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Datum der öffentlichen Verteidigung: 11. Dezember 2017
Vorsitzender der Promotionskommision: Prof. Dr. Miguel Marques



Contents

Abstract 1

Introduction 3

1 Spin dynamics in finite size structures with localized spins coupled to the local
magnetic field 7
1.1 Quantum Heisenberg model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Non-collinear magnetization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Quantum-state transfer in a frustrated spin chain . . . . . . . . . . . . . . . . 12
1.4 Many-body localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 The coupling of magnetic adatoms with the surface states of the topological
insulator 31
2.1 Insulating state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2 The massless Dirac point model . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3 The perturbation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4 Spin density dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5 Spin-current induced force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Low-dimensional III-V dilute magnetic semiconductors 43
3.1 Different components of spin-orbit interactions . . . . . . . . . . . . . . . . . 44
3.2 Energy bands in pseudopotential framework . . . . . . . . . . . . . . . . . . . 46
3.3 Kane model for top valence bands . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4 Strain-induced effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.5 Magnetization anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.6 Rashba spin-orbit coupling in the z-axis quantized model . . . . . . . . . . . . 73

Conclusions 79

List of publications related to the dissertation 81

Bibliography 83

A An adaptive mesh generation for the two-dimensional integration scheme 93

i



List of Figures

1.1 Examples of geometries for generalized Heisenberg model in a first row and the
corresponding non-zero elements of J tensor for the nearest-neighbor coupling
only(second row). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Schematic representation of two interacting localized spins. . . . . . . . . . . . . 10
1.3 The quantum-state transfer in an Alice → Bob example of the communication

protocol. The state which Alice sends to Bob is not fixed and evolve in time. . . . 14
1.4 Fidelity of the quantum state transfer, low electric field . . . . . . . . . . . . . . . 15
1.5 Fidelity of the quantum state transfer, high electric field . . . . . . . . . . . . . . 16
1.6 Schematic representation of the Cradle system. . . . . . . . . . . . . . . . . . . . 17
1.7 The Cradle effect for radius R = 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.8 The dynamic motion in Morse potential with confinement potential V = 2x2 as

boundaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.9 The dynamic motion in Morse potential with the reflections that take place due to

the hard core potential at the system boundaries. . . . . . . . . . . . . . . . . . . 19
1.10 Time dependence for fidelity of the quantum state transfer through the chain of

L = 10 spins. Values of the parameters: γeh̄
2π B = −0.38meV, gMEE = 31.2keV

Cm ,
J1 = 7meV, J2 = −7meV and for classical Newton’s Cradle, α = 3/2, kG =
9.33× 109kg s−2, k = 3.18N m−3/2. The time scale is h̄/J1. . . . . . . . . . . . . 20

1.11 Construction of the double Morse potential VDM from two separate Morse poten-
tials with dissociation energy D0 = 1.99eV and β = 1.94Å−1 from left and right
nucleus. The solid line show an example of trajectory for charged particle with
damping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.12 The trajectories of charged particles (solid lines) in double Morse potentials (dashed
line) with damping d = 0.01, initial velocity v1 = 2.2, D0 = 1.99eV, r0 = 2.28Å,
β = 4.432/r0. For interaction potential parameters a = 0.45Å

−1
, b = 0.01eV−1Å

−1
. 22

1.13 Damping d = 0.03, initial velocity v1 = 2.5, D0 = 1.99eV, r0 = 2.28Å, β =
4.432/r0. For interaction potential a = 0.45, b = 0.01. . . . . . . . . . . . . . . . . 22

1.14 Without damping d = 0.0, initial velocity v1 = 2.0, D0 = 1.99eV, r0 = 2.28Å,
β = 4.432/r0. For interaction potential a = 0.45, b = 0.01. . . . . . . . . . . . . . 23

1.15 Averaged level spacings 〈r〉 as a function of disorder h for L = {9, 10, 11, 12, 13, 14}.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.16 Influence of DMI, D = 0.2 is a shift from GOE to GUE statistics. . . . . . . . . . . 25
1.17 The result of scaling procedure for the system with J1 interaction only. . . . . . . 26

ii



List of Figures iii

1.18 Histogram of counts for disorder realizations for a system’s size of L = 10. . . . . 27
1.19 Histogram of counts for disorder realizations for a system’s size of L = 14. . . . . 27
1.20 The probability distribution of r at different fixed h. The cross symbols marks the

maxima and half heights of the distributions. . . . . . . . . . . . . . . . . . . . . 28
1.21 The enhanced broadening and quantum fluctuations as a function of disorder

strength. The graphs on the left are without DMI and on the right for D = 0.2. . . 29

2.1 Schematic alignment of the spin texture along x-axis, while the external-electric
field applied along y-axis modifies the helicoid period and z-axis is perpendicular
to the surface of topological insulator. . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 The energy dispersion En as a function of kx with set of parameters Q = 0.2 and
ky = 0, g = 0.02. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 The energy dispersion En as a function of ky with the set of parameters Q = 0.2
and kx = 0, g = 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 The averaged value of spin polarization ~s as a function of coupling constant g at
kx = ky = 0.02 and Qx = 0.2. The z-component of spin polarization sz has zero
mean value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5 Total force as a function of the coupling g for Q = 0.5 and Γ = 0.002. . . . . . . . 40

3.1 The calculated electronic band structure for GaAs is obtained from solving eigen-
value problem of pseudopotential Hamiltonian without spin-orbit interaction. The
high symmetry points are explained in the Table 3.1. . . . . . . . . . . . . . . . . 47

3.2 The electronic band structure for GaAs obtained by solving the eigenvalue prob-
lem of the six-bands Kane model is shown as the solid lines. The dashed lines
correspond to bands obtained from the spherical effective mass approximation.
The x-axis is scaled to represent the distance from Γ-point. . . . . . . . . . . . . . 49

3.3 Isoenergy surface for chemical potential µ = −28.5meV, where ~k was scaled with
2π/a0 factor and a0 = 5.65 is the GaAs lattice constant. . . . . . . . . . . . . . . . 52

3.4 The hole concentration and corresponding density of states as a function of the
chemical potential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5 The total energy of the hole system as a function of chemical potential. . . . . . . 55
3.6 The total energy of the hole system as a function of hole concentration. . . . . . . 56
3.7 The influence of strain on the energy dispersion with uxx = 0.01 and uxx = 0.05

and the deformation potentials for GaAs. . . . . . . . . . . . . . . . . . . . . . . . 58
3.8 The influence of strain on the energy dispersion with uxx = −0.01 and uxx =

−0.05 and the deformation potentials for GaAs. . . . . . . . . . . . . . . . . . . . 59
3.9 Top valence bands splitting with uni-axial strain at Γ-point. . . . . . . . . . . . . 60
3.10 Top valence bands splitting with bi-axial strain at Γ-point. . . . . . . . . . . . . . 60
3.11 The uni-axial strain influence on the isoenergy surface at µ = −28.5meV with a

tensile strain uxx = 0.02 will result in hole concentration p = 3.84×1019cm−3 and
pxy = 1.55× 1013cm−3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.12 The influence of the uni-axial strain on the total energy as a function of the chem-
ical potential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.13 The total energy dependency as a function of hole concentration with uni-axial
strain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.14 Schematic representation of the double fcc elementary cell without an inversion
center. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.15 The z-component of the hole spin polarization . . . . . . . . . . . . . . . . . . . . 66



iv List of Figures

3.16 The z-component of the hole spin polarization with magnetization BG = 3meV. . 67
3.17 Splitting of the electronic band structure with non-zero magnetization field BG =

25meV along x-axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.18 Top valence bands splitting at the Γ-point as a function of the magnetization field. 69
3.19 Isoenergy surface for chemical potential µ = −28.5meV with spin splitting param-

eter BG = 25meV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.20 Hole concentration (solid lines) and the density of states(dashed lines) as a func-

tion of the chemical potential with a non-zero magnetization. . . . . . . . . . . . 71
3.21 Schematic effect of the strain on the variation of the energy for different orienta-

tion of the magnetization θxz, where θxz = 0 means ~n along z-axis. . . . . . . . . 71
3.22 The variation of the total energy with constraint on the chemical potential for

different magnetization strength BG. . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.23 The variation of the total energy with constraint on hole concentration p = 1020cm−3

for different magnetization strength BG. . . . . . . . . . . . . . . . . . . . . . . . 72
3.24 The variation of the total energy with constraint on the hole concentration p1 =

1.0 × 1020 cm−3, p2 = 2.0 × 1020 cm−3, p3 = 3.0 × 1020 cm−3 for the value of
magnetization BG = 50meV with an orientation of the magnetization changing in
the xz-plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.25 Schematic spin-polarization in the xy-plane at the isoenergy µ = −0.5eV and
kz = π/10nm. The magnetization parameter is BG = 0.1 meV, with its orientation
~M ‖ x̂. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.26 The components of the spin-polarizations in the heavy-hole band as a function
of the kx − ky plane angle ϕ, (see Fig. 3.25). The dotted and the solid lines are
without and with the Rashba coupling αso = 0.1 eV m, respectively. . . . . . . . . 75

3.27 The components of the spin-polarizations in the light-hole band as a function of
the angle ϕ. The dotted or the solid lines are results without or with the Rashba
coupling αso = 0.1 eV m, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.28 The components of the spin-polarizations in the split-off band as a function of
the angle ϕ. The dotted or the solid lines are results without or with the Rashba
coupling αso = 0.1 eV m, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . 76

A.1 The edge detection in kz slices of the GaAs isoenergies. . . . . . . . . . . . . . . . 94
A.2 The left figure presents the oscillations at the maximum edge with an uniform

mesh and on the right figure an adaptive mesh. . . . . . . . . . . . . . . . . . . . 94



Abstract

We investigate ways of controlling the magnetic dynamic, spin currents and other materials

properties in topological insulators interfaces with non-collinear magnetic structure, and also

in dilute magnetic semiconductors. A fundamental analysis of the electronic structure in-

cluding spin-orbit coupling is relevant for engineering interesting spin related phenomena at

the interfaces. The effect of strain on magnetic anisotropy in dilute magnetic semiconductors

was classified. Moreover, the magnetic dynamic of adatoms deposited on the substrate was

used to moderate the electronic structure of the sublayer. An appropriate time-dependent

driving mechanism was identified that allows for an improved communication protocol of

the quantum state transfer. The many-body localization phase for a spin-frustrated chain was

confirmed, and a new method for estimating the critical disorder for its appearance has been

inferred.

Wir untersuchen verschiedene Möglichkeiten der Steuerung der magnetischen Dynamik, des

Spinstroms sowie von weiteren Materialeigenschaften in Heterostrukturen von topologische

Isolatoren und darauf deponierten magnetischen Atomen, sowie in verdünnte en magnetis-

che en Halbleitern. Eine fundamentale Analyse der elektronischen Struktur einschließlich der

Spin-Orbit-Kopplung ist für die Entwicklung von interessanten spinbezogenen Phänomenen

an den Grenzflächen wichtig. Der Einfluß von Verzerrung auf die magnetischen Anisotropien

in verdünnten magnetischen Halbleitern wurde klassifiziert. Darüber hinaus wurde die mag-

netische Dynamik der auf dem Substrat abgeschiedenen Adatome verwendet, um die elektro-

1



2 ABSTRACT

nische Struktur der Unterschicht zu kontrollieren. Ein zeitabhängiger Antriebsmechanismus

wurde identifiziert Kommunikationsprotokoll der Quantenzustandsübertragung beinhaltet.

Die Vielteilchen-Lokalisierungsphase für eine Spin-frustrierte Kette wurde bestätigt sowie

eine neue Methode zum Finden der kritischen Unordungsstärke für das Auftreten der Viel-

teilchenlokalisierung vorgeschlagen.



Introduction

This dissertation builds on knowledge from solid state physics, material physics, and sta-

tistical physics to address aspects pertinent to the field of spintronics [1]. Spintronics and

pseudospintronics [2] exploit the spin degree of freedom and its coupling to the orbital mo-

tion to store, and process information as well as to operate "spin-electronic" devices [3].

Spin-charge coupled systems are interesting for electronic applications insofar as they offer

new efficient ways for handling information [4]. For instance, magnetic information can be

addressed via electric fields, strain or heat currents instead of the conventional way of us-

ing magnetic fields. This entails thus less energy consumption while generating dissipative

charge currents to produce the needed magnetic fields. A number of these issues are ad-

dressed theoretically in this thesis with a focus on low-dimensional systems allowing more

reliable theoretical predictions but are also of interest for practical purposes in view of the

current drive towards ever higher packing density of information and smaller devices [5]. A

special attention is devoted to the influence of external (environmental) perturbations on the

spin dynamics with an eye to possibly exploiting these perturbations for new functionalities.

This thesis addresses a few questions related possible ways of spin control and to the

influence of spin-orbital coupling on the surface and bulk spin-resolved electronic structure.

In this dissertation, we would like to address a few questions.

We start with the magnetic dynamics of the spin-1/2 system where we study quantum

state transfer(QST). Transfer of a quantum state from a node of the spin chain to an-

other [6]. Can we improve the transmission time of the QST protocol? Then we study

3



4 INTRODUCTION

strongly disordered spin-1/2 systems for which all of the eigenstates violate the eigenstate

thermalization hypothesis leading to many-body localization(MBL) phase. Is it possible to

drive the spin-frustrated chain to the MBL phase? Then we study topological insulator(TI)

which in bulk is an insulator or semiconductor but at the surface has conducting states [7].

Can the non-collinear spin structure open the band gap of the topological insulator surface

states? What are the spin dynamics equations in the case of the localized spins and con-

ductance surface states carriers? Then we study the dilute magnetic semiconductor(DMS)

systems [8]. Those semiconductors gain magnetic properties when doped with magnetic im-

purities. How does a strain affect magnetic anisotropy of DMS? Then we study the Rashba

component of the spin-orbit coupling [9]. Is the Rashba spin-orbit coupling powerful enough

to change the spin holes polarization in the DMS thin layers?

The localized spin dynamics[10, 11] was investigated with our generalized Heisenberg

model. From there we have learned that the antisymmetric terms of exchange couplings like

Dzyaloshinskii-Moriya interaction(DMI) are important for magnetic dynamics.

The QST for the spin-1/2 ferromagnetic chain was discussed by S. Bose [6]. The multi-

ferroic spin chain with a static external electric field was studied by M. Azimi et al. [12]. As

a new improvement, a time-dependent driving mechanism inserted to the polarization term

was considered. Depending on the driving mechanism it is possible to achieve faster QST

protocol.

Another aspect of the spin structures examined in spin-1/2 systems was MBL [13]. The

currently established method for estimating the strength of the site-dependent magnetic dis-

order that leads to MBL phase was studied by Luitz et al. [14]. That was related to the

ferromagnetic spin chains. We analyzed the possibility of transition to the MBL phase in the

spin-frustrated models also including DMI. We recommend a new method for the classifica-

tion of the MBL phase in a highly disordered system.

Further, we want to have a closer look at surface states of topological insulator [7]. Due

to the breaking of the time-reversal symmetry, the band gap of the surface states can be

lifted [15]. We investigate the influence of the non-collinear magnetization on the surface

state of the topological insulator. The surface state band gap is not opened at the Dirac point

but as we observed at the edge of the Brillouin Zone. The spin density dynamics was derived
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for the unperturbed Dirac Hamiltonian and for the interaction with magnetic adatoms which

enter to the spin-relaxation/pumping mechanism. At last, the force induced by spin-torque

form surface state charge carriers is described [16, 17].

Chapter 3 is entirely devoted to the DMS physics where the control of the spin structure

with its origin from magnetic impurities is discussed [8]. The used material is of great interest

for the spintronic application [4, 18, 19]. We have investigated in details the strain effect

and the Rashba spin-orbit coupling on the magnetization anisotropy of the DMS top valence

bands.

Structure of the dissertation This work is structured as follows. Possibility to control spin

structure is the main topic of Chapter 1, while the aspects related to the spin-orbit cou-

pling(SOC) are discussed in Chapters 2 and 3. Chapter 1 begins with a generalized form of

Heisenberg model which is used for magnetic dynamics of the localized spins, quantum state

transfer simulation, followed by a fresh view on Many-body localization phase in a highly dis-

ordered system. In chapter 2, perturbation theory is used to Dirac point for modeling surface

states of a topological insulator with magnetic adatoms which then is followed by spin den-

sity dynamics within continuity equation. At last, a computing force induced by spin-torque

is described. Chapter 3 is entirely devoted to dilute magnetic semiconductors physics where

the control of the spin structure with its origin from magnetic impurities and Rashba spin-

orbit field is discussed. The magnetization anisotropy and Rashba spin-orbit field are of our

interest as they can influence other materials which are in contact with the semiconductor.





CHAPTER 1

Spin dynamics in finite size structures
with localized spins

coupled to the local magnetic field

In this chapter, the generalized form of Heisenberg model is introduced enabling the treat-

ment of spin chains as well as coupled clusters or three-dimensional molecules. In this form,

the Hamiltonian can be easily used to study systems with various symmetries, spatially de-

pending exchange couplings and systems where the different type of anisotropies can be eas-

ily introduced. Thereafter, as an application of this model, the quantum state transfer(QST)

is considered in a ferromagnetic and non-collinear spin chains. This is followed by an analysis

of the electric field influence in time-dependent Hamiltonian on the quantum state transfer

fidelity. At the end of this chapter, the transition to many-body localization(MBL) phase is

investigated in highly disordered magnetic fields.

1.1 Quantum Heisenberg model

The ferromagnetic interactions of localized spins were successfully interpreted in 1929 by

Werner Heisenberg [20]. In particular, the generalized Heisenberg model can be used to

study ferromagnetic and anti-ferromagnetic, non-collinear or multiferroic spin systems. On

the other hand, the influence of electric fields, polarization, and magnetic fields can be in-

cluded giving many ways to induce spin currents, quantum state transfer, and many-body

localization in highly disordered systems.

7
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CHAPTER 1. SPIN DYNAMICS IN FINITE SIZE STRUCTURES WITH LOCALIZED SPINS

COUPLED TO THE LOCAL MAGNETIC FIELD

Let us first consider the quantum spin chain with the exchange interactions between the

localized spins in a system with an effective magnetic field that acts on each localized spin.

In this way, we are modeling the influence of environment on which the strength of the

exchange interactions depends. We assume that the effective field is mostly related to the

environment, but it also includes an external magnetic field. Thus, that model allows us to

take into account the possibility to control the spin density by an external field. We adopted

the quantum Heisenberg model to the standard form [21]

H =
∑

i,j,α,β

J αβij Sαi S
β
j +

∑

i,α

Bαi Sαi , (1.1)

where α and β are three-dimensional spin components that can be {x, y, z} and the indices of

the localized spins i, j = 1, . . . , N denote all basis set of the chain, and Bαi are components of

the site-dependent magnetic field. In the following chapters, the used Hamiltonian is always

written in the Sz basis. Because of that, the only Bz component is taken into account. The

exchange coupling J αβij stands for isotropic and anisotropic terms, such as nearest-neighbors,

next-nearest-neighbors or Dzyaloshinskii-Moriya interaction and the effect of polarization.

An explanation of the J -coupling tensor Let us consider an example which can be im-

portant for practical application presented in Fig. 1.1. The concept of J -coupling tensor is

associated with the geometry formed by the localized spins. Starting from the left side of

the figure which presents a 1D chain with open boundary conditions and the coupling matrix

for the nearest-neighbor interaction only. In a usual case, the non-zero interactions form a

symmetric coupling matrix(Jij = Jji). Thus, with an additional factor of 2, the lower or

upper triangle matrix can be used instead of the full matrix. It is worth to note that the

sites coordinate in coupling tensor do not reflect the coordinates of elements in real space.

Thus, the chain may look as in Fig. 1.1, but for example, it may also be a chain made out of

different species where not only the coupling strength can vary or as it is shown in the case

of a ring or a cluster of spins.

Therefore, as it is shown the J tensor is unique for a given geometry of the system. It can

describe all interactions between all of the sites. That could be isotropic(nearest-neighbor,

next-nearest-neighbor interactions or each site with any other site) as well as anisotropic in
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file u 1:(-$2):3 matrix file u 1:(-$2):3 matrix file u 1:(-$2):3 matrix

Figure 1.1: Examples of geometries for generalized Heisenberg model in a first row and the
corresponding non-zero elements of J tensor for the nearest-neighbor coupling only(second
row).

the case of DMI. Each type of those effective interactions can be understood as the influence

of the environment on localized spins. The origin of the interactions can be diverse from

coupling to the surrounding electrons, effective polarization, photon fields(e. g. optical

lattice), phonos, etc. However, the main feature of this description is that changing properties

of the environment permit to manipulate exchange interactions between localized spins.

1.2 Non-collinear magnetization

Now, we consider the case when the Hamiltonian (1.1) describes a system with no total

effective magnetic moment such as a non-collinear spin structure which appears from a

competition between the symmetric coupling constants J ααij , namely between the nearest-

neighbor interactions and the next-nearest-neighbor interactions. Assuming that a linear 1D

chain is considered with J1 and J2 exchange interaction for respectively the nearest-neighbor

and next-nearest-neighbor coupling constants, where J1 < 0 denotes ferromagnetic and

J2 ≥ −J1/4 denotes antiferromagnetic coupling. The factor 1/4 comes from minimizing the

energy. Such case can be easily solved leading to the energy of the ground state depending
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CHAPTER 1. SPIN DYNAMICS IN FINITE SIZE STRUCTURES WITH LOCALIZED SPINS

COUPLED TO THE LOCAL MAGNETIC FIELD

on the exchange constants[20]

ε = −4J1S
2 cos θ − 4J2S

2 cos 2θ, (1.2)

where cos θ = −J1/4J2, for which the helical spin structure can exist. It should be noted,

that even in this very simplified case it is a difficult task to find all of the excited states. Any

additional disorder in the coupling constants or the magnetic field typically has to be treated

numerically.

Dzyaloshinskii-Moriya interaction (DMI) Weak ferromagnetism due to the Dzyaloshinskii-

Moriya interaction arises by introducing a spin-orbit coupling into the Anderson theory of

superexchange interaction. The Dzyaloshinskii term [22] of antisymmetric spin coupling

~D · (~Si × ~Sj), (1.3)

where ~Dêz = D is a constant, was postulated phenomenologically. The typical values of

DMI are of the order of
∣∣D
J
∣∣ ≈ 10−2 [20]. Later, the theory was completed by Moriya, who

incorporated the rules due to the crystal symmetry [23]. Let us consider two interacting

localized spins, one at point A and one at point B, see Fig. 1.2. First of all, the DMI is

Figure 1.2: Schematic representation of two interacting localized spins.

compensated(D = 0) when a center of inversion is situated at point C. That is exactly at the

center of the AB segment. Whereas when the mirror plane contains C and is perpendicular

to AB segment, the DMI vector is parallel to the mirror plane or perpendicular to the AB

segment( ~D ‖ mirror plane or ~D ⊥ AB). When the mirror plane contains A and B, the
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DMI vector is perpendicular to that plane( ~D ⊥ mirror plane). If the system has a two-fold

rotation symmetry around the axis containing the point C and is perpendicular to the AB

segment, the DMI vector is perpendicular to that axis( ~D ⊥ two− fold axis). In case of n-

fold symmetry axis, where n ≥ 2 containing AB segment, the DMI vector is parallel to this

axis( ~D ‖ n−fold axis). The key types of considered symmetries are a) time-reversal symmetry,

b) spatial inversion. These rules aid in a conclusion that the Dzyaloshinskii-Moriya interaction

exists only due to the spin-orbit coupling when the inversion symmetry is broken. The bottom

line is that a breaking of the inversion symmetry of the surrounding generates a spin torque

acting on the localized spins by hopping electrons between neighboring states and induces

the spin current.

Spin current induced by exchange interactions in the spin chain

A possibility to temporarily generate a spin current is an important feature for quantum com-

munication protocol. Therefore, it is of interest to enable breaking of the inversion symmetry

in a reversible way. Almost half a century after Moriya, a new mechanism of the magneto-

electric coupling was considered in the work of Katsura et. al.[10] wherein a system with an

inversion symmetry(no DMI) the applied external electric field induces spin-current leading

to steady state electric polarization

~P ∼ ~ei,i+1 ×
(
~Si × ~Si+1

)
, (1.4)

that is directly related to DMI, and the vector ~ei,i+1 points between two neighboring localized

spins. The similar derivation for the generalized Heisenberg Hamiltonian (1.1) is as follows.

The first derivative of spin operator is given by this equation

∂Sαn
∂t

=
1

ih̄
[Sαn ,H] , (1.5)

with the form H (1.1) give

∂Sαn
∂t

=
1

ih̄





∑

i,β

Bβ
i

[
Sαn , S

β
i

]
+
∑

i,j
β,γ

J βγij
([
Sαn , S

β
i

]
Sγj + Sβi

[
Sαn , S

γ
j

])



, (1.6)
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where the sub-indices i, j, n denotes the index of the localized spin. After using the commu-

tator relations
[
Sαn , S

β
i

]
= 2i

∑
γ
εαβγSγnδni, we obtain

∂Sαn
∂t

=
1

ih̄




∑

β

Bβ
n(2i

∑

γ

εαβγSγn)

+
∑

i,j
β,γ

J βγij


2i

∑

γ′

εαβγ
′
Sγ
′
n δniS

γ
j + Sβi 2i

∑

β′

εαγβ
′
Sβ
′

n δnj







,

(1.7)

After simplification this leads to the important equation describing the spin dynamics in a

generalized Heisenberg model

h̄

2

∂Sαn
∂t

=
∑

βγ


ε

αβγBβ
nS

γ
n +

spin current︷ ︸︸ ︷∑

j,µ

(
εαβµJβγnj S

µ
nS

γ
j + εαγµJβγjn S

β
j S

µ
n

)
+ h.c.


 , (1.8)

where α, β, γ, µ are spin components that can be {x, y, z} and εαβγ is the Levi-Civita symbol.

In Eq. (1.8) two parts can be distinguished, one that depends on the effective magnetic

field and the second that depends on the exchange interactions and is related to the spin

current [10, 11]. Thereafter, the symmetry break is affecting the coupling constants and

induces a spin current. Therefore, it can be concluded that a spin state can be affected by a

local magnetic field causing precession or by the spin current term.

1.3 Quantum-state transfer in a frustrated spin chain

The quantum simulations of the correlated spin dynamics are usually limited to small sys-

tems. Within some approximations, it is often possible to obtain a ground state. In many

cases, a ground state and excited states are needed where one resorts to the density ma-

trix renormalization group(DMRG) that uses the decomposition of the system to smaller

blocks. On the other hand, for classical simulations, one may employ the Landau-Lifshitz-

Gilbert(LLG) equation for which solution computer modeling codes are well developed.

Tools like Object Oriented MicroMagnetic Framework(OOMMF) [24] and muMax [25]

are examples of this type of calculation. However, for finite systems and low dimension of
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the order parameter the quantum fluctuation and the versatility of a quantum trends can not

be neglected.

The discussed examples for the quantum Heisenberg model are important for studying

the transfer of the quantum state between different parts of a spin chain. The exchange

interactions are important and without them there is no spin current and a transfer of the

quantum state is not possible. The external fields can induce a spin current and possibly

moderate effectiveness of quantum communication. In the end, all of the effective fields and

interactions can be manipulated by changes in the environment properties.

As of key importance for a quantum state transfer are fast and secure communication

channels. In currently used transport protocols even the encrypted data could be potentially

imperceptibly caught by man-in-the-middle attack (eavesdropped). The communication pro-

tocol based on entangled particles can not be intercepted without any notice. We will transfer

a single qubit with reasonable fidelity within a finite time ts. Where the transfer fidelity is

the transition amplitude between initial and final states [12].

A small disturbance of the communication channel which is quantum, might influence

the specific time or even destroy the original message. A proper selection of the quantum

channel is therefore crucial for stability and roughness of the protocol. Another criterion is

the distance between the ends of the communication channel. A prominent example is an

optical channel used for long and short distances. The point of interest is to study quantum

channels in the nanoscale regime. Therefore, due to long decoherence time and the possibil-

ity of controlling the transfer fidelity, an appropriate candidate is the quantum channel based

on a solid-state spin chain.

The communication protocol: Alice → Bob example A theoretical study of the quantum

channel for the unmodulated ferromagnetic spin chain was put forward by S. Bose [6]. The

state is transmitted from one localized spin of the chain and received in another with desir-

able fidelity after specific transmission time. The state which Alice want to send is not fixed

and can evolve during the transmission time, as it is shown in Fig. 1.3. Due to the presence

of magnetic field the received state might be not even close to the state which Alice wants to

send. In order to achieve the highest averaged fidelity transfer, Bob has to wait for a specific
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Alice

Alice

Bob

Bob

Figure 1.3: The quantum-state transfer in an Alice → Bob example of the communication
protocol. The state which Alice sends to Bob is not fixed and evolve in time.

time which is sufficiently long and the magnitude of the external magnetic field could be

properly adjusted as it was considered by Bose [6].

Spin-1/2 frustrated chain Let us consider another example with a rewritten Hamilto-

nian (1.1) for the nearest(i, i + 1) and next-nearest(i, i + 2) neighbor interactions only,

including contribution of the polarization and the magnetic field.

Ĥ(t) = −J1

N−1∑

i=1

~Si · ~Si+1 − J2

N−2∑

i=1

~Si · ~Si+2 − γeh̄Bz ·
N∑

i=1

Szi − gME
~E · (~P0 + ~P (t)) (1.9)

where the polarization [10] is the last term and it reads ~P0 ∼ ~ri,i+1 ×
(
~Si × ~Si+1

)
, whose

origin was mention in the context of spin-current. Its time-dependency will be considered

in this section. The spin chain is along the x-axis, thus the vector ~ri,i+1 pointing between

neighboring localized spins has only x-component, whereas the constant external magnetic

field is in the z-axis and the considered polarization is written with the y-axis component of

the electric field allowing to keep the block diagonal structure of the Heisenberg Hamiltonian

written in Sz basis. As it is shown in Fig. 1.3, the system is initially at t = 0 in its ground

state, where one of the states was manipulated by the sender(Alice flipped the spin or in

general set an unknown state). Thus the deviation from the ground state will result in a spin

precession, where a finite-time τ named later as the specific time needed for the receiver to

get as close as possible to the sender state at t = 0. The Hamiltonian (1.9) describes now the

spin chain which can be different from the ferromagnetic ground state.

Fidelity of localized spins As the first step of investigation for QST, the time-dependent

polarization term is temporarily neglected in the Hamiltonian (1.9). It should be noticed,

that for the communication protocol the shared collective many-particle entanglement should
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be supported. This is the case for the influence of the electric field on the chiral state in a

frustrated spin system[12]. The averaged fidelity Fjs of the quantum state transfer from state

|j〉 to state |s〉 has been defined by Bose [6]

Fjs(E,B, t) =
1

2
+
|fjs(E,B, t)| cos γ

3
+
|fjs(E,B, t)|2

6
, (1.10)

where γ = arg {fjs(E,B, t)}. Starting from the initial wave function in the one-excitation

basis

|ψ(t0)〉 = a |0〉+ b |s〉 , (1.11)

where a single qubit state |a|2 + |b|2 = 1 is normalized

|ψ(t)〉 = a |0〉+ b

N∑

j=1

fjs(E,B, t) |j〉 , (1.12)

and fjs(E,B, t) is the transition probability

fjs(E,B, t) = 〈j| exp(−iĤt) |s〉 . (1.13)

As a result, the transfer fidelity with the static external electric field can be calculated.

Figs. 1.4, 1.5 show results for a chain with L = 10 from which it can be concluded that

high electric field has a negative influence on the transfer fidelity. Indeed, higher-fidelity

Figure 1.4: Fidelity of the quantum state transfer, low electric field

can be achieved in the presence of an external electric field, but since the specific time is

narrowed, there is less time for the sender to set up the initial state and for the receiver to

accomplish the reading procedure. It was assumed that all of the atoms were fixed and under

the influence of external fields, it would not change.



16
CHAPTER 1. SPIN DYNAMICS IN FINITE SIZE STRUCTURES WITH LOCALIZED SPINS

COUPLED TO THE LOCAL MAGNETIC FIELD

Figure 1.5: Fidelity of the quantum state transfer, high electric field

Fidelity with time dependent coordinates Let us allow for the localized spin to change

its position. From the inverse piezoelectric effect in the environment, one can expect small

dislocation of atoms under an applied external electric field. Therefore, the influence of

lattice vibrations on the quantum state transfer is treated semi-classically by propagating the

wave function in time

|ψ(t)〉 = Û(t, t0) |ψ(t0)〉 , (1.14)

where Û(t, t0) is the evolution operator

Û(t, t0) = T̂


exp


−i

t∫

t0

dτĤ(τ)




 . (1.15)

T̂ is the time-ordering operator and τ is the classical time in which movement happens. To

compute the fidelity with time-dependent coordinates the following transition probabilities

is used in Eq. (1.10)

fjs(E,B, t) = 〈j| Û(t, t0) |s〉 . (1.16)

In time-dependent Hamiltonian (1.9) the polarization vector has to indicate the fact of chang-

ing distances between sites and will take the following form

~P (t) ∼ [xi+1(t)− xi(t)]êx ×
(
~Si × ~Si+1

)
z
, (1.17)

where the z-component is taken to indicate that the external electric field is in y-axis and

xi(t) is the i-th time-dependent position of the site. The influence of different dynamics on

the quantum state transfer is shown in comparison at the end of this section.
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1. Rocking Newton’s Cradle We will simulate the time-dependent coordinates of the spin

chain sites in a way similar to Newton’s Cradle. This simulation is for a granular crystal chain

[26, 27] while assuming all material properties of steel. The underlying mechanism mimics

connections of all spins with their neighbors by Hertzian contact. The equation of motion

[28] is written in the following form

ẍi = kξαi−1,i − kξαi,i+1 + kG

(
x

(0)
i − xi

)
, (1.18)

where ξi,i+1 denotes an overlap between the two neighboring grains, with α = 3
2(Hertz law),

kG = mg
L = 9.33 × 109 kg s−2 is the gravitational spring constant where L is the length

of the inelastic string, m is the mass of the Cradle ball, and g is the gravity acceleration,

k = 3.18 N m−3/2 is the spring constant1, x(0)
i is the equilibrium position of i-th site and xi

is the displacement from equilibrium. The Fig. 1.6 shows in a schematic way the system of

Figure 1.6: Schematic representation of the Cradle system.

interest, ξm,n = (2R − (xm − xn))+, where + means ξm,n = 0 for 2R − (xm − xn) < 0. From

the numerical simulation for the equation of motion Eq. (1.18), as shown in Fig. 1.7 it can be

noted that the main exchange of the kinetic energy occurs between the ends of the system,

while the transfer between neighboring sites happens nearly instantly. The amount of energy

redistributed between the rest of the system could be neglected.

2. Morse potential Yet, more realistic modeling of the sites motion can be realized within

Morse potential. This is an adequate approach for molecular dynamics. The Hamiltonian [29,
1Hertzian spring F = k(xn − xn+1)

α
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Figure 1.7: The Cradle effect for radius R = 0.5

30], without tension f(xi − x(0)
i ) has the following form

H(xi, p) =
∑

i

p2
i

2m
+ VM (xi), (1.19)

where Morse potential VMi is

VM (xi) = D0

[
1− e−β(xi−x

(0)
i )
]2

, (1.20)

or equivalently can be written as

VM (xi) = D0

[
e−2β(xi−x

(0)
i ) − 2e−β(xi−x

(0)
i )
]2

, (1.21)

where for numerical simulations the following set of parameters were taken [30]; D0 = 2.0eV

is Morse dissociation energy, β = 1.95Å−1 is the Morse parameter, x(0)
i = 2.28Å i is the

lattice constant times i-th site index. Figs. 1.8, 1.9 shows the displacements for different

boundary conditions, where one can notice the difference to the Newton’s Cradle results,

mainly fast thermalization and the necessity to introduce additional potential preventing

system fragmentation. Furthermore, the transfer of the kinetic energy requires some time.

Fidelity comparison

The following Fig. 1.10 shows the transfer fidelity under an external electric field and the dif-

ferent mechanisms for the dynamics. It should be noted that the effect of the time-dependent
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Figure 1.8: The dynamic motion in Morse potential with confinement potential V = 2x2 as
boundaries.
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Figure 1.9: The dynamic motion in Morse potential with the reflections that take place due
to the hard core potential at the system boundaries.

polarization vector can have an influence on the quantum state transfer only if the system

is not in the ferromagnetic phase. It was already shown Fig. 1.5, that high-electric field can

have an influence on the transfer fidelity making it difficult to define the specific time ts. On

the another hand, for the Cradle or Morse(molecular) types of motions the average distance

between the sites is larger, therefore the expected communication time is longer.

3. Double Morse potential Symmetrizing the Morse potential creates two separate ’pock-

ets’ around any nuclei where the electrons can stay. A similar picture is a chain of MnO2
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Figure 1.10: Time dependence for fidelity of the quantum state transfer through the chain of
L = 10 spins. Values of the parameters: γeh̄

2π B = −0.38meV, gMEE = 31.2keV
Cm , J1 = 7meV,

J2 = −7meV and for classical Newton’s Cradle, α = 3/2, kG = 9.33 × 109kg s−2, k = 3.18N
m−3/2. The time scale is h̄/J1.

where the oxides could be pushed out from one atom of Mn to another. The following mech-

anism is used together with an additional electric field pulse or another type of pulses such as

a phonon pulse, to achieve a temporal communication or a quantum state transfer blockade.

The Hamiltonian in comparison with (1.19) has a different potential

H(x, p) =
p2

2m
+ VDM , (1.22)

where VDM is a double potential constructed from two Morse potentials that reads

VDM (i, x) = D0

[
1− exp

(
−β(x− (2i− 1)x(0))

)]2 [
1− exp

(
−β(x− 2ix(0))

)]2
, (1.23)

where i is the index of the double potential between the two localized spins ~Si and ~Si+1. It

should be noted that each of the localized spins in this toy model has two Morse potentials.

The particle can stay in one of the valleys, see Fig. (1.11) which is related to the Morse

potential from left or right nuclei. If those nuclei are too close to each other, there might

be only one minimum of the common potential. The charges hop between the nucleus and

interact with each other

H(x, p) =

n∑

i=1

p2
i

2mi
+ V B

int + VDM + V F
int, (1.24)
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Figure 1.11: Construction of the double Morse potential VDM from two separate Morse po-
tentials with dissociation energy D0 = 1.99eV and β = 1.94Å−1 from left and right nucleus.
The solid line show an example of trajectory for charged particle with damping.

where V B
int and V F

int are repulsive interaction potentials between the nearby charged particles

V B
int = −exp(−a(xi − xi−1)2)

b(xi − xi−1)
, i > 1, (1.25)

V F
int = −exp(−a(xi+1 − xi)2)

b(xi+1 − xi)
, i < N. (1.26)

where a = 0.45Å
−1

, b = 0.01eV−1Å
−1

. The excitation is done by hand, by setting up the

velocity of the selected particle. The main advantage of this mechanism is that the atoms in

the spin chain are still localized. Fig. 1.12 presents with thick lines the trajectories of charges

and all double Morse potentials for a spin chain with N = 5 sites and the maximum interac-

tion potentials between the neighboring charges. The parameters of the Morse potential are

based on the Br2 molecule [30]. Figs. 1.13 show the transfer of the kinetic energy and the

same trajectories with exchanged axis without potentials. The small applied damping makes

it easier to achieve a Cradle effect or a motion in Morse potential. As it is shown in Fig. 1.14

without damping, the result is more similar to the dynamic within a single Morse potential,

but there is no fast thermalization. The kinetic energy is mainly transferred between the

charges at the end of the ’chain’.

This toy model is only to represent the schematic charge mediated the spin current which
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Figure 1.12: The trajectories of charged particles (solid lines) in double Morse poten-
tials (dashed line) with damping d = 0.01, initial velocity v1 = 2.2, D0 = 1.99eV, r0 = 2.28Å,
β = 4.432/r0. For interaction potential parameters a = 0.45Å

−1
, b = 0.01eV−1Å
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Figure 1.13: Damping d = 0.03, initial velocity v1 = 2.5, D0 = 1.99eV, r0 = 2.28Å, β =
4.432/r0. For interaction potential a = 0.45, b = 0.01.

possibly can happen within the environment. There are only electrons/oxides in motion

which belong to different atoms and therefore it can not be compared to previously men-

tioned mechanisms because the polarization vector is no longer time-dependent, but it has

an influence on the effective spin-interaction strength. Also, to see significant changes it has

to be mediated by collective excitations of many charges. This mechanism can inherit a sim-
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Figure 1.14: Without damping d = 0.0, initial velocity v1 = 2.0, D0 = 1.99eV, r0 = 2.28Å,
β = 4.432/r0. For interaction potential a = 0.45, b = 0.01.

ilar polarization scheme to the one occurring in a GaAs doped with Mn magnetic impurities

where the magnetization happens due to charges neighboring to the Mn atoms, which is ex-

plained in section 3.5. In modern research, a similar mechanism is observed for pyrocarbon

chain where the carbon dioxides are shared[31] or transfer the proton in another system[32].

1.4 Many-body localization

Nowadays, the fast and reliable quantum communication channel with high fidelity transfer

described in the previous section is only one of the most demanded features. Another one

is a device for storing quantum information. One can imagine that due to changes in the

properties of the environment, the localized spin-exchange interactions are reduced, so part

of the spin chains are separated and less interacting with the environment and therefore could

store information such as the states are magnetized in particular direction or not. However,

a difficulty for the applications is the demagnetization of those states [33].

We focus on localization in strongly interacting many-body systems with the short-range

interactions. A part of the system may act as own bath [13]. The statistical distribution of the

level spacings can be used to properly characterize if the system is in a localized phase. Let us

first consider several characteristic equalities with respect to the eigenvalues level spacings

in Hamiltonian (1.9) without time-dependent polarization term. It is important to note that
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the change of a uniform magnetic field Bz applied to all states, causes only a linear shift

of all eigenvalues in the same direction and does not affect the level spacings. A change of

the sign in nearest-neighbor J1 coupling is not important. Thus, level spacings are the same

for the ferromagnetic chain as for the antiferromagnetic chain in the case of Heisenberg

Hamiltonian. For a chosen direction of the electric field, a change of sign also is not relevant,

because the eigenvalues depend on D2. Therefore, it can be safely assumed that the change

of J1 sign leads fromH to−H, with no influence on the level spacings unless the next-nearest

neighbor coupling is finite. Following the work of Lutiz et. al. [14], and other cited papers
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Figure 1.15: Averaged level spacings 〈r〉 as a function of disorder h for L =
{9, 10, 11, 12, 13, 14}.

therein, the ratio of consecutive level spacings rn will be used instead of the traditional level

spacing δn

rn =
min (δn, δn+1)

max (δn, δn+1)
, (1.27)

where δn is the level spacing between En and En+1. The consecutive level spacing r for one

disorder realization is found as an average 〈rn〉. The disorder is introduced in z-component

of magnetic field Bz
i which can be different on each site of the system

Bz
i ∈ 〈−h, h〉 , (1.28)
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Figure 1.16: Influence of DMI, D = 0.2 is a shift from GOE to GUE statistics.

where each point of the curves from Figs. 1.15, 1.16 requires at least 4000 realizations at

fixed a disorder strength h.

The critical disorder hc above which a transition to MBL phase occurs can be estimated in

different ways. Since a numerical exact diagonalization is available only for a limited size of

the system (large Hilbert space 2L) and the system of interest are non-integrable, a finite size

scaling is needed.

For finding the level spacings only the biggest block of the Hamiltonian is taken into

account where Sz = 0 for even L or Sz = ±1 for odd. Where L is the number of sites in

the system. Recall that the generalized Hamiltonian (1.1) can be used for considering 1D

spin chain as well as 2D clusters or 3D structures also with periodic boundary conditions.

Currently, the only limitation for numerics is the number of atoms which can be taken into

the account. Still, for many-body localized phase, probably 1D chains are useful candidates.

Fig. (1.15) shows one of the easiest possibilities to identify the critical disorder. Increasing

the system size L the curves become steeper and crossings appear closer to one point which

can be taken as the critical disorder hc. In the ergodic phase, the statistical distribution of

level spacings should follow the Gaussian Orthogonal Ensemble(GOE; Wigner) 〈rn〉 ≈ 0.53
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which is the case shown in Fig. (1.15). The statistical distribution of the level spacings in

the non-ergodic localized phase follows a Poisson distribution[14]. Introducing DMI into

the system can change the statistics to that following the Gaussian Unitary Ensemble(GUE)

〈rn〉 ≈ 0.59 [34], but only for periodic spin chain [35] and with relatively large DMI D = 0.2

shown in Fig. (1.16), which is roughly ten times larger than normal. What comes out, the

non-periodic/open system had GOE type statistics. The system without next-nearest neighbor

interaction can be mapped to the Affleck Hamiltonian [35] by a rotation and the imaginary

part disappears while still keeping the same eigenvalues of the Hamiltonian. Following this
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Figure 1.17: The result of scaling procedure for the system with J1 interaction only.

way of finding the quantum phase transition, the range for critical disorder hc is too much

blurred. In work done by Luitz et. al. [14] uses the scaling procedure

f(h) = g
[
L1/ν(h− hc)

]
, (1.29)

allowing for the curves to coincide. The ν is a fitting parameter. It seems, that there might be

no global minimum while changing ν, although using similar parameters to those mentioned

in Luitz’s paper, the g polynomial function can be chosen differently with no unique results.

This scaling procedure can be used to minimize the total overlap of data sets which works

quite well for the system without DMI and J2 interactions, Fig. 1.17. When that is not the

case, a better way is to find the first derivative of 〈r〉 and to minimize the distances of their
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maxima. In fact for each point on Figs. 1.15, 1.16 about 10000 exact diagonalizations were
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Figure 1.18: Histogram of counts for disorder realizations for a system’s size of L = 10.

performed for obtaining a proper statistics, that allows to accurately estimate the averaged

r over many realizations at a fixed strength of the disorder h. The computational cost can

be reduced after the analysis of the histogram of counts for the distributions of r at a fixed

h, Figs. 1.18, 1.19. The transition point to the many-body localization phase can be distin-
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Figure 1.19: Histogram of counts for disorder realizations for a system’s size of L = 14.
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guished by a broadening of the histogram for a critical disorder. That is the new prospective

way of identifying the critical disorder hc for the transition to many-body localization phase

in a finite-size system.

A further example of the fitted statistical distributions at different disorders is presented

in Fig. 1.20. Numerical estimation of the full width at half height σ of each histogram of

0.3 0.35 0.4 0.45 0.5 0.55 0.6

di
so

rd
er

h

distribution r

Figure 1.20: The probability distribution of r at different fixed h. The cross symbols marks
the maxima and half heights of the distributions.

counts distributions was performed for different sizes of the system up to L = 14 with and

without DMI, Fig. 1.21. The width of the histogram of counts is broader in the close vicinity

of the critical disorder and σ(h) with increasing L is more narrow which means that for the

longer chains the critical MBL phase transition disorder is better defined. We see that the

fluctuations have the similar peaks positions where in a close vicinity to the critical disorder

the computed magnitudes are the largest but their calculation does not require any fitting

function to the histogram. The smoothness depends on the number of realizations. Also,

the quantum fluctuations decrease for a larger system size, which intuitively leads to the

conclusion that the MBL phase is a quantum effect and is important for small (L ' 12) spin-

1/2 systems. The strong disorder is important in a quantum device that could store qubit.

The quantum state cannot be transferred when a system is in Many-body localized phase and
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Figure 1.21: The enhanced broadening and quantum fluctuations as a function of disorder
strength. The graphs on the left are without DMI and on the right for D = 0.2.

thus it seems to be like without interactions.
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Summary

The generalized form of the quantum Heisenberg Hamiltonian for representing the exchange

coupling was defined. By using the continuity equation the precession and spin-current terms

were revealed. As an example, the quantum Heisenberg model was used in studying the

quantum state transfer. The extended calculation was done for frustrated spin-chain with

DMI-aka spin polarization. As the main result, the impact of the external static and time-

dependent electric field on the fidelity transfer was analyzed. Also, simplified classical toy

model was proposed for studying the charge mediated spin-torque on localized spins. After-

ward, the strong site-dependent disorder in the magnetic field was used to study the many-

body localization phase transition. A new way of estimating the critical disorder through

analyzing the quantum fluctuations was proposed and it shows the general validity also with

frustrated systems.



CHAPTER 2

The coupling of magnetic adatoms with

the surface states of the topological insulator

In the previous chapter 1, mainly chains of atoms were discussed. In each case, the spin

S = 1
2 was the property of interest. Using Heisenberg model (1.1), it was possible to get

a ground state of the system, its spin structure, precession of the spins in a chain with an

initially flipped state (one excitation), a transfer of the quantum state between two sites of

the chain and Many-body localization phase for highly excited states with a strong disorder

in magnetic field.

In this chapter, the main focus is concentrated on the surface states of a topological in-

sulator in the proximity of magnetic adatoms or multiferroic systems. The spin dynamics of

deposited multiferroic materials or spin chains can be influenced by the substrate properties.

As a result of this interplay, the interaction to the surface states of the topological insulator

has an additional coupling to the electric field. An applied external magnetic field perpen-

dicular to the surface of the topological insulator can open a band gap in the surface states.

However, the influence of the internal magnetic effects can have different consequences on

the electronic structure of the substrate. Perturbation theory provides an explanation of the

influence of adatoms (or multiferroic chain) on the energy dispersion. Also, the spin dynam-

ics is considered within the continuity equation. The mechanical force of the electron current

acting on the spin chain is derived.

31
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2.1 Insulating state

We distinguish two different origins of the spin current. The first one is related to the spin po-

larized charge-current. The second to the collective excitation of the localized spins (magnonic

spin current). The spin insulator means no charge-current but the spin-current [36] is finite.

In semi-conducting or insulating states the conductivity tends to zero at temperature T → 0K.

The strong compression may lead to the metallic state [37] and sufficiently diluted materials

may become insulating [38]. In a typical insulator material the energy bands namely the con-

duction and the valence bands are split by about ∼ 9eV band gap. For topological insulator,

in bulk behaves as an insulator or semiconductor with its band gap. Due to spin-orbit inter-

action, the surface states are not gapped and has a linear energy dispersion in the vicinity of

the Dirac point.

2.2 The massless Dirac point model

Let us first consider the model of surface states in the topological insulator. The two-dimensional

massless Dirac Hamiltonian [39] can be used as the simplest model for the surface states [40]

when the inversion and the time-reversal symmetry are preserved

Ĥ0 =
∑

k,α,β

ψ†~kα
hα,β(~k)ψ~kβ, (2.1)

where hα,β(~k) is the local Hamiltonian with α, β spin up or down states

hα,β(~k) = h̄vF (kxσx + kyσy) , (2.2)

where vF ∼ c/300 is the Fermi velocity, h̄ = 1. The linear energy dispersion in vicinity of

the Dirac point read ε(~k) = ±vF |k|. We will explore the role of the protection of the surface

states in topological insulator when brought into contact with the chiral multiferroic chain.

2.3 The perturbation theory

The interaction of the surface electrons with magnetic moments of adatoms can be consid-

ered in a perturbative way. The spin structure of the one-dimensional chain deposited on
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Figure 2.1: Schematic alignment of the spin texture along x-axis, while the external-electric
field applied along y-axis modifies the helicoid period and z-axis is perpendicular to the
surface of topological insulator.

the surface can be estimated by classical Monte Carlo simulation[41, 42] of the Heisenberg

Hamiltonian(1.1). The magnetization field originating from the multiferroic chain Fig. 2.1

with an applied external electric field along the y-axis has nearly zero z-component, and

therefore can be described by ~M(~r) = M0

(
cos( ~Q · ~r), sin( ~Q · ~r), 0

)
. In term of the effective

Hamiltonian

Ĥ = Ĥ0 + V̂ , (2.3)

where Ĥ0 is a 2D massless Dirac Hamiltonian(2.2) which describes the energy dispersion of

the surface electrons and the perturbation is caused by a multiferroic chain

V̂ = g
∑

n

(σxcosϕn + σysinϕn) , (2.4)

where g is the coupling constant of the surface electron to the adatoms effective helicoidal

magnetization field. To reduce the number of parameters, the system is scaled by vF , thus the

constant coupling parameter reads g → g/vF . The eigenfunctions of Ĥ0 take the following

form

∣∣∣ψj~k
〉

=
ei(kxx+kyy)

√
2Ω




1

zj
|~k|
k−zj


 , (2.5)

where k± = kx ± iky,
√

2Ω is a normalization factor and zj =





1, j =↑

−1, j =↓
, corresponds
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to the components of the spinor. To indicate the periodicity of the magnetization field the ~k

states are coupled with ~k ± ~Q states leading to six eigenfunctions

|Φ1〉 =
∣∣∣ψ↑~k
〉
, |Φ2〉 =

∣∣∣ψ↑~k+ ~Q

〉
, |Φ3〉 =

∣∣∣ψ↑~k− ~Q
〉
,

|Φ4〉 =
∣∣∣ψ↓~k
〉
, |Φ5〉 =

∣∣∣ψ↓~k+ ~Q

〉
, |Φ6〉 =

∣∣∣ψ↓~k− ~Q
〉
. (2.6)

In this basis the matrix elements are

〈
ψm~η

∣∣∣Ĥ
∣∣∣ψn~ξ

〉
= zm|~η| δzmznδ

(
~η − ~ξ

)

+g

[
zn
|~η|
η−
δ(ηx − ξx −Qx) + zm

|~ξ|
ξ−
δ(ηx − ξx +Qx)

]
, (2.7)

with the following matrix representation

Ĥ =




|~k| A∗ B 0 −A∗ B

A |~k + ~Q| 0 A 0 0

B∗ 0 |~k − ~Q| −B∗ 0 0

0 A∗ −B −|~k| −A∗ −B

−A 0 0 −A −|~k + ~Q| 0

B∗ 0 0 −B∗ 0 −|~k − ~Q|




, (2.8)

where

A = g
|~k + ~Q|
k+ +Qx

, B = g
|~k|
k+

. (2.9)

The eigensystem of the total Hamiltonian 2.3, 2.8 can be solved numerically.

|χn〉 =

6∑

p=1

αnp |Φp〉 , n = 1, ..., 6. (2.10)

The obtained energy spectrum presented on Figs. (2.2, 2.3) has a zero energy gap at ~k = 0

characteristic for topological insulators with linear dispersion even with a non-zero g coupling

constant. When it comes to g = 0 the bands labeled with 3 and 4 are equivalent to linear

dispersion ε±(~k) = ±vF |~k| for the Hamiltonian(2.2) H0. The periodicity of the system in the

direction of the helicoid depend on Q and defines the edge of the Brillouin zone at kx = Q/2.
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Figure 2.2: The energy dispersion En as a function of kx with set of parameters Q = 0.2 and
ky = 0, g = 0.02.

The coupling of the surface states to the spiral magnetization field is mainly pronounced at

this edge.

In the same basis(2.6) the components of electrons spin polarization are obtained in the

following form for the x-component of the spin 1/2 operator

sx =
〈
ψm~η |σx|ψn~ξ

〉
= δ

(
~η − ~ξ

)[
zn
ξx

|~ξ|
δzmzn +zn

iξy

|~ξ|
(1− δzmzn)

]
, (2.11)

and the matrix representation for x-component of the spin operator is

sx =




kx
|~k|

0 0 − iky

|~k|
0 0

0 kx+Qx

|~k+ ~Q| 0 0 − iky

|~k+ ~Q|
0

0 0 kx−Qx
|~k− ~Q|

0 0 − iky

|~k− ~Q|

iky

|~k|
0 0 −kx

|~k|
0 0

0
iky

|~k+ ~Q|
0 0 −kx+Qx

|~k+ ~Q|
0

0 0
iky

|~k− ~Q|
0 0 −kx−Qx

|~k− ~Q|




. (2.12)
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Figure 2.3: The energy dispersion En as a function of ky with the set of parameters Q = 0.2
and kx = 0, g = 0.05.

For the y-component of the spin operator

sy =
〈
ψm~η |σy|ψn~ξ

〉
= δ

(
~η − ~ξ

)[
zm

ξy

|~ξ|
δzmzn +zm

iξx

|~ξ|
(1− δzmzn)

]
, (2.13)

and the corresponding matrix representation reads

sy =




ky

|~k|
0 0 ikx

|~k|
0 0

0
ky

|~k+ ~Q|
0 0 i(kx+Qx)

|~k+ ~Q|
0

0 0
ky

|~k− ~Q|
0 0 i(kx−Qx)

|~k− ~Q|

− ikx
|~k|

0 0 − ky

|~k|
0 0

0 − i(kx+Qx)

|~k+ ~Q|
0 0 − ky

|~k+ ~Q|
0

0 0 − i(kx−Qx)

|~k− ~Q|
0 0 − ky

|~k− ~Q|




. (2.14)

The simplest z-components

sz =
〈
ψm~η |σz|ψn~ξ

〉
= δ

(
~η − ~ξ

)
(1− δzmzn), (2.15)
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Figure 2.4: The averaged value of spin polarization ~s as a function of coupling constant g at
kx = ky = 0.02 and Qx = 0.2. The z-component of spin polarization sz has zero mean value.

with its matrix form

sz =




0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0




. (2.16)
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The averaged values of spin polarization ~s are present in Fig. 2.4. Each of the lines corre-

sponds to different eigenstates of the Hamiltonian(2.8) marked by the same colors and or-

dering like in Figs. (2.2,2.3). The spin polarization depends on n and k and is scaled linearly

with the period of helicoid Qh. Raising the strength of the coupling g to the magnetization

field decreases the average spin polarization of the x and y components, while along z-axis it

does not depend on g.

2.4 Spin density dynamics

Let us consider the spin dynamics of the substrate conductance electrons with the coupling

to the magnetic adatoms. The macroscopic variation of the spin density of charges reads

∂

∂t
ψ†σαψ =

i

h̄
ψ†
[
Ĥ, σα

]
ψ, (2.17)

where σα are Pauli matrices and further α, β, γ indicate spin component. After inserting

into Eq. (2.17) the unperturbed Hamiltonian Ĥ0(2.2) for the two-dimensional system we

integrate over the small area Ω

∂

∂t

∫

Ω

d2~rψ†σαψ =

∫

Ω

d2~r

(
∂ψ†

∂t
σαψ + ψ†σα

∂ψ

∂t

)
, (2.18)

and differentiate with respect to time t. Therefore, let consider separately the differentials

over the time for the wave function (ih̄∂ψ∂t = Ĥ0ψ) and its hermitian conjugation terms with

unperturbed Hamiltonian Ĥ0 = −ivFσβ∇β, allowing to write

ih̄∂ψ∂t = −ivFσβ (∇βψ) =⇒ ∂ψ
∂t = −vF

h̄ σβ(∇βψ),

−ih̄∂ψ
†

∂t = ivF
(
∇βψ†

)
σβ =⇒ ∂ψ†

∂t = −vF
h̄ (∇βψ†)σβ.

(2.19)

Eq. (2.18) thus reads

∂

∂t

∫

Ω

d2~rψ†σαψ = −vF
h̄

∫

Ω

d2~r
[(
∇βψ†

)
σβσα + ψ†σασβ (∇βψ)

]
, (2.20)

leading to spin density dynamic equation

∂sα
∂t

+∇β · jαβ = −τα, (2.21)
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where the spin density is sα = ψ†σαψ and j is spin current

jαβ = δαβ
vF
2h̄
ψ†ψ, (2.22)

in the topological insulator associated with the free carriers angular momentum along the

wave vector ~k. Finally, τ is the relaxation term

τα =
ivF
2h̄

εαβγ

[(
∇βψ†

)
σγψ − ψ†σγ (∇βψ)

]
+
gMβ

h̄
εαβγψ

†σγψ, (2.23)

where the last term in Eq. (2.23) is due to the V̂ (2.4) interaction with the magnetic adatoms

that control the relaxation rate. The physical meaning of the relaxation term can be easily

interpreted for an isolated system, where the coupling g = 0 is neglected. In this case, the

relaxation term describes the decay rate of states that are forbidden due to the properties

of the Hamiltonian (2.1). The opposite sign indicates that it can also act as a pumping

mechanism.

2.5 Spin-current induced force

Let us inspect different cases of the spin current for the conduction electrons in the topolog-

ical insulator. Firstly, in the case of partly or completely polarized charge-current, the spin

current is non-zero. Secondly, the spin-current is finite in a case of the charge currents that

compensate in the average, but with an imbalance in the spin-polarization left. Another situ-

ation when the charge current is unpolarized, and in average the spin current is zero. In the

last scenario, that holds unless the properties of the material changes. The possible mech-

anisms are to control material anisotropies by strain, affect by local or external fields, or in

general by any of the properties of the environment that would lead in average to electrons

spin imbalance. Finally, generating spin inequality is possible by breaking of the symmetry

or via different types of junctions [43]. For example, one way is to inject spin-polarized

current through the junction with a metal [44]. An alternative way is to thermally induce

spin-current as reported for multilayer ferro/non-magnetic system[45].

In the studied case, the coupling of the electrons to the localized spins forming the heli-

coidal spin texture can substantially influence the surface states of the topological insulator.
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On the other hand, the spin torque exerted by the charge carriers acts on the spin structure

of the multiferroic chain

Fx = −ψ† dV̂
dx

ψ. (2.24)

Under the influence of weak electric field ~ε in a linear response approximation[16, 17] the

total force reads

F totx = −evE
2π

Tr
(
F̂x Ĝ

R σx Ĝ
A
)
, (2.25)

where F̂x = gM0Q [σx sin(Qx)− σy cos(Qx)] is the force operator and ĜR,A are respectively
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Figure 2.5: Total force as a function of the coupling g for Q = 0.5 and Γ = 0.002.

the retarded and the advanced Green’s functions

ĜR,A =
(
µ− Ĥ ± iΓ

)−1
, (2.26)

where Γ is the relaxation decay rate and µ is the chemical potential. The non-zero chem-

ical potential corresponds to an applied bias or any sources of charge density imbalance.

Fig. (2.5) shows for µ 6= 0 the total mechanical force on the localized spins texture. For µ = 0

there is no force because in the studied example the generation of the spin torque is due to

free carriers that can transfer an angular momentum by the spin-orbit coupling. The strength

of the total force also depends on the decay rate.
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Summary

The massless Dirac point model was used to calculate the energy dispersion for the surface

states of the topological insulator. The symmetry of such system is protecting the Dirac

point and thus can resist small perturbations. The weakly interacting magnetic impurities

deposited on the surface of the topological insulator might not have an influence on the

electronic structure. It is more probable that the spin texture of those impurities is resolved by

the properties of the substrate. On another hand, strongly interacting ferromagnetic dopants

may open a band gap. In the case of a non-collinear magnetic structure formed on the surface,

such as LiCu2O2 which is a chiral multiferroic system, it acts as a perturbation introducing a

small interaction of the conductance electrons with the effective spiral in-plane magnetization

field. Therefore, it required an analysis of the spin density dynamics including the interaction

with the magnetic impurities which joins the relaxation/pumping term. It was checked that

the spin torque generated by the free carriers interacting with magnetic impurities exerts a

mechanical force on the localized moments, allowing to control the spin-spin interactions.

A non-collinear spin texture deposited on the topological insulator surface does not lift the

Dirac point.





CHAPTER 3

Low-dimensional III-V dilute magnetic

semiconductors

In the chapter 1, different possibilities for spin dynamics were considered in finite-size struc-

tures. The main goal was to analyze possible scenarios to control the specific time of the

quantum state transfer between two nodes of the system. In semiconductor physics, a similar

behavior is achieved by controlling the spin degree of freedom [46]. The magnetic moments

of the carriers in semiconductor system can control the magnetic dynamics of the localized

spins, similarly as discussed in the previous chapter.

The primary tool for controlling the magnetic properties is doping with magnetic impuri-

ties. Insertion of dopants into pure semiconductors is not of the main interest since they turn

back to the undoped pure semiconductors for high enough temperatures. Another class of

semiconductors consists of elements which belong to different groups of the periodic table(II-

VI, III-V), e.g. Arsenic(As) is an element of Group V and has one extra electron that can be

freed and lead to conduction. Gallium(Ga) is an element of Group III and lacks one electron.

The GaAs doped with Mn atoms belongs to the class of dilute magnetic semiconductors. The

GaAs without Mn does not exhibit ferromagnetism. However, they can be heavily doped with

magnetic impurities(mostly Mn) resulting in the most relevant group of dilute magnetic semi-

conductors, also called semimagnetic semiconductors. Moreover, the Mn atom introduces a

hole to the system that acts as a carrier.

This chapter elaborates on the fundaments to the spin-based transport in semiconductors.

43



44 CHAPTER 3. LOW-DIMENSIONAL III-V DILUTE MAGNETIC SEMICONDUCTORS

As a starting point, a detailed bulk analysis of GaAs is provided, this choice was made due to

a strong intrinsic spin-orbit coupling. The origin and the influence of the magnetization field,

as well as the strain and the Rashba spin-orbit interaction, are briefly discussed. It is followed

by studies towards spintronic devices of magnetically doped low-dimensional GaAs layers, in

which at least one of the dimensions leads to a classification between the macroscopic and

microscopic system, where the mean free path is comparable to the system’s size. In low-

dimensional zinc-blende structures, the strengths of the spin-orbit coupling of Dresselhaus

and Rashba terms could be comparable. This is important to establish the persistent spin helix

state1. Therefore, the possibility of engineering one of the couplings strengths is an important

task for an ongoing research with applications in spintronic devices(spin-orbitronics).

3.1 Different components of spin-orbit interactions

The spin-orbit coupling originates from the breaking of the symmetry and the influence of

the effective field. Under this circumstances the spin has different g-factor than free electron

spin.

A magnetic field ~B acts with the Lorentz force ~F = −e~p× ~B/m on a charged particle with

momentum ~p in addition to the Zeeman energy µB~σ · ~B. In following subsections, we will

consider a variety of spin, orbital phenomena controlled by a magnetic field.

Origin of spin-orbit coupling Hamiltonian In an atomic system, the spin-orbit term from

a non-relativistic approximation to the Dirac equation [47, 48] reads

Hso = − h̄

4m2
0c

2
~σ · ~p× (∇V0) , (3.1)

where V0 is the effective Coulomb potential, m0 is the free electron mass, c is the speed

of light. For nearly free electrons the energy gap 2m0c
2 dominate the effect of spin-orbit

coupling.

Dresselhaus spin-orbit coupling In solids, the charge carrier motion is characterized by

energy bands E
n~k

, where n is the band index, and ~k is the wave vector. The spin-orbital

1The electron spin undergoes a controlled rotation as a function of position [4]



3.1. DIFFERENT COMPONENTS OF SPIN-ORBIT INTERACTIONS 45

coupling is associated with the lack of space inversion symmetry causing Ek↑ 6= Ek↓. The

Hamiltonian with the Dresselhaus spin-orbit coupling [49] for a bulk system reveals the lack

of inversion symmetry reads

He =
h̄2k2

2me
+

1

2
Ωα
D · σ, (3.2)

where α is {x, y, z} component of the cubit term [48]

Ωx
D = 2γDkx(k2

y − k2
z), γD = 2η/

(
3mcv

√
2meEg(1− η/3)

)
, (3.3)

and the z-component of the linear Dresselhaus term [4]

Hz
D = β (kyσ

y − kxσx) . (3.4)

An important consequence of the Dresselhaus spin-orbital coupling is the anisotropy of the

energy bands.

Strain-induced spin-orbit coupling[48] In a semiconductor, such as for instance GaAs,

where the lack of inversion symmetry is present, the stress allows controlling the strength

of the bulk Dresselhaus coupling and the Rashba spin-orbit coupling in thin layers. Uniform

stress causes the same deformation of each unit cell of the crystal. As a result, the crystal

will change its shape. Under particular circumstances, the strain tensor can be used to de-

scribe the influence of a uniform hydrostatic pressure, deformation caused by temperature or

piezoelectric effect. All of those can lead to different phase transitions, and in principle, it is

a great tool to adjust the interplay between the effective Dresselhaus and Rashba spin-orbit

couplings with significant physical consequences. The spin-helix occur for the comparable

strength of the Dresselhaus and Rashba spin-orbit couplings [4].

Rashba spin-orbit coupling Seemingly, the influence of an electric field ~E can be mapped [9]

to an effective magnetic field ~Beff ∼ ~E× ~p/mc2, where c is speed of light. Thus, the Zeeman

energy with the dependence on the momentum reads µB
(
~E × ~p

)
· ~σ/mc2.

The Rashba spin-orbit coupling is present in materials with structural inversion asymme-

try (e.g. in close vicinity to the interfaces). When the symmetry is broken along z-axis, the

effective Bychkov-Rashba spin-orbit coupling reads [50]

HR =
αR
h̄

(~z × ~p) · ~σ, (3.5)
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where αR is the strength of the coupling and ~σ are Pauli matrices for the real spin. The

additional pseudospin operators can be introduced that acts on lattice sites. That is relevant

for the structure induce spin-orbit coupling [51]. As an example, in a graphene single-layer

structure the extrinsic spin-orbit coupling emerge from the interface with the substrate. That

allows to affect the spin dynamic, but even the perfect substrate can be a source of disorder

in spin-orbit coupling [52].

3.2 Energy bands in pseudopotential framework

The semiconductors have very complicated non-parabolic top valence bands and the simple

electron gas models can not be used because of the strong inter-subband coupling. Another

way is to assume that the core electrons are tightly-bond that allows for simplified analysis of

the core orbitals [53]. In this approach, the valence and conduction electrons are influenced

by the effective potential. It can account for the local effects of the exchange and correlations

potentials, and it leads to the empirical pseudopotential method which was developed by

Phillips et. al. [54, 55, 56]. The pseudopotential Hamiltonian for a crystal has the following

form in wave vector space representation [57]

Ĥ = Vij + δij
h̄2

2m0

∣∣∣~k + ~Ki

∣∣∣
2
(

2π

a0 × 10−10

)2

, (3.6)

where ~K is the reciprocal vector and Vij are offdiagonal elements. After Cohen et. al. [58]

the pseudopotential form factors for GaAs in rydbergs unit (1 Ry ≈ 13.6059 eV) are

a) symmetric

V S
3 = −0.23, V S

8 = 0.01, V S
11 = 0.06, (3.7)

b) antisymmetric

V A
3 = 0.07, V A

4 = 0.05, V A
11 = 0.01, (3.8)

the coefficients can be found empirically, where S and A are components of the Vij → V ~Km ,

that has the following form

V ~Km = V S
~Km

cos
(

2π ~Km · ~R
)

+ iV A
~Km

sin
(

2π ~Km · ~R
)
, (3.9)

where ~Km is the integer number, ~R = a0{1/8, 1/8, 1/8}, is the vector between Ga and As
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Table 3.1: High symmetry points(HSP) for fcc

HSP in Cartesian Coordinates

Γ (0, 0, 0)

X
(

0, 2π
a0
, 0
)

L
(
π
a0
, πa0 ,

π
a0

)

K=U
(

3π
2a0
, 3π

2a0
, 0
)

W
(
π
a0
, 2π
a0
, 0
)

atoms in fcc unit cell of GaAs and a0 is the corresponding lattice constant. The antisymmetric

term enters Eq. (3.9), because of the two different atoms in the unit cell [57].

In this work, the pseudopotential framework is used only as a reference for band struc-

ture calculation since it consist of non-unique coefficients Vij . It is difficult to introduce the

external fields to the system, strain or spin-orbit interactions and find their influence on the

potential Vij without experimental data.
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V
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k

Figure 3.1: The calculated electronic band structure for GaAs is obtained from solving eigen-
value problem of pseudopotential Hamiltonian without spin-orbit interaction. The high sym-
metry points are explained in the Table 3.1.
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3.3 Kane model for top valence bands

Let us consider another method that allows to introduce strain and averaged magnetization

to the system. The k·p method similarly like as the pseudopotential method does not require

many parameters [47, 60, 61, 62]. We are mainly interested in the top valence band structure

in close vicinity to the Γ-point, Table. 3.1. It was shown by Dietl, et. al. [59] that the 6-

bands Hamiltonian is the smallest model which describes accurately top valence bands of

III-V semiconductor materials.

ĤKane =



Ĥv Ĥv,sv

Ĥ†v,sv Ĥsv


 , (3.10)

where Ĥv is the Luttinger-Kohn Hamiltonian [63] for Γ8-valence bands, four-fold states, ψ1 =

|3/2, 3/2〉, ψ4 = |3/2,−3/2〉 heavy-holes bands(HH) and ψ2 = |3/2, 1/2〉, ψ3 = |3/2,−1/2〉

light-holes bands(LH), Ĥsv is the Hamiltonian for Γ7, two-fold states, ψ5 = |1/2, 1/2〉, ψ6 =

|1/2,−1/2〉 split-off bands and Ĥv,sv describes the interaction between the top valence-bands

with split-off bands. The strength of the spin-orbit interaction is determined by the splitting

parameter(split-off band gap) present on the diagonal of Hsv. The ĤKane Hamiltonian in the

paper [59] is called ~k · ~p matrix. This Hamiltonian allows to compute the basic energy bands

structures and to calculate the effective masses of the holes in the vicinity of the Γ-point.

ĤKane = −E0




P +Q L M 0 iL/
√

2 −i
√

2M

L∗ P −Q 0 M −i
√

2Q i
√

3/2L

M∗ 0 P −Q −L −i
√

3/2L∗ −i
√

2Q

0 M∗ −L∗ P +Q −i
√

2M∗ −iL∗/
√

2

−iL∗/
√

2 i
√

2Q i
√

3/2L i
√

2M P + ∆ 0

i
√

2M∗ −i
√

3/2L∗ i
√

2Q iL/
√

2 0 P + ∆




,(3.11)
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where E0 = h̄2

2m0
≈ 3.81eV Å2, m0 is the free electron mass, and

P = γ1(k2
x + k2

y + k2
z),

Q = γ2(k2
x + k2

y − 2k2
z),

L = −2
√

3iγ3(kx − iky)kz,

M =
√

3
[
γ2(k2

x − k2
y)− 2iγ3kxky

]
,

(3.12)

with the Luttinger parameters γ1 = 6.85, γ2 = 2.1, γ3 = 2.9 and ∆ = ∆so/E0, ∆so = 0.34eV

is the split-off spin-orbit band gap shown on the Fig. 3.2. The spin-orbit gap ∆so indicates the

Pauli spin-orbit interaction (see section 3.1) due to the strong Coulomb potential in atomic

core and can be theoretically estimated [47] as

∆so =
1

2
(1− fi) ∆Ga +

1

2
(1 + fi) ∆As, (3.13)

where fi = 0.31 is the semiconductor ionicity [64], ∆Ga = 0.18eV and ∆As = 0.43eV. The

coefficients used in our computations are taken from the paper of Dietl et. al. [59]. The
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K ←− |~k| (2π/a0) −→ X

Figure 3.2: The electronic band structure for GaAs obtained by solving the eigenvalue prob-
lem of the six-bands Kane model is shown as the solid lines. The dashed lines correspond
to bands obtained from the spherical effective mass approximation. The x-axis is scaled to
represent the distance from Γ-point.



50 CHAPTER 3. LOW-DIMENSIONAL III-V DILUTE MAGNETIC SEMICONDUCTORS

Hamiltonian 3.11 is written in Bir-Pikus [59, 60] basis

φ1 =
1√
2

(X + iY )α,

φ2 =
i√
6

[(X + iY )β − 2Zα] ,

φ3 =
1√
6

[(X − iY )β + 2Zβ] ,

φ4 =
i√
2

(X − iY )β,

φ5 =
1√
3

[(X + iY )β + Zα] ,

φ6 =
i√
3

[− (X − iY )α+ Zβ] ,

(3.14)

where αT = (1, 0), βT = (0, 1) and the superpositions of X, Y , Z can be expressed in term

of the spherical harmonic Y m
l with angular momentum l = 1. Solving the characteristic

equation det
(
H(~k)− Iλ

)
= 0 for different wave-vector ~k the non-parabolic band structure

is obtained and presented in Fig. 3.2. Fitting with parabolic relation in close vicinity of

the Γ-point towards the X-direction allows to compute the effective mass for holes in GaAs,

with mHH = 0.51m0, mLH = 0.082m0, mSO = 0.15m0, (taken from [65]). As can be

seen from Fig. 3.2 the non-parabolic and anisotropic character of the band structure requires

the introduction of effective masses for all bands depending on the crystal orientation. The

disproportion of Luttinger parameters γ2 6= γ3 characterize the anisotropy strength of valence

bands. In the next sections, the term µ chemical potential appears quite often in the sense of

energy above which all states in the valence bands are filled with holes, or it is named as an

isoenergy when this energy surface is discussed.

Matrix form of orbital angular momentum operators

Let us define the general form of the orbital angular momentum operators in spherical coor-

dinates

Lα =

π∫

0

sin(θ)

2π∫

0

φ∗i · L′α · φj dϕ dθ, (3.15)



3.3. KANE MODEL FOR TOP VALENCE BANDS 51

where L′α reads [66]

L′x = ih̄

(
sin(ϕ)

∂

∂θ
+ cot(θ) cos(ϕ)

∂

∂ϕ

)
,

L′y = ih̄

(
− cos(ϕ)

∂

∂θ
+ cot(θ) sin(ϕ)

∂

∂ϕ

)
,

L′z = −ih̄
∂

∂ϕ
.

(3.16)

Thus the x-component of the orbital angular momentum operator in the matrix form is

Lx = h̄




0 i√
3

0 0 − 1√
6

0

− i√
3

0 2
3 i 0 0 1

3
√

2

0 −2
3 i 0 i√

3
− 1

3
√

2
0

0 0 − i√
3

0 0 1√
6

− 1√
6

0 − 1
3
√

2
0 0 −2

3 i

0 1
3
√

2
0 1√

6
2
3 i 0




, (3.17)

then the y-component of the operator is

Ly = h̄




0 1√
3

0 0 i√
6

0

1√
3

0 2
3 0 0 − i

3
√

2

0 2
3 0 1√

3
− i

3
√

2
0

0 0 1√
3

0 0 i√
6

− i√
6

0 i
3
√

2
0 0 −2

3

0 i
3
√

2
0 − i√

6
−2

3 0




, (3.18)
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and the z-component is

Lz = h̄




1 0 0 0 0 0

0 1
3 0 0 −

√
2

3 i 0

0 0 −1
3 0 0

√
2

3 i

0 0 0 −1 0 0

0
√

2
3 i 0 0 2

3 0

0 0 −
√

2
3 i 0 0 −2

3




. (3.19)

The matrix representation of the orbital angular momentum operators in the basis of the

Hamiltonian is helpful in considering different spin-orbit interaction terms.

Fermi surface/energy, isoenergy

At absolute zero temperature, the Fermi energy is the highest occupied state[38]. In the

following sections from the calculation at T = 0K depending on the chemical potential

different isoenergies are analyzed.
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Figure 3.3: Isoenergy surface for chemical potential µ = −28.5meV, where ~k was scaled with
2π/a0 factor and a0 = 5.65 is the GaAs lattice constant.
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The isoenergy surface for two-fold bands of heavy holes and two-fold bands of light-holes

at µ = −28.5meV are shown in Fig. 3.3. Since the local effective mass for HH, is bigger

than for LH, the outer isoenergy surface is for HH and the inner surface is for LH. Due to

µ > −∆so the SO bands are entirely filled with electrons, and their surface is not present at

this chemical potential. It is possible to compute the hole concentrations and the total energy

of the system from such surfaces and volumes in the three-dimensional case.

Hole concentration

The hole concentration in a semiconductor depends on various internal as well as external

factors. Mainly, the chemical potential has a direct influence on the hole concentration. On

the other side, the dependency of the energy bands on strain and magnetization provides a

tool to study a wide range of different types of anisotropies. The hole concentration contri-

bution follows from an integration over the first Brillouin zone(1BZ) [67]

p =
1

(2π)3

∑

n

∫

1BZ

d~k θ
(
ε
n~k
− µ

)
, (3.20)

where θ(x) is the Heaviside function and the integration domain depends on the lattice con-

stant. The fully occupied bands with holes, for a0 = 5.65Å give the maximum of the hole

concentration pmax = 1.33× 1023 states/cm3. The hole concentration for the chemical poten-

tial µ = −28.5meV in GaAs is p = 1.27 × 1019cm−3, see Fig. 3.3. The hole concentration for

the shown two-dimensional layer is pxy = 7.54× 1012cm−2. The density of states can be cal-

culated by taking the derivative of hole concentration with respect to the chemical potential

dp
dµ .

Due to the specific boundaries of the integration domain, the different integration schemes

could be used to approximate the hole concentration. Especially in 3-dimensional integration,

the fast convergence of the algorithm plays a crucial role. At first prerequisite, computations

are performed to reduce integration domain if possible. With this step for almost all methods,

the simplest integration schemes are Monte Carlo and extended trapezoidal rule. The Monte

Carlo method gives the rough estimation. However, it is not possible to use it for analyzing the

influence of small perturbations, weak fields, and deformations. The extended trapezoidal

rule gives much better results, but it is computationally demanding to handle multidimen-



54 CHAPTER 3. LOW-DIMENSIONAL III-V DILUTE MAGNETIC SEMICONDUCTORS

0

5

10

15

20

25

30

35

40

45

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
0

5

10

15

20

p
(1
0
2
1
cm

−
3
)

de
ns

it
y

of
st

at
es

(
10

2
1
eV

−
1
cm

−
3
)

µ(eV)

p
DOS

Figure 3.4: The hole concentration and corresponding density of states as a function of the
chemical potential.

sional integrations. The grid of extended trapezoidal rule can be adaptively reduced, and

this idea will be further used in developing better performing algorithm. If the uniform grid

is used with this method, the convergence might be not reached due to round-off errors. In

a case of spherical integration, an algorithm with the Fibonacci series [68] works very well

for small hole concentrations where only the HH bands contribute. This algorithm has an

advantage in point sampling in comparison to the standard spherical integration scheme.

In general, polar and spherical integrations are suitable for smooth functions. In the next

sections, many cases of sharp edges between the nearly crossing(anti-crossing) bands lead

to slower convergence of such algorithms. Also, that is the reason why most of the numeri-

cal libraries for integration are not useful even in one-dimension, for instance, QUADPACK.

Depending on the complexity of those edges it is sometimes possible to achieve sufficient

precision with reasonable computation time. In mesh generating subroutine, little smoothing

of the edges can be applied for obtaining a better quality mesh that does not omit parts of the

edges. The final integration is taken over triangles in 2D integrations and can be done over

tetrahedrons in 3D integration scheme. In the final step, the triangles can be additionally

categorized depending on the groups to which belongs(inside of the volume, outside, and to
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the edges). The procedure of mesh generation can be stopped after the ratio between the

area of edge triangles is much smaller than the area of inside triangles. More technical details

about the used weights are described in the appendix A.

Total energy

In general, the description of the system’s total energy can be very complex. As it is presented

in further sections, the analysis of the total energy variation on two constraints is considered.

Firstly, a constant hole concentration which is a conventional constraint for bulk systems, the

hole concentration could be determined by the amount of Mn dopants. Secondly, constant

chemical potential which is more appropriate in thin layers.

The total energy of the hole system may be described as follows [67]

E =
1

(2π)3

∑

n

∫

1BZ

d~k ε
n~k
θ
(
ε
n~k
− µ

)
, (3.21)

which with Eq. (3.20) allow to numerically determine the dependency on the hole concen-

−80

−60

−40

−20

0

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0

E(
1
0
2
1
eV

cm
−
3
)

µ(eV)

Figure 3.5: The total energy of the hole system as a function of chemical potential.

tration which requires solving a parametric integration to find the chemical potential µ for a

given hole concentration p. In the integrand, an additional term can be included for the total

energy of the electrons ε
n~k

. In most considered cases this will lead only to a linear shift of
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Figure 3.6: The total energy of the hole system as a function of hole concentration.

the results. The total energy of the system is

E = − 1

(2π)3

∑

n

∫

1BZ

d~k ε
n~k

[
1− θ

(
ε
n~k
− µ

)]
. (3.22)

From Eqs. (3.20, 3.21) the dependencies on chemical potential and the hole concentration

are present in Figs. 3.5, 3.6. Since, all of the GaAs valence bands are negative
(
ε
n~k
< 0
)

using

Eq. (3.21) the total energy of the hole system is always negative. In further sections, those

results are used to describe the variation of the total energy (E−E0) for a better understanding

of the influence of strain or magnetization on the properties of the system.

3.4 Strain-induced effects

The strain can be seen as a result of the interaction with a substrate on which semiconductor

is placed, lattice mismatch, external forces or pressure, dislocations, cracks, vacancies, atoms

displacements and others. Putting in a dopant is another way. In general, the strain term in

the Hamiltonian can be derived using the mapping recipe for Luttinger-Kohn Hamiltonian→



3.4. STRAIN-INDUCED EFFECTS 57

ĤKane P Q L M Ĥε Pε Qε Lε Mε

γ1 - av +

γ2 - - b + +

γ3 + + d - -

Table 3.2: Check of signs in Luttinger-Kohn→ Bir-Pikus strain Hamiltonian recipe.

Bir-Pikus type of strain Hamiltonian [69]





− h̄2

2m0
γ1 → av,

− h̄2

2m0
γ2 → b

2 ,

− h̄2

2m0
γ3 → d

2
√

3
,

(3.23)

where av = 1.16eV, b = −1.7eV, d = −4.55eV, are deformation potentials for GaAs [70] and

kx, ky, kz are replaced by the corresponding components of the strain tensor u

u =




uxx uxy uxz

· uyy uyz

· · uzz



. (3.24)

The final Hε strain Hamiltonian with use of the signs Table 3.2, denotes[60]

Ĥε =




Pε +Qε Lε Mε 0 iLε/
√

2 −i
√

2Mε

L∗ε Pε −Qε 0 Mε −i
√

2Qε i
√

3/2Lε

M∗ε 0 Pε −Qε −Lε −i
√

3/2L∗ε −i
√

2Qε

0 M∗ε −L∗ε Pε +Qε −i
√

2M∗ε −iL∗ε/
√

2

−iL∗ε/
√

2 i
√

2Qε i
√

3/2Lε i
√

2Mε Pε 0

i
√

2M∗ε −i
√

3/2L∗ε i
√

2Qε iLε/
√

2 0 Pε




, (3.25)
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where the corresponding parameters are

Pε = av(uxx + uyy + uzz), (3.26)

Qε =
b

2
(uxx + uyy − 2uzz), (3.27)

Lε = −id(uxz − iuyz), (3.28)

Mε =

√
3

2
b(uxx − uyy)− iduxy. (3.29)

Due to terms on diagonal of the Hamiltonian (3.25) we can easily see that the strain will lift

the degeneration of the states of the heavy holes and the light holes bands.

Band structure

Any type of uni/bi-axial strain decreases the band gap of a semiconductor between the lowest

conduction and the top valence band. The sign indicates a compressive and a tensile type of

strain, see Figs. 3.7, 3.8. In the case of a tensile type of strain (uxx > 0) the two-folded split-
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Figure 3.7: The influence of strain on the energy dispersion with uxx = 0.01 and uxx = 0.05
and the deformation potentials for GaAs.

off bands are the least affected. The other four bands, except a shift towards the conduction

bands, are essentially changed in the vicinity of Γ-point. Due to the compressive type of

strain (uxx < 0) the top valence bands are not only split into two-folded heavy-hole and light-
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Figure 3.8: The influence of strain on the energy dispersion with uxx = −0.01 and uxx =
−0.05 and the deformation potentials for GaAs.

hole bands, but also their crossing can occur depending on the crystallographic orientation.

In Fig. 3.8, the degeneracy of the bands appears close to kx = 0.032π
a0

and kx = 0.062π
a0

depending on the strength of the strain. This indicates that the degeneracy of the top valence

bands is displaced from the Γ-point due to the compressive uni-axial strain while a tensile

deformation lifts the degeneracy.

This discrepancy is directly connected to the asymmetric character of the top valence

bands splitting as a function of the strain strength, Fig. 3.9. Biaxial strain leads to symmetric

splitting at the Γ-point for compressive or tensile deformation. For a weak strain, the split-

off gap ∆so can be decreased. Due to symmetry, the uxx, uyy and uzz types of strain are

equivalent and they have the same influence on the Γ-point presented in Fig. 3.9. Similarly,

the Fig. 3.10 shows an influence of corresponding equivalent uxy, uxz and uyz types of strain.

Section 3.5 shows the magnetic anisotropy depends on applied deformation.
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Figure 3.9: Top valence bands splitting with uni-axial strain at Γ-point.
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Figure 3.10: Top valence bands splitting with bi-axial strain at Γ-point.

Isoenergy surface

In Fig. 3.11, the uni-axial strain uxx stretches the isoenergy surface along the x-axis and

squeezes in all the other directions increasing the anisotropy of the band structure and the

hole concentration with respect to the unstrained system (for uxx = 0.01 at µ = −28.5meV,
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p = 2.31× 1019cm−3 and pxy = 1.13× 1013cm−3). Within this model, it is possible to include
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Figure 3.11: The uni-axial strain influence on the isoenergy surface at µ = −28.5meV with
a tensile strain uxx = 0.02 will result in hole concentration p = 3.84 × 1019cm−3 and pxy =
1.55× 1013cm−3.

any small deformation effect related to linear elasticity. Realistically, to include the effect of

strain induced by a lattice mismatch with the substrate material or small distortion, the strain

with the three non-zero tensor values are often in use

uxx = uyy = ∆a/a0, (3.30)

where ∆a is the change in the lattice constant due to the applied strain and uzz = −2uxxc12/c11,

where c12/c11 = 0.453 is the ratio of the elastic moduli [71]. With these relations assuming

2% decrease in the lattice constant, uxx = uyy = −0.02 and uzz = 0.018 in strained GaAs

semiconductor, the top valence band is shifted by 39meV towards the conduction bands.

Total energy

Due to strain, the hole concentration is increased for a fixed chemical potential. In Fig. 3.12,

as a result of strained material non-zero total energy appear for the chemical potential µ = 0.

Because the top valence bands are not at µ = 0eV, the total energy can change the sign. It

is related to the choice which was made for the integration constant that shifts the results.
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Figure 3.12: The influence of the uni-axial strain on the total energy as a function of the
chemical potential.

The total energy is zero for fully occupied valence bands by electrons. Meaning, there are no

allowed states for holes above the chemical potential corresponding to the energy level of the

top valence band at the Γ-point. In the latter case for chemical potential about µ ∼ −70meV

with uxx = 0.05, the total energy is equal to zero, while the hole concentration remains non-

zero. It is clear that the hole concentration cannot be negative. The only possibility of the

change of the sign can happen for the energy level when the top valence band has an energy

level above zero ε
n~k

> 0. This can be included by µΓθ
(
ε
n~k
− µ

)
term in Eq. (3.21), where

µΓ is the highest occupied state by the hole at the Γ-point. Note, for different strengths of

the deformation potential at a fixed chemical potential the hole concentration is not equal.

In Fig. 3.13 is shown that the non-trivial hole concentration for which the total energy is

zero is p = 1.8 × 1020cm−3 for a uni-axial strain uxx = 0.05. Finally, from this figure it can

be understood, that in the case of bulk systems the magnitude of the total energy is always

smaller for uni-axially uxx strained systems. However, another possibility exists for thin layers

where the thickness is much smaller for one of the dimension. In such systems, the constraint

on the constant chemical potential is more important.
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Figure 3.13: The total energy dependency as a function of hole concentration with uni-axial
strain.

3.5 Magnetization anisotropy

The semiconductor GaAs crystallizes in (2x fcc, Fig. 3.14) zinc-blende structures2 which lacks

inversion center and does not demonstrate any magnetic properties. The magnetic properties

Figure 3.14: Schematic representation of the double fcc elementary cell without an inversion
center.

of Ga1−xMnxAs dilute magnetic semiconductor are acquired from Mn2+ ion with the localized

2Space group (216), Herman-Mauguin (F-43m), Hall (F -4 2 3), Schoenflies (T2
d)



64 CHAPTER 3. LOW-DIMENSIONAL III-V DILUTE MAGNETIC SEMICONDUCTORS

spin S = 5
2 and a magnetic moment of 5µB introducing a hole by attracting an electron from

the GaAs compound [72]. Their ferromagnetic ordering is mediated by free or nearly free

holes in the valence bands[8, 59]. With increasing the number of Mn ions, the magnetization

can reach a maximum and then if the concentration is too high the magnetization decreases

in an average. Likewise, many deformation mechanisms can have the substantial influence

on the magnetic anisotropy [73] as inferred by including strain tensor from section 3.4.

To describe correctly the complex structure of top valence bands of semiconductor the

model should be extended by a term describing band splitting with respect to spin. In this

section, a contribution from the hole-mediated p-d exchange coupling between the Mn ions

treated within the virtual-crystal and the molecular-field approximations[8] is considered

and further referred to as spatially uniform magnetization

Ĥpd =
β~s · ~M
gµB

, (3.31)

where the magnetization axis ~M can be oriented in any direction related to the average

of the total net magnetization. The Hamiltonian written in Bir-Pikus basis Eq. (3.14) has

the following form[59]

Ĥm = BG




3nz i
√

3n− 0 0
√

6n− 0

−i
√

3n+ nz 2in− 0 i2
√

2nz −
√

2n−

0 −2in+ −nz i
√

3n−
√

2n+ −i2
√

2nz

0 0 −i
√

3n+ −3nz 0 −
√

6n+

√
6n+ −i2

√
2nz

√
2n− 0 −nz in−

0 −
√

2n+ i2
√

2nz −
√

6n− −in+ nz




, (3.32)

where BG = βN0M0

6gµB
is the spin splitting parameter, g = 2 and βN0 = (−1.2±0.2)eV for GaAs,

µB = eh̄
2m0

is the Bohr magneton

nz =
Mz

M0
, n± =

Mx ± iMy

M0
, (3.33)

~n is the unit vector of the magnetization direction. GaAs with Mn is preferably ferromagnetic.

The holes get polarized in the close vicinity of the Mn atom when they hop to neighboring
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Mn atom they exert a small spin torque, and collective excitation can assist in changes of the

polarization of the Mn localized spins.

Matrix form of spin operators

Let us first consider the spin operators for the holes with the Hamiltonian written in the Bir-

Pikus basis (3.14). The general form of the spin operators in spherical coordinates can be

written in the following form

Sα =

π∫

0

sin(θ)

2π∫

0

φ∗i · σα · φj dϕ dθ, (3.34)

where α = {x, y, z} is the spin component, the indices i, j = 1..N and σα denotes the Pauli

matrices. The x-component of the spin operator in matrix form reads

Sx =




0 i√
3

0 0
√

2
3 0

− i√
3

0 2
3 i 0 0 −

√
2

3

0 −2
3 i 0 i√

3

√
2

3 0

0 0 − i√
3

0 0 −
√

2
3

√
2
3 0

√
2

3 0 0 i
3

0 −
√

2
3 0 −

√
2
3 − i

3 0




, (3.35)

then y-component of the spin-operator

Sy =




0 1√
3

0 0 −
√

2
3 i 0

1√
3

0 2
3 0 0

√
2

3 i

0 2
3 0 1√

3

√
2

3 i 0

0 0 1√
3

0 0 −
√

2
3 i

√
2
3 i 0 −

√
2

3 i 0 0 1
3

0 −
√

2
3 i 0

√
2
3 i 1

3 0




, (3.36)
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and similarly the z-component of the spin-operator

Sz =




1 0 0 0 0 0

0 1
3 0 0 2

√
2

3 i 0

0 0 −1
3 0 0 −2

√
2

3 i

0 0 0 −1 0 0

0 −2
√

2
3 i 0 0 −1

3 0

0 0 2
√

2
3 i 0 0 1

3




. (3.37)

This representation is further used in the analysis of the spin-polarization.

Mean 〈S〉

The spin-polarized current of free charges can drive the magnetic dynamics. Therefore, it is

of interest to control a polarization direction of the current. The hole spin projection 〈Sz〉

when the magnetization of the localized spins is along the x-axis is shown on Figs. 3.15,

3.16. For this calculation very small magnetization BG was applied to split the degenerated
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Figure 3.15: The z-component of the hole spin polarization

eigenstates of the Hamiltonian. That is of particular importance in the close vicinity of the
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Γ-point. The non-zero net magnetization leads to unfolding all the eigenstates, Fig. 3.16. As
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Figure 3.16: The z-component of the hole spin polarization with magnetization BG = 3meV.

a result of the strong inter-subband coupling, any changes of the electronic band structure

has an influence on the spin-polarization of holes..

Band structure

The magnetization leads to splitting all of the top valence bands at Γ-point. In comparison

to an uni-axial strain uxx, Fig. 3.7 the magnetization affects the eigenstates differently with

opposite spins while the strain makes no such distinction. As apparent from Fig. 3.17 there

is no clear distinction between the heavy hole and light hole bands. In the case of a mag-

netization in x-axis, for X → Γ → K path the top two bands belongs to heavy holes and

they interchange the ordering with light-holes through mixed-states in the vicinity of Γ-point

to first and fourth top bands. Since the ordering might be changed in further part of the

thesis referring to heavy holes is not meant by eigenstate but by the top two eigenvalues. As

follows, Fig. 3.18 demonstrates the influence of the magnetization on the top valence bands

at Γ-point, where for large BG a linear dependency is found. The decrease of the energy

band gaps between the valence bands and the conduction bands as well as the ∆so split-off

band gap is also significant for the transport properties of the semiconductor. In the absence
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Figure 3.17: Splitting of the electronic band structure with non-zero magnetization field
BG = 25meV along x-axis.

of the strain, all of the possible magnetization directions are equivalent for a bulk system,

especially when we consider the hole concentration or the energy of the system. However, as

a consequence of strong impact of environment and its attributes on the magnetization, the

material reveals many anisotropies and therefore an easy magnetization axis.
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Figure 3.18: Top valence bands splitting at the Γ-point as a function of the magnetization
field.

Fermi energy

The magnetization has a substantial influence on the band structure leading to a splitting

of all degenerated eigenstates. Fig. 3.19 presents the isosurfaces with contributions of only

three non-degenerate top valence bands, which is different to Figs. 3.3, 3.11 where at the

same chemical potential two-folded bands were present. Even with contributions from three

bands only, the hole concentration is increased with respect to the undoped system. In this

particular case it is p = 4.25 × 1019cm−3 and pxy = 1.48 × 1013cm−3 at kz = 0 where the

orientation of the magnetization is along x-axis.

Density of states

The hole concentration is increased together with the concentration of Mn dopants. However,

the magnetization parameter BG has to be unrealistically high, in order to observe relevant

changes, but the influence of the magnetization is well visible in the density of states, see

Fig. 3.20. In ternary compound of GaxMn1−xAs with elements concentration x ∼ 0.98 the

relevant region for the total hole concentration is about p = 1020cm−3. Here means that we

need a smaller chemical potential for the same hole concentration as in the system without
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Figure 3.19: Isoenergy surface for chemical potential µ = −28.5meV with spin splitting
parameter BG = 25meV.

magnetization. The applied cut-off at the boundary edges is pronounced as the peak in the

density of states. The most attractive region for application is when the chemical potential µ

is similar to the split-off ∆so band gap. The main advantage of using the Kane model is now

pronounced. The biggest changes are expected to be for a small hole concentration and in

the close vicinity to the Γ-point, where the four-bands model is useful. Within the six-bands

model, larger hole concentration can be achieved properly, what also allows to study in more

details the complexity of the top valence bands.
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Figure 3.20: Hole concentration (solid lines) and the density of states(dashed lines) as a
function of the chemical potential with a non-zero magnetization.

Variation of total energy

The strain can affect the anisotropy, and therefore, it has an influence on the easy magne-

tization axis. When the uni-axial strain is perpendicular to the magnetization plane, the

0 10 20 30 40 50 60 70 80 90

|∆
ε|

θxz (
◦)

uxx
uyy

uzz
uxy

uyz
uxz

Figure 3.21: Schematic effect of the strain on the variation of the energy for different orien-
tation of the magnetization θxz, where θxz = 0 means ~n along z-axis.
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Figure 3.22: The variation of the total energy with constraint on the chemical potential for
different magnetization strength BG.
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Figure 3.23: The variation of the total energy with constraint on hole concentration p =
1020cm−3 for different magnetization strength BG.

variation in the total energy weakly depends on the magnetization direction θ, see Fig. 3.21.

However, when the magnetization changes from perpendicular to the parallel orientation

with respect to the applied strain, the total energy may change its magnitude and sign. The

condition, when the total energy decreases or increases, depends on the hole concentration

and the chemical potential. Conventionally, in the bulk system, the typical constraint is made,
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Figure 3.24: The variation of the total energy with constraint on the hole concentration
p1 = 1.0×1020 cm−3, p2 = 2.0×1020 cm−3, p3 = 3.0×1020 cm−3 for the value of magnetization
BG = 50meV with an orientation of the magnetization changing in the xz-plane.

that the hole concentration is fixed when the system is slightly perturbed. In a thin layer the

better constraint seems to be fixed the chemical potential. Figs. 3.22, 3.23, 3.24 show that

those two different scenarios lead to varying magnitude of the magnetic anisotropy and pos-

sibly change in the sign.

3.6 Rashba spin-orbit coupling in the z-axis quantized model

The Rashba spin-orbit coupling is important in a case of thin layers. Therefore, the z-

component of the wavevector is quantized with kz = π/L, where L is the thickness of the

layer. This allows modeling the two-dimensional GaMnAs magnetic semiconductor. In the
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basis (3.14) the Rashba Hamiltonian (3.5) for the top valence bands has the following form

ĤR = αso



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


, (3.38)

where αso is the coupling strength. Using the spin operators Eqs.(3.35, 3.36, 3.37) allow

kx

ky

Figure 3.25: Schematic spin-polarization in the xy-plane at the isoenergy µ = −0.5eV and
kz = π/10nm. The magnetization parameter is BG = 0.1 meV, with its orientation ~M ‖ x̂.

to present the spin projection of holes for the given eigenstate. Let us first consider the case

without the Rashba spin-orbit coupling αso = 0, see Fig. 3.25. For a better understanding, the

small value of the magnetization was selected to split two-folded bands, that can be easily

distinguished numerically. Also, the magnetization is small enough to omit the splitting on

the schematic figure of the spin polarization in the xy-plane. Because, the net magnetization

is selected along the x-axis, the majority of the spin projections has the largest x-component

of the spin average. The expectation value of the spin in the vicinity of the kx = 0 varies the
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Figure 3.26: The components of the spin-polarizations in the heavy-hole band as a function
of the kx − ky plane angle ϕ, (see Fig. 3.25). The dotted and the solid lines are without and
with the Rashba coupling αso = 0.1 eV m, respectively.

strongest. Therefore, the respective components of the spin-polarizations for each isoenergies

of heavy holes band, light holes band and split-off spin-orbit band are present on Figs. 3.26,

3.27, 3.28. In fact, the figures show only three out of six nearly degenerated averaged spin

polarization components, where the other have the opposite sign.

The Rashba spin-orbit coupling decreases the y-component and increases the z-component

of the spin polarization that is out of the xy-plane. Also, it has the largest impact on the spin

vectors of the split-off bands. The Rashba spin-orbit coupling removes the degeneracy of

the four-folded heavy/light holes bands at Γ-point leaving the two-folded heavy holes and

two-folded light holes bands. Finally, it shows that this component of the spin-orbit coupling

can moderate the magnitude and the polarization of the effective spin. That is a true state-

ment for all kind of spin-orbit interactions, where for their possibility of control is one of the

demanded feature critical in spin-orbit based phenomena.
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Figure 3.27: The components of the spin-polarizations in the light-hole band as a function
of the angle ϕ. The dotted or the solid lines are results without or with the Rashba coupling
αso = 0.1 eV m, respectively.
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Figure 3.28: The components of the spin-polarizations in the split-off band as a function of
the angle ϕ. The dotted or the solid lines are results without or with the Rashba coupling
αso = 0.1 eV m, respectively.
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Summary

The pseudopotential framework was used as the reference of the bulk GaAs band structure

calculation. By using the Kane model, a detailed analysis of the properties of the electronic

structure with spin-orbit coupling was performed in close vicinity to Γ-point. The hole con-

centration and the total energy of the system were calculated. The influence of the uniform

magnetization in a system doped with Mn and the effect of strain on the band structure prop-

erties were studied. The two constraints that are appropriate in bulk and thin layers were

discussed. Schematic representation of strain influence on magnetization anisotropy was

shown. In the quantized model, an effect of the Rashba spin-orbit coupling on components

of the spin-polarizations at constant isoenergy was presented.





Conclusions

The magnetic dynamics of the localized spins and conductance surface-states spin current

were analyzed. We concluded the controlling mechanism could be done via electric fields,

strain, through proximity effect of the substrate or interface with a magnetic layer instead of

the conventional way of using magnetic fields.

Within a ferromagnetic and non-collinear one-dimensional spin chains, the magnetic dy-

namics were studied. The quantum state transfer strongly depends on the effective exchange

couplings, whereas an external electric field moderates the specific time required to accom-

plish the communication protocol. It was shown that a strong site-dependent magnetic field

disorder leads to many-body localization phase also in a spin-frustrated chain. The method

for estimating a critical disorder of the phase-transition was developed.

The properties of the magnetic layer have an influence on the substrate electronic struc-

ture. The other way around, a substrate with some magnetic properties, which might depend

on the concentration of impurities, has an influence on deposited layer. On the top of that, a

strain affects an intrinsic magnetization anisotropy of a substrate and its electronic structure.

An influence of the Rashba spin-orbit coupling on the spin-polarization in semiconductor

thin layer was investigated. It was shown that it could have the substantial influence on the

magnitude and spin orientation of holes.

In future, we might look at the quantum state transfer and many-body localization in

two-dimensional clusters or small molecules. We would like to address spin-conversion phe-

nomena [74] further. We would like to have a look at the transport properties of the interfaces

79
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with dilute magnetic semiconductors towards mechanisms of highly packing density of the

information in smaller devices.
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APPENDIX A

An adaptive mesh generation

for the two-dimensional integration scheme

Most of the calculations are done with the extensive use of GNU Scientific Library(GSL) for

interpolation, optimized version of Basic Linear Algebra Subprograms(BLAS) and Linear

Algebra Package(LAPACK). In the following chapter, one variation of the used integration

algorithm will be introduced together with a possible C++ implementation. The set of re-

quirements were helpful while choosing the relevant method

• splitting the integration domain to smaller pieces (simplices) forming an integration

mesh

• integration over the created mesh of simplices

• easy extendibility

• reduced number of points evaluation (adaptive)

• processing of the vector integrands

• evaluation of an error estimation

In parallel computing, working with meshes is simple. The tasks can be easily distributed

between different computing slaves either with OpenMPI or CUDA programming manners.

However, working with a uniform mesh can be computationally demanding. In the two-
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INTEGRATION SCHEME

Figure A.1: The edge detection in kz slices of the GaAs isoenergies.

Figure A.2: The left figure presents the oscillations at the maximum edge with an uniform
mesh and on the right figure an adaptive mesh.

dimensional integration scheme the simplices that are used in a mesh creation are mainly

rectangles and triangles. In a few situations it might be better to keep the rectangles in the

memory and split them to the triangles just before the integration. However, this technical

detail is not of our concern. The first step is to generate a uniform or non-uniform(random)

mesh. If the integrand function is smooth, it is possibly enough and the integration scheme

can be performed making the mesh more dense. The comparison of the results allows to

check the convergence. However, for non-continuous, sharp peaks and step functions the

ideal case would be to split integration domain based on points of discontinuities(of the

function or their derivatives). In the studied case, there are multiple edges that can cross

or nearly cross each other Fig. A.1. On each of the simplices, the classification procedure

is performed in order to group the pieces of mesh either to the edge or to the inside/out-

side classes. The finalizing condition for splitting procedure can be formulated differently,

depending on the needs. In chapter 3 for computation of the hole concentrations and total
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energies, the splitting was stopped if the summed area of edge simplicities was smaller than

1% of the summed area of filled simplicities.

As the discussed method will be three-points Gauss integration scheme for the triangle,

however, more points rules will work exactly in the same way. Note that any triangle can be

transformed to the unit triangle. Then the integration scheme(cubature) is reduced to the

sum of the values of the function at specific given points with their weights
∫

4

d~k ~f(~k) =
n∑

i=1

wi ~fi, (A.1)

where n is the number of weights and depending on the set of points and weights the re-

sult is exact up to the different polynomial order. The function is evaluated for the set of

points(abscissas) given in the tables A that contain few symmetric and the asymmetric rules.

In this context, by the symmetric rule it is meant that the result does not depend on the

clockwise or anti-clockwise order of triangle vertices. An extensive reference list of cubature

rules can be found here [75, 76, 77, 78, 79].

The simplified listings of the C++ sources codes are shown here. It is convenient to split

task to the two structures(functors) that are shown. The first structure Integrand_Functor_Tri_f

is independent on the used finite element method rules. It computes the Jacobian of any tri-

angle to the unit triangle and works as the mapping of the function with abscissas f̃(ξ, η)→

f(x, y) in transformed triangle.

s t ruc t In tegrand_Func tor_Tr i_ f : pub l i c Abs t r a c t {

double J ;

Tr i ang le t ;

In tegrand_Func tor_Tr i_ f ( Tr iang le c ) : t ( c ){

J = fabs (

( t . p [ 1 ] . x−t . p [ 0 ] . x )∗( t . p [ 2 ] . y−t . p [ 0 ] . y )

−( t . p [ 2 ] . x−t . p [ 0 ] . x )∗( t . p [ 1 ] . y−t . p [ 0 ] . y )

) ;

}

vec to r operator ( ) ( double xi , double eta ){

return (∗ f _ p t r )(
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t . p [ 0 ] . x + ( t . p [ 1 ] . x−t . p [ 0 ] . x )∗ x i + ( t . p [ 2 ] . x−t . p [ 0 ] . x )∗ eta ,

t . p [ 0 ] . y + ( t . p [ 1 ] . y−t . p [ 0 ] . y )∗ x i + ( t . p [ 2 ] . y−t . p [ 0 ] . y )∗ eta

) ;

} ;

} ;

The second structure uses template for the specialization with a selected rule that as an

argument accepts the Triangle structure (three points) and as an output returns an evaluated

integration over the triangle.

template<double w[][3] , in t n>

s t ruc t FEM_triCubaf : pub l i c Abs t r a c t {

in t i ;

vec to r sum;

vec to r operator ( ) ( In tegrand_Func tor_Tr i_ f t r i ){

sum . zeros ( ) ;

for ( i =0; i<n ; i++){

sum += t r i (w[ i ] [0] , w[ i ][1])∗w[ i ] [ 2 ] ;

}

return 0.5∗ t r i . J∗sum;

}

} ;

It is recommendable to use this structure with low order rules at first while the adaptive

splitting and classification of the simplices is performed. In two-dimensional integration with

many sharp edges the following steps can be considered

1. Reduce the integration domain with respect to the symmetry and possible cutoffs. The

more densely accepted an uniform mesh of simplices from first splittings, the faster

convergence and more accurate results for less integrand function evaluation.

2. Further conditional blurred edges splitting. The classification and splitting can be per-

formed for specified simplices e. g. in vicinity of edges. This step is optional, but
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when working with the Heaviside function it can guarantee stability of the algorithm.

Otherwise, if the initial uniform mesh from the step 1) is not dense enough, the edge

simplices can possibly be skipped.

3. Strict edges splitting. In this step the extra one or two splittings can be performed only

for the simplices that belong to the edge.

4. Finial integration. In this step, higher order cubature rules are used and the final

classification is performed, and the procedure is finished if the stop condition is fulfilled,

otherwise go back to point 2) or 3) for the additional edge splitting. The simplices that

are not grouped with edges can be integrated with lower cubature order.

Fig. A.2 presents the uniform mesh and projection of the part of the adaptive mesh. The

edge was defined as the local maxima of the integrand and when the integration function

approachs the global minimum. The quality of the mesh can be improved by the Delaunay

triangulation and especially by its constrained variation [80] with respect to the first Brillouin

Zone.
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Table A.1: The three-points Gauss rule(symmetric) exact up to first order.

ξ η weight

0 1/2 1/3

1/2 0 1/3

1/2 1/2 1/3

Table A.2: The seven-points rule [81, 82] exact up to fifth-order.

ξ η weight

0.79742698535308732240 0.10128650732345633880 0.12593918054482715260

0.10128650732345633880 0.79742698535308732240 0.12593918054482715260

0.10128650732345633880 0.10128650732345633880 0.12593918054482715260

0.059715871789769820459 0.47014206410511508977 0.13239415278850618074

0.47014206410511508977 0.059715871789769820459 0.13239415278850618074

0.47014206410511508977 0.47014206410511508977 0.13239415278850618074

0.33333333333333333333 0.33333333333333333333 0.22500000000000000000

Table A.3: The eleven-points rule [83] (asymmetric) exact up to sixth-order. Note, those
weights requires an additional factor of 2 with respect to the other listed weights.

ξ η weight

0.05725498667747686 0.89549814678987949 0.01903403592647780

0.89536264002457910 0.06182822125032195 0.01918967765387641

0.68447574845651404 0.02334373849768273 0.02310022837228092

0.06874625591502953 0.06003027574726300 0.02673379472209950

0.61567620557583957 0.33346180834137717 0.04187791348287284

0.62794614119778946 0.15918918599215148 0.05082241651275853

0.06290913834186357 0.65529509370545247 0.05093076223068348

0.06837821192050991 0.30911768542826723 0.05571091583000085

0.28752945837439225 0.63642650917962018 0.05600472513147303

0.32878355641313461 0.07702400564246342 0.06239378571877916

0.31229040501364480 0.35234478644589950 0.09420174441869741
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