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Abstract 

Ionizable or even permanently charged anthropogenic organic chemicals are pollutants of 

prevailing concern and a much debated issue. Given that ionic organic chemicals have 

different physico-chemical characteristics than neutral chemicals, the empirical literature 

models describing the environmental fate of neutral chemicals cannot be applied one to one. 

Hence, it is of pivotal interest to develop mechanistic models that describe relevant physico-

chemical characteristics of ions such as the sorption behavior. This work focused on 

describing of the partition coefficient of ions between phospholipid membranes and water 

(Klipw), which is a crucial descriptor for environmentally relevant properties such as 

bioaccumulation and non-specific toxicity. 

The main aims of this work were threefold: i) to assess the predictive power of the 

commercially available software COSMOmic (i.e., COSMO-RS for micelles) for the 

prediction of the partition behavior of organic ions. The model adapts the conductor-like 

screening model for real solvents (COSMO-RS) to anisotropic phases and has been shown to 

reliably predict Klipw for neutral chemicals before. In case it might not be applicable for ions 

the goal was to detect the reason and implement potentially missing parameters in the model. 

ii) to compare the enhanced version of COSMOmic with two competing models to predict 

Klipw of ions, namely an empirical approach based on the octanol-water partition coefficient 

(Kow) and the polyparameter linear free energy relationship (pp-LFER) approach. The 

prediction of Klipw for neutral chemicals was included in this analysis to gain an exhaustive 

picture that incorporates the computational effort for the respective model and scrutinizes 

model consistency. iii) to investigate the baseline toxicity concept for ions with the help of the 

most reliable prediction model for Klipw.  

The Klipw data gathered through an exhaustive literature research were complemented by 

own Klipw measurements using equilibrium dialysis, in order to systematically increase data 

diversity. The resulting compilation of 51 experimental Klipw values for anions (from which 
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five are own measurements in this work) and 24 experimental values for cations revealed that 

COSMOmic (version 1401) systematically overestimated the Klipw of cations and 

underestimated the Klipw of anions. To make the COSMOmic model applicable for ionic 

chemicals, the internal membrane dipole potential was implemented. We empirically 

optimized the potential with experimental Klipw data of 161 neutral and 75 ionic chemicals, 

yielding shapes of the potentials that agree well with experimentally determined potentials 

from the literature. This model refinement had no negative effect on the prediction accuracy 

of neutral chemicals (RMSE = 0.62 log units), while it highly improved the prediction of ions 

(RMSE = 0.70 log units). 

This enhanced version of COSMOmic (version 1501) was compared to two other models 

for the prediction of Klipw, using a further extended data set of 56 anions, 36 cations, 2 

divalent cations and 2 zwitterions (as well as 207 neutral chemicals for ensuring model 

consistency). The empirical correlation with Kow of the corresponding neutral species yielded 

better results for the prediction of anions (RMSE=0.79) than for cations (RMSE=1.14). 

Though describing most anions reasonably well, the lack of mechanistic basis and the poor 

performance for cations constrain the usage of this model. The pp-LFER model performs 

worse for ions (RMSE=1.01/1.04 for anions/cations) than for neutral chemicals (RMSE=0.53) 

and also strongly depends on the fitting procedure. The differently charged species 

preferentially sorb to different membrane depths, according to the COSMOmic calculations, 

and are therefore encompassed by a different physicochemical environment. This cannot be 

described with a single pp-LFER model. COSMOmic has the widest applicability domain; it 

was the only model applicable for multiply charged chemicals and gave the best results for 

anions (RMSE=0.66) and cations (RMSE=0.71). In terms of Klipw prediction of neutral 

chemicals, both the Kow based model (RMSE=0.52) as well as the pp-LFER model 

(RMSE=0.53) are computationally less demanding than COSMOmic (RMSE=0.74).  If any 
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mechanistic understanding of the partitioning process is desired, the pp-LFER approach will 

be the more suited one of both. 

Finally, the successful modeling of Klipw was applied to investigate the baseline toxicity 

concept. The two principal assumptions behind the baseline toxicity concept are a) that 

baseline toxicity can be described independently of the organism with only one partition 

coefficient (here the Klipw is taken as a surrogate for the partitioning between real biological 

membranes and water) and b) that a critical toxic concentration in the membrane causing a 

toxic effect is fairly independent of the nature of the chemical. First, the range of organism- 

and chemical independent critical membrane concentrations causing 50% mortality (𝑐mem
𝑡𝑜𝑥 ) 

was reevaluated based on a critical revision of a previously published toxicity dataset for 

neutral chemicals. In accordance to values reported in the literature a mean value for 𝑐mem
𝑡𝑜𝑥  of 

roughly 100 mmol/kg (membrane lipid) could be determined, based on pp-LFER predicted 

Klipw values, for a broad variety of 42 aquatic organisms (333 different chemicals), albeit with 

a considerable scatter. Then this concept was applied to permanently charged ionic liquids 

(ILs). Using the enhanced COSMOmic, Klipw of the anionic and cationic IL components was 

predicted. Doing so, 𝑐mem
𝑡𝑜𝑥 (𝑡𝑜𝑡𝑎𝑙) for the ILs could be estimated assuming independent, 

concentration additive contributions of the cationic and its respective anionic species. The 

resulting values for some of the toxicity data for ILs were consistent with the expected range 

for baseline toxicity for neutral chemicals while other values were consistently greater or 

smaller. Based on the calculation of toxic ratios, ILs could be identified that exert a specific 

mode of toxic action and experimental data could be detected that are most likely due to 

experimental artefacts. It has to be kept in mind though, that the use of nominal 

concentrations instead of freely-dissolved concentrations in the published literature hampers 

definite conclusions. 

The herein presented improvement of COSMOmic might help in future to not only further 

investigate the toxicity of charged chemicals but also their bioaccumulation potential. 



Abstract  V 

 

Moreover, the presented work is a first step to subsequently extend the  COSMOmic model to 

the calculation of membrane permeabilities of neutral and ionic chemicals, which will help to 

better understand toxicodynamic processes (such as ion trapping) as well as specific toxic 

modes of action (such as uncoupling). 
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Zusammenfassung 

Ionisierbare sowie permanent geladene anthropogene organische Chemikalien stellen eine 

zurzeit viel diskutierte Klasse von Schadstoffen dar. Da ionische organische Chemikalien 

andere physikochemische Eigenschaften als neutrale Chemikalien aufweisen, können 

weitläufig in der Literatur beschriebene empirische Modelle, die die Umweltverträglichkeit 

von Letzterem beschreiben, nicht eins-zu-eins übertragen werden. Aus diesem Grund ist es 

von zentraler Bedeutung mechanistisch fundierte Modelle zu entwickeln, die die relevanten 

physikochemischen Eigenschaften von Ionen erfassen. Dazu zählt insbesondere das 

Sorptionsverhalten. Die vorliegende Arbeit konzentrierte sich deshalb auf die Beschreibung 

der Verteilung von Ionen zwischen Phospholipid-Membranen und Wasser (Klipw), eines 

entscheidenden Deskriptors für umweltrelevante Eigenschaften wie Bioakkumulation und 

nichtspezifische Toxizität. 

In dieser Arbeit wurden drei Hauptziele verfolgt: i) Die Eignung der kommerziell 

erhältlichen Software COSMOmic (also COSMO-RS für Mizellen) zu testen, das 

Verteilungsverhalten organischer Ionen vorherzusagen. Das besagte Modell adaptiert das 

„conductor-like screening model for real solvents” (COSMO-RS) für anisotrope Phasen und 

kann, wie bereits gezeigt wurde, Klipw neutraler Chemikalien zuverlässig beschreiben. Für den 

Fall, dass COSMOmic sich als für Ionen ungeeignet herausstellt, sollte der Grund dafür 

gefunden und potentiell fehlende Parameter im Modell implementiert werden. ii) Die 

verbesserte Version von COSMOmic mit zwei konkurrierenden Modellen zur Vorhersage des 

Klipw von Ionen vergleichen: einerseits ein empirischer Ansatz, der auf dem Octanol-Wasser-

Verteilungskoeffizienten (Kow) beruht, sowie andererseits ein Ansatz, der auf der 

„polyparameter linear free energy relationship” (pp-LFER) aufbaut. Die Vorhersage von Klipw 

neutraler Chemikalien wurde in der Analyse mit berücksichtigt, um ein ganzheitlicheres Bild 

zu bekommen, das auch den rechnerischen Aufwand und die Konsistenz der einzelnen 
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Modelle mit erfasst. iii) Mit Hilfe des verlässlichsten Vorhersagemodells für Klipw das 

Konzept der minimal zu erwartenden Toxizität („baseline toxicity” oder auch narkotische 

Toxizität) für Ionen untersuchen. 

Die durch eine umfassende Literaturrecherche zusammengetragenen Klipw Werte wurden 

durch eigene Messungen ergänzt, um die Diversität des Datensatzes systematisch zu erhöhen. 

Die durchgeführten Experimente beruhten auf der Gleichgewichtsdialyse. Die resultierende 

Zusammenstellung von 51 experimentellen Klipw Werten für Anionen (von denen fünf selbst 

vermessen wurden) und 24 experimentellen Klipw Werten für Kationen zeigte, dass 

COSMOmic (Version 1401) den Klipw von Kationen systematisch überschätzt, während es den 

Klipw von Anionen systematisch unterschätzt. Um COSMOmic auch für ionische Chemikalien 

nutzbar zu machen, wurde das interne Membrandipolpotential mit experimentellen Klipw 

Werten von 161 neutralen und 75 ionischen Chemikalien empirisch optimiert und 

implementiert. Die so gewonnenen Potentialformen stimmen gut mit den experimentell 

bestimmten Potentialen aus der Literatur überein. Diese Weiterentwicklung des Modells hat 

keine negativen Effekte auf die Vorhersagegenauigkeit für neutrale Chemikalien (RMSE = 

0.62 log Einheiten), verbessert die Vorhersage für Ionen jedoch deutlich (RMSE = 0.70 log 

Einheiten). 

Die derart verbesserte Version von COSMOmic (Version 1501) wurde mit Hilfe eines 

nochmals erweiterten Datensatzes (56 Anionen, 36 Kationen, 2 divalente Kationen, 2 

Zwitterionen sowie 207 neutrale Chemikalien zur Überprüfung der Modellkohärenz) mit zwei 

anderen Modellen zur Vorhersage von Klipw Werten verglichen. Die empirische Korrelation 

mit dem Kow-Werten der korrespondierenden neutralen Chemikalien erbrachte bessere 

Ergebnisse für die Vorhersage der Anionen (RMSE=0.79) als der Kationen (RMSE=1.14). 

Obwohl die meisten Anionen hinreichend gut beschrieben wurden, ist eine allgemeine 

Anwendbarkeit des Modells für Anionen fragwürdig aufgrund der fehlenden mechanistischen 

Basis des Modells. Das pp-LFER Modell schneidet bei der Vorhersage der Ionen schlechter 
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ab (RMSE=1.01/1.04 für Anionen/Kationen) als bei der Vorhersage der neutralen 

Chemikalien und ist stark von der Art und Weise abhängig, wie während der 

Modellkalibration gefittet wird. Die verschieden geladenen Spezies sorbieren, laut 

COSMOmic Berechnung, vorzugsweise unterschiedlich tief in die Membran und befinden 

sich infolgedessen in unterschiedlichen physikochemischen Umgebungen. Dies kann nicht in 

einer einzigen pp-LFER-Gleichung erfasst werden. COSMOmic hat von den drei untersuchten 

Modellen den größten Anwendungsbereich. Es war das einzige Modell, das auch auf 

mehrfach geladene Chemikalien anwendbar ist, und gab die besten Resultate für Anionen 

(RMSE=0.66) sowie für Kationen (RMSE=0.71). Hinsichtlich der Klipw Vorhersage der 

neutralen Chemikalien sind sowohl das empirische, auf Kow beruhende Modell (RMSE=0.52) 

als auch das pp-LFER Modell (RMSE=0.53) weniger rechenintensiv als COSMOmic 

(RMSE=0.74).  Wenn man ein mechanistisches Verständnis für den Verteilungsprozess 

gewinnen möchte, dann ist der pp-LFER Ansatz der geeignetere von beiden. 

Schließlich wurde die erfolgreiche Modellierung von Klipw eingesetzt, um das Konzept der 

Basistoxizität näher zu untersuchen. Die zwei Grundannahmen hinter diesem Konzept sind a) 

die vom Organismus unabhängige Beschreibung der Basistoxizität mit nur einem 

Verteilungskoeffizienten (wobei der Klipw hier als Ersatz für echte biologische Membranen 

benutzt wird) und b) die Induktion eines toxischen Effekts durch eine gewisse kritische, von 

der Art der Chemikalie weitestgehend unabhängige Membrankonzentration. Hierzu wurde 

vorab die Bandbreite der organismus- und chemikalienunabhängigen kritischen 

Membrankonzentration, die eine 50%ige Mortalität verursacht, (𝑐mem
𝑡𝑜𝑥 ), auf Basis einer 

kritischen Revision eines bereits veröffentlichten Datensatzes zur Toxizität neutraler 

Chemikalien reevaluiert. Für eine Menge von 42 aquatischen Organismen konnte in 

Übereinstimmung mit den in der Literatur berichteten Werten ein Mittelwert für 𝑐mem
𝑡𝑜𝑥  von 

etwa 100 mmol/kg (Membranlipid) ermittelt werden (333 verschiedene Chemikalien), 

allerdings mit einer beträchtlichen Streuung. Anschließend wurde das Konzept auf permanent 
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geladene ionische Flüssigkeiten (ILs) angewandt. Die Klipw-Werte der anionischen und 

kationischen IL-Komponenten wurden mit dem verbesserten COSMOmic berechnet. Durch 

die Annahme unabhängiger, konzentrationsadditiver Beiträge der kationischen und der 

zugehörigen anionischen IL-Komponenten konnte 𝑐mem
𝑡𝑜𝑥 (𝑡𝑜𝑡𝑎𝑙) der ILs abgeschätzt werden. 

Die resultierenden Werte für einige der Toxizitätsdaten der ILs waren konsistent mit dem 

zuvor ermittelten Bereich, in dem narkotische Toxizität erwartet wird, während andere Werte 

durchweg höher oder auch niedriger waren als erwartet. Durch die Berechnung der „toxic 

ratios“ (d.h.,  dem Verhältnis aus vorhergesagter zu experimenteller Wasserkonzentration, die 

einen toxischen Effekt ausübt) konnten ILs identifiziert werden, die spezifisch toxisch sind. 

Darüber hinaus konnten experimentelle Datenpunkte herausgefiltert werden, die aller 

Wahrscheinlichkeit nach auf experimentellen Artefakten beruhen. Es muss hier allerdings 

darauf hingewiesen werden, dass die Verwendung nomineller wässriger Konzentrationen an 

Stelle von frei gelösten Konzentrationen in der Literatur die Möglichkeit einschränkt 

definitive Schlussfolgerungen zu treffen. 

Die in dieser Arbeit präsentierten Verbesserungen von COSMOmic könnten in Zukunft nicht 

nur dabei behilflich sein, die Toxizität ionischer Chemikalien weitergehend zu verstehen, 

sondern auch ihr Bioakkumulationsvermögen zu untersuchen. Darüber hinaus stellt die 

vorliegende Arbeit einen ersten Schritt zur sukzessiven Erweiterung von COSMOmic für die 

Berechnung von Membranpermeabilitäten dar. Dies kann helfen sowohl, toxikodynamische 

Prozesse (wie „ion trapping“) als auch spezifische toxische Effekte (wie Entkopplung) besser 

zu ergründen. 
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Summary  1 

1 Summary: Equilibrium Partitioning of Ionic Organic Chemicals in 

Environmental Systems: Experiments and Model Predictions 

1.1 Introduction 

There is an increasing interest in risk assessment for ionogenic organic chemicals from 

different stakeholders such as industry and authorities. Approximately 50% of the nearly 

150,000 preregistered compounds under REACH (the registration evaluation authorization 

and restriction of chemicals regulation of the European Union) are ionogenic, i.e., they are 

acids, bases or zwitterions (Franco et al., 2010). It is well known that ionized compounds 

show different thermodynamic properties and environmental behavior than their neutral 

analogs (Schwarzenbach et al., 2003). Therefore, the knowledge gathered around the 

description of neutral compounds cannot be transferred one-to-one to the description of 

charged compounds and considering the scarcity of physicochemical data of ions mechanistic 

models are of high interest.  

This work focuses on the partitioning of ions between phospholipid membrane and water 

(Kmw), which is an essential process for various fields of science ranging from biophysics 

(Honig et al., 1986) to pharmaceutics (Loidl-Stahlhofen et al., 2001) and environmental 

sciences (Endo et al., 2011). For the latter field, the Kmw can be considered as a key for 

understanding several major concerns: first, the Kmw is important for describing the 

bioaccumulation potential of charged compounds, because they are expected to accumulate 

mainly in anisotropic sorption phases like membrane lipids (Armitage et al., 2013) and 

proteins but not in storage lipids (Ng and Hungerbühler, 2013). Membrane lipids constitute 

e.g., around 70% (v/v) of red blood cells, liver, and kidneys on the dry volume basis and are 

therefore the major lipid component of several human tissues (Schmitt, 2008). Second, the 

Kmw is a key element for the description of toxicity: both baseline toxicity (narcosis) (Vaes et 
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al., 1998), as well as specific toxic modes of action like uncoupling (Escher et al., 1996; 

Spycher et al., 2008). 

Because the value of Kmw is difficult to determine experimentally for real biological 

membranes, the liposome-water partition coefficient (Klipw) is used to approximate Kmw 

(Escher and Schwarzenbach, 1996). Liposomes are artificial lipid bilayer vesicles (made of 

phosphatidylcholine in this work) and can be considered the most realistic artificial model 

system to mimic anisotropic biological membranes (although lacking membrane proteins and 

cholesterol etc.). This applies for both the Klipw of neutral and in particular for the Klipw of 

ionic species (Escher and Sigg, 2004). As long as the liposomes are in the liquid crystalline 

state (i.e., above their transition temperature), the Klipw of different phosphatidylcholines 

typically vary by only ±0.2 log units, which is within the range of the typical experimental 

error (Endo et al., 2011). 

1.1.1 What Makes Liposomes Special Compared to Bulk Solvents 

Liposomes are artificial lipid bilayer vesicles of defined composition and size and have 

been used as an experimental system approximating cell membranes since around 1960 

(Bangham et al., 1965). They are now well-established because they proved to be easy-to-

handle and robust. Typically, liposomes consist of zwitterionic phospholipids with a 

negatively charged phosphate group and a positively charged choline structure; the former is 

esterified with two long-chain fatty acids. From their composition and structure, it appears 

obvious that liposomes are a much more realistic experimental approximation of cell 

membranes than any bulk organic solvent (Escher and Sigg, 2004; Krämer and Wunderli-

Allenspach, 2001; Mouritsen et al., 2001). 

There are major differences between liposomes and bulk organic solvents, and with regard 

to the partitioning of ions, two structural differences are noteworthy: the much larger 

surface-to-volume ratio of liposomes and the ordered structure which results in an internal 

dipole potential (Ψd) of lipid bilayers. As a consequence of the high surface-to-volume ratio 
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(with a typical mean diameter of 0.27 μm for liposomes) (Olson et al., 1979), sorption of 

charged species can be electrically neutralized by counterions from the electrolyte solution 

(diffuse double layer), while bulk media have to maintain electrical neutrality either by the 

partitioning of ion pairs or by the partitioning of free ions together with counterions. This 

explains the high sensitivity of measured octanol-water partition coefficient (Kow) of an ionic 

chemical to the ionic strength while Klipw data show very little ionic-strength dependence 

(Escher and Sigg, 2004), as further discussed below. The internal dipole potential can be 

caused by several factors: charge separation in the head groups (this is not a necessary 

condition as also neutral glycerylmonooleate bilayers reveal a positive membrane dipole 

(Clarke, 2001)), alignment of dipolar residues of the lipids, and/or oriented water dipoles in 

the region between the aqueous phases and the hydrocarbon-like interior of the membrane 

(Clarke, 2001; Wang, 2012). The height of the hill-shaped Ψd in the center of zwitterionic 

phosphatidylcholine bilayers has been indirectly determined with several experimental 

approaches and ranges from 227 mV for DPPC bilayers (Wang, 2012) to 280 mV for egg 

phosphatidylcholine bilayers (Franklin and Cafiso, 1993), positive in the membrane interior.  

1.1.2 Problems Arising When Octanol is Taken as a Surrogate for Anisotropic 

Membranes 

Traditionally, membrane affinity is approximated by the partitioning between a bulk 

organic solvent like octanol and water (Mouritsen et al., 2001), implying that the Kow 

correlates well with that of the membrane-water partition coefficient of biological 

membranes. And indeed, in the case of neutral chemicals, log Klipw, and log Kow agree fairly 

well with each other. In the most comprehensive collection of publicly available experimental 

data, log Klipw values of 156 neutral compounds were compared with the respective 

experimental log Kow values, and a correlation coefficient R
2
 of 0.95 and a standard deviation 

of 0.43 log units were observed (Endo et al., 2011). The slope (1.01) and the intercept (0.12) 

of the regression indicate that the two partition coefficients are generally in agreement, 
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although mechanistically it is not fully clear why a homogenous solvent phase can emulate a 

heterogeneous structured lipid bilayer (Endo et al., 2011). One explanation might be that 

water-saturated octanol is not a completely isotropic phase, but comprises water clusters 

enclosed by about 16 octanol molecules (Franks et al., 1993). This situation seems to mimic 

most of the average interaction properties of real lipid bilayer membranes for neutral 

compounds (Endo et al., 2011).  

For charged chemicals, however, the situation is completely different: first, the Kow values 

of an ionic species strongly depend on the type and concentration of the counterions present 

(Escher and Schwarzenbach, 1996; Escher and Sigg, 2004), and second, the Klipw values of 

ions are up to several orders of magnitude higher than the respective Kow values. These 

differences in the partition behavior are due to the requirement for electroneutrality of both 

phases. When an ion changes from one bulk phase (e.g., water) to the other (e.g., octanol), it 

has to be accompanied by a counter ion either as an ion pair or through a separate ion. 

Depending on the salt concentration (i.e., the concentration of the counter ion), the Kow of an 

ionized chemical can therefore differ by more than two orders of magnitude (Escher and Sigg, 

2004). Hence, a singly reported Dow (pH) value (the Dow is often reported for ionizable 

chemicals and is the sum of the neutral fraction times the respective Kow plus the ionized 

fraction times the respective Kow) is of very limited use for any further modelling, especially 

when no detailed experimental conditions are given (Jafvert et al., 1990; Johnson and Westall, 

1990). In contrast, Klipw values of ions are fairly independent of the salt concentration, 

because they do not necessarily partition as ion pairs between water and membrane, but are 

electronically neutralized by counterions located at the membrane water interface (Escher et 

al., 2000), as also outlined above. Additional limitations to the comparison between Dow and 

Klipw values of ions are imposed by surface active charged chemicals like surfactants (e.g. 

linear alkyl sulfonates), which accumulate at the octanol-water interface. Furthermore, 

surfactants can form co-micelles with octanol (even below their own critical micelle 
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concentration), which increases solubility reciprocally and again leads to a concentration 

dependent Dow (Müller et al., 1999; Schwarzenbach et al., 2003).  

Given the known discrepancies between Dow and Klipw outlined above it seems obvious that 

experimentally derived Dow are rather operationally defined values than thermodynamic 

partition constants and should therefore not be used to model Klipw values of ions. 

Nevertheless, a log Dow (pH 7) threshold of 4.5 is still used as a screening criterion for 

potential bioaccumulation for all chemicals in the REACH guidelines (ECHA, 2012), partly 

due to the lack of other suitable models. However, it has been repeatedly shown that the Klipw 

is a more suitable descriptor for bioaccumulation than Kow or Dow (Endo et al., 2011; Müller et 

al., 1999; van der Heijden and Jonker, 2009) and that an experimental Dow of an ionogenic 

chemical underestimates the partitioning into real membranes (Avdeef et al., 1998; Escher 

and Sigg, 2004). Potentially bioaccumulative compounds might therefore not be detected with 

the current thresholds and better Klipw prediction models for ions are necessary. Moreover, an 

inappropriate characterization of bioaccumulation potential of ions has implications for risk 

assessment, too, when body burdens are estimated on the basis of external concentrations. 

Due to problems arising with the operational nature of Dow, a lot of work has been 

conducted in the literature that uses the Kow of neutral chemicals (being a real thermodynamic 

property). In a first step the Klipw of the of neutral chemicals is modeled and in a second step 

the Klipw of the corresponding charged species (Escher and Sigg, 2004). This approach has 

been used successfully in a number of toxicological studies (Escher et al., 2011; Tang et al., 

2013), but it inherently is not feasible in the case of permanently charged organic compounds 

which do not have a neutral analog to compare with. It is also unclear how, or whether, this 

approach could be used for polyvalent ions or for zwitterions due to a lack of experimental 

data that could be used for validation. 
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1.1.3 Difficulties in the Modelling of Anisotropic Membranes 

One approach to predict Klipw based on a molecular description of the membrane is 

molecular dynamics (MD) simulation of lipid bilayers in the presence of solutes. MD 

simulations can reproduce a large number of effects and properties related to the membrane-

solute interactions and can also yield an internal membrane dipole potential distribution 

(Ingram et al., 2013; Paloncýová et al., 2014a; Wang, 2012). However, no sufficient number 

of studies could be found predicting absolute values of Klipw for lipophilic ions to evaluate the 

accuracy of predictions based on MD simulation. This may be due to the fact that the 

computational costs for MD simulations of membranes including a solute at a specific 

position are extremely high (Paloncýová et al., 2014b). A computationally much more 

efficient alternative to such MD simulations has been proposed by Klamt et al. in the form of 

the COSMOmic (i.e., COSMO-RS for MICelles) approach (Klamt et al., 2008). COSMOmic 

requires as input the structural composition of a micelle or membrane, usually derived from 

one or a series of snapshots from a MD simulation of the respective micellar system. The 

micelle, i.e., a phospholipid membrane in this work, is then virtually split into layers of 

approximately 1 Å thickness, and the probability to find each of the atoms of the phospholipid 

and of water in each of the layers is derived from analyzing the MD snapshots. DFT/COSMO 

calculations are performed in order to yield the surface polarities, i.e., the conductor surface 

polarization charge densities  on the molecular and thus also on the atomic surfaces of the 

phospholipid and water molecules. Combining these with the atom distribution taken from 

MD simulations leads to a polarity profile, i.e., a -profile, for each layer. Then COSMO-RS 

(i.e., COnductor-like Screening Method for Real Solvents) in its COSMOtherm 

implementation is used in order to derive the affinity of each layer for a certain molecular 

surface polarity , shortly called the -potential of each layer. With this information, the free 

energy of any solute, which is also represented by its DFT/COSMO surface polarization 

charge densities, can be evaluated at each position and orientation in the membrane system. 
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An integration over all possible orientations for each position leads to a free energy profile of 

the solute throughout the membrane system and finally to predictions of the membrane-water 

partition coefficient. The COSMOmic approach has recently been demonstrated by two 

independent groups to yield results of comparable, if not slightly superior, quality, with 

respect to the distribution of neutral solutes in phospholipid membrane systems (Ingram et al., 

2013; Jakobtorweihen et al., 2014; Paloncýová et al., 2014a), but at computational costs 

which are several orders of magnitude lower than for the respective MD simulations (using 

the CHARMM (Ingram et al., 2013; Jakobtorweihen et al., 2014) and Berger (Ingram et al., 

2013; Paloncýová et al., 2014a) lipid force field). While, by 2014, the calculation of a free 

energy profile with COSMOmic takes a few minutes on a single core (given that all input files 

are ready to use), the same calculation conducted as MD simulation would take 15 to 48 h on 

supercomputers with more than 100 cores (Jakobtorweihen et al., 2014). COSMOmic has 

previously been used tentatively to predict partition coefficients and free energy profiles of 

anions (Spycher et al., 2008). For the studied 35 anions a reasonably low root-mean-square 

error (RMSE) was observed, but it was necessary to empirically fit the predicted values to 

experimental data, as apparently some relevant mechanism for the prediction of ions was not 

accounted for yet (Spycher et al., 2008). 

1.1.4 Environmentally Relevant Application of Klipw Predictions 

The high number of ionizable or even permanently charged organic chemicals potentially 

released into the environment is a challenge for ecotoxicology (Franco et al., 2010). For 

neutral chemicals the minimal level of nonspecific toxicity is referred to as narcosis or, in the 

field of environmental science, baseline toxicity (Escher and Schwarzenbach, 2002; Wezel 

and Opperhuizen, 1995). The baseline toxicity concept states that nonspecific toxicity occurs 

at a consistent range of membrane concentrations, independent of both the chemical as well as 

the (aquatic) organism, although the exact mechanisms is not yet fully clarified. Underlining 

the non-specificity, baseline toxicity was found to act via concentration addition for mixtures 
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(Deneer et al., 1988). It is likely that the chemicals sorbing to the membrane change its 

properties, e.g. its fluidity and permeability, to such a degree that its (biological) function is 

disturbed (Wezel and Opperhuizen, 1995). A different theory explains baseline toxicity via 

specific interactions of molecules with sensitive proteins in the central nervous system 

(Franks and Lieb, 1990). However, it was also demonstrated that baseline toxicants accelerate 

the decay of the membrane potential after a very short pulse of light that induced a certain 

membrane potential in an isolated photosynthetic membrane vesicle originating from a 

photosynthetic bacterium  (Escher et al., 2002), which rather supports the explanation of 

baseline toxicity by non-specific disturbance of the membrane structure and functioning. 

Vaes et al. showed that there is no difference in the baseline toxicity between polar and 

apolar neutral organic chemicals, when the Klipw is used as a descriptor instead of the Kow 

(Vaes et al., 1998). This finding has been corroborated later (Escher and Hermens, 2002; 

Escher and Schwarzenbach, 2002), albeit with a relatively limited set of chemicals. As 

outlined above, the Klipw acts as a surrogate for the (biological) membrane-water partition 

coefficient Kmw. More recent studies substantiate these earlier findings (Endo, 2016; Escher et 

al., 2017; McCarty et al., 2013). Along the same line of thoughts are also earlier concepts like 

the critical body residue concept (Endo, 2016; McCarty and Mackay, 1993), or the target lipid 

model (TLM), based on a critical body burden (Kipka and Di Toro, 2009).  

A different access to explain non-specific toxicity has been put forward recently with the 

activity approach (Thomas et al., 2015), which has been criticized (Goss and Endo, 2016) – 

partly because it is intrinsically not applicable to ionic chemicals. Moreover, the assumption 

of a critical membrane threshold concentration is principally not consistent with a critical 

membrane activity. Both concepts cannot be correct at the same time. 
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1.2 Objective of this Work 

This work had three main goals as follows: 

1.2.1 Calibrating COSMOmic for the Use with Ions 

In order to calibrate COSMOmic for the use with ions an exhaustive compilation of 

published Klipw data of organic anions and cations was aspired as well as an appraisal of the of 

the existing data’s quality. In order to systematically increase data diversity, own 

measurements were conducted, leading to a more thorough validation of the modelling 

approaches. The goal was to apply the existing COSMOmic to the available Klipw data, 

identify the areas where adaptations are needed, and refine the model in accordance. 

Accordingly, a membrane potential was newly implemented in COSMOmic to achieve an 

improved computation of interaction energy between phospholipid membrane and ions. 

Finally, the refined COSMOmic model was used for calculations of Klipw of anionic, cationic 

and neutral species to evaluate the performance of the model.   

1.2.2 Comparison with Two Other Models Predicting Klipw 

Next, the refined COSMOmic model was compared with two other models for the 

prediction of Klipw of charged compounds, namely an empirical correlation approach based on 

Kow and the pp-LFER approach (i.e., polyparameter linear free energy relationship). The focus 

is on the description of charged compounds, but in order to scrutinize also model consistency, 

the prediction quality of the different models for neutral chemicals is as well included in the 

discussion. In order to address the paucity of experimentally derived Klipw values, it is not 

only assessed which model gives the best results, but it is also discussed which model 

complexity might be most suitable depending on the prediction accuracy needed. 
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1.2.3 Application of Predicted Partition Coefficients on Baseline Toxicity Concept for 

Ions 

Finally, the Klipw values predicted by COSMOmic were used to address the question 

whether the baseline toxicity concept is also applicable for ionic chemicals. In order to 

prevent additional complexity in the modelling of toxicity for ions such as ion trapping 

(further discussed below) the focus was on permanently charged ionic liquids (ILs). In the 

literature a multitude of quantitative structure property relationship (QSPR) models can be 

found that describe IL toxicity for different species (Thuy Pham et al., 2010), but after 

extensive literature search no QSPR could be found that is strictly examining whether the 

experimental toxicity data of ILs can be described as baseline toxicity. This might well be due 

to the fact that the partitioning of organic ions to membranes could not be reliable predicted 

before the model improvements presented in this work.  

Further the baseline toxicity concept was used to shed light on those ILs that are most 

likely specifically acting toxicants and those that are prone to experimental artefacts. The 

critical membrane concentration of roughly 100 mmol/kg (membrane lipid), which is the 

fundament of this investigation, is well known in the literature but tested only for a limited 

number of organisms (e.g., (Escher and Schwarzenbach, 2002) and literature cited above). 

Therefore the investigation is started out by resuming the baseline toxicity for neutral 

chemicals, in order to ensure the broad applicability domain of the concept before applying it 

to charged chemicals. This exercise should help to assess the uncertainties within the baseline 

toxicity concept and to interpret the results when the concept is expanded to ILs. 
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1.3 Prediction of Phospholipid-Water Partition Coefficients of Ionic Organic Chemicals 

using the Mechanistic Model COSMOmic 

1.3.1 Materials and Methods 

1.3.1.1 Determination of Membrane-Water Distribution Coefficients 

All liposome-water partition coefficients were determined at 20 to 22°C via equilibrium 

dialysis experiments and HPLC analysis. The experimental details are described in the 

supplementary information, SI-1, and thus the description here is brief. Salt concentration 

(100 mM KCl) was constant for all experiments. Buffer (MOPS, pKa=7.2, or CHES, pKa=9.3) 

was chosen so that the pH in the experiments was at least 3 pH units higher than the pKa of 

the investigated chemicals (to be sure that only the anionic species is considered). POPC 

liposomes were prepared with a membrane extruder (Lipex Biomembranes, Vancouver, BC, 

Canada, with Whatman polycarbonate filter membrane, pore size 0.1 µm) as described 

elsewhere (Kaiser and Escher, 2006). Custom-made glass dialysis cells consist of two 

chambers that were separated by a dialysis membrane made of regenerated cellulose with a 

cutoff of 10,000 to 20,000 Da (Thomapor, Reichelt Chemie Technik, Heidelberg). One 

chamber was filled with buffer solution and the other with liposome suspension. The latter 

received the test anion. The liposome free side of every dialysis cell was sampled twice (i.e, 

on the fourth and sixth day), and the samples were subjected to the HPLC analysis. Mass 

recovery of every chemical was tested accordingly in control experiments without liposome 

where both dialysis chambers were filled with buffer solution (revealing that losses were less 

than 5%). Each dialysis cell experiment was conducted at least in triplicates. All experiments 

were conducted with a liposome load below 0.08 mol(substance)/mol(lipid), which has been 

shown to be within the linear part of the sorption isotherm (Escher et al., 2000). In order to 

cross-check the experimental setup for consistency, Klipw of 2,3,4,6-tetrachlorophenol was 

measured. The anionic species of this chemical has a reported log Klipw of 3.46 (Escher et al., 

2000), while in this work a log Klipw of 3.52 was determined. 
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1.3.1.2 Data Collection and Evaluation 

All data collected from the literature were measured with phosphatidylcholine liposome. 

Overall neutrality of the phosphatidylcholine membrane as a sorption phase is important to 

note, since a charged membrane would have significant impact on the sorption of charged 

chemicals (Thomae et al., 2007). The experiments in the literature have been conducted at 

different ionic strengths, which should not be crucial for the modelling of ion partitioning 

since the ionic strength does not significantly influence the membrane partition coefficients of 

ionic compounds (Escher and Sigg, 2004). Only partition coefficients measured above the 

main phase transition temperature of the membrane were considered, ensuring that the 

membrane is in its natural condition, the liquid crystalline state. The state of the membrane 

has been shown to be an essential parameter for the partition coefficient of neutral chemicals 

(van Wezel et al., 1996). 

All experiments considered here were conducted with unilamellar vesicles, preferably using 

the equilibrium dialysis method, but also other experimental methods are considered (see SI-1 

for details). This results in a total of 51 experimental values for anions (from which five are 

own measurements of this work) and 24 experimental values for cations. When multiple 

experimental data for the same ion were found, the arithmetic mean of the log Klipw values 

was used (see SI-1). The difference of the single reported values from the corresponding mean 

value was between 0.02 and 0.21 log units for the anions (with a total of six repeatedly 

measured ions) and 0.03 to 0.28 log units for the cations (with a total of four repeatedly 

measured ions), with the exception of two reported values for atenolol that differ by 0.50 log 

units from their mean. 

1.3.2 Theoretical section 

Credit has to be given mainly to Simon Spycher for the idea that the unsatisfying Klipw 

predictions (further discussed below) of ions by the originally published version of 

COSMOmic (Klamt et al., 2008) is due to the missing membrane potential. Andreas Klamt 
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and Uwe Huniar deduced how the membrane potential could best be integrated in the model 

and Larissa Pohler programmed the optimization algorithm deriving the adjustable parameters 

for the membrane potential and implemented this into the new version of COSMOmic as 

described in the following subsections. 

1.3.2.1 COSMO-RS and COSMOmic 

To run COSMOmic, as outlined in the Introduction, a detailed membrane structure is 

required which is taken out of MD simulations. Care was taken to use time averaged atomic 

distributions which are furthermore centered in the middle of the simulation box 

(Jakobtorweihen et al., 2013). The atom distributions were kindly simulated (CHARMM36 

force field) and provided by Sven Jakobtorweihen (Jakobtorweihen et al., 2013). In addition, 

TZVP (Becke, 1988; Eichkorn et al., 1995; Perdew, 1986; Schäfer et al., 1994) cosmo files 

are needed for all involved relevant conformers of all the solutes in the partitioning process. 

Therefore, COSMOconfX13 (version 3.0, COSMOlogic) templates, based on Turbomole 

version 6.5 (Ahlrichs et al., 2015), have been used for full energy minimization and 

conformer generation (Vainio and Johnson, 2007). Each molecule has at least one and a 

maximum of 10 conformers (the investigated molecules in this work had on average 3.14 

conformers). 

1.3.2.2 Estimation of Membrane Potentials 

In addition to the depiction of the membrane anisotropy, the membrane dipole potential 

may need to be described in the model, when the model is used for the prediction of ions. 

There is no direct experimental method to measure the membrane dipole potential, but several 

indirect approaches allow the quantification of Ψd for different types of bilayers. For egg 

phosphatidylcholine bilayer vesicles the values in the membrane interior range from 0.24 V 

(deduced with a combination of kinetic and binding data of lipophilic ions) (Flewelling and 

Hubbell, 1986a) to 0.28 V (electron paramagnetic resonance spectroscopy in combination 
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with nitroxide spin-labeled hydrophobic ions) (Franklin and Cafiso, 1993). For DPPC bilayers 

(dipalmitoylphosphatidylcholine), two values of 0.227 and 0.24 V are given in the review of 

Wang (Wang, 2012). 

We initially tried to derive a profile of Ψd from the available MD simulations. Using the 

fundamental equations of electrostatics, the electrostatic potential of a planar membrane can 

either be derived from the charge density in each layer:  

Ѱ𝑑
𝑐 (𝑧) =

1

4𝜋𝜀0
∫ 𝑑𝑢
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0
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where (v) is the charge density (charge per area) in layer v, or from the dipole moment 

density: 
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where D(u) is the z-component of the dipole moment density in membrane layer u. Here 

)(zc

d is the value of the dipole potential with respect to the center of the membrane. The 

default definition of the dipole potential )(zd with respect to the bulk water phase can easily 

be found from )()()(  c

d

c

dd zz . Using Eq. 1 together with the DMPC (1,2-

dimyristoyl-sn-glycero-3-phosphocholine) snapshot from (Gurtovenko et al., 2004), which 

was used for predicting Klipw of neutral chemicals previously (Klamt et al., 2008), and with 

the partial charges applied in the respective MD simulation results in a potential which is by 

0.99 V higher at the center of the membrane than in water. This value is too high by more 

than a factor 3 compared to the experimentally expected value of ~0.3 V. The value of 0.99 V 

originates from a contribution of −4.55 V caused by the charges on the DMPC atoms and an 

overcompensation of 5.55 V by the water molecules. Thus, the MD-derived membrane 

potential is the difference of two large numbers and is highly sensitive to any inaccuracy in 

the potential contributions from both molecules. It is furthermore surprising and 

counterintuitive that the net potential is opposite to the potential generated by the 

phospholipid molecules themselves. If we calculate the membrane potential using partial 
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atomic charges from BP-TZVP-COSMO files instead of the charges used in the MD force 

field, then the water molecules produce a potential of 5.2 V, i.e., very similar to the result 

from the MD charges, but the DMPC contribution is only −0.6 V, compared to −4.55 V using 

the MD charges. This demonstrates that two plausible representations of the electrostatics of 

the phospholipid molecules can result in very large differences in the membrane potential, 

suggesting general difficulty to obtain a precise consensus for the potential distribution from 

MD simulations.  

Wang reviewed the membrane potentials from 10 different MD simulations of phospolipid 

bilayers reported in the literature, all using different combinations of force-fields, partial 

charges, and electrostatic summation techniques (Wang, 2012). The three DMPC simulations 

had values of 0.9, 0.9, and 0.77 V, while all results (including diphytanoyl-, dipalmitoyl-, and 

diphytanylphosphatidylcholine) range from 0.3 to 1.0 V, with a mean value of 0.7 V. This 

means that, even if optimistically analyzed, the variability of the membrane potentials derived 

from MD simulations is at least 0.2 V, and they seem to have the tendency to be about 0.4 V 

higher than the experimental value of ~0.3 V (Clarke, 2001). Wang mentions one promising 

MD simulation using polarizable force fields (Chowdhary et al., 2013; Harder et al., 2009), 

yielding dipole potentials closer to the experimental estimate, but it is at present not clear 

whether such force fields are generally more accurate. 

At this point, it may be worth noting the theoretical maximum of the membrane potential 

that a DMPC double layer with a typical density of one DMPC molecule per 33 Å³ would 

produce, if all zwitterionic dipoles pointed outward. Simple calculus yields a dipole moment 

of 25 D for the stretched zwitterion and that would yield a membrane potential of 

roughly -17 V. In addition, each DMPC molecule has the dipole moments of the two ester 

groups, each being in the order of 2.5 D, which could add positively or negatively to the 

zwitterion dipoles. Obviously, such an arrangement would have a completely unrealistic high 

electrostatic energy, and thus the nature and the thermodynamic equilibration of the MD 
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simulation always care for a strong reduction of the average net dipole in DMPC membranes. 

As a result, the zwitterionic dipoles seem to be orientated essentially parallel to the surface. 

Given the enormous maximum value of 17 V, it is already a remarkable achievement that the 

different MD simulations seem to agree within 0.2 V in their calculations of the membrane 

potential, i.e., within ~1.2% of the theoretical maximum value, and that they deviate from the 

experimental values only by about 0.4 to 0.7 V, i.e., by 2.5% to 4%.  

Nevertheless, despite this remarkable success, an error of 0.4 V still causes a shift of the 

energy of a singly charged ion by almost 10 kcal/mol and thus a shift of Klipw by almost 7 log 

units. This means that, for the prediction of Klipw with a desired minimum accuracy of say 

0.7 log units (which is a typical RMSE of COSMO-RS predictions for homogeneous phases) 

(Stenzel et al., 2014), 4 even 10 times higher accuracy in the description of the potential are 

needed; i.e., only tolerate errors of 0.04 V can be tolerated, which corresponds to 0.25% of the 

theoretical maximum of the DMPC potential. 

1.3.2.3 Optimization of a Model Membrane Potential 

Given the large uncertainties involved in the derivation of the membrane dipole potential 

from MD simulations, we decided to use an empirical model potential with a small number of 

adjustable parameters. In order to achieve a physically most plausible shape of the membrane 

potential, we assume that the net dipole density of the membrane and of water can be 

represented by one or two Gauss distributions. As a result, the shape of the model potential 

(being the integral over dipole densities) is either a Gaussian-type error function or the sum of 

two such functions. Each Gaussian has three adjustable parameters: the height h, the center 

position p, and the width w. 

𝐷(𝑢) = ℎ exp {− (
𝑥−𝑝

𝑤
)

2

}        (3) 

In the optimization algorithm, we iteratively searched for the values of these three or six 

parameters (h, p and w) that minimize the error in the prediction of the 75 ionic and 161 
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neutral Klipw values. As shown in Fig. 1, this approach leads to a plateau value in the 

membrane center when using one Gaussian distribution (red and green curves). With two 

Gaussian distributions this approach even allows for membrane potentials which may have a 

minimum or maximum in the head group region (dotted blue curve).  

The robustness of the empirical fitting approach for adjusting the internal membrane 

potential Ψd with experimental Klipw values was evaluated by dividing the data set into a 

training and a test set. Both ionic and neutral chemicals were ordered by their Klipw within 

chemical classes and then distributed roughly in a ratio of 2:1. Ionic chemicals were 

categorized into a training set of 50 and a test set of 25 compounds (see SI-1), neutral 

compounds into a training set of 105, and a test set of 56 compounds (Klamt et al., 2008). The 

161 neutral Klipw values from the original publication (Klamt et al., 2008) were included in the 

process of adjusting Ψd, in order to check whether the adaptions of the model made with the 

addition of a membrane dipole affect the prediction accuracy for neutral compounds. The 

experimental values are averaged experimental Klipw for temperatures up to 40°C and were 

taken from (Endo et al., 2011). They should therefore better represent the currently available 

data than the ones used in the original COSMOmic publication (Klamt et al., 2008).  
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Figure 1. Three different profiles of the adjustable membrane potential for two different 

bilayers (DMPC and POPC) resulting with different height h, position p, and width w 

parameters of one (solid red and dashed green) and two (dotted blue) Gaussian-type dipole 

moment distributions. The depth is given along the membrane normal, starting in the 

membrane interior. 

1.3.3 Results and Discussion 

1.3.3.1 Predicting Klipw Using COSMO-RS with Phosphatidylcholine Lipid as Bulk 

Solvent 

For a first comparison between isotropic and anisotropic solvents as depicted in 

COSMOmic, the partitioning from water to DMPC as bulk solvent were calculated. As shown 

before (Klamt et al., 2008), simple neutral compounds are surprisingly well predicted by 

considering phospholipid as bulk solvent (RMSE = 0.70 and n = 161). Only for some 

bifunctional chemicals the consideration of the bilayered structure plays a decisive role (Endo 

et al., 2011). In contrast to these findings for neutral chemicals, the prediction of anions into 

bulk DMPC solvent in this work is 2.4 to 15.7 log units lower than the experimental Klipw 

values (resulting in RMSE = 9.51 and n = 51), while the cations are predicted 4.3 to 9.6 log 
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units too high (RMSE = 6.22, n = 24). Using a bulk solvent of POPC lipid for the prediction 

gives the same picture.  

As expected, bulk solvent lipids are not anywhere near to being an appropriate model for 

membranes when it comes to the prediction of ion partitioning. While anisotropy can be 

neglected for most neutral compounds – being one reason for the good correlation between 

their Kow and Klipw – this simplification is not suitable for ions. Here, it seems that the 

orientation and location in the membrane are of crucial importance when it comes to the 

description of the sorption behavior of ions. 

1.3.3.2 Predicting Klipw using COSMOmic without considering the membrane potential 

Ψd  

In a next step, the partition coefficients were calculated using COSMOmic but without 

accounting for the internal dipole potential. Calculations were made using trajectory averaged 

membrane structures over 80 ns simulation time with 128 DMPC and 3919 water molecules 

(which corresponds to a mole fraction of 0.032 and 0.968, respectively) (Jakobtorweihen et 

al., 2013). The simulation box was split into 30 layers giving a resolution of 1.13 Å for each 

layer. For every chemical 162 different orientations in each layer were calculated (applying 

more orientations changes the calculated log Klipw values only insignificantly: with 1082 

orientations the maximum deviation is 0.006%). Predicting Klipw of the above introduced 51 

anions, 24 cations, and 161 neutral compounds using COSMOmic as introduced previously 

(Klamt et al., 2008) – i.e., not considering the membrane potential – results in Fig. 2. The 

calculation without considering the membrane dipole potential leads to big systematic 

deviations for ionic chemicals but not for neutral chemicals.  
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Figure 2. Experimental Klipw of 161 neutral (black crosses), 51 anionic (blue circles), and 24 

cationic (red triangles) chemicals into a DMPC membrane against predicted values. The 

COSMOmic calculation here does not consider the membrane potential. The identity line (1:1 

line) is indicated as solid line; deviations of ±1 log units are shown as dotted lines. For the 

dashed regression lines for neutral compounds, anions, and cations a least-squares regression 

has been used. 

Plot of the -profile and the -potential reveal the anisotropic nature of the DMPC bilayer 

used for the calculations as shown in Fig. 3. The probability distribution for the headgroup 

phosphorous and nitrogen atoms peaks at a distance of 18.7 and 19.8 Å, respectively, from the 

bilayer center, while the outermost bulk water layer is at 33.4 Å. 
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Figure 3. The -profile (left) and -potential (right) of the DMPC-water system used for 

models M2, 2a, and 3 as summarized in Table 2. These figures show the slicing of the 

membrane into consecutive liquids as done in COSMOmic (here no membrane dipole 

potential is additionally accounted for yet). It can be seen how the DMPC lipids span from the 

first layer (representing the membrane bilayer center) to layer 27 (at 30 Å), where the bulk 

water phase begins. Each layer has a thickness of 1.13 Å. 

The neutral chemicals are as well predicted as expected. A linear equation of the regression 

line appears as follows: 

log Klipw(exp) = 1.02 (±0.04) * log KDMPC /w(calc) – 0.37 (±0.13); RMSE = 0.70, n = 161 

Note that assuming errors in both experimental and calculated values in the regression 

analysis would result in slightly different slopes and intercepts. The predictions of the ions 

give a more heterogeneous picture. While all of the Klipw values for cations are 0.9 to 2.3 log 

units overestimated, most of the Klipw values for anions are underestimated (up to 1.9 log 

units) for the DMPC membrane shown in Fig. 2. Using the POPC membrane yields the same 

result with marginally different numbers. Fitting a least-squares regression through both 

differently charged groups separately gives the following equations for the DMPC membrane: 

log Klipw(exp) = 0.49 (±0.12) * log KDMPC /w(calc, cation) - 0.83 (±0.76); RMSE = 0.68, n = 24  

log Klipw(exp) = 1.84 (±0.15) * log KDMPC /w(calc, anion) - 1.34 (±0.33); RMSE = 0.55, n = 51  
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Here, the RMSEs are given with respect to the regression lines. One could use the 

regression equations for semiempirical predictions as it has been done previously (Spycher et 

al., 2008). However, this would not be a satisfying approach, especially when considering the 

initial aspiration for a mechanistic model that is not limited to any kind of compound class or 

charge. Fortunately, the improvements presented in the next chapter render a purely empirical 

fit based on a simple regression equation unnecessary. 

1.3.3.3 Using COSMOmic with an Optimized Membrane Potential Ψd 

Empirical membrane potentials have been optimized as outlined above for different 

membrane types (DMPC and POPC) and different salt concentrations (0 and 0.1 M KCl). The 

center positions, heights, and widths as defined in Eq. 3 of the resulting Gauss curves are 

summarized in Table 1.  

 

Table 1. Comparison of position, width and height of Ψd derived for different membrane 

structures based on time-averaged atom distributions. Center position p, height h, and width w 

are the three adjustable parameters in the Gauss-type error function as defined above. For 

each model given here, all 161 Klipw values for neutral and 75 values for ionic compounds 

have been used, except for model M2a, which has its potential optimized based on 56 neutral 

and 27 ionic Klipw values. 

number model center position p 

[Å] 

height h  [mV] width w [Å] 

M1 POPC (1 Gauss) 17.891 320 7.138 

M2 DMPC (1 Gauss) 17.080 326 8.866 

M2a DMPC training (1 Gauss) 15.948 357 9.332 

M3 DMPC (2 Gauss curves) Pos1: 17.131 

Pos2: 17.663 

Height1: -996 

Height2: 1296 

Width1: 0.198 

Width2: 2.813 

M4 DMPC 0.1 M KCl (1 Gauss) 16.258 340 10.796 

 

There are only marginal differences in height and position of Ψd for all optimization 

runs with one Gaussian. The width differs slightly for the MD simulation including salt 

(0.1 M KCl), but this hardly has an influence on the predictive power as shown in Table 2. 

For the DMPC membrane, two different potentials have been optimized based on one and two 
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Gaussian distributions (i.e., three and six adjustable parameters, respectively). The double 

Gaussian model did perform only marginally better than the single Gaussian distribution. 

Furthermore, the extreme fluctuations of the dipole potential fitted based on two Gaussians 

appear to be rather unlikely (see Fig. 1). Hence, the single Gaussian model is taken as default 

in the following sections.  

Table 2. Comparison of the calculation of log Klipw values for neutral and ionic compounds 

with different membranes, salt concentrations, forms of potential distribution (1 or 2 

Gaussians) and different data sets underlying the potential optimization. All models are based 

on the optimization of one Gauss curve for the membrane potential, except model M3. Slope 

and intercept are given with the respective standard errors and are derived with a least-squares 

regression for neutral and ionic compounds together for the regression equation log Klipw 

(experimental) = slope * log Klipw (calculated) + intercept. The offset describes the 

nonweighted average of predicted minus experimental values for the calculated ionic and 

neutral species. The RMSE is obtained separately for n neutral and ionic chemicals after 

subtracting the offset from the calculated value. 

num-

ber 

model slope intercept 

 

offset n RMSE 

(ions)  

RMSE 

(neutr.) 

M1 POPC  0.94 ± 

      0.04 

-0.11 ± 

      0.11 

0.30 ±  

     0.04 

236 0.71 

(n=75) 

0.63 

(n=161) 

M2 DMPC  0.96 ± 

      0.04 

-0.21 ±  

     0.12 

0.32 ±  

     0.04 

236 0.70 

(n=75) 

0.62 

(n=161) 

M2a DMPC 

training set 

1.04 ± 

      0.06 

-0.35 ± 

      0.19 

0.25 ±  

     0.07 

83 0.68 

(n=27) 

0.59 

(n=56) 

M3 DMPC (2 

Gauss curves) 

0.97 ± 

      0.03 

-0.34 ± 

      0.11 

0.43 ±  

     0.04 

236 0.66 

(n=75) 

0.60 

(n=161) 

M4 DMPC 0.1 M 

KCl  

0.96 ± 

      0.04 

-0.24 ± 

      0.12 

0.37 ±  

     0.04 

236 0.71 

(n=75) 

0.63 

(n=161) 

 

To further evaluate the dependence of the potential optimization on the selection of 

chemicals, the 75 ionic and 161 neutral species were divided into a training and test set (see 

SI-1) as described above. The potential was optimized for the same DMPC membrane as in 

model M2, but for model M2a the optimized Gaussian potential is based only on the training 

set. The performance of the resulting model M2a has been tested with the chemicals of the 

test set, in order to evaluate how sensitive the predictions are in respect to the data set used for 

deriving the potential curves (see Table 2). Although there are slight differences in the model 

M2 and model M2a potentials, the predictions of Klipw values differ less than 0.3 log units 
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between the two models for the 27 test chemicals. The RMSEs and also the slopes and 

intercepts have very similar values within the range of error, which indicates that the chosen 

approach results in robust predictions despite slightly different shapes of potentials. However, 

the use of the model M2a potential is not recommend because a potential optimization based 

on all available experimental data should yield the most reliable potential shape. 

On average, COSMOmic predicts the Klipw values roughly 0.3 logs unit too high, as shown 

by the different offset values in Table 2. It is important to note that during the potential 

optimization procedure this systematic overprediction has not been minimized. The offset is 

significantly different from zero (two-tailed P values are not bigger than 0.0005 for the 

different models) and might be explained by remaining simplifications in the model like the 

assumption of structureless liquids for each of the membrane slices. Also, a possible 

contribution of the membrane deformation energy caused by the sorbing solutes is not 

considered. Accounting for such kind of ‘volume work’ would make the partitioning into the 

membrane less favorable and, therefore, reduce the absolute value of the offset. First attempts 

using an elastic term as introduced previously (Klamt et al., 2008) showed this trend at the 

cost of an increased scatter in the prediction, indicating that the empirical expression for the 

deformation energy should be reinvestigated in further refinement. Up to this end, it can be 

assess that the offset is fairly constant for different membranes (see Table 2) as well as for 

differently charged species. For model M2, for example, the predictions of the neutral species 

have an offset of 0.30, the anions of 0.37, and the cations of 0.40 log units, resulting in an 

average of 0.32 log units. Thus, the RMSE in the predictions can be decreased by simply 

subtracting the average offset from the predicted Klipw values as done in Table 2. The RMSEs 

of the ions were reduced by 0.09 to 0.13 log units by subtracting the offset values, except for 

model M3, having its RMSE reduced by 0.17 log units. Considering the remaining 

simplifications in COSMOmic as discussed above, the average overprediction of Klipw as 

expressed in the offsets appears to be rather small.  



Summary  25 

The membrane potentials optimized for the DMPC and POPC membrane of course have a 

slightly different shape (Table 1) but lead to the same quality in the prediction (Table 2). This 

is in accordance with experimental results, which do not show significant differences in the 

sorption behavior of DMPC and POPC membranes either (Endo et al., 2011). Similarly, the 

inclusion of a 0.1 M KCl concentration in the DMPC-water system (model M4) does not 

result in a big difference of the derived membrane potential and partition coefficients. It has 

experimentally been demonstrated that different salt concentrations (0.001 – 0.1 M KCl) have 

only marginal influence on Klipw of ions (Escher and Sigg, 2004). 

A good example of the influence of the membrane potential on the Gibbs free energy 

profiles and resulting calculated Klipw is given by the experimental and calculated sorption 

behavior of the two oppositely charged tetraphenyl analogs TPB and TPP (Fig. 4). Although 

the negatively charged TPB is structurally very similar to the positively charged TPP, Klipw of 

TPB is 4 orders of magnitude higher than that of TPP (Demura et al., 1987; Flewelling and 

Hubbell, 1986b). Deviating almost exclusively by the sign of the surface charge (but not the 

charge density), this difference can only be explained by the influence of the membrane 

potential. The resulting attractive interactions between the positive inner potential of the 

membrane and negative TPB are reflected by a descending calculated ΔG profile. In contrast, 

the inclusion of the repulsive interactions between membrane potential and the positively 

charged TPP elevate the calculated ΔG profile. 
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Figure 4. Influence of the membrane potential on the ΔG profiles of TPB and TPP in the 

DMPC membrane (model M2). Experimental data are from (Flewelling and Hubbell, 1986b) 

and (Demura et al., 1987). ΔG equals zero in the bulk water phase. 

For model M2, on average, the ΔG values at the membrane center are 30.63 kJ/mol more 

negative for the anions, while the values for the cations are 30.58 kJ/mol more positive in 

comparison to the values without considering the membrane potential (see SI-1 for ΔG 

profiles of all ions). For most of the anions, a local ΔG minimum can be found under the 

influence of the membrane potential in the area around 10 Å, while the global minima are 

mostly around the head group region at 22 Å from the bilayer center. In contrast, the ΔG 

minima for the cations are located around 11 to 13 Å from the bilayer center, i.e., deeper in 

the membrane despite the repulsive forces of the potential (only TPP has its ΔG minimum 

even deeper in the membrane). While 13 out of the 51 anions yield a ΔG profile that is 

negative throughout the whole expansion of the membrane, all of the cations do have an 

energy barrier in the membrane-water interface that might be explained by unfavorable 

interactions with the positively charged choline. 

Reflecting the ΔG profiles, the peak maxima for the relative solute distributions are further 

away from the membrane bilayer center for the anions (mostly around 23 Å for M2) than for 

the cations (mostly around 13 Å for M2). Plots of the relative solute distribution of all ions are 
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shown in the SI-1. The membrane potential has only little influence on the maximum peaks of 

the relative distribution for most ions: for most anions in model M2 it gets shifted one layer 

further toward the membrane center, while for most cations it gets shifted one layer toward 

the head groups. Unexpectedly, almost all presented cations can be found closer to the 

membrane center than the anions, despite the positive membrane potential in the membrane 

interior. This could, however, be rather due to the present selection of ions than a 

generalizable finding because the cationic and anionic chemicals in the present data set have 

very different structures. In fact, structurally similar TPP and TPB show a contrary trend with 

regard to their relative distribution (i.e., the positively charged TPP tends to be a little further 

away from the membrane interior in comparison to the negatively charged TPB). 

Fig. 5 shows the experimental values against the overall satisfying predictions of the model 

M2. Looking at cations and anions separately reveals that the predictions for anions (RMSE = 

0.68) are slightly better than for cations (RMSE = 0.74). Note, however, that there are 

considerably less Klipw data for cations (n = 24) than for anions (n = 51). In addition, some of 

the experimental Klipw data from (Fruttero et al., 1998) for cationic secondary amines show an 

unusual sorption behavior; i.e., Klipw decreases with increasing chain length for relatively 

short-chain amines.  

The strong outliers which are more than 1.2 log units off in the prediction are mainly big 

molecules with a molecular weight above 300 except for p-methylbenzylmethylamine cation, 

which is one of the secondary amines measured by (Fruttero et al., 1998). A reason for the 

inaccurate prediction of these big molecules might be changes in the membrane provoked by 

the sorbing molecules that are not accounted for in COSMOmic, like the possible membrane 

perturbation caused by salmeterol that may have an influence on the fluidity as proposed in 

(Lombardi et al., 2009). 
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Figure 5. Prediction of neutral (black cross), anionic (blue circles) and cationic (red triangles) 

chemicals with COSMOmic including the membrane potential using one Gaussian potential 

for a DMPC membrane (model M2). The identity line (solid) as well as the deviations of 

±one log unit (dotted) are shifted by 0.32 log units according to the offset of model M2. The 

linear equation describes the least -squares regression (dashed line). The RMSE is calculated 

for all 235 neutral and ionic compounds after subtracting the offset. All ions that are predicted 

more than 1.2 log units off are annotated. 

The implementation of the membrane potential leads to a contrariwise shift of the 

calculated Klipw values for anions and cations, as expected. The impact of the potential on the 

calculation of Klipw is different for each ion but leads to an improved prediction for almost all 

ions. Not only the potentials absolute height is of importance but also the position and the 

width matter because most ions have their maximum probability of presence in the headgroup 

area, where the potential levels off to zero. Within the model M2, 5-chloro-3-tert-butyl-2'-

chloro-4'-nitrosalicylanilide (S-13) and TPB show the biggest increase among the anions of 
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more than 3 log units, while 4-octylbenzene-1-sulfonate exhibits the lowest change with 

0.52 log units. The changes for the cations are overall larger than those for anions, going from 

a decrease of 3.06 (amlodipine) to 5.03 log units (TPP). 

1.3.3.4 The influence of the Membrane Potential on the Prediction of Neutral Chemicals 

The prediction of Klipw values for neutral chemicals is better than for the ionic chemicals 

according to the lower RMSE. If no constant offset was subtracted from the calculated values, 

the RMSEs would be 0.05 to 0.11 log units higher than given in Table 2. Note that the data set 

for neutral chemicals comprises disproportionally more values and spans over more orders of 

magnitude than the data set of ionic chemicals. The membrane potential has only a marginal 

influence on the calculation of Klipw for neutral compounds – for model M2 (Fig. 2 and 5) the 

largest change due to the implementation of membrane potential is 0.23 log units for carbonyl 

cyanide p-methoxyphenylhydrazone. Note that in the case of PAHs, there seems to be a trend 

to underestimate their partition coefficients from water to both octanol and the membrane 

lipid phase, as has been observed previously (Endo et al., 2011). As the data set of 161 neutral 

compounds used in this work contains no PAHs, this effect does not show up in the present 

work.  

The observed insensitivity of Klipw predictions of neutral compounds with respect to the 

membrane potential is as expected and an affirmative result, confirming the presumed 

considerations of the model. If the membrane potential had a crucial impact on the sorption of 

neutral compounds, the bulk phase partitioning between octanol and water could not be 

expected to correlate so well with neutral Klipw values. 
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1.4 Comparison of Different Models Predicting the Phospholipid-Membrane Water 

Partition Coefficients of Charged Chemicals 

1.4.1 Materials and Methods 

1.4.1.1 Klipw Data Compilation for Neutral and Ionic Chemicals 

The Klipw data for neutral chemicals is comprised of 207 chemicals as published in the most 

thorough and recent data collection (Endo et al., 2011). The Klipw data for ionic chemicals 

extended the above used data collection (i.e., 24 cationic and 51 anionic chemicals, which 

were used to calibrate COSMOmic, as well as 2 divalent cations) to 36 cationic and 56 

anionic chemicals, including two perfluorinated anions (PFOS and PFOA). All Klipw data were 

measured above the main phase transition temperature and refer to the liquid crystalline state; 

values and details on the experimental methods are given in Tables 1-3 in the SI-2. 59 % of 

the experimental data for ions were obtained with equilibrium dialysis experiments. In the 

case of ionizable, but not permanently charged chemicals, the pH during the experiments was 

adjusted with buffers to be at least 3 pH units higher (in the case of acids) or 3 pH units lower 

(in the case of bases) than the pKa of the investigated compound. If more than one value could 

be found in the literature, the arithmetic means of the experimental log Klipw values were 

taken. This is the case for 9 cations (with their log Klipw [L/kg] differing by 0.01 to 0.99 log 

units) and 6 anions (with their log Klipw [L/kg] differing by 0.01 to 0.42 log units). A 

homologous series of four linear quaternary amines and three linear sulfates (Inoue et al., 

1986) has been omitted, because the data seem to contradict unpublished LCMS 

measurements (personal communication with Steven Droge, see SI-2, section 1.4).  

Additionally, Klipw values of two zwitterionic compounds, cetirizine and acrivastine, were 

included in the evaluation (Plemper van Balen et al., 2001). Zwitterionic compounds are of 

special interest because they occur frequently in medicinal chemistry (e.g., as drugs) and 

biochemistry (e.g., as metabolites) (Pagliara et al., 1997). 
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1.4.1.2 Empirical Correlation Approach with log Kow  

For the empirical correlation approach with log Kow the general workflow was reproduced 

to derive a Klipw for neutral and ionic species out of a Kow as given elsewhere (Escher et al., 

2011; Tang et al., 2013). First, the log Kow was retrieved from a database like KowWIN 

(U.S.EPA, version 1.68)
1
. KowWIN only needs a structure input (like a smiles string or a 

CAS number); note, however, that exclusively log Kow values of neutral chemicals are 

reported, even when the smiles string of a charged chemical is entered (and even when the 

smiles string represents a permanently charged chemical that has no neutral analog). When no 

experimental value was found, the predicted values were taken (this was the case for 7 out of 

36 cationic chemicals, 16 out of 56 anionic chemicals and 52 out of 207 neutral chemicals). 

Then the respective log Klipw of the neutral chemicals was calculated via a simple linear 

regression equation of the form log Klipw = a*log Kow + b. The most recent and most 

thoroughly tested regression equation is based on 156 neutral chemicals (SD=0.426, 

R²=0.948), published in (Endo et al., 2011): 

𝑙𝑜𝑔 𝐾𝑙𝑖𝑝𝑤  =  1.01 ∗ 𝑙𝑜𝑔 𝐾𝑜𝑤  +  0.12       (4) 

The difference between the log Klipw of the neutral and the log Klipw of the charged species is 

commonly denominated as Δmw and in a rough approximation it is assumed to be a constant 

for different chemicals: 

𝛥𝑚𝑤 =  𝑙𝑜𝑔 𝐾𝑙𝑖𝑝𝑤(𝑛𝑒𝑢𝑡𝑟𝑎𝑙 𝑠𝑝𝑒𝑐𝑖𝑒𝑠)  −  𝑙𝑜𝑔 𝐾𝑙𝑖𝑝𝑤(𝑐ℎ𝑎𝑟𝑔𝑒𝑑 𝑠𝑝𝑒𝑐𝑖𝑒𝑠)       (5) 

The empirical correlation approach is based on the observation that Δmw is approximately 

one log unit for most species investigated (Escher and Schwarzenbach, 1996; Escher and 

Sigg, 2004). 

1.4.1.3 PP-LFER Extension for Ionic Compounds  

The linear solvation energy relationship (LSER) equation, or generally polyparameter linear 

free energy relationship (pp-LFER) equation has been shown to account for the relevant 

                                                 

1
 EPISuite Exposure Assessment Tools and Models. 

http://www.epa.gov/opptintr/exposure/pubs/episuite.htm. 



Summary  32 

intermolecular interactions in various partition processes (Abraham, 1993; Abraham et al., 

2010, 2004). The mandatory descriptors are divided into an energetic contribution from the 

solute (given in capital letters) and the partition system that is described (the so called system 

parameters in lower case letters). The following general equation was used in this work: 

𝑙𝑜𝑔 𝐾𝑙𝑖𝑝𝑤 =  𝑐 +  𝑒𝐸 +  𝑠𝑆 +  𝑎𝐴 +  𝑏𝐵 +  𝑣𝑉      (6) 

where E is the excess molar refraction; S the polarizability/dipolarity parameter; A the 

solute H-bond acidity; B the solute H-bond basicity and V the McGowan molar volume (units 

of (cm
3
 mol

−1
)/100). The complementary system parameters (including c as a constant) are 

obtained from a multiple linear regression analysis against the experimental partition 

coefficients. 

The pp-LFER equation can be extended for the description of the partitioning of ions via 

the inclusion of a j
+
J

+
 term for cations and a j

-
J

-
 term for anions, leading to the equation: 

𝑙𝑜𝑔 𝐾𝑙𝑖𝑝𝑤 =  𝑐 +  𝑒𝐸 +  𝑠𝑆 +  𝑎𝐴 +  𝑏𝐵 +  𝑣𝑉 +  𝑗+𝐽+  + 𝑗−𝐽−   (7) 

As outlined elsewhere (Abraham and Acree, Jr, 2010a, 2010b, 2010c; Saifullah et al., 2011; 

Zhao and Abraham, 2005), Eq. 7 is derived in a two-step procedure: first, Eq. 6 is fitted for 

neutral compounds only; then all system parameters describing the neutral interactions (c, e, s, 

a, b and v) are fixed and only j
+
 and j

-
 are fitted with the log Klipw data of the anions and 

cations. The applicability of Eq. 7 has been demonstrated for various systems like the 

partitioning from water to wet octanol (Abraham and Acree, Jr, 2010a; Zhao and Abraham, 

2005), to ethylene glycol and to propylene carbonate (Abraham and Acree, Jr, 2010b), to 

tetrahydrofuran (Saifullah et al., 2011) and others (Abraham and Acree, Jr, 2010c). All of 

these models are made for the description of single ion partitioning and not of ion pair 

partitioning or ion exchange. They are based on the broadly used and accepted 

extrathermodynamic reference electrode assumption, making it possible to derive partition 

coefficients for single ions between two bulk solvents (Hefter et al., 2002). It is assumed that 

a measurable thermodynamic property (e.g., a partition coefficient) of a well-selected salt can 
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be split into equal contributions of the anion and the cation. These two ions must be of similar 

(large) size and structure. Most commonly used are tetraphenylarsenate or 

tetraphenylphosphonium (TPP) and tetraphenylborate (TPB) for this assumption, i.e., they are 

assumed to have the same partition coefficient, because they have the same highly delocalized 

although still opposite charge on a quasi-spherical surface (Wachter et al., 2006). However, 

while this assumption is well-suited for bulk solvents, it does not hold in the case of an 

anisotropic lipid bilayer, where the negatively charged TPB (log Klipw = 5.20) (Flewelling and 

Hubbell, 1986b) sorbs 4 orders of magnitude stronger than its positively charged analog TPP 

(log Klipw = 1.19) (Demura et al., 1987; Flewelling and Hubbell, 1986b). This difference can 

only be explained by the different influence of the membrane potential on positively and 

negatively charged chemicals (Flewelling and Hubbell, 1986b; Wang, 2012), as outlined 

above and further discussed below. 

Solute descriptors of neutral compounds can be obtained from the ‘UFZ-LSER database’, 

which contains several thousands of experimentally determined descriptors and is available 

free of charge (Ulrich  S.; Brown, T.N.; Watanabe, N.; Bronner, G.; Abraham, M.H.; Goss, 

K.-U., 2017); or the estimation method Absolv (module in ADME Boxes version 5.0, 

ACD/Labs)
2
 can be used. The latter is a group contribution method for the solute descriptors 

(Platts et al., 1999), including some additional but not reported optimizations. In combination 

with calibrated system parameters, the RMSE of Absolv based partition coefficients can be 

expected to be less than one log unit for the prediction of the partitioning of neutral 

compounds between various solvents (Endo and Goss, 2014). 

All solute descriptors for ionic compounds have to be derived based on an empirical 

summation of certain fractions of the solute descriptors of the corresponding neutral 

compounds and in some cases additional information like the pKa (for phenoxide anions) or 

                                                 

2
 Advanced Chemistry Development, Inc. (ACD/Labs). Absolv prediction module data sheet. 

Toronto, ON (Canada). http://www.acdlabs.com/products/percepta/predictors/absolv/ 
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the number of hydrogen atoms attached to charged nitrogen (for amine cations). See SI-2, 

section 3.1 for all equations. To date, these derivations are only described for a limited 

number of chemical classes (for carboxylic acid anions and amine cations (Abraham and 

Acree, Jr, 2010c), for phenoxide anions (Abraham and Acree, Jr, 2010d) and pyridinium 

cations (Abraham and Acree, Jr, 2010b) ). It is intuitively comprehensible that all solute 

descriptors differ between a neutral and the corresponding ionic chemical (and not only J
+
 and 

J
-
 have to be added), because neutral and ionic chemical can undergo different interactions 

with the solvent; e.g. a neutral phenol can act as a hydrogen bond donor and acceptor, while a 

deprotonated phenol can only act as a hydrogen bond acceptor. 

Due to the descriptor limitations to selected chemical classes as described above (Abraham 

and Acree, Jr, 2010b, 2010c, 2010d), only 32 out of 36 cations and 42 out of 56 anions could 

be taken into consideration. 11 out of the 32 descriptors for cations and 25 out of 42 

descriptors for anions are based on experimentally determined solute descriptors of the 

corresponding neutral chemicals. Absolv predictions were taken for the remaining 21 cations 

and 17 anions, where no solute descriptors of the corresponding neutral compounds could be 

found. See all values and further discussion in the SI-2, section 3. 

1.4.1.4 COSMO-RS and COSMOmic 

The extension (available with COSMOtherm(X) release C30-1501) of the originally (Klamt 

et al., 2008) published COSMOmic was used, which also incorporates a membrane potential 

in the membrane interior of roughly +0.3 V in reference to the surrounding bulk water, as 

outlined above. See SI-2, sections 2.1 and 4 for further details. 

1.4.2 Results and Discussion 

The experimental log Klipw values of neutral chemicals span over 9 orders of magnitude 

(from -1.24 to 7.86), while the experimental log Klipw values of cations and anions only differ 

by 3.37 log units (from 0.66 to 4.03) and 4.89 log units (from 0.31 to 5.20), respectively. 
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Given the larger range of values, it is very likely that the predictions of the neutral chemicals 

will generally yield a higher R² than the predictions of the ionic chemicals. In order to 

compare predictions spanning over different orders of magnitudes and covering a different 

amount of data points (n=207 neutrals, 36 cations, 56 anions), the RMSE is a more suited and 

meaningful measure. All RMSEs are reported in log units. 

1.4.2.1 Empirical Correlation Approach with log Kow 

Fig. 6 shows that there is good agreement for the 207 neutral compounds between the 

experimental (Endo et al., 2011) and predicted log Klipw data (R²=0.93, RMSE=0.52). This 

harmonizes well with the finding that, according to COSMOmic calculations, most neutral 

compounds sorb to a membrane depth that exhibits a similar chemical environment as wet 

octanol (see SI-2, section 2.2 for details). However, the statistical analysis has some 

restrictions, because 156 out of the predicted 207 neutral compounds have been within the 

training data set to derive the regression equation. As outlined previously (Endo et al., 2011), 

it appears practicable to use experimental Kow values, if available, to derive Klipw values of 

neutral chemicals. It must be noted though, that this is a purely empirical relationship that can 

accordingly only be used with some confidence for predictions within the chemical space of 

compounds used to derive the regression Eq. 4, which might not be easy to judge.  

In contrast, the experimental log Klipw values of the 36 cationic compounds showed a poor 

correlation with the modeled predictions (R²=0.23, RMSE=1.14). On the other hand the 

predictions for anions are better than could a priori be expected (R²=0.61, RMSE=0.79). 

Although it is plausible that ions have a lower sorption to membranes than their 

corresponding neutral counterparts, it is not plausible that this difference should be constant 

for different chemicals: The generic value of 1 for Δmw is mainly based on data for phenolic 

acids (Escher and Schwarzenbach, 1996), but was also shown to be a useful descriptor for 

screening purposes for complex mixtures of compounds (Spycher et al., 2008; Tang et al., 



Summary  36 

2013). However, it has also been discussed that Δmw for carboxylic acids is usually closer to 

2, while it varies a lot for aliphatic amines (Escher and Sigg, 2004). 

 
Figure 6. Comparison between the experimental log Klipw values of 207 neutral, 36 cationic 

and 56 anionic compounds and the predicted values according to the empirical correlation 

approach with log Kow using KowWIN, simple regression and Δmw as outlined above. 

Deviations of one log unit from the straight identity line are shown as dotted lines. 

 As already suggested by Fig. 6, Fig. 7 shows that the median of the 43 experimental Δmw 

values of the anionic chemicals is closer to the generic value of 1 than the median of the 20 

experimental Δmw values of the cationic chemicals. Accordingly, most of the log Klipw 

predictions for cations in Fig. 6 scatter considerably more than the predictions for anions. This 

should be particularly relevant for pharmaceuticals and illicit drugs (Zuccato et al., 2008), 

industrial surfactants and biocides (Li and Brownawell, 2010), because they often have an 
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amine group and are therefore positively charged or partially charged in a physiological pH 

range.  

The general limitations of the assumption that Δmw = 1 are in agreement with previous 

evaluations with smaller data sets (Escher and Sigg, 2004; Neuwoehner et al., 2009). 

Comparing experimental log Klipw of ionic and corresponding neutral chemicals for 20 cations 

showed that Δmw varied between 0 (amlodipine) and 1.77 (p-methylbenzyl-hexylamine), 

while the mean Δmw was 0.87 (±0.61 standard deviation). In contrast, the Δmw for 43 anions 

varied between 0 (benzimidazoles and hydrazones) and 2.39 (octanoic acid), with a mean 

Δmw of 1.09 (±0.63). Looking at the difference between and the variability within chemical 

classes showed that Δmw for 25 phenols were on average 1.03 (±0.51), while 7 carboxylic 

acids had a Δmw of 1.84 (±0.31). Even with a more subtle classification into subclasses there 

is considerable variation: 13 chlorophenols had a Δmw of 1.24 (±0.42), while 10 nitrophenols 

had a Δmw of 0.73 (±0.53). See SI-2, sections 1 and 2 for all values and further discussion. 

While a class-specific fit of Δmw would improve the overall prediction quality, such a fit is 

not feasible with the limited available experimental data (Armitage et al., 2013) and would 

not solve the problem that Δmw is not applicable for multifunctional molecules or for 

permanently charged chemicals. There is a tendency, that Δmw increases with increasing 

charge density in the case of anions, while Δmw decreases with increasing charge density in 

the case of cations as discussed in detail in the SI-2, section 2.1. It is interesting that it was 

possible to confirm this experimental finding, but the correlation is rather qualitative than 

quantitative and cannot serve as a reliable predictor for Δmw.  

Overall, the empirical correlation approach with log Kow seems to give a reasonable 

estimation of Klipw for most monovalent ions presented here (Fig. 6) – however, one has to be 

alert that it is very difficult to judge when the approach is not applicable. It is not fully clear, 

why the approach works better for anions than for cations, but this is most likely an artefact 

due to the selection of chemicals (as suggested by the class-specific differences in Δmw as 
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shown above). According to the COSMOmic calculations, the cations mainly sorb to the 

membrane layers with the best H-bond acceptor properties, while the anions prefer membrane 

layers further away from the membrane center, which exhibit the best H-bond donor 

properties (see SI-2, section 2.2). Neither of the preferred sorption depths resembles the 

chemical properties of octanol well. Within the empirical correlation approach anions and 

cations are treated the same, as expressed by Eq. 5. Zwitterions, divalent ions and 

permanently charged chemicals are not accounted for at all. 

 

Figure 7. Box-and-whisker plot of 20 cationic (red) and 43 anionic (blue) experimental Δmw 

values (A) and experimental Δmw values of the subclasses (B). The boxes in (A) outline the 

25th to 75th percentiles, the lines through the centers represent the median and the whiskers 

extend to the most extreme data point. All Δmw values ± standard deviation of the different 

species are summarized in the SI-2, Table 4. 

1.4.2.2 PP-LFER Extension for Ionic Compounds with Experimental Descriptors and 

ABSOLV 

In order to have the most accurate pp-LFER model for the Klipw prediction of neutral 

chemicals the following previously published equation (Endo et al., 2011) was used: 

𝑙𝑜𝑔 𝐾𝑙𝑖𝑝𝑤 =  0.26(±0.08) +  0.85(±0.05)𝐸 −  0.75(±0.08)𝑆 +  0.29(±0.09)𝐴 −

 3.84(±0.10)𝐵 +  3.35(±0.09)𝑉;  𝑆𝐷 = 0.279, 𝑛(𝑛𝑒𝑢𝑡𝑟𝑎𝑙) = 131, 𝑅2 = 0.979 (8) 

 Eq. 8 is based on the 131 out of the 207 neutral chemicals, for which experimentally 

determined solute descriptors were available (Endo et al., 2011), in order to ensure the most 
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reliable Klipw prediction of the neutral chemicals. Taking the system parameters of Eq. 8 and 

additionally fitting the system parameters j
+
 and j

-
 (that describe the solvent interactions for 

cationic and anionic chemicals) with solute descriptors for 74 ionic chemicals gives Eq. 9: 

log 𝐾𝑙𝑖𝑝𝑤 =  0.26(±0.08) +  0.85(±0.05)𝐸 −  0.75(±0.08)𝑆 +  0.29(±0.09)𝐴 −

 3.84(±0.10)𝐵 +  3.35(±0.09)𝑉 − 1.72(±0.08)𝐽+ + 3.98(±0.05)𝐽−;  𝑆𝐷 = 1.011,

𝑛(𝑖𝑜𝑛) = 74, 𝑅2 = 0.988                       (9) 

Fig. 8 shows the performance of Eq. 9 in predicting the log Klipw: neutral compounds are 

predicted equally well as in the empirical correlation approach with log Kow (given a similar 

restriction as above, that 131 out of 207 compounds were also used in the fitting procedure), 

with R² = 0.92 and RMSE = 0.53. In contrast, the fit for cations (R²=0.41, RMSE=1.04, n=32) 

and anions (R²=0.70, RMSE=1.01, n=42) is not satisfying; particularly in view of the fact that 

the solute descriptors for all ions were used in the fitting procedure. A plausible explanation 

for this is, that both cations and anions sorb to different depths in the membrane and will 

therefore be exposed to a different physicochemical environment due to the heterogeneous 

structure of the membrane, which cannot be captured by only one pp-LFER equation. This 

consequence of the membrane anisotropy also explains the huge difference in Klipw of TPP 

and TPB (as outlined above) and is further discussed below and Fig. 10. Limiting the fitting 

data set of ions to predictors that are only based on experimentally derived predictors for the 

corresponding neutral chemical does not alter this finding, as discussed in the SI-2, section 

3.2. 
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Figure 8. Comparison between the experimental and predicted log Klipw values using the pp-

LFER Eq. 6; deviations of one log unit from the straight identity line are shown as dotted 

lines. 

Changing the fitting procedure for the pp-LFER equation seems to improve the model 

performance at first glance: when all system parameters of Eq. 7 are fitted together in only 

one step with one multi linear regression, the models seems to perform significantly better 

with respect to ions (32 cations: RMSE=0.69; 42 anions: RMSE=0.62), while being only 

slightly worse with respect to the prediction of neutral chemicals (RMSE=0.57, n=207). 

However, fitting all system parameters at once also results in a very different pp-LFER 

equation (Eq. 10):  
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log 𝐾𝑙𝑖𝑝𝑤 =  0.44(±0.12) +  0.99(±0.06)𝐸 −  0.69(±0.05)𝑆 −  0.19(±0.10)𝐴 −

 2.82(±0.11)𝐵 +  2.83(±0.12)𝑉 − 1.14(±0.10)𝐽+ + 2.95(±0.14)𝐽−;  𝑆𝐷 = 0.507,

𝑛(𝑛𝑒𝑢𝑡𝑟𝑎𝑙𝑠 + 𝑖𝑜𝑛𝑠) = 205, 𝑅2 = 0.912          (10) 

It is important to note, that both the terms for neutral as well as for ionic interactions are 

altered considerably in this Eq. 10 with respect to Eq. 9: j
-
 and b become 1.03 and 1.02 units 

smaller, respectively, while a even changes its sign from plus to minus. This is again an 

indication that the parameters in the general Eq. 7 are not describing the membrane –water 

partitioning system sufficiently (when ions are included), because the membrane anisotropy 

cannot be accounted for. Zwitterions and divalent ions are not yet explicitly addressed within 

the pp-LFER approach. However, it also has to be pointed out that for some solute descriptors 

the values for ions are much bigger than for the neutral chemicals. E.g., B and S for the 42 

anions go up to values of 4.39 and 16.59, respectively, while B and S for the 207 neutral 

compounds do not exceed the values of 2.19 and 3.29, respectively. In order to cover the full 

physicochemical space occupied by the solute descriptors, it seems to be more meaningful to 

fit ions and neutral chemicals together for the derivation of a pp-LFER equation. This is not 

the procedure recommended by Abraham et al. (Abraham and Acree, Jr, 2010a, 2010b, 

2010c; Saifullah et al., 2011; Zhao and Abraham, 2005), but it could be successfully used 

recently to fit the partitioning of 46 neutral, 34 anionic, and 6 cationic chemicals to muscle 

protein (R²=0.89, RMSE=0.29) (Henneberger et al., 2016). 

1.4.2.3 COSMO-RS and COSMOmic 

As expected from the results shown above with a slightly smaller data set, COSMOmic was 

predicting the Klipw of neutral compounds (R²=0.87, RMSE=0.74) with roughly the same 

accuracy as the Klipw of ionic compounds (36 cations: R²=0.62, RMSE=0.71; 56 anions: 

R²=0.66, RMSE=0.66). Compared to the previous two models, COSMOmic performed 

slightly worse regarding the neutral compounds, but it was clearly the best with respect to 

ionic compounds. Given that the model has a sound mechanistic basis and can be used 
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independently of the charge as outlined above, it is expected to serve as the most reliable 

model when it comes to the prediction of Klipw of ions. The strong outliers which are more 

than 1.2 log units off in the prediction are mainly large molecules with molecular weights 

above 300. Reasons for the increased occurrence of strong outliers for these chemicals are 

already discussed above. Regarding the additionally predicted ions it needs to be emphasized 

that two emerging pollutants, the perfluorinated PFOS (perfluorooctane-1-sulfonic acid, 

log Klipw(exp)= 3.15 (Lehmler et al., 2006), log Klipw(calcd)= 3.53) and PFOA 

(perfluorooctanoic acid, log Klipw(exp)= 2.34 (Inoue et al., 1988), log Klipw(calcd)= 2.88), 

were well-predicted. These chemicals are of special concern because they are highly 

persistent, bioaccumulative and detected globally (Houde et al., 2006) ; moreover they are 

difficult to assess with traditional approaches because they are essentially permanently 

charged in the environment due to their very low pKa (Goss, 2008). In contrast to the two 

models presented above, also zwitterions and divalent ions could be calculated in 

COSMOmic: For the few data available on zwitterionic chemicals there was good agreement 

between experiment and predicted values: the model correctly predicted the cetirizine 

zwitterion (log Klipw(exp)=2.30 (Plemper van Balen et al., 2001), log Klipw(calcd)= 1.19) to 

have a lower Klipw than the corresponding cation (log Klipw(exp)= 3.20 (Plemper van Balen et 

al., 2001), log Klipw(calcd)= 3.94). Similarily, the acrivastine zwitterion (log Klipw(exp)= 1.50 

(Plemper van Balen et al., 2001), log Klipw(calcd)= 2.15) was correctly predicted to have a 

lower Klipw than the corresponding anion (log Klipw(exp)= 2.60 (Plemper van Balen et al., 

2001), log Klipw(calcd)= 3.31). 
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Figure 9. Comparison between the experimental and predicted log Klipw values using the 

model COSMOmic (version C30-1501). A constant offset of 0.32 log units has been 

subtracted from all predicted values (but not from the points depicted in the Fig. 9) for the 

calculation of the RMSE. The straight identity line as well as the deviations of one log unit 

(dotted lines) are shifted according to the offset. 

The Gibbs free energy profile and the corresponding relative distribution of a molecule can 

also be calculated with COSMOmic as shown in Fig. 10. For neutral chemicals it has been 

shown that they are in good agreement with computationally more costly molecular dynamics 

simulations (Ingram et al., 2013; Jakobtorweihen et al., 2014). This kind of data is almost not 

accessible with experimental methods. It facilitates the understanding of the different sorption 

behavior depending on the different speciation: anthranilic acid for example, which can be 

present in a neutral, cationic or anionic form, reveals very differently shaped energy minima 
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depending on the speciation. Mirroring these minima, the respective relative distribution 

profiles show that neutral, cationic and anionic form even of the same molecule are located at 

very different depths in the membrane. Given that the phospholipid membrane is a highly 

anisotropic system and not a bulk phase, the sorption to different depths results in different 

solvent-solute interactions. Thus the membrane appears as a different sorption medium for 

each of the three species, which elucidates the difficulties inherent in the other two 

approaches presented above. 

Fig. 10 and SI-2, Fig. 4 suggest that cations rather sorb on the ‘interior’ side of the 

headgroup (i.e., closer to the negatively charged phosphate), whereas anions rather sorb on 

the ‘exterior’ side of the headgroup (i.e., closer to the positively charged quaternary amine), 

which intuitively makes sense. However, the overall sorption of ionic chemicals to a 

phospholipid membrane is not only a function of these electrostatic forces, but also of the 

specific depth depended chemical environment and the resulting van der Waals and H-bond 

interactions (see SI-2, section 2.2), which additionally is superimposed by the membrane 

potential (Flewelling and Hubbell, 1986b; Wang, 2012), as also discussed above.  

Beside the in-depth data discussed above, COSMOmic can also serve as a screening tool for 

partition coefficients (Jakobtorweihen et al., 2013). Critical for this purpose are the 

availability of a depth-dependent membrane composition (Jakobtorweihen et al., 2013) with 

an optimized membrane potential discussed in the previous section as well as a database of 

cosmo files for the molecules of interest (see SI-2, section 2.1 for one possible workflow for 

the generation of cosmo files). The time requirement for the calculation of cosmo files is 

mainly dependent on the number of atoms: on a standard CPU 12 atoms need minutes, 20 

need hours, 40 need days and 100+ are in the range of weeks (COSMOconf version 3.0 

manual). 
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Figure 10. A: Gibbs free energy of anthranilic acid in the neutral, cationic and anionic 

speciation calculated with the enhanced COSMOmic version, incorporating a membrane 

potential (version C30-1501); B: resulting solute distribution and C: relative probability 

profile of the membrane headgroup atoms (nitrogen and phosphorus) and carbonyl carbon 

atoms (left axis), as well as membrane potential (right axis). According to the color code in 

plot C a representative DMPC lipid molecule is shown in the bottom left corner. The distance 

from the membrane interior on the x-axis shows only one half of the mirror-imaged 

membrane: while 0 Å is in the middle of the membrane, the headgroup region is at around 

20 Å and the bulk water phase begins at 30 Å. 
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1.5 Assessing the Toxicity of Ionic Liquids – Application of the Critical Membrane 

Concentration Approach 

1.5.1 Materials and Methods 

1.5.1.1 Basic Assumptions and Considerations 

A principal assumption within the baseline toxicity concept is that baseline toxicity can be 

described independently of the organism with only one partition coefficient, i.e., that the 

membranes in different organisms exhibit similar sorption characteristics. It is important to 

keep in mind, as already discussed above, that the Klipw is based on a pure phospholipid 

membrane whereas the Kmw describes the sorption to a real (and complex) biological 

membrane, including other components such as cholesterol, different kinds of phospholipids 

and proteins. Here, the Klipw is taken as surrogate for the Kmw, irrespective of the kind of 

organism or cell culture, which is generally a well-accepted assumption (Endo et al., 2011). 

For phenols it has been shown that liposomes composed of zwitterionic phosphatidylcholine 

mimick the sorption behavior of isolated membranes from Rhodobacter sphaeroides well 

(Escher and Schwarzenbach, 1996). The second crucial assumption of the baseline toxicity 

concept is the non-specificity, i.e., that the critical toxic concentration in the membrane is 

fairly independent of the nature of the chemical. Hence, the baseline toxicity model described 

here is based on an organism independent Kmw and a toxic threshold concentration in the 

phospholipid membrane, which is independent from the type of chemical. It has to be noted 

that the ‘target lipid model’ (Kipka and Di Toro, 2009) works in exact analogy - the ‘target 

lipid’ equals the membrane in the baseline toxicity concept. The fundamental relationship 

between the constant toxic membrane concentration and the toxic water concentration (LC50) 

is given by the membrane water partition coefficient 

𝑐𝑚𝑒𝑚
𝑡𝑜𝑥 = 𝐾𝑚𝑤 ∗ 𝐿𝐶50          (11) 

In principle, the LC50 in Eq. 11 is defined as the freely dissolved water concentration and 

not as the nominal water concentration, which is nonetheless often reported in toxicity 
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experiments (Escher and Hermens, 2002). The critical membrane concentration, 𝑐𝑚𝑒𝑚
𝑡𝑜𝑥 , 

causing a toxic effect (i.e., mortality of 50% of the organisms in the case of Eq.11, where  

𝑐𝑚𝑒𝑚
𝑡𝑜𝑥  is related to the LC50) is analogous to the ILC50membrane lipid discussed in (Escher and 

Hermens, 2002). A different abbreviation was chosen in this work because the prefixed “I” 

refers to the “internal” concentration. Although it may seem as a negligible detail, this work is 

focused only on the total membrane lipids of organisms or cell cultures regardless whether the 

membrane is inside or at the outer border of the respective organism or cell culture. Thus the 

term ILC50membrane lipid is avoided in this work, although it is generally used in analogy to 

𝑐𝑚𝑒𝑚
𝑡𝑜𝑥  defined in Eq. 11. Rearranging Eq. 11 and taking the logarithms leads to 

log 𝐿𝐶50 = −1 ∗ log 𝐾𝑚𝑤 + log 𝑐𝑚𝑒𝑚
𝑡𝑜𝑥        (12) 

Eq. 12 is the most frequently plotted correlation between log Kmw and log LC50 when 

baseline toxicity is assessed. A crucial condition for this relationship is that the concentrations 

in water and membrane are in equilibrium with each other.  

In the case of permanently charged chemicals - ionic liquids (ILs) in the presented work - 

both the anionic as well as the cationic compound have individual Kmw(ion) values that need 

to be considered. Hence, no single log Kmw can be given for an IL salt and plotted against log 

LC50 as suggested by Eq. 12. Alternatively, the total membrane concentration at LC50, 

𝑐𝑚𝑒𝑚
𝑡𝑜𝑥 (𝑡𝑜𝑡𝑎𝑙), was calculated from additive contributions of the respective anionic and 

cationic chemical via 

𝑐𝑚𝑒𝑚
𝑡𝑜𝑥 (𝑡𝑜𝑡𝑎𝑙) =  𝐾𝑚𝑤(𝑎𝑛𝑖𝑜𝑛) ∗ 𝐿𝐶50(𝐼𝐿)+ 𝐾𝑚𝑤(𝑐𝑎𝑡𝑖𝑜𝑛) ∗ 𝐿𝐶50(𝐼𝐿)   (13) 

In Eq. 13 additive contributions of the respective anionic and cationic chemical is assumed 

both for the overall concentration in the membrane (via partitioning) as well as for the toxic 

mode of action (i.e., both anionic and cationic species act as baseline toxicants). Thus, the 

baseline toxicity concept in the case of ILs can be validated by checking whether 

𝑐𝑚𝑒𝑚
𝑡𝑜𝑥 (𝑡𝑜𝑡𝑎𝑙) falls into a similar range as previously determined for neutral chemicals, 

independent of the combination of anionic and cationic chemicals. Within this approach it is 
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implicitly assumed that potentially formed ion pairs in water or in the membrane are 

negligible (Escher et al., 2000) and that there are always enough background electrolytes so 

that differential partitioning of the anion and the cation does not infringe electroneutrality. 

In order to assess whether the IL salts act according to a specific mode of toxic action (e.g., 

uncoupling) or according to baseline toxicity, the toxic ratio (TR) is assessed. The TR was 

originally introduced by (Verhaar et al., 1992) as the ratio between 𝐿𝐶50𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑄𝑆𝐴𝑅, the 

predicted baseline effect concentration, and 𝐿𝐶50𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙, the experimental concentration 

for a given toxic endpoint: 

𝑇𝑅 =
𝐿𝐶50𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑄𝑆𝐴𝑅

𝐿𝐶50𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙
=

𝑐𝑚𝑒𝑚
𝑡𝑜𝑥 (𝑡𝑜𝑡𝑎𝑙)

[ 𝐾𝑚𝑤(𝑎𝑛𝑖𝑜𝑛)+ 𝐾𝑚𝑤(𝑐𝑎𝑡𝑖𝑜𝑛)]
⁄

𝐿𝐶50𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙
    (14) 

Using the geometrical mean value of 𝑐𝑚𝑒𝑚
𝑡𝑜𝑥 (𝑡𝑜𝑡𝑎𝑙) determined for neutral chemicals in the 

first part of this work the 𝐿𝐶50𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑄𝑆𝐴𝑅 can be calculated by simply rearranging Eq. 13 as 

shown in Eq. 14. Due to the scatter of baseline toxicity it is a concentration range rather than a 

fixed membrane concentration in which baseline toxicity is expected.  Consequently, 

according to (Escher et al., 2017), all chemicals in the range 0.1 < TR < 10 are considered to 

be baseline toxicants; chemicals with TR > 10 are considered to have modes of action causing 

excess toxicity and chemicals with TR < 10 are less toxic than expected by the assumptions of 

the baseline toxicity concept.  

In previous publications, e.g., (Endo, 2016; Escher and Schwarzenbach, 2002) and other 

publications cited above, the total concentration in an organism has been determined causing 

a toxic effect and thus the internal concentration at the target site (e.g., the membrane lipid) 

has been deduced by multi-compartment modelling. This approach yields a lot of insights into 

the internal distribution of a chemical, but requires a lot of experimental details (or at least 

sound assumptions). In this work nominal water concentrations were investigated in lieu of 

non-available freely dissolved concentrations causing a toxic effect and directly combined 
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this information with the respective Kmw values to yield the internal membrane concentration, 

assuming steady state distribution. 

1.5.1.2 Compilation of Experimental Data 

1.5.1.2.1 Toxicity Data for Neutral Chemicals 

The toxicity data set for neutral organic chemicals is based on a thorough revision of a 

published data set (Kipka and Di Toro, 2009), which originally comprises 1687 experimental 

LC50 values for 42 aquatic organisms (368 chemicals). By re-analyzing the original data set 

by (Kipka and Di Toro, 2009) it became evident that for seven chemicals the water solubility 

was below the reported LC50 values (experimental water solubility taken from PhysProp 

database accessed via Episuite
3
 – for details see SI-3, Table 1). These seven chemicals were 

excluded from further analysis, although an oversaturation does not necessarily render the 

experiment futile (as long as the chemicals do not precipitate). Further 23 acidic chemicals 

(mostly phenols) were sorted out, whose pKa values are smaller than 9 as well as five bases 

(anilines and pyridines) whose conjugated protonated acids have pKa values larger than 5 (see 

SI-3, Tables 2 and 3, respectively).  

After the data-quality check described above 1591 experimental LC50 values are left for 42 

aquatic organisms (333 chemicals). While all 1687 LC50 values have been used in the 

original publication (Kipka and Di Toro, 2009) to parametrize a pp-LFER model based on the 

‘target lipid’ concept, in this work the revised, concise data set is re-evaluated with regard to 

the concept of baseline toxicity. Thus, the revised data set is summarized in a two-step 

procedure:  

First, the arithmetic mean was calculated for all reported experimental LC50 values for 

identical chemicals for each organism, resulting in 1072 organism- and chemical-specific 

                                                 

3
 U.S. EPA, EPISuite Exposure Assessment Tools and Models, US Environmental Protection 

Agency, 2009, https://www.epa.gov/. 
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LC50 values, clustered in 4 up to 216 chemicals for each of the 42 organism (see SI-3, 

Table 4). These organism- and chemical-specific LC50 values are the test set for evaluating 

the ‘baseline toxicity-QSAR’ according to Eq. 11 as discussed in SI-3, section 4. 

In a second step the 1072 data points above were further summarized by taking the 

geometric mean of the different chemicals irrespective of the corresponding organisms. This 

boils down the revised data set to a maximum degree in order to comply with principle 

assumptions of the baseline toxicity concept (being that toxicity can be described 

independently of the organism). The resulting 333 LC50 values go from 2.5*10
-4

 to 1080 

mmol/L(water). 

It has to be noted that the LC50 values given here are nominal water concentrations which 

can be substantially different from freely dissolved water concentrations. This issue is 

discussed in the OECD guideline 203 for acute toxicity testing for fish. However, in the case 

of flow through tests (which is e.g. often done for fish (Cowan-Ellsberry et al., 2014)), actual 

concentrations are often measured and animals are often not fed in acute toxicity tests. Hence, 

large deviation between the reported nominal concentrations and the actually freely dissolved 

concentrations were not expect, but it has to be kept in mind that the validity of the present 

data set is restricted. 

1.5.1.2.2 Toxicity Data for Ionic Liquids (ILs) 

ILs have been chosen in this work as the object of investigation to shed light on whether the 

baseline toxicity concept can be applied also to organic ionic chemicals, because the ILs in 

this work are predominantly permanently charged. The two anions, 

bis(trifluoromethylsulfonyl)imide, pKa(JChem
4
) = -0.54, and dicyanamide, pKa < 1 (Gazitúa 

et al., 2014), can theoretically be protonated and thus neutral, but this can be neglected 

                                                 

4
 JChem for Excel, version 15.10.2600.341, Copyright 2008-2015 ChemAxon Ltd. 

https://www.chemaxon.com/. 
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because care has been taken in the experiments to exclude pH effects (see references in SI-3, 

Table 7). The anions tetrafluoroborate, hexafluorophosphate, chloride and bromide are the 

only ones that are not organic (see SI-3, Table 6), but they were also included in the 

calculation of the toxic membrane concentration as outlined by Eq. 13. The herein 

investigated toxicity data are based on a recently published review (Thuy Pham et al., 2010), 

including toxicity data for ILs composed of 39 organic cations and 6 anions (resulting in 96 

different salt combinations and 169 different experimental toxicity values, see SI-3, Table 8 

for all IL structures). Overall, the experimental EC50 values go from 2.7*10
-7

 to 

178 mmol/L(water) (the IL toxicity data set is not only comprised of LC50 values, but also of 

EC50 values such as growth inhibition). As also discussed above for the toxicity data set of 

neutral chemicals it has to be kept in mind, that the LC50 and EC50 values for ILs are based 

on nominal water concentrations. This can lead to substantial artefacts in the case of the cell 

assay toxicity tests which are part of the IL toxicity data set. The discrepancy between 

nominal and freely dissolved concentration has been discussed in (Armitage et al., 2014) for 

neutral chemicals and in (Fischer et al., 2017) for ionizable chemicals. Unfortunately, it is 

very difficult to determine the freely dissolved water concentrations for cell assays (if at all 

possible). 

1.5.1.3 Calculation Methods 

1.5.1.3.1 pp-LFER for Kmw (neutral) 

In contrast to the original publication (Kipka and Di Toro, 2009), where ADME Boxes 

Version 3.0 Absolv package was used to predict all pp-LFER descriptors, the UFZ-LSER 

database was used in this work (Ulrich  S.; Brown, T.N.; Watanabe, N.; Bronner, G.; 

Abraham, M.H.; Goss, K.-U., 2017), in order to get a maximum of experimental descriptors 

(‘UFZ preselected published values’). The use of experimental descriptors is superior to 

predicted values. If no experimental descriptors were available, they were predicted with the 
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UFZ-LSER-QSAR by Trevor Brown, accessed via the same database (Ulrich  S.; Brown, 

T.N.; Watanabe, N.; Bronner, G.; Abraham, M.H.; Goss, K.-U., 2017). 

Finally, Kmw of the neutral chemical was predicted with Eq. 8 introduced in section 1.4.2.2 

(Endo et al., 2011). 

1.5.1.3.2 COSMOmic for Kmw (ion) 

The Klipw(ion) was again calculated with COSMOmic as outlined above, i.e., including the 

membrane dipole potential. Analogous to the assumptions made for neutral chemicals, the 

calculated Klipw(ion) was taken as a surrogate for the (real) biological membrane-water 

partition coefficient of the respective ion, Kmw(ion).  

As also outlined above, a constant offset value of 0.3 log units from the COSMOmic 

calculated log Klipw values was subtracted. This offset value is most likely due to an energy 

contribution needed to deform the membrane in order to make space for the sorbing molecule. 

The COSMOmic model does not account for this 'volume work', which makes partitioning 

into the membrane less favorable. Given that the implementation of the COSMO-RS theory in 

COSMOtherm (which is the 'engine' behind the COSMOmic calculation) is basically free of 

fitting factors (Klamt, 2015) and therefore not limited to certain chemical classes or 

structures, the initially deduced offset value is considered appropriate: the molecular weight 

(which is proportional to the volume) of the ILs investigated here goes from 35.5 to 349.6 

(median 178.3). This is well within the ‘volume range’ of the chemicals used to calibrate 

COSMOmic in section 1.3, whose molecular weights go from 122.2 to 487.6 (median 230.1). 

1.5.2 Results and Discussion 

1.5.2.1 Reviewing the Toxicity of Neutral Chemicals 

Within the data set (which is based on the data set of (Kipka and Di Toro, 2009)), there are 

320 cases where two up to eight experimental LC50 values are reported for a specific 

chemical for the same species. These duplications can be taken as a quantitative measure for 
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the experimental variance: the LC50 values for the same species and the same chemical differ 

only in twelve cases by more than one log unit (maximum 1.7 log units, median 0.047 log 

units). After summarizing the LC50 values for identical chemicals for each species the 

interspecies variability can be assessed: for 179 out of the 333 different chemicals LC50 

values are reported for multiple species (for up to 18 different species). Out of these, the 

LC50 values of 37 chemicals differ by more than one log unit and the LC50 values of three 

chemicals differ even by more than two log units (median 0.42). It is crucial to keep this 

variance inherent in the experimental toxicity data in mind in order to reliably differentiate 

between chemicals acting via baseline toxicity or via a specific mode of toxic action (as 

discussed below). 

The toxic membrane concentrations according to Eq. 11 have a median of 116 mmol/kg 

(membrane lipid) and a geometric mean of 105 mmol/kg(lipid) with a standard deviation of 

the log-normal distribution of 26 to 425 mmol/kg (membrane lipid) (see Fig. 11B). This 

standard deviation of the log-normal distribution of membrane concentrations based on the 

data compilation differentiating only between the 333 chemicals is somewhat larger but still 

comparable to previously determined standard deviations of the log-normal distributions from 

41 to 215 mmol/kg (membrane lipid) (19 chemicals measured for guppy (Poecilia reticulata), 

recalculated from (Vaes et al., 1998)), from 40 to 160 mmol/kg (membrane lipid) (65 

industrial chemicals measured with the fathead minnow) (Wezel and Opperhuizen, 1995), 

from 91 to 120 mmol/kg (membrane lipid) (29 chemicals) (McCarty et al., 2013) and 80 to 

250 mmol/kg (membrane lipid) (6 chemicals for 3 aquatic organisms) (Endo, 2016; van der 

Heijden et al., 2015). Similarly, the geometric mean determined in this work is almost 

identical to the geometric mean of 94.4 mmol/kg (membrane lipid), calculated from the data 

of (Vaes et al., 1998) (see SI-3, section 2 for details), and also close to the 140 mmol/kg 

(membrane lipid) reported in (Endo, 2016). The latter and most recent analysis of (Endo, 

2016) is based on a single high-quality data set, measured in one lab (van der Heijden et al., 
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2015), and is based on the distribution of chemicals in the different body compartments rather 

than on water concentrations. The approach presented in (Endo, 2016) to calculate toxic 

threshold membrane concentration should be comparably accurate as a calculation based on 

freely dissolved water concentrations. Interestingly, the study of (Endo, 2016) reports the 

highest toxic membrane concentrations although the use of nominal water concentrations as 

done in (Vaes et al., 1998) would potentially overestimate toxic membrane concentrations. 

Overall, the re-analysis of the revised data set of (Kipka and Di Toro, 2009) confirms the 

above cited earlier works and underlines the earlier finding of a toxic membrane concentration 

for neutral organic chemicals that ranges from 26 to 425 mmol/kg for the investigated 42 

organisms and 333 chemicals. Consequently, the pp-LFER for log Kmw (Eq. 8) is very similar 

to the pp-LFER calibrated by (Kipka and Di Toro, 2009) describing the partitioning to the 

‘target lipid’ (see SI-3, section 3). 

The regression equation resulting from Fig. 11A is 

𝑙𝑜𝑔 𝐿𝐶50 =  −0.92(±0.03) 𝑙𝑜𝑔𝐾𝑚𝑤 + 1.82(±0.08) ; 𝑅2 = 0.77    (15) 

The very small deviation of the slope to the ideal value of -1 in the regression Eq. 15 might 

well be due to the biological variability that is also expressed in the experimental toxicity 

data. It might also be a hint that Klipw is not a perfect surrogate for Kmw for every organism, 

which comes as no surprise. While Klipw is based on pure phospholipids, Kmw should also 

account for everything else that makes up real biological membranes beyond pure 

phospholipids as discussed above. Cholesterol, e.g., is ubiquitous in eukaryotic cell 

membranes to varying amounts and influences not only the transition phase temperature, but 

also the sorption characteristics (Endo et al., 2011). Moreover, almost one third of naturally 

occurring proteins are believed to be located in biological membranes (Tan et al., 2008). 
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Figure 11. A) log LC50 values for 333 different neutral organic chemicals (summarized as 

described above from 1591 experimental toxicity values measured for 42 aquatic organisms) 

against their log Kmw, predicted with pp-LFER (Endo et al., 2011). The regression analysis 

was made with Origin 2015. B) Tukey boxplot of the resulting toxic membrane concentration 

calculated based on Eq. 11 (the bottom and top of the box represent the first and third 

quartiles, the thick black line inside box represents the median with 116 mmol/kg (membrane 

lipid); whiskers set at lowest/highest data point still within 1.5 interquartile range of the 

lower/upper quartile) with the geometric mean toxic membrane concentration of 

105 mmol/kg (membrane lipid) shown as dotted red line. The analysis was done with R 

version 2.14.2. 

1.5.2.2 Toxicity f ILs 

The log Kmw [L/kg] values of the cations were calculated to go from -0.80 to 12.06, while 

the predicted log Kmw [L/kg] values of the corresponding anions go from 0.16 to 3.02 (see 

SI-3, Table 6). The predicted log Kmw of 12.06 for the trihexyl(tetradecyl)phosphonium cation 

(P666-14) is far beyond the validation data set of COSMOmic (and it would also 

experimentally not be feasible to investigate such a high partition coefficient). In principle 

COSMOmic should be applicable for extrapolations well beyond the validation data set as 

discussed above, but to be on the safe side P666-14 was excluded from further analysis. This 
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leaves 38 cations (with a maximum log Kmw of 8.69) and 6 anions (see SI-3, Table 6) in 77 

different salt combinations yielding a total of 165 toxicity values for six different test 

organisms and 3 cell assays: the bacteria Aliivibrio fischeri  (n= 40), and E. coli (n= 5), the 

algae Pseudokirchneriella subcapitata (n= 10) and Scenedesmus vacuolatus (n= 16), the cell 

lines IPC-81 (rat leukemic cells, n= 57), HeLa cells (n= 12) and MCF7 cells (breast cancer 

cell line, n= 6), the water plant Lemna minor (n= 10) and the water flea Daphnia magna (n= 

9). 

Fig. 12 B does not seem to be a confirmation that the baseline toxicity approach is valid 

for ILs at the first sight: the additive toxic membrane concentrations for the different IL salts 

are not close enough to the expected range of baseline toxicity determined for neutral 

chemicals. However, it cannot be taken for granted that all of the investigated ILs do only 

exhibit baseline toxicity. Hence, the considerable scatter shown in Fig. 12 B can neither be 

per se taken as a falsification of the baseline toxicity concept for ILs, but the (partially 

substantial) deviations from the expected toxic membrane threshold concentration need to be 

addressed. Taking the concept as a plausible assumption and assuming the same critical 

membrane concentration range for ILs as determined above for the neutral chemicals, those 

toxicity values can be tracked down that seem to be based on a specific mode of toxic action 

and those that are most likely experimental artefacts. Overall, the medians of the total toxic 

membrane concentrations for ILs range from 0.2 (D. magna) to 1100 mmol/kg (membrane 

lipid) (E. coli) and the corresponding geometrical means range from 0.6 (D. magna) to 1432 

(E. coli) mmol/kg(lipid). The toxic membrane concentrations for ILs calculated with Eq. 13 

for the different organisms/cell assays have a standard deviation of the log-normal distribution 

of 0.5 to 1407 mmol/kg (membrane lipid) (for details see SI-3, Table 5). 
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Figure 12. A) Tukey boxplot of the total membrane concentrations resulting from all 165 IL 

toxicity values for the six different organisms and three cell assays. B) Tukey boxplots of the 

total membrane concentrations resulting for the six different organisms and three cell assays 

individually. The bottom and top of the boxes represent the first and third quartiles, the thick 

black lines inside the boxes represent the medians; whiskers are set at lowest/highest data 

points still within 1.5 interquartile range of the lower/upper quartile. The red line indicates the 

geometric mean toxic membrane concentration of 105 mmol/kg (membrane lipid) determined 

above (Fig. 11 B) for 333 neutral chemicals (42 aquatic organisms), while the dotted red lines 

correspond to the range of membrane concentrations regarded as baseline toxicity (0.1 < TR < 

10), given by Eq. 14. The analysis was done with R version 2.14.2. 

As summarized in Table 3, only 22 to 58% of the toxic ratios (TRs) in present data set can 

be classified as baseline toxicants for the different organisms/cell assays, according to the 

Eq. 14 (i.e.,  0.1 < TR < 10) (see SI-3, Table 9 for all TR values). Only few TRs are classified 

as less toxic than expected according to the baseline toxicity concept (P. subcapitata, S. 

vacuolatus and D. magna have no values reported and the remaining organisms/cell assays 

are below the 25% reported for HeLa, except E. coli with 60%). On the other side there is a 

considerable amount of TRs pointing towards a specific toxic mode of action (TR > 10), up to 
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78% for D. magna; the exception is again E. coli with no IL toxicity values being above 

baseline toxicity.  

Fig. 12 B seems to suggest that the values for the organisms D. magna and E. coli are 

systematic outliers from the range defined by the baseline toxicity concept. However, this is a 

false conclusion due to the random selection of tested ILs: in fact, D. magna should not be 

regarded as a specifically sensitive test system, because most of the ILs tested for D. magna 

show similarly elevated TRs as they do for other tested organisms/cell assays. On the other 

hand E. coli should not be regarded as a specifically insensitive test system based on Fig. 

12 B, because most of the ILs tested for E. coli also show TR values below 10 or even below 

0.1 (in this regard the 1-butyl-3-methyl-1H-imidazol-3-ium tetrafluoroborate (IM14 BF4) 

gives the most heterogeneous picture: while it has a TR of 0.095 for E. coli, it is classified as 

baseline toxicant for A. fischeri, IPC-81 and HeLa, while exerting excess toxicity to 

S. vacuolatus, L. minor and D. magna; see SI-3, Table 9 and further discussion below). The 

ions tested for E. coli are not particularly prone to exhibit large differences between nominal 

and freely-dissolved concentrations (the respective log Klipw values do not exceed 3.42). 

 

Table 3. Summary of the TR analysis via binning the IL toxicity data into chemicals being 

less toxic than expected according to the baseline toxicity concept (TR < 0.1), baseline 

toxicants (0.1 < TR < 10) and specifically acting toxic chemicals (TR > 10). 

organism/ 

cell assay 

A. fi-

scheri 

E. 

coli 

P. sub-

capitata 

S. vacu-

olatus 

IPC-

81 

HeLa MCF7 L. mi-

nor 

D. mag-

na 

TR < 0.1 5 3 0 0 11 3 1 1 0 

0.1<TR<10 14 2 3 5 31 7 3 3 2 

TR > 10 21 0 7 11 15 2 2 6 7 

 

Experimental artefacts are the obvious suspicion for those ILs exerting much less than the 

expected baseline toxicity (TR < 0.1). None of the calculated TRs go below 0.01, except those 

of the very long chained imidazolium cations 3-methyl-1-octadecyl-1H-imidazol-3-ium (IM1-

18) and 3-methyl-1-nonadecyl-1H-imidazol-3-ium (IM1-19), whose TRs go from 8*10
-4

 to 
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9*10
-6

 (data for A. fischeri and ICP-81). This is most likely an experimental artefact, because 

IM1-18 and IM1-19 also exhibit the strongest hydrophobicity of all ions investigated 

(log Klipw = 8.08 and 8.69, respectively), probably causing big artefacts due to the use of 

nominal concentrations instead of freely dissolved concentrations as discussed in (Fischer et 

al., 2017). The corresponding toxic membrane concentration for the IM1-18 and IM1-19 salts 

would go from 1.2*10
5
 to 3.4*10

7
 mmol/kg (membrane lipid) (determined for A. fischeri and 

IPC-81 cell test), which seems to be far too high. A different, rather statistical argument 

classifying the IM1-18 and IM1-19 salt toxicity data as artefacts is that out of the 85 toxicity 

values for imidazolium salts with side chain lengths going from 2 to 14, only 8 have TR < 0.1 

and 36 are even supposed to act via specific toxicity – while the majority (41 of the toxicity 

values) are in the range of baseline toxicity (data for all organisms/cell assays, except 

MCF-7).  

Another, albeit rather hypothetical explanation for the high apparent toxic membrane 

concentrations of the IM1-18 and IM1-19 salts might be due to the structure of these cations 

exhibiting the same characteristic features as phospholipids: the IM1-18 and IM1-19 cations 

have a charged head group and a long apolar tail. They might be less toxic than expected by 

the general assumptions of the baseline toxicity concept, because they might not alter the 

physico-chemistry of the membrane as much as other chemicals do. This explanation is purely 

speculative but seems reasonable based on the structure of the IM1-18 and IM1-19 cations 

and POPC as a representative phospholipid constituting biological membranes (see Fig. 13). 

Accordingly, it has been shown that the anesthetic effect to tadpoles for a homologous series 

of saturated aliphatic alcohols exhibits a cutoff in potency (Pringle et al., 1981). This is seen 

as a strong hint that the crucial sorption sites determining baseline toxicity are not the pure 

membranes but hydrophobic pockets of proteins with well-defined volumes. Contrary to this 

hypothesis we could show that the surfactant-like hexadecyltrimethyl-ammonium-, 

hexadecylpyridinium- and didecyldimethylammonium cations are all baseline toxicants 
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(Baumer et al., 2017; Escher et al., 2017). These three structures are similar to IM1-18 and 

IM1-19. Finally, it could also well be that COSMOmic overpredicted the respective Kmw 

values, leading to erroneously high membrane concentrations.  

 

Figure 13. From top to bottom: structures of 3-methyl-1-octadecyl-1H-imidazol-3-ium (IM1-

18; log Kmw = 8.08), 3-methyl-1-nonadecyl-1H-imidazol-3-ium cation (IM1-19 cation; 

log Kmw = 8.69) and the phospholipid 1-Palmitoyl-2-oleoylphosphatidylcholine (POPC). 

The duration of different toxicity tests ranges from 4 to 24 h, except for A. fischeri (30 

min) and L. minor (7 days) (see SI-3, Table 7 for details). It is well known that the membrane 

permeability of the ionic species of an ionizable chemical is orders of magnitudes lower than 

the permeability of the corresponding neutral species (Saparov et al., 2006) which therefore 

governs the uptake into the organism. In recent work, MDCK cells did not show any uptake 

of the charged chemical 9,10-dimethoxyanthracene-2-sulfonate within 24 hours (Abele, 

2016). This is a strong hint that in the presented cases for ILs the toxicity experiments are 

(mostly) not conducted long enough for the charged chemicals to reach equilibrium 

partitioning between the organisms/cell assays membranes’ and water. In the case of 

permanently charged ILs no corresponding neutral species is present so that the uptake into 

the organism can be very slow. This might also partly explain the very high apparent toxic 
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membrane concentrations for A. fischeri (30 min exposure) and IPC-81 (4 h exposure), which 

exhibit the lowest TRs, as also discussed above.  

While experimental artefacts are likely to explain (at least most of) the toxicity values 

with TR < 0.1, this is not the case for toxicity values that are classified to act via a specific 

mode of action (TR > 10). E.g., only 5 out of 23 toxicity values for pyridinium cations fall 

into the range of baseline toxicity, the remaining 18 toxicity values are all classified as 

specifically acting toxicants (data for all organisms/cell assays, except E. coli). This finding is 

in line with a recent study that has an albeit different focus: (Peric et al., 2013) showed that 

the 1-butyl-3-methyl-1H-imidazol-3-ium (IM14) chloride and the 1-butylpyridin-1-ium (Py4) 

chloride are considerably more toxic to A. fischeri, P. subcapitata, L. minor and IPC-81 than 

protic ILs (the latter are not part of the present work because they are also prone to ion 

trapping, which needs a different modelling that brings along additional uncertainties as 

shortly discussed above and in more detail e.g. in (Baumer et al., 2017)). Interestingly, the 

toxicity of IM14 in the present data set seems to depend on the nature of the anionic 

counterion. While IM14 chloride and bromide show specific toxicity for all investigated 

organisms/cell assays in the data set (n = 12), IM14 in combination with the BF4 anion (n = 

7) exhibits three values classified as specific toxicity, three values classified as baseline 

toxicity and one value even classified as less toxic than expected by the baseline toxicity 

approach. For the remaining three anions (hexafluorophosphate (PF6), bis((trifluoromethyl)-

sulfonyl)amide ((CF3SO2)2N), and dicyanamide ((CN)2N)), all of the IM14 toxicity values are 

classified as baseline toxicity (n = 11) or less toxic than expected by the baseline toxicity 

approach (n = 4). While this analysis for the different IM14 salts may also be affected by 

interspecies differences in sensitivity, it is worth to have a detailed look into the TR analysis 

for A. fischeri and IPC-81, both of which have a complete set of toxicity values for all 

investigated anions (see Table 4). 
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Table 4. Toxic ratios (TRs) as defined by Eq. 14 for the IM14 cation with the 6 different 

anions investigated. 

 

Cl Br (CN)2N BF4 PF6 (CF3SO2)2N 

A. fischeri 16 12 2.7 2.1 0.14 0.041 

IPC-81 11 12 4.0 2.9 0.14 0.21 

  

Based on the TRs shown in Table 4 it can be speculated that, according to the Pearson 

acid base concept, the soft IM14 cation forms stronger ion pairs with the soft (CN)2N, BF4, 

PF6 and (CF3SO2)2N anions than with the hard chloride and bromide anions. These potential 

ion pairs might hamper a specific mode of toxic action exerted by the unbound IM14 cation. 

The highest TR of 476005 (which corresponds to the lowest toxic membrane concentration of 2.2*10
-4

 

mmol/kg (membrane lipid)) is determined for 1-hexyl-3-methyl-1H-imidazol-3-ium (IM16) chloride 

salt for P. subcapitata. IM16 chloride has also high TRs for A. fischeri (TR = 23) and S. vacuolatus 

(TR = 4760), but the TR for IPC-81 corresponds to the expectation for baseline toxicity (TR = 8.1). 

Similar to the pattern discussed above for IM14, all three TRs reported for IM16 bromide indicate 

excess toxicity, while all remaining four TRs with the anionic counterions BF4, PF6 and (CF3SO2)2N 

fall into the range of baseline toxicity. 

The IL salts containing quinoline cations (n = 5) do all show excess toxicity. However, it 

remains unclear in the present data set whether this finding can be generalized, because all of 

experimental values are for the ICP-81 cell line test. Interestingly, already Vaes et al. 

identified the neutral form of quinolone as a chemical exerting excess toxicity towards guppy 

in their early work advocating the Klipw over the Kow for the description of baseline toxicity 

(Vaes et al., 1998). 

In the literature, the anions present in the present data set are discussed to “show none or 

just trivial” cytotoxicity, except the (CF3SO2)2N anion, which is supposed to “demonstrate a 

noteworthy effect on the cytotoxicity” (Zhao et al., 2007). This finding can be nicely explained 

by the baseline toxicity approach: the (CF3SO2)2N anion simply has the highest Klipw value 
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of all anions investigated in the present work (log Klipw = 3.02). In fact, none of the 25 toxicity 

values of IL salts containing the (CF3SO2)2N anion do show excess toxicity (ten even have 

TRs < 0.1). 
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1.6 Conclusions and Outlook 

1.6.1 Prediction of Klipw(ion) with COSMOmic 

In order to predict how strongly ions sorb to phospholipid membranes, the membrane 

potential has to be adequately accounted for, although it cannot be deduced directly from the 

membrane structure. In the presented enhancement of COSMOmic, the membrane potential 

has been implemented as a Gaussian-type error function that is optimized with the 

experimental sorption data, yielding satisfying Klipw predictions for neutral and ionic 

compounds. The overall prediction accuracy of the revised COSMOmic model presented in 

this work is well within the expected accuracy of COSMOtherm, which is reported to be 0.65 

to 0.93 log units for the prediction of the partitioning between different liquid/liquid systems 

for highly diverse data sets (Stenzel et al., 2014). Although there seems to be still some scatter 

in the prediction especially for cations, the presented enhancement of COSMOmic is, to the 

best of our knowledge, the first mechanistic model that is able to predict the sorption of both 

ions and neutral species in such a complex anisotropic phase as membranes are.  

In future research, the energy profiles derived with COSMOmic might be used to predict 

the permeability of ions through membranes. This, however, will need further experimental 

confirmation, as the permeability of membranes depends on the main resistances (i.e., Gibbs 

free maxima), while the partition coefficients are more related to the energy minima of the 

calculated profiles. This is specifically important when it comes to the toxicity of uncouplers, 

which involves the transfer of ions through energy transducing membranes (Spycher et al., 

2008). The presented improvement of COSMOmic for the use with ions may also have 

implications in drug design, where the ‘lipophilic efficiency’ of ionogenic drugs is still often 

quantified by using an empirically estimated octanol-water partition coefficient (i.e., log Dow). 

The Klipw predictions of per- and polyfluorinated alkyl chemicals (which are experimentally 

very difficult to handle) has already successfully been used to enhance the description of their 

bioaccumulation potential (Ng and Hungerbuehler, 2015). 
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1.6.2 Assessment of Different Models Predicting Klipw(ion) 

In terms of Klipw prediction of neutral chemicals (which were not the focus of this work but 

were considered for consistency), both the Kow based model as well as the pp-LFER model are 

computationally less demanding than COSMOmic. If any mechanistic understanding of the 

partitioning process of neutral chemicals is desired, the pp-LFER approach will be the more 

suited one of these two.  

However, in terms of Klipw prediction of charged chemicals, the usage of the pp-LFER 

approach is constrained due to the lack of a sound mechanistic basis (although the model 

seems to be applicable for the sorption to anisotropic muscle protein (Henneberger et al., 

2016)). The correlation approach with log Kow, though being strictly empirical and lacking a 

strict mechanistic reasoning, performs better than could be expected, at least with regard to 

anionic chemicals. However, permanent ions, zwitterions and polyvalent ions cannot be 

handled with the Kow approach. The mechanistic approach underlying COSMOmic allows the 

calculation of Klipw independent of charge and chemical classes and seems to have the 

potential to handle also zwitter- and divalent ions; it only needs the molecular structure as 

input. Concerning new pollutants outside the chemical space of the present fitting data set, 

COSMOmic seems to be the only model that can be used with some confidence to make Klipw 

predictions. 

1.6.3 Applying the Baseline Toxicity Concept on Ions 

In this work previous studies on the baseline toxicity concept for neutral organic chemicals 

could be substantiated. The nonspecific toxicity of neutral chemicals can satisfyingly be 

explained for a large variety of different aquatic organisms using a toxic membrane 

concentration range around 100 mmol/kg (membrane lipid) and the equilibrium partition 

coefficients between phospholipid membranes and water. Applying this concept to 

permanently charged ILs and assuming independent additive contributions of cationic and 

anionic chemicals suggests that as many of the investigated toxicity data comply with the 
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baseline toxicity concept as do seem to exert specific toxicity (about 42% each). The baseline 

toxicity concept not only enables the differentiation between baseline and excess toxicity but 

it furthermore points out data that are most likely based on experimental artefacts. Moreover, 

the analysis of toxic ratios (TRs) is useful to investigate the toxicity of a single IL component 

(e.g., a cation) when combined with different counterions (i.e., different anions). However, 

there are still plenty of uncertainties and problems that need to be solved before it can 

conclusively be argued that baseline toxicity as investigated in this work is the ubiquitous 

driver of the minimal toxic effect exerted by every chemical (which is the basis for every 

further analysis): Further toxicity experiments are necessary that take the slower uptake 

kinetics of ionized organic chemicals into account. The experiments need to be designed in 

such a way that artefacts caused by the difference between nominal and freely dissolved 

concentrations can be ruled out (which is specifically important for cell-assay toxicity tests). 

Studies on membrane permeability of charged chemicals should help to get a clearer picture 

of the baseline toxicity of permanently charged as well as ionizable chemicals present in 

charged and non-charged form. The ionizable chemicals are prone to an ion-trapping effect 

and therefore the difference in the respective membrane permeability of the charged and non-

charged form of a chemical becomes crucial, given that the external pH differs from the 

internal (cytoplasmic) pH. In that regard pH-dependent toxicity tests will help to better 

understand the ion-trapping effect and thus its implications on baseline toxicity. Finally, also 

the Klipw predictions of ionized chemicals need to be further validated, especially in the case 

of multiply charged chemicals (which are important, e.g., when the toxicity of 

pharmaceuticals or pesticides is assessed). All of these raised issues will necessarily have to 

be tackled in order to distinguish reliably between specific and non-specific toxicity and to 

clarify the exact mechanism of non-specific, baseline toxicity. Nevertheless, the baseline 

toxicity concept can already be regarded as a useful tool also for charged chemicals, e.g., for 

regulation purposes, if an estimate of the minimal expected toxicity is needed.  
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1.8 Abbreviations 

COSMO conductor-like screening model 

COSMOmic COSMO-RS for micelles 

COSMO-RS conductor-like screening model for real solvents 

DMPC  1,2-dimyristoyl-sn-glycero-3-phosphocholine 

Dow  sum of the neutral fraction times the respective Kow plus the ionized fraction  

  times the respective Kow 

IL  ionic liquid  

Klipw  liposome-water partition coefficient 

Kmw   (biological) membrane-water partition coefficient 

Kow  octanol-water partition coefficient 

MD  molecular dynamics simulation 

MW  molecular weight 

PFOA  perfluorooctanoic acid  

PFOS  heptadecafluoro-1-octanesulfonic acid  

POPC  1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine   

pp-LFER poly-parameter linear free energy relationship 

QSAR  quantitative structure activity relationship 

RMSE  root-mean-square error 

SI  supporting information, enumerated according to the order of appearance (see  

  Preface) 

TR  toxic ratio 

Ψd  internal membrane dipole potential 
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2. Abstracts of original publications 

 

2.1 Prediction of Phospholipid-Water Partition Coefficients of 

Ionic Organic Chemicals using the Mechanistic Model 

COSMOmic 

Kai Bittermann,
 
Simon Spycher, Satoshi Endo, Larissa Pohler, Uwe Huniar, Kai-Uwe Goss 

and Andreas Klamt 

Journal of Physical Chemistry B. 2014, 118 (51) 14833–42. doi:10.1021/jp509348a 

  

ABSTRACT  

The partition coefficient of chemicals from water to phospholipid membrane, Klipw, is of 

central importance for various fields. For neutral organic molecules, log Klipw correlates with 

the log of bulk solvent-water partition coefficients such as the octanol-water partition 

coefficient. However, this is not the case for charged compounds, for which a mechanistic 

modelling approach is highly necessary. In this work, we extend the model COSMOmic, 

which adapts the COSMO-RS theory for anisotropic phases and has been shown to reliably 

predict Klipw for neutral compounds, to the use of ionic compounds. To make the COSMOmic 

model applicable for ionic solutes, we implemented the internal membrane dipole potential in 

COSMOmic. We empirically optimized the potential with experimental Klipw data of 161 

neutral and 75 ionic compounds, yielding potential shapes that agree well with experimentally 

determined potentials from the literature. This model refinement has no negative effect on the 

prediction accuracy of neutral compounds (root mean square error, RMSE = 0.62 log units), 

while it highly improves the prediction of ions (RMSE = 0.70 log units). The refined 

COSMOmic is, to our knowledge, the first mechanistic model that predicts Klipw of both ionic 

and neutral species with accuracies better than 1 log unit. 
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2.2 Comparison of different models predicting the phospholipid-

membrane water partition coefficients of charged compounds 

 

Kai Bittermann,
 
Simon Spycher and Kai-Uwe Goss 

Chemosphere. 2016, (144) 382–391. doi:10.1016/j.chemosphere.2015.08.065 

 

 

ABSTRACT  

A large fraction of commercially used chemicals is ionizable. This results in the need for 

mechanistic models to describe the physicochemical properties of ions, like the membrane-

water partition coefficient (Kmw), which is related to toxicity and bioaccumulation. In this 

work we compare 3 different and already existing modelling approaches to describe the 

liposome-water partition coefficient (Klipw) of organic ions, including 36 cations, 56 anions, 2 

divalent cations and 2 zwitterions (plus 207 neutral compounds for ensuring model 

consistency). 1) The empirical correlation with the octanol-water partition coefficient of the 

corresponding neutral species yielded better results for the prediction of anions (RMSE=0.79) 

than for cations (RMSE=1.14). Though describing most anions reasonably well, the lack of 

mechanistic basis and the poor performance for cations constrain the usage of this model. 2) 

The polyparameter linear free energy relationship (pp-LFER) model performs worse 

(RMSE=1.26/1.12 for anions/cations). The different physicochemical environments, due to 

different sorption depths into the membrane of the different species, cannot be described with 

a single pp-LFER model. 3) COSMOmic is based on quantum chemistry and fluid phase 

thermodynamics and has the widest applicability domain. It was the only model applicable for 

multiply charged ions and gave the best results for anions (RMSE=0.66) and cations 

(RMSE=0.71). We expect COSMOmic to contribute to a better estimation of the 

environmental risk of ionizable emerging pollutants. 

  



Original Publications  77  

 

 

2.3 Erratum - Comparison of different models predicting the 

phospholipid-membrane water partition coefficients of charged 

compounds 

 

Kai Bittermann,
 
Simon Spycher and Kai-Uwe Goss 

Chemosphere. 2016, (179) 405–406. doi:10.1016/j.chemosphere.2017.03.132 

 

 

SUMMARY  

 

Due to a transcription error 26 pp-LFER solute descriptors of the charged compounds listed in 

the supporting information (SI) available online before 10.13.2015, Table 8 are not correct: 

the B and J
-
 values for the cationic forms of acebutolol, alprenolol, bupranolol, labetalol, 

nadolol, oxprenolol, pindolol, toliprolol, ceterizine, chlorpromazine, hydroxyzine and 

morantel should be 0. Likewise, the J
+
 values for the anionic forms of 2,4-

dichlorophenoxyacetic acid and acrivastine should be 0. These errors have been corrected in 

the SI now available (http://www.sciencedirect.com/science/article/pii/S0045653515300655). 

The simultaneous errors in the solute descriptors B and J
-
 of the cations almost cancel, 

while the two errors in the J
+
 values for the anions do not have a big influence on the multi 

linear regression. Eq. 6 in the article changes on the second digit of the regression coefficient 

for J
-
 when the corrected solute descriptors are used and in Figure 3 the values of 2,4-

dichlorophenoxyacetic acid anion and acrivastine anion are shifted by 1.80 and 3.54 log units, 

respectively (all other predictions change less than 0.9 log unit). 

The observation in the published article that Eqs. 6 und 7 differ substantially is still valid 

for the two corrected Eqs. 6 and 7 above. Thus, the claim that one pp-LFER is not enough to 

describe the heterogeneous membrane-water partitioning system adequately for ions and 

neutral compounds as discussed in the article can be maintained. However, it also has to be 

pointed out that for some solute descriptors the values for ions are much bigger than for the 

neutral compounds. E.g. B and S for the 42 anions go up to values of 4.39 and 16.59, 

respectively, while B and S for the 207 neutral compounds do not exceed the values of 2.19 

and 3.29, respectively. In order to cover the full physicochemical space occupied by the solute 

descriptors, it seems to be more meaningful to fit ions and neutral compounds together for the 

derivation of a pp-LFER equation (although this is not the procedure recommended by 

Abraham et al. (Abraham and Acree, Jr, 2010a, 2010b, 2010c; Saifullah et al., 2011; Zhao and 

Abraham, 2005)). 
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2.4 Assessing the toxicity of ionic liquids – Application of the 

Critical Membrane Concentration approach 

 

Kai Bittermann,
 
Kai-Uwe Goss 

Chemosphere. 2017. doi: 10.1016/j.chemosphere.2017.05.097. 

  

ABSTRACT  

Charged organic chemicals are a prevailing challenge for toxicity modelling. In this 

contribution we strive to recapitulate the lessons learned from the well-known modelling of 

narcosis (or baseline toxicity) of neutral chemicals and apply the concept to charged 

chemicals. First we reevaluate the organism- and chemical independent critical membrane 

concentration causing 50% mortality, 𝑐mem
𝑡𝑜𝑥 , based on a critical revision of a previously 

published toxicity dataset for neutral chemicals. In accordance to values reported in the 

literature we find a mean value for 𝑐mem
𝑡𝑜𝑥  of roughly 100 mmol/kg (membrane lipid) for a 

broad variety of 42 aquatic organisms (333 different chemicals), albeit with a considerable 

scatter. Then we apply this concept to permanently charged ionic liquids (ILs). Using 

COSMOmic, a quantum mechanically based mechanistic model that makes use of the 

COSMO-RS theory, we predict membrane-water partition coefficients (Kmem/w) of the anionic 

and cationic IL components. Doing so, 𝑐mem
𝑡𝑜𝑥 (𝑡𝑜𝑡𝑎𝑙) for permanently charged ILs can be 

estimated assuming independent, concentration additive contributions of the cationic and its 

respective anionic species. The resulting values for some of the toxicity data for ionic liquids 

are consistent with the expected range for baseline toxicity for neutral chemicals while other 

values are consistently greater or smaller. Based on the calculation of toxic ratios we identify 

ILs that exert a specific mode of toxic action. Limitations of the modelling approach 

especially but not exclusively due to the use of nominal concentrations instead of freely-

dissolved concentrations in the published literature are critically discussed. 
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2.5 Modeling Exposure in the Tox21 in Vitro Bioassays 

 

Fabian Fischer, Luise Henneberger, Maria König, Kai Bittermann, Lukas Linden, Kai-Uwe 

Goss and Beate Escher 

Chemical Research in Toxicology. 2017, 30 (5) 1197-1208. 

doi: 10.1021/acs.chemrestox.7b00023 

 

 

ABSTRACT  

High-throughput in vitro bioassays are becoming increasingly important in the risk 

characterization of anthropogenic chemicals. Large databases gather nominal effect 

concentrations (Cnom) for diverse modes of action. However, the biologically effective 

concentration can substantially deviate due to differences in chemical partitioning. In this 

study, we modeled freely dissolved (Cfree), cellular (Ccell), and membrane concentrations 

(Cmem) in the Tox21 GeneBLAzer bioassays for a set of neutral and ionogenic organic 

chemicals covering a large physicochemical space. Cells and medium constituents were 

experimentally characterized for their lipid and protein content, and partition constants were 

either collected from the literature or predicted by mechanistic models. The chemicals 

exhibited multifaceted partitioning to proteins and lipids with distribution ratios spanning over 

8 orders of magnitude. Modeled Cfree deviated over 5 orders of magnitude from Cnom and can 

be compared to in vivo effect data, environmental concentrations, and the unbound fraction in 

plasma, which is needed for the in vitro to in vivo extrapolation. Ccell was relatively constant 

for chemicals with membrane lipid−water distribution ratios of 1000 or higher and 

proportional to Cnom. Representing a sum parameter for exposure that integrates the entire 

dose from intracellular partitioning, Ccell is particularly suitable for the effect characterization 

of chemicals with multiple target sites and the calculation of their relative effect potencies. 

Effective membrane concentrations indicated that the specific effects of very hydrophobic 

chemicals in multiple bioassays are occurring at concentrations close to baseline toxicity. The 

equilibrium partitioning model including all relevant system parameters and a generic 

bioassay setup is attached as an excel workbook to this paper and can readily be applied to 

diverse in vitro bioassays. 
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2.6 General baseline toxicity QSAR for nonpolar, polar and 

ionisable chemicals and their mixtures in the bioluminescence 

inhibition assay with Aliivibrio fischeri 

Beate I. Escher, Andreas Baumer, Kai Bittermann, Luise Henneberger, Maria König, 

Christian Kühnert and Nils Klüver 

Environmental Science: Processes Impacts. 2017, 19 (3) 414-428. 

doi: 10.1039/C7EM00099E 

  

ABSTRACT  

The Microtox assay, a bioluminescence inhibition assay with the marine bacterium Aliivibrio 

fischeri, is one of the most popular bioassays for assessing the cytotoxicity of organic 

chemicals, mixtures and environmental samples. Most environmental chemicals act as 

baseline toxicants in this short-term screening assay, which is typically run with only 30 min 

of exposure duration. Numerous Quantitative Structure–Activity Relationships (QSARs) exist 

for the Microtox assay for nonpolar and polar narcosis. However, typical water pollutants, 

which have highly diverse structures covering a wide range of hydrophobicity and speciation 

from neutral to anionic and cationic, are often outside the applicability domain of these 

QSARs. To include all types of environmentally relevant organic pollutants we developed a 

general baseline toxicity QSAR using liposome–water distribution ratios as descriptors. 

Previous limitations in availability of experimental liposome–water partition constants were 

overcome by reliable prediction models based on polyparameter linear free energy 

relationships for neutral chemicals and the COSMOmic model for charged chemicals. With 

this QSAR and targeted mixture experiments we could demonstrate that ionisable chemicals 

fall in the applicability domain. Most investigated water pollutants acted as baseline toxicants 

in this bioassay, with the few outliers identified as uncouplers or reactive toxicants. The main 

limitation of the Microtox assay is that chemicals with a high melting point and/or high 

hydrophobicity were outside of the applicability domain because of their low water solubility. 

We quantitatively derived a solubility cut-off but also demonstrated with mixture experiments 

that chemicals inactive on their own can contribute to mixture toxicity, which is highly 

relevant for complex environmental mixtures, where these chemicals may be present at 

concentrations below the solubility cut-off. 
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2.7 Baseline toxicity and ion-trapping models to describe the pH-

dependence of bacterial toxicity of pharmaceuticals 

 

Andreas Baumer, Kai Bittermann, Nils Klüver and Beate Escher 

Environmental Science: Processes Impacts. 2017, doi: 10.1039/C7EM00099E 

  

ABSTRACT  

In numerous studies on the toxicity of ionisable organic chemicals, it has been shown that the 

toxicity was typically higher, when larger fractions of the neutral species were present. This 

observation was explained in some cases by slower uptake of charged species. In other cases 

it was suggested that the neutral species has intrinsically higher toxicity than the charged 

species or is alone responsible for the toxicity. However, even permanently charged and 

organic chemicals with multiple acid and base functional groups and zwitterions are toxic. We 

set out to reconcile the divergent views and to compare the various existing models for 

describing the pH-dependence of toxicity with the goal to derive one model that is valid 

independent of the type and number of charges on the molecule. To achieve this goal we 

measured the cytotoxicity of 18 acidic, 15 basic and 9 multiprotic/zwitterionic 

pharmaceuticals at pH 5.5 to pH 9 with the bioluminescence inhibition test using Aliivibrio 

fischeri (Microtox assay). This assay is useful for an evaluation of various models to describe 

pH-dependent toxicity because the majority of chemicals act as baseline toxicants in this 30 

min cytotoxicity assay. Therefore baseline toxicity with constant membrane concentrations of 

the sum of all chemical species of approximately 200 mmol kglip
-1

 served for the validation of 

the suitability of the various tested models. We confirmed that most tested pharmaceuticals 

acted as baseline toxicants in this assay at all examined pH values, when toxicity was 

modeled with a mixture model of concentration addition between the neutral species and all 

charged species. An ion trapping model, that assumes that the membrane permeability of 

charged species is kinetically limited, improved model predictions for some pharmaceuticals 

and pH values. However, neither unhindered uptake nor no uptake of the charged species 

were ideal models; the reality lies presumably between the two limiting cases with a slower 

uptake of the charged species than the neutral species. For practical applications a previously 

developed QSAR model with the ionisation-corrected liposome–water distribution ratio as the 

sole physicochemical descriptor proved to be generally applicable for all ionisable organic 

chemicals including those with multiple charges and zwitterions..  
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Appendix 

Supporting Information 1: Prediction of Phospholipid–Water Partition 

Coefficients of Ionic Organic Chemicals Using the Mechanistic Model 

COSMOmic 

1 Experimental Section 

1.1 Chemicals details 

Fen and 246TriBP were purchased from Sigma Aldrich, OBS from TCI Europe, Flu from 

Fluka and 5-NB from Fluorochem. The buffers used were MOPS [3-(N- 

morpholino)propanesulfonicacid], pKa=7.2 from Roth and CHES [2-(N-

cyclohexylamino)ethanesulfonic acid], pKa=9.3 from Sigma Aldrich (>99%); KCl was from 

Fluka (>99.5%) and used for adjusting the ionic strength. All water used in the experiments 

was purified by a MilliQ Gradient A10 system (Millipore). The synthetic POPC (1-palmitoyl-

2-oleoyl-sn-glycero-3-phosphatidylcholine) came from Avanti Polar Lipids (>99%). 

Phosphoric acid (85%), methanol (SupraSolv) and acetonitril (LiChrosolv HPLC grade) was 

from Merck. 

1.2 Buffer Solution Preparation 

For buffer preparation all ingredients (buffer, KOH and KCl) were first weighed into a 

volume metric flask in the desired concentration. Then the glass was filled up with water and 

finally pH was measured with a pH meter. We did not adjust the pH by adding additional acid 

or base to ensure accurate concentrations of K
+
 in the buffer solutions. Instead, the amounts of 

buffer and KOH were optimized so that the pH falls into the desired range. 

For 1 L MOPS buffer with an ionic strength of 100 mM KCl the following amounts were 

used: 0.561 g (10 mM) KOH, 0.209 g (10 mM) MOPS and 6.710 g KCl (90 mM). The 

experimentally determined pH was between 8.18 and 8.34 while the pKa of MOPS is 7.2. 
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For 1 L CHES buffer with an ionic strength of 100 mM KCl the same amounts of KCl and 

KOH were used as above for the MOPS buffer solution. Additionally, 2.073 g (10 mM) 

CHES has been added. The experimentally determined pH was 10.0. 

Note that, strictly speaking, it is not correct to assume a concentration of 100 mM KCl in 

the buffer solutions used, but a concentration of 100 mM K
+
.  

1.3 Liposome Preparation 

Pure POPC was dissolved in CHCl3, transferred into a round-bottom flask and dried down 

to a film in a rotary evaporator. Residual traces of solvent were removed under vacuum in a 

desiccator (without silica gel to avoid possible contamination) overnight, while the lipid was 

protected against light using aluminum foil. The remaining film was hydrated and suspended 

by gentle shaking with 10 mL buffer solution and transferred into a cryo-vial. In order to 

increase the size of the multi-lamellar vesicles (MLV), the liposome samples were shock-

frozen in liquid nitrogen and thawed in a 40°C water bath 10 times. Finally the suspension 

was filtered 10 times through a membrane extruder (Lipex Biomembranes, Vancouver, BC, 

Canada with Whatman polycarbonate filter membrane pore size 0.1µm) to strip off the outer 

lipid layers and form unilamellar vesicles (ULV). The filtrate was stored in an amber glass 

bottle in the fridge and used within 10 days. The sorption properties of liposomes were 

assumed unchanged within the storage time, as shown before (Kaiser and Escher, 2006). 

The final concentration of POPC liposomes in the suspension was analyzed photometrically 

via the amount of phosphate after digesting with peroxodisulfate and autoclaving at 120°C for 

0.5h, according to DIN ISO 15923-1.  

  



Appendix  91  

 

 

 

1.4 Dialysis cell experiments 

The home built equilibrium dialysis cells consisted of two glass chambers with 2 mL 

volume each. One chamber was filled with 2 mL liposome suspension, and the other with 2 

mL buffer solution. The chemical was added to the liposome side. This has the advantage of 

faster equilibration compared to the addition of the chemical to the buffer side, because at 

equilibrium, the liposome side of the cell contains a larger amount of the chemical than the 

buffer side and thus adding the chemical to the liposome side makes the initial state closer to 

the equilibrium state. Samples (200 µL) were taken from the liposome-free side on the 4th 

and 6th days. All chemicals except OBS were measured with an HPLC system from JASCO, 

equipped with a UV detector (UV-970 M). Separation was done on an Eclipse Plus C18 

column from Agilent (4.6 mm × 100 mm, 5 μm particle size) with gradient or isocratic elution 

of acetonitrile and water (both containing 0.1 % orthophosphoric acid) at a rate of 1 mL/min. 

For OBS a Shimadzu HPLC system was used equipped with a diode array detector (SPD-

M10AVP) and a Phenomenex Luna HILIC column (4.6 mm × 100 mm, 5 µm particle size). A 

mixture of acetonitrile and water (10:90) with 5 mM ammonium acetate served as eluent, 

flowing with 1 mL/min.  

The partition coefficient of fluazinam (CAS 79622-59-6) could not be quantified due to 

alkaline hydrolysis in the pH range of interest (more than 50 % mass loss after 4 days). 



 

 

 

1.5 Data collection anions 

SI-1, Table 1: Data collection for anions. Values annotated with ‘P’ are taken from the PhysProp-Database (http://esc.syrres.com/fatepointer/search.asp), while ‘o’ 

denote the own measurements as described above. Egg stands for egg-phosphatidylcholine, DOPC for dioleylphosphatidylcholine, DPPC for 1,2-Dipalmitoyl-sn-

glycero-3-phosphocholine and POPC for 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine. If more than one value for log  Klipw (ion) was found in literature this is 

marked with a shading. For comparison with calculated log Klipw values, the arithmetic means of the experimental log Klipw values were taken. 

CAS compoundname abbre-

viation 

pKa log  Klipw (ion) [L/kg] lipid method T [°C] 

4901-51-

3 

2,3,4,5-

tetrachlorophenol  

2345TeCP 6.35 (Schellenberg et al., 1984) 3.90 (Escher et al., 2000) DPPC/DOPC equilibrium dialysis 20 

    3.48 (Smejtek et al., 1996) egg electrophoretic mobility 

measurements 

25 

58-90-2 2,3,4,6-

tetrachlorophenol  

2346TeCP 5.40 (Schellenberg et al., 1984) 3.46 (Escher et al., 2000) DPPC/DOPC equilibrium dialysis 20 

935-95-5 2,3,5,6-tetrachloro-

phenol  

2356TeCP 5.14 P 3.49 (Smejtek et al., 1996) egg electrophoretic mobility 

measurements 

25 

95-95-4 2,4,5-trichloro-

phenol  

245TriCP 6.94 (Schellenberg et al., 1984) 2.98 (Escher et al., 2000) DPPC/DOPC equilibrium dialysis 20 

    2.79 (Smejtek et al., 1996) egg electrophoretic mobility 

measurements 

25 

118-79-6 2,4,6-tribromo-

phenol  

246TriBP 6.80 P 

 

3.07 o popc equilibrium dialysis 25 

88-06-2 2,4,6-

trichlorophenol  

246TriCP 6.15 (Schellenberg et al., 1984) 2.50 (Escher et al., 2000) DPPC/DOPC equilibrium dialysis 20 

    2.54 (Smejtek et al., 1996) egg electrophoretic mobility 25 

http://esc.syrres.com/fatepointer/search.asp


 

 

 

measurements 

120-83-2 2,4-dichloro-phenol  24DCP 7.85 (Schellenberg et al., 1984) 2.69 (Escher et al., 2000) DPPC/DOPC equilibrium dialysis 20 

51-28-5 2,4-dinitrophenol  24DNP 3.94 (Schwarzenbach et al., 1988) 1.90 (Escher et al., 2000) DPPC/DOPC equilibrium dialysis 20 

87-65-0 2,6-dichloro-phenol  26DCP 6.97 (Escher and Schwarzenbach, 

1996) 

1.43 (Escher et al., 2000) DPPC/DOPC equilibrium dialysis 20 

    1.40 (Smejtek et al., 1996) egg electrophoretic mobility 

measurements 

25 

573-56-8 2,6-dinitrophenol  26DNP 3.70 (Escher and Schwarzenbach, 

1996) 

1.86 (Escher et al., 2000) DPPC/DOPC equilibrium dialysis 20 

95-57-8 2-chlorophenol  2CP 8.56 (Escher and Schwarzenbach, 

1996) 

0.92 (Escher et al., 2000) DPPC/DOPC equilibrium dialysis 20 

534-52-1 2-methyl-4,6-

dinitrophenol  

DNOC 4.31 (Schwarzenbach et al., 1988) 2.35 (Escher et al., 2000) DPPC/DOPC equilibrium dialysis 20 

88-75-5 2-nitrophenol  2NP 7.23 (Schwarzenbach et al., 1988) 0.69 (Escher et al., 2000) DPPC/DOPC equilibrium dialysis 20 

88-85-7 2-s-butyl-4,6-

dinitrophenol  

Dinoseb 4.62 (Schwarzenbach et al., 1988) 3.35 (Escher et al., 2000) DPPC/DOPC equilibrium dialysis 20 

1420-07-

1 

2-tert-butyl-4,6-

dinitrophenol  

Dino2terb 4.80 (Miyoshi et al., 1987) 3.59 (Escher et al., 2000) DPPC/DOPC equilibrium dialysis 20 

609-19-8 3,4,5-

trichlorophenol  

345TriCP 7.73 (Schellenberg et al., 1984) 3.16 (Escher et al., 2000) DPPC/DOPC equilibrium dialysis 20 

95-77-2 3,4-dichlorophenol  34DCP 8.59 (Escher and Schwarzenbach, 

1996) 

2.85 (Escher et al., 2000) DPPC/DOPC equilibrium dialysis 20 

577-71-9 3,4-dinitrophenol  34DNP 5.48 (Schwarzenbach et al., 2003) 1.90 (Escher and Schwarzenbach, 

1996) 

DPPC/DOPC equilibrium dialysis 20 

1689-84-

5 

3,5-dibromo-4-

hydroxy-

benzonitrile  

Bromox 4.09 (Escher et al., 2001) 2.10 (Escher et al., 2001) POPC TRANSIL NA 

13979- 3,5-dibromo-4- 35DBC 8.28 (Escher et al., 2001) 3.18 (Escher et al., 2001) POPC TRANSIL NA 



 

 

 

81-2 methylphenol  

591-35-5 3,5-dichlorophenol  35DCP 8.26 (Schwarzenbach et al., 2003) 2.09 (Smejtek et al., 1996) egg electrophoretic mobility 

measurements 

25 

2338-29-

6 

4,5,6,7-tetrachloro-

2-(trifluoromethyl)-

1H-benzimidazole  

TTFB 5.30 (Dilger and McLaughlin, 1979) 4.35 (Dilger and McLaughlin, 

1979) 

egg equilibrium dialysis 22.5 

106-48-9 4-chlorophenol  4CP 9.38 (Escher and Schwarzenbach, 

1996) 

2.51 (Escher et al., 2000) DPPC/DOPC equilibrium dialysis 20 

609-93-8 4-methyl-2,6-

dinitrophenol  

DNPC 4.06 (Schwarzenbach et al., 1988) 2.26 (Escher et al., 2000) DPPC/DOPC equilibrium dialysis 20 

100-02-7 4-nitrophenol  4NP 7.08 (Schwarzenbach et al., 1988) 0.95 (Escher and Schwarzenbach, 

1996) 

DPPC/DOPC equilibrium dialysis 20 

6149-03-

7 

4-octylbenzene-1-

sulfonate  

OBS NA 3.63 o POPC equilibrium dialysis 25 

4097-49-

8 

4-tert-butyl-2,6-

dinitrophenol  

Dino4terb 4.11 (Schwarzenbach et al., 1988) 3.23 (Escher et al., 2000) DPPC/DOPC equilibrium dialysis 20 

2338-25-

2 

5,6-dichloro-2-

(trifluoromethyl)-

benzimidazole  

DTFB 7.30 (Cohen et al., 1977) 3.05 (Cohen et al., 1977) egg equilibrium dialysis NA 

521-74-4 5,7-dibromo-8-

hydroxyquinoline  

Dibromox 2.90 (Kaiser and Escher, 2006) 3.03 (Kaiser and Escher, 2006) POPC equilibrium dialysis 25 

773-76-2 5,7-dichloro-8-

hydroxyquinoline  

Dichlorox 2.60 (Kaiser and Escher, 2006) 2.47 (Kaiser and Escher, 2006) POPC equilibrium dialysis 25 

16128-

96-4 

5-chloro-3-tert-

butyl-2'-chloro-4'-

nitrosalicylanilide  

S-13 5.80 (Kasianowicz et al., 1987) 5.05 (Kasianowicz et al., 1987) egg equilibrium dialysis 21 

130-16-5 5-chloro-8-

hydroxyquinoline  

Chlorox 3.71 (Kaiser and Escher, 2006) 1.91 (Kaiser and Escher, 2006) POPC equilibrium dialysis 25 



 

 

 

327-19-5 5-nitro-2-

trifluoromethyl-

benzimidazole  

5-NB NA 1.81 o POPC equilibrium dialysis 25 

2270-20-

4 

5-phenylvaleric acid  5-PA 4.88 P 1.66 (Avdeef et al., 1998) DOPC pH metric technique NA 

148-24-3 8-hydroxy-

quinoline  

Oxine 4.89 (Kaiser and Escher, 2006) 

 

1.47 (Kaiser and Escher, 2006) POPC equilibrium dialysis 25 

118-92-3 anthranilic acid  AA 4.76 (Thomae et al., 2007) 0.13 (Thomae et al., 2007) egg equilibrium dialysis 26 

555-60-2 carbonyl cyanide m-

chlorophenyl-

hydrazone  

CCCP 5.95 (Kasianowicz et al., 1987) 4.05 (Kasianowicz et al., 1987) egg equilibrium dialysis 21 

370-86-5 carbonyl cyanide p-

methoxyphenylhydr

azone  

FCCP 6.20 (Kasianowicz et al., 1987) 4.22 (Kasianowicz et al., 1987) egg equilibrium dialysis 21 

15307-

86-5 

diclofenac  Dic 3.99 (Avdeef et al., 1998) 2.64 (Avdeef et al., 1998) DOPC potentiometric titration 25 

22494-

42-4 

diflunisal  Dif 3.00 (Pallicer and Krämer, 2012) 2.73 (Pallicer and Krämer, 2012) egg equilibrium dialysis 25 

91-40-7 fenamic acid  Fen 3.99 P 2.28 o POPC equilibrium dialysis 25 

530-78-9 flufenamic acid  Flu NA 3.61 o POPC equilibrium dialysis 25 

15687-

27-1 

ibuprofen  Ibu 4.45 (Avdeef et al., 1998) 1.81 (Avdeef et al., 1998) DOPC potentiometric titration 25 

36894-

69-6 

labetalol  Lab 7.35 (Pallicer and Krämer, 2012) 1.84 (Pallicer and Krämer, 2012) egg equilibrium dialysis 25 

608-71-9 pentabromo-phenol  PBrP 4.62 P 5.02 (Smejtek et al., 1996) egg electrophoretic mobility 

measurements 

25 

87-86-5 pentachloro-phenol  PCP 4.75 (Schellenberg et al., 1984) 4.35 (Escher et al., 2000) DPPC/DOPC equilibrium dialysis 20 

    4.28 (Smejtek et al., 1996) egg electrophoretic mobility 25 



 

 

 

measurements 

771-61-9  pentafluoro-phenol  PFP 5.53 P 1.74 (Smejtek et al., 1996) egg electrophoretic mobility 

measurements 

25 

69-72-7 salicylic acid  SA 2.75 (Thomae et al., 2005) 1.03 (Thomae et al., 2005) DPPC equilibrium dialysis 37 

    0.85 (Thomae et al., 2007) egg equilibrium dialysis 25 

   3.00 (Ottiger and Wunderli-

Allenspach, 1997) 

1.04 (Ottiger and Wunderli-

Allenspach, 1997) 

egg equilibrium dialysis 37 

1198-55-

6 

tetrachloro-catechol  TeCC 5.97 (Schweigert et al., 2001) 2.63 (Schweigert et al., 2001) DOPC potentiometric titration 25 

4358-26-

3 

tetraphenylborate  TPB NA 5.05 (Flewelling and Hubbell, 

1986) 

egg electron paramagnetic 

resonance 

25 

    5.35 (Flewelling and Hubbell, 

1986) 

egg electron paramagnetic 

resonance 

25 

81-81-2 warfarin  Warf 4.90 (Ottiger and Wunderli-

Allenspach, 1997) 

1.40 (Ottiger and Wunderli-

Allenspach, 1997) 

egg equilibrium dialysis 37 

 

The partition coefficient of TPB is given as the ratio of the bound probe molecule surface density to the probe free concentration β in the units of 

length. It is reported to be 0.02 cm to 0.04 cm (Flewelling and Hubbell, 1986), which results in a log K’s [L/kg] of 5.05 and 5.35, respectively. The 

conversion of units can be done as follows: 

𝐾 [
𝑘𝑔

𝐿
] =

0.1 ∗ β ∗ S ∗ N𝐴

𝑀
 

S is the surface area of a single membrane lipid molecule and estimated to be 7*10
-17 

dm²/molecule, NA is the Avogadro constant (6.022*10
23 

mol
-1

) 

and M is the molar mass of the membrane lipid molecules (chosen to be 760.09 g/mol – which is the mass of POPC, a major part in egg 

phosphatidylcholine).  



 

 

 

In the same way the β values have been converted for CCCP (0.002 cm (Kasianowicz et al., 1987)), 26DCP (0.0000045 cm (Smejtek et al., 1996)), 

35DCP (0.000022 cm (Smejtek et al., 1996)), 246TriCP (0.000063 cm (Smejtek et al., 1996)), 245 TriCP (0.00011 cm (Smejtek et al., 1996)), 

2356TeCP (0.00056 cm (Smejtek et al., 1996)), 2345TeCP (0.00055 cm (Smejtek et al., 1996)), PCP (0.0034 cm (Smejtek et al., 1996)), PFP 

(0.00001 cm (Smejtek et al., 1996)) and PBrP (0.019 cm (Smejtek et al., 1996)). 

1.6 Data collection cations 

SI-1, Table 2: Data collection for cations. Values annotated with ‘P’ are taken from the PhysProp-Database (http://esc.syrres.com/fatepointer/search.asp). Egg stands 

for egg-phosphatidylcholine, DOPC for dioleylphosphatidylcholine, DPPC for 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine and POPC for 1-Palmitoyl-2-oleoyl-sn-

glycero-3-phosphocholine. If more than one value for log  Klipw (ion) was found in literature this is marked with a shading. For comparison with calculated log Klipw 

values, the arithmetic means of the experimental log Klipw values were taken. 

CAS compoundname abbreviat

ion 

pKa log  Klipw (ion) [L/kg] lipid method T [°C] 

88-05-1 2,4,6-

trimethylaniline  

246TMA 4.38 (Escher et al., 2000) 2.12 (Escher et al., 2000) DPPC/DOPC equilibrium dialysis 20 

95-68-1 3,4-dimethylaniline  34DMA 5.23 (Escher et al., 2000) 1.99 (Escher et al., 2000) DPPC/DOPC equilibrium dialysis 20 

13214-

66-9 

4-phenylbutylamine  4-

PhenButA 

10.54 (Austin et al., 1995) 2.12 (Austin et al., 1995) DMPC ultrafiltration 37 

88150-

42-9 

amlodipine  Amlodip 9.02 (Austin et al., 1995) 3.75 (Austin et al., 1995) DMPC ultrafiltration 37 

118-92-3 anthranilic acid  AA 2.15 (Thomae et al., 2007) 1.97 (Thomae et al., 2007) egg equilibrium dialysis NA 

29122-

68-7 

atenolol  Aten 9.55 (Betageri and Rogers, 1987) 0.51 (Escher et al., 2006) POPC equilibrium dialysis NA 

http://esc.syrres.com/fatepointer/search.asp


 

 

 

    1.5 (Yamamoto et al., 2005) POPC equilibrium dialysis NA 

54910-

89-3 

fluoxetine  Fluox 10.06 (Brooks et al., 2003) 4.08 (Neuwoehner et al., 2009) POPC equilibrium dialysis NA 

    3.79 (Yamamoto et al., 2005) POPC equilibrium dialysis NA 

    4.23 (Nakamura et al., 2008) POPC equilibrium dialysis NA 

312753-

06-3 

indacaterol  Indac 6.7 (Lombardi et al., 2009) 3.56 (Lombardi et al., 2009) DMPC equilibrium dialysis 37 

137-58-6 lidocaine  Lido 7.86 (Ottiger and Wunderli-Allenspach, 

1997) 

0.91 (Ottiger and Wunderli-

Allenspach, 1997) 

egg equilibrium dialysis 37 

   7.96 (Avdeef et al., 1998) 1.22 (Avdeef et al., 1998) DOPC potentiometric 

titration 

25 

51384-

51-1 

metoprolol  Metro 9.7 (Betageri and Rogers, 1987) 1.43 (Escher et al., 2006) POPC equilibrium dialysis NA 

83891-

03-6 

norfluoxetine  Norfluox 9.05 (Brooks et al., 2003) 3.84 (Neuwoehner et al., 2009) POPC equilibrium dialysis NA 

16183-

21-4 

p-methylbenzyl-

butylamine  

MBButA 9.98 (Fruttero et al., 1998) 1.54 (Fruttero et al., 1998) egg potentiometric 

titration 

NA 

39099-

13-3 

p-methylbenzyl-

ethylamine  

MBEthA 10.04 (Fruttero et al., 1998) 2.26 (Fruttero et al., 1998) egg potentiometric 

titration 

NA 

215177-

24-5 

p-methylbenzyl-

hepotentiometric 

titrationylamine  

MBHepA 10.02 (Fruttero et al., 1998) 2.71 (Fruttero et al., 1998) egg potentiometric 

titration 

NA 

215177-

23-4 

p-methylbenzyl-

hexylamine  

MBHexA 10.17 (Fruttero et al., 1998) 2.43 (Fruttero et al., 1998) egg potentiometric 

titration 

NA 

699-04-7 p-methylbenzyl-

methylamine  

MBMetA 9.93 (Fruttero et al., 1998) 2.54 (Fruttero et al., 1998) egg potentiometric 

titration 

NA 

170303-

38-5 

p-methylbenzyl-

pentylamine  

MBPentA 10.08 (Fruttero et al., 1998) 1.84 (Fruttero et al., 1998) egg potentiometric 

titration 

NA 



 

 

 

39190-

96-0 

p-methylbenzyl-

propylamine  

MBPropA 9.98 (Fruttero et al., 1998) 2.11 (Fruttero et al., 1998) egg potentiometric 

titration 

NA 

59-46-1 procaine  Proc 9.04 (Avdeef et al., 1998) 0.76 (Avdeef et al., 1998) DOPC potentiometric 

titration 

25 

525-66-6 propranolol  Prop 9.24 (Ottiger and Wunderli-Allenspach, 

1997) 

2.76 (Ottiger and Wunderli-

Allenspach, 1997) 

egg equilibrium dialysis 37 

    3.06 (Escher et al., 2006) POPC equilibrium dialysis NA 

   9.45 (Pallicer and Krämer, 2012) 2.72 (Pallicer and Krämer, 2012) egg equilibrium dialysis 25 

   9.53 (Avdeef et al., 1998) 2.61 (Avdeef et al., 1998) DOPC potentiometric 

titration 

25 

130-95-0 quinine  Quinine 8.63 (Pallicer and Krämer, 2012) 2.47 (Pallicer and Krämer, 2012) egg equilibrium dialysis 25 

89365-

50-4 

salmeterol  Salmet 8.8 (Lombardi et al., 2009) 3.67 (Lombardi et al., 2009) DMPC equilibrium dialysis 37 

94-24-6 tetracaine  Tetrac 8.49 (Avdeef et al., 1998) 2.11 (Avdeef et al., 1998) DOPC potentiometric 

titration 

25 

18198-

39-5 

Tetraphenyl-

phosphonium  

TPP NA 1.37 (Flewelling and Hubbell, 

1986) 

egg equilibrium dialysis NA 

    1.01 (Demura et al., 1987) DPPC electron paramagnetic 

resonance 

45 

The log K for TPP is calculated as shown above – the value for β is reported to be 4.2 *10
-6

 cm (Flewelling and Hubbell, 1986). 
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2 Theory 

2.1 Estimation of variance 

The RMSE has been calculated with the well-known formula: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛)²𝑛

1

𝑛

2

. 

In contrast to this ‘normal’ RMSE that directly compares experimental with predicted values, 

we introduced the RMSE with respect to the offset. For this RMSE (offset), a constant offset 

(being the average overprediction calculated in the model) is subtracted from predicted 

values, resulting in the following formula: 

𝑅𝑀𝑆𝐸 (𝑜𝑓𝑓𝑠𝑒𝑡) = √
∑ [𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 − (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 − 𝑜𝑓𝑓𝑠𝑒𝑡)]2𝑛

1

𝑛

2

. 

Because the predicted values for Klipw of ions are considerably off when the membrane 

potential is not accounted for (cations are 0.9 to 2.3 log units overestimated while anions are 

up to 1.9 log units underestimated), but at the same time the predictions show a reasonable 

good fit (cations have an R² of 0.45, while anions have an R² of 0.76 for the DMPC 

membrane), we decided to relate the RMSE in that special case to the regression line. This 

would be according to the use of COSMOmic as a semi-empirical model, as it has been done 

previously (Spycher et al., 2008), but is not recommended in this work, because the 

subsequent introduction of the membrane potential makes such a fit unnecessary. The RMSE 

in respect to the regression line is calculated as follows: 

𝑅𝑀𝑆𝐸 (𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛)

=
√

∑ [𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 − (
1

𝑠𝑙𝑜𝑝𝑒
∗ log 𝐾lipw (calculated) −

𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡
𝑠𝑙𝑜𝑝𝑒

)]²𝑛
1

𝑛

2
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2.2 Influence of the membrane potential on the ΔG profiles of the anions 
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2.3 Influence of the membrane potential on the ΔG profiles of the cations 
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2.4 Influence of the membrane potential on the relative distribution of the anions 
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2.5 Influence of the membrane potential on the relative distribution of the cations 



Appendix  124  

 

 



Appendix  125  

 

 



Appendix  126  

 

 

  



Appendix  127  

 

 

2.6 Predictions with the different models  

SI-1, Table 3: Log K predictions obtained with the different models presented in the summary, section 1.3 

are listed. For comparison with the experimental log Klipw values, the values from Table 1 and 2 from SI-1 

have been taken – if several values are listed, the arithmetic mean of the log Klipw values were taken as 

given here. POPC stands for 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and DMPC for 1,2-

Dimyristoyl-sn-glycero-3-phosphocholine. 
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2345Te

CP 

- Tr 3.69 -5.45 -5.33 2.65 2.51 3.33 3.34 NA 3.59 3.37 

2346Te

CP 

- Tr 3.46 -5.04 -4.92 2.67 2.52 3.36 3.36 NA 3.65 3.39 

2356Te

CP 

- Tr 3.49 -4.79 -4.67 2.73 2.58 3.41 3.41 NA 3.67 3.44 

245Tri

CP 

- Tr 2.88 -6.42 -6.29 2.47 2.33 3.12 3.12 NA 3.31 3.15 

246Tri

BP 

- Tr 3.07 -5.08 -4.98 2.73 2.58 3.44 3.43 NA 3.79 3.45 

246Tri

CP 

- Va 2.52 -6.12 -5.98 2.45 2.32 3.10 3.12 3.04 3.33 3.14 

24DCP - Tr 2.69 -7.89 -7.75 2.18 2.05 2.79 2.81 NA 2.91 2.84 

24DNP - Va 1.90 -6.14 -5.98 1.80 1.66 2.40 2.40 2.33 2.70 2.43 

26DCP - Tr 1.41 -7.36 -7.21 2.22 2.08 2.80 2.81 NA 2.91 2.84 

26DNP - Tr 1.86 -7.02 -6.86 1.81 1.68 2.31 2.33 NA 2.30 2.35 

2CP - Tr 0.92 -9.38 -9.23 1.83 1.72 2.38 2.41 NA 2.36 2.44 

DNOC - Tr 2.35 -5.49 -5.34 1.91 1.78 2.52 2.52 NA 2.85 2.55 

2NP - Tr 0.69 -9.66 -9.49 1.50 1.40 1.96 2.01 NA 1.70 2.05 

Dinose

b 

- Va 3.35 -3.92 -3.78 2.23 2.09 2.87 2.87 2.80 3.34 2.91 

Dino2te

rb 

- Va 3.59 -3.57 -3.43 2.32 2.18 2.98 2.98 2.92 3.48 3.02 

345Tri

CP 

- Va 3.16 -6.82 -6.69 2.45 2.32 3.10 3.11 3.04 3.30 3.15 

34DCP - Va 2.85 -8.23 -8.09 2.19 2.06 2.80 2.82 2.75 2.94 2.85 

34DNP - Tr 1.90 -5.83 -5.68 2.02 1.88 2.66 2.65 NA 3.22 2.68 

Bromo - Tr 2.10 -5.61 -5.49 2.02 1.89 2.68 2.68 NA 3.12 2.72 
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x 

35DBC - Tr 3.18 -7.08 -6.97 2.51 2.37 3.15 3.16 NA 3.33 3.19 

35DCP - Tr 2.47 -7.54 -7.40 2.30 2.17 2.93 2.94 NA 3.03 2.97 

TTFB - Tr 4.35 -1.45 -1.35 3.16 2.99 4.27 4.33 NA 4.76 4.31 

4CP - Tr 2.51 -9.95 -9.80 1.84 1.73 2.41 2.44 NA 2.45 2.47 

DNPC - Va 2.26 -6.97 -6.81 1.83 1.70 2.30 2.33 2.26 2.28 2.36 

4NP - Va 0.95 -8.84 -8.68 1.37 1.28 1.89 1.93 1.86 1.97 1.97 

OBS - Tr 3.63 -8.70 -8.54 3.30 3.03 3.65 3.55 NA 3.56 3.60 

Dino4te

rb 

- Tr 3.23 -5.77 -5.62 2.16 2.04 2.64 2.68 NA 2.92 2.73 

DTFB - Va 3.05 -3.67 -3.55 2.70 2.55 3.43 3.44 3.38 3.89 3.47 

Dibrom

ox 

- Tr 3.03 -7.59 -7.48 2.40 2.26 3.01 3.01 NA 3.13 3.05 

Dichlor

ox 

- Tr 2.47 -8.26 -8.13 2.20 2.08 2.77 2.80 NA 2.83 2.84 

S-13 - Va 5.05 1.71 1.78 3.81 3.61 6.72 6.68 6.96 6.97 6.67 

Chloro

x 

- Va 1.91 -10.07 -9.93 1.93 1.82 2.46 2.50 2.43 2.44 2.54 

5-NB - Tr 1.81 -4.15 -4.01 2.40 2.24 3.08 3.07 NA 3.45 3.10 

5-PA - Tr 1.66 -14.21 -14.07 1.38 1.31 1.77 1.86 NA 1.70 1.92 

Oxine - Tr 1.47 -11.73 -11.59 1.60 1.49 2.06 2.10 NA 1.87 2.15 

AA - Tr 0.31 -12.87 -12.69 1.28 1.19 1.69 1.76 NA 1.37 1.80 

CCCP - Va 4.05 -3.19 -3.07 2.62 2.48 3.35 3.34 3.27 3.95 3.38 

FCCP - Tr 4.22 -2.71 -2.60 2.73 2.59 3.65 3.60 NA 4.34 3.63 

Dic - Tr 2.64 -8.37 -8.25 2.44 2.32 2.91 2.94 NA 3.07 3.01 

Dif - Va 2.73 -7.48 -7.35 2.25 2.13 2.80 2.83 2.76 2.81 2.87 

Fen - Va 2.28 -8.70 -8.57 2.23 2.11 2.73 2.76 2.70 2.73 2.81 

Flu - Tr 3.61 -7.48 -7.36 2.35 2.24 2.99 3.01 NA 3.26 3.05 

Ibu - Va 1.81 -12.07 -11.94 1.78 1.70 2.19 2.26 2.21 2.25 2.34 

Lab - Tr 1.84 -11.38 -11.20 2.47 2.28 2.92 2.87 NA 3.16 2.94 

PBrP - Tr 5.02 -2.96 -2.90 3.21 3.03 4.08 4.05 NA 4.56 4.06 

PCP - Va 4.31 -4.15 -4.04 2.83 2.69 3.57 3.58 3.54 3.92 3.61 

PFP - Va 1.74 -6.96 -6.83 2.22 2.09 2.85 2.86 2.79 2.99 2.90 

SA - Tr 0.97 -10.10 -9.93 1.54 1.44 2.00 2.05 NA 1.72 2.10 

TeCC - Tr 2.63 -3.64 -3.51 2.87 2.71 3.60 3.60 NA 3.95 3.62 

TPB - Tr 5.20 2.71 2.80 3.94 3.79 7.27 7.14 NA 7.16 7.10 

Warf - Tr 1.40 -5.84 -5.70 2.11 1.98 2.63 2.65 NA 2.92 2.70 

246TM

A 

+ Va 2.12 8.02 7.90 5.57 5.62 2.06 2.07 2.15 2.34 2.03 

34DM

A 

+ Tr 1.99 8.41 8.28 5.75 5.79 2.38 2.34 NA 2.65 2.24 

4-

PhenBu

tA 

+ Va 2.12 8.63 8.55 6.23 6.20 3.00 2.89 3.01 2.99 2.78 

Amlodi + Tr 3.75 10.01 9.92 7.38 7.38 4.43 4.32 NA 4.27 4.23 
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p 

AA + Tr 1.97 8.49 8.32 5.18 5.29 1.84 1.90 NA 1.88 1.82 

Aten + Tr 1.01 6.25 6.25 4.17 4.17 0.65 0.67 NA 0.87 0.67 

Fluox + Va 4.03 9.56 9.47 7.47 7.39 4.14 4.03 4.16 3.97 4.02 

Indac + Va 3.56 10.86 10.72 8.36 8.26 4.55 4.48 4.57 4.33 4.43 

Lido + Va 1.07 6.78 6.77 5.26 5.24 1.50 1.53 1.61 1.53 1.65 

Metro + Tr 1.43 8.36 8.31 6.05 6.10 2.48 2.53 NA 2.63 2.57 

Norfluo

x 

+ Tr 3.84 10.76 10.64 8.07 7.96 4.96 4.77 NA 4.87 4.65 

MBBut

A 

+ Tr 1.54 7.99 7.93 5.85 5.90 2.02 2.09 NA 2.16 2.18 

MBEth

A 

+ Va 2.26 7.03 6.97 5.23 5.24 1.55 1.58 1.66 1.61 1.62 

MBHep

A 

+ Tr 2.71 9.43 9.35 6.88 7.00 2.96 3.09 NA 3.00 3.24 

MBHex

A 

+ Tr 2.43 8.96 8.89 6.74 6.78 2.82 2.89 NA 2.96 2.99 

MBMet

A 

+ Tr 2.54 6.90 6.85 5.13 5.13 1.60 1.60 NA 1.62 1.59 

MBPen

tA 

+ Va 1.84 8.47 8.40 6.29 6.33 2.41 2.47 2.53 2.56 2.57 

MBPro

pA 

+ Tr 2.11 7.46 7.40 5.50 5.53 1.74 1.79 NA 1.86 1.85 

Proc + Va 0.76 6.42 6.42 5.02 4.98 0.89 0.96 0.99 0.80 1.13 

Prop + Va 2.79 8.98 8.92 6.58 6.57 3.04 3.02 3.11 3.16 3.03 

Quinine + Tr 2.47 7.92 7.83 5.54 5.66 1.78 1.91 NA 2.04 2.01 

Salmet + Tr 3.67 13.45 13.32 9.48 9.64 5.87 5.97 NA 6.09 6.00 

Tetrac + Tr 2.11 7.60 7.60 6.80 6.67 2.80 2.76 NA 2.70 2.91 

TPP + Va 1.19 7.76 7.62 8.37 8.18 3.28 3.15 2.94 3.19 3.39 
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SI-1, Table 4: Smiles for all investigated anionic and cationic compounds. 

Compoundname  smiles (ion) 

2,3,4,5-tetrachlorophenol-anion [O-]C1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1 

2,3,4,6-tetrachlorophenol-anion [O-]C1=C(Cl)C=C(Cl)C(Cl)=C1Cl 

2,3,5,6-tetrachlorophenol-anion [O-]C1=C(Cl)C(Cl)=CC(Cl)=C1Cl 

2,4,5-trichlorophenol-anion [O-]C1=CC(Cl)=C(Cl)C=C1Cl 

2,4,6-tribromophenol-anion [O-]c1c(Br)cc(Br)cc1Br 

2,4,6-trichlorophenol-anion [O-]C1=C(Cl)C=C(Cl)C=C1Cl 

2,4-dichlorophenol-anion [O-]C1=C(Cl)C=C(Cl)C=C1 

2,4-dinitrophenol-anion [O-]C1=CC=C(C=C1[N+]([O-])=O)[N+]([O-])=O 

2,6-dichlorophenol-anion [O-]C1=C(Cl)C=CC=C1Cl 

2,6-dinitrophenol-anion [O-]C1=C(C=CC=C1[N+]([O-])=O)[N+]([O-])=O 

2-chlorophenol-anion [O-]C1=C(Cl)C=CC=C1 

2-methyl-4,6-dinitrophenol-anion CC1=C([O-])C(=CC(=C1)[N+]([O-])=O)[N+]([O-])=O 

2-nitrophenol-anion [O-]C1=C(C=CC=C1)[N+]([O-])=O 

2-s-butyl-4,6-dinitrophenol-anion CCC(C)C1=C([O-])C(=CC(=C1)[N+]([O-])=O)[N+]([O-])=O 

2-tert-butyl-4,6-dinitrophenol-anion CC(C)(C)C1=C([O-])C(=CC(=C1)[N+]([O-])=O)[N+]([O-])=O 

3,4,5-trichlorophenol-anion [O-]C1=CC(Cl)=C(Cl)C(Cl)=C1 

3,4-dichlorophenol-anion [O-]C1=CC(Cl)=C(Cl)C=C1 

3,4-dinitrophenol-anion [O-]C1=CC(=C(C=C1)[N+]([O-])=O)[N+]([O-])=O 

3,5-dibromo-4-hydroxy-benzonitrile-anion [O-]C1=C(Br)C=C(C=C1Br)C#N 

3,5-dibromo-4-methylphenol-anion CC1=C(Br)C=C([O-])C=C1Br 

3,5-dichlorophenol-anion [O-]C1=CC(Cl)=CC(Cl)=C1 

4,5,6,7-tetrachloro-2-(trifluoromethyl)-1H-

benzimidazole-anion 

FC(F)(F)C1=NC2=C(Cl)C(Cl)=C(Cl)C(Cl)=C2[N-]1 

4-chlorophenol-anion [O-]C1=CC=C(Cl)C=C1 

4-methyl-2,6-dinitrophenol-anion CC1=CC(=C([O-])C(=C1)[N+]([O-])=O)[N+]([O-])=O 

4-nitrophenol-anion [O-]C1=CC=C(C=C1)[N+]([O-])=O 

4-octylbenzene-1-sulfonate-anion CCCCCCCCC1=CC=C(C=C1)S([O-])(=O)=O 

4-tert-butyl-2,6-dinitrophenol-anion CC(C)(C)C1=CC(=C([O-])C(=C1)[N+]([O-])=O)[N+]([O-])=O 

5,6-dichloro-2-(trifluoromethyl)-

benzimidazole-anion 

FC(F)(F)C1=NC2=CC(Cl)=C(Cl)C=C2[N-]1 

5,7-dibromo-8-hydroxyquinoline-anion [O-]C1=C(Br)C=C(Br)C2=CC=CN=C12 

5,7-dichloro-8-hydroxyquinoline-anion [O-]C1=C(Cl)C=C(Cl)C2=CC=CN=C12 

5-chloro-3-tert-butyl-2'-chloro-4'-

nitrosalicylanilide-anion 

CC(C)(C)C1=CC(Cl)=CC(C(=O)[N-]C2=C(Cl)C=C(C=C2)[N+]([O-

])=O)=C1O 

5-chloro-8-hydroxyquinoline-anion [O-]C1=CC=C(Cl)C2=CC=CN=C12 

5-nitro-2-trifluoromethylbenzimidazole-

anion 

[O-][N+](=O)C1=CC=C2[N-]C(=NC2=C1)C(F)(F)F 

5-phenylvaleric acid-anion [O-]C(=O)CCCCC1=CC=CC=C1 

8-hydroxyquinoline-anion [O-]C1=C2N=CC=CC2=CC=C1 

anthranilic acid-anion Nc1ccccc1C([O-])=O 

carbonyl cyanide m-chlorophenylhydrazone-

anion 

ClC1=CC=CC([N-]N=C(C#N)C#N)=C1 

carbonyl cyanide p- FC(F)(F)OC1=CC=C([N-]N=C(C#N)C#N)C=C1 
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methoxyphenylhydrazone-anion 

diclofenac-anion [O-]C(=O)CC1=C(NC2=C(Cl)C=CC=C2Cl)C=CC=C1 

diflunisal-anion O=C([O-])c1cc(ccc1O)c2ccc(F)cc2F 

fenamic acid-anion [O-]C(=O)C1=C(NC2=CC=CC=C2)C=CC=C1 

flufenamic acid-anion [O-]C(=O)C1=CC=CC=C1NC1=CC(=CC=C1)C(F)(F)F 

ibuprofen-anion CC(C)CC1=CC=C(C=C1)C(C)C([O-])=O 

labetalol-anion CC(CCc1ccccc1)NCC(O)c1ccc([O-])c(c1)C(N)=O 

pentabromophenol-anion [O-]C1=C(Br)C(Br)=C(Br)C(Br)=C1Br 

pentachlorophenol-anion [O-]C1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1Cl 

pentafluorophenol-anion [O-]C1=C(F)C(F)=C(F)C(F)=C1F 

salicylic acid-anion OC1=C(C=CC=C1)C([O-])=O 

tetrachlorocatechol-anion OC1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1[O-] 

tetraphenylborate-anion C1=CC=C(C=C1)[B-](C1=CC=CC=C1)(C1=CC=CC=C1)C1=CC=CC=C1 

warfarin-anion CC(=O)CC(C1=CC=CC=C1)C1=C([O-])C2=C(OC1=O)C=CC=C2 

2,4,6-trimethylaniline-cation CC1=CC(C)=C([NH3+])C(C)=C1 

3,4-dimethylaniline-cation CC1=C(C)C=C([NH3+])C=C1 

4-phenylbutylamine-cation [NH3+]CCCCC1=CC=CC=C1 

amlodipine-cation CCOC(=O)C1=C(COCC[NH3+])NC(C)=C(C1C1=CC=CC=C1Cl)C(=O)OC 

anthranilic acid-cation [NH3+]C1=C(C=CC=C1)C(O)=O 

atenolol-cation CC(C)[NH2+]CC(O)COC1=CC=C(CC(N)=O)C=C1 

fluoxetine-cation C[NH2+]CCC(OC1=CC=C(C=C1)C(F)(F)F)C1=CC=CC=C1 

indacaterol-cation CCC1=CC2=C(CC(C2)[NH2+]CC(O)C2=CC=C(O)C3=C2C=CC(=O)N3)C

=C1CC 

lidocaine-cation CC[NH+](CC)CC(=O)NC1=C(C)C=CC=C1C 

metoprolol-cation COCCC1=CC=C(OCC(O)C[NH2+]C(C)C)C=C1 

norfluoxetine-cation [NH3+]CCC(OC1=CC=C(C=C1)C(F)(F)F)C1=CC=CC=C1 

p-methylbenzyl-butylamine-cation CCCC[NH2+]CC1=CC=C(C)C=C1 

p-methylbenzyl-ethylamine-cation CC[NH2+]CC1=CC=C(C)C=C1 

p-methylbenzyl-heptylamine-cation CCCCCCC[NH2+]Cc1ccc(C)cc1 

p-methylbenzyl-hexylamine-cation CCCCCC[NH2+]Cc1ccc(C)cc1 

p-methylbenzyl-methylamine-cation C[NH2+]CC1=CC=C(C)C=C1 

p-methylbenzyl-pentylamine-cation CCCCC[NH2+]Cc1ccc(C)cc1 

p-methylbenzyl-propylamine-cation CCC[NH2+]CC1=CC=C(C)C=C1 

procaine-cation CC[NH+](CC)CCOC(=O)C1=CC=C(N)C=C1 

propranolol-cation CC(C)[NH2+]CC(O)COC1=CC=CC2=C1C=CC=C2 

quinine-cation COC1=CC2=C(C=CN=C2C=C1)C(O)C1CC2CC[NH+]1CC2C=C 

salmeterol-cation OCC1=C(O)C=CC(=C1)C(O)C[NH2+]CCCCCCOCCCCC1=CC=CC=C1 

tetracaine-cation CCCCNC1=CC=C(C=C1)C(=O)OCC[NH+](C)C 

tetraphenylphosphonium-cation C1=CC=C(C=C1)[P+](C1=CC=CC=C1)(C1=CC=CC=C1)C1=CC=CC=C1 
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Supporting Information 2: Comparison of different models predicting 

the phospholipid-membrane water partition coefficients of neutral and 

charged compounds 

1 Data selection 



 

 

 

1.1 Data collection cations 

SI-2, Table 1. Data collection for cations based on a previously published data collection (Bittermann et al., 2014), with all new values marked in bold font. Multiple 

values for pKa, log Klipw (neutral) and log Klipw (ion) are marked in grey; in these cases the arithmetic mean was used for the calculation of Δmw. ‘P’ stands for values 

taken from the PhysProp-Database (http://esc.syrres.com/fatepointer/search.asp), egg-PC for egg-phosphatidylcholine, DOPC for dioleylphosphatidylcholine, DPPC 

for 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine and POPC for 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine. 

CAS compoundname abbreviation pKa log Klipw (neutral) 

[L/kg] 

log Klipw (ion) 

[L/kg] 

Δmw lipid method T 

[°C] 

88-05-1 2,4,6-

trimethylaniline  

246TMA 4.38 (Escher et al., 

2000) 

2.38 (Escher et al., 

2000) 

2.12 (Escher et 

al., 2000) 

0.26 DPPC/ 

DOPC 

equilibrium 

dialysis 

20 

95-68-1 3,4-dimethylaniline  34DMA 5.23 (Escher et al., 

2000) 

2.11 (Escher et al., 

2000) 

1.99 (Escher et 

al., 2000) 

0.12 DPPC/ 

DOPC 

equilibrium 

dialysis 

20 

13214-66-9 4-phenylbutylamine  4-PhenButA 10.54 (Austin et al., 

1995) 

2.41 (Austin et al., 

1995) 

2.12 (Austin et al., 

1995) 

0.29 DMPC ultrafiltration 37 

37517-30-9 acebutolol ABL 9.67 (Betageri and 

Rogers, 1987) 

 0.66 (Betageri and 

Rogers, 1987) 

 DMPC ultrafiltration 30 

13655-52-2 alprenolol APL 9.70 (Betageri and 

Rogers, 1987) 

 2.17 (Betageri and 

Rogers, 1987) 

 DMPC ultrafiltration 30 

88150-42-9 amlodipine  Amlodip 9.02 (Austin et al., 

1995) 

3.75 (Austin et al., 

1995) 

3.75 (Austin et al., 

1995) 

0.00 DMPC ultrafiltration 37 

118-92-3 anthranilic acid  AA 2.15 (Thomae et al., 

2007) 

2.08 (Thomae et al., 

2007) 

1.97 (Thomae et 

al., 2007) 

0.11 egg-PC equilibrium 

dialysis 

NA 

29122-68-7 atenolol  Aten 9.55 (Betageri and 

Rogers, 1987) 

 0.51 (Escher et 

al., 2006) 

 POPC equilibrium 

dialysis 

NA 

     1.50 (Yamamoto 

et al., 2005) 

 POPC equilibrium 

dialysis 

NA 

     1.03 (Betageri and  DMPC ultrafiltration 30 



 

 

 

Rogers, 1987) 

23284-25-5 bupranolol BPL 9.60 (Betageri and 

Rogers, 1987) 

 2.49 (Betageri and 

Rogers, 1987) 

 DMPC ultrafiltration 30 

83881-51-0 ceterizine Cet_c 8.00 (Plemper van 

Balen et al., 2001) 

 3.20 (Plemper van 

Balen et al., 2001) 

 egg-PC equilibrium 

dialysis 

25 

50-53-3 chlorpromazine CLP 9.28 (Barzanti et al., 

2007) 

5.10 (Barzanti et al., 

2007) 

3.10 (Barzanti et 

al., 2007) 

1.71 egg-PC potentiometric 

titration 

25 

   9.24 (Pallicer and 

Krämer, 2012) 

 3.69 (Pallicer and 

Krämer, 2012) 

 egg-PC equilibrium 

dialysis 

25 

54910-89-3 fluoxetine  Fluox 10.06 (Brooks et al., 

2003) 

 4.08 (Neuwoehner 

et al., 2009) 

 POPC equilibrium 

dialysis 

NA 

     3.79 (Yamamoto 

et al., 2005) 

 POPC equilibrium 

dialysis 

NA 

     4.23 (Nakamura 

et al., 2008) 

 POPC equilibrium 

dialysis 

NA 

68-88-2 hydroxyzine Hyd 7.49 (Plemper van 

Balen et al., 2001) 

3.40 (Plemper van 

Balen et al., 2001) 

2.80 (Plemper van 

Balen et al., 2001) 

0.60 egg-PC equilibrium 

dialysis 

25 

312753-06-3 indacaterol  Indac 6.7 (Lombardi et al., 

2009) 

 3.56 (Lombardi et 

al., 2009) 

 DMPC equilibrium 

dialysis 

37 

36894-69-6 labetalol Lab_c 7.35 (Pallicer and 

Krämer, 2012) 

2.73 (Pallicer and 

Krämer, 2012) 

2.32 (Pallicer and 

Krämer, 2012) 

0.40 egg-PC equilibrium 

dialysis 

25 

137-58-6 lidocaine  Lido 7.86 (Ottiger and 

Wunderli-

Allenspach, 1997) 

2.06 (Ottiger and 

Wunderli-Allenspach, 

1997) 

0.91 (Ottiger and 

Wunderli-

Allenspach, 1997) 

1.16 egg-PC equilibrium 

dialysis 

37 

   7.96 (Avdeef et al., 

1998) 

2.39 (Avdeef et al., 

1998) 

1.22 (Avdeef et 

al., 1998) 

 DOPC potentiometric 

titration 

25 

51384-51-1 metoprolol  Metro 9.7 (Betageri and 

Rogers, 1987) 

 1.43 (Escher et 

al., 2006) 

 POPC equilibrium 

dialysis 

NA 



 

 

 

     1.13 (Betageri and 

Rogers, 1987) 

 DMPC ultrafiltration 30 

20574-50-9 morantel Mor 11.91 (Escher et al., 

2008) 

 2.00 (Escher et 

al., 2008) 

 POPC equilibrium 

dialysis 

20 

42200-33-9 nadolol NDL 9.67 (Betageri and 

Rogers, 1987) 

 0.95 (Betageri and 

Rogers, 1987) 

 DMPC ultrafiltration 30 

83891-03-6 norfluoxetine  Norfluox 9.05 (Brooks et al., 

2003) 

 3.84 (Neuwoehner 

et al., 2009) 

 POPC equilibrium 

dialysis 

NA 

6452-71-7 oxprenolol OPL 9.50 (Betageri and 

Rogers, 1987) 

 1.51 (Betageri and 

Rogers, 1987) 

 DMPC ultrafiltration 30 

16183-21-4 p-methylbenzyl-

butylamine  

MBButA 9.98 (Fruttero et al., 

1998) 

3.05 (Fruttero et al., 

1998) 

1.54 (Fruttero et 

al., 1998) 

1.51 egg-PC potentiometric 

titration 

NA 

39099-13-3 p-methylbenzyl-

ethylamine  

MBEthA 10.04 (Fruttero et 

al., 1998) 

3.06 (Fruttero et al., 

1998) 

2.26 (Fruttero et 

al., 1998) 

0.80 egg-PC potentiometric 

titration 

NA 

215177-24-5 p-methylbenzyl-

hepotentiometric 

titrationylamine  

MBHepA 10.02 (Fruttero et 

al., 1998) 

4.40 (Fruttero et al., 

1998) 

2.71 (Fruttero et 

al., 1998) 

1.69 egg-PC potentiometric 

titration 

NA 

215177-23-4 p-methylbenzyl-

hexylamine  

MBHexA 10.17 (Fruttero et 

al., 1998) 

4.20 (Fruttero et al., 

1998) 

2.43 (Fruttero et 

al., 1998) 

1.77 egg-PC potentiometric 

titration 

NA 

699-04-7 p-methylbenzyl-

methylamine  

MBMetA 9.93 (Fruttero et al., 

1998) 

3.09 (Fruttero et al., 

1998) 

2.54 (Fruttero et 

al., 1998) 

0.55 egg-PC potentiometric 

titration 

NA 

170303-38-5 p-methylbenzyl-

pentylamine  

MBPentA 10.08 (Fruttero et 

al., 1998) 

3.50 (Fruttero et al., 

1998) 

1.84 (Fruttero et 

al., 1998) 

1.66 egg-PC potentiometric 

titration 

NA 

39190-96-0 p-methylbenzyl-

propylamine  

MBPropA 9.98 (Fruttero et al., 

1998) 

3.07 (Fruttero et al., 

1998) 

2.11 (Fruttero et 

al., 1998) 

0.96 egg-PC potentiometric 

titration 

NA 

13523-86-9 pindolol PDL 8.80 (Betageri and 

Rogers, 1987) 

 1.40 (Betageri and 

Rogers, 1987) 

 DMPC ultrafiltration 30 

59-46-1 procaine  Proc 9.04 (Avdeef et al., 2.38 (Avdeef et al., 0.76 (Avdeef et 1.56 DOPC potentiometric 25 



 

 

 

1998) 1998) al., 1998) titration 

    2.20 (Barzanti et al., 

2007) 

0.70 (Barzanti et 

al., 2007) 

 egg-PC potentiometric 

titration 

25 

525-66-6 propranolol  Prop 9.24 (Ottiger and 

Wunderli-

Allenspach, 1997) 

3.24 (Ottiger and 

Wunderli-Allenspach, 

1997) 

2.76 (Ottiger and 

Wunderli-

Allenspach, 1997) 

0.58 egg-PC equilibrium 

dialysis 

37 

     3.06 (Escher et 

al., 2006) 

 POPC equilibrium 

dialysis 

NA 

   9.45 (Pallicer and 

Krämer, 2012) 

 2.72 (Pallicer and 

Krämer, 2012) 

 egg-PC equilibrium 

dialysis 

25 

   9.53 (Avdeef et al., 

1998) 

 2.61 (Avdeef et 

al., 1998) 

 DOPC potentiometric 

titration 

25 

     2.68 (Betageri and 

Rogers, 1987) 

 DMPC ultrafiltration 30 

    3.40 (Barzanti et al., 

2007) 

2.60 (Barzanti et 

al., 2007) 

 egg-PC potentiometric 

titration 

25 

130-95-0 quinine  Quinine 8.63 (Pallicer and 

Krämer, 2012) 

2.73 (Pallicer and 

Krämer, 2012) 

2.47 (Pallicer and 

Krämer, 2012) 

0.53 egg-PC equilibrium 

dialysis 

25 

    2.70 (Barzanti et al., 

2007) 

1.90 (Barzanti et 

al., 2007) 

 egg-PC potentiometric 

titration 

25 

89365-50-4 salmeterol  Salmet 8.8 (Lombardi et al., 

2009) 

 3.67 (Lombardi et 

al., 2009) 

 DMPC equilibrium 

dialysis 

37 

94-24-6 tetracaine  Tetrac 8.49 (Avdeef et al., 

1998) 

3.23 (Avdeef et al., 

1998) 

2.11 (Avdeef et 

al., 1998) 

1.12 DOPC potentiometric 

titration 

25 

18198-39-5 Tetraphenyl-

phosphonium  

TPP   1.37 (Flewelling 

and Hubbell, 

1986) 

 egg-PC equilibrium 

dialysis 

NA 

     1.01 (Demura et  DPPC electron 45 



 

 

 

al., 1987) paramagnetic 

resonance 

2933-94-0 toliprolol TPL 9.60 (Betageri and 

Rogers, 1987) 

 1.49 (Betageri and 

Rogers, 1987) 

 DMPC ultrafiltration 30 

1.2 Data collection anions 

SI-2, Table 2. Data collection for anions based on a previously published data collection (Bittermann et al., 2014), with all new values marked in bold font. Multiple 

values for pKa, log Klipw (neutral) and log Klipw (ion) are marked in grey; in these cases the arithmetic mean was used for the calculation of Δmw. ‘P’ stands for values 

taken from the PhysProp-Database (http://esc.syrres.com/fatepointer/search.asp), egg-PC for egg-phosphatidylcholine, DOPC for dioleylphosphatidylcholine, DPPC 

for 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine and POPC for 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine. 

CAS compoundname abbreviation pKa log  Klipw (neutral) 

[L/kg] 

log  Klipw (ion) 

[L/kg] 

Δmw lipid method T 

[°C] 

4901-51-3 2,3,4,5-

tetrachlorophenol  

2345TeCP 6.35 (Schellenberg 

et al., 1984) 

4.76 (Escher et al., 

2000) 

3.90 (Escher et 

al., 2000) 

1.07 DPPC/ 

DOPC 

equilibrium 

dialysis 

20 

     3.48 (Smejtek et 

al., 1996) 

 egg-PC electrophoretic 

mobility 

measurements 

25 

58-90-2 2,3,4,6-

tetrachlorophenol  

2346TeCP 5.40 (Schellenberg 

et al., 1984) 

4.46 (Escher et al., 

2000) 

3.46 (Escher et 

al., 2000) 

1.00 DPPC/ 

DOPC 

equilibrium 

dialysis 

20 

935-95-5 2,3,5,6-tetrachloro-

phenol  

2356TeCP 5.14 P 
 3.49 (Smejtek et 

al., 1996) 

 egg-PC electrophoretic 

mobility 

measurements 

25 

95-95-4 2,4,5-trichloro-

phenol  

245TriCP 6.94 (Schellenberg 

et al., 1984) 

4.46 (Escher et al., 

2000) 

2.98 (Escher et 

al., 2000) 

1.58 DPPC/ 

DOPC 

equilibrium 

dialysis 

20 

     2.79 (Smejtek et 

al., 1996) 

 egg-PC electrophoretic 

mobility 

measurements 

25 



 

 

 

118-79-6 2,4,6-tribromo-

phenol  

246TriBP 6.80 P 

 

 3.07 (Bittermann 

et al., 2014) 

 popc equilibrium 

dialysis 

25 

88-06-2 2,4,6-

trichlorophenol  

246TriCP 6.15 (Schellenberg 

et al., 1984) 

3.99 (Escher et al., 

2000) 

2.50 (Escher et 

al., 2000) 

1.47 

 

DPPC/ 

DOPC 

equilibrium 

dialysis 

20 

     2.54 (Smejtek et 

al., 1996) 

 egg-PC electrophoretic 

mobility 

measurements 

25 

120-83-2 2,4-dichloro-phenol  24DCP 7.85 (Schellenberg 

et al., 1984) 

3.59 (Escher et al., 

2000) 

2.69 (Escher et 

al., 2000) 

0.90 DPPC/ 

DOPC 

equilibrium 

dialysis 

20 

51-28-5 2,4-dinitrophenol  24DNP 3.94 

(Schwarzenbach et 

al., 1988) 

2.64 (Escher et al., 

2000) 

1.90 (Escher et 

al., 2000) 

0.74 DPPC/ 

DOPC 

equilibrium 

dialysis 

20 

94-75-7  2,4-dichloro-

phenoxyacetic acid 

2,4-D 2.58 (Barzanti et al., 

2007) 

3.60 (Barzanti et al., 

2007) 

1.70 (Barzanti et 

al., 2007) 

1.90 egg-PC potentiometric 

titration 

25 

 

87-65-0 2,6-dichloro-phenol  26DCP 6.97 (Escher and 

Schwarzenbach, 

1996) 

2.87 (Escher et al., 

2000) 

1.43 (Escher et 

al., 2000) 

1.46 DPPC/ 

DOPC 

equilibrium 

dialysis 

20 

     1.40 (Smejtek et 

al., 1996) 

 egg-PC electrophoretic 

mobility 

measurements 

25 

573-56-8 2,6-dinitrophenol  26DNP 3.70 (Escher and 

Schwarzenbach, 

1996) 

2.03 (Escher et al., 

2000) 

1.86 (Escher et 

al., 2000) 

0.17 DPPC/ 

DOPC 

equilibrium 

dialysis 

20 

95-57-8 2-chlorophenol  2CP 8.56 (Escher and 

Schwarzenbach, 

1996) 

2.79 (Escher et al., 

2000) 

0.92 (Escher et 

al., 2000) 

1.87 DPPC/ 

DOPC 

equilibrium 

dialysis 

20 

534-52-1 2-methyl-4,6-

dinitrophenol  

DNOC 4.31 

(Schwarzenbach et 

2.76 (Escher et al., 

2000) 

2.35 (Escher et 

al., 2000) 

0.41 DPPC/ 

DOPC 

equilibrium 

dialysis 

20 



 

 

 

al., 1988) 

88-75-5 2-nitrophenol  2NP 7.23 

(Schwarzenbach et 

al., 1988) 

1.89 (Escher et al., 

2000) 

0.69 (Escher et 

al., 2000) 

1.20 DPPC/ 

DOPC 

equilibrium 

dialysis 

20 

88-85-7 2-s-butyl-4,6-

dinitrophenol  

Dinoseb 4.62 

(Schwarzenbach et 

al., 1988) 

3.96 (Escher et al., 

2000) 

3.35 (Escher et 

al., 2000) 

0.61 DPPC/ 

DOPC 

equilibrium 

dialysis 

20 

1420-07-1 2-tert-butyl-4,6-

dinitrophenol  

Dino2terb 4.80 (Miyoshi et al., 

1987) 

4.10 (Escher et al., 

2000) 

3.59 (Escher et 

al., 2000) 

0.51 DPPC/ 

DOPC 

equilibrium 

dialysis 

20 

609-19-8 3,4,5-

trichlorophenol  

345TriCP 7.73 (Schellenberg 

et al., 1984) 

4.71 (Escher et al., 

2000) 

3.16 (Escher et 

al., 2000) 

1.55 DPPC/ 

DOPC 

equilibrium 

dialysis 

20 

95-77-2 3,4-dichlorophenol  34DCP 8.59 (Escher and 

Schwarzenbach, 

1996) 

3.76 (Escher et al., 

2000) 

2.85 (Escher et 

al., 2000) 

0.91 DPPC/ 

DOPC 

equilibrium 

dialysis 

20 

577-71-9 3,4-dinitrophenol  34DNP 5.48 

(Schwarzenbach et 

al., 2003) 

3.17 (Escher et al., 

2000) 

1.90 (Escher and 

Schwarzenbach, 

1996) 

1.27 DPPC/ 

DOPC 

equilibrium 

dialysis 

20 

1689-84-5 3,5-dibromo-4-

hydroxy-

benzonitrile  

Bromox 4.09 (Escher et al., 

2001) 

3.16 (Escher et al., 

2001) 

2.10 (Escher et 

al., 2001) 

1.06 POPC TRANSIL NA 

13979-81-2 3,5-dibromo-4-

methylphenol  

35DBC 8.28 (Escher et al., 

2001) 

4.51 (Escher et al., 

2001) 

3.18 (Escher et 

al., 2001) 

1.33 POPC TRANSIL NA 

591-35-5 3,5-dichlorophenol  35DCP 8.26 

(Schwarzenbach et 

al., 2003) 

3.76 (Escher et al., 

2000) 

2.09 (Smejtek et 

al., 1996) 

1.67 egg-PC electrophoretic 

mobility 

measurements 

25 

2338-29-6 4,5,6,7-tetrachloro-

2-(trifluoromethyl)-

1H-benzimidazole  

TTFB 5.30 (Dilger and 

McLaughlin, 1979) 

4.35 (Dilger and 

McLaughlin, 1979) 

4.35 (Dilger and 

McLaughlin, 

1979) 

0.00 egg-PC equilibrium 

dialysis 

22.5 



 

 

 

106-48-9 4-chlorophenol  4CP 9.38 (Escher and 

Schwarzenbach, 

1996) 

2.96 (Escher et al., 

2000) 

2.51 (Escher et 

al., 2000) 

0.45 DPPC/ 

DOPC 

equilibrium 

dialysis 

20 

609-93-8 4-methyl-2,6-

dinitrophenol  

DNPC 4.06 

(Schwarzenbach et 

al., 1988) 

2.34 (Escher et al., 

2000) 

2.26 (Escher et 

al., 2000) 

0.08 DPPC/ 

DOPC 

equilibrium 

dialysis 

20 

100-02-7 4-nitrophenol  4NP 7.08 

(Schwarzenbach et 

al., 1988) 

2.72 (Escher and 

Schwarzenbach, 

1996) 

0.95 (Escher and 

Schwarzenbach, 

1996) 

1.77 DPPC/ 

DOPC 

equilibrium 

dialysis 

20 

6149-03-7 4-octylbenzene-1-

sulfonate  

OBS   3.63 (Bittermann 

et al., 2014) 

 POPC equilibrium 

dialysis 

25 

4097-49-8 4-tert-butyl-2,6-

dinitrophenol  

Dino4terb 4.11 

(Schwarzenbach et 

al., 1988) 

3.81 (Escher et al., 

2000) 

3.23 (Escher et 

al., 2000) 

0.58 DPPC/ 

DOPC 

equilibrium 

dialysis 

20 

2338-25-2 5,6-dichloro-2-

(trifluoromethyl)-

benzimidazole  

DTFB 7.30 (Cohen et al., 

1977) 

3.05 (Cohen et al., 

1977) 

3.05 (Cohen et al., 

1977) 

0.00 egg-PC equilibrium 

dialysis 

NA 

521-74-4 5,7-dibromo-8-

hydroxyquinoline  

Dibromox 2.90 (Kaiser and 

Escher, 2006) 

3.94 (Kaiser and 

Escher, 2006) 

3.03 (Kaiser and 

Escher, 2006) 

0.91 POPC equilibrium 

dialysis 

25 

773-76-2 5,7-dichloro-8-

hydroxyquinoline  

Dichlorox 2.60 (Kaiser and 

Escher, 2006) 

3.35 (Kaiser and 

Escher, 2006) 

2.47 (Kaiser and 

Escher, 2006) 

0.88 POPC equilibrium 

dialysis 

25 

16128-96-4 5-chloro-3-tert-

butyl-2'-chloro-4'-

nitrosalicylanilide  

S-13 5.80 (Kasianowicz 

et al., 1987) 

6.44 (Kasianowicz et 

al., 1987) 

5.05 

(Kasianowicz et 

al., 1987) 

1.40 egg-PC equilibrium 

dialysis 

21 

130-16-5 5-chloro-8-

hydroxyquinoline  

Chlorox 3.71 (Kaiser and 

Escher, 2006) 

3.29 (Kaiser and 

Escher, 2006) 

1.91 (Kaiser and 

Escher, 2006) 

1.38 POPC equilibrium 

dialysis 

25 

327-19-5 5-nitro-2-

trifluoromethyl-

5-NB   1.81 (Bittermann 

et al., 2014) 

 POPC equilibrium 

dialysis 

25 



 

 

 

benzimidazole  

2270-20-4 5-phenylvaleric acid  5-PA 4.88 P 3.06 (Austin et al., 

1995) 

1.66 (Avdeef et 

al., 1998) 

1.40 DOPC pH metric 

technique 

NA 

148-24-3 8-hydroxy-

quinoline  

Oxine 4.89 (Kaiser and 

Escher, 2006) 

 

2.17 (Kaiser and 

Escher, 2006) 

1.47 (Kaiser and 

Escher, 2006) 

0.70 POPC equilibrium 

dialysis 

25 

87848-99-5 acrivastine Acr_a 2.20 (Plemper van 

Balen et al., 2001) 

 2.60 (Plemper van 

Balen et al., 2001) 

 egg-PC equilibrium 

dialysis 

25 

118-92-3 anthranilic acid  AA 4.76 (Thomae et al., 

2007) 

2.08 (Thomae et al., 

2007) 

0.13 (Thomae et 

al., 2007) 

1.95 egg-PC equilibrium 

dialysis 

26 

555-60-2 carbonyl cyanide m-

chlorophenyl-

hydrazone  

CCCP 5.95 (Kasianowicz 

et al., 1987) 

4.05 (Kasianowicz et 

al., 1987) 

4.05 

(Kasianowicz et 

al., 1987) 

0.00 egg-PC equilibrium 

dialysis 

21 

370-86-5 carbonyl cyanide p-

methoxyphenylhydr

azone  

FCCP 6.20 (Kasianowicz 

et al., 1987) 

4.22 (Kasianowicz et 

al., 1987) 

4.22 

(Kasianowicz et 

al., 1987) 

0.00 egg-PC equilibrium 

dialysis 

21 

15307-86-5 diclofenac  Dic 3.99 (Avdeef et al., 

1998) 

4.45 (Avdeef et al., 

1998) 

2.64 (Avdeef et 

al., 1998) 

1.81 DOPC potentiometric 

titration 

25 

22494-42-4 diflunisal  Dif 3.00 (Pallicer and 

Krämer, 2012) 

 2.73 (Pallicer and 

Krämer, 2012) 

 egg-PC equilibrium 

dialysis 

25 

91-40-7 fenamic acid  Fen 3.99 P  2.28 (Bittermann 

et al., 2014) 

 POPC equilibrium 

dialysis 

25 

530-78-9 flufenamic acid  Flu   3.61 (Bittermann 

et al., 2014) 

 POPC equilibrium 

dialysis 

25 

15687-27-1 ibuprofen  Ibu 4.45 (Avdeef et al., 

1998) 

3.80 (Avdeef et al., 

1998) 

1.81 (Avdeef et 

al., 1998) 

1.99 DOPC potentiometric 

titration 

25 

36894-69-6 labetalol  Lab 7.35 (Pallicer and 

Krämer, 2012) 

2.73 (Pallicer and 

Krämer, 2012) 

1.84 (Pallicer and 

Krämer, 2012) 

0.89 egg-PC equilibrium 

dialysis 

25 



 

 

 

124-07-2 octanoic acid Oct 4.89 p 2.91 (Inoue et al., 

1988) 

0.52 (Inoue et al., 

1988) 

2.39 DPPC depression of 

the phase 

transition 

temperature 

37 

608-71-9 pentabromo-phenol  PBrP 4.62 P  5.02 (Smejtek et 

al., 1996) 

 egg-PC electrophoretic 

mobility 

measurements 

25 

87-86-5 pentachloro-phenol  PCP 4.75 (Schellenberg 

et al., 1984) 

5.10 (Escher et al., 

2000) 

4.35 (Escher et 

al., 2000) 

0.79 DPPC/ 

DOPC 

equilibrium 

dialysis 

20 

     4.28 (Smejtek et 

al., 1996) 

 egg-PC electrophoretic 

mobility 

measurements 

25 

771-61-9  pentafluoro-phenol  PFP 5.53 P  1.74 (Smejtek et 

al., 1996) 

 egg-PC electrophoretic 

mobility 

measurements 

25 

1763-23-1 perfluorooctane-1-

sulfonic acid 

PFOS 0.14 p  3.15 (Lehmler et 

al., 2006) 

 

 DPPC depression of 

the phase 

transition 

temperature 

37 

335-67-1 perfluorooctanoic 

acid 

PFOA 2.80 p  2.34 (Inoue et al., 

1988) 

 DPPC depression of 

the phase 

transition 

temperature 

37 

69-72-7 salicylic acid  SA 2.75 (Thomae et al., 

2005) 

2.66 (Thomae et al., 

2005) 

1.03 (Thomae et 

al., 2005) 

1.61 DPPC equilibrium 

dialysis 

37 

   3.00 (Ottiger and 

Wunderli-

Allenspach, 1997) 

2.59 (Thomae et al., 

2007) 

0.85 (Thomae et 

al., 2007) 

 egg-PC equilibrium 

dialysis 

25 



 

 

 

    2.50 (Ottiger and 

Wunderli-Allenspach, 

1997) 

1.04 (Ottiger and 

Wunderli-

Allenspach, 1997) 

 egg-PC equilibrium 

dialysis 

37 

1198-55-6 tetrachloro-catechol  TeCC 5.97 (Schweigert et 

al., 2001) 

4.41 (Schweigert et 

al., 2001) 

2.63 (Schweigert 

et al., 2001) 

1.78 DOPC potentiometric 

titration 

25 

4358-26-3 tetraphenylborate  TPB   5.05 (Flewelling 

and Hubbell, 

1986) 

 egg-PC electron 

paramagnetic 

resonance 

25 

     5.35 (Flewelling 

and Hubbell, 

1986) 

 egg-PC electron 

paramagnetic 

resonance 

25 

81-81-2 warfarin  Warf 4.90 (Ottiger and 

Wunderli-

Allenspach, 1997) 

3.39 (Ottiger and 

Wunderli-Allenspach, 

1997) 

1.40 (Ottiger and 

Wunderli-

Allenspach, 1997) 

1.99 egg-PC equilibrium 

dialysis 

37 

1.3 Data collection zwitterions 

SI-2, Table 3. Data collection for anions based on a previously published data collection (Bittermann et al., 2014), with all new values marked in bold font. Multiple 

values for pKa, log Klipw (neutral) and log Klipw (ion) are marked in grey; in these cases the arithmetic mean was used for the calculation of Δmw. ‘P’ stands for values 

taken from the PhysProp-Database (http://esc.syrres.com/fatepointer/search.asp), egg-PC for egg-phosphatidylcholine, DOPC for dioleylphosphatidylcholine, DPPC 

for 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine and POPC for 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine. 

CAS compoundname abbreviation pKa log  Klipw (zwitterion) [L/kg] lipid method T 

[°C] 

83881-51-0 ceterizine Cet_zw 2.93/8.00 (Plemper van Balen et al., 

2001) 

2.30 (Plemper van Balen et al., 

2001) 

egg-PC equilibrium dialysis  25 

87848-99-5 acrivastine Acr_zw 2.20/9.55 (Plemper van Balen et al., 

2001) 

1.50 (Plemper van Balen et al., 

2001) 

egg-PC equilibrium dialysis  25 
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1.4 Omitted data  

The experimental Klipw data published by (Inoue et al., 1986) comprise a homologous series of 

four linear quaternary amines and three linear sulfates. These data have been omitted in our 

data compilation because they contradict unpublished LCMS measurements conducted by 

Droge et al. Droge used the 10 cm IAM.PC.DD2 column from Regis Technologies, with a 

buffer of 10 mM ammonium acetate at pH 5. Using a flow rate of 1 mL/min, and creating a 

~95% split, the remaining 5% was injected in the ESI-LC-MS/MS (AB/Sciex (Applied 

Biosystems) 3000), and scanned for the mass of the cationic species. These HPLC conditions 

render similar (<~0.2 log units) sorption affinities of organic cations to the phospholipid 

material on the HPLC column as the sorption affinities determined with phospholipid 

liposomes (yet unpublished results). 

2 Log Kow based prediction 

2.1 Differences in Klipw between neutral and corresponding ionic species (Δmw) 

The experimental Δmw values for 43 anionic and 20 cationic compounds (see Table 1 and 2, 

SI-2) scatter from 0 to 2.39 log units as shown in the histogram in SI-1, Fig. 1A. SI-1, Fig. 1B 

shows the corresponding experimental log Klipw values for these 63 Δmw values according to 

the different subclasses. All Δmw values of the different species are summarized in SI-2, 

Table 4. Despite the limitation of the data, SI-1, Fig. 1B clearly underlines that Δmw scatters 

widely over the whole range of log Klipw values. Although it seems to be safe to state that e.g. 

primary amines tend to have lower Δmw values than carboxylic acids, there is no clear trend 

for most of the chemical classes listed. 
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SI-2, Figure 1. Histogram of 63 experimental Δmw values (A) and plot of the experimental Δmw values 

against their experimental log Klipw values (B). The dotted grey line indicates the generic Δmw value of 1 

log unit. 

 

SI-2, Table 4. Summary of Δmw values ± standard deviation of the different classes as depicted in the SI-2, 

Fig. 1B and the Summary, section 1.4.2.1, Fig. 7B. 

class Charge number Δmw SD 

primary amine + 5 0.16 0.12 

secondary 

amine 

+ 9 1.10 0.55 

tertiary amine + 6 1.11 0.48 

chlorophenol - 13 1.24 0.42 

bromophenol - 2 1.20 0.19 

nitrophenol - 10 0.73 0.53 

carboxylic acid - 7 1.84 0.31 

N-acidic - 5 0.28 0.62 

quinoline - 4 0.97 0.29 

other anion - 2 1.44 0.78 

It has already been discussed that Δmw values for phenols are closer to 1 log unit (Escher et 

al., 2000), while Δmw values of carboxylic acids are usually higher (Escher and Sigg, 2004) 

(see also SI-2, Fig. 1). It has been hypothesized that this is due to the charge delocalization 

being more effective in the case of phenols than in the case of carboxylic acids (Escher and 
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Sigg, 2004). For cationic compounds on the other hand an increase in Δmw values has been 

observed from primary to secondary to tertiary amines (Neuwoehner et al., 2009). It has been 

reasoned that the positively charged NH2-group of primary amines might interact more 

favorably with the polar parts of the membrane than secondary or tertiary amines 

(Neuwoehner et al., 2009). This seems like a contradictory finding, because a higher charge 

density increases Δmw values for the anionic phenol/carboxylic acid pair, while a higher 

charge density decreases the Δmw values in the case of cationic primary/secondary/tertiary 

amines. In order to investigate whether this is a generalizable feature for anionic and cationic 

compounds independent of the chemical classes, we correlated the charge densities of the ions 

with their respective Δmw values (see SI-2, Fig. 2 and SI-2, Fig.3). But before discussing SI-

2, Fig. 3 it has to be explained how the charge densities of the ions have been derived: 

From the SMILES code of the ions, a 3D structure has been generated with CORINA 

(Sadowski et al., 1994) (available from Molecular Networks GmbH, Erlangen, Germany; 

http://www.molecular-networks.com). Subsequently, full energy minimization and conformer 

generation of TZVP (Becke, 1988; Eichkorn et al., 1995; Perdew, 1986; Schäfer et al., 1994) 

cosmo files are calculated with COSMOconfX13 (version 3.0, COSMOlogic) templates 

(Vainio and Johnson, 2007). This quantum chemical calculation is based on Turbomole 

version 6.5
5
 and yields at least one cosmo file for every molecule (with up to 10 cosmo files 

for 10 conformers being possible). Within every cosmo file, the charge density profile of the 

respective molecule is stored; the so called σ-profile (detailed explanations can be found in 

the literature: see the publications of Klamt (Klamt, 2005, 1995) for a thorough mathematical 

derivation and the reviews (Eckert and Klamt, 2002; Klamt et al., 2010) for practical hands-on 

examples). As an example, SI-2, Fig. 2 shows the σ-profiles of the anthranilic acid cation (in 

red) and the anthranilic acid anion (in blue). It is important to note, that the charge is given 

with respect to the perfect conductor; i.e. negative partial charges on molecules are 

represented by positive screening charge densities and vice versa (Eckert and Klamt, 2002; 

Klamt, 1995). To determine the influence of the charge densities on Δmw we chose the 

energetically most favorable conformer of every compound and integrated the charge 

densities above the threshold of 0.015 e/A² in the case of anions and below -0.015 e/A² in the 

case of cations (shown as dotted blue and red area under the curve in SI-2, Fig. 2). This 

                                                 

5
 TURBOMOLE V6.5 2013, a development of University of Karlsruhe and 

Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; 

available from http://www.turbomole.com 

http://www.molecular-networks.com/
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threshold determined by visual examination is somewhat arbitrary, but gave the best 

correlations with the Δmw values as depicted in SI-2, Fig. 3.  

 

SI-2, Figure 2. σ-profiles of anthranilic acid cation (red) and anthranilic acid anion (blue). The  area 

under the curve has been integrated from -0.015 to -0.003 e/Å² (indicated by the red dotted area) and 

0.015 to 0.0031 e/Å² (indicated by the blue dotted area) for cations and anions, respectively. 

Representations of the σ-profiles in combination with the 3-D structures  of the molecules (as stored in the 

cosmo-files) are depicted above with the color coding according to the charge densities. 

 

SI-2, Fig. 3 shows the correlation between Δmw values of 20 cationic (R² = 0.42) and 43 (R² = 

0.35) anionic compounds against their integrated charge densities. Although the proportion of 

variance of the Δmw values explained by the charge densities is not striking (as shown by the 

low R²), the p-values of both coefficients are significant. A least squares regression gives 

positive values for the slope of both cationic and anionic compounds. Following the cosmo 

notation this indicates a contrary influence of the charge densities of cationic and anionic 

compounds on Δmw: for the cations higher charge densities are correlated with lower Δmw 

values, while for the anions higher charge densities are correlated with higher Δmw values. 

This is in good agreement with the previous findings for the anionic phenol/carboxylic acid 

pair (Escher et al., 2000; Escher and Sigg, 2004) and the cationic primary/secondary/tertiary 

amines (Neuwoehner et al., 2009). However, the scatter within these correlations is so high, 
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that we think the charge densities should be seen rather as a qualitative than a quantitative 

indicator of Δmw values. 

 

SI-2, Fig. 3. Experimental Δmw values of 20 cations and 43 anions against their integrated sigma profile 

from 0.015 to 0.031 e/Å² and -0.02 to -0.031 e/Å², respectively. 

 

2.2 Why does the log Kow approach predict Klipw for anions better than for cations 

Fig. 6 in the summary, section 1.4 shows that the log Kow approach predicts the log Klipw 

values of anions (RMSE = 0.79, R² = 0.61, n = 56) better than the log Klipw of cations (RMSE 

= 1.14, R² = 0.23, n = 36), while the log Klipw of neutral compounds are predicted most 

accurately (RMSE = 0.52, R² = 0.93, n = 207). We investigated this finding by examining the 

distribution of the molecules in the membrane, according to the relative distribution profiles 

calculated for every molecule with COSMOmic. To this end we plotted the frequency of the 

relative distribution maxima (i.e. the membrane layer with the maximum probability to find 

the center of mass of a given molecule) in SI-2, Fig. 4: neutral compounds (C) seem to sorb 

mainly either to the membrane center or to a distance of 9.7 Å from the membrane center 

(where the probability of carbonyl carbons levels off and the alkane-like interior of the 

membrane begins (D)). Most of the cations in the dataset sorb deeper in the membrane (with a 
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peak in the frequency distribution at 13.1 Å (A)) than the anions (with a peak in the frequency 

distribution at 23.3 Å (B)).  

 

SI-2, Figure 4. Histograms of the relative distribution maxima of 36 cationic (A), 56 anionic (B) and 207 

neutral compounds (C) as calculated with COSMOmic; D shows the corresponding relative probability of 

the membrane headgroup atoms and the shape of the membrane potential. 

According to the relative distribution maxima in the histograms of the differently charged 

compounds in SI-2, Fig. 4, SI-2, Fig. 5 shows the corresponding σ-potentials of the respective 

layers in the membrane and of octanol as a comparison. The σ-potentials can be seen as a 

characteristic function of a solvent that describes possible interactions with a solutes’ surface 

area of polarity σ (Eckert and Klamt, 2002; Klamt, 2005, 1995; Klamt et al., 2010) (in the 

case of the different membrane layers, the σ-potentials refer to theoretical homogeneous 

solvents with the specific properties of the respective layer) (Bittermann et al., 2014; Klamt et 

al., 2008). The σ-potential of the membrane center (which is the preferred sorption 

environment for around 20% of neutral compounds; SI-2, Fig. 4C) has an almost parabolic 

shape, which is equivalent to purely dielectric behavior and indicates the lack of hydrogen 

bonding capacities (Eckert and Klamt, 2002) (i.e., not surprising, the membrane interior has 



Appendix  150  

 

 

properties equivalent to hexane). The dominating sorption depth for neutral compounds at 

around 9.7 Å from the membrane center, however, shows properties that resemble very 

closely the properties of octanol – which is a satisfying explanation why most of the Klipw 

values of neutral compounds agree well with their respective Kow values. For the ions, the 

comparison to the σ-potential of octanol is not as clear: while the potential at around 13.1 Å 

from the membrane center (being the preferred sorption depth of cations) fits well with the 

corresponding positive σ-values of octanol, the potential at around 23.3 Å from the membrane 

center (being the preferred sorption depth of anions) fits well with the corresponding negative 

σ-values of octanol. In other words, the preferred sorption depth of cations has H-bond donor 

properties comparable to those of octanol, while the preferred sorption depth of anions has H-

bond acceptor properties comparable to those of octanol. This cannot satisfyingly explain the 

different modeling performance of the log Kow approach with respect to anions and cations. 

Also the neighboring layers will be of importance and the specific orientation of a given ion 

in the membrane. 

Stepping back from the comparison to the σ-potential of octanol, the σ-potentials of the 

preferred layers of anionic and cationic compounds intuitively do make sense: Most cations 

sorb mainly to the membrane depth with the most pronounced H-bond acceptor properties, i.e. 

the σ-potential has the most negative µ-values for negative σ-values (red curve). This is 

because the cations are good H-bond donors. The anions on the other hand are good H-bond 

acceptors. Therefore they mainly sorb to the layer with the most negative µ-values for 

positive σ-values (green curve), i.e. the layer with the best H-bond donor properties. 

Interestingly, the preferred sorption depth of anions has very similar properties as the 

outermost water layer. 
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SI-2, Figure 5. σ-potentials of different membrane layers used in the COSMOmic calculation as well as σ-

potential of octanol as comparison (at T = 298.15 K). 

 

2.3 Ruling out artefacts from KowWIN estimation errors  

The predictability of KowWIN is likely to be poor for compounds with functional groups that 

were not included with sufficient entries (or not included at all) in the parametrization dataset. 

In order to test whether the limitations of the empirical correlation approach with log Kow are 

due to the limited applicability domain of KowWIN, we reevaluated the model using only 

experimental log Kow values (i.e. 155 out of 207 neutral compounds, 29 out of 36 cationic 

compounds and 40 out of 56 anionic compounds). SI-2, Fig. 6 below shows that the model 

based exclusively on experimental log Kow values does not yield substantially better results 

than the model using also log Kow values estimated with KowWIN, as presented in the 

summary above (compare with SI-2, Fig. 1 in the summary). 
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SI-2, Figure 6. Comparison between the experimental log Klipw values of 155 neutral, 29 cationic and 40 

anionic compounds and the predicted values according to the empirical correlation approach with log Kow 

using only experimental  log Kow values, simple regression and Δmw as outlined in the summary, section 

1.4. Deviations of 1 log unit from the straight identity line are shown as dotted lines. 



 

 

 

2.4 Predicted data 

2.4.1 Cations 

SI-2, Table 5. Log Kow values derived with EpiSuite
6
 (estimated and experimental) and resulting log Klipw values of the corresponding ions according to the Endo QSAR 

((Endo et al., 2011) Eq. 1) minus 1 log unit. For the log Klipw calculation experimental log Kow values were preferred over estimated ones.  

CAS abbreviation SMILES of corresponding neutral form (as used in EpiSuite) log Kow 

neutral 

(EpiSuite 

estimation) 

log Kow 

neutral 

(EpiSuite 

experimental) 

log Klipw 

ion (Endo 

QSAR – 1 

log unit) 

88-05-1 246TMA CC1=CC(C)=C(N)C(C)=C1 2.72 - 1.87 

95-64-7 34DMA CC1=C(C)C=C(N)C=C1 2.17 1.84 0.98 

13214-66-9 4-PhenButA NCCCCC1=CC=CC=C1 2.54 2.4 1.54 

118-92-3 AA_cation NC1=C(C=CC=C1)C(O)=O 1.36 1.21 0.34 

37517-30-9 ABL O=C(Nc1ccc(OCC(O)CNC(C)C)c(c1)C(=O)C)CCC 1.19 1.71 0.85 

88150-42-9 Amlodip CCOC(=O)C1=C(COCCN)NC(C)=C(C1C1=CC=CC=C1Cl)C(=O)OC 2.07 3 2.15 

13655-52-2 APL O(c1ccccc1C\C=C)CC(O)CNC(C)C 2.81 3.1 2.25 

29122-68-7 Aten CC(C)NCC(O)COC1=CC=C(CC(N)=O)C=C1 -0.03 0.16 -0.72 

23284-25-5 BPL CC1=CC(=C(C=C1)Cl)OCC(CNC(C)(C)C)O 3.07 2.97 2.12 

                                                 

6
 EPISuite Exposure Assessment Tools and Models. 

http://www.epa.gov/opptintr/exposure/pubs/episuite.htm. 



 

 

 

83881-51-0 Cet_c Clc1ccc(cc1)C(c2ccccc2)N3CCN(CC3)CCOCC(=O)O -0.61 1.7 0.84 

50-53-3 CLP CN(C)CCCN1c2ccccc2Sc2ccc(Cl)cc12 5.2 5.41 4.58 

54910-89-3 Fluox CNCCC(OC1=CC=C(C=C1)C(F)(F)F)C1=CC=CC=C1 4.65 3.82 2.98 

68-88-2 Hyd OCCOCCN1CCN(CC1)C(c1ccccc1)c1ccc(Cl)cc1 2.36 - 1.50 

312753-06-3 Indac CCC1=CC2=C(CC(C2)NCC(O)C2=CC=C(O)C3=C2C=CC(=O)N3)C=C1CC 3.3 - 2.45 

36894-69-6 Lab_c CC(CCc1ccccc1)NCC(O)c1ccc(O)c(c1)C(N)=O 2.41 3.09 2.24 

137-58-6 Lido CCN(CC)CC(=O)NC1=C(C)C=CC=C1C 1.66 2.44 1.58 

16183-21-4 MBButA CCCCNCC1=CC=C(C=C1)C 3.56 3.49 2.64 

39099-13-3 MBEthA CCNCC1=CC=C(C)C=C1 2.57 2.38 1.52 

215177-24-5 MBHepA CCCCCCCNCc1ccc(C)cc1 5.03 5.12 4.29 

215177-23-4 MBHexA CCCCCCNCc1ccc(C)cc1 4.54 4.96 4.13 

699-04-7 MBMetA CNCC1=CC=C(C)C=C1 2.08 1.96 1.10 

170303-38-5 MBPentA CCCCCNCc1ccc(C)cc1 4.05 4.26 3.42 

39190-96-0 MBPropA CCCNCC1=CC=C(C)C=C1 3.06 2.96 2.11 

51384-51-1 Metro COCCC1=CC=C(OCC(O)CNC(C)C)C=C1 1.69 1.88 1.02 

20574-50-9 Mor CN1CCCN=C1\C=C\C1=C(C)C=CS1 3.69 - 2.85 

42200-33-9 NDL OC(CNC(C)(C)C)COc1cccc2c1C[C@H](O)[C@H](O)C2 1.17 0.81 -0.06 

83891-03-6 Norfluox NCCC(OC1=CC=C(C=C1)C(F)(F)F)C1=CC=CC=C1 4.18 - 3.34 

6452-71-7 OPL O(c1ccccc1OC\C=C)CC(O)CNC(C)C 1.83 2.1 1.24 

13523-86-9 PDL CC(C)NCC(O)COc2cccc1nccc12 1.48 1.75 0.89 

59-46-1 Proc CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 1.99 2.14 1.28 

525-66-6 Prop CC(C)NCC(O)COC1=CC=CC2=C1C=CC=C2 2.6 3.48 2.63 

130-95-0 Quinine COC1=CC2=C(C=CN=C2C=C1)C(O)C1CC2CCN1CC2C=C 3.29 3.44 2.59 



 

 

 

89365-50-4 Salmet OCC1=C(O)C=CC(=C1)C(O)CNCCCCCCOCCCCC1=CC=CC=C1 4.15 - 3.31 

94-24-6 Tetrac CCCCNC1=CC=C(C=C1)C(=O)OCCN(C)C 3.02 3.51 2.67 

2933-94-0 TPL CC1=CC(=CC=C1)OCC(CNC(C)C)O 1.97 1.93 1.07 

18198-39-5 TPP C1=CC=C(C=C1)P(C1=CC=CC=C1)(C1=CC=CC=C1)C1=CC=CC=C1 5.28 - 4.45 

2.4.2 Anions 

SI-2, Table 6. Log Kow values derived with EpiSuite
7
 (estimated and experimental) and resulting log Klipw values of the corresponding ions according to the Endo QSAR 

((Endo et al., 2011) Eq. 1) minus 1 log unit. For the log Klipw calculation experimental log Kow values were preferred over estimated ones.  

CAS Abbre-

viation 

SMILES of corresponding neutral form (as used in EpiSuite) log Kow 

neutral 

(EpiSuite 

estimation) 

log Kow 

neutral 

(EpiSuite 

exp.) 

log Klipw 

ion (Endo 

QSAR – 1 

log unit) 

94-75-7 2,4-D Clc1cc(Cl)ccc1OCC(=O)O 2.62 2.81 1.96 

4901-51-3 2345TeCP OC1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1 4.09 4.21 3.37 

58-90-2 2346TeCP ClC1=C(Cl)C(=C(Cl)C=C1Cl)O 4.09 4.45 3.61 

935-95-5 2356TeCP Clc1c(O)c(Cl)c(Cl)cc1Cl 4.09 3.88 3.04 

95-95-4 245TriCP ClC1=C(Cl)C=C(O)C(=C1)Cl 3.45 3.72 2.88 

89365-49-1 246TriBP Oc1c(Br)cc(Br)cc1Br 4.18 4.13 3.29 

88-06-2 246TriCP OC1=C(Cl)C=C(Cl)C=C1Cl 3.45 3.69 2.85 

                                                 

7
 EPISuite Exposure Assessment Tools and Models. 

http://www.epa.gov/opptintr/exposure/pubs/episuite.htm. 



 

 

 

120-83-2 24DCP OC1=C(Cl)C=C(C=C1)Cl 2.8 3.06 2.21 

51-28-5 24DNP [O-][N+](=O)C1=CC(=CC=C1O)[N+](=O)[O-] 1.73 1.67 0.81 

87-65-0 26DCP OC1=C(Cl)C=CC=C1Cl 2.8 2.75 1.90 

573-56-8 26DNP [O-][N+](=O)C1=C(O)C(=CC=C1)[N+](=O)[O-] 1.73 1.37 0.50 

95-57-8 2CP OC1=C(Cl)C=CC=C1 2.16 2.15 1.29 

88-75-5 2NP [O-][N+](=O)C1=C(O)C=CC=C1 1.91 1.79 0.93 

609-19-8 345TriCP C1=C(C=C(C(=C1Cl)Cl)Cl)O 3.45 4.01 3.17 

95-77-2 34DCP ClC1=C(Cl)C=CC(=C1)O 2.8 3.33 2.48 

577-71-9 34DNP OC1=CC([N+](=O)[O-])=C([N+](=O)[O-])C=C1 1.73 - 0.87 

13979-81-2 35DBC OC1=CC(Br)=C(C)C(Br)=C1 3.84 - 3.00 

591-35-5 35DCP ClC1=CC(=CC(=C1)O)Cl 2.8 3.62 2.78 

106-48-9 4CP OC1=CC=C(Cl)C=C1 2.16 2.39 1.53 

100-02-7 4NP [O-][N+](=O)C1=CC=C(O)C=C1 1.91 1.91 1.05 

327-19-5 5-NB [O-][N+](=O)C1=CC=C2NC(=NC2=C1)C(F)(F)F 2.02 2.68 1.83 

2270-20-4 5-PA C1(=CC=CC=C1)CCCCC(=O)O 3.27 2.94 2.09 

118-92-3 AA_anion c1ccc(c(c1)C(=O)O)N 1.36 1.21 0.34 

87848-99-5 Acr_a O=C(O)\C=C\c3nc(\C(=C\CN1CCCC1)c2ccc(cc2)C)ccc3 2.08 - 1.22 

1689-84-5 Bromox OC1=C(Br)C=C(C#N)C=C1(Br) 3.39 - 2.54 

555-60-2 CCCP N#C\C(=N\NC1=CC(=CC=C1)Cl)C#N 3.15 3.38 2.53 

130-16-5 Chlorox Clc1ccc(O)c2ncccc12 2.31 2.88 2.03 

521-74-4 Dibromox Brc1c(O)c2ncccc2c(Br)c1 3.44 - 2.59 

15307-86-5 Dic ClC1=C(NC2=C(CC(=O)O)C=CC=C2)C(Cl)=CC=C1 4.02 4.51 3.68 

773-76-2 Dichlorox Clc1c(O)c2ncccc2c(Cl)c1 2.95 - 2.10 



 

 

 

22494-42-4 Dif O=C(O)c1cc(ccc1O)c2ccc(F)cc2F 4.41 4.44 3.60 

1420-07-1 Dino2terb CC(C)(C)C1=C(O)C(=CC(=C1)[N+](=O)[O-])[N+](=O)[O-] 3.64 - 2.80 

4097-49-8 Dino4terb [O-][N+](=O)C1=C(O)C(=CC(=C1)C(C)(C)C)[N+](=O)[O-] 3.64 - 2.80 

88-85-7 Dinoseb CC(CC)C1=C(O)C(=CC(=C1)[N+](=O)[O-])[N+](=O)[O-] 3.67 3.56 2.72 

534-52-1 DNOC [O-][N+](=O)C1=CC(=CC(=C1O)C)[N+](=O)[O-] 2.27 2.13 1.27 

609-93-8 DNPC [O-][N+](=O)C1=C(O)C(=CC(=C1)C)[N+](=O)[O-] 2.27 - 1.41 

2338-25-2 DTFB C1=C2C(=CC(=C1Cl)Cl)N=C([NH]2)C(F)(F)F 3.49 3.49 2.64 

370-86-5 FCCP N#CC(C#N)=NNC1=CC=C(OC(F)(F)(F))C=C1 3.55 3.68 2.84 

91-40-7 Fen OC(=O)C1=C(NC2=CC=CC=C2)C=CC=C1 4.18 4.36 3.52 

530-78-9 Flu OC(=O)C1=CC=CC=C1NC1=CC(=CC=C1)C(F)(F)F 5.15 5.25 4.42 

15687-27-1 Ibu CC(C(=O)O)C1=CC=C(CC(C)C)C=C1 3.79 3.97 3.13 

36894-69-6 Lab_a O=C(c1cc(ccc1O)C(O)CNC(C)CCc2ccccc2)N 2.41 3.09 2.24 

6149-03-7 OBS CCCCCCCCC1=CC=C(C=C1)S(O)(=O)=O 2.82 - 1.97 

124-07-2 Oct CCCCCCCC(=O)O 3.03 3.05 2.20 

148-24-3 Oxine c1cc2cccnc2c(c1)O 1.66 1.85 0.99 

608-71-9 PBrP Brc1c(O)c(Br)c(Br)c(Br)c1Br 5.96 - 5.14 

87-86-5 PCP ClC1=C(Cl)C(=C(O)C(=C1Cl)Cl)Cl 4.74 5.12 4.29 

335-67-1 PFOA FC(F)(C(F)(F)C(=O)O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F 4.81 - 3.98 

1763-23-1 PFOS FC(F)(C(F)(F)S(=O)(=O)O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F 4.49 - 3.65 

771-61-9  PFP Fc1c(F)c(F)c(F)c(O)c1F 2.51 3.23 2.38 

16128-96-4 S-13 [O-][N+](=O)C1=CC(Cl)=C(NC(=O)C2=C(O)C(C(C)(C)C)=CC(Cl)=C2)C=C1 6.47 - 5.65 

69-72-7 SA OC(=O)C1=C(O)C=CC=C1 2.24 2.26 1.40 

1198-55-6 TeCC ClC1=C(Cl)C(=C(O)C(=C1Cl)O)Cl 3.61 4.29 3.45 



 

 

 

4358-26-3 TPB C1=CC=C(C=C1)B(C1=CC=CC=C1)(C1=CC=CC=C1)C1=CC=CC=C1 7.28 - 6.47 

2338-29-6 TTFB ClC1=C2NC(C(F)(F)(F))=NC2=C(Cl)C(Cl)=C1(Cl) 4.78 - 3.95 

81-81-2 Warf CC(CC(C1=CC=CC=C1)C3=C(O)C2=C(C=CC=C2)OC3=O)=O 2.23 2.7 1.85 
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3 pp-LFER based prediction 

3.1 Derivation of the solute descriptors of ions from the solute descriptors of neutral 

compounds 

As outlined in the summary, section 1.4, solute descriptors of certain ions can be recalculated 

based on the solute descriptors of neutral compounds (E, S, A, B and V). For carboxylic acid 

anions this recalculation is as follows (Abraham and Acree, Jr, 2010a): 

𝐸(ion) =  0.15 + 𝐸 

𝑆(ion) =  1.224 +  0.908 ∗ 𝐸 +  0.827 ∗ 𝑆 +  0.453 ∗ 𝑉 

𝐴(𝑖𝑜𝑛) =  −0.208 −  0.058 ∗ 𝑆 +  0.354 ∗ 𝐴 +  0.076 ∗ 𝑉 

𝐵(𝑖𝑜𝑛) =  2.150 −  0.204 ∗ 𝑆 +  1.217 ∗ 𝐵 +  0.314 ∗ 𝑉 

𝑉(𝑖𝑜𝑛) =  −0.0215 +  𝑉 

𝐽−(𝑖𝑜𝑛) =  1.793 +  0.267 ∗ 𝐸 −  0.195 ∗ 𝑆 +  0.350 ∗ 𝑉 

𝐽+(𝑖𝑜𝑛) =  0 

For phenoxides the solute descriptors of ions can be recalculated by (Abraham and Acree, Jr, 

2010b): 

𝐸(ion) =  0.15 + 𝐸 

𝑆(ion) = 4.692 +  4.639 ∗ 𝐸 −  2.9 ∗ 𝑆 +  5.326 ∗ 𝐴 +  5.218 ∗ 𝐵 −  0.776

∗ 𝑝𝐾𝑎(𝑤𝑎𝑡𝑒𝑟) 

𝐴(𝑖𝑜𝑛) =  0 

𝐵(𝑖𝑜𝑛) =  1.7 +  1.103 ∗ 𝐸 −  0.732𝑆 +  0.728 ∗ 𝐴 +  0.564 ∗ 𝐵 −  0.0255

∗ 𝑝𝐾𝑎(𝑤𝑎𝑡𝑒𝑟) 

𝑉(𝑖𝑜𝑛) =  −0.0215 +  𝑉 

𝐽−(𝑖𝑜𝑛) =   2.165 +  2.579 ∗ 𝐸 −  1.504 ∗ 𝑆 +  1.708 ∗ 𝐴 +  0.045 ∗ 𝐵 −  0.217

∗ 𝑝𝐾𝑎(𝑤𝑎𝑡𝑒𝑟) 

𝐽+(𝑖𝑜𝑛) =  0 

The recalculation of the solute descriptors for amine cations (with NA being number of 

hydrogen atoms attached to charged nitrogen) is as follows (Abraham and Acree, Jr, 2010b): 

𝐸(ion) =  −0.15 + 𝐸 

𝑆(ion) = 0.463 +  0.473 ∗ 𝑆 +  2.419 ∗ 𝐵 

𝐴(𝑖𝑜𝑛) =  −0.052 −  0.35 ∗ 𝐸 +  1.48 ∗ 𝑆 +  0.327 ∗ 𝑁𝐴 

𝐵(𝑖𝑜𝑛) =  0 

𝑉(𝑖𝑜𝑛) =  0.0215 +  𝑉 



Appendix  160  

 

 

𝐽−(𝑖𝑜𝑛) =   0 

𝐽+(𝑖𝑜𝑛) =   0.628 +  1.002 ∗ 𝐸 − = .794 ∗ 𝑆 +  1.128 ∗ 𝐵 −  0.191 ∗ 𝑁𝐴  

There are also formulas available for the recalculation of pyridinium cations (Abraham and 

Acree, Jr, 2010c), but there are no pyridinium cations in the experimental dataset. 

3.2 Discussion of possible artefacts from Absolv predicted solute descriptors 

In order to rule out artefacts that might arise from errors in Absolv
8
 predicted solute 

descriptors, we conducted the fitting procedure for the pp-LFER of Eq. 9 from the summary, 

section 1.4 again – but this time we limited ourselves strictly to the solute descriptors of those 

ions, whose corresponding neutral compounds do have experimental solute descriptors (i.e. 11 

cations and 25 anions).  

In analogy to Eq. 9 in the summary, section 1.4, we took the published equation (Endo et al., 

2011) for the neutral system descriptors (c, s, a, b, v), fixed these values and fitted j
+
 and j

-
 

with the 36 remaining ions (instead of 74 ions in the summary, section 1.4) to yield the 

following Eq. I: 

log 𝐾𝑙𝑖𝑝𝑤 =  0.26(±0.08) +  0.85(±0.05)𝐸 −  0.75(±0.08)𝑆 +  0.29(±0.09)𝐴 −

 3.84(±0.10)𝐵 +  3.35(±0.09)𝑉 − 1.66(±0.12)𝐽+ + 3.92(±0.06)𝐽−;  𝑆𝐷 = 0.974,

𝑛(𝑖𝑜𝑛) = 36, 𝑅2 = 0.993         

 (I) 

Eq. 9 in the summary, section 1.4 and Eq. I are essentially identical; j
+
 and j

-
 only change 0.06 

and 0.02 units, which is within the standard error of these parameters. Therefore it seemed 

justified to take advantage of solute descriptors for ions that are derived from Absolv 

predicted values in order to have the maximum amount of descriptors for fitting the system 

parameters. 

                                                 

8
 Advanced Chemistry Development, Inc. (ACD/Labs). Absolv prediction module data sheet. 

Toronto, ON (Canada). http://www.acdlabs.com/products/percepta/predictors/absolv/ 



 

 

 

3.3 pp-LFER solute descriptors 

SI-2, Table 7. Solute descriptors of the neutral compounds that correspond to the 32 cations and 42 anions, which can be recalculated to solute descriptors of ions with 

the formulas given above (Abraham and Acree, Jr, 2010a, 2010b, 2010c). Values in bold font are taken from the ‘UFZ-LSER database’
9
 and refer to experimentally 

derived values, letters in normal font are Absolv predicted values. 

CAS Compoundname A B S E V reference 

118-92-3 anthranilic acid 0.75 0.71 1.26 1.09 1.0315 Absolv 

69-72-7 salicylic acid 0.73 0.37 0.85 0.9 0.99 Abraham, M. H., Acree, W. E., Leo, A. J., Hoekman, D. 

(2009) New J. Chem., 33, 1685-1692. 

2270-20-4 5-phenylvaleric acid 0.57 0.46 1.09 0.74 1.50 Absolv 

15687-27-1 ibuprofen 0.56 0.79 0.7 0.73 1.777 Abraham, M. H., Acree, W. E., Leo, A. J., Hoekman, D. 

(2009) New J. Chem., 33, 1685-1692. 

124-07-2 octanoic acid 0.62 0.45 0.65 0.15 1.31 Abraham, M. H. (2003) J. Environ. Monit., 5, 747-752. 

91-40-7 fenamic acid 0.65 0.70 1.58 1.60 1.64 Absolv 

15307-86-5 diclofenac 0.55 0.77 1.85 1.81 2.025 Abraham, M. H., Acree, W. E., Leo, A. J., Hoekman, D. 

(2009) New J. Chem., 33, 1685-1692. 

530-78-9 flufenamic acid 0.72 0.59 1.36 1.26 1.83 Absolv 

335-67-1 perfluorooctanoic acid 0.84 0.29 -0.34 -0.90 1.57 Absolv 

22494-42-4 diflunisal 0.70 0.44 1.50 1.55 1.63 Absolv 

94-75-7 2,4-dichlorophenoxyacetic acid 0.57 0.58 1.41 1.04 1.38 Absolv 

87848-99-5 acrivastine 0.57 1.45 2.00 2.07 2.81 Absolv 

                                                 

9
 Endo, S., Watanabe, N., Ulrich, N., Bronner, G., Goss, K.-U., UFZ-LSER database v 2.1, Leipzig, Germany, UFZ - Helmholtz Centre for 

Environmental Research. 2015 https://www.ufz.de/index.php?en=31698&contentonly=1&lserd_data[mvc]=Public/start 



 

 

 

88-75-5 2-nitrophenol 0.05 0.37 1.05 1.02 0.949 Abraham, M. H., Andonian-Haftvan, J., Whiting, G. S., 

Leo, A., Taft, R. S. (1994) J. Chem. Soc. Perkin Trans., 2, 

1777-1791. 

95-57-8 2-chlorophenol 0.32 0.31 0.88 0.85 0.898 Sprunger, L., Proctor, A., Acree, W. E., Abraham, M. H. 

(2007) J. Chromatogr. A, 1175, 162-173. 

100-02-7 4-nitrophenol 0.82 0.26 1.72 1.07 0.949 Abraham, M. H., Andonian-Haftvan, J., Whiting, G. S., 

Leo, A., Taft, R. S. (1994) J. Chem. Soc. Perkin Trans., 2, 

1777-1791. 

87-65-0 2,6-dichlorophenol 0.38 0.24 0.9 0.9 1.02 Hoover, K. R., Acree Jr, W. E., Abraham, M. H. (2005) 

Chem. Res. Toxicol., 18, 1497-1505. 

771-61-9  pentafluorophenol 0.79 0.09 0.83 0.36 0.864 Zissimos, A. M., Abraham, M. H., Du, C. M., Valko, K., 

Bevan, C., Reynolds, D., Wood, J., Tam, K. Y. (2002) J. 

Chem. Soc. Perkin Trans. 2, 2001-2010. 

573-56-8 2,6-dinitrophenol 0.17 0.48 2.04 1.22 1.124 Abraham, M. H., Du, C. M., Platts, J. A. (2000) J. Org. 

Chem., 65, 7114-7118. 

577-71-9 3,4-dinitrophenol 1.14 0.16 2.25 1.32 1.124 Abraham, M. H., Du, C. M., Platts, J. A. (2000) J. Org. 

Chem., 65, 7114-7118. 

51-28-5 2,4-dinitrophenol 0.09 0.56 1.49 1.2 1.124 Abraham, M. H., Acree, W. E., Leo, A. J., Hoekman, D. 

(2009) New J. Chem., 33, 1685-1692. 

1689-84-5 3,5-dibromo-4-hydroxy-benzonitrile 0.42 0.34 1.48 1.47 1.28 Absolv 

609-93-8 4-methyl-2,6-dinitrophenol 0.00 0.36 1.59 1.18 1.26 Absolv 

534-52-1 2-methyl-4,6-dinitrophenol 0.04 0.52 1.59 1.2 1.264 Abraham, M. H., Acree, W. E. (2010) J. Org. Chem., 75, 

3021-3026. 

591-35-5 3,5-dichlorophenol 0.77 0 1.17 1.02 1.02 Abraham, M. H., Chadha, H. S., Whiting, G. S., Mitchell, 

R. C. (1994) J. Pharm. Sci., 83, 1085-1100. 



 

 

 

106-48-9 4-chlorophenol 0.67 0.21 1.08 0.92 0.898 Abraham, M. H., Andonian-Haftvan, J., Whiting, G. S., 

Leo, A., Taft, R. S. (1994) J. Chem. Soc. Perkin Trans., 2, 

1777-1791. 

88-06-2 2,4,6-trichlorophenol 0.82 0.08 1.01 1.01 1.142 Hoover, K. R., Acree Jr, W. E., Abraham, M. H. (2005) 

Chem. Res. Toxicol., 18, 1497-1505. 

1198-55-6 tetrachlorocatechol 1.35 0.01 1.14 1.22 1.32 Absolv 

120-83-2 2,4-dichlorophenol 0.54 0.17 0.82 0.96 1.02 Abraham, M. H., Acree, W. E., Leo, A. J., Hoekman, D. 

(2009) New J. Chem., 33, 1685-1692. 

95-77-2 3,4-dichlorophenol 0.74 0 1.2 1.02 1.02 Abraham, M. H., Chadha, H. S., Whiting, G. S., Mitchell, 

R. C. (1994) J. Pharm. Sci., 83, 1085-1100. 

95-95-4 2,4,5-trichlorophenol 0.73 0.1 0.92 1.07 1.142 Hoover, K. R., Acree Jr, W. E., Abraham, M. H. (2005) 

Chem. Res. Toxicol., 18, 1497-1505. 

89365-49-1 2,4,6-tribromophenolate 0.42 0.15 1.18 1.62 1.30 Absolv 

609-19-8 3,4,5-trichlorophenol 0.99 0 0.92 1.13 1.142 Hoover, K. R., Acree Jr, W. E., Abraham, M. H. (2005) 

Chem. Res. Toxicol., 18, 1497-1505. 

13979-81-2 3,5-dibromo-4-methylphenol 0.79 0.24 1.13 1.42 1.27 Absolv 

4097-49-8 4-tert-butyl-2,6-dinitrophenol 0.00 0.41 1.54 1.16 1.69 Absolv 

88-85-7 2-s-butyl-4,6-dinitrophenol  0.17 0.35 1.95 1.25 1.687 Bronner, G., Goss, K.-U. (2010) Fluid Phase Equilibria, 

299, 207-215. 

58-90-2 2,3,4,6-tetrachlorophenol 0.61 0.07 1.04 1.17 1.26 Absolv 

935-95-5 2,3,5,6-tetrachlorophenol 0.46 0.22 0.86 1.11 1.265 Hoover, K. R., Acree Jr, W. E., Abraham, M. H. (2005) 

Chem. Res. Toxicol., 18, 1497-1505. 

1420-07-1 2-tert-butyl-4,6-dinitrophenol 0.28 0.49 1.70 1.23 1.69 Absolv 

4901-51-3 2,3,4,5-tetrachlorophenol 0.7 0.13 0.88 1.17 1.265 Hoover, K. R., Acree Jr, W. E., Abraham, M. H. (2005) 

Chem. Res. Toxicol., 18, 1497-1505. 



 

 

 

87-86-5 pentachlorophenol 0.61 0.09 0.86 1.22 1.387 Sprunger, L., Proctor, A., Acree, W. E., Abraham, M. H. 

(2007) J. Chromatogr. A, 1175, 162-173. 

608-71-9 pentabromophenol 0.64 0.59 1.02 2.19 1.65 Stenzel, A., Goss, K.-U., Endo, S. (2013) Environ. Sci. 

Technol., 47, 1399-1406. 

36894-69-6 labetalol 1.00 1.72 2.30 2.15 2.64 Absolv 

13214-66-9 4-phenylbutylamine 0.21 0.67 0.97 0.77 1.38 Absolv 

88150-42-9 amlodipine 0.36 2.19 2.26 1.65 3.02 Absolv 

83891-03-6 norfluoxetine 0.21 0.88 1.34 1.06 2.10 Absolv 

525-66-6 propranolol 0.44 1.31 1.43 1.84 2.148 Abraham, M. H., Ibrahim, A. (2007) Int. J. Pharma., 329, 

129. 

699-04-7 (p-methylbenzyl)methylamine 0.13 0.56 0.75 0.75 1.24 Absolv 

39099-13-3 (p-methylbenzyl)ethylamine 0.13 0.56 0.76 0.75 1.38 Absolv 

39190-96-0 (p-methylbenzyl)propylamine 0.13 0.57 0.76 0.75 1.52 Absolv 

16183-21-4 (p-methylbenzyl)buthylamine 0.13 0.57 0.77 0.75 1.66 Absolv 

170303-38-5 (p-methylbenzyl)pentylamine 0.13 0.57 0.77 0.75 1.80 Absolv 

215177-23-4 (p-methylbenzyl)heptylamine 0.13 0.58 0.77 0.74 1.94 Absolv 

215177-24-5 (p-methylbenzyl)heptylamine 0.13 0.58 0.78 0.74 2.08 Absolv 

51384-51-1 1-[4-(2-methoxyethyl)phenoxy]-3-

[(1-methylethyl)amino]-2-propanol 

0.29 1.52 1.22 1.10 2.26 Absolv 

29122-68-7 4-[2-hydroxy-3-[(1-

methylethyl)amino]propoxy]-

benzeneacetamide 

0.69 2 1.88 1.45 2.176 Abraham, M. H., Ibrahim, A., Acree, W. E. (2008) Eur. J. 

Med. Chem., 43, 478-485. 

54910-89-3 fluoxetine 0.1 0.93 1.3 1 2.24 Abraham, M. H., Ibrahim, A., Acree, W. E. (2008) Eur. J. 

Med. Chem., 43, 478-485. 

312753-06-3 indacaterol 1.08 1.91 2.32 2.76 3.09 Absolv 



 

 

 

89365-50-4 salmeterol 1.19 2.11 1.97 2.05 3.49 Absolv 

37517-30-9 acebutolol 0.9 2.1 2.42 1.6 2.756 Abraham, M. H., Ibrahim, A. (2007) Int. J. Pharma., 329, 

129. 

13655-52-2 alprenolol 0.1 1.25 1.03 1.25 2.159 Sprunger, L., Blake-Taylor, B. H., Wairegi, A., Acree, W. 

E., Abraham, M. H. (2007) J. Chromatogr. A, 1160, 235-

245. 

23284-25-5 bupranolol 0.29 1.30 1.09 1.16 2.18 Absolv 

36894-69-6 labetalol 1.00 1.72 2.30 2.15 2.64 Absolv 

42200-33-9 nadolol 0.83 1.90 1.56 1.68 2.49 Absolv 

6452-71-7 oxprenolol 0.17 1.62 1.49 1.31 2.217 Abraham, M. H., Ibrahim, A. (2007) Int. J. Pharma., 329, 

129. 

13523-86-9 pindolol 0.3 1.48 1.65 1.7 2.009 Abraham, M. H., Ibrahim, A. (2007) Int. J. Pharma., 329, 

129. 

2933-94-0 toliprolol 0.29 1.30 1.06 1.06 1.92 Absolv 

137-58-6 lidocaine 0.06 1.24 1.47 1.11 2.059 Abraham, M. H., Ibrahim, A. (2007) Int. J. Pharma., 329, 

129. 

94-24-6 tetracaine 0.13 1.25 1.45 1.02 2.26 Absolv 

59-46-1 procaine 0.23 1.47 1.26 1.14 1.977 Abraham, M. H., Ibrahim, A., Zhao, Y., Acree, W. E. 

(2006) J. Pharma. Sci., 95, 2091-2100. 

130-95-0 (R)-(6-Methoxyquinolin-4-

yl)((2S,4S,8R)-8-vinylquinuclidin-2-

yl)methanol 

0.37 1.97 1.23 2.47 2.551 Zissimos, A. M., Abraham, M. H., Barker, M. C., Box, K., 

Tam, Y. K. (2002) J. Chem. Soc. Perkin Trans. 2, 470-

477. 

83881-51-0 ceterizine 0.57 1.76 2.24 2.05 2.94 Absolv 

50-53-3 chlorpromazine 0 1.01 1.57 2.2 2.406 Abraham, M. H., Acree, W. E. (2004) New J. Chem., 28, 

1538-1543. 



 

 

 

68-88-2 hydroxyzine 0.1 1.89 2.21 2 2.923 Abraham, M. H., Ibrahim, A., Acree, W. E. (2008) Eur. J. 

Med. Chem., 43, 478-485. 

20574-50-9 morantel 0 0.76 0.76 1.25 1.7733 Absolv 

 

SI-2, Table 8. Solute descriptors of 32 cationic and 42 anionic compounds. The values are based on the values in the previous Table 7 and have been recalculated using 

the formulas given above (Abraham and Acree, Jr, 2010a, 2010b, 2010c). 

Compoundname A (ion) B (ion) S (ion) E (ion) V (ion) J
+
 (ion)  J

-
 (ion) class 

anthranilic acid anion 0.06 3.08 3.72 1.24 1.01 0.00 2.20 carboxylic acid 

salicylic acid anion 0.08 2.74 3.19 1.05 0.97 0.00 2.21 carboxylic acid 

5-phenylvaleric acid anion 0.04 2.96 3.47 0.89 1.47 0.00 2.30 carboxylic acid 

ibuprofen anion 0.08 3.53 3.27 0.88 1.76 0.00 2.47 carboxylic acid 

octanoic acid anion 0.07 2.98 2.49 0.30 1.29 0.00 2.16 carboxylic acid 

fenamic acid anion 0.06 3.19 4.73 1.75 1.62 0.00 2.49 carboxylic acid 

diclofenac anion 0.03 3.35 5.31 1.96 2.00 0.00 2.62 carboxylic acid 

flufenamic acid anion 0.11 3.17 4.32 1.41 1.81 0.00 2.51 carboxylic acid 

perfluorooctanoic acid anion 0.23 3.07 0.84 -0.75 1.55 0.00 2.17 carboxylic acid 

diflunisal anion 0.08 2.89 4.61 1.70 1.61 0.00 2.49 carboxylic acid 

2,4-dichlorophenoxyacetic acid anion 0.02 3.00 3.96 1.19 1.35 0.00 2.28 carboxylic acid 

acrivastine anion 0.09 4.39 6.03 2.22 2.79 0.00 2.94 carboxylic acid 

2-nitrophenol anion 0.00 2.12 2.97 1.17 0.93 0.00 1.75 phenol 



 

 

 

2-chlorophenol anion 0.00 2.18 2.76 1.00 0.88 0.00 1.74 phenol 

4-nitrophenol anion 0.00 2.18 4.90 1.22 0.93 0.00 2.21 phenol 

2,6-dichlorophenol anion 0.00 2.27 4.12 1.05 1.00 0.00 2.28 phenol 

pentafluorophenol anion 0.00 1.97 4.34 0.51 0.84 0.00 2.00 phenol 

2,6-dinitrophenol anion 0.00 1.85 4.97 1.37 1.10 0.00 1.75 phenol 

3,4-dinitrophenol anion 0.00 2.29 6.94 1.47 1.10 0.00 2.95 phenol 

2,4-dinitrophenol anion 0.00 2.21 6.28 1.35 1.10 0.00 2.34 phenol 

3,5-dibromo-4-hydroxy-benzonitrile anion 0.00 2.63 8.06 1.62 1.26 0.00 3.58 phenol 

4-methyl-2,6-dinitrophenol anion 0.00 1.94 4.28 1.33 1.24 0.00 1.95 phenol 

2-methyl-4,6-dinitrophenol anion 0.00 2.07 5.23 1.35 1.24 0.00 2.02 phenol 

3,5-dichlorophenol anion 0.00 2.32 3.72 1.17 1.00 0.00 2.56 phenol 

4-chlorophenol anion 0.00 2.29 3.21 1.07 0.88 0.00 2.03 phenol 

2,4,6-trichlorophenol anion 0.00 2.56 6.46 1.16 1.12 0.00 3.32 phenol 

tetrachlorocatechol anion 0.00 3.05 9.66 1.37 1.30 0.00 4.61 phenol 



 

 

 

2,4-dichlorophenol anion 0.00 2.45 4.44 1.11 1.00 0.00 2.63 phenol 

3,4-dichlorophenol anion 0.00 2.27 3.22 1.17 1.00 0.00 2.39 phenol 

2,4,5-trichlorophenol anion 0.00 2.62 6.01 1.22 1.12 0.00 3.29 phenol 

2,4,6-tribromophenolate anion 0.00 2.84 6.53 1.77 1.28 0.00 3.82 phenol 

3,4,5-trichlorophenol anion 0.00 2.80 6.54 1.28 1.12 0.00 3.71 phenol 

3,5-dibromo-4-methylphenol anion 0.00 2.94 7.04 1.57 1.24 0.00 3.69 phenol 

4-tert-butyl-2,6-dinitrophenol anion 0.00 1.98 4.56 1.31 1.67 0.00 1.97 phenol 

2-s-butyl-4,6-dinitrophenol  anion 0.00 1.85 3.98 1.40 1.67 0.00 1.76 phenol 

2,3,4,6-tetrachlorophenol anion 0.00 2.58 6.53 1.32 1.24 0.00 3.49 phenol 

2,3,5,6-tetrachlorophenol anion 0.00 2.62 6.96 1.26 1.24 0.00 3.41 phenol 

2-tert-butyl-4,6-dinitrophenol anion 0.00 2.17 5.79 1.38 1.67 0.00 2.24 phenol 

2,3,4,5-tetrachlorophenol anion 0.00 2.77 7.05 1.32 1.24 0.00 3.68 phenol 

pentachlorophenol anion 0.00 2.79 7.89 1.37 1.37 0.00 4.03 phenol 

pentabromophenol anion 0.00 4.05 14.80 2.34 1.63 0.00 6.40 phenol 

labetalol anion 0.00 3.90 16.59 2.30 2.62 0.00 4.44 phenol 
         

4-phenylbutylamine cation 2.10 0.00 2.54 0.62 1.40 0.81 0.00 primary amine 

amlodipine cation 3.70 0.00 6.83 1.50 3.05 2.38 0.00 primary amine 

norfluoxetine cation 2.54 0.00 3.23 0.91 2.12 1.05 0.00 primary amine 



 

 

 

propranolol cation 2.07 0.00 4.31 1.69 2.17 2.43 0.00 secondary amine 

(p-methylbenzyl)methylamine cation 1.45 0.00 2.17 0.60 1.26 1.03 0.00 secondary amine 

(p-methylbenzyl)ethylamine cation 1.46 0.00 2.18 0.60 1.40 1.03 0.00 secondary amine 

(p-methylbenzyl)propylamine cation 1.46 0.00 2.20 0.60 1.54 1.04 0.00 secondary amine 

(p-methylbenzyl)buthylamine cation 1.48 0.00 2.21 0.60 1.68 1.03 0.00 secondary amine 

(p-methylbenzyl)pentylamine cation 1.48 0.00 2.21 0.60 1.82 1.03 0.00 secondary amine 

(p-methylbenzyl)heptylamine cation 1.48 0.00 2.23 0.59 1.96 1.03 0.00 secondary amine 

(p-methylbenzyl)heptylamine cation 1.50 0.00 2.23 0.59 2.11 1.02 0.00 secondary amine 

1-[4-(2-methoxyethyl)phenoxy]-3-[(1-

methylethyl)amino]-2-propanol cation 

2.02 0.00 4.72 0.95 2.28 2.09 0.00 secondary amine 

4-[2-hydroxy-3-[(1-

methylethyl)amino]propoxy]-

benzeneacetamide cation 

2.88 0.00 6.19 1.30 2.20 2.46 0.00 secondary amine 

fluoxetine cation 2.18 0.00 3.33 0.85 2.26 1.26 0.00 secondary amine 

indacaterol cation 3.07 0.00 6.18 2.61 3.11 3.32 0.00 secondary amine 

salmeterol cation 2.80 0.00 6.50 1.90 3.51 3.12 0.00 secondary amine 

acebutolol cation 3.62 0.00 6.69 1.45 2.78 2.30 0.00 secondary amine 

alprenolol cation 1.69 0.00 3.97 1.10 2.18 2.09 0.00 secondary amine 

bupranolol cation 1.81 0.00 4.12 1.01 2.20 2.01 0.00 secondary amine 

labetalol cation 3.25 0.00 5.71 2.00 2.66 2.51 0.00 secondary amine 

nadolol cation 2.32 0.00 5.80 1.53 2.51 2.83 0.00 secondary amine 



 

 

 

oxprenolol cation 2.35 0.00 5.09 1.16 2.24 2.20 0.00 secondary amine 

pindolol cation 2.45 0.00 4.82 1.55 2.03 2.31 0.00 secondary amine 

toliprolol cation 1.80 0.00 4.11 0.91 1.94 1.93 0.00 secondary amine 

lidocaine cation 2.06 0.00 4.16 0.96 2.08 1.78 0.00 tertiary amine 

tetracaine cation 2.06 0.00 4.17 0.87 2.28 1.72 0.00 tertiary amine 

procaine cation 1.74 0.00 4.61 0.99 2.00 2.24 0.00 tertiary amine 

(R)-(6-Methoxyquinolin-4-

yl)((2S,4S,8R)-8-vinylquinuclidin-2-

yl)methanol cation 

1.23 0.00 5.81 2.32 2.57 4.16 0.00 tertiary amine 

ceterizine cation 2.87 0.00 5.78 1.90 2.96 2.70 0.00 tertiary amine 

chlorpromazine cation 1.83 0.00 3.65 2.05 2.43 2.53 0.00 tertiary amine 

hydroxyzine cation 2.85 0.00 6.08 1.85 2.94 2.82 0.00 tertiary amine 

morantel cation 0.96 0.00 2.66 1.10 1.79 1.94 0.00 tertiary amine 
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4 COSMOmic 

4.1 Modelling details 

As outlined in detail in (Endo et al., 2011) for neutral compounds, the main factor influencing 

Klipw is the membrane fluidity. Liposomes below the main phase transition temperature are in 

a ‘gel phase’ state with low fluidity and exhibit roughly 20 to 100 times lower values of Klipw 

than liposomes in the ‘liquid-crystalline’ phase. Because the ‘liquid-crystalline’ phase is 

considered to be the natural condition, care has been taken in this study that only experimental 

data above the main phase transition temperature have been used. 

In contrast, Klipw values measured with different lipids above the main phase transition 

temperature exhibit mostly only up to +/- 0.2 log units variations for the different compounds 

(Endo et al., 2011). These small differences are superimposed by differences in the 

experimental method and interlaboratory differences (which might very well be higher than 

0.2 log units, see SI, section 1) and as in agreement with these findings, these differences 

cannot be distinguished by using either DMPC or POPC within COSMOmic as shown 

previously (Bittermann et al., 2014). But also are these differences superimposed by 

differences in the experimental method and interlaboratory differences (which might very 

well be higher than 0.2 log units, see SI, section 1). Unfortunately there is only a very limited 

amount of Klipw values for organic ions measured with different lipid types – but the data 

listed in the SI (section 1, marked in grey) give the same picture as (Endo et al., 2011) 

reported for neutral compounds. 

Therefore, a DMPC membrane can - to the best of our knowledge - considered to be a 

reasonable model for an ‘average’ phospholipid-membrane above the main phase transition 

temperature. Using a POPC membrane instead would have yielded equally good results, 

requiring the same effort, as shown previously (Bittermann et al., 2014). 

Similarly, the temperature plays only a minor role for Klipw as long as it does not go below the 

main phase transition temperature – artefacts from different experimental methods and 

different laboratories are a much higher concern. While the empirical correlation approach 

with log Kow and the pp-LFER extension for ionic compounds do not account for temperature 

differences, the temperature for COSMOmic calculations is set to 25 °C (despite a real DMPC 

membrane being in the ‘gel phase’ state at 25 °C). COSMOmic is parametrized only for the 

liquid crystalline state and does not account for a gel-phase: the 3 dimensional structure of the 

membrane which is needed for the calculation in COSMOmic is derived from an MD-
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simulation. This membrane is in the liquid crystalline state (Jakobtorweihen et al., 2013) – 

after virtually slicing the membrane and putting it into the COSMO-RS based part of the 

calculation, no changes in the 3 dimensional structure and hence the fluidity of the membrane 

can be considered (Bittermann et al., 2014; Klamt et al., 2008). 

In theory, COSMOmic can also describe different kinds of phospholipids – but up to now 

only the membrane potentials of DMPC and POPC have been parametrized (based on the 

same experimental Klipw values and yielding equal predictive power!) (Bittermann et al., 

2014). In the authors opinion, there is not enough experimental data for the different kinds of 

phospholipid membranes (e.g. membranes containing high amounts of cholesterol) to re-

parametrize COSMOmic. Looking at the data gathered in this work, DMPC and POPC (or 

egg-PC) membranes cannot be distinguished. 

4.2 Treatment of cetirizine 

The cosmo files have been derived as drafted in the summary, section 1.4 and outlined in 

greater detail above. For the ceterizine cation as well as for the ceterizine zwitterion there are 

two equivalent structures possible, as shown in SI-2, Fig. 7. For the COSMOmic calculation, 

cosmo files of both possible structures have been calculated and have been treated as different 

conformers of the same species. 

 

SI-2, Figure 7. Two equivalent structures for the ceterizine zwitterion which have been treated as different 

conformers in the COSMOmic calculation. 



 

 

 

 

 

4.3 Calculated data using COSMOmic 

SI-2, Table 9. Calculated log Klipw values of cations, anions and zwitterions using a dmpc membrane (Jakobtorweihen et al., 2013) with COSMOmic (Bittermann et al., 

2014; Klamt et al., 2008). 

CAS Compoundname abbreviation class detail log Klipw 

(exp) 

log Klipw 

(calcd) 

Charge 

18198-39-

5 

tetraphenylphosphonium TPP other 1.19 
3.10 

K+ 

95-64-7 3,4-dimethylaniline 34DMA primary amine 1.99 2.45 K+ 

88-05-1 2,4,6-trimethylaniline 246TMA primary amine 2.12 2.17 K+ 

13214-66-

9 

4-phenylbutylamine 4-PhenButA primary amine 2.12 
3.01 

K+ 

88150-42-

9 

amlodipine Amlodip primary amine 3.75 
4.41 

K+ 

83891-03-

6 

norfluoxetine Norfluox primary amine 3.84 
4.86 

K+ 

118-92-3 anthranilic_acid AA_cation primary amine 1.97 2.04 K+ 

525-66-6 propranolol Prop secondary amine 2.74 3.11 K+ 

699-04-7 (p-methylbenzyl)methylamine MBMetA secondary amine 2.54 1.69 K+ 

39099-13-

3 

(p-methylbenzyl)ethylamine MBEthA secondary amine 2.26 
1.66 

K+ 

39190-96- (p-methylbenzyl)propylamine MBPropA secondary amine 2.11 1.86 K+ 



 

 

 

 

 

0 

16183-21-

4 

(p-methylbenzyl)buthylamine MBButA secondary amine 1.54 
2.17 

K+ 

170303-

38-5 

(p-methylbenzyl)pentylamine MBPentA secondary amine 1.84 
2.55 

K+ 

215177-

23-4 

(p-methylbenzyl)hexylamine MBHexA secondary amine 2.43 
2.96 

K+ 

215177-

24-5 

(p-methylbenzyl)heptylamine MBHepA secondary amine 2.71 
3.16 

K+ 

51384-51-

1 

1-[4-(2-methoxyethyl)phenoxy]-3-[(1-

methylethyl)amino]-2-propanol 

Metro secondary amine 1.28 
2.62 

K+ 

29122-68-

7 

4-[2-hydroxy-3-[(1-

methylethyl)amino]propoxy]-

benzeneacetamide 

Aten secondary amine 1.01 

0.78 

K+ 

54910-89-

3 

fluoxetine Fluox secondary amine 4.03 
4.09 

K+ 

312753-

06-3 

indacaterol Indac secondary amine 3.56 
4.61 

K+ 

89365-50-

4 

salmeterol Salmet secondary amine 3.67 
6.10 

K+ 

37517-30- acebutolol ABL secondary amine 0.66 2.00 K+ 



 

 

 

 

 

9 

13655-52-

2 

alprenolol APL secondary amine 2.17 
3.03 

K+ 

23284-25-

5 

bupranolol BPL secondary amine 2.49 
2.71 

K+ 

36894-69-

6 

labetalol Lab_c secondary amine 2.32 
3.31 

K+ 

42200-33-

9 

nadolol NDL secondary amine 0.95 
1.80 

K+ 

6452-71-7 oxprenolol OPL secondary amine 1.51 2.21 K+ 

13523-86-

9 

pindolol PDL secondary amine 1.40 
2.35 

K+ 

2933-94-0 toliprolol TPL secondary amine 1.49 2.62 K+ 

137-58-6 lidocaine Lido tertiary amine 1.07 1.59 K+ 

94-24-6 tetracaine Tetrac tertiary amine 2.11 2.80 K+ 

59-46-1 procaine Proc tertiary amine 0.73 1.01 K+ 

130-95-0 (R)-(6-Methoxyquinolin-4-

yl)((2S,4S,8R)-8-vinylquinuclidin-2-

yl)methanol 

Quinine tertiary amine 2.19 

2.00 

K+ 

83881-51-

0 

ceterizine Cet_c tertiary amine 3.20 
3.94 

K+ 



 

 

 

 

 

50-53-3 chlorpromazine CLP tertiary amine 3.40 3.20 K+ 

68-88-2 hydroxyzine Hyd tertiary amine 2.80 3.01 K+ 

20574-50-

9 

morantel Mor tertiary amine 2.00 
1.21 

K+ 

1689-84-5 3,5-dibromo-4-hydroxy-benzonitrile Bromox bromophenol 2.10 2.72 A- 

89365-49-

1 

2,4,6-tribromophenolate 246TriBP bromophenol 3.07 
3.48 

A- 

13979-81-

2 

3,5-dibromo-4-methylphenol 35DBC bromophenol 3.18 
3.20 

A- 

608-71-9 pentabromophenol PBrP bromophenol 5.02 4.09 A- 

118-92-3 anthranilic acid AA_anion carboxylic acid 0.31 1.77 A- 

69-72-7 salicylic acid SA carboxylic acid 0.97 2.07 A- 

2270-20-4 5-phenylvaleric acid 5-PA carboxylic acid 1.66 1.88 A- 

15687-27-

1 

ibuprofen Ibu carboxylic acid 1.81 
2.29 

A- 

124-07-2 octanoic acid Oct carboxylic acid 0.52 1.77 A- 

91-40-7 fenamic acid Fen carboxylic acid 2.28 2.80 A- 

15307-86-

5 

diclofenac Dic carboxylic acid 2.64 
2.99 

A- 

530-78-9 flufenamic acid Flu carboxylic acid 3.61 3.05 A- 

335-67-1 perfluorooctanoic acid PFOA carboxylic acid 2.34 2.88 A- 



 

 

 

 

 

22494-42-

4 

diflunisal Dif carboxylic acid 2.75 
2.86 

A- 

94-75-7 2,4-dichlorophenoxyacetic acid 2,4-D carboxylic acid 1.70 2.04 A- 

87848-99-

5 

acrivastine Acr_a carboxylic acid 2.60 
3.31 

A- 

95-57-8 2-chlorophenol 2CP chlorophenol 0.92 2.44 A- 

87-65-0 2,6-dichlorophenol 26DCP chlorophenol 1.41 2.85 A- 

591-35-5 3,5-dichlorophenol 35DCP chlorophenol 2.47 2.98 A- 

106-48-9 4-chlorophenol 4CP chlorophenol 2.51 2.47 A- 

88-06-2 2,4,6-trichlorophenol 246TriCP chlorophenol 2.52 3.16 A- 

1198-55-6 tetrachlorocatechol TeCC chlorophenol 2.63 3.65 A- 

120-83-2 2,4-dichlorophenol 24DCP chlorophenol 2.69 2.85 A- 

95-77-2 3,4-dichlorophenol 34DCP chlorophenol 2.85 2.86 A- 

95-95-4 2,4,5-trichlorophenol 245TriCP chlorophenol 2.88 3.17 A- 

609-19-8 3,4,5-trichlorophenol 345TriCP chlorophenol 3.16 3.16 A- 

58-90-2 2,3,4,6-tetrachlorophenol 2346TeCP chlorophenol 3.46 3.41 A- 

935-95-5 2,3,5,6-tetrachlorophenol 2356TeCP chlorophenol 3.49 3.46 A- 

4901-51-3 2,3,4,5-tetrachlorophenol 2345TeCP chlorophenol 3.69 3.39 A- 

87-86-5 pentachlorophenol PCP chlorophenol 4.31 3.62 A- 

327-19-5 5-nitro-2-trifluoromethylbenzimidazole 5-NB N-acidic 1.81 3.12 A- 

2338-25-2 5,6-dichloro-2-(trifluoromethyl)- DTFB N-acidic 3.05 3.48 A- 



 

 

 

 

 

benzimidazole 

2338-29-6 4,5,6,7-tetrachloro-2-(trifluoromethyl)-

1H-benzimidazole 

TTFB N-acidic 4.35 
4.32 

A- 

555-60-2 carbonyl cyanide m-

chlorophenylhydrazone 

CCCP N-acidic 4.05 
3.40 

A- 

370-86-5 carbonyl cyanide p-

methoxyphenylhydrazone 

FCCP N-acidic 4.22 
3.64 

A- 

16128-96-

4 

5-chloro-3-tert-butyl-2'-chloro-4'-

nitrosalicylanilide 

S-13 N-acidic 5.05 
6.63 

A- 

88-75-5 2-nitrophenol 2NP nitrophenol 0.69 2.03 A- 

100-02-7 4-nitrophenol 4NP nitrophenol 0.95 1.96 A- 

573-56-8 2,6-dinitrophenol 26DNP nitrophenol 1.86 2.38 A- 

577-71-9 3,4-dinitrophenol 34DNP nitrophenol 1.90 2.71 A- 

51-28-5 2,4-dinitrophenol 24DNP nitrophenol 1.90 2.45 A- 

609-93-8 4-methyl-2,6-dinitrophenol DNPC nitrophenol 2.26 2.38 A- 

534-52-1 2-methyl-4,6-dinitrophenol DNOC nitrophenol 2.35 2.58 A- 

4097-49-8 4-tert-butyl-2,6-dinitrophenol Dino4terb nitrophenol 3.23 2.74 A- 

88-85-7 2-s-butyl-4,6-dinitrophenol  Dinoseb nitrophenol 3.35 2.94 A- 

1420-07-1 2-tert-butyl-4,6-dinitrophenol Dino2terb nitrophenol 3.59 3.05 A- 

81-81-2 warfarin Warf other anion 1.40 2.69 A- 

4358-26-3 tetraphenylborat TPB other anion 5.20 7.05 A- 



 

 

 

 

 

771-61-9  pentafluorophenol PFP other anion 1.74 2.89 A- 

36894-69-

6 

labetalol Lab_a other anion 1.84 
2.86 

A- 

148-24-3 8-hydroxyquinoline Oxine quinoline 1.47 2.13 A- 

130-16-5 5-chloro-8-hydroxyquinoline Chlorox quinoline 1.91 2.53 A- 

773-76-2 5,7-dichloro-8-hydroxyquinoline Dichlorox quinoline 2.47 2.84 A- 

521-74-4 5,7-dibromo-8-hydroxyquinoline Dibromox quinoline 3.03 3.06 A- 

6149-03-7 4-octylbenzene-1-sulfonate OBS sulfonate 3.63 3.54 A- 

1763-23-1 perfluorooctane-1-sulfonic acid PFOS sulfonate 3.15 3.53 A- 

83881-51-

0 

ceterizine Cet_zw NA 2.3 
1.19 

zwitter 

87848-99-

5 

acrivastine Acr_zw NA 1.5 
2.15 

zwitter 
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Supporting Information 3: Assessing the toxicity of ionic liquids – 1 

Application of the Critical Membrane Concentration approach 2 

1 Toxicity data for neutral compounds – sorted out data 3 

SI-3, Table 1: Seven chemicals that have been sorted out of the original dataset (Kipka and Di Toro, 2009) 4 

because their water solubility is below the respective reported LC50 [mmol/L]. 5 

name 
water solubility exp (PhysProp 

database) [mmol/L] 
LC50 [mmol/L] 

1,2,4,5-tetrachlorobenzene 2.76E-03 2.80E-03 

1-methylphenanthrene 1.40E-03 4.84E-03 

decahydronaphthalene 6.43E-03 1.08E-02 

heptane 3.39E-02 2.45E+00 

hexachlorobenzene 2.18E-05 1.35E-04 

propylcyclopentane 1.82E-02 2.78E-02 

tert-butylbenzene 2.20E-01 4.57E-01 

   

Experimental data on water solubility were collected from the PhysProp database using 6 

EPISuite
10

 in the smiles batch mode. Experimental values for water solubility were available 7 

for 291 chemicals; if more than one experimental value was given in the database, the 8 

arithmetic mean was calculated. For the 70 chemicals that were not included in the PhysProp 9 

database, water solubility was predicted with EPISuite for the sake of completeness. 10 

However, it turned out that experimental water solubility values were available for all of the 11 

above listed chemicals (SI-3, Table 1) that were excluded from the toxicity dataset for neutral 12 

chemicals because the reported experimental LC50’s exceeded the water solubility. 13 

 14 

                                                 

10
 U.S. EPA, EPISuite Exposure Assessment Tools and Models, US Environmental 

Protection Agency, 2009, https://www.epa.gov/. 
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SI-3, Table 2: 23 acidic chemicals that have been sorted out of the original dataset (Kipka and Di Toro, 15 

2009) because their pKa is smaller than 9. The pKa predictions have been done with JChem
11

. 16 

IUPAC 
pKa 

(Marvin/JChem) 

2,4,6-trichlorophenol 5.99 

2,4-dichlorophenol 7.44 

2-chlorophenol 7.97 

pentachlorophenol 4.98 

2-nitrophenol 6.63 

4-chlorophenol 8.96 

4-nitrophenol 7.07 

2,3,4-trichlorophenol 6.95 

2,3-dichlorophenol 7.36 

2,4,5-trichlorophenol 6.83 

2,5-dichlorophenol 7.23 

2,6-dichlorophenol 6.48 

3,4-dichlorophenol 8.36 

3,5-dichlorophenol 8.06 

3-chlorophenol 8.79 

3-nitrophenol 7.89 

1,1,1,3,3,3-hexafluoropropan-2-ol 7.97 

2-hydroxybenzamide 8.21 

2,3,4,5-tetrachlorophenol 6.33 

2,3,5,6-tetrachlorophenol 5.25 

2,3,5-trichlorophenol 6.62 

2,3,6-trichlorophenol 5.86 

3,4,5-trichlorophenol 7.75 

 17 

                                                 

11
 JChem for Excel, version 15.10.2600.341, Copyright 2008-2015 ChemAxon Ltd. 

https://www.chemaxon.com/. 
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SI-3, Table 3: 5 basic chemicals that have been sorted out of the original dataset (Kipka and Di Toro, 2009) 18 

because the pKa values of the corresponding protonated acids are larger than 5. The pKa predictions 19 

have been done with JChem
12

. 20 

IUPAC 
pKa of corresponding protonated acid 

(Marvin/JChem) 

N,N-dimethylaniline 5.02 

pyridine 5.12 

N,N-diethylaniline 5.86 

2-ethylpyridine 5.64 

4-(hexyloxy)aniline 5.10 

 21 

As a side note it is worth to mention that the original data compilation (Kipka and Di Toro, 22 

2009) has some spelling errors in the chemical names and that in some cases different names 23 

have been used for the exact same chemical, so that a coherent re-naming of the dataset was 24 

necessary before a correct summary of the data was possible. Simply checking for 25 

unambiguous chemical names in the original list yields 399 unambiguous names – but they 26 

only represent 368 different chemicals. 27 

                                                 

12
 JChem for Excel, version 15.10.2600.341, Copyright 2008-2015 ChemAxon Ltd. 

https://www.chemaxon.com/. 
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2 Regression analyses of data from (Vaes et al., 1998) 28 

 29 

SI-3, Figure 1: A) log LC50 against log Kmem/w for 19 neutral chemicals with regression line; data taken 30 

from (Vaes et al., 1998). The regression analysis was made with Origin 2015. B) Tukey boxplot of the 31 

resulting membrane concentration calculated based on Eq. 11 of the summary, section 1.5 (the bottom 32 

and top of the box represent the first and third quartiles, the heavy line inside box represent the median; 33 

whiskers set at lowest/highest data point still within 1.5 interquartile range of the lower/upper quartile). 34 

The analysis was done with R version 2.14.2. 35 

The slope of -0.82 for the data of (Vaes et al., 1998) (19 neutral chemicals) is close to the 36 

slope of -0.92 from the re-analyzed data set with 1687 LC50 for 361 neutral organic 37 

chemicals (Kipka and Di Toro, 2009), but has never been discussed in the original 38 

publication of (Vaes et al., 1998). The geometrical mean of the resulting toxic membrane 39 

concentrations (calculated according to Eq. 11 in the summary, section 1.5) is 94 mmol/kg.  40 
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3 Comparison of pp-LFERs for logKmem/w and logTLM 41 

log 𝐾𝑚𝑒𝑚/𝑤 =  0.26 +  0.85𝐸 −  0.75𝑆 +  0.29𝐴 −  3.84𝐵 +  3.35𝑉;  𝑆𝐷 = 0.279,42 

𝑛(𝑛𝑒𝑢𝑡𝑟𝑎𝑙) = 131, 𝑅2 = 0.979      (SI-3, Eq. 1) 43 

𝑙𝑜𝑔 𝐾𝑇𝐿𝑀 =  −0.44 +  0.51𝐸 +  0.71𝑆 +  0.92𝐴 −  4.40𝐵 +  3.14𝑉;  𝑛(𝑛𝑒𝑢𝑡𝑟𝑎𝑙) = 1687,44 

𝑅2 𝑎𝑛𝑑 𝑆𝐷 𝑛𝑜𝑡 𝑔𝑖𝑣𝑒𝑛       (SI-3, Eq. 2) 45 

pp-LFER SI-3, Eq.1  for log Kmem/w is from (Endo et al., 2011), while SI-3, Eq.2 is published 46 

in (Kipka and Di Toro, 2009) and describes the partitioning to the ‘target lipid’ held 47 

responsible for toxic effects. Both equations are very similar because the membrane is the 48 

target lipid of narcotic toxicity. 49 

4 ‘Baseline toxicity-QSAR’ based on 𝒄𝒎𝒆𝒎
𝒕𝒐𝒙  50 

Despite the variance shown in the summary, section 1.5, Fig. 11, we can use the determined 51 

geometric mean toxic membrane concentration of 105 mmol/kg(lipid) and the Kmem/w values 52 

predicted with pp-LFER in order to test the predictive capability of the baseline toxicity 53 

concept for the different organisms. For that reason we use our first summary of LC50 values 54 

differentiating between chemicals and organisms as described in the summary, section 1.5 55 

(i.e., 1072 organism- and chemical-specific LC50 values). Calculating the LC50 values using 56 

SI-3, Eq. 1 yields a satisfyingly predictive model with R²=0.79, RMSE=0.62 (SI-3, Fig. 2). It 57 

has to be kept in mind, though, that the same data (summarized based only on the different 58 

chemicals) has also been used to calibrate this rather simple ‘baseline toxicity-QSAR’. 59 
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 60 

SI-3, Figure 2: Prediction of 1072 organism- and chemical-specific LC50 values with geometric mean 61 

toxic membrane concentration of 105 mmol/kg(lipid) and summary, section 1.5, Eq. 12. The regression 62 

analysis was made with Origin 2015. 63 

The statistics of the ‘baseline toxicity-QSAR’ shown in SI-3, Fig. 2 varies for different 64 

organisms. R² goes from 0.48 (Chlamydomonas reinhardtii; n = 10) to 0.99 (Alburnus 65 

alburnus; n = 7 and Leptochirus plumulosus; n = 4), while the RMSE varies from 1.09 66 

(Chlamydomonas reinhardtii; n = 10) to 0.09 (Leptochirus plumulosus; n = 4) (see SI-3, 67 

Table 4 for the detailed organism-specific analysis).  68 
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SI-3, Table 4: Organism-specific analysis of the ‘narcosis-QSAR’:  R², RMSE, number of different 69 

chemicals, slope and intercept for the 42 different organisms. 70 

organism R² RMSE 
number of 

chemicals 
slope  intercept 

Leptochirus plumulosus 0.99 0.095 4 0.90 -0.27 

Neanthes arenaceodentata 0.81 0.698 4 0.57 -0.56 

Portunus pelagicus 0.83 0.746 4 0.62 -1.47 

Aedes aegypti 0.84 0.728 5 1.15 0.53 

Ambystoma mexicanum 0.90 0.710 5 1.30 0.46 

Culex pipiens 0.88 0.677 5 1.26 0.41 

Daphnia cucullata 0.86 0.684 5 1.12 0.52 

Hydra oligactis 0.83 0.721 5 1.25 0.41 

Rana catesbeiana 0.95 0.822 5 1.48 0.44 

Jordanella floridae 0.78 0.464 6 0.93 -0.43 

Nitocra spinipes 0.97 0.745 6 0.88 0.81 

Orconectes immunis 0.93 0.823 6 1.40 0.52 

Xenopus laevis 0.96 0.621 6 1.39 0.36 

Alburnus alburnus 0.99 0.732 7 1.24 0.55 

lctalurus punctatus 0.95 0.623 7 1.15 0.42 

Menidia beryllina 0.93 0.645 7 0.77 0.23 

Rhepoxyinus abronius 0.94 0.311 7 1.29 0.75 

Gambusia affinis 0.94 0.775 8 1.42 0.37 

Oithona davisae 0.96 0.456 8 0.86 0.05 

Palaemonetes pugio 0.97 0.296 8 0.77 -0.41 

Ankistrodesmus falcatus 0.94 0.491 9 0.97 0.41 

Tanytarsus dissimilis 0.95 0.531 9 1.27 0.43 

Chlamydomonas reinhardtii 0.48 1.085 10 1.93 -0.55 

Tetrahymena elliotti 0.77 0.693 10 1.06 0.69 

Danio rerio 0.68 0.439 16 1.12 0.19 

Daphnia pulex 0.96 0.406 16 1.08 0.34 

Lymnaea stagnalis 0.86 0.424 16 1.13 0.04 

Selenastrum capricornutum 0.67 0.471 16 1.05 -0.29 

Cyprinodon variegatus 0.82 0.321 18 0.86 -0.14 

Mysidopsis bahia 0.89 0.517 19 1.06 -0.26 
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Scenedemus subspicatus 0.71 0.710 23 1.20 0.67 

Chlamydomonas angulosa 0.94 0.610 28 1.21 0.82 

Oncorhynchus mykiss 0.91 0.564 28 1.11 0.19 

Artemia salina 0.84 0.400 33 0.97 0.22 

Chlorella vulgaris 0.93 0.805 33 1.18 0.96 

Leucisus idus melanotus 0.55 0.703 58 0.96 0.28 

Oryzias latipes 0.70 0.662 58 0.89 0.04 

Daphnia magna 0.89 0.456 59 1.07 0.25 

Carassius auratus 0.53 0.821 62 0.92 -0.07 

Lepomis macrochirus 0.84 0.569 69 1.03 0.11 

Poecilia reticulata 0.77 0.576 148 1.03 0.00 

Pimephales promelas 0.75 0.611 216 0.92 -0.06 

total 0.79 0.62 1072 1.01 0.14 
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 71 

SI-3, Figure 3: Organism-specific analysis of the ‘narcosis-QSAR’ based on the narcotic membrane 72 

concentration of 104.8 mmol/kg. A regression line is drawn for each organism according to the number n 73 

of different chemicals per organism (dotted grey for n < 20, dashed black for n > 20 and thick red for all 74 

values combined). 75 

  76 
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5  Toxicity of ILs  77 

SI-3, Table 5: Statistics for toxic membrane concentrations for ILs for different organisms calculated 78 

with Eq. 13 of the summary, section 1.5. 79 

organism 

median toxic 

membrane 

concentration 

geometric mean 

toxic membrane 

concentration 

standard deviation of the 

log-normal distribution of 

toxic membrane 

concentrations 

A. fischeri 8.6 22.8 1-563 

E. coli 1100.3 1431.6 334-6143 

P. subcapitata  8.2 1.45 0.02-89 

S. vacuolatus 2.8 1.19 0.01-99 

IPC-81 48.6 109.2 2-4984 

HeLa 187.0 185.6 23-1503 

MCF7 57.6 21.6 0.3-1598 

L. Minor 5.8 10.7 0.2-647 

D. magna 0.2 0.6 0.1-7 

 80 

SI-3, Table 6: Predicted log Klipw (COSMOmic 1601). For IL-acronyms see (Stolte et al., 2007). 81 

IL chemical 
log Klipw (COSMOmic 

1601) 
smiles 

IM12 cation -0.73 [N+]1(C)=CN(C=C1)CC 

IM13 cation -0.40 [N+]1(C)=CN(C=C1)CCC 

IM14 cation 0.12 [N+]1(C)=CN(C=C1)CCCC 

IM15 cation 0.62 [N+]1(C)=CN(C=C1)CCCCC 

IM16 cation 1.23 [N+]1(C)=CN(C=C1)CCCCCC 

IM17 cation 1.76 [N+]1(C)=CN(C=C1)CCCCCCC 

IM18 cation 2.31 [N+]1(C)=CN(C=C1)CCCCCCCC 

IM19 cation 2.90 [N+]1(C)=CN(C=C1)CCCCCCCCC 

IM1-10 cation 3.45 [N+]1(C)=CN(C=C1)CCCCCCCCCC 

IM1-14 cation 5.78 [N+]1(C)=CN(C=C1)CCCCCCCCCCCCCC 

IM1-16 cation 6.85 [N+]1(C)=CN(C=C1)CCCCCCCCCCCCCCCC 

IM1-18 cation 8.08 [N+]1(C)=CN(C=C1)CCCCCCCCCCCCCCCCCC 

IM1-19 cation 8.69 [N+]1(C)=CN(C=C1)CCCCCCCCCCCCCCCCCCC 

IM24 cation 0.44 [N+]1(CC)=CN(C=C1)CCCC 
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IM25 cation 0.91 [N+]1(CC)=CN(C=C1)CCCCC 

IM26 cation 1.36 [N+]1(CC)=CN(C=C1)CCCCCC 

IM2-10 cation 3.69 [N+]1(CC)=CN(C=C1)CCCCCCCCCC 

Py4 cation -0.05 [n+]1(ccccc1)CCCC 

Py8 cation 2.17 [n+]1(ccccc1)CCCCCCCC 

Py4-2Me cation -0.01 [n+]1(c(C)cccc1)CCCC 

Py4-3Me cation 0.15 [n+]1(cc(C)ccc1)CCCC 

Py6-3Me cation 1.17 [n+]1(cc(C)ccc1)CCCCCC 

Py6-4Me cation 1.15 [n+]1(ccc(C)cc1)CCCCCC 

Py8-3Me cation 2.22 [n+]1(cc(C)ccc1)CCCCCCCC 

Py8-4Me cation 2.15 [n+]1(ccc(C)cc1)CCCCCCCC 

Pyr14 cation -0.23 [N+]1(C)(CCCC1)CCCC 

Pyr16 cation 0.85 [N+]1(C)(CCCC1)CCCCCC 

Mor14 cation -0.38 [N+]1(C)(CCOCC1)CCCC 

Pip14 cation 0.00 [N+]1(C)(CCCCC1)CCCC 

Quin4 cation 0.56 [n+]1(cccc2ccccc12)CCCC 

Quin6 cation 1.55 [n+]1(cccc2ccccc12)CCCCCC 

Quin8 cation 2.75 [n+]1(cccc2ccccc12)CCCCCCCC 

N1114 cation -0.26 [N+](C)(C)(C)CCCC 

N1124 cation -0.10 [N+](C)(C)(CC)CCCC 

N2222 cation -0.80 [N+](CC)(CC)(CC)CC 

N2226 cation 1.22 [N+](CC)(CC)(CC)CCCCCC 

N4444 cation 3.09 [N+](CCCC)(CCCC)(CCCC)CCCC 

P4444 cation 3.42 [P+](CCCC)(CCCC)(CCCC)CCCC 

Cl anion 0.16 [Cl-] 

BF4 anion 1.42 [B-](F)(F)(F)F 

PF6 anion 2.79 [P-](F)(F)(F)(F)(F)(F) 

(CF3SO2)2N anion 3.02 [N-](S(=O)(=O)C(F)(F)F)S(=O)(=O)C(F)(F)F 

Br anion 0.30 [Br-] 

(CN)2N anion 1.23 [N-](C#N)C#N 

SI-3, Table 7: Duration of test/exposure 82 

test system 
duration of 

test/exposure 
ref 

Aliivibrio fischeri 30 min (DIN (Matzke et al., 2007) 
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38412-L34.58) 

E coli 8 h (Lee et al., 2005) 

Pseudokirchneriella subcapitata 72 h (OECD 201) (Wells and Coombe, 2006) 

Scenedesmus vacuolatus 24 h (Matzke et al., 2007) 

IPC-81 4 h (Matzke et al., 2007) 

HeLa 24 to 48 h (Matzke et al., 2007) 

MCF7 24 h (Kumar et al., 2009) 

Lemna Minor 7 days (Jastorff et al., 2005) 

Daphnia magna 48 h (OECD 202) (Wells and Coombe, 2006) 

 83 

SI-3, Table 8: Structures of the IL chemicals 84 

IM12 cation 

 

 

 

IM13 cation 

 

 

 

IM14 cation 

 

 

 

IM15 cation 

 

 

 

IM16 cation 

 

 

 

IM17 cation 
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IM18 cation 

 

 

 

IM19 cation 

 

 

 

IM1-10 cation 

 

 

 

IM1-14 cation 

 

 

 

IM1-16 cation 

 

 

 

IM1-18 cation 

 

 

 

IM1-19 cation 
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IM24 cation 

 

 

 

IM25 cation 

 

 

 

IM26 cation 

 

 

 

IM2-10 cation 

 

 

 

Py4 cation 

 

 

 

Py8 cation 

 

 

 

Py4-2Me cation 

 

 

 

Py4-3Me cation 
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Py6-3Me cation 

 

 

 

Py6-4Me cation 

 

 

 

Py8-3Me cation 

 

 

 

Py8-4Me cation 

 

 

 

Pyr14 cation 

 

 

 

Pyr16 cation 

 

 

 

Mor14 cation 

 

 

 

Pip14 cation 
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Quin4 cation 

 

 

 

Quin6 cation 

 

 

 

Quin8 cation 

 

 

 

N1114 cation 

 

 

 

N1124 cation 

 

 

 

N2222 cation 

 

 

 

N2226 cation 
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N4444 cation 

 

 

 

P4444 cation 

 

 

 

Cl anion 
 

  

BF4 anion 

 

 

 

PF6 anion 

 

 

 

(CF3SO2)2N 

anion 

 

 

 

Br anion 
 

 
 

(CN)2N anion 

 

 

 



 

 

 

 

 

 

SI-3, Table 9: Analysis of the toxic ratios (TRs) according to Eq. 14 of the summary, section 1.5. 85 

A. 

fischeri 

E. 

coli 

P. 

subcapitata 

S. 

vacuolatus IPC-81 HeLa MCF7 

L. 

Minor 

D. 

magna cation anion 

2.3 

  

105.9 

     

IM12 Cl 

 

0.022 

  

1.4 0.40 

    

BF4 

    

0.021 

     

PF6 

     

0.055 

    

(CF3SO2)2N 

0.45 

   

1.3 

    

IM13 BF4 

16.2 

 

172.4 207.3 10.6 

  

57.1 443.2 IM14 Cl 

11.8 

 

10.9 

 

11.7 11.4 

  

688.6 

 

Br 

2.1 0.10 

 

29.5 2.9 0.8 

 

12.3 80.3 

 

BF4 

0.14 0.012 1.1 

 

0.14 0.012 

  

2.4 

 

PF6 

0.041 0.28 1.6 1.6 0.21 0.085 

 

0.36 

  

(CF3SO2)2N 

2.7 

   

4.0 

     

(CN)2N 

2.5 

        

IM15 BF4 

23.3 

 

476005.0 4760.1 8.1 

    

IM16 Cl 

426.3 

 

15.0 

     

667.9 

 

Br 

1.6 

         

BF4 

1.1 

   

0.17 

     

PF6 

    

0.12 

     

(CF3SO2)2N 

    

5.2 

    

IM17 Cl 

4.5 

   

3.3 

     

BF4 



 

 

 

 

 

 

    

0.78 

     

PF6 

40.2 

 

14606.0 236881.4 4.9 

    

IM18 Cl 

225.6 

 

11.3 

  

1.7 

  

1254.2 

 

Br 

17.6 

  

90231.4 11.6 1.5 

    

BF4 

14.3 0.29 

  

1.4 

     

PF6 

    

1.9 0.44 

    

(CF3SO2)2N 

24.5 

        

IM19 BF4 

27.0 

  

136917.7 1.7 

    

IM1-10 Cl 

55.3 

   

6.2 

     

BF4 

    

1.0 

     

PF6 

0.25 

  

52.8 0.46 

    

IM1-14 Cl 

0.01 

   

0.023 

    

IM1-16 Cl 

0.000031 

   

0.00085 

    

IM1-18 Cl 

    

0.0000086 

    

IM1-19 Cl 

    

0.0000049 

     

BF4 

    

0.0000031 

     

PF6 

5.7 

   

2.0 0.16 

   

IM24 BF4 

2.2 

        

IM25 BF4 

    

41.0 

    

IM26 Br 

15.1 

   

11.7 

     

BF4 

    

6.3 

    

IM2-10 Br 

37.4 

 

120.2 114.8 

   

213.7 

 

Py4 Cl 



 

 

 

 

 

 

31.1 

   

4.6 11.4 

    

Br 

    

2.5 

     

BF4 

6.4 

         

(CN)2N 

    

38.2 

    

Py8 Cl 

    

2.2 

    

Py4-

2Me BF4 

145.5 

        

Py4-

3Me Br 

    

1.9 

     

BF4 

26.8 

         

N(CN)2 

235.3 

        

Py6-

3Me Cl 

106.4 

       

1610.9 

 

Br 

    

17.6 

    

Py6-

4Me BF4 

189.7 

     

62.8 

 

250.0 

Py8-

3Me Br 

    

17.3 

    

Py8-

4Me Cl 

    

20.3 

     

BF4 

   

21.8 

   

353.5 

 

Pyr14 Cl 

  

8.6 

 

6.8 

 

1.4 

   

Br 



 

 

 

 

 

 

    

4.9 

     

BF4 

   

0.30 0.10 

 

0.073 0.11 

  

(CF3SO2)2N 

    

0.35 

     

N(CN)2 

12.6 

   

15.1 

    

Pyr16 Cl 

       

33.6 

 

Mor14 Br 

   

1.0 0.037 

  

0.071 

  

(CF3SO2)2N 

1.9 

  

18.7 3.3 

 

2.5 11801.5 

 

Pip14 Br 

   

0.83 0.039 

 

0.12 0.14 

  

(CF3SO2)2N 

    

89.3 

    

Quin4 Br 

    

24.3 

     

BF4 

    

145.1 

    

Quin6 BF4 

    

201.3 

    

Quin8 Br 

    

121.7 

     

BF4 

    

0.025 

    

N1114 (CF3SO2)2N 

      

6874.6 

  

N1124 Cl 

   

1.7 0.037 

     

(CF3SO2)2N 

     

2.7 

   

N2222 Br 

19.6 

        

N2226 Br 

0.046 

   

0.48 

    

N4444 Br 
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0.88 

   

4.5 P4444 Br 



Appendix  201  

 

 

Appendix Bibliography  

Abraham, M.H., Acree, Jr, W.E., 2010a. Equations for the Transfer of Neutral Molecules and 

Ionic Species from Water to Organic phases. J. Org. Chem. 75, 1006–1015. 

doi:10.1021/jo902388n 

Abraham, M.H., Acree, Jr, W.E., 2010b. Solute Descriptors for Phenoxide Anions and Their 

Use To Establish Correlations of Rates of Reaction of Anions with Iodomethane. J. Org. 

Chem. 75, 3021–3026. doi:10.1021/jo100292j 

Abraham, M.H., Acree, Jr, W.E., 2010c. The transfer of neutral molecules, ions and ionic 

species from water to ethylene glycol and to propylene carbonate; descriptors for 

pyridinium cations. New J. Chem. 34, 2298. doi:10.1039/c0nj00222d 

Austin, R.P., Andrew, D.M., Carol, M.N., 1995. Partitioning of ionizing molecules between 

aqueous buffers and phospholipid vesicles. J. Pharm. Sci. 84, 1180–1183. 

Avdeef, A., Box, K.J., Comer, J.E.A., Hibbert, C., Tam, K., 1998. pH-Metric logP 10. 

Determination of liposomal membrane-water partition coefficients of ionizable drugs. 

Pharm. Res. 15, 209–215. doi:10.1023/A:1011954332221 

Barzanti, C., Evans, R., Fouquet, J., Gouzin, L., Howarth, N.M., Kean, G., Levet, E., Wang, 

D., Wayemberg, E., Yeboah, A. a., Kraft, A., 2007. Potentiometric determination of 

octanol–water and liposome–water partition coefficients (logP) of ionizable organic 

compounds. Tetrahedron Lett. 48, 3337–3341. doi:10.1016/j.tetlet.2007.03.085 

Becke, A.D., 1988. Density-functional exchange-energy approximation with correct 

asymptotic behavior. Phys. Rev. A 38, 3098–3100. doi:10.1103/PhysRevA.38.3098 

Betageri, G.V., Rogers, J.A., 1987. Thermodynamics of partitioning of β-blockers in the n-

octanol- buffer and liposome systems. Int. J. Pharm. 36, 165–173. doi:10.1016/0378-

5173(87)90152-9 

Bittermann, K., Spycher, S., Endo, S., Pohler, L., Huniar, U., Goss, K.-U., Klamt, A., 2014. 

Prediction of Phospholipid–Water Partition Coefficients of Ionic Organic Chemicals 

Using the Mechanistic Model COSMOmic. J. Phys. Chem. B 118, 14833–42. 

doi:10.1021/jp509348a 

Brooks, B.W., Foran, C.M., Richards, S.M., Weston, J., Turner, P.K., Stanley, J.K., Solomon, 

K.R., Slattery, M., La Point, T.W., 2003. Aquatic ecotoxicology of fluoxetine. Toxicol. 

Lett. 142, 169–183. doi:10.1016/S0378-4274(03)00066-3 

Cohen, F.S., Eisenberg, M., McLaughlin, S., 1977. The kinetic mechanism of action of an 



Appendix  202  

 

 

uncoupler of oxidative phosphorylation. J. Membr. Biol. 37, 361–96. 

Demura, M., Kamo, N., Kobatake, Y., 1987. Binding of lipophilic cations to the liposomal 

membrane: thermodynamic analysis. Biochim. Biophys. Acta - Biomembr. 903, 303–

308. doi:10.1016/0005-2736(87)90220-3 

Dilger, J., McLaughlin, S., 1979. Proton transport through membranes induced by weak acids: 

A study of two substituted benzimidazoles. J. Membr. Biol. 46, 359–384. 

doi:10.1007/BF01868755 

Eckert, F., Klamt, A., 2002. Fast solvent screening via quantum chemistry: COSMO-RS 

approach. AIChE J. 48, 369–385. doi:10.1002/aic.690480220 

Eichkorn, K., Treutler, O., Öhm, H., Häser, M., Ahlrichs, R., 1995. Auxiliary basis sets to 

approximate Coulomb potentials. Chem. Phys. Lett. 240, 283–290. doi:10.1016/0009-

2614(95)00621-A 

Endo, S., Escher, B.I., Goss, K.-U., 2011. Capacities of Membrane Lipids to Accumulate 

Neutral Organic Chemicals. Environ. Sci. Technol. 45, 5912–5921. 

doi:10.1021/es200855w 

Escher, B.I., Berger, C., Bramaz, N., Kwon, J.-H., Richter, M., Tsinman, O., Avdeef, A., 

2008. Membrane-water partitioning, membrane permeability, and baseline toxicity of the 

parasiticides ivermectin, albendazole, and morantel. Environ. Toxicol. Chem. 27, 909–

918. doi:10.1897/07-427.1 

Escher, B.I., Bramaz, N., Richter, M., Lienert, J., 2006. Comparative ecotoxicological hazard 

assessment of beta-blockers and their human metabolites using a mode-of-action-based 

test battery and a QSAR approach. Environ. Sci. Technol. 40, 7402–8. 

Escher, B.I., Hunziker, R.W., Schwarzenbach, R.P., 2001. Interaction of phenolic uncouplers 

in binary mixtures: concentration-additive and synergistic effects. Environ. Sci. Technol. 

35, 3905–3914. 

Escher, B.I., Schwarzenbach, R.P., 1996. Partitioning of Substituted Phenols in 

Liposome−Water, Biomembrane−Water, and Octanol−Water Systems. Environ. Sci. 

Technol. 30, 260–270. doi:10.1021/es9503084 

Escher, B.I., Schwarzenbach, R.P., Westall, J.C., 2000. Evaluation of Liposome−Water 

Partitioning of Organic Acids and Bases. 1. Development of a Sorption Model. Environ. 

Sci. Technol. 34, 3954–3961. doi:10.1021/es0010709 

Escher, B.I., Sigg, L., 2004. Chemical Speciation of Organics and of Metals at Biological 

Interphases, in: v. Leeuwen, H.P., Köster, W. (Eds.), Physicochemical Kinetics and 



Appendix  203  

 

 

Transport at Biointerfaces. John Wiley & Sons, Ltd, Chichester, UK, pp. 205–269. 

doi:10.1002/0470094044.ch5 

Flewelling, R.F., Hubbell, W.L., 1986. Hydrophobic ion interactions with membranes. 

Thermodynamic analysis of tetraphenylphosphonium binding to vesicles. Biophys. J. 49, 

531–540. doi:10.1016/S0006-3495(86)83663-3 

Fruttero, R., Caron, G., Fornatto, E., Boschi, D., Ermondi, G., Gasco, A., Carrupt, P.A., Testa, 

B., 1998. Mechanisms of liposomes/water partitioning of (p- methylbenzyl)alkylamines. 

Pharm. Res. 15, 1407–1413. doi:10.1023/A:1011953622052 

Inoue, T., Iwanaga, T., Fukushima, K., Shimozawa, R., 1988. Effect of sodium octanoate and 

sodium perfluorooctanoate on gel-to-liquid-crystalline phase transition of 

dipalmitoylphosphatidylcholine vesicle membrane. Chem. Phys. Lipids 46, 25–30. 

doi:10.1016/0009-3084(88)90109-0 

Inoue, T., Miyakawa, K., Shimozawa, R., 1986. Interaction of surfactants with vesicle 

membrane of dipalmitoylphosphatidylcholine. Effect on gel-to-liquid-crystalline phase 

transition of lipid bilayer. Chem. Phys. Lipids 42, 261–270. doi:10.1016/0009-

3084(86)90085-X 

Jakobtorweihen, S., Ingram, T., Smirnova, I., 2013. Combination of COSMOmic and 

molecular dynamics simulations for the calculation of membrane-water partition 

coefficients. J. Comput. Chem. 34, 1332–1340. doi:10.1002/jcc.23262 

Jastorff, B., Mölter, K., Behrend, P., Bottin-Weber, U., Filser, J., Heimers, A., Ondruschka, 

B., Ranke, J., Schaefer, M., Schröder, H., Stark, A., Stepnowski, P., Stock, F., Störmann, 

R., Stolte, S., Welz-Biermann, U., Ziegert, S., Thöming, J., 2005. Progress in evaluation 

of risk potential of ionic liquids—basis for an eco-design of sustainable products. Green 

Chem. 7, 362. doi:10.1039/b418518h 

Kaiser, S., Escher, B.I., 2006. The evaluation of liposome-water partitioning of 8-

hydroxyquinolines and their copper complexes. Environ. Sci. Technol. 40, 1784–1791. 

Kasianowicz, J., Benz, R., McLaughlin, S., 1987. How do Protons Cross the Membrane-

Solution Interface? Kinetic Studies on Bilayer Membranes Exposed to the Protonophore 

S-13 (5-chloro-3-tert-butyl-2’-chloro-4’nitrosalicylanilide). J. Membr. Biol. 95, 73–89. 

Kipka, U., Di Toro, D.M., 2009. Technical basis for polar and nonpolar narcotic chemicals 

and polycyclic aromatic hydrocarbon criteria. III. A polyparameter model for target lipid 

partitioning. 28, 1429–1438. doi:10.1897/08-364.1 

Klamt, A., 2005. COSMO-RS: From Quantum Chemistry to Fluid Phase Thermodynamics 



Appendix  204  

 

 

and Drug Design, First Edit. ed. Elsevier Science, Amsterdam. 

Klamt, A., 1995. Conductor-like Screening Model for Real Solvents: A New Approach to the 

Quantitative Calculation of Solvation Phenomena. J. Phys. Chem. 99, 2224–2235. 

doi:10.1021/j100007a062 

Klamt, A., Eckert, F., Arlt, W., 2010. COSMO-RS: an alternative to simulation for calculating 

thermodynamic properties of liquid mixtures. Annu. Rev. Chem. Biomol. Eng. 1, 101–

22. doi:10.1146/annurev-chembioeng-073009-100903 

Klamt, A., Huniar, U., Spycher, S., Keldenich, J., 2008. COSMOmic: A Mechanistic 

Approach to the Calculation of Membrane−Water Partition Coefficients and Internal 

Distributions within Membranes and Micelles. J. Phys. Chem. B 112, 12148–12157. 

doi:10.1021/jp801736k 

Kumar, R.A., Papaïconomou, N., Lee, J.-M., Salminen, J., Clark, D.S., Prausnitz, J.M., 2009. 

In vitro cytotoxicities of ionic liquids: Effect of cation rings, functional groups, and 

anions. Environ. Toxicol. 24, 388–395. doi:10.1002/tox.20443 

Lee, S.-M., Chang, W.-J., Choi, A.-R., Koo, Y.-M., 2005. Influence of ionic liquids on the 

growth of Escherichia coli. Korean J. Chem. Eng. 22, 687–690. 

doi:10.1007/BF02705783 

Lehmler, H., Xie, W., Bothun, G., Bummer, P.M., Knutson, B.L., 2006. Mixing of 

perfluorooctanesulfonic acid (PFOS) potassium salt with dipalmitoyl 

phosphatidylcholine (DPPC). Colloids Surfaces B Biointerfaces 51, 25–29. 

doi:10.1016/j.colsurfb.2006.05.013 

Lombardi, D., Cuenoud, B., Krämer, S.D., 2009. Lipid membrane interactions of indacaterol 

and salmeterol: do they influence their pharmacological properties? Eur. J. Pharm. Sci. 

38, 533–47. doi:10.1016/j.ejps.2009.10.001 

Matzke, M., Stolte, S., Thiele, K., Juffernholz, T., Arning, J., Ranke, J., Welz-Biermann, U., 

Jastorff, B., 2007. The influence of anion species on the toxicity of 1-alkyl-3-

methylimidazolium ionic liquids observed in an (eco)toxicological test battery. Green 

Chem. 9, 1198. doi:10.1039/b705795d 

Miyoshi, H., Nishioka, T., Fujita, T., 1987. Quantitative relationship between protonophoric 

and uncoupling activities of substituted phenols. Biochim. Biophys. Acta 891, 194–204. 

Nakamura, Y., Yamamoto, H., Sekizawa, J., Kondo, T., Hirai, N., Tatarazako, N., 2008. The 

effects of pH on fluoxetine in Japanese medaka (Oryzias latipes): acute toxicity in fish 

larvae and bioaccumulation in juvenile fish. Chemosphere 70, 865–73. 



Appendix  205  

 

 

doi:10.1016/j.chemosphere.2007.06.089 

Neuwoehner, J., Fenner, K., Escher, B.I., 2009. Physiological Modes of Action of Fluoxetine 

and its Human Metabolites in Algae. Environ. Sci. Technol. 43, 6830–6837. 

doi:10.1021/es9005493 

Ottiger, C., Wunderli-Allenspach, H., 1997. Partition behaviour of acids and bases in a 

phosphatidylcholine liposome–buffer equilibrium dialysis system. Eur. J. Pharm. Sci. 5, 

223–231. doi:10.1016/S0928-0987(97)00278-9 

Pallicer, J.M., Krämer, S.D., 2012. Evaluation of fluorescence anisotropy to assess drug–lipid 

membrane partitioning. J. Pharm. Biomed. Anal. 71, 219–227. 

doi:10.1016/j.jpba.2012.08.009 

Perdew, J., 1986. Density-functional approximation for the correlation energy of the 

inhomogeneous electron gas. Phys. Rev. B 33, 8822–8824. 

doi:10.1103/PhysRevB.33.8822 

Plemper van Balen, G., Caron, G., Ermondi, G., Pagliara, A., Grandi, T., Bouchard, G., 

Fruttero, R., Carrupt, P.-A., Testa, B., 2001. Lipophilicity Behaviour of the Zwitterionic 

Antihistamine Cetirizine in Phosphatidylcholine Liposomes/Water Systems. Pharm. Res. 

18, 694–701. doi:10.1023/A:1011049830615 

Sadowski, J., Gasteiger, J., Klebe, G., 1994. Comparison of Automatic Three-Dimensional 

Model Builders Using 639 X-ray Structures. J. Chem. Inf. Model. 34, 1000–1008. 

doi:10.1021/ci00020a039 

Schäfer, A., Huber, C., Ahlrichs, R., 1994. Fully optimized contracted Gaussian basis sets of 

triple zeta valence quality for atoms Li to Kr. J. Chem. Phys. 100, 5829. 

doi:10.1063/1.467146 

Schellenberg, K., Leuenberger, C., Schwarzenbach, R.P., 1984. Sorption of chlorinated 

phenols by natural sediments and aquifer materials. Environ. Sci. Technol. 18, 652–657. 

doi:10.1021/es00127a005 

Schwarzenbach, R.P., Gschwend, P., Imboden, D., 2003. Environmental organic chemistry, 

2nd editio. ed, Journal of Chemical Education. John Wiley & Sons, Hoboken, New 

Jersey. 

Schwarzenbach, R.P., Stierli, R., Folsom, B.R., Zeyer, J., 1988. Compound properties 

relevant for assessing the environmental partitioning of nitrophenols. Environ. Sci. 

Technol. 22, 83–92. doi:10.1021/es00166a009 

Schweigert, N., Hunziker, R.W., Escher, B.I., Eggen, R.I., 2001. Acute toxicity of (chloro-



Appendix  206  

 

 

)catechols and (chloro-)catechol-copper combinations in Escherichia coli corresponds to 

their membrane toxicity in vitro. Environ. Toxicol. Chem. 20, 239–247. 

Smejtek, P., Blochel, A., Wang, S., 1996. Hydrophobicity and sorption of chlorophenolates to 

lipid membranes. Chemosphere 33, 177–201. doi:10.1016/0045-6535(96)00158-0 

Spycher, S., Smejtek, P., Netzeva, T.I., Escher, B.I., 2008. Toward a Class-Independent 

Quantitative Structure−Activity Relationship Model for Uncouplers of Oxidative 

Phosphorylation. Chem. Res. Toxicol. 21, 911–927. doi:10.1021/tx700391f 

Stolte, S., Arning, J., Bottin-Weber, U., Müller, A., Pitner, W.-R., Welz-Biermann, U., 

Jastorff, B., Ranke, J., 2007. Effects of different head groups and functionalised side 

chains on the cytotoxicity of ionic liquids. Green Chem. 9, 760–767. 

doi:10.1039/B615326G 

Thomae, A. V, Koch, T., Panse, C., Wunderli-Allenspach, H., Krämer, S.D., 2007. 

Comparing the lipid membrane affinity and permeation of drug-like acids: the intriguing 

effects of cholesterol and charged lipids. Pharm. Res. 24, 1457–1472. 

doi:10.1007/s11095-007-9263-y 

Thomae, A. V, Wunderli-Allenspach, H., Krämer, S.D., 2005. Permeation of aromatic 

carboxylic acids across lipid bilayers: the pH-partition hypothesis revisited. Biophys. J. 

89, 1802–11. doi:10.1529/biophysj.105.060871 

Vaes, W.H.J., Ramos, E.U., Verhaar, H.J.M., Hermens, J.L.M., 1998. Acute toxicity of 

nonpolar versus polar narcosis: Is there a difference? Environ. Toxicol. Chem. 17, 1380–

1384. doi:10.1002/etc.5620170723 

Vainio, M.J., Johnson, M.S., 2007. Generating Conformer Ensembles Using a Multiobjective 

Genetic Algorithm. J. Chem. Inf. Model. 47, 2462–2474. doi:10.1021/ci6005646 

Wells, A.S., Coombe, V.T., 2006. On the freshwater ecotoxicity and biodegradation 

properties of some common ionic liquids. Org. Process Res. Dev. 10, 794–798. 

doi:10.1021/op060048i 

Yamamoto, H., Hayashi, A., Nakamura, Y., Sekizawa, J., 2005. Fate and partitioning of 

selected pharmaceuticals in aquatic environment. Environ. Sci. 12, 347–58. 

 

 


