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Abstract

This work studies the electron-phonon (e-ph) interaction in the archetypal elemental superconductor
Pb on the basis of detailed electron and phonon state-dependent discussions. The real and imaginary
part of the electron self-energy with respect to the e-ph interaction is used to investigate the influence
of the e-ph coupling onto the electrical conductivity and thermopower. The analysis of the e-ph re-
laxation time and the renormalization of the electronic band structure is thereby of particular interest.
The calculations are carried out with ab initio methods based on planewaves and pseudopotentials as
well as Wannier functions. Subsequently, the transport properties are calculated with the linearized
Boltzmann equation including a relaxation time, whose energy-dependency is directly obtained from
its state-dependent character. The experimentally observed enhancement of the thermopower in lead
at low temperatures can be reproduced and traced back to the peaked structure of the relaxation time
at these temperatures without accounting for the phonon-drag effect. The renormalized band struc-
ture and its impact onto transport properties are discussed for a model system. It is shown, that the
electrical conductivity decreases while the thermopower increases. Furthermore, a band splitting is ob-
servable depending on the parameter set of phonon band width, e-ph coupling strength, temperature
and electron energy. Conclusively, the combined consideration of the renormalization and the relax-
ation time is discussed stating that the latter yields the dominant contribution to transport properties
in the low-temperature regime.
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Abriss

Die vorliegende Arbeit untersucht die Elektron-Phonon (E-Ph) Wechselwirkung im ursprünglichen
elementaren Supraleiter Blei auf der Grundlage detaillierter Diskussionen relevanter Größen in Ab-
hängigkeit von Elektron- und Phononzuständen. Dazu wird der Real- und Imaginärteil der Selbst-
energie der Elektronen unter Berücksichtigung der E-Ph Wechselwirkung benutzt, um den Einfluss
der E-Ph Kopplung auf die elektrische Leitfähigkeit und die Thermokraft zu untersuchen. Die Anal-
yse der E-Ph Relaxationszeit und die Renormalisierung der elektronischen Bandstruktur sind dabei
von besonderm Interesse. Die Berechnungen werden mit ab initio Methoden durchgeführt, welche
auf ebenen Wellen und Pseudopotentialen sowie Wannier Funktionen basieren. Anschließend wer-
den die Transporteigenschaften mit der linearisierten Boltzmann Gleichung berechnet. Es wird eine
energieabhängige Relaxationszeit verwendet, deren Energieabhängigkeit direkt aus der Zustandsab-
hängigkeit gewonnen wird. Die experimentell beobachtete Erhöhung der Thermokraft bei tiefen Tem-
peraturen in Blei kann reproduziert und auf die spezielle Struktur der Relaxationszeit bei diesen Tem-
peraturen zurückgeführt werden, ohne den phonon-drag Effekt zu berücksichtigen. Die renormalisierte
Bandstruktur und ihr Einfluss auf die Transporteigenschaften werden anhand eines Modellsystems
diskutiert. Es wird gezeigt, dass die elektrische Leitfähigkeit abnimmt, wohingegen die Thermokraft
zunimmt. Weiterhin ist eine Aufspaltung von elektronischen Zuständen zu beobachten, welche in
Abhängigkeit der Parameter Phononenbandbreite, E-Ph Kopplungsstärke, Temperatur und Energie
auftreten kann. Abschließend werden die Renormalisierung und die Relaxationszeit kombiniert be-
trachtet und es wird gezeigt, dass Letztere den entscheidenden Beitrag zu den Transporteigenschaften
bei tiefen Temperaturen liefert.
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1 | Introduction

The interaction between electrons and phonons is studied for almost 100 years to explain related phe-
nomena like the temperature-dependent electrical resistivity or conventional superconductivity, which
is probably still its most prominent feature. The first heyday of this research was already in the 1950s
and 1960s due to the microscopical descriptions of Bardeen, Cooper, Schrieffer, Migdal, Éliashberg [9–
11, 32, 33, 98, 101, 102, 120, 122] and others. Nevertheless, calculations based on these theories were
only feasible for simple metals or semiconductors within various approximations due to the lack of
computational power.
The heavy increase of the latter in the last three decades along with the description of the electron-

phonon interaction by first principles theories, i.e. density functional perturbation theory, enabled the
performance of accurate calculations to gain deeper insights of observed effects due to electron-phonon
coupling. Additionally, the possibility to obtain and predict material specific transport properties by
ab initio calculations attracted a lot of attention and the amount of publications focusing indirectly
or directly on transport properties increases. For example, calculating the temperature dependence
of band gaps and band structures in semiconductors [44, 90, 91], electron linewidths and lifetimes
of metallic surface states [30, 31], elemental metals [77, 124, 125] and semiconductors [17, 123, 131]
as well as calculating phonon linewidths and thermal conductivities with respect to electron-phonon
coupling [27, 40, 82, 116, 139] is achievable nowadays. The estimation of the electrical resistivity due to
the lowest-order variational expression for the solution of the Boltzmann equation started already in
the late 90s with the investigation of metals [16, 115]. In the last decade, the focus shifted from metals
to semiconductors [81, 113, 134] and 2D systems [21, 50, 65, 80, 82], e.g. MoS2 and graphene, where the
electron mobilities are calculated within different relaxation time approximations. Very recently, the
calculation of electron mobilities and electrical resistivities in metals, semiconductors and 2D systems
due to an iterative solution of the full Boltzmann equation became available [79] and even the inclusion
of the phonon-drag contribution arising from non-equilibrium phonons within ab initio calculations
is accessible today [140].
Apart from that, in-depth analyses of the coupling constant 𝜆 [1, 56, 126] and relaxation time 𝜏

[100, 110] in the sense of detailed state-dependent discussions are rare. Furthermore, investigations
of the electrical conductivity and thermopower, which are related to renormalization effects due to
the electron-phonon interaction are missing throughout the 2000s, altough its impact was discussed
controversially in the 20th century [48, 64, 85, 111].
Embedded in this context, the aim of this thesis is to investigate the electron-phonon interaction in

terms of a detailed electron and phonon state-dependent analysis with ab initio methods. Therefore,
the coupling constant, the relaxation time as well as related quantities and renormalization effects are
discussed in lead, which is an archetypal elemental superconductor. The influence onto the electrical
conductivity and thermopower is thereby of particular interest.
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CHAPTER 1. INTRODUCTION

The thesis is divided in two major parts. First, the basic ideas of electronic structure calculations are
given. The concepts of the two ground state theories, density functional theory and density functional
perturbation theory, are discussed along with the introduction of the Wannier representation to obtain
the electronic band structure, the phonon spectrum and the electron-phonon matrix elements (section
2.1.1). Subsequently, the concept of the self-energy in an interacting electron systemwith respect to the
electron-phonon interaction is introduced (section 2.1.2). The first part closes with an evaluation of the
Boltzmann transport theory under the influence of the electron-phonon interaction. Here, electrons
(section 2.2.1) and phonons (section 2.2.3) are treated indepently as well as fully coupled to each other
(section 2.2.4). The second part deals with the properties and consequences of the electron-phonon
coupling in solids. The beginning is addressed to the electron-phonon matrix elements and the nest-
ing function (section 3.1). Later on, the discussion is splitted with respect to the investigation of the
imaginary (section 3.2) and real part of the self-energy (section 3.3). Especially, the relaxation time
and renormalization effects in addition to their influence on transport properties are investigated. Fi-
nally, the spectral function and a coupled description due to the real and imaginary part are discussed
(section 3.4). A summary will close the thesis.

2



2 | Theory

2.1. Electronic structure theory

The following chapter addresses the theoretical description of the electronic structure of a solid from
first principles meaning that the formalism does not include any empirical parameters.
The evaluation of such a concept started already in the beginning of the 20th century with the up-

coming field of quantummechanics and leads to the formulation of the density functional theory (DFT).
The latter is a so called ground state theory, where the interaction of the electrons with its surrounding
is neglected. In the beginning of the first part of this chapter, a brief introduction into the density func-
tional theory is given. Later on, the treatment of phonons wihtin DFT as a perturbation is discussed,
which leads to the density functional perturbation theory (DFPT). In the end of this part, the concept
of Wannier functions is introduced, which enables the mapping of ab initio calculated quantities onto
analytical expressions. As discussed later, this mapping crucially promotes the investigation of the
electron-phonon interaction in solid state systems.
The results obtained in the first part of this chapter are based on an effective, non-interacting and

single-particle picture. While different perturbations, e.g. phonons, can be treated within DFPT, a com-
plete physical picture beyond the ground state theory requires a description, which directly addresses
many-body effects. According to the electron-phonon interaction, the most important effects are the
lifetime-broadening of the electron and phonon states as well as their renormalization. The method of
choice is typically a Green’s function approach with the use of Feynman diagrams, which represents
the interaction of all quasi-particles among and between each other. Regarding the electron-phonon
interaction, the simplest approximation in the electron and phonon self-energy allows for a calcula-
tion of both quantities using only results from DFPT. Since the 50’s, many well-known scientists like
Fröhlich, Bardeen, Engelsberg and Schrieffer contributed to the description of the electron-phonon
interaction within a first principle environment, which is used nowadays. Really good overviews on
different aspects of the historical development are provided by Poncé [109] and Giustino [42]. Addi-
tionally, most of the technical details are included there as well and the second part of this chapter will
focus on the final expressions of the self-energies only, since they are of major interest in this thesis.

2.1.1. Ground state theory

Density functional theory

In modern solid state physics it is necessary to calculate physical properties of an material based on the
quantum mechanical description of electrons (e) and nuclei (n) interacting with themselves and each
other. However, a straight-forward solution of the Schroedinger equation with the corresponding
Hamiltonian 𝐻 = 𝐻n(R) + 𝐻e(r) + 𝐻en(r,R) depending on the coordinates of the electrons r and nuclei

3



CHAPTER 2. THEORY

R, is impossible due to the large number of particles in a solid and simplifications have to be made.
First, the adiabatic approximation proposed by Born and Oppenheimer in 1927 enables the separation
of the motion of electrons and nuclei. Hence, a product ansatz for the many-body wavefunction Φ(r,R)
allows for an isolated solution of the electronic part of 𝐻 , in which R remains as a parameter. 𝐻e reads
as

𝐻e =
𝑁
∑
𝑖=1

p̂2𝑖
2𝑚 + 1

2 ∑
𝑖,𝑗≠𝑖

𝑒2
||r𝑖 − r𝑗 ||

+
𝑁
∑
𝑖=1

𝑣ext(r𝑖) . (2.1.1)

The first term is the operator of the kinetic energy 𝑇 with the momentum operator p̂. The second term
accounts for the Coulomb repulsion among the electrons 𝑉ee and the last term describes an external
potential 𝑉ext, which is related to the interaction of the electrons with the localized nuclei. Neverthe-
less, solving the remaining interacting electron system is still extremly demanding and impracticable.
Almost 40 years later, Hohenberg and Kohn [60] introduced an efficient way to translate the many-
electron problem in terms of a one-electron charge density 𝑛(r) description, which is the basis for
today’s density functional theory (DFT) calculations. They propose, that in an interacting electron-
system the external potential is exactly determinded by the ground state charge density 𝑛0(r) and
furhter on, the sought ground state energy is a unique functional of 𝑛(r), which has its global mini-
mum for the ground state charge density

𝐸0 = 𝐸[𝑛0(r)] ≤ 𝐸[𝑛(r)] . (2.1.2)

Based on these ideas, Kohn and Sham established a practical formalism to map the interacting electron
system onto a non-interacting one embedded in an effective potential [72]. Herein, the description of
the many-body interaction of the energy functional 𝐸[𝑛] is hidden in an exchange-correlation func-
tional 𝐸xc[𝑛], which functional derivative is the exchange correlation potential, 𝑣xc = 𝜕𝐸xc[𝑛]/𝜕𝑛. Then,
the kinetic energy functional is described by the non-interacting electron system

𝑇[𝑛] = 1
2𝑚

𝑁
∑
𝑖=1

∫ dr𝜓 ∗𝑖 (r)p̂2𝜓𝑖(r) . (2.1.3)

𝜓𝑖(r) are the corresponding one-electron wavefunctions and the charge density is given by a sum over
all occupied states

𝑛(r) =
occ.
∑
𝑖
||𝜓𝑖(r)||

2
. (2.1.4)

The interaction of the electrons among each other is accounted for in the Hartree energy functional

𝐸H[𝑛] =
𝑒2
2 ∫ dr∫ dr′

𝑛(r)𝑛(r′)
|r − r′| . (2.1.5)

Adding the energy functional of the external potential, the total energy functional of the charge density
reads as

𝐸[𝑛] = 𝑇 [𝑛] + ∫ dr 𝑣ext(r)𝑛(r) +
𝑒2
2 ∫ dr∫ dr′

𝑛(r)𝑛(r′)
|r − r′| + 𝐸xc[𝑛] . (2.1.6)

The charge density, which minimizes the energy functional is calculated self-consistently via the vari-
ational principle 𝜕𝐸[𝑛]/𝜕𝑛 = 0. This leads to the Kohn-Sham-equations, which have the form of a single-

4



2.1. ELECTRONIC STRUCTURE THEORY

particle Schroedinger-equation within an effective potential

[ p̂
2

2𝑚 + 𝑣eff(r)] 𝜓𝑖(r) = 𝜖𝑖𝜓𝑖(r) , (2.1.7)

𝑣eff = 𝑣ext(r) + 𝑣xc + 𝑒2 ∫ dr′
𝑛(r′)
|r − r′| .

The last term in the effective potential is the Hartree term, which describes the Coulomb repulsion
between the electrons.
Later, MacDonald and Vosko [86] showed, that the statements of Hohenberg and Kohn also holds

in a fully-relativistic description and the interacting relativistic electron system can be treated in a
similiar way yielding the Kohn-Sham-Dirac equations.
In principal, the Kohn-Sham and Kohn-Sham-Dirac-equations are exact if the exchange and corre-

lation potential would be known. Since this is not the case, approximations regarding 𝑣xc are required
and searching for these is still a main task in DFT. Up to now, the local density approximation (LDA) is
probably the most relevant approximation with the highest cost-benefit relationship due to its simple
footing on the homogenous electron gas (HEG). Therein, 𝐸LDA

xc is approximated by 𝜀xc, which is the
exchange-correlation energy per particle of the HEG. The charge density of the exact and the approx-
imated energy functional has to be equal. Finally, 𝐸LDA

xc reads as [72]

𝐸LDA
xc [𝑛] = ∫ dr 𝑛(r)𝜀xc(r) = −34𝑒

2 ( 3𝜋 )
1/3

∫ dr (𝑛(r))4/3 . (2.1.8)

This quantity is often calculated with quantumMonte Carlo techniques and afterwards parametrized to
fit the analytical limit. The used parametrization in this work is provided by Perdew and Zunger [105].
Within LDA, the lattice constants are usually underestimated while phonon frequencies are typically
overestimated. More complicated approximations like the generalized gradient approximation (GGA),
which is based on a functional of the charge density and its derivative, may improve these problems.

Planewaves and pseudopotentials

Since DFT calculations involving all electrons are still demanding and need large computational efforts,
planewaves combined with pseudopotentials are favourable to speed up calculations and reduce the
computational cost.
Expanding the all-electron wavefunction 𝜓AE in terms of planewaves, which are eigenfunctions of

the kinetic energy operator 𝑇 = −ℏ2Δ/2𝑚, seems reasonable as long as the non-localized states are
dominant. Starting with the periodicity of the crystal lattice and applying Blochs theorem, the Fourier
series of the wavefunction reads as

𝜓k(r) = ∑
G

𝑐k+G𝑒𝑖(k+G)r (2.1.9)

withG being a reciprocal lattive vector and 𝑐k+G are the Fourier expansion coefficients. In principal, the
transformedKohn-Sham equations could be solved exactly for infinite number ofG. Practically, a direct
solution is impossible due to the infinite sum. Therefore, the expansion into planwaves is truncated
for a certain cutoff energy 𝐸cut ≤ |k+G|2

2𝑚 , which limits the number of G-vectors used. Unfortunately,
wavefunctions of localized core or semi-core states show detailed features and require a large basis set,

5



CHAPTER 2. THEORY

Figure 2.1.: Schematic illustration of the pseudopotential approximation (𝜓 PS, 𝑉 PS) to the
all-electron wavefunction 𝜓AE and potential 𝑉 . Inside the core radius 𝑟c, the strong core
potential is replaced by a soft pseudopotential and the ground state pseudo-wavefunction
is node-less while outside 𝑟c, both quantities have to match their all-electron counter-
parts. r

rc

 PS(r)
 AE(r)

V (r)

V PS(r)

i.e. large 𝐸cut.
The idea of a pseudopotential is to overcome this problem due to a simplified description of the core

states based on a frozen core approximation. The core electrons are eliminated from the calculation
and only the valence electrons remain, since they determine the chemical and physical properties of a
system. An appropriate pseudopotential should screen the steep and strong core potential as much as
possible, while securing that the node-less ground state pseudo-wavefunction 𝜓 PS is identical to the
all-electron wavefunction outside a certain core radius 𝑟c as shown in figure 2.1. Beyond these general
conditions, there are several requirements for a pseudopotential related to its specific type. In the case
of norm-conserving pseudopotentials [106], 𝜓 PS(𝑟) is allowed to differ from 𝜓AE(𝑟) inside 𝑟c but the
integrated charge, and therefore the norm, has to be conserved,

∫
𝑟<𝑟c

d𝑟 𝑟2 ||𝜓 PS(𝑟)||
2
= ∫

𝑟<𝑟c
d𝑟 𝑟2 ||𝜓AE(𝑟)||

2
. (2.1.10)

Another criterion is the transferability, which means that a pseudopotential should behave equally
when used in different chemical environments and the scattering properties of𝜓AE should be accurately
described by 𝜓 PS. It is measured with the logarithmic derivatives at 𝑟c and a reference energy 𝐸 of the
occupied states,

1
𝜓 PS(𝑟c, 𝐸)

d𝜓 PS(𝑟c, 𝐸)
d𝑟 = 1

𝜓AE(𝑟c, 𝐸)
d𝜓AE(𝑟c, 𝐸)

d𝑟 . (2.1.11)

A pseudopotential generated under these conditions still turns out to be relatively hard and requires
a large energy cutoff for the expansion of the planewave basis set. To further reduce 𝐸cut, one can
drop the norm-conserving constraint of eq. 2.1.10 and allows for an additional softening of the core
potential, which is then known as ultrasoft pseudopotential [132]. Removing the constraint, one has
to deal with some minor problems caused by the pseudo-wavefunctions, which now do not have to be
normalized. The pseudo-charge density has to be calculated different from∑ ||𝜓 ps||

2
to obtain the correct

charge and additional terms appear in the secular equation while calculating the eigenvalues. Overall
this might lead to a lower transferability of the pseudopotential but the cost reduction in calculations
is worth the effort to generate pseudopotentials, which fit only a few systems.

Density functional perturbation theory

To account for an accurate description of a large variety of phenomena based on lattice dynamics
only, such as Raman spectra, neutron-diffraction spectra, specific heat, thermal conductivity or based
on the interaction of electrons and phonons, like finite temperature resistivity, the low-temperature
phonon-drag effect and superconductivity, detailed knowledge about the vibrational spectrum and the
electron-phonon interaction in the system is needed.
Supercell calcuationswith imprinted lattice perturbations provide access to the vibrational spectrum.

6



2.1. ELECTRONIC STRUCTURE THEORY

They are methodically relatively simple but the computational effort increases rapidly with the size of
the supercell. Hence, this approach is impracticle for systems with a large unit cell or for systems
having stronger long-range interactions between the atoms in the supercell.

A different approach is given by density functional perturbation theory (DFPT) [12, 13, 39, 45, 46],
where linear perturbation theory is applied within DFT. According to the Born-Oppenheimer approx-
imation, the dynamics of the electrons and the lattice are separated, coupled by the parameter R. Sub-
sequently, a variation of R can be treated as a perturbation of the electronic ground state energy 𝐸(R)
and charge density with respect to the atomic positions. The density itself and its linear response to a
lattice distortion is directly related to the matrix of the interatomic force constants (IFCs) in real space
𝐶𝛼𝛽
𝑖,𝑗 (R), where 𝑖, 𝑗 are cartesian coordinates and 𝛼 , 𝛽 denote the atomic position within the unit cell

[39]. 𝐸(R) is also called the Born-Oppenheimer energy and the eigenvalues of its Hessian give the vi-
brational modes 𝜔, while the corresponding eigenvectors describe the real-space motion of the atoms:

det
|||

1
√𝑀𝛼𝑀𝛽

𝐶𝛼𝛽(R) − 𝜔2||| = 0 and 𝐶𝛼𝛽(R) = 𝜕2𝐸(R)
𝜕R𝛼𝜕R𝛽

. (2.1.12)

In periodic crystals, the IFCs are Fourier-transformed yielding the dynamical matrix 𝐷𝛼𝛽(q), which
enables the calculation of the vibrational spectra via the secular equation

∑
𝛽
𝐷𝛼𝛽(q)u𝛽(q𝜈) = 𝜔2

q𝜈u𝛼(q𝜈) , (2.1.13)

where u𝛼 is the displacement from the equilibrium position R𝛼 . Equation 2.1.13 probably provides the
greatest advantage of theDFPT over the supercell-approach in periodic systems because the spectra can
be calculated at every arbitrary chosen phonon wave vector. Additionally, the electron-phonon matrix
element 𝑔q𝜈,𝑛𝑚k,k+q , which is the main ingredient of the electon-phonon interaction, can be obtained as
by-product. It is defined as the derivative of the perturbed potential with respect to a lattice distortion,
which is directly related to the results obtained by DFPT.

The derivatives of the ground state energywith respect to a lattice distortion in eq. 2.1.12 are obtained
via the Hellmann-Feynman theorem [36, 57] and depend clearly on the ground state charge density
and its linear response to the distortion.

𝜕𝐸(R)
𝜕R𝛼

= ⟨𝜓 |𝜕𝐻(R)
𝜕R𝛼

|𝜓 ⟩ = ∫ dr
𝜕𝑉 (r,R𝛼)

𝜕R𝛼
𝑛(r,R) (2.1.14)

𝜕2𝐸(R)
𝜕R𝛼𝜕R𝛽

= ∫ dr
𝜕2𝑉 (r,R𝛼)
𝜕R𝛼𝜕R𝛽

𝑛(r,R) + ∫ dr
𝜕𝑛(r,R)
𝜕R𝛼

𝜕𝑉 (r,R)
𝜕R𝛼

(2.1.15)

Following Baroni et. al [13], the response 𝜕𝑛(r,R)/𝜕R𝛼 can be obtained by linearising equation 2.1.4
and 2.1.7. The first-order correction of the wave function, 𝜓 (1), is given by perturbation theory as the
solution of a Sternheimer-type of equation,

(𝐻 (0) − 𝜖(0)𝑖 ) 𝜓 (1) = − (Δ𝑣KS − 𝜖(1)𝑖 ) 𝜓 (0) , (2.1.16)

Δ𝑣KS(r) = 𝑉 (1)
ext (r) + 𝑒2 ∫ dr′

𝑛(1)(r′)
|r − r′| + ∫ dr′

𝜕𝑣xc(𝑛)
𝜕𝑛 |𝑛=𝑛(r) 𝑛(1)(r′) , (2.1.17)

𝜖(1) = ⟨𝜓 (0)
𝑖 |Δ𝑣KS|𝜓 (0)

𝑖 ⟩ , (2.1.18)
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CHAPTER 2. THEORY

with 𝐻 (0) being the unperturbed Kohn-Sham Hamiltonian. Δ𝑣KS and 𝜖(1) are the first-order correc-
tions to the potential and eigenvalue, where the normalization condition ⟨𝜓𝑖 |𝜓𝑖⟩ = 1 with the strong
constraint ⟨𝜓 (1)

𝑖 |𝜓 (0)
𝑖 ⟩ = 0 is applied. The correction in the charge-density reads as

𝑛(1)(r) = 4
occ.
∑
𝑖
𝜓 (0)∗
𝑖 (r)𝜓 (1)

𝑖 (r) . (2.1.19)

Finally, equations 2.1.16-2.1.19 form a set of equations, which are similar to the Kohn-Sham equations in
an unperturbed system. Obviously, this set of equations has to be solved self-consistently due to the de-
pendency of 𝐻 (1) on 𝑛(1). The aforementioned electron-phonon matrix element in Born-approximation
is then given by

𝑔q𝜈,𝑛𝑚k,k+q = ( ℏ
2𝑀𝜔q𝜈

)
1/2
⟨𝜓 (0)

k+q𝑚 |𝛿𝑣q𝜈KS|𝜓 (0)
k𝑛 ⟩ . (2.1.20)

where 𝛿𝑣q𝜈KS is the change in the self-consistent potential with respect to a phonon perturbation.

An application of the formalism to metals requires a clear separation between occupied and unoc-
cupied states. In principle, this is possible for vanishing electronic temperature but the amount of k
points, which is needed at the Fermi surface would be quite large. One practicle implementation is
based on the smearing-technique, where each Kohn-Sham state is broadend by a smearing function
[41],

𝑓 (𝜖, 𝜎) = 1
𝜎

∼
𝛿( 𝜖𝜎 ) , (2.1.21)

with the conditions
∫ d𝜖 𝑓 (𝜖, 𝜎) = 1 and

∼
𝛿 𝜎→0−−−−→ 𝛿 , (2.1.22)

where 𝛿 is the well-known Dirac 𝛿-distribution and 𝜎 is a variable and manually eligible smearing
parameter. Several types of smearing functions, e.g. Fermi-Dirac broadening, Gaussians, Methfessel-
Paxton [97] or Marzari-Vanderbilt smearing functions [94] are commonly applied but which one is
finally used, is usually an individual choice. Throughout this thesis, the Fermi-Dirac broadening is
used, which is the derivative of the Fermi-Dirac distribution function

𝑓 = 1
𝑒(𝜖−𝜇)/𝑘B𝑇 + 1 . (2.1.23)

Starting from the modified charge-density,

𝑛(r, 𝜎) =
occ.
∑
𝑖

1
𝜎

∼
𝛿(𝜖 − 𝜖𝑖

𝜎 ) ||𝜓𝑖(r)||
2

, (2.1.24)

evaluating the derivatives of the ground state energy with respect to a lattice distortion is done ana-
log and nearly straight-forward to equation 2.1.14 and 2.1.15. From a computational perspective, the
advantage of this technique is the reduction of required k points in the Brillouin zone to an accept-
able amount. The disadvantage is that the total energy now depends on the smearing parameter and
convergence has to be tested with respect to chosen parameters.

8



2.1. ELECTRONIC STRUCTURE THEORY

Wannier representation

The solutions of the Kohn-Sham equations in DFT or their counterpart in DFPT are usually written in
terms of Bloch states

𝜓k𝑛(r) = 𝑒𝑖k⋅r𝑢k𝑛(r) , (2.1.25)

where 𝑢k𝑛(r) accounts for the periodicity of the Hamiltonian and the lattice. Bloch states are extended
and highly delocalized, which is unattractive in certain situations, e.g. studying chemical bondings.
In 1937, GregoryWannier introduced an alternative representation called Wannier functions, which

uses spatially-localized oribtals [135]. In the last years, this idea was picked up by Marzari and Vander-
bilt, which found an iterative procedure to transform Bloch states, obtained from ab initio calculations,
intomaximally-localized Wannier functions (MLWFs) [92, 93]. Based on these MLWFs, a team around
Giustino and Noffsinger developed the program EPW [43, 103, 110]. It provides an efficient way to
calculate a huge number of electron-phonon (e-ph) matrix elements (MEs), which is necessary to in-
vestigate the interaction of electrons and phonons in detail. The main advantage is the mapping of
self-consistently calculated e-ph MEs at a few k and q points to an analytical expression, which en-
ables an interpolation of the MEs to an arbitrary large amount of k and q points with high accuracy
and a comparable low computational effort.
The construction of Wannier functions 𝑤R𝑚(r) out of Bloch functions is given by

𝑤R𝑚(r) =
𝑉

(2𝜋)3 ∫ dk𝑒−𝑖k⋅R∑
𝑚

𝑈 𝑛𝑚
k 𝜓k𝑛(r) , (2.1.26)

which is a generalized Fourier transformation in momentum k and lattice vector R. 𝑉 is the primitive
cell volume in real space and the k-integration is performed over the Brillouin zone. If the rotation ma-
trix 𝑈 𝑛𝑚

k , which accounts for possible bandmixing, is unitary, the Wannier functions are orthonormal.
The Wannier representation in equation 2.1.26 is non-unique due to an arbitrary phase factor 𝑒𝑖𝜙(k)
hidden in 𝑈 𝑛𝑚

k , which is periodic in reciprocal space. To calculate reliable and reproducable Wannier
functions, the random-factor in the rotation matrix has to be reduced. One approach is given by the
localization criterion yieldingmaximally-localized Wannier functions [92]. Here, 𝑈 𝑛𝑚

k is chosen in such
a way that the spread of the Wannier functions Ω is minimized:

Ω = ∑
𝑛
[⟨0𝑛|𝑟2|0𝑛⟩ − ⟨0𝑛|r|0𝑛⟩2] . (2.1.27)

The sum is taken over the number of Wannier functions and |0𝑛⟩ is the Dirac notation of the Wannier
state 𝑤0𝑛(r).
The treatment of metals requires an adjustment for energy bands, which are attached to or mixed

with other bands. Given a certain number of bands in an energy window, a disentanglement is used
to separate these bands from the remaining ones and to form an optimally connected subspace [129].
Wihtin this subspace the MLWFs can be constructed as mentioned above.
After the construction of MLWFs, the e-ph matrix elements, can be transformed from the Bloch to

the Wannier representation [43] via

𝑔𝜈𝑚𝑛(R𝑒 ,R𝑝) = ⟨0𝑒𝑚|𝛿R𝑝𝜈𝒱 |R𝑒𝑛⟩ = 1
𝑁𝑝

∑k,q 𝑒−𝑖(k⋅R𝑒+q⋅R𝑝)(𝑈 𝑛𝑚
k+q)†𝑔𝜈𝑚𝑛(k, q)𝑈 𝑛𝑚

k (u𝜈q)−1 , (2.1.28)

with 𝛿R𝑝𝜈𝒱 being the phonon perturbed potential in theWannier representation. R𝑒 and R𝑝 are the lat-
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Figure 2.2.: Illustrations of certain properties ((a), (b)) in theWannier representation (adopted from [92] and [43]). The blue points corresponds
to the lattice vectors and the sketches are simplified to a 1D system. (a) Transformation from the extended wave function in the Bloch
representation (𝜓k(r), top) to the localized Wannier function (𝑤(r), bottom) at a given wave vector k in a real-space representation. The blue
line is the envelope 𝑒𝑖kr of the Bloch function. (b) The e-ph matrix element vanishes for the shown configuration of contributing electron
Wannier functions (green) at lattice vectors 0𝑒 and R𝑒 and phonon perturbation (orange) at R𝑝 because two or more of these functions are
centered on distant unit cells. (c) Spatial decay of the electronic Hamiltonian 𝐻(0,R𝑒) and the e-ph matrix element 𝑔(R𝑒 , 0) in the Wannier
representation for fcc Pb. Shown are the largest and normalized values with respect to Wannier function indices and unit cells at the same
distance |R𝑒 | as well as with respect to the ions in the unit cell and the cartesian directions in case of 𝑔(R𝑒 , 0). The corresponding Wannier
functions were constructed with the adopted wannier90 [99] package inside the EPW [110] code and are used throughout this thesis.

tice vectors according to the electrons and ions and uq is the displacement field. In principal, equation
2.1.28 is simply a rotation of the ME in Bloch representation with 𝑈k, 𝑈k+q and the displacement field,
followed by a Fourier transformation. More important is that 𝑔𝜈𝑚𝑛(R𝑒 ,R𝑝), whose calculation imple-
ments three points at 0𝑒 , R𝑒 and R𝑝 , vanishes whenever two of them correspond to sufficiently distant
unit cells (see fig. 2.2(b)). Hence, the number of MEs in the Wannier representation, which actually
has to be calculated, is quite small. Whether 𝑔𝜈𝑚𝑛(R𝑒 ,R𝑝) is zero or not, is roughly given by the overlap
of the Wannier function at the three points, whose probability of presence decreases expontentially.

The electronic Hamiltonian in the Wannier representaion is given by

𝐻 𝑛𝑚(R𝑒 ,R′𝑒) = ∑
k
𝑒−𝑖k⋅(R′𝑒−R𝑒)(𝑈 𝑛𝑚

k )†𝐻 𝑛𝑚
k 𝑈 𝑛𝑚

k . (2.1.29)

Similiar to the vanishingMEs,𝐻 𝑛𝑚(R𝑒 ,R′𝑒) decays with the distance |R𝑒−R′𝑒 | as shown in figure 2.2(c) for
Pb. The length scale of the decay is heavily influenced by the degree of localization of the constructed
Wannier functions. Thus it can be treated as an additional quality feature of the MLWFs.

The dynamical matrix in the Wannier representation reads as

𝐷𝜈𝜇(R𝑝 ,R′𝑝) = ∑
q
𝑒−𝑖q⋅(R′𝑝−R𝑝)𝑒𝜈𝜇q 𝐷𝜈𝜇

q (𝑒𝜈𝜇q )† , (2.1.30)

where 𝐷𝜈𝜇
q is the dynamical matrix in the Bloch representation and 𝑒𝜈𝜇q is a square matrix originating

from the vibrational eigenmodes.

Finally, the inverse transformation of the e-ph matrix elements, the electronic Hamiltonian and the
dynamical matrix, eq. 2.1.28-2.1.30, at new and particularly more electron and phonon momenta, k′

and q′, yields the basis for an computational accurate description of the e-ph interaction.
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2.1. ELECTRONIC STRUCTURE THEORY

2.1.2. Interacting system

Self-energy including electron-phonon coupling

The physical meaning of the abstract concept of the self-energy can be described in the following way.
Consider a non-interacting particle in a surrounding medium with a certain energy. If the particle now
interacts with the medium, the energy of this particle will change due to changes in the environment,
which are caused by the particle itself. This energy is called self-energy.

In general, the self-energy is a complex, non-hermitian, energy-dependent and non-local operator,
which is calculated with the Green’s functions or propagators of electrons and phonons. The relation
between the electron self-energy Σ, the electron propagators of the the bare and interacting system
(𝐺0, 𝐺) is given by the Dyson equation

𝐺 = 𝐺0 + 𝐺0Σ𝐺 , (2.1.31)

which yields Σ = 𝐺−10 −𝐺−1. The same result is obtained for phonons, if one replaces Σ, 𝐺 and𝐺0 byΠ,𝐷
and 𝐷0, where 𝐷 and 𝐷0 are the dressed and bare phonon propagators, respectively. If 𝐺 and 𝐷 would
be known, the self-energies could be calculated exactly. Since this is not the case, the self-energies
are usually written in terms of Feynman-diagrams (see fig. 2.3(a) and (b)) accounting explicitly for a
certain interaction process. The number of diagrams is not limited and the exact self-energy would
require a summation over infinite elements. Nevertheless, the contributions to Σ and Π can be orderd
similarly to a perturbation series and higher order terms can be neglected in most situations since they
are small compared to 𝜔D/𝜖F. Here 𝜔D is a characteristic phonon frequency, which is usually the Debey
frequency.

Considering only the first term in the electron self-energy, which is also called Fan self-energy [34,

⌃
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k+ q
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E(d)

Fan DW

g(k,q)

Figure 2.3.: (a), (b) Feynman diagrams contributing to the electron Σ and phonon self-energy Π. Only the lowest-order terms with respect to
the atomic displacement are considered in the calculation (left from the dashed line). All other terms are of higher order (grey dot), multi-
phonon processes or Vertex corrections and are therefore neglected. The first and second diagram in (a) are known as Fan self-energy in the
Migdal approximation and Debye-Waller contribution to the self-energy, respectively. (c) Diagram of the screened electron-phonon vertex,
which is approximated by the bare vertex 𝑔(k, q). (d) Sketch of the transition between the electron states k and k + q via absorption (A) or
emission (E) of a phonon q with energy ℏ𝜔q.
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35], and the first term in the phonon self-energy in figure 2.3(a), (b) one obtains [48, 87]

Σ(k, 𝐸) = 𝑖
(2𝜋)4 ∑𝜈 ∫ dΩ∫ dq ||𝑔(k, q)||

2
𝐷(q𝜈, Ω)𝐺0(k + q, 𝐸 + Ω) (2.1.32)

Π(q𝜈, Ω) = −2𝑖
(2𝜋)4 ∫ d𝐸 ∫ dk ||𝑔(k, q)||

2
𝐺0(k, 𝐸)𝐺0(k + q, 𝐸 + Ω) (2.1.33)

The second term in the self-energy in fig. 2.3(a) is known as Debye-Waller (DW) term and is usually
ignored in DFPT calculations, except for the YAMBO code [91]. This might be due to its complexity as
well as to the evaluation of the self-energy. Expanding the total potential energy up to second-order in
the displacement rather than expanding the Kohn-Sham potential, it is found that ΣDW is of the same
order as ΣFan and therefore equally important [2, 4, 23]. In metals, however, the approximation might
be justified because ΣDW is frequency-independent and might vary only slowly over the Fermi surface
[42].

In an exact formulation of equation 2.1.32 and 2.1.33, all quantities have to be the dressed ones. Since
this is quite complicated, one generally applies two major approximations, which are considered to be
reasonable. First, the dressed matrix elements are approximated by the bare ones, which is known
as Migdal approximation [98] (see fig. 2.3(c)). Additionally, the bare electron propagators are used to
avoid self-consistency problems. The relevant bare and dressed electron and phonon propagators read
as

𝐺0(k, 𝐸) = 1
𝐸 − 𝜖(k) , (2.1.34)

𝐺(k, 𝐸) = 1
𝐸 − 𝜖(k) − Σ(k, 𝐸) , (2.1.35)

𝐷(q𝜈, Ω) = 2𝜔(q𝜈)
Ω2 − 𝜔(q𝜈)2 + 𝑖𝛿 . (2.1.36)

The electron energy 𝜖(k) is measured relative to the Fermi energy and the term 𝑖𝛿 in eq. 2.1.36,
with 𝛿 being a positive infinitesimal, replaces self-energy terms originating from phonon-phonon and
electron-phonon interactions. Nevertheless, the fully renormalized phonon spectrum known from
DFPT can be used in the phonon propagator [43, 55]. With eq. 2.1.34 and (2.1.36), the self-energies in
eq. 2.1.32 and 2.1.33 can be analytically evaluated to

Σ(k, 𝐸) = 1
𝑁q

∑
q

||𝑔(k, q)||
2 [𝑛(𝜔q) + 1 − 𝑓 (𝜖k+q)

𝐸 − 𝜔q − 𝜖k+q + 𝑖𝛿 + 𝑛(𝜔q) + 𝑓 (𝜖k+q)
𝐸 + 𝜔q − 𝜖k+q + 𝑖𝛿 ] , (2.1.37)

Π(q, 𝜔) = 2
𝑁k

∑
k

||𝑔(k, q)||
2 [ 𝑓 (𝜖k+q) − 𝑓 (𝜖k)

𝜖k+q − 𝜖k − 𝜔 − 𝑖𝜂] . (2.1.38)

Here 𝜂 is another positive infinitesimal, 𝑁q and 𝑁k are the number of k and q points, respectively,
and 𝑔(k, q) is the matrix element given in eq. 2.1.20. 𝑛 and 𝑓 are the Bose-Einstein and Fermi-Dirac
distribution functions, in which the temperature dependence enters the self-energies. The band and
mode indices of the electron and phonon states are omitted for simplicity. It is useful to rewrite the self-
energies in terms of a real and an imaginary part. Then, the real part contributes to the renormalization
of the bare energies while the imaginary part is related to the linewidth and a finite lifetime of the states
due to the scattering of electrons by phonons or vice versa.
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In the case of phonons the renormalization is already considered within DFPT and only the imagi-
nary part is of interest. It reads in its general form

Π′′
q (𝜔) =

2
𝑁k

∑
k

||𝑔(k, q)||
2 [𝑓 (𝜖k) − 𝑓 (𝜖k+q)𝛿(𝜔q + 𝜖k − 𝜖k+q)] (2.1.39)

and is directly related to the phonon linewidth 𝛾q𝜈 = 2Π′′
q (𝜔𝜈). However, in most first principles

calculations the following expression, which was first derived by Allen [5], is used:

𝛾q𝜈 = 2𝜋𝜔q∑
q

||𝑔(k, q)||
2
𝛿(𝜖k − 𝜖F)𝛿(𝜖k+q − 𝜖F) . (2.1.40)

One should keep in mind, that this formula is only valid for vanishing temperature (𝑇 → 0) or an
𝑇 -independent linewidth. Calandra and Mauri [22] investigated the phonon linewidth of the 𝐸2g mode
in MgB2 and compared 𝛾q given in eq. 2.1.39 with approximations due to the Allen formula and an
approximation in which the phonon energy is considered in one 𝛿-distribution function 𝛿(𝜖k+q − 𝜖k𝑛 −
𝜖F − 𝜔q). They showed, that the neglection of the phonon energy in the Allen formula might lead to
different results especially in the limit |q| → Γ and stated, that the magnitude of this effect strongly
depends on the band structure around 𝜖F and the phonon frequency.

As mentioned above, equation 2.1.37 is usually written as Σ = Σ′ + 𝑖Σ′′, where Σ′ is the real part
of the electron self-energy and Σ′′ is the imaginary part. The explicit expression of Σ′ is not used in
this work and therefore dropped here. Moreover, it can be calculated from the imaginary part using a
Kramers-Kronig transformation as we will see in the next section. The imaginary part is related to the
linewidth Γk and finite lifetime 𝜏k of an electron, which is given by Γk = 2Σ′′

k = ℏ/𝜏k with ℏ being the
reduced Planck constant and its detailed expression is

Σ′′
k (𝐸) = 1

𝑁q
∑q

||𝑔(k, q)||
2 [(1 − 𝑓 (𝜖k+q) + 𝑛(𝜔q))𝛿 (𝐸 − 𝜖k+q − 𝜔q) + (𝑓 (𝜖k+q) + 𝑛(𝜔q))𝛿 (𝐸 − 𝜖k+q + 𝜔q)] . (2.1.41)

The 𝛿-functions ensure energy conservation in the scattering events. The first term corresponds to an
absorption (A) process, where a phonon with the energy 𝜔q is absorbed by an electron with the energy
𝜖k+q yielding the new quasi-particle energy 𝐸 = 𝜖k+q+𝜔q in the state k. The second term is linked to the
emission (E) of a phonon and the energy of the final state is 𝐸 = 𝜖k+q − 𝜔q. A sketch of these processes
is shown in figure 2.3(d). To rewrite eq. 2.1.41 in a more handy way, one generally introduces the
Éliashberg spectral function . In principal, there is one for emission and one for absorption

𝛼2𝐹E,A
k (𝜖, 𝜔) = 1

𝑁q
∑
q
𝛿 (𝜔 − 𝜔q) ||𝑔(k, q)||

2
𝛿 (𝐸 − 𝜖k+q ± 𝜔q) (2.1.42)

but the difference between 𝛼2𝐹A
k (𝜖, 𝜔) and 𝛼2𝐹E

k (𝜖, 𝜔) is usually small and the quasi-elastic assump-
tion can be applied, which leads to 𝛼2𝐹E,A

k (𝜖, 𝜔) ≈ 𝛼2𝐹k(𝜖, 𝜔). Quasi-elastic means that all scattering
processes take place only on the Fermi surface and the energy transfer arising from phonons is ne-
glected. This seems reasonable because the phonon energy scale (meV) is typically much smaller than
the electron energy scale (eV). Hence, the 𝛿-functions reduce to

𝛿 (𝐸 − 𝜖k+q ± 𝜔q) ≈ 𝛿 (𝐸 − 𝜖k+q) . (2.1.43)
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CHAPTER 2. THEORY

and eq. (2.1.41) finally reads as

Σ′′
k (𝐸) = 𝜋 ∫ d𝜔 𝛼2𝐹k(𝜖, 𝜔) [1 + 2𝑛(𝜔) + 𝑓 (𝜖k + 𝜔) − 𝑓 (𝜖k − 𝜔)] . (2.1.44)

Assuming that 𝛼2𝐹k varies only slowly on the Fermi surface, the above equation can be simplified even
further with the introduction of the Fermi surface-averaged Éliashberg spectral function

𝛼2𝐹(𝜖F, 𝜔) =
1

𝑁q𝑁k𝒩𝜖F
∑
q
𝛿 (𝜔 − 𝜔q)∑

k

||𝑔(k, q)||
2
𝛿(𝜖k+q − 𝜖F)𝛿(𝜖k − 𝜖F) , (2.1.45)

which replaces the k-dependent spectral function.

The electron-phonon coupling strength 𝜆 is generally calculated as [6]

𝜆 = 2∫
∞

0
d𝜔 𝛼2𝐹(𝜖F, 𝜔)

𝜔 , (2.1.46)

which can be easily extended to a k-dependent quantity using the k-dependent Éliashberg spectral
function . In a simple description 𝜆 forms the mass enhancement factor (1 + 𝜆), which is often found in
standard textbooks to describe renormalization effects onto several physical properties.

One experimental access to the above mentioned quantities is given by superconducting tunneling
spectroscopy, which enables the measurement of the Éliashberg spectral function and the calculation
of the coupling strength [117, 136]. Another access is given by the spectral function 𝒜k(𝐸, 𝑇 ), which
can be obtained from angle-resolved photoemission spectroscopy (ARPES). The spectral function of an
electron in state k includes the renormalization of the energies as well as the linewidth. The direct
comparison with experiments needs further adjustments, which are discussed later in chapter 3.4. The
spectral function itself is calculated as

𝒜k(𝐸, 𝑇 ) =
1
𝜋 ∑

𝑛

||Σ′′
k𝑛(𝐸, 𝑇 )||

[𝐸 − 𝜖k𝑛 − Σ′
k𝑛(𝐸, 𝑇 )]

2 + Σ′′
k𝑛(𝐸, 𝑇 )2

. (2.1.47)

𝒜k is the analog to the band structure for the non-interacting electron in state k and band 𝑛. Although
the band index is not a good quantumnumber of the interacting electron anymore, the spectral function
of the total system is still written as a sum of spectral functions of each band according to

𝒜k(𝐸, 𝑇 ) = ∑
𝑛
𝒜k𝑛(𝐸, 𝑇 ) . (2.1.48)

The discussion of transport properties will be in terms of a bandwise discussion relying on 𝒜k𝑛 in-
stead of 𝒜k. The reason is, that there exists no complete description based on Boltzmann theory to
calculate transport properties directly from the total spectral function. Therefore, a detached investi-
gation regarding the lifetime and the renormalization is the only way dealing with the electron-phonon
interaction.

The poles in the spectral density in the limit of vanishing damping defines the renormalization con-
dition of an electron state in the 𝑛-th band

𝐸 = 𝜖k𝑛 + Σ′
k(𝐸, 𝑇 ) . (2.1.49)
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2.1. ELECTRONIC STRUCTURE THEORY

This equation has to be solved self-consistently due to the occurrence of the quasi-particle energy 𝐸
on both sides.

Experimentally, the renormalized band structure is calculated via momentum distribution curves
(MDC) and energy distribution curves (EDC), which are both obtained from a measured spectral func-
tion [26, 29]. Both methods are fits of the spectral function either at constant momentum (EDC) or
at constant binding energy (MDC). The k-dependent coupling strength is then calculated from the
renormalized dispersion as

𝜆k = −𝜕Σ
′
k(𝐸)
𝜕𝐸

|||𝐸=𝜖F
. (2.1.50)

Kramers-Kronig Transformation

In the mathematical community, the Kramers-Kronig relation is known as Hilbert transform or
Sokhotski-Plemelj theorem and was formulated more than one century ago. It is a powerful tool con-
necting the real and imaginary part of an arbitrary complex function 𝜒 , which fullfills the principle of
causality. Thus it provides a large benefit in physics when dealing with response functions like dielec-
tric functions and suszeptibilities. The relation was first used in the field of radiation and refraction by
the name-giving physicists Kramers [73] and Kronig [75] in the late 20’s.

According to the field of electron-phonon interaction, the Kramers-Kronig relations connect the real
(Σ′) and imaginary part (Σ′′) of the complex electron self-energy Σ = Σ′+𝑖Σ′′, discussed in section 2.1.2,
with the help of the Cauchy principal value 𝒫 and are given by

Σ′(𝐸) = 1
𝜋 𝒫 ∫

+∞

−∞
d𝜔 Σ′′(𝜔)

𝜔 − 𝐸 and (2.1.51)

Σ′′(𝐸) = − 1𝜋 𝒫 ∫
+∞

−∞
d𝜔 Σ′(𝜔)

𝜔 − 𝐸 . (2.1.52)

Hence, the above equations allow for a calculation of the total self-energy only by knowing either its
real or imaginary part.

To ensure a numerically stable calculation it is useful to eliminate the poles in the denominators in
equation 2.1.51 and 2.1.52 via an expansion with the term (𝜔 + 𝐸)/(𝜔 + 𝐸) [78]. Considering the real
part for instance and using the inherent odd symmetry, Σ′(𝐸) = −Σ′(−𝐸), one obtains

Σ′(𝐸) = 2𝐸
𝜋 𝒫 ∫

∞

0
d𝜔 Σ′′(𝜔)

𝜔2 − 𝐸2 . (2.1.53)

In contrast to the real part, the imaginary part has an even symmetry, Σ′′(𝐸) = Σ′′(−𝐸). An additional
modification has to be applied in eq. 2.1.53 due to the non-vanishing imaginary part in the limit |𝜔| →
∞. One simply adds 𝒫 ∫∞−∞ d𝜔/(𝜔−𝐸) = 0 yielding

Σ′(𝐸) = 2𝐸
𝜋 𝒫 ∫

∞

0
d𝜔 Σ′′(𝜔) − Σ′′(𝐸)

𝜔2 − 𝐸2 , (2.1.54)

which guarants a vanishing integrand for |𝜔| → ∞. A comparison is shown in figure 2.4. The imaginary
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Figure 2.4.: Real part of the self-energy 𝑅𝑒{Σ} numerically evaluated
with a Kramers-Kronig transformation. The corresponding imagi-
nary part 𝐼𝑚{Σ} (dashed black line) is modeled with an isotropic
Éliashberg spectral function for a Debye model. The parameters
are 𝜔D = 30meV, 𝜆 = 1.0 and 𝑇 = 10K. The straight-forwardly
calculated real part (eq. (2.1.53)) is given by the solid red line. It di-
verges for large energies due to the non-vanishing integrand 𝐼𝑚{Σ}
in the limit 𝐸 → 0, which is not physical. The calculation with the
modified transformation (eq. (2.1.54)) is shown as solid black line.
Here, the real part goes to zero for energies far away from the inital
energy of the electron state, which is given by 𝐸 = 0 in this case.

part is calculated with eq. 2.1.44 and an isotropic Éliashberg spectral function for a 3D Debye model

𝛼2𝐹D(𝐸) = {𝜆 (
𝐸
𝜔D
)
2

, 𝐸 ≤ 𝜔D

0 , 𝐸 > 𝜔D .
(2.1.55)

The Debye frequency is 𝜔D = 30meV, the coupling strength is set to 𝜆 = 1.0 and the temperature is
𝑇 = 10K.

Nesting function

The concept of nesting is more than 50 years old and strongly related to Kohn anomalies [71]. A
Kohn anomaly is a singularity in the phonon dispersion of metals [28] or metallic systems [107]. More
precisely, it is a significant reduction of the phonon frequencies and hence phonon energies 𝜔q at a
certain wave vector q. Mathematically, its derivative has a discontinuity, ||∇q𝜔q

|| = ∞. Physically, the
screening of the lattice vibrations of the ions by the electrons changes rapidly at this q point . The
existence and peculiarity of a Kohn anomaly is determined by the Fermi surface of the electrons and
described by the term nesting.
In a quasi-elastic description, nesting accounts for the connection of two points at the Fermi sur-

face, k and k′, via a phonon with wave vector q according to k′ = k + q + G, where G is a reciprocal
lattice vector. Hence, nesting is a purely geometrical property and does not depend on the phonon
energy. Dropping the quasi-elastic assumption, a more general formulation requires the connection
of k points with different energies, 𝜖k and 𝜖k′ , and therefore different iso-energy surfaces (IESs). Nev-
ertheless, these IESs are almost identical in metals on the scale of phonon energies (meV) and the
quasi-elastic assumption is justified.
A quantitativ measurement is the nesting function formulated by Kasinathan et. al [66, 67], which

reads as
𝜉q =

1
𝑁k

∑
k
𝛿(𝜖k+q − 𝜖F)𝛿(𝜖k − 𝜖F) ∝ ∮

d𝐿k
||vk × vk+q||

. (2.1.56)

𝜉q is basically a line integral over shifted and intersected Fermi surfaces as shown in figure 2.5. To iden-
tify important nesting vectors one has to find parts at the Fermi surface, which are parallel orientated
to each other. In that case a large number of electronic states are connected via a single phonon qnest,
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2.1. ELECTRONIC STRUCTURE THEORY

Figure 2.5.: Visualisation of eq. 2.1.56 to calculate the
nesting function in the case of copper. The Fermi sur-
face is shifted by q along the [100] direction. The in-
tersecting line (d𝐿k) is shown in red and highlights
all points on the Fermi surface, in which the electron
states k and k′ = k + q are connected by the phonon
q. The cross-product of the velocities vk and vk′ in
these points give rise to the nesting function 𝜉q. The
contribution to 𝜉q is small, when the velocities en-
close a right angle (a) and large when they are almost
parallel or antiparallel (b). The last one is an indicator
for strong Fermi surface nesting, which might lead to
Kohn anomalies.

which highly favours a Kohn anomaly at that wave vector. Making an explicit statement about the
importance of qnest in quantities related to electron-phonon interaction, like the phonon linewidth (eq.
2.1.40) or the Éliashberg spectral function (eq. 2.1.45), is usually not possible since the matrix element
might suppress a large nesting contribution. At the same time, the coupling strength can increase the
relevance of a phonon with an average nesting vector.
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2.2. Boltzmann transport theory

The centerpiece of the Boltzmann transport theory is a balance equation of a single particle distribution
function. The formalism is valid for charged particles, like electrons, as well as for charge-neutral
particles, like phonons. It describes the diffusive transport regime, where the single scattering events
of the particles are assumed to be independent from each other. Herefore the mean free path of the
particles between two scattering events has to be larger than the average distance of two scatterers.
The theory provides a way to calculate macroscopic measurable observables based on the micro-

scopic properties of the investigated system. It connects the motion of the particles due to external
fields, like electric field or temperature gradient, with the scattering of the particles with its surround-
ing. While the motion is treated semiclassically, the scattering is directly obtained from a full quantum
mechanical description.
The following chapter deals with the derivation of the linearised electron and phonon Boltzmann

equation. The contribution of the electron-phonon interaction to both scattering terms is evaluated.
Subsequently, the final expressions to calculate the electrical and thermal conductivity as well as the
thermopower are given. The chapter closes with some thoughts about the solution of the coupled
Boltzmann equations.

2.2.1. Boltzmann equation for electrons

Linearisation

TheBoltzmann transport theory is based on a balance equation of the classical one-particle distribution
function 𝑓 (k, r, 𝑡) of carriers, typically electrons. The latter depends on the quantum-mechanical state
k as well as on the real space position r and the time 𝑡 . In order to simplify the upcoming expressions,
k is taken as a multi index, consisting of the wave vector k, the spin 𝜎 and the band index 𝑛.
Within the semiclassical description, the distribution function has to be understood as a representa-

tion of an ensemble of electrons, which is confined in an infinitesimal phase space volume 1/(2𝜋)3dk ⋅ dr.
Therefore and for simplicity, the distribution function is written as

𝑓k ≡ 𝑓 (k, r, 𝑡) . (2.2.1)

The integral over the first Brillouin zone (BZ) and the real space gives the total number of particles 𝑁

𝑁 = ∫
1.BZ

dkdr
(2𝜋)3 𝑓 (k, r, 𝑡) . (2.2.2)

The conservation of the particle number leads to the balance equation

(𝜕𝑓k𝜕𝑡 )
|||scattering

= 𝜕𝑓k
𝜕𝑡 + (𝜕𝑓k𝜕𝑡 )

|||drift
= 𝜕𝑓k

𝜕𝑡 + (𝜕𝑓k𝜕𝑡 )
|||diffusion

+ (𝜕𝑓k𝜕𝑡 )
|||ext. fields

= 𝜕𝑓k
𝜕𝑡 + ṙ

𝜕𝑓k
𝜕r + k̇

𝜕𝑓k
𝜕k . (2.2.3)

It describes the change of the distribution function due to an explicit time dependence of 𝑓k, the diffu-
sion of electrons, the influence of external fields and scattering effects. The latter however, is counter-
acting the first three contributions resulting in a local equilibrium between the two competing parts

18



2.2. BOLTZMANN TRANSPORT THEORY

[96].
The time derivatives, ṙ and k̇, are given by the semiclassical equations of motion of an electron [143]

dr
d𝑡 = ṙ = vk =

1
ℏ
𝜕𝜖k
𝜕k , (2.2.4)

dk
d𝑡 = k̇ = −|𝑒|ℏ (E(r, 𝑡) + 1

𝑐 vk × B(r, 𝑡)) . (2.2.5)

Here, 𝜖k is the energy eigenvalue of an electron with wave vector k. The corresponding group velocity
is denoted as vk. E(r, 𝑡) and B(r, 𝑡) are the applied external electric and magnetic fields. Equation 2.2.3
is the electron Boltzmann equation in its general form. It is a non-linear integro-differential equation
and usually not solvable without applying further approximations, especially for the scattering term.
Nevertheless, an obtained solution for the electronic distribution function 𝑓k provides all informations
about the response of the electrons under the influence of diffusion and external fields.
In order to evaluate equation 2.2.3, we only consider a temperature gradient ∇𝑇(r) and a time-

independent electric field, whilewe neglectmagnetic fields. The distribution function is time-independ-
ent as well. If the electric field is sufficiently small, we can assume that the perturbed system differs
only slightly from its equilibrium state. Hence, it is reasonable to separate the distribution function
𝑓k into its equilibrium part 𝑓 0

k , which is given by the Fermi-Dirac distribution function, and a small
deviation Δ𝑓k

𝑓k = 𝑓 0
k + Δ𝑓k , 𝑓 0

k = 1
e(𝜖k−𝜇)/𝑘B𝑇 + 1 . (2.2.6)

Including equation 2.2.4, 2.2.5 and 2.2.6 and assuming the distribution function to be homogenous, i.e.
𝜕𝑓k/𝜕r = 0, the balance equation 2.2.3 reads as

(𝜕𝑓k𝜕𝑡 )
|||scatt.

= −d𝑓
0
k

d𝜖 vk [(𝜖k − 𝜇) 1𝑇 ∇𝑇 + |𝑒|E] . (2.2.7)

Additionally, the emerging term −(|𝑒|/ℏ)(𝜕Δ𝑓k/𝜕k)E is neglected since it is of higher order in the electric
field. Equation 2.2.7 is the linearised Boltzmann equation with a general scattering term, which is also
known as collision integral. Despite several typical types of scattering, like electron-electron, electron-
impurity or electron-defect scattering, the interaction of electrons and phonons is of most interest in
this thesis and therefore addressed in the next section.

Collision integral with electron-phonon interaction

Considering electron-phonon (e-ph) interaction, the scattering term in the Boltzmann equation 2.2.7
is given by

𝜕𝑓k
𝜕𝑡

|||scatt.
= ∑

q
{ −

(𝑖)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝒫 k′

kq [𝑓k(1 − 𝑓k′)𝑛q] −
(𝑖𝑖𝑖)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝒫 k′q
k [𝑓k(1 − 𝑓k′)(1 + 𝑛q)] (2.2.8)

+𝒫 kq
k′ [(1 − 𝑓k)𝑓k′(1 + 𝑛q)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(𝑖𝑖)

+𝒫 k
k′q[(1 − 𝑓k)𝑓k′𝑛q]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(𝑖𝑣)

} .

The band indices of the electronic states 𝑛,𝑚 and the mode index of the phonons 𝜈 are omitted for
simplicity. The terms 𝑓k and (1 − 𝑓k′) are related to the probabilty of the initial state k being occupied
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• (𝑖) A: k
q−→ k′, k + q = k′, 𝜖k + ℏ𝜔q = 𝜖k′

• (𝑖𝑖) E: k′
q−→ k, k′ − q = k, 𝜖k′ − ℏ𝜔q = 𝜖k

• (𝑖𝑖𝑖) E: k
q−→ k′, k − q = k′, 𝜖k − ℏ𝜔q = 𝜖k′

• (𝑖𝑣) A: k′
q−→ k, k′ + q = k, 𝜖k′ + ℏ𝜔q = 𝜖k

  

Figure 2.6.: (𝑖)-(𝑖𝑣) The lowest order Feynman diagrams for scattering processes including electron-phonon interactions are shown on the
left. The initial and final states are k and k′ = k ± q. The corresponding momentum and energy relations as well as the distinction between
absorption (A) and emission (E) process are given in the middle. (𝑣) Adopted Sketch [59] of an absorption and emission process in a two-band
picture for an initial Ψk+q and a final state Ψk in bands 𝑚 and 𝑛, respectively.

and to the final state k′ being empty. Furthermore 𝑛q and (1+𝑛q) describe the absorption and emission
process of a phonon, respectively.

The 𝒫 ’s in eq. 2.2.8 are transition probabilities and correspond to different scattering processes for
an electron from k into k′ under the influence of a phonon q. In lowest order of e-ph interaction,
there are two absorption (A) and two emission (E) processes. An overview is given in figure 2.6. In all
four transitions the crystal momentum and the energy are conserved. The transition probabilities are
evaluated from Fermi’s golden rule yielding

𝒫 k′
kq = 𝒫 kq

k′ = 𝒫 + = 2𝜋
ℏ

||𝑔k
′

k,q||
2
𝛿 (𝜖k − 𝜖k+q + 𝜔q) , (2.2.9)

𝒫 k′q
k = 𝒫 k

k′q = 𝒫 − = 2𝜋
ℏ

||𝑔k
′,q

k
||
2
𝛿 (𝜖k − 𝜖k+q − 𝜔q) , (2.2.10)

where the principle of microscopic reversibility was used in the first step. The matrix elements are
calculated within DFPT as discussed in section 2.1.1. In greater detail they read as

𝑔k′k,q = ( ℏ
2𝑀𝜔q

)
1/2
⟨Ψk+q ||Δ𝑉q

|| Ψk⟩ with Δ𝑉q = ∑
R,𝑖

𝜕𝑉
𝜕uR,𝑖

⋅ uq,𝑖e𝑖qR (2.2.11)

being the first-order derivative of the Kohn-Sham potential with respect to the atomic displacement
uR,𝑖 for the 𝑖-th atom.

The evaluation of the scattering term (eq. 2.2.8) requires knowledge about the actual distribution
functions 𝑓k and 𝑛q including the consequences from the e-ph interaction. This treatment is related to
the solution of the coupled Boltzmann equations for the electrons and phonons, whichwill be discussed
more detailed in section 2.2.4.

Nevertheless, the electrons and phonons will be both described within a linear response formalism
in a first step. This enables a derivation of the scattering term in a more general form, which can be
easily simplified later on. The electron and phonon distribution functions read as

𝑛q = 𝑛0q + Δ𝑛q and 𝑓k = 𝑓 0
k + Δ𝑓k . (2.2.12)
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The electrons are treated in the same way as in section 2.2.1, while Δ𝑓k is still a small deviation from
the equilibrium Fermi-Dirac distribution function 𝑓 0

k . The phonons are described similarly with Δ𝑛q
being a small deviation from the equilibrium phonon distribution function

𝑛0q =
1

eℏ𝜔q/𝑘B𝑇 − 1 (2.2.13)

due to a thermal gradient. 𝑛0q is also known as Bose-Einstein distribution function.

Starting from eq. 2.2.8, using eq. 2.2.9, 2.2.10 and 2.2.12 and rearranging the resulting expressions
with respect to the deviations Δ𝑓k, Δ𝑓k′ and Δ𝑛q, the scattering term is given by

𝜕𝑓k
𝜕𝑡

|||scatt.
= − { Δ𝑓k∑

q
[𝒫 +(𝑓 0

k′ + 𝑛0q) + 𝒫 −(1 + 𝑛0q − 𝑓 0
k′)] (2.2.14)

−∑
q
Δ𝑓k′ [𝒫 +(1 + 𝑛0q − 𝑓 0

k ) + 𝒫 −(𝑓 0
k + 𝑛0q)]

−∑
q
Δ𝑛q [𝒫 + (𝑓 0

k′ − 𝑓 0
k ) + 𝒫 − (𝑓 0

k′ − 𝑓 0
k )] } .

Higher order terms in the deviation functions, e.g. Δ𝑓kΔ𝑓k′ and Δ𝑓kΔ𝑛q, were neglected due to the
linear response description. However, terms, which include the product Δ𝑓kΔ𝑓k′Δ𝑛q cancel each other
automatically.

To decouple and solve the electron Boltzmann equation independently one assumes the phonons to
be in thermal equilibrium. This holds for sufficiently fast relaxations of excited phonons due to phonon-
phonon or phonon-impurity scattering, which is known as Born’sche Annahme. Hence, Δ𝑛q = 0 and
the last term in eq. 2.2.14 vanishes, which results in two contributions to the scattering term.

The first part describes scattering-out processes, particularly the transition from k → k′ under
absorption or emission of a phonon. Thus, only the distribution function for an electron with wave
vector k′ appears. Furthermore, the first term leads to the relaxation time approximation, which will
be discussed below. The second part accounts for the scattering-in processes from k′ → k. The full
solution of the independent electron Boltzmann equation, considering scattering-in and -out processes,
can be achieved within an iterative scheme.

Another expression for the scattering term, which is often found in textbooks, is obatined by assum-
ing the distribution functions 𝑛q and 𝑓k to be

𝑛q = 𝑛0q and 𝑓k = 𝑓 0
k − 𝜕𝑓 0

k

𝜕𝜖k
𝜙k (2.2.15)

with 𝜙k being the small deviation from the equilibrium distribution function. The final expression is
then given by

𝜕𝑓k
𝜕𝑡

|||scatt.
= −∑

k′
𝒲 (k, k′) [𝜙k′ − 𝜙k] with (2.2.16)

𝒲 (k, k′) = 1
𝑘B𝑇

∑
q
{𝒫 +𝑛0q (1 − 𝑓 0

k′) 𝑓 0
k + 𝒫 −𝑛0q (1 − 𝑓 0

k ) 𝑓 0
k′} ,

which is similar to the representation in Ziman’s Electrons and Phonons [143] in eq. (9.5.1) for instance.
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Nevertheless, equation 2.2.16 can be directly converted into 2.2.14 and vice versa.
Considering a small perturbation of an electric field E the response of the system can be assumed to

be linear and the deviation Δ𝑓k up to the first order in E reads as

Δ𝑓k = −|𝑒|𝜕𝑓
0
k

𝜕𝜖k
Λk ⋅ E . (2.2.17)

Here, Λk is the vector mean free path, which describes the linear change in the distribution function
𝑓k in the presence of an electric field. The factor 𝜕𝑓 0

k/𝜕𝜖k accounts for contributions to the transport
exclusively from electrons nearby the Fermi energy.
Using eq. 2.2.7, 2.2.14 and 2.2.17 and applying the quasi-elastic assumption, the linearised Boltzmann

equation with electron-phonon interaction is given by

Λk = 𝜏k [vk −∑
q

𝜕𝑓 0
k′

𝜕𝜖k′
(𝜕𝑓

0
k

𝜕𝜖k
)
−1
Λk′𝒫 qe(1 + 2𝑛0q + 𝑓 0(𝜖k + 𝜔q) − 𝑓 0(𝜖k + 𝜔q))] , (2.2.18)

where the transition probabilites of absorption and emission processes are considered to be equal

𝒫 qe = 𝒫 + = 𝒫 − = 2𝜋
ℏ

||𝑔qk,k+q||
2
𝛿 (𝜖k − 𝜖k+q) . (2.2.19)

The state-dependent relaxation time 𝜏k was introduced as

(𝜏k)−1 = ∑
q
𝒫 qe [1 + 2𝑛0q + 𝑓 0(𝜖k+q + 𝜔q) − 𝑓 0(𝜖k+q − 𝜔q)] . (2.2.20)

and is sometimes also called spectral relaxation time.
The exact solution of eq. 2.2.18 is given by an iterative scheme. In a first step, the vector mean free

path is calculated without contributions from scattering-in processes yielding

ΛRTA
k = 𝜏kvk , (2.2.21)

which is known as relaxation time approximation (RTA). Usually the RTA is motivated in a different
way stating that the perturbed steady-state distribution function will relax into its equilibrium distri-
bution function when the external fields are switched off. Additionally, the relaxation is assumed to
be driven by scattering processes only. Thus, the relaxation time 𝜏k is introduced as an direct approxi-
mation of the collision integral in equation 2.2.7 given by

(𝜕𝑓k𝜕𝑡 )
|||scattering

= −𝑓k − 𝑓 0
k

𝜏k
= −Δ𝑓k𝜏k

with 𝑓k(𝑡) = 𝑓 0
k + Δ𝑓k ⋅ e−

𝑡
𝜏k . (2.2.22)

To continue with the iteration scheme, ΛRTA
k serves as input in the Boltzmann equation 2.2.18 and

allows for a calculation of a vector mean free path Λ1
k, which then includes scattering-in processes.

Subsequently,Λ2
k is calculatedwith �1k as a starting point. This procedure is repeated until ||Λ𝑖

k − Λ𝑖+1
k
|| ≤ 𝜀

holds for the 𝑖-th iteration, where 𝜀 is a suitable cutoff. The calculation of the full, i.e. iterative, solution
can be demanding if the Fermi surface is large and a lot of k points are required to evaluate the transport
integrals, which are introduced in the next section.
To skip the iterative solution but keep information from the scattering-in processes, one generally
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introduces the transport relaxation time 𝜏 trk , which is often called the momentum relaxation time ap-
proximation (MRTA)

ΛMRTA
k = 𝜏 trk vk , (2.2.23)

(𝜏 trk )
−1 = ∑

q
𝒫 qe [1 + 2𝑛0q + 𝑓 0(𝜖k+q + 𝜔q) − 𝑓 0(𝜖k+q − 𝜔q)] (1 −

vk ⋅ vk+q
𝑣k𝑣k+q

) . (2.2.24)

Comparing with equation (2.2.20) one can see, that 𝜏 trk is obtained by adding an additional term

𝜂k = 1 − vk ⋅ vk+q
𝑣k𝑣k+q

, (2.2.25)

which accounts for the change in the direction of the velocity during the scattering process. The ap-
proximation of the full Boltzmann equation including the scattering-in term by the introduction of the
transport relaxation time was supposed to be reasonable for quite some time. Recently, a quantitative
investigation was made by Li [79]. He calculated the mobilities of the electrons in Si and MoS2 as
well as the resistivity of Al within the RTA, MRTA and with the iterative solution of the Boltzmann
equation. He showed, that all three solutions coincide for the two semiconductors. In the case of Al,
however, only the MRTA agrees very well with the full solution. Nevertheless, both results may differ
in other systems yielding a discrepancy even between the MRTA and the full solution.

2.2.2. Transport coefficients in the Boltzmann theory

The calculation of transport properties requires knowledge of the steady-state distribution function
𝑓k, which is accessible due to the perturbation of the equilibrium distribution function 𝑓 0

k . Assuming
the system to be perturbed by a weak electrical field, the deviation from 𝑓k within the relaxation time
approximation is given by equation 2.2.17 and 2.2.21. Rewriting 𝑓k reveals, that the electric field linearly
shifts the Fermi surface

𝑓k = 𝑓 0
k + Δ𝑓k = 𝑓 0

k + |𝑒|𝜏kvk ⋅ E
𝜕𝑓 0

k

𝜕𝜖k
≈ 𝑓 0 (k + |𝑒|𝜏k

ℏ E) , (2.2.26)

which leads to an asymmetric redistribution of populated states in the reciprocal space. In the simplest
case, E = (𝐸x, 0, 0), the Fermi surface seems to be shifted in −k direction and the net group velocity of
the ensemble of electrons is distinct from zero. Hence, the electrical and heat current densities, jE and
jQ, caused solely by Δ𝑓k, are distinct from zero as well. Taking a temperature gradient into account
and combining equation 2.2.7 and 2.2.22 to get an expression for Δ𝑓k, the current densities read as

jE = − |𝑒|
(2𝜋)3 ∫ dk vkΔ𝑓k = − |𝑒|

(2𝜋)3 ∫ dk 𝜏kvk ∘ vk
𝜕𝑓 0

k

𝜕𝜖 [(𝜖k − 𝜇) 1𝑇 ∇𝑇 + |𝑒|E] and (2.2.27)

jQ = 1
(2𝜋)3 ∫ dk vk (𝜖 − 𝜇) Δ𝑓k =

1
(2𝜋)3 ∫ dk 𝜏kvk ∘ vk (𝜖 − 𝜇) 𝜕𝑓

0
k

𝜕𝜖 [(𝜖k − 𝜇) 1𝑇 ∇𝑇 + |𝑒|E] .(2.2.28)

To bring them into a more practical form, it is convenient to define the generalized transport coef-
ficients or generalized conductance moments as

ℒ 𝛼(𝜇, 𝑇 ) = 1
(2𝜋)3 ∫ dk 𝜏kvk ∘ vk(𝜖k − 𝜇)𝛼 (−𝜕𝑓

0
k (𝜇, 𝑇 )
𝜕𝜖 )

𝜖=𝜖k
, (2.2.29)
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where 𝛼 denotes the order of the moment. The integration in the three dimensional k-space is trans-
formed via dk = d2𝑘d𝑘⟂ = d𝑆d𝑘⟂ = d𝑆d𝜖/ℏ|vk\| into integrations over surfaces of constant energy.
Following Mahan and Sofo [128], the transport distribution function (TDF) is introduced as

Σ(𝜖) = 1
(2𝜋)3 ∮𝜖=𝜖k

d𝑆
ℏ|vk|

𝜏kvk ∘ vk , (2.2.30)

which is the zeroth moment of the generalized transport coefficients at vanishing temperature, Σ(𝜖) =
ℒ 0(𝜇, 0). Since the difficult k-space integration is hidden in the TDF, the integral in equation 2.2.29
reduces to a simple energy integration

ℒ 𝛼(𝜇, 𝑇 ) = ∫ d𝜖 Σ(𝜖)(𝜖k − 𝜇)𝛼 (−𝜕𝑓
0
k (𝜇, 𝑇 )
𝜕𝜖 ) . (2.2.31)

The chemical potential 𝜇 is determined at a fixed temperature and charge carrier concentration𝑁 via
an integration over the density of states𝒩 . Assuming a semiconductor with a valence band maximum
(VBM) and a conduction band minimum (CBM) it is

𝑁 = 𝑝 + 𝑛 = ∫
𝜖VBM

−∞
d𝜖 𝒩 (𝜖) (1 − 𝑓 0

k (𝜇, 𝑇 )) + ∫
∞

𝜖CBM
d𝜖 𝒩 (𝜖)𝑓 0

k (𝜇, 𝑇 ) . (2.2.32)

The two terms account for the hole and electron carrier concentration, 𝑝 and 𝑛.
In generalℒ 𝛼 and Σ are tensors. Nevertheless, there number of independent components is reduced

due to crystal symmetry. In a cubic system for instance it holds ℒ 𝛼𝑖𝑗 (𝜇, 𝑇 ) = ℒ 𝛼(𝜇, 𝑇 )𝛿𝑖𝑗 , where only
one independent component remains.
Finally, equation 2.2.27 and 2.2.28 can be rewritten in terms ofℒ 𝛼 to highlight the relations between

the generalized fluxes, jE and jQ, and the generalized forces E and ∇𝑇

jE = 𝑒2ℒ 0E − 𝑒
𝑇 ℒ 1∇𝑇 (2.2.33)

jQ = 𝑒ℒ 1E − 1
𝑇 ℒ 2∇𝑇 . (2.2.34)

Here, it is already seen that the two fluxes are coupled by the same generalized conductance moment
ℒ 1. Since ℒ 1 and the other generalized conductance moments obey only a mathematical character,
a physical interpretation of the coupling is missing. Fortunately, the relation between jE and jQ can
be also expressed in terms of measurable observables, which gives insights in the physical picture.
The transport properties itselves are then given by combinations of the different generalized transport
coefficients.
Assuming a constant temperature, the electrical conductivity 𝜎 is obtained from eq. 2.2.33 and the

comparison with Ohm’s law
jE = 𝜎E with 𝜎 = 𝑒2ℒ 0 (2.2.35)

being directly proportional to ℒ 0. The electrical resistivity is given by the inverse quantitiy, 𝜌 = 𝜎−1.
The second decoupled transport property is the electronic part of the thermal conductivity 𝜅el. In an

open electrical circuit, i.e. jE = 0, eq. 2.2.34 reads as

jQ = −𝜅el∇𝑇 with 𝜅el =
1
𝑇 (ℒ 2 − (ℒ 1)2 (ℒ 0)−1) (2.2.36)
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being obtained from the comparison with Fourier’s law. The remaining part from the phonons, named
lattice thermal conductivity 𝜅ph, can be calculated from the Peierls-Boltzmann equation for phonons,
which is the equivalent to the Boltzmann equation for electrons. The total thermal conductivity is then
given by the sum of both contributions.
Considering an electrical open circuit, the electric field is coupled to the temperature gradient

E = 𝑆∇𝑇 by 𝑆 = 1
𝑒𝑇 ℒ 1 (ℒ 0)−1 , (2.2.37)

which is the thermopower or Seebeck coefficient first introduced by Seebeck [119].
The thermopower shown above originates only from the diffusion of electrons and is therefore also

known as diffusive thermopower 𝑆d. The actual calculation of 𝑆d is performed within several sim-
plifications, which may significantly affect the result. One can simply apply the constant relaxation
time approximation (cRTA) given by ΛcRTA

k = 𝜏vk. This, however, results in a thermopower, which
is solely obtained from electronic band structure effects. Considering a k-dependent or at least an
energy-dependent relaxation time, includes explicitly the interaction of electrons and phonons in ad-
dition to band structure effects. Up to now, the phonons were assumed to be in thermal equilibrium
according to eq. 2.2.13. Dropping this assumption and describing the phonons as perturbed by the
electrons give rise to a second contribution to the thermopower, which is historically named phonon-
drag thermopower 𝑆phd. An expression for the latter can be derived while solving the coupled electron
and phonon Boltzmann equations as we will see in section 2.2.4.

2.2.3. Boltzmann equation for phonons with electron-phonon interaction

The structure of the phonon Boltzmann equation, which is also known as Peierls-Boltzmann equa-
tion, is similar to the electron Boltzmann equation. The balance equation for the phonon distribution
function 𝑛q is given by

(𝜕𝑛q𝜕𝑡 )|||drift
= (𝜕𝑛q𝜕𝑡 )|||scattering

, (2.2.38)

where the drift term depends only on a thermal gradient

(𝜕𝑛q𝜕𝑡 )|||drift
= −vq

𝜕𝑛q
𝜕r = −vq

𝜕𝑛q
𝜕𝑇 ∇𝑇 = −vqℏ𝜔q (−

𝜕𝑛q
𝜕𝜔q

) 1
𝑇 ∇𝑇 . (2.2.39)

The electron-phonon contribution to the scattering term in its general form reads as

𝜕𝑛q
𝜕𝑡

|||scatt.
= 1
2 ∑k

{ −𝒫 +[𝑛q𝑓k(1 − 𝑓k′)] + 𝒫 +[(1 + 𝑛q)(1 − 𝑓k)𝑓k′] (2.2.40)

+𝒫 −[(1 + 𝑛q)𝑓k(1 − 𝑓k′)] − 𝒫 −[𝑛q(1 − 𝑓k)𝑓k′] } .

Comparing with eq. 2.2.8 shows slightly different signs for the four terms. Here, the distinction is
related to absorption (𝑛q, -) and emission (1+𝑛q, +) processes, while in the electronic case it is related to
the occupation of the initial states. The additional factor 1/2 prevents double counting of the transitions
k → k′ and k′ → k, while summing up over the phonon wave vector q. The transition probabilities
are already given by eq. 2.2.9 and 2.2.10 and are the same in both equations. With the ansatz from eq.
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Figure 2.7.: Phonon frequency spectrum of Cu (a) and Si (b) with superimposed phonon linewidths 𝛾q due to electron-phonon coupling. The
largest value in copper is 0.015meV while it is 0.37meV in silicon.

2.2.12, the scattering term can be evaluated into a similar form compared to eq. 2.2.14

𝜕𝑛q
𝜕𝑡

|||scattering
= 1

2 ∑k
{Δ𝑓k [−𝒫 + (𝑛0q + 𝑓 0

k′) + 𝒫 − (1 + 𝑛0q − 𝑓 0
k′)] (2.2.41)

+Δ𝑓k′ [(𝒫 +(1 + 𝑛0q − 𝑓 0
k ) − 𝒫 − (𝑛0q + 𝑓 0

k )] }

−12{∑k
[𝒫 + (𝑓 0

k′ − 𝑓 0
k ) − 𝒫 − (𝑓 0

k′ − 𝑓 0
k )] }⋅Δ𝑛q .

Assuming the electrons to be in equilibrium, i.e. Δ𝑓k = 0 and Δ𝑓k′ = 0, leads to the relaxation time
approximation for phonons

Δ𝑛q = ℏ𝜔q𝜏qvq
𝜕𝑛q
𝜕𝜔q

1
𝑇 ∇𝑇 . (2.2.42)

with the relaxation time given by

(𝜏q)
−1 = 1

2 ∑k
[𝒫 + (𝑓 0

k′ − 𝑓 0
k ) − 𝒫 − (𝑓 0

k′ − 𝑓 0
k )] . (2.2.43)

As in the description of electrons, the phonon relaxation time is also related to a phonon linewidth via
𝛾q = ℏ/𝜏q. It is shown superimposed onto the phonon frequency spectrum of Cu and Si in figure 2.7(a)
and (b), respectively.
Conclusively, the electron-phonon contribution to the lattice thermal conductivity can be obatined

from Δ𝑛q.

2.2.4. Coupled electron and phonon Boltzmann equations

The terms in the phonon Boltzmann equation (phBE) (eq. 2.2.41), which include Δ𝑓k and Δ𝑓k′ , and
the terms in the electron Boltzmann equation (elBE) (eq. 2.2.14) including Δ𝑛q reveals the coupling of
both equations. A full solution for the electron and phonon distribution functions requires an iterative
procedure, which becomes rapidly very demanding as we will see later on.
In a first step, one can solve the elBE, where the phonons are treated within the RTA involving Δ𝑓k =

0 and Δ𝑓k′ = 0 in eq. (2.2.41). The same approach can be used vice versa for the phBE with Δ𝑓k′ = 0
and Δ𝑛q = 0 in eq. 2.2.14. Each solution provides an additional contribution to either the electrical
or thermal conductivity, which leads to the phonon-drag thermopower 𝑆phd and Peltier coefficient Π.
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First ideas concerning the phonon-drag effect were formulated by Gurevich in the mid 40’s [51, 52]
and after that the effect was studied by many other authors, experimentalists or theoreticians, either
way. One group, starting with Herring in 1954 [58], dealt with the Peltier effect and the influence
of phonon-drag onto semiconductors. The other one around Gurevich, Cantrell, MacDonald, Ziman,
Grimvall and others developed a theory based on the Seebeck effect and investigated metals [24, 48,
53, 143].

The simple physical picture of the phonon-drag is that during the scattering event, the non-equilibri-
um phonons transfer a part of their momentum to the electrons, which causes an additional electrical
current. This will be called the Seebeck picture because the inverse argumentation (Peltier picture)
is valid as well, which implies that the non-equilibrium electrons drag the phonons for an additional
thermal current. Nevertheless, both are connected via the Kelvin relation Π = 𝑆phd𝑇 .

To be more precise, one follows the Seebeck picture and evaluates the elBE according to eq. 2.2.3,
2.2.7 and 2.2.14. For simplicity the final electron states are assumed to be in equilibrium Δ𝑓k′ = 0. As
mentioned above, Δ𝑛q is taken from the phBE in relaxation time approximation (eq. 2.2.42). After some
lenghty calculations one ends up with the total thermopower 𝑆 = 𝑆d + 𝑆phd with 𝑆d from eq. 2.2.37 and
the phonon-drag contribution

𝑆phd = |𝑒|
𝜎𝑉

1
𝑘B𝑇 2 ∑

k,q
ℏ𝜔q𝜏qvq𝒫 +𝑓 0

k (1 − 𝑓 0
k′) 𝑛0q (𝜏kvk − 𝜏k′vk′) , (2.2.44)

which originates only from non-equilibrium phonons. In absolute values, this contribution is usually
relatively small in metals but can be huge in low-doped semiconductors [15, 37, 88, 133].

Besides the increased thermopower, which is the most prominent feature of the phonon-drag effect,
a correction to the electrical conductivity emerges as well [61, 143]

𝜎 = (𝜌0 − 𝜌phd)−1 with 𝜌phd = (𝑆phd)2 𝑇
𝜅ph

. (2.2.45)

However, this is only a second order effect, which means that the electron current causes a current
in the phonons, which subsequently acts back upon the electrons. Huebener already reported in the
60’s that 𝜎phd is at least a factor of 103 smaller than the electrical conductivity 𝜎 0 = (𝜌0)−1, where no
electron-phonon interaction was taken into account [61]. Although it is an effect of second order, this
does not seem to be a general statement and is discussed since the 60’s [19, 108, 121].

Following the Peltier picture and assuming isothermal conditions, the deviation from the phonon
distribution function is obtained via eq. 2.2.39, 2.2.41 and 2.2.17 and reads as

Δ𝑛q =
|𝑒|
2 𝜏q{∑

k
𝜏kvk

𝜕𝑓 0
k

𝜕𝜖k
[−𝒫 + (𝑛0q + 𝑓 0

k′) + 𝒫 − (1 + 𝑛0q − 𝑓 0
k′)] }⋅E . (2.2.46)

The additional thermal current is then given by

jQ = 1
𝑉 ∑

q
ℏ𝜔qvqΔ𝑛q ≡ ΠjE = Π𝜎E , (2.2.47)
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FIG. 10. Lorenz number L as a function of Seebeck coefficient S

at T = 300 K. The red solid line (dashed blue line) is from the solution
of the BE with (without) the phonon drag. The green dot-dashed line
is the model proposed in Ref. [48]. The black dotted horizontal line
is the Wiedemann-Franz result.

conductivity is only a small fraction (about 2%) of the lattice
thermal conductivity of undoped silicon.

In Fig. 9, we show the Lorenz number L at T = 300 K as
a function of carrier concentration. At low doping, L tends to
a constant value of 1.05 ×10−8 W! K−2. In the high-doping
regime, L increases with the carrier concentration, but, in the
range of doping investigated, it is much smaller than the Lorenz
number predicted for metallic systems by the Wiedemann-
Franz law (L = 2.44 × 10−8 W ! K−2).

It is interesting to observe that while the Seebeck coefficient
depends very little on the nature of the scattering mechanisms,
the Lorenz number is instead quite sensitive: for instance, if
we focus on the results that do not include the phonon drag,
in the low-doping regime, the result obtained accounting for
phonon scattering is quite different from the values obtained
with impurity scattering or using the CRTA. It is worth pointing
out that this dependence on the nature of the scattering terms
has also been noticed in the context of a simple model based
on a single parabolic band and power law relaxation times
[46,47]. The origin of this marked dependence on the scattering
mechanisms is the result of the sensitivity of Ke on the details
of the solution of the BE: the (ϵ − η)2 in Eq. (7d) and the αS
term accentuate the differences in the solutions of the BE with
different scattering mechanisms in a relevant energy window
that is much larger than that for S (Fig. 13 clearly shows that
the convergence of S is achieved in a energy window much
smaller than for L).

The access to the exact solution of the BE for a realistic
system allows the assessment of simplified models to extract
the Lorenz number from experimental data. For instance, a
recent work [48] proposes the use of an equation for L in terms
of the experimentally determined S: L = 1.5 + exp − |S|
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(where L is in 10−8 W ! K−2 and S in µV/K). This equation
closely reproduces the L obtained with a model that uses a
single band with parabolic dispersion and an energy-dependent
relaxation time accounting for acoustic phonon scattering.
Figure 10 shows the comparison of this model with our results.
At low S up to about 0.6 mV K−1, a range for S that is typical

of good thermoelectrics, the model is not too far from the exact
result and it certainly provides a better estimate to L than the
Wiedemann-Franz law. At higher S, the discrepancy becomes
more pronounced as our predicted L significantly decreases
and reaches an asymptotic value at high Seebeck of around
10−8 W ! K−2.

IV. CONCLUSION

We have presented a detailed analysis of the thermoelectric
coefficients of n-doped silicon via the exact solution of the
linearized Boltzmann transport equation for electrons, also ac-
counting for the effect of nonequilibrium phonon populations
induced by a temperature gradient. We have discussed electron
mobility, the Lorenz number, and the Seebeck coefficient in
a range of temperatures and carrier concentrations. The theo-
retical results compare reasonably well with the available ex-
perimental data and provide a detailed characterization of the
relative importance of the different scattering mechanisms. We
have also analyzed the accuracy of different flavors of relax-
ation time approximations, as well as of a simplified model to
extract the Lorenz number from experimental data. The com-
putational approach that we have implemented is very general
and can be applied to doped semiconductors as well to metallic
systems. We believe that along this route more compounds
will be systematically studied to gain a detailed microscopic
understanding of their thermoelectric transport properties.
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APPENDIX A: PERFORMANCE AND ACCURACY
OF THE BE SOLVER

In order to solve the linear equation Ax = b, we use the
preconditioned conjugate gradient method [33], where the
diagonal of A is used as preconditioner. The performance of
the CG algorithm is shown in Fig. 11: the CG converges in 6
or 7 iterations, while with the addition of the preconditioning
an accurate solution is obtained already after 2–3 iterations.
In our experience standard iterative approaches [49] converge
very slowly, especially in the presence of charged impurity
scattering.

In order to assess the accuracy of the solution of the
BE, it is interesting to numerically verify the validity of
the Kelvin relation, σS = α/T . The lower panel of Fig. 11
shows that, when phonons are in thermal equilibrium, the
converged solutions of the BE’s with temperature gradient and
electric field as driving forces satisfy the Kelvin relation; the
CG algorithm with preconditioning produces the converged
result extremely quickly. In passing, it is worth mentioning
that, as shown in Ref. [50], the Kelvin relations are satisfied
also when the departure from equilibrium of both electron
and phonon distribution functions is taken into account. In
this work, however, we are not in the position to be able to
verify directly this result as we have neglected the effect of the
electrons on the phonon transport, an appropriate assumption
only at low doping.
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Characterization of Lorenz number with Seebeck coe�cient
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In analyzing zT improvements due to lattice thermal conductivity (L) reduction,
electrical conductivity (�) and total thermal conductivity (Total) are often used
to estimate the electronic component of the thermal conductivity (E) and in turn L
from L =⇠ Total � L�T . The Wiedemann-Franz law, E = L�T , where L is Lorenz
number, is widely used to estimate E from � measurements. It is a common
practice to treat L as a universal factor with 2.44 ⇥ 10�8 W⌦K�2 (degenerate limit).
However, significant deviations from the degenerate limit (approximately 40% or
more for Kane bands) are known to occur for non-degenerate semiconductors where
L converges to 1.5 ⇥ 10�8 W⌦K�2 for acoustic phonon scattering. The decrease in L
is correlated with an increase in thermopower (absolute value of Seebeck coe�cient
(S)). Thus, a first order correction to the degenerate limit of L can be based on
the measured thermopower, |S|, independent of temperature or doping. We propose
the equation: L = 1.5 + exp

f
� |S |

116

g
(where L is in 10�8 W⌦K�2 and S in µV/K) as

a satisfactory approximation for L. This equation is accurate within 5% for single
parabolic band/acoustic phonon scattering assumption and within 20% for PbSe,
PbS, PbTe, Si0.8Ge0.2 where more complexity is introduced, such as non-parabolic
Kane bands, multiple bands, and/or alternate scattering mechanisms. The use of
this equation for L rather than a constant value (when detailed band structure and
scattering mechanism is not known) will significantly improve the estimation of lattice
thermal conductivity. C 2015 Author(s). All article content, except where otherwise
noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
[http://dx.doi.org/10.1063/1.4908244]

A semiconductor with large Seebeck coe�cient, high electrical conductivity, and low ther-
mal conductivity is a good candidate for a thermoelectric material. The thermoelectric material’s
maximum e�ciency is determined by its figure of merit zT = S2�T

E+L
, where T , S,�, E, and L are the

temperature, Seebeck coe�cient, electrical conductivity, and the electronic and lattice contributions
to the thermal conductivity, respectively. Because the charge carriers (electrons in n-type or holes
in p-type semiconductors) transport both heat and charge, E is commonly estimated using the
measured � using the Wiedemann-Franz law: E = L�T , where L is the Lorenz number. Once E is
known, L is computed by subtracting the E from the total thermal conductivity, Total = E + L.
For this method, the bipolar thermal conductivity (B) will also be included which can be written
B + L = Total � L�T .

Since a high zT requires low Total but high � simultaneously, one of the more popular routes
towards improving zT has been to reduce L.1 However, depending on the value of L, which maps
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Thermoelectric coefficients of n-doped silicon from first principles via the
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We present a first-principles computational approach to calculate thermoelectric transport coefficients via
the exact solution of the linearized Boltzmann transport equation, also including the effect of nonequilibrium
phonon populations induced by a temperature gradient. We use density functional theory and density functional
perturbation theory for an accurate description of the electronic and vibrational properties of a system, including
electron-phonon interactions; carriers’ scattering rates are computed using standard perturbation theory. We
exploit Wannier interpolation (both for electronic bands and electron-phonon matrix elements) for an efficient
sampling of the Brillouin zone, and the solution of the Boltzmann equation is achieved via a fast and stable
conjugate gradient scheme. We discuss the application of this approach to n-doped silicon. In particular, we
discuss a number of thermoelectric properties such as the thermal and electrical conductivities of electrons,
the Lorenz number and the Seebeck coefficient, including the phonon drag effect, in a range of temperatures
and carrier concentrations. This approach gives results in good agreement with experimental data and provides
a detailed characterization of the nature and the relative importance of the individual scattering mechanisms.
Moreover, the access to the exact solution of the Boltzmann equation for a realistic system provides a direct way
to assess the accuracy of different flavors of relaxation time approximation, as well as of models that are popular
in the thermoelectric community to estimate transport coefficients.

DOI: 10.1103/PhysRevB.94.085204

I. INTRODUCTION

A detailed understanding of electrical transport and en-
ergy dissipation phenomena is crucial for the discovery
and the development of high-performance materials and
devices for applications ranging from nanoelectronics to
energy conversion technologies. For this, there is nowadays
a growing demand for accurate and efficient computational
tools to compute electrical transport coefficients from first
principles [1]. The challenge here is a proper description of
the dynamics of carriers, while accounting for the relevant
carriers’ scattering mechanisms. In this context, the Boltzmann
transport equation (BE) offers a convenient framework for a
detailed microscopic description of transport in metals and
semiconductors. However, achieving the full predictive power
of this theory requires the exact solution of the BE that is
a complex integrodifferential equation, as well as accurate
materials’ parameters, including electronic band structures and
electron-phonon and electron-defect scattering terms.

Different flavors of relaxation-time approximation are often
used to tackle the complexity of the BE, but their accuracy
in predicting the changes of properties with temperature or
carrier concentration is not always satisfactory; for instance,
Xu and Verstraete [2] have recently shown that the constant
relaxation-time approximation, a popular and quite successful
scheme to estimate electronic transport coefficients, provides
qualitatively wrong results for the Seebeck coefficient of a
relatively simple system such as bulk lithium.

Only in recent years the first efforts have been put forward
to solve numerically the BE beyond the relaxation-time
approximation and using ab initio materials’ parameters. For
instance, Wang and coworkers [3] computed the thermoelectric

*nicola.bonini@kcl.ac.uk

properties of n-doped silicon from the numerical solution
of the linearized Boltzmann equation where the electronic
band structure and average intervalley deformation potentials
were computed from first-principles, while semiempirical
models were used for intravalley scattering, charged impurity
scattering and electron-plasmon coupling. In a more recent
work, Li [4] studied the transport properties of n-doped Si,
Al, and n-doped MoS2 by solving the linearized BE using a
standard iterative technique and including ab initio bands and
electron-phonon scattering obtained from a linear interpolation
of the ab initio electron-phonon matrix elements computed
on a coarse grid. Despite these advances, the calculation of
thermoelectric transport properties fully from-first-principles
still represents a challenge, even in the case of simple metals
or semiconductors.

In this paper, we present a first-principles computational
infrastructure to calculate electrical transport coefficients of
materials from the exact solution of the linearized BE. We
use density functional theory (DFT) and density functional
perturbation theory (DFPT) for an accurate description of the
electronic and vibrational properties of a system, including
electron-phonon interactions; carriers’ scattering rates are
computed using standard perturbation theory. We exploit
Wannier interpolation [5,6] for both electronic bands and
electron-phonon matrix elements for an efficient sampling of
the Brillouin zone, and the solution of the Boltzmann equation
is achieved via a fast and stable conjugate gradient scheme.

We discuss the application of this general methodology
to n-doped silicon. In particular, we discuss a number
of thermoelectric properties such as thermal and electrical
conductivities of electrons, Seebeck coefficient and Lorenz
number in a range of temperatures and donor concentrations,
also including the effects related to nonequilibrium phonon
populations induced by a temperature gradient.

2469-9950/2016/94(8)/085204(11) 085204-1 ©2016 American Physical Society

Figure 2.8.: Lorenz number 𝐿 as a function of the thermopower at 300K in
n-doped silicon. The calculation includes electron-phonon and electron-
impurity scattering. Noticeable differences compared to the Wiedemann-
Franz law (black dotted line) occur for both solutions of the Boltzmann
equation, whether the phonon-drag effect is accounted for or not (solid red
and dashed blue line, respectively). The graph was taken from Fiorentini
et. al [37] and the model function (green line) is described in Ref. [69].

which leads to the Peltier coefficient written in a symmetric form

Π = |𝑒|
𝜎𝑉

1
𝑘B𝑇

∑
k,q

ℏ𝜔q𝜏qvq𝒫 +𝑓 0
k (1 − 𝑓 0

k′) 𝑛0q (𝜏kvk − 𝜏k′vk′) . (2.2.48)

The comparison with 𝑆phd from eq. (2.2.44) according to the Kelvin relation shows that both pictures,
Seebeck and Peltier, are equivalent to each other.
Apart from the influence onto the elctrical conductivity and thermopower, the impact of the phonon-

drag effect can be also seen in the Lorenz number 𝐿 = 𝜘el/𝜎𝑇 . Fiorentini et. al [37] showed, that in n-
doped silicon 𝐿 varies with respect to the thermopower and differs noticeably from the degenerate limit
of the Wiedemann-Franz law (fig. 2.8). They say, that the reason is given by the electronic part of the
thermal conductivity 𝜘el due to its sensitivity of certain terms, i.e. (𝜖 −𝜇)2, while solving the Boltzmann
equation. Nevertheless, solving the Boltzmann equation without the phonon-drag contribution leads
qualitatively to the same result, which can be seen by comparison of the solid red and the dashed blue
line. Hence, the influence due to electron-phonon interaction onto transport properties can be rather
large even though the calculation does not account for the phonon-drag effect.
To close this section, an iterative scheme to solve the coupled Boltzmann equations self-consistently

is presented. To enable a compact formulation, the independent solutions of both Boltzmann equations
within the RTA are rewritten as

Δ𝑓 (1)
k = 𝜕𝑓 0

k

𝜕𝜖k
𝜏kvk [(𝜖k − 𝜇) 1𝑇 ∇𝑇 + |𝑒|E] = 𝑋 (1)

k ∇𝑇 + 𝑌 (1)
k E (2.2.49)

Δ𝑛(1)q = 𝜕𝑛q
𝜕𝜔q

𝜏qvqℏ𝜔q
1
𝑇 ∇𝑇 = 𝑍̃ (1)

q ∇𝑇 (2.2.50)

The general solutions up to the 𝑗-th order in electron and phonon contributions is then given by

Δ𝑓 (𝑗)
k =

𝑗
∑
𝑖=1

𝑋 (𝑖)
k ∇𝑇 + 𝑌 (𝑖)

k E + 𝑍 (𝑖)
k ∇𝑇 (2.2.51)

Δ𝑛(𝑗)q =
𝑗
∑
𝑖=1

𝑍̃ (𝑖)
q ∇𝑇 + 𝑋̃ (𝑖)

q ∇𝑇 + 𝑌̃ (𝑖)
q E . (2.2.52)

Note that the first-order in Δ𝑓 (𝑗)
k is always a sum of the independent solution of the elBE and the

first correction coming from the phBE and vice versa. These first-order terms cause the above derived
phonon-drag thermopower and Peltier coefficient. The k- and q-dependent coefficients in eq. (2.2.51)
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and (2.2.52) are given by the following iteration scheme:

𝑋 (𝑖+1)
k = ΞkΞq𝑋 (𝑖)

k , 𝑋̃ (𝑖)
q = Ξq𝑋 (𝑖)

k , (2.2.53)

𝑌 (𝑖+1)
k = ΞkΞq𝑌 (𝑖)

k , 𝑌̃ (𝑖)
q = Ξq𝑌 (𝑖)

k ,
𝑍 (𝑖)
k = Ξq𝑍̃ (𝑖)

q , 𝑍̃ (𝑖+1)
q = ΞqΞk𝑍̃ (𝑖)

q ,
𝑖 ≥ 1, 𝑖 ≥ 1.

The connecting quantities Ξk and Ξq are sums over phonon or electron wave vectors, respectively.

Ξk = 𝜏k∑
q
[𝒫 + (𝑓 0

k′ − 𝑓 0
k ) − 𝒫 − (𝑓 0

k′ − 𝑓 0
k )] , (2.2.54)

Ξq =
𝜏q
2 ∑

k
[−𝒫 + (𝑛0q + 𝑓 0

k′) + 𝒫 − (1 + 𝑛0q − 𝑓 0
k′)] .

Even though this scheme looks quite simple, its actual evaluation is extremly demanding since each
sum typically runs over thousands of k and q points in addition to the number of bands, phonon modes
and spin channels. One has to keep further in mind that combinations of Ξk and Ξq are not factorised,
they are nested sums.
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3 | Results

3.1. Essential quantities

The calculation of the electron-phonon interaction can be divided into two parts. One deals with the
geometrical pairing mechanism due to the conservation of energy and momentum. The other one is
related to the interaction strength of the electrons coupled via a phonon. Both ingredients are discussed
in the upcoming section.
The first part is about the nesting function, which is a purely geometrical quantity. It will be dis-

cussed from an educational and computational perspective. A detailed analysis can be very challeng-
ing especially in the case of a manifold Fermi surface like in lead. The basic ideas and principles are
therefore discussed at the Fermi surface of copper in the beginning. The second part deals with the
electron-phonon matrix element 𝑔qk,k+q of the nested electron pairs in lead. Phonon properties and ma-
trix elements are illustrated for a single initial electron state. Subsequently, the integrated coupling
strength for each electron state at the Fermi surface is shown and their structure is discussed.

3.1.1. Nesting

Single sheeted Fermi surface: Copper

Figure 3.1 shows the construction of nested pairs at the Fermi surface. The initial electron state k (blue
point) is fixed and all final states k′ are shown in yellow. The quasi-elastic assumption is not used here,
which means that phonons were explicitly matched according to their momentum, k′ = k + q, and
energy, 𝜖k+q = 𝜖k + ℏ𝜔q. The phonon energy is set to 5meV. Nevertheless, the final states at 𝜖k+q are
shown on the initial Fermi surface because the iso-energy surface does not change significantly within
5meV around 𝜖F. The deviation Δ|k| for instance is ∼ 1×10−4 along WX and ∼ 4×10−4 along ΓX in units
of (2𝜋/𝑎), which is negligible with respect to the used accuracy of Δ|k| = 1 × 10−2 for finding an electron
pair. Despite the fact that this value is quite large only less than 1% of the phonons mediate a nested
pair.
The left figure shows the construction for an initial state along the ΓX direction, which nearby en-

vironment at the Fermi surface is almost a sphere. The phonon iso-energy surfaces at 5meV are also
shown and the connecting phonons are marked in yellow. As a consequence of the sperical-like Fermi
surface they form rings at each phonon surface, which directly transfers to the ring structure of the
final states at the Fermi surface. As long as Umklapp processes are not possible the nested final states
always form a more or less ring-like pattern around the initial state. However, the construction is
more complicated if the phonon momentum is large, the initial state is close to the zone boundary or
the electron iso-energy surface of the final states changes significantly compared to the Fermi surface
because Umklapp processes are then possible. Such an example is shown in the right figure. The initial
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Figure 3.1.: Visualisation of nesting at the Fermi surface of copper due to transitions with phonons with ℏ𝜔q = 5meV. The initial electron
state k is highlighted as a blue point. All possible final states are shown in dark orange, while the actual connected final states k+q are marked
in yellow. Since the electron iso-energy surface does not change significantly within 5meV, initial and final states are both shown at the
Fermi surface (𝜖k = 𝜖k+q). The colored arrows (blue-yellow) indicate the involved phonon wave vectors q with respect to the phonon mode
𝜈 . The corresponding iso-energy surfaces of the phonons are given next to the Fermi surfaces. Again, available phonon states are shown in
dark orange and involved phonon states are marked in yellow. Left: Initial electron state is along ΓX. Right: Initial electron state is located
near the neck and lies at the zone boundary. Therefore, the phonon momentum is large enough to allow for Umklapp processes. The two
figures bottom right show only the involved phonon wave vectors from all three modes. Their nesting values 𝜉q are given as superimposed
color code.

state is at the neck and lies directly at the zone boundary. The ring-like pattern of the final states still
occurs but splits due to Normal and Umklapp processes. The first one forms the usual pattern, which
was already explained. The second one, however, also forms a ring-like pattern but at a different po-
sition according to the reciprocal lattice vector used to construct the nested pairs. The figure in the
bottom right corner additionally shows the nesting value 𝜉q of the phonons. The largest values are
obtained for phonons in the third mode, 𝜈 = 3. Their momentum is small and therefore the velocities
vk and vk+q are still similarly orientated to each other, which maximises the denominator in equation
2.1.56.
Applying the quasi-elastic assumption allows coupling of electron states with phonons with an arbi-

trary momentum. This would lead to a fully-nested Fermi surface of final electron states. To compare
it with figure 3.1, it means that every state in the left or right figure would appear in yellow.

Multi sheeted Fermi surface: Lead

As already discussed in section 2.1.2, the nesting function 𝜉q allows for the identification of phonons
from a geometrical point of view, which might be important for the interaction of electrons and
phonons.
Figure 3.2(a) shows 𝜉q for initial and final states at the Fermi surface wihtin the quasi-elastic as-

sumption for phonons along the high symmetry line. Due to the two Fermi sheets in lead one can
distinguish between four nesting types - interband, intraband (inner sheet), intraband (outer sheet)
and total nesting as combination of the other three. Each type and 𝜉q in general have in common, that
it holds 𝜉q → ∞ for q → 0 due to the collinear alignment of the electron velocities. Phonons with
q ≠ 0 and diverging or large nesting values connect parallel oriented parts of the Fermi surface, where
the velocities of k and k + q are (anti)parallel or almost (anti)parallel oriented to each other. These
phonons typically connect large parts of the Fermi surface, which might resolve in a strong electron-
phonon coupling. Within the literature these occurrences are known as Kohn anomalies and can be
observed as a softening of phonon modes [7, 8, 68, 107, 142].
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Figure 3.2.: Nesting in Pb at the Fermi energy. Left: Nesting function 𝜉q. The solid black (gray) line corresponds to intraband transitions
in the inner (outer) Fermi sheet, while the dashed black line refers to interband transitions. The total nesting function for the whole Fermi
surface, without distinguishing between intra- and interband transitions, is given in red. In each case the divergence at q = 0 is obvious
due to collinear velocities with vk = vk+q. Right: Nested electronic states via phonons with the highest nesting value 𝜉q. Same color marks
a nested pair with initial and final state, except for blue, which displays the bare Fermi surface. If q connects more than one pair only the
pair with the highest weight is given. The top two figures show intraband transitions mediated by q1 (inner sheet, 𝜉q1 ≈ 0.495) and q2 (outer
sheet, 𝜉q2 ≈ 0.19). The bottom figures show interband transitions via q3 (𝜉q3 ≈ 0.219) and the result, which accounts for both transition types
(𝜉q4 ≈ 0.108).

Looking at each Fermi sheet separately (solid black (grey) line), 𝜉q getsmaximal at different wave vec-
tors, according to the topology of each sheet, e.g. qintrain = (0.417, 0.417, 0.417) or qintraout = (0.592, 0.0, 0.0).
The combination of intra- and interband transitions (red line) leads to a drastical reduction of some
peaks due to the weighting with the total number of transitions, e.g. qintraB1 , while others remain domi-
nant, e.g. qintraB2 .
The visualisation of nested pairs at a three-dimensional Fermi surface is complicated and usually

done with two-dimensional cuts through the Fermi surface along certain high symmetry directions,
which is shown for lead by Dal Corso et. al [28]. Figure 3.2(b) shows an approach, which is different
from the more educational investigation of phonons along a high symmetry line. Here, wave vectors
in the full phonon spectra with larger nesting values are shown. To be more precise, each of the four
figures shows connected initial and final states via the phonon with the largest nesting. The pairs
share the same color. If the phonon couples more than two states only the pair with the highest
contribution to 𝜉q is given. Comparing the nesting values given in the caption of figure 3.2 one can
see, that the largest nesting vectors lie off the high symmetry line, especially in the case of separated
intra- and interband transitions. Nevertheless, the visualisation of connected states with this approach
is only practicable for single sheeted Fermi surfaces or simple multi sheeted ones. Otherwise the visual
tracking of pairs is almost impossible as one can imagine from the bottom figure in (b).
The construction of nested pairs described in this section can be done only for an in-depth analysis

of a certain problem. Using this scheme to compute the electron-phonon interaction and their influ-
ence on transport properties even within the quasi-elastic assumption is very demanding in terms of
computational power and probably not worth the effort. Hence, a usual electron-phonon calculation
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is done without the construction of discrete electron and phonon iso-energy surfaces. By initialisation
of the k- and q-grids, the initial and final electron states are always connected via a phonon and their
effective contribution is measured with a smearing technique with respect to the energy of inital and
final electron states. A more detailed description is given by the developers of the EPW code [43, 89,
103, 110]. Eventually, this scheme is very effective and the smearing technique can be qualitatively
related to the discrete matching of states in the sense, that the smearing itself is the counterpart of the
accuracy for finding a nested pair. Nevertheless, results obtained with one or the other approaches
have to be checked for convergence regarding the smearing value or the accuracy anyhow.

3.1.2. Electron-phonon matrix elements

Mode-resolved coupling strength for one initial electron state

In addition to the purely geometrical tool of the nesting function, the coupling between electrons and
phonons, given by 𝑔qk,k+q in eq. 2.2.11, is naturally of major interest.
The visualisation of the interaction strength in 3D-systems is quite difficult and confusing compared

to 2D-systems, where ||𝑔qk,k+q||
2
can be easily shown in a 2D-contour plot [50, 104]. Therefore, one initial

electron state is selected and the properties of the phonons and the coupling strengths arising from
these phonons are shown in figure 3.3. The selected electron state lies at the inner Fermi sheet along
the ΓX direction (inset fig. 3.3(a), blue point). Considering a dense q grid with 2 × 106 phonons in
the full Brillouin zone, only 12% are able to connect this state to a final electron state. The connecting
phonons are well distributed within their available phase space (black background in (b)). Only low
energy phonons with |q| ≲ 0.1 do not couple because the distance between the initial state and the

Figure 3.3.: Various phonon properties and mode-resolved electron-phonon matrix elements in lead. Each phonon mode (𝜈 = 1, 2, 3) is
assigned a different color (brown, orange and yellow). The inset shows the two-sheeted Fermi surface and the blue point marks one selected
initial electron state. The final states are not shown but detailed information about the connecting phonons are given in the remaining
figures (b)-(d), where each circle tags one phonon wave vector. (a) Phonon dispersion. (b) Absolute wave vector of the connecting phonons
with respect to their energy. The black background points show the available phonon phase space. (c), (d) Squared electron-phonon matrix
elements 𝑔qk,k+q of the connecting phonons with respect to their energy and absolute wave vector, respectively.
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final states at the second Fermi sheet is to large. Furthermore, coupling at the same Fermi sheet is
not possible due the orientation of these phonons rather than their absolute momentum. The slope
of the phonon dispersion around Γ is to large to enable a geometrical connection between the final
electron states, which lie in the weak curved area around the initial state. The mode-resolved coupling
strengths ||𝑔qk,k+q||

2
shown in (c) and (d) reveal additional qualitative informations. The highest coupling

strengths are found for the two transversale phonon modes with energies around 2meV and and a
distinct absolute momentum |q| ≈ 0.3. The remaining phonons with ||𝑔qk,k+q||

2
> 1 are more distributed

with respect to |q|. A decomposition of the coupling processes with respect to transition types yields a
ratio of 34% intra- and 66% interband transitions. This ratio counts the bare number of transitions. The
ratio concerning the integrated coupling strengths, however, is even larger yielding 15% and 85% for
intra- and interband transitions. Thus, the overall coupling is stronger for interband than for intraband
transitions.
However, such a detailed analysis is often not necessary, because for instance the relaxation time is

eventually only q- or k-dependent and the summation over k or q can easily suppress certain details.
Nevertheless, it could be useful if the Fermi surface is simpler like in silicon. Consider Si to be slightly
n-doped Si with a 6-fold degenerate Fermi surface, the number of coupling phonons will be drastically
reduced for each initial electron state compared to the available phase space, which is shown in sec-
tion 3.2.1 in figure 3.10. Hence, a pronounced feature in the coupling strength might show up in the
integrated quantities, e.g. 𝜏k or 𝜏q.

State-dependent matrix elements at the Fermi surface

Integrating over all phonon information for each initial electron state leads to a pure k-dependence of
the coupling strength, which can be displayed at the Fermi surface as shown in figure 3.4(a). One can
see, that the coupling strength is larger at the outer Fermi sheet. The average difference between the
coupling at the outer and inner sheet is almost a factor of 1.6. This is larger than the average varia-
tion within the sheets, which is roughly 30%. Although the figure shows only the coupling strength, it

Figure 3.4.: (a) State-dependent electron-phonon matrix element in lead integrated over all phonons. ∑q
||𝑔qk,k+q ||

2
is shown for each initial

state at the Fermi surface. No distinction between intra- and interband scattering was made. Overall, the coupling is larger at the outer Fermi
sheet. Two states (P1, P2) are marked additionally at the inner (B1) and outer (B2) Fermi sheet. The properties of these states will be discussed
in detail in section 3.2. (b) Calculated band structure of lead within the scalar-relativistic framework. The width of the superimposed shaded
areas onto the electronic states of band B1 and B2 is related to the magnitude of the k-dependent linewidth Γk due to electron-phonon
interaction at 300K, which is shown and discussed in section 3.2.
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already provides a good idea of the structure of the electron relaxation time. Since 𝜏k is inverse propor-
tional to the coupling strength initial states at the inner Fermi sheet will have larger relaxation times
than states at the outer Fermi sheet. The missing prefactors, the 𝛿-distribution and the occupation
functions as part of 𝜏k in equation (2.2.20) are solely important for the correct value of 𝜏k but will not
change the structure at the Fermi surface. The relaxation time itself is shown later on.
The band structure of lead is given in (b) to close this chapter. The calculation was done on a scalar-

relativistic level. It resembles previous calculations[54, 126, 138] quite good but reveals deviations
from experiments and fully-relativistic calculations due to spin-orbit interaction. Hence, the avoided
crossing due to the spin-orbit coupling at W, L, Γ and on the high-symmetry line XW is not seen in the
figure. Nevertheless, these regions are not close to the Fermi energy and their influence on transport
properties, e.g. the electrical conductivity or the thermopower, should be rather small.
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3.2. Properties related to the imaginary part of the electron
self-energy

The interaction of electrons and phonons leads to a broadening of electron as well as phonon states
known as linewidth Γk and 𝛾q, respectively. Both are indirect proportional to their relaxation times 𝜏k
and 𝜏q and therefore of interest in transport calculations. Recent publications discuss the structure of
𝜏k at the Fermi surface [100] as well as the influence of 𝜏k onto the mobility, conductivity and other
transport properties [17, 18, 50, 79, 81, 82, 130, 141], which shows the renewed interest in electron-
phonon interaction in the last decade.
The first part of the following chapter addresses the impact of the electron-phonon interaction onto

the electrons primarily by means of the relaxation time. Results are shown for lead and n-doped sil-
icon for states at the Fermi energy. The second part is about state-dependent coupling constants 𝜆k,
Éliashberg functions 𝛼2𝐹k and relaxation times 𝜏k in lead for states, which are not at the Fermi surface.
Part three and four deal with the transition from 𝜏k to 𝜏(𝐸) and its influence onto the electrical con-
ductivity and thermopower. Additionally, several common approximations for the relaxation time are
discussed.

3.2.1. Vital transport properties at the Fermi surface

Lead

The matrix elements as well as the relaxation times and all other quantities needed to calculate the
electrical conductivity and thermopower are calculated on a fine k point mesh with at least 40’000
points in the irreducible part of the Brillouin zone. The phonon grid is of the same size leading to more
than 2.2 million q points in the full Brillouin zone, which are paired with each k point. A possible speed
up of the calculation could be achieved due to the restriction of phonons to lie in the irreducible part
of the Brillouin zone as well. This implies knowledge about the transformation of the matrix elements
under symmetry operations with respect to k and q. The Fermi surface was extracted with an adaptive
tetrahedron method[137] and consists of roughly 460’000 k points at the whole surface.
The relaxation time at the Fermi surface is shown in figure 3.5(a). 𝜏k of the inner sheet (B1) is almost

always larger than 𝜏k of the outer sheet (B2). This was already explained in section 3.1.2 with the
different magnitudes of the integrated matrix elements ∑q

||𝑔qk,k+q||
2
. The averaged relaxation times are

̄𝜏B1 = 4.61fs and ̄𝜏B2 = 3.21fs while the total Fermi surface averaged relaxation time is 3.6fs. Calculating
𝜏 in the high temperature limit according to

𝜏(𝜖F) =
ℏ

2𝜋𝑘B𝜆𝑇
, (3.2.1)

which is reasonable at 300K, leads to values in the range 2.4 − 5.1fs for coupling constants from 1.7 to
0.8, which can be found in the literature for similar calculations based on a scalar-relativistic treatment
[8, 38, 83]. The obtained coupling constant with 𝜏 = 3.6fs is 1.13 and slightly larger than 𝜆 = 1.05 as
reported by Sklyadneva et. al [126].
There is probably no obvious qualitative correlation between the carrier velocity vk of the initial

state and its relaxation time 𝜏k as one might suspect from recent results found for noble metals by
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Figure 3.5.: (a) Fermi surface of Pb showing the k-dependent electron-phonon relaxation times 𝜏k at 𝑇 = 300K superimposed onto the two
Fermi sheets. 𝜏k is obtained within the relaxation time approximation. The relaxation time is almost doubled in the inner sheet (B1) indicating
a less efficient electron-phonon coupling compared to the outer sheet (B2). 𝜏k in P1 and P2 is about 4.60fs and 3.27fs, respectively. (b) Fermi
surface with the superimposed Fermi velocities.

Mustafa et. al[100]. The relaxation time of a free electron is given within the Drude model by

𝜏𝐷 = 𝑚∗

𝑛𝑒2𝜌 . (3.2.2)

Here, 𝜌 is the electrical resistivity, 𝑛 is the carrier density and 𝑚∗ is the effective mass. The latter is
indirect proportional to the velocity 𝑚∗ ∝ 𝑣−1, which transfers directly to the relaxation time yielding
𝜏k ∝ (vk)−1 for a spherical Fermi surface. Surprisingly, this is partially valid in lead (fig. 3.6), since
scattering from an initial state at the inner Fermi sheet (B1) shows an indirect proportionality between
𝜏k and vk as well. On the other hand, it holds 𝜏k ∝ vk for scattering starting at the outer Fermi sheet
(B2). Additionally, an analysis of the orbital character of initial and final states, to predict smaller or
larger relaxation times, as suggested in Ref. [100], fails for the particular case of Pb as well since states
around the Fermi energy are dominated by p-type orbital character.

Figure 3.6.: Left and middle: k-dependent electron-phonon relaxation times for initial states at the inner (B1) and outer Fermi sheet (B2) at
𝑇 = 300K. The velocities are given as well (right) to show that there is no clear relation between a large (small) 𝜏k and a small (large) vk.
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Figure 3.7.: (a) Electron-phonon matrix elements plotted versus the corresponding phonon energies for P1 and P2 shown in figure 3.5(a). The
latter exhibits an uniform and in total larger electron-phonon coupling strength, which explains the smaller relaxation time. (b) Contributing
parts to 𝜏k arising from intra- and interband transitions. Each transition type is treated separatly and shown are the initial states. For both
transition types, scattering at/to the inner sheet (B1) results in larger relaxation times but the Fermi surface averaged 𝜏k is dominated by the
scattering at/to the outer sheet (B2). (c,d) Phonon energies versus absolute momentum for phonons being involved in the scattering processes
from the initial states P1 and P2. Each color corresponds to one phonon mode.

A closer look at fig. 3.5(a) reveals the high anisotropic structure of 𝜏k throughout the Brillouin zone.
This can be related to the shape of the Fermi surface itself and is discussed exemplarily for two states
P1 and P2. Starting at P2, the variety of phonon momentum and energy is much larger compared to
coupling from P1 because the Fermi surface is more structured around P2. Additionally, the bands are
closer to each other, which allows the coupling of phonons with smaller momentum as seen in figure
3.7(d). Phonons with small momentum can be found at P1 as well but the surrounding at P1 preferably
favours coupling in distinct directions, which can be seen in 3.7(c) due to the sparse filling. Hence,
certain Fermi surfaces, probably simple ones, could act as a phonon filter.

Apart from the geometrical aspects, the q-dependent coupling strength in figure 3.7(a) shows two
distinct peaks for P1 and is more uniform for P2, which can be taken as an expression of the geometrical
phonon selection as well. The summation over q shows that the overall coupling for P2 is larger than
for P1 and hence the relaxation time is smaller. Decomposing the relaxation time into contributions
from intra- and interband scattering, one can see that the averaged 𝜏(𝜖F) is dominated by transitions
B1→B2 and B2→B2 (fig. 3.7(b)). Large relaxation times from transitions B1→B1 and B2→B1 are
suppressed as one needs to add up the scattering rates instead of the scattering times to account for
Matthiesen’s rule. A comparison of the intraband transitions indicates that a simple single-sheeted
Fermi surface exhibits larger relaxation times than complicated multi-sheeted ones. The enhancement
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Figure 3.8.: Illustration of the efficiency factor, which is used for computing the transport relaxation time 𝜏 trk or transport coupling constant
𝜆trk in lead. The efficiency factor is shown for a single initial state coupled to all final states via phonons with wave vector q. Initial states are
P1 (a) and P2 (b)-(d). (c) and (d) shows the difference between the correct efficiency factor and a slightly different version, which is sometimes
found in the literature. It is clearly seen, that the latter yields results, which are outside the value range [0, 2]. Further information are given
in the text.

is up to 600% for the averaged values ̄𝜏 intraB1 and ̄𝜏 intraB2 in the case of lead.
To complete the detailed investigation of the electron states P1 and P2 figure 3.8 shows the efficiency

factor
𝜂k = 1 − vk ⋅ vk+q

𝑣k𝑣k+q
(3.2.3)

for P1 (a) and P2 (b) as initial states. The value range for 𝜂k is [0, 2]. It is minimal if vk and vk+q
are parallel alined while it is maximal if the velocities are anti-parallel alined. These properties are
also known as forward- and backward-scattering. Sometimes in the literature the efficiency factor is
calculatedwith a different denominator as 𝜂̃k = 1−vk⋅vk+q/𝑣k𝑣k, whichmight yield false results as shown by
comparison of (c) and (d). This seems to be the case especially for complicated manifold Fermi surfaces
but might be not seen for simple single-sheeted Fermi surfaces. Assuming an isotropic spherical Fermi
surface, the efficiency factor in eq. 3.2.3 would reduce to well-known expresssion (1 − cos(k, k + q)),
which depends only on the angles between k and k′ and would be the same if derived from the false
expression of the efficiency factor.
Figure 3.9 gives insigths to some computational details while calculating the relaxation time. Shown
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Figure 3.9.: Behaviour of the k-dependent relaxation time for states at the inner Fermi sheet in lead within respect to several k point densities.
The difference Δ𝜖 = 𝜖k − 𝜖F arises from the technical procedure, which is explained in the text. (a) In each case, the coarse wannier grid is
given by an 8x8x8 k-point mesh while the number of k points in the fine grid increases. The given numbers are the k points at the Fermi
surface in the irreducible part of the Brillouin zone. The energy difference Δ𝐸 decreases with an increasing number of k points from 20meV
to 1meV. The change of the values of 𝜏k is also explained in the text. (b) The number of phonons and fine k points are fixed but the coarse
wannier grid is changed from 8x8x8 to 16x16x16 revealing no significant impact onto 𝜖k and 𝜏k.
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is the influence of different fine (a) and coarse (b) k point grids onto 𝜏k. Each point in the figures
displays a relaxation time at the Fermi surface of the inner Fermi sheet B1. Hence, the energy difference
Δ𝜖 = 𝜖k − 𝜖F should be zero for every state. The reason for Δ𝜖 ≠ 0 stems from numerical inaccuracies
when evaluating the Fermi surface. The eigenvalues 𝜖k are computed within the EPW code but the
Fermi surface is constructed separatly, which generates a new set of k points. These k points are
then read into EPW and the matrix elements and relaxation times are calculated subsequently. In the
end, the spread of 𝜖k around 𝜖F arises from the density of the starting uniform grid due to the Fermi
surface, which is describedmore accurately by the tetrahedronmethod if the k points are finer sampled.
Hence, the energy difference Δ𝜖 is smaller. The sharpening of 𝜏k with increasing number of k points
at the Fermi surface, which coincides with a denser starting grid, is related to the approximation of
the 𝛿-distribution 𝛿(𝜖k − 𝜖F) by a gaussian broadening function. Depending on the smearing value,
the calculated relaxation time is washed out if Δ𝜖 is getting larger. Probably, these difficulties could be
eliminated if the tetrahedron method would be directly implemented into the EPW code. Nevertheless,
the energy difference can be decreased to roughly 1 meV, which is acceptable. The influence of the
coarse k point mesh onto 𝜏k, which is important during the transformation of Bloch quantities to their
Wannier representation, is exemplarily shown in (b). The differences between the calculations with an
8x8x8 and a 16x16x16 grid are small. No significant impact can be found neither onto 𝜏k not on the
energy spread Δ𝜖 = 𝜖k − 𝜖F.

Silicon

The previous discussion is not restricted to metals and can be applied to semiconductors as well. Figure
3.10 summarises the results for silicon implying nesting, coupling strength and relaxation times at zero
temperature.
The system is n-doped and the Fermi surface consists of 6 pockets, which are aligned along the ΓX

directions (b). The connection between states in these pockets or between these pockets is known
as intra- and intervalley transition and is restricted to either phonons with small momentum or to
phonons with large momentum and an additional orientational dependency. The orientation is roughly
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Figure 3.10.: (a) The solid lines show the phonon frequency spectrum in silicon. In the following, the system is n-doped with 𝐸F = 𝐸CBM +
100meV and the Fermi surface consists of 6 small pockets (b). The magnitude of the q-resolved coupling strength for transitions between
states in these pockets is given as superimposed linewidth in (a). Due to the selective character of the Fermi surface, some phonons are not
able to connect the pockets resulting in a vanishing linewidth, which is directly linked to the nesting function. The color code in (b) shows
𝜏k at zero temperature revealing an anisotropical structure at the Fermi surface.

41



CHAPTER 3. RESULTS

given by the ΓX and ΓL direction, which can be seen in (a). Here, the q-resolved coupling strength
∑k

||𝑔qk,k+q||
2
is shown as superimposed linewidth onto the frequency spectrum. If their is no phonon

mediating an initial and final electron state, the coupling strength is zero. Phonons with high energies
parallel to [100] exhibits the largest coupling strengths. These originate from either intra- or interval-
ley scattering since a clear separation with respect to phonon momentum |q| is not possible because
the largest distance within a pocket is larger than the minimal distance between two pockets. Nev-
ertheless, the main contribution stems probably from intervalley transitions since coupling strengths
obtained from deformation potentials show, that the coupling is largest for optical g-processes, which
are intervalley transitions in [100] direction [62, 63, 127, 134].
The relaxation time is anisotropic and does not reflect the ellipsoidal geometry of the pockets, which

is probably due to intervalley transitions between them. Assuming a less doped system with 𝜖F =
𝜖CBM + 20meV only intravalley scattering can take place and 𝜏k might feature an ellipsoidal symmetry.
Nevertheless, the values of 𝜏k are in agreement with results by Poncé et. al[110] and Bernardi et.
al[17].

3.2.2. State-dependent properties away from the Fermi surface in lead

The following section is primarily addressed to the discussion of the coupling constants

𝜆k = 2∫
∞

0
d𝜔 𝛼2𝐹k(𝜖k, 𝜔)

𝜔 and (3.2.4)

𝜆trk = 2∫
∞

0
d𝜔 𝛼2𝐹 tr

k (𝜖k, 𝜔)
𝜔 . (3.2.5)

𝛼2𝐹 tr
k is the k-dependent Éliashberg spectral function, where the efficiency factor

𝜂k = 1 − vk ⋅ vk+q
𝑣k𝑣k+q

(3.2.6)

is added to account for the change of the velocity during the scattering process. Quantities including
this factor are therefore refered to transport while quantities without are assigned to spectroscopy.

Spectroscopical properties

Figure 3.11(b) and (c) show the Éliashberg spectral functions along the high symmetry line in lead for
the two bands B1 and B2, which cross the Fermi energy. The Éliashberg function basically measures the
coupling strength of phonons to a certain electron state. The phonon spectrum is therefore shown in (a).
The comparison with experimental data and other calculations, which include spin-orbit interaction,
points out the drawbacks of the scalar-relativistic calculation [28, 54]. Three features can be identified.
First of all, the absolute value of the phonon bandwidth is ≈ 10% to large. Second, a mode softening
at certain points (e.g. X) in the Brillouin zone can not be observed. Third, Kohn anomalies, e.g. along
the ΓK-line, due to Fermi surface nesting are not accounted for. In the end, these features result in an
enlarged value of the electron-phonon coupling parameter but do not change the overall behaviour.
Additionally, the phonon linewidth 𝛾q is shown superimposed onto the frequencies 𝜔q. It can be seen
that the linewidth is large for high-energy phonons and drops to zero with 𝜔 → 0.
Heading back to the spectral functions shown in (b) and (c), the shape of each 𝛼2𝐹k is quite similar to

the isotropic Fermi surface averaged Éliashberg function given as red line in (d). Two peaks are seen,
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Figure 3.11.: (a) Phonon dispersion curves with superimposed linewidths due to electron-phonon interaction. The maximum width corre-
sponds to ∼ 32meV. (b), (c) k-dependent Éliashberg spectral function 𝛼2𝐹k(𝜖k, 𝜔) for the bands B1 and B2. The colour-code is related to the
values of 𝛼2𝐹k. The states P1 and P2 are highlighted as dashed black and grey lines. (d) 𝛼2𝐹k of electron state P1 (black) and P2 (grey) on
the Fermi surface. The contributions to the spectral function in P1 arise almost merely from the high-energy phonons, while the involved
phonons to the coupling in P2 are more spread in energy. The red line shows the Fermi surface averaged spectral function.

which are more or less distinct from each other. One originates from high-energy phonons with 𝜔q ≈
7 − 8meV and the other one arises from flat phonon modes around 3 − 4meV. This pattern is even seen
at the L point in the band B1, where the scattering phase space, which counts the number of available
final electron states, is almost zero. The highest values of 𝛼2𝐹k are found around Γ. Here, the electronic
band structure favours coupling to phonons with wave vector q along the ΓX direction. Due to the flat
dispersion of these phonons at 3… 4meV, their contribution to 𝛼2𝐹k is large. The spectral functions of
the previously discussed electron states P1 and P2 are highlighted with dashed black and grey lines and
shown separately in (d). As already said, both Éliashberg functions provide the two-peak-structure.
Nevertheless, 𝛼2𝐹P1 is dominated by mid- and high-energy phonons with a low dispersion while the
contributing phonons to 𝛼2𝐹P2 are spread in energy. In both cases the coupling to phonons with energy
less than 2meV is weak. These characteristics were also found earlier while investigating the matix
elements in figure 3.7(a) and explain the anisotropy of each k-dependent property like the Éliashberg
spectral function , the coupling constant, the linewidth and the relaxation time.

The k-dependent coupling constant is shown in fig. 3.12(a). The calculated values along the ΓL line
are qualitatively in good agreement with data from Sklyadneva et al.[126]. The same k-dependence
is found for B1 as well as for B2. The coupling at the special points P1 and P2 are 𝜆(P1) = 1.30 and
𝜆(P2) = 1.79. Since 𝜆k is more or less the integrated 𝛼2𝐹k, the largest values are obtained at the Γ point
and the smallest one at the L point. One can see from figure (b), that the shape of 𝜆k and the linewidth
Γk are almost identical at 𝑇 = 300K. Equation 2.1.44 and 3.2.4 are related at higher temperatures due
to a similar 𝜔-dependence given by

[1 + 2𝑛(𝜔) + 𝑓 (𝜖k + 𝜔) − 𝑓 (𝜖k − 𝜔)] ≈ 𝐴
𝜔 , (3.2.7)

where 𝐴 is in units of energy. Γk is 0.211 eV and 0.295 eV for P1 and P2, respectively. The inverse
linewidth gives rise to the relaxation time, which is shown in (c). Complementarily to 𝜆k and Γk,
largest relaxation times are observed for B1 at L. Vice versa, 𝜏k is smallest at Γ due to the strong
coupling between electrons and phonons.
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Figure 3.12.: Various k-dependent properties related to the electron-phonon interaction. The black (grey) vertical points indicate the point
P1 (P2), where the band B1 (B2) cross the Fermi energy. All quantities in (a)-(c) are calculated via an integration over the Éliashberg spectral
function given in figure 3.11(b) and (c). (a) Electron-phonon coupling constant 𝜆k. (b) Electron linewidth Γk at 300K. (c) Electron-phonon
relaxation time 𝜏k obtained from the linewidths in (b). At 300K, 𝜏k is about 3.15fs and 2.15fs in P1 and P2, respectively.

Transport relaxation time and coupling constant

The influence of the efficiency factor 𝜂k (eq. 3.2.3) onto 𝜆k and 𝜏k is shown in figure 3.13. The overall
trend, obtained by the spectroscopical properties, does not change drastically when taking the effi-
ciency factor into account (see (a) and (c)).
Nevertheless, certain k points favour either effective forward- (↑↑) or backward-scattering (↑↓), de-

pending on the sign of the function 𝜆k −𝜆trk , which is shown in (b). Thereby, the second arrow indicates
the direction of scattering whether the effective orientation of the velocity of all final states relative
to the velocity of the initial state is parallel (↑) or anti-parallel (↓). In the end, the arrows shall guide
the eyes and the coupling strength 𝜆k is either enhanced or decreased. A priori the type of scattering,
which is favoured, is usually not predictable. It can depend on the geometry of the iso-energy surface,
the coupling strength, or on a mixture of both of them. A prediction would require a detailed analysis
of each scattering event, which is done exemplarily at the highlighted states Y and Z of the band B2
around the high symmetry point X. It turns out that the efficiency factor decreases (increases) 𝛼2𝐹k
at lower phonon energies at Y (Z) but keeps 𝛼2𝐹k almost uneffected at higher energies. The resulting
transport coupling constant is therefore smaller (larger) and forward (backward)-scattering is favoured.
Applying the constant coupling approximation, ||𝑔qk,k+q||

2
equals unity, shows that the decrease of 𝜆k at

Y due to the efficiency factor is caused solely by the geometry of the iso-energy surface. This does not
hold at Z, where the coupling strength itself is more important than the geometry of the iso-energy
surface.
Directly at the high-symmetry points, 𝜆trk equals 𝜆k due to the vanishing velocity at the zone bound-
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Figure 3.13.: Comparison of k-dependent transport properties with their spectroscopical counterparts. The graphical layout is the same as
in figure 3.12. (a) Coupling constants 𝜆trk (dashed lines) and 𝜆k (solid lines). Y and Z are highlighted k points which are discussed in more
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favoured. (c) Relaxation times 𝜏 trk (dashed lines) and 𝜏k (solid lines) at 300 K.

aries.
Similar to the coupling constants, the transport relaxation time differs only slightly from its spec-

troscopical counterpart. The increase of 𝜏 trk compared to 𝜏k is about 21% and 8% at P1 and P2 at the
Fermi energy.

3.2.3. From state- to energy-dependent relaxation times and other approximations

The implementation of the relaxation time into transport calculations is usually done within a constant
relaxation time approximation (cRTA) with one specific value, which is taken from a fit of experimental
data. Another possibility is given by equation 3.2.1 to obtain 𝜏 at least in the high-temperature limit.
Since the computational power increased over the last decades detailed investigations of the electron-
phonon interaction on an ab initio level become possible. The consideration of 𝜏 shifts from a simple
parameter to a truly calculated quantity. Here, the focus is on the evaluation of an energy-dependent
relaxation time (ERTA) with 𝜏k as starting point, which is a step beyond the cRTA . Nevertheless,
transport calculations explicitly including 𝜏k are also performed recently [79].
The used approach is shown in figure 3.14 and demonstrates the way from 𝜏(𝜖) to 𝜏(k) at the tem-

perature 𝑇 = 50K. The open circles in (a) correspond to a relaxation time in state k and its related
energy 𝜖k. Subsequently, the arithmetic mean value (AMV) of the scattering rate is computed. Its in-

Table 3.1.: Used smearing values in the gaussians to smoothen the calculated arithemtic mean values of the relaxation time. Smearing is
given in meV.

segment 10K 50K 100K 300K 600K
I 2 2 20 50 50

II/III 50 50 50 50 50
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Figure 3.14.: (a) State-dependent relaxation times 𝜏k for the bands B1 and B2 as well as the next higher band are shown (open circles). Starting
from 𝜏k, the energy-dependent 𝜏(𝜖) is calculated as a arithmetic mean value (light blue line). Afterwards an adaptive smearing method (black
line) was applied. (b) A more detailed picture of the energy-dependent relaxation time at 50K with a smaller energy window around the
Fermi energy to show the jagged arithmetic mean value 𝜏AMV.

verse quantitiy, 𝜏AMV(𝜖), is shown as a solid light blue line. However, the result depends on the width
of the energy interval used to calculate the AMV and is rather jagged. This does not affect the results
of the electrical conductivity but strongly influences the calculation of the thermopower. The last is
very sensitive to the slope of the transport distribution function (eq. 2.2.30) around the Fermi energy
and needs to be as smooth as possible. To overcome this issue, an adaptive smearing method is used
to smooth out the arithmetic mean values given as solid black line in (a). The smearing is done with
gaussians of different widths, which are manually related to the slope of 𝜏AMV. A distinction between
three segments was made. One, which is labeled as II, includes the peak at the Fermi energy and the
little bumb above. The other two consist of the remaining parts below and above 𝜖F and are labeled as
I and III. The main peak of 𝜏(𝜖) at 𝜖F is shown in (b) at a smaller energy scale to justify the gaussian
smoothing. In a last step, a spline interpolation is used, which does not change the result at all and is
therefore not shown in the figure. The smearing values used at each temperature in the gaussians are
given in tabel 3.1.
The final energy-dependent relaxation time at each temperature is shown in figure 3.15(a). Apart

from the Fermi energy, the factor [1 + 2𝑛(𝜔) + 𝑓 (𝜖k + 𝜔) − 𝑓 (𝜖k − 𝜔)] in equation 2.2.20 determines the
magnitude of 𝜏 due to the temperature-dependence of the distribution functions 𝑛 and 𝑓 . There is no
significant impact on the functional behaviour of 𝜏(𝜖). At 𝜖F however, the factor is responsible for the
peaked structure at low temperatures. The peak originates from the decreasing scattering phase space
for phonons at temperatures below the Debye temperature, ΘD ≈ 95K, as phonons with larger wave
vectors are frozen out and the number of scattering events is drastically reduced. Hence, width and
slope are different at every temperature. The little bumb around 100 meV above 𝜖F marks the bottom
of the next higher band and the relaxation time decreases above this energy due to the additional

Table 3.2.: Overview of the used approximations of the k-dependent relaxation time to calculate the electrical conductivity and the ther-
mopower.

name 𝜖-dependent 𝑇 -dependent basis band-resolved
𝜏 cRTA ∘ • 𝜏(𝜖F) ∘

𝜏bd-cRTA ∘ • 𝜏(𝜖F) •
𝜏DOS • • DOS and 𝜏(𝜖F) ∘
𝜏(𝜖) • • 𝜏k(𝜖k) ∘
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scattering channels for the electrons.
Finally, a comparison between different types of relaxation time approximations and their influence

on the electrical conductivity and thermopower is possible. The types are classified in tabe 3.2 and
some of them are shown in figure 3.15(b). The values of 𝜏 cRTA and 𝜏 bd-cRTA, which is a band-dependent
constant relaxation time approximation, are estimated from 𝜏(𝜖) at the Fermi energy for each tem-
perature separately. Another commonly used approximation includes the density of states DOS as

𝜏DOS(𝜖, 𝑇 ) = 𝐴(𝑇 )
DOS(𝜖) . (3.2.8)

𝐴(𝑇) is chosen in this way, that the condition 𝜏DOS(𝜖F, 𝑇 ) = 𝜏(𝜖F, 𝑇 ) is fullfilled.

3.2.4. Transport properties including electron-phonon interaction

The obtained energy-dependent relaxation time allows for the calculation of the electrical conductivity
𝜎 and the thermopower 𝑆 under the influence of the interaction of electrons and phonons. Both quan-
tities are calculated with the help of the generalized transport coefficients, which are slightly different
defined as in equation 2.2.31. To be more precise, the state-dependence of the relaxation time 𝜏k in
equation 2.2.30 is shifted into an energy-dependence. It therefore shows up in the energy integration
as 𝜏(𝜖). The generalized transport coefficients ℒ 𝛼 and the transport distribution function Σ finally
reads as

ℒ 𝛼(𝜇, 𝑇 ) = ∫ d𝜖 Σ(𝜖)𝜏(𝜖)(𝜖k − 𝜇)𝛼 (−𝜕𝑓
0
k (𝜇, 𝑇 )
𝜕𝜖 ) and (3.2.9)

Σ(𝜖) = 1
(2𝜋)3 ∮𝜖=𝜖k

d𝑆
ℏ|vk|

vk ∘ vk . (3.2.10)

Figure 3.16(a) shows the electrical conductivity calculated within the various relaxation time approx-
imations introduced in the previous section. Qualitatively, the agreement with published experimental
and theoretical data is good. A quantitativ analysis, however, in terms of a fitted power law is not pos-
sible due to the low amount of calculated data points but it seems reasonable that 𝜎(𝑇 ) ≈ 𝑇 −1 holds
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Figure 3.16.: Calculated electrical conductivity 𝜎 (a) and thermopower 𝑆 (b) of lead. The electron-phonon interaction is included within
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open circles). S is compared to a variety of measured values (different types of points) [20, 25, 112, 114, 118]. While the relaxation time
approximations can not reproduce the experimental data at low temperatures, the energy- and temperature-dependent 𝜏 describes them
very well.

for temperatures far above the Debye temperature. The comparison with respect to the used approx-
imations reveals basically no difference in the conductivity in the temperature range 10… 300K and
even the simple temperature-dependent cRTA yields acceptable results. The reason is given by the in-
tegrand of equation 3.2.9. The electrical conductivity is proportional to the zeroth moment of the TDF,
𝜎(𝜇, 𝑇 ) ≈ ℒ (0) and the important integration range is determined by the energy width of the derivative
of the Fermi-Dirac distribution function, which is in the order of 𝑘B𝑇 . Eventually, there is almost no
difference in the integrand around 𝜖F for each of the applied relaxation time approximations.
The situation is different for the diffusive thermopower. It is 𝑆 ∝ ℒ (1)(ℒ (0))−1 and the specific

functional behaviour of Σ nearby 𝜖F is crucial. Depending on the chosen approximation 𝜏 cRTA(𝑇 ),
𝜏 bd-cRTA(𝑇 ), 𝜏DOS(𝐸, 𝑇 ) or 𝜏(𝐸, 𝑇 ) the slope of Σ changes, which directly transfers to the value of the
thermopower. In the first two cases, the slope of TDF(𝜖) does not change with temperature, only the
absolute values are affected by 𝑇 . The obtained thermopower within these approximations is almost
linear in temperature and can not reproduce the experimental data for 𝑇 < ΘD ≈ 95K, which are shown
in figure 3.16(b). Nevertheless, they fit quite well at temperatures far aboveΘD, which is expected since
all additional features in 𝜏(𝐸, 𝑇 ) around the Fermi energy are lost anyways at higher temperatures and
approximations considering the whole phonon spectrum are reliable because all phonon states are
occupied.
If the energy-dependent relaxation time 𝜏(𝐸, 𝑇 ) is used, the thermopower is enhanced at 𝑇 < ΘD,

which describes the experimental data very well. Since the standard approach for solving the Boltz-
mann equation with electron-phonon interaction is used, which says that phonons are treated within
their equilibrium state[143], the experimentally observed enhancement of 𝑆 is not or at least not solely
caused by the phonon-drag effect. At least in low-doped semiconductors, the phonon-drag effect is
usually the only explanation for an increased thermopower. Nonetheless, the phonon-drag contribu-
tion 𝑆phd might be only one part of the enhanced thermopower in metals. In fact, the peaked structure
of 𝜏(𝐸, 𝑇 ) at low temperatures as a result of an explicit description of the electron-phonon interaction
gives rise to an additional thermopower even for the diffusive part, which qualitatively reproduces
the measured thermopower. It additionally fits the general observation of an enhanced absolute ther-
mopower, 𝑆e-ph ∝ 𝑆(1 + 𝜆), at low temperatures.
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3.3. The real part of the electron self-energy and its impact on
electron properties

After the discussion of the influence of the imaginary part of the self-energy onto the electrical conduc-
tivity and thermopower, the upcoming chapter is about the impact of the real part of the self-energy.
First, the appearence and the calculation of the characteristic kinks in the band structure due to

electron-phonon coupling are explained. It is shown, that band-splitting can occur in dependence on
the coupling strength, temperature, phonon band width and electron energy. Afterwards, the electrical
conductivity and thermopower is calculated. These investigations are made for a model system. The
second part addresses the renormalization of electron states in Pb. Possible issues due to the calculation
of transport properties are discussed, which indicates the need of large computational effort formetallic
systems with a small phonon band width.

3.3.1. Effects of the renormalization on the basis of a free electron model

Physical meaning of the real and imaginary part of the electron self-energy

Throughout this chapter, the phonons are primarily treated within an Einstein model with the single
characteristic phonon frequency 𝜔E. The according Éliashberg spectral function is given by

𝛼2𝐹E(𝜔) =
1
2𝜆𝜔E𝛿(𝜔 − 𝜔E) , (3.3.1)

where 𝜆 is the electron-phonon coupling constant. Subsequently, the imaginary part of the self-energy
Σ′′ is calculated via eq. 2.1.44 and the real part of the self-energy Σ′ is obtained by a Kramers-Kronig
transformation. The result for the parameter set 𝜔E = 30meV and 𝜆 = 0.5 are shown in figure 3.17 for
a low (10K) and a high temperature (300K). One has to keep in mind, that the self-energy is usually
k-dependent and the energy 𝜔 is the quasi-particle energy of the interacting electron at k with respect
to its bare energy value 𝜖k.
Now, consider the low temperature case for an electron at the Fermi surface and 𝜔 > 0. The imagi-

nary part of Σ, which is directly proportional to the linewidth Γ, is nearly zero for small energies since
the electron states below the Fermi energy are almost fully occupied due to the Fermi-Dirac distribu-
tion function and scattering from above 𝜖F into these states via emission of a phonon is suppressed.
On the other hand, the absorption of a phonon is allowed since the states above 𝜖F are not occupied. If
𝜔 is larger than 𝜔E, the emission of phonons becomes possible and Σ′′ increases drastically. The real
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Figure 3.17.: Real (Σ′, solid line) and imaginary (Σ′′, dashed line) part of the electron self-energy Σ(𝜔) for an Einstein model. The Einstein
frequency is 𝜔E = 30meV and the coupling constant is set as 𝜆 = 0.5. The peak in Σ′ around the Einstein frequency is clearly seen in the low
temperature regime (blue) but washed out for high temperatures (red).

49



CHAPTER 3. RESULTS

part of the self-energy describes the effective gain (𝜔 < 0) or loss (𝜔 > 0) of the electron energy 𝜖k
due to scattering with phonons. The maximal energy transfer is obtained at 𝑇 → 0 and given by the
largest phonon energy, which is 𝜔E in this case. The largest values of Σ′ at each temperature are found
around 𝜔E, which coincides with the jump in Σ′′.
The description of phononswith theDebyemodel ormore realisticallywith a fully calculated phonon

spectrum does not change the overall behaviour of Σ′ and Σ′′. Therefore, both phonon models are used
to fit linewidths and band structures obtained from experiments, which enables the extraction of Σ′′

and Σ′ from measurements and additionally yields information about the phonon spectrum [59].
Differences in Σ′′ and Σ′, which arise from the modeled phonon spectrum and a real phonon spec-

trum, can be seen at very low temperatures only (compare fig. 3.17 and fig. 3.24(b)). At higher tem-
peratures, all special features originating from the phonon dispersion are lost anyway. Especially the
imaginary part becomes almost constant at elevated temperatures, which is directly linked to the 𝑇 -
dependence of the relaxation time 𝜏(𝜖) shown in figure 3.15.

Band structure renormalization

As stated earlier, the renormalization is performed by finding the poles in the spectral density𝒜 in eq.
2.1.47 in the limit of vanishing damping, which yields the following equation at each k point

𝜔 = 𝜖k + Σ′(𝜔, 𝑇 ) . (3.3.2)

This equation is solved self-consistently for a free electron model with quadratic dispersion 𝜖k ∝ k2 and
a modeled semiconductor with a parabolic band dispersion as well. The results are shown in figure 3.18
(a)-(c) and 3.19, respectively. The dashed horizontal line in each figure marks the Einstein frequency,
where so-called kinks occur at low temperatures. These kinks are characteristic for the renormalization
of electron states due to electron-phonon interaction. Their existence and shape depend on the band
structure and the Fermi energy, which is easy to modify using a model system enabling a qualitative
investigation of the effects due to the renormalization. In each case, 𝜖k (black line) is decreased lying
above the Fermi energy and increased lying below it, which is in agreement with Σ′. In the following
a distinction between both electron systems is made starting with the free electron model in fig. 3.18.
Probably the most common case is shown in (c), where the band bottom 𝜖min is far away from 𝜔E and

kinks occur at ±𝜔E. Directly at these energies, the velocity drops to zero in the limit 𝑇 → 0. As men-
tioned before, the band bottom is sligthly shifted. Besides this theoretical calculation, the kinks are also
accessible in an experiment, which enables the estimation of the band structure. This is usually done
with angle-resolved photoemission spectroscopy (ARPES) [59, 70]. Another technique (Fourier transform
scanning tunneling spectroscopy) was recently used to investigate the parabolic surface state in Ag(111),
which reveals the kinks in its dispersion due to the electron-phonon coupling [49] shown in (d). If the
difference between 𝜖min and 𝜔E is to small, kinks are not formed and the energy shift in 𝜖min is very
large (a). As an intermediate case, it is possible that the band will split up (b). Whether this happens or
not depends strongly on the combination of coupling strength, temperature, band structure, phonon
band width and Fermi energy. One has to keep in mind, that the term band-splitting might be mislead-
ing, since the electron energy is not well defined in an interacting electron system, where the spectral
function has to be used rather than the band structure to investigate electronic properties. To justify
the application of the Boltzmann formalism, which is used to calculate the electrical conductivity and
thermopower, the transport calculations will be restricted to sytems in which no splitting occurs. In
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higher energy. From the data we extract band parameters
! ¼ 65" 1 meV and m#=me ¼ 0:41" 0:02, consistent
with previous measurements [18,19,25,27]. These values
define the bare dispersion in the absence of additional
renormalizations due to many-body interactions. On a
more detailed level, deviations from the parabolic disper-
sion, as well as an enhanced QPI signal intensity, are
evident in the vicinity of Ef. This can be seen more clearly
in the inset of Fig. 2(a). A similar increase in QPI signal
intensity was observed near Ef in one of the first FT-STS
reports on the Be(0001) surface state [12] and the e-ph
interaction was later proposed as a possible origin [24]. We
have observed this renormalization of the bare dispersion
in four different data sets on Ag(111).

To identify the source of these deviations and to assess
the QPI signal we modeled the system using the T-matrix
formalism, considering scattering from a single CO impu-
rity in the unitary limit [35]. The QPI intensity j"#ðq; EÞj
is obtained from the Fourier transform of the impurity-
induced LDOS modulations and is given by

"#ðq; EÞ ¼ & i

2$

X

k

Im½Gðk; EÞTðEÞGðkþ q; EÞ):

Here, T ¼ &V0 sinð"Þ expði"Þ is the T-matrix with phase
shift " ¼ $=2 (unitary limit) and scattering potential V0.
The ‘‘bare’’ Green’s function in the absence of impurities
is given by Gðk; EÞ ¼ ½E& %ðkÞ &!ðk; EÞ)&1 where
%ðkÞ ¼ @2k2=2m# &! is the dispersion of the surface state
and !ðk; EÞ includes contributions from the e-e and e-ph

interactions, as well as an additional lifetime broadening
due to scattering from the step edges. The e-e interaction
was handled within Fermi liquid theory while the e-ph
interaction was treated within standard Migdal theory [1]
where the phonons were described by the Debye model.
Under these approximations the self-energy is a function of
energy only and is given by !ðEÞ ¼ &i&& i'E2=2þ
!e-phðEÞ, where & ¼ 2:5 meV and ' ¼ 62:7 meV pa-
rameterize scattering from the terraces and the e-e inter-
action, respectively, [18,19]. The imaginary part of
!e-phð!Þ is given by

!00
e-phðEÞ ¼ 2$(

Z "D

0
d!0

!
!0

"D

"
2
½nfð@!0 & EÞ

þ nfð@!0 þ EÞ þ nbð@!0Þ);

where nf and nb are the Fermi and Bose occupation
factors, and ( is the dimensionless e-ph coupling strength.
The real part of !e-phðEÞ is obtained by the usual Kramers-
Kronig relations. From our data we extracted (see below)@"D ¼ 14 meV and ( ¼ 0:13. These values, along with
our measured values of m# and !, serve as input for our
model.
The simulated QPI intensity is shown in Fig. 2(b). The

model closely reproduces both the coarse and fine details
of the data. Our calculations show that overall QPI inten-
sity is inversely related to the electron group velocity,
producing a decrease in peak height as a function of energy
if one excludes the increase within "@"D of Ef. This
anomaly in the intensity, and the deviations from the
parabolic band dispersion in the same energy range, arise
from the e-ph interaction. The unitary nature of the scat-
terer also leaves a distinct fingerprint in the QPI intensity.
In this limit, #ðqÞ switches sign for q just above 2kðEÞ,
which is a physical consequence of the $=2 phase shift of
the scattered quasiparticle. This produces a line of zero
intensity on the large q side of the maximum QPI intensity
(labeled as 2 in Fig. 2) when the absolute value is taken, as
well an additional intensity at small q below the onset of
the surface state (labeled as 3 in Fig. 2). Examining the data
in Fig. 2(a) we see indications of the small q intensity
below &65 meV; however, the zero intensity line is diffi-
cult to resolve below the noise floor.
We now turn to a quantitative analysis of the data.

For reference, Fig. 3(a) shows the e-ph self-energy used
in Fig. 2(b). To extract !ðEÞ, a Lorentzian was fit to the
data within a window of "0:01 #A&1 around the peak
position expected from %ðkÞ. [An example is shown as
the dashed line in Fig. 1(d).] A plot of the QPI peak height
S0 reflects the behavior of !00ðEÞ as shown in Fig. 3(b),
where we compare the data with the model. Both sets of
data have been normalized (as described in the figure
caption) to eliminate the tunneling matrix element’s role
in setting the scale of the experimental data. There is good
agreement between the model and experiment apart from a
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FIG. 2 (color online). (a) The dispersion of Sðq; EÞ, obtained
by plotting the line profiles as shown in one dimension for all
bias voltages. Overall, the dispersion is parabolic with ! ¼
65" 1 meV and m#=me ¼ 0:41" 0:02, obtained by fitting the
peak position excluding the energy range ½&20; 20) meV. The
intensity of the scattering peak generally decreases with increas-
ing energy but has a nonmonotonic increase near Ef. Subtle
kinks in the dispersion are observed at "@"D, labeled 1. An
additional scattering intensity below the onset of the surface state
(E <&70 meV) is also observed, labeled 3. The inset reveals a
subtle renormalization of the dispersion within Ef " 14 meV.
(b) Calculated QPI intensity for our model which includes e-e
and e-ph interactions and assumes the CO adsorbates scatter in
the unitary limit. The line of zero intensity (labeled 2) is a
consequence of the unitary scattering.
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Figure 3.18.: (a)-(c) Renormalized band structure at 𝑇 = 10K for a free electron model with a parabolic band dispersion for various Fermi
energies. The energy of the renormalized states are shown as dots while the bare state energies are given as black line. The phonons are
treated in an Einstein model with 𝜔E = 35meV. The coupling constant is set to 𝜆 = 0.5. Qualitatively, the band bottom 𝜖min increases in
energy towards 𝜖F. Additionally, so-called kinks occur at the Einstein frequencies ±𝜔E, which are characteristic for the renormalization due
to electron-phonon interaction. Far away from 𝜔E, the renormalized band structure fits the bare one. If the band bottom is related to 𝜔E
in a special way, a band splitting occurs at 𝜔E (b). (d) Measured spectral function of the parabolic surface state in Ag(111) at 4.2K. (e) The
calculated spectral function reveals kinks around the obtained Debye frequency (1). Figure (d) and (e) were taken from a publication from
Grothe et al. [49].

this scenario, the interacting electron system can be investigated within the band structure picture.
Going from the free electronmodel to the p-doped semiconductor reveals the same qualitative effects

due to the renormalization. Figure 3.19 shows three semiconductors with the same Fermi energy but
varying band gaps 𝜖gap from 50meV to 150meV. One can clearly see, that kinks appear at −𝜔E. As before,
the electron energies still shift towards 𝜖F. As a result of the band-splitting electron states occur in the
band gap, which are pinned around 𝜔E. The decrease of the renormalized band gap 𝐸gap compared to
the bare band gap is therefore rather large. If no band-splitting occurs, 𝐸gap can be equal (b) or larger (c)
than 𝜖gap. Electron states far away from 𝜖F and 𝜔E are less affected by the electron-phonon interaction
and their renormalization is weak, which is the reason for the increasing band gap. Related to the
shown example, the difference Δ𝜖gap = 𝜖gap − 𝐸gap is about 3meV in the narrow gap semiconducutor
(c). This value increases up to 6meV for a large gap semiconductor with 𝜖gap = 1.2eV (not shown). The
influence of the temperature is shown in figure (d). The valence band maximum is almost unaffected
by the renormalization, which results in total in a decrease of the band gap by Δ𝜖gap = −3meV. In 2010,
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Figure 3.19.: (a)-(c) Renormalized band structure at 𝑇 = 10K for a modeled p-doped semiconductor with varying band gap. The style of the
figure and parameters are the same as in fig. 3.18. The valence band maximum 𝜖VBM and the conduction band minimum 𝜖CBM decreases
in energy towards the Fermi energy. A band-splitting can occur as well (a). Depending on the gap size, the renormalized band gap can be
smaller, equal or even larger than the bare band gap. The difference is given as Δ𝜖gap in each figure. (d) Same as (c) but at 𝑇 = 600K. The
renormalized band gap is smaller than the bare bare band gap.

Giustino et al. calculated the zero-point band gap renormalization in diamond with ab initio methods,
which includes the Fan self-energy and the Debye-Waller term in Σk as introduced in section 2.1.2,
and showed that the band gap decreases with increasing temperature [44]. Very roughly spoken and
bearing in mind that the model presented in this work and the assumptions for the phonon spectrum
and the the electron-phonon coupling are very simple, the overall trend for 𝜖gap(𝑇 ) is reproduced.
Apart from that, the kinks disappear at high temperatures as seen in figure (d).
As mentioned before, the occurence of a band-splitting depends on a variety of properties. The

solution of the renormalization condition (eq. 3.3.2) is illustrated in fig. 3.20 for the free electron
model introduced in fig. 3.18. The number of solutions depends on the energy of the not-renormalized
state 𝜖k. Three cases are possible: First, the condition is fullfilled by one solution (red and blue line) and
no splitting occurs. The same holds for the case of two solutions, which creates a touching point (not
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Figure 3.20.: (a) Graphical solution of the renormalization condition Σ′(𝜔) − 𝜔 − 𝜖k = 0. Besides the renormalization itself, it can be used
for the estimation whether a band-splitting occurs or not. To link the condition to figure 3.18, the electron state is chosen to be the band
minimum at Γ with the energy 𝜖k = 𝜖min. If the condition is fullfilled by one solution (red and blue line), the renormalization is of type (a)
or (c) in figure 3.18. If there are three solutions (green line), the renormalization leads to a splitting as shown in fig. 3.18(b). The energies 𝜖1
and 𝜖2 are the energy boundaries for this region.
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Figure 3.21.: (a) Guide to find band-splitting with respect to temperature, coupling strength and initial electron energy 𝜖ini as explained in
figure 3.20 and the text. Each coloured line-pair corresponds to one coupling constant 𝜆. In this example, k is restricted to the Γ point but
the same analysis can be done at every k point. If 𝜖ini is inside (outside) the confined region given by the line-pair a band-splitting occurs
(does not occur). Both cases are shown in (c) and (d) for 𝑇 = 10K and 𝜆 = 1.5. All 𝜖ini are shown as large points and correspond to the points
in (a). The obtained energy gap 𝜖gap for 𝜖ini = 𝜖min

ini , which is the lower line of the line-pair, is shown in (b). The example with the parameter
choice 𝜆 = 1.5 and 𝜔E = 35meV is not physical due to Σ′max > 𝜔E but easier to visualise and is therefore used to explain the guide.

shown). Last, if the condition is true for three solutions, the band splits (green line). Quantitatively,
this region is confined by 𝜖1 and 𝜖2 as indicated in the figure. 𝜖2 is calculated as 𝜖2 = Σ′

max + 𝜔E but 𝜖1
can be obtained only visually as long as Σ′ is not known as an exact functional expression.

The above analysis can be applied to find regions in the band structure, where band-splitting may
occur. If one uses an isotropic self-energy as done throughout this chapter, a numerical scan with
respect to the coupling constant 𝜆, temperature 𝑇 and electron energy 𝜖k = 𝜖ini can be performed.
Such a guide is shown in figure 3.21 (a) for the free electron model introduced earlier. For a fixed
coupling strength, the coloured line pair marks the energy range [𝜖min, 𝜖max] for 𝜖ini in which the band
splits with respect to 𝑇 . Figure (c) shows the renormalized band structure at 10K and 𝜆 = 1.5 for 𝜖ini
within the energy range while (d) shows the other case. The coloured points in (a), (c) and (d) match
each other. The emerging energy gap 𝜖gap for a splitted band is largest for 𝜖ini = 𝜖min

ini , which coincides
with the lower line of each line pair. Its values are given in (b) revealing that 𝜖gap is not maximal at
the lowest temperatures, which one might expect. As a remark, the parameter choice 𝜔E = 35meV and
𝜆 = 1.5 is not physical due to Σ′

max > 𝜔E and the largest possible coupling constant in this model is
𝜆 ≈ 0.5 for the chosen Einstein frequency. However, the visualisation is more difficult in this case since
the effect is weaker and the larger coupling was used to explain the guide.

As a general observation, a band-splitting is found predominantly for small phonon energies, i.e.
𝜔E < 100meV, since otherwise the coupling constant has to be extremely large (𝜆 > 2). This ten-
dency might be valid for real systems as well. Obviously, the presented scheme can be adapted to any
sort of self-energy meaning that it does not matter whether Σ′ is obtained from a model system, an
isotropic Éliashberg function of a real system, calculated as Σ′

k at each k point separatly or obtained
from experiment.
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CHAPTER 3. RESULTS

Impact of the renormalization onto transport properties

Even if the band structure seems to be rather unaffected by the renormalization due to electron-phonon
interaction, its impact is clearly seen in quantities like the density of states (DOS) or the transport
distribution function (TDF), which is shown in figure 3.22. To be consistent with the previous analysis
in this chapter, the electron system is supposed to be free electron like with a quadratic band dispersion.
Again, the phonons are treated within an Einstein model with 𝜔E = 35meV and the coupling constant
is 𝜆 = 0.5.
The system is doped with half an electron and the chemical potential is accordingly calculated at

every temperature. Hence, the integrated DOS, which is shown in the inset in (b), are equal at 𝜖F. The
Fermi surfaces at each temperature are equal as well, which is expected due to the Luttinger theorem
[84]. It states, that the Fermi surface does not changewhether the system is considered to be interacting
or non-interacting.
The density of states and the squared velocity 𝑣2 are almost unaffected at 1000K (red line) since the

renormalization of the electron states is very weak. The only noticeable is, that the band bottom is
slightly shifted. Since the transport distribution function is roughly estimated by the product of DOS
and 𝑣2, no effect due to electron-phonon interaction is seen there as well.
At 10K (blue line), however, the changes in the DOS, 𝑣2 and TDF are significant. The density of

states exhibits Van Hove singularities at ±𝜔E since the kinks force a horizontal dispersion with van-
ishing velocity at these energies. In between, 𝑣2 is decreased, which is in agreement with the expected
reduction of the velocity at the Fermi energy by the factor (1 + 𝜆) [48]. According to the changes in
the velocity, the DOS increases for 𝜖 ≤ |𝜔E| due to the flat dispersion. The inverse statements hold for

R           Γ           X

ωE = 35 meV
λ = 0.5

-0.1

-0.05

 0

 0.05

 0.1

 250  300  350  400  450

E-
E F

 (e
V

)

-0.1

-0.05

 0

 0.05

 0.1

 0  0.5  1  1.5  2

E-
E F

 (e
V

)

v2
0    0.5    1    1.5    2

-0.1

-0.05

 0

 0.05

 0.1

 0  0.2 0.4 0.6 0.8  1  1.2 1.4

E-
E F

 (e
V

)

TDF
0   0.4   0.8   1.2  

-0.1

-0.05

 0

 0.05

 0.1

 0  1  2  3  4  5  6  7  8

E-
E F

 (e
V

)

DOS
0     2     4     6     8

-0.1

-0.05

 0.05

0.1

0.0

DOS (a.u.) TDF (a.u.)v2 (a.u.)

-0.1

-0.05

 0

 0.05

 0.1

 0  20  40  60  80 100 120

E-
E F

 (e
V

)

integrated DOS

(a) (b) (c) (d)

✏
�
✏ F

(e
V
)

10 K

1000 K

100 K
300 K

!E = 35meV, � = 0.5

integrated
DOS

0.05

-0.05

0.0

Figure 3.22.: (a) Renormalized band structures (colored dotted lines) for a free electron model at different temperatures. The bare dispersion
and other quantities related to it in (b)-(d) are shown as solid black line. (b) Density of states (DOS). Singularities occur at low temperatures
due to the horizontal dispersion at 𝜔E = 35meV. At each temperature, the density of states is enhanced at the Fermi energy but decreased
at 𝜖 ≲ −𝜔E and 𝜖 ≳ 𝜔E. The inset shows the integrated DOS, which is equal at 𝜖F. (c) Squared group velocity 𝑣2. At each temperature,
𝑣2 is decreased at 𝜖F compared to 𝑣2 of the bare dispersion. At low temperatures, the velocity drops to zero directly at 𝜔E. (d) Transport
distribution function (TDF), which is roughly given by DOS×𝑣2. Comparing with (b) and (c), one can see that the TDF mimics the behaviour
of the squared velocity.
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Figure 3.23.: Transport properties of the renormalized free electron model shown in figure 3.22. (a) Transport distribution function as shown
in fig. 3.22(d). The additional dashed lines show the derivative of the Fermi-Dirac distribution function which enters the transport integral.
Themaximal value of each function is scaled to 1. (b)The electrical conductivity 𝜎 of the renormalized states (red points) is decreased at lower
temperatures compared to 𝜎 of the free electron model (black line), which is directly related to the smaller TDF around the Fermi energy. (c)
The thermopower S is enhanced at lower temperatures and its ratio 𝑆/𝑆0 is shown in (d), where 𝑆0 is the thermopower of the non-interacting
system. The increase is up to 80% and mainly related to the decreased electrical conductivity. A detailed explanation is given in the text.

𝜖 > 𝜔E and 𝜖 < −𝜔E. As a remark, the bijection between 𝜖k𝑛 and k for an electron state in the 𝑛-th band
is violated in the region where kinks occur. This causes some technical problems while calculating
the DOS, 𝑣2 and TDF appearing as coarse lines, which are especially seen around −𝜔E in (b) and (d).
Nevertheless, this does not affect the calculation of the electrical conductivity 𝜎 and thermopower 𝑆
as shown later on.
The overall trends of the DOS, 𝑣2 and TDF are also valid for emerging temperatures but show some

minor differences. The density of states is still enhanced at 𝜖F but its curvature changes, which is
best seen by comparing the blue (10K) and yellow line (300K). In addition, the singularities at ±𝜔E are
smeared out at higher temperatures due to the missing kinks, which is finally based on the broadening
of the distribution functions 𝑛 and 𝑓 .
Comparing the density of states and the squared velocity with the transport distribution function,

one can see, that the TDF is mainly determined by 𝑣2 at each temperature. Figure 3.23 (a) shows the
TDF on a smaller energy scale around 𝜖F. The derivatives of the Fermi-Dirac distribtution functions
−(𝜕𝑓/𝜕𝜖) at every temperature are also given as dashed lines to highlight the relevant integration range
for the calculation of the transport properties 𝜎 and 𝑆. At 10K, it is 𝜖 ≪ |𝜔E| and the technical issues
mentioned before are not crucial.
The electrical conductivity shown in (b) is directly proportional to the generalized transport coef-

ficient ℒ 0, which is obtained as an integral over the TDF via equation 2.2.31. Hence, the decrease of
𝜎 compared to 𝜎 0, which is the electrical conductivity of the non-interacting electron system, reflects
the decrease of the TDF at each temperature. For 𝑇 ≥ 600K it is 𝜎 ∼ 𝜎 0. Decreasing the temperature
reduces 𝜎 up to 65% at 100K, which is even slightly lower than 𝜎 at 10K. Nevertheless, a reduction of
the electrical conductivity due to a renormalization is not expected in the literature [48]. Within the
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Drude model 𝜎 is obtained as
𝜎Drude = 𝑛𝑒2𝜏

𝑚 , (3.3.3)

where 𝑚 is the effective mass. The renormalization factors, (1 + 𝜆), for 𝜏 and 𝑚 cancel each other
and 𝜎 should be unaffected [48]. On the other hand, assuming the relaxation time to be inversely
proportional to the density of states (DOS) as in equation 3.2.8, a different result is obtained. Assuming
DOS to be renormalized by the factor (1 + 𝜆) as obtained from figure 3.22 and stated by Grimvall [48],
the renormalized relaxation time reads as

𝜏 ∗ ∝ 1
DOS∗

= 1
DOS(1 + 𝜆) =

𝜏
(1 + 𝜆) , (3.3.4)

which would explain the decreased electrical conductivity.
Figure (c) shows, that the thermopower is enhanced due to the renormalization compared to 𝑆0 of

the bare system for 𝑇 < 600K. The maximal enhancement throughout the temperature range is found
at 100K with an increase of 84% (d). Keeping in mind, that the thermopower is roughly proportional to
the slope of the TDF divided by the TDF itself, one reason for the enhancement is directly given by the
decrease of the conductivity. However, this alone can not explain the large increase and the different
slope of the transport distribution functions at each 𝑇 has to favour the enhancement as well. The last
is not obvious since the TDFs look quite similar in the relevant energy range.

3.3.2. Renormalization in metals and possible issues with transport calculations

Thescheme, whichwas introduced in the previous section and explained for amodel system to calculate
the renormalized band structure and subsequently the transport properties, could be applied only in
parts to lead.
The renormalization due to the real part of the electron self-energy Σ′ is done with two approaches.

The first one uses the k-dependent Éliashberg spectral function 𝛼2𝐹k obtained for the real phonon
spectrum, which is shown in figure 3.11, to calculate Σ′′

k via eq. 2.1.44 and Σ′
k with the Kramers-Kronig

transformation in eq. 2.1.54. The second one simply uses the isotropic Éliashberg function 𝛼2𝐹 . Figure
3.24 (a) shows the bare band structure with the renormalized band structure around the Fermi energy
at 10K as large insets. The underlying figure is the same as in fig. 3.4. All qualitative features were
already discussed in the previous section. The kinks themselves are not so well established due to
technical reasons. This means, that the computational effort is large to perform the renormalization
and to resolve the renormalized bands on an energy scale less than 10meV.This issue will be addressed
later on again during the calculation of the transport distribution function. The renormalizations based
on 𝛼2𝐹k and 𝛼2𝐹 are similar for the states along the XW-line (upper figure) and more diverging for the
states along the ΓX-line (bottom figure), which favours the use of an anisotropic Éliashberg function .
Anyhow, the isotropic Éliashberg function was used further on to reduce the computational effort.
The related real and imaginary parts of Σ are shown in (b). Characteristic features due to the specific
phonon spectrum of lead are only visible at very low temperatures. They disappear extremly fast with
emerging temperature and are already lost at 10K.
The transport distribution function was first calculated on a k point mesh with nearly 360’000 k

points in the irreducible part of the Brillouin zone (IBZ). Usually, such a mesh is dense enough to
obtain 𝜎 and 𝑆 of metals. However, expected features in the TDF known from the investigation of the
free electron model could not be reproduced (dark blue line in fig. 3.24(c)). Especially the peaks around
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Figure 3.24.: Transport properties due to renormalization effects from the electron-phonon interaction in lead. (a) Band structure of lead.
The insets show the bare dispersion and renormalized dispersion around the Fermi energy. The renormalization is performed with the
isotropic Éliashberg function 𝛼2𝐹 (red line) and the k-dependent one 𝛼2𝐹k (dashed orange line). (b) Real and imaginary part of the self-
energy calculated with 𝛼2𝐹 . Two peaks occur at 4 and 7 meV in Σ′ at very low temperatures originating from the peaks in the Éliashberg
function . Nevertheless, these features are already lost at 10K. (c) Transport distribution function (TDF) for the renormalized band structure
at 10K for three k point sets (colored lines). The numbers, given in 106, are the k points in the irreducible part of the Brillouin zone (IBZ).
In principal, the same behaviour is found as in the case of the free electron model in fig. 3.22 but the TDF could not be used to calculate
an electrical conductivity or thermopower due to convergence issues, which are discussed in the text. (d) TDF of a free electron model,
which mimics the band structure of lead around the Fermi energy in terms of an isotropic velocity taken from the inner Fermi sheet. The
renormalization is done with the Éliashberg function of Pb. As before, the numbers are the k points in the IBZ given in 106. The TDF did
not converge within the used k point sets, which indicates that the convergence of the transport distribution function of lead in fig. (c) is
difficult to achieve as well.

±𝜔max and the flat plateau in between is missing. A drastical increase of the k points up to 5.42 million
points in the IBZ did not lead to a converged TDF (light blue line). The reason for that is probably
related to the small phonon band width in lead of ∼ 10meV and the large electron-phonon coupling
constant of ∼ 1. Both conditions and the large velocity (steep slope in the band structure) of several k
points at the Fermi energy requires a really dense sampling of the Brillouin zone to accurately describe
the renormalization. Therefore, a cross-comparison with a free electron model was considered. The
velocity of the model was supposed to be isotropic at 𝜖F and its value was taken from a state of the
inner Fermi sheet of lead, which lies at the ΓL-line and was refered to as P1 in chapter 3.2. The self-
energy was calculated with the isotropic Éliashberg function of lead. Although these approximations
are rather crude for lead they are appropriate as a first step. The transport distribution functions
calculated in this way are shown in figure 3.24(d) for various sets of k points. The TDFs for the k point
grids with the two lowest amounts of k points are in qualitative good agreement with the TDF derived
from the renormalized band structure in lead (compare (c) and (d)). A further increase of k points
up to 22 million points in the IBZ, which is computationally not feasible for lead but can be realized
for the model system, does not lead to convergence of the transport distribution but the key features
mentioned before are slowly appearing.
The calculation of the electrical conductivity and thermopower in lead due to renormalized states

seems to be peculiar and challenging. The situation is probably completely different and easier to
handle in other metals, where the phonon band width is larger (∼ 30meV) like in copper or niob.
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3.4. Spectral function and its application in transport calculations

The upcoming chapter addresses the spectral function 𝒜 due to electron-phonon coupling.
First, the spectral function obtained in experiments and the extraction of the real and imaginary part

of the self-energy from measurements are discussed. A calculated spectral function for the model sys-
tem introduced in the previous chapter is also shown. The second part deals with the role of the spectral
function in transport calculations since all many-body effects, i.e. renormalization and lifetime broad-
ening, are already accounted for in𝒜 . Unfortunately, the electrical conductivity and thermopower can
not be calculated from the spectral function within Boltzmann theory. As a step beyond the detached
investigation of the imaginary and real part of the self-energy and their impact onto the electrical con-
ductivity and thermopower presented in chapter 3.2 and 3.3, some comments and thoughts about the
combination of both parts without use of the spectral function are given.

3.4.1. Spectral function in experiment and theory

The experimental access to the electron-phonon coupling is naturally given by the spectral function,
which is measureable by angle-resolved photoemission spectroscopy (ARPES) [26, 29, 59, 70, 95]. Due
to several subsequent investigations, i.e. energy distribution curves (EDC) or momentum distribution
curves (MDC), the extraction of both parts of the self-energy is possible. A MDC represents a cut
through the photoemission intensity map as function of the wave vector k at constant photon and
kinetic energies. Unfortunately, the spectral function is only a part of the measured photoemission
intensity ℐ . Assuming several approximations, which are discussed in detail in the aforementioned
citations, the intensity reads as

ℐ (𝐸kin, k) ∝ ||𝑀𝑓 𝑖(k𝑓 , k𝑖)|| 𝑓 (ℎ𝜈 − 𝐸kin − Φ, 𝑇 )𝒜(ℎ𝜈 − 𝐸kin − Φ, k)𝐹 (ℒ)ℛ . (3.4.1)

Here, 𝐸kin is the kinetic energy of the photoelectron, ||𝑀𝑓 𝑖 || is the corresponding matrix element of the
photoemission process, ℎ𝜈 is the photon energy, Φ is the work function, 𝑓 is the Fermi-Dirac distribu-
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FIG. 2. Photoemission spectra at fixed angle, intensity vs en-
ergy. Non-quasiparticle structure is visible in the three spectra with
largest momenta. The Fermi momentum is 0.943 Å"1. The mo-
menta and #k quoted are calculated at the Fermi energy and vary
slightly across each spectrum. The functional form chosen for #k is
discussed in the text.

FIG. 3. A re-presentation of some of the data used in Fig. 2 at
fixed energy, intensity vs electron momentum. The weak momen-
tum dependence of $ is demonstrated by the quality of the lorent-
zian fits %solid lines'.

FIG. 4. $%!' determined by fitting the full data set to lorentzian
curves as in Fig. 3, as described in the text. The solid curves are
Debye model $ for )!0.65 and !D!65 meV.
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Complex structure in photoemission spectra of Be!0001" surface states near the Fermi energy is observed
and explained as the effect of strong electron-phonon coupling. The weak momentum dependence of the
electron-phonon contribution to the electron self energy # is exploited to determine # by direct inversion of the
spectra.

The electronic structure of metals is often described in a
quasiparticle picture. Low-energy electronic excitations con-
sist of the promotion of electrons from occupied to unoccu-
pied levels, creating two nearly independent quasiparticles,
electron and hole. Each quasiparticle has a finite lifetime for
decay, due to electron-electron, electron-phonon, and
electron-impurity scattering. This picture leads to a simple
description of most electronic processes. In particular, the
angle-resolved photoemission !ARP" process for a single
band of two-dimensional electrons !surface states or layered
materials" is quite simple to describe: an incident photon
creates an electron and a hole with net momentum zero and
net energy equal to the photon energy. The emitted elec-
tron’s energy and parallel component of momentum are mea-
sured. At each momentum value k, the energy spectrum con-
sists of a single Lorentzian peak. The observed energy
position of the peak at each momentum !referenced to the
Fermi energy EF" is the hole !quasiparticle" excitation en-
ergy E, while the width of the peak is the inverse lifetime of
the hole excitation. A complete set of such spectra deter-
mine, and are typically presented in terms of the band struc-
ture E(k) and lifetime $(E). This picture has been quite
successful in describing the ARP spectra of surfaces of many
materials. Peak positions compare well with band calcula-
tions, while peak widths from high quality surfaces have
been recently explained in terms of contributions from the
electron-phonon and electron-impurity interactions.1–4 The
electron-electron interaction, as expected, makes negligible
contribution to the widths of small binding energy peaks in
wide band metals.1
In more interesting materials the quasiparticle picture is

often invalid, and a more complex description of the elec-
tronic structure is required. In this case, the electron self
energy #(% ,k)!#R(% ,k)"I# I(% ,k) is an important theo-
retical concept. Many quantities of interest can be calculated
from #(% ,k), including the one-electron Green’s function
G(% ,k)!&'%#(k##(% ,k))#1, where (k is the noninter-
acting one-electron energy. The band structure and lifetime
no longer provide an adequate description of photoemission,
and the photoemission spectrum can have quite complex
structure. Under reasonable assumptions, the photoemission
spectrum can be shown to be proportional to the hole spec-

tral function A(% ,k) times the Fermi function.5 The hole
spectral function can be written in terms of # as

A!% ,k"!
*#1!# I!% ,k"!

&'%#(k##R!% ,k")2"# I!% ,k"2
. !1"

Hole energies '%, not to be confused with the photon en-
ergy, are negative and measured from the Fermi energy EF .
In the limit that # is small and slowly varying, this descrip-
tion reduces to the quasiparticle picture, with '/2# I→$ and
(k"#R→E(k). Nonquasiparticle !NQP" behavior is ex-
pected even for wide band metals when electron-phonon
coupling is strong.6 Such systems are important to study be-
cause they are the simplest to exhibit NQP behavior. Very
recent work on the Be!0001" system reports NQP behavior
very similar to that shown here.7
Even though the self energy plays a prominent role in the

description of many physical properties, it has not been di-
rectly accessible to experiment. When the quasiparticle pic-
ture is valid, # I can be determined from the width of the
peak in the ARP spectrum,1–4 and #R from the difference
between the observed peak position and that predicted by
band calculations.4 In more complex situations there has
been some success in determining # by exploiting the rela-
tion between the spectral function and the imaginary part of
the Green’s function.8 We show here a simple method to
directly invert ARP spectra to find # without any assump-
tions about the phonon spectra other than weak momentum
dependence of electron-phonon coupling.
The electron-phonon contribution to the self energy is ef-

fectively independent of momentum, #(% ,k)→#(%), and
at zero temperature can be written

!# I!%"!!*'"
0

!%!
+2F!%!"d%!, !2"

where +2F(%), the Eliashberg coupling function, is the pho-
non density of states weighted by electron-phonon coupling.9
#R is the Hilbert transform of # I . A convenient model for
+2F(%) is the isotropic zero temperature Debye model !pho-
non energy proportional to wave vector" with constant
electron-phonon interaction matrix element. The system is
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(a) (b)

Figure 3.25.: Photoemission data from the Be(0001) surface state. (a) Momentum distribution curves fitted by Lorentzians (solid line). (b)
Imaginary and real part of the self-energy obatined from the fitted MDCs in the upper and lower figure, respectively. The solid lines show
the calculated Σ′′ and Σ′ for a Debye model with 𝜔D = 65meV and 𝜆 = 0.65. The figures were taken from LaShell et. al [76].
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Figure 3.26.: Spectral function 𝒜k for a free electron model at 10K (a) and 50K (b). The model is the same as introduced in fig. 3.18(c) with
the parameters 𝜆 = 0.5 and 𝜔E = 35meV. The values of 𝒜k are given by the color code. The obtained renormalized band is shown as solid
black line. Figure (c) and (d) are closer views of the band structure marked by dotted lines at 10K and 50K, respectively. Energy scales are
equal in (a) and (b) as well as in (c) and (d).

tion function and 𝒜 is the spectral function. The function 𝐹(ℒ) is an integrated Lorentzian ℒ while
the last term ℛ describes the resolution function, which depends on the experimental setup. Within
further assumptions and assuming the resolution function to be known, the photoemission intensity
is directly proportional to the spectral function times the Fermi-Dirac distribution function. Fitting
the obtained MDCs with Lorentzians relates Σ′′ to their width and Σ′ to their maximum as shown in
figure 3.25 for an ARPES measurement from the Be(0001) surface [76]. In addition to the experiment,
the spectral function is nowadays often calculated within certain phonon models, i.e. Debye model or
Einstein model, and with the parameters 𝜔D or 𝜔E and 𝜆, which are obtained from the measurement,
to provide an additional check.
To close this section, figure 3.26 shows the calculated spectral function𝒜k of the free electron model

discussed previously in section 3.3.1. The black line indicates the renormalized band structure obtained
from the maximum of𝒜k. The width of the spectral function is related to the imaginary part of the self-
energy. Within the Einstein model Σ′′ is very small at 10K for 𝜖 ≤ |𝜔E|. Hence, the width of 𝒜k is very
small in this energy range but does not vanish, which one might suggest due to the figure. Compared
to a Debye model with similar parameters, Σ′′

Einstein is a factor 102 smaller than Σ′′
Debye at 𝜔 = 0meV.

3.4.2. Remarks on transport calculations accounting for the full complex electron
self-energy

In general, the calculation of transport properties due to many-body effects like the electron-phonon
interaction requires the use of the spectral function instead of the detached consideration of the real
and imaginary part of the self-energy. Such an approach is given by the Kubo formalism, where the
electrical conductivity can be expressed in terms of Green’s functions and which is known as Kubo-
Greenwood formula [47, 74]. Rewriting the Green’s functions in their spectral representations reveals
the link to the spectral function 𝒜 . Such a description was out of scope in this thesis and further
information can be found elsewhere [3].
While chapter 3.2 and 3.3 discusses Σ′′ and Σ′, respectively the relaxation time 𝜏 and renormaliza-

tion effects, separately, the following is about the combination of both parts in transport calculations to
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Figure 3.27.: Transport distribution function (TDF) of a free electron model under the influence of the electron-phonon interaction (EPI)
considered in different ways at 100K and 300K in (a) and (b), respectively. The transport distribution function of the bare system TDF0 is
shown as black line. The TDF calculated with an energy-dependent relaxation time 𝜏(𝜖) is shown as orange line while the TDF obtained
from the renormalized band structure is shown as red line. The TDF calculated due to the relaxation time and the renormalization is shown
as purple line. The influence of the EPI onto the TDF in each consideration (according to the color) is given as ratio TDF0/TDF in (c) and
(d). The combinded TDF including the relaxation time and renormalization effects is dominated by 𝜏(𝜖) at lower temperatures. At higher
temperatures however, the renormalization seems to be the dominanting part.

account for both effects without using the spectral function. The most obvious approach is to calculate
the self-energy of the bare system and obtain the relaxation time and the renormalized band structure
as previously. Subsequently, the transport distribution function (TDF) is calculated from the renor-
malized bands and simply multiplied with the energy-dependent relaxation time. The only difference
compared to the treatment in chapter 3.2 is the calculation of the TDF from the interacting instead of
the non-interacting system. A similar approach, where the band structure is renormalized first and the
relaxation time is calculated afterwards, is probably not correct since Σ′′ would somehow depend on
Σ′ and therefore not considered here.

Figure 3.27 shows the comparison of the transport distribution function calculated in different ways
as mentioned before. Again, the system of choice is the free eletron model with the parabolic band
dispersion. The black line shows the TDF of the non-interacting electron gas TDF0, which is propor-
tional to (𝜖 −𝜖F)3/2. The orange and red lines account for the detached description of the relaxation time
and renormalization effects. The purple line shows the TDF for the combined description given by
TDFcombined = TDFrenorm ×𝜏(𝜖). At 100K (a), the combined TDF is clearly dominated by 𝜏(𝜖) revealing a
similar peaked structure. Minor differences are found far away from 𝜖F due to the renormalization. To
compare more quantitatively, the ratio TDF0/TDF is shown in (c). One can see that the absolute value of
the TDF as well as the curvature around 𝜖F are almost solely determined by the relaxation time, which
directly transfers to the electrical conductivity and thermopower and is evenmore pronounced at lower
temperatures. At higher temperatures (b), however, the impact of the relaxation time decreases since
the characteristic peak of 𝜏(𝜖) vanishes as already shown in figure 3.15. Of course, the renormalization
is weaker as well but remains strong enough to determine the slope of the transport distribution func-
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tion (d). Thus, a temperature in between should act as a crossing point separating the two temperature
regions, where either Σ′′ or Σ′ determine the electrical conductivity and thermopower.
Interestingly, the correlation between the temperature region and the major impact of Σ′′ or Σ′

onto the transport properties is counter intuitive. The influence of the electron-phonon interaction is
most visible at the kinks of the band structure at low temperatures. Hence, one might expect that the
renormalization is important in transport calculations at those temperatures. However, this is not the
case and Σ′ dominates at higher temperatures, while Σ′′ is the dominant part at lower temperatures.
The reason is given by the energetic position of the kinks at the Einstein or Debye frequency, which
is off the Fermi energy. Their influence at low temperatures is therefore rather weak compared to the
relaxation time, which directly influences the TDF around the Fermi energy.
In conclusion, the consideration of the electron-phonon interaction by means of the relaxation time

and the renormalization effects is equally necessary while investigating the whole temperature range
below and above the Debye temperature. Nevertheless, the influence of the renormalization will be
weaker due to the nature of the electron-phonon coupling meaning that its impact vanishes at higher
temperatures. Furthermore, temperatures below the Debye temperatur are usually considered and
hence the accurate description of the relaxation time is probably the main purpose in transport calcu-
lations.
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4 | Summary

The aim of this work was the developement of a procedure, which allows for a very detailed inves-
tigation of the interaction between electrons and phonons on the one hand and the computationally
demanding calculation of transport properties with respect to the electron-phonon interaction on the
other hand. Besides the usual investigation of the relaxation time, the influence due to renormalization
effects ought to be addressed as well.
For this reason, ab initio calculations based on a pseudopotential method and Wannier functions

were performed to evaluate the electron-phonon matrix elements in arbitrary large numbers. The
transport propertieswere subsequently calculated by solving a linearised Boltzmann equation. Thereby,
the state-dependency of the electron-phonon relaxation time was mapped on an energy-dependency,
which reduces the computational cost.
Results were shown predominantly for lead, which is an archetypal elemental superconductor with

strong electron-phonon coupling. Nevertheless, the presented scheme is not limited to any sort of solid
and can be applied to more complicated systems.
It was shown, that simple single sheeted Fermi surfaces yield larger relaxation times compared to

complicated multi-sheeted ones due to a reduced scattering phase space. Although this was found in
lead it seems to be a more general statement. In addition, small Fermi surfaces like in n-doped silicon
can act as phonon filter due to the condition of momentum conservation in the scattering process.
The experimentally observed enhancement of the thermopower in lead at low temperatures could be
reproduced and traced back to the peaked structure of the relaxation time at these temperatureswithout
accounting for the phonon-drag effect.
The renormalization of electron states and its impact onto the electrical conductivity and ther-

mopower was discussed for several model systems. In dependence of the chosen parameters, i.e. tem-
perature, coupling strength, phonon band width, etc., band-splitting occurs and a guide is presented
to find these splittings in real systems. Furthermore, an enhanced thermopower due to the renormal-
ization of states was found for a free electron gas as well. The computational effort while performing
transport calculations was found to be drastically increased if the phonon band width is rather small,
i.e. 𝜔D ≲ 10meV, which is the case in lead.
Conclusively, the combined consideration of the renormalization and the relaxation time was dis-

cussed stating that the latter yields the dominant contribution to transport properties in the low-
temperature regime, which is usually the temperature range of interest. Nevertheless, a description,
which directly takes care of the spectral function would be necessary in the future to accurately deal
with the interacting electron system within the Boltzmann theory.
Further improvements can be achieved due to the consideration of the phonon-drag contribution in

the Boltzmann equation on a general and for everyone accessible level. An iterative solution of the cou-
pled electron and phonon Boltzmann equations remains an open task by now, while the methodology
to do so was laid out within this thesis.
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A | Enlarged figures

Figure A.1.: Enlargement of figure 3.1 to highlight the nesting values 𝜉q of the Umklapp processes for the initial electron state marked in blue
at Fermi surface (top left) in Cu. The bottom figures show only the involved phononwave vectors from all three modes with the superimposed
nesting values.
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Figure A.2.: Enlargement of figure 3.2 to highlight the nested pairs in Pb. Same color marks a nested pair with initial and final state, except
for blue, which displays the bare Fermi surface.
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