
Towards a Framework of Planning Collaborative Learning
Scenarios in Computer Science

Anja Hawlitschek
Otto-von-Guericke-Universität

Magdeburg, Germany
anja.hawlitschek@ovgu.de

Sarah Berndt
Otto-von-Guericke-Universität

Magdeburg, Germany
sarah.berndt@ovgu.de

Sandra Schulz
Universität Hamburg
Hamburg, Germany

sandra.schulz@uni-hamburg.de

ABSTRACT
The planning and implementation of collaborative learning is per-
ceived by teachers as demanding and time-consuming. In addition
to individual learners, groups must be taken into account – with
their group dynamics, demands on group coordination, and group
experiences. Our aim is to develop a framework for the instructional
design of collaborative learning in computer science to support a
systematic evidence-based implementation. In the article, we de-
scribe a work in progress framework, encompassing didactic analy-
ses and decision fields, which are relevant for the planning phase.
We provide recommendations for actions based on the results of
empirical studies as well as a short teaching vignette to illustrate
application in practice.

CCS CONCEPTS
• Social and professional topics→Model curricula.

KEYWORDS
collaborative learning, curricula planning, programming courses,
higher education, computer science education
ACM Reference Format:
Anja Hawlitschek, Sarah Berndt, and Sandra Schulz. 2021. Towards a Frame-
work of Planning Collaborative Learning Scenarios in Computer Science. In
21st Koli Calling International Conference on Computing Education Research
(Koli Calling ’21), November 18–21, 2021, Joensuu, Finland. ACM, New York,
NY, USA, 5 pages. https://doi.org/10.1145/3488042.3488044

1 INTRODUCTION
The integration of collaborative forms of learning into computer
science courses offers many advantages. The ability to work well
in a team is an important competence in many IT professions [33].
Developing skills in this regard should therefore play a role in
undergraduate education. Collaborative learning can also help to
increase the quality of learning processes. If learners explain con-
tents to each other, ask questions, or discuss, they often invest
a lot of mental effort in dealing with contents and have a greater
learning outcome [42]. Teammembers bring additional experiences,
information, ideas, perspectives, or evaluations into the learning
process, from which common positions, products and knowledge

This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike International 4.0 License.

Koli Calling ’21, November 18–21, 2021, Joensuu, Finland
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8488-9/21/11.
https://doi.org/10.1145/3488042.3488044

bases have to be developed. Results from meta-analyses indicate
better learning performance for learners in teams compared to
individual learners [5]. Especially in computer science, students
can often benefit from collaborative learning. Here, studies on pair
programming show an advantage for learning programming in
groups compared to solo programming [16]. The social component
of the learner’s integration into a team also has a motivational
effect (especially at the beginning of the study) that should not be
underestimated [29].

However, the integration of collaborative learning in courses
poses challenges for teachers (and learners). Collaborative scenar-
ios are characterized by a high degree of complexity in planning
and implementation, since in addition to the individual learner,
the group, with its group dynamics, with requirements for group
coordination, with group dispositions, and group experiences must
also be taken into account [13, 43]. Instructors perceive planning
and supervision as time and cognitively demanding, especially in
terms of coordinating and structuring teamwork, selecting and
creating appropriate learning materials, and guiding social interac-
tion [13, 14]. The competencies of teachers in this regard are very
heterogeneous [43] and often poor in terms of structuring groups
and time management [36]. In practice, structuring of teamwork is
often left to students and receives little instructional guidance and
support from instructors [14]. Meta-cognitive activities, such as
reflection on and evaluation of teamwork, are usually given little to
no space [43]. However, didactic planning and instruction is essen-
tial to the effectiveness of teamwork [24]. Teamwork is challenging
also for learners, with high demands on teamwork skills as well
as self-regulation. If learners perceive the costs of teamwork (time,
cognitive, emotional) as too high, or the added value as too low, or
their competencies insufficient, failure of such learning scenarios
may result [30].

The goal of our work is to support the process of instructional
design of collaborative learning scenarios in computer science by
structuring the fields of analysis and decision-making. For this
purpose, we develop a framework that facilitates the systematic
evidence-based implementation of such scenarios. The model dis-
tinguishes between didactic analysis, which serve as a basis for
decisions, and instructional design, which concern the concrete
implementation.

2 PLANNING OF COLLABORATIVE
LEARNING SCENARIOS

The terms cooperative and collaborative learning are used incon-
sistently. However, in the literature on computer-supported collab-
orative learning (CSCL), any form of learning in a team is referred

https://doi.org/10.1145/3488042.3488044
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3488042.3488044


Koli Calling ’21, November 18–21, 2021, Joensuu, Finland Hawlitschek et al.

to as "collaborative learning" [32]. We adopt this understanding of
the term in this article.

Three phases can be distinguished in the implementation of col-
laborative learning scenarios in courses [21]. (1) In the planning
phase, teachers lay the foundations for the success or failure of
teamwork by making didactic decisions about the process, struc-
ture, and organization. (2) During the implementation, they are
responsible for guiding and supporting learners. (3) In the reflec-
tion phase, the aim is to evaluate the practical implementation and
to identify possibilities for improvement for subsequent courses.
This paper provides an orientation to the planning phase as the first
step towards a substantial framework. In planning collaborative
scenarios, didactic analyses have to be carried out. On the basis of
those analyses, didactic decisions can be made. Based on existing
didactic models [22], the following fields of analyses can be distin-
guished in the planning phase: The framework conditions resulting
from the context of the learning scenario, the learner characteristics,
and the teaching-learning objectives. Decisions on instructional
design concern the structuring of the collaboration, the group for-
mation, and the learning activities [8, 21]. In the following, the
aspects of didactic analysis and instructional design based on a
review of empirical studies from the field of computer science and
CSCL are explained in more detail. We illustrate the application
of the analysis steps and design decisions with a short teaching
vignette for the following scenario: A programming course for 80
second semester computer science students. In a lecture students
learn basic knowledge on the programming language. At home
they have to solve programming tasks. In exercises, each for 20
students, they discuss their solutions and get help for problems.
Teachers implement collaborative programming to prepare students
for programming projects in IT-companies.

2.1 Didactic analyses
The framework conditions of learning scenarios (see Fig. 1) can
have a decisive influence on their implementation and success. Be-
fore implementing collaborative learning, it should be determined
whether or to what extent the institutional framework conditions
are appropriate, e.g., whether examination regulations allow for
collaborative forms of examination, whether classrooms or learning
platforms are conducive to teamwork, or which forms of learning
appear possible based on the number of students. Socio-cultural
framework conditions (e.g., specific attitudes in the academic dis-
cipline, international study programs) can also be relevant, since
attitudes and approaches to collaborative learning differ [9] and
common foundations in terms of academic terminology and ap-
proaches must first be laid for successful teamwork, which is a
time-consuming undertaking [31].

Cognitive andmeta-cognitive, motivational, and emotional learner
characteristics have to be considered for instructional design, e.g.,
competencies in teamwork [24], the extent of intrinsic or extrinsic
academic motivation [34], or perceived self-efficacy [45]. Regula-
tory competencies are of particular importance for teamwork, since
in addition to learner’s own self-regulation in the learning process,
the regulation of the team must also works well [28]. It is important
to identify potential obstacles to teamwork and address them in
the instructional design. In particular, the problems associated with

Figure 1: Framework of collaborative learning scenarios

having novices and experts in the course should be highlighted.
While students with a lot of previous experience in teamwork need
significantly less instructional guidance and support, the opposite
is true for students with little prior experience [8]. Therefore, ana-
lyzing and considering such learner characteristics is important for
the success of teamwork. Similar importance can be assumed for
negative attitudes towards teamwork and the effects on motivation.
Here, a clarification of values and goals of the learning activities
may help. Lack of regulatory competences can be compensated by
didactic instructions in this regard [28].

With regard to the learning objectives, the planning process
must work out, which objectives are specifically associated with
teamwork. Research results indicate that teamwork in computer
science is mainly applied to improve content-related learning suc-
cess and to increase performance in programming [39]. However,
collaborative scenarios such as pair programming are usually more
time-consuming than individual work [16]. This must be taken into
account when planning. However, the learning objectives can also
include concrete competencies related to teamwork, e.g., because
these are needed in later professional life or are an important skill in
computer science studies. In that case, it is important that students
can actually practice these competencies, e.g., communication in a
group, analyzing and overcoming conflicts in a programming team,
or organizing teamwork. The task and the instructional guidance
must be aligned towards this gain in competence.

Teaching vignette: Framework condition: Course takes
place online, Moodle and GitLab for online activities avail-
able, collaborative exams are possible; Learning characteris-
tics: heterogeneous prior knowledge in programming, low
skills in collaborative software engineering; Learning goals
regarding collaboration: get started with project
management and version control in software projects.



Towards a Framework of Planning Collaborative Learning Scenarios in Computer Science Koli Calling ’21, November 18–21, 2021, Joensuu, Finland

2.2 Instructional design
Didactic decisions for the implementation of collaborative learning
are made on the basis of the analyses results. In addition, two central
principles for successful collaborative learning should guide teach-
ers here: achieving positive interdependence between the group
members and promoting interactions that foster learning. Positive
interdependence is promoted when every group member depends
on every group member, all must contribute to the learning process,
and group success can only occur when all group members suc-
ceed [19]. Interdependence can be fostered, for example, through
shared group goals, distributed learning resources, roles, incentive
systems for good teamwork, and tasks adapted to these goals [4].
Interactions between students in the collaboration process are key
components of learning. The learning activity should be designed in
a way that promotes interactions like structuring and summarizing
content for each other, giving feedback to the partner, answering
questions, discussing different arguments [12]. Such cognitive ac-
tivities improve learning because students have to select, organize,
and integrate knowledge [26]. One way to promote meaningful
interactions is using collaboration scripts for structuring teamwork
[8]. If positive interdependence and high quality interactions in a
team occur, this also has a positive effect on individual learning
outcomes in terms of content [41].

2.2.1 Structuring teamwork. The extent to which teamwork should
be pre-structured by the teacher depends on the learning objectives
but also on the skills of the learners. Collaborative learning can be
very little structured, such as ad hoc discussions on a specific topic
in small groups. However, there are also scenarios with a very fine-
grained structure like pair programming. One structuring option is
the use of collaboration scripts. Collaboration scripts are “a set of
instructions regarding to how the group members should interact,
how they should collaborate and how they should solve the prob-
lem” [8]. The degrees of freedom that learners have in designing
their collaboration vary from script to script. Some scripts only
provide a kind of framework for organizing the collaboration, such
as the Research Structure Confront script, others are very rigidly
pre-structured and leave little room for independent planning and
implementation of the collaboration, such as the Group Puzzle.

Pair programming can also be considered as such a collaboration
script. Results of a literature review [39] suggest that pair pro-
gramming is the predominant form of structuring in collaborative
learning scenarios in computer science when it comes to learn-
ing programming. Less commonly, different forms of peer reviews
are used as scripts. One implementation for a review script is to
have learners program individually in the first step, then give each
other feedback on the resulting programs, and have them create
a group solution in the final step [11]. Cross-group reviews for
group solutions are also an implementation example. When the
focus is on knowledge production (e.g., writing texts on specific
computer science topics), various forms of structuring teamwork
in computer science are used, e.g., group puzzles, distributing dif-
ferent roles, or, again, peer review processes. Despite such scripts
being available, in current practices of teaching it is often left to the
students to decide how to design the teamwork and distribute the
task [39]. However, studies suggest benefits of collaboration scripts
for the learning process. Compared with non-guided collaboration,

scripts can increase not only content learning but also knowledge
of important principles of successful collaborative learning [35].
Results of meta-analyses suggest that collaboration scripts are par-
ticularly effective when they stimulate "transactive activities" [44],
i.e., when the already mentioned meaningful interaction between
learners occurs, in which they use each other as a source of in-
formation, identify and discuss conflicts as well as differences in
their knowledge and beliefs, ask questions, provide explanations,
articulate, apply, and extend shared knowledge, and develop a com-
mon understanding of the learning content. Specific instructions
and guidance can be integrated into the script for this purpose
[31]. Learners with little prior knowledge and skills (both in terms
of content and teamwork) especially benefit from highly guided
forms of collaborative learning, such as pair programming [16, 37].
Strongly structured collaborative scripts are also recommended for
group members with differing levels of knowledge and teamwork
experience. Sharing ideas and reflecting on one’s own and team
members’ program code supports the learning process.

Teaching vignette: Students are novices in collaboration,
so a highly structured script is necessary. Teachers apply a
review script: Student 1 solve Task 1 individually in the first
step, then request feedback. Student 2 provide feedback in
a second step. Both students generate a joint solution in the
third step, which will be discussed in the exercise. In Task 2,
Student 2 starts.

2.2.2 Group formation. Teachers should not leave the formation
and size of groups to chance, as this can also have an impact on the
success of the collaborative scenario. Of course, the optimal size
of groups also depends on the learning objectives. If approaches
to working in industrial projects are to be practiced with large
groups, the instructional design must be adapted to this. However,
it is important to keep in mind that learners’ coordination effort in-
creases with increasing group size [24]. Regarding the composition
of groups, the results of empirical studies are not clear. With respect
to programming learning, the results of literature reviews suggest
that homogeneous groups consisting of learners with similar pro-
gramming skills and experiences achieve best learning outcomes
[37]. Given the assumption that learners with little prior knowledge
in particular can benefit from more experienced team members [6],
this is a surprising result. On the one hand, this could be due to the
fact that students with a lot of programming experience take over
too many programming activities in a heterogeneous group, either
because of efficiency considerations or because of a lack of self-
confidence of the inexperienced group members. Another possible
explanation is that the experienced group members lack the ability
to explain programming concepts and may be overwhelmed with
supporting the inexperienced team members [7]. Guidance in this
regard could support heterogeneous groups, e.g., the visualization
of the activities of individual group members, like written lines of
code, or a clear division of team work with assigned work packages.

Teaching vignette: Teachers provide a short prior knowl-
edge test in Moodle. Based on results teachers build homo-
geneous groups of 2 students. Teachers provide a clear pro-
cedure on how to proceed if problems in a group occur.

2.2.3 Learning activities of the learners. The basic question in plan-
ning learning activities is: What do the learners have to do in order



Koli Calling ’21, November 18–21, 2021, Joensuu, Finland Hawlitschek et al.

to be able to achieve the learning objectives? What knowledge
must they acquire, what experiences must they gain, what activ-
ities must they perform? Planning learning activities involves a
wide range of didactic decisions – e.g., on the design of tasks, on
the distribution of learning resources, on forms of interaction and
use of certain media, on the measurement of learning performance
– which we address only selectively in this article. When planning
teamwork, it is often advised to distribute resources to learners in
order to create positive interdependence. However, this approach
can lead to teamwork problems for learners with little prior content
knowledge if the distributed learning content provides knowledge
about core concepts or procedures of a subject or topic area [6].
The distribution of roles, on the other hand, has positive effects on
interactions in groups [4]. Here learners work on a task or sub-tasks
in different roles, e.g., stakeholder and developer. Often sub-tasks
are integrated at the end into a common product. In software engi-
neering in industry it is quite common that people in different roles
work together in a project, so the distribution of roles in collabora-
tive learning is also a good practice to prepare students for this [38].
When creating tasks, it should be kept in mind that they should not
be too simple or too short. The higher effort for the implementation
of collaborative learning, such as pair programming, must seem
reasonable to the students in terms of task design [3]. Regarding
the forms of interaction between learners, the following decisions
should be made: Should learners collaborate synchronously or asyn-
chronously? Should learner meet digitally (via conference tools like
Teams or Zoom) or face-to-face? Which tools can be used for digital
collaboration (e.g. Trello, Gather, Code Runner, Google Colabora-
tory)? Learners seem to prefer face-to-face collaboration in pair
programming [10]. However, in terms of effectiveness, distributed
pair programming is similarly effective [20]. Digital asynchronous
collaboration can, in some circumstances, increase learning success
compared to face-to-face processing [23]. If tasks are discussed tex-
tually instead of verbally, the processing becomes more elaborate,
but of course this also increases the time required. In computer
science, this form of collaboration is mainly used for discussions,
but it can also be used in programming exercises [39].

The assessment of group tasks is a difficult topic. In a majority of
studies, the measurement of learning outcome is done with individ-
ual tests after the end of teamwork or via performance in individual
sub-tasks. Sometimes group tasks are assessed and each team mem-
ber receives the same grade [40]. Here, the focus is predominantly
on measuring content learning success; measurement of learner
performance regarding teamwork is not usually done [15]. One
exception is the approach of incorporating group members’ assess-
ments of partner’s performance [38]. However, there are problems
associated with these forms of assessment: Individual grades on
individual sub-tasks or tests do not take group performance into
account and can reduce motivation to work in teams. Especially
when team skills are explicitly part of the learning objectives, they
should also be part of an assessment. Group assessments, on the
other hand, can quickly lead to negative attitudes toward teamwork
if learners experience that uncommitted team members negatively
affect the group’s performance or benefit from the performance of
others [40]. Learners’ openness to group grades is often rather low
for this reason [25]. An alternative, if the examination regulations
allow for it, can be grades that consist partly of an assessment of

group performance and partly of an assessment of individual per-
formance during teamwork [25]. Transparency with regard to the
evaluation criteria should be created in advance.

Teaching vignette: Since students start in the program-
ming course with very easy tasks to understand the basics,
teachers decide to start collaboration not until the third task.
In the lecture, teacher explain the relevance of teamwork,
key factors of successful software development, and intro-
duce GitLab. In the script, teacher refer to GitLab features
students should use. All learning activities take place on-
line. Lecture and exercise are synchronous learning activ-
ities via virtual classroom software, teamwork takes place
mainly asynchronous. At the end of semester, teacher con-
duct an exam where grades arise from a collaborative pro-
gramming project as well as an individual oral examination.

3 DISCUSSION
The importance of careful didactic planning of collaborative learn-
ing scenarios can hardly be overestimated. For this purpose, we
have described fields of analyses and instructional design decisions.
Based on the results of empirical studies, we provided recommen-
dations with a focus on learning programming and a short teaching
vignette as illustration. We consider it particularly important to
take into account students’ prior knowledge, skills, and experience
in teamwork and to adapt the instructional design accordingly.
However, even the best didactic analysis and planning can lead to
sub-optimal results in collaborative learning processes if the cogni-
tive activities remain superficial. In this respect, student interaction
should not only be planned but also monitored and supported [21].
Teachers should consider in advance how they want to support stu-
dents in the implementation phase beyond structuring teamwork
and planning team activities, and whether they want to use tools
(e.g., Git, Moodle) for this purpose. One way to support teamwork
through analysis of team activities is to use dashboards. Even im-
plementing visual feedback on team participation can support suc-
cessful teamwork. Data can be derived from multiple sources. Often
programming and behavior activity logs from learning platforms
are used, for example percentage of correct exercises per week or
time spent on learning platform [1]. There are also attempts to inte-
grate user interaction data from multiple technologies [2]. For the
instructional design of feedback via dashboard different approaches
can be distinguished. While some studies provide students with
raw data or aggregated raw data without further interpretation aids
[17], other studies provide best-practice models for comparison
or give guidance on how to improve teamwork [18]. The results
of Jermann and Dillenbourg (2008) suggest that such interpretive
tools for visual feedback help students to adjust their activities in
collaborative teamwork. In addition, reflection phases are another
way to support teamwork. Here, group members should periodi-
cally consider how well they are working together and how they
want to improve their performance [27]. The use of such dash-
boards or reflection techniques by no means eliminates the need
for instructional guidance and support from instructors, but they
can make their task easier by alerting about potential problems in
collaboration early on.



Towards a Framework of Planning Collaborative Learning Scenarios in Computer Science Koli Calling ’21, November 18–21, 2021, Joensuu, Finland

REFERENCES
[1] David Azcona, I-HanHsiao, and Alan F. Smeaton. 2019. Detecting students-at-risk

in computer programming classes with learning analytics from students’ digital
footprints. User Modeling and User-Adapted Interaction 29, 4 (2019), 759–788.

[2] Aneesha Bakharia, Kirsty Kitto, Abelardo Pardo, Dragan Gašević, and Shane
Dawson. 2016. Recipe for success: Lessons learnt from using xAPI within the con-
nected learning analytics toolkit. In Proceedings of the 6th International Conference
on Learning Analytics & Knowledge (Edinburgh, Scotland). ACM, 378–382.

[3] Nicholas A. Bowman, Lindsay Jarratt, KC Culver, and Alberto M. Segre. 2020.
Pair programming in perspective: Effects on persistence, achievement, and equity
in computer science. Journal of Research on Educational Effectiveness 13, 4 (2020),
731–758.

[4] Susan Brewer and James D. Klein. 2006. Type of positive interdependence and
affiliation motive in an asynchronous, collaborative learning environment. Edu-
cational Technology Research and Development 54, 4 (2006), 331–354.

[5] Juanjuan Chen, Minhong Wang, Paul A. Kirschner, and Chin-Chung Tsai. 2018.
The role of collaboration, computer use, learning environments, and supporting
strategies in CSCL: A meta-analysis. Review of Educational Research 88, 6 (2018),
799–843.

[6] Anne Deiglmayr and Lennart Schalk. 2015. Weak versus strong knowledge
interdependence: A comparison of two rationales for distributing information
among learners in collaborative learning settings. Learning and Instruction 40
(2015), 69–78.

[7] Ömer Demir and Süleyman S. Seferoglu. 2020. The effect of determining pair pro-
gramming groups according to various individual difference variables on group
compatibility, flow, and coding performance. Journal of Educational Computing
Research 59, 1 (2020), 41–70.

[8] Pierre Dillenbourg. 2002. Over-scripting CSCL: The risks of blending collaborative
learning with instructional design. In Three worlds of CSCL. Can we support CSCL?,
Paul A. Kirschner (Ed.). Open Universiteit Nederland, Heerlen, 61–91.

[9] Anastasios A. Economides. 2008. Culture-aware collaborative learning. Multicul-
tural Education & Technology Journal 2, 4 (2008), 243–267.

[10] Richard L. Edwards, Jennifer K. Stewart, and Mexhid Ferati. 2010. Assessing
the effectiveness of distributed pair programming for an online informatics
curriculum. ACM Inroads 1, 1 (2010), 48–54.

[11] Eustaquio S. M. Faria, Juan M. Adán-Coello, and Keiji Yamanaka. 2006. Forming
groups for collaborative learning in introductory computer programming courses
based on students’ programming styles: An empirical study. In Proceedings. Fron-
tiers in Education. 36th Annual Conference (San Diego, California). IEEE Computer
Society, Los Alamitos, CA, USA, 6–11.

[12] Logan Fiorella and Richard E. Mayer. 2016. Eight ways to promote generative
learning. Educational Psychology Review 28, 4 (2016), 717–741.

[13] Robyn M. Gillies and Michael Boyle. 2010. Teachers’ reflections on cooperative
learning: Issues of implementation. Teaching and Teacher Education 26, 4 (2010),
933–940.

[14] Robyn M. Gillies and Michael Boyle. 2011. Teachers’ reflections of cooperative
learning (CL): A two-year follow-up. Teaching Education 22, 1 (2011), 63–78.

[15] Carmen L. Z. Gress, Meghann Fior, Allyson F. Hadwin, and Philip H. Winne. 2010.
Measurement and assessment in computer-supported collaborative learning.
Computers in Human Behavior 26, 5 (2010), 806–814.

[16] Jo E. Hannay, Tore Dybå, Erik Arisholm, and Dag I. K. Sjøberg. 2009. The
effectiveness of pair programming: A meta-analysis. Information and Software
Technology 51, 7 (2009), 1110–1122.

[17] Jeroen Janssen, Gijsbert Erkens, Gellof Kanselaar, and Jos Jaspers. 2007. Visu-
alization of participation: Does it contribute to successful computer-supported
collaborative learning? Computers & Education 49, 4 (2007), 1037–1065.

[18] Patrick Jermann and Pierre Dillenbourg. 2008. Group mirrors to support interac-
tion regulation in collaborative problem solving. Computers & Education 51, 1
(2008), 279–296.

[19] DavidW. Johnson and Roger T. Johnson. 2009. An educational psychology success
story: Social interdependence theory and cooperative learning. Educational
Researcher 38, 5 (2009), 365–379.

[20] Soojin Jun, Seungbum Kim, and Wongyu Lee. 2007. Online pair-programming
for learning programming of novices. WSEAS Transactions on Advances in Engi-
neering Education 4, 9 (2007), 187–192.

[21] Celia Kaendler, Michael Wiedmann, Nikol Rummel, and Hans Spada. 2015.
Teacher competencies for the implementation of collaborative learning in the
classroom: A framework and research review. Educational Psychology Review 27,
3 (2015), 505–536.

[22] Michael Kerres. 2013. Mediendidaktik – Konzeption und Entwicklung medi-
engestützter Lernangebote. Oldenbourg Verlag, München.

[23] Yu-Tzu Lin, Cheng-Chih Wu, and Chiung-Fang Chiu. 2018. The use of wiki in
teaching programming: Effects upon achievement, attitudes, and collaborative
programming behaviors. International Journal of Distance Education Technologies
16, 3 (2018), 18–45.

[24] Yiping Lou, Philip C. Abrami, and Sylvia d’Apollonia. 2001. Small group and
individual learning with technology: A meta-analysis. Review of Educational

Research 71, 3 (2001), 449–521.
[25] Janet Macdonald. 2003. Assessing online collaborative learning: Process and

product. Computers & Education 40, 4 (2003), 377–391.
[26] Richard E. Mayer. 2004. Should there be a three-strikes rule against pure discovery

learning? American Psychologist 59, 1 (2004), 14–19.
[27] Elsa Mentz, Johannes L. van der Walt, and Leila Goosen. 2008. The effect of

incorporating cooperative learning principles in pair programming for student
teachers. Computer Science Education 18, 4 (2008), 247–260.

[28] Piia Näykki, Jaana Isohätälä, Sanna Järvelä, Johanna Pöysä-Tarhonen, and Päivi
Häkkinen. 2017. Facilitating socio-cognitive and socio-emotional monitoring
in collaborative learning with a regulation macro script–an exploratory study.
International Journal of Computer-Supported Collaborative Learning 12, 3 (2017),
251–279.

[29] Christopher P. Niemiec and Richard M. Ryan. 2009. Autonomy, competence, and
relatedness in the classroom: Applying self-determination theory to educational
practice. Theory and Research in Education 7, 2 (2009), 133–144.

[30] Timothy J. Nokes-Malach, J. Elizabeth Richey, and Soniya Gadgil. 2015. When
is it better to learn together? Insights from research on collaborative learning.
Educational Psychology Review 27, 4 (2015), 645–656.

[31] Omid Noroozi, Stephanie D. Teasley, Harm J. A. Biemans, Armin Weinberger, and
Martin Mulder. 2013. Facilitating learning in multidisciplinary groups with trans-
active CSCL scripts. International Journal of Computer-Supported Collaborative
Learning 8, 2 (2013), 189–223.

[32] Orlando J. Olivares. 2008. Collaborative vs. cooperative learning: The instruc-
tor’s role in computer supported collaborative learning. In Computer-supported
collaborative learning: Best practices and principles for instructors, Kara L. Orvis
and Andrea L.R. Lassite (Eds.). IGI global, Heerlen, 20–39.

[33] Alan Peslak, Lisa Kovalchick, Paul Kovacs, Mauri Conforti, Wenli Wang, and
Neelima Bhatnagar. 2018. Linking programmer analyst skills to industry needs: A
current review. In Proceedings of the EDSIG Conference (Norfolk, Virginia). Li-Jen
Lester, Huntsville, Texas, USA, 569–574.

[34] Bart Rienties, Dirk Tempelaar, Piet van den Bossche, Wim Gijselaers, and Mien
Segers. 2009. The role of academic motivation in computer-supported collabora-
tive learning. Computers in Human Behavior 25, 6 (2009), 1195–1206.

[35] Nikol Rummel and Hans Spada. 2005. Learning to collaborate: An instructional
approach to promoting collaborative problem solving in computer-mediated
settings. The Journal of the Learning Sciences 14, 02 (2005), 201–241.

[36] Ilse Ruys, Hilde Keer, and Antonia Aelterman. 2012. Examining pre-service
teacher competence in lesson planning pertaining to collaborative learning.
Journal of Curriculum Studies 44, 3 (2012), 349–379.

[37] Norsaremah Salleh, Emilia Mendes, and John Grundy. 2011. Empirical Studies
of Pair Programming for CS/SE Teaching in Higher Education: A Systematic
Literature Review. IEEE Transactions on Software Engineering 37, 4 (2011), 509–
525.

[38] Pilar Sancho-Thomas, Rubén Fuentes-Fernández, and Baltasar Fernández-Manjón.
2009. Learning teamwork skills in university programming courses. Computers
& Education 53, 2 (2009), 517–531.

[39] Leonardo Silva, António J. Mendes, and Anabela Gomes. 2020. Computer-
supported collaborative learning in programming education: A systematic litera-
ture review. In IEEE Global Engineering Education Conference (EDUCON) (Porto,
Portugal). IEEE, 1086–1095.

[40] Jan-Willem Strijbos. 2010. Assessment of (computer-supported) collaborative
learning. IEEE Transactions on Learning Technologies 4, 1 (2010), 59–73.

[41] Marina Supanc, Vanessa A. Völlinger, and Joachim C. Brunstein. 2017. High-
structure versus low-structure cooperative learning in introductory psychology
classes for student teachers: Effects on conceptual knowledge, self-perceived
competence, and subjective task values. Learning and Instruction 50 (2017), 75–84.

[42] Carla van Boxtel, Jos van der Linden, and Gellof Kanselaar. 2000. Collaborative
learning tasks and the elaboration of conceptual knowledge. Learning and
Instruction 10, 4 (2000), 311–330.

[43] Marij A. Veldman, Mechteld F. van Kuijk, Simone Doolaard, and Roel J. Bosker.
2020. The proof of the pudding is in the eating? Implementation of cooperative
learning: Differences in teachers’ attitudes and beliefs. Teachers and Teaching 26,
1 (2020), 103–117.

[44] Freydis Vogel, Christof Wecker, Ingo Kollar, and Frank Fischer. 2017. Socio-
cognitive scaffolding with computer-supported collaboration scripts: A meta-
analysis. Educational Psychology Review 29, 3 (2017), 477–511.

[45] Shu-Ling Wang and Sunny S.J. Lin. 2007. The effects of group composition of
self-efficacy and collective efficacy on computer-supported collaborative learning.
Computers in Human Behavior 23, 5 (2007), 2256–2268.


	Abstract
	1 Introduction
	2 Planning of collaborative learning scenarios
	2.1 Didactic analyses
	2.2 Instructional design

	3 Discussion
	References

