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ABSTRACT

The present thesis reports on a theoretical study of fundamental topological properties of magnons. Magnon
spectra of two- and three-dimensional magnets are characterized by topological invariants calculated within
the framework of linear spin-wave theory. Magnonic counterparts of electronic topological Chern insulators,
Weyl semimetals, and nodal-line semimetals are identified. They respectively host topologically protected edge
magnons, magnon arcs, and magnon drumhead surface states. It is shown that the nontrivial topology of magnon
spectra leads to transverse magnon transport, e. g., a thermal magnon Hall effect. To complement the results
obtained in the limit of non-interacting magnons, a method for the computation of the magnon transport properties
is developed, which is based on classical atomistic spin dynamics simulations and the Kubo formula. It is applied
to the topological magnon insulator Cu(1,3-benzenedicarboxylate) and to skyrmion crystals that exhibit the
topological magnon Hall effect.

In dieser Arbeit werden fundamentale topologische Eigenschaften von Magnonen theoretisch untersucht. Die
Magnonenspektren zwei- und dreidimensionaler Magneten werden durch topologische Invarianten charakter-
isiert, die im Rahmen der linearen Spinwellen-Näherung berechnet werden. Magnonische Gegenstücke zu
elektronischen topologischen Chern-Isolatoren, Weyl-Semimetallen und Semimetallen mit Knotenlinien werden
ermittelt. Ihre jeweiligen Ränder oder Oberflächen weisen topologisch geschützte Randmagnonen, magnon
arcs und drumhead-Zustände auf. Es wird gezeigt, dass die nichttriviale Topologie der Magnonenspektren zu
transversalem Transport führt, beispielsweise zu einem thermischen Magnon-Hall-Effekt. Um die Ergebnisse, die
im Grenzfall nichtwechselwirkender Magnonen erhalten wurden, zu ergänzen, wird eine Methode zur Berech-
nung des Magnonentransportes entwickelt, die auf klassischen, atomistischen Spindynamiksimulationen und der
Kubo-Formel beruht. Sie wird verwendet, um den transversalen Transport im topologischen Magnon-Isolator
Cu(1,3-Benzen-Dicarboxylat) und in Skyrmionkristallen, die den topologischen Magnon-Hall-Effekt aufzeigen,
zu untersuchen.
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CHAPTER 1
INTRODUCTION

Electronic and spin-electronic devices respectively utilize the charge and the spin of electrons to transmit
information [1]. They rule today’s technology in the form of, e. g., complementary metal-oxide-semiconductor
(CMOS) integrated circuits [2] and read heads of computer hard drives, the latter based either on the giant
[3, 4] or tunnel magnetoresistance [5]. Naturally, for the electron currents to flow, these devices are based on
(semi)conductors.

In insulators, however, the electrons are not free to move but bound to the atomic cores. Still, their magnetic
moments interact with each other by effective local magnetic fields. This interaction can lead to magnetic ordering
below a certain temperature and to spin-wave excitations, whose quanta are quasiparticles. These magnons
also carry information and, thus, can be utilized in logic devices, which are studied in the research area of
spin-electronics in insulators: magnonics [6, 7]. Such devices are free of ohmic heating, because there is no flow
of electrons, making them very attractive with regard to low waste energy production and power consumption. For
their successful engineering, it is necessary to understand the fundamental (transport) properties of magnons.

A relevant question is, for example, whether magnons exhibit transverse transport phenomena similar to those
of electrons. For example, electrons show the anomalous (thermal) Hall effect: an electric current through, e. g.,
a magnetic iron sample leads to a transverse voltage drop [8] and a transverse temperature gradient [9]. On a
microscopic level, the transverse conductivities can be related to the geometric properties of the electron Bloch
states [10, 11], more precisely, to their “Berry curvature” in reciprocal space [12, 13].

In 2010, Onose et al. [14] studied the thermal conductivity of the electric insulator Lu2V2O7, whose vanadium
sublattice is a network of corner-sharing tetrahedra, a pyrochlore lattice [see Fig. 1.1(a)]. Below the Curie
temperature TC ≈ 70 K the vanadium spins order ferromagnetically. Suprisingly, a nonzero transverse heat
conductivity was measured in the ferromagnetic phase [see Fig. 1.1(b)]: applying a temperature gradient leads to a
transverse temperature gradient. Since both electron and phonon contributions to transverse transport can be ruled
out, only magnons come into question as carriers of the transverse heat current [14] [see Fig. 1.1(c)].

This thermal Hall effect of magnons was predicted by Katsura et al. [15], who showed that spin-orbit interaction
in the form of Dzyaloshinskii-Moriya interactions [16, 17] can originate nonzero Berry curvature of the magnon
wave functions. As in the case of the anomalous (thermal) Hall effect of electrons, the (intrinsic) transverse
thermal conductivity can be related to this Berry curvature [15,18–21]. Thus, the thermal Hall effect is a transverse
transport phenomenon occuring for electrons as well as magnons [22].

Interestingly, the parallel between electrons and magnons does not end here. Zhang et al. [23] realized that
nonzero Berry curvature must be connected to nontrivial topological invariants of the magnon bulk states. They
demonstrated that a ferromagnet on the two-dimensional kagome lattice, which is a (111)-layer of the pyrochlore
lattice [red triangles in Fig. 1.1(a)], hosts topologically protected edge magnons. Such modes are known from the
quantum Hall effect [24, 25] or from electronic topological Chern insulators, as introduced by Haldane [26]. They
unidirectionally revolve the sample; based on that, theoretical ideas to utilize them as beam splitters [27, 28] or a
magnonic Fabry-Perot interferometer [27] have been put forward.

Thus, envisioning a future application of topologically protected magnons for magnonic devices calls for a
fundamental analysis of topological magnon materials and their transverse magnon transport properties, an
enterprise the present thesis contributes to. The key issues addressed are the following:

B The topological invariants of electronic Chern insulators are robust against smooth changes of the band
structure. Only changes leading to a closing and reopening of a band gap can alter them, i. e., can cause
a topological phase transition. If the Fermi energy lies within such a band gap, the transverse electric
conductivity sharply changes during the transition, because the number of conducting edge channels varies in
integer steps. This quantization of conductivity is due to the Fermi-Dirac statistics and is, thus, not expected
in topological magnon materials: the Bose-Einstein statistics makes all states contribute to transport. Thus,
the influence of topological phase transitions on transverse magnon conductivities is inherently different
from the fermionic case.
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1. Introduction
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Fig. 1.1.: Thermal magnon Hall effect in the ferromagnetic pyrochlore oxide Lu2V2O7. (a) Pyrochlore lattice with a (111)-plane
(kagome plane) indicated in red. (b) Sketch of the experimentally measured transverse thermal conductivity κxy

versus temperature (after Ref. [14]); TC ≈ 70 K Curie temperature. (c) Simplified picture: a magnon wave packet
(greenish spins) propagates from the hot (red) to the cold (blue) side of the ferromagnetic sample and is deflected,
resulting in a transverse heat current (bend arrow; exaggerated for visualization).

B There are electronic topological materials apart from topological Chern insulators, for instance, topological
semimetals. One representative of this class, the Weyl semimetal [29], hosts singular Berry curvature at the
Fermi energy and exhibits a negative magnetoresistance [30, 31]: when applying a magnetic field parallel to
the electric field, the electric resistivity drops for increasing magnetic fields [32]. Motivated by such unusual
transport properties, it is a natural question to ask for magnon realizations of topological semimetals.

B In contrast to electrons, which are successfully described as noninteracting particles as long as correlation
effects can be neglected, magnons are bosons and their interactions increase with temperature. Thus, the
single-particle ansatz and the definition of a Berry curvature are restricted to low temperatures. There are,
however, topologically interesting magnetic phases, such as skyrmion lattices, which do not necessarily
exist at zero temperature but are stabilized at elevated temperatures. Thus, their magnon transport properties
have to be accessed by an approach different from single-particle Berry curvature theory.

This thesis is structured as follows. A brief primer on the Heisenberg model (Sec. 2.1), spin-spin interactions
(Sec. 2.2), magnetic ground states (Sec. 2.3), and the theory of magnons (Sec. 2.4) is followed by an introduction
to topology in magnetism (Sec. 3). The main ideas of the Berry phase (Sec. 3.1) are the basis for the presentation
of selected topological materials: topological Chern insulators (Sec. 3.2.1), Weyl semimetals (Sec. 3.2.2), and
nodal line semimetals (Sec. 3.2.3). Thereafter, a dual electrodynamics for magnetic moments in magnetic fields is
constructed and an “electron-magnon duality shortcut” is taken to obtain the transverse magnon conductivties
within the Boltzmann approach to transport (Sec. 3.3). A discussion of skyrmion crystals and the topological
Hall effects of electrons and magnons (Sec. 3.4) closes the chapter on the theoretical background. It is followed
by the presentation of the numerical methods (Sec. 4), comprising Green function renormalization (Sec. 4.1),
Monte-Carlo (Sec. 4.2) and atomistic spin dynamics simulations (Sec. 4.3).

The results of this thesis are given in form of six original publications Pubs. 1-6 (Sec. 5), which appeared in
peer-reviewed journals (Sec. 5.1). Each of them addresses one of the three aforementioned key issues. They
demonstrate, for example, that both temperature and a topological phase transition can lead to a sign reversal
of the transverse thermal conductivity (Sec. 5.2), that Lu2V2O7 is the magnonic pendant to an electronic Weyl
semimetal (Sec. 5.3), and that the transverse transport of magnons can be accessed by atomistic spin dynamics
simulations without evaluation of a Berry curvature (Sec. 5.4). A conclusion and an outlook are given in Sec. 6.
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CHAPTER 2
INTERACTING SPINS IN THE HEISENBERG MODEL

A fundamental building block of this work is the Heisenberg model of localized spins [33], which is derived in the
following (Sec. 2.1). The introduction of several types of interactions between spins (Sec. 2.2) is followed by the
evaluation of the classical ground state by introducing the Luttinger-Tisza method (Sec. 2.3). This chapter closes
with the discussion of excitations of magnetically ordered systems: the spin waves or magnons (Sec. 2.4).

2.1. Motivation of the Heisenberg Model
Following a standard textbook on magnetism [34], one begins with the observation that in the absence of a
magnetic field the interaction of two indistinguishable electrons of mass m at position r1 and r2 and with momenta
p1 and p2, respectively, is described by the Hamiltonian

H̃ =
1

2m

(
p2

1 + p2
2

)
+ V(r1, r2), (2.1)

where V(r1, r2) is an interaction potential. The following argumentation aims at mapping the spin-independent
Hamiltonian (2.1) onto an equivalent Hamiltonian which only includes interactions between spins. Two Hamilto-
nians are regarded “equivalent”, if they have the same set of eigenfunctions and eigenvalues.

As dictated by the Pauli exclusion principle, no two electrons can occupy the same quantum state. Thus, their
respective wave function |ψ〉 is antisymmetric under electron exchange. |ψ〉 is a product of a spin-independent
position part |r〉 and a spin-dependent part |S ; mS 〉, where the total spin S can be 0 or 1 and the magnetic quantum
number mS is an integer within the interval [−S , S ]. Encoding symmetry by (±), where + (−) denotes symmetric
(antisymmetric) character, the eigenstates of eq. (2.1) read

|ψ1〉(−) = |r〉(+)|0; 0〉, and (2.2)

|ψ2〉(−) = |r〉(−)|1; mS 〉. (2.3)

Here, |0; 0〉 is the antisymmetric singlett state, while |1; mS 〉 is the symmetric triplett state. Both are multiplied by
the position-dependent wave function of the respective opposite symmetric character. H̃ acts only on the positions,
giving the corresponding eigenenergies ε(+) and ε(−), respectively,

H̃|ψ1〉(−) = ε(+)|r〉(+)|0; 0〉, and

H̃|ψ2〉(−) = ε(−)|r〉(−)|1; mS 〉.

Now, a new Hamiltonian H is looked for, which provides the same eigenenergies but does not act on the
positions. Denoting the operator of spin i by si (i = 1, 2), one shows [34] that

H = J0 − J12s1 · s2, with J0 =
1
4

(
ε(+) + 3ε(−)

)
and J12 =

1
~2

(
ε(+) − ε(−)

)
, (2.4)

is the sought solution: the eigenvalue of si reads s2
i = ~2si (si + 1) = 3~2/4 and that of the total spin S = s1 + s2 is

S2 = s2
1 + s2

2 + 2s1s2 =
3
2
~2 + 2s1 · s2 = ~2S (S + 1) ;

one obtains

s1 · s2 =
~2

2
S (S + 1) − 3

4
~2.
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2. Interacting Spins in the Heisenberg Model

Thus, the eigenenergy of |ψ1〉(−), which contains the singlett state |0; 0〉 (S = 0), reads

H|ψ1〉(−) = |r〉(+)H|0; 0〉 = |r〉(+)
(
J0 +

3
4
~2J12

)
|0; 0〉 = ε(+)|ψ1〉(−),

where eq. (2.4) was used. Similarly, one shows that H|ψ2〉(−) = ε(−)|ψ2〉(−), proving the equivalence of H and H̃.
The Heisenberg model for localized spins on a lattice is obtained by generalizing H to all pairs of spins

[33, 35, 36]. Dropping constant terms yields

H = −
∑

i j

Ji jsi · s j, (2.5)

where Ji j is the exchange integral, which parametrizes the interaction between the i-th and j-th spin. Concerning
real materials, the Ji j’s can be evaluated by ab initio methods (e.g., Refs. [37, 38]). Here, the Ji j’s are used as
parameters (see Pubs. 1-4, and 6) or experimentally determined values are taken (see Pub. 5).

Notice that the generalization that led to eq. (2.5) can also generalize the “spin” operators si to account for both
spin and orbital degrees of freedom (i.e., the spin magnetic moment and the orbital magnetic moment) [36]. In the
following, however, it is not distinguished between the two and the term “spin” is kept.

2.2. Types of Interactions
The generalization of the Heisenberg Hamiltonian does not have to stop at the level of eq. (2.5): one can introduce
an interaction matrix Ii j between spins i and j, [39, 40]

H =
∑

i j

sT
i Ii js j, (2.6)

with Ii j = ITji, which allows for rich physics; a brief (and by no means exhaustive) overview is provided in the
following.

In general, Ii j can be decomposed as [41]

Ii j = Ji j + Di j + Si j, (2.7)

where Ji j is the isotropic diagonal part (Sec. 2.2.1), Di j the traceless antisymmetric anisotropic part (Sec. 2.2.2),
and Si j the traceless symmetric anisotropic part (Sec. 2.2.3).

2.2.1. Exchange Interaction and Anisotropy
If Ii j = Ji j = −diag(Ji j, Ji j, Ji j), only isotropic symmetric exchange is considered. Assuming all spins equivalent
and equally spaced, one has Ji j = J for all i and j which are nearest neighbors (indicated by 〈i j〉), thus

H = −J
∑
〈i j〉

si · s j. (2.8)

The sign of J determines the favored orientation of neighboring spins, i. e., the magnetic ground state. For J > 0 a
collinear ferromagnetic alignment is energetically favored, whereas J < 0 originates antiferromagnetic ground
states. The latter are strongly influenced by the lattice geometry: bipartite lattices allow for the Néel ground state,
a collinear configuration where neighboring spins are antiparallel, while nonbipartite lattices cause “frustration”
(see textbooks such as Ref. [42]). Frustration is easily understood for three spins arranged on a triangle: each pair
of the three spins could be arranged antiparallel, such that the third spin cannot be antiparallel to both of them.
Instead of a collinear order, noncollinear order minimizes the total energy in this case. Although the focus of this
thesis is on ferromagnets, the subject of frustrated exchange interaction for classical spins is touched in Sec. 2.3
and Pub. 6.

While the above already hints at the complexity of spin Hamiltonians, one can further set Ii j = Ji j + Si j =

−diag(Jx
i j, J

y
i j, J

z
i j) to make the symmetric exchange anisotropic; this is two-ion anisotropy [39]. In particular, for

4



2.2. Types of Interactions
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Fig. 2.1.: Moriya’s symmetry rules [17] for the determination of the DM vector Di j (red) between atoms i and j in the presence
of (1) an inversion center at M, (2,3) mirror planes through M, and (4,5) rotational axes through M.

Jx
i j = Jy

i j = 0, only the z component of the spins determines the energy, describing the case of the Ising model [43].
If Jz

i j = Jz > 0, the ferromagnetic state is the ground state but in contrast to the isotropic case the magnetization is
forced to point in z direction to minimize energy. Thus, the Hamiltonian of the Ising model lacks the continuous
rotational symmetry in spin space.

Furthermore, the exchange interaction can be anisotropic with respect to direction: the interaction in x direction
might be different from the interaction in y direction, which is readily understood when considering a rectangular
lattice and recalling that the exchange interaction depends on the distance of two spins. Consequences of such a
directional anisotropy are addressed in Pub. 4.

Another anisotropic contribution is the crystal-field single-ion anisotropy (or magnetocrystalline anisotropy) [44]

Hsingle−aniso =
K
2

∑
i

(si · n̂i)2 ,

where n̂i is the unit vector of a local distinguished direction. For K < 0, it becomes energetically favorable for the
spin to align with the easy axis ±n̂i. In contrast, for K > 0, the case of an easy-plane anisotropy is encountered,
because the spin avoids the direction n̂i and is consequently forced to the plane normal to n̂i.

2.2.2. Dzyaloshinskii-Moriya Interaction
Ii j might contain the skew-symmetric contribution

Di j =


0 −Dz

i j Dy
i j

Dz
i j 0 −Dx

i j
−Dy

i j Dx
i j 0

 ,
[confer eq. (2.7)] which can be written as

H =
∑

i j

Di j ·
(
si × s j

)
, (2.9)

with Di j = (Dx
i j,D

y
i j,D

z
i j)

T. Such an interaction is known as Dzyaloshinskii-Moriya (DM) interaction [16, 17] and
the DM vector Di j is antisymmetric, i. e., Di j = −D ji; it favors spin canting due to the cross product in eq. (2.9).

DM interaction (DMI) is derived from second-order perturbation theory for the spin-orbit interaction [17,45] and
relies on broken inversion symmetry. While the magnitude of Di j has to be estimated from ab initio calculations
or experiments, its direction can be worked out by Moriya’s symmetry rules [17], which are visualized in Fig. 2.1.
For two magnetic ions i and j (gray spheres) connected by a vector r with the midpoint denoted by M, they read:

1. If M is a center of inversion, it is Di j = 0 (see 1. of Fig. 2.1).

2. If M is on a mirror plane with normal n ‖ r, it is Di j ⊥ r, n (see 2. of Fig. 2.1).

3. If M is on a mirror plane with normal n ⊥ r, it is Di j ‖ n (see 3. of Fig. 2.1).

4. If r is an m-fold rotational axis, it is Di j ‖ r (see 4. of Fig. 2.1).

5. If there is a two-fold rotational axis v passing through M with v ⊥ r, it is Di j ⊥ v, r (see 5. of Fig. 2.1).

DMI is the origin of nontrivial topology in ferromagnets (see Sec. 3.1.2) and chiral skyrmions (see Sec. 3.4).
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2. Interacting Spins in the Heisenberg Model

2.2.3. Other Interactions
Under the influence of an external homogeneous magnetic field B there is an additional contribution to the energy,
the so-called Zeeman energy

HZee = −B ·
∑

i

µi, (2.10)

where µi is the magnetic moment of the i-th spin. If HZee is added to the Hamiltonian (2.8), the ground state is
ferromagnetic (J > 0) with the magnetic moments pointing in the direction of B1.

While exchange and DMI are of quantum-mechanical origin, it is also possible to include the effects of the
classical dipole-dipole interaction. Its contribution to the interaction matrix is given by (see, e. g., Ref. [46])

Iαβdd,i j = −Fi jr3
i j

3rαi jr
β
i j − r2

i jδαβ

r5
i j

, with Fi j =
µ0µ

2

4πr3
i j

,

where ri j is the difference vector between the i-th and j-th spin and µ0 is the permeability of free space. Using
typical values for µ (∼ 1µB) and ri j (∼ 1Å), one finds that the energy scale Fi j is in the order of µeV, which is
much smaller than typical values for the exchange interaction (> 1 meV). Therefore, dipole-dipole interactions
and their consequences (e. g., shape anisotropy) are neglected in the following.

The form of eq. (2.6) only comprises bilinear interactions, that is, terms with two spin operators. Interactions
including higher orders of spin operators are, for instance, the biquadratic exchange ∝ (si · s j)2 (e.g., Ref. [47])
and ring exchange (e.g., Ref. [48]). Such interactions are, however, not considered here.

2.3. Magnetic Ground States and the Luttinger-Tisza Method
One center piece of magnetism is the determination of the magnetic ground state, because it determines many
relevant properties of the magnetic system; the most obvious example is the presence (or absence) of a net
magnetization. Here, the Luttinger-Tisza (LT) method for the determination of the classical magnetic ground state
for a given spin Hamiltonian is presented and exemplarily applied to a two-dimensional antiferromagnet on a
triangular lattice.

Originally, Luttinger and Tisza studied crystals with magnetic dipole-dipole interactions (see Sec. 2.2.3) but
they already noted that their method can be generalized to all quadratic interactions (i. e., interactions of the form
sT

i Ii js j) [49]; Luttinger later showed an application to antiferromagnets [50].
In the following, only Bravais lattices and isotropic exchange-only spin Hamiltonians are considered; the most

general case of the LT method can be found in the review of Litvin [51]. The starting point is to treat the spin
operators as classical (cl) vectors recasting the Hamilton operator as a Hamilton functional

Hcl = −
∑

i j

Ji jscl
i · scl

j , (2.11)

which has to be minimized under the condition
∣∣∣scl

i

∣∣∣ = s. Obviously, this is only an approximation to the quantum-
mechanical reality, which is, however, reasonable for large s. In the following, the superscript “cl” is dropped to
lighten up the notation. A Fourier transformation brings eq. (2.11) to the form

H =
∑

q
J(q)sq · s−q,

with

J(q) = −
∑
δ

J(δ) exp (−iq · δ) , (2.12)

1The spin si and the spin magnetic moment µ = −gµB s/~ are antiparallel (µB Bohr’s magneton, and g-factor g ≈ 2). However, the Zeeman
term is often condensed to HZee = −B′ ·∑i si for simplicity. Here, B′ = −gµB B (~ = 1) is measured in units of energy. Nonetheless, B′ is
called the external magnetic field.

6



2.3. Magnetic Ground States and the Luttinger-Tisza Method

Fig. 2.2.: Spin spiral with a pitch of λ = 7a on a triangular lattice with lattice constant a. The vectors to nearest neighbors read
δ(NN)

1 = −δ(NN)
4 = a(1, 0)T, δ(NN)

2 = −δ(NN)
5 = a(1/2,

√
3/2)T, and δ(NN)

3 = −δ(NN)
6 = a(−1/2,

√
3/2)T. The vectors to

third-nearest neighbors are given by δ(3NN)
i = 2δ(NN)

i (i = 1, . . . , 6).

where δ is a difference vector to an interacting neighboring spin.
If qmin is the wave vector which minimizes J(q), and the Fourier components sqmin

and s−qmin
are nonzero but all

others vanish (that is, sq = 0 for q , qmin), then the Hamilton functional H is minimized. The ground state spin
texture can then be determined by an inverse Fourier transformation.

To illustrate the LT method, a two-dimensional triangular lattice with spin Hamiltonian

H = −J1

∑
〈i j〉

si · s j − J3

∑
〈〈〈i j〉〉〉

si · s j (2.13)

is considered. J1 (J3) is the isotropic exchange interaction of nearest (third-nearest) neighbors, which is indicated
by 〈i j〉 and 〈〈〈i j〉〉〉, respectively. This model was featured in Ref. [52] and studied in the context of skyrmions
(see Sec. 3.4). It is introduced here, because it is the basis of Pub. 6.

With the vectors connecting nearest (NN) and third-nearest neighbors (3NN) shown in Fig. 2.2, eq. (2.12) reads

J(q) = −2
3∑

i=1

[
J1 cos

(
q · δ(NN)

i

)
+ J3 cos

(
q · δ(3NN)

i

)]
. (2.14)

Since J(q) inherits the six-fold rotational symmetry of the lattice, the search for the minimum is restricted to the
qx direction (qy = 0). For J3 < 0, minima of J(q) are at

qx,min =


0 for J1

J3
< −4 ferromagnet

2
a arccos

[
1
4

(
1 +

√
1 − 2J1

J3

)]
for − 4 < J1

J3
< 0 spin spiral

4
3aπ for 0 < J1

J3
antiferromagnet

. (2.15)

Thus, the magnetic ground state of Hamiltonian (2.13) is a uniform ferromagnetic state (|q| = 0) for J1/J3 < −4
(J3 < 0), and a spin spiral for −4 < J1/J3 < 0, whose pitch λ = 2π/|qmin| shrinks as J1/J3 approaches zero from
below (see Fig. 2.2, where a spin spiral with λ = 7a is depicted; a lattice constant). Due to the six-fold rotational
symmetry the ordering vector q can point in any nearest-neighbor direction. For J1/J3 > 0 (J3 < 0), qmin coincides
with the K (and K′) points of the hexagonal Brillouin zone; a noncollinear antiferromagnetic phase is formed.

This result is returned to in Secs. 4.2.2 and 5.4.2, where the classical Hamiltonian (2.13) is studied in the context
of Monte Carlo simulations and spin dynamics simulations, respectively. It is shown that elevated temperatures
and an external magnetic field stabilize a coherent superposition of spin spirals, which is called “skyrmion lattice”
(see Sec. 3.4). This magnetic texture possesses nontrivial winding and causes transverse transport phenomena of
magnons (see Sec. 3.3).
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2. Interacting Spins in the Heisenberg Model

2.4. Magnetic Excitations: Magnons
While the previous section introduced a classical way to determine the ground state, the focus is now on the
quantum-mechanical formulation. Once the magnetic ground state is identified, it is possible to analyze low-lying
excited states. Here, the isotropic Hamiltonian

H = −J
∑
〈i j〉

si · s j (2.16)

is considered on a Bravais lattice. When J > 0, the spins align parallel, forming the ferromagnetic ground state |0〉.
Note that for a ferromagnet, the quantum-mechanical ground state coincides with the classical ground state [53].

2.4.1. Ferromagnetic Ground State

In quantum mechanics, |0〉 is a product state built from local eigenstates |s, sz〉i of the s2 and sz operator with
maximal sz eigenvalue s for all lattice sites i: [54]

|0〉 =

N⊗
i

|s, sz = s〉i, sz|s, sz = s〉i = s|s, sz = s〉i

(~ = 1). All spins have identical length. To show that |0〉 is an eigenstate of H, one introduces the ladder operators

s±i = sx
i ± isy

i ,

which—owing to the angular momentum algebra
[
sαi , s

β
j

]
= iεαβγsγi δi j—obey[

s+
i , s

−
j

]
= 2sz

iδi j, (2.17a)[
s2

i , s
±
j

]
= 0, (2.17b)[

sz
i , s
±
j

]
= ±s±i δi j. (2.17c)

s±i are called ladder operators, because they increase (+) or decrease (−) the sz quantum number: [54]

s±i |s, sz〉i =
√

(s ∓ sz)(s ± sz + 1)|s, sz ± 1〉i.

Note that s+
i |s, sz = s〉i = 0, which means that the sz component is maximal. Using

sx
i sx

j + sy
i sy

j =
1
2

(
s+

i s−j + s−i s+
j

)
in eq. (2.16), leads to

H|0〉 = −s2zJN|0〉 = E0|0〉,

where E0 = −s2zJN is the ground-state energy (z number of nearest neighbors). Thus, |0〉 is an eigenstate of H.
Furthermore, it has to be the ground state, because any other state with a nonmaximal sz quantum number for one
of the lattice sites has an energy larger than E0 [54].

2.4.2. One-magnon States

To identify excited states of H, one introduces [54]

|ri〉 = (2s)−1/2s−i |0〉,

8
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−π/a 0 π/a
0

2JS

4JS

gµBB

(5)

(4)

(3)
(2)(1)

Wave vector k

E
ne

rg
y

(1) (2) (3) (4) (5)

Fig. 2.3.: (Left) Magnon dispersion relation E(k) [eq. (2.19)] of a ferromagnetic chain with lattice spacing a without (black)
and with (red) an external magnetic field B, which causes a rigid energy shift of gµBB. (1)-(5) Snapshots of spin
waves with selected wavenumbers k as indicated in the dispersion relation.

which is a state similar to the ground state but with the sz quantum number reduced by 1 at the i-th lattice site with
position ri. Although |ri〉 is not an eigenstate of H, because the action of the term

s−j s+
i |ri〉 = 2s|r j〉

in the Hamiltonian shifts the spin deviation from the i-th to the j-th site, one uses |ri〉 to construct a Bloch sum [54]

|k〉 =
1√
N

N∑
i

exp(iri · k)|ri〉. (2.18)

This superposition includes spin deviations on all lattice sites, and is an eigenstate of H:

H|k〉 = [E0 + E(k)] |k〉.

Here,

E(k) = Js
z∑
δ

[1 − cos(δ · k)] (2.19)

is the k-dependent excitation energy, with z denoting the number of nearest neighbors and the δ’s are the vectors
connecting nearest neighbors [54]. Fig. 2.3 shows E(k) (black curve) for a spin chain (k→ k, δ→ ±a, a lattice
spacing). For k � π/a, the dispersion is quadratic in k.

To obtain a physical understanding of the quasiparticles described by |k〉, one analyzes some expectation values.
The sz

i expectation value [34]

〈sz
i 〉 = 〈k|sz

i |k〉 =
1
N

∑
m,n

exp[ik · (rn − rm)]〈rm|sz
i |rn〉 =

1
N

 ∑
m=n,i

〈rm|sz
i |rn〉 +

∑
m=n=i

〈rm|sz
i |rn〉


=

1
N

[(N − 1)s + (s − 1)] = s − 1
N

turns out to be site-independent, which indicates that the quasiparticle is a collective excitation. By construction,
the overall spin deviation is 1, which is uniformally distributed over all N spins, and the quasiparticles are bosons.

9



2. Interacting Spins in the Heisenberg Model

Moreover, the expectation value of the transverse correlation [34]

〈s⊥i s⊥j 〉 =
1
2
〈k|s+

i s−j + s−i s+
j |k〉 =

1
2N

∑
m,n

exp[ik · (rn − rm)]
(
〈rm|s+

i s−j |rn〉︸        ︷︷        ︸
2sδinδ jm

+ 〈rm|s−i s+
j |rn〉︸        ︷︷        ︸

2sδ jnδim

)

=
2s
N

cos
[
k · (ri − r j)

]
,

reveals that the angle between the orientation of the transverse spin component of two spins at ri and r j, respectively,
is φ = k · (ri − r j). This pattern reappears after the period λ = 2π/|k|. This shows that the quasiparticle is like a
wave propagating along k.

Thus, the eigenstate |k〉 describes a spin wave whose quanta are called magnons; |k〉 is a one-magnon state,
because one spin deviation is included. It can be classically visualized as precessing spins, where two neighboring
spins show a phase difference φ [see (1)-(5) in Fig. 2.3]. A spin wave with infinite wavelength (wave vector k = 0,
thus φ = 0) is just a reorientation of the ferromagnetic ground state, indicating that a magnon can be excited by an
infinitesimal amount of energy [34]. This can also be seen from the magnon energy E(k) in eq. (2.19) that goes
to zero as k→ 0. This is—according to the Nambu-Goldstone theorem [55–57]—a result of the spontaneously
broken continuous rotational symmetry of the Hamiltonian (2.16) in the ferromagnetic ground state [58]. The
spin Hamiltonian (2.16) is SU(2) symmetric: a global rotation in spin space leaves the Hamiltonian invariant. In
contrast, the ferromagnetic ground state possesses only U(1) symmetry, that is, it is invariant under a rotation
about the magnetization direction.

However, a U(1)-symmetric Hamiltonian, that is, a spin Hamiltonian that includes a magnetic field or an
anisotropy, also features the U(1)-symmetric ferromagnetic ground state, which does not lower the symmetry of
the Hamiltonian in this case. The Hamiltonian’s symmetry is not broken and a Goldstone mode is not expected.
For instance, a magnetic field B rigidly shifts the magnon spectrum: E(k) → E(k) + gµBB (see red curve in
Fig. 2.3). This effect is also known as the “freezing” of spins: it costs a finite amount of energy to excite a magnon,
because one has to “work against the magnetic field”.

Note that two-magnon states are not eigenstates of H, because magnons do not obey the superposition principle.
Physically, this is intuitively understood by considering s = 1/2 spins, where it is impossible to locate a spin
deviation of 2 on a single spin [59]. Thus, magnons interact and repel each other (“kinematic” interaction in the
terms of Dyson2, see Ref. [60]). Mathematically speaking, the set of two-magnon states is overdetermined and
cannot be orthogonalized [59].

2.4.3. Bosonization of Spins
The “spin language” makes working out the magnon excitations for generic spin Hamiltonians very tedious, which
comes down to the problem that the commutator of spin operators is itself an operator [61]; see eqs. (2.17a)-(2.17c).
A more efficient way of studying magnons was introduced by Holstein and Primakoff [62]. They proposed to
map the entirety of spins onto a boson model, where vacuum accounts for the ground state, that is, the absence of
magnons. The Holstein-Primakoff (HP) transformation reads [62]

sz
i = s − ni, s+

i =
√

2s
√

1 − ni

2s
ai, s−i =

√
2sa†i

√
1 − ni

2s
,

where ni = a†i ai is the magnon number operator. The operators ai (a†i ), which annihilate (create) a magnon, obey
the boson commutation relations,[

ai, a
†
j

]
= δi j,

[
a†i , a

†
j

]
=

[
ai, a j

]
= 0.

That sz
i has the eigenvalues −s,−s + 1, . . . , s − 1, s leads to the constraint ni ≤ 2s. It is much easier to work with

the boson commutators than with spin commutators, because the former are complex numbers.
The HP transformation, although being exact, comes at a high price because the factors [1 − ni/(2s)]1/2 contain

the square root of an operator. However, at low temperatures—which is the case of interest here—ni/(2s) � 1,
2Dyson differentiated a “kinematic” from a “dynamical” interaction of magnons, where the latter describes magnon scattering [60].
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2.4. Magnetic Excitations: Magnons

because ni, the number of thermally excited magnons, is small. Thus, only the first term of the square root Taylor
series is kept and the approximate HP transformation reads

sz
i = s − ni, s+

i ≈
√

2sai, s−i ≈
√

2sa†i .

Following Refs. [61, 63], this results for a nearest-neighbor spin Hamiltonian (2.16) in

H ≈ −J
∑
〈i j〉

[
(s − ni)(s − n j) + sa†i a j + saia

†
j

]
.

The diagonalizable bilinear Hamiltonian H(2), that is, that part of H, in which the boson operators appear in pairs,
is found by dropping the term nin j, which is a fourth-order term, and the ground state energy NzJs2, which is a
zero-order term:

H(2) = Js
∑
〈i j〉

(
ni + n j − a†i a j − aia

†
j

)
.

Fourier-transforming the annihilation and creation operators,

ai =
1√
N

∑
k

exp (ik · ri) ak, a†i =
1√
N

∑
k

exp (−ik · ri) a†k,

where ri is the position of site i, yields

H(2) =
Js
N

∑
〈i j〉

∑
kk′

(
exp

[
i(k′ − k) · ri

]
a†kak′ + exp

[
i(k′ − k) · r j

]
a†kak′

− exp [−ik · ri] exp
[
ik′ · r j

]
a†kak′ − exp [ik · ri] exp

[
−ik′ · r j

]
aka†k′

)
.

With
∑N

i exp[i(k − k′) · ri] = Nδkk′ and δ = r j − ri one finds [63]

H(2) =
Js
2

∑
δ

∑
k

(
2a†kak − exp (ik · δ) a†kak − exp (−ik · δ) aka†k

)
=

∑
k

E(k)nk,

where

E(k) = Js
∑
δ

[1 − cos(k · δ)]

is the energy of the magnons. Note that [ak, a
†
k] = 1 and the fact that on a Bravais lattice all sites are inversion

centers were used [63]. The result is similar to that obtained in Sec. 2.4.2 [see eq. (2.19)], because the bilinear
Hamiltonian describes noninteracting magnons (i. e., one-magnon states).

Above, a lattice with one spin per unit cell was considered, but the formalism can be generalized to the case of
n spins in the unit cell. One has to keep track of the basis index and rewrite the ai → ari+tµ , where ri is the vector
to the i-th unit cell and tµ the basis vector to the µ-th spin in the unit cell (µ = 1, . . . , n). Doing so, H(2) can always
be written in the form

H(2) =
(
a†k,1, . . . , a

†
k,n

)
Hk


ak,1
...

ak,n

 ,
with ak,µ being the Fourier-transformed annihilation operator on the µ-th basis atom. The linear spin-wave matrix

Hk =


H11

k · · · H1n
k

...
. . .

...
Hn1

k · · · Hnn
k

 ,
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2. Interacting Spins in the Heisenberg Model

contains the interaction between the µ-th and ν-th spin in the unit cell via its entries Hµν
k = (Hνµ

k )∗. The matrix Hk
has n eigenvalues Eµ(k), the associated eigenvectors uµ(k) are (generalized) one-magnon wavefunctions.

In the course of this thesis the free-magnon picture is used (see Pubs. 1-4). It is formally equivalent to
the single-particle description of electrons and the wave functions can be studied with respect to topology as
is discussed in the following chapter. The formal equivalence to electrons is traced back to the absence of
magnon-number nonconserving terms in the bilinear Hamiltonian H(2); terms of the form aia j or a†i a†j are missing.
However, such terms are found in ferromagnets with elliptical magnons (where an anisotropy deforms the formerly
circular precession) or in non-ferromagnets. In these cases the Hamiltonian looks like a Bogoliubov-de-Gennes
Hamiltonian, which is known from superconductivity, and a Bogoliubov-Valatin transformation [64, 65] is
necessary to diagonalize the Hamiltonian with respect to the bosonic commutation rules [66]. Although the theory
of the following chapters can be generalized to such cases [20, 27], this thesis concentrates on ferromagnets (with
circular magnons).

Magnon-magnon interactions, which become important at higher temperatures, can also be treated in the “boson
language” by analyzing higher-than-bilinear contributions. Their effect is two-fold: they renormalize the magnon
energies and cause a finite-lifetime broadening due to damping [61]. These effects are indirectly addressed in
Pubs. 5, and 6. However, due comments on the influence of interactions are given at the appropriate places.
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CHAPTER 3
TOPOLOGY IN MAGNETISM

Topology conquered condensed matter physics in the 1980s with the discovery of the quantum Hall effect [25],
when Thouless, Kohmoto, Nightingale, and den Nijs found that the quantization of the electrical Hall conductivity
could be put in terms of an integer topological invariant [24]. Sir Michael Berry’s seminal work on the geometrical
phase in quantum mechanics [12] was the decisive factor for understanding topological phenomena in quantum
and solid state physics. The Aharonov-Bohm effect [67] could be rephrased in terms of a Berry phase [68],
and Zak defined a Berry phase for the dynamics of electrons in periodic solids [13]. This, in combination with
Haldane’s model [26] (see Sec. 3.2.1) and its extension by Kane and Mele [69], laid the foundation for the concept
of topological electronic matter (for instance, topological insulators [70]), a still-growing zoo of materials. The
interest in the geometrical (or topological) properties of materials is partly attributed to their spectacular transport
properties. For instance, the (intrinsic) anomalous Hall effect [10, 11], which comprises a voltage drop transverse
to the direction of electrical current (in the absence of an externally applied magnetic field), can be calculated
solely from the electronic Berry phases.

In this chapter, Berry’s geometrical phase [12] and its appearance in electronic states [13] (Sec. 3.1.1) is
presented, and it is shown how it allows to classify topological Chern insulators (Sec. 3.2.1) and semimetals
(Secs. 3.2.2 and 3.2.3). This motivates the search for magnonic equivalents, that is, electrically insulating magnetic
materials, whose magnon excitations show the same topological features as their electronic counterparts. Therefore,
the Haldane model [26] is discussed in detail and “rebuilt” with localized spins (Sec. 3.2.1). Then, a connection is
drawn to transverse transport phenomena: starting from the electronic anomalous transport, results are carried
over to magnonic anomalous transport by invoking an “electron-magnon duality” on the single-particle level
(Sec. 3.3). Consequently, anomalous magnon transport is also expressed in terms of geometrical properties of the
one-magnon wavefunctions.

Finally, the research area of skyrmionics is shortly introduced, which is concerned with topologically nontrivial
magnetic “whirls” (Sec. 3.4). The review of the “emergent electrodynamics” for electrons [71, 72] and magnons
[73] leads to the discussion of another transverse transport phenomenon: the topological Hall effect. Here, the
topological nontriviality of the magnetic texture is the origin of an additional (emergent) magnetic field, which
exerts a Lorentz force on the electrons, causing a topological contribution to the Hall effect. These sections lay the
theoretical foundation for Pubs. 1-6.3

3.1. Berry’s Geometrical Phase

3.1.1. Derivation of the Berry Phase and Chern Number
The introduction to the Berry phase tightly follows Berry’s original work [12]. Consider a quantum mechanical
system described by a Hamiltonian H(X) depending on a parameter X. The instantenous discrete basis of the
Hilbert space of H(X) are the eigenstates |n(X)〉 obeying the stationary Schrödinger equation [12]

H(X)|n(X)〉 = En(X)|n(X)〉, (3.1)

with eigenvalues En(X). With nondegenerate En(X)’s, an adiabatic evolution of X in time t does not allow for an
inter-state transition and, consequently, the instanteneous eigenstates of H[X(t)] read |n[X(t)]〉.

The solution of the time-dependent Schrödinger equation

H[X(t)]|ϕ(t)〉 = i~
∂|ϕ(t)〉
∂t

(3.2)

3The topic “topology in magnetism” is not exhausted by Sec. 3. “Spin ices” [74, 75] or “spin liquids” [76], subjects with their own notitons
of topology, remain unconsidered.
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takes the form

|ϕ(t)〉 = exp
(

i
~

∫ t

0
En[X(t′)]dt′

)
exp (iγn(t)) |n[X(t)]〉, (3.3)

where the first exponential is the dynamic phase and the second exponential the geometric phase. Inserting
eq. (3.3) into eq. (3.2) yields [12]

γ̇n(t) = i 〈n(X) |∇Xn(X)〉 · Ẋ(t),

which can be integrated along a closed loop C in parameter space,

γn(C) =

∮
C

An(X) · dX. (3.4)

The integrand

An(X) = i 〈n(X) |∇Xn(X)〉 (3.5)

is a geometric “vector potential” called Berry connection4 [12]. Its curl,

Ωn(X) = ∇X × An(X) = i 〈∇Xn(X) |× |∇Xn(X)〉 , (3.6)

describes a geometric ”magnetic field” dubbed Berry curvature [12]. As in electromagnetism, the vector potential is
gauge dependent, while the magnetic field is not: the gauge transformation |n(X)〉 → |n′(X)〉 = exp(iΛ(X)) |n(X)〉
yields An(X)→ A′n(X) = An(X) − ∇XΛ(X) but Ωn(X)→ Ω′n(X) = Ωn(X) [12].

A more illustrative expression for Berry’s curvature is obtained by insertion of the completeness relation
1 =

∑
m |m(X)〉〈m(X)|:
Ωn(X) = i

∑
m

〈∇Xn(X) |m(X)〉 × 〈m(X) |∇Xn(X)〉 ,

which with

〈m(X)|∇Xn(X)〉 =
〈m(X)|∇XH|n(X)〉

En(X) − Em(X)

(m , n) becomes [12]

Ωn(X) = i
∑
m,n

〈n(X)|∇XH|m(X)〉 × 〈m(X)|∇XH|n(X)〉
[En(X) − Em(X)]2 . (3.7)

It can be seen that
∑

nΩn(X) = 0 and that Ωn(X) is largest, when [En(X) − Em(X)]2 is small.
By virtue of Stoke’s theorem, one rewrites eq. (3.4) as [77]

γn(C) =

∮
C

An(X) · dX =

"
S
Ωn(X) · dS + 2πp =

"
S ′
Ωn(X) · dS + 2πp′,

where S and S ′ are nonidentical surfaces, whose boundary is the loop C. Berry’s phase is periodic in 2π and, thus,
both p and p′ are integer (but not necessarily the same). C is the seam of a closed surface S constructed from
surfaces S and S ′. Thus, the integral of Berry’s curvature over S, [77]

Cn =
1

2π

"
S
Ωn(X) · dS (3.8)

=
1

2π

("
S
Ωn(X) · dS −

"
S ′
Ωn(X) · dS

)
=

1
2π

(
γn − 2πp − γn + 2πp′

)
= p′ − p,

is integer. The minus sign between the two integrals reflects the directedness of C. Cn is called Chern number of
the n-th eigenstate and is—due to its integer nature—a topological invariant: smooth transformations of H leave
Cn invariant as long as there are no degeneracies of the n-th state with another state on the integration surface S
[according to eq. (3.7), Berry’s curvature would be singular in this case].

4Berry himself did not speak of a “Berry connection”. This phrasing became popular in the publications building on his work.
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3.1.2. Berry Phase in Band Structure Theory
Crystalline materials show translational symmetry (quasicrystals excluded) which allows to characterize the
single-particle states ψn,k(r) by their crystal momentum ~k and to decompose them as

ψn,k(r) = exp (ik · r) un,k(r)

according to the Bloch theorem [54]. un,k(r) is lattice periodic and an eigenstate of the k-dependent Hamiltonian

H(k) ≡ exp (−ik · r) H exp (ik · r)

with eigenenergy En(k) [13]. The kinetic energy term of H(k) reads (p + ~k)2/(2m), demonstrating the parametric
influence of k. For translationally invariant solids, the crystal momentum k takes over the role of the parameter X.
The Berry connection and curvature in eqs. (3.5) and (3.6), respectively, read [13]

An(k) = i 〈un(k) |∇kun(k)〉 ,
Ωn(k) = i 〈∇kun(k) |× |∇kun(k)〉

in reciprocal space.
Band structures reflect the symmetry of the crystal. Two major symmetries are space inversion symmetry, also

called parity symmetry (P : r → −r), and time-reversal symmetry (T : t → −t), both of which project k onto
−k. Thus, both symmetries require En(k) = En(−k), ignoring the spin-degree of freedom. Under time-reversal
symmetry, Berry’s curvature is an odd function in momentum, Ωn(k) = −Ωn(−k), while it is even in the presence
of parity symmetry, Ωn(k) = Ωn(−k) [78]. Thus, the presence of both T and P symmetry renders the curvature
zero everywhere [except for band crossings, confer eq. (3.7)].

3.2. Topological Materials and Their Realization by Magnons
A material is considered “topological”, if it is characterized by nonzero topological invariants, such as the Chern
number [see eq. (3.8)]. Here, several topological materials are introduced, which are known from electronic
band theory: topological Chern insulators (Sec. 3.2.1), Weyl semimetals (Sec. 3.2.2), and nodal-line semimetals
(Sec. 3.2.3). It is demonstrated how to construct analog materials from localized spins, meaning that the respective
magnon spectra show the same topological features as their electronic pendants. The following three subsections
provide the theoretical background to Pubs. 1-4, respectively.

3.2.1. Topological Chern Insulators
The Chern number defined in eq. (3.8) is of particular importance for band structures, because the reciprocal space
is periodic in all k-directions. Thus, the Brillouin zone (BZ) is a closed surface in two dimensions. The Chern
number of band n thus reads [24, 26]

Cn =
1

2π

"
BZ

Ωn,z(k) d2k. (3.10)

Since Berry’s connection only has x and y components in two dimensions, Ωn,z = ∂kx An,y − ∂ky An,x is the only
nonzero component of the curvature.

Haldane’s Model

A very famous minimal model for the analysis of topologically trivial (Cn = 0 ∀n) and nontrivial (Cn , 0 ∃n)
band structures is Haldane’s model of spinless electrons on a honeycomb lattice [26], which is a staple in the
introduction to topological insulators (see Fig. 3.1). It can be considered a minimal graphene tight-binding model,
because one orbital per lattice site is taken into consideration, making it a two-band model (graphene has two
sublattices β = 1, 2). Here, the reviews by Fruchart and Carpentier [79], by Cayssol [80], and by Kane [81] are
followed.
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Fig. 3.1: Haldane’s honeycomb-lattice model for a topo-
logical Chern insulator. Vectors to nearest δi and
second-nearest neighbors δ′i (i = 1, 2, 3) are indi-
cated by red and blue arrows, respectively. A tex-
tured magnetic flux, which breaks time-reversal
symmetry, is indicated by the black kagome-like
plaquettes. As in Ref. [79], ϕ = φ/2 for nota-
tional simplicity.
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The tight-binding Hamiltonian reads

H = −t
∑
〈i j〉

a†i a j, (3.11)

where t is the hopping amplitude of nearest neighbors (indicated by 〈i j〉), and a†i (ai) creates (destroys) a particle
at site i. Eq. (3.11) is diagonalized by Fourier transforming these operators, resulting in

H =

2∑
α,β=1

∑
k

Hαβ(k)c†
α,kcβ,k, (3.12)

with cβ,k destroying a mode with wavevector k on the β sublattice. Hαβ(k) is an element of the Hamilton matrix [81]

H(k) = d(k) · σ, with d(k) =

−t
∑3

i=1 cos(k · δi)
−t

∑3
i=1 sin(k · δi)

0

 . (3.13)

Here, σ = (σx, σy, σz)T is the vector of Pauli matrices and d(k) contains sums over all vectors δ to nearest
neighbors: δ1 = (0, 1)T, δ2 = (−

√
3/2,−1/2)T, and δ3 = (

√
3/2,−1/2)T (red arrows in Fig. 3.1). The form of

Hamiltonian (3.13) is generic for two-level systems [79]. Since d(k) is zero at the K and K′ points of the
hexagonal Brillouin zone, the two bands [given by the eigenvalues of H(k)] are degenerate and form Dirac
cones [81] [see Fig. 3.2(a)].

Both parity symmetry and time-reversal symmetry are intact (see Sec. 3.1.2) [79–81]. Parity P interchanges
the sublattices and acts as P : (σx, σy, σz) → (σx,−σy,−σz) [80]. Thus, the parity operation can be written as
P = σx. The Hamiltonian (3.13) is parity-invariant, because PH(k)P−1 = H(−k).

Time-reversal symmetry (TRS) of spinless electrons takes the wave functions to their complex conjugates and
it acts as T : (σx, σy, σz) → (σx,−σy, σz) [80], such that its operation reads T = σ0K (σ0 is the 2-by-2 unit
matrix), where K denotes complex conjugation. H(k) is time-reversal symmetric, because TH(k)T −1 = H(−k).
Note that this TRS is a pseudospin TRS (sublattice TRS) and not the same as the true TRS for spinful electrons.
The latter obeys T 2 = −1 and is responsible for the Kramer’s degeneracy of electron bands, while pseudospin
TRS obeys T 2 = +1 [80].

The effects of the above symmetries on topology can be studied by analyzing the Berry curvature [79–81]

Ω±,z(k) = ∓1
2

d̂(k) ·
(
∂d̂(k)
∂kx

× ∂d̂(k)
∂ky

)
(3.14)
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Fig. 3.2.: Electronic band structure of the Haldane model. (a) In the simultaneous presence of parity and time-reversal
symmetry, the dispersion exhibits Dirac cones at the K and K′ points of the hexagonal Brillouin zone (light blue
hexagon). (b) If parity or time-reversal symmetry is broken, the Dirac points are lifted and there is a finite band gap.

in a two-level system, where + (−) corresponds to the upper (lower) band. The unit vector d̂(k) = d(k)/|d(k)|
defines a point on a sphere for every k [except for d(k) = 0] and is directly connected to the Berry phase that is
given by half of the solid angle swept out by d̂(k) [12, 81]. Using eq. (3.13), one verifies that Ω±,z(k) = 0 [for
d(k) , 0]. For d(k) = 0, Berry’s curvature is ill-defined and can have Dirac-delta contributions (confer Sec. 3.2.3).

To lift the Dirac points at the K and K′ points [see Fig. 3.2(b)], either one of P or T (or both) must be broken by
introducing a σz mass term in the Hamiltonian (3.13) [81]. P is lifted by adding a sublattice-asymmetric on-site
potential, such that dz(k) = dz , 0 [81]. However, the resulting band structure is topologically trivial, because
Ω±,z(k) = −Ω±,z(−k) (Chern numbers C± = 0).

To obtain a topologically nontrivial insulating phase, TRS has to be lifted, which is done by invoking a textured
magnetic field which preserves the symmetry of the lattice (see Fig. 3.1) [26, 79–81]. When the electron “hops”
from site i to site j, it aquires an Aharonov-Bohm phase φ due to the magnetic flux [67,79]. Hopping in the reversed
direction (which is the time-reversed process), the phase is reversed φ → −φ. This introduces a k-dependent
mass [79, 81]

dz(k) = −t2 sin(φ)
∑
δ′

sin(k · δ′), (3.15)

where δ′ are the vectors to second-nearest neighbors and t2 is the strength of second-neighbor hopping. Ω±,z(k) =

Ω±,z(−k) becomes an even function in k, provided that parity symmetry is recovered [otherwise Ω±,z(k) is neither
even nor odd]. The Chern numbers C± = ∓sgn(sin φ) are nonzero [79], indicating a topologically nontrivial
scenario.
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Fig. 3.3.: Bulk-boundary correspondence. Electronic edge spectra at the zig-zag edge of the honeycomb lattice are shown
for (a) P and T symmetry, (b) P symmetry, and (c) T symmetry. Extended orange areas are the projection of the
bulk states, while the sharp greenish feature is the edge mode. Chern numbers C± and the winding number w are
indicated. a‖ is the lattice constant of, and k‖ the momentum parallel to the edge unit cell. The edge Brillouin zone
spreads from a‖k‖ = −π to +π.

Bulk-boundary Correspondence

Nonzero Chern numbers of the bulk states dictate electronic properties of a boundary, a connection known as
bulk-boundary correspondence. As rigorously shown by Hatsugai [82, 83], the winding number wi of band gap i,

wi =
∑
j≤i

C j. (3.16)

tells the difference in the number of left-propagating and right-propagating edge states within the i-th band gap.
For the Haldane model, there is no band gap when P and T symmetry are preserved. The projections of the

magnon bulk states onto, for example, the zig-zag edge of the honeycomb lattice, show touching points, which
are the projected Dirac points [see orange area in Fig. 3.3(a)]. There is a flat state (green line at zero energy)
connecting the Dirac point projections. Its wave function decays exponentionally towards the bulk, hence the
name edge mode.

Breaking T symmetry leads to a band gap opening and nonzero Chern numbers. The winding number of the
band gap is equal to the Chern number of the lower band, w = C−. If the Aharonov-Bohm phase is chosen such
that w = C− = +1, one finds that there is one right-propagating edge mode (one mode with positive group velocity
per edge Brillouin zone), which connects adjacent bulk band projections [see green line in Fig. 3.3(b)]. In the
opposite case, C− = −1, there would be one left-propagating edge mode (negative group velocity).

A finite Chern-insulator sample is unidirectionally revolved by the topological edge modes. Manipulation of
the model’s parameter at the edge can change the dispersion of the edge mode, but cannot destroy its topological
nature, that is, it will always connect adjacent bulk bands and revolve the sample. Furthermore, it is robust against
all smooth changes to the Hamiltonian which do not alter the Chern numbers, and, hence, the winding numbers.

Broken P symmetry also lifts the Dirac cones, but the Chern numbers remain zero. The edge state does not cross
the band gap, in agreement with w = 0. The edge state clings to the same bulk band projection [see Fig. 3.3(c)].

Haldane’s Model “Rebuilt” with Localized Spins

To “rebuilt” Haldane’s model with localized spins one replaces the electrons by spins. Note that chronologically
this was not the first model considered to study topological properties of magnons (see comments at the end of
this section), but it makes the equivalence to electrons the most obvious. The following argumentation is based on
Refs. [84–86] but rephrased with respect to the above introduced two-level system.

Localized spins on the honeycomb lattice obey the spin Hamiltonian [84, 86]

H = −J
∑
〈i j〉

si · s j +
∑
〈〈i j〉〉

Di j ·
(
si × s j

)
−

∑
i

B · si, (3.17)
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3.2. Topological Materials and Their Realization by Magnons

Table 3.1.: Comparison of symmetry-breaking mechanisms for the electronic and magnonic Haldane model.

symmetry breaking mechanism
electrons magnons

parity P sublattice-asym. on-site energy different spin lengths, fields, or anisotropies
time reversal T antisym. next-nearest neighbor hopping next-nearest neighbor DMI

with nearest neighbor exchange J, second-nearest neighbor DMI with vector Di j = (0, 0,Di j)T, and a magnetic
field B = (0, 0, B)T, which is measured in units of energy (see Sec. 2.2.3).

Since the model is strictly two-dimensional, say, in the xy plane, it is a mirror plane by definition; only z
components of the DM vectors are allowed according to the third Moriya rule in Sec. 2.2.2. The honeycomb
lattice allows for a second-nearest neighbor DMI, because the midpoint of the second-nearest neighbor bond
is no center of inversion (first Moriya rule). A nearest-neighbor DMI is not included, because the midpoint of
nearest-neighbor bonds is a center of inversion5.

The out-of-plane magnetic field ensures the out-of-plane magnetization in the ferromagnetic ground state, about
which the Holstein-Primakoff transformation (see Sec. 2.4.3) is performed. The Hamiltonian (3.17) is rewritten
as [84, 86]

H(2) = −Js
∑
〈i j〉

(
aia
†
j + a†i a j

)
+ is

∑
〈〈i j〉〉

Di j

(
aia
†
j − a†i a j

)
+ Js

∑
〈i j〉

(
a†i ai + a†ja j

)
+ B

∑
i

a†i ai, (3.18)

where only the bilinear part H(2) is kept as discussed in Sec. 2.4.3. Comparing H(2) with the electronic tight-binding
model, the exchange sum takes over the role of nearest-neighbor hopping [t = Js, see eq. (3.11)], while the DMI
sum mimics imaginary antisymmetric second-nearest neighbor hopping (Di j = −D ji), being the equivalent of the
Aharonov-Bohm phase φ. The only fundamental differences to the electronic case are the third and fourth sum,
which ensure that the magnon spectrum is non-negative. Fourier transforming the boson operators leads to the
two-level system Hamiltonian (3.13) [84, 86]

H = d0σ0 + d(k) · σ, with d(k) =

 −Js
∑
δ cos(k · δ)

−Js
∑
δ sin(k · δ)

2Ds
∑
δ′ sin(k · δ′)

 . (3.19)

The on-site energy enters as d0 = B + 3Js; for the discussion of topology, d0 can be ignored, because it only rigidly
shifts the magnon spectrum and does not change the eigenfunctions. Thus, the situation of the electronic Haldane
model is recovered. It is concluded that out-of-plane DMI breaks the TRS of the free-magnon Hamiltonian,
causing topologically nontrivial magnon bands. Notice that it is neither the magnetic ordering itself nor the
magnetic field which acts as the relevant time-reversal breaking mechanism: without DMI the magnon bands
form Dirac cones at the K and K′ points, just as for the electrons, and Berry’s curvature is zero. To reiterate, TRS
breaking means pseudospin TRS breaking.

Although not contained in eq. (3.17), the parity-symmetry breaking asymmetric on-site potential could be
obtained either by choosing different spin lengths on the sublattices [85] (a ferrimagnet with J > 0 to ensure
parallel ordering), by making the magnetic field sublattice-dependent, or by introducing sublattice-dependent
single-ion anisotropy (see Sec. 2.2.1). All cases would lead to a k-independent σz term. Confer Tab. 3.1 for a
comparison of the symmetry-breaking ingredients in the electronic and magnonic Haldane model.

A ferromagnet with a magnon spectrum with nonzero Chern numbers is called a topological magnon (Chern)
insulator [23] as hommage to electronic Chern insulators. It is stressed that the term “insulator” has no physical
meaning for magnons (or generally bosons). Here, “insulator” refers to the spectrum featuring band gaps.

Historically, TMIs were discovered by Katsura et al. [15] and Zhang et al. [23] on the kagome lattice. They
respectively demonstrated the existence of nonzero Berry curvature [15] and topological edge magnons [23]. The

5However, if the honeycomb lattice was considered the two-dimensional interface of a three-dimensional bulk or was not a mirror plane
of a three-dimensional crystal, Rashba-like DMI, that is, in-plane DM vectors, would be allowed for nearest neighbors. Such DMI was
considered in Ref. [87], but is not accounted for here.
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3. Topology in Magnetism

kagome lattice, which is built from corner-sharing equilateral triangles [confer red triangles in Fig. 1.1(a)], has
the fundamental advantage that it allows for nearest-neighbor DMI. As noted in Sec. 2.2.2, DMI is a result of
spin-orbit coupling and is usually much smaller than the exchange interaction; even more so for further-than-
nearest neighbors. Thus, the Haldane model—although being an excellent illustration of the concept—is quite
unrealistic for magnons6. In contrast, the ferromagnetic kagome model was recently found to be realized by the
metal-organic magnet Cu(1,3-benzenedicarboxylate) [89]. Thus, the kagome model was of central interest of the
present thesis and it is featured in Pubs. 1, 2, and 5.

As demonstrated in Ref. [27], the concept of topological magnon insulators can be generalized to nonferro-
magnets. Over the years, some theoretical proposals for an experimental realization have been put forward. They
feature, for example, magnonic crystals, whose classical dipole-dipole interaction takes over the TRS-breaking
role of the DMI [27], or noncoplanar spin textures [90].

3.2.2. Weyl Semimetal
For each closed surface S in three-dimensional reciprocal space, a Chern number can be calculated. If the Berry
curvature vector field is divergence free, the Chern integral is zero; there is zero topological charge, at which the
Berry curvature field lines could start or end. If, however, a Berry curvature monopole is enclosed by S , the Chern
number yields nonzero topological charge q = ±1, where the sign differentiates between a source and a sink of
Berry curvature. To obtain a Berry curvature monopole, either P or T symmetry (or both) must be broken to make
Berry’s curvature nonzero in the first place, and two bands have to touch each other, such that the denominator
in eq. (3.7) becomes zero. These touching points are called Weyl points, as proposed in the seminal work of
Wan et al. [29]7. Weyl points carry a topological charge (a nonzero Chern number) and they are robust: smooth
perturbations of the Hamiltonian do modify the band structure, but the Weyl points cannot be lifted, because of
the associated annihilation of topological charge [29].

Weyl points always come in pairs as indicated in Fig. 3.4 by the red and blue spheres. An intuitive way to see
so is as follows. Suppose one wishes to calculate the Chern number over the surface S of the three-dimensional
Brillouin zone8 (indicated by the cuboid in Fig. 3.4). If the Berry curvature field punctures a surface element of S
with normal n, there is another surface element on S with opposite normal −n but with the same Berry curvature
field due to translational symmetry. Thus, the Chern number integral is zero. Consequently, for each Weyl point
with positive topological charge, there exists a Weyl point with negative charge, such that the total topological
charge is zero. When smoothly varying the Hamiltonian (by tuning some parameter), the only way to remove the
Weyl points is by moving them to the same k point, such that their opposite charges can annihilate [29].

If P is broken but T is not, E(k) = E(−k) and Ω(k) = −Ω(−k). Thus, when there is a Weyl point at k with
topological charge q, there is another Weyl point with charge q at −k [29]. Thus, there must exist another pair of
Weyl points, with each point carrying charge −q; there are at least four Weyl points.

If T is broken but P is not, E(k) = E(−k) and Ω(k) = Ω(−k). Thus, each Weyl point at k with topological
charge q has its opposite partner (−q) at −k [29]. The minimal number of Weyl points is two, a scenario sketched
in Fig. 3.4.

Concerning the topological surface state associated with Weyl points, the argument given in Ref. [29] is
reviewed in the following paragraph. Since the Chern number integral only depends on the topological charges
enclosed by the surface S , one can choose S cylindric, such that it forms a torus in k space (cylinder in Fig. 3.4).
This cylinder describes a two-dimensional subsystem with bands separated by a band gap, because the Weyl point,
i. e., the gap closing, does not lie on S . Thus, a Chern number can be calculated for each band of this subsystem,
recovering the case of a Chern insulator, discussed in Sec. (3.2.1). Consequently, when introducing an edge to
this cylinder (a surface to the three-dimensional crystal), the cylinder forms a loop in the surface Brillouin zone
(elliptic loop in Fig. 3.4). This loop encloses the projection of a Weyl point and it can be regarded the edge of a
two-dimensional Chern insulator. Thus, one invokes the bulk-boundary correspondence, dictating that there is an

6Actually, even the electronic case is far from a solid-state realization. However, an experimental realization was demonstrated in Ref. [88],
where ultracold fermionic atoms in a periodically modulated optical honeycomb lattice where studied.

7The low-energy physics about a Weyl point at k0 obeys the Weyl equation HW = E0σ0 + v0 · qσ0 +
∑3

i=1 vi · qσi. Here, E0 is the position of
the Weyl point in energy, q = k − k0, and the vi’s are velocities. The 2-by-2 Weyl-Hamiltonian HW has a cone-like dispersion. In contrast
to Dirac fermions, a mass gap cannot be introduced [29].

8It is indirectily assumed that all faces are infinitesimally smoothly rounded, such that the normal of the surface is well-defined.
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Fig. 3.4.: Weyl points and Fermi arc. The touching points, called Weyl points, of two bulk bands are source or sink of the Berry
curvature vector field (red and blue spheres). They always appear in pairs: one Weyl point with positive and one with
negative topological charge. A special closed surface enclosing a Weyl point is a cylindric tube, which forms a torus
due to the periodicity of the three-dimensional Brillouin zone. Since the Weyl point does not lie on the tube’s surface,
the cylinder hosts a two-dimensional Chern insulator with a well-defined band gap. When projected onto a surface
whose normal is parallel to the tube’s axis, the tube forms a loop, encircling the projection of a Weyl point. Due to
the bulk-boundary correspondence there must be an edge state crossing the Fermi energy in the band gap on this loop
(green cross). This argument can be invoked for any tube and one can trace the crossing point, where the edge state
crosses the Fermi energy on the respective loop in the surface Brillouin zone. Connected, these crossing points form
a Fermi arc (green line), which starts at a projection of one Weyl point and ends at the projection of an oppositely
charged Weyl point.

edge state crossing the band gap on the loop. In particular, this edge state will cross the Fermi energy, which lies
within the band gap. In Fig. 3.4 this crossing point is indicated by the green cross. Since this argument is true for
every loop, the shape of the cylinder can be varied, allowing to trace the point where the edge state crosses the
Fermi energy. When connected, these points form a Fermi arc, which starts at the projection of one Weyl point
and ends at the projection of an oppositely charged Weyl point.

Over the years, several materials have been proposed to host Weyl points, among the first were Y2Ir2O7 [29]
and TlBi(S1−xSex)2 [91]. In TaAs [92, 93] Weyl points were first experimentally confirmed [94, 95]. Additionally,
TaAs was shown to exhibit a negative magnetoresistance due to the chiral anomaly [30, 31]: when applying a
magnetic field parallel to the electric field, the electric resistivity drops for increasing magnetic fields in Weyl
semimetals as proposed in Ref. [32].

In Pub. 3 it is demonstrated how to construct a magnon spectrum with Weyl points. To that end, the spin
Hamiltonian of a pyrochlore ferromagnet is taken and (pseudo-spin) time-reversal symmetry is broken by
introduction of symmetry-allowed DMI. One finds the minimal number of two oppositely charged Weyl points and
the associated surface state, a magnon arc. The pyrochlore oxide Lu2V2O7, which shows the (thermal) magnon
Hall effect (see Sec. 1), is proposed to be a “magnon Weyl semimetal”.

3.2.3. Nodal-line Semimetal
A questions remains whether the simultaneous presence of parity P and time-reversal symmetry T , which renders
Berry’s curvature zero everywhere, automatically implies a topologically trivial situation. This is not necessarily
the case as can be understood from the Haldane model. It was shown that there are Dirac points at the K and K′
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Fig. 3.5: Nodes and nodal lines. (a) The
two-dimensional spectrum of the
Haldane model under simultaneous
presence of parity and time-reversal
symmetry shows Dirac points, at
which the two bands touch each
other. The Berry phase over loop
C yields π, because C encloses a
Dirac point. (b) In three dimen-
sions two bands can touch along a
closed line in k-space, forming a
nodal line (red). The Berry phase
over loops interconnected with the
nodal line is π.
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points if P and T are present [see Fig. 3.5(a)]. Thus, closed loops in the two-dimensional Brillouin zone which
contain a Dirac point [loop C in Fig. 3.5(a)] are different from those which do not. In the remainder of this section,
the meaning of “different” is elaborated by following the review by Fang et al. [96], leading to the introduction of
nodal-line semimetals.

All closed loops C in the two-dimensional k-space can be classified by a Z2 invariant νn(C), which is either 0 or
1 (in contrast, a Chern number is a Z invariant; it can take all integer values). Here, 0 indicates a topologically
trivial situation, while 1 indicates a topologically nontrivial situation. Consider

(−1)νn(C) = exp

i ∑
m≤n

γm(C)

 , where γm(C) =

"
S

Ωz
m(k) d2k (3.20)

is the Berry phase of the m-th band along the closed loop C (∂S = C). Acting with PT on γm(C) yields −γm(C).
Thus, γm(C) = −γm(C) + 2πp (p integer), when PT symmetry is present. It follows that γm(C) = pπ, where p = 0
indicates the situation that Berry’s curvature is zero everywhere, while p , 0 is only possible, if there are p Dirac
points enclosed by C, all of which contribute as a δ distribution to the curvature [in Fig. 3.5(a) there is one Dirac
point enclosed by C, yielding p = 1].

With this result, eq. (3.20) becomes

(−1)νn(C) = exp

iπ∑
m≤n

pm(C)


where pm(C) counts the number of Dirac points in the m-th band enclosed by C. Thus, νn(C) is either 0 or 1,
representing a Z2 invariant that characterizes every closed loop C with respect to the n-th band.

This invariant can be extended to three dimensions, classifying loops C in the three-dimensional Brillouin
zone [96]. However, a Dirac point is no longer sufficient to make the situation topologically nontrivial. While
in two dimensions there is no way to contract C if it encloses a Dirac point, this is obviously possible in three
dimensions by contracting C on a plane that does not contain the Dirac point. This argument tells that one needs a
one-dimensional “Dirac loop”, which has to be intertwined with C [96] [visualized in Fig. 3.5(b)]. These loops
are called nodal lines and electronic materials with a nodal line at the Fermi level are nodal-line semimetals [96].

If C is not intertwined with a nodal line, the respective νn(C) is zero. If C is intertwined with a nodal line, νn(C)
can be 0 (accidental nodal line) as well as 1 (topological nodal line). An accidental nodal line can be lifted by a
symmetry-preserving infinitesimally small perturbation, while a topological nodal line cannot [96].

With respect to the bulk-boundary correspondence, it is obvious that P symmetry is always lifted at a surface,
breaking the protecting symmetry of a nodal line. Thus, the bulk-boundary correspondence cannot be applied
and there is no dictation of a typical surface state of a bulk nodal line [96]. However, many numerical studies
have seen the so-called drumhead surface state, a weakly dispersive surface state located in the interior or exterior
of the surface projection of the nodal line [96], which is sensitive to the surface termination [97]. A drumhead
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surface state can be understood as the generalization of the nondispersive edge mode of the Haldane model in the
presence of P and T symmetry [see Fig. 3.3(a)].

Note that there are other types of nodal lines, which are protected by mirror symmetry (and are thus forced to
appear within the respective mirror planes) [96, 98] or by a screw axis [99] rather than by P and T symmetry.
Moreover, it was shown experimentally that PbTaSe2 [100] and ZrSiS [101] are electronic nodal-line semimetals.
PbTaSe2 hosts a doubly-degenerate line node protected by mirror symmetry [100], while ZrSiS features a
fourfold-degenerate line node (also called Dirac line node due to spin-degeneracy [86]).

In Pub. 4 the magnon analog of a nodal-line semimetal is introduced. Considering a ferromagnet on the
pyrochlore lattice, the limit of vanishingly small DMI is studied to preserve time-reversal symmetry. Topological
and accidental nodal lines are identified and their topological invariants are calculated; the magnon surface
spectrum is shown to feature a drumhead surface state. The study of the evolution of the nodal lines upon variation
of exchange parameters reveals a topological phase transition from a “closed” nodal line to an “open” nodal line;
for the meaning of “closed” and “open”, please confer Pub. 4.

3.2.4. Other Topological Materials
There are many other classes of topological materials not covered in this thesis. The most prominent are

• Z2 topological insulators, where time-reversal symmetry in the presence of spin-orbit interaction protects
“helical” edge states, meaning that the topological edge states of spin-up and spin-down electrons revolve
the sample in opposite direction [70],

• topological crystalline insulators without the necessity of spin-orbit interaction, where a crystal symmetry
protects topological surface modes [102],

• materials with nonsymmorphic symmetries, which feature “hourglass” fermions [103],

• and topological Dirac semimetals with time-reversal and parity symmetry, which can be understood as Weyl
semimetals without broken symmetries. The bands forming the Dirac cone are two-fold spin degenerate,
causing a four-fold degeneracy of the Dirac point [104].

Notice that the time-reversal symmetry mentioned here is not the pseudo time-reversal symmetry but that of
spinful electrons.

3.3. Transverse Transport Caused by Nontrivial Topology
The history of transverse transport dates back to 1879 when E. Hall discovered a voltage drop across a bar of metal
situated in a magnetic field, when an electrical current is flowing along the bar [105]. Today, this phenomenon is
known as Hall effect or, more precisely, as the normal Hall effect, because Hall also measured the aforementioned
voltage drop across a bar of a metal with a magnetization (but without magnetic field) [8]. Due to the lack of the
magnetic field, the latter effect is known as anomalous Hall effect. While the normal effect can be understood
intuitively as a result of the deflection of electrons in the magnetic field (Lorentz force), the anomalous effect
remained a mystery for quite some time; please see Ref. [11] for an extensive review of the anomalous Hall effect.
In short, it was found by Sundaram and Niu [10] that the idea of Karplus and Luttinger to include an “anomalous
velocity” [106] could be elegantly explained in terms of Berry curvature Ωn(k) (n band index) of electron Bloch
wave functions (confer Sec. 3.1.2). The equations of motion for an electron wave packet in electromagnetic fields
(E electrical field, and B magnetic field) thus read [10]

ṙ =
1
~

∂εn(k)
∂k

− k̇ ×Ωn(k), (3.21)

~k̇ = qE + qṙ × B, (3.22)

where vn(k) = ~−1∂εn(k)/∂k is the group velocity [εn(k) electron energy] and −k̇×Ωn(k) the anomalous velocity;
q = −e is the electron charge. Notice that the anomalous velocity makes the equations of motion symmetric: the
Berry curvature is the k-space analog of a magnetic field [78].
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3. Topology in Magnetism

It can be seen right away that the anomalous velocity causes transverse transport. In two dimensions the
wavepacket motion is restricted to the xy plane and Ωn(k) has only an out-of-plane component. Thus, in the
presence of an electrical field, the vector resulting from the cross product of k̇ = ~−1qE and Ωn(k) lies in the xy
plane and orthogonal to E.

In the following, the application of the Boltzmann transport equation is reviewed to find expressions for the
transverse conductivities in the linear-response limit for electrons (see Sec. 3.3.1). Thereafter, the construction of a
dual electrodynamics for magnons is presented, which is utilized to carry over the results from electron to magnon
transport (Sec. 3.3.2). On the single-particle level the major difference between electrons and magnons is given
by the statistics (Fermi-Dirac versus Bose-Einstein distribution). Thus, as in the case of electrons, the transverse
conductivities associated with magnon transport can be calculated from the Berry curvature. A nomenclature of
magnon transport phenomena closes this section (Sec. 3.3.2).

3.3.1. Boltzmann Equation and Linear Response Theory
To study transport of an ensemble of particles, the Boltzmann equation is utilized (see, for instance, Refs. [107]
and [108]), which is an integro-differential equation for the distribution function ρ(r, k, t) depending on space (r),
momentum (k), and time (t) [108]:[

∂

∂t
+ ṙ · ∂

∂r
+ k̇ · ∂

∂k

]
ρ(r, k, t) =

∂ρ(r, k, t)
∂t

∣∣∣∣∣
coll

.

∂ρ(r, k, t)/∂t|coll denotes a collision term (or “collision integral”), which describes scattering processes on impu-
rities or other (quasi-)particles. While the left-hand side follows from the total time derivative of ρ(r, k, t), the
collision term on the right-hand side is introduced by physical reasoning: only collisions can balance the drift
terms on the left-hand side in a steady state [∂ρ(r, k, t)/∂t = 0]. For the evaluation of the collision term, detailed
knowledge of the quantum-mechanical scattering processes is necessary in principle. However, restriction to
a phenomenological level is possible by invoking the relaxation-time approximation [108]. By decomposing
the distribution function ρ(r, k, t) = ρ0(r, k, t) + δρ(r, k, t) into the local equilibrium distribution ρ0(r, k, t) and a
deviation δρ(r, k, t), one assumes that the scattering is proportional to the deviation,

∂ρ(r, k, t)
∂t

∣∣∣∣∣
coll

= −δρ(r, k, t)
τ(r, k)

where τ(r, k) is the relaxation time. Thus, in a stationary [∂ρ(r, k, t)/∂t = 0] and homogeneous case [∂ρ(r, k, t)/∂r =

0, and τ(r, k) = τ(k)] it follows

k̇ · ∂ρ(k)
∂k

= −δρ(k)
τ(k)

, (3.23)

which is linearized by setting ρ(k) ≈ ρ0(k). In the absence of a magnetic field, eq. (3.22) yields k̇ = qE/~, leading
to

δρ = −qτE · v∂ρ
0

∂ε
;

∂ρ0/∂k = ~v∂ρ0/∂ε was used and the functional dependencies and band indices were dropped for simplicity.
Defining a (two-dimensional) particle current density j = (2π)−2

∫
BZ ṙρ d2k and using eq. (3.21), one finds

j =
1

(2π)2

∫
BZ

ṙ(ρ0 + δρ) d2k =
1

(2π)2

∫
BZ

(
v − q
~

E ×Ω
) (
ρ0 − qτE · v∂ρ

0

∂ε

)
d2k.

The integral over vρ0 is zero. Considering small electrical fields, that is, terms quadratic in E are neglected, the
current in x-direction reads

jx = − 1
(2π)2

∫
BZ

(
qv2

xτEx
∂ρ0

∂ε
+

q
~

EyΩzρ
0
)

d2k (3.24)
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3.3. Transverse Transport Caused by Nontrivial Topology

(Ωy = 0 for a two-dimensional sample in the xy plane). Here, the first term is the “normal” longitudinal transport:
an electric field in x direction causes a current in x direction. The second part, however, describes an anomalous
Hall effect, because an electric field in y direction causes a transverse current in x direction, provided Ωz is nonzero
and not odd in k.

For electrons (q = −e), the electrical current density je = −e j obeys Ohm’s law

je = σE, (3.25)

where σ is the electrical conductivity tensor. Utilizing eq. (3.24), one can write jex = σxxEx + σxyEy to identify
the longitudinal conductivity

σxx =
e2

(2π)2

∑
n∈bands

∫
BZ

v2
n,k,xτn,k

(
−∂ρ

0

∂ε

)∣∣∣∣∣∣
ε=εn,k

d2k, (3.26)

and the transverse conductivity

σxy = − e2

(2π)2~

∑
n∈bands

∫
BZ

Ωz,n,kρ
0
n,kd2k,

where the band indices were recovered.
At zero temperature the equilibrium Fermi-Dirac distribution function ρ0

n,k is the Heaviside function with the
step located at the Fermi energy. If the Fermi energy is within the m-th band gap, the integral over Berry’s
curvature is the winding number wm [confer eq. (3.16)]:

σxy = − e2

2π~

∑
n≤m

1
2π

∫
BZ

Ωz,n,kd2k = −e2

h

∑
n≤m

Cn = −e2

h
wm,

where the m-th band is the first band below the Fermi level. Thus, the transverse electrical conductivity is
quantized.

Considering thermal transport, one obtains the thermal conductivity and conductivities that connect an electrical
current with a temperature gradient ∇T and an electric field with a heat current jth. The derivation of these
thermoelectric conductivities can be carried out by the same routine as sketched above [108, 109]. This leads to
the linear-response matrix(

j
jth

)
=

(
qL0 L1
qL1 L2

) (
E
−∇T

T

)
, (3.27)

where the Li (i = 0, 1, 2) are the generalized transport tensors [108]. Without Berry curvature and magnetic field
they read

Li =
1

(2π)2

∑
n∈bands

∫
BZ

(
vn,kvT

n,k

)
τn,k

(
εn,k − ε0

)i
(
−∂ρ

0

∂ε

)∣∣∣∣∣∣
ε=εn,k

d2k

in two dimensions (ε0 chemical potential). By comparison with Ohm’s law in eq. (3.25) one identifies

σ = q2L0.

The thermal conductivity tensor relates the heat current density and a temperature gradient by Fourier’s law

jth = κ(−∇T ). (3.28)

In experiments it is usually measured in the absence of particle current (open boundary conditions), such that
accumulated charge creates a counteracting electrical field E = L−1

0 L1∇T/(qT ) = S∇T ; S = L−1
0 L1/(qT ) is the

thermopower (or Seebeck coefficient). Thus, the thermal conductivity tensor reads

κ =
1
T

(L2 − qT L1S ) =
1
T

(
L2 − L1L−1

0 L1

)
. (3.29)

An overview over the nomenclature of electronic transport phenomena is provided in Table 3.2.
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3. Topology in Magnetism

Table 3.2.: Nomenclature of longitudinal and anomalous transverse electron transport phenomena.

force electrical current response thermal current response
longitudinal transverse longitudinal transverse

E Ohm’s law anomalous Hall effect Peltier effect anomalous Ettingshausen effect
∇T Seebeck effect anomalous Nernst effect Fourier’s law anomalous Righi-Leduc effect

Linear Response Theory

In most general terms, transport theory is concerned with a (generalized) response J (a current) to a (generalized)
force F. For small F, one keeps only terms linear in F,

J ≈ LF

(L transport tensor). Such linear-response laws appear quite often, see, for instance, Ohm’s law in eq. (3.25) or
Fourier’s law in eq. (3.28).

While transport phenomena belong to the realm of nonequilibrium thermodynamics, Kubo has shown in
1957 [110] that linear processes close to the thermal equilibrium, that is, when the external perturbing forces are
small, can be put in terms of time-correlation functions

C(A, B) = 〈A(0)B(t)〉, (3.30)

evaluated in equilibrium. 〈·〉 denotes the canonical ensemble average, and A and B are “molecular” properties,
e. g., velocities, currents, dipole orientations, et cetera [111]. Repeating eq. (3.27) in this context,( 〈 je〉

〈 jth〉
)

=

(
L11 L12
L21 L22

) (
E
−∇T

T

)
, (3.31)

the expressions 〈 je〉 and 〈 jth〉 are the macroscopically measurable averaged current densities in nonequilibrium.
They are related to the instantaneous current densities je(t) and jth(t) in equilibrium via the Lα,βi j (α, β = x, y, z;
i, j = 1, 2), which are given by the (classical) Green-Kubo relations [109]

Lα,β11 =
1

kBT

∫ ∞

0
lim

V→∞
VC( jeα, jeβ) dt, (3.32a)

Lα,β12 = Lα,β21 =
1

kBT

∫ ∞

0
lim

V→∞
VC( jthα , jeβ) dt, (3.32b)

Lα,β22 =
1

kBT

∫ ∞

0
lim

V→∞
VC( jthα , jthβ ) dt (3.32c)

(V volume of sample). The equivalence of L12 and L21 is an instance of Onsager’s reciprocity relation [111, 112],
who rigorously showed that Li j = L ji is true in the absence of time-reversal–symmetry-breaking magnetic fields.

3.3.2. Electron-magnon Duality Shortcut to Magnon Transport
While transverse magnon transport has been predicted in Ref. [15] and its theory was refined in Refs. [18–21],
those derivations are not repeated here in detail here. Instead a shortcut to magnon transport in ferromagnets is
taken, which is based on the duality of the electrodynamics of a charged particle and the “dual” electrodynamics
of a magnetic dipole.

A Dual Electrodynamics for Magnetic Dipoles

The nonrelativistic Hamiltonian of a particle with charge q, momentum p, and mass m in electromagnetic fields
E = −∇V − ∂t A and B = ∇ × A is

H =
1

2m
(p− qA)2 + qV;
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3.3. Transverse Transport Caused by Nontrivial Topology

V and A denote the scalar and the vector potential, respectively. In the following, the effects of a magnetic field
are neglected, thus,

H =
1

2m
p2 + qV. (3.33)

The dual situation is studied mostly within the framework of the Aharonov-Casher effect [113], in which
a neutral particle with a permanent magnetic dipole µ is moving in electromagnetic fields. Here, the Zeeman
interaction −µ · B is considered but the electric field, which would cause a minimal-coupling-like term [114] and
the Aharonov-Casher effect [113], is dropped9. The remaining Hamiltonian reads

H =
1

2m
p2 − µ · B. (3.34)

Writing the magnetic moment as µ = QXµ̂ (µ̂ unit vector), in which Q has the unit of electric charge, and X
contains everything else, H reads

H =
1

2m
p2 + Q (−Xµ̂ · B) . (3.35)

A comparison with eq. (3.33) suggests to define the “dual” scalar potential V = −Xµ̂ · B, yielding the “dual”
electric field E = −∇V = X∇(µ̂ · B). If the (true) electric field E was kept, there would also appear a dual
magnetic field [116]. However, this is not necessary for the anomalous transverse transport of magnons.

Application to Ferromagnetic Insulators

Magnons are electrically neutral quasiparticles with magnetic dipoles. In ferromagnets, the magnon dispersion
is quadratic about the Γ point (k = 0), resembling free nonrelativistic electrons. Thus, these magnons obey the
single-particle Hamiltonian (3.35) at temperatures well below the ordering temperature, at which magnon-magnon
interactions can be neglected [116].

Restricting oneself to uniform ferromagnets with saturation magnetization along ẑ [ensured by a magnetic field
B = (0, 0, Bz)T], the magnetic moment of the magnons is in opposite direction; µ̂ = − ẑ. Thus, the dual electric
field reads

E = −X∇Bz. (3.36)

Furthermore, the magnetic dipole of the magnons is torque-free, because it is antiparallel to B. Thus, the dynamics
is in complete similarity to that of a point charge; the semiclassical equations of motion

ṙ =
1
~

∂εn(k)
∂k

− k̇ ×Ωn(k), (3.37)

~k̇ = QE, (3.38)

agree with those in eqs. (3.21) and (3.22) without the magnetic contribution to the Lorentz force.
One can now take results for electron transport and replace the electron charge by Q, the (true) electric field by

the dual E, and the Fermi-Dirac by the Bose-Einstein distribution function to obtain the transport phenomena of
magnons. Examples are given in the following, using µ = QX = gµB:

1. The equation of motion for k̇ of a magnon wavepacket reads [cf. eqs. (3.36) and (3.38)]

~k̇ = qE → ~k̇ = QE = −QX∇Bz = gµB (−∇Bz) .

Obviously, the magnetic-field gradient “plays the role” of an electric field. This can also be understood
intuitively by the following consideration. The magnetic field “freezes out” the spins, meaning that a
deviation from the spin’s equilibrium orientation costs the more energy the larger the magnetic field. For a
sample with a magnetic-field gradient, there is one side with “stiff” spins (larger magnetic field) and another

9For a theoretical treatment of anomalous magnetic moments, e. g., the magnetic moment of a spin-~/2 particle, see Ref. [115].
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3. Topology in Magnetism

side with “loose” spins (smaller magnetic field). This “freezing” effect is equivalent to the rigid energy
shift of the magnon spectrum to higher energies (see Fig. 2.3). For the Bose-Einstein distribution function,
shifting the spectrum upwards in energy is the same as introducing a negative chemical potential. Thus,
the magnetic-field gradient can formally be translated into a chemical-potential gradient, causing magnon
diffusion.

2. Rewriting Ohm’s law

jx = σxxEx → jx = σxxEx = Xσxx (−∂xBz) = σ
mag
xx (−∂xBz) ,

the longitudinal magnon conductivityσmag
xx can be derived from the particle conductivity10 [confer eq. (3.26)]

σxx = Q
∑

n∈bands

∫
BZ

d2k
(2π)2 τn,kv2

x,n,k

(
−∂ρ

0

∂ε

)∣∣∣∣∣∣
ε=εn,k

(ρ0 equilibrium Fermi-Dirac distribution function). One finds

σ
mag
xx = Xσxx = gµB

∑
n∈bands

∫
BZ

d2k
(2π)2 τkv2

x,n,k

(
−∂ρ

0

∂ε

)∣∣∣∣∣∣
ε=εn,k

(now, ρ0 equilibrium Bose-Einstein distribution function). This result is in agreement with those presented
in Refs. [117] and [118].

3. The transport tensor elements for the anomalous Hall, Nernst, and Righi-Leduc effect of electrons read
[119–121]

Lxy
0 =

Q
~

C0, Lxy
1 =

kB

~
TC1, Lxy

2 = − (kBT )2

~
C2,

with

Cν =
∑

n∈bands

∫
BZ

d2k
(2π)2 Ωn,z(k)

∫ ∞

εn,k−ε0

(
εn,k

kBT

)ν (
−∂ρ

0

∂ε

)∣∣∣∣∣∣
ε=εn,k

dε, ν = 0, 1, 2,

and the chemical potential ε0. Note that Lxy
0 and Lxy

1 are transport tensor elements respectively relating an
electrical field and a temperature gradient with the electron particle current. The above replacements lead to

Lxy
0

Lxy
1

Lxy
2

 =
1

(2π)2~


gµB
kBT
−(kBT )2


∫

BZ
Ωn,z(k)


c0
c1
c2

 d2k (3.39)

for magnons (ε0 = 0), in which

c0 = ρ0
n,k,

c1 = (1 + ρ0
n,k) log(1 + ρ0

n,k) − ρ0
n,k log(ρ0

n,k),

c2 = (1 + ρ0
n,k) log2

(1 + ρ0
n,k)

ρ0
n,k

− log2(ρ0
n,k) − 2Li2(−ρ0

n,k).

Eq. (3.39) is to be read line by line. These are exactly the formulas for anomalous transverse magnon
transport found in Refs. [15, 18–21, 122], where they were derived with greater mathematical expenditure
(but also for more general magnets than ferromagnets; see also Ref. [123] for the prediction of a spin-wave
Hall effect in frustrated magnets with long-range order11).

10Particle conductivity and electrical conductivity differ by a factor of q.
11Long-range order is necessary for the magnon approximation to hold. Note that a thermal Hall effect was measured in the electrically

insulating “quantum spin ice” Tb2Ti2O7 [124], which does not exhibit long-range order. Thus, quasiparticles different from magnons must
be responsible.
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3.3. Transverse Transport Caused by Nontrivial Topology

Matsumoto and Murakami obtained the formula for Lxy
2 by using the confining-potential “trick” [18–20].

Since magnons are charge-neutral, electromagnetic fields do not exert a force on magnons. Thus, ~k̇ = 0 in
eq. (3.38), when not utilizing the dual electrodynamics. Yet, considering a finite sample, there has to exist a
confining potential U preventing the magnons from leaving the sample: ~k̇ = −∇U. Thus, the anomalous
velocity −k̇ × Ωn(k) = ∇U × Ωn(k)/~ only exists at the edges of the sample, where ∇U is sizable; this
originates equilibrium magnon edge currents. Consequently, when applying a temperature gradient, the
edge current on the hotter side is larger than that on the colder side, leading to a transverse net heat current.

In contrast, Han and coworkers [21, 122] later obtained the formulas in eq. (3.39) from the linear response
formalism within the “spin language” (also applicable to paramagnets). They did not formulate equations of
motion for magnon wavepackets and there is no such thing as a confining potential. Consequently, there are
no magnon edge currents involved in their physical interpretation of transverse magnon transport.

According to eq. (3.39), the transverse conductivities are given by k-space integrals over Berry’s curvature
weighted by c0, c1 or c2. As expected, there is no anomalous transverse transport for zero curvature, thus, magnon
spectra with simultaneous presence of parity and time-reversal symmetry (e. g., spectra with nodal lines as
explained in Sec. 3.2.3) do not feature anomalous Hall-type transport. Similarly, in the presence of time-reversal
symmetry but broken parity symmetry, when the curvature is nonzero but odd in k, the anomalous transport also
vanishes, because the integral over Ωn,z(k) cν (ν = 0, 1, 2) is zero (the magnon dispersion is even in k)12.

In contrast, topological magnon insulators (Sec. 3.2.1) and magnon Weyl semimetals (Sec. 3.2.2) with broken
time-reversal symmetry exhibit anomalous transport. This is readily clear from the observation that the integral
over the unweighted curvature would yield nonzero Chern numbers. However, in contrast to electrons, magnon
occupation follows the Bose statistics instead of the Fermi statistics. Thus, a quantization of the transverse
transport, which occurs at low temperatures in electric topological insulators when only the edge states contribute
to transport, is not expected.

A note on the definition of the thermal conductivity is in order. As defined in eq. (3.29), it consists of a
nominal part κnom = L2/T and a magnetothermal correction κcorr = −L1L−1

0 L1/T . For electrons, κcorr is negligibly
small [54], because the internal energy scale (defined by the Fermi energy) is usually much larger than the energy
scale of temperature. Bosons, however, do not come with such an internal energy scale, which is why the neglect
of the magnetothermal correction is under debate. It was argued in Ref. [20] that the nonconserved number of
magnons and the corresponding ill-definiteness of their particle current prevent the magnetothermal correction.
Contrary arguments were put forward in very a recent work by Nakata et al. [126], in which it was shown that
only this correction can restore a magnon Wiedemann-Franz law. Additionally, the problem of the definiteness
of the spin current was addressed in Ref. [127]. Still, the common practice is to identify the transverse thermal
conductivity of magnons as κxy = κnom,xy, examples are Refs. [21, 84, 90, 122, 128, 129] and Pubs. 1, and 2.

In summary, nonzero Berry curvature of magnon states causes anomalous transverse magnon transport phe-
nomena (please see below for the nomenclature), as is the case for electrons. In Pub. 1 the transverse thermal
transport of magnons in a two-dimensional topological magnon insulator is analyzed, and different topological
phases and their influence on the thermal Hall effect of magnons are studied. In particular, a sign change of
the Hall transport is predicted. Furthermore, a method to access the transverse magnon transport phenomena
without evaluating the Berry curvature is presented in Pubs. 5, and 6. Instead, a direct numerical calculation of
the Kubo relations (3.32a)-(3.32c) is performed: a cluster of classical spins is evolved according to the stochastic
Landau-Lifshitz-Gilbert equation (see Sec. 4.3) and the time-correlation functions of the fluctuating magnetization
and heat currents are evaluated.

Nomenclature of Magnon Transport Phenomena

The duality to the transport of electrons suggests a nomenclature of magnon transport phenomena, listed in
Table 3.3. Although this nomenclature might be the most exact, there are different conventions in the literature.
The most prominent example is the “anomalous magnon Righi-Leduc effect”, i. e., a transverse heat current upon
application of a temperature gradient, which is often called “thermal magnon Hall effect” [15] or even “magnon
Hall effect” [14]. In the present work, mainly the latter nomenclature is adopted to stay true to the literature.
12Note that only the linear transverse response vanishes. As shown in Ref. [125], when considering nonlinear transport, not the symmetry of

the Berry curvature but that of its “dipole” becomes relevant, allowing for nonlinear Hall effects.
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Table 3.3.: Nomenclature of magnon transport phenomena derived from their analogs in electron transport. Each phenomenon
gets the specifier “magnon” to indicate the carrier.

force magnetization current thermal current
longitudinal transverse longitudinal transverse

∇Bz Ohm’s law anomalous Hall Peltier anomalous Ettingshausen
∇T Seebeck anomalous Nernst Fourier’s law anomalous Righi-Leduc

However, there arises the problem of naming the effect describing a transverse magnetization current due to an
applied magnetic-field gradient (“anomalous magnon Hall effect” in Tab. 3.3), because “magnon Hall” is already
assigned in the alternative nomenclature scheme in Table 3.4. One could name this effect “magnon spin Hall
effect” to stress the transport of spin (or magnetization). Yet, this phenomenon has nothing to do with the spin
Hall effect of electrons. This became a problem after the discovery of the “magnon spin Nernst effect” [130, 131],
which indeed is related to the spin Hall effect of electrons.

In summary, the developing field of magnon transport phenomena has no fully consistent nomenclature. In
the following and, in particular, in Pubs. 1-6 the nomenclaure in Table 3.4 is used; additionally, all effects under
consideration are introduced to avoid confusion or ambiguity.

3.4. Topologically Nontrivial Magnetic Textures: Skyrmions
Topology enters magnetism in various ways, not only as a k-space Berry curvature. In recent years, skyrmions
have become a major research field; these are particle-like magnetic textures with nontrivial winding. The name
“skyrmion” has been borrowed from nuclear physics, for which T. Skyrme postulated stable topological soliton
solutions related to baryons in the 1960s [132–135]. About 30 years later Bogdanov and Yablonskii showed that
topological solitons are thermodynamically stable solutions of chiral magnets [136]. Finally, a skyrmion lattice—a
regular array of skyrmions—was found in the A phase of the metal MnSi [137]. Since then, several materials with
a skyrmion crystal phase have been identified, amongst others, the insulating compound Cu2OSeO3 [138]. From
the perspective of magnon transport, the latter is particularly interesting, because the transport of electrons (which
dominates over the magnon transport in metallic skyrmion crystals) can be ruled out.

The topological triviality or nontriviality of a magnetic texture m(r) of “hard” spins [|m(r)| = m] is determined
by the winding number (also called “skyrmion number” or “topological charge”) [139]

w =
1

4π
1

m3

"
R2

m(r) ·
[
∂m(r)
∂x

× ∂m(r)
∂y

]
dx dy, (3.40)

which is integer. Since m̂(r) = m(r)/m defines a point on a sphere, w measures how often m̂(r) “winds” (or wraps)
around the sphere, exactly as in the case of the d̂(k) vector for a two-level system [see eq. (3.14)]. Thus, the
topological charge w of a skyrmion is nothing but a real-space Chern number (or the topological charge of a Weyl
point, see Sec. 3.2.2) and

B(r) =
1
2

m̂(r) ·
[
∂m̂(r)
∂x

× ∂m̂(r)
∂y

]
(3.41)

Table 3.4.: Alternative nomenclature of magnon transport phenomena derived from the transported quantity. Each phenomenon
is “tagged” the specifier “magnon” to indicate the carrier.

force magnetization current thermal current
longitudinal transverse longitudinal transverse

∇Bz Ohm’s law spin Hall spin Peltier spin Ettingshausen
∇T spin Seebeck spin Nernst Fourier’s law (thermal) Hall
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(a)

(b)

(c)

(d)

Fig. 3.6.: Two-dimensional skyrmion lattices—superposition of three spin spirals; every pair of spiral ordering vectors forms
an angle of 120◦. Each magnetic unit cell carries a unit of topological charge [see eq. (3.40)]. (a) Small Néel-type
skyrmions. (b) Larger Néel-type skyrmions. (c) Bloch-type skyrmions. (d) Bloch-type antiskyrmions.
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is a real-space Berry curvature. It is termed B(r) to underline its relation to a real-space magnetic field as will
become clear in Secs. 3.4.1 and 3.4.2, where the “topological Hall effect” of electrons [72] and magnons is
explained, respectively.

Skyrmion crystals can be understood as superpositions of three spin spirals and a uniform component [52];
some examples are depicted in Fig. 3.6. They look like regular arrays of magnetic “whirls”, whose magnetization
points opposite (blue) to the uniform background (yellow). Depending on the wavelength of the spin spirals, the
whirls can be small or large [compare panel (a) and (b) in Fig. 3.6]. In Cu2OSeO3, for example, the spiral’s pitch
is about 60 nm [138].

Historically, one differentiates Bloch-type [Fig. 3.6(b)] from Néel-type skyrmions [139] [Fig. 3.6(c)], in analogy
to Bloch-type and Néel-type domain walls [140]. When going from a skyrmion center (blue) radially to the
skyrmion periphery (yellow), the magnetization rotates in the plane normal to the radial direction in Bloch-type
skyrmions [Fig. 3.6(b)], while the magnetization rotates in the plane whose normal is orthogonal to the radial
direction in Néel-type skyrmions [Fig. 3.6(c)]. This property is called helicity [139]. Skyrmions with fixed helicity
are chiral. Usually, they are a result of DMI, originated by the noncentrosymmetry of the crystal [139]. Depending
on the directions of the DM vectors, either Bloch-type skyrmions (e. g., MnSi [137]) or Néel-type skyrmions are
featured (e. g., GaV4S8 [141]). In contrast, skyrmions which do not rely on DMI can be nonchiral, meaning that
they are helicity-degenerate; a continuous transformation from Bloch-type to Néel-type skyrmions does not change
the energy. Such nonchiral skyrmion crystals have been found in Ref. [52]; the authors of that study showed
that the J1-J3 model13, which was introduced in Sec. 2.3, features a skyrmion crystal at elevated temperatures
under application of an external magnetic field. Since the spin spirals—which form the skyrmion crystal—are
due to exchange frustration rather than DMI, their direction of rotation is not fixed. Thus, when equilibrating the
magnetic system, Bloch-type skyrmions, Néel-type skyrmions, and all smooth configurations between the two are
equally likely [52].

Skyrmions also have vorticity [139], which is the direction of the “wrapping”, that is, whether the magnetization
direction wraps positively [Fig. 3.6(c)] or negatively [Fig. 3.6(d)] around the Bloch sphere14. It determines the
topological charge of the skyrmion [see eq. (3.40)], which is why positively-wrapped and negatively-wrapped
magnetic whirls, i. e., skyrmions and antiskyrmions, are each other’s antiparticle [139]. If they meet, they
annihilate [142].

The following sections serve as an introduction to Pub. 6, in which the topological magnon transport on
skyrmion crystals is studied in the limit of small nonchiral skyrmions. Here, literature concerning the topological
Hall effect of electrons and magnons is reviewed. Please also see Sec. 4.2.2, where the magnetic phase diagram of
the J1-J3 model on the triangular lattice introduced in Ref. [52] is revisited by means of classical Monte Carlo
simulations. In particular, the topological charge of the magnetic textures is calculated [see eq. (3.40)].

3.4.1. Emergent Electrodynamics for Electrons and the Topological Hall Effect
As demonstrated in Ref. [72], the Schrödinger equation for electrons traversing a space- and time-dependent,
smooth magnetic texture m(r, t) = mm̂(r, t) [m̂(r, t) unit vector] reads

i~
ψ(r, t)
∂t

=

( p
2M

I2×2 − Jσ · m̂(r, t)
)
ψ(r, t), (3.42)

with M and p denoting the electron’s mass and its momentum, respectively. J = J′gµBm~/2 is the strength of the
coupling of the electron’s spin to the magnetic texture and ψ(r, t) is a Pauli spinor. σ is the vector of Pauli matrices;
its product with the magnetic texture can be brought into a trivial form by locally rotating to the reference frame
of the texture, such that the quantization axis is aligned with the texture. Such a local SU(2) gauge transformation
reads ψ(r, t) = U(r, t)φ(r, t), where

U(r, t) = exp
(
−i
θ(r, t)

2
σ · n(r, t)

)
,

13In Ref. [52] the J1-J2 model on the triangular lattice was also studied (J2 second-nearest neighbor interaction). The results are very similar
to that of the J1-J3 model.

14To study this “wrapping”, the magnetic texture is mapped onto a unitsphere by a stereographic projection.
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is a unitary matrix [cos θ(r, t) = m̂(r, t) · z and n(r, t) = m̂(r, t) × z/|m̂(r, t) × z| denote the rotation angle and
axis] [72]. This yields a Schrödinger equation for φ(r, t), [72]

i~
∂φ(r, t)
∂t

=

[
1

2M
(p− ~A(r, t)) − Jσz − ~V(r, t)

]
φ(r, t), (3.43)

with the scalar and vector gauge potentials,

V(r, t) = −iU†(r, t)∂tU(r, t), and A(r, t) = iU†(r, t)∇U(r, t),

respectively. They are nonzero only if U(r, t) shows temporal or spatial modulations [72]. In contrast to the
Hamiltonian of a spinless charged particle in electromagnetic fields [U(1) gauge symmetry], the potentials are
2-by-2 matrices, allowing for spin flip processes. The latter can be neglected, if one considers textures, whose
characteristic length ` is much larger than a lattice constant a15. Then, the gauge potentials become approximately
diagonal. Since they are also traceless, they must be proportional to σz and, thus, act oppositely on electrons with
majority and minority spins [143]. This opposite action can be hidden in an emergent charge qem (opposite for the
two spin species), which suggests to define the emergent electromagnetic potentials [72]

Vσ
em(r, t) =

~

qem
〈σ|V(r, t)|σ〉 = −i

~

qem
〈ψσ|∂t |ψσ〉,

Aσ
em(r, t) =

~

qem
〈σ|A(r, t)|σ〉 = i

~

qem
〈ψσ|∇|ψσ〉,

where |σ〉 with σ =↑, ↓ are the eigenstates of the unperturbed Hamiltonian, that is, Hamiltonian (3.43) without
the potentials. With |ψσ〉 = U(r, t)|σ〉 the potentials Vσ

em(r, t) and Aσ
em(r, t) take the form of a Berry connection

[confer eq. (3.5)] in space-time (t, r). The corresponding Berry curvatures [confer eq. (3.6)] are electromagnetic
fields Eσ

em(r, t) = −∇Vσ
em(r, t) − ∂t Aσ

em(r, t) and Bσ
em(r, t) = ∇ × Aσ

em(r, t), with [72]

Eσ,ξ
em (r, t) = ∓ ~

2qem
m̂(r, t) ·

[
∂ξ m̂(r, t) × ∂t m̂(r, t)

]
, (3.44a)

Bσ,ξem (r, t) = ∓ ~
2qem

εξρζ

2
m̂(r, t) ·

[
∂ρm̂(r, t) × ∂ζ m̂(r, t)

]
, (3.44b)

(Einstein summation rule; εξρζ Levi-Civita symbol) where ∓ corresponds to σ =↑, ↓, respectively. The emergent
charge reads qem = ±1/2.

In summary, an electron traversing a texture feels both an emergent electric and magnetic field given by
eqs. (3.44a) and (3.44b), respectively (up to prefactors). For a two-dimensional skyrmion crystal phase Bem(r, t) =

Bem(r) = [0, 0, Bz
em(r)]T reduces to

Bz
em(r) = ~m̂(r) ·

[
∂xm̂(r) × ∂ym̂(r)

]
,

which is proportional to the Berry curvature in eq. (3.41). Integrating over a magnetic unit cell (uc), which contains
one skyrmion, the integrated magnetic field per unit cell [72],∫

uc
Bz

em(r) d2r = 4π~w,

is proportional to the topological charge w (real-space Chern number). This sets skyrmions apart from other
generic magnetic textures, which might have a locally nonzero Bz

em(r) but with zero average. Consequently,
skyrmions give rise to an additional Lorentz force on electrons and, thus, generate a topological contribution to
the Hall effect; this phenomenon is called “topological Hall effect”. It was first experimentally verified in the
skyrmion crystal phase of MnSi [144].

15The texture’s wave number ∼ 1/` is much smaller than the electron’s Fermi wave number ∼ 1/a. Multiplying both wave numbers by ~vF
(vF Fermi velocity) shows that the energy scale of the electrons is much larger than that associated with the modulated texture [143].
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3.4.2. Emergent Electrodynamics for Magnons
That an argumentation similar to that before can be invoked for magnons was demonstrated in Refs. [73,128,145]:
in the classical limit of magnetization dynamics and smoothly varying two-dimensional magnetic textures, one
may use the Landau-Lifshitz equation of motion16,

s~ṁ = m× δF(m, ∂ jm)
δm

, (3.45)

where m(r, t) is the continuous unit vector magnetization field, s a constant spin density, and F(m, ∂ jm) ( j = x, y)
the free-energy functional, accounting for, e. g., exchange interaction and DMI.

Assuming that magnons are perturbatively small oscillations δm(r, t) of a slowly-changing inhomogeneous
magnetization background m0(r, t), the magnetization field is decomposed into m(r, t) = m0(r, t) + δm(r, t) [145].
To lowest order, m0(r, t) · δm(r, t) = 0. Following the idea for electrons, the local reference frame is aligned with
the local direction of m0(r, t), such that m0(r, t) → m′0(r, t) = R(r, t)m0(r, t) appears constant (here: along the
z′ direction). The rotation matrix is given by R(r, t) = exp[θ(r, t)Jx] exp[φ(r, t)Jz], where Jβ is the generator of
rotation about the β axis (β = x, z) [145]. θ(r, t) and φ(r, t) are the space-time-dependent rotation angles.

In the new reference frame δm′(r, t) is a vector in the x′y′ plane. The equation of motion for δm′±(r, t) =

δm′x(r, t) ± iδm′y(r, t) is derived from eq. (3.45) by the substitution ∂µ → ∂µ − [∂µR(r, t)]R(r, t) (µ = t, x, y) [73]:

is [∂t − iVem(r, t)] m′+(r, t) = J
[
−i∂ j + Aem, j(r, t)

]
m′+(r, t). (3.46)

The emergent potentials

Vem(r, t) = cos θ(r, t) ∂tφ(r, t), Aem, j(r, t) = cos θ(r, t) ∂ jφ(r, t),

( j = x, y) define the emergent electromagnetic fields [73]

Eem, j(r, t) = −∂tAem, j(r, t) − ∂ jVem, j(r, t) = m0(r, t) ·
[
∂t m0(r, t) × ∂ jm0(r, t)

]
, (3.47a)

Bem, j(r, t) = ∂kAem,l(r, t) − ∂lAem,k(r, t) =
1
2
ε jklm0(r, t) · [∂k m0(r, t) × ∂lm0(r, t)] . (3.47b)

These fields are the same as for electrons [see eqs. (3.44a) and (3.44b)] and, thus, the magnons also “feel” an
emergent Lorentz force that causes a “topological Hall effect” of magnons.

This effect has been indirectly experimentally verified. The authors of Ref. [146] shone laser light onto the
insulating ferromagnet Cu2OSeO3, which hosted a skyrmion crystal. The radial temperature gradient caused
a radial magnon current, which got deflected by the skyrmions. Since there is a reaction to every action, the
skyrmions are deflected as well, causing them to circle around the laser spot. This effect is similar to the
skew-scattering of magnons at a single skyrmion, shown in Refs. [147–149].

In summary, the emergent electrodynamics theory for magnons requires two ingredients: a texture that
negligibly varies on the length scale of the lattice constant [which justifies the continuous ansatz (3.45)], and small
temperatures to treat the magnons as noninteracting particles [this approximation is implicitely included in the
single-particle Schrödinger equation eq. (3.46)]. In Pub. 6 an alternative method for the evaluation of magnon
transport in noncollinear textures based on atomistic spin dynamics simulations is presented. In particular, the
magnon thermal conductivity on a nonchiral skyrmion crystal is studied in dependence on the skyrmion size. It
is found that the topological thermal magnon Hall effect vanishes for extremely small skyrmions, violating the
requirements for the emergent electrodynamics.

16The atomistic version of the Landau-Lifshitz(-Gilbert) equation is introduced in Sec. 4.3.
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CHAPTER 4

NUMERICAL METHODS

In the framework of this thesis several numerical methods have been applied, which are briefly discussed in this
chapter. The calculation of the spectral density at the surface of a semi-infinite crystal, presented in Sec. 4.1,
features in Pubs. 2-4. Monte Carlo simulations and the stochastic Landau-Lifshitz-Gilbert equation, presented in
Secs. 4.2 and 4.3, respectively, are the basis of Pubs. 5 and 6.

4.1. Magnonic Structure of Semi-infinite Crystals

The bulk-boundary correspondence states that topological invariants of the bulk cause inevitable features at the
boundary (see Sec. 3.2.1). Thus, an efficient calculation method of the boundary spectrum is crucial for the
study of topology. Boundary effects on the magnonic band structure can be included by considering a slab
geometry, meaning that the sample is finite in one direction and infinite in the remaining directions. However,
such a geometry introduces two opposite boundaries. From a topological perspective, this is critical, because
the wavefunctions of the topological states at opposite edges could hybridize, leading to a small but nonzero
artificial band gap. Increasing the thickness of the slab would reduce the effect, but comes at the price of increased
computation costs. Thus, a semi-infinite geometry hosting only one boundary is persued. This chapter introduces
a Green function renormalization method established in Ref. [150] that can deal with the desired geometry.

Ref. [150] is followed for the remainder of this section. The magnonic band structure is determined by the
bilinear free-magnon Hamiltonian H(2) in Sec. 2.4.3 [henceforth, the subscript (2) is dropped]. The Green function

G(ε + iη) = (ε + iη − H)−1, (4.1)

determines the density of states

N(ε) = −1
π

lim
η→0+

{
Im

[
Tr G(ε + iη)

]}
(4.2)

(an explicit dependence on the wavevector was dropped for notational simplicity). The small imaginary iη ensures
that singularities of G, which are located on the real axis, are not encountered. In computations, the limit limη→0+

is not taken, but η is chosen small compared to all other energy scales (e. g., the exchange parameters), causing a
small broadening of all peaks.

A semi-infinite crystal consists of atomic layers parallel to its surface. By combining these layers to principal
layers (PLs), which are chosen thick enough that interaction takes place only between adjacent PLs, eq. (4.1) can
be written as [150]

z − Hs −hs 0 · · ·
−h†s z − Hb −hb 0 · · ·

0 −h†b z − Hb −hb
. . .

... 0 −h†b z − Hb
. . .

...
. . .

. . .
. . .





G00 G01 G02 · · ·
G10 G11 G12 G13 · · ·
G20 G21 G22 G23

. . .
... G31 G32 G33

. . .
...

. . .
. . .

. . .


=



1 0 0 · · ·
0 1 0 0 · · ·
0 0 1 0

. . .
... 0 0 1

. . .
...

. . .
. . .

. . .


, (4.3)

which is an infinite system of equations for the Green function blocks Gi j (PL indices i and j). Hs (Hb) denotes the
Hamilton matrix for interactions within the surface (bulk-like) PLs. Interaction between adjacent PLs is comprised
into hs and hb: the former is the inter-layer Hamilton matrix between the surface PL and the first bulk-like PL; the
latter accounts for the interaction between bulk-like PLs.
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Expanding eq. (4.3), one obtains, for example [150]

(z − Hs)G00 = 1 + hsG10, (4.4)

(z − Hb)G10 = h†sG00 + hbG20, (4.5)

(z − Hb)Gn,0 = h†bGn−1,0 + hbGn+1,0, (4.6)

(z − Hb)Gn,n = 1 + h†bGn−1,n + hbGn+1,n. (4.7)

With eqs. (4.4) and (4.5) one eliminates G10:[
(z − Hs) − hs(z − Hb)−1h†s

]
G00 = 1 + hs(z − Hb)−1hbG20

and all odd-indexed Green function block matrices:[
(z − Hb) − h†b(z − Hb)−1hb − hb(z − Hb)−1h†b

]
Gn,0 = h†b(z − Hb)−1h†bGn−2,0 + hb(z − Hb)−1hbGn+2,0,[

(z − Hb) − h†b(z − Hb)−1hb − hb(z − Hb)−1h†b
]
Gn,n = 1 + h†b(z − Hb)−1h†bGn−2,n + hb(z − Hb)−1hbGn+2,n.

With the definition

A1
b ≡ hb(z − Hb)−1hb,

B1
b ≡ h†b(z − Hb)−1h†b,

A1
s ≡ hs(z − Hb)−1hb,

B1
s ≡ h†s (z − Hb)−1h†b,

E1
b ≡ (z − Hb) − h†b(z − Hb)−1hb − hb(z − Hb)−1h†b,

E1
s = (z − Hs) − hs(z − Hb)−1h†s ,

Ẽ1
b ≡ (z − Hb) − hb(z − Hb)−1h†b,

one obtains equations that possess the form as the original ones, (4.4)–(4.7), but with renormalized interactions
[150],

E1
s G00 = 1 + A1

sG20, (4.8)

E1
bG20 = B1

sG00 + A1
bG40, (4.9)

E1
bGn,0 = B1

bGn−2,0 + A1
bGn+2,0, (4.10)

E1
bGn,n = 1 + B1

bGn−2,n + A1
bGn+2,n, (4.11)

Ẽ1
bGn,0 = h†bGn−1,0 + A1

bGn+4,0. (4.12)

Repeating the elimination procedure results in a renormalization prescription for the interaction matrices [150],

Ai
b = Ai−1

b (Ei−1
b )−1Ai−1

b ,

Bi
b = Bi−1

b (Ei−1
b )−1Bi−1

b ,

Ei
b = Ei−1

b − Bi−1
b (Ei−1

b )−1Ai−1
b − Ai−1

b (Ei−1
b )−1Bi−1

b ,

Ai
s = Ai−1

s (Ei−1
b )−1Ai−1

b ,

Bi
s = Bi−1

s (Ei−1
b )−1Ai−1

b ,

Ei
s = Ei−1

s − Ai−1
s (Ei−1

b )−1Bi−1
s ,

Ẽi
b = Ẽi−1

b − Ai−1
b (Ei−1

b )−1Bi−1
b .

In the limit of i→ ∞ the interlayer interaction becomes zero. Thus, the Green function block matrices read [150]

G00 =
(
E∞s

)−1 , Gnn =
(
E∞b

)−1
, G̃00 =

(
Ẽ∞s

)−1
, (4.13)
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where G00 is the surface Green function block, Gnn that of the bulk (n→ ∞). G̃00 is necessary to define transfer
matrices [150]

Tb ≡ G̃00h†b, T †b ≡ hbG̃00, Ts ≡ G̃00h†s , T †s ≡ hsG̃00, (4.14)

which allow to calculate the Green function block matrix of any PL. The layer-resolved Bloch spectral function
(layer index m) is finally obtained by [150]

Nm(ε, k‖) = −1
π

lim
η→0+

{
Im

[
Tr Gmm(ε + iη, k‖)

]}
(4.15)

(k‖ wave vector in the surface Brillouin zone).
Thus, this procedure can access the density of magnon states of the bulk and of every PL m, in particular, that at

the surface (m = 0), where topological boundary states are expected. In Pubs. 2, 3, and 4 this renormalization
scheme was utilized for the presentation of topological magnon edge/surface states. Pubs. (a) and (b), which are
not included in this thesis, demonstrate that interfaces of two semi-infinite magnets can be treated by an extended
scheme for interfaces [151].

4.2. Monte Carlo Simulations
The determination of the magnetic ground state is key in the theory of magnetism. Unfortunately, the Luttinger-
Tisza method (Sec. 2.3) works only at zero temperature (and is strictly reliable only for Bravais lattices). Thus,
temperature has to be included by other means. In this respect, Monte Carlo simulations have become a staple
method in the magnetism community because they are ideally suited for this purpose. For the introduction,
Ref. [152] is reviewed.

4.2.1. Importance Sampling
The approach of randomly sampling all possible spin configurations to identify that with lowest energy can readily
be discarded, because the phase space is just too large; the relevant configurations would not be sampled often
enough [152]. Furthermore, the number of minima of the energy hyper-surface is extremely large, such that
conventional gradient methods have to be dismissed, too. Instead, so-called importance sampling has to be applied,
which generates a configuration from a previous configuration (Markov process) with a transition probability
given by the Boltzmann weight [152].

The time-dependence of the probability Pn(t) of the system being in state n at time t is given by the master
equation [152]

∂Pn(t)
∂t

= −
∑
n,m

[Pn(t)Wn→m − Pm(t)Wm→n] ,

where Wn→m is the transition rate from state n to m. In equilibrium, ∂Pn(t)/∂t = 0, which is fulfilled by the
“detailed balance condition” Pn(t) Wn→m = Pm(t) Wm→n. In a classical system,

Pn(t) =
1
Z

exp (−βEn) (4.16)

(β−1 = kBT ), where exp (−βEn) is the Boltzmann weight and En the energy of the n-th state. The partition function
Z cannot be accessed in simulations. However, by generating a Markov chain of configurations, where each
configuration is directly generated from the previous one, only the relative probability is relevant. Thus, only the
energy difference ∆E = En − Em is important [152]:

Pn(t)
Pm(t)

= exp (−β∆E) =
Wm→n

Wn→m
. (4.17)
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Here, the Metropolis update [153] is used; the transition rates are

Wm→n =

exp (−β∆E) if ∆E > 0
1 if ∆E < 0

. (4.18)

Thus, given a classical spin configuration {si}m with energy Em, one suggests an update to the i-th spin and
calculates the new energy Em+1 (according to the Hamiltonian functional under consideration). If the new energy
is smaller than the old (Em+1 < Em) the update is always accepted; a new spin configuration {si}m+1 is generated.
In the opposite case, Em+1 > Em, the update is accepted with the probability exp[−β(Em+1 − Em)]. Therefore, a
random number r ∈ (0, 1) is computed. If r < exp[−β(Em+1 − Em)], the step is accepted, otherwise rejected. Then,
this routine is repeated for the next spin and so on.

Since temperature T enters eq. (4.18) via β, its value determines the transition rate of energetically unfavourable
steps (∆E > 0), thereby, simulating thermal fluctuations. If the simulation time is infinite, one is guarenteed to
find the energetical minimum. To speed up simulations, an additional microcanonical (energy is preserved) update
known as overrelaxation can be performed [154], which mirrors each spin about its local effective field.

4.2.2. Equilibration and Measurement
The equilibration process is typically performed by starting from a temperature much larger than the ordering
temperature (kBT � J) and performing ∼ 105 cooling-down Metropolis steps, successively lowering temperature
down to the target temperature T . Arrived at T , about 106 combined Metropolis-overrelaxation steps are performed.

Once equilibrium is reached (the cluster is “thermalized”), a “measurement” can be performed. “Measuring”
is meant in the sense that a quantity of interest is averaged over hundreds of thousands of Metropolis steps (N
number of measuring steps). Examples are the (normalized) magnetization M = (nN)−1 ∑n

i=1 mi of a cluster of
i = 1, . . . , n moments mi, the specific heat cv = (kBT 2)−1(〈E2〉 − 〈E〉2), where E is the energy of the entire cluster
given by the Hamilton functional, the susceptibility χ = (kBT )−1(〈M2〉 − 〈M〉2), and the static structure factor
S α(k) = n−1〈|∑n

i=1 mα,i exp(ik · ri)|2〉 (α = x, y, z), providing information about the spin texture [152].
Here, the focus is on the skyrmion number w given in eq. (3.40). Several algorithms for the numerical evaluation

of w were implemented and tested (see Appendix A).

Example: Skyrmion Crystals in the J1-J3 Model In Sec. 2.3, the J1-J3 antiferromagnet on the triangular
lattice was introduced. According to the Luttinger-Tisza method, the frustration causes a spin spiral ground
state. Here, Monte Carlo simulations are briefly applied to this model. In particular, a skyrmion crystal phase is
identified at elevated temperatures. These results are the basis of Pub. 6, where magnon transport on spin spirals
and skyrmion crystals is numerically studied.

With J1 and J3 from Ref. [52], the phase diagram spanned by temperature T and magnetic field B was
recalculated (see Fig. 4.1)17. The gray phase boundaries in Fig. 4.1 are taken from Ref. [52]. The spin spiral phase
(single-q phase) is the ground state. At elevated temperatures (roughly about 0.42 kBT/|J3|) the phase transition to
the paramagnetic phase takes place. If a magnetic field is applied, the equilibrium can be a superposition of two
(double-q phase) or even three (triple-q phase) spin spirals; the latter forms a skyrmion crystal (confer Sec. 3.4).
Since the handedness of the spin spirals is not fixed (they are caused by frustration, not by DMI), the resulting
skyrmion crystal can be built from skyrmions of any helicity and any vorticity; the skyrmions are nonchiral. In
particular, skyrmion and antiskyrmion crystals are equally likely. However, once one type of skyrmion is randomly
produced, it is the building block of the skyrmion crystal, that is, in equilibrium true (anti)skyrmion lattices are
obtained. Repeating the simulation with exactly the same set of parameters does, in general, lead to a different
skyrmion crystal.18

To evaluate the skyrmion numbers line scans for constant temperature or constant magnetic field (horizontal and
vertical lines in Fig. 4.1, respectively) were conducted, and both the trigonometric and the conserving least-squares

17Monte Carlo simulations were performed by B. Göbel (coauthor of Pub. 6). Fig. 4.1 is taken from his master thesis [155]. More details can
be found there. The results agree with those of Ref. [52].

18The energetic degeneracy between skyrmions and antiskyrmions might be responsible for the existence of the Z phase (small pocket in
Fig. 4.1 right below the critical temperature). Here, skyrmions and antiskyrmions are simultaneously present. See Ref. [52] for a discussion
of this magnetic phase.
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4.2. Monte Carlo Simulations
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Fig. 4.1.: Magnetic phase diagram spanned by temperature T and magnetic field B of the J1-J3 model for J1/J3 = −1/3. There
are five distinct phases: single-q, double-q, triple-q, Z, and a paramagnetic phase. The first three are spin spiral
states formed from one, two or three superimposed spin spirals, respectively; the Z phase is characterized by the
coexistence of skyrmions and antiskymrions. The paramagnetic phase is found at high temperatures (roughly about
0.42 kBT/|J3|) and is continuously transformed into a field-polarized phase by application of the magnetic field (not
indicated). The color of the lines quantifies the absolute value of the skyrmion number w (see color bar). Calculations
were carried out on a 72 × 72 spin cluster. This graph is taken from Ref. [155] (labels translated into English); the
data for the gray phase boundaries is taken from Ref. [52].

algorithm were utilized (Appendix A; the skyrmion numbers indicated at the colorbar in Fig. 4.1 are those obtained
from the trigonometric algorithm). The absolute value of w is shown, because the skyrmion crystals phase can
be equally likely built from skyrmions as well as antiskyrmions (opposite skyrmion number). The numerical
calculations of |w| comply very well with the phase boundaries (gray lines; data for the phase boundaries were
taken from Ref. [52]): nonzero skyrmion number is found only in the triple-q phase, which is the skyrmion crystal
phase.

Concentrating on this phase, note that for the ratio J1/J3 = −1/3 the spin spiral’s pitch is λ = 2π/|q| ≈ 3.27a
(a lattice constant) [confer eq. (2.15)], such that about 22 periods fit in an N × N = 72 × 72 spin cluster. Thus,
NSk = 3N2/(4λ2) ≈ 364 skyrmions are expected. On average, each skyrmion is “sampled” by N2/NSk ≈ 14.24
spins, which is a challenging small number for the numerical integration algorithms (Appendix A)19. The
numerically determined skyrmion number (≈ 250) is clearly smaller than 364, because the topological charge of
each magnetic unit cell is underestimated. Besides this numerical issue, the algorithms qualitatively identify the
skyrmion crystal. Furthermore, the numerically evaluated skyrmion number drops with increasing temperature
(yellow→ green→ light blue), which is unphysical, because w is determined by the cluster size. The origin of
this decrease are strong thermal fluctuation at higher temperatures. However, even at the crossing to the Z or
paramagnetic phase, a sharp transition from a light blue to a dark blue is identified. Thus, the integration algorithm
reliably identifies a skyrmion crystal.

Similar phase diagrams are obtained when varying J1/J3, which directly translates into the pitch of the spin
spiral [see eq. (2.15)] and, consequently, into the size of the skyrmions. In Pub. 6 cluster sizes which are
commensurate with the skyrmion crystal were used.

19It is pointed out that the skyrmions studied here are even smaller than the smallest test skyrmion studied in Appendix A. There, the smallest
skyrmion was built from 4 × 4 = 16 spins (confer Tab. A.1).
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4. Numerical Methods

4.3. Stochastic Landau-Lifshitz-Gilbert Equation
The Monte Carlo method presented above does not grant access to the dynamics of the spin cluster, because there
is no true but a “Monte Carlo time” that corresponds to the number of Monte Carlo steps per site20. Therefore,
the equation of motion, the Landau-Lifshitz-Gilbert equation, needs to be solved. Its presentation follows
Refs. [40, 158–162].

4.3.1. Temporal Evolution of Magnetic Moments
The total magnetic moment of an electron is proportional to the sum of its orbital and its spin angular momentum.
For simplicity, the discussion is restricted to the spin contribution. The spin magnetic moment m = −γs is related
to the spin s by the gyromagnetic ratio γ = gµB/~, with Bohr’s magneton µB and the g-factor (g ≈ 2 for free
electrons). To obtain the equation of motion of a spin si, one starts from the Heisenberg equation ~ṡi = −i [si,H].
Expanding the spin Hamiltonian H in terms of spin operators, leads to [163]

ṡi = −si × ∂H
∂si

+ O(~).

In line with the Ehrenfest theorem one replaces all operators by their expectation values, drops the second term
(classical limit), and obtains

ṁi = −γmi × Bi (4.19)

for a classical magnetic moment (i. e., a vector in R3). Bi = −∂H/∂mi is the effective magnetic field due to the
neighboring spins (H is no longer the Hamilton operator but the energy). Eq. (4.19) describes how the magnetic
moment precesses about the local field. Its modulus stays constant and energy is conserved.

To incorporate dissipation, a phenomenological viscous damping term is added [164, 165], leading to the
Landau-Lifshitz-Gilbert (LLG) equation

ṁi = −γmi × Bi +
α

|mi|mi × ṁi,

with Gilbert damping α (α � 1). It can be rewritten as [161]

ṁi = − γ

1 + α2

[
mi × Bi +

α

|mi|mi × (mi × Bi)
]
, (4.20)

which is now the LLG equation in Landau-Lifshitz form [166]21. The two terms are interpreted and visualized in
Fig. 4.2. Besides the precession mi × Bi of the magnetic moment mi about the effective field Bi (red torque in
Fig. 4.2), there is the damping mi × (mi × Bi) (green torque in Fig. 4.2), trying to align mi with Bi.

Eq. (4.20) is a reasonable approximation for the dynamics of classical spins, because it captures the most
relevant effects. Although the physical justification for the Gilbert damping term is difficult on the atomistic
level [162], the LLG can be derived from time-dependent density functional theory [167] and the density matrix
formalism [168]22. However, eq. (4.20) does not include (ı) anisotropic and nonlocal damping, (ıı) variations of
the modulus of mi, (ııı) quantum effects (quantization), and, up to now, (ıv) temperature.

The last point is cured by adding a stochastic random magnetic field bi to Bi [with Bi → Bi + bi, eq. (4.20)
becomes the stochastic LLG (sLLG)]. bi simulates the effect of temperature. For thermodynamic consistency, it
has to obey the following conditions [159, 169]

〈bξi (t)〉 = 0, 〈bξi (t)bζj(t
′)〉 = 2Dδi jδξζδ(t − t′),

(ξ, ζ = x, y, z), i. e., it must follow a Gaussian distribution with zero average and a variance of 2D. bi is
uncorrelated in time, i. e., a white noise magnetic field. D determines the fluctuation amplitude and is, thus, related
to temperature; from a mapping onto Langevin dynamics (and the related Fokker-Planck equation) one obtains
D = αkBT/(γ|m|) [159, 169], where |mi| = |m| (all moments have length |m|).
20There are, however, efforts to develop a time-quantified Monte Carlo method [156, 157].
21Landau and Lifshitz did not add the term proportional to mi × ṁi to the precessional motion, but directly the term proportional to

mi × (mi × Bi) [166]. Then, the overall prefactor (1 +α2)−1 is missing, leading to unphysical behaviour in the limit of large damping [160].
22Actually, the LLG is not derived in the Landau-Lifshitz-Gilbert form, but in the Landau-Lifshitz form, leading to a rescaling of the prefactors.
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4.3. Stochastic Landau-Lifshitz-Gilbert Equation

Fig. 4.2: Dynamics of a classical magnetic moment mi in
an effective field Bi as described by the Landau-
Lifshitz-Gilbert equation (4.20). The term −mi ×
Bi (red) causes a precession, while the term
−mi × (mi × Bi) (dark green) tries to align mi with
Bi, resulting in a damping of the precession. Com-
bined, the two mechanisms force mi onto the tra-
jectory indicated by the dashed line.

4.3.2. Numerical Integration
Following Ref. [170] to obtain the dimensionless version of the sLLG, one sets m = mµBn (n unit vector) and
introduces a reference magnetic field Bref ≈ 5.679044137 T, which is chosen such that one unit of dimensionless
time τ = γBref t corresponds to one picosecond. Thus, eq. (4.20) reduces to

(
1 + α2

)
dni = − (1 + αni×)

[
ni ×

(
Bi dτ +

1
Bref

bi dτ
)]
, (4.21)

with Bi = Bi/Bref . Using bi dτ/Bref = D̃ dWi, where Wi is an isotropic vector Wiener process23, and D̃2 =

2αkBT/(mµBBref) [160], one obtains(
1 + α2

)
dni = − (1 + αni×)

[
ni ×

(
Bi dτ + D̃ dWi

)]
. (4.22)

For the numerical evaluation of eq. (4.22), the implicit mid-point method [158, 160](
1 + α2

) (
n(k+1)

i − n(k)
i

)
= −

(
1 + αn(k+ 1

2 )
i ×

) [
n(k+ 1

2 )
i ×B(k+ 1

2 )
i ∆τ + D̃n(k+ 1

2 )
i ×

(
W(k+1) −W(k)

)]
, (4.23)

is used; ∆τ = τ(k+1) − τ(k), n(k+1/2)
i = (n(k+1)

i + n(k)
i )/2, and B(k+1/2)

i is evaluated at n(k+1/2)
i .

Since the sLLG (4.22) is a stochastic differential equation with multiplicative noise, one is faced with the
Itô-Stratonovich dilemma concerning the interpretation of a stochastic integral [171]. The two interpretations of
eq. (4.22) lead to different magnetization dynamics, and only Stratonovich’s conserves the spin length, which is
why it is used here (the implicit midpoint scheme is compatible with the Stratonovich interpretation [158, 160])24.

Tests of the Simulation Code

To test the thermodynamic consistency of the simulations, the energy per spin Ei = |mi||Bi| −mi · Bi [170,172] was
computed. In equilibrium, Ei follows the Boltzmann distribution. The numerically obtained energy distribution

23The cartesian components of Wi(t) are scalar Wiener processes Wβ
i (t) (β = x, y, z) with the properties that (a) Wβ

i (0) = 0, (b) Wβ
i (t) −Wβ

i (t′)
with t > t′ ≥ 0 is a gaussian random variable with zero mean and variance t − t′, and (c) its increments are uncorrelated [160].

24Equivalence between Stratonovich’s and Itô’s interpretation can be achieved by adding a drift term to the sLLG, such that Itô’s interpretation
also conserves the spin length [158, 160].
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4. Numerical Methods

Fig. 4.3: Numerically evaluated energy distribution of
spins in a ferromagnetic 20 × 20 cluster at
T = 2 K (J = 1 meV). Simulations were per-
formed with a Gilbert damping α = 0.1 (blue)
and α = 0.5 (red). The dashed line shows the
analytic Boltzmann distribution function.
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(Fig. 4.3) does not depend on the Gilbert damping α (blue curve: α = 0.1; red curve: α = 0.5) and agrees excellently
with the Boltzmann distribution (dashed line). It is concluded that the simulations are thermodynamically
consistent.

Additionally, the magnetization curve [magnetization versus temperature, M(T )] of a ferromagnetic three-
dimensional simple cubic spin cluster was measured (J = 1 meV). Theory predicts that it exhibits a critical
temperature of TC = Jλz/(3kB) ≈ 16.7 K, where z = 6 is the number of nearest neighbors and λ ≈ 0.719 the
factor relating the mean-field Curie temperature to the actual Curie temperature of the classical three-dimensional
Heisenberg model on a simple cubic lattice [173]; λ takes spin-wave corrections into account. The numerical data
are shown in Fig. 4.4 and fitted by [174]

M(T ) =

(
1 − T

TC

)β
, (4.24)

where M is the normalized magnetization. For the classical three-dimensional Heisenberg model the critical
exponent β is about 0.32–0.37 [174–176]. This fit yields results which are in good agreement with the theoretical
predictions (relative error of about 5%), taking into account the finite size of the cluster. The residual magnetization
of less than 5% at temperatures above the Curie temperature limits the accuracy.

Fig. 4.4: Numerical (normalized) magnetization ver-
sus temperature, numerical data blue, fit
dashed black [eq. (4.24)]. A ferromag-
netic (J = 1 meV) simple cubic lattice with
22 × 22 × 22 = 10648 magnetic moments
and periodic boundary conditions was sim-
ulated, yielding a finite-size error less than
5%; Gilbert damping α = 0.1.
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CHAPTER 5

PUBLICATIONS

The publications of this thesis do not appear in chronological order but are arranged thematically. A short
introduction precedes each publication, explaining the motivation and the central results of the respective study;
reference is given to those chapters of the present thesis, which provide the theoretical background. A comment
on the author’s contribution to each publication is given below.

5.1. List of Publications

Publications Appearing in This Thesis

1. A. Mook, J. Henk, and I. Mertig
Magnon Hall effect and topology in kagome lattices: A theoretical investigation
Physical Review B 89, 134409 (2014).

2. A. Mook, J. Henk, and I. Mertig
Edge states in topological magnon insulators
Physical Review B 90, 024412 (2014).

3. A. Mook, J. Henk, and I. Mertig
Tunable magnon Weyl points in ferromagnetic pyrochlores
Physical Review Letters 117, 157204 (2016).

4. A. Mook, J. Henk, and I. Mertig
Magnon nodal-line semimetals and drumhead surface states in anisotropic pyrochlore ferromagnets
Physical Review B 95, 014418 (2017).

5. A. Mook, J. Henk, and I. Mertig
Spin dynamics simulations of topological magnon insulators: From transverse current correlation functions
to the family of magnon Hall effects
Physical Review B 94, 174444 (2016).

6. A. Mook, B. Göbel, J. Henk, and I. Mertig
Magnon transport in noncollinear spin textures: Anisotropies and topological magnon Hall effects
Physical Review B Rapid Communications 95, 020401(R) (2017).

Comment on my contributions. For all publications, I developed the computer codes for the numerical
simulations, interpreted the results, and wrote major parts of the manuscripts. Additionally, I initiated the research
presented in Pubs. 3, 4, 5, and 6. JH provided the original code for the Green’s functions renormalization (see
Sec. 4.1 and Ref. [150]), which I implemented by myself; he participated in the writing process of the manuscripts.
IM and JH initiated the research presented in Pubs. 1, and 2. BG performed the Monte Carlo simulations which
are the basis of Pub. 6. All authors discussed the results and commented on the manuscripts.
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5. Publications

Publications Not Appearing in This Thesis
(a) A. Mook, J. Henk, and I. Mertig

Topologically nontrivial magnons at an interface of two kagome ferromagnets
Physical Review B 91, 224411 (2015).

(b) A. Mook, J. Henk, and I. Mertig
Magnon waveguide with nanoscale confinement constructed from topological magnon insulators
Physical Review B 91, 174409 (2015).

(c) A. Mook, J. Henk, and I. Mertig
Topological Magnon Insulators: Chern numbers and surface magnons
Proceedings SPIE 9931, Spintronics IX, 993134 (2016).

(d) B. Göbel, A. Mook, J. Henk, and I. Mertig
Unconventional topological Hall effect in skyrmion crystals caused by the topology of the lattice
Physical Review B 95, 094413 (2017).

(e) B. Göbel, A. Mook, J. Henk, and I. Mertig
Signatures of Lattice Geometry in Quantum and Topological Hall Effect
Preprint on arXiv:1704.00567, submitted to the New Journal of Physics (2017).

Comment on my contribution. For Pubs. (a), (b), and (c), I set up the computer code for the numerical
simulations, and interpreted the results. I wrote major parts of the manuscripts of Pubs. (a), and (b), and
participated in the writing process of Pubs. (c), (d), and (e). All authors initiated the research, discussed the results,
and commented on the manuscripts.
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5.2. Thermal Magnon Hall Effect

5.2. Thermal Magnon Hall Effect
As already pointed out in the introduction (Sec. 1), the thermal magnon Hall effect (or “magnon Hall effect”,
see Sec. 3.3.2) was predicted [15] and experimentally verified [14] for the insulator Lu2V2O7. A connection
between the geometric properties of the magnon Bloch wave functions and the transverse magnon transport was
established in Refs. [18–20]. The transverse thermal conductivity could be expressed as a k-space integral over
Berry’s curvature (Sec. 3.3) and the notion of “topological magnon (Chern) insulators” was born [23] (Sec. 3.2.1).

The aim of the following two publications was understanding the (thermal) magnon Hall effect in a two-
dimensional topological magnon insulator on the kagome lattice in detail [see red triangles in Fig. 1.1(a)]. One
of the most fundamental questions is that concerning the sign of the Hall transport, i. e., whether the current is
deflected to the right or to the left. For electric topological insulators, only the metallic edge states contribute
to transport. Thus, their number and propagation direction directly translates into the transverse conductivity.
However, for magnons, the Bose-Einstein distribution function makes all states contribute. Thus, the transverse
transport is fundamentally different.

Previous work did either focus on the magnon Hall effect caused by magnon states in the vicinity of the center
of the Brillouin zone [14, 15, 18, 19] or on the contribution of the topologically protected edge magnons [23]. The
dependence of the transverse thermal conductivity on the topological phase of the magnon spectrum, its detailed
temperature dependence, and “tunability” remained unexplored.

5.2.1. Magnon Hall effect and topology in kagome lattices: A theoretical investigation
A kagome ferromagnet with nearest and second-nearest neighbor exchange and DM interaction was considered.
Its magnon bulk bands were shown to possess nonzero Chern numbers, making it a topological magnon Chern
insulator (see Secs. 3.2.1). Variation of the ratio between second-nearest and nearest-neighbor exchange interaction
leads to topological phase transitions: the Chern numbers of the bulk bands change. In total, four topologically
different phases were identified.

For exchange parameters chosen such that a topological phase boundary is touched, the magnon bulk bands are
not separated by a band gap. Slight variation of the parameters leads to an opening of a band gap, a so-called
“avoided crossing”. Since the energy gap is very small, the Berry curvature is very large [confer the denominator
of eq. (3.7)]. Thus, the energy-resolved contribution to the transverse thermal conductivity shows “hot spots” at
the avoided band crossings. When there is positive Berry curvature in the lower band of the avoided crossing,
there is negative curvature in the upper band. If there were only two magnon bulk bands (as is the case in the
Haldane model, Sec. 3.2.1), the lower one would always be the more populated one, such that its Berry curvature
determines the sign of the thermal conductivity. However, the kagome Chern insulator possesses three magnon
bulk bands, which allows for a more complex dependence on temperature and, in particular, for a sign change.

To illuminate the detailed dependence of the Hall transport on the different topological phases, a figure of merit
was defined: the thermal conductivity at high temperatures. Although this limit is beyond the range of validity of
the linear spin-wave approximation, this quantity turned out to be a very useful to estimate the direction of the
transverse transport.
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Ferromagnetic insulators with Dzyaloshinskii-Moriya interaction show the magnon Hall effect, i.e., a transverse
heat current upon application of a temperature gradient. In this theoretical investigation we establish a close
connection of the magnon Hall effect in two-dimensional kagome lattices with the topology of their magnon
dispersion relation. From the topological phase diagram we predict systems which show a change of sign
in the heat current in dependence on temperature. Furthermore, we derive the high-temperature limit of the
thermal Hall conductivity; this quantity provides a figure of merit for the maximum strength of the magnon Hall
effect. Eventually, we compare the temperature and field dependence of the magnon Hall conductivity of the
three-dimensional pyrochlore Lu2V2O7 with experimental results.

DOI: 10.1103/PhysRevB.89.134409 PACS number(s): 66.70.−f, 75.30.−m, 75.47.−m, 85.75.−d

I. INTRODUCTION

The Hall and Nernst effects comprise a variety of phe-
nomena, all showing a transverse current in response to a
longitudinal external field [1–3]. In the case of Hall effects,
this field is (typically) an applied voltage, whereas in the
case of Nernst effects, this is a temperature gradient. For
the conventional and anomalous effects, one observes an
electric current; a spin current is measured for their “spin”
counterparts, e.g., the spin Hall effect. Typically, one associates
the observation of a transverse current with the term Hall effect
or Hall geometry, rather than with a Nernst effect or Nernst
geometry. An example of this notation is the phonon Hall
effect [4] which describes a heat current perpendicular to a
longitudinal temperature gradient.

The diversity of Hall effects has been extended by Onose
et al. who discovered the magnon Hall effect (MHE) [5].
For the insulating ferromagnet Lu2V2O7 with pyrochlore
lattice [Fig. 1(a)] they found a transverse heat current upon
application of a longitudinal temperature gradient. Theoretical
understanding of this phenomenon has been provided by
Matsumoto and Murakami, who explained the magnon Hall
effect as a consequence of noncompensated magnon edge
currents in a two-dimensional system [6,7]. Later on, Zhang
et al. recognized that this net edge current results from the
topology of the system, thereby confirming the existence of
topological magnon insulators [8].

The magnon Hall effect is due to the spin-orbit interaction.
In a magnetic system without inversion center—as in
the pyrochlore lattice—it results in the Dzyaloshinskii-
Moriya contribution to the exchange interaction of local-
ized magnetic moments which opens up band gaps in
the magnon dispersion relation. These avoided crossings
give a nonzero Berry curvature and nonzero topological
invariants (i.e., the Chern numbers). The transverse thermal
conductivity κxy is consequently expressed as an integral
of the Berry curvature over the Brillouin zone. The pre-
ceding information reveals a close similarity to the physics
of electronic topological insulators in which spin-orbit-
induced band inversions yield nonzero topological invariants
and topologically protected surface or edge states [9–11].
The transverse thermal conductivity of the MHE is, thus,

in line with several other—mostly electronic—physical
quantities that are expressed in terms of the Berry curvature
and have been studied extensively in the past [12,13].

Although the fundamental physics of the MHE has been
derived by Matsumoto and Murakami [6,7], a number of open
questions needs to be answered. In our theoretical investigation
reported in this paper we deduce a topological phase diagram
for kagome systems. It turns out that for specific systems the
transverse thermal conductivity changes sign in dependence
on temperature; this implies that the orientation of the heat
current can be reversed by tuning the temperature in a device.
Furthermore, we derive the high-temperature limit of the
thermal conductivity which provides a figure of merit for
the strength of the magnon Hall effect. To come closer to
experiment, we extend our analysis of two-dimensional lattices
to the three-dimensional pyrochlore lattice by stacking non-
interacting kagome layers. By comparison of the temperature
and field dependence of the magnon Hall conductivity with
the experimental results of Onose et al. [5], we determine the
Dzyaloshinskii-Moriya parameters of Lu2V2O7.

The paper is organized as follows. In Sec. II we outline
the quantum-mechanical description of magnons in kagome
lattices (Sec. II A) and derive an expression for the transverse
thermal conductivity (Sec. II B). Results are presented in
Sec. III: topology and magnon band structure (Sec. III A), the
topological phase diagram (Sec. III B), the high-temperature
limit of the thermal conductivity (Sec. III C), and a comparison
with experiments for Lu2V2O7 (Sec. III D). We conclude with
Sec. IV.

II. THEORY OF THE MAGNON HALL EFFECT

A. Model Hamiltonian for magnons

For the description of magnons in kagome lattices, we
use the quantum-mechanical Heisenberg model [14]. In the
Hamiltonian

HH = −1

2

∑
n�=m

J n
m ŝm · ŝn (1)

spin operators ŝn and ŝm at lattice sites n and m are
coupled by exchange parameters J n

m. The latter account for

1098-0121/2014/89(13)/134409(9) 134409-1 ©2014 American Physical Society
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FIG. 1. (Color online) Pyrochlore and kagome lattices. (a) Three-
dimensional pyrochlore lattice, with (111) planes representing
stacked two-dimensional kagome lattices (marked by blue bold lines).
(b) Atomic positions, labeled by numbers, in the pyrochlore lattice.
(c) Two-dimensional kagome lattice with lattice vectors a1 and a2.
Atoms A, B, and C are placed at the corners of the triangles.
Dzyaloshinskii-Moriya vectors are aligned normal to the lattice plane
and are represented by red dots: along +z (−z) for a counterclockwise
(clockwise) chirality: A-B-C (C-B-A).

isotropic symmetric spin-spin interactions, typically termed
“Heisenberg” exchange. The eigenvectors of HH,

|k〉 = 1√
N

∑
m

eik·Rm |Rm〉, (2)

are called “one-magnon states”, where N is the total number
of spins, Rm is the vector pointing to lattice site m, and |Rm〉
denotes the state with all spins aligned along the ferromagnetic
ground state except the one at lattice site m; its z component
is reduced by �.

As mentioned above, the spin-orbit interaction is essential
for the MHE; it contributes in two ways to the Hamiltonian:
the magnetocrystalline anisotropy, which is not considered in
this paper, and the Dzyaloshinskii-Moriya interaction [15,16].
The Dzyaloshinskii-Moriya (DM) contribution is anisotropic
as well as antisymmetric and can be written as

HDM = 1

2

∑
m�=n

Dn
m(ŝm × ŝn). (3)

Dn
m is the DM vector between sites m and n (Dn

m = −Dm
n ).

The coupling to an external magnetic field H is introduced
by a Zeeman term,

Hext = −gμB

∑
n

H · ŝn. (4)

g and μB denote the g factor of electrons and Bohr’s magneton,
respectively. The complete Hamiltonian then reads

H = HH + HDM + Hext. (5)

For the time being, we consider only one-magnon states and,
thereby, exclude the kinematic [17] interaction that originates
from the impossibility of locating more than 2s deviations at a

single spin s. We also do not account for the dipole-dipole inter-
action and for higher-order spin interactions (e.g., Ref. [18]).

By means of Moriya’s symmetry rules [16], the DM vectors
of the pyrochlore lattice can be expressed as

D12 = D̃√
2

(− y − z), D13 = D̃√
2

(−x + y),

D14 = D̃√
2

(x + z), D24 = D̃√
2

(−x − y), (6)

D43 = D̃√
2

(− y + z), D23 = D̃√
2

(x − z),

where D̃ denotes the DM constant of adjacent sites. The site
labels 1–4 and the unit vectors x, y, and z of the Cartesian coor-
dinate system are defined in Fig. 1(b) (cf. Refs. [19] and [20]).

In the experiment by Onose et al. [5], an external magnetic
field H is applied along the [111] direction. Only the
components of the DM vectors along this direction contribute
to the MHE; the other components do not contribute up to
second order in the spin deviation from the [111] direction
(cf. the supplemental online material of Ref. [5]). With√

3n = x + y + z we arrive at

D ≡ −n · D12 = n · D14 = −n · D24 = 2√
6
D̃, (7a)

0 = n · D13 = n · D23 = n · D43. (7b)

Hence, only spins at sites that form a kagome lattice within
the (111) plane are coupled by the DM interaction (here, sites 1,
2, and 4). This suggests a study of (two-dimensional) kagome
lattices instead of (three-dimensional) pyrochlore lattices, as
is done in this paper.

To simplify the calculation for the kagome lattice, we use
the coordinate system shown in Fig. 1(c), in which the kagome
lattice and the xy plane coincide and the [111] direction is
along z. The lattice vectors read

a1 = (1,
√

3)
a

2
, (8a)

a2 = (−1,
√

3)
a

2
(8b)

(a is the lattice constant) in Cartesian coordinates. The DM
vectors are then along the z direction. Their orientation is
given by the chirality of the triangles in the kagome lattice:
those with counterclockwise (clockwise) chirality point along
the +z (−z) direction [cf. the red dots in Fig. 1(c)]. The length
of the DM vectors is D.

By means of ladder operators ŝ± ≡ ŝx ± iŝy and the
definition

J̃ n
m exp

(
iφn

m

) ≡ J n
m + iDn

m (9)

the Hamiltonian reads [5]

H = − 1

4

∑
m�=n

J̃ n
m

[
eiφn

m ŝ−
mŝ+

n + e−iφn
m ŝ+

mŝ−
n

]

− 1

2

∑
m�=n

J n
mŝz

mŝz
n − gμBH

∑
m

ŝz
m. (10)

H is the strength of the external magnetic field.
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From Eq. (9) it is obvious that a magnon accumulates an
additional phase φn

m upon propagation from site m to n, which
is brought about by the spin-orbit interaction. This can be
viewed as a result of a textured flux within the plaquettes of
the kagome lattice [21], similar to the Haldane model for an
electronic topological insulator [22]. Thus, we are concerned
with a nonzero Berry curvature �(k) (Ref. [23]) and with
topological invariants.

For a given set of parameters {J n
m,Dn

m}, we solve the
eigenproblem of the complete Hamiltonian H, yielding the
magnon dispersion relations εi(k) [wave vector k = (kx,ky,0),
band index i] and the Berry curvature

�j (k) ≡ i
∑
i �=j

〈i(k)|∇kH(k)|j (k)〉 × 〈j (k)|∇kH(k)|i(k)〉
[εi(k) − εj (k)]2

.

(11)

|i(k)〉 and εi(k) are the eigenvectors and eigenvalues of H,
respectively.

B. Transverse thermal conductivity and Chern numbers

Having solved the magnon Hamiltonian, the transverse ther-
mal conductivity can be computed as follows. By formulating
semiclassical equations of motion for magnon wave packets
which include the anomalous velocity in terms of the Berry
curvature, the intrinsic contribution1 to the transverse thermal
conductivity is expressed as

κxy = k2
BT

(2π )2�
∑

i

∫
BZ

c2(�i) �z
i (k) dk2. (12)

The sum runs over all bands i in the magnon dispersion
relation, and the integral is over the Brillouin zone (BZ). The
Bose distribution function �i enters the function c2 which is
given by

c2(x) ≡ (1 + x)

(
ln

1 + x

x

)2

− (ln x)2 − 2 Li2(−x). (13)

Li2 is the dilogarithm or Spence function [6,7]. c2 is depicted in
Fig. 2; it accounts via the Bose distribution for the temperature
dependence of κxy .

The transverse thermal conductivity and the Chern number
of band i,

Ci ≡ 1

2π

∫
BZ

�z
i (k) dk2, (14)

differ by constant factors and by the c2 function in the
integrand. This establishes a close connection of the magnon
Hall effect with the topology of the magnon dispersion relation
in the kagome lattice.

C. Numerical aspects

To calculate the Chern numbers and the transverse thermal
conductivity [cf. Eqs. (14) and (12)], a k-space integration
has to be performed. All results of this paper are obtained for
Gaussian meshes with 2500 points. This gives an accuracy

1The skew scattering contribution is not considered in this paper.

0 2 4 6 8 10
0

1

2

3

4

1 K

23 K

580 K

ε (meV)

c 2
(ε

)

FIG. 2. (Color online) Function c2(ε), as defined in Eq. (13),
versus energy ε for selected temperatures (as indicated). The broken
line marks the high-temperature limit of π 2/3 ≈ 3.289 87.

of the (integer) Chern numbers better than 10−5. For almost
closed band gaps the Berry curvature gets locally very large
[cf. the denominator in Eq. (11)]; in these cases, a refined mesh
has to be used: 40 000 points for band gaps less than 0.1 meV.

III. RESULTS AND DISCUSSION

In the following analysis we assume a kagome lattice
with all three basis atoms being identical, i.e., identical spin
and exchange parameters. We consider the Heisenberg ex-
change between nearest (JN) and next-nearest (JNN) sites; the
Dzyaloshinskii-Moriya parameters account only for nearest-
neighbor interactions (D).

A. Magnon dispersion relation and topological invariants

First, we address the close connection of the magnon band
structure, the Chern numbers, and the thermal conductivity.
For this purpose, we introduce Chern numbers of isoenergy
surfaces

Ci(ε) ≡ 1

2π

∫
BZ

δ(εi − ε) �z
i (k) dk2 (15)

[cf. Eq. (14)] and the corresponding energy-dependent contri-
bution to the transverse thermal conductivity

κxy(ε) = k2
BT

(2π )2�
∑

i

∫
BZ

δ(εi − ε) c2(�i) �z
i (k) dk2 (16)

[cf. Eq. (12)].
Inspection of Fig. 3 provides that the main contributions

to the Chern numbers appear at the band edges of spin-orbit-
induced band gaps, that is, where the Berry curvature is largest
[cf. the denominator in Eq. (11)]. The total Chern numbers are
C1 = 1, C2 = 0, and C3 = −1, indicating that the topological
phase of the magnon dispersion is characterized by (1,0,−1)
(the sum over all Chern numbers is zero in any case).

Because the thermal conductivity is mainly given by the
Chern numbers weighted by the c2 function, κxy(ε) shows the
same features as the Chern numbers. However, it decreases
towards higher energies due to the energy dependence of c2

(see Fig. 2). Furthermore, adjacent peaks show opposite signs,
leading to a partial cancellation in the total conductivity.
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Γ M K Γ
0

12

23

ε
(m

eV
)

(a) band structure

−10 −5 0 5

(b) Ci(ε) (10−2)

C3 = −1

C2 = 0

C1 = + 1

−2 0 2 4

(c) κxy(ε) (10−13 W/K)

FIG. 3. (Color online) Relation between magnon band structure,
Chern numbers, and thermal conductivity. The magnon dispersion
relation for JN = 4 meV, D = 1 meV, and JNN = 0 is shown in (a).
The band- and energy-resolved Chern numbers Ci(ε) and the energy-
resolved thermal conductivity κxy(ε) at T = 30 K are displayed in (b)
and (c), respectively. The step width of the energy mesh is 1/20 meV.
The energy scale is compressed to account for the finite temperature
(cf. Sec. III D).

These findings suggest a way to maximize the thermal
conductivity. The requirements comprise (i) a wide energy
gap provided by (ii) a large DM constant to obtain large
c2 differences for the band edges, and (iii) a flat first band
for a large c2. These features yield an absolute boundary
of the transverse thermal conductivity at low temperatures.
Considering only the first band, i.e., assuming a wide band
gap, and approximating the lowest band by ε1(k) = 0, for
which c2(0) = π2/3 (Fig. 2), one arrives at

|κxy | =
∣∣∣∣∣
∑

n

κxy
n

∣∣∣∣∣ <
∣∣κxy

1

∣∣ <
k2

Bπ

6�
T |C1|, (17)

where C1 is the Chern number of the first band.

B. Topological phase diagram

A topological phase transition is closely related to a band
inversion that appears due to a variation of parameters that
enter the Hamiltonian: a band gap closes and reopens again,
which is accompanied by a (discrete) change of the respective
topological invariants (cf. Ref. [24] for an electronic topo-
logical insulator). In this section, we discuss the topological
phase diagram of the magnon Hamiltonian. Each system is
characterized by a set of constants D, JN, and JNN, from
which a point (JNN/JN,D/JN) in phase space is defined. It is
conceivable that deformation of the lattice or magnetic doping
are means to change the topological phase. Some regions of the
phase diagram cannot be realized in practice because D < JN

in real systems.
To derive phase boundaries, we write the Hamiltonian as a

3 × 3 matrix,

H(k) =
⎛
⎝HAA(k) HAB(k) HAC(k)

H∗
AB(k) HAA(k) HBC(k)

H∗
AC(k) H∗

BC(k) HAA(k)

⎞
⎠, (18)

AB AC BC

A
B

C

x

y

R = 0, − a1

R = a2 − a1, − a2

+
+

A
B

C

x

y

R = 0, − a2

R = − a1, a1 − a2

−
−

A
B

C

x

y

R = 0, a1 − a2

R = a1, − a2

+
+

FIG. 4. (Color online) Dzyaloshinskii-Moriya interaction in a
kagome lattice. Lattice vectors R from atom i = A,B,C to the
basis of both nearest (red) and next-nearest (blue) neighbors of
type j = A,B,C are given by arrows. ± represent the signs of the
Dzyaloshinskii-Moriya interaction, in accordance with the chirality.
Lattice vectors a1 and a2 are defined in Fig. 1(c). The dot (•) denotes
the origin of the coordinate system.

with A, B, and C indicating the basis atoms (cf. Figs. 1 and 4).
The matrix elements read

HAA(k) = 0, (19)

HAB(k) = − (JN + iD)s(1 + ei(−kx−
√

3ky )/2)

− JNNs(e−ikx + ei(kx−
√

3ky )/2), (20)

HAC(k) = − (JN − iD)s(1 + ei(kx−
√

3ky )/2)

− JNNs(eikx + ei(−kx−
√

3ky )/2), (21)

HBC(k)= − (JN+ iD)s(1 + eikx ) − 2JNNseikx/2 cos

(√
3

2
ky

)
.

(22)

s is the fixed length of the spin vectors (� = 1).
A topological phase boundary is obtained by requiring two

eigenvalues to be equal. At the K point of the Brillouin zone,
e.g., at kK = (−4π/3,0), H has the form

H(kK ) =
⎛
⎝ 0 x x∗

x∗ 0 x

x x∗ 0

⎞
⎠ (23)

with

x ≡ −(JN + iD)s(1 + e2π i/3) − 2JNNse2π i/3. (24)

Its eigenvalues are

λ1 = 2Re(x), (25)

λ2,3 = −Re(x) ±
√

3|Im(x)|. (26)

Thus, the topological phase boundary in terms of the exchange
parameters is given by

D

JN
=

√
3

∣∣∣∣2JNN

JN
− 1

∣∣∣∣. (27)

Since the degeneracy occurs at each K and K ′ point of the
Brillouin zone, the Chern number of the associated bands
changes by 
C = ±2 when crossing this boundary.
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FIG. 5. (Color online) Magnon band structures of a kagome lattice for selected nearest- (N) and next-nearest- (NN) neighbor Heisenberg
exchange parameters (as indicated). The Dzyaloshinskii-Moriya parameter D equals JN = 1 meV. (a) Closing and reopening of a band gap at
K , from left to right, according to the phase boundary given by Eq. (27). (b) Degeneracy along the �-K line. The bands are distinguished by
colors.

A numerical analysis of the band structure (Fig. 5) yields
two additional phase boundaries [Fig. 6(a)]: a linear and a
nonlinear one. The latter approaches the boundary derived
analytically as JNN/JN ↘ 0.5. All band degeneracies are
located along the �-K and �-K ′ lines, respectively. These
are parametrized by ζ ∈ [0,1] with ζ = 0 and 1 for � and K,
respectively [Fig. 6(b)]. The accumulation at the K point arises
due to the analytically derived boundary, while the one at � is
identified with the linear boundary in Fig. 6(a); the eigenvalue
analysis of H(0) results in

D

JN
=

√
3

∣∣∣∣JNN

JN
+ 1

∣∣∣∣. (28)

The nonlinear boundary is associated with the descending
curve in Fig. 6(b), indicating that this degeneracy moves
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ζ

(b)
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D
/J

N

(c)

−0.5 0 0.5 1 1.5
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1

1.5

(1, 0, −1)

(1, −2, 1)

(−3, 2, 1)

(3
, −

4,
1)

AF

JNN/ JN

D
/J

N

(d)

FIG. 6. (Color online) Analysis of band degeneracies. (a) Param-
eter combinations D/JN and JNN/JN for which two neighboring bands
are degenerate; red (blue) lines indicate degeneracy of the lower
(upper) two bands 1 and 2 (2 and 3). (b) Point of degeneracy, ζ , along
�-K line as a function of the parameter ratio JNN/JN. (c) Boundary
between antiferromagnetic (AF) and ferromagnetic (F) phases.
(d) Complete topological phase diagram with regions characterized
by sets (C1,C2,C3) of Chern numbers. The antiferromagnetic phase
is colored red.

along �-K and �-K ′ [cf. Fig. 5(b) for D = JN = 1 meV and
JNN/JN = 0.82]. Because this degeneracy appears six times
within the first BZ the Chern numbers of the associated
bands change by 
C = ±6. The additional phase boundary
caused by a degeneracy at � is not of interest for the present
study as it is located within the antiferromagnetic phase
[Fig. 6(c); the antiferromagnetic phase is identified by negative
magnon energies at nonzero k]. The resulting topological
phase diagram is given in Fig. 6(d).

C. High-temperature limit of the transverse
thermal conductivity

In this section we derive the high-temperature limit of the
transverse thermal conductivity,

κ
xy

lim ≡ lim
T →∞

κxy(T ). (29)

Although we disregard a ferromagnet-to-paramagnet transi-
tion and the influence of magnon-magnon interaction, it turns
out that this quantity is helpful in describing MHE systems.

In the rewritten expression

κ
xy

lim = lim
T →∞

(
κxy(T )

T

/
1

T

)
, (30)

both κxy(T )/T and 1/T tend to zero because c2(�(ε,T )) →
π2/3 for all ε and the sum of the Chern numbers of all bands
vanishes,

∑
i Ci = 0. Thus,

lim
T →∞

(
κxy(T )

T

)
= k2

B

2π�
π2

3

∑
i

Ci = 0. (31)

By means of l’Hôpital’s rule it follows that

κ
xy

lim = lim
T →∞

(
−T 2 ∂

∂T

κxy(T )

T

)
(32)

= − k2
B

(2π )2�
lim

T →∞

∑
i

∫
BZ

T 2 ∂c2(�i)

∂T
�z

i (k) dk2, (33)

with the final expression

κ
xy

lim = − kB

(2π )2�
∑

i

∫
BZ

εi(k)�z
i (k) dk2. (34)

Even though the high-temperature limit T → ∞ will never
be reached within the ferromagnetic phase, κ

xy

lim can be used
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ALEXANDER MOOK, JÜRGEN HENK, AND INGRID MERTIG PHYSICAL REVIEW B 89, 134409 (2014)

0 300 600

−4

−2

0

2

4

T (K)

κx
y

(1
0−1

1
W

/K
)

JNN

JN
= 0.1

4.33

0 300 600

T (K)

JNN

JN
= 387

800

−0.01

0 300 600

T (K)

JNN

JN
= 0.75

−4.05

FIG. 7. (Color online) Transverse thermal conductivity κxy

versus temperature T (solid lines) for D/JN = 1/4 and selected ratios
JNN/JN (as indicated), with JN = 4 meV. The values of κ

xy

lim are given
within each panel and represented by broken lines.

as a figure of merit to estimate the maximum magnitude of
the thermal conductivity, because κxy(T ) rapidly approaches
κ

xy

lim (Fig. 7). In the present cases, κ
xy

lim is reached at about
T = 300 K. For the parameters JN = 4D = 4 meV and
JNN/JN = 387/800 the high-temperature conductivity is two
orders of magnitude smaller than those for the other parameters
shown in Fig. 7. The overall width of the conductivity as
a function of temperature exceeds the limit insignificantly.
A system’s high-temperature-limit thermal conductivity is
therefore a convenient approximation for the strength of its
magnon Hall effect. Systems with high Curie temperature
(i.e., of the order of room temperature for the presented
results) allow for quantitative prediction as the limit is almost
approached. It turns out, however, that for some regions in the
phase space κ

xy

lim does not reproduce the correct sign of the
thermal conductivity as a function of temperature, as will be
discussed in the following paragraphs. Only the topological
phases (1,0,−1) and (−3,2,1) show conductivities with the
same sign as the associated high-temperature limit.

To motivate a relation of the high-temperature limit κ
xy

lim of
the transverse thermal conductivity with the topological phase
space, we assume a magnonic system with two flat bands;
εi(k) = ε̄i (i = 1,2). This approximation yields

κ
xy

lim ∝ − 1

2π

2∑
i=1

ε̄i

∫
BZ

�z
i (k) dk2 = C1
ε, (35)
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FIG. 8. (Color online) Band structure (left) and integrand of
Eq. (34) (right). Arrows represent the reciprocal lattice vectors and
the dashed green line indicates the Brillouin zone. JN = 10JNN =
8D = 4 meV.

where 
ε = ε̄2 − ε̄1 denotes the energy gap. This expression
states that the sign of κ

xy

lim is given by the sign of the first band’s
Chern number C1.

In the case of a kagome lattice the above constant-energy
approximation is justified as follows. The integrand εi(k)�z

i (k)
contributes sizably to the entire integral mainly in regions of
the BZ in which the Berry curvature is large (Sec. III A), that
is, at avoided crossings as shown in Fig. 8. If there is a single
avoided crossing in each irreducible part of the Brillouin zone
(cf. the dashed circle in Fig. 8), the band structure can be
approximated as constant at the avoided crossings (in contrast
to two or more avoided crossings that are different in energy).
By this approximation, κ

xy

lim reads

κ
xy

lim ∝

⎧⎪⎨
⎪⎩

−(ε̄1 − ε̄3) > 0 (1,0,−1),
−(ε̄1 − 2ε̄2 + ε̄3) (1,−2,1),
−(3ε̄1 − 4ε̄2 + ε̄3) (3,−4,1),
−(−3ε̄1 + 2ε̄2 + ε̄3) < 0 (−3,2,1).

The sign is unique only within the phases (1,0,−1) and
(−3,2,1) since ε̄3 > ε̄2 > ε̄1. In the other phases, the sign
of the conductivity depends on the ratios of the energies ε̄i

and is not fixed. This, admittedly, crude approximation is
corroborated by the numerical results shown in Fig. 9, where
the line of vanishing high-temperature-limit conductivity is
found within the phase (1,−2,1).
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FIG. 9. (Color online) Topological phase diagram of the high-
temperature transverse thermal conductivity κ

xy

lim, shown as color scale
(right). Regions with positive (negative) values are marked + (−).
The broken lines represent the analytically derived phase boundaries
given by Eq. (27).
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FIG. 10. (Color online) Sign of the transverse thermal conductiv-
ity κxy within the topological phase space for selected temperatures
T (as indicated). JN = 4 meV.

The above findings open up possibilities of changing a
system’s transverse thermal conductivity and heat current
direction. Traversing through the phase diagram will lead to
a change of the magnitude or even the sign of the thermal
conductivity. Only systems with specific combinations of
exchange parameters show a change of sign of the thermal
conductivity with temperature. These combinations are located
within the region that is covered by the line of zero κxy versus
temperature (Fig. 10). In this phase-space region the conduc-
tivity shows a positive local maximum at low temperatures,
although it converges to a negative limit (Fig. 11).

D. Application to Lu2V2O7

Having studied the fundamental properties of the MHE in
two-dimensional kagome lattices in the preceding sections,
we proceed with an application to the three-dimensional
pyrochlore Lu2V2O7. Instead of considering a “true” three-
dimensional lattice, we treat the system as a stack of non-
interacting kagome layers. This allows the application of the
methods derived so far, in particular the classification by Chern
numbers [cf. the topological phase diagram in Fig. 6(d)].

To come closer to the experiment, the temperature depen-
dence of the magnetization has to be considered. This could be
done within a microscopic picture, that is, by considering the
thermal fluctuations of the local spins which could enter the

0 200 400 600
−3

−2

−1

0

1 Ts

T (K)

κx
y

(1
0−1

2
W

/K
)

−2.12

FIG. 11. (Color online) Transverse thermal conductivity κxy ver-
sus temperature T for JNN/JN = 1/2, D/JN = 1/4, and JN = 4 meV
(solid line). The dashed line represents the limit κ

xy

lim = −2.12 ×
10−12 W/K; the dotted line marks the temperature Ts = 113 K of
vanishing conductivity.

exchange parameters [25,26]. For the time being, we restrict
ourselves to a macroscopic picture. To be more specific, we
assume that the spins s scale with temperature in the same way
as the magnetization,

s → s

(
1 − T

TC

)β

, (36)

with the critical temperature TC = 70 K (Ref. [5]) and the
critical exponent β = 0.362 (Ref. [27]).

From the Curie temperature TC, the spin-wave stiffness
DS = 21 meV Å2, and the lattice constant a = 7.024 Å,
we determine the Heisenberg exchange parameter to
JN = 3.405 meV. JNN is set to zero, so that there is no
interaction between adjacent kagome planes.

To compare the thermal conductivity κ
xy

2D of a two-
dimensional system with that of the associated three-
dimensional one, κ

xy

3D, we introduce a characteristic length
l which equals the spacing of (111) lattice planes. The red
triangles in Fig. 1(a) suggest that l is twice as large as the
height of a tetrahedron with an edge length of a/2; hence,
κ

xy

3D = κ
xy

2D/l with l = √
6a/3.

Now we compare the theoretical transverse thermal conduc-
tivity with its experimental counterpart [5], with the strength D

of the DM interaction as the only parameter. For realistic values
of D, Lu2V2O7 is within the (1,0,−1) topological phase and
exhibits a MHE with positive transverse thermal conductivity,
in agreement with experiment.

The comparison is shown in Fig. 12, for two selected
values of D = √

6/2D̃ [cf. Eq. (6)]. The magnetic field was
chosen slightly larger than the saturation field determined by
Onose et al. (Ref. [5]). Reasonable agreement is found for
D̃/JN = 0.39%–0.56%, that is, for parameters two orders of
magnitude smaller than those deduced by Onose et al., who
derived D̃/JN = 32%. A density functional calculation for

0 20 40 60 80
0

0.5

1

1.5

2 κxy
lim

T (K)

κx
y

(1
0−3

W
/K

m
)

ONOSE et al. for H [111]
D = 11 μeV; H = 0.5 T
D = 15 μeV; H = 0.5 T

FIG. 12. (Color online) Transverse thermal conductivity κxy of
Lu2V2O7 versus temperature T . Theoretical data for Dzyaloshinskii-
Moriya interactions D = 11 μeV (dashed line) and 15 μeV (wide-
dashed line) are compared with experimental data from Ref. [5] (dots).
The external magnetic field of 0.5 T is chosen slightly larger than the
saturation field in the experiment. The range of the high-temperature
limits of κxy is indicated by the gray area.
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FIG. 13. (Color online) Transverse thermal conductivity κxy of
Lu2V2O7 versus applied magnetic field H along [111] at T =
20 K. The theoretical result has been obtained for Dzyaloshinskii-
Moriya interaction D = 15 μeV (broken line). Experimental data
(red dots) for the magnetic field direction along [100] are reproduced
from Ref. [5].

Y2V2O7, which possesses magnetic properties similar to those
of Lu2V2O7, by Xiang et al. (Ref. [28]), yields D̃/JN = 5%.

We attribute the mismatch between our D̃/JN ratio and the
one obtained in Ref. [5] to the approximation of the three-
dimensional systems by a stacking of noninteracting kagome
planes. For example, disregarding the fourth basis atom of
the pyrochlore basis reduces the bandwidths of the magnons;
as a consequence, avoided crossings which give the major
contributions to the conductivity are too low in energy. Thus,
the c2 function is too large, which has to be compensated by a
reduced DM interaction.

In contrast, the approximation in Ref. [5] causes an
overestimation of the DM interaction: in a model for a
pyrochlore lattice, only contributions of the lowest-energy
band at the � point (Goldstone mode) have been considered.
Thus, the sizable contributions of the avoided crossings at
higher energies are omitted (cf. Fig. 3). This approximation
is valid for very small temperatures, as is evident from the
rapid decrease of c2; it is questionable for elevated temperature
because c2 is sizable at higher energies (compare T = 1 K with

T = 23 K in Fig. 2). We recall that the experimental data used
for estimating D/J in Ref. [5] were taken at T = 20 K, for
which c2 cannot be safely neglected at the avoided crossings.
To compensate for the missing contributions, the value of the
Berry curvature around the � point is estimated too large and
so the DM constant D̃ is overestimated.

Neither the approximation in Ref. [5] nor ours takes
into account magnon-magnon or magnon-phonon interactions
which may influence the transverse thermal conductivity of
Lu2V2O7 at temperatures close to its Curie temperature.
The mismatches of the D̃/JN ratio can be explained by the
approximations discussed in the preceding paragraphs.

Finally, we address the dependence of the transverse ther-
mal conductivity on the strength of the applied magnetic field
(Fig. 13). The experimental data were obtained for a magnetic
field applied in the [100] direction, in contrast to theory
([111] direction), thus complicating a quantitative analysis.
Nevertheless, the overall trend—namely, the gradual decrease
of the conductivity (in absolute value) for increasing magnetic
field—is reproduced. It is explained by the Zeeman term in the
Hamiltonian [Eq. (10)] which shifts the entire magnonic band
structure towards larger energies and, therefore, to regions with
smaller c2 (Fig. 2).

IV. OUTLOOK

Having analyzed kagome lattices in this paper, an evident
extension of our study is to pyrochlore crystals in which
all exchange interactions are considered. An important issue
is the negative transverse thermal conductivity of In2Mn2O7

(Ref. [29]), in contrast to the positive ones of Lu2V2O7 and
Ho2V2O7; this needs to be explained by a topological phase
diagram. With a phase diagram at hand, one should be able to
predict systems with a strong magnon Hall effect.

It appears of great interest to find a kagome system with
exchange parameters that are located in a region in which the
conductivity changes sign. In this paper we have given a recipe
for such a material. Its overall transverse thermal conductivity
is, however, one order of magnitude smaller than that of
Lu2V2O7, which calls for advanced measurement techniques.
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5.2. Thermal Magnon Hall Effect

5.2.2. Edge states in topological magnon insulators
While the previous publication focused on the transverse thermal conductivity, this publication is concerned with
topologically protected magnons. Green function renormalization (see Sec. 4.1) is used to calculate the magnon
edge spectrum of a semi-infinite kagome crystal. Again, the ratio of the exchange interaction between nearest and
second-nearest neighbors is used as a parameter to traverse the topological phase diagram.

Extending Ref. [23], where the kagome Chern insulator was studied without second-nearest neighbor exchange
interaction, the validity of the bulk-boundary correspondence [82, 83] is demonstrated for topological magnon
insulators (Sec. 3.2.1). Irrespective of the details of the edge, there are w j =

∑
i< j Ci topological edge magnons

within the j-th band gap, where Ci is the Chern number of the i-th band. The “details” of the edge not only
comprise the edge’s normal but also perturbations renormalizing the exchange constants. If the exchange and DM
interactions at the edge differ from those in the bulk, the dispersion of the edge magnons (topologically trivial
as well as nontrivial) is severely influenced. However, the fundamental property of the topologically nontrivial
states, more precisely, that they connect adjacent bulk bands, is protected. In particular, the hybridization of a
topologically nontrivial mode with a trivial mode is demonstrated, resulting in a nontrivial mode with doubled
periodicity in reciprocal space. Thus, this work demonstrated that the topological properties of electronic Chern
insulators are expected also for magnonic Chern insulators (at low temperatures, when the single-magnon picture
is valid).

Furthermore, it is shown that the propagation direction of the topological edge magnons is connected with the
sign of the thermal Hall conductivity (see Pub. 1), although all states (especially, those in the bulk) contribute
to transport. Thus, within certain topological phases the Chern numbers (and the winding numbers) allow to
estimate the direction of the Hall transport. It is pointed out, however, that the reverse is not true: edge magnons
are not necessary for thermal magnon Hall transport. Topologically trivial magnon bulk bands (all Chern numbers
zero) can possess nonzero Berry curvature25. Thus, there are no topologically protected edge magnons but a
nonvanishing thermal Hall transport (see, e. g., Ref. [177]).

25This is the case, for example, in the Haldane model by tuning the P and T symmetry breaking parameters (see Sec. 3.2.1).

55



PHYSICAL REVIEW B 90, 024412 (2014)

Edge states in topological magnon insulators

Alexander Mook,1 Jürgen Henk,2 and Ingrid Mertig1,2

1Max-Planck-Institut für Mikrostrukturphysik, D-06120 Halle (Saale), Germany
2Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, D-06099 Halle (Saale), Germany

(Received 15 May 2014; revised manuscript received 27 June 2014; published 18 July 2014)

For magnons, the Dzyaloshinskii-Moriya interaction accounts for spin-orbit interaction and causes a nontrivial
topology that allows for topological magnon insulators. In this theoretical investigation we present the bulk-
boundary correspondence for magnonic kagome lattices by studying the edge magnons calculated by a Green
function renormalization technique. Our analysis explains the sign of the transverse thermal conductivity of the
magnon Hall effect in terms of topological edge modes and their propagation direction. The hybridization of
topologically trivial with nontrivial edge modes enlarges the period in reciprocal space of the latter, which is
explained by the topology of the involved modes.
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I. INTRODUCTION

Understanding the physics of electronic topological in-
sulators has developed enormously over the past 30 years:
spin-orbit interaction induces band inversions and, thus, yields
nonzero topological invariants as well as edge states that are
protected by symmetry [1–3]. During this development the
concept of Berry curvature [4] and Chern numbers has arisen
in various contexts and laws of condensed matter physics.
This led for example to the formulation of the bulk-boundary
correspondence [5]. Topological arguments and concepts—
gained mostly from studies of electronic systems [6]—are
applicable to phononic and magnonic systems as well: the
phonon Hall effect [7] was successfully explained in terms of
Berry curvature and topology [8,9].

Recently, the magnon Hall effect (MHE) was discovered
in the insulating ferromagnet Lu2V2O7 with pyrochlore lattice
structure [10]. The transverse heat current upon application
of a longitudinal temperature gradient was explained by
uncompensated net magnon edge currents that are mathemat-
ically described in terms of the Berry curvature [11,12]. The
edge currents originate from the topology of the “topological
magnon insulator” [13]. The nontrivial topology is brought
about by the spin-orbit interaction which manifests itself as
Dzyaloshinskii-Moriya (DM) contribution to the exchange in-
teraction of localized magnetic moments. The Dzyaloshinskii-
Moriya interaction shows up in systems without inversion
center—as is the case in the aforementioned pyrochlore lattice
or in its two-dimensional counterpart, the kagome lattice
(Fig. 1).

The rich topology of the kagome lattice not only puts
forward itself for an investigation of the bulk-boundary
correspondence but also affects crucially the magnon Hall
effect. Therefore, a detailed understanding of the MHE in the
kagome lattice is a prerequisite for investigations of pyrochlore
lattices, such as Lu2V2O7.

In this paper, we report on such a study. We focus on two
topological phases in which the sign of the transverse thermal
conductivity—and hence the direction of the resulting heat
current—is unique [14]. We explicitly show the correspon-
dence of thermal Hall conductivity with the propagation di-
rection of the nontrivial edge states. Furthermore, we establish
that hybridization of topologically trivial with nontrivial edge

modes causes a doubling of the period of the latter in reciprocal
space.

The paper is organized as follows. In Sec. II we sketch the
quantum-mechanical description of magnons in kagome lat-
tices (Sec. II A), Berry curvature and Chern number (Sec. II B),
and the Green function renormalization method for calculating
edge states in semi-infinite systems (Sec. II C). Results are
presented in Sec. III: edge states of the semi-infinite kagome
lattice for different edges and different topological phases
(Sec. III A), the connection between the edge modes and the
sign of the thermal Hall conductivity (Sec. III B), as well as
the hybridization of topologically trivial and nontrivial edge
states (Sec. III C). An outlook is given in Sec. IV.

II. THEORY

A. Model Hamiltonian for magnons in a kagome lattice

A two-dimensional kagome lattice is composed of a three-
atomic basis which is arranged at the corners of an equilateral
triangle with side length equal to half of the lattice constant a

(Fig. 1). The lattice vectors read

a1 = a

2
(x +

√
3 y), (1a)

a2 = a

2
(−x +

√
3 y) (1b)

in Cartesian coordinates.
Magnons in the kagome lattice are described by a quantum-

mechanical Heisenberg model [15] with Hamiltonian

H = HH + HDM + Hext. (2)

In the isotropic symmetric spin-spin interaction, i.e., the
Heisenberg exchange

HH = −
∑
n�=m

J n
m ŝm · ŝn, (3)

two spin operators ŝm and ŝn at sites n and m are coupled by
symmetric exchange parameters J n

m = Jm
n . The eigenvectors

|k〉 = 1√
N

∑
m

eikRm |Rm〉 (4)

1098-0121/2014/90(2)/024412(7) 024412-1 ©2014 American Physical Society
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FIG. 1. (Color online) Kagome lattice with lattice vectors a1 and
a2 in the xy plane. Identical atoms A, B, and C are placed at the
corners of the triangles. Dzyaloshinskii-Moriya vectors are aligned
normal to the lattice plane and are represented by red dots: along +z

(−z) for a counterclockwise (clockwise) chirality: A-B-C (C-B-A).

of HH are “one-magnon states”; they expose magnons as
collective excitations because the spin deviation of � is
distributed uniformly over all N spins. Rm is the vector
pointing to lattice site m and |Rm〉 denotes the state with all
spins aligned along the ferromagnetic ground state except the
one at lattice site m; its z component is reduced by �.

The second contribution in Eq. (2),

HDM =
∑
m�=n

Dn
m(ŝm × ŝn), (5)

accounts for the antisymmetric Dzyaloshinskii-Moriya (DM)
interaction [16,17]. Dn

m is the DM vector between sites m and
n (Dn

m = −Dm
n ).

For completeness, we introduce the coupling to an external
magnetic field H ,

Hext = −gμB

∑
n

H · ŝn. (6)

g and μB denote the g factor of electrons and Bohr’s magneton,
respectively. For the problems treated in this study, this
contribution is irrelevant; it is, however, needed in the de-
scription of the magnon Hall effect (e.g., Ref. [14]). Likewise,
neither magnetocrystalline anisotropy nor magnon-magnon
interaction are considered in this paper.

B. Berry curvature and Chern numbers

According to Moriya’s symmetry rules [17], the DM vectors
Dn

m are perpendicular to the kagome lattice, that is, they are
aligned along the z direction. Their orientation is given by
the chirality of the triangles in the kagome lattice: those with
counterclockwise (clockwise) chirality point along +z (−z)
direction (cf. the red dots in Fig. 1).

Because of the DM interaction a magnon accumulates an
additional phase upon propagation from site m to n (cf. the
supplemental online material of Ref. [10]). This can be viewed
as a result of a textured flux within the plaquettes of the kagome
lattice [18], in analogy to the Haldane model for an electronic
topological insulator [19]. Thus we are concerned with a
nonzero Berry curvature �(k) (Ref. [4]) and with topological
invariants. Please note the difference to models for strongly
correlated electrons on a kagome lattice with spin anisotropy,

in which the Berry phase and the electronic edge modes are
brought about by statically tilted spins [20].

For a given set of parameters {J n
m,Dn

m}, we solve the
eigenproblem for the Hamiltonian H. From the computed
eigenvectors |i(k)〉 and dispersion relations εi(k) [wave vector
k = (kx,ky), band index i] the Berry curvature

�j (k) ≡ i
∑
i �=j

〈i(k)|∇kH(k)|j (k)〉 × 〈j (k)|∇kH(k)|i(k)〉
[εi(k) − εj (k)]2

(7)

and the Chern numbers

Cj ≡ 1

2π

∫
BZ

�z
j (k) dk2 (8)

are calculated for each band j . We recall that these are
determined solely by the magnonic band structure of the bulk.

C. Edge magnons

For investigating magnonic edge modes we consider a semi-
infinite solid. Thereby, finite-size effects that show up in a slab
(stripe) calculation are avoided; for example, hybridization of
edge states at opposite edges could result in artificial band
gaps.

The magnon band structure is analyzed in terms of the
spectral density:

Nn(ε,k) = − 1

π
lim

η→0+
Im tr Gnn(ε + iη,k) (9)

for site n. The limit η ↘ 0 is not taken but η = 0.005 meV.
The blocks Gnm of the Green function of the semi-infinite

system are computed by a renormalization technique [21]
which is briefly sketched now. The system is decomposed
into principal layers for which the exchange interaction is
only among adjacent principal layers. Restricted to nearest-
and next-nearest-neighbor interactions, the thinnest principal
layers possible are shown in Fig. 2 for two different edges.

In terms of the principal layers, the blocks of the Green’s
matrix for the semi-infinite system fulfill

δnm =
∞∑

j=0

(z δnj − Hnj ) · Gjm, n,m � 0, (10)

where z = ε + iη. The dimension of each block matrix is
the number of basis atoms in a principal layer. The diagonal
blocks Hnn comprise the intralayer interactions within the nth
principal layer; in particular, H00 is the Hamilton matrix with
interactions within the surface layer (red layer in Fig. 2 labeled
“0th layer”). The interlayer couplings are comprised in Hn,n+1;
for example, H01 is for the interaction between the surface
layer and the subsurface layer (red and blue in Fig. 2). By
construction of the principal layers, Hnm = 0 for |n − m| � 2.

From Eq. (10), one eliminates all blocks Gnm with odd
principal-layer indices (e.g., the blue layers in Fig. 2); the result
is an equation with identical form but with renormalized blocks
Hnm. By repeating this elimination process, the interlayer
interactions can iteratively be reduced (||Hnm|| → 0). From
the renormalized Hamilton matrix which is effectively block
diagonal, we calculate the layer-diagonal Green-function
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FIG. 2. (Color online) Edges of the kagome lattice. For two
different terminations of the bulk system, (a) and (b), the semi-
infinite lattice is divided into the thinnest principal layers possible
if only nearest- and next-nearest-neighbor interactions are present.
White dots show the basis consisting of six (a) and three (b) sites,
respectively. The lattice constants a‖ are indicated.

blocks by

Gnn = (z − Hnn)−1. (11)

All other Gnm are accessible by transfer matrices.

III. RESULTS AND DISCUSSION

In the following analysis we assume a kagome lattice
with all three basis atoms being identical, i.e., with identical
spin and exchange parameters; an exception is Sec. III C. We
consider the Heisenberg exchange between nearest (JN) and
next-nearest (JNN) sites; the Dzyaloshinskii-Moriya parame-
ters account only for nearest-neighbor interactions (D).

A. Bulk-boundary correspondence

As investigated recently [14], the kagome lattice with
ferromagnetic ground state shows four topologically different
phases, with variables JNN/JN and D/JN. These phases are
distinguished by the triple of Chern numbers (C1,C2,C3) of
the three magnon bulk bands (Fig. 3) [22]. Note that the phase
diagram results from analyzing an infinite crystal (bulk).

We now consider semi-infinite systems by introducing an
edge according to Fig. 2(a). The local spectral density Nn(ε,k)
is calculated for four different sets of parameters which put the
system into the four different topological phases [Figs. 4(a)–
4(d)]. More precisely, we chose {JNN/JN,D/JN} = {0,1},
{ 1

2 ,1}, {0.81,1}, and {1,1}, all of which are marked by the
red dots in Fig. 3.

FIG. 3. (Color online) Topological phase diagram of the kagome
lattice with regions characterized by sets (C1,C2,C3) of Chern
numbers. The antiferromagnetic (AF) phase is colored blue. Red dots
mark those variable sets {JNN/JN,D/JN} for which local densities of
states are calculated. The sign of the transverse thermal conductivity
κxy of the magnon Hall effect is given in red; it is unique for the
phases (−1,0,1) and (3, − 2, − 1).

The three magnon bulk bands are separated from each other
by gaps generated by the Dzyaloshinskii-Moriya interaction.
Topologically nontrivial edge modes are easily identified as
bands that cross these band gaps and, thus, connect adjacent
bulk bands. Furthermore, they are robust against variations
of the exchange parameters at the edge. The edge states are
singly degenerate and decay rapidly towards the bulk (Fig. 5).
The atomic-layer-resolved spectral density clearly shows a
localization of the edge state at the first 20 atomic layers
(blue histogram in Fig. 5). The magnon edge resonance shows
features up to the 300th atomic layer (green histogram in
Fig. 5).

In contrast to electronic Z2 topological insulators—which
rely on time-reversal invariance—magnonic edge modes do
not occur in Kramers pairs. This is readily explained by the
fact that a single spin orientation is present in the system (here:
ferromagnetic ground state with spins along the +z direction).
We recall that time reversal changes the sign of k and reverses
the spin orientation. A reversal of the spin orientation alters
the signs of all Chern numbers, which has the consequence
that the propagation direction of the topologically nontrivial
edge modes is reversed as well. These “reversed” edge states
can be regarded as the time-reversed (Kramers) partners in an
electronic Z2 topological insulator.

The topological phase—specified by its set of Chern
numbers—is of particular importance for the topologically
nontrivial edge modes as it determines both their propagation
direction and their number. This is the “bulk-boundary corre-
spondence” [1,5,23]: a bulk property, i.e., the Chern numbers,
dictates surface properties, i.e., the edge magnons. The sum of
Chern numbers up to the ith band,

νi ≡
∑
j�i

Cj , (12)

is the “winding number” of the edge states in band gap i

(cf. Refs. [5] and [23]). In other words, |νi | is the number of
topologically nontrivial edge states in the ith band gap; their
propagation direction is given by sgn(νi). We emphasize that
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FIG. 4. (Color online) Edge magnons in a kagome lattice. The spectral density of states of an edge site is shown as color scale [“local
density of states” (LDOS), right] for the edge geometries of Fig. 2(a) [top row, (a)–(d)] and Fig. 2(b) [bottom row, (e)–(h)] in the entire edge
Brillouin zone. Bulk magnons appear as extended regions separated by band gaps (“projected bulk band structure”), while edge magnons bridge
these band gaps. The topological phases are characterized by their bulk-band-resolved Chern numbers Ci (i = 1,2,3) given in each panel;
the respective exchange parameters are given as well (JN = 1 meV). The topologically nontrivial edge magnon modes and their propagation
direction are sketched in the central row.

the geometry of the edge is irrelevant for these fundamental
features.

We illuminate the above rule by considering as an example
the topological phase (−1,2, − 1). For both edge geometries
[Figs. 4(b) and 4(f)], there is a single nontrivial edge mode
with negative dispersion (slope) within the lowest energy gap
because ν1 = C1 = −1. In the second band gap there is a
single edge mode with positive dispersion, in accordance with
ν2 = C1 + C2 = 1. Because the sum over all Chern numbers
vanishes—νn = ∑n

i Ci = 0, where n = 3 is the total number
of bands—there are never topological nontrivial edge states
above the uppermost band. These relations hold also for the

other topological phases, as is evident from the other panels
of Fig. 4.

B. Edge modes and magnon Hall effect

The magnon Hall effect (MHE) is a transverse heat
current upon application of a temperature gradient which
was discovered for the ferromagnetic insulator Lu2V2O7 by
Onose et al. (Ref. [10]). The pyrochlore Lu2V2O7 consists
of stacked two-dimensional kagome lattices separated by
an additional monatomic layer. Matsumoto and Murakami
explained the MHE by uncompensated magnon edge currents
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FIG. 5. (Color online) Edge localization of magnons. The site-
resolved spectral density (“LDOS”) is shown versus layer index (edge
= layer 1) for an edge magnon [blue; the respective (ε,k) is marked
by the blue dot in the inset] and an edge resonance (green; cf. the
green dot in the inset). D/JN = 1, JNN/JN = 0, and JN = 1 meV, as
in Fig. 4(a).

in two dimensions [11,12]. The intrinsic contribution to the
transverse thermal conductivity,

κxy = − k2
BT

(2π )2�
∑

i

∫
BZ

c2(	i) �z
i (k) dk2, (13)

is intimately related to the Chern numbers defined in Eq. (8).
The sum runs over all bands i in the magnon dispersion
relation, and the integral is over the Brillouin zone (BZ). The
energy- and temperature-dependent Bose distribution function
	i enters the function

c2(x) ≡ (1 + x)

(
ln

1 + x

x

)2

− (ln x)2 − 2 Li2(−x). (14)

Li2 is the dilogarithm.
The magnon Hall effect in kagome lattices has extensively

been discussed in Ref. [14]. In particular, the sign of κxy

has been shown to depend on the topological phase of the
bulk system. In that publication, an explanation was given by
means of Chern numbers and a high-temperature limit of κxy .
However, this dependence can be understood in terms of edge
modes and their propagation direction as well, as we will show
in the following.

In the phase (−1,0,1) there are two topologically nontrivial
edge modes, both with negative dispersion [Figs. 4(a) and
4(e)]. As a consequence, heat transport can only proceed in
one direction which is towards the left, as sketched in the
center row of Fig. 4. Likewise, the phase (3, − 2, − 1) shows
four edge modes, all of which with positive dispersion; thus
the heat transport is towards the right [panels (d) and (h)].
Because all nontrivial edge modes propagate in the same
direction, the sign of the thermal Hall conductivity is fixed
within these topological phases; its sign does not depend on
the temperature.

The other two phases, (−1,2, − 1) and (−3,4, − 1),
support edge modes of both propagation directions [panels
(b), (c), (f), and (g) in Fig. 4]. Thus the sign of κxy depends
on the occupation probability of the edge magnons, that is,
on temperature. At low temperatures, edge modes in the first
band gap are more occupied than edge modes in the second
band gap. Thus the heat transport is dominated by the former
edge modes; here: towards the left. Upon increasing the
temperature, the edge modes in the second band gap become
increasingly populated, with the consequence that the heat
current is mainly mediated by these magnons, provided that
the absolute values of their velocities are larger than those of
the magnons in the first band gap; hence it is toward the right.
This finding—a change of sign in κxy with temperature—is
in full agreement with the analysis in Ref. [14].

C. Hybridization of edge modes

Topologically nontrivial edge magnons are protected by
symmetry because their existence is dictated by the topology
of the bulk system. However, their detailed dispersion relation
may change under perturbations, for example, surface relax-
ation and reconstruction as well as adsorption of magnetic
sites. All these modifications alter the exchange parameters at
the edge with respect to those of the bulk. In the following, we
account for such effects by changing the interaction parameters
JN within the very first principal layer but keeping the bulk
parameters constant (D/JN = 0.1).

It turns out that even for the ideal (unperturbed) edge there
exists a trivial edge mode in the second band gap, close to the
wedge-shaped region at k‖ = 0.5 × 2π/a‖ and ε ≈ 5.3 meV
[Fig. 6(a)]. For increasing J

edge
N this trivial mode is shifted

towards higher energies [(b)–(d)]. Eventually, it hybridizes
with the topologically nontrivial mode (d).

This hybridization of trivial with nontrivial edge modes
shows severe consequences for the topologically nontrivial
edge state. For the ideal edge, it connects the third with the
second bulk band within a k‖ range of less than one edge
Brillouin zone. More precisely, it “leaves” the third bulk band
at about k‖ = 0.3 × 2π/a‖ and “enters” the second bulk band
at about 0.8 × 2π/a‖ [Fig. 6(a)]. In the case of hybridization,
however, this period is enlarged by 2π/a‖, that is by the entire
extension of one Brillouin zone [Fig. 6(d)]. The periodicity
of the band structure remains unchanged with 2π/a‖, as is
obvious within an extended zone scheme.

The effect of hybridization on the periodicity of the edge
states can be understood by making use of the periodicity
of the Brillouin zone. By identifying k‖ = 0 and k‖ = 2π/a‖
the edge Brillouin zone becomes a cylinder (Fig. 7). Within
this representation bulk bands form broad rings encircling the
cylinder’s surface. In the systems of Fig. 6 two edge modes
show up. The topologically nontrivial mode corresponds to
the blue thread in Fig. 7(a) labeled “nontrivial edge mode.”
By twisting the cylinder (i.e., rotation of its top or bottom) the
nontrivial mode is continuously transformed into a line parallel
to the rotational axis of the cylinder. However, the trivial mode
[green thread in Fig. 7(a) labeled “trivial edge mode”] forms a
closed loop around the cylinder’s surface and, therefore, will
not change under twisting.
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FIG. 6. (Color online) Hybridization of a topologically nontrivial with a trivial edge magnon. The local density of states (LDOS) for the
edge geometry of Fig. 2(a) is shown as a color scale for several exchange parameters of the edge sites [(a)–(d); as indicated at the top of each
panel]. D/JN = 0.1, JN = 1 meV, and JNN = 0.

For the unperturbed edge [Fig. 6(a)] the trivial mode
is located at a lower energy than the nontrivial mode; it
is concealed almost entirely by the lower bulk band. For
increasing perturbation J

edge
N , this trivial mode is shifted

towards higher energies and, eventually, approaches the energy

FIG. 7. (Color online) Topology and hybridization of a topolog-
ically nontrivial with a trivial edge magnon. Cylinder representation
of a system with two bulk bands (black). The dashed line indicates
the “seam” at k‖ = 0 = 2π/a‖. (a) Sketch of the band structure in
Fig. 6(a). Trivial edge modes (green) circle around the cylinder;
nontrivial edge modes (blue) connect the bulk bands. The trivial
modes’ energy is not located within the energy range of the nontrivial
mode. (b) Sketch of the band structure in Fig. 6(d). A hybridization
of a trivial and nontrivial edge mode generates a nontrivial mode
circulating the cylinder (red).

range covered by the nontrivial mode. Thus the topologically
trivial and nontrivial mode hybridize with each other [red
thread labeled “nontrivial hybridized edge mode” in Fig. 7(b)].
As a result, a nontrivial edge mode is formed that not only
connects the two bulk bands but also encircles the cylinder’s
surface for another entire circulation; an additional extension
of the Brillouin zone (2π/a‖) is necessary to traverse the
band gap. Mathematically the hybridization can be understood
as a Dehn twist [24] applied to the cylinder about the
trivial mode modifying the nontrivial mode. As Dehn twists
are self-homeomorphisms the topology of the cylinder stays
untouched. We note in passing that a further increase of J

edge
N

shifts the trivial edge mode into the upper bulk band and the
original nontrivial mode with simple periodicity is recovered.

The above argumentation is readily generalized: if a
nontrivial mode hybridizes with n trivial modes, its period
is increased by n × 2π/a‖ since n Dehn twists are applied.
In any case, the resulting mode is always nontrivial due to its
topology determined by the bulk. Therefore, a twisting of the
cylinder will always transform the hybridized mode into a line
parallel to the cylinder’s rotational axis.

A similar hybridization has been observed in electronic
topological insulators: for Bi2Te3 covered by a monolayer of
Au, the Dirac surface state of Bi2Te3 hybridizes with sp states
of Au (Ref. [25]), thereby increasing its period in full analogy
to the magnon case presented here.

IV. OUTLOOK

Having analyzed in detail the topology of edge modes in
kagome lattices, it is obvious to extend such an investigation
to three-dimensional systems, especially to ferromagnetic
insulators with pyrochlore structure.

Our investigation of the edge modes in kagome systems
calls for experimental verification. The dispersion relation
could be mapped by spin-polarized electron energy loss
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spectroscopy (SPEELS) [26] or time-resolved spectroscopies
[27]. Within this respect, materials with different topological
phases are desirable, for example, Lu2V2O7 with positive and
In2Mn2O7 with negative thermal Hall conductivity [28]; these
should exhibit nontrivial surface modes with opposite slope of
the dispersion.

Recently, Matsumoto, Shindou, and Murakami derived a
theory of the thermal Hall effect in magnets with dipolar
interaction and in antiferromagnets [29]. In such systems,
pairs of edge states could occur that can be regarded as
time-reversed partners of each other, which calls for their
detailed investigation.
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5.3. Three-Dimensional Topological Magnon Materials

5.3. Three-Dimensional Topological Magnon Materials
Perfectly two-dimensional materials are rare. Thus, the models considered in the previous publications must
be understood as approximations to quasi two-dimensional materials26. Truly three-dimensional topological
magnon materials, however, must be considered separately. Here, it is shown that they allow for completely new
topological classes of magnonic matter: topological magnon “semimetals”.

5.3.1. Tunable magnon Weyl points in ferromagnetic pyrochlores
Li et al. [178] considered noncollinear spin textures on the breathing pyrochlore lattice27 and showed that the
magnon spectra exhibit zero-dimensional crossings, so-called Weyl points (Sec. 3.2.2).

Motivated by their finding, this publication was dedicated to three-dimensional ferromagnets on the regular,
that is, “non-breathing”, pyrochlore lattice. It was predicted that Lu2V2O7 and In2Mn2O7, two of the pyrochlore
representatives showing the thermal magnon Hall effect [14, 179], are “magnon Weyl semimetals” with broken
pseudo-time-reversal symmetry (Sec. 3.2.2). The minimal number of two Weyl points was found and their
projections onto the surface are connected by a topologically protected magnon, whose constant-energy cut looks
like an arc.

In contrast to Li et al. [178], where the topological nontriviality is brought about by the noncollinearity of
the ground state, the present model relies on the ferromagnetic ground state and on DMI. Thus, it is the direct
generalization of the topological magnon insulator on the kagome lattice to three dimensions. An external
magnetic field determines the direction of the magnetization in the ferromagnetic ground state and, thereby, those
components of the DM vectors contributing to the magnon spectrum at the linear spin-wave level. Consequently,
if the magnetic field direction is rotated, the Weyl points (and the surface arcs) are rotated likewise. The DM
vector components orthogonal to the magnetization direction enter the calculations as magnon damping and
band broadening, possibly blurring the magnon spectrum in experiment as discussed in Ref. [180]. Therefore,
a difference technique for the mapping of topological surface magnons was proposed in Pub. (c). By a surface
sensitive experiment one might obtain a constant-energy cut of surface magnon spectrum as shown in Fig. 5.1(a),
where broad green features stem from the projected bulk bands and the sharp feature is due to the topological
surface state. If the magnetization is reversed, the bulk spectrum does not change but the DM interaction is
effectively inverted, leading to opposite Chern numbers and the mapping k → −k for the topological surface
magnons, which is indicated in Fig. 5.1(b). If one now takes the signal difference of the oppositely magnetized
samples, the bulk contribution cancels out, while the contribution of the topological surface magnon remains as an
antisymmetric feature [cf. Fig. 5.1(c)], giving clear evidence of its topological origin.

The discovery of Weyl points in the magnon spectra of ferromagnets opens up the route to transport signa-
tures of these topological objects. The question whether there might be a magnonic relative of the negative
magnetoresistance of electrons in Weyl semimetals (see Sec. 3.2.2) is left for the future.

(a) (b) (c)

Γ K

Fig. 5.1.: Suggested difference technique for the mapping of topological surface magnons by a surface-sensitive experiment. (a)
and (b) Constant-energy cuts of the surface magnon spectrum for opposite magnetization directions, corresponding
to opposite external magnetic fields. The bulk contribution (broad green features) stays unaffected, while the surface
magnon (sharp line) is reflected from k to −k. (c) Difference of the spectra shown in (a) and (b), highlighting the
topological surface magnon by its antisymmetric feature (red: positive; blue: negative).

26Stacking of layers results in a three-dimensional crystal, but if the layers exhibit negligible interaction, they might be treated independently.
27The term “breathing” means that the tetrahedra of the pyrochlore lattice alternate in size.
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Alexander Mook,1 Jürgen Henk,2 and Ingrid Mertig1,2
1Max-Planck-Institut für Mikrostrukturphysik, D-06120 Halle (Saale), Germany

2Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, D-06099 Halle (Saale), Germany
(Received 25 June 2016; revised manuscript received 17 August 2016; published 7 October 2016)

The dispersion relations of magnons in ferromagnetic pyrochlores with Dzyaloshinskii-Moriya
interaction are shown to possess Weyl points, i. e., pairs of topologically nontrivial crossings of two
magnon branches with opposite topological charge. As a consequence of their topological nature, their
projections onto a surface are connected by magnon arcs, thereby resembling closely Fermi arcs of
electronic Weyl semimetals. On top of this, the positions of the Weyl points in reciprocal space can be tuned
widely by an external magnetic field: rotated within the surface plane, the Weyl points and magnon arcs are
rotated as well; tilting the magnetic field out of plane shifts the Weyl points toward the center Γ̄ of the
surface Brillouin zone. The theory is valid for the class of ferromagnetic pyrochlores, i. e., three-
dimensional extensions of topological magnon insulators on kagome lattices. In this Letter, we focus on the
(111) surface, identify candidates of established ferromagnetic pyrochlores which apply to the considered
spin model, and suggest experiments for the detection of the topological features.

DOI: 10.1103/PhysRevLett.117.157204

Introduction.—Ferromagnetic pyrochlores attracted
attention with the experimental discovery of the magnon
Hall effect [1]. This transverse transport is explained by a
Berry curvature [2–4] which is introduced by the
Dzyaloshinskii-Moriya (DM) interaction [5,6]. In addition,
the Chern numbers of magnon bulk bands are nonzero, and
in accordance with the bulk-boundary correspondence
[7,8] topological magnons are found at the edges of
two-dimensional kagome lattices [9,10]. Hence, systems
featuring topological magnon states are dubbed “topologi-
cal magnon insulators” (TMIs) [9], because they exhibit
many features of electronic topological insulators [11].
In this Letter, we predict that ferromagnetic pyrochlores

exhibit features of another important class of topologically
nontrivial systems, namely electronic Weyl semimetals
[12,13]. Their magnon dispersion relations possess a pair
of Weyl points on a line in reciprocal space which is along
an external magnetic field; the Weyl points possess oppo-
site topological charges of �1.
At a surface, magnon surface states connect the surface-

projected Weyl points; since the associated constant-energy
cuts are open they are analogs of Fermi arcs in electronic
Weyl semimetals. These arcs turn out to be tunable: upon
rotating the magnetic field within the surface plane they
follow the likewise rotated Weyl points. An out-of-plane
rotation reduces the length of the arcs until they collapse at
the center Γ̄ of the surface Brillouin zone (when the field is
perpendicular to the surface), a feature calling for exper-
imental verification.
We recall that recently magnon Weyl points have

been predicted in breathing pyrochlore lattices with spin
anisotropy and a noncollinear ground state [14]. However,
the present model relies on a ferromagnetic ground state

and on the DM interaction; it is thus a natural extension of
TMIs on kagome lattices [9,10] to three dimensions.
Model and spin-wave analysis.—The pyrochlore

lattice is a face-centered cubic (fcc) lattice of corner-sharing
tetrahedra, with four atoms in its basis [Fig. 1(a)]. Lacking
inversion symmetry with respect to the midpoints of bonds,
it features DM interactions. Moriya’s symmetry rules [6]
indicate that the DM vectors Dij are perpendicular to
the bond that links site i with site j; they are situated at
the faces of cubes that enclose tetrahedra [Fig. 1(b)]
[1,15,16].
The minimal magnetic Hamiltonian which includes

isotropic symmetric exchange Jij, DM interactions Dij,
and a Zeeman term with external magnetic field B reads

H ¼ −
X

ij

Jijsi · sj þ
X

ij

Dij · ðsi × sjÞ −
X

i

B · si; ð1Þ

FIG. 1. Pyrochlore lattice. (a) Part of the crystal structure.
(b) Four basis sites (1–4) with the nearest-neighbor DM vectors
given by D12¼D=

ffiffiffi
2

p ð0;−1;−1Þ, D13¼D=
ffiffiffi
2

p ð−1;1;0Þ, D14¼
D=

ffiffiffi
2

p ð1;0;1Þ, D23¼D=
ffiffiffi
2

p ð1;0;−1Þ, D24¼D=
ffiffiffi
2

p ð−1;−1;0Þ,
and D43¼D=

ffiffiffi
2

p ð0;−1;1Þ.
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where si is the spin operator at site i. For Jij > 0 the
ferromagnetic state is the ground state with order parameter
n ¼ B=B; the collinearity is stable against the DM inter-
action [1]. In the following, the (tiny) rigid energy shift due
to the Zeeman energy is neglected and only n is kept for
simplicity, that is, the limit B → 0þ is considered.
As argued in Ref. [1], only the component of Dij parallel

to n contributes to the linear spin-wave Hamiltonian. The
spin-wave approximation is performed in an orthonormal
basis fl;m; ng, where ladder operators s�i ¼ sli � ismi are
introduced. After an adequate Holstein-Primakoff [17]
transformation, a Fourier transformation of the boson
operators yields the 4 × 4 spin-wave Hamilton matrix
Hk. Allowing for nearest-neighbor interactions with
strength JN as well as next-nearest-neighbor interactions
with strength JNN, the matrix elements read Hk;μμ ¼
6sðJN þ JNNÞ, and Hk;μν ¼ −2sðJN þ iDn

μνÞ cos ðk · δNμνÞ −
2sJNN cos ðk · δNNμν Þ for μ ≠ ν; here, Dn

μν ≡ Dμν · n and δNμν
(δNNμν ) connects nearest (next-nearest) basis sites μ and
ν (μ, ν ¼ 1, 2, 3, 4). To mimic pyrochlore systems, we set
s ¼ 1=2 for all basis sites.
We now analyze magnon spectra ενk and Berry curva-

tures [3,4,9,18–20]

Ωνk ≡ i
X

μ≠ν

huνkj∂kHkjuμki × huμkj∂kHkjuνki
ðενk − εμkÞ2

; ð2Þ

where juνki is an eigenvector of Hk with energy ενk. Ωνk
encodes the nontrivial topology of the bulk bands which is
related to global symmetries: inversion symmetry I (time-
reversal symmetry T ) causes Ωνk to be even (odd) in k.
Typical results are summarized in Figs. 2(a)–(d). (a) For

JNN ¼ 0 and D ¼ 0, the four magnon bands are not
gapped, the third and fourth band are dispersionless and
degenerate. Ωνk vanishes in the entire Brillouin zone (BZ)

since I and T are conserved. The direction n of the
magnetic field does not affect the spectrum. (b) T is broken
for D > 0, the upper two magnon branches become
dispersive, and Ωνk is nonzero for all bands. The band
structure depends sensitively on n. As long as n is not
within a f100g plane, a tiny fundamental gap between the
first and second band shows up (inset). More strikingly, on
any line in reciprocal space through the origin Γ and
parallel to n, the second and the third band cross each other
at two k. These k lie symmetrically to Γ, their spacing is
determined by n and jDj. As we will show, these band
crossings are Weyl points [red circle; cf. Fig. 3(a)]. (c) The
Weyl points are robust against JNN ≠ 0 (inset) as I remains
preserved. For antiferromagnetic JNN (JNN < 0, small
enough to retain the ferromagentic ground state), the
Weyl points are located in energy so that no other bulk
band has the same energy (for any n), that is, they are type-I
Weyl points [21]. (d) The Weyl cones are tilted upon
varying n or JNN. In particular type-II Weyl points [21] can
occur for JNN > 0.
Topology of bulk bands.—The nontrivial topology is

brought about by the DM interaction, as is evident from
expanding Eq. (1) in terms of small deviations δ from
the ferromagnetic ground state (the following arguments
are in line with Refs. [1,2,22,23]). Without loss of general-
ity, we take n ¼ ẑ and si ¼ ẑþ δi. Neglecting for the
moment prefactors, a constant, and the Zeeman energy,
the deviations yield δH ¼ δHex þ δHDM, with δHex¼
−
P

ijJijðδziþδzjþδi ·δjÞ and δHDM¼P
ijDijðδxi δyj−δyi δxjÞ.

Terms in first order in δi in δHDM cancel becauseP
jDij ¼ 0.
The inversion I interchanges i ↔ j, it is obeyed by both

δHex and δHDM (note that Dij ¼ −Dji). δHex also obeys
the pseudotime-reversal T which is a spin flip δi → −δi
followed by a rotation in spin space by π about an axis
perpendicular to ẑ. However, this does not apply to δHDM.

FIG. 2. Magnon spectrum of ferromagnetic pyrochlores for
JN ¼ 1 meV and (a) JNN ¼ D ¼ 0, (b) JNN ¼ 0,
D ¼ 0.28 meV, (c) JNN ¼ −0.1 meV, D ¼ 0.28 meV, and
(d) JNN ¼ þ0.1 meV, D ¼ 0.28 meV. The magnetic field points
along n ¼ ð1; 1; 1Þ= ffiffiffi

3
p

, i. e., along Γ → L. Red circles in (b), (c),
and (d) mark Weyl points. See Fig. 3(a) for the high-symmetry
points of the fcc BZ.

FIG. 3. Weyl points and Berry curvature. (a) Fcc BZ with
high-symmetry points, field direction n, and Weyl points (dots).
(b) Normalized dipole vector field Ω2k of band 2 in the
kx ¼ kz plane, with Γ and L points indicated. The color scale
depicts the divergence of the vector field (blue: negative; gray:
zero; red: positive); the two Weyl points appear in the center
of the blue and red spot, respectively. Parameters as in
Fig. 2(c), n ¼ ð1; 1; 1Þ= ffiffiffi

3
p

, i. e., along Γ → L (indicated by
the black arrow).
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With I preserved and T broken, a single pair of Weyl
points is allowed [24]. As I implies ενðkÞ ¼ ενð−kÞ the
two Weyl points appear at the same energy.
The above mechanism is at variance with that predicted

in Ref. [14]. There, the nontrivial topology is brought about
by a local spin anisotropy, and the resulting complicated
ground state allows for more than two Weyl points.
In the remainder of this Letter, we present results

obtained for the exchange parameters of Fig. 2(c), i. e.,
for type-I Weyl points.
An integer Chern number Cν ¼ ð1=2πÞ RS Ωνk · ~ndS is

calculated for each band ν; S is a closed and oriented
surface in the bulk BZ with surface normal ~n. Letting
~n ¼ const., S is a 2D slice of the 3D BZ. By moving the
slice in the BZ, CνðλÞ can be calculated as a function of the
position λ of the slice [25].
C1ðλÞ ¼ −sgnðDÞ is constant (here, ~n ¼ n) because a

fundamental band gap separates the lowest from the other
bands [inset in Fig. 2(b)]. C2ðλÞ and C3ðλÞ are not globally
but piece-wise constant because these bands touch each
other at the Weyl points. The latter are monopoles of the
Berry curvature vector field. To prove that the band
crossings are Weyl points we show the Berry curvature
vector field of band 2 [Fig. 3(b)]. There are two monopoles
that appear as source (red spot, offset from Γ in the
direction of the magnetic field) and sink (blue spot) of
the vector field, providing evidence that the Weyl points
have opposite topological charge qtop2 . Numerical integra-
tion yields qtop2 ¼ þ1 for the “red” (source) and qtop2 ¼ −1
for the “blue” (sink) Weyl point [26].
Recapitulating, we have identified Weyl points in the

bulk band structure of pyrochlore systems whose positions
in reciprocal space and cone tilting can be tuned by an
external magnetic field. A prominent feature of electronic
Weyl semimetals are Fermi arcs which are surface states

that connect projections of Weyl points onto the surface
BZ. We now show that pyrochlore systems exhibit the
magnon analogs of the (electronic) Fermi arcs, that is
magnon arcs.
Surface states.—The surface magnon dispersion is ana-

lyzed in terms of the spectral density for semi-infinite
systems which is calculated by Green function renormal-
ization [27]. We exemplarily study the (111) surface and
choose a quite large DM interaction (D=JN ¼ 0.5) to
provide a clear picture. We would like to stress that the
discussion is qualitatively valid for all surfaces and all D.
The (111) surface of the pyrochlore lattice is a kagome

lattice; the resulting surface BZ is a hexagon [Fig. 4(a)].
Note that a magnetic field with an in-plane component
breaks the rotational symmetry of the surface BZ. The
magnetic field is completely in plane along ½112̄�; hence,
the projections of the Weyl points are situated on the line
M̄0 − Γ̄ − M̄0 [Fig. 4(b)].
The bulk bands appear as broad features in (b). The gaps

between band 1 and 2 as well as band 2 and 3 are bridged
by two topological surface states, TSS(1) and TSS(2). The
latter obey the bulk-boundary correspondence [7,8,10,28].
Since the Chern number of band 1 equals−1, thewinding

number of the gap between band 1 and 2 equals −1 as well
(the winding number is the sum of all Chern numbers of the
bands below the considered gap). As the winding number
dictates the number of topological surface states, there has to
be one topological surface state: TSS(1). The bulk-boundary
correspondence also holds for TSS(2), since theWeyl points
carry topological charges (Chern numbers).
To show that TSS(1) and TSS(2) differ qualitatively, we

present constant-energy cuts of the surface spectrum that
cover the band gaps inwhichTSS(1) andTSS(2) are situated
[(a) and (c)]. Both surface states are easily identified as
bright lines clinging to the extended bulk features.

FIG. 4. Magnons at the (111) surface of a ferromagnetic pyrochlore. The surface spectral density is shown as color scale (black: zero;
white: maximum). Bulk magnons appear as broad features, surface states as sharp lines. (a) and (c) show constant-energy cuts through
the entire surface Brillouin zone for energies indicated by red lines in (b). (b) Spectral density along high-symmetry directions of the
surface Brillouin zone. The projection of the Weyl points and two topological surface states (TSS) are indicated. Parameters as for
Fig. 2(c), except D ¼ 0.5 meV.
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At ε ¼ 1.18 meV bulk states do not contribute to the
surface spectral density and only TSS(1) is visible [central
cut in (a)]. Apparently, TSS(1) forms a closed line when
considering the periodicity of the surface BZ.
Considering TSS(2), a similar scenario takes place at the

energy of the Weyl points [ε ¼ 2.67 meV, central cut of
(c)]. Instead of a closed line, we find a magnon arc that
connects the projections of the two Weyl points of opposite
topological charge. Thus, pyrochlore ferromagnets host the
magnon pendant to the Fermi arcs in electronic Weyl
semimetals.
The Weyl points and the associated magnon arcs can be

shifted—or tuned—by the magnetic field B. The energy of
the Weyl points is not affected by the rotation of B; hence,
all of the constant-energy contours discussed in what
follows are at the same energy (2.67 meV).
By rotating the field within the surface plane [Fig. 5(a)],

theWeyl points follow the magnetic field and can be rotated
arbitrarily. Consequently, the magnon arc trails the Weyl
point projections and is rotated likewise [(b)–(e)]. The arc is
not rotated rigidly: it shows the largest distances from Γ̄
along Γ̄ − M̄ as well as Γ̄ − M̄0 directions, irrespective of
the magnetic field’s azimuth. A sign change of eitherD or n
would change the signs of the Berry curvature and of the
topological charges; the magnon arc would be reflected
about the direction of the magnetic field.
Rotating the magnetic field from in-plane to out-of-plane

(bottom row in Fig. 5), the Weyl point projections are
shifted toward Γ̄, thereby reducing the length of the
magnon arc. The arc “collapses” when the magnetic field
points along the surface normal [Fig. 5(j)].
Experimental considerations.—The pyrochlore oxides

Lu2V2O7, In2Mn2O7, and Ho2V2O7, all of which exhibit
the magnon Hall effect [29], are the most promising
candidates for experimental detection of magnon Weyl
points. The first two are modeled very well by the
Hamiltonian in Eq. (1). For Lu2V2O7, the ratio D=JN of
DM interaction to exchange interaction has been

determined recently, with values of 0.32 [1], 0.18 [30],
0.07 [31], and 0.05 [32]. Since the DM interaction
determines the distance between the Weyl points and Γ
in reciprocal space, a search for Weyl points can help to
identify the exact ratio. The tunability of the Weyl points
and magnon arcs can be exploited, for example, in inelastic
neutron scattering experiments [30]: the shifts of the bulk
band crossings upon variation of the external magnetic field
can be traced. By probing a fixed line in reciprocal space
through the origin, say q, one will see a band gap closing
and reopening at one point on q upon evolution of the
field’s azimuth. The closing, i. e., the occurrence of Weyl
points, coincides with the alignment of the field and q.
Electron energy loss spectroscopy, which is sensitive to

the surface [33], could be applied for the detection of the
magnon arcs. Upon inversion of the magnetic field a
magnon arc is reflected, whereas the surface spectral
density of the bulk states is not. Hence, subtracting spectra
of oppositely magnetized samples yields clear evidence of
topological surface states.
Since the transverse thermal conductivities of Lu2V2O7

and In2Mn2O7 differ in sign [29], it is likely that their DM
constants D have opposite signs as well. Therefore, the
magnon arcs of the two systems should roughly be mirror
images for the same experimental setup.
Concerning transport experiments, signatures of the

Weyl points are difficult to identify because magnons
are bosons and all states contribute at elevated temper-
atures. On top of this, the Weyl points show up at a
common energy; therefore, their contributions cancel each
other in the integral of the transverse thermal conductivity
[3,4] because they carry opposite topological charges. A
mechanism which breaks the inversion symmetry allows
for Weyl points with different energies; in this case, they
would contribute to the transport.
Conclusion.—Ferromagnetic pyrochlores feature mag-

non Weyl points that can easily be tuned by an external
magnetic field. Thus, the class of topologically nontrivial
systems which comprises topological magnon insulators is
extended to, loosely speaking, “magnon Weyl semimetals.”
The latter consists of breathing pyrochlores with a non-
collinear ground state, reported in Ref. [14], and ferro-
magnetic pyrochlores that belong to a different symmetry
class, as predicted in this Letter. The effect of magnonWeyl
points on magnon transport of both spin and heat as well as
the formation of topological interface modes [28,34] and
the influence of magnon damping of topological states [35]
appear worth investigating in the future.

This work is supported by SPP 1666 of Deutsche
Forschungsgemeinschaft (DFG).
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To prove that the Weyl points can be tuned arbitrarily, we provide additional plots showing the Berry curvature vector field of
the second band. The directions of n = B/|B| are chosen as n = (1, 0, 0) [Fig. S1 (a) and (b)] and (1,−1, 0)/

√
2 [Fig. S1 (c) and

(d)], respectively. The source and sink of the Berry curvature (red and blue dots, respectively), associated with the Weyl points,
are clearly visible in the kz = 0 plane.
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FIG. S1: Weyl points and Berry curvature. (a) and (c) Brillouin zone of the face-centered cubic lattice with high-symmetry points, field direction
n, and Weyl points (blue and red dots). (b) and (d) Normalized dipole vector field Ω2k of band 2 in the kz = 0 plane. The color scale depicts
the divergence of the vector field (blue: negative, gray: zero, red: positive); the two Weyl points appear in the center of the blue and red spot,
respectively. Parameters as in Fig. 3 of the main article.



5. Publications

5.3.2. Magnon nodal-line semimetals and drumhead surface states in anisotropic
pyrochlore ferromagnets

The existence of nonzero Berry curvature and the thermal Hall effect of magnons in, for example, Lu2V2O7 is due
to spin-orbit coupling in the form of DMI [14, 15]. This publication answers the question whether the magnon
spectrum of a ferromagnet can remain topologically nontrivial in the absence of DMI, that is, in the presence of P
as well as T symmetry. As discussed for electrons in Sec. 3.2.3, it is known that the simultaneous presence of the
aforementioned two symmetries facilitates the existence of “nodal lines”, i. e., one-dimensional band degeneracies,
forming a closed loop in reciprocal space.

It is shown that the concept of nodal-line semimetals can be carried over to magnon spectra, thereby introducing
a novel state of matter: the “magnon nodal-line semimetal”. A case study based on a pyrochlore ferromagnet is
presented: in the absence of DMI, that is, in the limit of negligible spin-orbit interaction, the magnon spectrum
possesses T as well as P symmetry (Sec. 3.2.1). By assuming that the exchange coupling between kagome
layers of the pyrochlore crystal is smaller than the exchange coupling within the kagome planes, a directional
anisotropy is introduced. This anisotropy describes a pyrochlore ferromagnet strained along a [111] direction or
an unstrained pyrochlore ferromagnet with two types of atoms, where one species occupies the kagome planes
and the other species the triangular planes between the kagome planes. Crucially, this anisotropy leaves T as well
as P symmetry intact28, which is a prerequisite for nodal lines (see Sec. 3.2.3).

By tuning the strain parameter, several nodal lines are identified, two of which are topologically nontrivial (a
third line is accidental and not topologically protected). This is corroborated by the calculation of the Z2 invariant
introduced in Sec. 3.2.3. As in the case of electronic nodal-line semimetals, “drumhead states” exist at the surface.
Furthermore, following the work of Kim et al. [181] on Dirac line nodes in inversion-symmetric crystals29, strong
and weak Z2 topological indices are calculated for the magnon nodal lines. A topological phase transition from a
“strong” nodal line to a “weak” nodal line is observed.

Since Berry’s curvature is zero, the studied magnon nodal-line semimetal does not exhibit anomalous transverse
transport. Moreover, up to now, a signature in transport was not found, which could serve as a hallmark of
nodal-line magnons. Thus, direct mapping of the magnon band structure via inelastic neutron scattering seems to
be the most promising method for their identification.

28P symmetry stays intact, because every lattice site of the pyrochlore lattice is a center of inversion.
29Electronic “Dirac line nodes” are four-fold degenerate due to time-reversal and parity symmetry (two spin-degenerate bands form the nodal

line). In contrast, the magnon nodal lines are doubly degenerate. However, in the absence of spin-orbit interaction, the time-reversal
operator of electrons only conjugates the wave function, just as the pseudo time-reversal operator introduced in Sec. 3.2.1. Thus, the work
of Kim et al. [181] can be applied to the magnonic nodal-line semimetals.
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We introduce a type of topological magnon matter: the magnonic pendant to electronic nodal-line semimetals.
Magnon spectra of anisotropic pyrochlore ferromagnets feature twofold degeneracies of magnon bands along
a closed loop in reciprocal space. These magnon nodal lines are topologically protected by the coexistence of
inversion and time-reversal symmetry; they require the absence of spin-orbit interaction (no Dzyaloshinskii-
Moriya interaction). We calculate the topological invariants of the nodal lines and show that details of the
associated magnon drumhead surface states depend strongly on the termination of the surface. Magnon nodal-line
semimetals complete the family of topological magnons in three-dimensional ferromagnetic materials.

DOI: 10.1103/PhysRevB.95.014418

I. INTRODUCTION

Recently, nontrivial topologies of magnon spectra have
become a thriving field of research. In striking analogy to
electronic topological matter [1], topological magnon matter
has been identified. The drosophilae of such topological
magnon insulators (TMIs) [2], which are the pendant to elec-
tronic Chern insulators, are (two-dimensional) ferromagnets
on a kagome lattice with Dzyaloshinskii-Moriya interaction
(DMI) [3–10]. This last causes complex hopping matrix
elements in the free-boson Hamiltonian of magnons and
thus breaks the time-reversal symmetry; this points towards
the textured magnetic flux in the Haldane model [11]. As
a result, Berry curvatures and Chern numbers are nonzero
and cause topologically protected edge magnons. The last
of these revolve unidirectionally the sample in accordance
with the bulk-boundary correspondence [12,13]. Recently,
Cu-(1,3-benzenedicarboxylate) was identified as a TMI which
is very well approximated by the kagome model [14];
TMIs on the honeycomb lattice have been proposed as
well [15].

The quest for topologically nontrivial systems has been
initiated by the discovery of the magnon Hall effect [16,17]
in ferromagnetic pyrochlore oxides, mostly because the
transverse thermal Hall conductivity has been related to the
Berry curvature of the bulk magnons [5,18,19]. The quite
natural extension of the topological classification to three-
dimensional systems led to the discovery of magnon Weyl
semimetals [20,21], in which the crossing points of two
magnon bands act as source and sink of Berry flux (again
in close analogy to electronic systems [22,23]).

Here we complete the family of topological magnonic
objects in three-dimensional ferromagnetic materials by pre-
dicting magnon nodal-line semimetals (magnon NLSMs),
the magnon pendant of electronic NLSMs [24–30]. For
this purpose, we consider a ferromagnetic pyrochlore lattice
with anisotropic exchange interactions, but without spin-orbit
interaction (SOI). We find two nodal lines, that is, two closed
loops in reciprocal space along which two magnon bands
are degenerate. On top of this, we identify the protecting
symmetries and calculate the topological invariants of the
nodal lines. Magnon spectra for the (111) surface feature
drumhead surface states, i. e., the hallmarks of NLSMs.

The dispersion relations of these depend strongly on the
termination of the surface. Eventually, we discuss the effect
of a nonzero DMI on the spectra and suggest experiments to
identify magnon NLSMs.

II. MODEL AND SPIN-WAVE ANALYSIS

The pyrochlore lattice consists of four interpenetrating
face-centered cubic (fcc) lattices, resulting in a regular
array of corner-sharing tetrahedra [see Fig. 1(a)]. Along
the [111] direction, kagome layers alternate with triangular
layers.

Considering only nearest-neighbor Heisenberg exchange
interactions, there is only coupling between sites within
a kagome layer [JN, solid bonds in Fig. 1(a)] and be-
tween sites in a triangular layer with sites in the adjacent
kagome layers [J ′

N, dashed bonds in Fig. 1(a)]. To introduce
anisotropic exchange, we assume that 0 < J ′

N < JN. Thus, the
Hamiltonian

H = − JN

kagome∑
〈ij〉

si · sj − J ′
N

triangular∑
〈ij〉

si · sj (1)

includes only a symmetric exchange between spins si and sj

at sites i and j , respectively. An external magnetic field is
not considered because it merely shifts the magnon spectrum
towards higher energies. Moriya’s symmetry rules [4] would,
in principle, allow for a nonzero DMI [31,32] but for the time
being we consider vanishing SOI.

A truncated Holstein-Primakoff transformation [33]

sz
i → s − ni, (2)

s+
i = sx

i + isy

i →
√

2sai, (3)

s−
i = sx

i − isy

i →
√

2sa
†
i , (4)

is applied (linear spin-wave approximation, i. e., no magnon-
magnon interactions). The annihilation operators ai and the
creation operators a

†
i obey the boson commutation rules; ni =

a
†
i ai is the magnon number operator. This low-temperature

2469-9950/2017/95(1)/014418(7) 014418-1 ©2017 American Physical Society
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FIG. 1. (a) Corner-sharing tetrahedra of the pyrochlore lattice
with basis sites (red dots, labeled 1, . . . ,4). Sites 1, 2, and 4 form
a kagome lattice with nearest-neighbor interaction JN (solid bonds);
site 3 connects adjacent kagome layers by a weaker interaction J ′

N

(dashed bonds). (b) Brillouin zone of the fcc lattice with indicated
high-symmetry points. (c) Magnon spectrum [εn(k), n = 1, . . . ,4] of
the anisotropic pyrochlore ferromagnet along the red path depicted
in (b) for JN = 1 meV, λ = 0.8, and s = 1/2. Band crossings are
marked N12 and N23, with insets showing magnifications. The central
inset displays the spectrum for the isotropic case (λ = 1).

approximation yields the free-magnon Hamiltonian matrix

Hfree

= −2sJN

⎛
⎜⎝

−2 − λ c(y, − z) λc(x,y) c(z, − x)
c(y, − z) −2 − λ λc(x,z) c(x, − y)
λc(x,y) λc(x,z) −3λ λc(y,z)
c(z, − x) c(x, − y) λc(y,z) −2 − λ

⎞
⎟⎠,

in which c(α,β) ≡ cos(sgn(α) kα + sgn(β) kβ) for α,β =
x,y,z and λ ≡ J ′

N/JN. A nonunitary Bogoliubov transforma-
tion is not necessary because of the ferromagnetic ground
state. Diagonalization of Hfree gives the magnon dispersions
εn(k) and the magnon eigenstates |un(k)〉. In the following
we present results for s = 1/2, JN = 1 meV, and λ = 0.8; the
lattice constant is set to unity.

The magnon band structure is made up of four bands,
consistent with the four basis atoms of the pyrochlore lattice
[Fig. 1(b) shows the high-symmetry lines along which the
spectrum is shown in Fig. 1(c)]. For isotropic exchange (λ = 1;
see central inset), the two topmost bands are dispersionless and
the lower two bands are mirror images of each other. For λ < 1
[λ = 0.8 in Fig. 1(c)], one of the formerly dispersionless bands
(green) becomes dispersive; this leads to a crossing with band
2 (red; counted from below) at a single k point on the �–K line
(marked N23). Additionally, the crossing N12 of band 1 (blue)
and band 2 (red), which is at the W point for λ = 1, is shifted
along the W–L line for λ < 1. These degeneracies are part of
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FIG. 2. Perspective views of the nodal lines (red lines) (a) N12

and (b) N23 in the fcc BZ. The high-symmetry points � and L are
indicated for all perspectives. Parameters as in Fig. 1(c).

the nodal lines shown in Fig. 2. In the following we label the
nodal lines by Nμν , in which μ (ν) stands for the energetically
lower (higher) band forming the nodal line.

N12 is best depicted on the cube circumscribing the fcc
Brillouin zone [BZ; Fig. 2(a)]. It does not lie exactly on the
cube’s faces but is set off by a tiny amount towards the BZ
center. For decreasing λ, N12 keeps contracting until it becomes
more and more ring-like; it is moved toward the hexagonal
faces of the BZ until it vanishes in the L point for λ = 0
(which is the limit of noninteracting kagome layers).

N23 has its center at the � point [Fig. 2(b)], its diameter
increases for decreasing λ. It too is not a planar ring in k space,
but shows modulations that are consistent with the threefold
rotational symmetry of the [111] direction (�–L line).

Please note that the third and fourth bands are degenerate
along �–L [green and brown bands in Fig. 1(c)], forming an
“open” line of degeneracies along a high-symmetry direction
(“open” is meant in the same sense as open orbits on a Fermi
surface). This line is, however, not topologically protected (see
the following section); its shape is not dependent on λ.

III. SYMMETRY AND TOPOLOGY ANALYSIS

Nodal lines are differentiated by their protecting sym-
metry [30,34]. A type-1 nodal line is protected by mirror
symmetry and thus has to lie within a mirror plane. A
type-2 nodal line is protected by the simultaneous presence
of inversion and time-reversal symmetry in a system without
SOI; it may appear in generic positions in k space. In the
following we show that the magnon nodal lines are of type 2.

The free-magnon Hamiltonian considered here is time-
reversal invariant because there is no complex hopping (in
contrast to the case with DMI [5,21]); due to the ferromagnetic
ground state, inversion symmetry is also present. In combina-
tion, these symmetries imply that the Berry curvature [35,36]

�n(k) = i〈∇kun(k)| × |∇kun(k)〉 (5)
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FIG. 3. Integrated Berry phase of band 3 in dependence on the
radius r of the loop C. The center of C is chosen well outside the
nodal line (left inset). The nodal line (red) becomes “woven” with C

if its radius exceeds ri (right inset). For r > ro the nodal line and C

are again separated.

and consequently the Chern numbers

Cn = 1

2π

∫
S

�n(k) · e dS (6)

vanish, thereby suggesting a topologically trivial situation (e is
the k-dependent local normal of a closed surface S). However,
the nontrivial topology of a nodal line is identified by the Berry
phase integrated along an arbitrary closed loop C [29,30],

γn[C] = i
∫

C

〈un(k)|∇kun(k)〉 dk. (7)

If C and the nodal line are intertwined (sketched in Fig. 3),
γn[C] = π (nontrivial), otherwise γn[C] = 0 (trivial).

To prove the nontrivial topology of the nodal lines, we
compute γn[C(r)] of the first and third bands in dependence
on the radius r of a circle C. Figure 3 shows as an example
γ3[C(r)], but we note that the argument is valid also for
γ1[C(r)]. The center of C is chosen such that it is well
separated from the nodal line N23. Hence, the nodal line does
not puncture the surface enclosed by C and γ3[C(r)] = 0 (left
inset in Fig. 3). The increasing of r leads to the interweaving
of the nodal line and C (right inset) once the critical radius
ri is reached: γ3[C(r)] = π . Upon a further increase of r the
nodal line and C become separated again and γ3[C(r)] falls
back to zero for r > ro. This topology analysis reveals that
the nodal lines are of type 2. Please see the Appendix for a
detailed discussion of the Z2 topological invariants associated
with the nodal lines.

The degeneracy of bands 3 and 4 along �–L is accidental:
the Berry phase γ4 of the fourth band is zero for any loop C.
An arbitrarily small perturbation which preserves symmetry
would lift the degeneracy [30]; e. g., one could vary the
exchange interaction between any of the kagome sites 1, 2,
or 4 [see Fig. 1(a)].

IV. SURFACE STATES

The surface magnon dispersion is analyzed in terms of
the spectral density Np(ε,k) which is computed for a semi-
infinite geometry by Green’s function renormalization [37].
The renormalization proceeds as follows. For the chosen (111)
surface, the pyrochlore lattice is decomposed into principal
layers (PLs) which are parallel to that surface. The principal

layers are chosen in such a way that the Hamiltonian matrix
of the semi-infinite system comprises only interactions within
a PL and among adjacent PLs. In the infinite set of equations
for the PL-resolved Green’s-function matrix the inter-PL
interactions are iteratively reduced (renormalized). After a few
iterations the entire Hamiltonian matrix becomes effectively
block diagonal which allows to compute the spectral densities

Np(ε,k) = − 1

π
lim

η→0+
Im[Tr Gpp(ε + iη,k)] (8)

of PL p from the Green’s function block Gpp. A finite η (here
0.001 meV) ensures convergence and introduces broadening.
Hence we have access to the bulk spectral density (p = ∞)
and to that of any other PL, in particular that of the surface
(p = 0).

The perspective views given in Fig. 2 in which � and
L coincide [right in Fig. 2(a); left in Fig. 2(b)] reflect the
rotational symmetry of both the nodal lines and the hexagonal
BZ of the (111) surface. The argumentation given below is
also valid for other surfaces with nontrivial projections of the
nodal lines.

The bulk magnon spectrum appears as broad features upon
projection onto the (111) surface (cf. the extended green
regions in Fig. 4); surface states show up as comparatively
sharp features. Constant-energy cuts of the surface magnon
spectrum at energies close to the nodal line N23 are plotted
in Fig. 4(a) [the corresponding energies are indicated in
Fig. 4(b)]. For the lowest energy, there is no surface state
and only bulk states are visible [bottom constant-energy cut
in Fig. 4(a)]. At the energy for which only N23 is present, the
projected bulk states form a closed ring in the surface BZ [top
constant-energy cut in Fig. 4(a)]. Additionally, DSS23 which
is associated with N23 produces a ring-like feature whose
extension shrinks toward K with decreasing energy. The cut
of the surface magnon spectrum along high-symmetry lines of
the surface BZ [Fig. 4(b)] shows two points of N23: one on
the �–M and another on the �–K line. DSS23 is suspended
at these points, its considerable dispersion indicates that the
‘membrane is stretched quite loosely’. Figures 4(c) and 4(d)
show the same scenario for the projection of N12 and DSS12:
with decreasing energy, DSS12 shrinks towards �.

The (111) surface of the pyrochlore lattice allows for two
terminations: a kagome or a triangular layer. The results dis-
cussed up to here were obtained for the triangular termination.
Considering the kagome termination [Figs. 4(e) and 4(f)],
there is no difference in the bulk contributions but a major
variation in the DSSs, here exemplified by DSS12. If we
call the region about the � point the inside of the projected
N12, we find DSS12 now in its exterior. This fundamental
dependence on the surface termination has also been observed
for electronic NLSMs, for example, in the alkaline-earth
stannides, germanides, and silicides [29].

V. DISCUSSION

A. Effect of the Dzyaloshinskii-Moriya interaction

For the electronic NLSMs, SOI has to be absent [29,34] or
at least very weak because otherwise the nodal lines would
be lifted and other topological states could occur. The same
is valid for the magnon nodal lines: the pyrochlore lattice
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FIG. 4. Magnons at the (111) surface of an anisotropic pyrochlore
ferromagnet for two surface terminations; Panels (a–d) show results
for a triangular termination (top and central row), while (e) and (f)
show results for a kagome termination (bottom row). The surface
spectral density N0(ε,k) is represented as a color scale (black: zero;
white: maximum). Bulk magnons appear as broad features, surface
states as sharp light lines. Panels (a), (c), and (e) show constant-energy
cuts through the entire surface Brillouin zone for energies indicated
by magenta lines in (b), (d), and (f), respectively. Panels (b), (d), and
(f) display spectral densities along high-symmetry directions of the
surface Brillouin zone. The projected nodal lines N12 and N23 and
the respective drumhead surface states DSS12 and DSS23 are marked.
Parameters as in Fig. 1(c).

allows for a nonzero DMI which would break the time-reversal
symmetry [21]. Thus, the inevitable combination of inversion
and time-reversal symmetry would be removed and nodal
lines could not exist [49]. Instead, the magnon bands would
carry nonzero Chern numbers and topological surface states
would appear. Other topological states are likely, e.g., Weyl
points [21,38].

The above discussion applies solely to ferromagnets. For
frustrated antiferromagnets, a (synthetic) SOI is introduced to
the free-magnon Hamiltonian by a nontrivial spin chirality in
nonzero magnetic field rather than by DMI [39–41].

B. Experimental considerations

To prove the existence of magnon nodal lines, one could
utilize either a direct or an indirect approach.

Considering a direct mapping, e.g., by inelastic neutron
scattering for the bulk magnons [42] and electron energy loss
spectroscopy for the surface magnons [43], we propose to

tune the anisotropy (imbalance of JN and J ′
N) by applying

strain. As the diameter of the nodal line is sensitive to the
ratio J ′

N/JN, it will increase or decrease accordingly; such a
behavior can be detected in the experiments. If samples with
different surface termination can be grown, one could utilize
the strong dependence of the DSSs on the termination [cf.
Figs. 4(d) and 4(f)].

In view of an indirect approach, one could think of trans-
verse transport, for instance, the magnon Hall effect. However,
these effects require a nonzero Berry curvature which is
ruled out by the simultaneous presence of inversion and
time-reversal symmetry required for an NLSM. We recall that
most of the ferromagnetic pyrochlores exhibit a sizable DMI;
examples are Lu2V2O7, In2Mn2O7, and Ho2V2O7 [16,17].
Thus, the measurement of the magnon Hall effect can be used
for the identification of samples with negligible DMI, which
are likely to exhibit magnon nodal lines; possible candidates
include the ferromagnetic pyrochlore manganates [44] and the
chromium spinels [45].

The Hamiltonian (1) is surprisingly simple as it involves
only an exchange interaction, which suggests that magnon
NLSMs could be quite common and not restricted to the
pyrochlore lattice. The examination of this conjecture is
beyond the scope of this study which serves as a proof of
principle; further theoretical and experimental work is clearly
necessary. However, one rule can be readily formulated: the
magnetic unit cell must contain more than one atom, which
excludes Bravais lattices.

VI. CONCLUSION

With the prediction of magnon NLSMs the correspondence
of electronic and magnonic topologically nontrivial systems
in ferromagnets is completed. The term “semimetal” does
not respect the bosonic nature of magnons and therefore
is, strictly speaking, meaningless. However, the topological
features—here: nodal lines and drumhead surface states—exist
irrespective of fermion or boson statistics. The pendant of
topological Dirac semimetals cannot be realized for magnons
in ferromagnets because the twofold degeneracy of the bands
is forbidden.
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APPENDIX: Z2 TOPOLOGICAL INVARIANTS
FOR NODAL LINES

Another way to identify nodal lines in inversion-symmetric
crystals has been presented in Ref. [28]: Kim et al. introduced
Z2 invariants based on parity eigenvalues at parity-invariant
momenta (or time-reversal invariant momenta, TRIMs)

�i=n1n2n3 = 1
2 (n1b1 + n2b2 + n3b3) (A1)

(nj = 0,1, bj reciprocal lattice vector, and j = 1,2,3). The
Berry phase ω on a contour Cab which connects two TRIMs
�a and �b and which is built from two time-reversed paths is
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TABLE I. Parity eigenvalues ξ1 (quarter filling) and ξ1ξ2 (half
filling) at the eight time-reversal invariant momenta (TRIMs) �i ,
with i = {n1n2n3}; cf. Eq. (A1).

TRIM n1 n2 n3 ξ1 ξ1ξ2

�1 0 0 0 + +
�2 1 1 0 + −
�3 1 0 1 + −
�4 0 1 1 + −
�5 1 1 1 − −
�6 1 0 0 + −
�7 0 1 0 + −
�8 0 0 1 + −

given by

ω(Cab) = exp

(
i
∑

n

γn[Cab]

)
= ξaξb, (A2)

in which ξa = ∏
n ξn(�a) and ξn(�a) is the parity eigenvalue

of the nth band at �a . For electrons, one would restrict the sum
and the product over n to the occupied states; for magnons (or
generally for bosons), the product is over all bands below the
bands of interest. More precisely, for the nodal line between
the first and second (second and third) bands, the product is
over the first (first and second) band. For convenience, we
adopt the fermionic terms “quarter filling” and “half filling”
although they have no meaning for magnons.

Following Ref. [28], the Berry phase of a contour connect-
ing four TRIMs reads ω(∂Sabcd ) = ξaξbξcξd , which counts the
number N (Sabcd ) of nodal lines that pierce the enclosed surface
Sabcd ; from

(−1)N(Sabcd ) = ω(∂Sabcd ) (A3)

follows that ξaξbξcξd = −1 indicates an odd number of nodal
lines piercing through Sabcd .

The parity eigenvalues are evaluated as proposed by the
authors or Ref. [46]: choosing site 3 as a center of inversion
[see Fig. 1(a)], the parity operator in momentum space reads

Pk = diag(e−ia1·k,e−ia2·k,1,e−ia3·k), (A4)

with a1 = a(1,1,0)/2, a2 = a(1,0,1)/2, and a3 = a(0,1,1)/2.
The parity eigenvalues ξn(�i) (n = 1, . . . ,4; i = 1, . . . ,8)
of the magnon eigenfunctions |un(k)〉 at the TRIM �i are

numerically evaluated according to [47]

P�i
|un(�i)〉 = ξn(�i) |un(�i)〉. (A5)

The relevant parity eigenvalues for “quarter” and “half filling”
are given in Table I.

We now discuss selected examples of invariant surfaces
Sabcd and the respective products of parity eigenvalues (Fig. 5).
Consider first S1234 [Fig. 5(a)]: for N12 (quarter filling), the
parity eigenvalues at �1, �2, �3, and �4 are given in the column
“ξ1” of Table I. All of these parity eigenvalues are positive,
indicating that S1234 is a trivial plane with respect to N12: the
nodal line does not pierce S1234, which is in accordance with the
graphical presentation in Fig. 5(a) (the blue line never touches
the green surface). However, N23 (red line) clearly pierces
through S1234 at k and −k. Hence, we expect a negative parity
eigenvalue product, which is corroborated by the numerics:
An inspection of the column ξ1ξ2 in Table I tells that even
parity is only present at �1, while odd parity is found for the
other TRIMs. This means that an invariant surface Sabcd is
nontrivial with respect to N23 if and only if it contains �1.
This is the case for S1234, S1357, and S1368 [Figs. 5(a), 5(b),
and 5(c)], respectively, but not for S5678, S2356, and S2378

[Figs. 5(d), 5(e), and 5(f)], respectively. Returning to N12, we
find odd parity only at �5 (column ξ1 in Table I). Thus, only
the invariant surfaces containing �5 exhibit a negative parity
product [Figs. 5(b), 5(d), and 5(e)].

The Z2 invariants (ν0; ν1ν2ν3), defined by [28,48]

(−1)ν0 =
∏

nj =0,1

ξn1n2n3 , (A6)

(−1)νi=1,2,3 =
∏

nj 
=i = 0,1
ni = 1

ξn1n2n3 , (A7)

comprise the strong (ν0) topological index and the weak
topological indices (νi=1,2,3) [48]. The Z2 invariants of N12

(quarter filling) read (1; 111), those for N23 (half filling) read
(1; 000). Thus, both nodal lines are strong (ν0 = 1). The trivial
weak indices for N23 indicate that it is located around the �

point, while N12 is located around an L point.
We now address topological phase transitions, that is, the

change of (ν0; ν1ν2ν3) upon variation of λ ∈ (0,1) [50]. It
turns out that the phase (1; 111) for quarter filling (N12) is
robust, while the phase (1; 000) at half filling (N23) changes
into the weak phase (0; 111) present for λ < 0.618034. This is
understood from Fig. 6: for decreasing λ, the diameter of N23

FIG. 5. Magnon nodal lines and invariant planes. N12 (blue), N23 (red), and selected invariant planes Sabcd (green) containing four TRIMs
�i (i = a,b,c,d) are depicted and the product of parity eigenvalues denoted below.
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FIG. 6. Lifshitz transition of nodal line N23 upon variation of the
anisotropy parameter λ. View along (a) [111] and (b) [100] directions.

increases until it touches the Brillouin zone boundary at the
other L points, labeled L′ (red and orange curves in Fig. 6).

Since the L′ points are TRIMs, the local parity eigenvalues of
the second band at �6,7,8 may change sign, and consequently,
the Z2 invariants may change as well. The further increase
of N23 causes a Lifshitz transition, i.e., it splits into two line
nodes, both of which are open (yellow curve in Fig. 6) but
nontrivial as we have checked numerically by the calculation
of γ3[C(r)].

The above finding lends for a classification of nodal lines:
open nodal lines are topologically weak (ν0 = 0) in the sense
that the formation of an open or closed surface projection
of a nodal line depends on the surface normal [compare
Figs. 6(a) and 6(b)]. This is fully in line with electronic
Z2 topological insulators, for which ν0 = 1 guarantees a
topological surface state on any surface. For ν0 = 0, the weak
indices (ν1ν2ν3) = (111) can then be understood as Miller
indices, indicating a surface normal with nontrivial projection
of the nodal line (closed loop); i.e., the [111] direction
[cf. Fig. 6(a)].
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5. Publications

5.4. Magnon Transport from Atomistic Spin Dynamics Simulations

The focus of the previous publications was on the topological classification of magnon spectra and the transverse
transport of magnons in the limit of low temperatures, that is, low compared to the Curie temperature, where the
spin-boson transformation (Holstein-Primakoff transformation in Sec. 2.4.3) is a reasonable approximation. The
conductivities where evaluated by k-space integrals over Berry’s curvature, which, in turn, is calculated from the
one-magnon Bloch wave functions. Apart from neglecting magnon-magnon interactions, this approach suffers
from another drawback: some interesting magnetic phases do not exist at zero temperature, thereby ruling out a
linear spin-wave approximation and the calculation of Berry’s curvature. A famous example for such a magnetic
phase is the skyrmion crystal phase (Sec. 3.4), which exhibits the topological magnon Hall effect.

Here, the development of a novel approach to magnon transport is presented. It is based on atomistic spin
dynamics simulations, in which the time evolution of a single spin is governed by the stochastic Landau-Lifshitz-
Gilbert (sLLG) equation (Sec. 4.3). The main idea is as follows: after reaching thermal equilibrium (either
by Monte Carlo simulations, Sec. 4.2, or the sLLG equation, Sec. 4.3), a long-time evolution according to the
sLLG equation is performed. The total spin and heat current are calculated at every instance of time and stored.
Finally, the current-current correlation functions and from these the linear-response transport tensors are calculated
according to the Kubo formula (Sec. 3.3). For instance, the thermal conductivity of a spin chain is given by [182]

κ =
1

kBT 2

∫ ∞

0
lim

N→∞
1

Na
〈Jth(t)Jth(0)〉 dt, (5.1)

if both an external magnetic field and single-ion anisotropies are absent (a lattice constant, Jth heat current, N
number of spins).

This ansatz is borrowed from equilibrium molecular dynamics simulations (EMD) of the thermal conductivity
of nonmagnetic matter (see, for example, Ref. [183]) and was firstly carried over to magnetic matter in Ref. [182],
where the magnon thermal conductivity of spin chains was studied. Here, this approach is generalized to higher
spatial dimensions to access transverse magnon transport. Additional inclusion of spin transport grants access to
all of the magnon transport phenomena shown in Tables 3.3 or 3.4.

The evaluation of eq. (5.1) requires the calculation of ensemble-averaged current correlation function. In EMD
simulations this is done by generating a number of initial conditions taken from the canonical ensemble, which is
simulated by application of a thermostat. Then, the thermostat is switched off and the configurations are developed
according to pure Hamilton dynamics (microcanonical ensemble). The average of the correlation function is taken
over all of these ensembles.

In principle, such a routine is the most rigorous numerical evaluation of Kubo’s formula and could be followed
for the spin dynamics, too (and it was followed in Refs. [182] and [184]). However, this routine does not capture
the influence of, e. g., magnon-phonon interactions on the magnon transport, because the Gilbert damping α is
neglected in microcanonical simulations. Only the pure magnon transport can be accessed. In reality, however,
the magnon bath is never truly uncoupled and interactions with other (quasi-)particles are omnipresent. Since
a comparison of the simulated conductivities with the experimental ones is pursued, it was decided to perform
the ensemble average as a time average over a single cluster which evolves under the influence of a thermostat.
Thus, instead of Hamilton dynamics (α = 0, microcanonical ensemble), Langevin dynamics (α , 0, canonical
ensemble) was utilized to calculate the correlation functions in eq. (5.1).

To quantify the difference of the two approaches, tests were performed. The magnon thermal conductivity of
a ferromagnetically coupled spin chain [eq. (5.1)] was evaluated by both methods. For the Hamilton dynamics,
many thousand initial spin cluster configurations were taken from the canonical ensemble. They were evolved
according to pure Hamilton dynamics (no thermostat, no damping, only spin precession). The correlation function
was calculated for every configuration and, finally, the average over all ensembles was taken. For the Langevin
dynamics, a single spin cluster was evolved in the presence of a heat bath. The ensemble average of the correlation
functions was taken as a time average.

Such calculations were performed for selected values of the damping parameter α; results are shown in Fig. 5.2.
For large α, the Langevin dynamics (colored data sets) differs a lot from the Hamilton dynamics (black data set)
but it converges to the Hamilton dynamics as α→ 0 (compare lilac and black data set). This is in agreement with
the observation that by setting α = 0 in the sLLG [cf. eq. (4.22)], only the precessional motion remains. For the
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Fig. 5.2: Comparison of temperature profiles of the ther-
mal conductivity of a ferromagnetically coupled
chain for selected values of α. Black curve: α = 0
coincides with pure Hamilton dynamics (micro-
canonical ensemble). Colored curves: Langevin
dynamics (canonical ensemble) in the presence
of a heat bath.

explanation of the overall trend of the thermal conductivity with temperature (especially, in the low-temperature
limit), please confer the discussion in Pub. 5.

From this test, the following is concluded:

• The results of Hamilton dynamics, which describes magnon-number conserving processes, can be modeled
by Langevin dynamics in the limit of vanishing Gilbert damping. Thus, it is possible to perform the
ensemble average as a time average which is computationally favorable.

• It is judged that the Langevin dynamics beyond the limit of small Gilbert damping yields physically
meaningful results for the correlation functions, because it phenomenologically describes magnon-number-
nonconserving interactions with other (quasi-)particles. The drop of the thermal conductivity for increasing
damping complies very well with the physical intuition that magnons with a short lifetime and short mean
free path contribute less to transport.

• The microscopic details of the aforementioned interactions remain hidden. Thus, the Gilbert damping enters
the calculations as a parameter, which has to be estimated from experimental data. For future work, an
extension of the presented model to spin-lattice dynamics is suggested.

This new approach was applied to two different spin Hamiltonians. First, the topological magnon insulator
on the kagome ferromagnet was set up, which is also featured in Pubs. 1 and 2 to examine the similarities and
differences between the new approach and the established linear spin-wave approximation. Second, the spin spiral
ground state of the J1-J3 model (Sec. 2.3) was studied, which turns into a skyrmion crystal at elevated temperatures
(Sec. 4.2.2). The skyrmion crystal phase is shown to feature the topological versions of the anomalous transverse
transport, that is, “topological magnon Hall effects”, which is in agreement with the emergent electrodynamics for
magnons (see Sec. 3.4.2).

5.4.1. Spin dynamics simulations of topological magnon insulators: From transverse
current correlation functions to the family of magnon Hall effects

For a general test of the method, the topological magnon insulator on the ferromagnetic kagome lattice was
revisited, because it is understood very well in the linear spin-wave approximation (Pubs. 1, 2). Parameters were
taken from experiments on Cu(1,3-benzenedicarboxylate) [89], a recently discovered topological magnon insulator
that exhibits the thermal Hall effect of magnons [185]. Thus, there were two different standards—linear spin-wave
theory and experimental results—by which the method was judged.

To verify that the set up spin cluster is a topological magnon insulator, the dynamical structure factor was
calculated. It clearly showed the band gaps between the magnon bulk bands and in addition the topological edge
magnons. Moreover, the transverse-current correlation functions were shown to be nonzero only if DMI was
included. This indicates nonzero off-diagonal conductivity tensor elements due to broken T symmetry. For the
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longitudinal and transverse thermal conductivity, values with the same order of magnitude as their experimental
counterparts were obtained. Apart from the low-temperature limit, the dependence of the conductivities on
temperature and magnetic field agree with experiment.

The major advantages of the method were found to be the following:

1. All transport tensors are fully accessible by only one simulation. Thus, longitudinal and transverse transport
in any direction are simultaneously studied in equilibrium. This is in contrast to a nonequilibrium steady-
state simulation, where a field gradient (for instance, a temperature gradient) is applied in a certain direction
and the resulting net currents are measured, allowing only for the determination of selected transport tensor
elements. The latter suffers also from the need of applying a temperature difference large enough to obtain
results that clearly differ from thermal noise. Thus, one is not strictly in the linear-response limit.

2. It is completely based on the spin “language” rather than on the boson “language”, and it naturally includes
all orders of magnon-magnon interactions.

3. It is not restricted to zero (or very low) temperature, facilitating the treatment of the ferromagnet-to-
paramagnet phase transition and magnetic phases stabilized by thermal fluctuations, for instance, skyrmion
crystals (see Pub. 6).

However, there are also disadvantages of the presented method, which are due to the classical nature of atomistic
spin dynamics simulations. In particular, the Boltzmann distribution, which is used to model the influence of
temperature, drastically overemphasizes spin fluctuations at small temperatures, leading to a mismatch between
numerically and experimentally obtained conductivities in the low-temperature limit.

All in all, it is concluded that this method complements the linear spin-wave approach. While the latter works
well at low temperatures, it is insufficient (or even impossible to apply) at high temperatures. The opposite is
true for the present approach: it facilitates the treatment of higher temperatures but the obtained results exhibit
deviations from experimental results in the low-temperature limit. Yet, the method is reliable for the calculation
of the Hall angles, because they are ratios of transverse and longitudinal transport tensor elements, such that the
low-temperature trend cancels out in the quotient.
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We demonstrate theoretically that atomistic spin dynamics simulations of topological magnon insulators
(TMIs) provide access to the magnon-mediated transport of both spin and heat. The TMIs, modeled by
kagome ferromagnets with Dzyaloshinskii-Moriya interaction, exhibit nonzero transverse-current correlation
functions from which conductivities are derived for the entire family of magnon Hall effects. Both longitudinal
and transverse conductivities are studied in dependence on temperature and on an external magnetic field. A
comparison between theoretical and experimental results for Cu(1,3-benzenedicarboxylate), a recently discovered
TMI, is drawn.

DOI: 10.1103/PhysRevB.94.174444

I. INTRODUCTION

Transport phenomena of the Hall type, i.e., a system shows
a response perpendicular to an external force, are in the focus
of modern condensed matter physics, in particular since the
discovery of the quantum Hall effect [1]. Theory relates
the associated Hall conductivities with nontrivial topologies
of the electronic states; hence, topological insulators are
investigated with great effort today [2]. While electronic
topological insulators were starring at first, recent publications
address bosonic particles: Hall effects of phonons [3], triplons
[4], and magnons [5] were discovered or predicted, amongst
others [6,7]. In particular, the experimental discovery [5] and
the theoretical explanation [8–11] of the magnon Hall effect
caused attention, as it revealed nontrivial topologies of the
magnon dispersion relations which are brought about by the
Dzyaloshinskii-Moriya (DM) interaction. The existence of
topological nontrivial edge magnons [12] suggests that these
“topological magnon insulators” (TMIs) may be important for
future spintronics applications. Especially the ferromagnetic
kagome lattice has been intensively studied because it is not
only a feature-rich toy model [12–17] but also realized in
nature: recently, Cu(1,3-benzenedicarboxylate) [Cu(1,3-bdc)]
was identified as a TMI [18,19] exhibiting a magnon Hall
effect [20].

In this paper, we show that various Hall-type transport
phenomena in TMIs can be captured by classical atomistic
spin dynamics simulations. Focusing on kagome ferromagnets
which approximate Cu(1,3-bdc), we calculate dynamical
structure factors which allow to identify topological edge
magnons; in accordance with the bulk-boundary correspon-
dence [14,21,22], the existence of topological edge magnons
proves that the bulk magnons are topologically nontrivial.
Furthermore, we derive expressions for the spin and thermal
currents from which transport coefficients are calculated
within linear-response theory; more precisely, we study
both longitudinal and transverse conductivities for spin and
heat transport. By comparing computed transverse thermal
conductivities with those obtained in experiment [20], we
identify qualitative differences between the classical and the
quantum-mechanical treatment of spins.

By the above approach we access the family of magnon Hall
effects (Table I) without relying on the boson language of spin

waves. This sets our study apart from previous ones, see for
example Refs. [5,8,12–17,23,24]. Up to now, only the magnon
Hall effect (which, strictly speaking, is a magnon Righi-Leduc
effect) has been experimentally confirmed [5,20,25].

The paper is organized as follows. In Sec. II A, we introduce
the kagome lattice and the Hamiltonian that models Cu(1,3-
bdc). After deriving the bond currents and explaining the
numerical methods in Secs. II B and II C, respectively, results
are presented in Sec. III. First, we discuss the dynamical
structure factor and the topological edge magnons (III A).
Then we analyze the current correlation functions and the
time-averaged bond currents (III B). Finally, the dependencies
of the conductivity tensors on temperature and on an applied
magnetic field are studied and compared with experimental
data (III C). We conclude with Sec. IV.

II. THEORETICAL ASPECTS

A. Effective Hamiltonian for Cu(1,3-bdc)

Cu(1,3-bdc) is a metal-organic hybrid kagome magnet [18];
its chemical structure is depicted in Fig. 1(a). The magnetic
constituents are stacked Cu2+ kagome layers [brown triangles
in Fig. 1(a)], which are separated by an organic ligand. The
spin of the Cu sites is s = �/2.

Inelastic neutron scattering revealed the magnon dispersion
from which exchange parameters have been deduced [19].
Adjacent kagome planes are very weakly antiferromagneti-
cally coupled (according to Ref. [27] the ratio of interplane
to intraplane interactions is about −0.003), which suggests to
treat in good approximation the three-dimensional (3D) system
as a stack of uncoupled layers. Within each layer, nearest-
neighbor interactions dominate. Consequently, an effective
spin Hamiltonian

H = 1

2

∑
〈ij〉

[−Jij si · sj + Dij · (si × sj )] − B
∑

i

sz
i (1)

of a two-dimensional (2D) ferromagnetic nearest-neighbor
kagome lattice model is appropriate. Jij > 0 and Dij are the
exchange parameter and the DM vector that couple spin si with
spin sj , respectively. B is an external magnetic field in the z

direction, that is, orthogonal to the kagome plane (xy plane).
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TABLE I. The family of magnon Hall effects and the nomenclature of magnon-mediated transverse transport phenomena.

Transverse response

Force Spin current Heat current

magnetic-field gradient magnon spin Hall effect (MSHE) magnon Ettingshausen effect (MEE)
temperature gradient magnon Nernst effect (MNE) magnon Hall effect (MHE)

In experiments, a small magnetic field of about 50 mT
perpendicular to the kagome layers is necessary to fully align
the spins out of plane [19]. This indicates the presence of a
mechanism that causes the in-plane orientation of the spins. For
the time being, we do not include any easy-plane anisotropy
as its energy is much smaller than that of the exchange
parameters.

The kagome lattice is built from corner-sharing equilateral
triangles hosting Cu atoms [Fig. 1(b)]. The three basis sites per
unit cell (red dots) feature the s = �/2 spins, each of which has
four nearest neighbors at a distance of 0.4554 nm (Ref. [18]).
All of the neighbors are equivalent, hence, the Jij can be
replaced by the single parameter J .

For a strict 2D geometry, Moriya’s symmetry rules [28]
allow for DM vectors orthogonal to the kagome plane.
In Cu(1,3-bdc), however, kagome planes are not mirror
planes of the crystal [cf. Fig. 1(a)]; thus, the DM vectors
may have nonzero in-plane components [29]. Although their
experimental results could be reproduced successfully without
in-plane components, the authors of Ref. [19] note that the
limited experimental resolution does not allow to rule out
a band gap caused by these components. Bearing this in
mind, we present results for vanishing in-plane components

O

Cu

C

(a)
(b)

Γ K
2K ≡ K

2M ≡ Γ

M

(c)

FIG. 1. Kagome planes of Cu(1,3-benzenedicarboxylate). (a)
Chemical structure of Cu(1,3-benzenedicarboxylate) with parallel
kagome planes built from Cu2+ ions (brown triangles); hydrogen
atoms are shown as white spheres. Crystal data are taken from
Ref. [18] and Jmol [26] was used for visualization. (b) Artistic sketch
of the kagome lattice, which consists of equilateral triangles (green)
and hexagons (yellow). The basis vectors of the hexagonal lattice
(black arrows) and the three basis sites (red dots) are indicated. (c)
Hexagonal Brillouin zone with high-symmetry points �, M , and K .
The points 2K and 2M are shown in addition.

(Dij = −Dji = D ẑ with D/J = 0.15) but comment on their
influence at appropriate places.

The quantum-mechanical version of the Hamiltonian (1)
is often treated within the linear spin-wave approximation
(LSWA): after performing the Holstein-Primakoff transfor-
mation [30], only terms quadratic in the boson operators
are taken into account. A subsequent Fourier transformation
yields the part of the Hamiltonian that can be diagonalized
and from which the magnon band structure is obtained. Due
to the ferromagnetic ground state a nonunitary Bogoliubov
transformation is not necessary. Magnon-magnon interactions
are neglected in the LSWA as these are at least of third order
in the boson operators. The Dzyaloshinskii-Moriya interaction
causes complex hopping matrix elements that introduce gaps in
the magnon spectrum [5,8]; on top of this, the Abelian Berry
curvature [31,32] yields nonzero topological invariants [12]
which are not directly accessible in a classical approach. The
Berry curvature is nonzero because the time-reversal symmetry
of the boson Hamiltonian is broken; it results in an anomalous
velocity which drives the transverse response to an applied
temperature gradient. The transverse conductivities are given
as Brillouin zone integrals over the weighted Berry curvature
[9–11,33,34].

In what follows, we demonstrate that the classical version
of the Hamiltonian (1) captures the transverse transport effects.
The approach is based on atomistic spin dynamics simulations,
which may be considered, loosely speaking, as a “brute
force” method since it includes all orders of magnon-magnon
interactions.

B. Spin and heat transport in a Heisenberg magnet
with Dzyaloshinskii-Moriya interactions

Assuming an electrically insulating sample, two driving
forces remain that act on the magnetic moments: a magnetic-
field gradient ∇B and a temperature gradient ∇T . Linear
response theory relates the spin current density j s and the
thermal current density j th to these forces,

(
j s

j th

)
=
(

Ls,s Ls,th

Lth,s Lth,th

)( ∇B

−∇T/T

)
. (2)

For 2D systems, the transport coefficients Ln,m (n,m = s,th)
are 2 × 2 tensors. Using the Onsager relation Ls,th = Lth,s, the
spin conductivity

σ ≡ Ls,s,

the magnetothermal conductivity

ξ ≡ 1

T
L−1

s,s Ls,th,
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and the thermal conductivity

κ ≡ 1

T
(Lth,th − T Ls,thξ )

can be defined for the temperature T .
In accordance with the fluctuation-dissipation theorem, the

Kubo formula of linear response theory links the autocorrela-
tion of equilibrium fluctuations of the currents (capital J’s are
the currents corresponding to the respective current densities
j ) to the Ln,m (e.g., Ref. [35]),

Lμν
n,m = 1

kBT

∫ ∞

0
lim

A→∞
1

A

〈
Jμ

n (t)J ν
m(0)

〉
dt. (3)

〈·〉 denotes the ensemble average, N is the total number of
spins, A the total area of the sample, and kB the Boltzmann
constant. μ,ν = x,y index the elements of the 2 × 2 transport
tensors. Longitudinal (transverse) transport is described by
diagonal (off-diagonal) elements μ = ν (μ �= ν).

The currents in Eq. (3) are derived for classical spins in the
following (for the quantum-mechanical case confer Ref. [17]).
For DM vectors along the z axis, the Hamiltonian (1) is
rewritten as H =∑i hi with

hi = − Bmz
i + 1

2

∑
j∈N(i)

[−Jij mi · mj

+ Dij ẑ · (mi × mj )]. (4)

N(i) is the set of neighbors interacting with spin mi at position
r i . Each mi is a three-dimensional unit vector. We use m
instead of s to differentiate classical from quantum-mechanical
spins. The units of magnetic moments are condensed in
the exchange parameters, the magnetic field is consequently
measured in units of energy.

Since both energy and the z component of the total magnetic
moment Mz ≡∑i m

z
i are conserved in Eq. (4), the continuity

equations

∂Mz

∂t
+ ∇ · J s = 0,

∂H

∂t
+ ∇ · J th = 0

hold. J s can be regarded as the (charge-neutral) analog of the
charge current of electrons; the term “magnon current” also
applies. Following Ref. [36], we introduce the currents

J s ≡
∑

i

r i

∂mz
i

∂t
,

J th ≡
∑

i

r i

∂hi

∂t
.

Utilizing the equation of motion ∂mi/∂t = −γ mi × ∂H/∂mi

(γ gyromagnetic ratio), the spin current reads

J s =
∑
i<j

J i→j
s , (5)

with the bond spin current

J i→j
s = γ r ij

[
Jij

(
mx

i m
y

j − m
y

i m
x
j

)+ Dij

(
mx

i m
x
j + m

y

i m
y

j

)]
(6)

(r ij ≡ r i − rj ).
The thermal current J th = Jfield

th + J inter
th is decomposed

into two contributions (see Appendix A for a detailed deriva-
tion). The magnetization contribution

Jfield
th = −B

∑
i<j

J i→j
s = −B J s (7)

is the coupling to the external magnetic field. The interaction
contribution reads

J inter
th = −γ

2

∑
	ijk

[r ik(Aijk − Bijk + Bkji) + cyc(i,j,k)]. (8)

with

Aijk = JijJjkmi · (mj × mk) + DijDjk ẑ · (mi × mk)(mj · ẑ),

Bijk = JijDjk

(
mi × mj

) · (mk × ẑ).

The summations
∑

i<j (
∑

	ijk
) are over each pair (triple) of

spins without double counting; “cyc(i,j,k)” in Eq. (8) means
that the preceding term in the sum is repeated twice but with
indices changed in cyclic order (i → j → k → i).

C. Numerical methods

The computation of the conductivities requires several
steps. In the first step, a cluster of randomized magnetic
moments is thermalized for the given temperature T using
either standard Monte Carlo simulations (Metropolis algo-
rithm [37]) or the stochastic Landau-Lifshitz-Gilbert (sLLG)
equation [38].

In the sLLG equation

(1 + α2)dmi = −(1 + αmi×)[mi × (Bidτ + GdW i)], (9)

the moment mi is subject to precession about the local net
magnetic field Bi = B − ∂H/∂mi and to Gilbert damping.
The strength α of the Gilbert damping is in general a nonlocal
symmetric 3 × 3 tensor but approximated here by a local
scalar; this is justified by the collinear ground state. The
coupling to a heat bath at temperature T is provided by a white-
noise field bi with GdW i = bidτ ; W i is an isotropic vector
Wiener process and G2 = 2αkBT/(BrefμB) a dimensionless
diffusion constant; Bref is a reference field determining the
scale of dimensionless time τ and μB is Bohr’s magneton.
The numerical integration of the sLLG equation is performed
with an implicit midpoint method which preserves the length
of each moment.

In the next step of the computation, the ensemble average
of the correlation functions is performed. This can be done by
two strategies.

(1) The ensemble average is literally performed by
thermalizing several thousands of clusters and subsequently
calculating their time evolution by conservative spin dynamics
[i.e., the sLLG Eq. (9) with α = 0]. The influence of the
temperature is only due to the random initial conditions which
differ for each ensemble. This protocol was followed, for
example, in Refs. [39,40] to describe spin chains.

(2) Because the white-noise fields bi preserve the
ergodicity, the ensemble average can be replaced by a time
average, provided that the temporal evolution is sufficiently
long. The thermalization of a single cluster is followed by
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a long-time evolution according to the sLLG Eq. (9) with
α �= 0. The currents are evaluated and stored at each time
step. After choosing a time subinterval that is long enough
for the correlations to drop to zero, the correlation functions
are evaluated. The ensemble average is taken by successively
shifting the subinterval by one integration step as many times
as allowed by the total integration time.

In this work, we follow strategy 2 because, with regard to
experiments, the magnons are coupled to other baths (e. g.,
to phonons and electrons). The Gilbert damping α mimics
all of these couplings without specifying their detailed origin
(e. g., spin-phonon coupling [41]). A typical time integration
is performed over at least 20 ns up to 64 ns, that is, several
million time steps of 1 fs have to be performed. The interval
in which the correlation functions are calculated depends on
the Gilbert damping α: the larger α, the faster the correlation
functions drop to zero (see Sec. III B). In the limit α → 0
we expect this approach converge to the results obtained by
strategy 1. To corroborate this conjecture, we compare both
strategies for a chain of ferromagnetically coupled moments;
the results, presented in Appendix B, show that it holds for a
one-dimensional system.

Regardless of whether strategy 1 or strategy 2 is applied,
numerical time integration of the current correlation functions
has to be performed to determine the transport coefficients.
We discuss this issue in Appendix C.

III. RESULTS AND DISCUSSION

We present and discuss results for the ferromagnetic
nearest-neighbor kagome model with DM vectors and an ex-
ternal magnetic field in the z direction. If not stated otherwise,
the experimentally determined ratio D/J = 0.15 (Ref. [19]) of
exchange to DM interaction is used to mimic Cu(1,3-bdc). The
exchange parameters are chosen such that the experimentally
determined critical temperature Tc ≈ 1.8 K (Ref. [20]) is
well reproduced (J = 0.3 meV, D = 0.045 meV). Since the
transport simulations are computationally very demanding,
the cluster size has to be restricted, what causes a residual
magnetization at temperatures above the critical temperature
(finite-size effect); we comment on the influence of the cluster
size in Sec. III B.

To the best of our knowledge, the Gilbert damping α of
Cu(1,3-bdc) is not known but can be estimated as follows.
The magnon lifetime is given by τ = (2αω)−1. Taking �ω ≈
�ω ≈ 1 meV, i.e., approximately half of the total width of
the magnon spectrum, and τ ≈ �/� approximated from the
experimental band broadening (� = 0.03 meV, Ref. [19]),
we deduce α = �/(2�ω) ≈ 0.015, which is a reasonable
value.

A. Topology of bulk magnons and topological
edge magnons

To show that the kagome ferromagnet is a TMI, we utilize
the bulk-boundary correspondence (rather than computing
topological invariants in the quantum-mechanical framework;
cf. Sec. II A). Magnon band structures are determined from
the dynamical structure factor

S(ω,k) = 1

2π

∫ ∞

−∞
exp (iωt)〈m(k,t) · m(k,0)〉 dt,

where m(k,t) is the lattice Fourier transform of the spin
configuration at time t . The influence of the sample edges
can be switched on or off by applying either open or periodic
boundary conditions to the cluster.

For periodic boundary conditions, only the three bulk bands
show up [Figs. 2(a) and 2(b)], as expected for the kagome
lattice with its three sites per unit cell. The bulk spectra agree
with those obtained in the LSWA [8]. A small Zeeman shift of
the entire spectra to higher energies is caused by the external
magnetic field. There are no band gaps if the magnetic field is
in-plane (a); however, gaps open up for an out-of-plane field
(b). Notice that although the dynamical structure factor of the
first and second band (counted from below) decreases about
the K point in (a), it stays nonzero, indicating the absence
of a band gap. The dependence of the band-gap opening
on the field direction reproduces nicely the experiments
reported in Ref. [19]. We recall that an in-plane component
of the DM vectors would introduce a small gap. The missing
first optical mode in Fig. 2(a) for the �K direction is ex-
plained by destructive interference caused by the atomic basis
[42,43].

For open boundary conditions, additional magnon branches
appear within the bulk-band gaps (Fig. 2(c); cf. Ref. [44]). We
distinguish two kinds of gap states: those that connect adjacent

Γ K M Γ
0

3Js

6Js

(a) B ⊥ z, bulk

E
n
er
gy

(m
eV

)

Γ K M Γ

(b) B ‖ z, bulk

Γ 2K 2M Γ

(c) B ‖ z, no periodic boundary conditions

FIG. 2. Dynamical structure factor of a kagome ferromagnet with Dzyaloshinskii-Moriya interaction with periodic (a and b) and with open
(c) boundary conditions [the extended zone scheme is shown in Fig. 1(c)]. A magnetic field is applied in-plane (a) or perpendicular (b and c)
to the two-dimensional cluster. J = 0.3 meV, D = 0.045 meV, B = 0.1 meV, T = 0.01 K, α = 0.001, and N = 14700.
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bulk bands and those that do not. The existence of the latter
is understood from the reduced coordination number at the
edges which causes that the local order parameter may not
point in the direction of the net magnetization; as a result, a
magnon band becomes energetically separated from the bulk
bands. Such an edge magnon is conventional or topologically
trivial: it can be shifted in energy by modifying the exchange
parameters at the edge [14]; in particular, it can be moved into
the bulk-band regime.

More interesting is the first kind of gap states. As shown
previously [12–14,45], the LSWA predicts the bulk bands to be
topologically nontrivial, i.e., their Chern numbers are nonzero.
More precisely, they read ±1, 0, and ∓1 for the bottom, middle
and top band for the chosen exchange parameters (their sign
depends on the sign of D). According to the bulk-boundary
correspondence [14,21,22], the nontrivial topology causes
topological edge magnons that connect adjacent bulk bands.
The winding number of a band gap, which is the sum of all
Chern numbers of the bulk bands below this gap, translates
into the number of topological edge magnons within this gap.
This rule yields one nontrivial edge magnon in each gap
for the present system [12,14]. In contrast to conventional
edge magnons, the topological ones cannot be shifted out of
the band gap by modifying the exchange parameters at the
edge [14].

The above considerations are fully in line with the two
additional modes in each gap, shown in Fig. 2(c). The
topological modes are unidirectionally circulating the sample.
Hence edge states at opposite edges have opposite propagation
direction. Being projected onto the chosen lines in reciprocal
space they appear as (two) bands with opposite group
velocity.

More than two topological states per gap were found in
Ref. [44]. We think this is explained by using DM vectors
with components compliant with the full symmetry of the 3D
system. Comparison with the LSWA is not obvious for such
a setup because the LSWA accounts only for the component
of the DM vectors parallel to the applied magnetic field (here:
z direction). The other components enter via terms of third
order in the magnon operators and cause damping as well as
band broadening [46]. Further theoretical work is suggested to
concur topology and magnon interactions.

B. Spin and heat currents

We now discuss selected results which illustrate the
influence of the cluster size N , the DM interaction D,
the Gilbert damping α, and the temperature T . On top of
that, time-averaged bond thermal currents are addressed with
respect to the origin of nonzero transverse current correlation
functions for D �= 0. We focus on the correlation function of
thermal currents and stress that its discussion applies to the
spin correlation function as well.

1. Current correlation functions

The system size N is important when identifying finite-size
effects. Since 〈J x

th(0)J x
th(0)〉 > 0, the longitudinal correlation

functions are in any case positive at t = 0 [Fig. 3(a)]. A closer
inspection of the correlation function suggests that it decays
on two time scales: a short-time decay (<1 ps) and a long-time
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FIG. 3. Effect of various parameters on (normalized) thermal
current correlation functions. (a) Longitudinal correlation function
for selected cluster sizes N ; T = 0.2 K, α = 0.01, D = 0, J =
0.6 meV, and B = 0.1 meV. (b) Longitudinal correlation function for
selected Gilbert damping parameters α; T = 0.2 K, N = 1200, D =
0, J = 0.6 meV, and B = 0.1 meV. (c) Longitudinal correlation
function for selected temperatures T ; D = 0, α = 0.015, N = 2700,
J = 0.3 meV, and B = 0.1 meV. (d) Transverse correlation function
for selected Dzyaloshinskii-Moriya interactions D. For comparison,
the longitudinal correlation function is plotted (gray dashed line);
T = 0.2 K, α = 0.1, N = 1200, J = 0.6 meV, and B = 0.1 meV.

decay (≈100 ps); the latter exhibits oscillations. Apparently,
the short-time behavior does not depend on N but the long-
time behavior does because the amplitude of the oscillations
decreases for increasing system size. Thus the oscillations are
numerical artifacts that we will analyze in the following.
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The magnon lifetimes are influenced by the Gilbert damp-
ing α: the larger the damping, the faster the current correlation
drops to zero [Fig. 3(b)]. Upon increasing α the oscillations at
large times are reduced. Thus α is a crucial parameter when
quantitatively comparing theory with experiment.

The correlation function of the thermal phonon current
exhibits two decay time scales, too [47]. The fast decay is
attributed to optical and the slow decay to acoustic phonons
[48]. This picture may apply for magnons as well since there
are optical and acoustic magnons contributing to transport.
However, a two-stage decay was observed also in systems
without optical phonon modes [49], which is interpreted in the
context of phonon mean free paths.

We clarify this point by analyzing the temperature de-
pendence of the longitudinal thermal correlation function
[Fig. 3(c)]. Apparently, the long-time decay is strongly reduced
upon increasing the temperature (in particular, for T � 2 K >

Tc), whereas the short-time decay shows minor dependence.
This finding suggests that the magnons in the ferromagnetic
phase (small T ) cause long-time correlation. On the other hand,
the short-time correlation survives even in the paramagnetic
phase. Since the Gilbert damping and the temperature are
related by the stochastic fields bi in the sLLG equation, they
evidently cause similar trends.

Neither damping nor temperature has a strong effect on
the frequency of the long-time oscillations, in contrast to the
exchange parameter J . The comparison of the oscillations
in Figs. 3(a) and 3(c) tells that a decrease of J reduces the
frequency. More precisely, J = 0.6 meV in (a) yields ω ≈
3.31 THz, whereas J = 0.3 meV in (c) gives ω ≈ 1.99 THz.
Both frequencies are about the mean-field Larmor frequencies
ωMF = 4J/�, which read 3.65 THz and ≈1.82 THz, respec-
tively. Notwithstanding, these oscillations cancel out in the
time integration and, hence, are irrelevant for the transport
coefficients (Appendix C).

We conclude that the system size N influences the cor-
relation function in two ways. First, the correlation function
might show oscillations; second, the finite size of the system
causes a residual magnetization at T > Tc. Thus, even in
the paramagnetic phase, the correlation might introduce a
contribution of magnons to the transport. It turned out
that N = 4800, used in all further calculations, is a good
compromise between finite-size effects and computation
time.

Finally, we turn to the transverse current correlation
function that equals zero at all times for D = 0 [red curve in
Fig. 3(d)]. For zero DM interaction, the system’s spectrum is
not gapped and topologically trivial: the Berry curvature van-
ishes and so does the transverse conductivity. Only for D �= 0
a plus/minus feature shows up, whose amplitude increases
with D (blue and green curves). These findings compare
well with those obtained within the LSWA. Compared to
the longitudinal correlation function (gray dashed line), the
transverse correlation function is much smaller. Hence the
transverse transport is less efficient than the longitudinal
one.

Since 〈J x
th(t)J y

th(0)〉 = −〈J y

th(t)J x
th(0)〉, the tensors Ln,m

are antisymmetric. If the sign of D is reversed, the sign
of the transverse correlation function is reversed as well;
consequently, the transverse transport takes place in opposite

FIG. 4. Time-averaged bond thermal currents for D > 0 (a, left)
and D < 0 (b, right). The darker and longer the arrows, the larger
the associated bond current. Only a part of the sample is depicted.
T = 0.8 K, B = 0.5 meV, D/J = ±0.5, and α = 0.015.

direction. This is in line with the observation within the LSWA
that the Chern numbers of the magnon bulk bands are reversed
too [12,13].

2. Currents in real space

In the preceding, we showed that a transverse current
correlation function being nonzero requires a nonzero DM
interaction D. This qualitative difference between transport
with and without DM interaction reveals itself likewise in real
space. The definitions (6) and (8) allow to partition the total
currents into bond currents. While the bond spin current is
already given by Eq. (6), the thermal current (8) is split into
terms of the form −r ik(Aijk − Bijk + Bkji)/2. This definition
relates sites i and k that do not have to be nearest neighbors;
they only need to share a common neighbor j .

The effect of the DM interaction shows up clearly in the
time-averaged bond currents [Fig. 4; only the thermal current
is shown, as it involves the spin current via Jfield

th ; see Eq. (7)].
For D = 0, all bond currents average to zero (not shown)
but for D �= 0 there are currents circulating in the triangles
(greenish arrows) and hexagons (black arrows). The sign of D

determines the orientation of the circulation [arrows in (a) and
(b)]. In thermal equilibrium, the time average of the net current
per hexagon remains zero, so does the net thermal current of
the entire sample.

The circulating current relates currents along the x and the
y directions. This directionality of the bond currents causes a
nonzero transverse correlation for D �= 0. Changing the sign
of D reverses the handedness of the circulation and the sign of
the correlation functions.

Following the interpretation of Refs. [9–11], the circulating
currents are a result of the self-rotation of propagating magnon
wave packets. Their rotation induces angular momentum and
is caused by the Berry curvature which is brought about by
the nonzero DM interaction. Recall that the orbital motion
of electrons generates circulating charge currents, which
is accompanied by a magnetic moment. Analogously, the
self-rotation of magnons (which are charge-neutral) can be
thought of as a circulating spin current, which gives rise to a
polarization charge.

C. Dependence of conductivities on an external magnetic
field and on temperature

Before turning to the dependence of the conductivities on
the temperature and an applied magnetic field B, we recall that
simulations cannot be performed for B = 0, as the net moment
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is not forced to point along the z direction. The derivation
of the spin current, however, relies on a net moment in z

direction [Eq. (6)]; the term Dij (mx
i m

x
j + m

y

i m
y

j ) would give
a nonphysical contribution to the spin current.

For comparison with experiment, we derive conductivities
for 3D samples from the conductivities computed for the 2D
samples. This is achieved by dividing the 2D conductivities by
the spacing c ≈ 0.797 nm of the kagome layers in Cu(1,3-bdc)
[18]. Thereby, the thermal conductivity recovers its usual unit
W/Km. The magnetothermal conductivity is given in units of
meV/K, the magnon number conductivity σ is multiplied by
� in order to obtain the spin conductivity.

1. Longitudinal transport

The longitudinal spin conductivity σxx and the thermal
conductivity κxx are strictly positive [Figs. 5(a)–5(d)]. With
increasing temperature, both conductivities drop [(a) and (c)]
because both the magnetic order and the magnons vanish.
At low temperatures, σxx falls linearly to zero (a) but κxx

approaches a constant (c).
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FIG. 5. Longitudinal conductivities vs temperature (left column)
and applied magnetic field (right column). The spin conductivity
[(a) and (b), top row], the thermal conductivity [(c) and (d), center
row], and the magnetothermal conductivity [(e) and (f), bottom row]
are computed for N = 4800, J = 0.3 meV, D = 0.045 meV, and
α = 0.015.

Concerning the dependence on the magnetic field [(b)
and (d)], both conductivities decay with increasing field
because, loosely speaking, the magnetic field “freezes out”
the magnons. The LSWA predicts an exponential decay for
κxx (Ref. [50]), which is roughly reproduced well below Tc

[T = 0.5 K, red curve in (d)]. Such a trend is also observed
in experiment and utilized to distinguish the spin from the
phonon contribution to transport [20]. The order of magnitude
of κxx (10−2 W/Km) agrees very well with that determined
from experiments [20].

For B �= 0, the magnetic thermopower ξxx (longitudinal
magnetothermal conductivity) is negative [(e) and (f)], which
indicates that the transport is mediated by spin-down particles
(relative to the z direction); within this respect, recall that
each magnon reduces the net magnetization by 1�. ξxx is
proportional to T −1 (e) and B (f), in agreement with Ref. [51].
ξxx tends to zero for B → 0 because the spin and thermal
current are uncorrelated in this case: the contribution −B J s to
the thermal current vanishes.

2. Transverse transport

We now turn to the Hall-type transport properties (Fig. 6).
The order of magnitude of κxy (10−4 W/Km) agrees very well
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FIG. 6. Same as Fig. 5 but for the transverse conductivities. ε =
0.1 was used for the numerical time integration of the transverse
current correlation functions (see Appendix C).
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ALEXANDER MOOK, JÜRGEN HENK, AND INGRID MERTIG PHYSICAL REVIEW B 94, 174444 (2016)

with experimental results [20]. As both the longitudinal and
the transverse thermal conductivity show the correct order of
magnitude, the classical treatment predicts the proper order of
the magnon Hall angle κxy/κxx ≈ 10−2. All of the transverse
conductivities show the same T and B dependence as their
respective longitudinal pendants. The signs of σxy and κxy

“encode” the direction of the transverse current.

3. Low-temperature limit, quantum corrections,
and comparison with experiment

The present approach shares essential features with lattice
molecular-dynamics simulations to access the thermal con-
ductivity of phonons [52]. For both magnons and phonons,
the quantization of energy (and spin) as well as the zero-
point energy are neglected. Furthermore, the Bose-Einstein
distribution is replaced by the Boltzmann distribution. Thus
one may anticipate that the temperature dependencies of the
thermal conductivity in theory and experiment differ at low
temperatures. An example is κ → 0 in the quantum case and
κ → ∞ in the classical case (Ref. [53]).

We find the same situation: T → 0 yields κ → ∞ for
α = 0 and κ → const. for α �= 0 [Figs. 5(c) and 6(c), as
well as Appendix B]. Since the LSWA predicts κ ∝ T 2 in
the low-temperature limit (in three dimensions) [50], which
implies κ → 0 for T → 0, the mismatch is self-evident.
In particular, the Wiedemann-Franz law, which should also
hold for magnon-mediated transport [51] is violated; κ/(σT )
diverges like T −2 for small T .

The very reason for the above disparity is found in the
correlation functions, all of which increase like T 2 for small
T . Thus all of the transport coefficients Ln,m increase like T

[Eq. (3)], implying σ ∼ T , ξ ∼ T −1, and κ ∼ const. for
T → 0. This suggests that the Boltzmann distribution causes
these temperature dependencies because it models the Bose
distribution well at high but poorly at low T .

An established “quantum correction” post-processes the
phonon thermal conductivity computed from molecular dy-
namics simulations [54]. The main idea is to map the classical
system to its quantum-mechanical analog with the same
energy. This mapping allows to renormalize the temperature
scale and thereby recovers κ → 0 for T → 0.

In Ref. [55], the coupling of three-dimensional spin-lattice
dynamics to a quantum heat bath was considered; for pure spin
dynamics, a quantum fluctuation-dissipation ratio is derived
from the magnon dispersion ε(k) and the Bose-Einstein
distribution ρ(ε(k),T ). A new simulation temperature Tsim can
be defined via

kBTsim(T ) = �

(2π )3

∫
BZ

ε(k) ρ(ε(k),T ) d3k (10)

as a function of the actual temperature T ; here, � is the
volume per atom. For a ferromagnet at low T , we can set
ε(k) ∝ k2 and replace the integration over the BZ by an
integration over a sphere, that is,

∫
BZ d3k → ∫∞

0 k2dk. This
yields the rescaling Tsim(T ) ∝ T 5/2, which would yield κ → 0.
However, the global rescaling of the temperature axis does not
change the ratio κ/σ as the correlation functions still increase
with T 2

sim. Thus the Wiedemann-Franz law cannot be recovered
by a mere rescaling of the temperature.

Furthermore, the above correction scheme does not prop-
erly resolve the divergence of the transverse conductivities
since the divergence is not exclusively due to the classical
approximation. A direct application of the Kubo formula
for the transverse thermal conductivity yields a nonphysical
divergence for T → 0 because the temperature gradient drives
besides the transversal heat current in addition circulating
heat currents [56]. The latter are not experimentally accessible
and their “polarization” contributions (Sec. III B 2) have to be
removed. Thus performing a quantum correction that pushes
the thermal conductivity to zero for T = 0 without proper
treatment of the circulating currents seems questionable.
For this reason, we refrain from using any of the quantum
corrections; the classical description leads to a divergence
of the thermal conductivity, which is lifted by the Gilbert
damping but not brought to exactly zero. This is in contrast to
the experimentally determined thermal conductivities reported
in the literature [5,20,25]. Although the strict limit T → 0
cannot be taken in experiments, the trend of the thermal
conductivities is κ → 0, as expected from the LSWA for both
κxx and κxy . The different temperature dependencies become
crucial in particular when the prominent sign change of κxy

with magnetic field and temperature [20] is considered. It is
not captured by the classical treatment.

The preceding raises the question to which minimum
temperature the present approach gives a good approximation.
The usual requirement kBT � �ω for the classical limit cannot
be satisfied in the ferromagnetic phase since Tc is an upper
boundary for T . For Cu(1,3-bdc), both kBTC ≈ 0.155 meV
and �ω ≈ 1 meV indicate that quantum effects may dominate
the transport properties in the entire temperature range up
to Tc. This does also hold for the topological magnon
insulator Lu2V2O7, with kBTC ≈ 6.03 meV (Ref. [5]) and
�ω ≈ 15 meV (Ref. [57]). On top of that, both systems feature
spins with s = �/2 which are far from the classical limit S →
∞. It seems that the TMIs, which show Hall-type magnon
transport are poorly modeled by classical spins, a hardly sur-
prising observation as magnetism is intrinsically of quantum-
mechanical nature. This sets magnons apart from phonons.
In favor of a classical treatment, we want to stress that the
order of magnitude of the thermal conductivity is in very good
agreement with those determined in experiment and that the
existence of the transverse transport phenomena is captured.

IV. CONCLUSION AND OUTLOOK

We demonstrated that atomistic spin dynamics simulations
can capture the transverse transport in topological magnon
insulators. The presented approach grants access to the
complete family of magnon Hall effects and is able to estimate
the correct order of magnitude of the Hall angles. It offers an
additional perspective by means of a classical treatment.

With regard to transverse transport there are several systems
which could be studied by this method. For once, the
topological magnon insulators with honeycomb lattice [23,24]
are of interest since the thermal Hall effect vanishes for a
collinear antiferromagnetic ground state but the magnon spin
Nernst effect persists [58,59]. Second, the method may be
extended to noncollinear spin textures; in particular, skyrmion
crystals are appealing inasmuch as topological Hall effects of
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magnons [60–65] and topological magnon states have been
predicted [66].
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APPENDIX A: SPIN AND THERMAL CURRENTS

With the Hamiltonian

H = 1

2

∑
ij

[−Jij mi · mj + Dij ẑ · (mi × mj )] − B
∑

i

mz
i ,

(A1)

which contains the DM interaction (Dij = −Dji) and an
external magnetic field B along the z direction, the equation
of motion ṁi = −mi × ∂mi

H becomes

ṁi = mi ×
⎡
⎣∑

j∈N(i)

(
Jij mj − Dij mj × ẑ

)+ B ẑ

⎤
⎦ (A2)

(γ = 1 for the sake of clarity). From this equation, we derive
expressions for spin and thermal currents that were used in the
numerical calculations.

1. Spin current

In Eq. (A1), the z component of the total spin is conserved.
Hence, the spin current is defined as

J s =
∑

i

r i(ẑ · ṁi),

which, using Eq. (A2), can be expressed as

J s =
∑

i

r i

∑
j∈N(i)

[
Jij

(
mx

i m
y

j − m
y

i m
x
j

)

+ Dij

(
mx

i m
x
j + m

y

i m
y

j

)]
=
∑
i<j

r ij

[
Jij

(
mx

i m
y

j − m
y

i m
x
j

)
+ Dij

(
mx

i m
x
j + m

y

i m
y

j

)]
︸ ︷︷ ︸

=J i→j
s

with the bond spin current J i→j
s and r ij ≡ r i − rj .

If in-plane components of the DM vectors (more generally:
components orthogonal to the applied magnetic field) would
be included in the Hamiltonian, no component of the total
spin would be conserved and the continuity equation for the
spin would include torques, i.e., sources or sinks of spin. An
additional torque response to a thermal gradient was predicted
in Ref. [33].

2. Thermal current

The energy of the system is conserved and the associated
energy current (thermal current) reads

J th =
∑

i

r i ḣi , (A3)

where

hi = 1

2

∑
j∈N(i)

[−Jij mi · mj + Dij ẑ · (mi × mj )] − B ẑ · mi

(A4)

is the energy of the magnetic moment mi . With Eq. (A2), its
time derivative

ḣi = 1

2

∑
j∈N(i)

[−Jij ṁi · mj − Jij mi · ṁj + Dij ẑ · (ṁi × mj )

+ Dij ẑ · (mi × ṁj )] − B ẑ · ṁi

becomes

ḣi = − B ẑ ·
⎧⎨
⎩mi ×

⎡
⎣∑

j∈N(i)

(Jij mj − Dij mj × ẑ) + B ẑ

⎤
⎦
⎫⎬
⎭− 1

2

∑
j∈N(i)

Jij

⎧⎨
⎩mi ×

⎡
⎣∑

k∈N(i)

(Jikmk − Dikmk × ẑ) + B ẑ

⎤
⎦
⎫⎬
⎭ · mj

− 1

2

∑
j∈N(i)

Jij mi ·
⎧⎨
⎩mj ×

⎡
⎣∑

l∈N(j )

(Jjlml − Djlml × ẑ) + B ẑ

⎤
⎦
⎫⎬
⎭

+ 1

2

∑
j∈N(i)

Dij ẑ ·
⎛
⎝
⎧⎨
⎩mi ×

⎡
⎣∑

k∈N(i)

(Jikmk − Dikmk × ẑ) + B ẑ

⎤
⎦
⎫⎬
⎭× mj

⎞
⎠

+ 1

2

∑
j∈N(i)

Dij ẑ ·
⎛
⎝mi ×

⎧⎨
⎩mj ×

⎡
⎣∑

l∈N(j )

(Jjlml − Djlml × ẑ) + B ẑ

⎤
⎦
⎫⎬
⎭
⎞
⎠. (A5)

Next, we inspect terms which include
∑

j∈N(i) and
∑

k∈N(i), namely,

−
∑

j∈N(i)

∑
k∈N(i)

Jij {[mi × (Jikmk − Dikmk × ẑ)] · mj }
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and ∑
j∈N(i)

∑
k∈N(i)

Dij ẑ · {[mi × (Jikmk − Dikmk × ẑ)] × mj }.

The contributions from pairs (j,k) and (k,j ) cancel each other, which is evident by writing

−
∑

j∈N(i)

∑
k∈N(i)

[JijJikmj · (mi × mk) − DikDij ẑ · (mj × mk)(mi · ẑ)

− JijDik(mj × mi) · (mk × ẑ) + JikDij (mk × mi) · (mj × ẑ)].

The first and second terms are antisymmetric upon exchange of j and k, the third and fourth terms are each other’s negative
under the aforementioned index exchange.

The remaining terms in Eq. (A5) are grouped with respect to the kinds of energy (the Heisenberg exchange J , DM interaction
D, and external magnetic field B),

ḣi = ḣ
(JJ )
i + ḣ

(JD)
i + ḣ

(DD)
i + ḣ

(JB)
i + ḣ

(DB)
i ,

with

ḣ
(JJ )
i = − 1

2

∑
j∈N(i)

∑
l∈N(j )

JijJjlmi · (mj × ml),

ḣ
(JD)
i = + 1

2

∑
j∈N(i)

∑
l∈N(j )

{JijDjlmi · [mj × (ml × ẑ)] + JjlDij ẑ · [mi × (mj × ml)]},

ḣ
(DD)
i = − 1

2

∑
j∈N(i)

∑
l∈N(j )

DijDjl ẑ · [mi × (mj × {ml × ẑ})],

ḣ
(DB)
i = + 1

2

∑
j∈N(i)

BDij ẑ · [(mi × ẑ) × mj ] + 1

2

∑
j∈N(i)

BDij ẑ · [mi × (mj × ẑ)] +
∑

j∈N(i)

BDij ẑ · [mi × (mj × ẑ)],

ḣ
(JB)
i = −

∑
j∈N(i)

JijB ẑ · (mi × mj ) − 1

2

∑
j∈N(i)

JijBmj · (mi × ẑ) − 1

2

∑
j∈N(i)

JijBmi · (mj × ẑ).

These terms are simplified now one by one.

With the spin chirality χijl ≡ mi · (mj × ml), it follows:

ḣ
(JJ )
i = −1

2

∑
j∈N(i)

∑
l∈N(j )

JijJjlχij l .

Note that χijl = χjli = χlij = −χjil = −χilj = −χlji .
Using a · [b × (c × d)] = (a × b) · (c × d), one obtains

ḣ
(JD)
i = +1

2

∑
j∈N(i)

∑
l∈N(j )

[JijDjlξij l + JjlDij ξlj i],

where ξij l ≡ (mi × mj ) · (ml × ẑ). Note that ξij l = −ξjil .
ḣ

(DB)
i is rewritten as

ḣ
(DB)
i = −

∑
j∈N(i)

BDij

(
mx

jm
x
i + m

y

jm
y

i

)
.

A similar form is found for

ḣ
(JB)
i = −

∑
j∈N(i)

JijB
(
mx

i m
y

j − m
y

i m
x
j

)
.

One might be tempted to neglect ḣ
(DD)
i since it is second

order in the DM interaction and often D � J . However, we
account for this contribution as well. Making use of

ψijl ≡ ẑ · [mi × (mj × {ml × ẑ})] = ẑ · (mi × ml)(mj · ẑ),

we obtain

ḣ
(DD)
i = −1

2

∑
j∈N(i)

∑
l∈N(j )

DijDjlψijl .

Note that ψijl = −ψlji .
Returning to the definition (A3) and plugging in the time

derivatives of the local energy, we arrive at

J th =
∑

i

r i

(
ḣ

(JB)
i + ḣ

(DB)
i

)
︸ ︷︷ ︸

=Jfield
th

+
∑

i

r i

(
ḣ

(JJ )
i + ḣ

(JD)
i + ḣ

(DD)
i

)
︸ ︷︷ ︸

=J inter
th

.

The term

Jfield
th = −B

∑
i<j

J i→j
s (A6)

involves the magnetic field and is the origin of magnetothermal
coupling which generates a magnetic analog of the Seebeck
effect.
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Replacing the index l by k recasts the interaction contribu-
tion

J inter
th =−1

2

∑
i

r i

∑
j∈N(i)

∑
k∈N(j )

(JijJjkχijk − JijDjkξijk

− DijJjkξkji + DijDjkψijk)

= −1

2

∑
i

r i

∑
j∈N(i)

∑
k∈N(j )

(Aijk − Bijk + Bkji),

where

Aijk ≡ JijJjkχijk + DijDjkψijk,

(Aijk = −Akji) and

Bijk ≡ JijDjkξijk.

Each triple {i,j,k} of spins contributes

r ik(Aijk − Bijk + Bkji)

+ rji(Ajki − Bjki + Bikj )

+ rkj (Akij − Bkij + Bjik)

to the thermal current. Defining

J i→j→k

th ≡ r ik

(
Aijk − Bijk + Bkji

)
,

the interaction contribution reads

J inter
th = −1

2

∑
	ijk

(
J i→j→k

th + J j→k→i

th + Jk→i→j

th

)
︸ ︷︷ ︸

≡J ijk

th

,

where the summation is over each triple of spins without
double counting. J ijk

th can be understood as a plaquette thermal
current.

APPENDIX B: EFFECT OF GILBERT DAMPING ON
THERMAL CONDUCTIVITIES

As discussed in Sec. II C, there are two strategies to evaluate
the ensemble averages. Strategy 1 relies on the Hamilton
dynamics and can be understood as intrinsic since only
magnon-magnon interactions are considered. In contrast, the
extrinsic strategy 2 includes in addition the coupling of the
magnons to external baths; the interactions with the other
quasiparticles are modeled by the Gilbert damping.

To compare both strategies, we address the thermal con-
ductivity

κ = 1

kBT 2

∫ ∞

0
lim

N→∞
1

Na
〈Jth(t)Jth(0)〉dt

for B = 0 of a chain of ferromagnetically coupled spins
(Refs. [39,40]; lattice constant a). We simulated a chain of N =
500 spins coupled by J = 1 meV. For strategy 1, the average is
performed over 4000 ensembles, for strategy 2, the integration
over time was performed for up to 42 ns. The computed
thermal current correlation functions are approximated well
by an exponential, b exp(−t/τ ); thus, κ = bτL/(NkBT 2).

For the intrinsic strategy 1, κ diverges in the limit T → 0
(black line in Fig. 7; note the double-logarithmic scale), in
agreement with Ref. [39]. This divergence is removed if a

10−2 10−1 100 101
10−3

10−2

10−1

100

101
α = 0

α = 10−3

α = 10−2

α = 10−1

T (K)

κ
/κ

0

T− 5
2

FIG. 7. Thermal conductivities of a chain of ferromagnetically
coupled spins for B = 0 vs temperature for selected Gilbert damping
constants α. Data are normalized to κ0 ≡ κ(0.01 K) for α = 10−3.

nonzero Gilbert damping α is introduced (strategy 2), no
matter how small (colored lines). The thermal conductivity
in the low-temperature regime increases approximately by
one order of magnitude when α is decreased by one order
of magnitude. At high temperatures, the conductivities behave
like T −5/2 (gray dashed line). We note in passing that the
thermal conductivities shown here are similar to those in
Ref. [40] for a chain with disorder. An exception is that we
find κ → const. for T → 0, whereas κ → 0 in Ref. [40]; the
latter recovers the Wiedemann-Franz law of magnon transport
[51].

APPENDIX C: NUMERICAL INTEGRATION
OF CURRENT CORRELATION FUNCTIONS

As a short-hand notation, we define Cμν(t) ≡ 〈Jμ(t)J ν(0)〉
(μ,ν = x,y) and drop the index that differentiates between
spin (s) and heat (th). The longitudinal correlation functions
(μ = ν) decay on two time scales (Sec. III B), which lends to

10−3 10−2 10−1 tc

0

0.5

1

t (ps)

R

FIG. 8. Determination of the cut-off time tc. Quality measure R

(black curve) vs time for the transverse thermal-current correlation
functions (red and blue curves; not true to scale) with a given error ε =
0.1. The gray area (t > tc) is excluded from the numerical integration.
J = 0.3 meV, D = 0.045 meV, T = 0.1 K, B = 0.1 meV, and N =
300.
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approximate

Cμμ(t) ≈ a1 exp

(
− t

τ1

)
+ a2 exp

(
− t

τ2

)
,

whose integral from time t = 0 to ∞ is evaluated analytically.
The parameters a1, a2, τ1, and τ2 are determined by a
least-squares fit to the numerical data. Such a procedure
is quite common in analyses of thermal conductivities of
phonons [49].

In contrast to the longitudinal correlation function, the
transverse correlation functions are integrated directly. The
relation Cxy(t) = −Cyx(t) is not strictly fulfilled in the num-
erical computations, in particular at large times t . Hence
we introduce a measure for the numerical quality of the
computed correlation functions, from which a cutoff time tc is

deduced. With

E(f (x),g(x)) ≡ − 2f (x)g(x)

[f (x)]2 + [g(x)]2
,

we define this measure by

R(t) ≡ 1

4

∣∣∣∣E
(

Ċxy(t)

Cxy(t)
,
Ċyx(t)

Cyx(t)

)
+ E(Ċxy(t),Ċyx(t))

+ E(Cxy(t),Cyx(t)) − 1

∣∣∣∣
(0 � R(t) � 1). Ideally, R(t) = 0. The integration of the
correlation function is then performed numerically from t = 0
up to tc, with tc being the shortest time for which R(tc) > ε.
ε > 0 determines the error of the computed nondiagonal
elements. This procedure is visualized in Fig. 8.
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5. Publications

5.4.2. Magnon transport in noncollinear spin textures: Anisotropies and topological
magnon Hall effects

With the advantages and disadvantages of the novel approach analyzed for an established topological magnon
insulator, a different spin Hamiltonian was turned to. Here, the J1-J3 model on a triangular lattice was studied,
whose ground state is not ferromagnetic but a spin spiral phase (confer Sec. 2.3). Importantly, thermal fluctuations
stabilize a skyrmion crystal phase (confer Sec. 4.2.2), which exhibits the family of topological magnon Hall effects
(confer Sec. 3.4.2). This phase does not “survive” down to zero temperature and, thus, cannot be treated by the
linear spin-wave approximation.

While previous work on the topological Hall effect of magnons (see Refs. [147–149]) considered chiral skyrmion
crystals, that is, the skyrmions possess a fixed handedness due to DMI, nonchiral skyrmions were studied here.
They are originated by frustration (due to antiferromagnetic exchange on a triangular lattice as explained in
Sec. 2.3), which cannot be modeled in the continuum approach to magnetism. In this regard, the present case
is the “purest” of the topological magnon Hall effects, because they are solely due to the topological charge of
the self-generated magnetic texture, and are not superimposed by a spin-orbit contribution due to DMI [128].
Furthermore, exchange frustration allows for very small skyrmions (down to about three lattice constants), which—
for DMI-induced skyrmions—could only be formed for unphysically strong DMI. Thus, the considered model
grants access to a limit which has not been considered before.

It is demonstrated that the atomistic spin dynamics approach to magnon transport can be successfully applied
to noncollinear magnetic textures, exemplified by a spin spiral and skyrmion crystal. For the spin spiral, a large
anisotropy in the longitudinal transport associated with magnon propagation along and across the wave fronts
of the spiral was identified. When the external magnetic field is increased, a magnetic phase transition to the
skyrmion crystal phase is observed and the anisotropy in the longitudinal transport vanishes. Instead, nonzero
transverse-current correlation functions are observed, indicating transverse transport, which is in qualitative
agreement with the magnon electrodynamics (Sec. 3.4.2). Both the longitudinal anisotropy in the spin spiral
phase and the thermal Hall angle in the skyrmion crystal phase were studied in dependence on the spiral’s pitch
(skyrmion size). The optimal skyrmion size for maximizing the topological thermal magnon Hall angle was
identified. The latter can be orders of magnitude larger than in the case of the topological magnon insulator on the
kagome lattice, which was studied in the previous publication.
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We analyze signatures of noncollinear spin textures in the magnon transport of both spin and heat by means
of atomistic spin dynamics. The influence of the spin texture is demonstrated for a spin spiral and for a
skyrmion lattice on a frustrated antiferromagnet. Spin spirals show an anisotropy in the longitudinal transport,
whereas skyrmion lattices exhibit transverse transport, which is interpreted in terms of topology and establishes
skyrmion-induced versions of magnon Hall effects. The conductivities depend sensitively on the spiral pitch and
on the skyrmion size; we predict magnon Hall angles as large as 60%.

DOI: 10.1103/PhysRevB.95.020401

Introduction. Skyrmions are particle-like magnetic textures
with nontrivial winding [1,2]; they are frequently featured in
today’s condensed matter research because they produce a
topological contribution to the Hall effect of electrons [3] or
magnons [4–8]. In the case of magnons, a transverse thermal
current J th is predicted upon application of a temperature
gradient ∇T to a skyrmion crystal (SkX) phase [4,5]. This
“topological magnon Hall effect” (TMHE) or “topological
magnon Righi-Leduc effect” is solely due to the topological
charge

w = 1

4π

∫
n(r) · [∂xn(r) × ∂yn(r)]d2r (1)

of the magnetic texture n(r). The TMHE has three relatives
since magnons do not only carry heat but also spin: the
“topological magnon spin Nernst effect” (TMSNE) comprises
a transverse spin current J s due to an applied temperature
gradient; its Onsager reciprocal is the “topological magnon
spin Ettingshausen effect” (TMSEE). If the spin current is
generated by a magnetic field gradient ∇B [9] the term
“topological magnon spin Hall effect” (TMSHE) applies.
Combined, they form the family of topological magnon Hall
effects (Table I). The “topological” effects originate from the
self-generated magnetic texture rather than from spin-orbit
interactions which explicitly enter the Hamiltonian (this is
the case for the “nontopological” magnon Hall effects on,
for example, the ferromagnetic kagome or pyrochlore lattices
[10–13]).

Linear response theory captures these effects by coupling
the gradients (forces) to the current densities,(

j s

j th

)
=

(
Ls,s Ls,th

Lth,s Lth,th

)( ∇B

−∇T/T

)
. (2)

The generalized transport coefficients, i.e., the tensors Lm,n

(m,n = s,th), define the spin conductivity σ ≡ Ls,s, the mag-
netothermal conductivity ξ ≡ T −1L−1

s,s Ls,th, and the thermal
conductivity κ ≡ T −1(Lth,th − Ls,thL

−1
s,s Ls,th) at temperature

T . For a two-dimensional (2D) sample, the conductivities
are 2 × 2 tensors. The TMHE, TMSNE, and TMSHE are
quantified by σxy , ξxy , and κxy , respectively.

In this Rapid Communication, we identify signatures of
noncollinear spin textures in the magnon transport by means
of atomistic spin dynamics, focusing on spin spirals (Sp2)

and skyrmion lattices. The conductivities are evaluated as
time integrals of current correlation functions (CCFs) in the
Kubo formula [14]. We generalize the approach reported in
Refs. [15,16] to a 2D frustrated magnet on a triangular lattice
which exhibits a Sp2 ground state; it features a helicity-
degenerate SkX phase stabilized by an external magnetic field
and by thermal fluctuations.

The longitudinal conductivities in the Sp2 phase reveal a
strong anisotropy due to the broken rotational symmetry of the
lattice. Furthermore, the transverse conductivities in the SkX
phase are finite, which proves the existence of the topological
Hall effects of magnons. Both phenomena are studied in
dependence on the strength of an external magnetic field
and on the spiral pitch which mediates between the collinear
ferromagnetic and an antiferromagnetic phase; magnon Hall
angles as large as 60% are predicted. Our results call for
experimental verification.

Theoretical aspects. We focus on noncollinear magnetic
textures induced by frustrations and described within a 2D
classical Heisenberg model. Its Hamiltonian

H =
∑

i

hi, hi = −Bnz
i − 1

2

∑
j∈N(i)

Jij ni · nj , (3)

includes the isotropic symmetric exchange (Jij ) and the
Zeeman energy due to a magnetic field B = B ẑ applied
orthogonal to the lattice (in the xy plane). N (i) is the set of all
interacting neighbors of spin ni (ni unit vector at position r i).
The conservation of both the z component of the total spin and
the energy allows us to formulate corresponding continuity
equations and currents [17]: the total spin current J s ≡∑

i r i∂nz
i /∂t and the total thermal current J th ≡ ∑

i r i∂hi/∂t .
Using ṅi = −γ ni × ∂H/∂ni (γ gyromagnetic ratio) with
∂H/∂ni = −B ẑ − ∑

j∈N(i) Jij nj , these currents read

J s = γ
∑
i<j

Jij r ij ẑ · (ni × nj ), (4)

J th = −B J s − γ
∑
�ijk

χijk

2
[JijJjk r ik + JjkJki rji

+ JkiJij rkj ] (5)

with the spin chirality χijk ≡ ni · (nj × nk) and r ij ≡ r i − rj .
The summation

∑
i<j (

∑
�ijk

) is over each pair (triple) of spins

2469-9950/2017/95(2)/020401(5) 020401-1 ©2017 American Physical Society
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TABLE I. Family of topological magnon Hall effects. For the
nomenclature, see the text.

transverse response

force spin current heat current

∇B TMSHE TMSEE
∇T TMSNE TMHE

without double counting. The term −B J s of J th describes the
coupling of the spin current to the magnetic field; it gives rise
to the magnetothermal conductivity, i.e., the magnetic analog
of the thermopower.

In Ref. [18], the Hamiltonian (3) was applied to frustrated
spins on a triangular lattice, brought about by positive nearest
(J1 >0) and negative third-nearest neighbor couplings (J3 <0).
As long as −4 < J1/J3 < 0, the ground state is a spin spi-
ral with ordering vector |q| = 2 acos[(1 + √

1 − 2J1/J3)/4]
(lattice constant set to unity) along any of the three third-
nearest neighbor directions. The magnetic phase diagram
(spanned by T and B) contains besides this single-q (Sp2)
phase coherent superpositions of two (double-q) and three
(SkX, triple-q) spin spirals. Since Dzyaloshinskii-Moriya
interaction (DMI) [19,20] is absent, the spin texture lacks
a fixed handedness; in particular, the SkX phase is both
helicity- and vorticity-degenerate; i.e., w = 1 and w = −1
are equally likely. Yet, once a spin configuration is randomly
chosen, an energy barrier separates the topologically opposite
configurations.

Transport properties are studied by means of the classical
Kubo formula of linear response theory [14],

Lμν
m,n =

∫ ∞

0

1

AkBT

[
Cμν

m,n(t) − 〈
Jμ

m (∞)J ν
n (0)

〉]
dt ; (6)

m,n = s,th, and μ,ν = x,y; A and kB are the sample’s area and
the Boltzmann constant, respectively. 〈Jμ

m (∞)J ν
n (0)〉 has to be

subtracted from the CCF C
μν
m,n(t) = 〈Jμ

m (t)J ν
n (0)〉 to account

for those CCFs that do not drop to zero because of a persistent
contribution caused by noncollinear magnetic textures [21,22].
For example, a Sp2 would yield a finite J s even without thermal
excitations [cf. Eq. (4)].

After thermalizing (annealing) a spin cluster by Monte
Carlo simulations, the ensemble average 〈·〉 in Eq. (6) is
evaluated as a time average. The time evolution obeys the
stochastic Landau-Lifshitz-Gilbert equation [23]

(1 + α2)dni = −(1 + αni×)[ni × (Bidτ + DdW i)]. (7)

The precession of each moment about its effective field
Bi = −∂H/∂ni is damped. The Gilbert damping α is in
general a nonlocal and symmetric 3 × 3 tensor but assumed
here as a scalar. This approximation disregards the anisotropy
of the damping due to the noncollinearity of the magnetic
texture [24,25], and, thus, becomes better the smaller |q|.
As domain wall velocities decrease by texture-induced damp-
ing [26], the present method presumably overestimates the
conductivities; hence, we address mainly Hall angles rather
than conductivities.

Temperature is included by an additional white-noise field
bi with DdW i = bidτ , where W i is an isotropic vector
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FIG. 1. Topological charge w per skyrmion for λ = 4 versus
external magnetic field B. A topological phase transition from the Sp2

phase to the SkX phase takes place at B ≈ 1 meV. Insets show the
respective static structure factor in the structural Brillouin zone. J1 =
1.171572875 meV, J3 = −1 meV, T = 3 K, and N × N = 1600.

Wiener process and D2 = 2αkBT/(2μBBref) a dimensionless
diffusion constant (μB Bohr’s magneton). Bref is a reference
field determining the scale of dimensionless time τ . For the
numerical integration an implicit midpoint method is used.

The spin cluster is evolved according to Eq. (7); the
currents J s and J th are evaluated and stored at each time
step. Subsequently, the correlation functions and, finally, the
transport tensors are calculated. The numerical computations
showed that a total integration time of 20 ns up to 64 ns, used
for all results presented below, is sufficient to converge the
correlation functions.

Results and discussion. This Rapid Communication focuses
on differences between the Sp2 and the SkX phases. Relying on
finite clusters, the magnetic texture has to be commensurate:
the ratio J1/J3 is chosen such that the skyrmion lattice
fits exactly. For a pitch λ = 2π/|q| of the Sp2, 3N2/(4λ2)
skyrmions fit into an N × N triangular lattice. The skyrmion
lattice vectors are rotated by π/6 with respect to the structural
lattice vectors and are larger by a factor of 2λ/

√
3.

Since the Sp2 is the ground state and the SkX phase
requires elevated temperatures and a finite magnetic field B,
the magnetic phase diagram is traversed by varying B at a
given T (Fig. 1). For λ = 4, the SkX phase is formed for
B � 1 meV; larger skyrmions would require smaller critical
fields. Due to thermal fluctuations and the quite small size
of the skyrmions, the computed topological charge w is
underestimated (≈0.8 instead of 1). The static structure factor
〈n∗(k) · n(k)〉 [n(k) lattice Fourier transform of the magnetic
texture] retrieves the ordering vectors: a single pair of ordering
vectors (two spots) for the Sp2 phase and three pairs (six
spots) in the SkX phase (the central, seventh spot belongs
to the ferromagnetic contribution). A further increase of B

leads to the double-q phase and, finally, to the field-polarized
phase [18] (not shown).

Concerning transport, we focus on the thermal CCF and
note that the following discussion is qualitatively valid for
the other CCFs, too. The Sp2 breaks the sixfold structural
rotational symmetry about the z axis. We consider samples
with q along the x axis to facilitate the discussion. This
broken symmetry yields Cxx

th,th �= C
yy

th,th [red and blue curves
as well as vertical arrow in Fig. 2(a)]. Since C

xy

th,th = C
yx

th,th = 0
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FIG. 2. Time dependence of the longitudinal (blue: Cxx
th,th, red:

C
yy

th,th) and transverse (green: C
xy

th,th, brown: C
yx

th,th) thermal current
correlation functions in the Sp2 (a) and in the SkX phase (b). The
CCFs are normalized to their value at t = 0. Vertical arrows indicate
signatures unique to the respective magnetic phase. Parameters as
in Fig. 1 with B = 0.6 meV and B = 1.2 meV in the Sp2 and SkX
phase, respectively.

(green and brown curves) there is no transverse transport [27].
Furthermore, the longitudinal spin correlation function along
q does not drop to zero (not shown) since the Sp2 introduces
a persistent contribution to the microscopic currents which is
removed to determine the true transport [Eq. (6)].

The SkX phase maintains Cxx
th,th = C

yy

th,th because the ro-
tational symmetry of the triangular lattice is not broken
[Fig. 2(b)]. Most notably, the off-diagonal part of the transport
tensor is antisymmetric and nonzero [Cxy

th,th = −C
yx

th,th �= 0;
green and brown curves as well as vertical arrow in Fig. 2(b)]
which indicates transverse transport.

The above signatures due to the magnetic textures—Cxx
th,th �=

C
yy

th,th and C
xy

th,th = C
yx

th,th = 0 for the Sp2 but Cxx
th,th = C

yy

th,th

and C
xy

th,th = −C
yx

th,th �= 0 for the SkX—show up also in the
dependence of the conductivities on the external magnetic field
(Fig. 3). σμμ and κμμ [red and blue symbols, respectively, in
Figs. 3(a) and 3(c)] are positive. ξμμ being negative (b) implies
that the transport is dominated by spin-down particles (relative
to B), which is readily understood by the magnons having
largely spin antiparallel to the net magnetization which itself
is along B.

In the Sp2 phase (B � 1 meV), σxx > σyy [red and blue
symbols, respectively, and vertical arrow in (a)] translates to
|ξxx | < |ξyy | [see (b)] since ξ = T −1σ−1Ls,th. This relation,
although less prominent, is “transferred” to κxx < κyy [see
(c)]. Thus, we conclude that thermal and spin transport are
differently influenced: thermal transport along the ordering
vector q is less efficient than perpendicular to it, whereas the
opposite holds for spin transport.

This anisotropy is lost (red and blue curves coincide)
once the SkX phase is reached (B � 1 meV). The transverse
conductivities (green and brown symbols in Fig. 3), which are
approximately zero within the Sp2 phase, take on small but
nonzero values. They are antisymmetric; that is, an xy and a
yx element differ in sign but not in modulus. Thus, all of the
transverse transport phenomena mentioned above are present.

Longitudinal transport does not depend on whether a
skyrmion (w > 0) or an antiskyrmion lattice (w < 0) is formed
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FIG. 3. Spin conductivity σμν (a), magnetothermal conductivity
ξμν (b), and thermal conductivity κμν (c) versus external magnetic
field for λ = 4 (μ,ν = x,y). Parameters as in Fig. 1, Gilbert damping
α = 0.05, σ multiplied by �. Lines are guides to the eye; vertical
arrows indicate signatures unique to the respective magnetic phase.

during annealing. However, the sign of w determines the sign
of the transverse CCFs and of the transverse conductivities.
This feature is explained by the “emergent electrodynamics”
of magnons, originally derived for electrons [3]. A local coor-
dinate transformation to the reference frame of the skyrmion
texture recasts Eq. (7) to look formally like an equation
describing charged particles in (fictitious) electromagnetic
fields [4,5,28,29]. In particular, an emergent magnetic field
Bem along the z direction is identified, which contains the
local contribution to w [Eq. (1)]. Inversion of w inverts Bem,
the emergent Lorentz force, and, consequently, the transverse
transport direction.

Restricting ourselves to samples with w > 0, we discuss
the effect of the pitch λ on both the transport anisotropy—
quantified by κxx/κyy—in the Sp2 phase and on the magnon
Hall transport in the SkX phase. The stabilization of large
skyrmions requires different exchange parameters, tempera-
tures, and magnetic fields. This implies that a direct compar-
ison of transverse conductivities is barely meaningful. There-
fore, we focus on the (thermal) magnon Hall angle κxy/κxx

because it is accessed easily in experiments [11,30,31]; its
discussion applies also to the other conductivities.
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FIG. 4. (a) Longitudinal transport anisotropy κxx/κyy in the Sp2

phase. The ordering vector is along the x direction. (b) Magnon
Hall angle κxy/κxx in the SkX phase versus J1/J3 (J1 > 0). Three
magnetic phases are indicated: collinear ferromagnetic phase (blue,
“ferro”), Sp2/SkX phase (red), and the antiferromagnetic phase
(green, “antiferro”). For −4 < J1/J3 < 0 the ratio J1/J3 translates
into the Sp2 pitch λ and the corresponding skyrmion size. Cluster sizes
were chosen such that the magnetic textures are commensurate. B and
T had to be varied for the formation of the SkX phase; α = 0.05. For
the Sp2 phase the magnetic field is half as large as in the SkX phase.

For the variation of the magnetic texture two limits have
to be noted: (i) λ decreases for J1/J3 ↗ 0 until it is so small
that the spatial frequency of the lattice sites is too small to
sample the Sp2, and an antiferromagnetic phase is formed; and
(ii) λ increases for J1/J3 ↘ −4 up to infinity, which generates
a collinear ferromagnetic order for J1/J3 � −4.

Neither the ferromagnetic nor the antiferromagnetic phase
breaks the structural symmetry of the triangular lattice;
therefore, κxx/κyy = 1 is found [Fig. 4(a)]. Only within the
Sp2 phase (−4 < J1/J3 < 0) an anisotropy of up to ≈0.7 is
identified and reached at λ = 4 ∼ 5.

While the magnon Hall angle κxy/κxx is zero in
the (collinear) ferromagnetic and antiferromagnetic phases
[Fig. 4(b)], it is negative in the SkX phase, showing a
minimum of about −60% at λ = 5 ∼ 6.5. Its absolute value
is much larger than in systems showing the (nontopological)
MHE (ferromagnetic kagome lattice: ≈10−2 [12,13,31,32];
pyrochlore lattice: ≈10−3 [11,30]). The increase of |κxy/κxx |
with decreasing λ down to λ ≈ 6 is explained by the increasing

skyrmion density (decreased skyrmion size) and the increasing
density of Bem (the same trend is found for electrons [33]). Al-
though the skyrmion density increases as J1/J3 ↗ 0 (further
decrease of λ), the Hall angle drops to zero, which we attribute
to the quite coarse sampling underestimating w and Bem.

Concerning the temperature dependence of the conduc-
tivities, we recall that the spins are treated classically: spin
and energy are not quantized; the Boltzmann distribution is
used. This ansatz is “borrowed” from molecular dynamics
simulations [34] for the evaluation of the phonon thermal
conductivity; one of its drawbacks is that κ diverges for
T → 0 [35]. Ad hoc “quantum corrections” restore the limit
κ → 0 [37] and could be implemented here as well. However,
care has to be taken for κxy ; it diverges not alone because of
the classical treatment but also because a direct application
of the Kubo formula yields a nonphysical divergence for
T → 0. The latter is attributed to circulating heat currents [38]
which are not experimentally observable, so their contribution
has to be removed. Hence, “quantum corrections” without
proper removal of circulating currents appear questionable
but have to be applied for models which feature a SkX
phase at T = 0 [39,40]; in the present case, which requires
elevated temperatures, quantum corrections are not necessary.
In particular, we point out that our numerical results obey
Onsager’s reciprocity relation.

Outlook. The identified signatures of the noncollinear
magnetic textures in the magnon transport of spin and heat
are accessible in experiments. The magnon spin Hall effect or
the magnon spin Nernst effect require measuring spin currents,
using the inverse spin Hall effect [41].

To measure the transverse thermal conductivity, we suggest
an electrically insulating material that exhibits a spin spiral
as ground state and which features a SkX phase at an
elevated external magnetic field; examples are Cu2OSeO3 [42]
and BaFe1−x−0.05ScxMg0.05O19 [43], both of which show
SkX phases induced by DMI rather than by frustration.
Nonetheless, when traversing the phase boundary between
the Sp2 and the SkX phase by increasing the magnetic field,
the longitudinal transport anisotropy should abruptly vanish
and transverse thermal transport should set in [Fig. 3(c)].
For small skyrmions, magnon Hall angles are expected
orders of magnitudes larger than in systems showing the
(nontopological) MHE [11,30,31].

It is conceivable to extend the numerical method to three
dimensions and to include magnetocrystalline anisotropies.
Taking into count the DMI would allow us to ap-
ply the approach to topological magnon insulators [10–
13,31,32,44–52] and to DMI-induced SkX phases exhibit-
ing an additional spin-orbit contribution to the transverse
conductivities [4].
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CHAPTER 6
CONCLUSION AND OUTLOOK

In the course of this thesis fundamental topological properties of magnon spectra and the associated transverse
transport phenomena were theoretically studied. Topological invariants calculated within the framework of linear
spin-wave theory revealed the magnon band structures to be topologically nontrivial. This led to the identification
of several magnonic pendants of electronic topological materials. Moreover, atomistic spin dynamics simulations
were used to study longitudinal and transverse magnon transport in topological magnon insulators and skyrmion
lattices.

With respect to the issues raised in the introduction (Sec. 1), the following conclusions can be drawn.

B The study of a ferromagnetic “topological magnon insulator” on the two-dimensional kagome lattice showed
that a topological phase transition as well as a variation of temperature can lead to a sign change of the
transverse thermal conductivity. Since the Bose-Einstein distribution function makes all states contribute
to transport, the relative population of states contributing positively and negatively to the transverse
conductivity determines its sign. For example, a sign change with temperature was found experimentally in
Cu(1,3-benzenedicarboxylate) [185].

The bulk-boundary correspondence was exemplarily studied for different Chern-insulator phases of the
kagome topological magnon insulator. Unidirectional topologically protected magnon edge states were
identified. They might be used as “magnon highways” in magnonic devices: an external excitation by a
terahertz frequency within the magnon band gap will exclusively excite the topologically protected boundary
states, which can only propagate in one direction. Thus, information is carried along the edge and the
lifetime of the topological magnons determines the range of information transmission.

The theory of “topological magnon (Chern) insulators” can be generalized to nonferromagnetic phases as,
for instance, noncoplanar phases [27, 90] and skyrmion lattices [186]. One of the most interesting open
questions is that concerning the magnonic pendant to Z2 topological insulators. Since a pseudo-Kramers
degeneracy is mandatory, Néel-ordered antiferromagnets appear promising: the combined symmetry of spin
reversal and sublattice exchange leads to a two-fold band degeneracy associated with magnons of opposite
spin. The associated helical magnon edge states, whose propagation direction is locked to the spin, would
allow for a pure edge spin current, because there is zero net magnon flow.

B By generalizing the classification of topological magnon materials to three dimensions, Lu2V2O7 and other
ferromagnetic pyrochlore oxides were predicted to be “topological magnon Weyl semimetals”. They feature
zero-dimensional band touchings, i. e., Weyl points, and magnon surface arcs, both of which can be rotated
in reciprocal space by an external magnetic field. Inelastic neutron scattering experiments were suggested
for the experimental verification.

For the future and concerning transport, it appears to be of great interest to study the external excitation
of the Weyl magnons by a terahertz frequency. The electronic negative longitudinal magnetoresistance
of electrons might have a magnonic relative, if a considerable Weyl magnon population can be ensured.
Moreover, the search for ferromagnetic “magnon nodal-line semimetals”, which were predicted here, should
be focused on materials with negligible spin-orbit interaction and a non-Bravais crystal structure. A transport
signature of nodal-line magnons is yet to be found.

B To evaluate magnon transport beyond the limit of low temperatures, a novel method was developed, which
is based on the Kubo formula and atomistic spin dynamics simulations. It naturally includes all orders
of magnon-magnon interactions and avoids the spin-boson transformation, and the calculation of a Berry
curvature. It was applied to the ferromagnetic topological magnon insulator Cu(1,3-benzenedicarboxylate);
the numerically determined thermal Hall angle was of the same order of magnitude as that found in
experiments. Furthermore, this method was utilized to study the magnon transport in a magnetic phase
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6. Conclusion and Outlook

which is not stable at zero temperature and, thus, escapes a linear spin-wave description: a skyrmion lattice.
An optimal skyrmion size for maximizing the topological Hall angles was identified.

The numerical evaluation of the transport tensors based on atomistic spin dynamics simulations can be
utilized to study the influence of disorder and defects. Fundamental questions concerning the stability of
topological edge or surface states upon breaking translational symmetry could be addressed. Moreover,
this would allow to quantify the extrinsic contribution to the transverse magnon transport. As in the
case of electrons, the Berry curvature contribution is intrinsic (it is determined from the band structure),
while “skew scattering” and “side jump” at defects are regarded extrinsic. For the spin Hall effect of
electrons, it was shown that there are limits, in which these extrinsic contributions dominate over the
intrinsic contributions [187]. An “engineering” of the transverse magnon transport appears close at hand.

In summary, the single-particle treatment of magnons shows striking similarities to that of electrons. Thus, at low
temperatures, both the classification of topologically nontrivial materials and the anomalous Hall-type transport
phenomena can be carried over from electrons to magnons. Moreover, atomistic spin dynamics simulations were
shown to capture the transverse transport properties even at elevated temperatures. Thus, it is expected that the
topological invariants obtained within the single-particle ansatz possess physical meaning in the interacting limit
as well. Since it is envisioned to utilize magnonic devices at room temperature, future work should address the
meaning of topological invariants in the presence of magnon-magnon interactions.
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APPENDIX A
NUMERICAL CALCULATION OF THE SKYRMION NUMBER

For the numerical evaluation of the skyrmion number w, partial derivatives of the magnetic texture n(r) (n unit
vector) have to be estimated [cf. eq. (3.40), n = m/|m|]. Three algorithms were implemented and tested.

(a) Trigonometric gradient estimation. Since a skyrmion lattice can be represented as a superposition of spin
spirals, a trigonometric gradient estimation is appropriate. The trigonometric polynomial

n(ri) =
∑
k∈BZ

nk exp (i k · ri) (A.1)

contains the coefficients nk that can be determined by Fourier transformation of the spin configuration. One then
takes the partial derivative

∂αn(ri) = i
∑
k∈BZ

kαnk exp (i k · ri) , (A.2)

(α = x, y) which enters eq. (3.40).
(b) First-order least squares gradient estimation. Given the set N(i) of N > 2 neighbors of site i, the over-

determined equation system for the first-order estimate of the gradient of each Cartesian spin component nβ(ri)
(β = x, y, z) at ri reads Di gi = ∆ni [188]. The difference matrix

Di =


∆i

1x ∆i
1y

...
...

∆i
N x ∆i

Ny

 , (A.3)

contains the Cartesian components ∆i
jα = α j − αi (α = x, y) of the distance vector r j − ri between site i and site

j ∈ N(i). The gradient vector gi = (∂xnβ(ri), ∂ynβ(ri))T contains the sought partial derivatives of the spin texture,
and ∆ni = (∆i

1nβ, . . . ,∆i
Nnβ)T is a vector of differences of Cartesian spin components ∆i

jnβ = nβ(r j) − nβ(ri)
with j ∈ N(i). The solution of this equation system is approximated by the linear least squares method for each
Cartesian component of the spins.

(c) Non-conserving first-order least squares gradient estimation. The former algorithm can be formulated in a
non-conserving way by replacing [188]

Di → D′i =


∆i

1x ∆i
1y 1

...
...

...
∆i

N x ∆i
Ny 1

 , (A.4)

and gi → g′i = (∂xnβ(ri), ∂ynβ(ri), δnβ(ri))T, where δnβ(ri) is a correction to the actual nβ(ri). Simply put, an
interpolated surface calculated by that algorithm does not (in general) contain the data points.

Test Integration over a single skyrmion. A triangular cluster of size L × L with one (anti)skyrmion was set up by
superimposing three spin spirals. The results of the numerical integration with algorithms (a), (b), and (c) are
presented in Tab. A.1.

There is an obvious trend that the results get better the larger the skyrmion. The more sites there are for sampling
the skyrmion, i. e., the finer the integration mesh, the more accurate is the numerical result.

The trigonometric integration is superior; even skyrmions of size 6 × 6 are detected with a relative error less
than 3%. Since the triangular lattice is inversion symmetric, algorithms (b), and (c) are of second-order accuracy.
Both of them yield skyrmion numbers larger than one half for a 6 × 6 skyrmion. Thus, they can be used for the
identification of skyrmions, when high accuracy is not needed. Besides, they are much faster than the trigonometric
fit, because they do not need a Fourier transformation.
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A. Numerical calculation of the skyrmion number

Table A.1.: Performance test of the skyrmion number integration algorithms: (a) trigonometric gradient estimation, (b) first-
order least squares gradient estimation, and (c) nonconserving first-order least squares gradient estimation. A
single (anti)skyrmion state (|w| = 1) on a triangular lattice was set up. The numerically estimated skyrmion number
|w| and the relative error are given in dependence on different cluster sizes L × L. The absolute value of w is given,
because the results apply to skyrmions as well as antiskyrmions.

(a) trigonometric (b) 1st-order LS (c) n. 1st-order LS

cluster |w| |rel. err.| |w| |rel. err.| |w| |rel. err.|
4 × 4 0.8267 17.33 % 0.2940 70.60 % 0.6443 35.57 %
6 × 6 0.9751 2.49 % 0.6352 36.48 % 0.8695 13.05 %
8 × 8 0.9976 0.24 % 0.7711 22.89 % 0.9461 5.39 %

10 × 10 0.9997 0.03 % 0.8449 15.51 % 0.9694 3.06 %
20 × 20 1.0000 < 10−7 0.9579 4.21 % 0.9979 0.21 %
30 × 30 1.0000 < 10−10 0.9810 1.90 % 0.9994 0.06 %
40 × 40 1.0000 < 10−10 0.9892 1.08 % 0.9997 0.03 %
50 × 50 1.0000 < 10−10 0.9931 0.69 % 0.9999 0.01 %
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