Ḡ4Ḡ′| ≥ 2.

Lemma 5.5. By a series of at most 2|G4G′| switch, flip, and shift operations, we
can transform G and G′ into each other.

Proof. We prove the theorem inductively by the size of G4G′. If |G4G′| = 0, the
graphs must be identical. Otherwise, apply the following algorithm to construct
either a simple non-extendable alternating path p or a simple alternating cycle c
in G4G′.

1. Choose an arbitrary edge {v, w} ∈ G4G′ and let p ← (v, w). Let z ← w be
the rightmost node of the path p.

2. While there is some edge {z, y} ∈ G4G′ that can be used to extend p (pre-
serving its alternating structure), append y to p. If this produces a cycle,
terminate. Otherwise, let z ← y and iterate until p cannot be extended.

84

3. Now reverse the path p, let z ← v be the rightmost node and repeat the
expanding of p.

The algorithm terminates with a simple non-extendable path or detects a simple
alternating cycle. In the first case, we can reduce the size of G4G′ via Lemma 5.4,
while in the latter case, we can apply Lemma 5.2. Thus, we can inductively re-
duce |G4G′| to zero. The upper bound on the number of operations follows from
Lemma 5.4 and Lemma 5.2 since we need at most two operations to reduce the
symmetric difference by one.

Aperiodicity As we showed that the state graph of the simple chain is strongly
connected, the Markov chain is irreducible. In the next step, we show that the
simple chain is aperiodic.

Lemma 5.6. The simple chain is aperiodic.

Proof. We prove the lemma by showing that the state graph of the simple chain con-
tains loops. For this purpose, consider a bipartite graph G = (U, V,E) ∈ Ω(r̃, r̄, c̃, c̄).
Depending on the degrees of G, one of three cases occurs.

1. If there is an isolated vertex in G, a shift operation may select three ver-
tices {u, v, w} from U ∪ V with δG(v) = 0. Then, it will return G′ = G as
neither {u, v} nor {v, w} can be included in E.

2. Otherwise, if there is a vertex v ∈ U∪V with δG(v) > 1, then v has at least two
adjacent vertices, say u and w. Whenever a shift operation selects {u, v, w},
it will return G′ = G as both {u, v} and {v, w} will be included in E.

3. If neither (a) nor (b) is true, then all vertices must have a degree of one.
In such a case, a shift operation may very well select three vertices {u, v, w}
such that {u, v} 6∈ E and {v, w} ∈ E. However, the shift operation then
creates a bipartite graph G′ 6= G with δG′(u) = δG(u) + 1 and δG′(w) =
δG(w)− 1. Consequently, the vertex u gains a degree of two or more. Thus, a
shift operation applied to G′ may return G′ with nonzero probability.

Symmetry By Lemma 5.5 and 5.6, the simple Markov chain is ergodic. Thus,
it has a unique stationary distribution π. It remains to show that this stationary
distribution is uniform.

Lemma 5.7. The simple chain is reversible with respect to the uniform distribution
on Ω(r̃, r̄, c̃, c̄).

Proof. By Theorem 2.2, we have to show that the transition probability function
of the simple chain is symmetric. For this purpose, we focus on the probability of
transforming a state G = (U, V,E) into G′ = (U, V,E′) 6= G via a single operation.

85

1. As the probability of transforming G into G′ via a switch operation is

pswitch(G,G′) =

(
m

2

)−1(n
2

)−1

= pswitch(G′, G),

another switch operation can reverse the transformation with identical proba-
bility.

2. The probability of transforming a graph G into G′ 6= G via a flip operation is

pflip(G,G′) = m−1n−1 = pflip(G′, G).

Thus, a second flip operation may reverse the transformation with identical
probability.

3. Transforming G into G′ 6= G via a single shift operation has a probability of

pshift(G,G
′) = m−1n−1(m+ n− 2)−1 = pshift(G

′, G).

Thus, a second shift operation may reverse the transformation with identical
probability.

As the transition probability p : Ω(r̃, r̄, c̃, c̄)× Ω(r̃, r̄, c̃, c̄)→ [0, 1] is composed by

p(G,G′) = q(switch) · pswitch(G,G′)

+ q(flip) · pflip(G,G′)

+ q(shift) · pshift(G,G
′),

and q is constant, we conclude that p(G,G′) equals p(G′, G). By Theorem 2.2, the
simple chain is reversible with respect to the uniform distribution on Ω(r̃, r̄, c̃, c̄).

5.2.2 Informed Markov Chain

As shown in the previous section, the simple chain can be used for the uniform
sampling of bipartite graphs from the set Ω(r̃, r̄, c̃, c̄). However, a potential problem
of this Markov chain is its large loop probability that may arise from its uninformed
nature of selecting random vertices. For that reason, we present a second Markov
chain that is designed to avoid loop transitions by a more informed vertex selection.
In addition, we increase the number of edges that are affected by a single transition.
The price of this modification is an increased running time per step.

Inspired by the curveball algorithm [23], we replace the simple operations switch,
shift, and flip by their more complex counterparts trade, multi-shift, and multi-flip.
The main difference between the simple and complex operations is the number of
affected edges per transition. Whereas the simple operations affect at most four
edges per step, the complex operations affect O(|V |) edges. We start with defining
two new operations.

86

u

v1 v2 v3 v4 v5

[2, 5]

[0, 2] [0, 1] [0, 1] [0, 2] [1, 3]

⇐⇒

u

v1 v2 v3 v4 v5

[2, 5]

[0, 2] [0, 1] [0, 1] [0, 2] [1, 3]

Figure 5.6: Visualization of a multi-flip operation. The numbers in brackets show the
upper and lower bounds on the degrees. Transforming the left graph into the right:
V0 = {v3, v4} (gray, dashed border), V1 = {v1, v2} (gray, solid border). Since the
bounds on the degree of u differ by three, we randomly chose the set S = {v2, v3, v4}
of size three from V0∪V1. Subsequently, we randomly chose S = T as a subset of T .

Definition 5.5 (multi-flip). Let G = (U, V,E) be a bipartite graph.

1. Choose a vertex u ∈ U uniformly at random.

2. Determine two disjoint vertex sets V0 ⊆ V and V1 ⊆ V defined by

V0 :=
{
v ∈ V : {u, v} 6∈ E ∧ δG(v) < d̄(v)

}
,

V1 :=
{
v ∈ V : {u, v} ∈ E ∧ δG(v) > d̃(v)

}
.

Thus, V0 is the set of vertices that are not adjacent to u and may be part
of an additional edge without violating the upper bound on their degree. In
contrast, V1 is the set of vertices that are adjacent to u and may lose an incident
edge without violating the lower bound on their degree.

3. Let s := min
(
d̄(u)− d̃(u), |V0 ∪ V1|

)
. If s = 0, return G.

4. Choose a subset S ⊆ V0 ∪ V1 of size s uniformly at random.

5. Choose a subset T ⊆ S of arbitrary size uniformly at random.

6. Create the edge sets E0 and E1 such that

E0 := {{u, v} : v ∈ T ∧ {u, v} ∈ E} ,
E1 := {{u, v} : v ∈ T ∧ {u, v} 6∈ E} .

7. Remove the edges E0 from E and add the edges E1, thus create the bipartite
graph G′ = (U, V,E′) with E′ := (E \ E0) ∪ E1.

8. If d̃(u) ≤ δG′(u) ≤ d̄(u) return G′, otherwise return G.

Fig. 5.6 visualizes the multi-flip. The multi-flip contains the simple flip as a special
case, when |T | = 1. In addition, the multi-flip may produce G′ = G when T = ∅.

87

Lemma 5.8. The transition probability function of the multi-flip is symmetric.

Proof. Consider two graphs G = (U, V,E) and G′ = (U, V,E′) that can be trans-
formed into each other via a single multi-flip. To distinguish the sets V0, V1, and T
in G and G′, we affiliate each set with the corresponding graph. Following from
its definition, the probability for transforming a graph G into G′ 6= G via a single
multi-flip is

pmulti-flip(G,G′) = m−1

(|V0(G) ∪ V1(G)|
s

)−1

2−s,

where s = min(d̄(u) − d̃(u), |V0(G) ∪ V1(G)|). To prove that pmulti-flip(G,G′) =
pmulti-flip(G′, G), it suffices to show that

|V0(G) ∪ V1(G)| = |V0(G′) ∪ V1(G′)|,

since m and d̄(u) − d̃(u) are invariant constants. For this purpose, assume the
contrary, i.e.

|V0(G) ∪ V1(G)| > |V0(G′) ∪ V1(G′)|.
Assume further that v ∈ V0(G) is a vertex that is neither in V0(G′) nor in V1(G′).
Since v ∈ V0(G), it follows from the definition of V0 that {u, v} 6∈ E. Now consider
two cases that can occur while transforming G into G′.

1. If v ∈ T (G), the edge {u, v} must be included in E′ by the definition of the
multi-shift. Thus, δG′(v) = δG(v) + 1. Since {u, v} ∈ E′ and d̃(v) < δG′(v), it
follows that v ∈ V1(G′), which contradicts our assumption.

2. Otherwise, if v 6∈ T (G), the degree of v is not changed by the multi-shift
operation and thus, v ∈ V0(G′). Again, this contradicts our assumption.

Thus, if v ∈ V0(G), either v ∈ V0(G′) or v ∈ V1(G′) must hold. As the symmetric
case v ∈ V1(G) is discussed analogously, we conclude

|V0(G) ∪ V1(G)| = |V0(G′) ∪ V1(G′)|.

Hence, pmulti-flip(G,G′) = pmulti-flip(G′, G).

Definition 5.6 (multi-shift). Let G = (U, V,E) be a bipartite graph.

1. Choose a random vertex u ∈ U .

2. Determine two disjoint vertex sets V0 ⊆ V and V1 ⊆ V defined by

V0 :=
{
v ∈ V : {u, v} 6∈ E ∧ δG(v) < d̄(v)

}
,

V1 :=
{
v ∈ V : {u, v} ∈ E ∧ δG(v) > d̃(v)

}
.

Up to this point the multi-shift is defined identically to the multi-flip.

88

u

v1 v2 v3 v4 v5

[0, 2] [0, 1] [0, 1] [0, 2] [1, 3]

⇐⇒

u

v1 v2 v3 v4 v5

[0, 2] [0, 1] [0, 1] [0, 2] [1, 3]

Figure 5.7: Visualization of a multi-shift operation. The numbers in brackets show
the relevant upper and lower bounds on the degrees. Transforming the left graph
into the right: V0 = {v3, v4} (gray, dashed border), V1 = {v1, v2} (gray, solid border).
We randomly selected S = {v3, v4} of size |V1| from V0 ∪ V1.

3. Choose a subset S ⊆ V0 ∪ V1 of size |V1| uniformly at random.

4. Create the edge sets E0 and E1 such that

E0 := {{u, v} : v ∈ V0 ∪ V1} ,
E1 := {{u, v} : v ∈ S} .

5. Remove the edges E0 from E and add the edges E1, thus create and return the
bipartite graph G′ = (U, V,E′) with E′ := (E \ E0) ∪ E1.

Fig. 5.7 visualizes the multi-shift. In contrast to the multi-flip, the multi-shift oper-
ation does not change the degree of u since S is chosen to have the same cardinality
as V1. In addition, the upper or lower bound on the degree of a node v ∈ V cannot
be violated by the way we define V0 and V1. Consequently, G′ ∈ Ω(r̃, r̄, c̃, c̄).

Like the other operations, the multi-shift contains the possibility of creating G′ = G
when in step three S is chosen to be equal to V1. In addition, it may simulate a
simple shift if |V1 \ S| = 1.

Lemma 5.9. The transition probability function of the multi-shift is symmetric.

Proof sketch. Following from its definition, the probability for transforming a graphG
into G′ 6= G via a single multi-shift is

pmulti-shift(G,G
′) = m−1

(|V0(G) ∪ V1(G)|
|V1(G)|

)−1

.

Since the degree of u is not changed by a multi-shift, |V1(G)| is equal to |V1(G′)|.
In addition, a similar argument as used in the proof of Lemma 5.8 shows |V0(G) ∪
V1(G)| = |V0(G′) ∪ V1(G′)|. Thus, pmulti-shift(G,G

′) = pmulti-shift(G
′, G).

By the way we defined our operations, a single operation affects at most two vertices
from U and up to |V | vertices from V . Thus, we need at least |U |/2 operations until
each vertex from U is affected by an operation. We intend to speed up the Markov

89

chain by occasionally switching the roles of U and V . However, if |U | � |V | we do
not like to switch the roles of U and V too often since the number of affected edges
per operation is largely reduced in such cases. Thus, we switch the roles of U and V
with probability |U |/(|U |+ |V |) = m/(m+ n).

The improved Markov chain can now be stated as follows. Like the simple chain, it
is based on an arbitrary probability function

q : {trade,multi-flip,multi-shift} → (0, 1)

that assigns positive probability to each operation.

Definition 5.7 (informed chain). Let G = (U, V,E) ∈ Ω(r̃, r̄, c̃, c̄).

1. Select a real number u ∈ [0, 1) uniformly at random.

2. If u < m/(m+ n), switch the roles of U and V .

3. Randomly select an operation type with respect to q.

4. Apply the selected operation to transform G into G′.

5. If the maximal number of steps has been reached, return G′.

6. Set G← G′ and go to Step 1.

Theorem 5.10. The stationary distribution of the informed Markov chain is the
uniform distribution on Ω(r̃, r̄, c̃, c̄).

Proof. We first prove that the improved chain is irreducible. Since each of the three
complex operations contains its simple counterpart as a special case, a state graph
of the informed chain contains the corresponding state graph of the simple chain
as a sub-graph. As the simple chain is irreducible, the informed chain must be
irreducible, too. In addition, the improved chain is aperiodic since each operation
may return G with non-zero probability. Thus, the improved chain possesses a
unique stationary distribution. Since the transition probabilities of each operation
type are symmetric, it follows from Corollary 2.2 that the stationary distribution is
the uniform distribution on Ω(r̃, r̄, c̃, c̄).

5.2.3 Dynamic Adjustment of Probability

The probability function q for selecting an operation type has a large effect on the
efficiency of the sampling algorithms. A simple implementation is to select each
operation with equal probability. However, this is obviously not a good choice in
the special case of r̃ = r̄ and c̃ = c̄ since all flip and shift operations will fail and
thus, at least 2/3 of all transitions will be loops.

It is not immediately clear how to choose q in a better way since the applicability
of the operations depends on the given integer vectors. Thus, we implemented a

90

strategy that initially selects each type of operation with identical probability and
dynamically adjusts q during the simulation of the Markov chain. For this purpose,
we keep track of the number of simulated transitions for each type, and the number
of non-loop transitions for each type. Every 100 steps, we re-balance the probability
function q so that each type of operation gains a probability that is proportional
to its success rate. Due to the dynamic adjustment of q, less time will be spent in
operations that tend to have a large loop probability. To ensure positive probability
for each type of operation, we slightly dampen the effect of the re-balancing by
incorporating previous values.

Being specific, when O denotes a set of operations, we define a function s : O×N→ N
such that s(o, t) denotes the number of non-loop transitions of an operation o ∈
O within the first t steps of the simulation. Similarly, we define r : O × N → N
such that r(o, t) denotes the total number of simulated operations of the operation
type o ∈ O within the first t steps (including loop transitions). We define the success
rate α : O× N→ N of each operation type after t steps by

α(o, t) :=
s(o, t)

r(o, t)
,

and define Z : N → Q by Z(t) :=
∑

o∈O α(o, t). In doing so, the probability func-
tion q : O× N→ [0, 1] depends on the current number of steps t, i.e.

q(o, t) :=

1/3, if t = 0,

q(o, t− 1), if (t mod 100) 6= 0,(
q(o, t− 100) + α(o,t)

Z(t)

)
/2, if t > 0 and (t mod 100) = 0.

(5.1)

In the unlikely case that the calculations as described above require a division by
zero, we simply set q(o, t) := q(o, t− 100). Using the operation sets

O1 := {switch,flip, shift} and O2 := {trade,multi-flip,multi-shift},

Eq. 5.1 defines the probability functions q for the simple and informed Markov chain.

By design, the Markov chains are no longer time-homogeneous if we dynamically
adjust the transition probability every 100 steps. More precisely, the series of random
variables X = (X0, X1, . . .) produced by our sampling algorithms is divided into
batches of length 100, in which the Markov chains behave time-homogeneously.
Thus, mathematically speaking, each batch of 100 random variables will define a
new Markov chain that is different from the previous one. However, as the transition
probability is designed to be symmetric regardless of the current number of steps, the
stationary distribution of each chain will be the uniform distribution on Ω(r̃, r̄, c̃, c̄).

In the following discussion, we will call a Markov chain static when q is fixed to 1/3
for each type of operation and dynamic when we use dynamic adjustment of the
probability function via Eq. 5.1.

91

5.3 Experimental Results and Discussion

In this section, we present an experimental evaluation of the sampling algorithms
introduced in the previous section. Whereas the first experiment is designed to
gain insights into structural properties of the associated Markov chains, the second
experiment is devoted to the number of steps required to produce random samples.
Finally, we demonstrate how our sampling methods can be used to analyse structural
properties of partially observed networks.

5.3.1 State Graph Analysis

In a first experiment, we assessed whether the informed Markov mixes faster than
the simple chain, and if so, by which factor. For this purpose, we calculated the
total mixing time of both chains on a common set of input instances. To create a
set of scalable input instances, we re-used the instance classes from Chapter 4 as
the vectors r̃ and c̃ of lower bounds. To each element of these vectors, we added a
constant of d = 1 that simulates the imperfectness of the data collection process. In
doing so, we created the following classes of integer vectors.

Type A: r̃ = (n− 1, n− 2, 1, 1, 1), c̃ = (2, 2, . . . , 2)

r̄ = (n, n− 1, 2, 2, 2), c̄ = (3, 3, . . . , 3)

Type B: r̃ = (n− 1, n− 2, 2, 1), c̃ = (2, 2, . . . , 2)

r̄ = (n, n− 1, 3, 2), c̄ = (3, 3, . . . , 3)

Type C: r̃ = (n− 1, n− 2, 3), c̃ = (2, 2, . . . , 2)

r̄ = (n, n− 1, 4), c̄ = (3, 3, . . . , 3)

Type D: r̃ = (n− 1, n− 1, 1, 1), c̃ = (2, 2, . . . , 2)

r̄ = (n, n, 2, 2), c̄ = (3, 3, . . . , 3)

Type E: r̃ = (n− 1, n− 1, 1, 1), c̃ = (2, 2, . . . , 2)

r̄ = (n, n, 2, 2), c̄ = (3, 3, . . . , 3)

Type F: r̃ = (dn/2e, bn/2c), c̃ = (1, 1, . . . , 1)

r̄ = (dn/2e+ 1, bn/2c+ 1), c̄ = (2, 2, . . . , 2︸ ︷︷ ︸
n times

)

As the number |Ω(r̃, r̄, c̃, c̄)| grows fast, the calculation of the total mixing time is
infeasible even for small instances. For that reason, we calculated the upper spectral
bound. In doing so, we could process large state graphs up to a size of about 40
million states. Figs. 5.8 and 5.9 show how the upper spectral bound of both Markov
chains depends on the size of the input instances. We highlight some important
observations.

• The data suggests that the upper spectral bound of the simple chain grows
more than one order of magnitude faster than that of the informed chain.

92

8 10 12 14 16

500

1000

1500

Type A

m+n

u
p

p
e

r
s
p

e
c
tr

a
l
b

o
u

n
d

10 15 20

500

1000

1500

2000

Type B

m+n

u
p

p
e

r
s
p

e
c
tr

a
l
b

o
u

n
d

5 10 15 20 25 30 35

0

500

1000

1500

2000

Type C

m+n

u
p

p
e

r
s
p

e
c
tr

a
l
b

o
u

n
d

8 10 12 14 16

0.0

0.2

0.4

0.6

0.8

1.0

Type A

m+n

a
v
e

ra
g

e
 l
o

o
p

 p
ro

b
a

b
ili

ty

10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

Type B

m+n

a
v
e

ra
g

e
 l
o

o
p

 p
ro

b
a

b
ili

ty

5 10 15 20 25 30 35

0.0

0.2

0.4

0.6

0.8

1.0

Type C

m+n

a
v
e

ra
g

e
 l
o

o
p

 p
ro

b
a

b
ili

ty

1
Figure 5.8: Upper spectral bound and expected loop probability of the simple (red,
solid) and informed (blue, dashed) Markov chain on members of instance classes A,
B, and C. (ε = 0.01.)

93

10 15 20 25 30 35

0

1000

2000

3000

4000

Type D

m+n

u
p

p
e

r
s
p

e
c
tr

a
l
b

o
u

n
d

8 10 12 14 16

200

400

600

800

1000

1200

1400

Type E

m+n

u
p

p
e

r
s
p

e
c
tr

a
l
b

o
u

n
d

6 8 10 14

100

200

300

400

Type F

m+n
u

p
p

e
r

s
p

e
c
tr

a
l
b

o
u

n
d

10 15 20 25 30 35

0.0

0.2

0.4

0.6

0.8

1.0

Type D

m+n

a
v
e

ra
g

e
 l
o

o
p

 p
ro

b
a

b
ili

ty

8 10 12 14 16

0.0

0.2

0.4

0.6

0.8

1.0

Type E

m+n

a
v
e

ra
g

e
 l
o

o
p

 p
ro

b
a

b
ili

ty

6 8 10 14

0.0

0.2

0.4

0.6

0.8

1.0

Type F

m+n

a
v
e

ra
g

e
 l
o

o
p

 p
ro

b
a

b
ili

ty

1
Figure 5.9: Upper spectral bound and expected loop probability of the simple (red,
solid) and informed (blue, dashed) Markov chain on members of instance classes D,
E, and F. (ε = 0.01.)

94

However, we should not jump to the conclusion that the informed is also faster
in practice, as it requires a linear running time in each step. We will further
investigate the practical efficiency of the sampling algorithms in another set of
experiments.

• We observe that the loop probability of the simple chain increases with grow-
ing n and exceeds that of the informed chain when n is sufficiently large.

Our experiments showed that the informed Markov chain, as intended, mixes signif-
icantly faster than the simple chain. We conclude that the informed chain has the
potential to outperform the simple one in practical applications.

5.3.2 Convergence of Sample Means

As the number of states grows fast, the calculation of the upper spectral bound
becomes infeasible when the input instances grow larger. To still assess the efficiency
of the Markov chains, we applied the technique described in Section 2.4 and observed
the sample means of an auxiliary function f : Ω(r̃, r̄, c̃, c̄)→ R. In doing so, we could
easily process instances for which the construction of a state graph, and even the
calculation of the empirical mixing time, would be too time-consuming.

Auxiliary Function The calculation of the sample means requires an auxiliary
function f : Ω(r̃, r̄, c̃, c̄)→ R that is evaluated on a large set of random samples. In
this experiment, we focused on several functions known from ecology. In ecological
null-network analysis, the structure of bipartite networks can be quantified by several
measures of nestedness, from which we considered the following.

• The S̄2 statistic introduced by Roberts and Stone [77].

• The nested subset statistic Snest introduced by Patterson and Atmar [48].

• The nestedness measure based on overlap and decreasing fill (NODF) [78].

• The spectral radius of the bipartite graph’s adjacency matrix [79].

The definitions of these metrics can be found in Appendix C.

Experimental Setup Starting at a fixed initial state s ∈ Ω(r̃, r̄, c̃, c̄), we simu-
lated a random walk of length t = 105 for both the simple and the informed Markov
chain. Every ten steps, we interrupted the simulation to evaluate the auxiliary func-
tion on the current state of the Markov chains. This process was repeated N = 1000
times to calculate the sample means µ

p
(t)
s

[f(X)] for t = 10, 20, . . . , 100000.

95

Initial State To observe the stabilization of the sample means, the value f(s) at
the initial state s should considerably differ from the expected value Eπ[f(X)]. As
most structural metrics considered in this experiment are well-known to be correlated
with the edge total, we intentionally constructed the initial state s to possess as many
edges as allowed by the upper bounds r̄ and c̄. For this purpose, we applied a special
case of the realization algorithm described in Section 5.4.

Experiment 5.1 As many real-world networks are known to possess a scale-free
degree distribution [80], we applied a Barabási-Albert model [81] to construct the
degree sequence of a random, scale-free bipartite graph G = (U, V,E).

Starting with a trivial graph consisting of two vertices connected by a single edge, we
iteratively added new vertices to U and V . Each newly added vertex is connected to
the existing vertices of the opposing vertex set with a probability that is proportional
to the degree of the existing vertices. Thus, vertices that already have a high degree
tend to gain more neighbors. After 100 vertices have been included in each U and V ,
we stopped the process and determined the degrees of the vertices in U and V as
the integer vectors r̃ and c̃ (see Table B.1 in Appendix B).

To simulate the imperfectness of the data collection process, we added a constant d
to each element of r̃ and c̃ to create the vectors of upper bounds r̄ and c̄. Based
on these vectors, we estimated the efficiency of our Markov chains by observing the
sample means of the S̄2 statistic. Fig. 5.10 shows the results for d = 1 and d = 5.

• Considering the case of d = 1, we observe that the sample mean of the informed
chain stabilizes after very few steps. In contrast, the simple chain needs several
thousand iterations to stabilize.

• By counting the number of loop transitions, we observe that about 94% of all
transitions of the simple chain have been loops, in comparison to only 27% of
the informed chain’s transitions.

• Using dynamic probability adjustment, the simple chain starts to deviate from
its static counterpart after the first re-balancing at t = 100. During the simu-
lation, 11% of all operations have been switches, 76% were flips, and 13% have
been shifts. Overall, the dynamic re-balancing reduced the simple chain’s av-
erage loop probability by 4%.

• In contrast, the dynamic adjustment could not improve the informed chain as
the necessary number of steps is already very small. As this observation will
apply for each of the following experiments, we will not consider the dynamic
adjustment for the informed chain from now on.

• Considering the case of d = 5, we observe that the sample means produced by
the simple chain stabilize earlier than before. In addition, the loop rate of the
simple chain drops to 85%.

96

0 20 40 60 80 100

25

30

35

40

Scale−Free (d=1)

steps (in thousand)

S
2

0 5 10 15 20

25

30

35

40

Scale−Free (d=1)

running time (ms)

S
2

0 20 40 60 80 100

30

35

40

45

50

55

60

Scale−Free (d=5)

steps (in thousand)

S
2

0 5 10 15 20

30

35

40

45

50

55

60

Scale−Free (d=5)

running time (ms)

S
2

Figure 5.10: Sample means of the S̄2 metric for scale-free integer vectors. Red, solid
line: static simple chain. Green, dashed line: dynamic simple chain. Blue, dotted
line: static informed chain.

97

0 5 10 15 20

640

660

680

700

720

740

760

780

Near−Regular (d=1)

steps (in thousand)

S
2

0 1 2 3 4 5 6 7

640

660

680

700

720

740

760

780

Near−Regular (d=1)

running time (ms)

S
2

0 5 10 15 20

750

800

850

900

950

Near−Regular (d=5)

steps (in thousand)

S
2

0 1 2 3 4 5 6 7

750

800

850

900

950

Near−Regular (d=5)

running time (ms)

S
2

Figure 5.11: Sample means of the S̄2 metric for near-regular integer vectors. Red,
solid line: static simple chain. Green, dashed line: dynamic simple chain. Blue,
dotted line: static informed chain.

We conclude that the informed chain is properly suited for randomization of scale-
free bipartite graphs, especially if the gap between the degree bounds is small.

Experiment 5.2 Next, we experimented with the degrees of near-regular bipartite
graphs. For this purpose, we defined two integer vectors r̃ and c̃ of length m = n =
100 by setting r̃i := c̃i := 50 for each i ∈ {1, . . . , 100}. As before, we added a
constant d to each integer to produce the vectors of upper bounds r̄ and c̄. Fig. 5.11
shows the sample means of the S̄2 metric for d = 1 and d = 5.

• Considering d = 1, we observe that the informed chain is faster in terms of
iterations but is in practice only fairly more efficient than the simple chain.

• This can be explained by the simple chain’s rate of loop transitions, which is
82% and thus comparably small. In comparison, 24% of the informed chain’s
transitions have been loops.

98

• With dynamic probability adjustment, the simple chain selected switch opera-
tions with a probability of 25%, flip operations with 50% and shift operations
with 25%, thereby effectively reducing the number of loops by 3%.

• Considering d = 5, we found that the simple chain is even more efficient than
before, as its loop rate dropped to 59%. Although only 7% of the informed
chain’s transitions have been loops, the simple chain is superior in practice.

We conclude that the simple chain with dynamic adjustment is suited best for the
randomization of near-regular bipartite graphs.

Experiment 5.3 In this experiment, we replaced the S̄2 metric by the other
mentioned measures of nestedness (see Figs. D.8 to D.13 in Appendix D).

• The experiment confirms our previous observations. Although the sample
means stabilize after a different number of steps, the qualitative results are
mostly unchanged.

We conclude that our observations were not a side-effect of the metric used for
convergence detection.

5.3.3 Sampling Application

In a final experiment, we demonstrate how our sampling methods can be applied
to study properties of partially observed networks. In this experiment, we assumed
that the observed “Darwin’s Finches” network derived from Table 4.1 is part of some
larger “true” network whose exact shape is unknown due to missing observations.
To model this kind of uncertainty, we assumed that each island of the Galápagos
archipelago may be inhabited by up to one finch species whose presence was not
observed during the data collection. Symmetrically, we allowed each finch species to
be present at one additional island. Mathematically speaking, we modeled the true
“Darwin’s Finches” network to be an unknown element of a set S that contains all
bipartite graphs G = (U, V,E),

(a) with |U | = 13 and |V | = 17 nodes,

(b) whose degrees may exceed those of the observed network by one, and

(c) which contain all edges of the observed network.

In this experiment, we approximated the expected structure of the true network by
uniformly sampling from the set S.

99

Rejection Sampling Our methods can not directly be applied to uniformly sam-
ple from S as they do not incorporate requirement (c). However, as S is clearly a
subset of Ω(r̃, r̄, c̃, c̄) with

r̃ = (14, 13, 14, 10, 12, 2, 10, 1, 10, 11, 6, 2, 17),

r̄ = (15, 14, 15, 11, 13, 3, 11, 2, 11, 12, 7, 3, 18),

c̃ = (4, 4, 11, 10, 10, 8, 9, 10, 8, 9, 3, 10, 4, 7, 9, 3, 3),

c̄ = (5, 5, 12, 11, 11, 9, 10, 11, 9, 10, 4, 11, 5, 8, 10, 4, 4),

we can apply rejection sampling. By randomly sampling from Ω(r̃, r̄, c̃, c̄) and reject-
ing all samples that miss an observed edge, we assure that the non-rejected samples
are uniformly distributed in S.

As we draw uniformly, we need to construct about |Ω(r̃, r̄, c̃, c̄)|/|S| random samples
from Ω(r̃, r̄, c̃, c̄) to find a single sample from S. Unfortunately, as S is just a tiny
subset of the much larger Ω(r̃, r̄, c̃, c̄), this strategy proved to be too inefficient to
be of practical use. For that reason, we first transformed the sampling problem to
an equivalent problem that can be solved more efficiently.

Problem Transformation By definition, a graph G ∈ S contains all edges of
the observed network. By removing these edges from G, we create a graph G′ with
reduced degrees. Being specific, as each node of G may posses at most one additional
edge, the degrees of G′ will be either zero or one. Consequently, we may replace the
original sampling problem by the problem of uniform sampling from a set T that
contains all bipartite graphs G = (U, V,E),

a) with |U | = 13 and |V | = 17 nodes,

b) whose degrees are either zero or one, and

c) which do not contain edges that are present in the observed network.

In Fig. 5.12, we demonstrate the problem transformation in a small example. It is
easy to see that the reduced sampling problem is equivalent to the original one, as
we can easily transform an element of T into an element of S by adding the observed
edges. Vice versa, an element of S can be converted into an element of T by removing
all observed edges. Thus, there is a one-to-one correspondence between S and T .
Consequently, we conclude that |S| = |T |.

Refined Sampling Strategy As T is a subset of the set Ω(p̃, p̄, q̃, q̄) with

p̃ = [0]13, p̄ = [1]13, q̃ = [0]17, q̄ = [1]17,

we may produce uniform samples from T by uniformly sampling from Ω(p̃, p̄, q̃, q̄)
and rejecting all samples that contain an observed edge. After adding the observed

100

Observed Network

1 0 1 0
0 1 0 1
0 0 1 0

1 1 2 1

2
2
1

“True” Network

1 ? 1 ?
? 1 ? 1
? ? 1 ?

1
..
2

1
..
2

2.
.3

1
..
2

2..3
2..3
1..2

Reduced Network

0 ? 0 ?
? 0 ? 0
? ? 0 ?

0
..
1

0
..
1

0
..
1

0
..
1

0..1
0..1
0..1

Figure 5.12: Illustration of the problem transformation. Let the network on the left
be our observed network. We assume that the unknown “true” network may contain
up to one additional edge per node, thus its degrees may exceed the observed ones by
one. By removing the observed edges, we create a reduced network, whose degrees
may be either zero or one.

edges to each non-rejected sample, we create a bipartite graph that is uniformly
distributed in S.

To demonstrate that this refined strategy is superior to the basic rejection sampling
strategy, we calculated the sizes of the sets Ω(r̃, r̄, c̃, c̄) and Ω(p̃, p̄, q̃, q̄) by using an
exact counting approach similar to that of Miller and Harrison [34]. In doing so, we
found

|Ω(r̃, r̄, c̃, c̄)| ≈ 3.3× 1026 and |Ω(p̃, p̄, q̃, q̄)| ≈ 1.2× 1014.

Thus, the refined strategy outperforms the basic strategy by a factor of

|Ω(r̃, r̄, c̃, c̄)| · |T |
|Ω(p̃, p̄, q̃, q̄)| · |S| =

|Ω(r̃, r̄, c̃, c̄)|
|Ω(p̃, p̄, q̃, q̄)| ≈

3.3 · 1026

1.2 · 1014
≈ 2.8 · 1012.

Experimental Setup To approximate the expected structure of the true net-
work, we generated one million uniform samples from the set S and constructed
the sampling histograms of the four metrics of nestedness. From these histograms,
we approximated the expected structure of our assumed true network. To create
a reference to which the structure of the true network can be compared with, we
additionally calculated the corresponding sampling histograms for the set Ω(r̃, c̃) of
bipartite graphs with the same degrees as the observed “Darwin’s Finches” network,
and for the set Ω(r̃, r̄, c̃, c̄) of graphs with similar degrees as the true network but
which do not need to contain the observed edges.

Results Figs. 5.13 and 5.14 show the calculated sampling histograms.

• Interestingly, the presence of the observed edges forces the true network to
be denser than it would be expected from chance, as we approximated the
expected number of edges of networks in Ω(r̃, r̄, c̃, c̄) to be 128.5. In contrast,
we estimated the expected number of edges in the true network to be 130.5.
The number of edges in the observed network is 122.

101

S Ω(r̃, r̄, c̃, c̄) Ω(r̃, c̃)

S
2

p
e

rc
e

n
ta

g
e

50 55 60 65 70

0

2

4

6

8

10

12

S
2

p
e

rc
e

n
ta

g
e

45 50 55 60 65

0

2

4

6

8

10

12

S
2

p
e

rc
e

n
ta

g
e

49 50 51 52 53 54

0

2

4

6

8

10

12

Snest

p
e

rc
e

n
ta

g
e

10 20 30 40 50 60

0

2

4

6

8

Snest

p
e

rc
e

n
ta

g
e

10 20 30 40 50 60

0

2

4

6

8

Snest

p
e

rc
e

n
ta

g
e

10 20 30 40 50 60

0

2

4

6

8

Figure 5.13: Sampling histograms obtained by the uniform sampling from three
sets of graphs. Left column: the set S of potential “true” networks. Middle column:
the set Ω(r̃, r̄, c̃, c̄). Right column: the set Ω(r̃, c̃) of networks with the same degrees
as “Darwin’s Finches”. While the blue, solid lines mark the structural properties of
the observed network, the red, dashed lines mark the estimated expected values of
our assumed “true” network.

102

S Ω(r̃, r̄, c̃, c̄) Ω(r̃, c̃)

NODF

p
e

rc
e

n
ta

g
e

40 45 50 55 60

0

2

4

6

8

10

12

14

NODF

p
e

rc
e

n
ta

g
e

40 45 50 55 60

0

2

4

6

8

10

12

14

NODF
p

e
rc

e
n

ta
g

e

46 48 50 52 54 56

0

2

4

6

8

10

12

14

spectral radius

p
e

rc
e

n
ta

g
e

9.9 10.1 10.3 10.5

0

2

4

6

8

10

12

spectral radius

p
e

rc
e

n
ta

g
e

9.6 9.8 10.0 10.2 10.4

0

2

4

6

8

10

12

spectral radius

p
e

rc
e

n
ta

g
e

9.75 9.85 9.95

0

2

4

6

8

10

12

Figure 5.14: Sampling histograms obtained by the uniform sampling from three
sets of graphs. Left column: the set S of potential “true” networks. Middle column:
the set Ω(r̃, r̄, c̃, c̄). Right column: the set Ω(r̃, c̃) of networks with the same degrees
as “Darwin’s Finches”. While the blue, solid lines mark the structural properties of
the observed network, the red, dashed lines mark the estimated expected values of
our assumed “true” network.

103

• We observe that expected structural properties of the true network clearly
exceed those of the observed network with respect to the S̄2, Snest, and spectral
radius metrics (see middle column). In contrast, the observed and the true
network are structured very similarly with respect to NODF.

• To assess the influence of the observed edges, we compared the structure of the
true network with the structure that would be expected if the observed edges
were not required to be included in the true network (see middle column). In
doing so, we found that the presence of the observed edges enforces the S̄2

and spectral radius metric of the true network to be significantly larger than it
would be expected from chance alone. In contrast, the observed edges barely
affect the Snest and NODF metrics.

• In an analogous experiment, we evaluated the influence of the observed edges
by comparing the structure of the observed network with that of null-networks
with identical degrees but which do not need to contain the observed edges
(see right column). In doing so, we found that the S̄2, NODF, and spectral
radius metrics of the observed “Darwin’s finches” notably differ from those of
most random null-networks, whereas the values for Snest are very similar.

We conclude that the structural properties of our imaginary true network signifi-
cantly differ from the structure that would be expected if the observed edges were
not required to exist.

5.4 An Optimal Realization Algorithm

In this section, we briefly move away from random sampling and consider the related
problem of constructing an arbitrary bipartite graph whose degrees lie in prescribed
intervals. This can be seen as a preceding sub-problem of the associated sampling
problem, if no initial state is known in advance. An article based on this section is
currently considered for publication in the Journal of Discrete Algorithms.

S. Rechner. An Optimal Realization Algorithm for Bipartite Graphs with De-
grees in Prescribed Intervals. arXiv preprint (2017). arXiv: 1708.05520v1

[cs.DS] [27]

Problem Definition Let m and n be arbitrary integers and let (r̃, r̄, c̃, c̄) be a
four-tuple of integer vectors defined by

r̃ = (r̃1, r̃2, . . . , r̃m), c̃ = (c̃1, c̃2, . . . , c̃n),

r̄ = (r̄1, r̄2, . . . , r̄m), c̄ = (c̄1, c̄2, . . . , c̄n).

Then, Ω(r̃, r̄, c̃, c̄) is the set of bipartite graphs whose degrees are bounded by the
given integer vectors. The problem discussed in this section is how to construct an
arbitrary bipartite graph G ∈ Ω(r̃, r̄, c̃, c̄).

104

http://arxiv.org/abs/1708.05520v1
http://arxiv.org/abs/1708.05520v1

Related Work The construction of bipartite graphs with prescribed degrees is
a well-studied algorithmic problem with various applications in sciences. In the
special case of r̃ = r̄ and c̃ = c̄, Ryser’s algorithm [53] has been used for decades to
construct a realization G = (U, V,E) in O(|U |+ |V |+ |E|) time.

In contrast, the construction of bipartite graphs with bounded degrees attracted
less attention. Although necessary and sufficient conditions for the existence of
such graphs are well-known [82, 83, 84], no efficient realization algorithm has yet
been suggested. We still discuss some approaches that can be used to find a valid
realization.

One way to construct a realization G = (U, V,E) is to compute an arbitrary (g, f)-
factor in the complete bipartite graph Kmn, with g := r̃c̃ and f := r̄c̄ being in-
teger vectors obtained by concatenating the vectors of lower and upper bounds.
As a (g, f)-factor in an arbitrary graph G = (V, E) can be constructed in O(|V|3)
time [85], this approach produces a realization in O((|U |+ |V |)3) time.

Another way of finding a realization is to construct an appropriate flow network F =
(V,A), and to calculate a maximal flow in F [82]. In our case, the flow network
needs to have |V| = |U | + |V | + 2 vertices and |A| = |U | · |V | + |U | + |V | arcs. As
calculating a maximal flow can be achieved in O(|V| · |A|) time [86], this procedure
gives a total running time of O(|U | · |V | · (|U |+ |V |)).
In contrast, we present a realization algorithm, whose running time is bounded from
above by O(|U |+ |V |+ |E|). As we show that the bipartite graph produced by this
algorithm is edge-minimal, this is asymptotically optimal.

Methodology Our algorithm is based on the following well-known theorem that
shows under which conditions a four-tuple of integer vectors is realizable.

Theorem 5.11 (Fulkerson [82], Schocker [84]). Let r̃ = (r̃1, r̃2, . . . , r̃m) and c̃ =
(c̃1, c̃1, . . . , c̃n) be non-increasing integer vectors, and let r̄ = (r̄1, r̄2, . . . , r̄m) and c̄ =
(c̄1, c̄2, . . . , c̄n) be integer vectors with r̃ ≤ r̄ and c̃ ≤ c̄. Then, (r̃, r̄, c̃, c̄) is realizable
if and only if r̃ E c̄′ and c̃ E r̄′.

Our algorithm assumes that the four-tuple (r̃, r̄, c̃, c̄) is realizable, which can be
verified by Theorem 5.11 in O(m+n) time before the algorithm starts. The key idea
is now to iteratively construct a bi-graphical pair of integer vectors (r, c) bounded
by r̃ ≤ r ≤ r̄ and c̃ ≤ c ≤ c̄, which is afterwards realized via Ryser’s algorithm.

For the sake of a simple presentation, we allow our algorithm to re-order the integer
vectors. Consequently, the algorithm will produce a bipartite graph whose node
labels will in general be permuted in a different order. We can easily re-order the
nodes after the realization by keeping track of the original node labels during the
execution of the algorithm.

Our algorithm assumes that the integer vectors r̃ and c̃ are already ordered non-
increasingly, which can easily be arranged by sorting the pairs (r̃, r̄) and (c̃, c̄) in
descending order by their first component. The algorithm is divided into two parts.

105

5.4.1 Phase One

As the four-tuple (r̃, r̄, c̃, c̄) is realizable by assumption, there is a bipartite graphG =
(U, V,E) such that c̃j ≤ δG(vj) ≤ c̄j holds for each vj ∈ V . As a consequence, there
must be an integer vector c = (c1, c2, . . . , cn) which describes the degrees of the ver-
tex set V in G. In other words, there exists an integer vector c bounded by c̃ ≤ c ≤ c̄
such that (r̃, r̄, c, c) is realizable. In its first phase (see Alg. 5.1), the algorithm con-
structs such an integer vector. For this purpose, c is initialized with c̃. In a series
of iterations, the algorithm identifies the right-most component ci with ci < c̄i and
increments the left-most component cj identical to ci. After a well-chosen number δ1

of iterations, the algorithm returns the realizable four-tuple (r̃, r̄, c, c).

Algorithm 5.1: Phase One

Input: realizable four-tuple (r̃, r̄, c̃, c̄)
Output: realizable four-tuple (r̃, r̄, c, c) with c̃ ≤ c ≤ c̄

1 c← c̃ // initialize c with lower bounds c̃

2 δ1 ← max{Σj
r̃ − Σj

c̃′ : 1 ≤ j ≤ m} // calculate number of steps

3 i← n // right-most position such that ci < c̄i
4 for k = 1, 2, . . . , δ1 do
5 while ci = c̄i do // proceed to next position with ci < c̄i
6 i← i− 1
7 end
8 j ← min{` : c` = ci} // identify left-most cj with cj = ci
9 swap c̄i and c̄j

10 cj ← cj + 1

11 end
12 return (r̃, r̄, c, c)

Example Consider the following integer vectors.

r̃ = (4, 1, 0), c̃ = (2, 2, 0, 0, 0)

r̄ = (4, 2, 3), c̄ = (2, 3, 1, 2, 2).

By setting up at the corresponding conjugate sequences, we observe that the four-
tuple (r̃, r̄, c̃, c̄) is realizable via Theorem 5.11.

r̃ = (4, 1, 0) r̄′ = (3, 3, 2, 1, 0, . . .) c̃ = (2, 2, 0, 0, 0) c̄′ = (5, 4, 1, 0, . . .)

Σr̃ = (4, 5, 5) Σr̄′ = (3, 6, 8, 9, 9, . . .) Σc̃ = (2, 4, 4, 4, 4) Σc̄′ = (5, 9, 10, 10, . . .).

The vector c is initialized with c := c̃ = (2, 2, 0, 0, 0). As

c̃′ = (2, 2, 0, . . .) and Σc̃′ = (2, 4, 4, . . .),

the number of steps of the outer loop is calculated by δ1 := max{4−2, 5−4, 5−4} = 2.

106

1. The inner loop breaks with i = 5. The left-most component equal to c5 = 0
is at position j = 3. Thus, the algorithm swaps c̄5 and c̄3 and increments c3.
We gain c = (2, 2, 1, 0, 0) and c̄ = (2, 3, 2, 2, 1).

2. The inner loop breaks again with i = 5. The left-most component equal
to c5 = 0 is now at position j = 4. Thus, the algorithm swaps c̄5 and c̄4 and
increments c4. We gain c = (2, 2, 1, 1, 0) and c̄ = (2, 3, 2, 1, 2).

The situation at the end of the first phase:

r̃ = (4, 1, 0) r̄ = (4, 2, 3) c = (2, 2, 1, 1, 0) c′ = (4, 2, 0, . . .)

Σr̃ = (4, 5, 5) Σr̄ = (4, 6, 9) Σc = (2, 4, 5, 6, 6) Σc′ = (4, 6, 6, . . .).

We observe that (r̃, r̄, c, c) is realizable via Theorem 5.11.

Correctness The correctness of Alg. 5.1 follows from Lemmas 5.12 and 5.13. For
the following theorems, let r̃ = (r̃1, r̃2, . . . , r̃m) and c = (c1, c2, . . . , cn) be non-
increasing integer vectors and let r̄ = (r̄1, r̄2, . . . , r̄m) and c̄ = (c̄1, c̄2, . . . , c̄n) be
integer vectors such that

(a) r̃ ≤ r̄ and c ≤ c̄ hold,

(b) (r̃, r̄, c, c̄) is realizable, and

(c) (r̃, r̄, c, c) is not realizable.

Lemma 5.12. Let i be the right-most position such that ci < c̄i, and let j be the
left-most position with cj = ci. Let a = (a1, a2, . . . , an) and ā = (ā1, ā2, . . . , ān) be
integer vectors defined by

ak =

{
ck + 1, if k = j,

ck, otherwise,
and āk =

c̄i, if k = j,

c̄j , if k = i,

c̄k, otherwise.

Then, a is non-increasing, a ≤ ā holds, and (r̃, r̄,a, ā) is realizable.

Proof. As (r̃, r̄, c, c̄) is realizable by assumption and (r̃, r̄, c, c) is not, c cannot be
equal to c̄. Thus, there must be a position i such that ci < c̄i. As c is non-increasing
and j is chosen left-most with cj = ci, either j = 1 or cj−1 > cj must hold. In both
cases, the integer vector a is non-increasing.

Next, we show that a ≤ ā. As ci < c̄i is true by assumption, we may directly
conclude that aj = cj + 1 = ci + 1 ≤ c̄i = āj . To see that ai ≤ āi holds, consider
two cases.

1. If i = j, the inequality āi = c̄i ≥ ci + 1 = ai holds as ci < c̄i.

2. Otherwise, if i 6= j, we conclude that āi = c̄j ≥ cj = ci = ai.

107

Hence, ai ≤ āi holds in both cases. Since ak = ck and āk = c̄k for all k 6= i, j,
we conclude a ≤ ā. It remains to show that (r̃, r̄,a, ā) is realizable. By Theo-
rem 5.11, (r̃, r̄,a, ā) is realizable if and only if both r̃ E ā′ and a E r̄′ hold.

1. First, we show that r̃ E ā′ holds. As ā is a permutation of c̄, the sets

{` ∈ {1, 2, . . . , n} : āi ≥ k} and {` ∈ {1, 2, . . . , n} : c̄i ≥ k}

are identical for all k. Thus, ā′ equals c̄′. As r̃ E c̄′ holds due to the realizability
of (r̃, r̄, c, c̄), the dominance relation r̃ E ā′ holds, too.

2. To show that a E r̄′ is true, assume the contrary. Thus, there is a right-most
position k with Σk

a > Σk
r̄′ . Since Σk

c ≤ Σk
r̄′ must hold as (r̃, r̄, c, c̄) is realizable

and a differs from c only at position j, we conclude Σk
c = Σk

r̄′ and j ≤ k.

Next, we show i > k. For this purpose, assume the contrary and let i ≤ k.
Since i is chosen right-most, it follows that c` = c̄` for each ` in range i < ` ≤ n.
Thus, increasing an arbitrary c` in range i < ` ≤ n by a positive amount would
violate c ≤ c̄ whereas increasing an arbitrary c` in range 1 ≤ ` ≤ i violates the
realizability of (r̃, r̄, c, c̄). Hence, (r̃, r̄, c, c̄) can only be realizable if (r̃, r̄, c, c)
is, which contradicts our assumption. Thus, i > k.

Since j was chosen left-most with cj = ci, it follows from j ≤ k and k < i
that cj = . . . = ck = ck+1 = . . . = ci. Since k is right-most and (r̃, r̄, c, c̄) is
realizable, we conclude that Σk+1

c < Σk+1
r̄′ holds and thus, r̄′k+1 > ck+1.

As r̄′ is non-increasing by definition, we further conclude

r̄′k ≥ r̄′k+1 > ck+1 = ck.

Consequently, Σk
c = Σk

r̄′ holds if and only if Σk−1
c > Σk−1

r̄′ holds. If k > 1,
this contradicts the realizability of (r̃, r̄, c, c̄). If k = 1, it is plainly wrong
as Σ0

c = Σ0
r̄′ = 0. As a consequence, a E r̄′ must hold and thus, (r̃, r̄,a, ā) is

realizable.

Lemma 5.13. Let c(k) and c̄(k) be the state of the integer vectors c and c̄ after
exactly k iterations of the outer loop in Alg. 5.1. Let δ1 := max{Σj

r̃ − Σj
c̃′ : 1 ≤ j ≤

m}. Then, (r̃, r̄, c(k), c(k)) is realizable for k ≥ δ1 and is not realizable if k < δ1.

Proof. By Lemma 5.12, c(k) is non-increasing and c(k) ≤ c̄(k) holds. Hence, by
Theorem 5.11, the four-tuple (r̃, r̄, c(k), c(k)) is realizable if and only if r̃ E (c(k))′

and c(k) ≤ r̄′ hold. Whereas the latter domination relation is ensured by Lemma 5.12,
the condition r̃ E (c(k))′ will not hold if k < δ1.

To see why this is true, consider the incrementation of an arbitrary component c
(k)
j

to c
(k+1)
j := c

(k)
j + 1 and consider how this affects the conjugate sequence

(
c(k+1)

)′
.

Whereas (c(k+1))′` = (c(k))′` for each ` 6= c
(k+1)
j , the component (c(k+1))′` will be of

108

value (c(k+1))′` = (c(k))′`+1 for ` = c
(k+1)
j . As a consequence, the partial sums Σ

c(k+1)

have the value

Σi
(c(k+1))′ =

Σi
(c(k))′

+ 1, if c
(k)
j < i ≤ m,

Σi
(c(k))′

, otherwise.

Now let p be an arbitrary position such that Σp
r̃ > Σp

c̃′ holds at the beginning of the
first phase. Since Σp

r̃ stays constant, the inequality Σp
r̃ ≤ Σp

(c(k))′
will be established as

soon as a number of k ≥ Σp
r̃−Σp

c′ components of value cj < p have been incremented.
As Alg. 5.1 chooses cj as small as possible, the domination relation r̃ E (c(k))′ will

hold after exactly δ1 = max{Σj
r̃ − Σj

c̃′ : 1 ≤ j ≤ m} iterations.

Running Time Determining the quantity δ1 requires a running time of O(m).
The outer loop of Alg. 5.1 runs exactly δ1 steps. In each step, the algorithm has
to determine the position j := min{` : c` = ci} of the left-most occurrence of a
component equal to ci. This can be achieved in constant time if we use a pre-
computed lookup-table which is updated after each incrementation. Fortunately,
each increment operations only requires a table-update at the positions ci and ci+1,
which can be executed in constant time. Thus, disregarding the inner loop, each
step of the outer loop is executed in constant time. In contrast, the inner loop
may need linear time. However, the variable i can be decreased at most n times
during the whole process. Thus, the running time of the outer loop is O(n + δ1).
In summary, since δ1 ≤ Σm

r̃ , the running time of the first phase can be described
by O(m+ n+ Σm

r̃).

5.4.2 Phase Two

After the first phase has stopped, r̃ and c are non-increasing integer vectors, and the
four tuple (r̃, r̄, c, c) is realizable by Lemma 5.12 and 5.13. Hence, there is a bipartite
graph G = (U, V,E) with δG(vj) = cj for j in range 1 ≤ j ≤ n and r̃i ≤ δG(ui) ≤ r̄i
for i in range 1 ≤ i ≤ m. If we switch the roles of vertex sets U and V , we gain an
instance of the realization problem in which the four-tuple (c, c, r̃, r̄) is realizable, c
and r̃ are non-increasing, and r̃ ≤ r̄ holds. Thus, we can re-apply the first phase
to the modified instance to construct a suitable integer vector r such that (c, c, r, r)
is realizable. After switching back the roles of U and V , we gain a bi-graphical
pair (r, c) of integer vectors. As the single difference to the first phase, the number
of steps of the outer for loop can be calculated more efficiently. Afterwards, a
realization is constructed by Ryser’s algorithm. Alg. 5.2 shows the second phase of
the realization algorithm.

Example We start where the first phase stopped.

r̃ = (4, 1, 0) r̄ = (4, 2, 3) c = (2, 2, 1, 1, 0) c′ = (4, 2, 0)

Σr̃ = (4, 5, 5) Σr̄ = (4, 6, 9) Σc = (2, 4, 5, 6, 6) Σc′ = (4, 6, 6).

109

Algorithm 5.2: Phase Two

Input: realizable four-tuple (r̃, r̄, c, c)
Output: bi-graphical pair (r, c)

1 r← r̃ // initialize r with lower bounds r̃
2 δ2 ← Σn

c − Σm
r̃ // calculate number of steps

3 i← m // right-most position such that r̃i < r̄i
4 for k = 1, 2, . . . , δ2 do
5 while ri = r̄i do // proceed to next position with ri < r̄i
6 i← i− 1
7 end
8 j ← min{` : r` = ri} // identify left-most rj with rj = ri
9 swap r̄i and r̄j

10 rj ← rj + 1

11 end
12 return (r, c)

u1 u2 u3

v1 v2 v3 v4 v5

Figure 5.15: Realization of the sequence pair r = (4, 1, 1) and c = (2, 2, 1, 1, 0).

The number of iterations is determined by δ2 ← 6− 5 = 1.

1. The inner loop breaks with i = 3. The left-most component equal to r3 = 0
is at position j = 3. Thus, the algorithm switches r̄3 with itself and incre-
ments r3. We gain r = (4, 1, 1) and r̄ = (4, 2, 3).

The situation at the end of the second phase:

r = (4, 1, 1) c = (2, 2, 1, 1, 0) c′ = (4, 2, 0)

Σr = (4, 5, 6) Σc = (2, 4, 5, 6, 6) Σc′ = (4, 6, 6)

We verify by Theorem 4.1 that (r, c) is bi-graphical. Fig. 5.15 shows a realization.

Correctness The correctness of the second phase can be shown very similarly to
phase one and follows directly from the following theorem.

Lemma 5.14. Let r(k) and r̄(k) be the state of the integer vectors r and r̄ after
exactly k iterations of the outer loop in Alg. 5.2. Then, (r(k), r(k), c, c) is realizable
if and only if k = δ2 = Σn

c − Σm
r̃ .

110

Proof. By Theorem 5.11, the four-tuple (r(k), r(k), c, c) is realizable if and only
if r(k) ≤ c′ and c E (r(k))′ hold. In particular, Σm

r(k)
= Σn

c must hold. Since Σm
r̃(k)
6=

Σn
c for k 6= Σn

c − Σm
r̃ , the four-tuple (r̃(k), r̃(k), c, c) cannot be realizable if k 6= δ2.

On the other hand, as (r(k), r̄(k), c, c) is realizable and thus r(k) E c′ holds after each
iteration by Lemma 5.12, the four-tuple (r(k), r(k), c, c) will be realizable as soon
as Σm

r(k)
= Σn

c holds, which is true after exactly δ2 iterations.

Running Time By similar arguments as before, the running time of the sec-
ond phase can be described by O(m + n + Σn

c). As Ryser’s algorithm produces
a realization G = (U, V,E) of the bi-graphical pair (r, c) in O(|U | + |V | + |E|)
time and |E| = Σn

c ≥ Σm
r̃ , the total running time of the realization algorithm is

O(|U |+ |V |+ |E|).

5.4.3 Edge-Minimality

Lemma 5.15. The bipartite graph produced by our algorithm is edge-minimal.

Proof. Let (r, c) be a bi-graphical pair of integer vectors associated to an arbitrary
realization G = (U, V,E) of the four-tuple (r̃, r̄, c̃, c̄). As c̃ ≤ c must hold, the
number of edges |E| is bounded from below by |E| ≥ Σn

c̃ . In addition, if (r, c) is
bi-graphical, the four-tuple (r̃, r̄, c, c) must be realizable. Hence, the inequalities

Σj
r̃ ≤ Σj

c′ = Σj
c̃′ + xj

must hold for each j in range 1 ≤ j ≤ m. Thus, xj = Σj
r̃ − Σj

c̃′ is the minimal
number of edges that G needs to possess in addition to the Σn

c̃ edges, so that the

inequality Σj
r̃ ≤ Σj

c′ can hold. Hence, the total number of edges is bounded from
below by

|E| ≥ Σn
c̃ + max{xj : 1 ≤ j ≤ n} = Σn

c̃ + δ1.

Since our algorithm produces a bipartite graph G = (U, V,E) with exactly |E| =
Σn

c̃ + δ1 edges, G is edge-minimal.

Remark Our algorithm can easily be used to construct edge-maximal realizations.
For this purpose, consider an arbitrary edge-minimal realization G = (U, V,E) of the
four-tuple (r̃, r̄, c̃, c̄). The associated complement graph G∗ = (U, V,E∗) is defined
by E∗ := (U × V) \ E. By construction, the graph G is edge-minimal if and only
if G∗ is edge-maximal. In addition, it follows from definition that the degrees of G∗

are bounded from below and above by the complementary four-tuple (r̃∗, r̄∗, c̃∗, c̄∗)
with

r̃∗ = (n− r̄1, n− r̄2, . . . , n− r̄m)

r̄∗ = (n− r̃1, n− r̃2, . . . , n− r̃m)

c̃∗ = (m− c̄1,m− c̄2, . . . ,m− c̄n)

c̄∗ = (m− c̃1,m− c̃2, . . . ,m− c̃n).

111

Thus, we can find an edge-maximal realization by first determining an edge-minimal
realization of the complementary four-tuple (r̃∗, r̄∗, c̃∗, c̄∗) and creating the associ-
ated complement graph.

Summary In this section, we gave a description of an algorithm that constructs an
edge-minimal bipartite graph G = (U, V,E) whose degrees lie in prescribed intervals.
Subsequently, we showed that this algorithm has a running time of O(|U |+|V |+|E|).
Since we cannot hope to construct a bipartite graph in sub-linear time, our algorithm
is asymptotically optimal.

5.5 Summary

In this chapter, we introduced two Markov chains designed for the uniform sampling
of bipartite graphs whose degrees lie in prescribed intervals. By a series of theorems,
we proved the ergodicity of both Markov chains and showed that their stationary
distribution is uniform.

Afterwards, we experimentally assessed the efficiency of both Markov chains and
found that the informed chain outperforms the simple chain when the prescribed
degrees are nearly scale-free, whereas the simple chain is superior for near-regular
vertex degrees.

Subsequently, we demonstrated how our sampling algorithms can be used to study
the properties of partially observed networks and found that the existence of a few
unobserved edges may crucially influence the structure of an ecological network.

We closed this chapter by presenting an algorithm that constructs a bipartite graph
G = (U, V,E) whose degrees lie in prescribed intervals. This can be seen as a sub-
problem of the associated sampling problem if no initial state is known in advance.
After proving the correctness of our algorithm, we showed that its running time is
bounded by O(|U |+ |V |+ |E|) and is thus optimal.

112

Chapter 6

Perfect and Near-Perfect
Matchings in Bipartite Graphs

In this chapter, we briefly focus on another classical sampling application. To demon-
strate marathon’s wide range of application, we discuss the uniform sampling of
perfect matchings of a bipartite graph G = (U, V,E).

Definition 6.1 (perfect matching). Let G = (U, V,E) be an arbitrary bipartite
graph. A subset M ⊆ E of edges is called matching if and only if no pair of its
elements share a common vertex. The matching is called perfect if 2|M | = |U ∪ V |.
We call a vertex matched if it is part of some matching edge. Otherwise, it is called
unmatched.

As a bipartite graph G = (U, V,E) cannot possess a perfect matching if U and V
are of different size, we focus on bipartite graphs with |U | = |V | and define n := |U |
to be the number of vertices in each vertex set. In addition, we denote by m := |E|
the number of edges in G.

The construction of an arbitrary perfect matching is a fundamental graph algorithm
that has been studied for decades. Hopcroft and Karp [87] showed that a perfect
matching of a bipartite graph can be constructed in O(m

√
n) time. If G is dense,

a randomized algorithm based on fast matrix multiplication can be used to find a
perfect matching in O(nω) time, where ω is the exponent of the best known matrix
multiplication algorithm [88]. Recently, Borradaile et al. presented an algorithm to
find a perfect matching in O(n log3 n) time if G is planar [89].

In this chapter, we focus on the uniform sampling of a perfect matching from the
setM(G) of all perfect matchings of a bipartite graphG. Originating from statistical
physics, this sampling problem has been extensively studied due to its close connec-
tion to the associated counting problem. The number |M(G)| of perfect matchings
of a bipartite graph G is equivalent to the permanent of G’s bi-adjacency matrix. As
shown by Valiant [90], the computation of the permanent is a #P-complete problem.
Thus, an efficient algorithm for the counting of a bipartite graph’s perfect match-
ings is unlikely to exist. As there is a close relationship between exact counting and

113

sampling [9], an efficient algorithm for the exact sampling of perfect matchings in
bipartite graphs is therefore out of reach.

In 2004, Jerrum et al. [19] presented a fully polynomial-time randomized approxima-
tion scheme (FPRAS) for the number of perfect matchings of a bipartite graph. This
algorithm is based on the rapidly mixing JSV Markov chain that will be specified
soon. Although the approximation algorithm is of high theoretical relevance, it is
fairly complicated and may still be too inefficient to be used in practical applications.

In the recent past, research interest shifted to the uniform sampling of perfect match-
ings in general, non-bipartite graphs. Interestingly, it is unclear whether an FPRAS
for the number of perfect matchings may exist in this scenario. Recent work showed
that the JSV chain is rapidly mixing for several classes of non-bipartite graphs, and
not to be rapidly mixing for others [91]. Similar results were obtained for related
Markov chains [92]. Thus, the classical sampling problem is still of high interest.

Parts of this chapter are based on joint work with Annabell Berger.

A. Berger and S. Rechner. Broder’s Chain Is Not Rapidly Mixing. arXiv
preprint (2014). arXiv: 1404.4249v1 [cs.DM] [25]

S. Rechner and A. Berger. Marathon: An open source software library for the
analysis of Markov-Chain Monte Carlo algorithms. PLOS ONE 11 (2016).
doi: 10.1371/journal.pone.0147935 [20]

6.1 Markov Chains

As an exact sampling algorithm of polynomial running time is unlikely to exist,
several MCMC sampling algorithms have been proposed, from which we describe
two important ones. Both MCMC algorithms use the set N (G) of near-perfect
matchings in G as auxiliary states.

Definition 6.2 (near-perfect matching). Let G = (U, V,E) be a bipartite graph such
that |U | = |V |. A matching M ⊆ E is called near-perfect if and only if |M | = |U |−1.

Thus, the state space Ω(G) of the following Markov chains is the set of perfect and
near-perfect matchings of a bipartite graph G, i.e.

Ω(G) :=M(G) ∪N (G).

Using rejection sampling, both algorithms can be used for the uniform sampling
of perfect matchings. For this purpose, a Markov chain is simulated to produce a
random sample x ∈ Ω(G). If x is a near-perfect matching, the sampling algorithm
is restarted until a perfect matching is found. The main challenge of this approach
is to guarantee that near-perfect matchings do not occur too often.

114

http://arxiv.org/abs/1404.4249v1
http://dx.doi.org/10.1371/journal.pone.0147935

6.1.1 Broder’s Chain

In 1986, Broder [24] introduced the following Markov chain and showed its ergodicity.

Definition 6.3 (Broder’s chain). Let M ∈ Ω(G).

1. Choose an edge e = {u, v} uniformly at random from E.

2. (a) If M is perfect and e ∈M , set M ′ := M \ {e}.
(b) Otherwise, if u and v are unmatched, set M ′ := M ∪ {e}.
(c) Otherwise, if u is unmatched and v is matched, then determine the match-

ing edge e′ = {w, v} ∈M and set M ′ := (M \ {e′}) ∪ {e}.
(d) Otherwise, if u is matched and v is unmatched, then determine the match-

ing edge e′ = {u, z} ∈M and set M ′ := (M \ {e′}) ∪ {e}.
(e) Otherwise, set M ′ := M .

3. If the maximal number of steps has been reached, return M ′.

4. Set M ←M ′ and go to Step 1.

By Corollary 2.4, the stationary distribution of Broder’s chain is uniform as the
transition probability p(x, y) = m−1 = p(y, x) of transforming a state x into y 6= x
via a single operation is symmetric. Jerrum and Sinclair [18] showed that Broder’s
chain is rapidly mixing when the ratio of near-perfect matchings N (G) and perfect
matchings M(G) in G can be bounded from above by a polynomial function of the
number m of edges. Being precise, the total mixing time can be bounded from above
by

τmax(ε) ≤ 162m2

(|N (G)|
|M(G)|

)4

ln(|Ω| · ε−1). (6.1)

As a special case, Jerrum and Sinclair showed that the ratio |N (G)|/|M(G)| is
bounded polynomially if the minimal vertex degree of a bipartite graph is at least n/2.
Then, the total mixing time of Broder’s chain is bounded from above by [93]

O
(
n7 ln(|Ω(G)| · ε−1)

)
.

Independently from the question of whether or not Broder’s chain is rapidly mixing,
an additional problem arises when the ratio |N (G)|/|M(G)| is an exponential func-
tion on the number n of vertices. In such cases, the associated sampling algorithm is
expected to need an exponential number of trials to find a single perfect matching.

6.1.2 JSV chain

To address this problem, Jerrum, Sinclair and Vigoda [19] presented an MCMC
algorithm that has been proven to find a perfect matching after an expected polyno-
mial number of trials. The sampling algorithm is based on a carefully chosen weight
function w : Ω(G) → R+ that will be specified soon. The transition rules of this
Markov chain can be stated as follows.

115

Definition 6.4 (JSV chain). Let M ∈ Ω(G).

1. If M is perfect, choose a matching edge e = {u, v} ∈ M uniformly at random
and set M ′ := M \ {e}.

2. If M is near-perfect, determine the unmatched vertices u ∈ U and v ∈ V and
choose a vertex z uniformly at random from U ∪ V .

2a) If z is unmatched and {u, v} ∈ E, then set M ′ := M ∪ {{u, v}}.
2b) Otherwise, if z is matched and {u, z} ∈ E, then determine the matching

edge {x, z} ∈M and set M ′ := (M \ {{x, z}}) ∪ {{u, z}} .
2c) Otherwise, if z is matched and {z, v} ∈ E, then determine the matching

edge {z, y} ∈M and set M ′ := (M \ {{z, y}}) ∪ {{z, v}} .
2d) Otherwise, set M ′ := M .

3. Select a real number u ∈ [0, 1) uniformly at random.

4. If u < w(M ′)/w(M), set M ←M ′.

5. If the maximal number of steps has been reached, return M .

6. Go to Step 1.

By construction, the proposal probability κ(x, y) of moving between a perfect match-
ing and an adjacent near-perfect matching is

κ(x, y) = n−1 = κ(y, x).

In contrast, the proposal probability κ(x, y) of moving between adjacent near-perfect
matchings is

κ(x, y) = (2n)−1 = κ(y, x).

As the proposal probability is symmetric, Theorem 2.3 shows that the stationary
distribution of the JSV chain is proportional to the weight function w. Jerrum et
al. suggested to define w by

w(x) =

{
1, x ∈M(G)

|M(G)|/|Nu,v(G)|, x ∈ Nu,v(G),

where Nu,v(G) ⊆ N (G) is the subset of near-perfect matchings where u ∈ U and v ∈
V are unmatched. Consequently, the accumulated weight of all perfect matchings is

w(M(G)) :=
∑

x∈M(G)

w(x) = |M(G)|.

Furthermore, for all (u, v) ∈ U × V ,

w(Nu,v(G)) :=
∑

x∈Nu,v(G)

w(x) =

{
0, if Nu,v(G) = ∅,
|Nu,v(G)|·|M(G)|
|Nu,v(G)| = |M(G)|, else.

116

...u v

Figure 6.1: Hexagon graph class.

Thus, the state space Ω(G) is partitioned into at most n2 + 1 subsets of identical
positive weight. As the JSV chain produces samples from each of these subsets
equiprobably, the sampling algorithm will produce a perfect matching with a prob-
ability of at least (n2 + 1)−1. Hence, the sampling algorithm is expected to produce
a perfect matching after a polynomial number of trials.

Bezáková et al. [94] showed that, knowing the values of |M(G)| and |Nu,v(G)|, the
total mixing time τmax(ε) of the JSV chain can be bounded from above by

O(n4 ln(πmin · ε)−1), (6.2)

where πmin := minx∈Ω(G){π(x)}. Thus, the JSV chain is a rapidly mixing Markov
chain for the set of all bipartite graphs. Unfortunately, |M(G)| and |Nu,v(G)| are
usually not known in practice. For that reason, Jerrum et al. gave a description
of a procedure that approximates these quantities in polynomial time [19]. In the
following experiments though, we calculated the exact values by a recursive counting
approach based on dynamic programming.

6.2 Experiments on Mixing Time

In this chapter, we experimentally analyse the total mixing time of Broder’s chain
and the JSV chain. In contrast to the Markov chains discussed in the previous
chapters, Broder’s chain is known not to be rapidly mixing for several classes of
bipartite graphs. In particular, Berger and Rechner [25] showed that the total mixing
time of Broder’s chain cannot be bounded from above by a polynomial function on n
and ε−1 for several graph classes, from which we will briefly address two.

Hexagon Graphs Jerrum et al. [19] presented the class of hexagon graphs. Such
graphs are composite of so-called hexagons, i.e. cycles of length six. The k-th
hexagon graph Hk is a bipartite graph consisting of k hexagons c1, c2, . . . , ck. Each
pair of consecutive hexagons is connected via a single edge (see Fig. 6.1). In addition,
two exposed vertices u and v are connected to the left- and rightmost hexagon.
By construction, each hexagon graph possesses exactly one perfect matching. In
contrast, the number of near-perfect matchings in Hk is bounded from below by

|N (Hk)| > |Nu,v(Hk)| = 2k.

117

1 1 1
1 1 0
1 0 0

1 1 1 1 1
1 1 1 1 0
1 1 1 0 0
1 1 0 0 0
1 0 0 0 0

Figure 6.2: Bi-adjacency matrices of T1 and T2.

As the total number of vertices in Hk is 2n = 6k + 2, the number |N (Hk)| of
near-perfect matchings exceeds

|Nu,v(Hk)| = 2(n−1)/3

= 2n/3 · 2−1/3 = (21/3)n · 2−1/3

≈ 0.79 · 1.26n.

Hence, the ratio |N (G)|/|M(G)| is an exponential function on n. As shown by
Berger and Rechner [25], Broder’s chain is not rapidly mixing for the hexagon graph
class.

Odd Triangle Graphs Introduced by Berger and Rechner [25], the k-th odd
triangle graph Tk = (U, V,E) is a bipartite graph whose vertex sets contain n = 2k+1
vertices, and whose edge set is defined by

E := {{ui, vj} : i+ j ≤ n+ 1} .

By construction, the bi-adjacency matrix of an odd triangle graph is a square trian-
gular matrix, which gave the graph class its name. Fig 6.2 shows the bi-adjacency
matrices of some small odd triangle graphs.

It is straight-forward to see that each odd triangle graph possesses exactly one
perfect matching. The following lemma shows that the number |N (Tk)| of near-
perfect matchings in Tk is an exponential function on the number n of nodes.

Lemma 6.1. Let Tk = (U, V,E) be the k-th odd triangle graph and let n = 2k + 1
the number of nodes in each vertex set. Then, |N (Tk)| ≥ 2n−2.

Proof. Consider the set Nun,vn(Tk) of near-perfect matchings with un ∈ U and
vn ∈ V being unmatched. The number |Nun,vn(Tk)| is equal to the number |M(T ′k)|
of perfect matchings of a bipartite graph T ′k = (U ′, V ′, E′) with

U ′ := U \ {un},
V ′ := V \ {vn},
E′ := {{u, v} ∈ E : u 6= un ∧ v 6= vn}.

118

The bi-adjacency matrix of T ′k is the (n−1)×(n−1) sub-matrix created by omitting
the last row and the last column from that of Tk. For example, the bi-adjacency
matrix of T ′2 is

1 1 1 1
1 1 1 1
1 1 1 0
1 1 0 0 .

We can construct a perfect matching in T ′k by iteratively selecting a positive matrix
entry in row i = n − 1, n − 2, . . . , 1. For i = n − 1, there are two options to
select a positive matrix entry. After fixing the associated edge as a matching edge,
there are two ways left to choose a positive entry in row n − 2. Iterating this
argument, there are 2n−2 ways to construct a perfect matching in T ′k. Consequently,
we conclude |N (Tk)| ≥ |Nun,vn(Tk)| = 2n−2.

A more refined argument shows that the total number |N (Tk)| of near-perfect match-
ings in Tk equals 2n − 1. Following from Lemma 6.1, the ratio |N (Tk)|/|M(Tk)| is
an exponential function on n. Berger and Rechner [25] showed that Broder’s chain
is not rapidly mixing for the class of odd triangle graphs.

6.2.1 Total Mixing Time

We started our experiments by assessing the total mixing time of both Markov chains
for the classes of hexagon and odd triangle graphs. For this purpose, we constructed
the associated state graphs of several members of each class. By fixing ε to a
constant of ε = 0.01 and calculating the associated total mixing time τmax(ε), we
experimentally determined how the total mixing time depends on the number n of
vertices. From our observations, we derived a function f : N→ N that describes how
the total mixing time depends on n. For this purpose, we evaluated three models.

1. First, we assumed the total mixing time to be an exponential function on n,
i.e.

f(n) = ec·n
k

⇔ ln f(n) = c · nk
⇔ ln ln f(n) = ln c+ k · lnn.

2. Next, we assumed that the total mixing time is a polynomial on n, i.e.

f(n) = c · nk
⇔ ln f(n) = ln c+ k · lnn.

3. Finally, the total mixing time may be a poly-logarithmic function on n, i.e.

f(n) = c · (lnn)k

⇔ ln f(n) = ln c+ k · ln lnn.

119

Similar as in Section 4.3, we used a two-step procedure to determine which model
is suited best to describe our observations.

1. First, we transformed the data according to each model by taking the natural
logarithms of n and τmax(ε). If the transformed data points appear to relate
linearly, we conclude that the associated model fits well to our data.

2. In the second step, we used a conjugate-gradient method to estimate the
model parameters c and k that minimize the associated sum of squared er-
rors. For this purpose, we applied the general-purpose optimization function
optim available in the standard R software framework. In doing so, we could
quantitatively assess which model is suited best to describe the relation be-
tween n and the associated total mixing time.

Experiment 6.1 We started our experiments by testing our methodology on the
total mixing time of Broder’s chain. As the hexagon and odd triangle graphs are
known to possess an exponential total mixing time, we expect that our experiment
should clearly suggest the exponential model. Figs. 6.3 and 6.4 show how the total
mixing time relates to the size n of the vertex sets of hexagon and odd triangle
graphs.

• For both graph classes, we observe that the exponential model describes our
observations best. The data suggests that the total mixing time of both graph
classes is an exponential function on n. This coincides with the theoretical
results presented by Berger and Rechner [25].

• We estimated the model parameters c ≈ 2.12, k ≈ 0.47 for the hexagon graphs,
and c ≈ 1.71, k ≈ 0.68 for the class of odd triangle graphs. For the constant
of ε = 0.01, we may thus describe the total mixing time of Broder’s chain as a
function f(n) ≈ 8.33n

0.47
in case of the hexagon graphs, and as f(n) ≈ 5.53n

0.68

for the odd triangle graph class.

Experiment 6.2 Next, we assessed the total mixing time of the JSV chain on the
classes of hexagon and odd triangle graphs. In contrast to Broder’s chain, the JSV
chain is known to be rapidly mixing for all bipartite graphs. Thus, we expect that
our experiments clearly reject the exponential model. Figs. 6.5 and 6.6 show the
results of this experiment.

• Calculating the sum of squared errors, we observe that the polynomial model
fits best to the total mixing time of the JSV chain for both classes of bipartite
graphs. This agrees with our expectations.

• We estimated the model parameters to be c ≈ 0.36, k ≈ 2.92 in case of the
hexagon graphs, and c ≈ 0.84, k ≈ 2.66 for the odd-triangle graphs. Our
experiments show that the upper bound provided by Bezáková et al. (see
Eq. 6.2) is not sharp for both graph classes considered in this experiment.

120

1.5 2.0 2.5 3.0 3.5

1.4

1.6

1.8

2.0

2.2

2.4

Hexagon Graphs

log n

lo
g

 l
o

g
 τ

m
a

x
(ε

)

1.5 2.0 2.5 3.0 3.5

4

6

8

10

Hexagon Graphs

log n

lo
g

τ

m
a

x
(ε

)

0.4 0.6 0.8 1.0 1.2

4

6

8

10

Hexagon Graphs

log log n
lo

g

τ
m

a
x
(ε

)

0

10

20

30

40

50

60

70

Hexagon Graphs

n

τ
m

a
x
(ε

)
in

 t
h

o
u

s
a

n
d

5 10 15 20 25 30 35

y ≈ e
2.119x0.47

SSE= 3.4 × 10
6

0

10

20

30

40

50

60

70

Hexagon Graphs

n

τ
m

a
x
(ε

)
in

 t
h

o
u

s
a

n
d

5 10 15 20 25 30 35

y ≈ 0.002x
4.9

SSE= 9.4 × 10
6

0

10

20

30

40

50

60

70

Hexagon Graphs

n

τ
m

a
x
(ε

)
in

 t
h

o
u

s
a

n
d

5 10 15 20 25 30 35

y ≈ 0.002(ln x)
13.87

SSE= 5.8 × 10
7

1
Figure 6.3: Relationship between Broder’s chain’s total mixing time τmax(ε) and
the size n of hexagon graphs. Left column: exponential model. Middle column:
polynomial model. Right column: poly-logarithmic model. The black lines indicate
the estimated fit. (ε = 0.01)

121

1.5 2.0 2.5

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Odd Triangle Graphs

log n

lo
g

 l
o

g
 τ

m
a

x
(ε

)

1.5 2.0 2.5

4

6

8

10

Odd Triangle Graphs

log n

lo
g

τ

m
a

x
(ε

)

0.2 0.4 0.6 0.8 1.0

4

6

8

10

Odd Triangle Graphs

log log n

lo
g

τ

m
a

x
(ε

)

0

10

20

30

40

Odd Triangle Graphs

n

τ
m

a
x
(ε

)
in

 t
h

o
u

s
a

n
d

4 6 8 10 12 14

y ≈ e
1.71x0.68

SSE= 1.3 × 10
4

0

10

20

30

40

Odd Triangle Graphs

n

τ
m

a
x
(ε

)
in

 t
h

o
u

s
a

n
d

4 6 8 10 12 14

y ≈ 0.001x
6.59

SSE= 6 × 10
5

0

10

20

30

40

Odd Triangle Graphs

n

τ
m

a
x
(ε

)
in

 t
h

o
u

s
a

n
d

4 6 8 10 12 14

y ≈ 0.003(ln x)
16.6

SSE= 1.8 × 10
6

1
Figure 6.4: Relationship between Broder’s chain’s total mixing time τmax(ε) and
the size n of odd triangle graphs. Left column: exponential model. Middle column:
polynomial model. Right column: poly-logarithmic model. The black lines indicate
the estimated fit. (ε = 0.01)

122

1.5 2.0 2.5 3.0 3.5

1.4

1.6

1.8

2.0

2.2

Hexagon Graphs

log n

lo
g

 l
o

g
 τ

m
a

x
(ε

)

1.5 2.0 2.5 3.0 3.5

4

5

6

7

8

9

Hexagon Graphs

log n

lo
g

τ

m
a

x
(ε

)

0.4 0.6 0.8 1.0 1.2

4

5

6

7

8

9

Hexagon Graphs

log log n
lo

g

τ
m

a
x
(ε

)

0

2

4

6

8

10

Hexagon Graphs

n

τ
m

a
x
(ε

)
in

 t
h

o
u

s
a

n
d

5 10 15 20 25 30 35

y ≈ e
2.757x0.34

SSE= 8.6 × 10
4

0

2

4

6

8

10

Hexagon Graphs

n

τ
m

a
x
(ε

)
in

 t
h

o
u

s
a

n
d

5 10 15 20 25 30 35

y ≈ 0.355x
2.92

SSE= 7.5 × 10
3

0

2

4

6

8

10

Hexagon Graphs

n

τ
m

a
x
(ε

)
in

 t
h

o
u

s
a

n
d

5 10 15 20 25 30 35

y ≈ 0.062(ln x)
9.55

SSE= 1.3 × 10
5

1
Figure 6.5: Relationship between the JSV chain’s total mixing time τmax(ε) and
the size n of hexagon graphs. Left column: exponential model. Middle column:
polynomial model. Right column: poly-logarithmic model. The black lines indicate
the estimated fit. (ε = 0.01)

123

1.5 2.0 2.5

1.2

1.4

1.6

1.8

Odd Triangle Graphs

log n

lo
g

 l
o

g
 τ

m
a

x
(ε

)

1.5 2.0 2.5

3

4

5

6

7

Odd Triangle Graphs

log n

lo
g

τ

m
a

x
(ε

)

0.2 0.4 0.6 0.8 1.0

3

4

5

6

7

Odd Triangle Graphs

log log n

lo
g

τ

m
a

x
(ε

)

0

200

400

600

800

1000

Odd Triangle Graphs

n

τ
m

a
x
(ε

)

4 6 8 10 12 14

y ≈ e
2.228x0.42

SSE= 1.3 × 10
3

0

200

400

600

800

1000

Odd Triangle Graphs

n

τ
m

a
x
(ε

)

4 6 8 10 12 14

y ≈ 0.843x
2.66

SSE= 4.8 × 10
1

0

200

400

600

800

1000

Odd Triangle Graphs

n

τ
m

a
x
(ε

)

4 6 8 10 12 14

y ≈ 1.745(ln x)
6.48

SSE= 2 × 10
3

1
Figure 6.6: Relationship between the JSV chain’s total mixing time τmax(ε) and the
size n of odd triangle graphs. Left column: exponential model. Middle column:
polynomial model. Right column: poly-logarithmic model. The black lines indicate
the estimated fit. (ε = 0.01)

124

Our experiments provide a proof of concept that we can apply our methodology to
experimentally assess the asymptotic behavior of the total mixing time. In particu-
lar, we demonstrated that our approach can correctly separate an exponential from
a polynomial growth.

6.2.2 Influence of Initial State

In the next set of experiments, we assessed the influence of the initial state on the
empirical mixing time τ̄s(ε) (introduced in Sec. 2.3). As the empirical mixing time
does not require the construction of a state graph, we can process bipartite graphs
for which the construction of state graphs is infeasible.

Auxiliary Function The empirical mixing time τ̄s(ε) requires an auxiliary func-
tion f : Ω → R. As we saw before that the Hamming distance metric worked well
in Chapter 4, we used a related metric here. Interpreting a perfect or near-perfect
matching as a bipartite graph on 2n nodes, the Hamming distance between the
associated bi-adjacency matrices is equivalent to the size

|M14M2| := (M1 \M2) ∪ (M2 \M1)

of the symmetric difference of both matchings. Denoting by s ∈ Ω(G) the initial
state of each Markov chain, we define f(x) = |x4s| as our auxiliary function.

Experiment 6.3 In a first experiment, we approximated the empirical mixing
time of Broder’s chain while using the unique perfect matching of each graph as
the initial state. To determine the empirical mixing time, we constructed the lim-
iting distribution η of the auxiliary function f from N = 106 random samples that
have been generated by an unbiased sampling method based on the exact counting
of perfect and near-perfect matchings. To approximate the t-step distribution func-

tions q
(t)
s , we constructed N = 106 random samples by simulating t steps of Broder’s

chain. Similar to the previous experiment, we evaluated whether the exponential,
polynomial, or the poly-logarithmic model describes our observations best. Figs. 6.7
and 6.8 show the results of this experiment.

• Considering the class of hexagon graphs, we observe that the exponential model
clearly fits worst to the data. Interestingly, our observations disagree with
the outcome of our previous experiment, where we found the associated total
mixing time to be an exponential function on n. We will further study this
deviation in the following experiment.

• In contrast, the empirical mixing time of the odd triangle graphs is described
best by the exponential model. We estimated the model parameter c ≈
1.39, k ≈ 0.72. This is close to our previous approximation of the associ-
ated total mixing time function. We conclude that Broder’s chain requires an
exponential number of steps when starting from the perfect matching of an
odd triangle graph.

125

1.5 2.5 3.5 4.5

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Hexagon Graphs

log n

lo
g

 l
o

g
 τ

s
(ε

)

1.5 2.5 3.5 4.5

4

6

8

10

Hexagon Graphs

log n

lo
g

τ

s
(ε

)

0.4 0.8 1.2

4

6

8

10

Hexagon Graphs

log log n

lo
g

τ

s
(ε

)

20 40 60 80

0

10

20

30

40

Hexagon Graphs

n

τ
s
(ε

)
in

 t
h

o
u

s
a

n
d y ≈ e

4.407x0.2

SSE= 1.5 × 10
7

20 40 60 80

0

10

20

30

40

Hexagon Graphs

n

τ
s
(ε

)
in

 t
h

o
u

s
a

n
d

y ≈ 6.727x
1.95

SSE= 4.5 × 10
6

20 40 60 80

0

10

20

30

40

Hexagon Graphs

n

τ
s
(ε

)
in

 t
h

o
u

s
a

n
d

y ≈ 0.252(ln x)
8.02

SSE= 1.4 × 10
6

1
Figure 6.7: Relationship between the number n and the empirical mixing time τ̄s(ε)
of Broder’s chain on hexagon graphs. Left column: exponential model. Middle
column: polynomial model. Right column: poly-logarithmic model. The black lines
indicate the estimated fit. (N = 106, ε = 0.01, s ∈M(G))

126

1.5 2.5 3.5

1.0

1.5

2.0

2.5

Odd Triangle Graphs

log n

lo
g

 l
o

g
 τ

s
(ε

)

1.5 2.5 3.5

5

10

15

Odd Triangle Graphs

log n

lo
g

τ

s
(ε

)

0.2 0.6 1.0

5

10

15

Odd Triangle Graphs

log log n

lo
g

τ

s
(ε

)

5 15 25 35

0

20

40

60

Odd Triangle Graphs

n

τ
s
(ε

)
in

 m
ill

io
n

y ≈ e
1.388x0.72

SSE= 4.3 × 10
11

5 15 25 35

0

20

40

60

Odd Triangle Graphs

n

τ
s
(ε

)
in

 m
ill

io
n

y ≈ 0.001x
7.12

SSE= 4.2 × 10
14

5 15 25 35

0

20

40

60

Odd Triangle Graphs

n

τ
s
(ε

)
in

 m
ill

io
n

y ≈ 0.001(ln x)
21.54

SSE= 6.2 × 10
14

1
Figure 6.8: Relationship between the number n and the empirical mixing time τ̄s(ε)
of Broder’s chain on odd triangle graphs. Left column: exponential model. Middle
column: polynomial model. Right column: poly-logarithmic model. The black lines
indicate the estimated fit. (N = 106, ε = 0.01, s ∈M(G))

127

1.5 2.5 3.5 4.5

1.5

2.0

2.5

Hexagon Graphs

log n

lo
g

 l
o

g
 τ

s
(ε

)

1.5 2.5 3.5 4.5

4

6

8

10

12

14

16

Hexagon Graphs

log n
lo

g

τ
s
(ε

)

0.4 0.8 1.2

4

6

8

10

12

14

16

Hexagon Graphs

log log n

lo
g

τ

s
(ε

)
20 40 60 80

0

5

10

15

20

25

30

35

Hexagon Graphs

n

τ
s
(ε

)
in

 m
ill

io
n

y ≈ e
1.443x0.56

SSE= 4.1 × 10
11

20 40 60 80

0

5

10

15

20

25

30

35

Hexagon Graphs

n

τ
s
(ε

)
in

 m
ill

io
n

y ≈ 0.001x
5.87

SSE= 1 × 10
14

20 40 60 80

0

5

10

15

20

25

30

35

Hexagon Graphs

n

τ
s
(ε

)
in

 m
ill

io
n

y ≈ 0.001(ln x)
16.33

SSE= 3.3 × 10
14

1
Figure 6.9: Relationship between the number n and the empirical mixing time τ̄s(ε)
of Broder’s chain on hexagon graphs. Left column: exponential model. Middle
column: polynomial model. Right column: poly-logarithmic model. The black lines
indicate the estimated fit. (N = 106, ε = 0.01, s ∈ Nu,v(G))

Experiment 6.4 Next, we evaluated the effect of the initial state s on the empir-
ical mixing time τ̄s(ε) of Broder’s chain. For this purpose, we focused on the class
of hexagon graphs. Instead of using a perfect matching as initial state, we used
one of the 2k near-perfect matchings in which the two exposed vertices u and v are
unmatched. Fig. 6.9 shows the results of this experiment.

• Now, we observe that the exponential model fits well to our observations.
Thus, our experiments suggests that Broder’s chain requires an exponential
number of steps when starting from a near-perfect matching s ∈ Nu,v.

Our experiments highlight the importance of the initial state s. In general graphs
however, it is hard to tell which state is suited best as an initial state. The question
on how to choose a good initial state is an interesting topic for further theoretical
studies.

128

6.2.3 Quality of Bounding Techniques

In Sec. 4.3, we calculated lower and upper bounds on the total mixing time of the
Markov chains for the uniform sampling of bipartite graphs with fixed vertex degrees.
In doing so, we found that the lower and upper spectral bound are very close to the
total mixing time, while the congestion bound exceeds the total mixing time by a
large factor. In this set of experiments, we assessed whether we could reproduce
these observations with Broder’s and the JSV chain.

For this purpose, we processed the first 11 hexagon and the first seven odd triangle
graphs. For each bipartite graph, we constructed the associated state graph of both
Markov chains, from which we calculated the following properties

• the total mixing time τmax(ε) with ε = 0.01,

• its lower and upper spectral bound via Ineq. 2.6 and 2.7, and

• the canonical path congestion bound via Ineq. 2.10.

For the latter one, we implemented Jerrum and Sinclair’s [18] path construction
scheme, which was used to derive the upper bound of Ineq. 6.1. By applying the
path construction scheme to specific state graphs, we assessed how precise the upper
congestion bound could be if full information about state graphs were given. We
quantified the quality of the lower or upper bounds by the quotient of each bound
and the associated total mixing time τmax(ε). Fig. 6.10 shows how the quality of the
bounds depend on the size n of the bipartite graphs.

• We observe very similar results as before in Chapter 4. In particular, we
confirm that the lower and upper spectral bound is very tight to the total
mixing time, while the quality of the congestion bound exceeds the total mixing
time by multiple orders of magnitude.

• Considering Broder’s chain, the data suggests that quality of the congestion
bound decreases almost exponentially. In contrast, the congestion bound de-
creases more slowly in case of the JSV chain.

Our observations qualitatively agree with those of Chapter 4. Thus, we conclude
that the canonical path method may not lead to sharp bounds on the total mixing
time, even if full information about state graphs was available.

6.2.4 Induced Subgraphs

As the size of the sample space Ω is typically an exponential function on the input
length, the construction of state graphs is infeasible in nearly all practical applica-
tions. Unfortunately, as we require a state graph for the calculation of the total
mixing time and its lower and upper spectral bounds, we can rarely apply these

129

Broder’s chain

Hexagon Graphs

n

q
u
a
lit

y
 o

f
b
o
u
n
d

5 10 15 20 25 30 35

10
−1

10
0

10
1

10
2

10
3

10
4

Broder’s chain

Odd Triangle Graphs

n

q
u
a
lit

y
 o

f
b
o
u
n
d

4 6 8 10 12 14

10
−1

10
0

10
1

10
2

10
3

10
4

JSV chain

Hexagon Graphs

n

q
u
a
lit

y
 o

f
b
o
u
n
d

5 10 15 20 25 30 35

10
−1

10
0

10
1

10
2

JSV chain

Odd Triangle Graphs

n

q
u
a
lit

y
 o

f
b
o
u
n
d

4 6 8 10 12 14

10
−1

10
0

10
1

10
2

1
Figure 6.10: Quotient of congestion bound (orange), upper spectral bound (red),
and lower spectral bound (violet) with total mixing time. (ε = 0.01.)

130

techniques in practical sampling applications. In such cases however, we can ap-
proximate the empirical mixing time as a lower bound on the mixing time τs(ε) of
the initial state s.

In this section, we present an alternative method to determine a lower bound on
the total mixing time of a Markov chain when the construction of a state graph is
infeasible. It is based on the following theorem.

Theorem 6.2 (interlacing theorem (Corollary 2.2 from Ref. [95])). Let A be a real
symmetric n×n matrix with eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn and let B be a principal
sub-matrix of A. Then, the eigenvalues µ1 ≥ µ2 ≥ . . . ≥ µk of B interlace those
of A, i.e.

∀i ∈ {1, 2, . . . , k} : λi ≥ µi ≥ λn−k+i.

Corollary 6.3. Let P be the transition matrix of an ergodic Markov chain and let P ′

be a principal sub-matrix of P . Then, the total mixing time τmax(ε) of the Markov
chain can be bounded from below by

τmax(ε) ≥ 1

2
· µ2

1− µ2
· ln(2ε)−1,

where µ2 is the second largest eigenvalue of P ′.

Proof. Let λ1 ≥ λ2 ≥ . . . ≥ λ|Ω| be the real eigenvalues of the transition matrix P .
By Theorem 2.5, the total mixing time is bounded from below by

τmax(ε) ≥ 1

2
· λmax

1− λmax
· ln(2ε)−1,

where λmax := max{λ2, |λ|Ω||}. Following from Theorem 6.2, we infer

λmax ≥ λ2 ≥ µ2

⇔ λmax − µ2λmax ≥ µ2 − µ2λmax

⇔ λmax · (1− µ2) ≥ µ2 · (1− λmax)

⇔ λmax

1− λmax
≥ µ2

1− µ2
.

Consequently,

τmax(ε) ≥ 1

2
· µ2

1− µ2
· ln(2ε)−1.

Corollary 6.3 shows that we can lower bound the total mixing time of a Markov
chain by the eigenvalues of any principal sub-matrix P ′ of the associated transition
matrix P . Interpreting P as the weighted adjacency matrix of a state graph Γ, a
principal sub-matrix P ′ corresponds to the weighted adjacency matrix of an induced
subgraph Γ′ ⊆ Γ. In summary, we can lower bound the total mixing time of a Markov
chain by the eigenvalues of an arbitrary induced subgraph of a potentially large state
graph.

131

0.0 0.4 0.8

0

5

10

15

20

25

30

35

Induced Subgraphs of H11

relative size of subgraph

lo
w

e
r

s
p

e
c
tr

a
l
b

o
u

n
d

(i
n

 t
h

o
u

s
a

n
d

)

bfs

dfs

0.0 0.4 0.8

0

5

10

15

Induced Subgraphs of T7

relative size of subgraph

lo
w

e
r

s
p

e
c
tr

a
l
b

o
u

n
d

(i
n

 t
h

o
u

s
a

n
d

)

bfs

dfs

1
Figure 6.11: Lower bound on the total mixing time of Broder’s chain derived from
Corollary 6.3. (ε = 0.01, s ∈M(G).)

Construction Strategies To construct an induced subgraph, we may simply stop
our construction algorithm (see Alg. 3.1) after a certain number of states has been
processed. In our default implementation, we iteratively explore the unknown state
graph via breadth first search (bfs), starting at the initial state of the Markov chain.
Alternatively, we could easily apply a modified construction algorithm based on
depth first search (dfs). While the bfs strategy will produce subgraphs with a small
diameter, the diameter of an induced subgraph produced by the dfs strategy will tend
to be large. In addition, a subgraph created by bfs will only contain states that are
close to the initial state, while the dfs strategy will produce a subgraph that contains
states with a large distance to the initial state. As it is unclear which strategy will
be lead to better lower bounds, we evaluated both exploration strategies.

Experiment 6.5 In a first experiment, we assessed how sharp the lower bounds
derived from an induced subgraph can be. For this purpose, we exemplarily con-
sidered Broder’s chain on the hexagon graph H11, and the odd triangle graph T7.
Both bipartite graphs possess exactly one perfect matching, and about 32.000 near-
perfect matchings. Starting with the single perfect matching as the initial state, we
ran breadth first search, respective depth first search to iteratively explore further
regions of the state graph. Every 500 steps, we interrupted the state graph con-
struction to calculate the lower bound via Corollary 6.3. Fig. 6.11 shows how the
lower bound on the total mixing time depends on the size of the induced subgraph.

• We observe that the lower bound gained by depth first search is superior to
that gained by breadth first search for both exemplary graphs.

• Considering the hexagon graph H11, we observe that the lower bound on the
total mixing time increases very slowly until almost the full state graph has

132

0.0 0.4 0.8

5

10

15

20

25

30

35

Induced Subgraphs of H11

relative size of subgraph

lo
w

e
r

s
p

e
c
tr

a
l
b

o
u

n
d

(i
n

 t
h

o
u

s
a

n
d

)
bfs

dfs

0.0 0.4 0.8

5

10

15

Induced Subgraphs of T7

relative size of subgraph

lo
w

e
r

s
p

e
c
tr

a
l
b

o
u

n
d

(i
n

 t
h

o
u

s
a

n
d

)

bfs

dfs

1
Figure 6.12: Lower bound on the total mixing time of Broder’s chain derived from
Corollary 6.3. (ε = 0.01, s ∈ N (G).)

been constructed. After about 90% of the state graphs full size has been
reached, the lower bound increases erratically.

• Considering the odd triangle graph T7, we observe that the erratic increase
of the lower bound is less steep. In addition, we find the depth first search
strategy to be significantly superior to breadth first search here.

From our experiment, we conclude that the first states added to the subgraph ap-
parently play an unimportant role for the total mixing time of the Markov chain. In
contrast, the states that are included last have a strong impact on the lower bound
and thus, might have a large mixing time. As we observed in a previous experiment
that the mixing time of Broder’s chain depends on the initial state s, we assume
that a similar effect may be the reason for the effects observed here. We will further
investigate the effect of the initial state s in the next experiment.

Experiment 6.6 To evaluate the influence of the initial state s on the quality of
the lower bound, we repeated the experiment while starting the state graph con-
struction with a near-perfect matching of maximal distance to the perfect matching.
In doing so, we early process the states we assume to have a large mixing time.
Fig. 6.12 shows the results of this experiment.

• Considering the hexagon graph H11, we observe that the lower bound derived
from breadth first search is now significantly larger than before, while the
bound gained by depth first search is very similar to the previous one. In
addition, we can now clearly observe that the lower bound increases in a step-
wise manner. After periods in which the lower bound stays almost constant,
it increases erratically after certain states have been included in the subgraph.

133

• We observe similar effects when considering the odd triangle graph T7. While
the lower bound gained by depth first search is nearly identical to that gained
in the previous experiment, breadth first search produces a lower bound which
is significantly larger than the one observed before.

• Unfortunately, we still observe that the lower bound increases erratically after
about 90% of the full state graph has been constructed. Thus, we still have to
construct almost the entire state graph until the lower bound is approximately
as large as the spectral bound of the full state graph.

Our experiments highlight the influence of the initial state s on the quality of the
lower bound gained from an induced subgraph. In particular, the quality of the
breadth first search strategy highly depends on the initial state, while depth first
search seems to be more robust to the choice of the initial state. A further project
for future studies would be to find an explanation for the stepwise growth of the
lower bound. First experiments showed no obvious connection to properties of the
induced subgraph.

Experiment 6.7 In a final experiment, we assessed how sharp a lower bound
gained by Corollary 6.3 may be in practical sampling scenarios. In practical ap-
plications, we neither know the size |Ω(G)| of a state graph, nor is it feasible to
fully construct the state graph. (Otherwise, the sampling problem would be trivial.)
However, we may very well construct an induced subgraph Γ′ = (Ω′,Ψ′) of limited
size, say of size |Ω′| := min{|Ω(G)|, 10000}. This would be a reasonable limit for
which the construction of an induced subgraph and the calculation of the lower
bound via Corollary 6.3 can be executed within a few seconds.

To assess the quality of the thereby gained bound, we determined a posteriori how
large the lower spectral bound of the full state would have been. The ratio between
both quantities shows by how much our method underestimates the (in practical
applications unknown) lower spectral bound, and can therefore be used to assess
the quality of the bound. Figs. 6.13 and 6.14 show how the quality decreases for the
classes of hexagon and odd-triangle graphs.

• We observe that the quality of the lower bound is trivially equal to one when
the size |Ω(G)| of a state graph is not larger than our upper limit of 10000. In
contrast, the quality of the lower bound decreases rapidly as soon as the size
of the full state graph exceeds 10000.

• Considering the breadth first search strategy, we observe that the quality de-
creases exponentially (note the logarithmic scale of the y-axis) when we let
the size n of a bipartite graph grow. This observation holds for both graph
classes.

• In contrast, the depth first search strategy is slightly superior to breadth first
search as the quality of the lower bound decreases more slowly. However, its
quality is still too poor to be applicable in practical applications.

134

10 20 30 40 50

Hexagon Graphs

Breadth First Search

n

q
u

a
lit

y
 o

f
lo

w
e

r
b

o
u

n
d

10
−3

10
−2

10
−1

1

10 20 30 40 50

Hexagon Graphs

Depth First Search

n

q
u

a
lit

y
 o

f
lo

w
e

r
b

o
u

n
d

10
−3

10
−2

10
−1

1

1
Figure 6.13: Quality of the lower bound on the total mixing time of Broder’s chain for
hexagon graphs. The lower bounds were calculated via Corollary 6.3 from induced
subgraphs of size min{|Ω(G)|, 10000}. (ε = 0.01.)

5 10 15 20

Odd Triangle Graphs

Breadth First Search

n

q
u

a
lit

y
 o

f
lo

w
e

r
b

o
u

n
d

10
−3

10
−2

10
−1

1

5 10 15 20

Odd Triangle Graphs

Depth First Search

n

q
u

a
lit

y
 o

f
lo

w
e

r
b

o
u

n
d

10
−3

10
−2

10
−1

1

1
Figure 6.14: Quality of the lower bound on the total mixing time of Broder’s chain
for odd triangle graphs. The lower bounds were calculated via Corollary 6.3 from
induced subgraphs of size min{|Ω(G)|, 10000}. (ε = 0.01.)

135

Our experiment showed that the lower bound gained by an induced subgraph of
constant size may largely underestimate the unknown lower spectral bound. As this
observations holds for both exploration strategies, we conclude that our method
is unlikely to produce suitable lower bounds in practical applications like the one
outlined in this experiment.

Summary In this section, we presented a method that is designed to derive a
lower bound on the total mixing time of a Markov chain when the construction
of the associated state graph is infeasible. By constructing an induced subgraph
of a potentially large state graph, we may lower bound the total mixing time by
calculating the eigenvalues of the sub-graph’s weighted adjacency matrix. In a set
of experiments, we assessed the quality of the lower bound on the total mixing
time of Broder’s chain. In doing so, we found that the quality of the lower bound
highly depends on the initial state of the Markov chain. However, determining
an appropriate initial state is a problem that seems hard to address in practical
applications. Finally, we showed that the lower bound calculated from an induced
subgraph of constant size underestimates the lower spectral bound of the full state
graph by a high factor. Thus, we conclude that our method is of very limited use in
practical scenarios.

6.3 Summary

In this chapter, we considered the uniform sampling of perfect and near-perfect
matchings in bipartite graphs. This is a classical sampling problem with interesting
connections to complexity theory. To demonstrate how marathon may be used to
support the analysis of MCMC algorithms, we experimentally investigated the total
mixing time of two well-known Markov chains. While the total mixing time of
Broder’s chain is known to be an exponential function on the size of a bipartite
graph for several graph classes, the JSV chain is proven to be rapidly mixing for
bipartite graphs in general.

By experimentally determining the relation between the size of a bipartite graph
and the total mixing time of the Markov chains for two classes of bipartite graph,
we confirmed the theoretical results elaborately shown by Rechner and Berger [25].
Our findings demonstrate how marathon can be applied to determine properties of
Markov chains that are usually hard to find in theory.

In an additional set of experiments, we showed that the initial state s has a large
influence on the mixing time of Broder’s chain and may even decide between a
polynomial and exponential mixing time. The question of what makes a good initial
state is an interesting topic for further studies.

In a final set of experiments, we evaluated a strategy to calculate a lower bound on
the total mixing time of a Markov chain when the construction of the associated
state graph is infeasible. By constructing an induced subgraph of a (potentially much

136

larger) state graph, we showed how to lower bound the total mixing time using the
eigenvalues of the induced sub-graph’s weighted adjacency matrix. Unfortunately,
we found that the lower bound gained by this method may largely underestimate the
total mixing time of the Markov chain. Thus, it may be of very limited usefulness
in practical applications.

137

Chapter 7

Conclusion and Future Work

In this thesis, we discussed Markov chain Monte Carlo algorithms for three sampling
problems. Such an algorithm can be seen as a random walk on the state graph of
an associated Markov chain. By starting at an arbitrary initial state, the algorithm
iteratively moves to an adjacent state. After a certain number of steps, the algorithm
returns the final state as the random sample. In our discussion, we laid a particular
focus on the running time of such methods. The number of steps required to sample
from a distribution that is “close” to the target distribution π is known as the total
mixing time of the associated Markov chain. A sharp bound the total mixing time
is of large interest in many applications.

7.1 Conclusion

As the total mixing time of non-trivial Markov chains is hard to assess analytically,
the number of steps of a random walk is typically chosen empirically. Thus, our main
motivation was the question whether we might provide a more reliable suggestion on
the number of steps in practical applications. We briefly summarize our key results.

• In Chapter 2, we laid the mathematical groundwork for our following discus-
sion. After summarizing well-known theorems on Markov chains and mixing
time, we introduced the concept of empirical mixing time, and showed that
it can be used to gain a lower bound on the total mixing time of a Markov
chain. As the empirical mixing time can efficiently be approximated by the
simulation of the associated Markov chain, it is applicable in many practical
sampling applications.

• In the following chapter, we presented the marathon software, a C++ library
designed to support the analysis of MCMC algorithms. This software package
has two main applications. First, it contains highly efficient sampling routines
that are discussed in Chapters 4 to 6. Second, the software supports the
construction and analysis of a Markov chain’s state graph. From such a state

138

graph, properties like the total mixing time, the expected loop probability, its
diameter, its second largest eigenvalue, and many more can be calculated that
would otherwise be hard to find in theory. As a key aspect of marathon is
extensibility, various MCMC algorithms of diverse sampling applications can
easily be integrated and analysed.

• In Chapter 4, we addressed the uniform sampling of bipartite graphs with
fixed degrees. This is a classical sampling problem of large practical relevance
in network analysis and other fields. In a set of experiments, we assessed the
efficiency of the classical switch chain, the edge switch chain, and the curveball
chain on a large set of instances.

By calculating the total mixing time of each Markov chain, we found that both
switch chain variants require a quadratic number of steps to produce a random
sample for several instance classes. In an additional set of experiments, we
assessed the quality of some well-known lower and upper bounds on the total
mixing time of a Markov chain. Thereby, we found that the famous canonical
path method is unlikely to produce sharp bounds and thus, existing upper
bounds derived from this method are most likely too pessimistic. To determine
the efficiency of the Markov chains on real-world instances, we measured the
running time of each sampling algorithm on a large set of ecological instances.
In doing so, we found that the edge switch chain is most efficient in the majority
of cases.

We closed this chapter by showing how the sampling process can be acceler-
ated by an efficient preprocessing of the vertex degrees. For this purpose, we
presented an algorithm that decomposes a bi-graphical vector pair into a set of
primitive components that can be processed independently of each other. Ex-
perimentally, we showed that the sampling process can thereby be significantly
accelerated.

• In Chapter 5, we discussed the uniform sampling of bipartite graphs whose
degrees lie in prescribed intervals. This is a variant of the previously assessed
sampling problem motivated by the work with incomplete data. We presented
two Markov chains whose stationary distribution is designed to be the uniform
distribution on the set of bipartite graphs from which we want to draw samples.
Via a series of theorems, we showed that both Markov chains are ergodic,
thereby proving the correctness of the associated sampling algorithms.

Afterwards, we experimentally assessed the efficiency of both Markov chains.
In doing so, we found the simple Markov chain superior if the degrees of a
bipartite graph are near-regular, while the informed chain is suited best for the
degrees of scale-free graphs. Subsequently, we demonstrated how our methods
can be used to approximate expected network measures of partially observed
networks.

We finished this chapter by discussing the problem of constructing a bipartite

139

graph whose degrees lie in prescribed intervals. This is a sub-problem of the
associated sampling problem if no initial state is known. After presenting
a realization algorithm, we gave a proof of its correctness and showed that
its running time is asymptotically optimal, thereby beating straight-forward
approaches.

• In Chapter 6, we discussed the uniform sampling of perfect matchings in bi-
partite graphs. As it seems to be hard to sample from the set of perfect
matchings alone, various MCMC sampling algorithms use near-perfect match-
ings as auxiliary states. Whereas Broder’s chain is known to be rapidly mixing
for some classes of bipartite graphs, its total mixing time grows exponentially
for others. In contrast, the JSV chain is a rapidly mixing Markov chain that
uses a well-chosen weight function to produce random samples according to a
non-uniform distribution. By experimentally assessing the total mixing time
of both Markov chains, we evaluated the influence of the initial state on the
efficiency of Broder’s chain. In doing so, we showed that the right choice of the
initial state may decide between an exponential or polynomial running time.

Finally, we showed how an induced subgraph of a much larger state graph
may be used to derive a lower bound on the total mixing time of an associated
Markov chain. Unfortunately, our experiments showed that this method is
unlikely to be of high value for practical applications as the quality of the
lower bound decreases fast.

Coming back to our main motivation, our findings confirmed the difficulty of provid-
ing a reliable suggestion for the length of a random walk in practical applications.
By the construction of a state graph and the computation of the associated total
mixing time, marathon can be used to calculate the exact number of steps required
to sample from a probability distribution that is arbitrary close to the target distri-
bution π. Unfortunately, the construction of state graphs is infeasible in nearly all
practical applications, which limits the applicability of this approach.

However, we can still approximate the empirical mixing time when the construction
of a state graph is infeasible. In doing so, we gain a lower bound on the unknown
total mixing time and thus, on the necessary number of steps of the random walk.
Alas, the quality of the lower bound depends on the input instance and can be very
small, leaving the open question of how reliable this lower bound really is. Thus,
the right choice of the parameter t still remains a difficult problem.

7.2 Open Problems and Future Work

Our findings leave room for several future projects.

• A general limitation of our approach is the necessity of constructing a state
graph if we want to calculate a sharp bound on the total mixing time. Unfortu-
nately, this is infeasible in many practical applications as the number of states

140

is too large to be enumerated. Thus, a well-rewarding future project might be
to establish further bounding methods that do not require state graphs.

• An interesting open problem is the choice of the initial state s. As the total
mixing time is defined as the largest mixing time of any initial state, such a
definition seems too pessimistic in practice. In Chapter 6, we showed that the
choice of the initial state may induce an exponential or polynomial mixing time.
Thus, further research on the influence of the initial state seems promising.

• Further developing the question of what makes a good initial state, we could
discuss randomization heuristics. Such sampling algorithms have no guarantee
of correctness but can nonetheless be used to efficiently create a random initial
state for an MCMC sampling algorithm. In such cases, an MCMC algorithm
does not start with an initial state but rather with an initial distribution of
states. As it is unclear by which amount this strategy reduces the mixing time
of a Markov chain, the discussion of randomization heuristics seem to be an
interesting future project.

• To eliminate the question of how many steps are required to produce a ran-
dom sample, an integrated convergence detection mechanism would be a great
advance in practical sampling applications. Such a mechanism is supposed to
monitor the evolution of a Markov chain during a simulation and decides when
the current state is sufficiently random.

• To further assess the quality of upper bounds on the total mixing time, we
could implement methods to evaluate a multi commodity congestion scheme [16].
This generalization of the canonical path method may lead to sharper upper
bounds on the total mixing time. To evaluate the potential of the canonical
path and the multi commodity flow method, we might further calculate an
optimal set P of paths in a certain state graph. Such a set of paths mini-
mizes the maximal congestion ρ(P), thereby resulting in an upper bound that
is as close to the total mixing time as the method is possible to derive. As
the construction of an optimal set of paths is NP-hard, formulating the path
construction problem as an integer linear program seems to be a promising
approach. Preliminary results [96] show that the multi commodity bound can
be very tight to the spectral bound for small state graphs.

• A potential candidate for future projects is the generalization of the Markov
chains presented in Chapter 5 for non-bipartite graphs, directed graphs, and
multi-graphs. The main challenge of such a project would be to establish a
proof of ergodicity. In particular, proving the irreducibility of the Markov
chains seems challenging.

• An ongoing project is the development of an R interface to marathon. As
the R programming language is widely accepted in many life sciences, an R-
package containing the sampling methods provided by marathon would be

141

usable by a large group of scientists. In doing so, we combine the efficiency of
the programming language C++ with the simple usability and the widespread
acceptance of R.

• Further investigating the properties of state graphs, we may apply methods
from network analysis to the state graphs of Markov chains. For example,
we can calculate measures of network centrality to determine states with an
important role for the connectivity of state graphs. Such an analysis may help
us to better understand the nature of the associated sampling algorithms.
Preliminary results [97, 98], however, show that is hard to find a connection
between such network measures and the total mixing time of the associated
Markov chain.

142

Bibliography

[1] J. S. Liu. Monte Carlo Strategies in Scientific Computing (Springer Series in
Statistics). Springer (2008). doi: 10.1007/978-0-387-76371-2.

[2] C. P. Robert. Monte Carlo Statistical Methods (Springer Texts in Statistics).
Springer (2010). doi: 10.1007/978-1-4757-4145-2.

[3] J. M. Hammersley and D. C. Handscomb. Monte Carlo Methods. Springer
(1964). doi: 10.1007/978-94-009-5819-7.

[4] N. J. Gotelli and G. R. Graves. Null models in ecology. Smithsonian (1996).
doi: 10.2307/2265928.

[5] N. J. Gotelli. Null model analysis of species co-occurrences patterns. Ecology
81 (2000), 2606–2621. doi: 10.2307/177478.

[6] W. Ulrich and N. J. Gotelli. A null model algorithm for presence–absence
matrices based on proportional resampling. Ecological Modelling 244 (Oct.
2012), 20–27. doi: 10.1016/j.ecolmodel.2012.06.030.

[7] O. J. Heilmann and E. H. Lieb. Theory of monomer-dimer systems. Commu-
nications in Mathematical Physics 25 (1972), 190–232. doi: 10.1007/978-3-
662-10018-9_7.

[8] L. G. Valiant. The Complexity of Enumeration and Reliability Problems. SIAM
Journal on Computing 8 (Aug. 1979), 410–421. doi: 10.1137/0208032.

[9] M. R. Jerrum, L. G. Valiant, and V. V. Vazirani. Random generation of combi-
natorial structures from a uniform distribution. Theoretical Computer Science
43 (1986), 169–188. doi: 10.1016/0304-3975(86)90174-x.

[10] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science 220 (1983), 671–680. doi: 10.1126/science.220.4598.
671.

[11] V. Černý. Thermodynamical approach to the traveling salesman problem: An
efficient simulation algorithm. Journal of Optimization Theory and Applica-
tions 45 (1985), 41–51. doi: 10.1007/bf00940812.

[12] R. Y. Rubinstein and D. P. Kroese. Simulation and the Monte Carlo Method.
Wiley-Interscience (2007). doi: 10.1002/9780470230381.

143

http://dx.doi.org/10.1007/978-0-387-76371-2
http://dx.doi.org/10.1007/978-1-4757-4145-2
http://dx.doi.org/10.1007/978-94-009-5819-7
http://dx.doi.org/10.2307/2265928
http://dx.doi.org/10.2307/177478
http://dx.doi.org/10.1016/j.ecolmodel.2012.06.030
http://dx.doi.org/10.1007/978-3-662-10018-9_7
http://dx.doi.org/10.1007/978-3-662-10018-9_7
http://dx.doi.org/10.1137/0208032
http://dx.doi.org/10.1016/0304-3975(86)90174-x
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1007/bf00940812
http://dx.doi.org/10.1002/9780470230381

[13] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Al-
gorithms and Probabilistic Analysis. Cambridge University Press (2005). doi:
10.1017/cbo9780511813603.

[14] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press (1995).

[15] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E.
Teller. Equation of state calculations by fast computing machines. The Journal
of Chemical Physics 21 (1953), 1087–1092. doi: 10.2172/4390578.

[16] A. Sinclair. Improved Bounds for Mixing Rates of Markov Chains and Multi-
commodity Flow. Combinatorics, Probability and Computing 1 (Dec. 1992),
351–370. doi: 10.1017/s0963548300000390.

[17] R. Kannan, P. Tetali, and S. Vempala. Simple Markov-chain algorithms for
generating bipartite graphs and tournaments. Random Structures & Algo-
rithms 14 (1997), 293–308. doi: 10.1002/(sici)1098-2418(199907)14:
4<293::aid-rsa1>3.0.co;2-g.

[18] M. Jerrum and A. Sinclair. Approximating the permanent. SIAM Journal on
Computing 18 (1989), 1149–1178. doi: 10.1137/0218077.

[19] M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time approximation al-
gorithm for the permanent of a matrix with nonnegative entries. Journal of
the ACM 51 (2004), 671–697. doi: 10.1145/1008731.1008738.

[20] S. Rechner and A. Berger. Marathon: An open source software library for the
analysis of Markov-Chain Monte Carlo algorithms. PLOS ONE 11 (2016).
doi: 10.1371/journal.pone.0147935.

[21] A. R. Rao, R. Jana, and S. Bandyopadhyay. A Markov chain Monte Carlo
method for generating random (0,1)-matrices with given marginals. Sankhyā:
The Indian Journal of Statistics, Series A (1961-2002) 58 (1996), 225–242.

[22] A. Berger and M. Müller-Hannemann. “Uniform Sampling of Digraphs with
a Fixed Degree Sequence”. Graph Theoretic Concepts in Computer Science.
Ed. by D. M. Thilikos. Springer Berlin Heidelberg (2010), 220–231. doi: 10.
1007/978-3-642-16926-7_21.

[23] G. Strona, D. Nappo, F. Boccacci, S. Fattorini, and J. San-Miguel-Ayanz.
A fast and unbiased procedure to randomize ecological binary matrices with
fixed row and column totals. Nature communications 5 (2014). doi: 10.1038/
ncomms5114.

[24] A. Z. Broder. How hard is it to marry at random? (On the approximation of
the permanent). Proceedings of the Eighteenth Annual ACM Symposium on
Theory of Computing (1986), 50–58. doi: 10.1145/12130.12136.

[25] A. Berger and S. Rechner. Broder’s Chain Is Not Rapidly Mixing. arXiv
preprint (2014). arXiv: 1404.4249v1 [cs.DM].

144

http://dx.doi.org/10.1017/cbo9780511813603
http://dx.doi.org/10.2172/4390578
http://dx.doi.org/10.1017/s0963548300000390
http://dx.doi.org/10.1002/(sici)1098-2418(199907)14:4<293::aid-rsa1>3.0.co;2-g
http://dx.doi.org/10.1002/(sici)1098-2418(199907)14:4<293::aid-rsa1>3.0.co;2-g
http://dx.doi.org/10.1137/0218077
http://dx.doi.org/10.1145/1008731.1008738
http://dx.doi.org/10.1371/journal.pone.0147935
http://dx.doi.org/10.1007/978-3-642-16926-7_21
http://dx.doi.org/10.1007/978-3-642-16926-7_21
http://dx.doi.org/10.1038/ncomms5114
http://dx.doi.org/10.1038/ncomms5114
http://dx.doi.org/10.1145/12130.12136
http://arxiv.org/abs/1404.4249v1

[26] S. Rechner, L. Strowick, and M. Müller-Hannemann. Uniform sampling of
bipartite graphs with degrees in prescribed intervals. Journal of Complex Net-
works (2017). doi: 10.1093/comnet/cnx059.

[27] S. Rechner. An Optimal Realization Algorithm for Bipartite Graphs with De-
grees in Prescribed Intervals. arXiv preprint (2017). arXiv: 1708.05520v1

[cs.DS].

[28] R. Diestel. Graph theory. 5th edition. Springer Publishing Company (2017).
doi: 10.1007/978-3-662-53622-3.

[29] W. Feller. An Introduction to Probability Theory and Its Applications, Vol. 1,
3rd Edition. Wiley (1968). doi: 10.2307/1267002.

[30] D. A. Levin, Y. Peres, and E. L. Wilmer. Markov chains and mixing times.
American Mathematical Society (2009). doi: 10.1090/mbk/058.

[31] W. K. Hastings. Monte Carlo sampling methods using Markov chains and their
applications. Biometrika 57 (1970), 97–109. doi: 10.2307/2334940.

[32] O. Perron. Zur Theorie der Matrices. Mathematische Annalen 64 (1907), 248–
263. doi: 10.1007/bf01449896.

[33] G. F. Frobenius. Über Matrizen aus nicht negativen Elementen. Königliche
Akademie der Wissenschaften (1912). doi: 10.3931/e-rara-18865.

[34] J. W. Miller and M. T. Harrison. Exact sampling and counting for fixed-margin
matrices. The Annals of Statistics 41 (2013), 1569–1592. doi: 10.1214/13-
aos1131.

[35] M. T. Harrison and J. W. Miller. Importance sampling for weighted binary
random matrices with specified margins. arXiv preprint (2013). arXiv: 1301.
3928v1 [stat.CO].

[36] C. Gkantsidis, M. Mihail, and E. W. Zegura. The Markov Chain Simulation
Method for Generating Connected Power Law Random Graphs. Proceedings of
the Fifth Workshop on Algorithm Engineering and Experiments (2003), 16–
25.

[37] I. Miklós and J. Podani. Randomization of presence-absence matrices: Com-
ments and new algorithms. Ecology 85 (2004), 86–92. doi: 10.1890/03-0101.

[38] R. Milo, N. Kashtan, S. Itzkovitz, M. E. Newman, and U. Alon. On the uni-
form generation of random graphs with prescribed degree sequences. arXiv
preprint: arXiv:cond-mat/0312028v2 (2004). arXiv: cond - mat / 0312028v2

[cond-mat.stat-mech].

[39] Y. Artzy-Randrup and L. Stone. Generating uniformly distributed random net-
works. Physical Review E 72 (2005), 056708. doi: 10.1103/physreve.72.
056708.

[40] D. Aldous. Random walks on finite groups and rapidly mixing Markov chains.
Séminaire de Probabilités XVII 1981/82 (1983), 243–297. doi: 10 . 1007 /

bfb0068322.

145

http://dx.doi.org/10.1093/comnet/cnx059
http://arxiv.org/abs/1708.05520v1
http://arxiv.org/abs/1708.05520v1
http://dx.doi.org/10.1007/978-3-662-53622-3
http://dx.doi.org/10.2307/1267002
http://dx.doi.org/10.1090/mbk/058
http://dx.doi.org/10.2307/2334940
http://dx.doi.org/10.1007/bf01449896
http://dx.doi.org/10.3931/e-rara-18865
http://dx.doi.org/10.1214/13-aos1131
http://dx.doi.org/10.1214/13-aos1131
http://arxiv.org/abs/1301.3928v1
http://arxiv.org/abs/1301.3928v1
http://dx.doi.org/10.1890/03-0101
http://arxiv.org/abs/cond-mat/0312028v2
http://arxiv.org/abs/cond-mat/0312028v2
http://dx.doi.org/10.1103/physreve.72.056708
http://dx.doi.org/10.1103/physreve.72.056708
http://dx.doi.org/10.1007/bfb0068322
http://dx.doi.org/10.1007/bfb0068322

[41] C. Sanderson and R. Curtin. Armadillo: a template-based C++ library for
linear algebra. Journal of Open Source Software 1 (2016), 26. doi: 10.21105/
joss.00026.

[42] A. S. Asratian, T. M. J. Denley, and R. Häggkvist. Bipartite graphs and their
applications. Cambridge Tracts in Mathematics. Cambridge University Press
(1998). doi: 10.1017/cbo9780511984068.

[43] D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’ networks.
Nature 393 (1998), 440. doi: 10.1515/9781400841356.301.

[44] L. A. N. Amaral, A. Scala, M. Barthélémy, and H. E. Stanley. Classes of
small-world networks. Proceedings of the National Academy of Sciences 97
(2000), 11149–11152. doi: 10.1073/pnas.200327197.

[45] J. Scott. Social Network Analysis. SAGE Publications Ltd (2017).

[46] J. M. Montoya, S. L. Pimm, and R. V. Solé. Ecological networks and their
fragility. Nature 442 (2006), 259. doi: 10.1038/nature04927.

[47] T. C. Ings, J. M. Montoya, J. Bascompte, N. Blüthgen, L. Brown, C. F. Dor-
mann, F. Edwards, D. Figueroa, U. Jacob, J. I. Jones, R. B. Lauridsen, M. E.
Ledger, H. M. Lewis, J. M. Olesen, F. F. Van Veen, P. H. Warren, and G.
Woodward. Review: Ecological networks – beyond food webs. Journal of Ani-
mal Ecology 78 (2009), 253–269. doi: 10.1111/j.1365-2656.2008.01460.x.

[48] B. D. Patterson and W. Atmar. Nested subsets and the structure of insular
mammalian faunas and archipelagos. Biological Journal of the Linnean Society
28 (1986), 65–82. doi: 10.1111/j.1095-8312.1986.tb01749.x.

[49] Y. Chen, P. Diaconis, S. P. Holmes, and J. S. Liu. Sequential Monte Carlo
methods for statistical analysis of tables. Journal of the American Statistical
Association 100 (2005), 109–120. doi: 10.1198/016214504000001303.

[50] E. F. Connor and D. Simberloff. The assembly of species communities: Chance
or competition? Ecology 60 (1979), 1132–1140. doi: 10.2307/1936961.

[51] U. Brandes and T. Erlebach (Eds.) Network Analysis: Methodological Foun-
dations (Lecture Notes in Computer Science). Springer (2005). doi: 10.1007/
b106453.

[52] D. Gale. A theorem on flows in networks. Pacific Journal of Mathematics 7
(1957), 1073–1082. doi: 10.2140/pjm.1957.7.1073.

[53] H. J. Ryser. Combinatorial properties of matrices of zeros and ones. Canadian
Mathematical Society 9 (1957), 371–377. doi: 10.1007/978-0-8176-4842-
8_18.

[54] R. B. Holmes and L. K. Jones. On uniform generation of two-way tables with
fixed margins and the conditional volume test of Diaconis and Efron. The
Annals of Statistics 24 (1996), 64–68. doi: 10.1214/aos/1033066199.

146

http://dx.doi.org/10.21105/joss.00026
http://dx.doi.org/10.21105/joss.00026
http://dx.doi.org/10.1017/cbo9780511984068
http://dx.doi.org/10.1515/9781400841356.301
http://dx.doi.org/10.1073/pnas.200327197
http://dx.doi.org/10.1038/nature04927
http://dx.doi.org/10.1111/j.1365-2656.2008.01460.x
http://dx.doi.org/10.1111/j.1095-8312.1986.tb01749.x
http://dx.doi.org/10.1198/016214504000001303
http://dx.doi.org/10.2307/1936961
http://dx.doi.org/10.1007/b106453
http://dx.doi.org/10.1007/b106453
http://dx.doi.org/10.2140/pjm.1957.7.1073
http://dx.doi.org/10.1007/978-0-8176-4842-8_18
http://dx.doi.org/10.1007/978-0-8176-4842-8_18
http://dx.doi.org/10.1214/aos/1033066199

[55] C. I. Del Genio, H. Kim, Z. Toroczkai, and K. E. Bassler. Efficient and exact
sampling of simple graphs with given arbitrary degree sequence. PLOS ONE 5
(2010), 1–7. doi: 10.1371/journal.pone.0010012.

[56] I. Bezáková, A. Sinclair, D. Štefankovič, and E. Vigoda. Negative examples for
sequential importance sampling of binary contingency tables. Algorithmica 64
(2012), 606–620. doi: 10.1007/s00453-011-9569-3.

[57] I. Bezáková, N. Bhatnagar, and E. Vigoda. Sampling binary contingency tables
with a greedy start. Random Structures & Algorithms 30 (2007), 168–205. doi:
10.1002/rsa.20155.

[58] W. Tutte. The factors of graphs. Canadian Journal of Mathematics 4 (1952),
314–328. doi: 10.1007/978-0-8176-4842-8_13.

[59] H. J. Ryser. Matrices of zeros and ones. Bulletin of the American Mathemat-
ical Society 66 (1960), 442–464. doi: 10.1090/s0002-9904-1960-10494-6.

[60] I. Miklós, P. L. Erdős, and L. Soukup. Towards random uniform sampling of
bipartite graphs with given degree sequence. The Electronic Journal of Combi-
natorics 20 (2013).

[61] P. L. Erdős, T. R. Mezei, and I. Miklós. Efficiently sampling the realizations
of irregular, but linearly bounded bipartite and directed degree sequences. arXiv
preprint (2017). arXiv: 1712.01709v1 [math.CO].

[62] P. L. Erdős, I. Miklós, and Z. Toroczkai. New classes of degree sequences
with fast mixing swap Markov chain sampling. Combinatorics, Probability and
Computing (2017), 1–22. doi: 10.1017/s0963548317000499.

[63] C. Cooper, M. Dyer, and C. Greenhill. Sampling regular graphs and a peer-to-
peer network. Combinatorics, Probability and Computing 16 (2007), 557–593.
doi: 10.1017/s0963548306007978.

[64] C. Greenhill and M. Sfragara. The switch Markov chain for sampling irregular
graphs and digraphs. Theoretical Computer Science (2017). doi: 10.1016/j.
tcs.2017.11.010.

[65] C. J. Carstens and P. Kleer. Comparing the Switch and Curveball Markov
Chains for Sampling Binary Matrices with Fixed Marginals. arXiv preprint
(2017). arXiv: 1709.07290v3 [cs.DM].

[66] R. A. Fisher and F. Yates. Statistical tables for biological, agricultural and
medical research. Vol. 3. Oliver and Boyd, Edinburgh (1949). doi: 10.2307/
2985258.

[67] N. D. Verhelst. An Efficient MCMC Algorithm to Sample Binary Matrices
with Fixed Marginals. Psychometrika 73 (Apr. 2008), 705–728. doi: 10.1007/
s11336-008-9062-3.

[68] C. J. Carstens. Proof of uniform sampling of binary matrices with fixed row
sums and column sums for the fast curveball algorithm. Physical Review E 91
(2015), 042812. doi: 10.1103/physreve.91.042812.

147

http://dx.doi.org/10.1371/journal.pone.0010012
http://dx.doi.org/10.1007/s00453-011-9569-3
http://dx.doi.org/10.1002/rsa.20155
http://dx.doi.org/10.1007/978-0-8176-4842-8_13
http://dx.doi.org/10.1090/s0002-9904-1960-10494-6
http://arxiv.org/abs/1712.01709v1
http://dx.doi.org/10.1017/s0963548317000499
http://dx.doi.org/10.1017/s0963548306007978
http://dx.doi.org/10.1016/j.tcs.2017.11.010
http://dx.doi.org/10.1016/j.tcs.2017.11.010
http://arxiv.org/abs/1709.07290v3
http://dx.doi.org/10.2307/2985258
http://dx.doi.org/10.2307/2985258
http://dx.doi.org/10.1007/s11336-008-9062-3
http://dx.doi.org/10.1007/s11336-008-9062-3
http://dx.doi.org/10.1103/physreve.91.042812

[69] C. J. Carstens, A. Berger, and G. Strona. Curveball: A new generation of sam-
pling algorithms for graphs with fixed degree sequence. arXiv preprint (2016).
eprint: 1609.05137v2.

[70] Bascompte Lab. Web of Life. Sept. 2017. url: http://www.web-of-life.es.

[71] A. Kodric-Brown and J. H. Brown. Incomplete Data Sets in Community Ecol-
ogy and Biogeography: A Cautionary Tale. Ecological Applications 3 (Nov.
1993), 736–742. doi: 10.2307/1942104.

[72] T. E. Raghunathan. What Do We Do with Missing Data? Some Options for
Analysis of Incomplete Data. Annual Review of Public Health 25 (2004).
PMID: 15015914, 99–117. doi: 10.1146/annurev.publhealth.25.102802.
124410. eprint: https://doi.org/10.1146/annurev.publhealth.25.

102802.124410.

[73] P. M. Schlüter and S. A. Harris. Analysis of multilocus fingerprinting data
sets containing missing data. Molecular Ecology Notes 6 (June 2006), 569–
572. doi: 10.1111/j.1471-8286.2006.01225.x.

[74] L. Strowick. Erzeugen zufälliger bipartiter Graphen mit vorgegebenen Knoten-
gradintervallen. Master’s thesis. Martin Luther University Halle-Wittenberg,
(2017).

[75] D. Schluter. A variance test for detecting species associations, with some ex-
ample applications. Ecology 65 (1984), 998–1005. doi: 10.2307/1938071.

[76] M. E. Gilpin and J. M. Diamond. Factors contributing to non-randomness in
species co-occurrences on islands. Oecologia 52 (1982), 75–84. doi: 10.1007/
bf00349014.

[77] A. Roberts and L. Stone. Island-sharing by archipelago species. Oecologia 83
(1990), 560–567. doi: 10.1007/bf00317210.

[78] M. Almeida-Neto, P. Guimarães, P. R. Guimarães, R. D. Loyola, and W. Ul-
rich. A consistent metric for nestedness analysis in ecological systems: recon-
ciling concept and measurement. Oikos 117 (2008), 1227–1239. doi: 10.1111/
j.0030-1299.2008.16644.x.

[79] P. P. Staniczenko, J. C. Kopp, and S. Allesina. The ghost of nestedness in
ecological networks. Nature Communications 4 (Jan. 2013), 1391. doi: 10.

1038/ncomms2422.

[80] A. Clauset, C. R. Shalizi, and M. E. J. Newman. Power-law distributions in
empirical data. SIAM Review 51 (2009), 661–703. doi: 10.1137/070710111.

[81] A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Sci-
ence 286 (1999), 509–512. doi: 10.1515/9781400841356.349.

[82] D. R. Fulkerson. A network flow feasibility theorem and combinatorial appli-
cations. Canadian Journal of Mathematics 11 (1959), 440–451. doi: 10.4153/
cjm-1959-045-1.

148

1609.05137v2
http://www.web-of-life.es
http://dx.doi.org/10.2307/1942104
http://dx.doi.org/10.1146/annurev.publhealth.25.102802.124410
http://dx.doi.org/10.1146/annurev.publhealth.25.102802.124410
https://doi.org/10.1146/annurev.publhealth.25.102802.124410
https://doi.org/10.1146/annurev.publhealth.25.102802.124410
http://dx.doi.org/10.1111/j.1471-8286.2006.01225.x
http://dx.doi.org/10.2307/1938071
http://dx.doi.org/10.1007/bf00349014
http://dx.doi.org/10.1007/bf00349014
http://dx.doi.org/10.1007/bf00317210
http://dx.doi.org/10.1111/j.0030-1299.2008.16644.x
http://dx.doi.org/10.1111/j.0030-1299.2008.16644.x
http://dx.doi.org/10.1038/ncomms2422
http://dx.doi.org/10.1038/ncomms2422
http://dx.doi.org/10.1137/070710111
http://dx.doi.org/10.1515/9781400841356.349
http://dx.doi.org/10.4153/cjm-1959-045-1
http://dx.doi.org/10.4153/cjm-1959-045-1

[83] É. Komáromi. Matrices with restricted elements, row sums and column sums.
Acta Mathematica Academiae Scientiarum Hungarica 31 (1978), 349–354.
doi: 10.1007/bf01901983.

[84] M. Schocker. On graphs with degrees in prescribed intervals. Algebraic Combi-
natorics and Applications (2001), 307–315. doi: 10.1007/978-3-642-59448-
9_20.

[85] R. Anstee. An algorithmic proof of Tutte’s f-factor theorem. Journal of Algo-
rithms 6 (1985), 112–131. doi: 10.1016/0196-6774(85)90022-7.

[86] J. B. Orlin. Max flows in O(nm) time, or better. Proceedings of the Forty-
fifth Annual ACM Symposium on Theory of Computing (2013), 765–774. doi:
10.1145/2488608.2488705.

[87] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum matchings
in bipartite graphs. SIAM Journal on Computing 2 (1973), 225–231. doi: 10.
1137/0202019.

[88] M. Mucha and P. Sankowski. Maximum matchings via Gaussian elimination.
45th Annual IEEE Symposium on Foundations of Computer Science (Oct.
2004), 248–255. doi: 10.1109/focs.2004.40.

[89] G. Borradaile, P. N. Klein, S. Mozes, Y. Nussbaum, and C. Wulff-Nilsen.
Multiple-Source multiple-sink maximum flow in directed planar graphs in near-
linear time. SIAM Journal on Computing 46 (2017), 1280–1303. doi: 10.1109/
focs.2011.73.

[90] L. Valiant. The complexity of computing the permanent. Theoretical Computer
Science 8 (1979), 189–201. doi: 10.1016/0304-3975(79)90044-6.

[91] D. Štefankovič, E. Vigoda, and J. Wilmes. On Counting Perfect Matchings in
General Graphs. arXiv preprint (2017). arXiv: 1712.07504v1 [cs.DS].

[92] M. E. Dyer and H. Müller. Counting perfect matchings and the switch chain.
arXiv preprint (2018). arXiv: 1705.05790v3 [cs.DM].

[93] P. Diaconis, R. Graham, and S. P. Holmes. Statistical problems involving
permutations with restricted positions. IMS Lecture Notes-Monograph Series
(1999), 195–222. doi: 10.1214/lnms/1215090070.

[94] I. Bezáková, D. Štefankovič, V. V. Vazirani, and E. Vigoda. Accelerating sim-
ulated annealing for the permanent and combinatorial counting problems. Pro-
ceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Al-
gorithm (2006), 900–907. doi: 10.1145/1109557.1109656.

[95] W. H. Haemers. Interlacing eigenvalues and graphs. Linear Algebra and its
Applications 226 (1995), 593–616. doi: 10.1016/0024-3795(95)00199-2.

[96] L. Molitor. Pfadbasierte Schranken für Mischzeiten von Markov-Ketten mit
ganzzahligen linearen Programmen. Master’s thesis. Martin Luther University
Halle-Wittenberg, (2017).

149

http://dx.doi.org/10.1007/bf01901983
http://dx.doi.org/10.1007/978-3-642-59448-9_20
http://dx.doi.org/10.1007/978-3-642-59448-9_20
http://dx.doi.org/10.1016/0196-6774(85)90022-7
http://dx.doi.org/10.1145/2488608.2488705
http://dx.doi.org/10.1137/0202019
http://dx.doi.org/10.1137/0202019
http://dx.doi.org/10.1109/focs.2004.40
http://dx.doi.org/10.1109/focs.2011.73
http://dx.doi.org/10.1109/focs.2011.73
http://dx.doi.org/10.1016/0304-3975(79)90044-6
http://arxiv.org/abs/1712.07504v1
http://arxiv.org/abs/1705.05790v3
http://dx.doi.org/10.1214/lnms/1215090070
http://dx.doi.org/10.1145/1109557.1109656
http://dx.doi.org/10.1016/0024-3795(95)00199-2

[97] H. Boulouednine. Experimentelle Strukturanalyse des Zustandsgraphen von
Markovketten mit Hilfe von Clusteringalgoritmen. Bachelor’s thesis. Martin
Luther University Halle-Wittenberg, (2016).

[98] B. Schmidt. Untersuchung der Zustandsgraphen von Markovketten anhand
verschiedener Zentralitätsmaße. Bachelor’s thesis. Martin Luther University
Halle-Wittenberg, (2016).

150

Appendix A

Index to Notations

Notation Meaning Page

Ω set Ω = {x1, x2, . . . , x|Ω|} of combinatorial objects 1

π(x) probability distribution function π : Ω→ [0, 1] 1
X random variable from the set Ω 1

Eπ[f(X)] expected value of a function f : Ω → R according to the
probability distribution function π

1

µπ[f(X)] sample mean associated to Eπ[f(X)] 1
N number of samples used to calculate sample mean 1
s initial state s ∈ Ω 3

w(x) weight function w : Ω→ R+ 3
π(x) ∝ w(x) π(x) is proportional to w(x), i.e.

∃c ∈ R : ∀x ∈ Ω: π(x) = c · w(x).
3

p(x, y) transition probability function p : Ω× Ω→ [0, 1].
p(xi, xj) := Pr[Xt = xj | Xt−1 = xi]

10

P transition matrix P = (pij) with pij := p(xi, xj) 10
Γ state graph Γ = (Ω,Ψ) of an associated Markov chain 10

κ(x, y) proposal probability function κ : Ω× Ω→ [0, 1] 10

p
(t)
s (x) t-step probability distribution function p

(t)
s : Ω→ [0, 1]

p
(t)
s (x) := Pr[Xt = x | X0 = s]

10

||µ− η|| total variation distance. ||µ− η|| := 1
2

∑
x∈Ω |µ(x)− η(x)| 13

ε distance to target distribution (ε ∈ [0, 1])

τs(ε) mixing time τs(ε) := min{t ∈ N : ||p(t)
s − π|| ≤ ε} of initial

state s ∈ Ω
13

τmax(ε) total mixing time. τmax(ε) := maxs∈Ω{τs(ε)} 13
λmax second-largest eigenvalue of a Markov chain’s transition ma-

trix. λmax := max{λ2, |λ|Ω||}
14

πmin πmin := minx∈Ω{π(x)} 14
ρ(P) maximal load congestion of a system P of paths 15

151

Notation Meaning Page

X ∼ π random variable X ∈ Ω is distributed according to the prob-
ability distribution function π

15

η(y) η(y) := Pr[f(X) = y | X ∼ π]
(defined with respect to an auxiliary function f : Ω→ R.)

15

q
(t)
s (y) q

(t)
s (y) := Pr[f(X) = y | X ∼ p(t)

s]
(defined with respect to an auxiliary function f : Ω→ R.)

15

τ̄s(ε) empirical mixing time of state s ∈ Ω.

τ̄s(ε) := min{t ∈ N : ||q(t)
s − η|| ≤ ε}

16

G bipartite graph G = (U, V,E) with disjoint vertex sets U =
{u1, . . . , u|U |} and V = {v1, . . . , v|V |}, and edge set E ⊆
U × V

33

r, c integer vectors r = (r1, . . . , rm) and c = (c1, . . . , cn) 34
m, n length of integer vectors r and c 34
δG(v) node degree of a vertex v ∈ U ∪ V in the bipartite graph

G = (U, V,E)
34

Ω(r, c) set of bipartite graphs whose degrees match r and c 34
r ≤ r̄ ∀i ∈ {1, . . . ,m} : ri ≤ r̄i 35

c′ conjugate sequence c′ = (c′1, c
′
2, . . .) of integer vector c.

∀j ∈ N : c′j := |{i ∈ {1, 2, . . . , n} : ci ≥ j}|
35

c′′ double conjugate sequence c′′ = (c′′1, c
′′
2, . . .) of integer vec-

tor c. ∀j ∈ {1, . . . , n} : c′′j = cj

35

Σk
r short for

∑k
i=1 ri 35

Σr sequence Σr := (Σ1
r,Σ

2
r, . . .) of partial sums 35

r E c′ c′ dominates r. ∀k ∈ {1, . . . ,m} : Σk
r ≤ Σk

c′ 35
Ts(ε) running time for τs(ε) steps of an associated Markov chain 65

T s(ε) running time for τ̄s(ε) steps of an associated Markov chain 66
vw concatenation of integer vectors v and w 67
r̃, c̃ integer vectors of length m and n (lower bounds) 77
r̄, c̄ integer vectors of length m and n (upper bounds) 77

Ω(r̃, r̄, c̃, c̄) set of bipartite graphs whose degrees are bounded from be-
low by r̃ and c̃, and from above by r̄ and c̄

77

d̃(v) lower bound on the degree of vertex v ∈ U ∪ V 77
d̄(v) upper bound on the degree of vertex v ∈ U ∪ V 77

G4G′ symmetric difference of edge sets. G4G′ := (E\E′)∪(E′\E) 78
M(G) set of perfect matchings in a bipartite graph G 113
N (G) set of near-perfect matchings in a bipartite graph G 114
Ω(G) set of perfect and near-perfect matchings in G 114

Nu,v(G) set of near-perfect matchings in G = (U, V,E) with u ∈ U
and v ∈ V being unmatched

116

Hk k-th hexagon graph 117
Tk k-th odd triangle graph 118

152

Appendix B

Data Sets

The following tables contain the instances that were used in Chapters 4 and 5.
Among other information, the tables show the row and column sums of each instance
in non-increasing order. We use a run length encoding to shorten the row and
column sums. Whenever a number occurs more than twice, we replace all following
repetitions by the number of occurrences (see Table B.1 for two examples). The
columns labeled by “m” and “n” state the number of rows and columns, “|E|”
shows the sum of the row and column sums, and “Prim.” displays whether or not
(r, c) is a primitive vector pair in the sense of Definition 4.13.

Table B.1: Bi-Graphical Integer Vectors

Identifier Row Sums r Column Sums c m n |E| Prim.

Darwin’s
Finches

17, 14, 14, 13, 12, 11,
10(×3), 6, 2, 2, 1

11, 10(×4), 9(×3), 8,
8, 7, 4(×3), 3(×3)

13 17 122 7

Barabási-
Albert

56, 48, 38, 36, 36, 33,
31, 31, 29, 24(×6),
23(×3), 22, 22,
21(×3), 20, 20,
19(×3), 18, 17,
16(×3), 15, 14(×5),
13(×9), 12(×10),
11(×6), 10(×5),
9(×5), 8(×7), 7(×4),
6(×4), 5(×6), 3, 3, 2,
2, 1

56, 49, 49, 47, 47,
45, 44, 40, 36, 30, 30,
29, 28, 28, 25, 24, 23,
22, 21, 21, 19(×3),
17, 16, 16, 15(×5),
14(×3), 13(×4),
12(×11), 11(×5),
10(×4), 9(×7),
8(×7), 7(×11),
6(×4), 5(×6), 4(×4),
3, 3, 2

100 100 1470 3

Table B.2 contains the sampling instances derived from 62 binary ecological matrices
in Bascompte’s web-of-life [70]. This data set is a collection of ecological networks
collected by scientists from all over the world. Among others, seed-dispersal, plant-
pollinator and plant-herbivore networks are included within the data set.

153

Table B.2: Web-Of-Life

Identifier Row Sums r Column Sums c m n |E| Prim.

A_PH_004 22, 14(×3), 13, 11, 10, 9, 8, 7, 6(×7),
5(×3), 4, 1

19, 15, 13, 11, 7(×3), 6, 6, 5, 5, 4(×6),
3(×7), 2(×10), 1(×18)

22 52 184 3

A_PH_005 23, 20, 17, 12, 12, 10, 7, 6(×5), 5(×4),
4, 3(×4), 2(×3)

17, 13, 11, 10, 8, 6(×3), 5(×3), 4(×5),
3(×5), 2(×13), 1(×20)

24 54 173 3

A_PH_006 72, 31, 5, 4, 3, 1 3(×3), 2(×22), 1(×63) 6 88 116 3

A_PH_007 64, 12, 9, 5, 5 4(×4), 3(×4), 2(×11), 1(×45) 5 64 95 7

M_PL_001 25, 22, 14, 13(×3), 10, 10, 9, 8, 8,
7(×4), 6(×7), 5(×8), 4(×5), 3(×14),
2(×9), 1(×26)

34, 22, 21, 15, 13, 13, 11, 9, 9, 8(×3),
7(×4), 6, 6, 5(×3), 4(×6), 3(×9),
2(×19), 1(×46)

84 101 361 3

M_PL_002 14, 13, 12, 11, 10(×4), 6(×4), 5(×7),
4(×3), 3(×3), 2(×8), 1(×10)

16, 15, 9, 8, 8, 7, 6, 6, 5, 5, 4(×7),
3(×13), 2(×10), 1(×24)

43 64 196 3

M_PL_003 15, 9, 8, 7, 7, 6, 3, 3, 2(×6), 1(×11) 7, 6, 5, 5, 4(×4), 3(×4), 2(×6), 1(×18) 25 36 81 3

M_PL_005 62, 59, 51, 49, 47, 39, 39, 31, 29, 28,
28, 22, 18, 17, 16, 15, 14, 14, 13, 13, 12,
11(×5), 10, 10, 9(×3), 7(×8), 6(×3),
5(×5), 4(×7), 3(×11), 2(×14), 1(×17)

37, 32, 30, 27, 22, 21, 17, 16, 15, 15, 14,
13, 13, 12(×3), 11(×4), 10(×4), 9(×3),
8(×3), 7(×4), 6(×5), 5(×15), 4(×11),
3(×26), 2(×41), 1(×143)

96 275 923 3

M_PL_008 18, 14, 14, 12, 10, 9, 8, 7, 7, 5, 2 6(×5), 5, 5, 4(×5), 3(×6), 2(×8),
1(×12)

11 38 106 3

M_PL_009 28, 25, 25, 24, 15, 14, 13, 13, 9, 8(×4), 6,
6, 5, 5, 4(×4), 3, 2, 1

10, 9(×4), 8, 6, 6, 5(×3), 4(×7), 3(×9),
2(×15), 1(×76)

24 118 242 3

M_PL_010 32, 29, 28, 26, 25, 23, 23, 20, 19, 17, 16,
16, 15, 14, 14, 13, 12, 11, 11, 10(×3), 9,
9, 8, 8, 7, 6(×3), 3

20, 19, 18, 16(×5), 15, 15, 14, 13,
12(×3), 11(×3), 10, 9, 8, 8, 7, 6(×4),
5(×6), 4(×8), 3(×6), 2(×18), 1(×11)

31 76 456 3

M_PL_011 12, 10, 6, 5, 3(×4), 2, 2, 1(×3) 8, 6, 6, 5, 4(×3), 3, 3, 2(×4), 1 13 14 52 3

M_PL_012 24, 19, 15, 13, 11, 10, 9, 7, 6, 3, 3, 2(×7),
1(×11)

16, 14, 8, 7, 6(×3), 5, 4, 4, 3(×8),
2(×8), 1(×29)

29 55 145 3

1
54

Identifier Row Sums r Column Sums c m n |E| Prim.

M_PL_014 40, 27, 24, 14, 8, 7, 7, 5, 5, 4(×5), 3(×3),
2, 1(×11)

10, 9, 6, 5, 5, 4(×8), 3(×9), 2(×26),
1(×33)

29 81 179 3

M_PL_015 124, 69, 63, 63, 62, 58, 55, 55, 54, 53, 51,
50, 50, 49, 48, 48, 47, 45, 43, 43, 42, 41,
41, 39, 39, 36, 35, 35, 34, 34, 33, 32(×3),
31(×4), 28, 28, 27(×3), 25, 25, 24, 24,
22(×3), 21, 20, 20, 19(×4), 18(×9),
17, 15(×3), 14(×7), 13(×4), 12, 12,
11(×4), 10(×9), 9(×7), 8(×4), 7(×6),
6, 6, 5(×5), 4(×3), 3(×4), 2, 2, 1, 1

104, 38, 38, 33(×3), 32, 31, 28, 26, 24,
24, 22, 22, 21(×3), 20, 19(×3), 18(×4),
17(×4), 16(×4), 15(×3), 14(×8),
13(×5), 12(×4), 11(×15), 10(×11),
9(×9), 8(×23), 7(×11), 6(×35),
5(×26), 4(×40), 3(×76), 2(×119),
1(×248)

131 666 2933 3

M_PL_016 86, 28, 26, 23, 22, 21, 20, 19, 19, 18, 17,
16, 16, 15, 13, 12, 7, 6, 5(×3), 4, 4, 3, 1,
1

17, 14, 11, 10, 9, 9, 8, 7(×6), 6, 6, 5(×5),
4(×10), 3(×16), 2(×34), 1(×99)

26 179 412 3

M_PL_018 31, 24, 22, 20, 17, 17, 15, 15, 14(×4), 13,
11, 11, 9(×3), 8, 7(×4), 6(×7), 5, 5, 4,
3, 3, 2, 2, 1, 1

25, 16, 15, 12, 10(×5), 9(×4), 8(×4),
7(×3), 6(×3), 5(×5), 4(×7), 3(×9),
2(×17), 1(×44)

39 105 383 3

M_PL_020 60, 27, 24, 12, 11, 10, 9, 9, 7, 6, 4, 2, 2,
1(×7)

7(×3), 6(×3), 5(×3), 4(×3), 3(×14),
2(×17), 1(×48)

20 91 190 3

M_PL_021 188, 75, 66, 50, 45, 45, 42, 41, 38, 34,
30, 28, 28, 25, 21(×3), 20, 19, 18, 18,
17(×3), 15, 12(×3), 11, 10(×6), 9,
8(×3), 7, 7, 6, 6, 5, 5, 4(×3), 3(×6),
2(×11), 1(×26)

25, 25, 23, 21, 17, 14, 11(×3), 10, 9, 9,
8(×6), 7(×3), 6(×6), 5(×15), 4(×12),
3(×33), 2(×90), 1(×500)

91 677 1193 3

M_PL_022 21, 12, 6(×3), 5, 5, 3, 2(×6), 1(×7) 7, 4(×5), 3, 3, 2(×13), 1(×24) 21 45 83 3

M_PL_023 34, 28, 11, 6, 5(×3), 4, 3(×4), 2(×4),
1(×7)

9, 6, 4(×3), 3(×7), 2(×17), 1(×43) 23 72 125 3

155

Identifier Row Sums r Column Sums c m n |E| Prim.

M_PL_026 80, 14, 9, 8, 7(×3), 4, 4, 3(×5), 2(×9),
1(×31)

23, 11, 9, 8, 7, 5(×4), 4, 3(×6), 2(×15),
1(×74)

54 105 204 3

M_PL_027 12, 11, 10, 10, 9, 9, 8, 7(×4), 6, 5, 4, 3, 2,
2, 1

9, 7, 6, 4(×5), 3(×6), 2(×14), 1(×32) 18 60 120 3

M_PL_028 43, 31, 25, 17, 16(×4), 14, 13, 12(×3),
10(×3), 9, 8, 8, 7, 7, 6(×4), 5, 5, 4, 4,
3(×3), 2, 2, 1(×7)

16, 14, 14, 11, 10, 9, 8(×4), 7, 6(×5), 5,
5, 4(×14), 3(×15), 2(×28), 1(×64)

41 139 374 3

M_PL_029 43, 22, 14, 12(×4), 10(×5), 9, 8, 8,
7(×6), 6(×4), 5(×5), 4(×8), 3(×3),
2(×4), 1(×4)

26, 26, 17, 11(×3), 9(×3), 8, 7, 7,
6(×3), 5(×4), 4(×5), 3(×13), 2(×17),
1(×64)

49 118 346 3

M_PL_030 16, 10, 6, 6, 5, 5, 4(×5), 3(×9), 2(×6),
1, 1

8, 7, 6, 4(×4), 3(×6), 2(×14), 1(×26) 28 53 109 3

M_PL_031 11, 8, 7(×6), 6, 5, 4(×5), 3(×7),
2(×17), 1(×9)

17, 13, 10, 9, 8, 7, 7, 6, 5(×3), 4, 4,
3(×7), 2(×6), 1(×23)

48 49 156 3

M_PL_032 23, 20, 11, 6, 2, 2, 1 6, 4(×3), 3(×7), 2(×4), 1(×18) 7 33 65 3

M_PL_034 47, 38, 34, 29, 22, 18, 17, 16, 15, 11, 8, 8,
7, 7, 5, 5, 4, 4, 3, 2(×7)

21, 18, 13, 10, 9, 7, 7, 6(×4), 5(×5),
4(×5), 3(×11), 2(×29), 1(×67)

26 128 312 3

M_PL_035 31, 19, 17, 8, 8, 7, 6, 6, 5, 5, 4(×5),
3(×10), 2(×5), 1(×6)

13, 12, 11, 9, 8, 7, 6, 6, 5, 4(×9), 3(×6),
2(×10), 1(×27)

36 61 178 3

M_PL_036 8, 4, 3(×3), 2(×4), 1 6, 4, 4, 3(×3), 2, 1(×5) 10 12 30 3

M_PL_037 17, 9, 9, 8, 6(×3), 5, 5, 1 7, 4(×4), 3(×4), 2(×6), 1(×25) 10 40 72 3

M_PL_038 17, 15, 13, 11, 9, 6, 6, 2 5, 4(×3), 3(×7), 2(×10), 1(×21) 8 42 79 3

M_PL_039 17, 14, 12(×3), 10, 9, 6, 6, 5(×3), 4, 4, 3,
3, 2

13, 13, 8, 6, 6, 5(×3), 4, 4, 3(×5),
2(×9), 1(×27)

17 51 129 3

M_PL_042 11, 6, 5, 1(×3) 4, 3(×5), 1(×6) 6 12 25 3

M_PL_043 31, 17, 15, 15, 14(×4), 13, 11, 10, 9, 9,
7(×4), 6(×3), 4, 3(×3), 2, 1(×3)

18, 13, 10, 9, 7(×3), 6(×8), 5(×4),
4(×6), 3(×8), 2(×14), 1(×35)

28 82 250 3

1
56

Identifier Row Sums r Column Sums c m n |E| Prim.

M_PL_046 30, 27, 25, 25, 23, 20, 20, 18, 18, 15, 13,
12, 11, 10, 7, 4

16, 15, 15, 14, 14, 12, 11, 10, 10, 9(×4),
8, 7(×5), 6(×6), 5, 5, 4(×4), 3, 2(×5),
1(×7)

16 44 278 7

M_PL_047 75, 70, 54, 42, 32, 29, 22, 17, 17, 15, 11,
10, 8, 8, 6, 3, 3, 2, 1

13, 11, 9(×5), 8(×4), 7(×3), 6(×4),
5(×6), 4(×8), 3(×12), 2(×39),
1(×103)

19 186 425 3

M_PL_048 75, 74, 73, 63, 48, 44, 31, 26, 26, 25, 23,
20, 20, 19, 18, 17, 15, 11, 10, 7, 5, 4(×3),
3, 2, 1(×4)

20, 16, 15, 13(×3), 11, 10(×4), 9, 9,
8, 7(×7), 6(×10), 5(×11), 4(×22),
3(×20), 2(×40), 1(×112)

30 236 671 3

M_PL_049 80, 53, 34, 32, 27, 25, 23, 23, 21, 21, 19,
16(×4), 14, 14, 12(×3), 11, 10, 9, 9, 8,
8, 7(×4), 6, 5, 4, 2, 2, 1, 1

24, 24, 22, 18, 13, 12, 11, 11, 10, 9, 9, 8,
7(×7), 6(×5), 5(×6), 4(×13), 3(×19),
2(×38), 1(×125)

37 225 590 3

M_PL_050 17, 11, 10, 10, 8, 8, 6, 5, 4, 2, 2, 1(×3) 8, 7, 7, 6, 5, 4, 3(×6), 2(×8), 1(×15) 14 35 86 3

M_PL_052 20, 12, 10, 8, 6, 6, 5, 5, 4, 4, 3(×3), 2, 1 9, 9, 6(×4), 3(×4), 2(×9), 1(×20) 15 39 92 3

M_PL_053 43, 31, 28, 26, 19, 16, 15, 15, 13, 12(×5),
11(×3), 10, 10, 9(×4), 8(×5), 7(×4),
6(×4), 5(×5), 4(×9), 3(×11), 2(×10),
1(×28)

16, 15, 15, 13, 11, 10, 10, 9, 8(×3),
7(×4), 6(×4), 5(×10), 4(×12), 3(×13),
2(×37), 1(×203)

99 294 589 3

157

Identifier Row Sums r Column Sums c m n |E| Prim.

M_PL_062 58, 54, 54, 53, 53, 52, 51(×6), 50(×4),
49(×5), 48(×3), 47(×6), 46(×8),
45(×7), 44(×7), 43(×8), 42(×9),
41(×18), 40(×9), 39(×11), 38(×16),
37(×20), 36(×15), 35(×19), 34(×21),
33(×26), 32(×24), 31(×32), 30(×26),
29(×27), 28(×24), 27(×23), 26(×19),
25(×11), 24(×14), 23(×5), 22(×7),
21(×11), 20(×4), 18(×3), 17, 17

157, 151, 121, 119, 104, 102, 102, 100,
99, 97, 96, 95, 91, 90, 90, 86, 85, 83, 82,
80, 80, 78(×3), 76, 76, 74, 74, 71, 71,
70(×3), 69, 67, 67, 66, 66, 65, 65, 63, 62,
61, 61, 60, 60, 59(×4), 57, 57, 56(×3),
55, 55, 54, 53, 50, 50, 49(×7), 48(×5),
47, 47, 46(×3), 45(×3), 44, 43(×3),
42(×3), 41(×6), 40(×3), 39(×5),
38(×4), 37(×6), 36(×7), 35(×4),
34(×10), 33, 33, 32(×7), 31(×6),
30(×9), 29(×5), 28(×9), 27(×6),
26(×9), 25(×8), 24(×7), 23(×8),
22(×11), 21(×14), 20(×6), 19(×8),
18(×16), 17(×21), 16(×14), 15(×22),
14(×23), 13(×27), 12(×18), 11(×20),
10(×29), 9(×29), 8(×31), 7(×43),
6(×43), 5(×59), 4(×63), 3(×66),
2(×94), 1(×178)

456 1044 15255 3

M_SD_007 48, 48, 22, 12, 8, 4, 1 5, 4(×5), 3(×17), 2(×18), 1(×31) 7 72 143 3

M_SD_011 12, 5(×4), 4, 3, 3, 2, 2, 1 7, 7, 4(×3), 3(×4), 2(×4), 1 11 14 47 3

M_SD_013 17, 16, 16, 15, 15, 14, 12, 11, 10, 10,
9(×3), 8, 8, 7, 5, 3, 3

16, 15, 11, 10, 10, 9, 9, 8(×3), 7(×3), 6,
6, 5, 5, 4(×7), 3, 3, 2(×6), 1(×4)

19 36 197 3

M_SD_014 17, 13, 12, 11, 10, 9, 7, 7, 6, 5(×3), 4, 4,
3, 3

15, 15, 13, 13, 10, 9, 7, 6, 5, 5, 4(×3),
3(×3), 2

16 17 121 7

M_SD_015 25, 19, 18, 16, 8 5(×4), 4(×6), 3(×9), 2(×7), 1 5 27 86 7

1
58

Identifier Row Sums r Column Sums c m n |E| Prim.

M_SD_016 34, 32, 30, 30, 29, 29, 27, 26, 25, 25, 24,
23, 22, 22, 16, 16, 15, 14, 13, 11(×3), 9,
6

21(×3), 20(×3), 19, 18, 17(×3), 16,
14(×3), 13, 12(×4), 11(×3), 9(×4), 8,
7(×3), 6(×3), 5(×3), 3(×4), 2(×7),
1(×13)

24 61 500 3

M_SD_017 12, 11, 11, 10, 9, 7, 7, 5 7, 7, 6, 6, 5(×4), 4(×3), 3(×4), 2 8 16 72 3

M_SD_018 7, 7, 6, 6, 5, 3(×3), 2(×5), 1(×16) 8, 7, 6, 4, 3, 3, 2(×9), 1(×17) 29 32 66 3

M_SD_019 96, 51, 44, 40, 38, 31, 30, 29, 26, 20, 16,
14(×3), 13(×4), 12, 11, 10, 10, 9, 9, 8,
8, 7(×4), 6(×3), 4(×7)

30, 21, 20, 19, 17, 16, 15, 14, 14, 12, 12,
11, 11, 10(×3), 9, 9, 8(×4), 7(×5),
6(×6), 5(×14), 4(×19), 3(×14),
2(×26), 1(×63)

40 169 666 3

M_SD_021 22, 20, 14, 9, 9, 8, 8, 7, 5(×3), 4, 3(×3),
2, 1, 1

12, 12, 10, 10, 8, 7, 7, 6, 6, 5(×4), 4,
3(×4), 2(×5), 1(×5)

18 28 129 3

M_SD_022 57, 48, 45, 41, 38, 37, 37, 36, 29, 24, 24,
23, 23, 22(×4), 19, 18(×3), 17, 16, 16,
15, 15, 14(×6), 13(×3), 12, 12, 11, 11,
10(×3), 9, 8(×4), 7(×3), 6(×4), 5(×8),
4(×6), 3(×10), 2(×8), 1(×24)

36, 32, 29, 29, 27, 26, 26, 22, 20, 19, 19,
18, 17, 17, 16(×3), 14, 14, 13(×3), 12,
12, 11(×5), 10(×3), 9(×4), 8(×7),
7(×8), 6(×10), 5(×20), 4(×13),
3(×28), 2(×31), 1(×54)

110 207 1121 3

M_SD_024 10, 7, 6, 6, 4, 4, 3 5(×3), 4(×3), 3(×3), 2, 1, 1 7 12 40 3

M_SD_025 7, 4, 3(×3), 2 5, 4(×3), 2, 2, 1 6 7 22 7

M_SD_026 3, 2, 1 3, 2, 1 3 3 6 7

M_SD_027 11, 8, 6, 6 4(×4), 3, 3, 2(×3), 1(×3) 4 12 31 7

M_SD_028 8, 6, 6, 4, 2 5, 5, 4, 4, 3, 2, 2, 1 5 8 26 7

M_SD_029 5, 3, 1, 1 4, 2, 2, 1, 1 4 5 10 7

M_SD_030 4, 3, 2, 2 4, 4, 1(×3) 4 5 11 7

159

Appendix C

Auxiliary Functions

Here, we define the auxiliary functions used in Chapters 4 and 5. While the first two
metrics are used in a multitude of applications, the latter functions are measures of
nestedness. In ecology, such metrics are used to quantify the structure of a network.

Definition C.1 (Hamming distance). If A = (aij) and B = (bij) are binary matrices
of size m× n, the Hamming distance h : {0, 1}m×n × {0, 1}m×n → N is defined as

h(A,B) :=
m∑

i=1

n∑

j=1

aij ⊕ bij ,

where ⊕ is the exclusive or operator.

Definition C.2 (std::hash). If M = (mij) is a binary matrix of size m × n, we
define v = (v1, v2, . . . , vmn) ∈ {0, 1}mn to be a 0-1-vector defined by

vk := mij ,

where i := bk/mc and j := k mod m. Then, std::hash(M) returns the hash value
of the standard C++ hash function applied to v.

Definition C.3 (S̄2 statistic [77]). Let M be a binary matrix of size m × n and
let S := (sij) = MMT . Then,

S̄2(M) :=

(
m

2

)−1∑

i<j

s2
ij .

Definition C.4 (nested subset statistic [48]). Let M be a binary matrix of size m×n.
Then, Snest(G) =

∑
i,j xij, where

xij =

{
1, if {ui, vj} 6∈ E ∧ δG(vj) > min {δG(vk) : {ui, vk} ∈ E}
0, otherwise.

160

Definition C.5 (NODF [78]). Let M be a binary matrix of size m × n with row
sums r = (r1, r2, . . . , rm) and column sums c = (c1, c2, . . . , cn). Then,

NODF (M) :=
p+ q(

m
2

)
+
(
n
2

) =
2(p+ q)

m(m− 1) + n(n− 1)
,

where p and q are real numbers calculated by the following formulae.

p :=

m∑

i=1

m∑

k=i+1

f(i, k) and q :=

n∑

j=1

n∑

l=j+1

g(j, l),

where f : N× N→ R and g : N× N→ R are functions defined by

f(i, k) :=

{
0, if ri ≤ rk
1
rk

∑n
j=1mijmkj , else.

and

g(j, l) :=

{
0, if cj ≤ cl
1
cl

∑m
i=1mijmil, else.

Definition C.6 (checker board score). Let M = (mij) be a binary matrix of size m×
n. Then, the checker board score c : {0, 1}m×n → N is defined as the number of 2×2
sub-matrices of type

(
0 1
1 0

)
or

(
1 0
0 1

)
, i.e.

c(M) :=

m∑

i=1

n∑

j=1

m∑

k=1

n∑

l=1

f(i, j, k, l),

where f : N× N× N× N→ {0, 1} is defined by

f(i, j, k, l) :=

{
1, if mij = mkl 6= mkj = mil,

0, else.

Definition C.7 (Spectral Radius [79]). Let M = (mij) be a binary matrix of
size m× n and let k := m+ n. Then, the k × k matrix

M ′ :=

(
0 M
MT 0

)

is a symmetric matrix with real eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λk. Then, the spectral
radius sr : {0, 1}m×n → R+ is defined by

sr(M) := max{|λ1|, |λk|}.

161

Appendix D

Additional Figures

This appendix contains additional figures from Chapters 4 and 5. Most of these
figures contain additional information that is less essential for our findings, but is
still relevant for our conclusions. To improve the readability of the thesis, we decided
to list such figures here.

162

10 15 20 25

0

200

400

600

800

1000

Classical Switch

Type A

m+n

τ
m

a
x
(ε

)

y ≈ 0.157x
2.68

SSE= 727.3

10 15 20 25

0

100

200

300

400

Edge Switch

Type A

m+n

τ
m

a
x
(ε

)

y ≈ 0.073x
2.65

SSE= 102

10 15 20 25

20

25

30

35

40

45

Curveball

Type A

m+n

τ
m

a
x
(ε

)

y ≈ 8.911x
0.52

SSE= 98.7

10 15 20 25 30

0

200

400

600

800

1000

Classical Switch

Type B

m+n

τ
m

a
x
(ε

)

y ≈ 0.201x
2.48

SSE= 605.3

10 15 20 25 30

0

100

200

300

400

500

600

Edge Switch

Type B

m+n

τ
m

a
x
(ε

)

y ≈ 0.153x
2.44

SSE= 210.5

10 15 20 25 30

16

18

20

22

24

26

28

Curveball

Type B

m+n

τ
m

a
x
(ε

)

y ≈ 8.48x
0.36

SSE= 21.9

10 20 30 40

0

50

100

150

200

250

300

Classical Switch

Type C

m+n

τ
m

a
x
(ε

)

y ≈ 2.654x
1.28

SSE= 1294.6

10 20 30 40

100

200

300

400

Edge Switch

Type C

m+n

τ
m

a
x
(ε

)

y ≈ 4.069x
1.25

SSE= 1892.8

10 20 30 40

7

8

9

10

11

12

13

Curveball

Type C

m+n

τ
m

a
x
(ε

)

y ≈ 5.725x
0.23

SSE= 18.7

1
Figure D.1: Estimated polynomials for the total mixing time of the classical switch
chain (red), edge switch chain (green), and the curveball chain (blue) on the instance
classes A, B, and C. (ε = 0.01)

163

20 60 100

0

5

10

15

20

25

30

Classical Switch

Type D

m+n

τ
m

a
x
(ε

)
in

 t
h
o
u
s
a
n
d y ≈ 1.043x

2.12

SSE= 6.6 × 10
5

20 60 100

0

5

10

15

20

Edge Switch

Type D

m+n

τ
m

a
x
(ε

)
in

 t
h
o
u
s
a
n
d y ≈ 0.72x

2.11

SSE= 2.7 × 10
5

20 60 100

18

20

22

24

26

28

Curveball

Type D

m+n

τ
m

a
x
(ε

)

y ≈ 21.271x
0.07

SSE= 146.2

8 10 14 18

50

100

150

200

Classical Switch

Type E

m+n

τ
m

a
x
(ε

)

y ≈ 0.289x
2.28

SSE= 175

8 10 12 14 16

20

40

60

80

100

120

Edge Switch

Type E

m+n

τ
m

a
x
(ε

)

y ≈ 0.234x
2.23

SSE= 70.3

8 10 12 14 16

16

18

20

22

Curveball

Type E

m+n

τ
m

a
x
(ε

)

y ≈ 6.125x
0.46

SSE= 12.4

5 10 15 20

0

10

20

30

40

Classical Switch

Type F

m+n

τ
m

a
x
(ε

)

y ≈ 0.362x
1.59

SSE= 28.7

5 10 15 20

0

10

20

30

40

Edge Switch

Type F

m+n

τ
m

a
x
(ε

)

y ≈ 0.362x
1.59

SSE= 28.7

5 10 15 20 25

0.6

0.8

1.0

1.2

1.4

Curveball

Type F

m+n

τ
m

a
x
(ε

)

y ≈ 0.994x
0

SSE= 0

1
Figure D.2: Estimated polynomials for the total mixing time of the classical switch
chain (red), edge switch chain (green), and the curveball chain (blue) on the instance
classes D, E, and F. (ε = 0.01)

164

Classical Switch Chain

m+n

q
u
a
lit

y
 o

f
b
o
u
n
d

10 15 20 25

10
−1

10
0

10
1

10
2

Edge Switch Chain

m+n

q
u
a
lit

y
 o

f
b
o
u
n
d

10 15 20 25

10
−1

10
0

10
1

10
2

Curveball

m+n

q
u
a
lit

y
 o

f
b
o
u
n
d

10 15 20 25

10
−1

10
0

10
1

10
2

T
yp

e
A

Classical Switch Chain

m+n

q
u
a
lit

y
 o

f
b
o
u
n
d

10 15 20 25 30

10
−1

10
0

10
1

10
2

Edge Switch Chain

m+n

q
u
a
lit

y
 o

f
b
o
u
n
d

10 15 20 25 30

10
−1

10
0

10
1

10
2

Curveball

m+n

q
u
a
lit

y
 o

f
b
o
u
n
d

10 15 20 25 30

10
−1

10
0

10
1

10
2

T
yp

e
B

Classical Switch Chain

m+n

q
u
a
lit

y
 o

f
b
o
u
n
d

10 20 30 40

10
−1

10
0

10
1

10
2

Edge Switch Chain

m+n

q
u
a
lit

y
 o

f
b
o
u
n
d

10 20 30 40

10
−1

10
0

10
1

10
2

Curveball

m+n

q
u
a
lit

y
 o

f
b
o
u
n
d

10 20 30 40

10
−1

10
0

10
1

10
2

T
yp

e
C

1
Figure D.3: Quotient of congestion bound (orange), upper spectral bound (red),
and lower spectral bound (violet) with total mixing time for the scalable instance
classes A,B, and C.

165

Classical Switch Chain

m+n

q
u
a
lit

y
 o

f
b
o
u
n
d

20 60 100

10
−1

10
0

10
1

10
2

Edge Switch Chain

m+n

q
u
a
lit

y
 o

f
b
o
u
n
d

20 60 100

10
−1

10
0

10
1

10
2

Curveball

m+n

q
u
a
lit

y
 o

f
b
o
u
n
d

20 60 100

10
−1

10
0

10
1

10
2

T
yp

e
D

Classical Switch Chain

m+n

q
u
a
lit

y
 o

f
b
o
u
n
d

8 10 14 18

10
−1

10
0

10
1

10
2

Edge Switch Chain

m+n

q
u
a
lit

y
 o

f
b
o
u
n
d

8 10 12 14 16

10
−1

10
0

10
1

10
2

Curveball

m+n

q
u
a
lit

y
 o

f
b
o
u
n
d

8 10 12 14 16

10
−1

10
0

10
1

10
2

T
yp

e
E

Classical Switch Chain

m+n

q
u
a
lit

y
 o

f
b
o
u
n
d

6 8 12 16

10
−1

10
0

10
1

10
2

Edge Switch Chain

m+n

q
u
a
lit

y
 o

f
b
o
u
n
d

6 8 12 16

10
−1

10
0

10
1

10
2

Curveball

m+n

q
u
a
lit

y
 o

f
b
o
u
n
d

6 8 12 16

10
1

10
2

10
4

10
6

T
yp

e
F

1
Figure D.4: Quotient of congestion bound (orange), upper spectral bound (red),
and lower spectral bound (violet) with total mixing time for the scalable instance
classes D,E, and F.

166

0 100 300 500

0

200

400

600

800

1000

Classical Switch Chain

lower spectral bound

τ
m

a
x
(ε

)

y=2.12x + 12.71

0 50 100 150 200

0

100

200

300

400

Edge Switch Chain

lower spectral bound

τ
m

a
x
(ε

)

y=2.12x+6.83

8 10 12 14 16

20

25

30

35

40

45

Curveball

lower spectral bound

τ
m

a
x
(ε

)

y=3.39x−9.03

T
y
p
e
A

0 100 300

0

200

400

600

800

1000

Classical Switch Chain

lower spectral bound

τ
m

a
x
(ε

)

y=2.13x + 7.55

0 50 150 250

0

100

200

300

400

500

600

Edge Switch Chain

lower spectral bound

τ
m

a
x
(ε

)

y=2.13x+6.12

6 7 8 9

16

18

20

22

24

26

28

Curveball

lower spectral bound

τ
m

a
x
(ε

)

y=3.87x−7.59

T
y
p
e
B

0 20 40 60 80

0

50

100

150

200

250

300

Classical Switch Chain

lower spectral bound

τ
m

a
x
(ε

)

y=2.91x − 2.90

50 100 150

100

200

300

400

Edge Switch Chain

lower spectral bound

τ
m

a
x
(ε

)

y=2.91x−5.94

2.5 3.0 3.5

7

8

9

10

11

12

13

Curveball

lower spectral bound

τ
m

a
x
(ε

)

T
y
p
e
C

1
Figure D.5: Relationship between the lower spectral bound and the total mixing
time for the scalable instance classes A,B, and C. (ε = 0.01.)

167

0 5000 10000 15000

0

5000

10000

15000

20000

25000

30000

Classical Switch Chain

lower spectral bound

τ
m

a
x
(ε

)

y=2.00x+2.75

0 4000 8000

0

5000

10000

15000

20000

Edge Switch Chain

lower spectral bound

τ
m

a
x
(ε

)

y=2.00x+2.71

7.0 8.0 9.0

18

20

22

24

26

28

Curveball

lower spectral bound

τ
m

a
x
(ε

)

T
y
p
e
D

20 40 60 80

50

100

150

200

Classical Switch Chain

lower spectral bound

τ
m

a
x
(ε

)

y=2.35x+5.63

10 20 30 40 50

20

40

60

80

100

120

Edge Switch Chain

lower spectral bound

τ
m

a
x
(ε

)

y=2.34x+4.91

5.0 6.0 7.0

16

18

20

22

Curveball

lower spectral bound

τ
m

a
x
(ε

)

T
y
p
e
E

0 5 10 15

0

10

20

30

40

Classical Switch Chain

lower spectral bound

τ
m

a
x
(ε

)

y=2.71x+1.27

0 5 10 15

0

10

20

30

40

Edge Switch Chain

lower spectral bound

τ
m

a
x
(ε

)

y=2.71x+1.27

T
y
p
e
F

1
Figure D.6: Relationship between the lower spectral bound and the total mixing
time for the scalable instance classes D,E, and F. The figure for the curveball Markov
chain is missing for class F, as the associated total mixing time is one. (ε = 0.01.)

168

10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Type A (inverse)

m+n

τ
s
(ε

)
/

τ
s
(ε

)

10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Type B (inverse)

m+n

τ
s
(ε

)
/

τ
s
(ε

)

20 40 60 80

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Type C (inverse)

m+n

τ
s
(ε

)
/

τ
s
(ε

)

20 60 100 140

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Type D (inverse)

m+n

τ
s
(ε

)
/

τ
s
(ε

)

10 20 30

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Type E (inverse)

m+n

τ
s
(ε

)
/

τ
s
(ε

)

5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Type F (inverse)

m+n

τ
s
(ε

)
/

τ
s
(ε

)

1
Figure D.7: Quality of applied mixing time τ̄s(ε) for the scalable instance classes
in which the roles of r and c are inversed with respect to the Hamming distance
metric. Red: classical switch chain. Green: edge switch chain. Blue: curveball
chain. (ε = 0.01, N = 106 samples).

169

0 20 40 60 80 100

5800

6000

6200

6400

Scale−Free (d=1)

steps (in thousand)

S
n
e

s
t

0 5 10 15 20

5800

6000

6200

6400

Scale−Free (d=1)

running time (ms)

S
n
e

s
t

0 20 40 60 80 100

6300

6400

6500

6600

6700

6800

6900

Scale−Free (d=5)

steps (in thousand)

S
n
e

s
t

0 5 10 15 20

6300

6400

6500

6600

6700

6800

6900

Scale−Free (d=5)

running time (ms)

S
n
e

s
t

Figure D.8: Sample means of the Snest metric for scale-free integer vectors. Red,
solid line: static simple chain. Green, dashed line: dynamic simple chain. Blue,
dotted line: static informed chain.

170

0 5 10 15 20 25

0.00

0.05

0.10

0.15

0.20

Scale−Free (d=1)

steps (in thousand)

N
O

D
F

0 1 2 3 4 5 6 7

0.00

0.05

0.10

0.15

0.20

Scale−Free (d=1)

running time (ms)

N
O

D
F

0 5 10 15 20 25

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Scale−Free (d=5)

steps (in thousand)

N
O

D
F

0 1 2 3 4 5 6 7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Scale−Free (d=5)

running time (ms)

N
O

D
F

Figure D.9: Sample means of the NODF metric for scale-free integer vectors. Red,
solid line: static simple chain. Green, dashed line: dynamic simple chain. Blue,
dotted line: static informed chain.

171

0 20 40 60 80 100

22.0

22.5

23.0

23.5

24.0

24.5

25.0

Scale−Free (d=1)

steps (in thousand)

s
p
e
c
tr

a
l
ra

d
iu

s

0 5 10 15 20

22.0

22.5

23.0

23.5

24.0

24.5

25.0

Scale−Free (d=1)

running time (ms)

s
p
e
c
tr

a
l
ra

d
iu

s

0 20 40 60 80 100

24

25

26

27

Scale−Free (d=5)

steps (in thousand)

s
p
e
c
tr

a
l
ra

d
iu

s

0 5 10 15 20

24

25

26

27

Scale−Free (d=5)

running time (ms)

s
p
e
c
tr

a
l
ra

d
iu

s

Figure D.10: Sample means of the spectral radius metric for scale-free integer vectors.
Red, solid line: static simple chain. Green, dashed line: dynamic simple chain. Blue,
dotted line: static informed chain.

172

0 1 2 3 4

2000

2500

3000

3500

4000

4500

Near−Regular (d=1)

steps (in thousand)

S
n
e

s
t

0 1 2 3 4

2000

2500

3000

3500

4000

4500

Near−Regular (d=1)

running time (ms)

S
n
e

s
t

0 2 4 6 8 10

3600

3800

4000

4200

4400

Near−Regular (d=5)

steps (in thousand)

S
n
e

s
t

0 2 4 6 8 10

3600

3800

4000

4200

4400

Near−Regular (d=5)

running time (ms)

S
n
e

s
t

Figure D.11: Sample means of the Snest metric for scale-free integer vectors. Red,
solid line: static simple chain. Green, dashed line: dynamic simple chain. Blue,
dotted line: static informed chain.

173

0.0 0.5 1.0 1.5 2.0

0

2

4

6

8

10

12

Near−Regular (d=1)

steps (in thousand)

N
O

D
F

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

2

4

6

8

10

12

Near−Regular (d=1)

running time (ms)

N
O

D
F

0.0 0.5 1.0 1.5 2.0

0

5

10

15

20

Near−Regular (d=5)

steps (in thousand)

N
O

D
F

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

5

10

15

20

Near−Regular (d=5)

running time (ms)

N
O

D
F

Figure D.12: Sample means of the NODF metric for scale-free integer vectors. Red,
solid line: static simple chain. Green, dashed line: dynamic simple chain. Blue,
dotted line: static informed chain.

174

0.0 0.5 1.0 1.5 2.0

50.5

50.6

50.7

50.8

50.9

51.0

Near−Regular (d=1)

steps (in thousand)

s
p
e
c
tr

a
l
ra

d
iu

s

0 1 2 3 4

50.5

50.6

50.7

50.8

50.9

51.0

Near−Regular (d=1)

running time (ms)

s
p
e
c
tr

a
l
ra

d
iu

s

0 1 2 3 4 5 6 7

52.5

53.0

53.5

54.0

54.5

55.0

Near−Regular (d=5)

steps (in thousand)

s
p
e
c
tr

a
l
ra

d
iu

s

0 2 4 6 8 10

52.5

53.0

53.5

54.0

54.5

55.0

Near−Regular (d=5)

running time (ms)

s
p
e
c
tr

a
l
ra

d
iu

s

Figure D.13: Sample means of the spectral radius metric for scale-free integer vectors.
Red, solid line: static simple chain. Green, dashed line: dynamic simple chain. Blue,
dotted line: static informed chain.

175

Eidesstattliche Erklärung / Declaration under Oath

Ich erkläre an Eides statt, dass ich die Arbeit selbstständig und ohne fremde Hilfe
verfasst, keine anderen als die von mir angegebenen Quellen und Hilfsmittel benutzt
und die den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen als
solche kenntlich gemacht habe.

I declare under penalty of perjury that this thesis is my own work entirely and has
been written without any help from other people. I used only the sources mentioned
and included all the citations correctly both in word or content.

Halle, den 14.06.2018

Datum / Date Unterschrift des Antragstellers / Signature of the applicant

Steffen Rechner
Persönliche Daten

Wohnsitz Wilhelm-Schrader-Straße 25
06120 Halle (Saale)

Geburtsdatum 02.12.1986
Geburtsort Bad Frankenhausen

Nationalität Deutsch

Bildungsweg
1999-2006 Allgemeine Hochschulreife

Geschwister-Scholl-Gymnasium
Sangerhausen

2007-2010 Bachelor of Science (Informatik)
Martin-Luther-Universität Halle-Wittenberg
Halle (Saale)

2010-2013 Master of Science (Informatik)
Martin-Luther-Universität Halle-Wittenberg
Halle (Saale)

Bachelorarbeit
Titel Der globale Rang eines Flughafens im Wandel der Zeit: Experimentelle

Analyse der tageszeitabhängigen Zentralitäten im Flugverkehr
Betreuer Prof. Dr. rer. nat. Matthias Müller-Hannemann

Annabell Berger

Masterarbeit
Titel Vergleich und experimentelle Analyse von Verfahren zum Erzeugen zufäl-

liger perfekter Matchings
Betreuer Prof. Dr. rer. nat. Matthias Müller-Hannemann

Dr. rer. nat. Annabell Berger

Publikationen
2011 A. Berger, M. Müller-Hannemann, S. Rechner, and A. Zock. “Effi-

cient Computation of Time-Dependent Centralities in Air Transportation
Networks”. WALCOM: Algorithms and Computation. Ed. by N. Ka-
toh and A. Kumar. Springer Berlin Heidelberg (2011), 77–88. doi:
10.1007/978-3-642-19094-0_10.

2014 A. Berger and S. Rechner. Broder’s Chain Is Not Rapidly Mixing. arXiv
preprint (2014). arXiv: 1404.4249v1 [cs.DM].

2014 M. Lemnian, R. Rückert, S. Rechner, C. Blendinger, and M. Müller-
Hannemann. “Timing of Train Disposition: Towards Early Passenger
Rerouting in Case of Delays”. 14th Workshop on Algorithmic Approaches
for Transportation Modelling, Optimization, and Systems. Ed. by S.
Funke and M. Mihalák. Vol. 42. OpenAccess Series in Informatics
(OASIcs). Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2014), 122–
137. doi: 10.4230/OASIcs.ATMOS.2014.122.

2016 S. Rechner and A. Berger. Marathon: An open source software library
for the analysis of Markov-Chain Monte Carlo algorithms. PLOS ONE
11 (2016). doi: 10.1371/journal.pone.0147935.

2017 R. Rückert, M. Lemnian, C. Blendinger, S. Rechner, and M. Müller-
Hannemann. PANDA: a software tool for improved train dispatching
with focus on passenger flows. Public Transport 9 (July 2017), 307–324.
doi: 10.1007/s12469-016-0140-0.

2017 M. Erbert, S. Rechner, and M. Müller-Hannemann. Gerbil: a fast
and memory-efficient k-mer counter with GPU-support. Algorithms for
Molecular Biology 12 (Mar. 2017), 9. doi: 10.1186/s13015-017-
0097-9.

2017 S. Rechner, L. Strowick, and M. Müller-Hannemann. Uniform sampling of
bipartite graphs with degrees in prescribed intervals. Journal of Complex
Networks (2017). doi: 10.1093/comnet/cnx059.

2017 S. Rechner. An Optimal Realization Algorithm for Bipartite Graphs
with Degrees in Prescribed Intervals. arXiv preprint (2017). arXiv:
1708.05520v1 [cs.DS].

Halle, den 14.06.2018

Datum / Date Unterschrift des Antragstellers / Signature of the applicant

	Introduction
	Markov Chain Monte Carlo Sampling
	Contribution and Overview

	Preliminaries
	Ergodic Markov Chains
	Total Mixing Time
	Empirical Mixing Time
	Convergence of Sample Means
	Summary

	The marathon Software
	Main Features
	Software Design
	Random Sampling
	State Graphs

	Implementation Details
	Summary

	Bipartite Graphs with Fixed Degrees
	Definitions and Notation
	Markov Chains
	Classical Switch Chain
	Edge Switch Chain
	Curveball

	Experiments on Mixing Time
	Structural Properties of State Graphs
	Influence of Loops
	Quality of Bounding Techniques
	Empirical Mixing Time
	Running Time

	Preprocessing
	Methodology
	Decomposition Algorithm
	Experimental Evaluation

	Summary

	Bipartite Graphs with Bounded Degrees
	Definitions and Notation
	Markov Chains
	Simple Markov Chain
	Informed Markov Chain
	Dynamic Adjustment of Probability

	Experimental Results and Discussion
	State Graph Analysis
	Convergence of Sample Means
	Sampling Application

	An Optimal Realization Algorithm
	Phase One
	Phase Two
	Edge-Minimality

	Summary

	Perfect and Near-Perfect Matchings in Bipartite Graphs
	Markov Chains
	Broder's Chain
	JSV chain

	Experiments on Mixing Time
	Total Mixing Time
	Influence of Initial State
	Quality of Bounding Techniques
	Induced Subgraphs

	Summary

	Conclusion and Future Work
	Conclusion
	Open Problems and Future Work

	Bibliography
	Appendices
	Appendix Index to Notations
	Appendix Data Sets
	Appendix Auxiliary Functions
	Appendix Additional Figures

