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CHAPTER 1

Introduction

The stochastic analysis in infinite dimensional spaces and its application belong to the modern
research of stochastic. The essential part of stochastic analysis is the stochastic integration
theory. Stochastic integral is introduced in the case of separable Hilbert spaces for example by
[10, 35, 34] based on the fundamental ideas of Itô [14] and Gikhman [9]. In general the integrands
are stochastic processes with values in the spac of Hillbert-Schmidt operators. Often the integrals
are defined with respect to Hilbert space valued cylindrical Wiener processes for example [8, 34].
The important property of an Itô integral is so-called Itô isometry. Roughly speaking the Itô
isometry says that the expectation of the norm square of the Itô integral in the Hilbert space is
equal to expectation of a usual Lebesgue integral.
Generalizing stochastic integrals for Banach valued processes demanded some subtle changes
in framework of Hilbert-valued processes. By development of unconditional martingale differ-
ences spaces (UMD) the stochastic integral could be defined for E-valued progressively valued
processes, where E is an UMD Banach space [24, 30].
The goal of this thesis is to consider E-Valued processes which satisfy forward or backward
integral equations in the form of Itô Volterra type. Backward integral equations in the form of
Itô Volterra type are used to consider optimal control problem for controlled forward equations
of Itô Volterra type by means of a stochastic maximum principle method.

1.1. Previous Research

Stochastic partial differential equations are part of the research of infinite dimensional stochastic
analysis and these equations can be interpreted as stochastic evolution equations and the solutions
are defined in a generalized sense. There are following three main approaches for dealing with
such equations :

• The mild solution: The problem contains a linear operator which generates a semigroup
of operators in a Hilbert space and the problem is considered as stochastic integral
equation (Ito-Volterra type), which contains a stochastic convolution (see for example
[34] and the literature cited therein).
• The generalized weak solution (weak solution, analytically weak solution): The solution
of the partial differential equation satisfies a scalar product equation (see [34], [35]).
• The variational solution (generalized solution, (V,H)-solution): The problem is defined
by a stochastic evolution equation over a triplet of rigged Hilbert spaces (V,H, V ∗) (see
for example [35], [36]).
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In stochastic analysis if the solution is defined on a given probability space, then the solution
is called (probabilistic) strong solution, and if they are defined by constructing the probability
space, then the solution is called (probabilistic) weak solution. in this thesis we will consider
problems on a given complete probability space (Ω,F , P ) and we investigate mild solutions (as
well as generalized weak solutions).
In some applications, it is necessary also to consider the Banach space case regarding of Ba-
nach spaced valued stochastic integrals. For example, Banach spaced valued stochastic partial
differential equation are discussed in the mild solution sense (Ito-Volterra type equations) in
[30, 31, 27, 15, 28, 23, 37, 38, 5].
Two typical methods are common to solve optimal control problems:

• Using of dynamical optimization (Bellman principle).
• Using necessary optimality conditions (Maximum principle).

In [40] the Bellman principle is used to solve an optimal control problem for a stochastic Banach
spaces valued differential equation in the case of cylindrical Wiener processes are appleid as
noise process. A maximum principle is proved in [39] for an optimal control of stochastic partial
differential equations in Banach Spaces with finite dimensional Wiener process noise.
If optimal control problems for stochastic Itô-Volterra equations should be solved by using of a
maximum principle then a theory of stochastic backward equations of Itô-Volterra type must be
used.

A linear backward stochastic differential (BSDE) equation was first introduced by J. Bismut [4] in
the finite dimensional case as the equation for the adjoint variable in the stochastic version of the
Pontryagin maximum principle. A general nonlinear backward stochastic differential equation in
the finite dimensional case (see for example E. Pardoux and S. G. Peng [20]) which appears in
the optimal stochastic control problem is the following:

Y (t) = ξ +

1∫
t

f(s, Y (s), Z(s))ds−
1∫
t

Z(s)dW (s), for 0 ≤ t ≤ 1,

where (W (t))t∈[0,1] is a Brownian motion defined on a probability space (Ω,F , P ) with the natural
filtration (Ft)t∈[0,1] and ξ is a given F1-measurable random variable such that E|ξ|2 < ∞. In
[20] E. Pardoux and S. G. Peng considered an adapted solution as a pair of real valued adapted
processes (Y (·), Z(·)) which satisfy almost surely the above equation. They proved the existence
and uniqueness of the adapted solution by assuming the Lipschitz continuity for the generating
function f . The interest on backward stochastic differential equations has grown rapidly in
regards to the connections of this subject with computational finance, stochastic control problem,
and partial differential equations. These equations also provide probabilistic interpretation for
solutions to both elliptic and parabolic nonlinear partial differential equations. Indeed, coupled
with a forward stochastic differential equations, such BSDEs give an extension of the Feynman-
Kac formula to nonlinear case. Numerous authors recently investigated various BSDEs and
properties of their solutions, see for instance V. Anh [1], E. Essaky, K. Bahlali and Ouknine Y.
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[7], Y. Hu [12], [13], J. Lin [18] or R. Negrea and C. Preda [22] and the references specified therein.
In particular, many efforts have been made to relax the assumptions on the coefficient functions.
For instance, several papers treat BSDEs with continuous or local drift. In one dimensional case,
the essential tool is the comparison-technique. In multidimensional case, the improvements of
the Lipschitz condition on the generator, mainly concern only the Y variable and the conditions
considered are global. One of the first works treating multidimensional BSDEs with both local
conditions on the drift and only square integrable terminal data is the work of K. Bahlali [3].
This author considered BSDEs with locally Lipschitz coefficients in both variables Y and Z.
Backward stochastic nonlinear integral equations have been studied by J. Lin [18] under global
Lipschitz conditions on the drift term. More precisely, in this work J. Lin proved an existence
and uniqueness result for the following nonlinear BSDE of Volterra type:

Y (t) +

T∫
t

f(t, s, Y (s), Z(t, s))ds+

T∫
t

[g(t, s, Y (s)) + Z(t, s)dW (s)] = ξ.

In 2006 J. Yong [32] started a detailed analysis of backward stochastic integral equations. The
author first proved an existence and uniqueness result for general integral equation of Volterra
type given by

Y (t) = f(t) +

T∫
t

h(t, s, y(s), z(t, s), z(s, t))ds−
T∫
t

Z(t, s)dW (s), (1.1)

where h : [0, T ] × [0, T ] × Rm × Rm×d × Rm×d × Ω → Rm and f : [0, T ] × Ω → Rm are given.
The difficulties that arise in (1.1) are mainly given by the fact that the generator h depends
simultaneously on t and s which imply that the equation cannot be reduced to a BSDE in general
and the process f is allowed to be only FT measurable (not necessarily F-adapted). Equations
of the above form often occur in various models of the modern mathematical finance. In the
cited work stability statements were also formulated and a duality principle for linear forward
stochastic and linear backward stochastic differential equations was obtained. As an application
of the duality principle, the author presented a comparison theorem for one dimensional backward
stochastic integral equations and a Pontryagin type maximum principle for optimal control of
stochastic integral equations. He continued his research and the work in 2008 [33] improves
the previously obtained results. This work treats various general BSDEs and new concepts of
solutions. The regularity of these solutions is studied by means of Malliavin derivate. Conditions
for the Malliavin differentiability are stated and one of the most important result states that the
Malliavin derivative of the process Y (·) can be obtained by solving a BSDE.
As an extension, stochastic backward integral equations with values in a separable Hilbert space
were recently intensively investigated by V. Anh, W. Grecksch and J. Yong [1], [2].
In the above mentioned literature, all processes were assumed to be real-valued or Hilbert-space
valued. Here we are interested in the study of backward stochastic differential equations for
Banach-space valued processes.
During the last years the stochastic analysis in Banach spaces have been developed vastly. It
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has only recently been realized that many results can be generalized under certain circumstances
beyond the Hilbert space case. First of all one has to replace the well-known orthogonality by
unconditionality. This is the essence of the UMD Banach spaces, where UMD is the abbreviation
for unconditional martingale difference. In 2007, J. van Neerven, M. Veraar and L. Weis [26]
gave a complete integration theory for Banach-space valued processes. The UMD property is
essential to obtain a two-sided estimate of the stochastic integral. In the absence of the famous
Itô-isometry such estimates combined with the operator-valued version of the Burkholder-Davis-
Gundy inequalities are crucial. In the cited work, martingale representation theorems are also
proved. For this thesis such results are usefull to solve BSDEs. Mallivian calculus is also
calculated in [21]in UMD Banach spaces.
However there are major differences between these statements and the well-known results from
the Hilbert space case. In this setting we cannot expect to get a Banach-space valued process
whose stochastic integral represents a given E-valued martingale. But we always obtain an
operator-valued random variable with this property. Recently, M. Ondrejat and M. Veraar
[19] studied weak characterizations of stochastical integrability and its connection to martingale
representation theorems.
Existence, uniqueness and smoothness properties are discussed in [17] for the solution of a Banach
space valued stochastic backward Itô Volterra equation in the case of UMD Banach space valued
stochastic integrals with respect to a one dimensianal real Wiener process. The stochastic analysis
in UMD Banach spaces and the ideas in [1], [2] are used.

1.2. Structure of Thesis

In this thesis we consider stochastic processes particylarly in Banach space E = Lq (S,Σ, µ)

where µ is a σ-finite or finite measure.
In chapter 2 an existence and uniqueness theorem (see Theorem 2.1) is proved for a forward
stochastic Volterra integral equation with respect to a H-cylindrical Brownian motion in Banach
space E where µ is a σ-finite measure and q ≥ 2. The Banach fixed-point theorem is used.
In general the stochastic convolution has not continuous paths. In Theorem 2.2 conditions are
given such that a solution process has with probability one continuous paths in E in which µ

is a finite measure. The case of a σ-finite measure is given in Theorem 2.3. Some similarities
between assumption in Theorem 2.1 and assuptions that for example given by [41] are discussed
in 2.2. As examples, some forms of stochastic heat equations are given. A linear heat equation
with additive noise and with multiplicative noise are considered in Equations (2.5) and (2.7), the
unique solutions are found in according to Theorem 2.1. The same method is used also in 2.3.3
for a stochastic heat equation with Lipschitz nonlinearities and smoothness of its solution is also
considered.
In chapter 3, first a simple backward stochastic integral Equation (3.1) in Banach space E with
respect to a H-cylindrical Brownian motion are going to be introduced. The unique solution will
be derived. Throughout this chapter µ is a σ-finite measure and q ≤ 2. Then a more general
backward stochastic integral Equation (3.4) discussed. The martingale representation theorem in
Banach spaces and Banach fixed-point theorem are our important tools. The general backward
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stochastic Volttera type integral equation are given by Equation (3.7). To find unique adapted
solution processes it is needed to introduceM -adapted solution see Definition 3.2 and using some
forms of stochastic Fredholm integral equations (3.9). Finally by suitable assumptions, a unique
adapted M -solution are found in Theorem 3.1.
In chapter 4 the duality principles between forward and backward stochastic Volterra integral
equations are discussed. The forward stochastic Volterra integral equation (4.1) is defined in
a σ-finite space where q ≥ 2 and correspondingly by using its adjoint operators, two types of
backward Volterra integral equations in σ-finite space with q ≤ 2 are introduced. First the
duality principle between Forward and bachward Volltera Equations (4.1), (4.2) are proved in
Theorem 4.1. The second and more general duality principle are also given in Theorem 4.2
that is between Equations (4.1) and (4.3). The Itô formula in Banach spaces in [5] are very
useful to compute duality principles and as in Remark 4.1 is explained these computation for
duality principle hold for every UMD-spaces if forward stochastic Volterra integral equations
and corresponding backward stochastic Volterra integral equations are well-defined and more
importantly martingale representation theorem can be used efficiently, for example in co-type(2)
spaces.
In chapter 5, the stochastic optimal controls in Banach space E with a finite measure is introduced
and a maximum principle is used to deal with the stochastic control problem. The E-valued
state process is defined through a forward stochastic Volterra integral equation and initially,
real valued state process is considered in a bounded closed interval. The cost function is given
as Bolza form. The concepts of Nemytskii operators and Fréchet derivatives are employed to
assumptions. Regarding to controlled forward stochastic Volterra equation, backward stochastic
Volterra equation is derived by using adjoint operators. By using the results of previous chapters,
Theorem 5.1 is proved for a stochastic control problem. It is interested sometimes that the control
process is also F -valued process where F is a Banach space. Then the stochastic problem is
generalized for a F -valued control process. This problem is proved in Theorem 5.2 where a special
stochastic forward Volterra equation is used and in Theorem 5.3 it is proved for general one. At
the case that the F -valued control process is applied, for getting well-defined corresponding
backward equations, the cost function without terminal term (5.3) is employed. Finally in this
chapter for application some forms of controlled stochastic heat equations are used as stochastic
forward Volterra equations and maximum principle is used to solve a relevant stochastic control
problem.



CHAPTER 2

Forward Stochastic Volterra Integral Equation

In this chapter we are going to find unique adapted solution for forward stochastic Volterra
integral equation in Banach space Lq.

2.1. Unique Adapted Solution

Consider following forward stochastic Volterra integral equation(FSVIE) in Banach space E =

Lq (S,Σ, µ) where q ≥ 2 and µ is a σ-finite measure

X(t) = ϕ(t) +

∫ t

0
b (t, s,X(s)) ds+

∫ t

0
ρ (t, s,X(s)) dWH(s), t ∈ [0, T ] (2.1)

The stochastic integral defined with respect to H-cylindrical Brownian motionWH(·), Definition
A.2. Our goal is to find unique adapted E-valued process X(t). Our approach will be to
use Banach fixed-point theorem in complete spaces and we use the definition of Lp-stochastic
integrability in Banach space E, Definition A.3 and Theorem A.1, specially we use the so-called
Lp-stochastic integrability theorem at the case of E = Lq (S,Σ, µ), Theorem A.2. We use the
concept of Nemytskii operator for b and ρ and by using Lp-stochastic integrability it is assumed
that there is %(·, ·, ·, ·) : Ω × [0, T ] × [0, T ] × S −→ H such that (ρ(t, s, x)h) (·) = [%(t, s, x, ·), h],
for every h ∈ H and x ∈ R. In most of this work we drop η ∈ S and ω ∈ Ω for easiness. We are
going to set some assumptions on E-valued process ϕ(t), b(t, s, ·) and E-valued operator process
ρ (t, s, ·). Let ∆ = {(t, s) : 0 ≤ s ≤ t ≤ T} and we set following assumptions

(H 0) For each t ∈ [0, T ], ϕ(t) ∈ Lp(Ω;E) is Ft-adapted and moreover

E

∥∥∥∥∥∥
(∫ T

0
|ϕ(t)|2dt

) 1
2

∥∥∥∥∥∥
p

E

<∞

(H 1)
b : Ω×∆× E × S −→ E

ρ : Ω×∆× E × S −→ L(H;E)

are progressively measurable for each x ∈ E and t ∈ [0, T ]. We use the concept of H-
strongly measurability for ρ(·, ·, ·), i.e. for every h ∈ H, ρ(·, ·, ·)h is strongly measurable.

(H 2) There exist some positive constants K1 and K2 such that for every t, s ∈ [0, T ] and
x, y ∈ R

|b(t, s, x)− b(t, s, y)| ≤ K1|x− y|
‖%(t, s, x)− %(t, s, y)‖H ≤ K2|x− y|

6
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(H 3)

E

∥∥∥∥∥ sup
t∈[0,T ]

(∫ t

0
|b(t, s, 0)|2ds

) 1
2

∥∥∥∥∥
p

E

<∞

E

∥∥∥∥∥ sup
t∈[0,T ]

(∫ t

0
‖%(t, s, 0)‖2H ds

) 1
2

∥∥∥∥∥
p

E

<∞

In this thesis we consider the case 2 ≤ q ≤ p. Let define the following Banach space

MT =

X(·) ∈ LpF (Ω;E) : ‖X(·)‖pMT
= E

∥∥∥∥∥∥
(∫ T

0
|X(t)|2dt

) 1
2

∥∥∥∥∥∥
p

E

<∞


First we are going to prove some lemmas and finally the existence and uniqueness theorem will
be given.

Lemma 2.1. If assumptions (H 0), (H 1), (H 2) and (H 3) hold and x(·) ∈MT then X(·) ∈MT

where X(·) is defined by the operator A :MT −→MT as following

X(t) = A(x(·))(t) = ϕ(t) +

∫ t

0
b(t, s, x(s))ds+

∫ t

0
ρ(t, s, x(s))dWH(s) , t ∈ [0, T ]

Proof. Adaptedness is clearly resulted by definition. Let x(t) ∈ LpF(Ω;E) then we have

E‖X(t)‖p = E
∥∥∥∥ϕ(t) +

∫ t

0
b(t, s, x(s))ds+

∫ t

0
ρ(t, s, x(s))dWH(s)

∥∥∥∥p
≤ c

{
E ‖ϕ(t)‖p + E

∥∥∥∥∫ t

0
b(t, s, x(s))ds

∥∥∥∥p
+ E

∥∥∥∥∫ t

0
ρ(t, s, x(s))dWH(s)

∥∥∥∥p}
where we used the norm property and Young’s inequality. In this thesis we assume c ≥ 0 is
a positive universal constant and it could change its values. Now we consider summands from
above equation separately. First term is bounded by assumption (H 0). We can write for the
second term by using the norm property, Hölder’s inequality and assumptions in (H2)

E
∥∥∥∥∫ t

0
b(t, s, x(s))ds

∥∥∥∥p ≤ E

∥∥∥∥∥√t
(∫ t

0
|b(t, s, x(s))|2ds

) 1
2

∥∥∥∥∥
p

≤ t
p
2E

∥∥∥∥∥
(∫ t

0
|b(t, s, x(s)) + b(t, s, 0)− b(t, s, 0)|2 ds

) 1
2

∥∥∥∥∥
p

≤ c

{
E

∥∥∥∥∥
(∫ t

0
|b(t, s, 0)|2ds

) 1
2

∥∥∥∥∥
p

+Kp
1E

∥∥∥∥∥
(∫ t

0
|x(s)|2ds

) 1
2

∥∥∥∥∥
p}

≤ c

E

∥∥∥∥∥ sup
t∈[0,T ]

(∫ t

0
|b(t, s, 0)|2ds

) 1
2

∥∥∥∥∥
p

+ E

∥∥∥∥∥∥
(∫ T

0
|x(s)|2ds

) 1
2

∥∥∥∥∥∥
p

(2.2)

and it results that E
∥∥∥∫ t0 b(t, s, x(s))ds

∥∥∥p is bounded for every t ∈ [0, T ].
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For the third part we use the Theorem A.2 of Lp-stochastic integrability. So we have

E
∥∥∥∥∫ t

0
ρ(t, s, x(s))dWH(s)

∥∥∥∥p ≤ cE
∥∥∥∥∥
(∫ t

0
‖%(t, s, x(s))‖2H ds

) 1
2

∥∥∥∥∥
p

= cE

∥∥∥∥∥
(∫ t

0
|%(t, s, x(s)) + %(t, s, 0)− %(t, s, 0)‖2H ds

) 1
2

∥∥∥∥∥
p

≤ c

{
E

∥∥∥∥∥
(∫ t

0
‖%(t, s, 0))‖2H ds

) 1
2

∥∥∥∥∥
p

+Kp
2E

∥∥∥∥∥
(∫ t

0
|x(s)|2ds

) 1
2

∥∥∥∥∥
p}

≤ c

E

∥∥∥∥∥ sup
t∈[0,T ]

(∫ t

0
‖%(t, s, 0))‖2H ds

) 1
2

∥∥∥∥∥
p

+ E

∥∥∥∥∥∥
(∫ T

0
|x(s)|2ds

) 1
2

∥∥∥∥∥∥
p

similarly it yields that E
∥∥∥∫ t0 ρ(t, s, x(s))dWH(s)

∥∥∥p is bounded for every t ∈ [0, T ]. By using
above calculations it yields that ∀t ∈ [0, T ], X(t) ∈ Lp(Ω;E).

Now it remains to show E
∥∥∥∥(∫ T0 |X(t))|2dt

) 1
2

∥∥∥∥p
E

. For simplicity we set ∀η ∈ S

‖X(·)‖L2(0,T ) = ‖X(·, η)‖L2(0,T ) =

(∫ T

0
|X(t, η))|2dt

) 1
2

then we can write by using the norm property

E
∥∥∥‖X(·)‖L2(0,T )

∥∥∥p
E
≤ c

{
E
∥∥‖ϕ(·)‖L2(0,T )

∥∥p
E

+ E

∥∥∥∥∥
∥∥∥∥∫ �

0
b(·, s, x(s))ds

∥∥∥∥
L2(0,T )

∥∥∥∥∥
p

E

+E

∥∥∥∥∥
∥∥∥∥∫ �

0
ρ(·, s, x(s))dWH(s)

∥∥∥∥
L2(0,T )

∥∥∥∥∥
p

E

}
Now we consider again above summands separately. First part by assumption is bounded, since

E
∥∥‖ϕ(·)‖L2(0,T )

∥∥p
E

= E

∥∥∥∥∥∥
(∫ T

0
|ϕ(t)|2dt

) 1
2

∥∥∥∥∥∥
p

E

<∞

For the second part, it yields

E

∥∥∥∥∥
∥∥∥∥∫ �

0
b(·, s, x(s))ds

∥∥∥∥
L2(0,T )

∥∥∥∥∥
p

E

= E

∥∥∥∥∥∥
(∫ T

0

∣∣∣∣∫ t

0
b(t, s, x(s))ds

∣∣∣∣2 dt
) 1

2

∥∥∥∥∥∥
p

E

≤ E

∥∥∥∥∥∥
(∫ T

0
sup
t∈[0,T ]

∣∣∣∣∫ t

0
b(t, s, x(s))ds

∣∣∣∣2 dt
) 1

2

∥∥∥∥∥∥
p

E
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≤ cE

∥∥∥∥∥∥ sup
t∈[0,T ]

(∣∣∣∣∫ t

0
b(t, s, x(s))ds

∣∣∣∣2
) 1

2

∥∥∥∥∥∥
p

E

≤ c

E

∥∥∥∥∥∥ sup
t∈[0,T ]

(∣∣∣∣∫ t

0
b(t, s, 0)ds

∣∣∣∣2
) 1

2

∥∥∥∥∥∥
p

E

+ E

∥∥∥∥∥∥
(∫ T

0
|x(s)|2ds

) 1
2

∥∥∥∥∥∥
p <∞

For the third part which contains a stochastic integration, we can write

E

∥∥∥∥∥
∥∥∥∥∫ �

0
ρ(·, s, x(s))dWH(s)

∥∥∥∥
L2(0,T )

∥∥∥∥∥
p

E

= E

∥∥∥∥∥∥
(∫ T

0

∣∣∣∣∫ t

0
ρ(t, s, x(s))dWH(s)

∣∣∣∣2 dt
) 1

2

∥∥∥∥∥∥
p

Lq(S)

=E

∫
S

(∫ T

0

∣∣∣∣∫ t

0
ρ(t, s, x(s))dWH(s)

∣∣∣∣2 T dtT
) q

2

dµ


p
q

since 2 ≤ q we use Jensen’s inequality for lebesgue measure dt in finite interval [0, t], therefore
above last equation is less or equal than

≤T ( q
2
−1) p

qE
(∫

S

(∫ T

0

∣∣∣∣∫ t

0
ρ(t, s, x(s))dWH(s)

∣∣∣∣q dt) dµ)
p
q

by applying Fubini’s theorem to the left term, it yields

=T
( q
2
−1) p

qE

∫ T

0

∫
S

∣∣∣∣∫ t

0
ρ(t, s, x(s))dWH(s)

∣∣∣∣q dµdt


p
q

≤T ( q
2
−1) p

q T
p
q
−1E

∫ T

0

∫
S

∣∣∣∣∫ t

0
ρ(t, s, x(s))dWH(s)

∣∣∣∣q dµ


p
q

dt


=c

∫ T

0
E

∫
S

∣∣∣∣∫ t

0
ρ(t, s, x(s))dWH(s)

∣∣∣∣q dµ


p
q

dt

=c

∫ T

0
E
∥∥∥∥∫ t

0
ρ(t, s, x(s))dWH(s)

∥∥∥∥p
E

dt

Since 2 ≤ q ≤ p we used again Jensen’s inequality for dt and Fubini’s theorem for above calcula-
tions and by using Lp-stochastic integrability Theorem A.2 and assumption (H 2), the last term
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can be estimated by

≤ c
∫ T

0
cE

∥∥∥∥∥
(∫ t

0
‖ρ(t, s, x(s))‖2H ds

) 1
2

∥∥∥∥∥
p

E

dt

≤
∫ T

0
c

{
E

∥∥∥∥∥
(∫ t

0
|%(t, s, 0))|2ds

) 1
2

∥∥∥∥∥
p

+Kp
2E

∥∥∥∥∥
(∫ t

0
|x(s)|2ds

) 1
2

∥∥∥∥∥
p}

dt

≤
∫ T

0
c

E

∥∥∥∥∥ sup
t∈[0,T ]

(∫ t

0
|%(t, s, 0))|2ds

) 1
2

∥∥∥∥∥
p

+ E

∥∥∥∥∥∥
(∫ T

0
|x(s)|2ds

) 1
2

∥∥∥∥∥∥
p dt

<∞

by combining above calculations it results E
∥∥∥∥(∫ T0 |X(t)|2ds

) 1
2

∥∥∥∥p
E

<∞. �

Lemma 2.2. For small enough value τ > 0 the map A : Mτ → Mτ is contractive where
A(x(·))(t) = X(t) given in Lemma 1 for t ∈ [0, τ ].

Proof. Let x(·), y(·) ∈Mτ and X(t), Y (t) are the processes defined by A(·) then it can be
written

‖X(·)− Y (·)‖pMτ
= E

∥∥∥∥∥
(∫ τ

0
|X(t)− Y (t)|2 dt

) 1
2

∥∥∥∥∥
p

E

and by using definition of X(·), Y (·), we have

X(t)− Y (t) = ϕ(t) +

∫ t

0
b (t, s, x(s)) ds+

∫ t

0
ρ (t, s, x(s)) dWH(s)

−
(
ϕ(t) +

∫ t

0
b (t, s, y(s)) ds+

∫ t

0
ρ (t, s, y(s)) dWH(s)

)
=

∫ t

0
(b (t, s, x(s))− b (t, s, y(s))) ds

+

∫ t

0
(ρ (t, s, x(s))− ρ (t, s, y(s))) dWH(s)

and using the norm property it results

‖X(·)− Y (·)‖pMτ
≤ c

{
E

∥∥∥∥∥
∥∥∥∥∫ �

0
(b (·, s, x(s))− b (·, s, y(s))) ds

∥∥∥∥
L2(0,τ)

∥∥∥∥∥
p

E

+ E

∥∥∥∥∥
∥∥∥∥∫ �

0
(ρ (·, s, x(s))− ρ (·, s, y(s))) dWH(s)

∥∥∥∥
L2(0,τ)

∥∥∥∥∥
p

E

}
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Now we consider every term separately. Hölder’s inequality and (H 2) assumption are used for
following equations

E

∥∥∥∥∥∥
(∫ τ

0

∣∣∣∣∫ t

0
(b (t, s, x(s))− b (t, s, y(s))) ds

∣∣∣∣2 dt
) 1

2

∥∥∥∥∥∥
p

E

≤E

∥∥∥∥∥
(∫ τ

0
t

∫ t

0
|b (t, s, x(s))− b (t, s, y(s))|2 dsdt

) 1
2

∥∥∥∥∥
p

E

≤Kp
1τ

p
2E

∥∥∥∥∥
(∫ τ

0

∫ t

0
|x(s)− y(s)|2 dsdt

) 1
2

∥∥∥∥∥
p

E

≤Kp
1τ

p
2E

∥∥∥∥∥
(∫ τ

0

∫ τ

0
|x(s)− y(s)|2 dsdt

) 1
2

∥∥∥∥∥
p

E

≤Kp
1τ

pE

∥∥∥∥∥
(∫ τ

0
|x(s)− y(s)|2 ds

) 1
2

∥∥∥∥∥
p

E

(2.3)

Similarly for the second term we can write

E

∥∥∥∥∥∥
(∫ τ

0

∣∣∣∣∫ t

0
(ρ (t, s, x(s))− ρ (t, s, y(s))) dWH(s)

∣∣∣∣2 dt
) 1

2

∥∥∥∥∥∥
p

E

=E

∫
S

∣∣∣∣∣
∫ τ

0

∣∣∣∣∫ t

0
(ρ (t, s, x(s))− ρ (t, s, y(s))) dWH(s)

∣∣∣∣2 dt
∣∣∣∣∣
q
2

dµ


p
q

≤τ ( q
2
−1) p

qE

∫
S

∫ τ

0

∣∣∣∣∫ t

0
(ρ (t, s, x(s))− ρ (t, s, y(s))) dWH(s)

∣∣∣∣q dtdµ


p
q

=τ
( q
2
−1) p

qE

∫ τ

0

∫
S

∣∣∣∣∫ t

0
(ρ (t, s, x(s))− ρ (t, s, y(s))) dWH(s)

∣∣∣∣q dµdt


p
q

≤τ ( q
2
−1) p

q τ
p
q
−1E

∫ τ

0

∫
S

∣∣∣∣∫ t

0
(ρ (t, s, x(s))− ρ (t, s, y(s))) dWH(s)

∣∣∣∣q dµ


p
q

dt

=τ
p
2
−1

∫ τ

0
E
∥∥∥∥∫ t

0
(ρ (t, s, x(s))− ρ (t, s, y(s))) dWH(s)

∥∥∥∥p
E

dt

Several times Jensen’s inequality for Lebesgue measure in finite interval and Fubini’s theorem
were used for above relations and we use now the Lp-stochastic integrablity Theorem A.2 for
stochastic integral, so it results that, the last term is smaller than

τ
p
2
−1

∫ τ

0
cE

∥∥∥∥∥
(∫ t

0
‖% (t, s, x(s))− % (t, s, y(s))‖2H ds

) 1
2

∥∥∥∥∥
p

E

dt
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and by using assumption (H 2) it leads that it is smaller or equal than

τ
p
2
−1

∫ τ

0
cKp

2 E

∥∥∥∥∥
(∫ t

0
|x(s)− y(s)|2H ds

) 1
2

∥∥∥∥∥
p

E

dt

= cτ
p
2Kp

2 E

∥∥∥∥∥
(∫ τ

0
|x(s)− y(s)|2 ds

) 1
2

∥∥∥∥∥
p

E

Now by combining above results, it holds

‖X(·)− Y (·)‖pMτ
≤
(
Kp

1τ
p + cKp

2τ
p
2

)
‖x(·)− y(·)‖pMτ

by taking τ small enough it results that A :Mτ →Mτ is contractive.
�

Theorem 2.1. By assumptions (H 0), (H 1), (H 2) and (H 3), FSVIE (2.1) has a unique
adapted solution X(·) ∈MT .

Proof. By using Lemma 1 and Lemma 2, it is clear the map A defined in Lemma 1 con-
tractive in the interval [0, τ ] then by using Banach fixed-point theorem in complete space Mτ ,
there exists a unique solution in the interval [0, τ ] and by induction to the whole interval [0, T ]

we can find the unique solution X(t) in [0, T ]. �

2.2. Path Continuity

In this section we want to consider path continuity of the solution derived in theorem (2.1). For
this reason let the following assumptions hold:

(G 1) there exists positive constants K3,K4,K5 such that for every t1, t2 ∈ [0, T ]

|ϕ(t1)− ϕ(t2)| ≤ K3|t1 − t2|

|b(t1, s, x)− b(t2, s, x)| ≤ K4|t1 − t2|

‖%(t1, s, x)− %(t2, s, x)‖H ≤ K5|t1 − t2|

(G 2)

E

∥∥∥∥∥∥
(∫ T

0
|ϕ(t)|4ds

) 1
4

∥∥∥∥∥∥
p

E

<∞

E

∥∥∥∥∥∥
(∫ T

0
|X(t)|4ds

) 1
4

∥∥∥∥∥∥
p

E

<∞

E

∥∥∥∥∥ sup
t∈[0,T ]

(∫ t

0
|b(t, s, 0)|4ds

) 1
4

∥∥∥∥∥
p

E

<∞

E

∥∥∥∥∥ sup
t∈[0,T ]

(∫ t

0
‖%(t, s, 0)‖4H ds

) 1
4

∥∥∥∥∥
p

E

<∞

In the following we write ‖ · ‖ instead of ‖ · ‖E .
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Lemma 2.3. If q ≥ 4 and assumptions (H 0), (H 1), (H 2) and (H 3) hold, then the assumptions
(G 2) hold.

Proof. By using Jensen’s inequality and Fubini’s theorem, we can write for example

E

∥∥∥∥∥∥
(∫ T

0
|X(t)|4dt

) 1
4

∥∥∥∥∥∥
p

E

= E

∫
S

(∫ T

0
|X(t)|4dt

) q
4

dµ


p
q

≤ T ( q
4
−1) p

qE

∫
S

∫ T

0
|X(t)|qdt dµ


p
q

= T
( p
4
− p
q

)E

∫ T

0

∫
S

|X(t)|qdµ dt


p
q

≤ T ( p
4
− p
q

)
T

( p
q
−1)E

∫ T

0

∫
S

|X(t)|qdµ


p
q

dt


= T ( p

4
−1)

∫ T

0
E

∫
S

|X(t)|qdµ


p
q

dt = c

∫ T

0
E ‖X(t)‖p dt <∞

since from Lemma(1) X(·) ∈ Lp(Ω;E). By using similar calculations, assumptions (G 2) hold.
�

Theorem 2.2. Let µ is a finite measure over (S,Σ) and assumptions (H 0), (H 1), (H 2),
(H 3), (G 1) and (G 2) hold then the solution of FSVIE equation(2.1) has continuous path in
E = Lq(S,S, µ) for some p.

Proof. We use Kolmogrov’s continuity theorem and show that for all t, s ∈ [0, T ], E‖Xt −
Xs‖α ≤ D |t− s|1+β holds for some constants α,D, β > 0.
Let t1, t2 ∈ [0, T ] and t1 < t2.

E ‖X(t2)−X(t1)‖pE =

E
∥∥∥∥ϕ(t2) +

∫ t2

0
b (t2, s,X(s)) ds+

∫ t2

0
ρ (t2, s,X(s)) dWH(s)

−
(
ϕ(t1) +

∫ t1

0
b (t1, s,X(s)) ds+

∫ t1

0
ρ (t1, s,X(s)) dWH(s)

)∥∥∥∥p
E

by using the norm property this is smaller or equal than

cE ‖ϕ(t2)− ϕ(t1)‖pE

+ cE
∥∥∥∥∫ t1

0
(b (t2, s,X(s))− b (t1, s,X(s))) ds+

∫ t2

t1

b (t2, s,X(s)) ds

∥∥∥∥p
E

+ cE
∥∥∥∥∫ t1

0
(ρ(t2, s,X(s))− ρ(t1, s,X(s))) dWH(s) +

∫ t2

t1

ρ(t2, s,X(s))dWH(s)

∥∥∥∥p
Now we consider every summands separately. For the first part by using the assumptions

E ‖ϕ(t2)− ϕ(t1)‖p ≤ Kp
3 |t2 − t1|

p
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Again by using the norm property we can split the second part in two terms as follows

E
∥∥∥∥∫ t1

0
(b(t2, s,X(s))− b(t1, s,X(s))) ds

∥∥∥∥p
E

≤Kp
4E
∥∥∥∥∫ t1

0
(t2 − t1)) ds

∥∥∥∥p
E

= Kp
4 |t2 − t1|

p

(2.4)

and similar for second term of second part it can be written

E
∥∥∥∥∫ t2

t1

b(t2, s,X(s))ds

∥∥∥∥p ≤ E

∥∥∥∥∥
(∫ t2

t1

ds

) 3
4
(∫ t2

t1

|b(t2, s,X(s))|4ds
) 1

4

∥∥∥∥∥
p

E

≤c(t2 − t1)
3p
4

{
E

∥∥∥∥∥
(∫ t2

t1

|b(t2, s, 0)|4
) 1

4

∥∥∥∥∥
p

E

+ E

∥∥∥∥∥
(∫ t2

t1

|X(s)|4
) 1

4

∥∥∥∥∥
p

E

}

≤c(t2 − t1)
3p
4

E

∥∥∥∥∥∥
(

sup
t∈[0,T ]

∫ t

0
|b(t, s, 0)|4

) 1
4

∥∥∥∥∥∥
p

E

+ E

∥∥∥∥∥∥
(∫ T

0
|X(s)|4

) 1
4

∥∥∥∥∥∥
p

E


≤c(t2 − t1)

3p
4

For the stochastic integral part, after using the norm property, it yields to two parts and we
consider these terms one by one. Lp-stochastic integrability Theorem A.2 and Hölder’s inequality
will be applied.

E
∥∥∥∥∫ t1

0
(ρ(t2, s,X(s))− ρ(t1, s,X(s))) dWH(s)

∥∥∥∥p
E

≤ cE

∥∥∥∥∥
(∫ t1

0
‖%(t2, s,X(s))− %(t1, s,X(s))‖2H ds

) 1
2

∥∥∥∥∥
p

E

≤ cKp
5E

∥∥∥∥∥
(∫ t1

0
(t2 − t1)2ds

) 1
2

∥∥∥∥∥
p

≤ cKp
5 t

p
2
1 (t2 − t1)p

and similar for another term, it yields

E
∥∥∥∥∫ t2

t1

ρ(t2, s,X(s))WH(s)

∥∥∥∥p
E

≤cE

∥∥∥∥∥
(∫ t2

t1

‖%(t2, s,X(s))‖2H ds
) 1

2

∥∥∥∥∥
p

E

≤cE

∥∥∥∥∥
(∫ t2

t1

ds

) 1
4
(∫ t2

t1

‖%(t2, s,X(s))‖4H ds
) 1

4

∥∥∥∥∥
p

E

≤c|t2 − t1|
p
4E

∥∥∥∥∥
(∫ t2

t1

‖%(t2, s,X(s))‖4H ds
) 1

4

∥∥∥∥∥
p

E
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≤c|t2 − t1|
p
4

{
E

∥∥∥∥∥
(∫ t2

t1

‖%(t2, s, 0)‖4H
) 1

4

∥∥∥∥∥
p

E

+ E

∥∥∥∥∥
(∫ t2

t1

|X(s)|4
) 1

4

∥∥∥∥∥
p

E

}

≤c|t2 − t1|
p
4

E

∥∥∥∥∥∥
(

sup
t∈[0,T ]

∫ t

0
‖%(t, s, 0)‖4H

) 1
4

∥∥∥∥∥∥
p

E

+ E

∥∥∥∥∥∥
(∫ T

0
|X(s)|4

) 1
4

∥∥∥∥∥∥
p

E


≤c|t2 − t1|

p
4

by gathering all above results, it yields

E ‖X(t2)−X(t1)‖pE

≤c1(t2 − t1)p + c2t
p
1(t2 − t1)p + c3(t2 − t1)

3p
4 + c4t

p
2
1 (t2 − t1)p + c5(t2 − t1)

p
4

≤c|t2 − t1|
p
4

By taking α = p > 4 the continuity property in Kolmogrov’s theorem is satisfied.
�

Remark 2.1. It is essential for path continuity in theorem 2.2 that the µ be finite measure. But in
the case of only σ-finite measure we could have also path continuity by changing our assumptions
in (G 1). It is needed that our positive constants will be elements of E, as given followingly.

Let following assumption holds:

(G′ 1) there exist functions k3(·), k4(·), k5(·) ∈ E such that for every t1, t2 ∈ [0, T ] and η ∈ S,

|ϕ(t1, η)− ϕ(t2, η)| ≤ k3(η)|t1 − t2|

|b(t1, s, x, η)− b(t2, s, x, η)| ≤ k4(η)|t1 − t2|

‖%(t1, s, x, η)− %(t2, s, x, η)‖H ≤ k5(η)|t1 − t2|

Theorem 2.3. If assumptions (H 0), (H 1), (H 2), (H 3) and (G′ 1), (G 2) hold and µ is a
σ-finite measure then the solution of FSVIE Equation(2.1) has continuous path in E for some
p > 4.

Proof. By using similar method in proof of Theorem 2.2, the theorem can be easily proved.
For example if we assume the Formula (2.4) and apply assumption (G′1), it yields

E
∥∥∥∥∫ t1

0
(b(t2, s,X(s))− b(t1, s,X(s))) ds

∥∥∥∥p
E

≤E
∥∥∥∥∫ t1

0
k4(·) |t2 − t1| ds

∥∥∥∥p
E

≤ ‖k4(·)‖pE |t2 − t1|
p ≤ c|t2 − t1|p

and so on the goal is resulted by Kolgomrov’s continuity theorem. �

Remark 2.2. Theorem 2.1 is also true in the case of µ(S) < ∞ if we introduce the following
assumptions:
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let H0 be the set of all measurable functions κ : ∆ −→ R+ with t −→
t∫

0

κ(t, s)ds ∈ L∞(0, T ) and

lim sup
ε↓0

∥∥∥∥ �+ε∫
�
κ(·+ t, s)ds

∥∥∥∥
L∞(0,T )

= 0

(H 0 ′) we assume for κ1, κ2 ∈ H0 and

ess sup
t∈[0,T ]

t∫
0

κ2
i (t, s)ds <∞

and

ess sup
t∈[0,T ]

t∫
0

(κ2
1(t, s) + κ2

2(t, s))E‖ϕ(s)‖2E <∞

(H 1 ′) for all t, s ∈ [0, T ] and x, y ∈ R

|b(t, s, x)− b(t, s, y)| ≤ κ1(t, s)|x− y|,

‖%(t, s, x)− %(t, s, y)‖H ≤ κ2(t, s)|x− y|

(H 2 ′) for all t, s ∈ [0, T ] and x ∈ R

|b(t, s, x)| ≤ κ1(t, s)(|x|+ 1),

‖%(t, s, x)‖H ≤ κ2(t, s)(|x|+ 1)

These conditions are similar to Zhang [41].
If we substitute (H 2 ′) by

(H 2 ′′) for all t, s ∈ [0, T ] and x ∈ R

|b(t, s, x)| ≤ κ1(t, s)(|x|),

‖%(t, s, x)‖H ≤ κ2(t, s)(|x|)

then Theorem 2.1 holds also for a σ-finite measure space (S,Σ, µ).
If x, y ∈ E then we get from (H 1 ′) and (H 2 ′) for all t, s ∈ [0, T ]

(H 1 ′′)
‖b(t, s, x)− b(t, s, y)‖E ≤ κ1(t, s)‖x− y‖E ,

‖‖%(t, s, x)− %(t, s, y)‖H‖E ≤ κ2(t, s)‖x− y‖E
(H 2 ′′)

‖b(t, s, x)‖E ≤ κ1(t, s)(‖x‖E + 1),

‖‖%(t, s, x)‖H‖E ≤ κ2(t, s)(‖x‖E + 1).
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Exemplary we consider the second term (2.2) in the proof of Lemma 2.1

E
∥∥∥∥∫ t

0
b(t, s, x(s))ds

∥∥∥∥p ≤ E
∥∥∥∥∫ t

0
κ1(t, s)(|x(s)|+ 1)2ds

∥∥∥∥p
≤ E

∥∥∥∥∥
(∫ t

0
κ2

1(t, s)ds

) 1
2
(∫ t

0
|x(s) + 1|2 ds

) 1
2

∥∥∥∥∥
p

≤
(∫ t

0
κ2

1(t, s)ds

) p
2

{
c
√
tµ(S) + E

∥∥∥∥∥
(∫ t

0
κ2

1(t, s)ds

∫ t

0
|x(s)|2ds

) 1
2

∥∥∥∥∥
p}

≤

(
ess sup
t∈[0,T ]

∫ t

0
κ2

1(t, s)ds

) p
2

c√Tµ(S) + E

∥∥∥∥∥∥
(∫ T

0
|x(s)|2ds

) 1
2

∥∥∥∥∥∥
p

and in the proof of Lemma 2.2 for (2.3) we have

E

∥∥∥∥∥∥
(∫ τ

0

∣∣∣∣∫ t

0
(b (t, s, x(s))− b (t, s, y(s))) ds

∣∣∣∣2 dt
) 1

2

∥∥∥∥∥∥
p

E

≤ E

∥∥∥∥∥∥
(∫ τ

0

∣∣∣∣∫ t

0
κ1(t, s) |x(s)− y(s)| ds

∣∣∣∣2 dt
) 1

2

∥∥∥∥∥∥
p

E

≤ E

∥∥∥∥∥
(∫ τ

0

(∫ t

0
κ2

1(t, s)ds

∫ t

0
|x(s)− y(s)|2 ds

)
dt

) 1
2

∥∥∥∥∥
p

E

≤

(
ess sup
t∈[0,T ]

∫ t

0
κ2

1(t, s)ds

) p
2

E

∥∥∥∥∥
(∫ τ

0

(∫ t

0
|x(s)− y(s))|2 ds

)
dt

) 1
2

∥∥∥∥∥
p

E

≤ τ
p
2

(
ess sup
t∈[0,T ]

∫ t

0
κ2

1(t, s)ds

) p
2

E

∥∥∥∥∥
(∫ τ

0
|x(s)− y(s)|2 ds

) 1
2

∥∥∥∥∥
p

E

2.3. Examples

In this section as examples, we consider some forms of stochastic heat equation with homogeneous
Dirichlet boundary conditions in Banach space E = Lq(0, 1), q ≥ 2.

2.3.1. Linear Heat Equation with Additive Noise. In first example consider the fol-
lowing stochastic heat equation with additive noise

dX(t, ξ) = ∆X(t, ξ)dt+ φdWH(t), t ∈ [0, T ], ξ ∈ (0, 1)

X(0, ξ) = X0(ξ), ξ ∈ (0, 1), X0(·) ∈ LpF0
(Ω;E)

X(t, 0) = X(t, 1) = 0, t ∈ [0, T ]

(2.5)

where ∆ is Laplacian and H = L2(0, 1). We also assume that φ ∈ γ(L2(0, 1);Lq(0, 1)) is γ-
Radonifying operator.
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By these assumptions we define above given heat equation as following stochastic evolution
equation in Theorem 1.1 [24]{

dX(t) = AX(t)dt+ φdWH(t), t ∈ [0, T ],

X(0) = X0

where A is Dirichlet Laplacian operator on E and it generates analytic C0-semigroup S(t) By
using Theorem 1.1 [24] we can find an unique mild solution which satisfies following equation

X(t) = S(t)X0 +

∫ t

0
S(t− s)φdWH(s), t ∈ [0, T ] (2.6)

We can reformulate Equation (2.6) as following FSVIE

X(t) = ϕ(t) +

∫ t

0
ρ (t, s,X(s)) dWH(s), t ∈ [0, T ]

where ρ (t, s,X(s)) ≡ S(t− s)φ, ϕ(t) = S(t)X0 and obviously b(t, s,X(s)) ≡ 0. Correspondingly
Equation (2.6) is an example of a FSVIE and Theorem 2.1 shows, that (2.6) has a unique solution
process inMT .

2.3.2. Linear Heat Equation with Multiplicative Noise. Let the following stochastic
heat equation with multiplicative noise is given

dX(t, ξ) = ∆X(t, ξ) + ψX(t, ξ)dWH(t), t ∈ [0, T ], ξ ∈ (0, 1)

X(0, ξ) = X0(ξ), ξ ∈ (0, 1), X0(·) ∈ E
X(t, 0) = X(t, 1) = 0, t ∈ [0, T ]

(2.7)

where ∆ is Laplacian and ψ ∈ L(E; γ(H;E)). Similar previous section it can be reformulated as{
dX(t) = AX(t)dt+B(t,X(t))dWH(t), t ∈ [0, T ],

X(0) = X0

where A is Dirichlet Laplacian operator on E and it generates analytic C0-semigroup S(t), and
B(t,X(t)) := ψX(t).
The assumptions in Theorem 1.1 [24] are again satisfied and there exist a unique mild solution
which satisfies following equation

X(t) = S(t)X0 +

∫ t

0
S(t− s)ψX(s)dWH(s), t ∈ [0, T ] (2.8)

Equation (2.8) can be written as following FSVIE

X(t) = ϕ(t) +

∫ t

0
b (t, s,X(s)) ds+

∫ t

0
ρ (t, s,X(s)) dWH(s), t ∈ [0, T ]

where ϕ(t) = S(t)X0, b (t, s,X(s))) ≡ 0 and ρ (t, s,X(s))) ≡ S(t − s)ψX(s). It follows from
Theorem 2.1, that (2.8) has a unique solution process inMT .
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2.3.3. Stochastic Heat Equation with Lipschitz Nonlinearities. We introduce
dX(t, ξ) = ∆X(t, ξ) + F (X(t, ξ))dt+G(X(t, ξ))dWH(t), t ∈ [0, T ], ξ ∈ (0, 1)

X(0, ξ) = X0(ξ), ξ ∈ (0, 1), X0(·) ∈ E
X(t, 0) = X(t, 1) = 0, t ∈ [0, T ]

and define the solution in the sence of mild solution, that is

X(t) = S(t)X0 +

∫ t

0
S(t− s)F (X(s))ds+

∫ t

0
S(t− s)G(X(s))dWH(s), t ∈ [0, T ]

(2.9)

where S(t) (t ∈ [0, T ]) is the C0-semigroup of the last examples.
We assume that there is a constant L > 0 and F : R −→ R with F (0) = 0 and |F (x)− F (y)| ≤
L|x − y| for all x, y ∈ R, moreover G : R −→ H with G(0) = 0, ‖G(x) − G(y)‖H ≤ L|x − y|
for all x, y ∈ R. Obviously the assumption of Theorem 2.1 are fulfilled if we set ϕ(t) = S(t)X0,
b(t, s,X(s) = S(t− s)F (X(s)) and ρ(t, s,X(s) = S(t− s)G(X(s)).

2.4. More Smoothness of the Solution Process of 2.3.3

In general the mild solution is not a strong solution, where a strong solution of (2.9) is defined
by X(t) ∈ D(A) and

X(t) = X0 +

∫ t

0
(AX(s) + F (X(s)))ds+

∫ t

0
G(X(s))dWH(s), t ∈ [0, T ]

for all t ∈ [0, T ] with the probability one.
Let A be the generator of an analytical C0-semigroup (S(t))t≥0 in a Banach space E. Then it
is possible to define the fractional power1 A−α for α > 0 and Aα = (A−α)−1 for α > 02. If
α ∈ (0, 1) then explicit formula for Aαx (x ∈ D(A) ⊂ D(Aα)) is known3. The operator norm of
A−α is bounded4. Aα is a closed operator with following domain5

D(Aα) = R(A−α), D(Aα) = E. (2.10)

If additionally 0 ∈ ρ(A), then6 the operator AαS(t) is bounded for every t > 0 and ‖AαS(t)‖ ≤
Mαt

−αe−θt.
We consider F and G as defined in previous section 2.3.3 and want to choose conditions such
that at least X(t) ∈ D(Aα). We introduce for α ∈ (0, 1

2) and X0 ∈ D(Aα) the following FSVIE

Y (t) =AαS(t)X0 +

∫ t

0
AαS(t− s)F (A−αY (s))ds

+

∫ t

0
AαS(t− s)G(A−αY (s))dWH(s), t ∈ [0, T ]

(2.11)

1see formula (6.9) page 70 in [29]
2Definition 6.7 page 72 in [29]
3formula (6.16) page 72 in [29]
4Lemma 6.3 page 71 in [29]
5Theorem 6.8 page 72 in [29]
6Theorem 6.13 page 74 in [29]
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Obviously the condition of Remark 2.2 are fulfilled with κ1(t, s) = κ2(t, s) = 1
(t−s)α for α ∈ (0, 1

2).
If we apply A−α on both sides of (2.11) then we have following equation since A−α is linear and
bounded

A−αY (t) = S(t)X0 +

∫ t

0
S(t− s)F (A−αY (s))ds+

∫ t

0
S(t− s)G(A−αY (s))dWH(s),

t ∈ [0, T ].

(2.12)

Here we set X(t) := A−αY (t) then we get with (2.10) that X(t) ∈ D(Aα).



CHAPTER 3

Backward Stochastic Volterra Integral Equation

In this chapter we introduce backward stochastic Volterra integral equation (BSVIE) in Banach
space E = Lq(S,Σ, µ) with respect to a H-cylindrical Brownian motion. We are going to find
unique adapted solution.

3.1. A Special BSVIE

First we consider the following simple BSVIE in Banach space E = Lq(S,Σ, µ) where 1 < q ≤ 2

and µ is a σ-finite measure,

Y (t) = ϕ(t)−
∫ T

t
Z(t, s)dWH(s) , t ∈ [0, T ] (3.1)

where ϕ(·) is given with E

(
sup
t∈[0,T ]

‖ϕ(t)‖p
)
<∞, 1 < p ≤ q ≤ 2 and ϕ(t) is FHT -measurable, FHt

is the σ-algebra generated by WH(s) (H-cylindrical Brownian motion) s ≤ t. We are interested
in finding unique adapted solution (Y (t), Z(t, s)) where Z(t, s) is linear bounded operator which
operates followingly Z(t, ·) : Ω×[0, T ] −→ L(H;E) and Z(t, s) is FHs -measurable for s ≤ t . Since

E

(
sup
t∈[0,T ]

‖ϕ(t)‖p
)
< ∞, we have especially E‖ϕ(t)‖p < ∞,∀t ∈ [0, T ] and E

(∫ T
0 ‖ϕ(t‖pdt

)
<

∞. By using Hölder inequality it yields that E‖ϕ(t)‖ <∞, ∀t ∈ [0, T ]. Therefore the conditional
expectation could be defined as

ψt(r) := E
(
ϕ(t)|FHr

)
∀t ∈ [0, T ], 0 ≤ r ≤ T (3.2)

ψt(r) is only Fr-measurable and is a Lp-martingale with respect to r (for simplicity we set
Fr := FHr ), because

E‖ψt(r)‖p = E‖E (ϕ(t)|Fr) ‖p ≤ E(E{‖ϕ(t)‖p|Fr}) = E‖ϕ(t)‖p <∞

and for s < r

E(ψt(r)|Fs) = E(E(ϕ(t)|Fr)|Fs) = E(ϕ(t)|Fs) = ψt(s).

Now we can use martingale representation theorem in Banach spaces, Theorem A.6. Then we
can find a unique Xt ∈ LpF

(
Ω; γ

(
L2(0, T ;H), E

))
such that

ψt(r) = E(ψt(r)) + IWH (ξXt(r))

where for f ∈ H, ξXt(r, ω)f := (X(t, ω))(1[0,r]f) and IWH is the integral process for ξXt , IWH :

r −→ IWH (ξXt(r)). In especial case, for example when E is cotype-2 Definition A.4 then this
integral process is represented by a Lp-stochastically integrable process Zt(·) that is unique and

21
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we have
IWH (ξXt(r)) =

∫ r

0
Zt(s)dW

H(s).

For simplicity we denote Zt(s) := Z(t, s). In our case E = Lq(S,Σ, µ), 1 < q ≤ 2, this space
is cotype-2 then we can find unique process Z(t, s) ∈ Lp(Ω;L2(0, T ; γ(H,E))) and moreover we
can use Theorem A.3, Theorem A.2, we can find Z : Ω × [0, T ] × S −→ H such that ∀h ∈ H,
(Zt(s)h)(·) = [Zt(s, ·), h]H is the element in E ([·, ·]H is inner product in Hilbert space H) and

E
∥∥∥∥(∫ T0 ‖Zt(s, ·)‖2Hds) 1

2

∥∥∥∥p
E

< ∞. The Theorem A.2 indicates that the Zt is Lp-stochastically

integrable with respect to WH if and only if

E

∥∥∥∥∥∥
(∫ T

0
‖Zt(s, ·)‖2Hds

) 1
2

∥∥∥∥∥∥
p

E

<∞

and we have

E
∥∥∥∥∫ T

0
Zt(s)dW

H(s)

∥∥∥∥p
E

' E

∥∥∥∥∥∥
(∫ T

0
‖Zt(s, ·)‖2Hds

) 1
2

∥∥∥∥∥∥
p

E

,

where ' is defined by

Definition 3.1. Let A ' B if and only there exists positive constants c, C which depend on E,
p, such that cB ≤ A ≤ CB.

Again for simplicity we write Zt(s) := Z(t, s) similar to Zt(s) := Z(t, s). Therefore we have now

ψt(r) = E(ϕ(t)) +

∫ r

0
Z(t, s)dWH(s)

by letting r = T it yields

E(ϕ(t)|FT ) = E(ϕ(t)) +

∫ T

0
Z(t, s)dWH(s)

and since ϕ(t) is FT measurable

ϕ(t) = E(ϕ(t)) +

∫ T

0
Z(t, s)dWH(s).

We can write

E(ϕ(t)) +

∫ t

0
Z(t, s)dWH(s) = ϕ(t)−

∫ T

t
Z(t, s)dWH(s)

by defining Y (t) as Y (t) = E(ϕ(t)) +
∫ t

0 Z(t, s)dWH(s) for t ∈ [0, T ] it results that Y (t) is
Ft-adapted process and (Y (·), Z(·, ·)) is an adapted solution for BSVIE. This pair has following
properties∫ T

0
Z(t, s)dWH(s) = ϕ(t)− E(ϕ(t))

E
∥∥∥∥∫ T

0
Z(t, s)dWH(s)

∥∥∥∥p = E ‖ϕ(t)− E(ϕ(t))‖p ≤ c(E‖ϕ(t)‖p + E‖E(ϕ(t)‖p)
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by Jensen’s inequality it yields

E
∥∥∥∥∫ T

0
Z(t, s)dWH(s)

∥∥∥∥p ≤ c(E‖ϕ(t)‖p + EE(‖ϕ(t)‖p) ≤ cE‖ϕ(t)‖p

and we have

E

∥∥∥∥∥∥
(∫ T

0
‖Z(t, s)‖2Hds)

) 1
2

∥∥∥∥∥∥
p

≤ cE‖ϕ(t)‖p.

By construction Y (t) is Ft adapted then we can write

E(Y (t)|Ft) = E
((

ϕ(t)−
∫ T

t
Z(t, s)dWH(s)

)∣∣∣∣Ft)
Y (t) = E(ϕ(t)|Ft)− E

(∫ T

t
Z(t, s)dWH(s)

)
= E(ϕ(t)|Ft)

and

E‖Y (t)‖p = E ‖E(ϕ(t)|Ft)‖p ≤ E (E {‖ϕ(t)‖p|Ft}) = E‖ϕ(t)‖p <∞

it yields by using of assumptions on ϕ(·)

E
(∫ T

0
‖Y (t)‖pdt

)
≤ E

(
sup
t∈[0,T ]

‖ϕ(t)‖p
)
<∞

then Y (·) ∈ LpF(Ω× [0, T ];E), Z(·, ·) ∈ LpF
(
Ω× [0, T ]; γ

(
L2(0, T ;H), E

))
and

Z(·, ·) ∈ LpF
(
Ω× [0, T ];Lq

(
S, L2(0, T ;H)

))
. Also we can get

sup
t∈[0,T ]

‖Y (t)‖p ≤ E

(
sup
t∈[0,T ]

‖ϕ(t)‖p|Ft

)
and

E

(
sup
t∈[0,T ]

‖Y (t)‖p
)
≤ E

(
sup
t∈[0,T ]

‖ϕ(t)‖p
)
<∞.

By putting these results together, it yields

E

(
sup
t∈[0,T ]

‖Y (t)‖p
)

+ E

(∫ T

0

∥∥∥∥∫ T

0
Z(t, s)dWH(s)

∥∥∥∥p dt
)

≤ E

 sup
t∈[0,T ]

‖Y (t)‖p + c

∫ T

0

∥∥∥∥∥∥
(∫ T

0
‖Z(t, s)ds‖2H

) 1
2

∥∥∥∥∥∥
p

dt


≤ cE

(
sup
t∈[0,T ]

‖ϕ(t)‖p
)
.

(3.3)
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Following inequalities can be also resulted

E
(∫ T

0
‖Y (t)‖pdt

)
+ E

(∫ T

0

∥∥∥∥∫ T

0
Z(t, s)dWH(s)

∥∥∥∥p dt
)

≤ E

∫ T

0
‖Y (t)‖pdt+ c

∫ T

0

∥∥∥∥∥∥
(∫ T

0
‖Z(t, s)ds‖2H

) 1
2

∥∥∥∥∥∥
p

dt


≤ cE

(∫ T

0
‖ϕ(t)‖pdt

)
≤ cE

(
sup
t∈[0,T ]

‖ϕ(t)‖p
)

We show now the uniqueness of the solution. Let (Y (·), Z(·, ·)) and (Ȳ (·), Z̄(·, ·)) be solutions of
BSVIE (3.1), then we have

Y (t)− Ȳ (t) = −
∫ T

t

(
Z(t, s)− Z̄(t, s)

)
dWH(s)

by letting δY (·) := Y (·) − Ȳ (·) and δZ(·, ·) := Z(·, ·) − Z̄(·, ·) and δZ(·, ·) := Z(·, ·) − Z̄(·, ·), and
we get the following BSVIE

δY (t) = −
∫ T

t
δZ(t, s)dWH(s)

and we set for this problem the process ϕ(t) is 0, then from Equation(3.3)

E

(
sup
t∈[0,T ]

‖δY (t)‖p
)

+ E

(∫ T

0

∥∥∥∥∫ T

0
δZ(t, s)dWH(s)

∥∥∥∥p dt
)

≤ E

 sup
t∈[0,T ]

‖δY (t)‖p + c

∫ T

0

∥∥∥∥∥∥
(∫ T

0

∥∥∥δZ(t, s)ds
∥∥∥2

H

) 1
2

∥∥∥∥∥∥
p

dt


≤ 0

subsequently δY (·) = 0 a.s. , δZ(·, ·) = 0 a.s and Z(·, ·) ≡ Z̄(·, ·) a.s.

3.2. A More General BSDE

We consider a more general case but important backward stochastic differential equation (BSDE)
defined by the following equation

Y (t) = X +

∫ T

t
f(s, Y (s), Z(s))ds−

∫ T

t
Z(s)dWH(s), t ∈ [0, T ]

where X is FT -measurable is given with E‖X‖pE <∞,

Z : Ω× [0, T ] −→ L(H,E)

Y : Ω× [0, T ] −→ E

and the generator function f is given as follows

f : Ω× [0, T ]× E × E × S −→ E
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by using the stochastic integrability Theorems A.3, A.2 we can let

Z : Ω× [0, T ]× S −→ H

is strongly measurable function such that for all h ∈ H and t ∈ [0, T ] (Z(t)h)(·) = [Z(t, ·), h]H ,
and by this definition f could be defined as

f : Ω× [0, T ]× E ×H × S −→ E

and the BSDE can be written following

Y (t) = X +

∫ T

t
f(s, Y (s),Z(s))ds−

∫ T

t
Z(s)dWH(s), t ∈ [0, T ] (3.4)

We assume following assumptions

(H1) f is Ft-adapted and E
∥∥∥∫ T0 |f(t, 0, 0, ·)|dt

∥∥∥p <∞
(H2) ∀t ∈ [0, T ], y, ȳ ∈ R, z, z̄ ∈ H,

|f(t, y, z, .)− f(t, ȳ, z̄, .)| ≤ Ly(t)|y − ȳ|+ Lz(t)‖z− z̄‖H

where Ly(·) ∈ L∞(0, T ) and Lz(·) are positive deterministic functions such that∫ T
0 Lz(t)

2+εdt <∞ for ε > 0.

We define following space

Hp[R,S] := LpF ([R,S]× Ω;E)× LpF
(
Ω;Lq

(
S;L2([R,S];H)

))
this space is a Banach space with the equipped norm

‖(Y (·),Z(·))‖Hp[R,S] :=

E

(
sup

t∈[R,S]
‖Y (t)‖pE

)
+ E

∥∥∥∥∥∥
(∫ S

R
‖Z(s, ·)‖2Hds

) 1
2

∥∥∥∥∥∥
p

E


1
p

Proposition 3.1. Let (H1) and (H2) hold, if X ∈ Lp(Ω;E) then BSDE (3.4) admits an
unique solution (Y (·),Z(·)) ∈ Hp[0, T ] correspondingly (Y (·), Z(·)), where ∀h ∈ H, (Z(t)h)(·) =

[Z(t, ·), h]H inE, and we have following estimate

E

(
sup
t∈[0,T ]

‖Y (t)‖p
)

+ E

∥∥∥∥∥∥
(∫ T

0
‖Z(s, ·)‖2Hds

) 1
2

∥∥∥∥∥∥
p

≤ cE

{
‖X‖p +

∥∥∥∥∫ T

0
|f(s, Y (s),Z(s), ·)|ds

∥∥∥∥p
}

≤ cE

{
‖X‖p +

∥∥∥∥∫ T

0
|f(s, 0, 0, ·)|ds

∥∥∥∥p
}

Proof. Let (y(·), z(·)) ∈ Hp[0, T ], we want to find the unique solution (Y (·), Z(·, ·)) for the
following special backward equation

Y (t) = X +

∫ T

t
f(s, y(s), z(s))ds−

∫ T

t
Z(s)dWH(s), t ∈ [0, T ] (3.5)
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Then first we have to show E
∥∥∥∫ T0 f(s, y(s), z(s), ·)ds

∥∥∥P <∞. We can write by using the Lipschitz
condition in (H2)

E
∥∥∥∥∫ T

0
f(s, y(s), z(s), ·)ds

∥∥∥∥p
≤ E

∥∥∥∥∫ T

0
|f(s, y(s), z(s), ·)− f(s, 0, 0, ·) + f(s, 0, 0, ·)|ds

∥∥∥∥p
≤ c

{
E
∥∥∥∥∫ T

0
|f(s, 0, 0, ·)|ds

∥∥∥∥p + E
∥∥∥∥∫ T

0
Ly(s)|y(s)|ds

∥∥∥∥p

+E
∥∥∥∥∫ T

0
Lz(s)‖z(s)‖Hds

∥∥∥∥p
}

the norm property and Young inequality were used. Now consider every part of the last terms
of above inequality, by assumptions E

∥∥∥∫ T0 |f(s, 0, 0, ·)|ds
∥∥∥p <∞, for the second part we have

E
∥∥∥∥∫ T

0
Ly(s)|y(s)|ds

∥∥∥∥p ≤cE∥∥∥∥∫ T

0
|y(s)|ds

∥∥∥∥p

=cE

∫
S

(∫ T

0
|y(s)|ds

)q
dµ


p
q

≤cT (q−1) p
qE

∫
S

∫ T

0
|y(s)|qdsdµ


p
q

=cT
(q−1) p

qE

∫ T

0

∫
S

|y(s)|qdµds


p
q

≤cT pE

 sup
s∈[0,T ]

∫
S

|y(s)|qdµ


p
q

=cT pE

(
sup
s∈[0,T ]

‖y(s)‖pE

)
<∞

we used the Jensen’s inequality to the integral with respect to ds and Fubini’s theorem. For
third part by using Hölder’s inequality it can be written

E
∥∥∥∥∫ T

0
Lz(s)‖z(s)‖Hds

∥∥∥∥p

≤ E

∥∥∥∥∥∥
(∫ T

0
|Lz(s)|2ds

) 1
2
(∫ T

0
‖z(s)‖2Hds

) 1
2

∥∥∥∥∥∥
p

=

(∫ T

0
|Lz(s)|2ds

) p
2

E

∥∥∥∥∥∥
(∫ T

0
‖z(s)‖2Hds

) 1
2

∥∥∥∥∥∥
p
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≤
(∫ T

0
ds

) pε
4+2ε

(∫ T

0

(
|Lz(s)|2

) 2+ε
2 ds

) p
2+ε

E

∥∥∥∥∥∥
(∫ T

0
‖z(s)‖2Hds

) 1
2

∥∥∥∥∥∥
p

<∞.

In according to above calculations and X ∈ Lp(Ω;E) it yields that
E
∥∥∥X +

∫ T
0 f(s, y(s), z(s), ·)ds

∥∥∥p < ∞. Now we can define E-Valued Lp-martingale similar to
Equation(3.2) by

ψ(r) = E
((

X +

∫ T

0
f(s, y(s), z(s))ds

)
| Fr

)
, r ∈ [0, T ].

By martingale representation Theorem A.6, there exists a unique process
Z(·) ∈ LpF

(
Ω, γ(L2((0, T ), H);E)

)
where

ψ(r) = E
(
X +

∫ T

0
f(s, y(s), z(s))ds

)
+

∫ r

0
Z(s)dWH(s)

let r = T and by FT -measurability of X +
∫ T

0 f(s, y(s), z(s))ds, we have

X+

∫ T

0
f(s, y(s), z(s))ds

= E
(
X +

∫ T

0
f(s, y(s), z(s))ds

)
+

∫ T

0
Z(s)dWH(s)

in other words

X +

∫ t

0
f(s, y(s), z(s)ds+

∫ T

t
f(s, y(s), z(s))ds =

E
(
X +

∫ T

0
f(s, y(s), z(s))ds

)
+

∫ t

0
Z(s)dWH(s)+

∫ T

t
Z(s)dWH(s)

now by taking

Y (t) =E
(
X +

∫ T

0
f(s, y(s), z(s))ds

)
−
∫ t

0
f(s, y(s), z(s))ds+

∫ t

0
Z(s)dWH(s)

we can find analogous to simple BSVIE (3.1), unique (Y (·), Z(·)) such that Equation(3.5) holds.
By Lp-Martingale property and adaptedness of generator function, we can write

Y (t) = E (Y (t) | Ft) = E
((

X +

∫ T

t
f(s, y(s), z(s))ds

)
| Ft

)
and it yields

|Y (t)| ≤E
(∣∣∣∣X +

∫ T

t
f(s, y(s), z(s))ds

∣∣∣∣ | Ft)
≤E

((
|X|+

∫ T

0
|f(s, y(s), z(s))| ds

)
| Ft

)



3.2. A More General BSDE 28

and consequently

E

(
sup
t∈[0,T ]

‖Y (t)‖p
)
<∞

further we get

E
∥∥∥∥∫ T

0
Z(s)dWH(s)

∥∥∥∥p
= E

∥∥∥∥X +

∫ T

0
f(s, y(s), z(s))ds− E

(
X +

∫ T

0
f(s, y(s), z(s))ds

)∥∥∥∥p
≤ 2(p−1)

{
E
∥∥∥∥X +

∫ T

0
f(s, y(s), z(s))ds

∥∥∥∥p

+ E
∥∥∥∥E(X +

∫ T

0
f(s, y(s), z(s))ds

)∥∥∥∥p
}

≤ 2(p−1)

{
E
∥∥∥∥X +

∫ T

0
f(s, y(s), z(s))ds

∥∥∥∥p

+ E

(
E
∥∥∥∥X +

∫ T

0
f(s, y(s), z(s))ds

∥∥∥∥p
)}

≤ 2pE
∥∥∥∥X +

∫ T

0
f(s, y(s), z(s))ds

∥∥∥∥p <∞.
By using the theorem of stochastic integrability of stochastic process in Lq(S,Σ, µ), Theorem
A.2, 1 < q ≤ 2, it results

E

∥∥∥∥∥∥
(∫ T

0
‖Z(s)‖2Hds)

) 1
2

∥∥∥∥∥∥
p

≤ cE
∥∥∥∥X +

∫ T

0
f(s, y(s), z(s))ds

∥∥∥∥p
and finally putting together, we have

E

(
sup
t∈[0,T ]

‖Y (t)‖p
)

+E

∥∥∥∥∥∥
(∫ T

0
‖Z(s, ·)‖2Hds

) 1
2

∥∥∥∥∥∥
p

≤ cE

{
‖X‖p +

∥∥∥∥∫ T

0
|f(s, y(s), z(s), ·)|ds

∥∥∥∥p
}

Here Z(s) is correspond to Z(s) and is the solution. Therefore for each S ∈ [0, T ] we can
define a map Φ : Hp[S, T ] −→ Hp[S, T ] by Φ(y(·), z(·)) = (Y (·),Z(·)) where (Z(t)h)(·) =

[Z(t, ·), h]H , inE. For finding unique solution in [S, T ] we use the Banach fixed-point theorem
and we show that Φ is contractive in [S, T ] for some S. Now let (ȳ(·), z̄(·)) ∈ Hp[S, T ] in according
to above calculations (Ȳ (·), Z̄(·)) ∈ Hp[S, T ] be the unique solution of related BSDE then we
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have for t ∈ [S, T ]

Y (t)− Ȳ (t) =

∫ T

t
(f(s, y(s), z(s))− f(s, ȳ(s), z̄(s))) ds

−
∫ T

t

(
Z(s)− Z̄(s)

)
dWH(s)

This is a BSDE and by defining δY (t) = Y (t)− Ȳ (t) , δZ(t) = Z(t)− Z̄(t) , δZ(t) = Z(t)− Z̄(t)

and by using again previous calculations we have

E

{
sup
t∈[0,T ]

‖δY (t)‖p +

∥∥∥∥∥∥
(∫ T

0
‖δZ(s)‖2Hds)

) 1
2

∥∥∥∥∥∥
p

=
∥∥(Y (·),Z(·))− (Ȳ (·), Z̄(·))

∥∥p
Hp[S,T ]

≤ cE

{∥∥∥∥∫ T

S
f(s, y(s), z(s))− f(s, ȳ(s), z̄(s))ds

∥∥∥∥P
}

≤ cE
∥∥∥∥∫ T

S
Ly(s)|y(s)− ȳ(s)|ds+

∫ T

S
Lz(s)‖z(s)− z̄(s)‖Hds

∥∥∥∥p
≤ c

{
E
∥∥∥∥∫ T

S
Ly(s)|y(s)− ȳ(s)|ds

∥∥∥∥p +

∥∥∥∥∫ T

S
Lz(s)‖z(s)− z̄(s)‖Hds

∥∥∥∥p
}

consider first part

E
∥∥∥∥∫ T

S
Ly(s)|y(s)− ȳ(s)|ds

∥∥∥∥p
≤ KpE

∥∥∥∥∫ T

S
|y(s)− ȳ(s)|ds

∥∥∥∥p
≤ Kp(T − S)pE

{
sup

s∈[S,T ]
‖y(s)− ȳ(s)‖p

}

where K = sup
s∈[S,T ]

Ly(s) and for the second part

E
∥∥∥∥∫ T

S
Lz(s)‖z(s)− z̄(s)‖Hds

∥∥∥∥p

≤ (T − S)
p
2
· ε
2+ε · (K ′)

p
2
· 2
2+εE

∥∥∥∥∥∥
(∫ T

S
‖z(s)− z̄(s)‖2Hds

) 1
2

∥∥∥∥∥∥
p

where K ′ =
(∫ T

S Lz(s)
2+εds

) p
2+ε and finally it results∥∥(Y (·),Z(·))− (Ȳ (·), Z̄(·))

∥∥p
Hp[S,T ]

≤ cF (T − S) ‖(y(·), z(·))− (ȳ(·), z̄(·))‖pHp[S,T ]

where F (S−T ) = Kp(T −S)p+K
′ p
p+ε (T −S)

pε
2(2+ε) F (T −S) is a polynomial function of (T −S)

and F (0) = 0, then we can choose S such that F (T −S) < 1
c , it means the map Φ is contractive
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and we can find unique fixed-point (Y (·),Z(·)) for t ∈ [S, T ], correspondingly (Y (·), Z(·)) and by
induction we can find unique solution in [0, T ]. �

3.3. The General BSVIE

In this section we consider the following generalized BSVIE

Y (t) = ϕ(t) +

∫ T

t
f(t, s, Y (s), Z(t, s), Z(s, t))ds−

∫ T

t
Z(t, s)dWH(s),

∀t ∈ [0, T ]

(3.6)

or with similar arguments that led to Equation(3.4), it can be rewritten as

Y (t) = ϕ(t) +

∫ T

t
f(t, s, Y (s),Z(t, s),Z(s, t))ds−

∫ T

t
Z(t, s)dWH(s),

∀t ∈ [0, T ]

(3.7)

where f : Ω × ∆c × E × H × H × S −→ E, ϕ : Ω × [0, T ] −→ E are given functions and
∆ = {(t, s) : 0 < s < t < T}. Before generalizing the solution to (3.7), it must be mentioned
that without defining some additional assumptions on f , ϕ and especially on solutions for this
equation, we could not expect the unique solution. The most important restriction on solutions
is to restrict them to adapted M -solutions.

Definition 3.2. (Y (·), Z(·, ·)) is called adapted M -solution of Equation (3.6) with respect to
cylindrical Brownian motion WH if (Y (·), Z(·, ·)) is adapted solution of BSVIE (3.6) and the
following equation holds for 0 ≤ S′ ≤ T

Y (t) = E(Y (t)|FS′)) +

∫ t

S′
Z(t, s)dWH(s), t ∈ [S′, T ]. (3.8)

Remark 3.1. A contradiction example for non-uniqueness of solutions if the above condition
(3.8) does not hold, could be given followingly in according to Yong [33] in a special case E = R

Y (t) =

∫ T

t
Z(s, t)ds−

∫ T

t
Z(t, s)dW (s)

by defining{
Y (t) = (T − t)ψ(t) t ∈ [0, T ]

Z(t, s) = 1[0,t]ψ(s) (t, s) ∈ [0, T ]× [0, T ]

(Y (·), Z(·, ·)) is an adapted solution of given equation and it holds for any ψ(·) ∈ L2
F(0, T ). (Here

Y (t) = (T − t)ψ(t) 6= E(Y (t)|FS′) +
∫ t
S′ Z(t, s)dW (s))

Remark 3.2. For previous BSDE (3.4) in Proposition 3.1, since Y (·) is adapted process, we can
find unique adapted M-solution by using martingale representation theorem as follows

Y (t) = E(Y (t)) +

∫ t

0
ζ(t, s)dWH(s)

Z(t, s) =

{
ζ(t, s) (t, s) ∈ ∆

Z(s) (t, s) ∈ ∆c
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Remark 3.3. Another important fact is that we can not easily find the solution by induction
similar to Proposition 3.1. For example in Proposition 3.1 first we found the solution by fixed-
point theorem in [T − δ, T ] for some δ ∈ [0, T ] then we could write

Y (t) = X +

∫ T

t
f(s, Y (s),Z(s))ds−

∫ T

t
Z(s)dWH(s)

= X +

∫ T

T−δ
f(s, Y (s),Z(s))ds−

∫ T

T−δ
Z(s)dWH(s)

+

∫ T−δ

t
f(s, Y (s),Z(s))ds−

∫ T−δ

t
Z(s)dWH(s), t ∈ [0, T − δ]

we could define

Y (T − δ) = X +

∫ T

T−δ
f(s, Y (s),Z(s))ds−

∫ T

T−δ
Z(s)dWH(s)

where (Y (s), Z(s)), s ∈ [T − δ, T ] is unique solution and according to Y (T − δ) ∈ LpFT−δ(Ω ×
[0, T ];E), assumptions on the generator function and fixed-point theorem, we could find the unique
solution for the following equation

Y (t) = Y (T − δ) +

∫ T−δ

t
f(s, Y (s),Z(s))ds−

∫ T−δ

t
Z(s)dWH(s), t ∈ [0, T − δ]

and by induction we could find the unique solution in [0, T ]. But for Equation(3.7) let that we
can find the solution in [T − δ, T ] or (Y (t), Z(t, s)) for (t, s) ∈ [T − δ, T ]× [T − δ, T ] and let

Y t(T − δ) = ϕ(t) +

∫ T

T−δ
f(t, s, Y (s),Z(t, s),Z(s, t))ds−

∫ T

T−δ
Z(t, s)dWH(s)

here we have to first know whether Y t(T − δ) is FT−δ-measurable, and we could not proceed like
Proposition 3.1, since we can not easily find solution for the following equation in t ∈ [0, T − δ]

Y (t) = Y t(T − δ) +

∫ T−δ

t
f(t, s, Y (s),Z(t, s),Z(s, t))ds−

∫ T−δ

t
Z(t, s)dWH(s)

For this equation, because of Y t(T − δ), not only we need the values of Y (t), Z(t, s) for (t, s) ∈
[0, T−δ]× [T−δ, T ] also we need these values in (t, s) ∈ [T−δ, T ]× [0, T−δ], and correspondingly
Y t(T − δ) are being well defined.

Now consider ∀R,S ∈ [0, T ]

λ(t, r) = ϕ(t) +

∫ T

r
f(t, s, %(t, s))ds−

∫ T

r
ρ(t, s)dWH(s), ∀r ∈ [R, T ], ∀t ∈ [S, T ]

(3.9)

where (ρ(t, s)h)(·) = [%(t, s, ·), h]H inE and f is given. This equation is stochastic Fredholm
integral equation (SFIE) on [S, T ], parametrised by r ∈ [R, T ]. We want to find unique process
(λ(·, ·), ρ(·, ·)) in which (λ(t, ·), ρ(t, ·)) be adapted for each t ∈ [S, T ]. Let following assumption
hold:

• (F1) R,S ∈ [0, T ] and f : Ω × [S, T ] × [R, T ] × H × S −→ E be B([S, T ] × [R, T ]) ⊗
B(H) ⊗ B(E) × FT -measurable such that s −→ f(t, s, z, ·) is progressively measurable
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∀(t, z) ∈ [S, T ]×H and∫ T

S
E
∥∥∥∥∫ T

R
|f(t, s, 0, ·)|ds

∥∥∥∥p
E

dt <∞

• (F2) ∀(t, s) ∈ [S, T ]× [R, T ] and z, z̄ ∈ H

|f(t, s, z, ·)− f(t, s, z̄, ·)| ≤ L(t, s)‖z(·)− z̄(·)‖H

where L : [S, T ]× [R, T ] −→ R+ is deterministic function such that

sup
t∈[S,T ]

∫ T

R
L(t, s)2+εds <∞

for some ε > 0

Proposition 3.2. If (F1), (F2) hold and ϕ(t) ∈ LpFT (Ω×[S, T ];E) such that E

(
sup
t∈[S,T ]

‖ϕ(t)‖p
)
<

∞ then Equation(3.9) has for every t ∈ [S, T ] a unique adapted solution (λ(t, ·), %(t, ·)) ∈
Hp[R, T ] and following estimate holds

‖(λ(t, ·), %(t, ·))‖pHp[R,T ] = E

 sup
r∈[R,T ]

‖λ(t, r))‖p +

∥∥∥∥∥∥
(∫ T

R
‖%(t, s, ·)‖2Hds

) 1
2

∥∥∥∥∥∥
p

≤ cE

{
‖ϕ(t)‖p +

∥∥∥∥∫ T

R
|f(t, s, %(t, s), ·)|ds

∥∥∥∥p
}

≤ cE

{
‖ϕ(t)‖p +

∥∥∥∥∫ T

R
|f(t, s, 0, ·)|ds

∥∥∥∥p
}

Proof. This is derived by Proposition 3.1, if we consider Equation(3.9) for every fixed
t ∈ [0, T ]. �

At first let us consider for our purpose some especial types of Equation(3.9). First let r = S and
we define ψS(t) = λ(t, S), Z(t, s) = ρ(t, s), Z(t, s) = %(t, s) ∀t ∈ [R,S], s ∈ [S, T ], Equation(3.9)
yields

ψS(t) = ϕ(t) +

∫ T

S
f(t, s,Z(t, s))ds−

∫ T

S
Z(t, s)dWH(s), t ∈ [R,S], R, S ∈ [0, T ]

(3.10)

Following proposition is the consequence of Proposition 3.2:

Proposition 3.3. If assumptions (F1) and (F2) hold and ϕ(t) ∈ LpFS (Ω × [R,S];E) such that

E

(
sup

t∈[R,S]
‖ϕ(t)‖p

)
< ∞ then Equation(3.10) has a unique adapted solution (ψS(t),Z(t, ·)) ∈
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Hp[R, T ], ∀t ∈ [R,S] and following estimate holds

∥∥(ψS(t),Z(t, ·))
∥∥p
Hp[R,T ]

= E

‖ψS(t))‖p +

∥∥∥∥∥∥
(∫ T

R
‖Z(t, s, ·)‖2Hds

) 1
2

∥∥∥∥∥∥
p

≤ cE

{
‖ϕ(t)‖p +

∥∥∥∥∫ T

R
|f(t, s,Z(t, s), ·)|ds

∥∥∥∥p
}

≤ cE

{
‖ϕ(t)‖p +

∥∥∥∥∫ T

R
|f(t, s, 0, ·)|ds

∥∥∥∥p
}
,

∀t ∈ [R,S]

Here it must be mentioned again that ψS(t) for each t is FS-measurable. Another representation
of Equation(3.10) can be as following , let S = R and

Y (t) = λ(t, t) t ∈ [S, T ]

Z(t, s) = ρ(t, s) (t, s) ∈ ∆c[S, T ] = {(t, s) : S < t < s < T})
Z(t, s) = %(t, s) (t, s) ∈ ∆c[S, T ]

then Equation(3.9) yields

Y (t) = ϕ(t) +

∫ T

t
f(t, s,Z(t, s))ds−

∫ T

t
Z(t, s)dWH(s), t ∈ [S, T ] (3.11)

We confine ourselves to M -solutions as Y (t) = E(Y (t)|FS) +
∫ t
S Z(t, s)dWH(s) where (t, s) ∈

∆[S, T ](S < s ≤ t < T ). Notice that in the case (t, s) ∈ ∆[S, T ], Z(t, s) and ρ(t, s) could be
different. Now we can give the following proposition:

Proposition 3.4. Suppose the assumptions (F1), (F2) hold and let ϕ(t) be FT measurable and

E

(
sup
t∈[S,T ]

‖ϕ(t)‖p
)
<∞. Then Equation(3.11) has a unique adapted M -solution

(Y (·),Z(·, ·)) ∈ LpF(Ω× [S, T ];E)× LpF(Ω× [S, T ];Lq(S;L2(S, T ;H))

and following inequalities hold

E

‖Y (t)‖p +

∥∥∥∥∥∥
(∫ T

t
‖Z(t, s, ·)‖2Hds

) 1
2

∥∥∥∥∥∥
p

≤cE

{
‖ϕ(t)‖p +

∥∥∥∥∫ T

t
|f(t, s,Z(t, s), ·)|ds

∥∥∥∥p
}

≤cE

{
‖ϕ(t)‖p +

∥∥∥∥∫ T

t
|f(t, s, 0, ·)|ds

∥∥∥∥p
}
, t ∈ [S, T ]
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and

E


∫ T

S
‖Y (t)‖pdt+

∫ T

S

∥∥∥∥∥∥
(∫ T

S
‖Z(t, s, ·)‖2Hds

) 1
2

∥∥∥∥∥∥
p

dt


≤cE

{∫ T

S
‖ϕ(t)‖pdt+

∫ T

S

∥∥∥∥∫ T

S
|f(t, s, 0, ·)|ds

∥∥∥∥p dt
}

Proof. First let (y(·), z(·, ·)) ∈ Hp[S, T ] such that y(t) = E(y(t)|FS) +
∫ t
S z(t, s)dW

H(s)

then similar to Proposition 3.1 and using Banach fixed-point theorem we can find unique adapted
M -solution. �

Remark 3.4. Without the assumption of E

(
sup
t∈[S,T ]

‖ϕ(t)‖p
)
< ∞, Propositions 3.2, 3.3, 3.4

are satisfied also and the only assumption of ϕ(t) ∈ LpFT (Ω× [S, T ];E) is sufficient.

Now we can deal with generalized BSVIE(3.7). First we put some assumptions

• (G1) let f : Ω×∆c ×E ×H ×H × S −→ E be the B(∆c)⊗ B(E ×H ×H)⊗Σ⊗FT
-measurable such that s −→ f(t, s, y, z, %, ζ) is F-progressively for (t, y, z, %, ζ) ∈ [0, T ]×
E ×H ×H × S and

E
∫ T

0

∥∥∥∥∫ T

t
|f(t, s, 0, 0, 0, ·)|ds

∥∥∥∥p dt <∞
for simplicity we define f0(t, s, ·) := f(t, s, 0, 0, 0, ·)
• (G2) The following Lipschitz condition for every (t, s) ∈ ∆c, y, ȳ ∈ R , z, z̄, %, %̄ ∈ H

holds

|f(t, s, y, z, %)− f(t, s, ȳ, z̄, %̄)| ≤ L1(t, s)|y − ȳ|+ L2(t, s)‖z− z̄‖H + L3(t, s)‖%− %̄‖H

where Li(t, s), i = 1, 2, 3 are positive deterministic functions such that sup
t∈[0,T ]

L1(t, s) ∈

L∞[0, T ] and sup
t∈[0,T ]

∫ T
t Li(t, s)

2+εds <∞, i = 2, 3 for some ε > 0.

We define the Banach space

Hp[S, T ] =
{

(y(·), z(·, ·)) : ‖(y(·), z(·, ·))‖Hp[S,T ] <∞
}

with following norm

‖(y(·), z(·, ·))‖pHp[S,T ] = E


∫ T

S
‖y(t)‖pdt+

∫ T

S

∥∥∥∥∥∥
(∫ T

S
‖z(t, s)‖2Hds

) 1
2

∥∥∥∥∥∥
p

dt


Theorem 3.1. If (G1) , (G2) hold and ϕ(t) ∈ LpFT (Ω×[0, T ];E) then there exists unique adapted
M -solution (Y (·),Z(·, ·)) ∈ H[0, T ] for BSVIE Equation(3.7), such that following estimate holds

‖(Y (·),Z(·, ·))‖Hp[S,T ] ≤ cE

{∫ T

0
‖ϕ(t)‖pdt+

∫ T

0

∥∥∥∥∫ T

0
|f0(t, s, ·)|ds

∥∥∥∥p dt
}

Proof. We prove this theorem in several steps:
Step(1)- First we find the solution in [S, T ] for some S ∈ [0, T ], we define the space Mp[S, T ]
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of all (y(·), z(·, ·)) ∈ Hp[0, T ] such that

Y (t) = E(Y (t)|FS)) +

∫ t

S
Z(t, s)dWH(s) t ∈ [S, T ]

and we consider the following equation

Y (t) = ϕ(t) +

∫ T

t
f(t, s, y(s),Z(t, s), z(s, t))ds−

∫ T

t
Z(t, s)dWH(s),

∀t ∈ [0, T ]

where (y(·), z(·, ·)) ∈ Mp[S, T ] is given. By considering this equation, it is similar to Equation
(3.11) and we can use Proposition 3.4 to find the unique adapted M -solution (Y (·),Z(·, ·)). Now
we define the following map

Υ :Mp[S, T ] −→Mp[S, T ]

by
Υ(y(·), z(·, ·)) = (Y (·),Z(·, ·)), ∀(y(·), z(·, ·)) ∈Mp[S, T ].

We show that this map is contractive and we use Banach fixed-point theorem for the existence of
a unique solution in [S, T ]. Let (ȳ(·), z̄(·, ·)) ∈Mp[S, T ] such that Υ(ȳ(·), z̄(·, ·)) = (Ȳ (·), Z̄(·, ·)),
then by using Proposition 3.4

‖(Y (·),Z(·, ·))− (Ȳ (·), Z̄(·, ·))‖pHp[S,T ]

≤ E


∫ T

S

∥∥Y (t)− Ȳ (t)
∥∥p dt+

∫ T

S

∥∥∥∥∥∥
(∫ T

S

∥∥Z(t, s)− Z̄(t, s)
∥∥2
ds

) 1
2

∥∥∥∥∥∥
p

dt


≤ cE

{∫ T

S

∥∥∥∥∫ T

t
|f(t, s, y(t), 0, z(s, t))− f(t, s, ȳ(t), 0, z̄(s, t))|ds

∥∥∥∥p dt
}

≤ cE

{∫ T

S

∥∥∥∥∫ T

t
L1(t, s)|y(t)− ȳ(t)|ds+

∫ T

t
L2(t, s)‖z(t, s)− z̄(t, s)‖Hds

∥∥∥∥p dt
}

≤ c

{
E

(∫ T

S

∥∥∥∥∫ T

t
L1(t, s)|y(t)− ȳ(t)|ds

∥∥∥∥p dt
)

+ E

(∫ T

S

∥∥∥∥∫ T

t
L3(t, s)‖z(t, s)− z̄(t, s)‖Hds

∥∥∥∥p dt
)}

.

For first part of the last inequality we have

E

{∫ T

S

∥∥∥∥∫ T

t
L1(t, s)|y(t)− ȳ(t)|ds

∥∥∥∥p dt
}

≤ E

{∫ T

S

∥∥∥∥∫ T

t
K1|y(t)− ȳ(t)|ds

∥∥∥∥p dt
}

≤ E

{∫ T

S

∥∥∥∥∫ T

S
K1|y(t)− ȳ(t)|ds

∥∥∥∥p dt
}
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≤ (T − S)p−1E
{∫ T

S

∫ T

S
‖K1|y(t)− ȳ(t)|‖p ds dt

}
≤ (T − S)pKp

1E
{∫ T

S
‖y(t)− ȳ(t)‖p ds

}
and for the second part

E

{∫ T

S

∥∥∥∥∫ T

t
L3(t, s)‖z(t, s)− z̄(t, s)‖Hds

∥∥∥∥p dt
}

≤ E

{∫ T

S

∥∥∥∥∫ T

S
L3(t, s)‖z(t, s)− z̄(t, s)‖Hds

∥∥∥∥p dt
}

≤ E


∫ T

S

∥∥∥∥∥∥
(∫ T

S
(L3(t, s))2ds

) 1
2
(∫ T

S
‖z(t, s)− z̄(t, s)‖2Hds

) 1
2

∥∥∥∥∥∥
p

dt


=(T − S)

p
2
· ε
2+ε

(∫ T

S
(L3(t, s))2+εds

) p
2
· 2
2+ε

E

∥∥∥∥∥∥
(∫ T

S
‖z(t, s)− z̄(t, s)‖2Hds

) 1
2

∥∥∥∥∥∥
p

therefore we have

‖(Y (·),Z(·, ·))− (Ȳ (·), Z̄(·, ·))‖pHp[S,T ]

≤ c
(

(T − S)pk1 + (T − S)
p
2
· ε
2+εk3

)
‖(y(·), z(·, ·))− (ȳ(·), z̄(·, ·))‖pHp[S,T ]

where k1, and k3 are positive constants. By taking T − S > 0 small enough the contraction
property holds. It means that the unique adapted M -solution (Y (t), Z(t, s)), for (t, s) ∈ [S, T ]×
[S, T ] are found by Banach fixed-point theorem.
Step(2)- Now we want to find the values Z(t, s) for (t, s) ∈ [S, T ] × [R,S]. As in the previous
step we found Y (·) ∈ LF(Ω× [S, T ];E), it results

∀t ∈ [S, T ] ψt(r) = E(Y (t)|Fr), 0 < r < T

is Lp-Martingale. By Martingale representation theorem in UMD-spaces (1 < q ≤ 2, E is
cotype-2), we can find unique adapted process Z(t, s) such that

E(Y (t)|FS) = E(Y (t)) +

∫ S

0
Z(t, s)dWH(s)

or by conditional expectation on FR, R < S we have

E(Y (t)|FS) = E(Y (t)|FR) +

∫ S

R
Z(t, s)dWH(s), t ∈ [S, T ]

in other words we could find the values Z(t, s) for (t, s) ∈ [S, T ]×[R,S], R ∈ [0, S]. By combining
these values with step 1 we have Z(t, s) for (t, s) ∈ [S, T ]× [R, T ].
Step(3)- It follows from Step(2) that we have the values Y (s), Z(s, t) for t ∈ [R,S] and s ∈ [S, T ].
Let z ∈ H and define fS(t, s, z) = f(t, s, Y (s), z,Z(s, t)), for (t, s, z) ∈ [R,S] × [S, T ] ×H, then
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we can write ∫ T

S
f(t, s, Y (s), z,Z(s, t))ds =

∫ T

S
fS(t, s, z)ds

and we consider the following SFIE:

ϕS(t) = ϕ(t) +

∫ T

S
fS(t, s, z)ds−

∫ T

S
Z(t, s)dWH(s)

by Proposition 3.4 we can find unique solution of above SFIE,{
ϕ(·)S ∈ LpFS (Ω× [R,S];E)

Z(·, ·) ∈ LpF
(
R,S;Lq(S;L2(S, T ;H))

)
It means that we found Z(t, s) for (t, s) ∈ [R,S]× [S, T ] and by combining the previous results
we found the unique adaptedM -solution (Y (·), Z(·, ·)), for Y (t), t ∈ [S, T ] and Z(t, s) for (t, s) ∈
[S, T ]× [R, T ]

⋃
[R,S]× [S, T ].

Step(4)- By using SFIE is step(3), we can write our BSVIE as follows

Y (t) = ϕS(t) +

∫ S

t
f(t, s, Y (s),Z(t, s),Z(s, t))ds−

∫ S

t
Z(t, s)dWH(s),

t ∈ [0, S].

From step(3) we know that ϕS(t) is FS-measurable for each t ∈ [0, S] and this equation is BSVIE
and could be easily solved as steps 1, 2, 3 in interval [S′, S]. Finally by induction we can find
unique adapted M -solution for whole of the interval. �



CHAPTER 4

Duality Principles

In this chapter, duality principle between linear forward stochastic Volterra integral equation
and linear backward stochastic Volterra integral equation are being derived. The Itô formula in
UMD-Banach spaces where derived by Brzezniak, Neerven, Veraar and Weis [5] is very crucial
tool for the proof of duality principle.

4.1. A First Duality Principle

We consider the following FSVIE in Banach space E = Lq(S,Σ, µ) where q ≥ 2 and µ is a
σ-finite measure

X(t) = ϕ(t) +

∫ t

0
A0(t, s)X(s)ds+

∫ t

0
A1(t, s)X(s)dWH(s), t ∈ [0, T ] (4.1)

where WH(·) is cylindrical Brownian motion, ϕ(t) ∈ LpF([0, T ] × Ω;E) and for each (t, s) ∈
[0, T ]× [0, T ] Ai(t, s), i = 0, 1 be linear bounded operators defined as follows{

A0(t, s) : Ω× E −→ E

A1(t, s) : Ω× E −→ L(H;E)

{
A0(·, ·) ∈ L∞ (0, T ;L∞F (0, T ;L(E;E))

A1(·, ·) ∈ L∞ (0, T ;L∞F (0, T ;L(E;L(H;E)))

For each t ∈ [0, T ] Ai(t, ·) is Fs-adapted s ≥ 0, sup
t∈[0,T ]

sup
s∈[0,T ]

‖Ai(t, s)‖ < ∞, i = 0, 1. In

according to these assumptions FSVIE (4.1) because of Theorem 2.1 admits an unique adapted
X(·) ∈ LpF([0, T ]× Ω;E), where q ≤ p.
Now we consider following BSVIE in dual space of E, i.e E∗ = Lq

′
(S,Σ, µ), 1 < q′ ≤ 2 and

1
q + 1

q′ = 1, let A∗0(t, s) be the adjoint operator of A0(t, s) and A∗1(t, s)h := (A1(t, s)h)∗ be the
adjoint operator of A1(t, s)h for every (t, s) ∈ [0, T ]× [0, T ] and h ∈ H ;

Y (t) =ψ(t) +

∫ T

t

A∗0(s, t)Y (s) +
∑
n≥1

A∗1(s, t)hnZ(s, t)hn

 ds

−
∫ T

t
Z(t, s)dWH(s), t ∈ [0, T ]

(4.2)

The cylindrical Wiener process WH(·) is the same process for two equations and is defined in
Hilbert space H.

38
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{hn}n≥1 is orthonormal basis in Hilbert space H and for each ω ∈ Ω and (t, s) ∈ [0, T ]× [0, T ]

Z(t, s) ∈ L(H;E∗)

A∗0 ∈ L(E∗;E∗)

A∗1h ∈ L (E∗;E∗)

where Z(t, s), A∗0 and A∗1h are bounded linear operators and for each h ∈ H, Z(t, s)h ∈ E∗

and A∗1(t, s)h ∈ L(E∗;E∗) then A∗1(t, s)hZ(t, s)h := A∗1(t, s)h (Z(t, s)h) ∈ E∗. We can find
Z : [0, T ] × [0, T ] × Ω × S −→ H such that (Z(t, s)h)(·) = [Z(t, s, ·), h]H in E∗, ∀h ∈ H. For
well-definition we assume also that

∑
n≥1
‖A∗1(s, t)hn‖ is bounded for every (t, s) ∈ [0, T ] × [0, T ].

Now if ψ(·) ∈ LpFT ([0, T ]× Ω;E∗) by considering

f(t, s, Y (s),Z(t, s),Z(s, t)) = A∗0(s, t)Y (s) +
∑
n≥1

A∗1(s, t)hnZ(s, t)hn

we can find a unique adapted M -solution (Y (·), Z(·, ·)) of (4.2).
For every x∗ ∈ E∗ let the duality pairing be given by x∗(x) = 〈x, x∗〉.

Theorem 4.1. If FSVIE Equation(4.1) and BSVIE Equation(4.2) are fulfilled then following
duality principle holds

E
{∫ T

0
〈X(t), ψ(t)〉 dt

}
= E

{∫ T

0
〈ϕ(t), Y (t)〉 dt

}

Proof. Since Y (·) is Ft-adapted and 1 < q′ ≤ 2, we can use martingale representation
theorem in Banach spaces Theorem A.6, and there exists a unique adapted process Z(·, ·) such
that Y (t) = E(Y (t)) +

∫ t
0 Z(t, s)dWH(s) and we see

E
∫ T

0
〈ϕ(t), Y (t)〉 =

E
∫ T

0

〈
X(t)−

∫ t

0
A0(t, s)X(s)ds−

∫ t

0
A1(t, s)X(s)dWH(s), Y (t)

〉
dt

= E
∫ T

0
〈X(t), Y (t)〉 dt− E

∫ T

0

〈∫ t

0
A0(t, s)X(s)ds, Y (t)

〉
dt

− E
∫ T

0

〈∫ t

0
A1(t, s)X(s)dWH(s), Y (t)

〉
dt

= E
∫ T

0
〈X(t), Y (t)〉dt− E

∫ T

0

∫ t

0
〈X(s), A∗0(t, s)Y (t)〉dsdt

− E
∫ T

0

〈∫ t

0
A1(t, s)X(s)dWH(s),E(Y (t)) +

∫ t

0
Z(t, s)dWH(s)

〉
dt

= E
∫ T

0
〈X(t), Y (t)〉dt− E

∫ T

0

∫ T

s
〈X(s), A∗0(t, s)Y (t)〉dtds

− E
∫ T

0

〈∫ t

0
A1(t, s)X(s)dWH(s),E(Y (t))

〉
dt
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− E
∫ T

0

〈∫ t

0
A1(t, s)X(s)dWH(s),

∫ t

0
Z(t, s)dWH(s)

〉
dt

= E
∫ T

0
〈X(t), Y (t)〉dt− E

∫ T

0

∫ T

t
〈X(t), A∗0(s, t)Y (s)〉dsdt

−
∫ T

0

〈
E
(∫ t

0
A1(t, s)X(s)dWH(s)

)
,E(Y (t))

〉
dt

− E
∫ T

0

〈∫ t

0
A1(t, s)X(s)dWH(s),

∫ t

0
Z(t, s)dWH(s)

〉
dt

For above calculations we used properties of adjoint operators and stochastic differential equa-
tions with respect to cylindrical Brownian motion. Now for the last term we use the Itô-Formula
in Banach spaces by Brzezniak, Neerven, Veraar and Weis, Theorem A.8.
Let for each (fixed) t ∈ [0, T ], Q(r) =

∫ r
0 A1(t, s)X(s)dWH(s) in E and V (r) =

∫ r
0 Z(t, s)dWH(s)

in E∗ where r ∈ [0, t] then we observe by Theorem A.8

〈Q(r), V (r)〉 − 〈Q(0), V (0)〉 =

∫ r

0
(〈Q(s), 0〉+ 〈0, V (s)〉) ds

+

∫ r

0
(〈Q(s), Z(t, s)〉+ 〈A1(t, s)X(s), V (s)〉) dWH(s)

+

∫ r

0

∑
n≥1

〈(A1(t, s)X(s))(hn), (Z(t, s))(hn)〉 ds.

By taking expectation of above equations for r = t and by knowing that expectation of stochastic
integral is zero we have

E
〈∫ t

0
A1(t, s)X(s)dWH(s),

∫ t

0
Z(t, s)dWH(s)

〉
= E

∫ t

0

∑
n≥1

〈(A1(t, s)X(s))hn, (Z(t, s))hn〉 ds

We write (A1(t, s)X(s))(hn) = (A1(t, s)hn)(X(s)) = A1(t, s)hnX(s) sinceX(·) ∈ E andA1(t, s) ∈
L(E;L(H;E)). By integrating above result over [0, T ] with respect to Lebesgue measure dt and
using Fubini’s theorem and property of adjoint operator it yields

E
∫ T

0

〈∫ t

0
A1(t, s)X(s)dWH(s),

∫ t

0
Z(t, s)dWH(s)

〉
dt

= E
∫ T

0

∫ t

0

∑
n≥1

〈A1(t, s)hnX(s), Z(t, s)hn〉 dsdt

= E
∫ T

0

∫ t

0

∑
n≥1

〈X(s), A∗1(t, s)hnZ(t, s)hn〉 dsdt
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Therefore by substitution, adaptedness of X(·) and knowing that expectation of stochastic inte-
gral is zero and by Fubini’s Theorem, Equation (4.2) and using elementary calculus, it yields

E
∫ T

0
〈ϕ(t), Y (t)〉 =

E
∫ T

0
〈X(t), Y (t)〉dt− E

∫ T

0

∫ T

t
〈X(t), A∗0(s, t)Y (s)〉dsdt

− E
∫ T

0

∫ s

0

∑
n≥1

〈X(t), A∗1(s, t)hnZ(s, t)hn〉 dtds

= E
∫ T

0
〈X(t), Y (t)〉dt− E

∫ T

0

∫ T

t
〈X(t), A∗0(s, t)Y (s)〉dsdt

− E
∫ T

0

∫ T

t

∑
n≥1

〈X(t), A∗1(s, t)hnZ(s, t)hn〉 dsdt

=

∫ T

0
E

〈
X(t), Y (t)−

∫ T

t
A∗0(s, t)Y (s)ds−

∫ T

t

∑
n≥1

A∗1(s, t)hnZ(s, t)hnds

〉
dt

=

∫ T

0
E
〈
X(t), ψ(t)−

∫ T

t
Z(t, s)dWH(s)

〉
dt

=

∫ T

0
E 〈X(t), ψ(t)〉 dt−

∫ T

0
E
(
E
〈
X(t),

∫ T

t
Z(t, s)dWH(s)

〉∣∣∣∣Ft) dt
=

∫ T

0
E 〈X(t), ψ(t)〉 dt−

∫ T

0
E
〈
X(t),E

(∫ T

t
Z(t, s)dWH(s)

)〉
dt

=

∫ T

0
E 〈X(t), ψ(t)〉 dt

�

4.2. A More General Duality Principle

Now we want to show another duality principle between FSVIE Equation(4.1) and another
general BSVIE. Therefore consider following BSVIE in dual space E∗

Y (t) =ψ(t) +A∗0(T, t)η +
∑
n≥1

A∗1(T, t)hnρ(t)hn

+

∫ T

t

A∗0(s, t)Y (s) +
∑
n≥1

A∗1(s, t)hnZ(s, t)hn

 ds

−
∫ T

t
Z(t, s)dWH(s), t ∈ [0, T ]

(4.3)

where η ∈ Lp
′

FT (Ω;E∗), 1
p + 1

p′ = 1, q ≤ p and ρ is a unique adapted process that is defined by
martingale representation theorem as follows:
since η is FT -measurable and 1 < q′ ≤ 2, E∗ is co-type(2), in according to Theorem A.6, we
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have the following representation theorem

η = E(η) +

∫ T

0
ρ(t)dWH(t)

It means that we can find unique ρ(·) ∈ Lp
′

F
(
Ω; γ

(
L2(0, T ;H);E∗

))
and correspondingly %(·) ∈

Lp
′

F

(
Ω;Lq

′ (
S;L2(0, T ;H)

))
such that (ρ(t)h)(·) = [%(t, ·), h]H in E∗. Therefore ρ is well defined

and also the Equation(4.3) and by assumptions it has a unique adapted M -solution

(Y (·), Z(·)) ∈ Lp
′

F ([0, T ]× Ω;E∗)× Lp
′

F
(
[0, T ]; γ

(
L2(0, T ;H);E∗

))
or correspondingly

(Y (·),Z(·)) ∈ Lp
′

F ([0, T ]× Ω;E∗)× Lp
′

F

(
[0, T ];Lq

′ (
S;L2(0, T ;H)

))
where (Z(t, s)h)(·) = [Z(t, s, ·), h]H in E∗

Theorem 4.2. If FSVIE Equation(4.1) and BSVIE Equation(4.3) are fulfilled then following
duality holds for every η ∈ Lp

′

FT (Ω;E∗)

E
{
〈X(T ), η〉+

∫ T

0
〈X(t), ψ(t)〉 dt

}
= E

{
〈ϕ(T ), η〉+

∫ T

0
〈ϕ(t), Y (t)〉 dt

}

Proof. We can write the BSVIE Equation(4.3) as follows

Y (t) =ψ̂(t) +

∫ T

t

A∗0(s, t)Y (s) +
∑
n≥1

A∗1(s, t)hnZ(s, t)hn

 ds

−
∫ T

t
Z(t, s)dWH(s)

where
ψ̂(t) = ψ(t) +A∗0(T, t)η +

∑
n≥1

A∗1(T, t)hnρ(t)hn

Now we can use Theorem 4.1 and it results

E
∫ T

0
〈ϕ(t), Y (t)〉 dt = E

∫ T

0

〈
X(t), ψ̂(t)

〉
dt

= E
∫ T

0

〈
X(t), ψ(t) +A∗0(T, t)η +

∑
n≥1

A∗1(T, t)hnρ(t)hn

〉
dt

= E
∫ T

0
〈X(t), ψ(t)〉 dt+ E

∫ T

0
〈A0(T, t)X(t), η〉 dt

+ E
∫ T

0

∑
n≥1

〈A0(T, t)hnX(t), ρ(t)hn〉 dt

(4.4)
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Now we show that following equation holds

E 〈X(T )− ϕ(T ), η〉 =

E
∫ T

0

〈A0(T, t)X(t), η〉+
∑
n≥1

〈A1(T, t)hnX(t), ρ(t)hn〉

 dt

Consider

E 〈X(T )− ϕ(T ), η〉 =

E
〈
ϕ(T ) +

∫ T

0
A0(T, s)X(s)ds+

∫ T

0
A1(T, s)X(s)dWH(s)− ϕ(T ), η

〉
= E

〈∫ T

0
A0(T, s)X(s)ds, η

〉
+ E

〈∫ T

0
A1(T, s)X(s)dWH(s), η

〉

Now by replacing η = E(η) +
∫ T

0 ρ(s)dWH(s) and setting{
K(t) =

∫ t
0 A1(T, s)X(s)dWH(s)

ν(t) =
∫ t

0 ρ(s)dWH(s)
, t ∈ [0, T ]

we can use Itô Formula in UMD Banach spaces Theorem A.8 as follows

E
〈∫ T

0
A1(T, s)X(s)dWH(s),E(η) +

∫ T

0
ρ(s)dWH(s)

〉
= E

〈∫ T

0
A1(T, s)X(s)dWH(s),E(η)

〉
+ E

〈∫ T

0
A1(T, s)X(s)dWH(s),

∫ T

0
ρ(s)dWH(s)

〉
= E 〈K(T ), ν(T )〉

= E
(∫ T

0
{〈K(s), 0〉+ 〈0, ν(s)〉} ds

+

∫ T

0
{〈K(s), ρ(s)〉+ 〈A1(T, s)X(s), ν(s)〉} dWH(s)

+

∫ T

0

∑
n≥1

〈A1(T, s)hnX(s), ρ(s)hn〉 ds



The first equation is clearly zero and the second term is stochastic integral, by taking expectation
it is zero too. Only it remains the third term, therefore it yields

E 〈X(T )− ϕ(T ), η〉 =

E


∫ T

0
〈A0(T, s)X(s), η〉 ds+

∫ T

0

∑
n≥1

〈A1(T, s)hnX(s), ρ(s)hn〉 ds


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Now by replacing it in equation(4.4) it results

E
∫ T

0
〈ϕ(t), Y (t)〉 dt = E

∫ T

0

〈
X(t), ψ̂(t)

〉
dt

= E
∫ T

0
〈X(t), ψ(t)〉 dt+ E 〈X(T )− ϕ(T ), η〉

and this finally yields

E
∫ T

0
〈ϕ(t), Y (t)〉 dt+ E 〈ϕ(T ), η〉

= E
∫ T

0
〈X(t), ψ(t)〉 dt+ E 〈X(T ), η〉

�

Remark 4.1. It must be mentioned that martingale representation theorem can be used since Lq′

spaces, q′ ≤ 2 are co-type(2). Our proof can be resulted for every FSVIE (4.1) in every UMD
space E, at the case that first we can find unique solutions for FSVIE (4.1). Second to consider
BSVIE (4.3) in dual space E∗ we need a martingale representation theorem. That is known only
at the case that E∗ is of co-type(2). If E is so, that this property holds, then we get also duality
principles.



CHAPTER 5

Maximum Principle

We consider in this chapter an optimal control problem for a FSVIE in Banach space E where
E = Lq(S,Σ, µ), µ is a finite measure and the stochastic integral is defined with respect to a
H-cylindrical Brownian motion. We prove an optimality condition of maximum principle type.
At first the control process is a real valued process and next it will be generalized to a Banach
valued control process.

5.1. Stochastic Optimal Problem

Consider the following FSVIE in Banach space E = Lq(S,Σ, µ), q ≥ 2

X(t) = ϕ(t) +

∫ t

0
b (t, s,X(s), u(s)) ds+

∫ t

0
ρ (t, s,X(s), u(s)) dWH(s), t ∈ [0, T ]

where X(·), u(·) are the state and the control processes respectively and WH(·) is H-cylindrical
Brownian motion. We set following assumptions ϕ(·) ∈ LpF(Ω × [0, T ];E) where q ≤ p and b, ρ
are defined measurably (measurability defined similarly to chapter 2) as

b : Ω× [0, T ]× [0, T ]× E × U × S −→ E

ρ : Ω× [0, T ]× [0, T ]× E × U × S −→ L(H;E)

ϕ(·) and X(·) are E-valued random variables and u(·) is real valued process as

u : [0, T ]× Ω× S −→ U

where U is a bounded closed interval of R and we define

U = {u : [0, T ]× Ω× S −→ U | u(·) is F-progressively measurable}

clearly we can consider U ⊂ E.
We define the following cost function as Bolza form

J(u(·)) = E
∫ T

0

∫
S

h(t,X(t), u(t))dµdt+ E
∫
S

g(X(T ))dµ

where

h : Ω× [0, T ]× E × U × S −→ E

g : Ω× E × S −→ E

We use the concept of Nemytskii operator for b, h, g and we assume they have first contin-
uous bounded derivatives with respect to x and u, in other words we assume

∣∣∣∂b(t,s,x,u)
∂x

∣∣∣ :=

|bx(t, s, x, u)| ≤ Kx ,
∣∣∣∂b(t,s,x,u)

∂u

∣∣∣ := |bu(t, s, x, u)| ≤ Ku for all t, s ∈ [0, T ] , η ∈ S, for all

45
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x ∈ R, u ∈ U almost sure, where Kx, Ku are positive constants and so on. Since ρ ∈ L(H;E)

is a linear bounded operator ∀t, s ∈ [0, T ], η ∈ S, w ∈ Ω, x ∈ E, u ∈ U , we assume it has first
continuous Fréchet derivative with respect to x, ρx(t, s, x, u) : E −→ L(H;E) and ρx(t, s, x, u) is
a linear continuous operator from E to L(H;E) such that for each h ∈ {hn}n≥1 where {hn}n≥1

is orthonormal basis of Hilbert space H, ‖ρx(t, s, x, u)h‖L(E;E) is bounded almost sure. We also
assume it has first continuous Fréchet derivative with respect to u, ρu(t, s, x, u) : U −→ L(H;E)

such that for each h ∈ {hn}n≥1 ; ‖ρu(t, s, x, u)h‖L(U ;E) is bounded almost sure.
Since U is convex, for each ε ∈ (0, 1), uε(·) ∈ U where uε(·) := u(·) + ε(u(·) − u(·)) and let
(X(·), ū(·)) are optimal state and control processes. Let Xε(·) be the solution of the following
FSVIE when uε(·) is chosen

Xε(t) = ϕ(t) +

∫ t

0
b
(
t, s,Xε(s), uε(s)

)
ds+

∫ t

0
ρ
(
t, s,Xε(s), uε(s)

)
dWH(s), t ∈ [0, T ]

and we define ξε(t) := Xε(t)−X(t)
ε for each t ∈ [0, T ]

Lemma 5.1. ξε(t) is uniformly bounded in Lp(Ω;E) with respect to t and ε and correspondingly
ξε(·) is uniformly bounded in Lp(Ω× [0, T ];E) with respect to ε for 2 ≤ q ≤ p.

Proof. By using the definition of ξε(·) and substituting corresponding FSVIE for X(·) and
X(·), it yields

E ‖ξε(t)‖p = E
∥∥∥∥Xε(t)−X(t)

ε

∥∥∥∥p =

1

εp
E
∥∥∥∥ϕ(t) +

∫ t

0
b (t, s,Xε(s), uε(s)) ds+

∫ t

0
ρ (t, s,Xε(s), uε(s)) dW

H(s)

−ϕ(t)−
∫ t

0
b
(
t, s,X(s), u(s)

)
ds−

∫ t

0
ρ
(
t, s,X(s), u(s)

)
dWH(s)

∥∥∥∥p
=

1

εp
E
∥∥∥∥∫ t

0

{
b (t, s,Xε(s), uε(s))− b

(
t, s,X(s), u(s)

)}
ds

+

∫ t

0

{
ρ (t, s,Xε(s), uε(s))− ρ

(
t, s,X(s), u(s)

)}
dWH(s)

∥∥∥∥p
By using triangle inequality and Yong inequality it yields

E ‖ξε(t)‖p ≤
c

εp

{
E
∥∥∥∥∫ t

0

{
b (t, s,Xε(s), uε(s))− b

(
t, s,X(s), u(s)

)}
ds

∥∥∥∥p
+ E

∥∥∥∥∫ t

0

{
ρ (t, s,Xε(s), uε(s))− ρ

(
t, s,X(s), u(s)

)}
dWH(s)

∥∥∥∥p}
Now we consider every summand from above equation separately. For the first summand we
have

A =
c

εp
E
∥∥∥∥∫ t

0

{(
b (t, s,Xε(s), uε(s))− b

(
t, s,X(s), uε(s)

))
+b
(
t, s,X(s), uε(s)

)
− b

(
t, s,X(s), u(s)

)}
ds

∥∥∥∥p
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since there exists first derivative of b(t, s, x, u) with respect to x, u for every η ∈ S and it is
bounded a.e µ, there exist r1 =: r1(t, s, x, u) ∈ (0, 1) and r2 =: r2(t, s, x, u) ∈ (0, 1) such that
following equations hold

b (t, s,Xε(s), uε(s))− b
(
t, s,X(s), uε(s)

)
=

bx
(
t, s,X(s) + r1(Xε(s)−X(s)), uε(s)

)
(Xε(s)−X(s))

and

b
(
t, s,X(s), uε(s)

)
− b

(
t, s,X(s), u(s)

)
=

bx
(
t, s,X(s), u(s) + r2(uε(s)− u(s))

)
(uε(s)− u(s))

and for simplicity we set X̃ε(s) := X(s) + r1(Xε(s)−X(s)) and ũε(s) := u(s) + r2(uε(s)−u(s)),
then we can have

A =
c

εp

{
E
∥∥∥∥∫ t

0
bx

(
t, s, X̃ε(s), uε(s)

) (
Xε(s)−X(s)

)
ds

+

∫ t

0
bu
(
t, s,X(s), ũε(s)

)
(uε(s)− u(s)) ds

∥∥∥∥p}
By boundedness of derivatives we can write

A ≤ c

εp

{
E
∥∥∥∥∫ t

0
Kx

∣∣Xε(s)−X(s)
∣∣ ds +

∫ t

0
Ku |uε(s)− u(s)| ds

∥∥∥∥p}
≤ c

{
E

∥∥∥∥∥
∫ t

0
Kx

∣∣Xε(s)−X(s)
∣∣

ε
ds +

∫ t

0
Ku |u(s)− u(s)| ds

∥∥∥∥p}
By assumptions Kx,Ku are positive upper bounds for derivatives and do not depend on η, t, s, w.

A ≤ c

{
E

∥∥∥∥∥
∫ t

0

∣∣Xε(s)−X(s)
∣∣

ε
ds

∥∥∥∥∥
p

+ E
∥∥∥∥∫ t

0
|u(s)− u(s)| ds

∥∥∥∥p
}

≤ c

{
E

(∫ t

0

∥∥Xε(s)−X(s)
∥∥

ε
ds

)p
+ E

(∫ t

0
‖u(s)− u(s)‖ ds

)p}
U is bounded then second part of above equations is bounded and since p > 1 we can use Jensen’s
inequality for measure ds and it results

A ≤ ctp−1

{
E
∫ t

0

∥∥∥∥Xε(s)−X(s)

ε

∥∥∥∥p ds+ E
∫ t

0
‖u(s)− u(s)‖p ds

}
Now we consider the stochastic integral part

B =
c

εp
E
∥∥∥∥∫ t

0

{
ρ (t, s,Xε(s), uε(s))− ρ

(
t, s,X(s), u(s)

)}
dWH(s)

∥∥∥∥p
By using Lp-stochastically integrability in Lq spaces Theorem A.2 we have

B ≤ c

εp
E

∥∥∥∥∥
(∫ t

0

∥∥% (t, s,Xε(s), uε(s))− %
(
t, s,X(s), u(s)

)∥∥2

H
ds

) 1
2

∥∥∥∥∥
p
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we have (ρ(t, s, x, u)h)(·) = [%(t, s, x, u, ·), h]H by Theorem A.3 and Theorem A.2. Since we
assumed 2 ≤ q ≤ p, we can apply Jensen’s inequality and it yields

B ≤ c

εp
E

∫
S

(∫ t

0

∥∥% (t, s,Xε(s), uε(s))− %
(
t, s,X(s), u(s)

)∥∥2

H
ds

) q
2

dµ


p
q

≤ c

εp
t
p
2
− p
qE

∫
S

∫ t

0

∥∥% (t, s,Xε(s), uε(s))− %
(
t, s,X(s), u(s)

)∥∥q
H
dsdµ


p
q

=
c

εp
t
p
2
− p
qE

∫ t

0

∫
S

∥∥% (t, s,Xε(s), uε(s))− %
(
t, s,X(s), u(s)

)∥∥q
H
dµds


p
q

≤ c

εp
t
p
2
−1E

∫ t

0

∫
S

∥∥% (t, s,Xε(s), uε(s))− %
(
t, s,X(s), u(s)

)∥∥q
H
dµ


p
q

ds

=
c

εp
t
p
2
−1E

∫ t

0

∥∥∥∥∥∥% (t, s,Xε(s), uε(s))− %
(
t, s,X(s), u(s)

)∥∥
H

∥∥∥∥pds.
By definition of X̃ε(s) and ũε(s) there exist r1, r2 ∈ (0, 1) such that we can write

% (t, s,Xε(s), uε(s))− %
(
t, s,X(s), u(s)

)
=
(
% (t, s,Xε(s), uε(s))− %

(
t, s,X(s), uε(s)

))
+ %

(
t, s,X(s), uε(s)

)
− %

(
t, s,X(s), u(s)

)
= %x

(
t, s, X̃ε(s), uε(s)

) (
Xε(s)−X(s)

)
+ %u

(
t, s,X(s), ũε(s)

)
(uε(s)− u(s)) .

By substitution this equation in B, it results

B ≤ c

εp
E
∫ t

0

∥∥∥∥∥∥∥%x (t, s, X̃ε(s), uε(s)
) (
Xε(s)−X(s)

)
+ %u

(
t, s,X(s), ũε(s)

)
(uε(s)− u(s))

∥∥∥
H

∥∥∥∥pds
≤ c

εp

{
E
∫ t

0

∥∥∥∥∥∥∥%x (t, s, X̃ε(s), uε(s)
) (
Xε(s)−X(s)

)∥∥∥
H

∥∥∥∥p
+
∥∥∥%u (t, s,X(s), ũε(s)

)
(uε(s)− u(s))

∥∥∥
H

∥∥∥∥pds}
≤c
{
E
∫ t

0

∥∥∥∥∥
∥∥∥∥∥%x (t, s, X̃ε(s), uε(s)

) (Xε(s)−X(s)
)

ε

∥∥∥∥∥
H

∥∥∥∥∥
p

ds

+ E
∫ t

0

∥∥∥∥∥∥∥∥%u (t, s,X(s), ũε(s)
) (uε(s)− u(s))

ε

∥∥∥∥
H

∥∥∥∥p ds}
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and

B ≤c
{
E
∫ t

0

∥∥∥∥∥∥%x (t, s, X̃ε(s), uε(s)
)
ξε(s)

∥∥∥
H

∥∥∥p ds
+ E

∫ t

0

∥∥∥∥%u (t, s,X(s), ũε(s)
)

(u(s)− u(s))
∥∥
H

∥∥p ds}
Now we consider %x

(
t, s, X̃ε(s), uε(s)

)
. This term is Fréchet derivative with respect to x and it

holds for every η ∈ S, in the following relation(
ρx

(
t, s, X̃ε(s), uε(s)

)
ξε(s)h

)
(η) =

[(
%x

(
t, s, X̃ε(s), uε(s)

)
ξε(s)

)
(η), h

]
H
.

It defines a linear operator from E to H and it is also an element of E. We can consider this
operator as Nemytskii operator for every η ∈ S, it means
%x

(
t, s, X̃ε(s, η), uε(s, η), η

)
ξε(s, η) for every fixed t, s and η is an element of R, therefore we can

have following norm inequality∥∥∥%x (t, s, X̃ε(s, η), uε(s, η), η
)
ξε(s, η)

∥∥∥
H
≤
∥∥∥%x (t, s, X̃ε(s, η), uε(s, η), η

)∥∥∥
L(R;H)

|ξε(s, η)|

By similar explanation we have following norm inequality for %u
(
t, s,X(s), ũε(s)

)
∥∥%u (t, s,X(s, η), ũε(s, η), η

)
(u(s, η)− u(s, η))

∥∥
H

≤
∥∥%u (t, s,X(s, η), ũε(s, η), η

)∥∥
L(R;H)

|(u(s, η)− u(s, η))|

It must be mentioned that ξε(s), (u(s)− u(s)) are elements of E. By replacing above calculations
in B, it yields

B ≤c
{
E
∫ t

0

∥∥∥∥∥∥∥%x (t, s, X̃ε(s, ·), uε(s, ·), ·
)∥∥∥
L(R;H)

|ξε(s, ·)|
∥∥∥∥p ds

+ E
∫ t

0

∥∥∥∥∥%u (t, s,X(s, ·), ũε(s, ·), ·
)∥∥
L(R;H)

|(u(s, ·)− u(s, ·))|
∥∥∥p ds}

By assumptions,
∥∥∥%x (t, s, X̃ε(s, η), uε(s, η), η

)∥∥∥
L(R;H)

and
∥∥%u (t, s,X(s, η), ũε(s, η), η

)∥∥
L(R;H)

are uniformly a.s bounded then finally for part B we have the following inequality

B ≤ c
{
E
∫ t

0
‖ξε(s)‖p ds+ E

∫ t

0
‖(u(s)− u(s))‖p ds

}
By combining inequalities for parts A and B, it yields

E ‖ξε(t)‖p ≤ c
{
E
∫ t

0
‖ξε(s)‖p ds+ E

∫ t

0
‖u(s)− u(s)‖p ds

}
, ∀t ∈ [0, T ]

where again c is a universal constant. Here we can use the Gronwall’s inequality by taking
v(t) = E ‖ξε(t)‖p, α(t) = cE

∫ t
0 ‖u(s)− u(s)‖p ds , F = c and we can write

v(t) ≤ α(t) + F

∫ t

0
v(s)ds, 0 ≤ t ≤ T
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then we have v(t) ≤ α(t) exp(Ft), 0 ≤ t ≤ T since u(·), u(·) ∈ U and U is bounded then α(t)

is bounded by some positive constant C too. In other words it results

E
∥∥∥∥Xε(t)−X(t)

ε

∥∥∥∥p = E ‖ξε(t)‖p ≤ C exp ct ≤ K, 0 ≤ t ≤ T

where K is positive constant, moreover it yields

E
∫ T

0

∥∥∥∥Xε(t)−X(t)

ε

∥∥∥∥p dt = E
∫ T

0
‖ξε(t)‖p dt ≤ KT, ∀ε ≥ 0

and it results that E
∫ T

0 ‖ξε(t)‖
p dt is uniformly bounded with respect to ε. �

Lemma 5.2. If ε tends to zero then ξε(·) tends to ξ(·) in Lp([0, T ]×Ω;E) and ξε(t) tends to ξ(t)
in Lp(Ω;E) for all t ∈ [0, T ], where ξ(t) satisfies the following FSVIE

ξ(t) =

∫ t

0

{
bx
(
t, s,X(s), u(s)

)
ξ(s) + bu

(
t, s,X(s), u(s)

)
(u(s)− u(s))

}
ds

+

∫ t

0

{
ρx
(
t, s,X(s), u(s)

)
ξ(s) + ρu

(
t, s,X(s), u(s)

)
(u(s)− u(s))

}
dWH(s),

0 ≤ t ≤ T.

Proof. We see by using the definition of ξε(·)

E ‖ξε(t)− ξ(t)‖p =

E

∥∥∥∥∥
∫ t

0

{
b (t, s,Xε(s), uε(s))− b

(
t, s,X(s), u(s)

)
ε

− bx
(
t, s,X(s), u(s)

)
ξ(s)− bu

(
t, s,X(s), u(s)

)
(u(s)− u(s))

}
ds

+

∫ t

0

{
ρ (t, s,Xε(s), uε(s))− ρ

(
t, s,X(s), u(s)

)
ε

− ρx
(
t, s,X(s), u(s)

)
ξ(s)− ρu

(
t, s,X(s), u(s)

)
(u(s)− u(s))

}
dWH(s)

∥∥∥∥∥
p

By similar calculations that we done in Lemma 5.1, it results

≤cE
∥∥∥∥∫ t

0

{
bx

(
t, s, X̃ε(s), uε(s)

) Xε(s)−X(s)

ε

+ bu
(
t, s,X(s), ũε(s)

)
(u(s)− u(s))

− bx
(
t, s,X(s), u(s)

)
ξ(s)− bu

(
t, s,X(s), u(s)

)
(u(s)− u(s))

}
ds

∥∥∥∥∥
p

+ cE

∥∥∥∥∥
∫ t

0

{
ρ (t, s,Xε(s), uε(s))− ρ

(
t, s,X(s), u(s)

)
ε

− ρx
(
t, s,X(s), u(s)

)
ξ(s)− ρu

(
t, s,X(s), u(s)

)
(u(s)− u(s))

}
dWH(s)

∥∥∥∥∥
p
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Now we consider first summand and we denote it by A1

A1 = E
∥∥∥∥∫ t

0

{
bx

(
t, s, X̃ε(s), uε(s)

)
ξε(s)− bx

(
t, s,X(s), u(s)

)
ξ(s)

+
(
bu
(
t, s,X(s), ũε(s)

)
− bu

(
t, s,X(s), u(s)

))
(u(s)− u(s))

}
ds
∥∥∥p

≤ cE
∥∥∥∥∫ t

0

{
bx

(
t, s, X̃ε(s), uε(s)

)
ξε(s)− bx

(
t, s,X(s), u(s)

)
ξ(s)

}
ds

∥∥∥∥p
+ cE

∥∥∥∥∫ t

0

(
bu
(
t, s,X(s), ũε(s)

)
− bu

(
t, s,X(s), u(s)

))
(u(s)− u(s)) ds

∥∥∥∥p
Again we consider part one by one, we denote the first and second summands as A11 and A12

respectively,

A11 ≤ cE
∫ t

0

∥∥∥{bx (t, s, X̃ε(s), uε(s)
)
ξε(s)− bx

(
t, s,X(s), uε(s)

)
ξε(s)

+bx
(
t, s,X(s), uε(s)

)
ξε(s)− bx

(
t, s,X(s), u(s)

)
ξε(s)

+ bx
(
t, s,X(s), u(s)

)
ξε(s)− bx

(
t, s,X(s), u(s)

)
ξ(s)

∥∥∥p ds
≤ cE

∫ t

0

∥∥∥{bx (t, s, X̃ε(s), uε(s)
)
− bx

(
t, s,X(s), uε(s)

)}
ξε(s)

∥∥∥p ds
+cE

∫ t

0

∥∥{bx (t, s,X(s), uε(s)
)
− bx

(
t, s,X(s), u(s)

)}
ξε(s)

∥∥p ds
+cE

∫ t

0

∥∥bx (t, s,X(s), u(s)
)
{ξε(s)− ξ(s)}

∥∥p ds
Now consider part by part, similar to our previous notations we set every summands as A111, A112

and A113 receptively,

A111 = E
∫ t

0

∥∥∥{bx (t, s, X̃ε(s), uε(s)
)
− bx

(
t, s,X(s), uε(s)

)}
(ξε(s)− ξ(s))

+
{
bx

(
t, s, X̃ε(s), uε(s)

)
− bx

(
t, s,X(s), uε(s)

)}
ξ(s)

∥∥∥p ds
≤ cE

∫ t

0

∥∥∥{bx (t, s, X̃ε(s), uε(s)
)
− bx

(
t, s,X(s), uε(s)

)}
(ξε(s)− ξ(s))

∥∥∥p ds
+cE

∫ t

0

∥∥∥{bx (t, s, X̃ε(s), uε(s)
)
− bx

(
t, s,X(s), uε(s)

)}
ξ(s)

∥∥∥p ds
Since bx (t, s,X(s), u(s)) is bounded a.s, we have∣∣∣bx (t, s, X̃ε(s), uε(s)

)
− bx

(
t, s,X(s), uε(s)

)∣∣∣ ≤ K
and

A111 ≤KcE
∫ t

0
‖ξε(s)− ξ(s)‖p ds

+ cE

∫ t

0

∥∥∥{bx (t, s, X̃ε(s), uε(s)
)
− bx

(
t, s,X(s), uε(s)

)}
ξ(s)

∥∥∥p ds
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we can also get
∣∣∣bx (t, s, X̃ε(s, η), uε(s, η), η

)
− bx

(
t, s,X(s, η), uε(s, η), η

)∣∣∣ tends to zero in mea-
sure. It results from dominant convergence theorem that

lim
ε→0

E

∫ t

0

∥∥∥{bx (t, s, X̃ε(s), uε(s)
)
− bx

(
t, s,X(s), uε(s)

)}
ξ(s)

∥∥∥p ds = 0

for every t ∈ [0, T ].
With similar calculations for second part we have

A112 ≤KcE
∫ t

0
‖ξε(s)− ξ(s)‖p ds

+ cE

∫ t

0

∥∥{bx (t, s,X(s), uε(s)
)
− bx

(
t, s,X(s), u(s)

)}
ξ(s)

∥∥p ds
and

lim
ε→0

E

∫ t

0

∥∥{bx (t, s,X(s), uε(s)
)
− bx

(
t, s,X(s), u(s)

)}
ξ(s)

∥∥p ds = 0

for every t ∈ [0, T ]. For the third part A113, it yields

A113 ≤ KcE
∫ t

0
‖ξε(s)− ξ(s)‖p ds

Now we consider the stochastic part A2, by using the theorem of Lp-stochastic integrability by
Theorem A.3 and Theorem A.2, it yields

A2 ≤cE

∥∥∥∥∥
(∫ t

0

∥∥∥∥∥% (t, s,Xε(s), uε(s))− %
(
t, s,X(s), u(s)

)
ε

− %x
(
t, s,X(s), u(s)

)
ξ(s)− %u

(
t, s,X(s), u(s)

)
(u(s)− u(s))

∥∥∥∥∥
2

H

ds

 1
2

∥∥∥∥∥∥∥
p

since 2 ≤ q ≤ p by using Jensen’s inequality we have

A2 ≤cE
∫ t

0

∥∥∥∥∥
∥∥∥∥∥% (t, s,Xε(s), uε(s))− %

(
t, s,X(s), u(s)

)
ε

− %x
(
t, s,X(s), u(s)

)
ξ(s)− %u

(
t, s,X(s), u(s)

)
(u(s)− u(s))

∥∥∥∥∥
H

∥∥∥∥∥
p

E

ds

By using Fréchet’s derivatives and similar calculations in the proof of Lemma 5.1 it yields

A2 ≤cE
∫ t

0

∥∥∥∥∥∥∥∥%x (t, s, X̃ε(s), uε(s)
) Xε(s)−X(s)

ε

+ %u
(
t, s,X(s), ũε(s)

)
(u(s)− u(s))

− %x
(
t, s,X(s), u(s)

)
ξ(s)− %u

(
t, s,X(s), u(s)

)
(u(s)− u(s))

∥∥∥∥∥
H

∥∥∥∥∥
p

E

ds



5.1. Stochastic Optimal Problem 53

≤cE
∫ t

0

∥∥∥∥∥∥%x (t, s, X̃ε(s), uε(s)
)
ξε(s)− %x

(
t, s,X(s), u(s)

)
ξ(s)

∥∥∥
H

∥∥∥p
E
ds

+ cE
∫ t

0

∥∥∥∥%u (t, s,X(s), ũε(s)
)

(u(s)− u(s))

−%u
(
t, s,X(s), u(s)

)
(u(s)− u(s))

∥∥
H

∥∥p
E
ds

Consider part by part, set A21 and A22 respectively for every summands

A21 ≤cE
∫ t

0

∥∥∥∥∥∥%x (t, s, X̃ε(s), uε(s)
)
ξε(s)− %x

(
t, s,X(s), uε(s)

)
ξε(s)

+%x
(
t, s,X(s), uε(s)

)
ξε(s)− %x

(
t, s,X(s), u(s)

)
ξε(s)

+ %x
(
t, s,X(s), u(s)

)
ξε(s)− %x

(
t, s,X(s), u(s)

)
ξ(s)

∥∥∥
H

∥∥∥p
E
ds

≤cE
∫ t

0

∥∥∥∥∥∥{%x (t, s, X̃ε(s), uε(s)
)
− %x

(
t, s,X(s), uε(s)

)}
ξε(s)

∥∥∥
H

∥∥∥p
E
ds

+cE
∫ t

0

∥∥∥∥{%x (t, s,X(s), uε(s)
)
− %x

(
t, s,X(s), u(s)

)}
ξε(s)

∥∥
H

∥∥p
E
ds

+ cE
∫ t

0

∥∥∥∥%x (t, s,X(s), u(s)
)
{ξε(s)− ξ(s)}

∥∥
H

∥∥p
E
ds

Again consider one by one, set A211, A212 and A213 respectively, for example for the first part
A211 we can write

A211 = cE
∫ t

0

∥∥∥∥∥∥{%(t, s, X̃ε(s), uε(s)
)
− %x

(
t, s,X(s), uε(s)

)}
(ξε(s)− ξ(s))

+
{
%x

(
t, s, X̃ε(s), uε(s)

)
− %x

(
t, s,X(s), uε(s)

)}
ξ(s)

∥∥∥
H

∥∥∥p
E
ds

≤ cE
∫ t

0

∥∥∥∥∥∥{%(t, s, X̃ε(s), uε(s)
)
− %x

(
t, s,X(s), uε(s)

)}
(ξε(s)− ξ(s))

∥∥∥
H

∥∥∥p
E
ds

+cE
∫ t

0

∥∥∥∥∥∥{%x (t, s, X̃ε(s), uε(s)
)
− %x

(
t, s,X(s), uε(s)

)}
ξ(s)

∥∥∥
H

∥∥∥p
E
ds

By considering pointwise as we have done in proof of Lemma 5.1, we can use for example following
norm inequality for each part of above equation∥∥∥%x (t, s, X̃ε(s, η), uε(s, η), η

)
ξε(s, η)

∥∥∥
H
≤
∥∥∥%x (t, s, X̃ε(s, η), uε(s, η), η

)∥∥∥
L(R;H)

|ξε(s, η)|

and by assumptions ‖%x (t, s,X(s, η), u(s, η), η)‖L(R;H) is uniformly a.s bounded then it yields

A211

≤ cE
∫ t

0

∥∥∥∥∥∥∥%(t, s, X̃ε(s), uε(s)
)
− %x

(
t, s,X(s), uε(s)

)∥∥∥
L(R;H)

|ξε(s)− ξ(s)|
∥∥∥∥p
E

ds

+ cE
∫ t

0

∥∥∥∥∥∥∥%x (t, s, X̃ε(s), uε(s)
)
− %x

(
t, s,X(s), uε(s)

)∥∥∥
L(R;H)

|ξ(s)|
∥∥∥∥p
E

ds
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≤cKE
∫ t

0
‖ξε(s)− ξ(s)‖pE ds

+ cE
∫ t

0

∥∥∥∥∥∥∥%x (t, s, X̃ε(s), uε(s)
)
− %x

(
t, s,X(s), uε(s)

)∥∥∥
L(R;H)

|ξ(s)|
∥∥∥∥p
E

ds

If ε tends to zero then by the dominant convergence theorem

E
∫ t

0

∥∥∥∥∥∥∥%x (t, s, X̃ε(s), uε(s)
)
− %x

(
t, s,X(s), uε(s)

)∥∥∥
L(R;H)

|ξ(s)|
∥∥∥∥p
E

ds

tends to zero too. By similar calculations we have following results for other parts too,

A212 ≤ cKE
∫ t

0
‖ξε(s)− ξ(s)‖pE ds

+cE
∫ t

0

∥∥∥∥∥%x (t, s,X(s), uε(s)
)
− %x

(
t, s,X(s), u(s)

)∥∥
L(R;H)

|ξ(s)|
∥∥∥p
E
ds

and

A213 ≤ cKE
∫ t

0
‖ξε(s)− ξ(s)‖pE ds

where

E

∫ t

0

∥∥∥∥∥%x (t, s,X(s), uε(s)
)
− %x

(
t, s,X(s), u(s)

)∥∥
L(R;H)

|ξ(s)|
∥∥∥p
E
ds

tends to zero if ε tends to zero. Since u(·) ∈ U , it is almost sure bounded, then by dominant
convergence theorem it results that

A12 = cE
∥∥∥∥∫ t

0

(
bu
(
t, s,X(s), ũε(s)

)
− bu

(
t, s,X(s), u(s)

))
(u(s)− u(s)) ds

∥∥∥∥p
and

A22 = cE
∫ t

0

∥∥∥∥%u (t, s,X(s), ũε(s)
)

(u(s)− u(s))

−%u
(
t, s,X(s), u(s)

)
(u(s)− u(s))

∥∥
H

∥∥p
E
ds

≤cE
∫ t

0

∥∥∥∥∥%u (t, s,X(s), ũε(s)
)
− %u

(
t, s,X(s), u(s)

)∥∥
L(R;H)

|u(s)− u(s)|
∥∥∥p
E
ds

tend to zero.
Now by taking all above results, we have

E ‖ξε(t)− ξ(t)‖p ≤ cKE
∫ t

0
‖ξε(s)− ξ(s)‖p ds+ cFε(t)
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where

Fε(t) = E

∥∥∥∥∫ t

0

(
bu
(
t, s,X(s), ũε(s)

)
− bu

(
t, s,X(s), u(s)

))
(u(s)− u(s)) ds

∥∥∥∥p
+ E

∫ t

0

∥∥∥∥∥%u (t, s,X(s), ũε(s)
)
− %u

(
t, s,X(s), u(s)

)∥∥
L(R;H)

|u(s)− u(s)|
∥∥∥p
E
ds

+ E
∫ t

0

∥∥∥{bx (t, s, X̃ε(s), uε(s)
)
− bx

(
t, s,X(s), uε(s)

)}
ξ(s)

∥∥∥p ds
+ E

∫ t

0

∥∥{bx (t, s,X(s), uε(s)
)
− bx

(
t, s,X(s), u(s)

)}
ξ(s)

∥∥p ds
+ E

∫ t

0

∥∥∥∥∥∥∥%x (t, s, X̃ε(s), uε(s)
)
− %x

(
t, s,X(s), uε(s)

)∥∥∥
L(R;H)

|ξ(s)|
∥∥∥∥p
E

ds

+ E
∫ t

0

∥∥∥∥∥%x (t, s,X(s), uε(s)
)
− %x

(
t, s,X(s), u(s)

)∥∥
L(R;H)

|ξ(s)|
∥∥∥p
E
ds

Here we can use the Gronwall’s inequality by taking v(t) = E ‖ξε(t)− ξ(t)‖p, α(t) = cFε(t) ,
A = cK and

v(t) ≤ α(t) +A

∫ t

0
v(s)ds, 0 ≤ t ≤ T

then we have

v(t) ≤ Fε(t) exp(

∫ t

0
cKds), 0 ≤ t ≤ T

or

E ‖ξε(t)− ξ(t)‖p ≤ Fε(t)ecKt

for each t ∈ [0, T ], by knowing that if ε tends to zero then Fε(t) tends to zero, then it results
that ξε(·) tends to ξ(·) in Lp ([0, T ]× Ω;E). �

Now we can consider our control problem. It is necessary to mention, since E = Lq(S,Σ, µ) is
reflexive then it is Radon-Nikodyn space, see [6] and dual space of Lp ([0, T ]× Ω;Lq (S,Σ, µ)) is
Lp
′
(

[0, T ]× Ω;Lq
′
(S,Σ, µ)

)
, where 1

p + 1
p′ = 1, 1

q + 1
q′ = 1 and for every f ∈ Lp ([0, T ]× Ω;E)

and g ∈ Lp
′
([0, T ]× Ω;E∗) where E∗ is dual space of E, here the duality paring is given as

follows

〈f(·), g(·)〉Lp′ ([0,T ]×Ω;E∗) = E
∫ T

0
〈f(t), g(t)〉E∗ dt = E

∫ T

0

∫
S

f(t, ·)g(t, ·)dµdt



5.1. Stochastic Optimal Problem 56

Lemma 5.3. If ε tends to zero, then

lim
ε→0

∣∣∣∣∣∣J (uε(·))− J (u(·))
ε

−E
∫ T

0

∫
S

{
hx
(
t,X(t), u(t)

)
ξ(t) + hu

(
t,X(t), u(t)

)
(u(t)− u(t))

}
dµdt

−E
∫
S

gx
(
X(T )

)
.ξ(T )dµ

∣∣∣∣∣∣ = 0

Proof. By considering the definition of the cost function, we can write

J (uε(·))− J (u(·))
ε

=

E
∫ T

0

∫
S

h (t,Xε(t), uε(t))− h
(
t,X(t), u(t)

)
ε

dµdt

+ E
∫
S

g (Xε(T ))− g
(
X(T )

)
ε

dµ

For proving it, we consider every summand separately. First we show that

Bε = E
∫ T

0

∫
S

h (t,Xε(t), uε(t))− h
(
t,X(t), u(t)

)
ε

dµdt

tends to

B = E
∫ T

0

∫
S

{
hx
(
t,X(t), u(t)

)
ξ(t) +hu

(
t,X(t), u(t)

)
(u(t)− u(t))

}
dµdt

By using the derivatives of h(t, s, x, u), adding and subtracting h
(
t,X(t), uε(t)

)
it yields

Bε = E


∫ T

0

∫
S

hx

(
t, X̃ε(t), uε(t)

) Xε(t)−X(t)

ε
dµdt

+

∫ T

0

∫
S

hu
(
t,X(t), ũε(t)

) uε(t)− u(t)

ε
dµdt


We want to use the Lemma 5.1, by using the norm properties we can write

lim
ε→0
|Bε − B| = lim

ε→0

∣∣∣∣∣∣E
∫ T

0

∫
S

{
hx

(
t, X̃ε(t), uε(t)

) Xε(t)−X(t)

ε

+hu
(
t,X(t), ũε(t)

) uε(t)− u(t)

ε
dµdt

}
− B

∣∣∣∣∣∣
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≤ lim
ε→0

E
∫ T

0

∫
S

∣∣∣hx (t, X̃ε(t), uε(t)
)
ξε(t)− hx

(
t,X(t), u(t)

)
ξ(t)

∣∣∣ dµdt
+E

∫ T

0

∫
S

∣∣(hu (t,X(t), ũε(t)
)
− hu

(
t,X(t), u(t)

))
(u(t)− u(t))

∣∣ dµdt


Now we consider every summand in above equation denoted by B1 and B2. For the first one B1

by adding and subtracting hx
(
t,X(t), uε(t)

)
ξ(t) and hx

(
t,X(t), u(t)

)
ξε(t) it yields

B1 ≤E
∫ T

0

∫
S

∣∣∣hx (t, X̃ε(t), uε(t)
)
− hx

(
t,X(t), uε(t)

)∣∣∣ |ξε(t)| dµdt
+ E

∫ T

0

∫
S

∣∣hx (t,X(t), uε(t)
)
− hx

(
t,X(t), u(t)

)∣∣ |ξε(t)| dµdt
+ E

∫ T

0

∫
S

∣∣hx (t,X(t), u(t)
)∣∣ |ξε(t)− ξ(t)| dµdt

We consider again every summand separately as B11, B12 and B13. Since hx(t, x, u) is bounded
then

∣∣∣hx (t, X̃ε(t), uε(t)
)
− hx

(
t,X(t), uε(t)

)∣∣∣ is bounded a.s too and tends to zero in measure.
Now we can use dominant convergence theorem and we use Hölder’s inequality. It results

B11 ≤ E
∫ T

0


∫

S

∣∣∣hx (t, X̃ε(t), uε(t)
)
− hx

(
t,X(t), uε(t)

)∣∣∣q′ dµ
 1

q′

·

∫
S

|ξε(t)|q dµ

 1
q

 dt

Now we apply Hölder’s inequality for the product measure dν = dt · dP ,

B11 ≤

E
∫ T

0

∫
S

∣∣∣hx (t, X̃ε(t), uε(t)
)
− hx

(
t,X(t), uε(t)

)∣∣∣q′ dµ


p′
q′

dt


1
p′

·

E
∫ T

0

∫
S

|ξε(t)|q dµ


p
q

dt


1
p

where 1
q′ +

1
q = 1 and 1

p + 1
p′ = 1. By dominant convergence theorem the first factor tends to zero

if ε tends to zero and the second part is bounded with respect to ε > 0. The similar calculations
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show that B12 tends to zero too. for the B13 it results by boundedness of hx
(
t,X(t), u(t)

)

B13 ≤

E
∫ T

0

∫
S

∣∣hx (t,X(t), u(t)
)∣∣q′ dµ


p′
q′

dt


1
p′

·

E
∫ T

0

∫
S

|ξε(t)− ξ(t)|q dµ


p
q

dt


1
p

Since E
∫ T

0 ‖ξε(t)− ξ(t)‖
P dt tends to zero, it yields that B13 → 0 as ε→ 0. For B2, we can get

also by similar calculations to previous ones, for example

B2 ≤

E
∫ T

0

∫
S

∣∣hu (t,X(t), ũ(t)
)
− hu

(
t,X(t), u(t)

)∣∣q′ dµ


p′
q′

dt


1
p′

·

E
∫ T

0

∫
S

|u(t)− u(t)|q dµ


p
q

dt


1
p

since U is bounded, then second part is bounded too and we can apply dominant convergence
theorem, and it yields that B2 → 0 as ε→ 0.
Now we show that

Dε = E
∫
S

g (Xε(T ))− g
(
X(T )

)
ε

dµ

tends to D = E
∫
S

gx
(
X(T )

)
dµ. Note that since gx(·) is bounded, then gx(T ) ∈ Lp

′
(Ω;E∗),

where 1
p + 1

p′ = 1 and E∗ = Lq
′
(S,Σ, dµ), 1

q + 1
q′ = 1.

|Dε − D| =

∣∣∣∣∣∣E
∫
S

g (Xε(T ))− g
(
X(T )

)
ε

dµ− E
∫
S

gx
(
X(T )

)
dµ

∣∣∣∣∣∣
Now by adding and subtracting gx

(
X(T )

)
ξε(T ), it yields

|Dε − D| ≤ E
∫
S

∣∣∣gx (X̃ε(T )
)
− gx

(
X(T )

)∣∣∣ |ξε(T )| dµ

−E
∫
S

∣∣gx (X(T )
)∣∣ |ξε(T )− ξ(T )| dµ
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By using Hölder’s inequality we have

|Dε − D| ≤E

∫
S

∣∣∣gx (X̃ε(T )
)
− gx

(
X(T )

)∣∣∣q′ dµ


p′
q′


1
p′ E

∫
S

|ξε(T )|q dµ


p
q


1
p

+

E

∫
S

∣∣gx (X(T )
)∣∣q′ dµ


p′
q′


1
p′ E

∫
S

|ξε(T )− ξ(T )|q dµ


p
q


1
p

above calculations tend to zero as ε tends to zero, since ξε(·) → ξ(·) in Lp ([0, T ]× Ω;E) and
ξε(T )→ ξ(T ) in Lp (Ω;E)(See Lemma 5.2). �

We know that ξ(t) solves FSVIE in E = Lq (S,Σ, µ) and it has the property ξ(·) ∈ Lp ([0, T ]× Ω;E).
Since hx

(
t,X(·), u(·)

)
is bounded then for every u(·) ∈ U , hx (·, ·, u(·)) is in Lp′ ([0, T ]× Ω;E∗)

and with similar arguments it results that gx(·), hu(·, ·, u(·)) ∈ Lp′ ([0, T ]× Ω;E∗). Since (u(·), X(·))
is an optimal pair and Lemma 5.3 we can write

0 ≤ J (uε(·))− J (u(·))
ε

ε→0−→ E
〈
ξ(T ), gx

(
X(T )

)〉
+ E

{∫ T

0

(〈
ξ(t), hx

(
t,X(t), u(t)

)〉
+
〈
u(t)− u(t), hu

(
t,X(t), u(t)

)〉)
dt

}
ξ(t) satisfies following FSVIE

ξ(t) =ϕ(t) +

∫ t

0
bx
(
t, s,X(s), u(s)

)
ξ(s)ds

+

∫ t

0
ρx
(
t, s,X(s), u(s)

)
ξ(s)dWH(s), t ∈ [0, T ]

where

ϕ(t) =

∫ t

0
bu
(
t, s,X(s), u(s)

)
(u(s)− u(s)) ds

+

∫ t

0
ρu
(
t, s,X(s), u(s)

)
(u(s)− u(s)) dWH(s)

(5.1)

By boundedness assumptions we can define following bounded linear operators

Bu(t, s)u(s) =bu
(
t, s,X(s), u(s)

)
u(s)

Bx(t, s)ξ(s) =bx
(
t, s,X(s), u(s)

)
ξ(s)

Au(t, s)u(s) =ρu
(
t, s,X(s), u(s)

)
u(s)

Ax(t, s)ξ(s) =ρx
(
t, s,X(s), u(s)

)
ξ(s)
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where for every (t, s) ∈ [0, T ]× [0, T ]

Bu(t, s) ∈ L (E;E)

Bx(t, s) ∈ L (E;E)

Au(t, s) ∈ L (E;L (H;E))

Ax(t, s) ∈ L (E;L (H;E))

So we can define adjoint operators and similar to chapter 3 we let A∗x (·, ·)hn := (Ax (·, ·)hn)∗

and A∗x (·, ·)hn := (Au (·, ·)hn)∗.

Theorem 5.1. If (X(·), u(·)) be an optimal solution and
∑
n≥1
‖Ax (t, s)hn‖L(E;E),∑

n≥1
‖Au (t, s)hn‖L(E;E) are bounded a.s for every t, s ∈ [0, T ]× [0, T ], then there exists a unique

adapted M -solution (Y (·), Y0(·), υ(·);Z(·, ·), Z0(·, ·), ζ(·)) of the following BSVIEs:

Y (t) =hx
(
t,X(t), u(t)

)
+B∗x (T, t) gx

(
X(T )

)
+
∑
n≥1

A∗x (T, t)hnζ(t)hn

+

∫ T

t

B∗x (s, t)Y (s) +
∑
n≥1

A∗x (s, t)hnZ(s, t)hn

 ds

−
∫ T

t
Z(t, s)dWH(s),

υ(t) =gx
(
X(T )

)
−
∫ T

t
ζ(s)dWH(s),

Y0(t) =B∗u (T, t) gx
(
X(T )

)
+
∑
n≥1

A∗u (T, t)hnζ(t)hn

+

∫ T

t

B∗u (s, t)Y (s) +
∑
n≥1

A∗u (s, t)hnZ(s, t)hn

 ds

−
∫ T

t
Z0(t, s)dWH(s), t ∈ [0, T ]

where Y (·), Y0(·), υ(·) ∈ LpF(Ω× [0, T ];E) and
Z(·, ·), Z0(·, ·), ζ(·) ∈ LpF

(
Ω× [0, T ]; γ

(
L2(0, T ;H), E

))
such that〈

u(t)− u(t), Y0(t) + hu
(
t,X(t), u(t)

)〉
≥ 0, ∀u(·) ∈ U , ∀t ∈ [0, T ] a.s

Proof. By boundedness of U , it results that E ‖ϕ(t)‖p is bounded with respect to t ∈ [0, T ]

where ϕ(t) is defined by Equation (5.1). Since gx(·) is bounded we have E
∥∥gx (X(T

)∥∥
E∗

< ∞,
and by assumptions we know that gx

(
X(T )

)
is FT -measurable, therefore we use martnigale

representation theorem in Banach spaces, Theorem A.6. (E = Lq (S,Σ, µ) , 2 ≤ q ≤ p then
E∗ = Lq

′
(S,Σ, µ), 1 < p′ ≤ q′ ≤ 2 and E∗ is cotype(2) ). We can find unique adapted process

ζ(·) such that for every r ∈ [0, T ]

γ(r) = E
(
gx
(
X(T )

)
|Fr
)

= E
(
gx
(
X(T )

))
+

∫ r

0
ζ(s)dWH(s)
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and from above equation it results

γ(T ) = gx
(
X(T )

)
= E

(
gx
(
X(T )

))
+

∫ T

0
ζ(s)dWH(s)

or

gx
(
X(T )

)
−
∫ T

t
ζ(s)dWH(s) = E

(
gx
(
X(T )

))
+

∫ t

0
ζ(s)dWH(s)

Let υ(t) =: E
(
gx
(
X(T )

))
+
∫ t

0 ζ(s)dWH(s) or

υ(t) = gx
(
X(T )

)
−
∫ T

t
ζ(s)dWH(s)

So we can define BSVIE in E∗ = Lq
′
(S,Σ, µ) as follows

Y (t) =hx
(
t,X(t), u(t)

)
+B∗x (T, t) gx

(
X(T )

)
+
∑
n≥1

A∗x (T, t)hnζ(t)hn

+

∫ T

t

B∗x (s, t)Y (s) +
∑
n≥1

A∗x (s, t)hnZ(s, t)hn

 ds

−
∫ T

t
Z(t, s)dWH(s), t ∈ [0, T ]

Let

ψ̂(t) = hx
(
t,X(t), u(t)

)
+B∗x (T, t) gx

(
X(T )

)
+
∑
n≥1

A∗x (T, t)hnζ(t)hn,

t ∈ [0, T ]

By assumptions it holds E
∥∥∥ψ̂(t)

∥∥∥p′
E∗

< ∞, for each t in [0, T ] then BSVIE have the unique
M -adapted solution

(Y (·), Z(·, ·)) ∈ Lp
′

F ([0, T ]× Ω;E∗)× Lp
′

F

(
[0, T ];Lq

′ (
S;L2(0, T ;H)

))
Now we can apply duality principle Theorem 4.2 and we have following relation

E
{〈
ξ(T ), gx

(
X(T )

)〉
+

∫ T

0

〈
ξ(t), hx

(
t,X(t), u(t)

)〉
dt

}
= E

{〈
ϕ(T ), gx

(
X(T )

)〉
+

∫ T

0
〈ϕ(t), Y (t)〉 dt

}
Now we replace ϕ(T ) and ϕ(t) from FSVIE, and we denote the summands in the last term by
F1 and F2. It yields for F1

F1 = E
〈
ξ(T ), gx

(
X(T )

)〉
=
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E
〈∫ T

0
bu
(
T, s,X(s), u(s)

)
(u(s)− u(s)) ds

+

∫ T

0
ρu
(
T, s,X(s), u(s)

)
(u(s)− u(s)) dWH(s), gx

(
X(T )

)〉
= E

〈∫ T

0
bu
(
T, s,X(s), u(s)

)
(u(s)− u(s)) ds, gx

(
X(T )

)〉
+ E

〈∫ T

0
ρu
(
T, s,X(s), u(s)

)
(u(s)− u(s)) dWH(s),

E
(
gx
(
X(T )

))
+

∫ T

0
ζ(s)dWH(s)

〉
by using adjoint operators and Itô formula in Banach spaces, Theorem A.8, it results

F1 = E
∫ T

0

〈
u(s)− u(s), B∗u(T, s)gx

(
X(T )

)〉
ds

+ E
∫ T

0

∑
n≥1

〈
ρu
(
T, s,X(s), u(s)

)
(u(s)− u(s))hn, ζ(s)hn

〉
ds

= E
∫ T

0

〈
u(s)− u(s), B∗u(T, s)gx

(
X(T )

)〉
ds

+ E
∫ T

0

∑
n≥1

〈Au(T, s)hn (u(s)− u(s)) , ζ(s)hn〉 ds

= E
∫ T

0

〈
u(s)− u(s), B∗u(T, s)gx

(
X(T )

)〉
ds

+ E
∫ T

0

〈
u(s)− u(s),

∑
n≥1

A∗u(T, s)hnζ(s)hn

〉
ds

and finally it yields

F1 = E
∫ T

0

〈
u(t)− u(t), B∗u(T, t)gx

(
X(T )

)
+
∑
n≥1

A∗u(T, t)hnζ(t)hn

〉
dt

Now consider the term F2. For the following calculations, we used the adjoint operators prop-
erties, Martingale representation theorem for Y (t) Theorem A.6, Itô’s formula in Banach spaces
Theorem A.8 and the properties of stochastic Integral.

F2 =E
∫ T

0
〈ϕ(t), Y (t)〉 dt =

E
∫ T

0

〈∫ t

0
bu
(
t, s,X(s), u(s)

)
(u(s)− u(s)) ds

+

∫ t

0
ρu
(
t, s,X(s), u(s)

)
(u(s)− u(s)) dWH(s), Y (t)

〉
dt
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=E
∫ T

0

〈∫ t

0
bu
(
t, s,X(s), u(s)

)
(u(s)− u(s)) ds, Y (t)

〉
dt

+ E
∫ T

0

〈∫ t

0
ρu
(
t, s,X(s), u(s)

)
(u(s)− u(s)) dWH(s), Y (t)

〉
dt

=E
∫ T

0

〈∫ t

0
bu
(
t, s,X(s), u(s)

)
(u(s)− u(s)) ds, Y (t)

〉
dt

+ E
∫ T

0

〈∫ t

0
ρu
(
t, s,X(s), u(s)

)
(u(s)− u(s)) dWH(s),

E(Y (t) +

∫ t

0
Z(t, s)dWH(s)

〉
dt

=E
∫ T

0

∫ t

0
〈u(s)− u(s), B∗u(t, s)Y (t)〉 dsdt

+E
∫ T

0

∫ t

0

〈∑
n≥1

ρu
(
t, s,X(s), u(s)

)
hn (u(s)− u(s)) , Z(t, s)hn

〉
dsdt

Moreover we can write

F2 =E
∫ T

0

∫ T

s
〈u(s)− u(s), B∗u(t, s)Y (t)〉 dtds

+

∫ T

0

∫ T

s

〈
u(s)− u(s),

∑
n≥1

A∗u(t, s)hnZ(t, s)hn

〉
dtds

=E
∫ T

0

∫ T

t
〈u(t)− u(t), B∗u(s, t)Y (s)〉 dsdt

+

∫ T

0

∫ T

t

〈
u(t)− u(t),

∑
n≥1

A∗u(s, t)hnZ(s, t)hn

〉
dsdt

= E
∫ T

0

〈
u(t)− u(t),

∫ T

t

B∗u(s, t)Y (s) +
∑
n≥1

A∗u(s, t)hnZ(s, t)hn

 ds

〉
dt

By combining above two results F1 and F2, we have

E
{〈
ϕ(T ), gx

(
X(T )

)〉
+

∫ T

0
〈ϕ(t), Y (t)〉 dt

}
= E

∫ T

0

〈
u(t)− u(t), B∗u(T, t)gx

(
X(T )

)
+
∑
n≥1

A∗u(T, t)hnζ(t)hn

+

∫ T

t

B∗u(s, t)Y (s) +
∑
n≥1

A∗u(s, t)hnZ(s, t)hn

 ds

〉
dt



5.1. Stochastic Optimal Problem 64

Here we define another simple BSVIE in E∗ as follows

Y0(t) =B∗u (T, t) gx
(
X(T )

)
+
∑
n≥1

A∗u (T, t)hnζ(t)hn

+

∫ T

t

B∗u (s, t)Y (s) +
∑
n≥1

A∗u (s, t)hnZ(s, t)hn

 ds

−
∫ T

t
Z0(t, s)dWH(s), t ∈ [0, T ]

It is well defined and there exists unique M -solution

(Y0(·), Z0(·, ·)) ∈ Lp
′

F ([0, T ]× Ω;E∗)× Lp
′

F

(
[0, T ];Lq

′ (
S;L2(0, T ;H)

))
Finally consider again following relation by minimality of cost function with respect to control
process u(·)

0 ≤ J (uε(·))− J (u(·))
ε

ε→0−→ E
{〈

ξ(T ), gx
(
X(T )

)〉
+

∫ T

0

(〈
ξ(t), hx

(
t,X(t), u(t)

)〉
+
〈
u(t)− u(t), hu

(
t,X(t), u(t)

)〉)
dt

}
=E

{∫ T

0

〈
u(t)− u(t), Y0(t) +

∫ T

t
Z0(t, s)dWH(s) + hu

(
t,X(t), u(t)

)〉
dt

}
=E

{∫ T

0

〈
u(t)− u(t), Y0(t) + hu

(
t,X(t), u(t)

)〉
dt

}
, ∀u(·) ∈ U

notice that since u(t)− u(t) is Ft-measurable, we used following equations

E
{∫ T

0

〈
u(t)− u(t),

∫ T

t
Z0(t, s)dWH(s)

〉
dt

}
=

∫ T

0
E
{
E
(〈

u(t)− u(t),

∫ T

t
Z0(t, s)dWH(s)

〉 ∣∣∣∣ Ft)} dt
=

∫ T

0
E
{〈

u(t)− u(t),E
(∫ T

t
Z0(t, s)dWH(s)

∣∣∣∣ Ft)〉} dt
=

∫ T

0
E
{〈

u(t)− u(t),E
(∫ T

t
Z0(t, s)dWH(s)

)〉}
dt

=

∫ T

0
E {〈u(t)− u(t), 0〉} dt = 0.

Therefore it results〈
u(t)− u(t), Y0(t) + hu

(
t,X(t), u(t)

)〉
≥ 0, ∀u(·) ∈ U , t ∈ [0, T ] a.s

It is easy to see that above result holds. Let dν = dt · dP if there is some u(·) such that above
equations is not hold for some A ⊂ Ω× [0, T ] with ν(A) > 0. Now if we set

u] =

{
u(t) (t, ω) ∈ A

0 (t, ω) /∈ A
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then

E
∫ T

0

〈
u](t)− u(t), Y0(t) + hu

(
t,X(t), u(t)

)〉
dt < 0,

and this contradicts the optimality of u(·). �

5.2. Generalization of the Set Admissible Solutions

In this section we generalize our stochastic control problem. First we consider the following
FSVIE in Banach space E = Lq(S,Σ, µ), where here µ is finite measure, q ≥ 2

X(t) = ϕ(t) +

∫ t

0
{b1 (t, s,X(s)) + b2(t, s)u(s)} ds

+

∫ t

0
ρ (t, s,X(s), u(s)) dWH(s), t ∈ [0, T ]

(5.2)

At this case our control process is defined in another separable Banach space F and we let b2(t, s)

is a linear bounded operator from F to E. In other words we consider for each t ∈ [0, T ], u(t) is
F -valued strongly Ft-adapted process, moreover we assume that there exist a constant cF such
that ‖u(t)‖F ≤ cF for each t ∈ [0, T ] a.s.. Now we define

U = {u : [0, T ]× Ω −→ F | ‖u(t)‖F ≤ cF and u(·) is F-progressively measurable}

we see that if u1, u2 ∈ F then for every ε > 0, u1ε + (1 − ε)u2 ∈ F , since ‖εu1 + (1 − ε)u2‖ ≤
ε‖u1‖F + (1 − ε)‖u2‖F ≤ εcF + (1 − ε)cF = cF , and it results that U is convex. Analogous to
previous section we assume similar assumptions for well-definition of Equation(5.2), for example,
ϕ(·) ∈ LpF([0, T ]× Ω;E) where q ≤ p and b1, b2, ρ are defined measurably as

b1 : [0, T ]× [0, T ]× E × Ω× S −→ E

b2 : [0, T ]× [0, T ]× Ω −→ L(F ;E)

ρ : [0, T ]× [0, T ]× E × F × Ω× S −→ L(H;E)

We consider the following cost function

J(u(·)) = E
∫ T

0

∫
S

h(t,X(t), u(t))dµdt (5.3)

where

h : [0, T ]× E × F × Ω× S −→ E

We use the concept of Nemystkii operator for b1 and h and we let they have first continu-
ous bounded derivative with respect to x, i.e. we assume

∣∣∣∂b1(t,s,x)
∂x

∣∣∣ := |b1,x(t, s, x)| ≤ K ′x ,∣∣∣∂h(t,x,u)
∂u

∣∣∣ := |hx(t, s, x, u)| ≤ ch,x for all t, s ∈ [0, T ] , x ∈ R, η ∈ S, u ∈ F almost sure, where
K ′x, cu,x are positive constants. Similar for ρ we let that ρx(t, s, x, u) : E −→ L(H;E) and
ρu(t, s, x, u) : F −→ L(H;E) are first continuous Fréchet derivative with respect to x and u such
that for each h ∈ {hn}n≥1 ; ‖ρx(t, s, x, u)h‖L(E;E) and ‖ρu(t, s, x, u)h‖L(F ;E) are bounded almost
sure, and moreover we assume that hu(t, x, u) Fréchet derivative of h with respect to u exist and
is a.s. bounded.
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As we have seen U is convex and for each ε ∈ (0, 1), uε(·) ∈ U where uε(·) := u(·) + ε(u(·)−u(·))
and let (X(·), ū(·)) are optimal state and control processes. Let Xε(·) be the solution of FSVIE
Equation(1) when uε(·) is chosen and we define ξε(t) := Xε(t)−X(t)

ε for each t ∈ [0, T ].
With similar calculations and techniques that we used to prove lemmas and theorem in previous
section we can easily prove following lemmas and theorems. For not repeating the same procedure
we overlook bringing similar straightforward proofs, only here it must be mentioned that finiteness
of µ is crucial and we used following equations for proving:

‖b2(t, s)(uε(s)− u(s))‖E ≤ ‖b2(t, s)‖L(F ;E) ‖uε(s)− u(s)‖F

∥∥% (t, s,Xε(s), uε(s))− %
(
t, s,X(s), u(s)

)∥∥
H

=
∥∥∥%x (t, s, X̃ε(s), uε(s)

) (
Xε(s)−X(s)

)
+ %u

(
t, s,X(s), ũ(s)

)
(uε(s)− u(s))

∥∥∥
H

≤
∥∥∥%x (t, s, X̃ε(s), uε(s)

)∥∥∥
L(R;H)

∣∣(Xε(s)−X(s)
)∣∣

+
∥∥%u (t, s,X(s), ũ(s)

)∥∥
L(F ;H)

‖uε(s)− u(s)‖F

Lemma 5.4. ξε(t) is uniformly bounded in Lp(Ω;E) with respect to t and ε and correspondingly
ξε(·) is uniformly bounded in Lp(Ω× [0, T ];E) with respect to ε for 2 ≤ q ≤ p.

Lemma 5.5. If ε tends to zero then ξε(·) tends to ξ(·) in Lp([0, T ]×Ω;E) and ξε(t) tends to ξ(t)
in Lp(Ω;E) for all t ∈ [0, T ], where ξ(t) satisfies the following FSVIE

ξ(t) =

∫ t

0

{
b1,x

(
t, s,X(s)

)
ξ(s) + b2 (t, s) (u(s)− u(s))

}
ds

+

∫ t

0

{
ρx
(
t, s,X(s), u(s)

)
ξ(s) + ρu

(
t, s,X(s), u(s)

)
(u(s)− u(s))

}
dWH(s),

0 ≤ t ≤ T.

By defining

ϕ(t) =

∫ t

0
b2 (t, s) (u(s)− u(s)) ds+

∫ t

0
ρu
(
t, s,X(s), u(s)

)
(u(s)− u(s)) dWH(s)

we can rearrange the FSVIE for ξ(t) as following

ξ(t) = ϕ(t) +

∫ t

0
b1,x

(
t, s,X(s)

)
ξ(s)ds+

∫ t

0
ρx
(
t, s,X(s), u(s)

)
ξ(s)dWH(s),

0 ≤ t ≤ T.

Lemma 5.6. If ε tends to zero, then

lim
ε→0

∣∣∣∣∣∣J (uε(·))− J (u(·))
ε

−E
∫ T

0

∫
S

{
hx
(
t,X(t), u(t)

)
ξ(t) + hu

(
t,X(t), u(t)

)
(u(t)− u(t))

}
dµdt

∣∣∣∣∣∣ = 0
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Now we define following BSVIE in E∗ = Lq
′
(S,Σ, µ)

Y (t) =− hx
(
t,X(t), u(t)

)
+

∫ T

t

B∗x (s, t)Y (s) +
∑
n≥1

A∗x (s, t)hnZ(s, t)hn

 ds

−
∫ T

t
Z(t, s)dWH(s),

where B∗x (s, t) and A∗x (s, t)h := (Ax (s, t)h)∗ are adjoint operators of following defined operators

Bx(t, s)ξ(s) =b1,x
(
t, s,X(s)

)
ξ(s)

Ax(t, s)ξ(s) =ρx
(
t, s,X(s), u(s)

)
ξ(s)

moreover we let
Au(t, s)u(s) = ρu

(
t, s,X(s), u(s)

)
u(s)

and A∗u (s, t)h := (Au (s, t)h)∗and for every (t, s) ∈ [0, T ]× [0, T ]

Bx(t, s) ∈ L (E;E)

Ax(t, s) ∈ L (E;L (H;E))

Au(t, s) ∈ L (F ;L (H;E))

By using the duality Theorem 4.1 we can write

E
∫ T

0

〈
ξ(t),−hx

(
t,X(t), u(t)

)〉
dt = E

∫ T

0
〈ϕ(t), Y (t)〉 dt

by substituting ϕ(t) and with similar calculations in the proof of Theorem 5.1. we can have the
following result

E
∫ T

0

〈
ξ(t), hx

(
t,X(t), u(t)

)〉
dt

= −E
∫ T

0

∫ T

t
〈b2(s, t) (u(t)− u(t)) , Y (s)〉 dsdt

+

∫ T

0

∫ T

t

∑
n≥1

〈Au(s, t)hn (u(t)− u(t)) , Z(s, t)hn〉 dsdt

= −E
∫ T

0

〈
u(t)− u(t),

∫ T

t

b∗2(s, t)Y (s) +
∑
n≥1

A∗u(s, t)hnZ(s, t)hn

 ds

〉
dt
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and finally we can write 0 ≤ J(uε(·))−J(u(·))
ε tends to

−E
∫ T

0

〈
u(t)− u(t),

∫ T

t

b∗2(s, t)Y (s) +
∑
n≥1

A∗u(s, t)hnZ(s, t)hn

 ds− h∗u(t,X(t), u(t))

〉
dt

and we can have following theorem

Theorem 5.2. If (X(·), u(·)) be an optimal solution which state process is given by Equation(5.2)
and

∑
n≥1
‖Ax (t, s)hn‖L(E;E),

∑
n≥1
‖Au (t, s)hn‖L(E;E) are bounded a.s for every t, s ∈ [0, T ]×[0, T ],

then there exists a unique adapted M -solution (Y (·), Z(·, ·)) of the following BSVIE:

Y (t) =− hx
(
t,X(t), u(t)

)
+

∫ T

t

B∗x (s, t)Y (s) +
∑
n≥1

A∗x (s, t)hnZ(s, t)hn

 ds

−
∫ T

t
Z(t, s)dWH(s),

where Y (·) ∈ LpF(Ω× [0, T ];E) and Z(·, ·) ∈ LpF
(
Ω× [0, T ]; γ

(
L2(0, T ;H), E

))
such that〈

u(t)− u(t) ,

∫ T

t

b∗2(s, t)Y (s) +
∑
n≥1

A∗u(s, t)hnZ(s, t)hn

 ds− h∗u(t,X(t), u(t))

〉
≤ 0,

∀u(·) ∈ U , ∀t ∈ [0, T ] a.s

Remark 5.1. We used in this section Bolza cost function without terminal cost Equation (5.3).
If we assume the general Bolza cost function, then the process (Y0(·))t∈[0,T ] has values in F ∗ and
we need assumptions for F ∗, so that the BSVIE is defined. If F is a separable Hilbert space, the
equations could be well defined. It is an open question to define BSVIE if F is not the type of E.
Especially a corresponding martingale representation theorem will be needed.

Remark 5.2. This procedure can be written also for general following FSVIE

X(t) = ϕ(t) +

∫ t

0
b (t, s,X(s), u(s)) ds+

∫ t

0
ρ (t, s,X(s), u(s)) dWH(s),

t ∈ [0, T ]

(5.4)

where at this time

b : [0, T ]× [0, T ]× E × F × Ω× S −→ E

ρ : [0, T ]× [0, T ]× E × F × Ω× S −→ L(H;E)
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and we let the same assumptions for ρ in this section hold and moreover we assume b(t, s, x(s), u(s))

has first continuous Fréchet derivative bu(t, s, x(s), u(s)) with respect to u and first continuous
bounded derivative bx(t, s, x, u) with respect to x as Nemytskii operator, and every results in this
section hold only in lemmas and theorem we have to replace b1,x(t, s, x(s)) with bx(t, s, x(s), u(s))

and b2(t, s) with bu(t, s, x(s), u(s)).

In according to above remark we can use similar notations in Theorem 5.1 and the following
theorem can be given

Theorem 5.3. If (X(·), u(·)) be an optimal solution which state process is given by Equation(5.4)
with the cost function (5.3) and

∑
n≥1
‖Ax (t, s)hn‖L(E;E),

∑
n≥1
‖Au (t, s)hn‖L(E;E) are bounded a.s

for every t, s ∈ [0, T ]× [0, T ], then there exists a unique adapted M -solution (Y (·), Z(·, ·)) of the
following BSVIE:

Y (t) =− hx
(
t,X(t), u(t)

)
+

∫ T

t

B∗x (s, t)Y (s) +
∑
n≥1

A∗x (s, t)hnZ(s, t)hn

 ds

−
∫ T

t
Z(t, s)dWH(s),

where Y (·) ∈ LpF(Ω× [0, T ];E) and Z(·, ·) ∈ LpF
(
Ω× [0, T ]; γ

(
L2(0, T ;H), E

))
such that〈

u(t)− u(t) ,

∫ T

t

B∗u(s, t)Y (s) +
∑
n≥1

A∗u(s, t)hnZ(s, t)hn

 ds− h∗u(t,X(t), u(t))

〉
≤ 0,

∀u(·) ∈ U , ∀t ∈ [0, T ] a.s

Remark 5.3. We can apply conditional expectation given σ-algebra Ft in Theorem 5.3. Since the
solutions, control process and operators are Ft adapted we can have following version of Theorem
5.3 too.

Theorem 5.4. If (X(·), u(·)) be an optimal solution which state process is given by Equation(5.4)
with the cost function (5.3) and

∑
n≥1
‖Ax (t, s)hn‖L(E;E),

∑
n≥1
‖Au (t, s)hn‖L(E;E) are bounded a.s

for every t, s ∈ [0, T ]× [0, T ], then there exists a unique adapted M -solution (Y (·), Z(·, ·)) of the
following BSVIE:

Y (t) =− hx
(
t,X(t), u(t)

)
+

∫ T

t

B∗x (s, t)Y (s) +
∑
n≥1

A∗x (s, t)hnZ(s, t)hn

 ds

−
∫ T

t
Z(t, s)dWH(s),
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where Y (·) ∈ LpF(Ω× [0, T ];E) and Z(·, ·) ∈ LpF
(
Ω× [0, T ]; γ

(
L2(0, T ;H), E

))
such that〈

u(t)− u(t) ,

E

∫ T

t

B∗u(s, t)Y (s) +
∑
n≥1

A∗u(s, t)hnZ(s, t)hn

 ds

∣∣∣∣∣∣Ft
− h∗u(t,X(t), u(t))

〉
≤ 0, ∀u(·) ∈ U ,∀t ∈ [0, T ] a.s

Remark 5.4. If the control process be a real valued process, then in Theorem 5.3 we use the
concept of Nemytskii operator for h and u, it means hu(t, x, u) must be bounded for every t ∈ [0, t],
x, u ∈ R a.s.

5.3. Examples

In this section we consider some examples for stochastic optimal control problem by using max-
imum principle method. We use some forms of stochastic heat equation with homogeneous
Dirichlet boundary conditions in Banach space E = Lq(0, 1), q ≥ 2. For example if we assume

5.3.1. Heat Equation with Additive Noise. In first example we consider a control sto-
chastic heat equation for (2.6)

dX(t, ξ) = ∆X(t, ξ)dt+ u(t, ξ)dt+ φdWH(t), t ∈ [0, T ], ξ ∈ (0, 1)

X(0, ξ) = X0(ξ), ξ ∈ (0, 1), X0(·) ∈ LpF0
(Ω;E)

X(t, 0) = X(t, 1) = 0, t ∈ [0, T ]

(5.5)

where ∆ is Laplacian and H = L2(0, 1). Let u(t, ξ) is a real valued with respect to t adapted
control process and takes values in closed bounded interval of R. We also assume that φ ∈
γ(L2(0, 1);Lq(0, 1)) is γ-Radonifying operator.
By these assumptions we can write above given heat equation as following stochastic evolution
equation in Theorem 1.1 [24]{

dX(t) = AX(t)dt+ F (t,X(t))dt+B(t,X(t))dWH(t), t ∈ [0, T ],

X(0) = X0

where A is Dirichlet Laplacian on E and it is generated analytic C0-semigroup S(t), and
F (t,X(t)) := u(t), B(t,X(t)) := φ are defined as{

F : [0, T ]× E −→ E

B : [0, T ]× E −→ γ (H;E)

now by these definition it is easily seen that F and B are Lipschitz continuous and L2
γ-Lipschitz

continuous receptively and of linear growth in the second variable uniformly on [0, T ], by using
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Theorem 1.1 [24] we can find an unique mild solution which satisfies following equation

X(t) = S(t)X0 +

∫ t

0
S(t− s)F (s,X(s))ds+

∫ t

0
S(t− s)B(s,X(s))dWH(s),

t ∈ [0, T ]

We can reformulate Equation(5.5) as following FSVIE

X(t) = S(t)X0 +

∫ t

0
b (t, s,X(s), u(s)) ds+

∫ t

0
ρ (t, s,X(s), u(s)) dWH(s),

t ∈ [0, T ]

where b (t, s,X(s), u(s)) := S(t − s)u(s) and ρ (t, s,X(s), u(s)) := S(t − s)φ. Now we consider
the following cost function

J(u(·)) = E
∫ T

0

∫ 1

0
h(t,X(t), u(t))dµdt

where h : [0, T ]×E×U×Ω× [0, 1] −→ E has first bounded derivative with respect to x and u as
Nemytskii operator. By above assumptions it results that

∣∣∣∂b(t,s,x,u)
∂u

∣∣∣ =
∣∣∣dS(t−s)u

du

∣∣∣ = ‖S(t−s)‖ ≤

c for every t, s ∈ [0, T ] and Bu(t, s) in Theorem 5.1 is equal to S(t − s),
∣∣∣∂b(t,s,x,u)

∂x

∣∣∣ = 0 and
Fréchet derivative of ρ (t, s,X(s), u(s)) with respect to x and u exist and is zero. Now we can
apply Theorem 5.1 or 5.3 and it yields if (X(·), u(·)) be optimal stochastic solution then there
exists an unique adapted M -solution (Y (·), Z(·, ·)) of following BSVIE in E∗

Y (t) = −hx(t,X(t), u(t))−
∫ T

0
Z(t, s)dWH(s), t ∈ [0, T ]

such that〈
u(t)− u(t),

∫ T

t
S(t− s)∗Y (s)ds− hu(t,X(t), u(t))

〉
≤ 0,

∀u(·) ∈ U , ∀t ∈ [0, T ] a.s

or correspondingly∫ 1

0

{∫ T

t
S(t− s)∗Y (s)ds− hu(t,X(t), u(t))

}
(u(t)− u(t)) dµ ≤ 0,

∀u(·) ∈ U ,∀t ∈ [0, T ] a.s

or by using Theorem 5.4{
E
(∫ 1

0

∫ T

t
S(t− s)∗Y (s)ds

∣∣∣∣Ft)− hu(t,X(t), u(t))

}
(u(t)− u(t)) dµ ≤ 0,

∀u(·) ∈ U , ∀t ∈ [0, T ] a.s

If u(·) ∈ [−1, 1] and h does not depend on u, then u(t, ξ) = sign
{
E
∫ T

t S(t− s)∗Y(s, ξ)ds
∣∣∣Ft

}
for all t ∈ [0, T ] and ξ ∈ [0, 1].
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5.3.2. Heat Equation with Multiplicative Noise. Let the following stochastic heat
equation from Chapter 2.3.2 controlled by u(·, ·)

dX(t, ξ) = ∆X(t, ξ)dt+ u(t, ξ)dt+ ψX(t, ξ)dWH(t), t ∈ [0, T ], ξ ∈ (0, 1)

X(0, ξ) = X0(ξ), ξ ∈ (0, 1), X0(·) ∈ Lp(E)

X(t, 0) = X(t, 1) = 0, t ∈ [0, T ]

where ∆ is Laplacian, u(t) are chosen as in 5.3.1 and ψ ∈ L(E; γ(H;E)). Similar privious section
it can be reformulated as{

dX(t) = AX(t)dt+ F (t,X(t))dt+B(t,X(t))dWH(t), t ∈ [0, T ],

X(0) = X0

where A is Dirichlet Laplacian on E with homogenous boundary condition and it is generated
analytic C0-semigroup S(t), and F (t,X(t)) := u(t), B(t,X(t)) := ψX(t) are defined as{

F : [0, T ]× E −→ E

B : [0, T ]× E −→ γ (H;E)

The assumptions in Theorem 1.1 [24] are again satisfied and there exist an unique mild solution
which satisfies following equation

X(t) = S(t)X0 +

∫ t

0
S(t− s)F (s,X(s))ds+

∫ t

0
S(t− s)B(s,X(s))dWH(s),

t ∈ [0, T ]

above equation can be written as following FSVIE

X(t) = S(t)X0 +

∫ t

0
b (t, s,X(s), u(s)) ds+

∫ t

0
ρ (t, s,X(s), u(s)) dWH(s),

t ∈ [0, T ]

where b (t, s,X(s), u(s)) := S(t − s)u(s) and ρ (t, s,X(s), u(s)) := S(t − s)ψX(s). The cost
function with the same assumptions in previous section is also again considered.
We have

∣∣∣∂b(t,s,x,u)
∂u

∣∣∣ =
∣∣∣dS(t−s)u

du

∣∣∣ = ‖S(t − s)‖ ≤ c for every t, s ∈ [0, T ],
∣∣∣∂b(t,s,x,u)

∂x

∣∣∣ = 0 and
Fréchet derivative of ρ (t, s,X(s), u(s)) with respect to u is zero and its Fréchet derivative with
respect to x, ρx (t, s,X(s), u(s)) = S(t−s)ψ. It means that in Theorem 5.1 Ax(t, s) = S(t−s)ψ.
By applying Theorem 5.1 or Theorem 5.3, it results if (X(·), u(·)) be optimal stochastic solution
and

∑
n≥1
‖S(t− s)ψhn‖L(E;E) is bounded a.s then there exists an unique adapted M -solution

Y (·), Z(·, ·) of following BSVIE in E∗

Y (t) = −hx(t,X(t), u(t)) +

∫ T

t

∑
n≥1

(S(t− s)ψhn)∗Z(s, t)hnds

−
∫ T

0
Z(t, s)dWH(s), t ∈ [0, T ]
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such that such that〈
u(t)− u(t),

∫ T

t
S(t− s)∗Y (s)ds− hu(t,X(t), u(t))

〉
≤ 0,

∀u(·) ∈ U , ∀t ∈ [0, T ] a.s

or correspondingly∫ 1

0

{∫ T

t
S(t− s)∗Y (s)ds− hu(t,X(t), u(t))

}
(u(t)− u(t)) dµ ≤ 0,

∀u(·) ∈ U ,∀t ∈ [0, T ] a.s

and by applying Theorem 5.4 it leads{
E
(∫ 1

0

∫ T

t
S(t− s)∗Y (s)ds

∣∣∣∣Ft)− hu(t,X(t), u(t))

}
(u(t)− u(t)) dµ ≤ 0,

∀u(·) ∈ U , ∀t ∈ [0, T ] a.s

If h(t,X(t, ξ), u(t, ξ)) = h1(t,X(t, ξ)) + u(t, ξ) then it follows from the last inequality u(t, ξ) =

sign
(
E
(∫ T

t S(t− s)∗Y(s, ξ)ds
∣∣∣Ft

)
− 1
)
for all t ∈ [0, T ] and ξ ∈ [0, 1].



CHAPTER 6

Conclusion and Outlook

Stochastic Itô-Volterra integral equations in unconditional martingale difference Banach spaces
were discussed, particularly stochastic processes were defined in Banach space E = Lq (S,Σ, µ)

where µ is σ-finite measure. Especially, we considered H-cylindrical Brownian motion as the
noise process for stochastic integrals. We defined suitable conditions such that for the state
equation, a unique solution process exists with certain smoothness properties. A stochastic
optimal control problem was introduced and necessary optimality conditions of a maximum
principle type were proved. We defined adjoint equations using Banach-space-valued backward
stochastic Ito-Volterra integral equations (BSVIE) and the uniqueness of the solution process
and its properties were proved.
For reaching our goal and finding stochastic variational inequality, the thesis was briefly struc-
tured as following. In Chapter 2 we dealt with forward stochastic Volterra integral equations
with respect to a H-cylindrical Brownian motion in Banach space E and the unique solution
and its some properties were proved. In Chapter 3, backward stochastic Volterra integral equa-
tion in Banach space E with respect to a H-cylindrical Brownian motion were introduced. The
unique solution was derived. In Chapter 4 the duality principles between Forward and backward
stochastic Volterra integral equations were proved. In Chapter 5, we introduced the optimal
stochastic controls in Banach space E and we solved it by using maximum principle method and
some examples were given there.
The measure µ in Chapter 5 was defined as a finite measure, by considering assumptions similar
to the assumptions in Remark 2.1 for the derivatives and control process, such that they be
bounded by some k(η) where k(·) ∈ E, the Theorem 5.1 can be resulted for a σ-finite measure
too. Throughout this thesis the Theorem A.2 were used for handling the stochastic integrals
in Banach space E = Lq (S,Σ, µ). γ-radonifying operators from H into E can be also used in
the proofs and stochastic integral equations, only some modifications are necessary, especially in
BSVIE, such that the Theorem A.1 (item 4) can be used.
For further research, the study of regularity properties of solutions, especially the solution of
BSVIE is an interesting aspect. The application of Mallivian calculus in BSVIE is another
interesting research field.
Further interesting research questions are considerations of another Banach spaces and the ap-
plication of jump processes and processes with memory to noise processes. And it necessitates to
use and develop definition and techniques for stochastic integral with respect to different noises
in Banach spaces. Developments of numerical methods, especially for finding of solution process
of BSVIE are very interesting.
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APPENDIX A

Lp-Stochastic Integration

In this appendix we recall some definitions and theorems about stochastic integral in Banach
spaces. We bring most important theorems that are used in this thesis. This appendix is due to
works of J.M.A.M. van Neerven, M.C. Veraar and L. Weis, for more details about this topics we
refer reader to [26],[24], [5] and for further detail J.M.A.M. van Neerven [23]

Definition A.1 (UMD space). A Banach space E is said to be a UMDp space with 1 < p <∞,
if there exists a positive constant Cp, such that for all E-valued Lp-martingale difference sequence
(dn)Nn=1 and any choice of signs εn = ±1 it yields(

E

∥∥∥∥∥
N∑
n=1

εndn

∥∥∥∥∥
p) 1

p

≤ Cp

(
E

∥∥∥∥∥
N∑
n=1

dn

∥∥∥∥∥
p) 1

p

Definition A.2 (H-cylindrical Brownian motion). 1 A family WH =
(
WH(t)

)
t∈[0,T ]

of bounded
linear operators from H to L2(Ω) is called H-cylindrical Brownian motion if

(1) WHh =
(
WH(t)h

)
t∈[0,T ]

is real valued Brownian motion for each h ∈ H
(2) E

(
WH(s)g ·WH(t)h

)
= (s ∧ t)[g, h]H for all s, t ∈ H.

Definition A.3 (stochastic integral). 2 For elementary process φ : [0, T ]× Ω −→ L(H,E) with
the form

φ(t, w) =
N∑
n=0

M∑
m=1

1(tn−1,tn]×Amn

K∑
k=1

hk ⊗ xkmn

where xkmn ∈ E, 0 ≤ t0 < · · · < tN ≤ T , the sets A1n, . . . , AMn ∈ FHn−1 are disjoint for each n
and h1, . . . hK are orthonormal elements in H, the Lp-stochastic integral is defined followingly∫ T

0
φ(t)dWH(t) :=

N∑
n=0

M∑
m=1

1Amn

K∑
k=1

(
WH(tn)hk −WH(tn−1)hk

)
xkmn

Definition A.4 (type and cotype spaces). 3 A Banach space E is type p, p ∈ [0, 2] if there
exists a constant C ≥ 0 such that for all x1, . . . , xN ∈ E and any Rademacher sequence (rn)Nn=1,
it yields E

∥∥∥∥∥
N∑
i=1

rnxn

∥∥∥∥∥
2

E

 1
2

≤ C

(∥∥∥∥∥
N∑
i=1

xn

∥∥∥∥∥
p

E

) 1
p

1Definition, p. 1450 [26]
2Definition, p. 1450 [26]
3for example refer to [30, 16]
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the least possible constant C is called the type p constant of E.
A Banach space E is cotype q, q ∈ [2,∞] if there exists a constant C ≥ 0 such that for all
x1, . . . , xN ∈ E and any Rademacher sequence (rn)Nn=1, it yields(∥∥∥∥∥

N∑
i=1

xn

∥∥∥∥∥
q

E

) 1
q

≤ C

E

∥∥∥∥∥
N∑
i=1

rnxn

∥∥∥∥∥
2

E

 1
2

the least possible constant C is called the cotype q constant of E.
Every Banach space has type 1 and cotype ∞ with constant 1. Hilbert spaces have type 2 and
cotype 2 with constants 1. The Lq-spaces, q ∈ [1,∞) have type min{p, 2} and cotype max{p, 2}.

Theorem A.1 (Lp-stochastic integrability). 4 Let E be a UMD space and 1 < p <∞. For an H-
strongly measurable and adapted process φ : [0, T ]×Ω→ L(H;E) belonging to Lp

(
Ω;L2(0, T ;H)

)
scalarly, the following assertions are equivalent

(1) the process φ is Lp-stochatically integrable with respect to WH(·)
(2) there exists a sequence of elementary adapted processes φn : [0, T ]× Ω→ L(H;E) such

that
(i) for all h ∈ H and x∗ ∈ E∗, limn→∞ 〈φnh, x∗〉 = 〈φh, x∗〉 in measure on [0, T ]× Ω

(ii) There exists a random variable η ∈ Lp(Ω;E), such that

η = lim
n→∞

∫ T

0
φn(t)dWH(t) in Lp(Ω;E)

(3) there exists a strongly measurable random variable η ∈ Lp(Ω;E) such that for all x∗ ∈ E∗

we have

〈η, x∗〉 =

∫ T

0
〈φh, x∗〉 dWH(t) in Lp(Ω)

(4) φ represents an element X ∈ Lp
(
Ω; γ

(
L2(0, T ;H), E

))
(γ(H;E) stands for the γ-

radonifying space of all γ-radonifying operators from H into E)

and we have η = IW
h
(X) :=

∫ T
0 φ(t)dWH(t) in Lp(Ω;E)

Theorem A.2 (Lp-stochastic integrability). 5 Let E be UMD Banach space over a σ-finite
measure space (S,Σ, µ) and let p ∈ (1,∞). Let φ : [0, T ] × Ω −→ L(H,E) be H-strongly
measurable,adapted and assume there exits a strongly measurable function ϕ : [0, T ]×Ω×S −→ H

such that ∀h ∈ H and t ∈ [0, T ] (φ(t)h)(·) = [ϕ(t, ·), h]H in E, then φ is Lp-stochastically
integrable with respect to WH if and only if

E

∥∥∥∥∥∥
(∫ T

0
‖ϕ(t, ·)‖2Hdt

) 1
2

∥∥∥∥∥∥
p

E

<∞.

4Theorem 3.6, p. 1454 [26]
5COROLLARY 3.11, p. 1461 [26]
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Further we have

E
∥∥∥∥∫ T

0
φ(t)dWH(t)

∥∥∥∥p
E

' E

∥∥∥∥∥∥
(∫ T

0
‖ϕ(t, ·)‖2Hdt

) 1
2

∥∥∥∥∥∥
p

E

Theorem A.3. 6 Let (S,Σ, µ) be a σ-finite measure space and let 1 ≤ q < ∞. For an operator
T ∈ L(H,Lq(S)) the following assertions are equivalent

(1) T ∈ γ (H,Lq(S))

(2) for some orthonormal basis (hn)∞n=1 of H the function

(∑
n≥1
|Thn|2

) 1
2

belongs to Lq(S)

(3) for all orthonormal basis (hn)∞n=1 of H the function

(∑
n≥1
|Thn|2

) 1
2

belongs to Lq(S)

(4) there exists a function g ∈ Lq(S) such that for all h ∈ H we have |Th| ≤ ‖h‖H · g
µ-almost everywhere

(5) there exists a function k ∈ Lq(S;H) such that Th = [k(·), h]H µ-almost everywhere

moreover, in this situation we may take k =

(∑
n≥1
|Thn|2

) 1
2

and have

‖T‖γ(H,Lq(S)) '

∥∥∥∥∥∥∥
∑
n≥1

|Thn|2
 1

2

∥∥∥∥∥∥∥ ≤ ‖g‖Lq(S).

By considering that X ∈ Lp
(
Ω; γ

(
L2(0, T ;H), E

))
is the element represented by φ and in

according to the integral process t −→
∫ t

0 φ(s)dWH(s), t ∈ [0, T ], the process ξ : [0, T ]× Ω −→
γ
(
L2(0, T ;H), E

)
can be introduced, it is associated with X and is defined by ξ(t, ω)f :=

(X(w))(1[0,T ]f), f ∈ L2((0, T );H). It must be noted that ξX(T ) = X.

Theorem A.4. 7 Let E be a UMD space and fix p ∈ (1,∞). For all
X ∈ Lp

(
Ω; γ

(
L2(0, T ;H), E

))
the integral process IWH (ξX) is an E-valued Lp-martingale which

is continious in p-th moment. It has a continious adapted version which satisfies the maximal
inequality

E sup
t∈[0,T ]

∥∥∥IWH
(ξX(t))

∥∥∥p ≤ qp ∥∥∥IWH
(X)

∥∥∥p
where 1

p + 1
q = 1.

Theorem A.5 (Burkholder-Davis-Gundy inequalities). 8 Let E be a UMD space and fix p ∈
(1,∞).If the H-strongly measurable and adapted process φ : [0, T ] × Ω −→ L(H,E) is Lp-
stochastically integrable, then

E sup
t∈[0,T ]

∥∥∥∥∫ t

0
φ(s)dWH(s)

∥∥∥∥p ' E‖X‖p
γ(L2(0,T ;H),E)

6Lemma 2.1, p. 945 [24]
7Proposition 4.3, p. 1462 [26]
8Theorem 4.4, p. 1463 [26]
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where X ∈ Lp
(
Ω; γ

(
L2(0, T ;H), E

))
is the element represented by φ.

Theorem A.6 (Martingale representation theorem in UMD spaces). 9 Let E be a UMD space,
then every Lp-martingale M : [0, T ] × Ω −→ E adapted to the augmented filtration FWH has
a continuous version, and there exists a unique X ∈ Lp

(
Ω; γ(L2(0, T ;H), E)

)
such that for all

t ∈ [0, T ] it yields
M(t) = M(0) + IW

H
(ξX(t)), in Lp(Ω;E)

For UMD space E with cotype 2 the above representation takes the form

M(t) = M0 +

∫ t

0
φ(t)dWH(t).

Theorem A.7 (general Itô formula). 10 Let E and F be UMD spaces. Assume that f : [0, T ]×
E −→ F is of class C1,2. Let φ : [0, T ] × Ω −→ L(H,E) be H-strongly measurable and adapted
process which is stochastically integrable with respect to WH and asuume that paths of φ belongs
to L2(0, T ; γ(H,E)) almost surely. Let ψ : [0, T ]× Ω −→ E be strongly measurable and adapted
with paths in L1(0, T : E) almost surely. Let ξ : Ω −→ E be strongly F0-measurable. Define
ζ : [0, T ]× E −→ F by

ζ = ξ +

∫ ·
0
ψ(s)ds+

∫ ·
0
φ(s)dWH(s)

then s −→ D2f(s, ζ(s))φ(s) is stochastically integrable and almost surely we have, for all t ∈ [0, T ]

f(t, ζ(t))− f(0, ζ(0)) =

∫ t

0
D1f(s, ζ(s))ds+

∫ t

0
D2f(s, ζ(s))ψ(s)ds

+

∫ t

0
D2f(s, φ(s))dWH(s) +

1

2

∫ t

0
Trφ(s)(D

2
2f(s, ζ(s)))ds

Theorem A.8 (Itô formula). 11 Let E1 and E2 be UMD spaces and let f : E1 × E2 −→ F be
a bilinear map. Let (hn)n≥1 be an orthonormal basis of H. For i = 1, 2 let φi : [0, T ] × Ω −→
L(H,Ei), ψi : [0, T ] × Ω −→ Ei and ξi : Ω −→ Ei satisfy the assumptions of Theorem A.7 and
define

ζi = ξi +

∫ ·
0
ψi(s)ds+

∫ ·
0
φi(s)dW

H(s)

then almost surely for all t ∈ [0, T ],

f(ζ1(t), ζ2(t))− f(ζ1(0), ζ2(0)) =

∫ t

0
(f(ζ1(t), ψ2(t)) + f(ψ1(t), ζ2(t))) ds

+

∫ t

0
(f(ζ1(t), φ2(t)) + f(φ1(t), ζ2(t))) dWH(s)

+

∫ t

0

∑
n≥1

f(φ1(s)hn, φ2(s)hn)ds

9Theorem 5.13, p. 1476 [26]
10Theorem 2.4, p. 36 [26]
11Corollary 2.6, p. 37 [26]
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particularly, for a UMD space E, taking E1 = E, E2 = E∗, F = R and f(x, x∗) = 〈x, x∗〉, it
follows that almost surely for all t ∈ [0, T ]

〈ζ1(t), ζ2(t)〉 − 〈ζ1(0), ζ2(0)〉 =

∫ t

0
(〈ζ1(s), ψ2(s)〉+ 〈ψ1(s), ζ2(s)〉) ds

+

∫ t

0
(〈ζ1(s), φ2(s)〉+ 〈φ1(s), ζ2(s)〉) dWH(s)

+

∫ t

0

∑
n≥1

〈φ1(s)hn, φ2(s)hn〉 ds.
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