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Abstract 

 

Influenza A viruses (IAV) are pathogens that infect up to 20% of the human population 

in seasonal epidemics inducing a contagious respiratory disease, which can lead to 

more than half a million deaths each year. Besides their annual impact on public health 

and the economy, the outbreak of major pandemics like the “Spanish flu” caused by 

emerging virus strains may threaten millions of lives. For the development and 

improvement of prevention and treatment strategies for IAV infections, it is critical to 

understand the exact mechanisms during virus infection and spreading on the cellular, 

human and global level. 

In this thesis, we aim to establish mathematical models of IAV infection that can 

describe and predict virus replication and spreading dynamics in a wide range of 

infection conditions relevant for vaccine production. In particular, we focus on the 

impact of the number of infecting virus particles per cell, i.e., the multiplicity of infection 

(MOI), and the impact of defective interfering particles (DIPs) on the infection 

dynamics. These two factors strongly influence virus yields during cell culture-based 

vaccine production. In addition, DIPs show great promise for antiviral application. 

In the first part of this thesis, we develop a mathematical multiscale model of IAV 

infection in animal cell culture that closely captures replication and propagation 

dynamics on the intracellular and cell population level for high MOI infections. Using 

the same model parameters, the model was able to reproduce infectious and total virus 

titers in low MOI conditions. The key difference between high and low MOI conditions 

was the percentage of infectious virions among the total virus particles released. 

Furthermore, we find that the time until cells are detected as apoptotic after IAV 

infection is normally distributed, which can be described closely using a logistic 

function for the rate of apoptosis. Overall, the multiscale model of IAV infection 

provides an ideal framework for the prediction and optimization of IAV manufacturing 

in animal cell culture. 

Cell culture-derived DIPs, which cannot replicate on their own, are considered for 

antiviral therapy, because they can inhibit IAV production during co-infection and 

enhance the innate immune response in the host. The second part of this work covers 
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a mathematical multiscale model of IAV and DIP co-infection that reproduces 

intracellular and cell population dynamics closely for a wide range of infection 

conditions. To describe these different scenarios of competition between the two types 

of virus particles with a single set of parameters, various regulatory mechanisms of 

viral ribonucleic acid (RNA) synthesis had to be considered. We observe a reduction 

of the levels of viral messenger RNAs (vmRNAs) related to proteins of the viral 

polymerase. Furthermore, we find that the accumulation of vmRNA in cells infected 

only by a specific DIP, which cannot produce the viral polymerase required for 

replication, can be described by incorporating the primary transcription of vmRNA 

mediated solely by the parental viral polymerase bound to the viral genome. 

Additionally, the levels of viral genomic RNA (vRNA) can only be captured if the ratio 

between the MOI and the number of DIPs per cell, i.e., the multiplicity of DIPs (MODIP), 

is considered during intracellular virus replication. Overall, the co-infection model 

supports a comprehensive understanding of the interactions between IAVs and DIPs 

during co-infection and enables the prediction and optimization of DIP production for 

therapeutic use. 

In the last part of this thesis, we use the two developed multiscale models for simulation 

studies and model prediction. Simulations performed with the model of IAV infection 

suggest that for high MOIs the infection is driven only by multiple-hit infections of the 

seed virus. In low MOI conditions, infections are induced almost exclusively by progeny 

virus particles shifting from single- to multiple-hit infections over time. The model of 

IAV and DIP co-infection predicts that the concentration of DIPs should be at least 

104 times higher than that of regular IAV particles to prevent the spread of an infection. 

Furthermore, model simulations suggest a nearly equimolar concentration of IAVs and 

DIPs as the optimal initial conditions for cell culture-derived production of DIPs for 

antiviral therapy.  

Taken together, the multiscale models developed in this thesis provide a systems-level 

understanding of IAV infection dynamics and how this dynamics is impacted by the 

initially provided MOI and MODIP. These detailed mathematical models successfully 

describe infection dynamics on the intracellular and cell population level for a wide 

range of conditions using a single set of parameters and enable meaningful model 

predictions. Such models, thus, support the fight against influenza and could facilitate 
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a deeper understanding of infection processes for other virus species, in particular 

regarding the impact of the MOI and potential interactions with DIPs.   
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Kurzfassung 

 

Influenza-A-Viren (IAV) sind Krankheitserreger, die bis zu 20% der Weltbevölkerung 

in saisonalen Epidemien infizieren. Solche Infektionen rufen eine ansteckende 

Lungenwegserkrankung hervor, umgangssprachlich auch als Grippe bezeichnet, 

welche zu mehr als einer halben Million Todesfällen pro Jahr führen kann. Neben den 

jährlichen Schäden für die Bevölkerung und die Wirtschaft ist eine weitere Gefahr der 

Ausbruch von Influenza-Pandemien, wie z.B. der sogenannten „Spanischen Grippe“, 

ausgelöst durch mutierte Virenstämme. Um Strategien zur Bekämpfung und 

Prävention von Grippeinfektionen zu entwickeln und zu verbessern, ist das Verstehen 

der zugrundeliegenden Mechanismen einer Virusinfektion ein wichtiger Faktor.  

Das Ziel dieser Doktorarbeit war die Entwicklung mathematischer Modelle, welche die 

Dynamik von IAV-Infektionen für verschiedene impfstoffproduktionsrelevante 

Infektionsbedingungen beschreiben und vorhersagen können. Dabei wird der Fokus 

auf die Anzahl der infizierenden Viruspartikel pro Zelle, bezeichnet als Multiplizität der 

Infektion (MOI), und die Interaktion mit defekten interferierenden Viruspartikeln (DIPs) 

gelegt. Diese beiden Faktoren zeigen einen starken Einfluss auf die zellkulturbasierte 

Impfstoffproduktion. Zudem werden DIPs für eine Nutzung als antivirales Medikament 

in Erwägung gezogen. 

Im ersten Teil dieser Arbeit wird ein mathematisches Multiskalenmodell der IAV-

Infektion in tierischen Zellkulturen entwickelt, welches die virale Replikations- und 

Ausbreitungsdynamik auf intrazellulärer Ebene und auf Ebene der Zellpopulationen für 

Infektionen mit einer hohen MOI beschreibt. Mit den für dieses Szenario bestimmten 

Modellparametern konnte das Modell die infektiösen und gesamten Virustiter unter 

niedrigen MOI-Bedingungen reproduzieren. Der Hauptunterschied zwischen hohen 

und niedrigen MOI-Bedingungen war der prozentuale Anteil der infektiösen Virionen 

an der gesamten Viruspartikelfreisetzung. Darüber hinaus stellen wir fest, dass die 

vergangene Zeit, nach welcher infizierte Zellen als apoptotisch detektiert werden 

können, normal verteilt ist. Dies ließ mit einer logistischen Funktion für die 

Apoptoserate gut beschreiben. Insgesamt bietet das Multiskalenmodell der IAV-
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Infektion eine ideale Grundlage für die Vorhersage und Optimierung der IAV-

Herstellung in Zellkulturen. 

Aus Zellkulturen gewonnene DIPs, die sich nicht selbst replizieren können, werden für 

die antivirale Therapie in Betracht gezogen, da sie die IAV-Produktion während einer 

Koinfektion hemmen und die angeborene Immunantwort von Zellen verstärken 

können. Der zweite Teil dieser Arbeit befasst sich mit einem mathematischen 

Multiskalenmodell der IAV- und DIP-Koinfektion, welches die Dynamik auf der 

intrazellulären und der Zellpopulations-Ebene für eine Vielzahl von 

Infektionsbedingungen genau beschreibt. Um diese verschiedenen Szenarien der 

Interaktion zwischen den beiden Arten von Viruspartikeln mit einem einzigen 

Parametersatz zu beschreiben, mussten verschiedene Regulationsmechanismen der 

Synthese von viralen Ribonukleinsäuren (RNA) berücksichtigt werden. Dabei stellt sich 

heraus, dass die Konzentrationen viraler Boten-RNAs (vmRNAs), welche zur 

Produktion der Proteine der viralen Polymerase genutzt werden, deutlich reduziert 

sind. Darüber hinaus stellen wir fest, dass die Ansammlung von vmRNA in Zellen, die 

nur mit einem DIP infiziert sind, welches die virale Polymerase nicht produzieren kann, 

durch die Einbeziehung der primären Transkription von vmRNA durch parentale virale 

Polymerasen beschrieben werden kann. Zudem können die Mengen an viraler 

genomischer RNA (vRNA) nur erfasst werden, wenn das Verhältnis zwischen der MOI 

und der Anzahl der DIPs pro Zelle, bezeichnet als Multiplizität der DIPs (MODIP), 

während der intrazellulären Virusreplikation berücksichtigt wird. Somit unterstützt das 

Koinfektionsmodell ein umfassendes Verständnis der Wechselwirkungen zwischen 

IAVs und DIPs während der Koinfektion und ermöglicht die Vorhersage und 

Optimierung der DIP-Produktion für den therapeutischen Einsatz.  

Im letzten Teil dieser Arbeit verwenden wir die beiden Multiskalenmodelle für 

Simulationsstudien und Modellvorhersagen. Simulationen, die mit dem Modell der IAV-

Infektion durchgeführt wurden, deuten darauf hin, dass bei einer hohen MOI Zellen 

immer durch mehrere Viruspartikel, welche aus dem Saatvirus stammen, infiziert 

werden. Unter niedrigen MOI-Bedingungen werden Infektionen fast ausschließlich 

durch neu produzierte Viruspartikel ausgelöst, wobei Zellen anfangs von einzelnen und 

später von mehreren Viruspartikeln infiziert werden. Modellprädiktionen der 

Koinfektion von IAVs und DIPs sagen voraus, dass die Konzentration von DIPs 
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mindestens 104-mal höher sein sollte als die von normalen IAV-Partikeln, um die 

Ausbreitung einer Infektion zu verhindern. Darüber hinaus deuten Modellsimulationen 

darauf hin, dass eine nahezu äquimolare Konzentration von IAVs und DIPs die 

optimalen Anfangsbedingungen für die Produktion von DIPs in Zellkulturen für die 

antivirale Therapie darstellen. 

Zusammengenommen bieten die in dieser Arbeit entwickelten Multiskalen-Modelle ein 

Verständnis der IAV-Infektionsdynamik auf Systemebene und zeigen, wie diese 

Dynamik durch die eingesetzten MOIs und MODIPs beeinflusst wird. Diese 

detaillierten mathematischen Modelle beschreiben die Infektionsdynamik für ein 

breites Spektrum von Bedingungen auf intrazellulärer und Zellpopulations-Ebene unter 

Verwendung eines einzigen Parametersatzes und ermöglichen Modellvorhersagen. 

Solche Modelle unterstützen somit den Kampf gegen die Grippe und könnten ein 

tieferes Verständnis der Infektionsprozesse bei anderen Virusarten ermöglichen, 

insbesondere hinsichtlich der Auswirkungen der MOI und möglicher 

Wechselwirkungen mit DIPs. 
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CO

Rel

DIP,Ir  virions/(cells · h) release rate of infectious DIPs from 

co-infected cells 

STV

Rel

DIP,Ir  virions/(cells · h) release rate of infectious DIPs from  

STV-only infected cells 
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Rel

DIP,Totr  virions/(cells · h) total release rate of DIPs 

Rel

Infr  virions/(cells · h) release rate of infectious virus particles 

Rel
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Rel
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CO

Rel
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co-infected cells 

STV

Rel
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V
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V
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t  h time 

It  h time of cell infection 
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Att
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Cyt
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EnV  virions/(cell or ml) number of virions in endosomes 

ExV  virions/cell number of virions in the extracellular medium 

RelV  virions/cell number of infectious progeny virions 

Rel

TotV  virions/cell total number of released infectious virions 

CytVp  molecules/cell number of cytoplasmic vRNPs 

Cyt

iVp  molecules/cell number of cytoplasmic vRNPs of segment i 

Cyt

M1Vp  molecules/cell number of cytoplasmic  
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Cyt

M1,iVp  molecules/cell number of cytoplasmic 
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NucVp  molecules/cell number of nuclear vRNPs 

 



List of Symbols XVIII 

 

Symbol Unit Description 

Nuc
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Nuc

M1,iVp  molecules/cell nuclear M1-vRNP complexes of segment i 

iw  – model probability of model i 

x  – realization of the state vector of a stochastic model 

ix  – measurement value at time point ti 

y  – vector of experimental observations 

,s cy  – model output of species s at condition c 

 

 



1. Introduction 1 

 

1. Introduction 

 

Infectious diseases affect almost all organisms and are responsible for roughly 17% of 

human deaths [1]. A large portion of these infections is caused by viruses, which are 

non-cellular life forms that hijack the reproductive system of their host cells to generate 

progeny virus particles. When virus infections spread rapidly among populations on a 

global level, they induce pandemics, which can have hazardous impacts. The currently 

ongoing Coronavirus disease 2019 (COVID-19) pandemic, which has so far claimed 

more than 5.1 million human lives [2], shifted a large part of the attention towards 

coronaviruses. However, influenza viruses were responsible for most of the major 

pandemic outbreaks since the beginning of the 20th century [3]. The Spanish flu 

claimed around 50 million lives and more recent influenza pandemics caused up to a 

million deaths each [4, 5]. Based on historical data, influenza pandemics are expected 

to occur at least once every 60 years [6]. However, wildlife markets and the expansion 

of industrial livestock production may contribute to an even higher frequency of 

pandemic outbreaks in the future, if no countermeasures are taken [7].  

Due to the high mutation rate of the influenza genome, which has been estimated 

between 2 × 10−6 to 2 × 10−4 mutations per site per round of genome replication, and 

the potential reassortment with strains from other hosts, influenza viruses can evolve 

rapidly [8]. This enables influenza viruses to infect a variety of species, e.g., poultry, 

horses, pigs, and humans [9]. However, their natural reservoirs are wild aquatic birds, 

which normally do not become severely sick following an infection [10]. When infecting 

humans, influenza viruses predominantly target epithelial cells in the upper respiratory 

tract inducing a contagious disease. General symptoms include fever, rhinitis, sore 

throat, headache, muscle pain, and fatigue. Severe influenza virus infections may also 

induce pneumonia, meningitis or encephalitis and lead to the death of the host. In adult 

patients with a functioning immune system, seasonal influenza strains generally cause 

mild to moderate symptoms [11]. However, children, the elderly or 

immunocompromised individuals carry a larger risk for severe infections and mortality.  

In most cases, the immune system of a host is able to prevent or reduce the severity 

of an infection by the same pathogen after surviving a disease. The reassortment with 
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other strains and the adaptation to their hosts allow influenza viruses to escape or 

mitigate the host immune response by carrying slight variations in their genome [8]. 

This enables the re-infection of former hosts and results in annual epidemic outbreaks, 

which generally occur during the winter season, as the virus spreads through 

populations with reduced immunity. However, a baseline immune response is usually 

retained against seasonal influenza virus strains and the immune system is not 

completely naive, as compared to pandemic virus strains. Nevertheless, seasonal 

influenza outbreaks can cause up to five million severe infections and 650,000 deaths 

each year [12].  

To reduce the impact of seasonal influenza epidemics, annual vaccinations are 

administered worldwide. However, vaccination rates can vary greatly between 

countries and the composition of the vaccine has to be updated if the currently 

prevalent virus strains change [13]. During a pandemic outbreak, influenza vaccines 

for a newly emerged pandemic strain could be developed with a certain delay, i.e., at 

least 5–6 months after the initial detection [14], but would not be available immediately. 

For the application during early phases of seasonal epidemics, pandemic outbreaks 

and the general treatment of influenza virus infections, antiviral drugs can be 

administered. Typically, such drugs interfere with the viral life cycle reducing symptoms 

and supporting viral clearance. However, antivirals can become ineffective if viruses 

acquire resistances to specific drugs via genetic shifts [15, 16]. To ensure successful 

prevention and treatment of influenza virus infection on a global scale, the optimization 

of vaccine production processes and the discovery of potent antivirals is highly 

important.  

Defective interfering particles (DIPs) are considered as promising candidates for 

antiviral therapy due to their capability to interfere with virus replication [17]. They are 

structurally similar to their corresponding standard virus particle (STV), replication-

incompetent on their own, reduce STV titers during co-infection and can enhance the 

innate immune response of cells. With the advent of powerful analytical methods in 

recent years, DIP composition and production could be investigated thoroughly. 

However, various aspects of DIP de novo generation and their interference mechanism 

remain largely unknown. Different animal studies confirmed their therapeutic potential 

for prevention and mitigation of influenza A virus (IAV) infections [18, 19]. In these 
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studies, a high ratio of DIPs to STVs was required for DIPs to show significant impacts 

on animal survival.  

The number of infecting virus particles per cell, i.e., the multiplicity of infection (MOI) 

and the multiplicity of DIPs (MODIP), do not only affect DIP interference, but also 

strongly impact regular infection dynamics. During natural influenza infections, which 

typically occur via airborne transmission, the MOI is an indicator for the chance of a 

breakthrough infection. Individual virus particles can fail during infection, but larger 

virus populations have a much higher chance for successful propagation. Furthermore, 

during influenza vaccine production, the initial MOI is a tightly controlled parameter and 

the production process is initiated at very low MOIs. In contrast, high MOI conditions 

support the production of DIPs. Understanding the complex roles of MOI and MODIP, 

i.e., their impact on infection dynamics, on vaccine and DIP production, and their 

dynamics changes during an infection could greatly benefit the prevention or treatment 

of influenza virus infections. 

The underlying mechanisms of complex biological systems, e.g., virus-host cell 

interactions and virus spreading in cell populations, remained elusive for a long time 

due to a scarcity of measurements. However, advances in various disciplines, e.g., 

analytical methods, computational processing power and systems biology, enabled the 

collection of large amounts of data and the development of sophisticated mathematical 

models. These models were employed to test existing hypotheses, to generate new 

hypotheses that could be evaluated experimentally, and to predict system behavior. In 

particular, model-based studies describing the global spread of infections were 

developed to guide public health strategies in response to pandemic outbreaks, e.g., 

for influenza [20] and COVID-19 [21]. Furthermore, models were used to study the 

infection dynamics of various viruses inside hosts, such as humans or animals, or even 

in single cells. These kinds of studies support the understanding of immune responses, 

the development of novel antivirals and the optimization of vaccine production. The 

vast majority of models focused on virus-host interactions on individual scales, i.e., on 

the single-cell, within-host, between-host or global level. More recently, multiscale 

models that study the interplay between these different levels have been developed to 

uncover previously unknown interactions and mechanisms. 
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The aim of this thesis was to develop a mathematical multiscale model of STV and DIP 

co-infection for IAV that can be used to predict intracellular virus replication dynamics 

and infection spreading on the cell population level. Using this model, we intended to 

assess the impact of the MOI and the MODIP on viral titers, evaluate their dynamic 

behavior during an infection and study mechanisms of DIP interference. This could 

support the optimization of vaccine and DIP production, improve the understanding of 

STV and DIP interactions in general, and enable the estimation of an optimal DIP dose 

for therapeutic application. As the interaction of STVs and DIPs on the intracellular 

level strongly affects virus propagation on the cell population level and vice versa, a 

multiscale approach is required to represent the complexity of the underlying 

mechanisms. Thus, three main objectives were defined for this thesis: (i) the 

development of a multiscale model of STV and DIP co-infection, (ii) the explicit 

consideration of the impact of MOI and MODIP conditions on infection dynamics in the 

model, and (iii) the determination of a parametrization, ideally a single set of 

parameters, allowing the description of a large range of infection conditions to enable 

reliable model predictions.  

Following this introduction, we highlight general properties of IAVs and DIPs, outline 

the influence of the MOI and the MODIP on virus infections and discuss mathematical 

modeling in virology (Chapter 2). In Chapter 3, we define the multiscale models 

developed to describe IAV infection dynamics in different MOI conditions and for the 

co-infection of STVs and DIPs. Then, we present the results of model construction, 

simulation and prediction for the two different models, which were calibrated to 

intracellular and cell population measurements from infection experiments (Chapter 4). 

Lastly, we provide a general conclusion and an outlook for this thesis in Chapter 5 

and 6, respectively. 
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2. Theoretical background 

 

In the first section of this chapter, an overview of influenza virus structure, the viral 

replication cycle and defective interfering particles is provided. Then, the impact of the 

MOI and the MODIP on infection dynamics as well as on the competition between 

STVs and DIPs is outlined. Finally, mathematical modeling approaches and theoretical 

tools for model analysis are highlighted.  

 

2.1 Influenza A virus 

 

Influenza viruses are members of the family of Orthomyxoviridae, which are negative-

sense ribonucleic acid (RNA) viruses. Currently, four genera of influenza viruses are 

known, i.e., influenza virus A, B, C and D, with the last one discovered just recently 

[22, 23]. Influenza epidemics are primarily caused by the types A and B, which induce 

an infectious respiratory disease in humans. However, the major pathogen is IAV, 

which is also able to infect birds and has caused severe pandemic outbreaks in the 

past. Therefore, we focus on IAV for the rest of this work.  

Due to the high mutation rate of the viral genome, a large variety of IAV strains has 

been discovered. The different strains are characterized by their genus, place of 

isolation, isolate number, year of isolation, and the subtype of their surface proteins, 

i.e., hemagglutinin (HA) and neuraminidase (NA). The IAV strain 

A/PR/8/34 (H1N1) [24], which is widely used for infection experiments, was isolate 

number 8 obtained in Puerto Rico (PR) in the year 1934 and contains HA and NA of 

subtype 1. 

 

2.1.1 Morphology 

 

IAV spreads between hosts via spherical (diameter of 80-120 nm) or elongated, 

filamentous (up to 1 µm long) virus particles, also referred to as virions [25, 26]. The 

general composition of an IAV particle is presented in Figure 2.1.  
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Figure 2.1.: Influenza virus particle and genome structure. (A) Scheme of a 

spherical IAV particle. (B) Schematic depiction of an influenza viral ribonucleoprotein. 

(C) Overview of the eight genome segments of the influenza A/PR/8/34 strain. Boxes 

represent the encoded proteins for each segment, respectively. For segments 7 and 8, 

introns of the spliced messenger RNAs (mRNAs) are indicated by V-shapes.  

PB1/PB2 = polymerase basic protein 1 or 2, PA = polymerase acidic protein,  

HA = hemagglutinin, NP = nucleoprotein, NA = neuraminidase, M1/M2 = matrix  

protein 1 or 2, NS1 = nonstructural protein 1, NEP = nuclear export protein. Figure 

adapted from [27].  

 

Virions of IAV are enveloped by a lipid bilayer, which originates from the membrane of 

the host cell and carries the viral ion channel matrix protein 2 (M2) and the viral surface 

proteins HA and NA. The viral matrix protein 1 (M1) is coating the envelope from the 

inside separating it from the core of the virion. In the core, the nuclear export 

protein (NEP) and the viral genome are located. The IAV genome is segmented and 

comprises eight individual genomic viral RNAs (vRNAs). In a virus particle, these 

vRNAs occur as viral ribonucleoprotein complexes (vRNPs), which are formed by the 

vRNA binding to one RNA-dependent RNA polymerase (RdRp) and multiple 

nucleoproteins (NPs). Additionally, vRNPs interact with M1 proteins in the core of the 

virus particle. The RdRp consists of three subunits, i.e., polymerase basic proteins 1 

and 2 (PB1 and PB2) and polymerase acidic protein (PA) [28-30]. Furthermore, the 

unspecific incorporation of various host cell factors has been observed [31].  
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2.1.2 Viral genome and proteins 

 

IAV particles possess a segmented, negative-sense, single-stranded genome that 

consists of eight vRNPs. The genome segments form rod-shaped complexes and 

contain 890 to 2341 nucleotides (for reference strain A/PR/8/34) resulting in a length 

of 30 to 120 nm [32]. Although the genome is single-stranded, it is configured in a 

double-helical structure with the RdRp bound to both ends of the RNA (5’ and 3’), which 

is intertwined and forms a helix with itself. Inside the virion, the eight genome segments 

adopt a “7+1” configuration with one core vRNP and the other seven segments forming 

a ring around it [33, 34]. 

Each genome segment provides the genetic information for at least one specific viral 

protein, with currently 18 different proteins described for IAV [35]. The polymerase 

subunits PB2, PB1 and PA are located on segments 1 to 3, respectively. Segment 4 

and 6 encode for the viral surface proteins HA and NA, respectively, and NP is provided 

by segment 5. Segment 7 encodes for M1 and, by using alternative RNA splicing, can 

also generate M2. The same applies to segment 8, which encodes for non-structural 

protein 1 (NS1) and can additionally provide NEP using alternative splicing [36]. 

Further viral proteins can be generated using alternative reading frames (for 

segment 2) and ribosomal frameshifting (for segment 3). However, these proteins were 

only detected in a few virus strains or in cell culture experiments suggesting they are 

non-essential or serve a highly specialized function [35, 37]. 

 

2.1.3 Intracellular replication cycle 

 

IAV replication occurs in the nucleus of its host cell, which is rare for RNA viruses. 

Therefore, the genomic information of the virus has to be transferred to the nucleus 

and, after progeny vRNP production, back to the cell membrane for virus particle 

release (Figure 2.2).  
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Figure 2.2.: Schematic depiction of the intracellular IAV life cycle. Outside of the 

virus particle, only one of the eight virus genome segments is shown to represent the 

others and NS1 is not shown. The steps of intracellular infection are marked by the 

numbers as following: 1 - attachment to sialic acids, 2 - endocytosis, 3 - fusion in late 

endosomes, 4 - nuclear import, 5 - transcription, 6 - protein translation, 7 - cRNA 

synthesis, 8 - cRNA encapsidation, 9 - vRNA synthesis, 10 - vRNA encapsidation, 

11 - M1 and NEP binding, 12 - nuclear export, 13 - virus assembly and budding. Figure 

adapted from [38]. 

 

Virus entry and nuclear import 

The initial step of IAV infection is the binding of the HA on the surface of the virus 

particle to sialic acids (SA), which are located on the apical surface of the polarized 

cell membrane. Then, IAV particles enter the cell via receptor-mediated endocytosis 

and are transported towards the cellular nucleus in endosomes. Late endosomes are 

subject to an acidification process, which induces two important changes to the virus 

particle. M2 proteins assume their function as ion channels and mediate the import of 

protons, which triggers the dissociation of vRNPs from M1 proteins, a process referred 

to as uncoating (reviewed in [22, 39, 40]). Additionally, HA proteins on the virion 

surface undergo conformational changes leading to the fusion of the viral envelope to 

the endosomal membrane, which enables vRNPs to enter the cytoplasm. 
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Due to these events, M1-free vRNPs enter the cytoplasm and travel to the nucleus, 

where they utilize an energy-driven cellular import mechanism relying on nuclear 

transport receptors [41-43]. This is enabled by nuclear localization signals (NLSs), 

which have been detected on all vRNP-related proteins, with the NLS on NP being 

suggested as crucial for the process. These NLSs interact with the nuclear transport 

receptors facilitating vRNP import. However, binding of M1 can disable the NLS 

preventing nuclear import [44]. Thus, M1 acts as a regulator controlling the entry of 

vRNPs into the nucleus. After uncoating, parental vRNPs are not bound by M1 and 

can enter the nucleus. In contrast, progeny vRNPs carry M1 proteins when they are 

exported from the nucleus and, thus, are not re-imported [45-47]. This prevents the 

accumulation of progeny vRNPs in the nucleus and facilitates virus particle release.  

 

Viral mRNA transcription and protein translation 

After reaching the nucleus, the primary function of vRNPs is to act as separate entities 

that perform the transcription of viral mRNA (vmRNA) for their respective genome 

segment [48]. From here on, mRNA of viral origin will be referred to as “vmRNA” and 

mRNA of cellular origin will be explicitly labelled “cellular mRNA”. To perform its 

intended function, the vmRNA takes advantage of multiple cellular mechanisms which 

requires it to disguise itself as a cellular mRNA [29, 49]. Therefore, vmRNA 

transcription by vRNPs occurs as a primer-dependent process, which utilizes 

precursors of cellular mRNAs produced by the host cell. These precursors, which 

consist of a 5’ cap and 10-13 nucleotides, are obtained from cellular RNA 

polymerase II (Pol II) in a process called “cap-snatching” [22, 30, 50, 51]. To that end, 

the vRNP-associated RdRp binds to Pol II, cleaves the cap and uses it as the basis for 

vmRNA transcription. The RdRp acts in cis for transcription in a 3’->5’ direction using 

the vRNA as a template. At the 5’ end, it encounters a steric hindrance causing it to 

stutter and produce a series of five to seven uridine residues [52, 53]. This leads to a 

polyadenylation and the formation of a poly(A) tail. Thus, the vmRNA emulates the 

structure of cellular mRNAs by having a cap at the 5’ end and a poly(A) tail at the 

3’ end. This enables the exploitation of the mechanism used for the nuclear export of 

cellular mRNAs, which, thereby, can be used by vmRNAs to enter the 

cytoplasm [29, 54].  



2.1 Influenza A virus 10 

 

The translation of viral proteins is performed by cellular ribosomes in the cytoplasm. 

IAV vmRNAs have developed various mechanisms to preferentially access these 

ribosomes and outcompete cellular mRNAs [55]. Newly synthesized viral proteins can 

either enter the nucleus via their NLS to support virus replication and nuclear export of 

vRNPs, or relocate to the cell membrane for virus particle assembly [43, 56, 57]. 

Additionally, some viral proteins, i.e., HA, NA and M2, undergo post-translational 

processing in the endoplasmic reticulum (ER) and the Golgi apparatus [23]. 

Subsequently, these proteins travel to the cell membrane. NA proteins are expressed 

on the cell surface, where they cleave SA. This prevents the accumulation of progeny 

virus particles at the cell membrane after release. Additionally, it reduces the chance 

of superinfection by other virus particles, which require SAs to successfully enter the 

cell [58]. 

Various experimental studies have also revealed that some viral proteins are 

accumulating much earlier than others, which may be crucial for the regulation of 

different phases of infection [59, 60]. In particular, high NS1 and NP levels were 

observed early during infection, while HA, NA and M1 appeared significantly later. This 

may also affect superinfection exclusion (SIE) mediated by NA, resulting in a window 

of superinfection until enough NA is produced. Therefore, the temporal control of viral 

protein synthesis adds an additional layer of regulation and could enable optimal virus 

yields by controlling the transition between different stages of infection.  

 

Primary transcription and vmRNA regulation 

In the initial phase of infection, i.e., until around 1 hour post infection (hpi), vmRNAs of 

all eight segments are produced in equimolar amounts [60-62]. This process is often 

referred to as “primary transcription”, which is only mediated by the initially provided 

viral genomes and proteins. Subsequently, viral proteins and the first progeny vRNPs 

are generated, which initiates the transition towards the secondary phase of vmRNA 

transcription. In this phase, vmRNAs originating from segment 1 to 3, which encode 

for subunits of RdRp, are produced in much lower amounts than the other segments 

resulting in up to ten times higher levels for non-RdRp segment vmRNAs. This could 

also be closely related to the differentiation between early and late viral proteins adding 

an additional layer of viral RNA regulation [59]. 
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After reaching peak concentrations around 4 hpi in high MOI infections, vmRNA is 

degraded rapidly despite large amounts of vRNPs present in the nucleus [63, 64]. 

Recent studies have suggested that newly synthesized RdRp could play a role in 

preventing a longer period of vmRNA accumulation. It was shown that RdRp has two 

different mechanisms of interaction with Pol II [65, 66]. When RdRp carries a copy of 

the viral genome, i.e., when it is part of a complete vRNP complex, binding to Pol II 

induces vmRNA synthesis. However, the binding of free RdRp to Pol II leads to the 

specific degradation of Pol II. The reduction of Pol II levels impedes vmRNA 

transcription and could lead to a shutdown as observed in [59].  

 

Viral genome replication 

The secondary function of vRNPs in the nucleus is the initiation of viral genome 

replication, in which numerous copies are produced. The vmRNA transcribed from 

vRNP is not suitable as the basis for progeny vRNA generation, because it contains a 

cap, a poly(A) tail and is shorter than the complete genome segment. Therefore, an 

additional RNA species is utilized, the so-called complementary RNA (cRNA). This 

positive-sense cRNA is synthesized by RdRp from vRNA in a primer-independent 

process and contains the complete genomic information (reviewed in [22, 30, 67]). 

Similar to the vRNA, the cRNA is encapsidated with one RdRp and multiple NPs to 

from a complementary ribonucleoprotein complex (cRNP). In the next step, vRNA is 

synthesized by RdRp using the cRNP as a template, which ultimately leads to the 

formation of negative-sense vRNPs after subsequent encapsidation [22].  

 

Nuclear export of vRNPs 

Following replication, progeny vRNPs can remain in the nucleus to continue viral 

transcription and replication processes or leave the nucleus to form viral particles. The 

nuclear export of vRNP is an important process in the viral life cycle as it balances a 

continued amplification of the viral genome with the release of virus particles from the 

host cell. The exact procedure and order of events involved in the nuclear export is still 

elusive. However, the viral proteins M1 and NEP, and the cellular receptor 

chromosome region maintenance 1 protein (CRM1) were shown to play major roles 

during this process (reviewed in [22, 23, 42, 43]).  
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One proposed mechanism describes a “daisy chain” model, in which NEP is connected 

to the vRNP via M1 and recruits CRM1 using a nuclear export signal [68-70]. The initial 

step, i.e., the binding of M1 to vRNP, has been theorized to switch vRNP from an active 

to an inactive state preventing further viral replication and preparing it for the 

export [71-76]. Then, the CRM1 mediates the export of vRNP in an energy-driven 

transport process. In a different hypothesis, NEP binds directly to the vRNP-associated 

RdRp and mediates the binding of M1 to the vRNP. Furthermore, NEP is required for 

M1 to suppress replication activity of vRNP [77, 78]. While the two models suggest 

different functions for M1 and NEP, their interaction seems to be crucial for the nuclear 

export process. As mentioned previously, M1 and NEP are considered as late proteins, 

which suggests an additional layer of temporal regulation that prevents vRNP export 

before sufficient virus replication could occur.  

 

Viral genome packaging and virion release 

To produce progeny virus particles, all required components accumulate at the cellular 

membrane to form virions. The necessary proteins, i.e., NA, HA, M1 and M2, are either 

directed to lipid rafts on the membrane by the ER and the Golgi apparatus or associate 

with raft boundaries [22, 79-81]. The transport of vRNPs to the membrane is mediated 

by the cellular microtubule network, which is accessed using a marker for recycling 

endosomes (Rab11) and assisted by other host cell factors [82, 83]. At the membrane, 

vRNPs are recruited by M1 and form a complex containing eight vRNPs. For the 

generation of replication-competent virus particles, a complete set of viral genomes, 

i.e., one copy of each of the eight different vRNPs, is required. This is ensured by 

segment-specific packaging signals, which are non-coding regions located at both 

ends of the vRNA [84, 85]. Additionally, inter-segment interactions (RNA-RNA) 

contribute to this process and are responsible for the organization in the 

aforementioned “7+1” configuration [33, 34, 86-88]. Despite these regulatory 

mechanisms, significant amounts of IAV particles were shown to contain less than the 

required eight viral genomes (discussed in section 2.1.4) [89]. 

During virion budding, a curvature in the cell membrane is introduced to form virus 

particles. The viral proteins HA, NA, M1 and M2 are assumed to contribute to this 

process [22, 41, 51, 90, 91]. A key role is played by M1, which oligomerizes at the 
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membrane and forms curved structures [23]. In the growing bud, membrane-

associated M1 also interacts with the vRNPs linking them to the membrane and 

establishing the core of the virion. The last steps of budding are performed by M2, 

which forms a neck at the bud and, finally, separates the virus particle from the host 

cell [92]. 

 

2.1.4 Subpopulations of IAV particles 

 

IAV particle populations show a large genetic diversity, which stems from the high 

mutation rate of the genome and errors occurring during virus replication. While most 

IAV particles theoretically have the chemical characteristics required for infectivity, only 

up to 10% of particles seem to be capable to induce a productive infection [93]. This 

high chance of failure can have different reasons, e.g., incomplete virus particles or 

erroneous replication. Next to fully functional particles, which only represent a small 

fraction of all virus particles, different kinds of non-infectious particles contribute to 

pathogenicity and evolutionary fitness (Figure 2.3). 

 

Non-infectious virions and non-productive infections 

An IAV particle is considered infectious when it is capable to generate fully functional 

progeny virions. Most IAV particles can enter cells using their viral surface proteins, 

however, when they cannot induce the production of infectious progeny virions, they 

are referred to as replication-incompetent or non-infectious [93].  

IAV particles can be rendered non-infectious when they have a defect in or are missing 

one of their eight genome segments. This can be caused by mutations in the genome 

or errors during particle packaging. Each genome segment encodes for different viral 

proteins required for successful virus replication. Therefore, the alteration or loss of 

genome segments prevents the production of functional proteins inducing non-

productive infections. DIPs, which are covered in section 2.1.5, represent a special 

case of genome deletions that are actively interfering with regular replication [17, 94, 

95]. Additionally, IAV particles can carry other defects that could prevent productive 

infections, e.g., non-functional viral proteins impeding virus entry or replication. Lastly, 

deformed, broken or empty virus particles were also observed during IAV infection [64].  
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Figure 2.3: Overview of different infectious and non-infectious influenza virus 

particles. (A) Top view of a fully infectious virus particle showing the “7+1” 

configuration of vRNPs. (B-C) Top views of virus particles containing less than the 

eight influenza virus genomes or a defective interfering genome. (D-E) Non-infectious 

virus particles that may contribute to measured total virus titers, but do not show any 

infection activity. Depictions based on transmission electron microscopy 

results [64, 89]. 

 

These are predominantly generated during late stages of infection and do not have the 

typical spherical shape of IAV particles. They can still carry viral proteins on their 

surface, which induces virus-like responses in host systems, e.g., the activation of the 

immune system. 

However, even fully functional virus particles can fail to induce a productive infection 

due to stochastic noise during virus entry, replication and packaging [27, 96]. At every 

step of the viral life cycle, a non-zero chance of failure of molecule reactions and 

interactions exists. These effects are exacerbated at specific steps of the life cycle 

relying on small molecule numbers during early infection. For instance, it was shown 

that only around 50% of virus particles fused successfully with the endosomal 

membrane during transport to the nucleus [97, 98]. Failure during this step leads to the 

degradation of virions in lysosomes preventing progeny virion production. Additionally, 

right after nuclear import of vRNPs, IAV is susceptible to the loss of individual genome 

segments. If a vRNP is degraded before its genomic information could be transcribed 
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to a cRNA, the respective segment is lost and cannot be incorporated into progeny 

virus particles.  

The chance of non-productive infections is most prominent in low MOI conditions when 

largely single-hit infections occur [99]. Increasing the amount of virus particles entering 

a cell also elevates the number of initial genome segments available in the nucleus, 

which reduces the impact of endosomal fusion failure and genome degradation. 

Furthermore, multiple-hit infections by non-infectious virus particle could theoretically 

induce productive infections assuming that in combination all genome segments 

required for replication are provided. Therefore, non-infectious virus particles have also 

been referred to as semi-infectious [100-103]. 

 

Quantification of IAV subpopulations 

IAV titers can be determined using different experimental approaches, e.g., standard 

dilution methods and real-time reverse transcription quantitative polymerase chain 

reaction (RT-qPCR) [63, 104, 105]. These methods examine different aspects of virus 

particles, which enables the evaluation of IAV subpopulations.  

The HA assay detects particles that carry HA proteins on their surface [106]. As this 

includes all particles presenting HA, regardless of virion shape or content, it can be 

employed to measure the total amount of infectious and non-infectious particles. The 

total amount of virus particles can also be determined using RT-qPCR, which 

measures viral RNA levels [63]. These RNA levels can be related to the total virion 

count by assuming every particle carries the viral RNAs. An advantage of RT-qPCR is 

the capability of detecting specific RNA sequences, which supports the quantification 

of virions containing specific mutations in the genome. This is especially relevant to 

measure DIP concentrations, which are challenging to quantify using other methods.  

The 50% tissue culture infective dose (TCID50) [107] and the plaque assay rely on virus 

propagation, which cannot be performed by non-infectious virus particles, to quantify 

virus titers. Therefore, they can be used to detect levels of infectious virions. Generally, 

TCID50 measurements are 10–100 times lower than HA assay results when measuring 

virus titers during early virus production stages, which supports that around 10% of 

produced IAV particles are infectious. In later stages of infection, TCID50 results can 

be up to 100,000 times lower than HA titers as virus particles lose their infectivity over 
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time. Furthermore, experimental data obtained via plaque assay are slightly lower than 

TCID50 measurements.  

 

2.1.5 Defective interfering particles 

 

DIPs occupy a unique position among non- or semi-infectious particles. While they are 

not capable of productively infecting a cell on their own, they can interfere with STV 

replication during co-infection. DIPs were initially discovered in experimental studies 

by Henle and Henle in 1943, which observed that “inactive” influenza virus particles 

could interfere with the replication of regular influenza virions [108]. One decade later, 

von Magnus observed the reduction of the ratio of infectious to non-infectious virus 

particles during the successive passaging of influenza viruses in eggs using high 

MOIs [109]. This phenomenon became known as the “von Magnus effect” and he 

hypothesized that it was connected to the generation of “incomplete” virions [110]. The 

term “defective interfering” (DI) particle was later proposed by Huang and Baltimore, 

which also provided the first description of its properties [94]. Following their 

identification in experiments under laboratory conditions, DIPs were also detected 

in vivo [17, 111]. DIP generation was observed for nearly all viruses [95, 112, 113], 

which indicates that their emergence is closely connected to the general viral life cycle. 

Furthermore, DIPs likely affect biotechnological processes, e.g., vaccine 

production [114, 115]. In the following, influenza virus DIPs will be the focus. 

Based on the current understanding, DIPs can be described as (i) composed similarly 

to their homologous STV, (ii) propagation-incompetent on their own, (iii) capable of 

propagation when missing viral proteins are provided, and (iv) interfering with the 

intracellular replication of their homologous STV during co-infection.  

 

Structure and emergence of DI RNAs 

The composition of an influenza DIP is closely related to the homologous STV it 

originates from [17, 95, 112, 113]. The surfaces of DIPs and STVs are practically 

identical making their distinction challenging. However, DIPs are defective in one or 

more of the eight genome segments containing the genetic information. This renders 

DIPs propagation-incompetent on their own, because they are incapable to produce 
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the complete set of viral proteins. Commonly, such defects are induced by a large 

internal deletion in the DI RNA retaining a varying amount of nucleotides at both ends 

of the genetic sequence. The essential parts for replication and release, i.e., 

promotors, the bundling signal and the packaging signal, are located at the 5’ and 3’ 

ends of the RNA [84, 95, 116] (Figure 2.4). Due to their internal deletions, which can 

vary significantly in length and span from less than 100 to over 2000 nucleotides, DI 

RNAs are shorter than RNAs of their corresponding full-length (FL) segment [114, 

117]. DIPs can possess deletions in more than one segment, but most commonly only 

contain a single defective RNA. Segments 1–3, which encode for sub-units of RdRp, 

represent the vast majority of naturally occurring DI RNAs [18, 111, 118-120]. 

Furthermore, the application of novel techniques to characterize genomes has 

demonstrated that a large variety of RNAs containing internal deletions is accumulating 

when infecting cells in batch as well as continuous cultivations [118, 121]. However, it 

is not clear if all of these defective RNAs show interfering capabilities. 

The large internal deletion in the middle of a DI RNA is caused by an erroneous virus 

replication process [95]. It was suggested that the RdRp might detach from the viral 

template during replication and translocate to an incorrect position on the RNA. Then, 

it continues replication skipping a large part of the genome. Due to the double-helical 

structure of the vRNP (Figure 2.4), distant parts of the RNA sequence can be located 

directly next to each other. Additionally, the majority of detected internal deletions are 

nearly symmetrical, which further supports this hypothesis [118, 121]. 

In addition to deletions, defects in the genome segment can also be induced by other 

factors. In a recent study, an IAV particle with multiple point mutations in the RNA 

sequence of segment 7, which encodes for the proteins M1 and M2, was characterized 

and showed interfering characteristics similar to DIPs [122]. Moreover, DI RNAs that 

have parts of their sequence copied in reverse complement (“hairpin” and “panhandle” 

DI genomes) and that have multiple non-adjacent sections joined together (“mosaic” 

DI genomes) were discovered [17, 123, 124]. For the rest of this thesis, DIPs with an 

internal deletion in one genome segment will be the focus. 

 

 

 



2.1 Influenza A virus 18 

 

 

Figure 2.4.: Scheme of DI RNA structure and de novo generation. (A) Structure of 

full-length, regular DI and OP7 RNA. The promoter, non-coding and parts of the coding 

region form the packaging signal required for genome assembly. DI RNAs normally 

contain a large internal deletion in the coding region indicated by the V-shape. The 

OP7 RNA contains multiple nucleotide substitutions exemplified by blue vertical lines. 

For the exact positions of substitutions the reader is referred to the original publication 

on OP7 [122]. (B) Regular reading sequence for the generation of full-length RNAs by 

RdRp. (C) Potential underlying mechanism for the de novo generation of DI RNAs. The 

viral polymerase is hypothesized to translocate erroneously from the forward-moving 

strand to an RNA region close to the end of the genome sequence. Due to the double-

helical structure of the RNA, these regions are closely associated promoting such an 

event. Thus, the large part in the middle of the RNA would not be transcribed. Figure 

adapted from [27]. 

 

DIP propagation and replication advantage 

DIPs can propagate successfully when a complete set of viral proteins is available. 

During a natural infection, this is mainly achieved by co-infection with a STV, which 

acts as a helper virus and provides the genetic information to produce the missing 

protein(s). Because DI vRNAs still possess the required promotors, the RdRp 

recognizes them enabling DI cRNA and progeny DI vRNP generation. Furthermore, 

the bundling and packaging signals are retained in the DI RNA facilitating virion 

release. The transcription of DI vmRNA has also been observed [125, 126]. However, 

proteins potentially synthesized from DI vmRNA containing an internal deletion would 

likely either show no or non-regular activity. Moreover, a strategy to enable DIP 
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propagation in the absence of its STV, which relies on a modified cell line to produce 

influenza virus proteins, has been developed recently (discussed in section 2.1.6).  

During STV and DIP co-infection, DI RNAs typically accumulate to higher levels than 

their FL RNA counterparts and infected cells mostly release progeny DIPs. Different 

mechanisms were proposed to contribute to these effects. A replication advantage of 

DI RNA over the FL RNA has been suggested as a major factor, because the 

preferential amplification of subgenomic RNAs has been observed in infections 

affected by DIPs [113, 127, 128]. In particular, an advantage during the DI cRNA 

synthesis was proposed by Odagiri et al. [129]. The significantly shorter length of 

DI RNAs was identified as a likely cause for faster replication assuming the RdRp 

operates at a constant rate of transcription. This would result in a higher number of 

DI RNA copies produced per minute allowing it to overgrow their corresponding 

FL RNA due to the autocatalytic mechanism of viral RNA replication. Experiments 

using two competing influenza virus-like RNAs showed that the shorter RNA could 

outperform the longer one, which supports this hypothesis [130]. However, a direct 

relation between DI RNA length and interference potential could not be established. 

During the propagation of STVs and DIPs in a semi-continuous production system, the 

length of strongly accumulating DI RNAs was distributed around a seemingly optimal 

length value [121]. Furthermore, not all subgenomic RNAs interfere with the STV and 

accumulate to high levels in co-infections [128]. Additionally, most naturally occurring 

DI RNAs are related to the longer segments 1–3 suggesting that other factors also play 

an important role. An additional mechanism that could result in an advantage for 

DI RNAs during replication is the incorporation of a “superpromotor”. 

A specific type of DIP containing various point mutations on segment 7, but no 

deletions, was shown to feature a “superpromotor” resulting in the enhanced synthesis 

of vRNA, vmRNA and viral proteins related to this segment [122]. Ultimately, this led 

to the strong suppression of STV replication while the DIP could propagate. Lastly, 

some co-infection studies also proposed that DI RNAs might be packed preferentially 

into virus particles [128, 131, 132]. The ratio of DI to FL RNA in released virions was 

shown to be higher than inside the cell. This suggests that the choice of incorporating 

a DI or FL RNA into progeny virus particle may not be random, but DI RNAs may be 

packaged more efficiently. As a result, co-infected cells almost exclusively released 
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DIPs despite sufficient amounts of available FL RNA. Thus, specific interactions during 

the packaging of progeny virions may also contribute to the advantage of DIPs over 

STVs during propagation. 

 

Interference with the STV replication 

Due to their overall replication advantage during co-infection, DIPs can strongly 

interfere with STV production reducing infectious viral titers by multiple orders of 

magnitude. The main factor for interference is likely the competition for viral and cellular 

resources [113]. In particular, the RdRp, which facilitates the key steps during 

replication, is considered a limiting factor. DI and FL RNAs of vesicular stomatitis 

virus (VSV) have been shown to compete for their viral polymerase [130, 133]. Similar 

results were shown for influenza virus-like RNAs, whose replication was found to 

depend on the availability of RdRp [127, 134]. This competition combined with the 

accumulation of DI RNAs to higher levels, which enables them to occupy a larger 

fraction of available RdRp, would severely reduce the ability of FL RNAs to replicate. 

Other viral proteins, which are necessary for vRNP stabilization and nuclear export, 

could also be the target of competition. To transport progeny vRNPs to the cell 

membrane, the combined function of RdRp, NP, M1 and NEP is required. Due to their 

higher numbers, DI RNAs could also induce a reduced availability of these components 

hampering FL vRNP production. In addition to viral proteins, cellular resources like Pol 

II may further contribute to the disturbance of FL RNA replication. 

Next to resource competition, the aforementioned advantage of DIPs during packaging 

could also contribute to interference with the STV release. If DI vRNPs were 

preferentially packaged, e.g., due to their smaller size or increased binding affinities, 

this would further reduce STV propagation [128, 131, 132]. Furthermore, experiments 

have shown that peptides produced from DI RNAs can assume biological functions 

and contribute to influenza virus pathogenicity [135]. Therefore, these peptides could 

also influence the balance between DI and FL RNA by affecting specific steps of virus 

replication and release.  

Another factor impairing STV propagation is the impact of STV and DIP co-infection 

on the amount of genome segments provided by the infecting virions. In a regular 

single-hit infection by a complete STV, all eight FL vRNPs are provided and replication 
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starts from an equal amount of templates. While the balance between the amounts of 

vRNPs may change during the infection, they initially have a similar chance to replicate, 

i.e., one in eight or 12.5% (neglecting potential segment-specific differences during 

replication). However, if we assume a co-infection of a STV and a DIP containing a 

DI vRNP of genome segment 1, this balance changes. Initially, one segment 1 

DI vRNP, one segment 1 FL vRNP and two of each of the other seven vRNPs would 

be available. This translates to an initial chance of one in 16 or 6.25% for the segment 1 

DI and FL vRNP to replicate, while the other segments are more likely to succeed. The 

segment 1 DI RNA can overcome this disadvantage due to its replication advantage. 

For segment 1 FL RNA, however, it is more likely that accumulation is severely 

impacted and levels of progeny segment 1 FL vRNP are low. As this FL vRNP is 

required for the generation of progeny STVs, this would further reduce STV titers. For 

the DI RNA this also has the additional benefit that the levels of is corresponding FL 

RNA are reduced specifically, which improves its own chance to be packaged into 

progeny virions. 

The interference of DIPs with the STV can also have negative effects for the 

propagation of the DIPs themselves. This effect is called “self-interference” and refers 

to a severe suppression of STV replication leading to reduced DIP production. If large 

amounts of DIPs are co-infecting cells with the STV, reduced DIP levels were observed 

for VSV [136, 137]. Additionally, vRNA levels of influenza DIPs were reduced when a 

high MODIP of 30 was used for infections [125]. Thus, a very strong interference with 

the STV replication may reduce DIP titers and a more moderate reduction of STV titers 

may be optimal for DIP propagation.  

Interestingly, a reduction of STV production could also be beneficial for viruses 

themselves. Lower STV levels could reduce overall lethality enabling a longer lifetime 

of the host resulting in prolonged virus replication. Supporting this hypothesis, a study 

of severe influenza virus infections has shown a reduction of DIP levels suggesting 

they are connected to virus pathogenicity [138]. Also, infections subject to DIP 

interference could induce milder symptoms increasing the chance of the host to spread 

the infection to new targets, which was shown for Dengue virus [139].  
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DIPs as antivirals 

Due to their ability to inhibit virus production, DIPs are considered as promising 

candidates for antiviral therapy. The initial studies on the effect of DIPs on IAV 

infections in mice and chicken eggs showed their capability to reduce infectious 

titers [108-110]. Over the years, various animal studies demonstrated that the 

administration of DIPs could successfully prevent and treat IAV infections in mice and 

ferrets [17-19, 140, 141]. Additionally, DIPs derived from IAV have been shown to 

induce antiviral activity against other viruses, e.g., influenza B virus [142], pneumovirus 

[143] and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [144]. 

Currently available antivirals for treatment of IAV infection, i.e., neuraminidase 

inhibitors (oseltamivir, zanamivir and peramivir [145]) and a recently approved cap-

dependent endonuclease inhibitor (baloxavir [146]), target an individual biochemical 

reaction or viral protein. In contrast, DIPs interfere with the whole virus replication 

process, which could provide benefits regarding the treatment of a wide range of virus 

infections and the development of antiviral resistances [17]. 

DIP co-infections have also been shown to result in an enhanced innate immune 

response from infected host cells [124, 147, 148]. Experimental studies demonstrated 

that the retinoic acid inducible gene I (RIG-I) protein, which induces interferon (IFN) 

activity, preferentially binds to the shorter DI RNAs [149, 150]. Thus, DI RNAs can lead 

to an increased activation of the IFN system. This enhanced innate immune response 

was proposed to contribute to the antiviral effect of IAV-derived DIPs against influenza 

infection [18, 143]. However, mini vRNAs, which are very short aberrant 

RNAs (56–125 nt) generated by the RdRp during viral replication, were reported to 

induce a larger stimulation of IFN expression than DI RNAs [151]. Additionally, these 

mini vRNAs were produced preferentially when viral RNA replication was 

dysregulated [151]. As mentioned above, DIPs compete with the STV for cellular and 

viral resources, especially for RdRp, which leads to a dysregulated viral replication. 

Therefore, DIPs may induce an enhanced innate immune response indirectly, i.e., by 

supporting the accumulation of mini vRNAs that lead to an increased expression of 

IFN. The individual significance of the DIP-induced effects i.e., the interference with 

the STV replication and the enhanced expression of IFN, to combat influenza 

infections, or if both are necessary for successful treatment, is not fully understood. 
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However, the increased innate immune response has been proposed as a key factor 

for the induction of antiviral activity against non-influenza viruses [152]. 

 

2.1.6 Influenza vaccine and DIP production 

 

The main strategy to combat severe influenza virus infections is mediated by annual 

vaccination. While for the treatment of acute infections antivirals can be employed, the 

most efficient and reliable results are achieved by the prevention of infections. The first 

influenza vaccine candidates were developed in the 1930s and became broadly 

available soon after due to their successful application [153-155]. Throughout the last 

eight decades, these vaccines were mostly based on inactivated or live-attenuated 

virus particles produced in embryonated chicken eggs. These particles carry the 

relevant antigens, i.e., HA and NA, on their surface, which can be detected by immune 

cells to prepare the adaptive immune system for future infections. Additional strategies 

were developed and licensed, including cell culture-derived recombinant protein-based 

vaccines [156], split vaccines [157], and sub-unit vaccines [158], but these could not 

capture the market due to lower efficacy and the low costs of the regular vaccines. A 

promising approach are mRNA vaccines, which were first proposed in 1989 and saw 

a breakthrough in 2020 due to the COVID-19 pandemic [159]. The safety and efficacy 

of mRNA vaccines against the flu were studied in mice and clinical trials [160, 161]. In 

the near future, they may become readily available for broad application [162].  

Due to the limited duration of protection and the high mutation rate of influenza viruses, 

which can induce structural changes in the HA and NA proteins and enable an 

antigenic evasion, influenza vaccination has to be repeated annually and the 

composition of the vaccine must be updated [163]. Current vaccines contain three or 

four different virus strains, which are recommended by the WHO based on their 

predominance in the previous season [164]. Therefore, an annual production of 

influenza virus material for vaccine formulation is required, which should be flexible to 

react to the emergence of new strains and potential pandemic outbreaks. 
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Egg-based and cell culture-based vaccine production 

The propagation of influenza virus particles in embryonated chicken eggs has been a 

cornerstone of influenza vaccine production since its initial development. Even today, 

influenza vaccine production is mainly performed in eggs using a process that has 

been optimized for over 80 years [165]. Cell culture-based vaccine production 

processes were developed starting in the 1950s with a polio vaccine manufactured in 

monkey-derived Vero cells [166]. Later, cell culture-based processes were considered 

for influenza vaccine production and the first human influenza vaccine derived from 

cell culture was approved in the European Union in 2001 [167]. Since then, more cell 

culture-based influenza vaccines have been developed and are becoming a serious 

alternative to the traditional egg-based vaccines.  

Egg- and cell culture-based vaccine production processes offer specific advantages 

and disadvantages. Influenza vaccine production in embryonated chicken eggs has 

been refined to the near optimum since its inception making the product cheap and 

safe. However, it relies on the availability of large amounts of vaccine-grade eggs 

limiting its flexibility during times of increased demand, e.g., pandemic outbreaks [168, 

169]. Cell culture-based vaccine production can be scaled-up readily to supply the 

required amount of doses. Additionally, it provides a sterile and controlled production 

process that, in contrast to egg-based production, has no record of introducing 

mutations to the HA protein during passaging, which reduces vaccine efficacy [163, 

170]. Due to the large investments required to establish a cell culture-based production 

platform and the comparatively harder approval process, the financial burden may still 

dissuade large vaccine manufacturers. However, one final advantage of cell culture-

based vaccine production is the diversity of the available influenza virus-propagating 

cell lines, which can be a target of optimization for increased product yields. 

In addition to the aforementioned Vero cells, a variety of cells have shown the capability 

to successfully propagate influenza viruses including a cell line of canine origin, i.e., 

Madin-Darby Canine Kidney cells (MDCK), human and chicken embryonic cells 

(HEK-293 and PBS-1), and insect cells (Sf9) [164, 171, 172]. Furthermore, the 

potential of different designer cell lines, i.e., AGE1.CR®, CAP®, EB14®/EB66® and 

PER.C6®, was evaluated [173-175]. Currently, MDCK cells are the main platform used 

for cell culture-based influenza vaccine production and related research. Adherent 
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MDCK (MDCKadh) cells were used to produce the first cell culture-derived human 

influenza vaccine [167], however, newer cell culture-based vaccines use MDCK 

suspension (MDCKsus) cells [158, 176, 177]. The advantage of suspension cells is 

that they can achieve significantly higher cell densities increasing product yield. For 

the calibration of the mathematical models presented in this thesis, both MDCKadh 

and MDCKsus cells were used.  

 

DIP production 

To facilitate the application of DIPs as antivirals, a safe and cost-efficient production 

process is required. For the generation of seed virus material for most DIP infection 

studies and animal experiments, producer systems, e.g., embryonated chicken eggs 

or cell cultures, were co-infected with STVs and DIPs. The resulting product always 

contained a mixture of STVs and DIPs, which would require an inactivation for usage 

in therapy, e.g., by UV irradiation [17, 141]. This negatively affects the interfering 

efficacy of DIP preparations and would pose a major challenge for regulatory approval.  

A novel approach for the production of DIPs that does not require a co-infection by 

STV was developed to overcome these limitations [178]. The general strategy is to 

supplement a viral protein that cannot be generated by a specific DIP, because it has 

a defect on the genome segment encoding for this protein. To that end, a modified cell 

line, which was genetically engineered to express a viral protein, is used. This principle 

has been used to generate large quantities of purely clonal DIP in a recent study [141]. 

In particular, an MDCKsus cell expressing PB2 was generated and used to propagate 

a DIP with a large deletion in genome segment 1. The produced STV-free material was 

shown to be innocuous and tested successfully in mice underlining the potential of this 

approach for DIP production. 

 

2.2 Multiplicity of infection 

 

The MOI is generally defined as the number of infecting agents per targets. In case of 

the infection of cell cultures with IAV, it represents the number of infectious IAV 

particles per uninfected cells added at the start of infection. However, its interpretation 
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can change drastically depending on what kind of measurement is used as the basis 

for calculation. As mentioned above, virus particle concentrations and their infectivity 

can be determined using various assays, e.g., the focus forming assay, the plaque 

assay, and the TCID50 assay [104, 105, 107]. When comparing experimental results 

from literature, one has to check the method used to calculate the number of infecting 

virus particles carefully, because the MOI has a large impact on the time-scales and 

yields of infection.  

 

Impact on virus replication and spreading 

The time course of IAV infections is heavily impacted by the MOI. In particular, the time 

until maximum virus titers are achieved during production can be more than twice as 

long when using low MOIs [179]. When few virions are provided initially, only a low 

number of cells is infected and can produce virus particles. Then, these progeny virions 

initiate subsequent waves of infection repeating the process. After multiple cycles, all 

cells are infected and, finally, the maximum titers are reached. By starting the process 

with a sufficiently high MOI, all cells can be infected in one step and the maximum titers 

are achieved after a single infection wave [64].  

For influenza vaccine manufacturing, the MOI is a tightly controlled process parameter 

and infections of cell cultures are usually initiated at very low MOIs [175]. This has 

multiple reasons including the increase of profitability due to the reduced demand for 

vaccine-grade seed virus material. Additionally, low MOIs were connected to increased 

virus yields compared to high MOI conditions in multiple studies [179, 180]. The 

underlying mechanisms leading to higher titers are not completely understood, but 

were connected to the impact of DIPs or a later induction of apoptosis [179].  

In contrast, most laboratory experiments infecting cell cultures have been focusing on 

high MOI conditions, especially during the early days of influenza virus research. High 

MOIs have the advantage to induce a single infection wave, which causes virus 

replication and release to occur in a similar time frame in all infected cells. This enables 

the identification of distinct infection dynamics compared to the multiple and likely 

overlapping infection waves in lower MOI conditions. Additionally, very low MOIs could 

theoretically fail to induce an infection when too few cells are productively infected 

initially. In a combined laboratory and modeling study, single-cell experiments and a 
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stochastic model of IAV infection were used to show how the probability of successful 

infection decreases when using lower MOIs [99]. When applying an MOI of 1, a 

significant number of infected cells were non-productive compared to an MOI of 10 

where most cells produced progeny virions. The inability to produce even a single virus 

particle was connected to the failure of virion fusion with the endosomal membrane or 

the loss of individual virus genome segments. These effects introduce a significant 

amount of noise into experiments with low MOIs making their realization and analysis 

challenging. However, low MOIs have been studied more rigorously in recent IAV 

studies [99, 125, 179, 181].  

The MOI is also a predictor for more severe infections in host organisms. Larger 

concentrations of infecting virions are more likely to induce breakthrough infections 

and induce more severe symptoms. In humans, the airborne infectious dose is 

estimated to be 0.6 to 3 infectious units [18]. Therefore, low MOIs presumably 

represent the majority of initial in vivo infection scenarios. After the initial infection and 

the establishment of the virus in the host, the producing cells may create localized 

spots of high MOIs increasing the chance of further spread in competition with the 

immune system. Thus, a mixture of low and high MOI conditions likely play a role 

during IAV propagation and need to be considered for the design of experiments and 

model development.  

 

Influence on DIP generation and interference 

All interactions between STVs and DIPs are also highly dependent on the MOI. 

Additionally, the MODIP is a critical factor for interference and STV suppression. 

Typically, STVs represent the majority of virus particles in IAV seeds, but these can 

also contain varying levels of DIPs. To obtain virus seeds with a strongly depleted DIP 

content, a serial passaging in low MOI conditions can be performed [121]. Completely 

DIP-free virus seeds can be generated via reverse genetics [182], but the production 

of larger quantities would come with a large financial burden.  

Assuming that the majority of virions in a virus seed are STVs, cell culture infections 

performed at low MOIs, i.e., below 10-1, start with the infection of small fraction of the 

available cells. These would result in mostly single-hit infections (Figure 2.5), which 

reduces DIP propagation due to the absence of co-infections.  



2.2 Multiplicity of infection 28 

 

 

Figure 2.5.: Chance of multiple-hit infections in relation to the MOI. Simulation of 

the probability that a cell is infected by multiple virions depending on the MOI. 

Calculated values were determined based on the Poisson distribution.  

 

Then, the progeny STVs produced in this initial wave infect more cells, which may lead 

to co-infections, but a large portion of the cells is infected only by STVs. Therefore, 

DIPs can still propagate, but later than the STV resulting in relatively low DIP titers.  

If infections are initiated at high MOIs, the chance of co-infections is increased, which 

supports DIP propagation and may lead to substantial DIP accumulation during 

production. In such scenarios, a reduction of infectious virus titers can also be 

observed indicating that the DIPs are able to interfere with the STV propagation. This 

effect could also be shown in studies on mice, which were subjected to lethal doses of 

IAV [18, 19]. In particular, the application of DIPs prevented symptoms and protected 

the mice from virus-induced death if the DIP dose was sufficiently high. Therefore, 

using high MODIPs can strongly suppress STV propagation, even when substantial 

amounts of STVs are provided. 

The impact of different MOI and MODIP conditions can also be observed using a 

specific experimental set-up, i.e., during the propagation of IAV in a continuous cell 

culture [183]. In such a system, uninfected cells are continuously provided from a cell 

bioreactor to the virus bioreactor while a corresponding volume is removed from the 

latter. The infection can be initiated at low MOI and MODIP conditions, which support 

STV propagation. This leads to the increase of virus titers, a high MOI and a larger 

chance of co-infections. Subsequently, the MODIP increases until high MOI and 
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MODIP conditions are present. This highly favors DIP production and inhibits STV 

propagation leading to low MOI and high MODIP conditions. Here, the chance of 

multiple-hit infections is still high, but most of them are not STV and DIP co-infections. 

Thus, DIP production is also slowed down. Subsequently, virus titers drop as 

bioreactor material is removed from the system and fresh cells are provided. Over time, 

the MOI and MODIP are reduced to low values that enable STV propagation and the 

whole process starts anew. As shown in multiple studies, this ultimately leads to an 

oscillation of virus titers [121, 183, 184]. Therefore, a continuous cultivation system 

can provide a microcosm of STV and DIP interactions in different MOI and MODIP 

conditions, which can generate substantial insights into their competition.  

 

2.3 Systems biology approaches for virus infections 

 

Biological processes have been studied since the emergence of intelligent life on earth. 

For a long time, knowledge about these processes, which was derived mostly from 

observation and reaction to manipulation, was limited by a lack of reliable 

measurements. However, the development of increasingly sophisticated technologies 

and experimental methods, especially since the middle of the 20 th century, led to the 

generation of overwhelming amounts of experimental data. The computer-assisted 

field of bioinformatics was created attempting to handle and interpret these data. This 

has spawned various sub-disciplines investigating biological interactions including 

systems biology.  

Systems biology is the analysis of complex biological processes using mathematical 

and computational methods. In that context, mathematical models are used as a 

theoretical representation of a process to describe and understand underlying 

mechanisms. They were used with great success to represent chemical reactions, 

enzyme kinetics or metabolic networks. Such mathematical models have also been 

widely used to describe virus infections, from the early models of human 

immunodeficiency virus (HIV) infection to the current models that attempt to predict the 

dynamics of the COVID-19 pandemic [21, 185].  
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2.3.1 Mathematical modeling of biological processes  

 

Generally, mathematical models of biological processes consist of state variables and 

a description of their interactions. Such models are highly flexible regarding their size, 

complexity and the simulation approach chosen. Models can be divided into various 

categories, which have significant implications for their applicability to specific 

problems. Focusing on mathematical models of virus infection, the scale of infection 

they describe is a key factor for the choice of a fitting modeling approach. Different 

scales of interest are the interaction dynamics of individual proteins, the kinetics of 

virus replication in the cellular nucleus, the propagation of virus particles between cells, 

infection spread in tissues and organs, infections of small human or animal 

communities and the global spread of infection waves. Depending on the problem that 

is addressed, a model tailored to the respective process and available experimental 

data can be employed. To investigate processes during IAV infection and vaccine 

production, the two most relevant approaches are (i) within-host models that cover the 

spread of an infection between cells in a host, and (ii) single-cell models that describe 

the intracellular replication of virus particles. The majority of these models can be 

classified as deterministic, dynamic and continuous. 

 

Deterministic models 

Deterministic models describe a single trajectory of changing state variables over time, 

uniquely determined by the initial conditions and model parameters. Therefore, the 

complete dynamics of the respective biological system can be simulated and the 

abundance of each state variable at a specific time can be calculated. Deterministic 

models are usually implemented via ordinary differential equation (ODEs), which 

describe changes of state variables dependent on the system time.  

To characterize time-dependent changes to the state variables, e.g., when a cell 

population is infected by virus particles, dynamic models are employed. For the 

analysis of biological systems in an equilibrium, static models can be used. However, 

static models are rarely applied to describe virus infections. In the majority of 

deterministic models, the state variables are implemented as continuous properties 

and, therefore, can assume values between two non-negative integers, e.g., 0.5 virus 
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particles. This can be interpreted as being in the transition between two discrete values 

or as the average number of virus particles present in the system at this specific time 

point.  

For the application of deterministic models, some key assumptions have to be made. 

They only describe one unique solution and disregard stochastic effects, which are 

inherent to biochemical reactions. This can be a disadvantage when simulating 

biological processes that are heavily impacted by noise, such as gene expression [96, 

186]. Especially when low molecule numbers can strongly influence the dynamics, 

random fluctuations have a large impact. As an example, while zero virus particles 

cannot infect a cell population, one particle has a certain chance to succeed. However, 

this single virion can degrade or other random factors may prevent the production of 

progeny virus particles. This would stop the infection and the probability of such events 

can be described with a stochastic model. In contrast, if in a deterministic model 0.1 

virions were added to a cell population, cells would always become infected and the 

virus could reproduce over time to infect the whole population. To prevent such 

misrepresentations of biological processes strongly affected by random fluctuations, 

deterministic models are generally applied to describe interactions of large 

populations [187]. By disregarding randomness, deterministic models can be 

computed significantly faster than stochastic models of similar size. This enables 

various ways of model analysis that are challenging to apply for stochastic models, 

e.g., parameter estimation or sensitivity analysis.  

Additionally, in the majority of deterministic models it is assumed that the system is 

well-mixed resulting in a readily available supply of substrates and other required 

materials for reactions. Therefore, the spatial distribution of components is disregarded 

and interactions can occur without additional transport processes. Most deterministic 

models describe reaction dynamics using the law of mass action kinetics. Thus, it is 

assumed that the rate of a reaction is directly proportional to the product of the 

concentration of the involved components. Some further assumptions are made 

specifically for mathematical models of virus infection. To describe the dynamics of 

virus replication, the kinetics of viral components are uncoupled from host cell kinetics 

to focus on the former. Additionally, host cell resources required for virus propagation, 
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e.g., cellular proteins and polymerases, are considered as unlimited to reduce 

complexity or due to the absence of appropriate measurements quantifying them.  

 

Other modeling approaches 

Another large class of models are discrete, stochastic models that consider the 

inherent randomness in biochemical reactions. When simulating dynamics in these 

models, state variables change in random time intervals based on their reaction 

propensities. Using the same initial conditions and model parameters can produce 

vastly different results as stochastic effects influence the production or degradation of 

state variables. To obtain a reasonable overview over the dynamics resulting from the 

models, they can either be solved using the master equation or have to be simulated 

numerous times to obtain an average time course of events. Although some 

approaches were developed to solve the master equation for larger models [188, 189], 

this is highly challenging and currently impossible for more complex implementations. 

Simulating stochastic models, which is mostly performed using the Gillespie 

algorithm [190, 191], can take a significant amount of time and computational effort. 

Stochastic models also often use discrete state variables that can only assume non-

negative integer values and consider exponentially distributed waiting times between 

events. This is important to represent dynamics with very low concentrations, but can 

be obstructive when millions of molecules are described. With very high numbers, 

changes in the concentration occur with very high frequency slowing down simulation 

even further. This increase in required simulation steps can be handled using different 

techniques, e.g., tau-leaping [192], but still makes stochastic models unattractive for 

such biological systems. In cases where both scenarios are relevant, i.e., very high 

concentrations and large effects of stochastic fluctuations, hybrid models combining 

deterministic and stochastic approaches can be used [193, 194].  

Further theoretical approaches that have been applied to describe virus infections 

include cellular automata [195-197], agent-based models [198, 199], Boolean 

frameworks [200], and population balance models [201, 202]. Cellular automata and 

agent-based models follow similar approaches and act on the spatial level, introducing 

individual areas of interaction (so-called cells) or agents that act individually based on 

a defined set of rules.  
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2.3.2 Models of virus propagation in cell populations 

 

Within-host models of infection mostly focus on the processes inherent to virus 

infections, i.e., the infection of uninfected target cells, the production of progeny virions 

and the virus-induced death of infected cells. They can be used to describe infection 

dynamics in humans, animals and cell cultures with the aim of predicting infection 

progression or estimate important infection parameters, e.g., the basic reproduction 

number R0 [203]. The standard within-host model (Figure 2.6), which represents the 

simplest implementation of the aforementioned processes [204], can be applied to a 

large variety of viruses, e.g., HIV, IAV, Hepatitis B and C virus (HBV and HCV), Ebola 

virus, flaviviruses and SARS-CoV2. It is defined as 
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where T, I and V denote target cells, infected cells and infectious virus particles, 

respectively. Target cells grow with the rate s and die with the rate d. The infection rate 

constant β is used to describe the infection of target cells via the law of mass action 

kinetics. Infected cells die with the rate δ and produce virus particles with the rate p. 

Infectious virus particles are cleared with the rate c [204]. 

This model can be expanded to investigate competing hypotheses of infection 

processes, e.g., regarding the effects of antiviral drugs, the effectivity of different 

intervention strategies and the evolution of viruses. An additional layer of interaction 

that can be considered in such a model is the host immune response, which has a 

large impact on infection dynamics. However, due to sparse experimental data from 

patients and the complexity of the immune response, modeling of within-host infection 

dynamics remains challenging.  
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Figure 2.6.: Schematic depiction of the standard model of within-host dynamics 

of virus infection. Target cells (T) grow and are infected with the rates s and β, 

respectively. Infected cells (I) produce infectious virions (V) with the rate p. Target and 

infected cells die with the rates d and δ, respectively, and virions are degraded with the 

rate c.  

 

Early within-host models 

One of the first mathematical models of virus infection was developed by Perelson et 

al. to study HIV infection [205, 206]. They used experimental data from patients treated 

with an antiviral drug to evaluate its effect on infection kinetics. Their model-based 

analysis uncovered that HIV would develop resistances to the drug quite fast if it was 

applied as a monotherapy. Based on these findings, new treatment strategies were 

developed that use a combination of different antiviral drugs to prevent the emergence 

of such resistances. But modeling studies of HIV infection did not stop there and over 

time various aspects were investigated including the host immune response [207, 208], 

virus persistence [209, 210], and virus evolution [211, 212]. Similarly, models of HBV 

and HCV infection were developed in the same time frame to study different antivirals 

and their impact on infection [213, 214]. Overall, these models contributed greatly to 

improve the general understanding of virus infections and still provide the basic 

framework for the investigation of newly emerging viruses like Zika virus and SARS-

CoV2 [215, 216]. 
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Within-host models of in vivo IAV infection 

The general structure of mathematical models of IAV infection is similar to the models 

mentioned above. However, influenza-induced infection processes occur on a very 

different time scale, i.e., in the span of one to two weeks compared to months or years 

for HIV, HBV and HCV infections [20, 204]. Therefore, long-term processes like virus 

evolution, which are relevant for other viruses, are generally neglected. Additionally, 

this shorter time frame of infection increases the impact of time-dependent processes, 

e.g., the time delay until infected cells release progeny virions or how long infected 

cells survive. These delays can be incorporated by using delay differential 

equations (DDEs) or by separating infected cells into different classes, i.e., considering 

latent cells and virion-releasing cells. While standard within-host models can describe 

IAV titers sufficiently well, the consideration of a delayed virus particle release enables 

a more realistic representation of IAV infection kinetics [217, 218]. 

Mathematical models of IAV infection were initially established to describe disease 

propagation in humans and animals [218, 219]. As for HIV, later IAV models were 

employed to evaluate the host immune response [220-223]. Additionally, the 

application of various antiviral drugs and different treatment approaches was 

evaluated [224, 225]. Again, combination therapies were suggested as beneficial for 

the treatment of influenza infections in light of potential emerging resistances [226, 

227]. Furthermore, spatial models, which take the effects of diffusion and advection in 

the respiratory tract into account, were applied reproducing tissue damage levels 

reported in patients [228]. However, modeling the complete host immune response to 

describe all observed infection dynamics remains a challenge [229]. 

 

Within-host models of in vitro IAV infection 

A majority of the model-based studies on IAV infection relied on in vivo measurements 

from sick patients or animal experiments. These data sets often consist of only a few 

measurement time points and their availability is limited, because they are obtained 

from small groups of animals or volunteers. Additionally, they can show a high variety 

between test subjects due to biological noise and large differences in individual 

immune responses. Furthermore, the time point of infection is rarely known for patient 

data, which can further affect the comparability between measurements. An additional 
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approach to investigate IAV infection dynamics are in vitro experiments. These can 

provide high quantities of experimental data in a tightly controlled set-up. Furthermore, 

experimental conditions can be easily modified to inspect the respective influence on 

infection kinetics. Due to the large variety of analysis techniques available for cell 

cultures, e.g., flow cytometry, RT-qPCR and electron microscopy, the dynamics of in 

vitro infections can be observed in detail. Regarding IAV, important steps of infection, 

such as viral RNA and protein synthesis, host cell apoptosis, and nuclear export 

processes can be measured in a high resolution [64]. Moreover, there is a large variety 

of cell lines that can be used to cultivate IAV including human cell lines (discussed in 

section 2.1.6).  

One of the first mathematical models describing an IAV infection of cell cultures was 

developed by Möhler et al., which applied the standard within-host model to IAV 

production in MDCKadh cells [230]. In their study, they compared a model 

implementation with and without time delay between cell infection and virion release, 

which lead to similar results. Finally, they concluded that the number of available 

uninfected cells, the rate of virus production, and the rate of infected cell death are the 

most important factors affecting virus yields. Schulze-Horsel et al. expanded this model 

by introducing the virus-induced apoptosis of cells, which followed an additional time 

delay [231]. To that end, they measured infection progression and apoptosis induction 

via flow cytometry, which could provide a detailed look into the dynamics of uninfected, 

infected and apoptotic cell populations. Furthermore, a differentiation between 

infectious and non-infectious virus particles was implemented to describe virus titers 

measured in MDCKadh cells infected by different IAV strains. At the same time, 

Sidorenko et al. developed a stochastic population balance model of IAV infection 

considering the intracellular and cell population level [232, 233]. The amount of 

intracellular viral components was linked to virus replication and release, which were 

compared to experimental data from flow cytometry measurements of viral proteins. 

Using this stochastic model, they were able to emulate the fluorescence intensity 

distribution of infected MDCKadh cells at various time points post infection. Later, 

Müller et al. used a deterministic population balance model that could reproduce the 

fluorescence intensity distribution of NP measured via flow cytometry in a low MOI 

infection [202]. Thereby, they were able to represent the different waves of the infection 
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process, i.e., the infection of uninfected cells, the production of viral proteins, virus-

induced apoptosis, and cell lysis. Furthermore, a statistical model was employed by 

Martin and Harris et al. to investigate the impact of the MOI on IAV infections in different 

cell lines [234]. In their study, they concluded that infected cell death rates are 

independent of the MOI. However, virus production rates were estimated to increase 

with the MOI in MDCK cells, but not in human A549 cells. 

 

2.3.3 Intracellular virus replication models 

 

Next to the spreading of virus particles between cells in their host system, 

mathematical models have also been applied to describe the replication of the viral 

genome inside of cells. Generally, these models cover the viral life cycle during the 

infection of a single cell, from initial infection to progeny virion release. The level of 

detail of single-cell models can vary greatly, from simple descriptions of virus genetics 

to covering the full viral life cycle (Figure 2.2) or even including cellular metabolism. 

The initial models of intracellular replication were developed for different species of 

bacteriophages including a single-stranded positive sense RNA phage [235]. The 

general framework provided by these models was later applied by Dee et al. to 

describe Semliki Forest virus [236] and baculovirus infections [237]. The first model of 

the complete intracellular life cycle of a virus infecting humans was proposed by Reddy 

and Yin covering HIV infection [238]. Further single-cell models were developed for 

VSV, HBV, HCV, poliovirus, herpes simplex virus 1, Dengue virus and IAV (reviewed 

in [239]). These models mainly focused on improving the understanding of infection 

dynamics and the discovery of targets for antiviral drugs.  

 

Intracellular models of IAV infection 

A comprehensive model of the intracellular replication of IAV was developed by 

Sidorenko et al. aiming to describe vaccine production in MDCK cells [240]. It covered 

virion attachment, endocytosis, replication in the cellular nucleus, and progeny virus 

particle release. The model could reproduce general infection dynamics successfully 

based on literature parameters. To optimize virus yields, various steps of the viral life 

cycle were analyzed identifying potential bottlenecks during production, e.g., cellular 
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resources. However, due to a limited availability of experimental data, the model was 

not calibrated to measurements from an actual vaccine production process. Later, 

another model of IAV replication in cells was developed by Bazhan et al. describing 

vmRNA transcription, virus genome replication and virion assembly during 

infection [241]. Based on the initial model by Sidorenko et al., Heldt et al. developed 

an even more detailed representation of intracellular IAV replication [242]. To that end, 

they implemented highly detailed interactions during virion attachment, viral RNA 

synthesis and nuclear export of vRNPs. The model was calibrated to experimental data 

from different experiments, which examined virion fusion and viral RNA dynamics. 

Additionally, they used the model to compare two hypotheses describing the transition 

from vmRNA transcription to the replication of the viral genome during IAV infection. 

Model simulations supported the theory that this transition is mediated by the 

stabilization of newly generated cRNAs by viral NP. Subsequently, Heldt and Kupke 

et al. translated this model into a stochastic framework to investigate the effects of 

random fluctuations on IAV infection [99]. Therefore, they considered the segment-

specific dynamics of viral RNAs originating from the eight different genome segments. 

Based on stochastic simulations, they determined that the failure of virion fusion and 

the random degradation of vRNAs could induce non-productive infections in more than 

80% of cells infected by a single virus particle. Thus, their results suggest that IAV can 

show highly heterogeneous infection dynamics, especially in low MOI conditions.  

 

2.3.4 Multiscale models of infection 

 

While within-host and single-cell models can deliver intriguing insights into the 

dynamics of virus propagation, they both disregard important aspects of infection. 

Within-host models cannot describe potential effects of antiviral drugs that interact with 

viral proteins or intracellular processes on virus propagation. In contrast, single-cell 

models cannot be used to investigate the emergence of antiviral resistance in response 

to antiviral treatment or how different MOIs would affect yields during vaccine 

production. These limitations can be overcome by establishment of multiscale models, 

which are able to describe the dynamics on the intracellular and cell population level 
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simultaneously. However, by linking both levels of infection, they can result in complex 

models that require considerable computational effort for simulation.  

The basic framework for multiscale modeling of virus infections was provided by the 

works of Haseltine et al., which combined the single-cell and cell population levels 

using population balance equations [201]. Furthermore, they established a modeling 

approach that led to a significant reduction of the required computational effort for 

simulation [243]. Specifically, they uncoupled both levels assuming that components 

on the extracellular level do not affect production rates on the intracellular level. Thus, 

the intracellular dynamics, which could be calculated beforehand, were applied during 

the subsequent simulation of the cell population level.  

Typically, multiscale models of virus infection combine the intracellular replication and 

the dynamics on the cell population level. Such a framework is the focus of this thesis. 

However, other approaches were employed to develop epidemiological models by 

linking within-host and between-host dynamics [225, 244, 245]. For instance, Handel 

et al. applied such an approach to examine scenarios favoring virus persistence at 

different within-host temperatures [246]. Future multiscale models of infection could 

also include the spread of virus infection in different organs or tissues providing a more 

detailed time scale of infection processes. 

 

Multiscale model of HCV infection 

Guedj et al. evaluated the effect of a viral protein inhibitor, which affects intracellular 

virus replication, on HCV propagation in patients [247]. Attempting to reproduce viral 

load data, they concluded that only a multiscale modeling approach is capable of 

capturing the observed dynamics. To that end, they considered the infection age of 

cells, i.e., the time since cells were infected by a virus particle, and included a 

description of viral genome replication in the model. Using their multiscale model, they 

concluded that the observed inhibitor affected two distinct steps of virus replication, 

i.e., viral RNA synthesis and virion assembly, with high effectiveness [248].  

 

Multiscale modeling of IAV infection 

To support the discovery of novel antiviral drugs to treat IAV infections, Heldt et al. 

developed a multiscale model of IAV infection based on their aforementioned single-



2.3 Systems biology approaches for virus infections 40 

 

cell model [38]. To that end, they introduced the cell population level, which considered 

dynamics of uninfected cells, infected cells, apoptotic cells, and infected apoptotic 

cells. The intracellular level was linked to these cells in different states via an age-

segregated infected cell population, which released virus particles based on the 

respective infection age. This model was calibrated to measurements from infections 

of MDCKadh cells, which provided the dynamics of viral RNA synthesis, cell 

populations in different infection and apoptosis states, and viral titers. The model 

reproduced infection dynamics on both levels of infection and was subsequently used 

to examine the effects of potential antivirals that affect intracellular virus replication. 

Model simulations suggested that drugs interfering with vmRNA and viral protein 

synthesis, virion assembly and release, and the nuclear export of viral genomes show 

the most promise to impede IAV infections. Additionally, they concluded that a strong 

inhibition of vRNA and cRNA synthesis could significantly reduce virus titers. However, 

a moderate reduction of these two steps of replication could lead to increased virus 

titers in model simulations, which highlights potential challenges during the 

development of antiviral therapies against IAV infections. 

 

2.3.5 Models of STV and DIP co-infection 

 

DIPs propagate during co-infection with their homologous STV, but both require the 

same precursors, viral proteins, and utilize the same replication machinery. Thus, DIPs 

and STVs compete for replication on the intracellular level. The dynamics of 

competition of two or more populations has been studied extensively in predator-prey 

models, which focused mostly on animals [249, 250]. In recent years, the interaction 

of DIPs and their corresponding STV has emerged as a topic of interest for 

mathematical modeling. However, due to the limited amount of available experimental 

data, most model-based studies examined theoretical aspect of DIP interference or 

attempted to reproduce the reduction of STV titers using literature parameters. 

 

Within-host models of co-infection 

Initial theoretical studies on STV and DIP interactions were performed in the 1990s 

and employed different modeling approaches [251-253]. The authors concluded that 
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the MOI plays an important role for interference and that the co-infection of STVs and 

DIPs shows many features of deterministic chaos. Later, Stauffer-Thompson et al. 

developed a model of VSV infection subject to DIP interference to investigate the 

effects of DIP dosing on virus production [137]. They determined that low DIP doses 

enable STV and DIP production, while higher DIP regimes lead to the inhibition of 

production for both species. Furthermore, they predicted the decline of virus levels for 

serial-passaging using a fixed MOI, but failed to reproduce fluctuations occurring when 

applying a fixed volume during passaging [254].  

Frensing and Heldt et al. employed a within-host model of IAV infection of cell cultures 

to describe vaccine production in a continuous bioreactor [183]. This specific set-up 

was shown to generate periodic oscillations in viable cell concentration and virus titers. 

By considering the presence of DIPs in their model, they could reproduce the observed 

dynamics. Model simulations also predicted that even small amounts of DIPs in the 

initial seed virus or a very low rate of DIP de novo generation would lead to oscillations 

during continuous cultivations of infected cell cultures. Tapia and Laske et al. extended 

this model by considering non-infectious STVs and limiting which cells can become 

infected by which type of virion [184]. Using the extended model, they were able to 

reproduce experimental data from continuous bioreactor cultivations of MDCKsus cells 

infected with influenza A STV and a well-described DIP. In their experiments, they 

applied two residence times leading to different oscillation frequencies, which could 

also be captured by model simulations. Moreover, Liao et al. used a mathematical 

model of IAV and DIP co-infection to examine the validity of a standard experimental 

method employed to evaluate DIP concentrations based on STV titers [255].  

 

Other co-infection models 

A probabilistic model of defective interfering baculoviruses in insect cells was 

developed by Zwart et al. [256]. In their study, they observed irregular oscillations and 

concluded that chaos must be present in the model dynamics to describe 

measurements from their serial passaging experiments sufficiently.  

Laske and Heldt et al. extended the intracellular model of IAV replication developed by 

Heldt et al. to include DIP dynamics [257]. To that end, they considered the viral RNAs 

related to the eight different genome segments separately, introduced a replication 
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advantage for DI cRNA, and implemented the assembly of genome segments at the 

membrane prior to release. Using this mechanistic model, they reproduced 

experimental data from yield reduction assays and co-infection studies. Furthermore, 

they showed that the competition for viral protein may be a critical factor for DIP 

interference. Moreover, their model predicts that DIPs with a deletion in genome 

segments encoding for subunits of RdRp are more competitive than other DIPs.  

Akpinar et al. provided two different theoretical approaches to investigate DIP 

dynamics during VSV infection, i.e., a gamma distribution model [258] and a cellular 

automaton model [197]. They were able to reproduce patterns of infection spread in a 

cell monolayer, which was infected by STV and different DIP doses. Based on their 

studies, they conclude that kinetics of infection and interference quantitatively depend 

on the DIP concentration. However, they remark that individual cells show a large 

heterogeneity in STV and DIP production, which is induced by stochastic noise during 

infection.  

Finally, Meir et al. developed a mathematical model based on game theory to 

investigate the competition between DI viruses [259]. Their simulation suggested that 

a single DIP could reach an equilibrium with its wild type virus, but antagonistic 

interactions between multiple DIPs could ultimately lead to their extinction. 

 

2.3.6 Model analysis 

 

The complexity of mathematical models ranges from simple descriptions of molecule 

decomposition to covering interactions of a variety of components on multiple scales. 

The rate of such interactions is normally quantified by model parameters, which can 

be taken from literature, determined from experimental observations or calibrated by 

fitting the model to measurements of process dynamics. The evaluation of model 

parametrization becomes more challenging the larger models grow and phenomena 

like correlated parameters, high parameter uncertainty, and low parameter sensitivity 

can occur. To analyze the impact of individual parameters on model behavior and to 

enable realistic predictions, various model analysis techniques were developed. 

Furthermore, such procedures also support the design of experiments tailored to 
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elucidate currently ill-defined parameters. In the following, the model analysis methods 

used in the scope of this thesis are introduced. 

 

Parameter sensitivity 

A model parameter can be defined as sensitive, if its value has a significant impact on 

the model simulation, i.e., a change of the parameter value leads to changed dynamics 

for at least one state variable [260]. The sensitivity of a parameter is, however, not 

sufficient to derive its identifiability, because correlations between parameters or the 

usage of redundant parameters could render it unidentifiable. The local sensitivity of a 

parameter can be determined by perturbing a parameter and evaluating the model 

response. To that end, the sensitivity coefficient is calculated via 
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where θ denotes the perturbed parameter and   the model output. M represents a 

specific characteristic of the model output, e.g., the area under the curve of the output, 

steady states of model variables or frequencies and amplitudes of oscillations. Thus, 

( )M   quantifies the change of this characteristic in response to a variation of   in 

the evaluated parameter [261]. Another characteristic that is applied regularly is the 

weighted sum of squared residuals (SSR)  
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where 𝑦𝑠,𝑐(𝜃, 𝑡) describes the time course of model state s using parameter θ in 

experimental condition c. This is related to 𝑦𝑠,𝑐(𝜃
∗, 𝑡), which describes the simulated 

time course when parameter 𝜃∗ is used. The difference between model outputs is 

normalized by considering 𝜎𝑠, which denotes the maximum value of species s in all 

experimental conditions, and by the number of time points 𝑁𝑡. The individual SSRs for 
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each condition and species are again normalized with regards to the total number of 

conditions and species, i.e., 𝑁𝑐 and 𝑁𝑠 [262].  

A low sensitivity coefficient indicates that a model parameter is poorly constrained and 

likely non-identifiable. Such low sensitivities can be the result of constructing complex 

representations of processes for which few measurements are available to inform the 

model. Thus, one has to be careful when constructing large models and consider the 

available experimental data. Insights obtained from sensitivity analyses can also be 

used to support experimental design, facilitate a better understanding of the biological 

mechanisms, and reveal parameter correlations. 

 

Parameter confidence intervals 

Mathematical models employed in systems biology regularly contain parameters that 

show low sensitivities and large uncertainties. However, most models can provide 

robust predictions despite using some ill-defined parameters [262]. If the exact value 

and accuracy of parameters rather than model predictions are studied, various 

theoretical approaches can be employed [260, 263]. In the scope of this thesis, 

parameter confidence intervals were calculated via bootstrap algorithms to examine 

the accuracy of model parameters [264]. Bootstrapping relies on random resampling 

to estimate the properties of an unknown probability distribution. Typically, Monte Carlo 

sampling is used to generate new random samples of the examined property. The 

advantage of this method is its simplicity and that it does not require repetition of 

experiments. However, confidence intervals obtained from bootstrapping can be 

biased by the initial sample and their calculation can be very time-consuming 

depending on the underlying complexity of the system.  

To assess the confidence intervals of model parameters, we used a Monte Carlo 

approach to resample data sets randomly based on experimental measurements. In 

the initial model fit, parameter values θ were estimated by fitting the model to the actual 

experimental data 𝑦 = (𝑥1, 𝑥2, … , 𝑥𝑛), e.g., dynamics of viral RNAs or virus titers. Then, 

we generated a random sample 𝑦∗ = (𝑥1
∗, 𝑥2

∗, … , 𝑥𝑛
∗) considering the original 

experimental data [264]. For the time series data used in this thesis, we assumed a 

normal distribution of measurement errors and drew a bootstrap sample from 𝑁(𝑥𝑖, 𝜎𝑖
2), 

where 𝑥𝑖 and 𝜎𝑖
2 are the mean and standard deviation of the actual measurement. By 
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refitting the model to 𝑦∗, we obtained a different set of parameter values 𝜃∗. Repeating 

this numerous times yielded a distribution of parameter values, which was used to 

determine the confidence intervals. Following the percentile method and assuming a 

significance level α, the confidence interval were calculated from the central interval 

between the 100
2


  and 100 1

2

 
  
 

 percentiles of the parameter distribution 

obtained via bootstrapping [264].  

 

Akaike information criterion 

When developing mathematical models to describe biological processes, various 

aspects regarding model structure have to be considered, e.g., the size of the model, 

the complexity of molecule interactions, and the implementation of vaguely described 

mechanisms. For the comparison of different model compositions and hypotheses, a 

variety of methods can be employed to quantify the goodness of fit, e.g., the SSR, 

cross validation, and the predictive least-squares principle (reviewed in [265]). Another 

approach, which has become more and more common since its formulation in the 

1970s and which we also employ in this thesis, is the Akaike information 

criterion (AIC) [266]. The AIC is based on information theory and compares the quality 

of fit of models describing a set of data or a process. To that end, it considers the 

goodness of fit and the complexity of a model at the same time. To avoid overfitting, it 

applies a penalty that is directly correlated to the number of model parameters. 

Therefore, it favors simple models that can provide a good representation of a process 

over large models that achieve slightly better fits. 

The AIC is defined as  

 ˆAIC 2 log( ( |data)) 2L K    (2.3.6) 

 

where log(L(𝜃|data)) denotes the log-likelihood function and K the number of model 

parameters [266]. Lower values of the AIC imply a better quality of fit. AIC results can 

also be used further to calculate the model probability 𝑤𝑖, which quantifies the 

probabilistic chance of model 𝑖 to provide the best representation of a process or a set 

of data in the range of 0 to 1 [267]. 
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To calibrate our models, we minimized the SSR of experimental data and model 

simulations. According to [267], when employing such a least squares estimation and 

assuming a normal distribution of errors, log(L(𝜃|data)) can be approximated using the 

maximum likelihood estimator 𝜎̂2. This is done via 

 

 
* 2ˆlog( ( |data)) ( )

2

dN
L     (2.3.7) 

 

where 𝑁𝑑 describes the amount of available individual measurements. 𝜎̂2 itself can 

also be approximated using the normalized SSR 

 

 

2

2
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ˆ
ii

dN


 


 (2.3.8) 

 

where 𝜀𝑖̂ are the residuals estimated from the fitted model. By applying Equations 

(2.3.7) and (2.3.8) to Equation (2.3.6), we obtain  

 

 

2ˆ( )
AIC log 2

ii
d

d

N K
N

 
  

 
 


 (2.3.9) 

 

which can be used to calculate the AIC.  
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3. Models and Methods 

 

3.1 Multiscale model of STV infection 

 

The multiscale model of STV infection developed in the scope of this work is based on 

a model of IAV infection by Heldt et al. [38]. This original model links virus replication 

on the intracellular level with virus propagation on the cell population level by using a 

segregated population of infected cells. In the scope of this thesis, we introduced new 

mechanisms that adjust virus-induced apoptosis, virus release, and inhibition of 

vmRNA synthesis. The model was adapted with these modifications to describe 

infection dynamics in different MOI regimes and to predict how the effective MOI 

changes during an infection of cell cultures. Note that in this section parts of the original 

publication on the multiscale model of STV infection were used [181]. 

 

3.1.1 Cell population level 

 

The model of the cell population level combines a set of integro-partial differential 

equations with a set of ODEs to describe extracellular interactions based on Heldt 

et al. [38]. The implementation of an age-segregated infected cell population enables 

the simultaneous simulation of the intracellular and cell population level. 

 

Cell populations 

 

 
Inf Apo

T

dT
T r T k T

dt
    (3.1.1) 

     Apo Apo

T I ,
I I

k k I t
t

 


 
   

 
 (3.1.2) 

 
Apo Inf LysA
T A A

dT
k T r T k T

dt
    (3.1.3) 
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     Apo Apo Inf LysA
T I A A

0
,

dI
k k I t d r T k I

dt
  



     (3.1.4) 

  with   Max
Max

0
Max

,  T T I t d
T


  





 
   
 

  (3.1.5) 

   1Inf Fus En

Inf Ar F k V T T


   (3.1.6) 

 with     
1

1 A A

A

A

, 0,

0, 0,

T T T T
T T

T T




    
  

 

 (3.1.7) 

 

On the cell population level, uninfected cells (T ), apoptotic uninfected cells ( AT ), 

infected cells ( I ) and apoptotic infected cells ( AI ) are described. Uninfected cells can 

grow with the specific rate μ, become infected with the rate Infr  and undergo apoptosis 

with the rate 
Apo

Tk . Cell growth is limited by the maximum specific growth rate Max  and 

the maximum cell concentration MaxT . Infected cells have a higher rate of apoptosis 

induction due to intracellular virus replication, which is recognized by the cellular 

immune system. Depending on the infection age τ of an infected cell, the base 

apoptosis rate is increased by the rate of virus-induced apoptosis 
Apo

I ( )k  . Apoptotic 

cells are lysed with the rate Lysk .  

The infection rate Infr  is determined by considering the fusion ( Fusk ) of the viral 

envelope with the endosomal membrane performed by virions in endosomes (
EnV ), 

which will be described later. The fraction of cells successfully infected by fusion of a 

single virion is given by InfF . Then, this term is divided by the sum of uninfected cells 

to split the total infection “capability” between non-apoptotic and apoptotic uninfected 

cells in Equation (3.1.1) and (3.1.3).  

 

Age-segregated infected cell population 

 

  
       Inf Apo Apo

T I
0

exp , t 0,
,

0, t 0,

r t T t k k a da
I t



  




      
 
  

  (3.1.8) 



3.1 Multiscale model of STV infection 49 

 

Following the implementation of an age-segregated population used by Heldt et al., 

infected cells ( , )I t   are classified by the infection age τ. At the time of infection It , 

infected cells with age zero are generated leading to a boundary condition of 

Inf

I I I( , 0) ( ) ( )I t r t T t   . Transforming equation (3.1.2) into an algebraic equation leads 

to (3.1.8), which represents an infection age density. After each time step dt a new 

subpopulation of infected cells is created assuming Inf ( ) ( ) 0r t T t  . Once infected, these 

cells are only subject to apoptosis, which occurs with an increasing rate 
Apo Apo

T I ( )k k   

depending on the infection age τ. This is calculated by considering the variation of the 

infected cell apoptosis rate over time during an infection. The integration over the 

complete state space 
0

( , )I t d 


  provides the total number of infected cells. 

 

Infection age-dependent infected cell apoptosis rate 

The apoptosis dynamics of infected cells was implemented with the aim to comply with 

a normal distribution of the survival time of infected cells as indicated by recent 

experimental data [64] (shown in Figure 4.4). To this end, we employed a logistic 

function, which can be used to approximate dynamics induced by the cumulative 

density function of the normal distribution [268], to describe the infection age-

dependent cell apoptosis rate 

 

 

Apo I
I

Apo Apo

( )
1 exp( ( ))

K
k

v


 


  
 (3.1.9) 

 

with IK  as the maximum virus-induced apoptosis rate, 
Apo  referring to the time after 

cell infection at which the rate of virus-induced apoptosis reaches its half-maximum 

and 
Apov  as a factor that describes the time required from cell infection until the full 

activation of the apoptosis mechanism. The parameter 
Apo  can be directly related to 

the average µ of the normal distribution and 
Apov  can be converted to the standard 

deviation σ of the normal distribution by calculating  
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Apo

1.62



   . (3.1.10) 

Additionally, we tested Gompertz and Hill functions for the description of a delay in 

apoptosis induction (Figure 4.4) as they can also approximate the cumulative density 

function of the normal distribution. Finally, we decided to implement a logistic function 

as it provided the best fit to our experimental data and enabled a comprehensive 

adaptation to different scenarios including a step-like or smooth as well as an instant 

or delayed increase of the virus-induced apoptosis rate.  

 

Virus particle release 

 

    Rel Deg Dis Att Att

Inf V n n c,n n
0

n

, ,
dV

r I t d k V k V k B V
dt

  


       (3.1.11) 

 with  Tot Att

n n A nB B T T V    , (3.1.12) 

   and  
Att

c,nDis

n Eq

c,n

 , n Hi,Lo
k

k
k

   (3.1.13) 

 

   
Rel

Reltot
Inf

0
,

dV
r I t d

dt
  



 
 

(3.1.14) 

 

   
Rel

Reltot
Par

0
,

dP
r I t d

dt
  



 
 

(3.1.15) 

 

We consider infectious virions (V ), the total number of released infectious 

virions ( Rel

TotV ) and the total number of released virus particles ( Rel

TotP ) on the cell 

population level. Infectious virus particles attach to free binding sites nB  on the cell 

membrane of uninfected cells with the rate 
Att

c,nk , detach with the rate Dis

nk  and degrade 

over time with the rate Deg

Vk . The number of available high-affinity (n = Hi) and low-

affinity (n = Lo) binding sites is calculated using the total amount per cell Tot

nB . The 

detachment rate is determined based on the equilibrium constant 
Eq

c,nk . Infectious virions 

are released with the rate 
Rel

Inf ( )r   and the total virus release rate is described by the 
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rate 
Rel

Par ( )r  , both of them affected by the infection age τ of a releasing cell. 

Furthermore, the total amount of infectious virions and virus particles released, which 

disregard attachment and degradation, are described to represent the cumulative virus 

titers measured in [64]. 

 

Virus entry 

The entry of virus particles into an uninfected cell is also described on the cell 

population level, because it is linked to a version of the intracellular model that neglects 

virus entry. This enables the simulation of the cell population dynamics while 

considering the intracellular replication as described in [38]. 

 

    
Att

Att Dis En Att Inf Lys Attn
c,n n n n n

dV
k B V k k V r r V

dt
      (3.1.16) 

    
En

En Att Att Fus En Inf Lys En

Hi Lo

dV
k V V k V r r V

dt
      (3.1.17) 

   1Lys Lys

A Ar k T T T


   (3.1.18) 

 

Attached virus particles 
Att

nV  can detach from receptors or perform receptor-mediated 

endocytosis with the rate Enk . Virions in endosomes (
EnV ) fuse with the endosomal 

membrane with the rate Fusk . The additional removal of these two populations due to 

infection or cell lysis is covered by the rates Infr  and Lysr , respectively. To describe 

the impact of lysis on currently attached virions and virions in endosomes, the number 

of cells undergoing lysis is related to the total amount of uninfected cells.  

 

3.1.2 Intracellular level 

 

The model of the intracellular level comprises a set of ODEs covering essential steps 

of virus replication shown in Figure 2.2. These include virus entry, nuclear import, 

replication and transcription of viral RNA, protein synthesis, viral assembly and virus 

particle release.  
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Virus entry 

The initial step of infection is the binding of virions to SA residues on the cell surface 

followed by receptor-mediated endocytosis. According to Heldt et al. [242], we describe 

low- and high-affinity binding sites representing divergent binding potential based on 

experimental data reported by Nunes-Correia et al. [269]. Furthermore, the inability of 

a certain fraction of virus particles to fuse with the endosomal membrane shown in [97] 

is considered.  

 

  
Ex

Dis Att Dis Att Att Att Ex

Hi Lo Lo Hi Hi Lo LoHi

dV
k V k V k B k B V

dt
     (3.1.19) 

 with  Tot Att

n n n ,  n Hi,LoB B V    (3.1.20) 

  and  
Att

Dis n
n Eq

n

,  n Hi,Lo
k

k
k

   (3.1.21) 

    
Att

Att Attn
n n n

Ex Dis En

n Hi,L,  on
dV

k B V k k V
dt

     (3.1.22) 

    
En

En Att Att Fus Deg En

Hi Lo Ven

dV
k V V k k V

dt
     (3.1.23) 

 with Deg FusFus
Ven Fus

Fus

1
0 1,  

F
k k F

F


    (3.1.24) 

 

where extracellular virus particles (
ExV ) bind to free binding sites nB  on the cell 

membrane with the rate Att

nk . The total number of high-affinity (n = Hi) and low-

affinity (n = Lo) binding sites in given by Tot

nB . Virus particles attached to the cell 

surface (
Att

nV ) can either dissociate from these binding sites with the rate Dis

nk  or 

perform endocytosis with the rate Enk . The dissociation of virions is determined via an 

equilibrium constant Eq

nk . Then, the enveloped virus particles (
EnV ) either fuse with the 

endosomal membrane to release their genome segments into the cytoplasm or are 

degraded in lysosomes with the rates Fusk  and Deg

Venk , respectively. The balance 

between virion fusion and degradation is determined using the fraction of fusion-

competent virions FusF . 
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Virus replication 

The vRNPs released into the cytoplasm can enter the nucleus and synthesize cRNA 

and vmRNA. The cRNA acts as a template for vRNA replication. Both RNAs containing 

the viral genome are stabilized by binding of RdRp and NP reducing degradation 

considerably. Subsequent attachment of M1 and NEP induces nuclear export of vRNP 

complexes. According to the implementation of Heldt et al. [242], we assume that all 

eight genome segments show similar levels of cRNA and vRNA enabling a description 

via their total number. 

 

 
Cyt

Fus En Imp Cyt8
dVp

k V k Vp
dt

   (3.1.25) 

  
Nuc

Imp Cyt Bind Bind Deg Nuc

NP NP RdR

V

p M1 M1 Rnp

dVp
k Vp k P R k P k Vp

dt
     (3.1.26) 

 
C

Syn Nuc Bind C Deg C

C RdRp RdRp R

dR
k Vp k P R k R

dt
    (3.1.27) 

 
V

Syn Bind V Deg V

V RdRp RdRp R

dR
k Cp k P R k R

dt
    (3.1.28) 

 

C

RdRp Bind C Bind C Deg C

RdRp RdRp NP NP RdRp RRdRp RdRp

dR
k P R k P R k R

dt
    (3.1.29) 

 

V

RdRp Bind V Bind V Deg V

RdRp RdRp NP NP RdRp RRdRp RdRp

dR
k P R k P R k R

dt
    (3.1.30) 

 
Bind C Deg

NP NP RdRp Rnp

dCp
k P R k Cp

dt
   (3.1.31) 

  
Nuc

Bind Nuc Exp Deg NucM1
M1 M1 NEP Rnp M1

dVp
k P Vp k P k Vp

dt
    (3.1.32) 

 
Cyt

Nuc Rel Deg CytM1 E

NEP M1 Rnp M1

xp 8
dVp

k P Vp r k Vp
dt

    (3.1.33) 

 

After the vRNPs reach the cytoplasm ( CytVp ) they can enter the nucleus ( NucVp ) with 

the rate Impk . There, they act as templates for viral replication. cRNA (
CR ) is 

transcribed from vRNPs with the rate Syn

Ck  and subsequently stabilized by binding viral 

RdRp ( RdRpP ) to form intermediate complexes (
C

RdRpR ) and binding NP ( NPP ) to form 
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cRNP ( Cp ) with the rates Bind

RdRpk  and Bind

NPk , respectively. The produced cRNP is the 

template for intracellular vRNA transcription. Similar to the cRNA, the newly formed 

vRNA (
VR ) is stabilized by binding RdRp and NP forming 

V

RdRpR  and NucVp , respectively. 

The naked viral RNAs (cRNA and vRNA) are highly susceptible to degradation, but 

due to the stabilization the formed complexes are degraded with lower 

rates ( Deg

Rk  > Deg

RRdRpk  > Deg

Rnpk ). To prepare the vRNP for nuclear export, M1 attaches to it 

with the rate Bind

M 1k  to form a complex (
Nuc

M1Vp ), which is assumed to be replication 

incompetent [71-73]. After subsequent binding of NEP ( NEPP ) the complexes can leave 

the nucleus. The combination of these two processes is described by the rate 
Expr . 

When the vRNP complexes are exported from the nucleus, they are denoted as 
Cyt

M1Vp  

and travel to the cell membrane. There, the eight viral genomes assemble and perform 

virus budding, which is conflated into the rate Relk .  

 

vmRNA transcription and protein synthesis 

vmRNAs are transcribed in the nucleus, but the synthesis of viral proteins occurs in 

the cytoplasm. According to the model by Heldt et al. [242], we assume that nuclear 

vmRNA export can be disregarded and consider vmRNA levels of different genome 

segments individually. As the exact quantification of viral proteins levels remains a 

challenge, we still focus on the net production, disregard degradation and assume an 

equal distribution of structural viral proteins.  

 

 
M Syn Nuc

Deg Mi M
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Rdrp
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R

8 1

dR k Vp
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 
 
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,  i = 1,…,8 (3.1.34) 

 

Syn
M RdRpPB1 P
2 PB1 PB2 PA

Rib

dP k
R k P P P

dt D
   (3.1.35) 

 

Syn
M RdRpPB2 P

1 PB1 PB2 PA

Rib

dP k
R k P P P

dt D
   (3.1.36) 

 

Syn
M RdRpPA P
3 PB1 PB2 PA

Rib

dP k
R k P P P

dt D
   (3.1.37) 
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    
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NEP

Exp
Syn

M Nuc RelNEP V VP
Spl8 8 NEP M1Nuc Nuc

Rib NEP NEP
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dP L Lk
F R k P Vp N r

dt D N N
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HA

Syn
M RelHA P
4

Rib

P

dP k
R N r

dt D
   (3.1.42) 

 
NA

Syn
M RelNA P
6

Rib

P

dP k
R N r

dt D
   (3.1.43) 

 
M2

Syn
M RelM2 P

Spl7 7

Rib

P

dP k
F R N r

dt D
   (3.1.44) 

 

Each of the eight genome segments i encodes for a different vmRNA (
M

iR ). We 

assume that the transcription of vmRNAs is dependent on the transcription rate Syn

Mk , 

their respective length ( iL ) and that they are degraded with the rate Deg

Mk . We 

introduced an additional regulatory mechanism that reduces vmRNA synthesis 

depending on the availability of free RdRp (Equation (3.1.34)), with RK  describing the 

amount of RdRp that has to be available to reduce vmRNA synthesis by half. As NucVp

denotes the total number of nuclear vRNP templates, this number has to be divided by 

eight to obtain the appropriate amount for the transcription of a specific vmRNA. 

vmRNA is translated into viral proteins iP  with a length-dependent rate Syn

Pk  in the 

cytoplasm. More than one ribosome can bind to the vmRNA constituting a polysome, 

which is considered by applying the average distance between two ribosomes on the 

vmRNA ( RibD ). 

The three polymerase subunits PB1, PB2 and PA ( PB1P , PB2P  and PAP ) unite to form 

the RdRp with the rate RdRpk , which is essential for virus replication. The vmRNAs of 



3.1 Multiscale model of STV infection 56 

 

genome segments 7 and 8 undergo splicing, which is incorporated by the factors 
Spl7F  

and 
Spl8F  describing the fraction of the corresponding vmRNA encoding for M2 ( M2P ) 

and NEP. The proteins RdRp, NP, M1 and NEP play a role during vRNP formation and 

export, which is considered via the respective number of bound nucleotides for each 

protein ( Nuc

NPN , Nuc

M 1N  and Nuc

NEPN ) applied to the average vRNA length ( VL ). Exactly eight 

RdRps are required for vRNP formation. The surface proteins HA ( HAP ), NA ( NAP ) and 

M2 are only required during virus release and consumed according to their observed 

amount per virion (
HAPN , 

NAPN  and 
M 2PN ). As the determined number of proteins required 

for vRNP stabilization and export per virion (
RdRpPN , 

NPPN , 
M 1PN  and 

NEPPN ) does not 

exactly match the quantity required to form eight vRNPs, the excess amount is 

removed during virus release.  

 

Virus particle release and infectivity of virions 

For the description of all processes constituting virus release, a single equation 

considering all involved components is used. This conflates vRNP transport to the cell 

membrane, assembly of the correct eight vRNPs and virus budding. Furthermore, we 

differentiate virions that are able to infect cells successfully from particles that 

contribute to the total virus titer, but show no infection activity.  
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V V

l

( )
8 P

PVp
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Vp K P N

dP

dt K
 

 
  (3.1.45) 

 
Rel Rel

j

Cyt
jRel Rel M1

Re

Inf Par Cyt
jM1 jV

l

V

( )
8 P

PVp
r F k

Vp K P N K

dV

dt
 

 
   (3.1.46) 

 with  j RdRp,HA,NP,NA,M1,M2,NEP  

 
RelPar
Red Par

dF
k F

dt
   (3.1.47) 

 

Both the total release of virus particles (
RelP ) and the release of infectious virions (

RelV ) 

depend on the availability of vRNPs and viral proteins, which is incorporated similarly 

to Michaelis-Menten kinetics. Based on this implementation, the virus release rate Relk  
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represents the maximum release rate. The parameter RelV
K , which describes the 

amount of vRNPs or proteins that must be present to reach half of the maximum 

release rate, acts as a Michaelis-Menten constant. The percentage of infectious virions 

that are produced is determined by the variable ParF , which is implemented as a first 

order degradation. A previous experimental study revealed that Par ( )F   is decreasing 

over time [64], which implies that virus particles released during early infection have a 

higher chance to infect new cells. The rate Rel

Redk  describes the decrease of the fraction 

of infectious virus particle released. As the understanding of factors influencing the 

capability of cells to produce infectious particles is still limited [64], we decided to 

combine such effects in a single parameter.  

 

3.2 Multiscale model of STV and DIP co-infection 

 

The mathematical model of STV and DIP co-infection describes the dynamics of both 

virus particle species during replication in cells and their spread across a cell 

population. As we aimed to capture the impact of different MOIs and MODIPs on the 

infection in detail, we used the multiscale model of STV infection presented in 

section 3.1 as a foundation. We adapted this model by considering the dynamics of 

DIPs on the intracellular level based on a model of intracellular DIP replication [257] 

and expanded dynamics on the cell population level. Note that in this section parts of 

the original publication on the multiscale model of STV and DIP co-infection were 

used [125]. 

 

3.2.1 Expansion of the cell population level 

 

To implement the impact of DIPs on the infection and spread of a cell population, we 

introduced DIP-related cell and virus populations to the existing dynamics described in 

Equation (3.1.1)–(3.1.8).  
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Cell populations 

 

  Inf Inf Apo

STV DIP T

dT
r r k T

dt
     (3.2.1) 

  Inf Inf ApoDIP
DIP STV T DIP

dI
r T r k I

dt
     (3.2.2) 

   Inf ApoSTV STV
DIP I STV ,

I I
r k I t

t
 



 
      

 (3.2.3) 

      ApoCO CO
I CO ,

I I
k I t

t
 



 
  

 
 (3.2.4) 

  Apo Inf Inf LysA
T STV DIP A

dT
k T r r k T

dt
     (3.2.5) 

        Apo Apo Inf Inf LysA
I STV CO T DIP STV DIP A A

0
, ,

dI
k I t I t d k I r r T k I

dt
   



         (3.2.6) 

    Tot A DIP STV CO A
0 0

( ) ( ) ( ) ( ) ,  ,  ( )C t T t T t I t I t d I t d I t   
 

        (3.2.7) 

 

On the cell population level, the model considers populations of uninfected cells (T ), 

STV-only infected cells ( STVI ), DIP-only infected cells ( DIPI ), co-infected cells ( COI ), 

apoptotic uninfected cells ( AT ), and apoptotic infected cells ( AI ). STV-only and co-

infected cells are considered as age-segregated populations and are classified by their 

infection age 𝜏. Uninfected cells proliferate with the specific growth rate μ, can become 

infected by STVs and DIPs with rates Inf

STVr  and Inf

DIPr , respectively, and become 

apoptotic with the rate 
Apo

Tk . Similarly, DIP-only infected cells can grow, become 

infected by STVs and undergo apoptosis. STV-only infected cells do not proliferate, 

but can become infected by DIPs and become apoptotic with the virus-induced 

apoptosis rate 
Apo

I ( )k  . Co-infected cells are also subject to virus-induced apoptosis. 

Apoptotic uninfected cells can become infected by either STVs or DIPs and undergo 

cell lysis with the rate Lysk . The same lysis rate applies to apoptotic infected cells. The 

total amount of viable cells is collected as TotC  in Equation (3.2.7).  
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The specific growth rate defined by  

 

  Max
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
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V D






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
 




 (3.2.9) 

 

considers the maximum specific growth rate and cell concentration Max  and MaxT . It is 

reduced by the factor F  if the combined MOI and MODIP exceed a value of 6. This 

specific value is used based on experimental data showing a reduction in cell growth 

in very high MODIP scenarios (Figure 4.11B). 

 

Infection rates and superinfection exclusion 

The infection rates of cells are separated for STVs and DIPs, resulting in  

 

   1Inf Fus En

STV Inf A DIPr F k V T T I


    (3.2.10) 

  SIE
1
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DIP Inf A STV
0

( , )r F k D T T I t d


  
 

   
 

  (3.2.11) 

        with  
1

1 ,     0,

0,        0,

a a
a

a





 

 


   (3.2.12) 

 

where STVs and DIPs in endosomes are denoted by 
EnV  and 

EnD , respectively. Their 

amount is related to the fusion rate Fusk  and the fraction of cells successfully infected 

by fusion of a single virion InfF . To account for the current number of suitable infection 

targets, this is divided by the total amount of cells that are targeted by either STVs or 

DIPs. The parameter SIE  describes the infection age after which STV-only infected 

cells cannot become re-infected by a DIP. 
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Uninfected cells T  and their apoptotic counterpart AT  can become infected by either 

STVs or DIPs, however, we assume re-infection of STV- and DIP-only infected 

cells ( STVI  and DIPI ) is only possible by the opposing virus particle. Additionally, STV-

only infected cells are protected from re-infection by DIPs to consider superinfection 

exclusion, which is mediated by neuraminidase [58]. According to [270], we set the 

time window for a productive co-infection of STV-only infected cells to SIE 3 h   after 

initial infection. This results in STV-only infected cells that have reached an infection 

age of 3 h   to remain in this state and continuously producing progeny STVs. This 

implementation prevents DIPs that are produced at later stages to transform all STV-

only infected cells to co-infected cells, which would result in an inaccurate description 

of STV titers. 

Furthermore, we assume that STV-only infected cells are not re-infected by STVs, DIP-

only infected cells are not re-infected by DIPs, and co-infected cells are not re-infected 

by either virus particle. This was implemented to prevent the existence of a continuous 

sink draining virus particles from the system. Lastly, we assume that STVs can infect 

DIP-only infected cells and convert them to co-infected cells at all times, because they 

are not capable of replication as they cannot produce progeny RdRp. This would likely 

result in low levels of neuraminidase, which are not sufficient to prevent re-infection. 

 

Age-segregated infected cell populations 

For the model of STV and DIP co-infection we consider age-segregated cell 

populations similar to the one used in equation (3.1.8) for STV-only and co-infected 

cells. 

 

 
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(3.2.14) 
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These algebraic equations can be derived from Equations (3.2.3) and (3.2.4) providing 

the infection age density for both species. Upon infection at time It , corresponding 

cells with age zero emerge. This leads to boundary condition of 

Inf

STV I STV I I( , 0) ( ) ( )I t r t T t    and Inf Inf

CO I STV I DIP I DIP I STV I( , 0) ( ) ( ) ( ) ( )I t r t I t r t I t     for STV-only 

and co-infected cells, respectively. Both types of populations are subject to virus-

induced apoptosis, however, STV-only infected cells can also still become infected by 

DIPs.  

The rate of virus-induced apoptosis in Equation (3.1.9) has been slightly modified to  

 

 

Apo Apo I
I T

Apo Apo

( )
1 exp( ( ))

K
k k

v


 
 
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 (3.2.15) 

 

taking into account the base apoptosis rate 
Apo

Tk . 

 

Virus particle release 

Infectious STVs (V ) and DIPs ( D ) can theoretically be released from both STV-only 

and co-infected cells. DIP-only infected cells are assumed to not release any virus 

particles. Therefore, we obtain the following release dynamics 

 

      
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      
STV CO
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DIP,I STV DIP,I CO V n n c,n n
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( , ) ( , )
dD

r I t r I t d k D k D k B D
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

         (3.2.17) 

 with  V Tot Att

n n A DIP nB B T T I V     , (3.2.18) 

   SIED Tot Att

n n A STV n
0

,  B B T T I t d D


      (3.2.19) 

   and  
Att

c,nDis

n Eq

c,n

 , n Hi,Lo
k

k
k

   (3.2.20) 

 

where STVs and DIPs attach to their free binding sites on the cell membrane with the 

rate 
Att

c,nk . We assume STVs do not re-infect STV-only and co-infected cells, while DIPs 

do not re-infect DIP-only and co-infected cells. This limits the potential binding sites for 
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the two different virus particles, i.e., V

nB  and D

nB , as described in Equations (3.2.18) 

and (3.2.19). Attached STVs (
Att

nV ) and DIPs (
Att

nD ) can detach from binding sites with 

the rate Dis

nk  based on the equilibrium constant 
Eq

c,nk . Additionally, they are degraded 

with the rate Deg

Vk  which is applied to both STVs and DIPs. The rates 
Rel

i,j ( )r   describe 

virus particle release of i {STV, DIP}  particles from STV COj { , }I I  cells.  

For the description of experimental data, we also consider the total amounts of 

released STVs (
Rel

TotV ), DIPs (
Rel

TotD ), and the total number of released virus 

particles (
Rel

TotP ) 
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Rel Rel Rel

Tot Tot TotdP dV dD

dt dt dt
   (3.2.23) 

 

Virus entry 
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Attached STVs and DIPs undergo endocytosis with the rate Enk  and virus particles in 

endosomes fuse with the endosomal membrane with the rate Fusk . During cell infection 

and lysis, virus particles that are attached to binding sites and inside of endosomes 

are also removed from the system according to the infection and lysis rates (
Lys

STVr  

and 
Lys

DIPr ). The lysis rates are determined by relating the uninfected apoptotic cells 

undergoing lysis to the amount of cells having STVs or DIPs attached or in endosomes 

in Equations (3.2.28) and (3.2.29).  

 

3.2.2 Consideration of individual genome segments during 

replication 

 

To implement DIPs on the intracellular level, we decided to account for individual 

genome segments separately based on Laske and Heldt et al. [257]. Furthermore, we 

introduced additional vRNA and vmRNA regulation mechanisms to capture 

experimental data. Accordingly, the dynamics of intracellular replication changes as 

described in the following. Note that we did not introduce kinetic rates specific for DIP 

infection and replication, but use the same ones that apply to STVs.  

 

Virus entry 

To account for DIPs explicitly, species of extracellular DIPs (
ExD ), attached 

DIPs (
Att

nD ) and DIPs in endosomes (
EnD ) were introduced analogous to STVs in 

Equations (3.1.19)–(3.1.23). Additionally, the calculation of available binding sites in 

Equation (3.1.20) was changed to  

 

  Tot Att Att

n n n n , Hi,L n oB B V D     (3.2.30) 

 

as both STVs and DIPs can bind to the same sites.  
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Virus replication 

The replication of the eight STV genome segments and the DI segment, which we 

implemented as a truncated version of segment 1, is considered separately. Therefore, 

Equation (3.1.25) was changed to  

 

 
Cyt

Fus En Imp CytdV
k V k V

dt
   (3.2.31) 

and the DIP version 

 

 
Cyt

Fus En Imp CytdD
k D k D

dt
   (3.2.32) 

 

was implemented, so that instead of the total number of vRNPs the amount of viral 

genome complexes in the cytoplasm are described. STV complexes ( CytV ) are 

composed of the eight FL segments and the DIP complex (
CytD ) contains a 

DI segment 1 in place of FL segment 1.  

To consider the genome segments imported by STVs and DIPs, nuclear vRNPs ( Nuc

kVp ) 

are defined as  

 

  
Nuc

Imp Cyt Cyt Bind Bind Deg Nuci
NP NP RdRp,i M1 M np i

V

1 R( )
dVp

k V k P R k P k Vp
dt

D     (3.2.33) 

for i = 2,…,8 

  
Nuc

Imp Cyt Bind Bind Deg Nuc1
NP NP RdRp,1 M1 M1 Rnp 1

V   
dVp

k V k P R k P k Vp
dt

 (3.2.34) 

  
Nuc

Imp Cyt Bind Bind Deg Nuc9
NP NP RdRp,9 M1 M1 Rnp 9
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dVp

k D k P R k P k Vp
dt

 (3.2.35) 

 

where the FL segments are denoted by i = 1,…,8 and the DI segment as i = 9. 

To account for a growth advantage of DI RNAs over their FL counterparts, which is 

theorized to originate from a reduced segment length, the synthesis of DI cRNA was 

implemented based on [257] as 
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  
C

Syn Nuc Bind Deg C9
Adv C 9 RdRp RdRp R 9(1 )

dR
F k Vp k P k R

dt
    (3.2.36) 

 

where the factor AdvF  describes the advantage during DI cRNA synthesis. Additionally, 

the synthesis of FL cRNAs is described individually for each segment. 

The synthesis of viral RNA was adapted based on experimental findings showing 

reduced vRNA levels in high MODIP infections [125]. Equation (3.1.28) was modified 

to account for each genome segment individually  
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V
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V i RdRp RdRp R i

dR
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and the vRNA synthesis rate Syn

Vk  is affected by the MODIP-to-MOI ratio via the 

factor 
D,V I( )f t  
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where VK  denotes the maximum vRNA synthesis rate and It  describes the time point 

at which a cell became infected. The parameters 1v  and 2v  describe the effect of the 

MODIP-to-MOI ratio I

I

( )

( )

D t

V t
 on the parameter Syn

V I( )k t . To calculate the MODIP-to-MOI 

ratio, the extracellular concentrations of STVs ( I( )V t ) and DIPs ( I( )D t ) at the time of 

infection are utilized. If the MODIP is above a threshold value MODIPF  when a cell is 
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infected, vRNA synthesis is reduced. Based on experimental data [125], we 

determined this value to be in the range of 10-3 to 3. For model prediction in section 

4.3.2, we assumed a value of 3

MODIP 10F  . 

The stabilization and formation of vRNP-M1-complexes is constructed similar to 

Equations (3.1.29)–(3.1.32), but considers each segment i = 1,…,9 separately. 

Accounting for the competition between FL and DI segment 1 during virion packaging, 

the formation of segment-specific complexes of vRNPs, which are covered later in this 

section, was implemented. These are generated from cytoplasmic vRNPs, which 

changes their dynamics to 
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for i = 2,…,8 
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where the rate of complex formation is described by Cplxk .  

 

Viral transcription and protein synthesis 

vmRNA transcription was already implemented using a segment-specific 

implementation in the multiscale model of STV infection. However, experimental data 

showed a clear difference in the accumulation of genome segments. Therefore, we 

modified Equation (3.1.34) to  
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M
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where, the factor Mf  incorporates the assumption that RdRp-related segments, i.e., 

FL segments 1 to 3 as well as the DI segment 1, are transcribed at a lower rate than 

FL segments 4 to 8.  

The viral protein dynamics in Equation (3.1.35)–(3.1.44) were modeled as described 

in Laske and Heldt et al. [257], which changes the usage of proteins for virus release. 

The release of STVs and DIPs removes HA, NA, M1 and M2 from the protein pool, 

however, no additional RdRp, NP and NEP is required for virus budding.  

Furthermore, the model accounts for the transcription of vmRNA in DIP-only infected 

cells as experiments showed significant accumulation despite very low MOIs and few 

co-infections [125]. To describe these dynamics, we implemented primary viral 

transcription events, discussed in [62, 271, 272], for DIP-only infected cells on the 

population level. Therefore, we assume that the vRNAs entering the nucleus during 

initial infection enable the production of large amounts of vmRNA. However, as we 

used a DIP with a deletion in a genome segment related to RdRp, the replication of 

vRNA cannot take place. We implemented the primary vmRNA transcription in DIP-

only infected cells similar to Equation (3.2.43) as 

 

 DIP

DIP

M Syn
i, Deg MM I

M M i,

i Tot I

( )
 , i 2,...,9

( )

I

I

dR k D t
f k R

dt L C t
    (3.2.45) 

 

Here, the templates for transcription in an individual cell I

Tot I

( )

( )

D t

C t
 are the DIPs provided 

at the time of initial infection 
It . The inhibition of vmRNA synthesis by RdRp is not 

applied in these equations, because we used a DIP containing a deletion in segment 1 

encoding for PB2. However, the segment-specific regulation of vmRNA transcription 

mediated by Mf  is still considered. 
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Complex formation and virus particle release 

After release from the nucleus vRNPs travel to the cellular membrane and assemble 

to create either STVs or DIPs. For the co-infection model the formation of STV (
Cyt

CplxV ) 

and DIP (
Cyt

CplxD ) complexes containing eight vRNPs, i.e., seven FL vRNPs of 

segment 2 to 8 and either FL segment 1 or DI segment 1, prior to virus particle release 

was implemented.  
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 with 
RelPar
Red Par

dF
k F

dt
   (3.2.52) 

 and  j HA,NA,M1,M2  

 

where 
Rel

STV,Totr  and 
Rel

DIP,Totr  describe the rate of total STV and DIP release, respectively. 

Additionally, the virus particle complexes can degrade. The total number of released 

STVs and DIPs is represented by 
Rel

TotV  and 
Rel

TotD , which are calculated similar to 

Equation (3.1.45). Virion release is determined by the relative availability of STV and 

DIP complexes maintaining a maximum rate of overall virus particle release described 

by Relk . As in the model of STV infection introduced in section 3.1, we consider that 
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only a certain fraction of virus particles is capable of successful replication. This is 

implemented via ParF , which describes the fraction of infectious virions 

released (FIVR), enabling the description of the amount of infectious STVs (
RelV ) and 

DIPs (
RelD ) released during infection.  

 

3.3 Model simulation and analysis 

 

3.3.1 Set-up and initialization of the intracellular and cell 

population sub-models 

 

Multiscale model of STV infection 

For the simulation of the model of STV infection, the intracellular and cell population 

model were decoupled according to Heldt et al. [38] to reduce computational burden. 

Therefore, it was assumed that processes on the cell population level do not affect 

intracellular dynamics. This enabled the separate simulation of the different levels 

providing a significant reduction of complexity. For this approach, two versions of the 

intracellular model were established: a complete and a reduced version. The complete 

model is used to simulate the dynamics of virus entry, replication and release in an 

infected cell. The reduced intracellular model, which neglects virus entry and considers 

an already infected cell with a set of eight vRNPs in the cytoplasm, is used to calculate 

the infection age-dependent release rates of infected cells, i.e., 
Rel

Inf ( )r   and 
Rel

Par ( )r  . 

Then, these rates are utilized in Equations (3.1.11), (3.1.14) and (3.1.15) for the 

simulation of the cell population level, which covers virus entry to compensate for the 

reduced intracellular model.  

The initial amount of virus particles used for the complete intracellular model, i.e., 

Ex (0)V , is based on the MOI applied for infection. When the MOI is below one, a 

minimum of one virion infecting a cell is assumed, because we do not consider 

infections by incomplete virus particles. Accordingly, the reduced intracellular model, 

which neglects virus entry, is initiated with  
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Cyt Ex

Fus

molecules
(0) 8 (0)

virion
Vp F V . (3.3.1) 

 

The expression Cyt (0)Vp  in the reduced intracellular model represents the amount of 

vRNPs that reach the cytoplasm after Ex (0)V  virus particles have infected a cell. We 

assume that at least one full set of vRNP infects a cell resulting in a minimum of

Cyt

Fus(0)  8 moleculesVp F  . 

 

Multiscale model of co-infection 

To simulate the multiscale model of co-infection, we reconsidered the assumption that 

events on the cell population level do not affect intracellular dynamics, which enabled 

the uncoupling of the two levels. The proportion of STVs to DIPs during infection can 

significantly change cell-specific yields and high DIP concentrations can suppress STV 

replication [125]. Therefore, we decided that the current concentrations of STVs and 

DIPs should be considered when cells are infected or a co-infection occurs. In the 

multiscale model of co-infection, the intracellular and cell population sub-models are 

still linked via the infection age-dependent release rates 
Rel

STV ( )r   and 
Rel

DIP ( )r  . However, 

these are not calculated by the now obsolete reduced intracellular model, but the 

complete intracellular model is simulated considering the current concentrations of 

STVs and DIPs on the cell population level. Consequently, cells infected at distinct 

time points show different replication and release dynamics. This new approach 

increased computational burden considerably, but it enables the description of 

infections with highly dynamic STV and DIP concentrations. 

To simulate the intracellular model, we apply the concentrations of available virus 

particles calculated on the cell population level as initial conditions. Therefore, the 

number of free, attached and enveloped STVs ( I( )V t , 
Att

n I( )V t , 
En

I( )V t ) and 

DIPs ( I( )D t , 
Att

n I( )D t , 
En

I( )D t ) per amount of cells that can still be infected at time of 

infection It  is converted to Ex (0)V , 
Att

n (0)V , En (0)V , Ex (0)D , 
Att

n (0)D , En (0)D  on the 

intracellular level, respectively. Additionally, we assume that a minimum of one full STV 

or DIP is required for infection and that a cell counts as infected in the moment a virus 
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genome reaches its cytoplasm. To that end, Cyt (0)V  is set to 1 for STV-only infected 

cells and both Cyt (0)V  and Cyt (0)D  are set to 1 for co-infected cells for the simulation 

of the intracellular model. When simulating replication and release in STV-only infected 

cells, all DIP-related initial conditions are set to 0.  

Furthermore, we assume that an infected cell does not release partial virus particles, 

but has a minimum release of one complete STV or DIP. Therefore, all values in the 

infection age-dependent release rates Rel

STV ( )r  , 
Rel

STV,Tot ( )r  , Rel

DIP ( )r  , and 
Rel

DIP,Tot ( )r   lower 

than 1 are set to 0. With this assumption, we also introduce a delay between cell 

infection and virus particle release. Additionally, the disproportionately fast spreading 

of infections in low MOI conditions is prevented. 

 

3.3.2 Model simulation, calibration and prediction 

 

Model simulation, parameter fitting, model prediction and visualization of results was 

performed with MATLAB® (R2017a, version 9.2.0.556344, The MathWorks, Inc.) on a 

Linux-based system. 

 

Simulation 

The intracellular and cell population dynamics were simulated using different 

approaches for the STV infection model and the model of STV and DIP co-infection. 

The intracellular sub-models (Equations (3.1.19)–(3.1.47), Equations (3.2.30)–

(3.2.52)) and experimental data were managed with the Systems Biology Toolbox 2 

developed by Schmidt and Jirstrand [273]. The ODEs were solved numerically with the 

CVODE routine from SUNDIALS [274]. Cell population dynamics were calculated 

using Euler’s method with a step size of 0.05 hdt   for the model of STV infection. For 

the co-infection model, a larger step size of 0.1 hdt  was used. In case this step size 

led to rapidly oscillating behavior, e.g., when the concentration of uninfected cells 

reached values close to zero, it was reduced to 0.02 hdt  . Integrals present in the 

ODEs were calculated by using Equation (3.1.8) instead of ( , )I t   for the model of 

STV infection or Equations (3.2.13) and (3.1.14) instead of STV ( , )I t   and CO ( , )I t  , 
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respectively, for the co-infection model. To this end, the rectangle method was used to 

approximate results using the same step sizes as described before.  

For the STV infection model, confidence intervals in Table 4.2 were determined by 

bootstrapping [264] based on the standard deviations obtained from three independent 

experiments [64, 181]. 

The confidence intervals for the model of STV and DIP co-infection shown in Table 4.3 

were calculated by bootstrapping considering a 55% error for qPCR measurements 

and a 40% error for cell population data based on experiments from [64]. Additionally, 

an error of 40% for the infectious STV titer was applied based on test runs using the 

plaque assay. The local sensitivities for all model parameters shown in Table B.3 were 

calculated based on Heldt et al. [242]. 

 

Parameter estimation 

For the multiscale model of STV infection, estimation was performed with the fSSm 

algorithm for global stochastic optimization [275]. Measurements comprised vRNA, 

cRNA and vmRNA dynamics of genome segment 5 on the intracellular level. On the 

cell population level, infectious and total virus titers as well as fractions of cells in 

different states of infection and apoptosis were determined [64, 181].  

Parameter estimation for the multiscale model of co-infection was performed using the 

evolutionary optimization algorithm CMA-ES [276]. Here, experimental data consisted 

of vRNA and vmRNA dynamics of FL segment 1, DI segment 1 and FL segment 5 on 

the intracellular level. On the cell population level, the infectious STV titer, total STV 

and DIP titers, as well as fractions of cells in different states of infection and apoptosis 

were determined [125].  

Optimal sets of model parameters were estimated by simultaneously fitting the 

intracellular and cell population sub-models to the respective experimental data. 

During calibration, individual estimation steps were evaluated by normalizing errors to 

their corresponding maximum measurement value. Then, the sum of errors for the 

intracellular and cell population level were divided by the number of measurements 

and summed up to indicate the goodness of fit. The first measured data point was 

applied as an offset to the simulated values of viral RNAs to accommodate for a 

background signal in the real-time RT-qPCR experiments.  
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The optimal model parameters used for the simulation of the STV infection model are 

presented in Tables A.2 and A.3. For the STV and DIP co-infection model, they are 

provided in Tables B.1 and B.2. 

 

Model prediction 

In order to predict virus release dynamics for MOI 10-4 and 3 with the model of STV 

infection in section 4.1.2, parameters fitted to experimental data measured in infections 

with MOI 73 were used. However, the initial value of the FIVR, which was estimated to 

be Par (0) 0.034F  , was modified based on large differences in the measurements of 

infectious virus particles between low and high MOI conditions (Figures 4.5 and 4.8). 

For the simulation of infections at MOI 10-4 and 3 we applied a Par (0) 0.26F  , which 

was determined by testing a range of values from 0 to 1 to find an optimum for both 

conditions (Figure 4.9). 

For the prediction of infectious and total virus release for various MOI and MODIP 

conditions with the multiscale model of co-infection, the initial conditions of STVs and 

DIPs on the cell population level were adjusted to the appropriate values considering 

a viable cell concentration of 6(0) 2.2 10  cells/mLT   . For the evaluation of the impact 

of the replication advantage of DI cRNA on STV and DIP release, we varied the 

parameter AdvF  in a range from 0 to 3.2 around its estimated value (0.32). This modified 

parameter was then applied for simulation using different MOI and MODIP conditions. 

The initial conditions and adjusted parameters used for the model predictions 

presented in section 4.3.1 are listed in Table A.1. 
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4. Results and Discussion 

 

4.1 Multiscale model of STV replication and spread 

 

The application and analysis of multiscale models combining intracellular virus 

replication and spreading of virions on the cell population level is a powerful tool to 

provide a systems-level understanding of virus infection in general and IAV infection in 

particular. An often-overlooked aspect is the MOI, which affects infection dynamics, 

time scales during virus propagation and process yields. Therefore, we developed a 

multiscale model of STV replication and spread in cell cultures that describes a wide 

range of MOI conditions providing a comprehensive representation of STV infection. 

In the first part of this section, we focus on high MOI infections and move towards low 

MOI conditions in the second part. 

 

4.1.1 Dynamics of a one-step STV infection for high MOI 

conditions 

 

As a basis for the development of our model, we employed a previously published 

model of IAV infection in animal cell cultures by Heldt et al. [38] and modified various 

aspects to enable the description of a STV infection in high MOI conditions. An 

overview of the considered reactions during STV replication and spread is depicted in 

Figure 4.1. Note that in this section major parts of the original publication on the 

multiscale model of STV infection were used [181]. 

The original model by Heldt et al. [38] combines intracellular virus replication with virus 

propagation on the cell population level. On the intracellular level, various steps of STV 

replication including viral RNA synthesis, viral protein translation, and STV release are 

described in detail. The cell population level comprises population kinetics of 

uninfected cells, infected cells, apoptotic cells, and free virions (infectious STVs). The 

two levels of viral infection are linked by connecting the intracellular dynamics to a 

segregated population of infected cells. This segregation considers the time passed 
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since cells were infected, i.e., the infection age τ. The release of STVs from an infected 

cell, which is calculated by the intracellular sub-model, is dependent on the infection 

age and assigned to the segregated infected cell population. Thus, the intracellular and 

cell population level of STV infection can be simulated simultaneously. 

 

 

Figure 4.1.: Scheme of the multiscale model of STV infection. (Top) The population 

level of infection describes growth and apoptosis of uninfected cells, their infection by 

STVs, virus-induced apoptosis of infected cells and the lysis of apoptotic cells. STVs 

are released from infected cells. (Bottom) Virus entry, nuclear import, viral RNA and 

protein synthesis, nuclear export and progeny virion release in infected cells is 

described by an intracellular model of virus infection. Figure adapted from [38]. 

 

One-step high MOI infection 

For the calibration of the original model, measurements from two separate 

experiments, which were performed at a high MOI for the intracellular STV replication 

dynamics and a low MOI for the cell population dynamics, were used. Furthermore, in 

a recent publication, STV replication dynamics on the intracellular and cell population 

level were analyzed for MDCKadh cells using high MOI conditions [64]. To that end, 

an MOI of 10 plaque forming units (PFU) per cell was used. However, the resulting 
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virus titers were determined by the TCID50 assay. To utilize data for virus input and 

production that were measured with the same assay for model calibration, the initial 

MOI was determined again via the TCID50 assay, which resulted in an MOI of about 73. 

This high virus load was employed to induce a single-cycle infection and resulted in a 

rapid infection of cells. Consequently, all cells are infected in a confined time frame 

leading to homogeneous cell infection ages. This enabled a profound investigation of 

the intracellular infection dynamics as cells in similar stages of infection were observed, 

rather than a mixture of cells at highly different levels of progression. A recalibration of 

the original model to measurements provided by this newer study showed mixed 

results. While levels of viral cRNA, vRNA and STV release could be reproduced, cell 

population and vmRNA dynamics (Figure 4.2) differed considerably from the 

experimental data.  

Additionally, model predictions performed with the original model fitted for high MOI 

measurements from [64] did not capture viral release dynamics observed in new 

infection experiments performed at lower MOIs (Figure 4.3) [181]. Therefore, we 

decided to augment the original model to enable the description of STV infection 

dynamics for a wider range of MOI conditions, e.g., for the low MOI regimes used in 

cell culture-based influenza vaccine production. 

 

Infection age-dependent apoptosis dynamics 

First, we focused on the description of cell population dynamics during the STV 

infection of MDCKadh cell cultures. On the cell population level, the model considers 

uninfected cells, infected cells and apoptotic cells of both cell populations. Previous 

measurements of a STV infection of MDCKadh cells in high MOI conditions showed 

that apoptotic cells start to accumulate about 16 hours post infection (hpi) [64]. To 

describe this delay, which is not considered in the original model (Figure 4.4A–B), we 

adjusted the apoptosis rate of infected cells (Equation (3.1.9)). The original model 

assumed an exponential distribution of the survival time of infected cells, which was 

implemented by a stepwise increase of the apoptosis rate to a fixed value after 

infection [64]. In a previous study, Holder et al. suggested that normal distributions are 

well suited to describe the time which cells spend in a specific state [277]. However, to 
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Figure 4.2.: Model fit of the original multiscale model to infection dynamics on 

the intracellular and cell population level. Curves depict the fits of the original model 

to (A-C) cell-specific viral RNA of genome segment 5, (D) cell population and (E) virus 

titer measurements obtained in MDCKadh cell-culture infections with influenza 

A/PR/8/34 (H1N1) at an MOI of 73 based on TCID50 [64]. Symbols represent the mean 

and error bars the standard deviation of three independent experiments. Figure 

adapted from Rüdiger et al. [181]. 

 

introduce an infection age-dependent apoptosis rate, the cumulative density function 

of the normal distribution is required. This cumulative density function utilizes the 

Gauss error function and does not have a closed analytical form of estimation [268]. 

Therefore, we considered other approaches capable of approximating dynamics 

induced by a normal distribution while still being easy to handle. To that end, we used 

a logistic function, Hill kinetics, and a Gompertz function, based on their capacity to 

introduce sigmoid dynamics. All of these functions described the time course of virus-

induced apoptosis relatively well (Figure 4.4A–B).  

Finally, we decided to employ a logistic function to describe the apoptosis rate of 
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Figure 4.3.: The original multiscale model cannot reproduce virus particle 

release dynamics for different infection conditions. Curves depict model 

simulations of infectious virus particles released during MDCKadh cell infections with 

influenza A/PR/8/34 (H1N1) generated by the original multiscale model of Heldt 

et al. [38]. Results for MOI 73 were adapted from [64], experiments for MOI 3 and 

10-4 were conducted following the same protocol [181]. Infections at MOI 73 and MOI 3 

were performed with an influenza A/PR/8/34 strain from the National Institute for 

Biological Standards and Control (NIBSC); for the infection at MOI 10−4, an influenza 

A/PR/8/34 strain from the Robert Koch Institute (RKI) was used. Symbols represent 

the accumulated number of infectious virus particles quantified by the TCID50 assay. 

(A+C) Error bars indicate standard deviations of three independent experiments, time 

courses of three individual experiments in (B) are shown separately (, , X). Model 

parameters were fitted to experimental results obtained with (A) an MOI of 73 [64]. 

Relevant initial conditions in (B+C) were adjusted to the respective infection conditions. 

Figure taken from Rüdiger et al. [181]. 

 

infected cells (Equation (3.1.9)) as it provides two benefits. The logistic function 

allowed the best fit of the experimental data and, in contrast to a Hill kinetic, the 

introduced parameters can be readily interpreted. In this scenario, Apo  describes the 

time after cell infection at which the rate of virus-induced apoptosis reaches its half-

maximum and 
Apov  denotes a factor that represents the time required from cell infection 
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Figure 4.4.: Logistic apoptosis rate enables reproduction of cell population 

dynamics. Model fits to cell population measurements from MDCKadh cell cultures 

infected with influenza A/PR/8/34 (H1N1) at an MOI of 73 [64]. Mean percentage 

values of (A) infected, non-apoptotic and (B) infected, apoptotic cells from three 

independent experiments are shown. Curves represent simulations of the original 

model [38] and the extended multiscale model with different implementations of the 

infection age-dependent apoptosis rate. (C) Comparison of infected, non-apoptotic cell 

apoptosis rate dynamics using a stepwise (original model, [38]) and logistically 

increasing virus-induced apoptosis rate Apo

Tk . Hours post infection in (A) and (B) refer 

to the time passed since the cell culture was infected while in (C) it corresponds to the 

individual infection time point of a cell. Figure adapted from Rüdiger et al. [181]. 
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until the full activation of the apoptosis mechanism. Figure 4.4C shows the difference 

between both scenarios. The original model uses an apoptosis rate that instantly 

increases after cell infection while the extended model establishes a delayed, gradually 

increasing rate. Hence, the implementation of an infection age-dependent rate of virus-

induced apoptosis enables a better description of cell population dynamics observed 

in a single-cycle STV infection of MDCKadh cells (Figure 4.4A–B) [64]. 

 

Release of infectious and non-infectious STVs  

Next, we extended the original model to consider the number of infectious 

STVs (determined by infectivity assays, e.g., TCID50) and the total number of 

STVs (determined by the HA assay) separately. This characteristic was not accounted 

for in the original model, which solely focused on “virions” (infectious STVs). However, 

the concentration of total STVs holds valuable information for influenza virus 

production as it correlates with process yields for manufacturing of inactivated 

vaccines. Accordingly, we implemented the total STV release of an individual infected 

cell (Equation (3.1.45)) and defined the release of infectious STVs as a fraction of the 

overall release (Equation (3.1.46)). As shown in [64], virus titer measurements indicate 

that the ratio of infectious to total STV release is not constant over the course of 

infection. In MDCKadh cell cultures infected with influenza A/PR/8/34 at an MOI of 73, 

the initial FIVR was about 4% and decreased to about 0.3% over time (Figure 4.5A). 

As a result, most virions released during late infection were non-infectious. The 

variable Par ( )F   (Equation (3.1.47)) describes the FIVR by an infected cell at a certain 

infected cell age τ. Generally, the FIVR represents factors that affect the capability of 

progeny STVs to infect cells productively. Plausible effects that may influence this 

capability are the accumulation of DIPs or limited precursors for viral protein and RNA 

synthesis due to a rapid virus replication. The dynamics of ParF  is defined as a first 

order degradation to reproduce the observation that infected cells release higher 

percentages of infectious STVs immediately after infection compared to later time 

points (Figure 4.5A).  
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Figure 4.5.: Relation of infectious to total virus particles released. (A) The fraction 

of infectious virions released, (B) the accumulated number of infectious and total virus 

particles were taken from three individual experiments performed in [64]. In brief, 

MDCKadh cells were infected with influenza A/PR/8/34 (H1N1) at an MOI of 73. 

Cumulative viral titers were determined by TCID50 assay and HA assay, respectively. 

The solid lines represent the model fit to the data with the extended model, (B) the 

dashed line depicts the model fit with the original model [38]. Figure taken from Rüdiger 

et al. [181]. 

 

Using this infection age-dependent variable, the model captures both infectious and 

overall STVs released by an individual infected cell (Figure 4.5B). To describe the total 

amount of STVs on the population level, we introduced the variable 

Rel

totP  (Equation (3.1.15)), which can be correlated to IAV production yields. Thus, these 

model extensions enable the description of both the cell-specific yield and overall viral 

titers during IAV production in cell cultures. 

 

RdRp-related inhibition of vmRNA production 

The final step of model extension was to take details of intracellular vmRNA dynamics 

into account. After implementation of the aforementioned changes, the description of 

vmRNA dynamics still showed deviations from the measurements (Figure 4.6A, dotted 

line). While the initial accumulation of vmRNA and the resulting peak could be 

captured, its following degradation could not be fully reproduced. Previous 
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experimental studies of IAV infection in high MOI conditions indicated that a complete 

shutdown of vmRNA synthesis occurs at about 6 hpi [59]. The original model did not 

describe such a rapid shutdown and vmRNA synthesis continued during late 

infection (Figure 4.6B). To capture such dynamics, another extension of the 

mathematical model, i.e., the inhibition of vmRNA synthesis, was required. 

 

 

Figure 4.6.: Implementation of an inhibition of vmRNA synthesis improves 

description of vmRNA dynamics. (A) Model fits to genome segment 5 vmRNA 

measurements of MDCKadh cultures infected with influenza A/PR/8/34 (H1N1) at an 

MOI of 73 based on TCID50 [64]. Error bars indicate standard deviations of 

three individual experiments. (B) Percentage of the vmRNA synthesis rate for different 

model versions, experimental data were adapted from [59]. In short, adherent BHK-21 

cells were infected by IAV (Wisconsin strain) at 10 to 20 PFU per cell. Figure adapted 

from Rüdiger et al. [181]. 

 

To keep kinetics simple, we implemented an inhibition of vmRNA synthesis by free 

RdRp (Equation (3.1.34)). This indirect approach was employed as the inclusion of a 

separate state variable for Pol II without corresponding measurements for parameter 

estimation would have unnecessarily increased model complexity. As before, 

accounting for this mechanism in the extended model of STV infection improved the fit 

to measurements for an MOI of 73, which is affirmed by a lower sum of squared 

residuals and the AIC [266] (Table 4.1). Furthermore, the extended model with 
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inhibition of the vmRNA synthesis allowed a more precise description of vmRNA levels 

at time points later than 12 hpi (Figure 4.6A) and the simulated vmRNA synthesis rate 

showed dynamics similar to previous studies [59] (Figure 4.6B). 

 

Table 4.1.: Evaluation of the model fits performed for the extended model of STV 

infection with and without inhibition of vmRNA synthesis. 

 
extended model 

w/o inhibition of vmRNA synthesis 
extended model 

SSR 1.96 1.88 

AIC -437.2 -440.4 

SSR: sum of squared residuals (error of each variable normalized to the respective 

maximum measurement value); AIC: Akaike information criterion 

 

Model calibration 

The extended model of STV infection containing the adjusted dynamics for infected 

cell apoptosis, STV release, and inhibition of vmRNA synthesis was calibrated to 

published measurements from STV infections of MDCKadh cells performed at an MOI 

of 73 [64]. Experimental data of the intracellular level (viral RNA dynamics) and the cell 

population level (cell population dynamics and cumulative virus titers) were utilized. 

The cumulative virus titer measurements show the amount of STVs produced since 

the previous sampling time point, but provide no information about the degradation of 

virus particles. The multiscale model was fit to both data sets simultaneously.  

Model simulation is in good agreement with the experimental data on both the 

intracellular and the cell population level (Figure 4.7). In particular, the early 

accumulation of vmRNA and cRNA can be captured closely. However, the extended 

model underestimates the level of vRNA between 3 to 8 hpi (Figure 4.7). The cell 

population dynamics, i.e., the fast progress of cell infection and initiation of virus-

induced apoptosis, are described well. All cells are infected at 1 hpi due to the high 

MOI conditions and infected cells start to undergo apoptosis around 16 hpi. The model 

slightly overestimates the onset of STV release on the population level, but reproduces 

later measurements for infectious and total STV concentrations. The delay between 

cell infection and first virus release at MOI 73 constitutes roughly 3 h (Figure 4.5B), 
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indicating that the high viral load results in a fast uptake and intracellular replication of 

STVs. 

 

Table 4.2.: Parameters estimated from the experimental data in Figure 4.7. 

Parameter Value Unit Confidence interval (95%)a 

𝐹Par(0)  3.4 × 10-2  (1.8 – 17.0) × 10-2 
Apo

Tk  7 × 10-3 h-1 (1.4 – 11.4) × 10-3 
Bind

M 1k  9 × 10-7 moluecules-1·h-1 (2.9 – 34.2) × 10-7 
Deg

Mk  0.33 h-1 0.12 – 1.35 
Deg

Vk  1.15 × 10-2 h-1 (0.23 – 2.15) × 10-2 
Fusk  0.31 h-1 0.21 – 0.40 

IK  0.11 h-1 0.08 – 0.29 
Lysk  9.4 × 10-3 h-1 (1.9 – 35) × 10-3 

RK  1.1 × 107 molecules (0.1 – 5.7) × 107 b 
Relk  1270 virions·h-1 917 – 2210 
Rel

Redk  0.05 h-1 0.001 – 0.25b 
Syn

Ck  0.8 h-1 0.4 – 1.7 
Syn

Mk  1.8 × 105 nucleotides·h-1 (0.9 – 3.4) × 105 
Syn

Vk  8.4 h-1 5.2 – 12.9 

RelV
K  1250 virions 92 – 4600 

Apo  19.8 h 16.7 – 23.7 

Apov  0.77 h-1 0.30 – 3.82 

a 95% confidence intervals were determined from the Q0.025 and Q0.975 quantiles of 

   2000 bootstrap iterations [264]. 

b Estimates reached lower and upper bootstrap parameter bounds. 
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Figure 4.7.: The extended multiscale model of STV infection captures viral 

dynamics on the intracellular and cell population level. Curves depict the fits of 

the extended model of STV infection to (A-C) cell-specific viral RNAs of genome 

segment 5, (D) cell population and (E) virus titer measurements obtained in MDCKadh 

cell-culture infections with influenza A/PR/8/34 (H1N1) at an MOI of 73 based on 

TCID50 [64]. Symbols represent the mean and error bars the standard deviation of 

three independent experiments. The extended model of STV infection includes an 

adjusted apoptosis rate and takes into account the fraction of infectious virions 

released as well as an additional mechanism for inhibition of vmRNA synthesis. Figure 

adapted from Rüdiger et al. [181]. 

 

4.1.2 Description of infection dynamics for low and medium 

MOI conditions 

 

In order to investigate the predictive power of the extended model calibrated for MOI 73 

measurements [64], we challenged it with virus titer measurements obtained from 

MDCKadh cell infections performed at MOI 10-4 and 3 [181].  
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Initial prediction for low MOI infections 

First, we simulated the infection dynamics of different MOI conditions by changing the 

initial STV concentration on the cell population level. Unfortunately, this approach did 

not result in satisfying predictions (Figure 4.8, solid lines). While the total STV 

concentration for an infection at MOI 3 based on TCID50 could be 

described (Figure 4.8B), other measurements differed significantly from model 

simulations in both dynamics and magnitude of STV release. Additionally, we observed 

clear differences in the FIVR dynamics between simulations and low MOI 

measurements. In experiments performed at MOI 3 and 10-4 (based on TCID50), the 

FIVR initially shows considerably higher values (Figure 4.8A and 4.8D) than at MOI 73 

(Figure 4.5A). This indicates that cells infected at lower MOIs have a significantly 

higher ratio of infectious to non-infectious STVs released than cells infected at a high 

MOI. 

Consequently, to improve the model prediction, we adjusted the initial FIVR 
Par (0)F  

for low MOI conditions. To only introduce a single new 
Par (0)F  for the low MOI 

conditions we tested different values and their effect on model predictions for MOI 3 

and 10-4 based on TCID50 (Figure 4.9). We determined an optimal value at 

Par (0) 0.26F  , which provided the best description of the FIVR for both low MOI 

conditions (Figure 4.8A and 4.8D). As a result, the model predictions for virus release 

using the adjusted initial condition are in good agreement with the two experiments 

performed at lower MOIs (Figure 4.8). In particular, the time delay before cells start to 

release considerable amounts of STVs, which is heavily dependent on the MOI 

conditions, can be described well. Thus, by considering the influence of a critical initial 

condition, i.e., 
Par (0)F , during influenza virus infection our model captures the viral 

release dynamics of both high and lower MOI infections in MDCKadh cell cultures. 
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Figure 4.8.: Model predictions of viral titers in low MOI conditions. The 

mathematical model fitted to measurements obtained from MDCKadh cell infections at 

an MOI of 73 (Figure 4.7) was used to reproduce results of experiments performed at 

(A-C) MOI 3 and (D-F) MOI 10-4 based on TCID50. Symbols represent measurements 

of MDCK cell infections with influenza A/PR/8/34 (H1N1) obtained from NIBSC (A-C) 

and RKI (D-F). (A+D) Description of the fraction of infectious virions released with 

different initial conditions. Model prediction for total (B+E) and infectious STVs 

(C+F) released. Error bars in (D-F) indicate standard deviations of three individual 

experiments. Solid lines depict simulations of the extended model of STV infection with 

initial virus concentrations adapted to the respective MOI. Dashed lines represent 

simulations of the extended model of STV infection with an additional change to the 

initial conditions to adjust for low MOI scenarios, i.e., by increasing the initial fraction 

of infectious virions released. Figure taken from Rüdiger et al. [181]. 
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Figure 4.9.: Optimization of the initial fraction of infectious virions released in 

low MOI conditions. Simulation of the extended model of STV infection with an MOI 

of (A) 3 and (B) 10-4 based on TCID50 using different initial FIVRs. Various initial FIVRs 

were tested for their ability to improve the model prediction for virus release dynamics 

in low MOI infections. Simulation results were evaluated based on their deviation to 

the experimental data and showed different optima at MOI 3 (
Par (0) 0.46F  ) and 

MOI 10-4 (
Par (0) 0.21F  ). The shared optimum (

Par (0) 0.26F  ) was determined by 

summing up deviations of both MOI 3 and 10-4 to obtain the initial FIVR resulting in the 

lowest error. Figure taken from Rüdiger et al. [181]. 

 

4.1.3 Discussion 

 

The dynamics of IAV infections can vary greatly depending on the initial MOI, which 

affects time scales of propagation, virus yields and the infectivity of released virions. 

Different scenarios, i.e., natural infections, vaccine production or antiviral treatment, 

are initialized at or progress to highly different MOIs. To cover these scenarios at the 

intracellular and cell population level, we introduced MOI-dependent apoptosis 

dynamics into a previously published multiscale model of IAV infection. To capture 

experimental data from a high MOI infection closely, we further implemented a 

mechanism of vmRNA regulation and differentiate between infectious and non-

infectious virions. The subsequent prediction of virus titers generated in low MOI 

conditions was enabled by increasing the FIVR in such scenarios, which may be 

related to the impact of DIPs.  
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Description of STV infection for a wide MOI range 

In contrast to the original multiscale model established by Heldt et al. [38], the extended 

model of STV infection was calibrated to measurements of intracellular and cell 

population dynamics from the same experiment [64]. The high MOI infection conditions 

used in these experiments enabled the observation of STV replication and propagation 

on both scales. We used these measurements for parameter estimation and the 

resulting model simulation showed good agreement with the experimental 

data (Figure 4.7). Viral RNA dynamics and the percentage of cells in different states of 

infection and apoptosis were captured closely. However, between 3 and 8 hpi, model 

simulations underestimated the level of intracellular vRNA. Previous experimental 

studies also identified an accumulation of vRNA in this time frame [38, 63], which 

cannot be fully reproduced by the current model implementation.  

The three viral RNA species of IAV are highly interconnected, because vRNA serves 

as the template for vmRNA and cRNA replication. The underestimation of one viral 

RNA species indicated that an additional layer of regulation, which could support 

earlier vRNA accumulation without affecting the other species, might exist. Such a 

regulation could concern nuclear export processes of viral proteins, the depletion of 

precursors for viral RNA and protein synthesis impeding further replication or an 

increased degradation of vRNPs that enter the cytoplasm for release.  

 

Logistic virus-induced apoptosis kinetics mediate a normal distribution of 

infected cell survival times 

The crucial step to reproduce infection dynamics in MDCKadh cell cultures for high 

MOI conditions was the description of apoptotic processes. In general, apoptosis is 

induced in infected cells as a defense mechanism aiming to reduce progeny virion 

release [278]. In infected cells, viral RNA and protein synthesis progress rapidly, which 

leads to an accumulation of viral molecules. This is detected by the cell and, as a 

reaction, apoptotic processes are induced that initiate the controlled death of the cell 

to prevent further virus spread.  

In the original model [38], the apoptosis of infected cells was described by a fixed 

rate (Figure 4.4C), which resulted in an exponential distribution of the survival time of 

infected cells. However, experimental data of infected cells and their transition to an 
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apoptotic state indicated a normal distribution of cell survival time (Figure 4.4A–B) [64], 

which was discussed previously by Holder et al. [277]. To accommodate these 

characteristics, we implemented a logistic function (Equation (3.1.9)) for the 

description of apoptosis induction in infected cells. Logistic functions can approximate 

the dynamics described by the cumulative density function of the normal distribution 

and are relatively simple to apply [268]. Other approximation functions exist, which can 

provide an even closer representation of the normal distribution. However, these 

functions are more complex than the logistic function and not required to describe the 

experimental data. This approximation of a normally distributed survival time of 

infected cells enabled the reproduction of the apoptosis dynamics measured in high 

MOI influenza A infection experiments [64]. Additionally, by utilizing a logistic function, 

we introduced a delay before significant amounts of cells undergo apoptosis, which 

was experimentally observed until 16 hpi (Figure 4.4). This delay is represented by the 

newly introduced parameter 
Apo , which describes the time frame until apoptotic 

processes can be detected in an infected cell by a respective assay. Therefore, a low 

value for 
Apo  indicates that the cell can induce a fast response to the infection.  

However, viruses have developed mechanisms to interfere with the host cell apoptosis 

to prolong virus production [278]. Thus, the parameter 
Apo  could also show how well 

a virus is adapted to the host cell. The delayed apoptosis induction described in our 

extended model is similar to the cell death dynamics during HIV infection described in 

[279]. In this study, a piecewise-defined function that includes a specific time delay 

was utilized to achieve an effect similar to the one resulting from the use of a logistic 

function in our model. Nevertheless, dynamics of influenza-induced cell death is not 

only highly strain-dependent [280], but also depends on the specific assay performed 

to monitor apoptosis. Therefore, different approaches could be required based on the 

respective scenario and applied assays. 

 

Infectious and non-infectious STVs 

Infected cells release infectious and non-infectious progeny STVs, which can be 

determined via TCID50 and HA assay results, respectively. The ratio of released 

infectious STVs to the total amount of STVs released, which is described by the 
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introduced variable 
ParF  (Equation (3.1.47)), is a measure for the efficiency of virus 

replication in cell culture. The highest FIVR occurs during early infection, which is 

crucial to enable fast virus spreading before host defense mechanisms, i.e., apoptotic 

processes or the cellular immune response, may interfere. Over time, the FIVR 

decreases and during later stages of infection non-infectious STVs are released 

predominantly (Figure 4.5A). An experimental study [64] identified that during late 

infection (starting at around 20 hpi) the morphology of released virus particles 

changes, leading to more deformed or broken particles. This observation was linked 

to decreasing cell viability, the detachment of infected MDCKadh cells and nuclear 

fragmentation indicating apoptotic processes in the infected cells. In addition, cellular 

metabolism is affected heavily by virus replication at later stages of infection [281].  

Furthermore, the FIVR differed significantly between low and high MOI cultivations. 

For low MOI conditions, a considerably increased FIVR was observed (Figures 4.5A, 

4.8A and 4.8D). In particular, during experiments performed at an MOI of 10-4 based 

on TCID50, the FIVR maintained a value above 20% until 24 hpi. This dynamics can be 

explained by the continuous infection of cells, which results in a constant supply of 

newly infected cells contributing with a high initial FIVR to the release characteristics. 

Overall, the differences in viral release between low and high MOI infections have a 

significant impact on the infectious virus titer and the propagation of infections on the 

cell population level (Figure 4.3). Although various factors influence the efficiency of 

virus replication and release, the presence of DIPs in high MOI seed virus and their 

accumulation over the time course of infection most likely play a key role regarding the 

observed disparity. Further support for a connection between the FIVR and DIP 

interference is provided by the correlation of DIP accumulation with the decrease of 

infectious STV release, which was observed in experiments performed at an MOI of 3 

based on TCID50 [181]. However, the influence DIPs exert on the molecular level of 

virus replication is still not fully understood.  

 

MOI impact on vmRNA accumulation 

Another intriguing effect of different MOI conditions is their impact on vmRNA 

dynamics. In high MOI conditions, vmRNA accumulates rapidly (Figure 4.6A), reaches 

a distinct peak around 4 hpi, and declines thereafter. Various studies showed similar 
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findings in high MOI IAV infections in different cell lines [59, 60, 63]. In contrast, low 

MOI scenarios induce a considerably slower accumulation with less pronounced peaks 

around 8 hpi [38, 282, 283]. The fast accumulation in high MOI infections is most likely 

induced by the increased amount of available templates, i.e., vRNAs. The subsequent 

shutdown of vmRNA synthesis is mediated by the export of vRNAs from the nucleus, 

which occurs around 4 hpi in high MOI experiments [64]. 

However, the first iteration of our extended model of STV infection, which was modified 

by an adjusted apoptosis rate and the newly introduced FIVR, could not describe 

adequately the shutdown of vmRNA replication and its degradation (Figure 4.6). Model 

simulations showed considerable levels of remaining vmRNA transcription until late 

infection (Figure 4.6B). To also reproduce the drop of vmRNA levels after 4 hpi, the 

rate of vmRNA degradation ( Deg

M
0.6k  ) was calibrated to a value twice as high as 

determined previously [242]. Moreover, the dynamics of vmRNA degradation was still 

not captured fully (Figure 4.6A). Thus, we implemented an interaction between viral 

and host cell mechanisms that was reported recently by Rodriguez et al. [65] and 

Martínez-Alonso et al. [66]. They showed that the binding of free viral RdRp to Pol II 

leads to the degradation of the latter, which is proposed as a method for inhibiting host 

gene expression. In addition, this mechanism would impede vmRNA transcription, 

which depends on Pol II activity, and provides an explanation for the observed 

shutdown. After implementation of this interaction, the extended model is in good 

agreement with the vmRNA dynamics during a high MOI infection (Figure 4.6A). 

Additionally, the vmRNA degradation rate estimated for the extended model is 

consistent with previous results ( Deg

M
0.3k  ). These findings indicate that the RdRp-

mediated degradation of Pol II not only inhibits host gene expression, but may also 

play a role in the downregulation of the vmRNA synthesis. 

 

Summary 

We have developed a mathematical multiscale model of STV infection in animal cell 

cultures that describes a wide range of infection conditions. In contrast to previous 

models, we explicitly considered the infection age of a cell regarding apoptotic 

processes and the release of infectious STVs, which enables the description of both 

high and low MOI scenarios relevant for basic research and vaccine production. 
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Models that describe wide ranges of applied MOI conditions could also benefit 

research on other viruses, e.g., plant viruses, in which the MOI is theorized to have an 

impact on virus evolution [284]. Furthermore, this model can be used to examine 

specific steps in the IAV life cycle in relation to the maximum virus yield or regarding 

measures to intervene with viral spread in vivo efficiently. Given available experimental 

data, the model could be used to describe infections in tissues and organs at the within-

host scale, which show strong fluctuation in the spatiotemporal MOI. Additionally, the 

multiscale model presented here is well suited to predict and optimize process 

performance of IAV production in cell cultures and provides a solid framework for 

further analysis of MOI-dependent virus infections in general. 

 

4.2 Multiscale model of STV and DIP co-infection 

 

DIPs are virus particles with an incomplete genome that can propagate during co-

infection with their corresponding STV impeding the replication of STVs in the process. 

The balance between STV and DIP production heavily depends on the concentrations 

of both virus species during initial infection. To investigate how the MOI and the MODIP 

affect the production of DIPs and the interference with STV replication, we developed 

a multiscale model of STV and DIP co-infection. In the first part of this section, we 

expand the multiscale model of STV infection by including DIP dynamics. Then, we 

augment the model to capture experimental results for a large range of MOIs and 

MODIPs with a single set of parameters. 

 

4.2.1 Including DIPs in the multiscale model 

 

Following the basic implementation of the model of STV infection covered in 

section 4.1, we introduced DIP-related species on the cell population level. The 

adjustment of the intracellular dynamics was based on Laske and Heldt et al. [257]. In 

contrast to this model, our model considers a specific DIP with a deletion on segment 1, 

which is referred to as DI244. An overview of the reactions considered during virus 
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replication and spread is depicted in Figure 4.10. Note that in this section major parts 

of the original publication on the multiscale model of STV and DIP co-infection were 

used [125]. 

 

Incorporation of DIP dynamics during virus replication and propagation 

To consider DIPs on the cell population level, we introduced cells infected only by 

DIPs ( DIPI ) and co-infected cells ( COI ) to the existing uninfected (T ), STV-only 

infected ( STVI ), uninfected apoptotic ( AT ) and infected apoptotic cells ( AI ) 

(Figure 4.10, Equations (3.2.1)-(3.2.7)). Cells infected only by STVs release progeny 

STVs and are capable to produce progeny DIPs due to de novo generation. As the 

emergence of new DIPs from STV-only infected cells is mostly relevant for continuous 

cultivations and plays a minor role in batch cultivations, we disregarded it when 

developing the multiscale model of STV and DIP co-infection focusing on infections in 

batch experiments. We assumed that cells infected only by DIPs and no STV are 

incapable to produce progeny virions, because they cannot produce the PB2 required 

to form the RdRp, which is critical for virus replication. Therefore, all intracellular 

processes for DIP-only infected cells, including virus entry, replication and release, 

were neglected for initial model development. Co-infected cells release both progeny 

STVs and DIPs. In accordance with the description of STV-only infected cells 

(Equation (3.2.3), co-infected cells were represented as an age-segregated population 

CO ( , )I t   (Equation (3.2.4)). Additionally, DIPs themselves ( D ) as well as their 

different binding and endocytosis states, i.e., attached DIPs (
Att

nD ) and DIPs in 

endosomes (
EnD ), were implemented analogous to STV particles (Equations 

(3.2.16)–(3.2.20) and (3.2.24)–(3.2.29)).  

The model of the intracellular level was adjusted to consider a separate replication for 

each genome segment according to Laske and Heldt et al. [257]. Therefore, state 

variables of cRNA- and vRNA-related components were described individually for the 

eight FL segments and DI segment 1. Additionally, we adapted the model structure 

slightly in accordance with specific assumptions used in the multiscale model of STV 

infection (Equations (3.1.1)–(3.1.47)). To that end, we modified the STV and DIP 
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Figure 4.10.: Schematic depiction of the multiscale STV and DIP co-infection 

model. (Top) The population level of infection describes growth and apoptosis of 

uninfected cells, their infection by either STVs or DIPs, the growth and apoptosis of 

DIP-only infected cells, the co-infection of STV-only infected and DIP-only infected 

cells, virus-induced apoptosis of STV-only and co-infected cells, and the lysis of 

apoptotic cells. STVs are released from STV-only infected and co-infected cells, DIPs 

are only released from co-infected cells and both are cleared via virus degradation. 

(Bottom) Virus entry, nuclear import, viral RNA and protein synthesis, nuclear export 

and progeny virion release in STV-only infected and co-infected cells is simulated 

using the same intracellular model. Figure adapted from Rüdiger and Pelz et al. [125]. 

 

release kinetics by implementing a maximum release rate of infected 

cells (Equations (3.2.48)-(3.2.51)). 

The model of the intracellular level was adjusted to consider a separate replication for 

each genome segment according to Laske and Heldt et al. [257]. Therefore, state 

variables of cRNA- and vRNA-related components were described individually for the 

eight FL segments and DI segment 1. Additionally, we adapted the model structure 

slightly in accordance with specific assumptions used in the multiscale model of STV 
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infection (Equations (3.1.1)–(3.1.47)). To that end, we modified the STV and DIP 

release kinetics by implementing a maximum release rate of infected cells (Equations 

(3.2.48)-(3.2.51)).  

 

Changes to the general simulation approach 

The FIVR ( ParF ) by infected cells was crucial in the development of the multiscale 

model of STV infection as it determined how rapidly an infection can spread when low 

MOI concentrations are used [181]. For the purpose of predicting virus titers for 

different MOI conditions, the FIVR had to be adjusted for application as it showed a 

reduced value for high MOI ( Par 0.034F  ) compared to low MOI scenarios ( Par 0.26F  ). 

As mentioned in section 4.1, this variation was likely induced due to the impact of DIPs, 

which affect STV replication more strongly in high MOI conditions. For the development 

of our model of STV and DIP co-infection, we employed a single value for the FIVR as 

the interference of DIPs was implemented in the model itself.  

To take into account the specific impact of the MOI and MODIP conditions as well as 

their dynamics over time, we adapted our simulation approach to re-evaluate the initial 

conditions for newly infected cells based on the current concentration of STVs and 

DIPs in the cell culture. While this increases computational burden, it considers the 

dynamic changes of MOI and MODIP during infection.  

 

Model calibration 

The experimental data used for the calibration of the multiscale model of STV and DIP 

co-infection were obtained from infections of MDCKsus cells with a seed virus adapted 

specifically to these cells [125]. The resulting infections showed significantly faster 

dynamics compared to the measurements from MDCKadh cell infections used for the 

development of the multiscale model of STV infection [64]. Therefore, a re-evaluation 

of various process parameters that may have been affected by this change was 

required. Additionally, the co-infection model was adapted to utilize infectious STV titer 

measurements obtained via plaque assay (PFU/mL) instead of the previously used 

TCID50 assay [107] that typically results in slightly higher titers. 
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Figure 4.11.: Addition of DIPs can prevent virus-induced apoptosis and protect 

MDCKsus cells from STV infection. (A) Schematic depiction of the 12 different MOI 

and MODIP conditions used for infection experiments. (B) Viable cell concentration 

and (C) the fraction of apoptotic cells for infections with MOI 10−3 and MODIPs of 0, 

10−3, 3 and 30. Figure taken from Rüdiger and Pelz et al. [125]. 

 

The basic model of STV and DIP co-infection was calibrated to the intracellular and 

cell population data obtained from MDCKsus cell infections using 12 different infection 

conditions (Figures 4.10 and 4.11) performed in [125]. Measurements from the intra- 

and extracellular level were utilized simultaneously for parameter estimation. 

For the majority of fitted conditions, model simulations capture the general dynamics 

of the observed infection dynamics (Figure 4.12). In particular, FL vmRNA and 

DI vRNA are represented well. Additionally, the prevention of virus replication and a 

strong reduction of STV titers for a low MOI of 10-3 combined with high MODIPs of 3 

and 30 can be achieved (Figure 4.12C and 4.12L). These two infection conditions will 

from here on be referred to as L3 (MOI 10-3 + MODIP 3) and L30 (MOI 10-3 + 

MODIP 30). However, in other infection conditions, model simulations show large 
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Figure 4.12.: The basic co-infection model fails to describe virus replication and 

propagation dynamics for all infection conditions. Curves represent model 

simulations of the basic co-infection model calibrated to (A-C) cell-specific vmRNA, 

(D-F) cell-specific vRNA, (G-I) cell population and (J-L) virus titer data measured in 

MDCKsus cell cultures infected with different amounts of influenza A/PR/8/34 (H1N1) 

and DIPs (DI244). Results from MOIs and MODIPs of 10-3 and 0 (first column), 30 

and 3 (second column), 10-3 and 30 (third column) are shown. The basic model 

describes STV and DIP replication and propagation based on Rüdiger et al. [181] and 

Laske and Heldt et al. [257] without considering additional model adaptations. Figure 

adapted from Rüdiger and Pelz et al. [125]. 
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deviations to the measured values. The exact levels of intracellular and population 

measurements cannot be captured for the majority of experiments. Especially in low 

MOI conditions, large deviations for the observed intracellular properties are 

apparent (Figure 4.12A,D,G,J). In comparison, measurements from experiments using 

higher MOIs are described more closely, but still do not allow for a complete 

representation of the infection process. Therefore, we were not able to obtain a single 

set of parameters describing all measured dynamics simultaneously. Most likely, this 

is due to the inherent complexity of the interaction of STVs and DIPs during infection. 

In sum, we established a mathematical multiscale model of STV and DIP co-infection 

by taking into account DIP replication and spreading on the intracellular and cell 

population level, respectively, to describe the infection dynamics observed in infection 

experiments (Figure 4.11). However, estimating a single set of parameters that 

describes all infection conditions could not be achieved with this basic model.  

 

4.2.2 Capturing various MOI and MODIP conditions using a 

single set of parameters 

 

To address the observed discrepancies between the basic model of STV and DIP co-

infection and the dynamics observed during infections of animal cell cultures with 

different MOIs and MODIPs, we implemented several targeted changes to the model 

equations.  

 

Segment-specific vmRNA transcription 

First, we addressed the discrepancies observed between the levels of the vmRNAs of 

FL segment 1, DI segment 1 and FL segment 5 (Figure 4.13A). Although the overall 

dynamics of vmRNA accumulation could be captured, the levels of FL and DI 

segment 1 vmRNA were overestimated, while the levels of FL segment 5 vmRNA were 

underestimated. As described in section 2.1.3, segments encoding for proteins of 

RdRp, i.e., segment 1 to 3, were shown to accumulate to significantly lower levels than 

segments 4 to 8 [60, 61, 126]. Therefore, we decided to implement this effect by a 

simple parameter Mf  that reduces vmRNA transcription in polymerase segments 
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including DI segment 1 (Equation (3.2.44)). This clearly improved the description of the 

experimental data compared to the basic model and enabled the representation of the 

different levels of accumulated vmRNA (Figures 4.13B and B.4–B.6). 

 

 

Figure 4.13.: Segment-specific vmRNA transcription enables close description 

of the differences between accumulation and degradation dynamics. Dynamics 

of vmRNA for segment 5, FL segment 1 and DI segment 1 using MOI 30 and 

MODIP 3. Dashed lines show model simulations of the basic co-infection model fitted 

to experimental data, solid lines depict simulations of the extended co-infection model 

calibrated to the same measurements. Figure adapted from Rüdiger and Pelz 

et al. [125]. 

 

Primary vmRNA transcription in DIP-only infected cells 

Another significant deviation between the simulation of the basic model and the 

experimental data could be observed for the levels of DI segment 1 and FL segment 5 

vmRNA for low MOI, high MODIP conditions L3 and L30 (Figure 4.11B). In these 

scenarios, DI segment 1 and FL segment 5 vmRNAs still accumulated to considerable 

numbers, although nearly all infected cells should have been infected with a DIP but 

no STV as a helper virus. We assumed initially that cells just infected by DIPs do not 

produce any viral RNAs. Yet, previous IAV infection studies showed that the “primary 

transcription” of vmRNAs by incoming parental vRNAs leads to significant intracellular 

vmRNA levels [62, 271, 272].  
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To implement this hypothesis, we used a modified version of the intracellular equation 

describing vmRNA kinetics (Equation (3.2.43)) for DIP-only infected cells. In this 

simplified equation (Equation (3.2.45)), the negative feedback induced by RdRp is 

removed, because cells infected only by DI244 cannot synthesize functional PB2, 

which is essential for RdRp formation. Furthermore, the primary transcription now 

depends on the raw input of vRNP templates per cell from the initial infection. Using 

this simple description, we can describe the level of vmRNA accumulation in L30 

closely (Figures 4.14B and B.4–B.6). For L3, the combination of primary transcription 

and the regular vmRNA generation in co-infected cells also describes the initial plateau 

and the subsequent increase.  

 

 

Figure 4.14.: Primary transcription enables representation of vmRNA 

accumulation in low MOI, high MODIP conditions. Accumulation of viral DI vmRNA 

for conditions L3 (MOI 10-3 and MODIP 3) and L30 (MOI 10-3 and MODIP 30). Dashed 

lines show model simulations of the basic co-infection model fitted to experimental 

data, solid lines depict simulations of the extended co-infection model calibrated to the 

same measurements. Figure adapted from Rüdiger and Pelz et al. [125]. 

 

Reduction of vRNA synthesis in high MODIP conditions 

Then, we focused on the vRNA dynamics, which were not represented completely 

(Figure 4.12). To that end, we fixed every model parameter except Syn

Vk , which 

describes the rate of vRNA synthesis, and calibrated the model to the experimental 

data. Thus, we identified that Syn

Vk  was estimated to very similar values for low initial 
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DIP concentrations, i.e., MODIP 0 and 10-3, but showed a clear reduction when 

MODIP 3 and 30 were used for infection (Figure 4.15). Specifically, we observed a 

direct relation of the parameter value to the applied ratio of MODIP to MOI. 

Consequently, we introduced a dependency of the parameter Syn

Vk  on the used MODIP-

to-MOI ratio during infection (Equation (3.2.38)). Fortunately, this modification to the 

model did not only enable the description of STV and DIP co-infection for all conditions 

using a single set of parameters, but also improved the description of the experimental 

data considerably (Figures B.2–B.9).  

 

 

Figure 4.15.: MODIP-to-MOI ratio-dependent vRNA synthesis rate. Estimated 

values for the parameter Syn

Vk  describing vRNA synthesis for different infection 

scenarios based on the applied MODIP-to-MOI ratio. The orange dotted line depicts 

the average Syn

Vk  value for low MODIP infections (empty circles) and the blue dash-

dotted line represents the dependency of Syn

Vk  on the MODIP-to-MOI ratio for high 

MODIP conditions (full circles). The vertical black line separates infections only using 

STVs from infections with MODIP > 0. Figure adapted from Rüdiger and Pelz 

et al. [125]. 

 

Effect of high MOI conditions on cell growth 

Additionally, we considered that the cell growth observed for low MOI, high MODIP 

conditions L3 and L30 was reduced with a higher MODIP (Figure 4.11B). Therefore, 

we introduced a factor f  that lowers the specific cell growth rate during infection 
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depending on the initial DIP concentration (Equation (3.2.9)). While the fraction of 

apoptotic cells did not increase when infected with a large quantity of 

DIPs (Figure 4.11C), they nevertheless showed an impaired cell growth. By using this 

additional factor, we were able to describe the differing growth dynamics for conditions 

L3 and L30 (Figure 4.16). 

 

 

Figure 4.16.: Reduction of the specific cell growth rate for very high MODIP 

conditions. Dynamics of the viable cell concentration for low MOI, high MODIP 

conditions L3 and L30. Dashed lines show model simulations of the basic co-infection 

model fitted to experimental data, solid lines depict simulations of the extended co-

infection model calibrated to the same measurements. Figure adapted from Rüdiger 

and Pelz et al. [125]. 

 

Final model calibration 

Finally, the extended model of STV and DIP co-infection was fitted to measurements 

from all 12 different combinations of MOI and MODIP conditions (Table 4.3). 

Experimental data of infected MDCKsus cells from the intracellular and cell population 

level were utilized simultaneously for model calibration. Model simulations capture 

experimental data on the intracellular and cell population level closely (Figures 4.17 

and B.2–B.9). In contrast to the basic co-infection model, low and high MOI scenarios 

can be described using a single set of parameters. Furthermore, the effects of STV 

suppression for low MOI, high MODIP conditions L3 and L30 can be reproduced well 

(Figure 4.17L).  
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Figure 4.17.: The extended co-infection model captures infection dynamics on 

the intracellular and cell population level for all measured infection conditions. 

Curves depict simulations of the extended co-infection model fitted to (A-C) cell-

specific vmRNA, (D-F) cell-specific vRNA, (G-I) cell population and (J-L) extracellular 

virus titers measured in MDCKsus cell cultures infected with different amounts of 

influenza A/PR/8/34 (H1N1) and defective interfering particles (DI244). Results for 

MOI 10-3 and MODIP 0 (first column), 30 and 3 (second column), and 10-3 and 30 (third 

column) are shown. The figures presenting cell population dynamics (G-I) show fits to 

uninfected non-apoptotic, infected non-apoptotic, as well as the sum of uninfected and 

infected apoptotic cells. The extended co-infection model is based on  
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Rüdiger et al. [181] and Laske and Heldt et al. [257], but additionally considers primary 

transcription of vmRNA, segment-specific vmRNA production, a reduced vRNA 

synthesis for high MODIP conditions and a DIP-induced reduction of cell growth. 

Simulation results for all other infection conditions are shown in Figures B.2–B.9. 

Figure adapted from Rüdiger and Pelz et al. [125]. 

 

On the intracellular level, the balance between vRNA and vmRNA can be captured for 

the majority of infection conditions. However, in a few scenarios DI vmRNA is 

overestimated, i.e., when an MOI of 3 is applied (Figure B.5E-H), and vRNA levels are 

slightly underestimated (Figures B.7–B.9). On the extracellular level, viral titers and 

cell population dynamics are captured well for all conditions (Figures B.2 and B.3). The 

infection of uninfected cells, virus-induced apoptosis dynamics and the protection of 

cells in L3 and L30 are described closely. Additionally, the proportion of infectious and 

total STV as well as total DIP titers are captured in all scenarios. However, the levels 

of infectious STV and total DIP concentration in the supernatant is underestimated 

when using a very low MOI and MODIP (Figure B.2A–B).  

The extended co-infection model comprises 132 ODEs and 73 parameters (basic co-

infection model: 130 ODEs, 68 parameters). For 8 out of 12 experiments fitted, the 

extended co-infection model showed lower values for the AIC (Table B.4) and is, 

therefore, preferable [266]. This applies, in particular, for MOI 10-3 combined with a low 

MODIP, where the experimental data could not be described using the basic 

model (Figure 4.12). Furthermore, for high MOI combined with high MODIP conditions 

the data is fitted better by the extended co-infection model. Overall, while the basic co-

infection model displays a certain advantage to describe some infection conditions, the 

extended co-infection model is able to capture all conditions simultaneously. 
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Table 4.3.: Parameters estimated from the experimental data in Figures B.2–B.9. 

Parameter Value Unit Confidence interval (95%)a 

Par (0)F  3.6 × 10-3  (0.3 – 48.9) × 10-3 

AdvF  0.32  0.07 – 0.84 

MF  0.12  0.006 – 0.53 

F  0.63  0.2 – 1 
Apo

Tk  1.18 × 10-2 h-1 (0.1 – 1.3) × 10-2 
Fusk  58.3 h-1 9.5 – 258.8  

IK  0.27 h-1 0.05 – 0.35 
Lysk  0.16 h-1 0.02 – 0.5 

RK  7.8 × 103 molecules (1.1 – 30.9) × 103 
Rel

Redk  4.1 × 10-4 h-1 (0.7 – 16.1) × 10-4 
Relk  6.15 × 103 virions · h-1 (0.9 – 19.3) × 103 

VK  20.1 h-1 4.7 – 78.5 

RelV
K  1.8 virions 0.3 – 6.8 

Apo  6.65 h 5.0 – 18.0 

1v  5.2  2.0 – 47.7 

2v  0.1  0.002 – 0.23 b 
 

a 95% confidence intervals were obtained from the Q0.025 and Q0.975 quantiles of 

  1250 bootstrap iterations [264]. 

b Estimates reached lower bootstrap parameter bounds. 

 

4.2.3 Discussion 

 

IAV infection is a highly complex process that shows different dynamics depending on 

the initially applied virus concentrations. The addition of DIPs further increases the 

complexity of these processes making a description of the overall infection dynamics 

challenging. For the development of our multiscale model of STV and DIP co-infection, 

we introduced DIP related populations to the model. For the estimation of model 

parameters, we used data from 12 experiments performed using different infection 

conditions for infecting animal cell cultures. Based on these data, we were able to 

calibrate the model to describe all observed dynamics using a single set of parameters. 
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Development of the initial model of co-infection  

The experiments performed at different initial MOI and MODIP conditions showed 

diverse infection dynamics. By expanding the multiscale model of STV infection, we 

aimed to capture these dynamics considering the impact of DIPs. However, this first 

attempt did not allow describing the dynamics in all observed conditions. While some 

scenarios could be reproduced closely, for others the infection progress could not be 

represented. The structure of the initially developed model of co-infection was capable 

to describe each individual scenario if the model parameters were calibrated solely to 

the corresponding experimental data. However, to obtain a single set of parameters 

capable of reproducing the full range of experimental results, some modifications were 

necessary. 

This inability to find a parameter set that describes all experimental data 

simultaneously was likely due to underlying dependencies inherent to the system 

described. These could only be observed by covering such a wide range of infection 

conditions with the experiments, but required an extension of the model. While most 

observed properties develop linearly when increasing the input of STVs or DIPs, some 

infection conditions induce divergent behavior of specific properties. An example are 

the DI vRNA levels, which show a direct relation neither to the MOI nor to the 

MODIP [125]. However, they seem to increase towards equimolar levels of STVs and 

DIPs. Additionally, vmRNA levels of the observed segments, i.e., FL segment 1, 

DI segment 1 and FL segment 5, achieve similar values in simulations performed with 

the initial model implementation. In contrast, the experimental data show significant 

differences between the three observed vmRNAs [125].  

 

Model extension 

To enable the description of the dynamics of STV and DIP co-infection dynamics in a 

wide range of MOI and MODIP conditions using a single set of parameters, we 

extended the initially developed basic model. Therefore, various steps of viral RNA 

regulation and the growth of cells in high MODIP conditions were modified.  

Specifically, we introduced an internal regulation between vmRNA segments, i.e., a 

lower transcription rate for segments encoding for RdRp-related proteins compared to 

structural proteins, as observed in previous IAV replication studies [60, 61, 126]. 
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Interestingly, for infection conditions using equimolar amounts of STVs and DIPs, the 

DI segment 1 vmRNA levels are exactly in between FL segment 1 and 5 vmRNA 

levels (Figure 4.13B). This indicates that due to the replication advantage of DIPs their 

vmRNA levels can exceed their STV counterpart. Nevertheless, they do not reach the 

levels of segment 5 and potentially other segments.  

Furthermore, co-infection experiments showed that cells infected only by DIPs are able 

to produce high concentrations of vmRNA for scenarios with very few co-infections, 

i.e., low MOI conditions [125]. A baseline level of vmRNA for DI segment 1 and 

FL segment 5 was detected, which correlates with a primary transcription mediated 

only by the infecting DIP. However, since FL segment 1 vmRNA encoding for a subunit 

of RdRp is defective (DI244), the replication of vRNA and with that the amplification of 

the viral genome did not occur. A highly interesting aspect in this regard is, if cells are 

capable to perform vRNA replication in case that they are solely infected by DIPs with 

deletions in segments not encoding for RdRp. In a recent study, Phan et al. [126] 

investigated the levels of viral RNAs during infection for two different defective 

influenza viruses in A549 cells. One of them was lacking FL segment 2, which encodes 

for a subunit of RdRp, and showed an accumulation of vmRNA but no replication of 

vRNA similar to the experimental results for condition L30. An infection with the second 

virus, which was lacking FL segment 4 encoding for the structural protein 

hemagglutinin, resulted in vRNA and vmRNA levels similar to a wild-type infection. 

This indicates that the de novo synthesis of RdRp is critical for virus replication, while 

the genome-bound RdRp provided by virions entering during initial infection is 

sufficient for vmRNA transcription. 

The extended co-infection model was calibrated simultaneously to measurements on 

the intracellular and cell population level and was able to capture the observed 

dynamics closely (Figures B.2–B.9). An important factor to capture all infection 

dynamics was the introduction of an MODIP-to-MOI ratio-dependent rate of vRNA 

synthesis resulting in a reduction of vRNA levels in the presence of high DIP 

concentrations. Experimental data clearly demonstrated that higher MODIPs lead to a 

reduction of vRNA levels (Figures B.7 and B.9). This interaction could describe a “self-

interference” that has been reported previously [136, 258] and was also predicted by 

mathematical modeling [257]. Specifically, due to high DIP levels, the viral replication 
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is restricted and, thus, the amplification of both STVs and DIPs is affected. However, 

the exact mechanism of this effect and which factors could support such a reduction 

cannot be clarified using a mathematical model. Our hypothesis regarding the 

underlying interactions is that virus replication is limited due to a strong competition for 

viral proteins caused by high DIP concentrations. If DI genomes occupy most RdRp, 

the transcription of FL vmRNA could be reduced significantly and fewer functional viral 

proteins would be synthesized. This would ultimately lead to a reduction of viral 

replication for both STVs and DIPs. To elucidate such interdependencies, further 

experiments focusing on the effect of high DIP levels on viral RNA replication are 

required. 

 

De novo generation and expansion towards continuous cultivation 

For the development of the model of co-infection and the description of the 

experimental data, we disregarded the de novo generation of DIPs. In the experiments 

used for model calibration, no progeny DIP production was detected for initial MODIPs 

of 0. When using higher MODIPs, the measured DIP titers are most likely related to 

the initially provided DIPs and not to substantial de novo generation. Therefore, the 

description of this process was neglected.  

The effects of DIP de novo generation are more prominent when using a different 

cultivation system, i.e., a continuous process with a constant supply of uninfected 

cells [183, 184]. Over time, DIPs generated de novo can accumulate and affect vaccine 

production. The multiscale model of co-infection can also be applied to the continuous 

cultivation of cell cultures subject to IAV infection. To that end, the de novo generation 

of DIPs could be easily implemented. This process would be introduced as an 

additional output of STV-only infected cells and could be adjusted to a theoretical or 

experimentally determined rate. Furthermore, the constant addition of fresh uninfected 

cells and the removal of bioreactor contents could be implemented in the model. After 

introducing these changes, the co-infection model developed in this thesis could also 

provide a solid framework for the simulation of infection dynamics for continuous 

processes in vaccine production. 
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Interferon response 

The multiscale model of co-infection presented in this section describes the 

interference of DIPs with the replication of the STV in MDCKsus cells. However, the 

innate immune response induced by DIPs was shown to play a major role for their 

therapeutic effect [152] initiating antiviral activity against influenza B virus [142], 

pneumovirus [143] and SARS-CoV-2 [144]. In particular, DIPs could also improve the 

defense against STVs by other means than interfering during viral replication. To 

evaluate such effects, a different biological system than the MDCKsus cells used to 

generate experimental results for the calibration of the co-infection model should be 

used. While MDCK cells generally show a strong IFN response following STV infection, 

the subsequently produced myxovirus resistance protein 1 shows a lack of activity 

against the human IAV due to its canine origin [285]. Moreover, it was reported that 

the added trypsin, which is necessary for the cleavage of hemagglutinin, leads to a 

proteolytic degradation of IFN [286]. Thus, MDCK cells provide a powerful platform to 

observe IAV infection dynamics, but are not suited to evaluate the complete virus-

induced immune response. 

 

Summary 

The multiscale co-infection model developed combines STV infection with DIP 

replication at the intracellular and cell population level. This enabled the estimation of 

model parameters related to general IAV infection and DIP interference. Additionally, 

this allowed the reproduction of infection dynamics in highly different MOI and MODIP 

scenarios. The multiscale model of STV and DIP co-infection provides a solid 

foundation to describe the impact of DIPs in infections with viruses in general and to 

evaluate their potential for antiviral therapy. Such a mechanistic model could also be 

implemented into models describing between-host kinetics to predict how DIPs affect 

the epidemic scale of virus propagation. To that end, the inclusion of an immune 

response, especially the activation of the IFN system, is required. 
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4.3 Model prediction 

 

Following the development and calibration of the two multiscale models described in 

the previous two sections, we utilized them to predict specific aspects of infection. To 

enable robust predictions via model simulations, we focused on obtaining a single set 

of parameters for each model that was capable of capturing a wide range of infection 

conditions. Using these models, we predicted the dynamics of MOI and MODIP during 

infection as well as how cells are infected over time. Additionally, we provide 

estimations for required MODIP-to-MOI ratios for DIP production and antiviral 

application of DIPs. 

 

4.3.1 STV infection in highly different MOI conditions 

 

Prediction of the changes to the MOI during infection 

In section 4.1, we presented and discussed the multiscale model of STV infection, 

which could reproduce infectious and total STV titers in three different infection 

conditions. In addition to viral titers, the model is able to predict various processes on 

the intracellular and cell population level during the STV infection of cell cultures in 

different MOI conditions. As an example, we simulated the fraction of cells infected and 

the ratio of infectious STV to non-infected cells (the effective MOI) over the time course 

of virus infection at MOIs of 73, 3 and 10-4 (Figure 4.18). The effective MOI can change 

considerably over the progress of infection and determines how many virions enter a 

cell at a specific time point influencing virus replication and release. For MOI 73, cells 

are infected rapidly until 1 hpi and the effective MOI increases instantly. Simulations 

with an MOI of 3 result in a slower progress of infection that shows two peaks indicating 

a second infection wave starting around 4 hpi. Here, the effective MOI stays constant 

up to 4 hpi and then increases until all cells are infected. Overall, most cells in 

infections performed at initial MOIs of 73 and 3 are infected at similar effective MOIs.  
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Figure 4.18.: Progress of cell infection and the effective MOI over the time course 

of IAV infection. Cell culture infections were simulated with initial MOIs of 73, 3 and 

10−4 based on TCID50. (A) Bars depict the amount of cells newly infected in the 

respective time frame (1 bar = 0.05 h). Dotted, dash-dotted and solid lines represent 

the current effective MOI based on the number of infectious virus particles and the 

remaining non-infected cells in the culture. The horizontal dashed lines highlight 

effective MOIs of 3 and 73. (B) Curves show the cumulative frequency of cell infections 

for simulations performed at MOI 73, 3 and 10−4. Figure taken from Rüdiger et al. [181]. 

 

The simulation of an infection performed at an initial MOI of 10-4 shows very different 

results. The infection progress is delayed considerably and the model prediction 

suggests that most cell infections occur not before 15 hpi. Additionally, the effective 

MOI decreases until 4 hpi and only then starts to increase gradually. The effective MOI 

rises in multiple steps showing larger increases around 4, 11 and 17 hpi. This strong 

variation of the effective MOI during the process induces very different infection 

scenarios for cells infected at different time points. Additionally, the majority of cell 

infections, i.e., around 66%, occur at an effective MOI of 3 or higher, despite the low 

initial MOI.  

 

Amount and origins of infecting virus particles 

We can further employ the model of STV infection to predict the timing and proportion 

of single- and multiple-hit infections in different scenarios (Figure 4.19). Depending on 

the effective MOI at the current time, different amounts of virus particles can infect cells 

in the same time window. This is relevant for specific infection events, e.g., the 
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interference of DIPs during infection or the reassortment of different IAV species during 

a co-infection. Even a ratio of 1:1 for STV and DIP or two different IAV species would 

not affect the cells if only single-hit infections occur and co-infections are prevented.  

 

 

Figure 4.19.: Distribution of single- and multiple-hit infections in different MOI 

conditions. Cell culture infections were simulated with initial MOIs of 73, 3 and 10−4 

based on TCID50. Bars depict the amount of cells newly infected by a single or multiple 

virions in the respective time frame (1 bar = 0.05 h). 

 

Model prediction for different scenarios, i.e., MOI 10-4, 3 and 30, shows distinct 

infection profiles. Infections under very high MOI conditions result only in multiple-hit 

infections. MOI 3 and 10-4 show similar ratios between single- and multiple-hit 

infections with about 33% of cells infected by one virus particle. Interestingly, using an 

MOI of 10-4 leads to even more multiple-hit infections than an MOI of 3. Furthermore, 

the timing of infections is different. For MOI 3, cells are infected by a mixture of single- 

and multiple-hit infections right from the start. After 4.5 hpi, only multiple-hit infections 

occur. In contrast, MOI 10-4 results in almost exclusively single-hit infections until 

14 hpi. Then, both types of infection occur until 17 hpi. At later time points, only 

multiple-hit infections take place. These results show how susceptible different 

infection scenarios are to co-infection-related effects such as DIP interference. Thus, 

high MOI infections are always affected by these events while low MOI infections are 

not affected until late time points. When using medium MOIs, the impact of such effects 

is likely reduced, but they could still influence infection and production results. 
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Lastly, we examined the origin of the infecting virus particles, i.e., if they were provided 

by the virus seed or produced during the infection, for the scenarios predicted 

above (Figure 4.20). This distinction indicates which factor is more relevant for the 

production of clean IAV yields containing low DIP levels, the quality of the seed virus 

or the rate of DIP de novo generation.  

 

 

Figure 4.20.: Origin of virus particles infecting cells in different MOI conditions. 

Cell culture infections were simulated with initial MOIs of 73, 3 and 10−4 based on 

TCID50. Bars depict the percentages of cells infected by either virions from the seed 

virus or progeny virus particles that were generated during the infection. 

 

Model simulations predict that the initial MOI directly correlates to the split between 

infections by seed or progeny virions. When using an MOI of 73, practically all cells 

are infected by virions from the seed virus. An MOI of 3 leads to around 10% of 

infections mediated by progeny virions, while an MOI of 10-4 induces almost exclusively 

progeny virion infections. Furthermore, the model predicts that an MOI of 1 would lead 

to a nearly even split between infections by virions from the seed virus and progeny 

virions. Thus, the reduction of the MOI increases the portion of infections mediated by 

progeny virions.  

In summary, the multiscale model of STV infection predicts a rapid, uniform infection 

in high MOI conditions and a delayed progress of infection with variations in the 

effective MOI (multiple waves) in a low MOI scenario. Furthermore, the majority of all 

cells is infected at effective MOIs above 1, regardless of the initial MOI. However, the 
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initial MOI influences if these infection are mediated by virions from the seed virus (high 

MOIs) or progeny virus particles (low MOIs). 

 

4.3.2 STV and DIP co-infection in a wide range of infection 

scenarios 

 

To evaluate STV and DIP production in different infection conditions, we simulated the 

virus particle release for a wide range of MOIs and MODIPs. We aimed to identify 

optimal infection conditions for the successful suppression of STV propagation and the 

generation of large DIP quantities. These two scenarios are especially relevant 

regarding the production of DIPs for antiviral therapy and their potential application 

against STV infection. 

 

Prediction of an optimal DIP-to-STV ratio for inhibition 

Generally, high doses of DIPs are required for strong inhibition of STV infection 

(Figure 4.21A). However, low doses of DIPs can show an inhibiting effect when the 

MOI is significantly lower than the MODIP. Our simulations predict that using MODIP-

to-MOI ratios of 1:1 enables a reduction of infectious STV titers by a factor of 10 

compared to a DIP-free infection. To induce a strong reduction of infectious virus titers, 

i.e., by at least four orders of magnitude, a ratio of 104:1 is required.  

Our model predicts that the highest DIP amount can be produced using large quantities 

of both MOI and MODIP during infection (Figure 4.21B). However, this would require 

a lot of virus seed material for infection, rendering this option unattractive for large 

scale DIP manufacturing. Very good yields could also be achieved by lower virus input, 

i.e., an MOI of 0.01 and an MODIP of 0.25, which reaches over 50% of the predicted 

maximum DIP production using a 150 times lower seed virus concentrations for 

infection. In general, applying slightly higher DIP than STV concentrations during 

infection resulted in the best results for DIP production.  
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Figure 4.21.: STV infection suppression and DIP production are strongly affected 

by the infection conditions. Infections of MDCKsus cells were simulated with the 

multiscale model of STV and DIP co-infection using MOIs and MODIPs in the range of 

10-8–102 and 10-4–102, respectively. The predicted concentrations of (A) infectious 

STVs and (B) total DIPs at 48 hpi determine the color of the heat map. The 

experimentally observed infection scenarios (+) are depicted. The solid red line 

indicates (A) an MODIP-to-MOI ratio of 104:1 and (B) the optimal multiplicity ratios for 

DIP production. For the switch between regular and reduced vRNA synthesis for low 

and high initial DIP concentrations a threshold value of 3

MODIP 10F   was used. Grey 

areas indicate that no production of either STVs or DIPs occurs. Figure adapted from 

Rüdiger and Pelz et al. [125]. 

 

Impact of the replication advantage on virus titers 

Furthermore, we investigated the effect of the intracellular parameter AdvF , which 

describes the replication advantage of DI cRNA over its FL counterpart, on infectious 

STV inhibition and DIP propagation. For an MODIP of 10-3, no significant impact of this 

parameter on infectious STV titers could be determined (Figure 4.22). When combining 

high STV and DIP concentrations, an increase of the parameter AdvF  could lead to 

decreased infectious STV titers. A reduction of the replication advantage would in turn 

lead to improved STV production in this scenario. The release of DIPs could be 

improved when the parameter AdvF  is increased, however, after reaching an optimal 

value the model predicts a decrease for higher values (Figure 4.22). For equimolar 
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virus particle concentrations, i.e., when both MOI and MODIP are either 10-3 or 30, this 

optimal value regarding DIP production is Adv 1.8F  . Using MOI 30 and MODIP 10-3, 

Adv 2.5F   is predicted to be optimal for DIP production. 

 

 

Figure 4.22.: The replication advantage affects DIP production in low MODIP 

conditions. The predicted fold-change for yields of infectious STVs and total DIPs at 

24 hpi depending on a reduction or increase in the replication advantage of DI cRNAs 

over their FL counterpart is presented. The parameter AdvF  was varied in the range of 

0 to 1000% of its estimated value. The vertical red line indicates the replication 

advantage estimated during model calibration, i.e., Adv 0.32F  . Figure adapted from 

Rüdiger and Pelz et al. [125]. 

 

Prediction of the effective MOI and MODIP in different infection conditions 

Next to STV suppression and DIP production, we were also interested in the impact of 

different infection conditions on the dynamics of the effective MOI and MODIP. Thus, 

we predicted how the ratio between infecting particles and potential target cells 

changes in the infection conditions used for model calibration. Note that for the 

simulation results depicted in Figure 4.23, we assumed that the system is already 

initialized with infected cells according to the Poisson distribution considering to the 

initial MOI and MODIP. Therefore, the bars shown relate to the infections of the 

remaining and newly produced cells. For all combinations using an MOI of 3 or 30, the 

progress of cell infection and the dynamics of the effective MOI showed profiles similar 

to Figure 4.18. Following a rapid infection of cells, the effective MOI increased to values 

above 1010 (Figure 4.23). If an initial MODIP of 3 or 30 was chosen together with high 

MOIs, the same dynamics could be observed for the effective MODIP. High MOIs 
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combined with low MODIPs show an initial decrease of the effective MODIP, which 

starts to increase 2 hpi.  

 

 

Figure 4.23.: Progress of cell infections, the effective MOI and the effective 

MODIP over the time course of STV and DIP co-infection. Cell culture infections 

were simulated with initial MOIs and MODIPs corresponding to the experimental 

conditions the co-infection model was fitted to. Bars depict the amount of cells newly 

infected in the respective time frame (1 bar = 0.05 h).The solid and dashed lines 

represent the current effective MOI and MODIP, respectively, based on the number of 

infectious virus particles and the remaining non-infected cells in the culture. 

 

Using a low MOI and no DIPs for infection, the model predicts dynamics similar to the 

simulation of the multiscale model of STV infection (Figure 4.18). The infection is 

delayed and progresses in multiple waves. In contrast to the multiscale model of STV 

infection, the majority of infections occur at effective MOIs below 1. While the results 
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in Figure 4.18 showed that only 33% of cells are infected at low MOIs, the co-infection 

model predicts that 66% are infected at an effective MOI lower than 1. This is likely 

caused by the overall faster infection dynamics in the MDCKsus cells used to calibrate 

the co-infection model compared to the MDCKadh cells applied for the multiscale 

model of STV infection. 

An analogous result was obtained for a combination of low MOI and MODIP. Here, the 

effective MOI increased as in an infection without DIPs and the effective MODIP 

followed a similar trajectory 4–6 h later. However, after an initial decrease for both 

multiplicities, the effective MOI rises to values around 10-2 at 4 hpi while the effective 

MODIP only reaches these levels at 14 hpi. Furthermore, an additional infection wave 

can be observed at 15 hpi. This is induced by progeny DIPs, which start to accumulate 

at 12 hpi and lead to co-infections of already STV-infected cells. Due to this small 

portion of co-infected cells, the model is able to achieve high levels of DIP production 

despite a low initial MODIP. However, the absolute level of DIP production in infection 

performed with MOI and MODIP 10-3 cannot be reached (Figure B.2B). 

The simulation of low MOIs and high MODIPs leads to a fast initial infection wave, 

which causes the MODIP to increase to high levels as cells that can be infected by 

DIPs are depleted. The MOI declines until 7 hpi and only then increases to levels 

around 10-4. Although it keeps rising for the next 50 h, the MOI never reaches high 

values. However, steadily replicating DIP-only infected cells are constantly infected by 

the few available STVs to produce co-infected cells. The amount of these co-infections 

increases until 60 hpi and may lead to all cells becoming co-infected if the infection is 

prolonged further.  

 

Infection profiles in different infection conditions 

When investigating the distribution of single- and multiple-hit infections that emerge 

using different infection conditions, the addition of DIPs creates more possibilities than 

before. Cells can become infected by one STV or DIP, by multiple STVs or DIPs, or be 

subject to a co-infection. We predicted the related profiles for the infection conditions 

used for model calibration and examine which types of infections occur at which 

time (Figure 4.24). The relation of the different infection types determines if STV can 
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replicate freely, DIPs can propagate due to the support of the STV, or virus replication 

is severely reduced for both viral species.  

 

 

Figure 4.24.: Distribution of single- and multiple-hit infections in different MOI 

and MODIP conditions. Cell culture infections were simulated with initial MOIs and 

MODIPs corresponding to the experimental conditions the co-infection model was 

fitted to. The distribution of infections mediated by one or multiple STVs, one or multiple 

DIPs or both is shown for each time point of infection. The height of the individual bars 

shows the share each scenario represents of all infections occurring in the respective 

time frame (1 bar = 0.05 h). The magnitude of infections is not represented, but can be 

observed in Figure 4.23. 
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For infections with an initial MOI of 30, cells are infected either by multiple 

STVs (Figure 4.24I–J) or mostly by co-infection (Figure 4.24K–L) depending on the 

MODIP. When reducing the MOI to 3, more diverse infection profiles can be obtained. 

Adding no DIPs leads to a few single-hit STV infections at the start, but the vast 

majority consists of multiple-hit STV infections (Figure 4.24E). The behavior of MOI 3 

and MODIP 10-3 is similar initially, but after 4 hpi most infections are co-infections by 

STV and DIPs (Figure 4.24F). Therefore, if infections occur in this time frame, they are 

co-infections. However, this applies to very few infections as shown in Figure 4.23F. 

Using an equimolar MOI and MODIP of 3, all different types of infection can occur in 

the initial phase, i.e., infections by one or multiple STVs or DIPs, but most infections 

are still co-infections (Figure 4.24G). An infection using MOI 3 and MODIP 30 showed 

similar dynamics, but only multiple-hit DIP infections and co-infections occur.  

Low MOI conditions differ strongly depending on the applied MODIP. When adding an 

MODIP of 30, multiple-hit DIP infections are performed almost exclusively 

(Figure 4.24D). However, a very small portion of co-infections, i.e., 0.03%, was 

predicted towards the end. Combining a low MOI and an MODIP of 3, model 

simulations predict that at the start some single-hit DIP infection can 

occur (Figure 4.24C). After that, multiple-hit DIP infections constitute the majority of 

infections. However, after 50 hpi, co-infections by the slowly accumulating progeny 

STV can capture a small share of the overall infections. When infecting only with a low 

MOI and no DIPs, an initial phase of single-hit STV infections transitions towards 

multiple-hit STV infections (Figure 4.24A) as already observed for the multiscale model 

of STV infection in Figure 4.18. The most varied infection profile, which consists of four 

distinct phases, was predicted for an equimolar MOI and MODIP of 10-3 (Figure 4.24B). 

First, a mixture of single-hit STV and DIP infections can occur until about 4 hpi. Then, 

the increasing effective MOI leads to a phase of single-hit STV infections until 10 hpi. 

As the MOI continues to increase, the infections transition to mostly multiple-hit STV 

infections until 15 hpi. Lastly, the MODIP also increases to significant levels, which 

causes the majority of infection to be co-infections.  

Taken together, the multiscale model of STV and DIP co-infection predicts that an 

MODIP-to-MOI ratio of about 104:1 has to be used to restrict STV production and 

spreading significantly. For the production of large DIP quantities, an equimolar MOI 
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and MODIP are preferable. To improve both the suppression of STV release and the 

production of DIPs, an increase of the replication advantage of DI cRNAs should be 

considered. Lastly, the evaluation of the effective multiplicities (MOI and MODIP) 

during infection and the infection profiles of cells provides additional insights into the 

infection dynamics of STVs and DIPs in different infection conditions.  

 

4.3.3 Discussion 

 

In the previous subsections, we have developed two multiscale models that capture 

experimental data obtained from cell culture infections performed for highly different 

MOIs and MODIPs. The focus during their calibration was to obtain a single set of 

parameters that can describe all observed infection dynamics. This enables the 

prediction of non-observable properties, e.g., the changes of the effective MOI during 

an infection or the amount of multiple-hit infections, and of the infection dynamics for 

other infection conditions. 

 

Impact of the number of infecting virions 

Model predictions performed with the multiscale model of STV infection show that the 

MOI heavily affects the progress of IAV infection in cell cultures. The higher the MOI, 

the faster cells are infected and the earlier virus particles are released. Additionally, 

the initial MOI affects the dynamics of the effective MOI resulting in highly different 

scenarios regarding the amount and the origin of infecting virions. In high MOI 

conditions, all cells are infected by the initially available virions in a single infection 

wave (Figure 4.18). In addition, such infections are with near certainty multiple-hit 

infections (Figure 4.19). Simulations of an infection at MOI 3, however, show two 

different scenarios. Until 4 hpi cells are infected at an effective MOI that results in 

around 50% chance of inducing multiple-hit infections (Figure 4.19). In a second 

infection wave, starting at 4 hpi, virions begin to infect cells at increasing effective MOIs 

leading to a higher probability of multiple-hit infection. After 5 hpi, all cells are infected 

by multiple virions until no uninfected cells remain.  
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Predictions of infection dynamics for low MOI conditions (10-4) show variations in the 

effective MOI that span 14 orders of magnitude (Figure 4.18). Using the model of STV 

infection enabled detailed analyses regarding such a scenario. Simulations show that 

the effective MOI progresses in three infection waves starting at 0, 4 and 11 hpi. In the 

first 13 hpi, virions infect uninfected cells mostly in single-hit infections (Figure 4.18). 

Until 4 hpi, these infections are performed exclusively by virions from the seed virus. 

From 4 to 13 hpi, first and second generation progeny virions induce additional 

infection waves, in which still mostly single-hit infections occur as the effective MOI 

stays below one (Figure 4.19). Finally, the effective MOI increases steadily, so that 

16 hpi mostly multiple-hit infections are induced. Interestingly, model prediction with 

the multiscale model of STV infection predict that over 60% of all cell infections occur 

after 16 hpi (Figure 4.18). Thus, the majority of cells is infected by multiple virions even 

using low initial MOI conditions.  

Surprisingly, the model predicts that during an infection at MOI 3 slightly more cells are 

infected by a single-hit infection compared to MOI 10-4. With an initial MOI of 3, more 

infections are occurring in a phase when the chance of a single-hit infection is 

reasonably high, i.e., around 50% for MOI 3. Thus, 37% of cells are infected by a single 

virion using an MOI of 3. The highest value of single-hit infections over the whole 

infection time could be achieved by an MOI of 2 with a value of 48%. Therefore, if the 

aim of a future study were the induction of the maximum number of single-hit infections, 

an MOI 2 would be preferable.  

Altogether, this indicates that in both low and high MOI conditions mostly multiple-hit 

infections occur. However, during the initial phase of a low MOI infection single-hit 

infections are induced predominantly. 

 

Implications for DIP interference based on the initial MOI 

Furthermore, the model predictions generated with the multiscale model of STV 

infection provide interesting implications for the interference of DIPs with infectious 

virions for different MOI conditions. With this model, we only considered STVs and not 

DIPs, but the predictions can still be applied to evaluate the potential impact of DIPs 

that may reside in the seed virus or are generated de novo during infection. As the 

preparation of large quantities of completely DIP-free IAV seed virus material is 



4.3 Model prediction 124 

 

challenging and costly, most seed viruses contain DIPs. There are different 

approaches to limit the fraction of contained DIPs, however, typically virus seeds are 

not DIP-free. 

In our simulations, the majority of cells are infected by multiple virions, regardless of 

the MOI. Such conditions favor DIP replication as they increase the chance of co-

infections by DIPs and infectious virions. Therefore, it could be argued that even low 

MOI conditions do not prevent DIP interference, but only postpone it to later infection 

stages (Figure 4.18). However, there is an important distinction between different MOI 

conditions regarding the seed virus.  

In high MOI conditions, all cells undergo multiple-hit infections by virions exclusively 

from the seed virus (Figure 4.20). Therefore, the amount of DIPs contained in the seed 

virus determines the severity of interference. To achieve a low impact of DIPs in high 

MOI conditions a “clean” seed virus with very low DIP content is required. This is in 

particular relevant for experimental studies aiming for one-step virus growth to avoid 

artifacts. However, even for studies in small-scale cultures or laboratory scale 

bioreactors, the quality of the seed virus should be controlled carefully to avoid 

misinterpretation of experimental findings. Infections with an MOI of 3 result in a 

majority of cells becoming infected by virions from the seed virus. If one aims to 

achieve a case in which half of all cell infections are mediated by seed virions and the 

other half by progeny virions, an MOI of 1 can be applied (Figure 4.20). 

In low MOI conditions relevant for cell culture-based influenza vaccine production, 

virions from the seed virus infect cells almost exclusively in single-hit infections 

preventing DIP interference and replication at early cultivation time. In later infection 

stages, progeny virions of the second to third generation nevertheless induce multiple-

hit infections. Thus, the amount of DIPs generated de novo [257] during progeny virion 

production has a higher impact on the extent of interference with virus yields and the 

DIP content of the seed virus only plays a minor role. Altogether, DIPs always affect 

the replication of IAV regardless of the initial MOI. However, in low MOI conditions the 

interference has a lower impact and is postponed until later infection stages. 

Altogether, this indicates that cells in high MOI conditions are infected exclusively by 

the seed virus, while in low MOI cultivations cells are infected almost exclusively by 

progeny virions. Using an MOI of 1 can generate a mixture of both scenarios. 
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Optimal MOI and MODIP conditions to prevent STV and support DIP production 

Model simulations performed with the STV and DIP co-infection model predict that an 

MODIP-to-MOI ratio of at least 104:1 is required to reduce STV titers by over four orders 

of magnitude and enable a suppression of STV infection in MDCKsus 

cells (Figure 4.21). In line with our model prediction, recent infection experiments in 

mice using varying STV and DIP concentrations provided similar results [18, 19]. In 

these studies, the complete protection induced by DIP administration was lost when 

reducing the MODIP-to-MOI ratio from 3.4 × 104:1 to 3.4 × 103:1 and from 4.4 × 104:1 

to 2.2 × 104:1, respectively.  

Furthermore, the wide range of infection conditions reproduced by our model 

simulations enables a comprehensive evaluation of the effect of MOI and MODIP on 

virus production. In a recent study, Martin and Harris et al. [234] showed that the MOI 

strongly affects dynamics of STV replication in adherent MDCK cells. They observed 

higher virus titers and an earlier onset of virus particle release with increasing MOIs. 

In contrast, simulations from our STV and DIP co-infection model, as well as the 

experimental data that the model was calibrated to, do not support these findings. The 

experiments resulting in the highest concentrations of infectious and total STV were 

using low MOI conditions [125] and model simulations showed similar results for low 

and high MOIs (Figure 4.21A). Previously, experimental results supporting higher viral 

titers in low MOI conditions have been reported for MDCKadh cells [179, 180].  

Regarding the cell culture-based production of DIPs, the model predicts that for the 

generation of large DIP amounts relatively low concentrations of virus material are 

sufficient for infection. As long as STVs and DIPs are provided in more or less 

equimolar concentrations and the initial MODIP is kept above 0.1, DIP production 

achieves high levels (Figure 4.21B). Overall, the maximum DIP titers can be obtained 

using an equimolar STV and DIP input (Figures B.2G and B.2L). This indicates that 

the ratio between MOI and MODIP might play a larger role than the total virus input for 

optimal DIP production conditions. Generally, DIP production was highest when slightly 

more DIPs were provided.  

However, even if regular DIP production is improved by choosing the optimal MOI and 

MODIP conditions, a recently developed process using a modified cell line may provide 

a better alternative. In their study, Bdeir et al. [178] modified MDCK cells to stably 
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express the IAV protein PB2. When these so-called MDCK-PB2 cells are infected by 

a DIP containing a defective viral genome segment 1 encoding for PB2, e.g., DI244, 

the DIP can replicate without a STV acting as a helper virus. The missing genomic 

information, which normally results in the lack of PB2, can be compensated by the host 

cell and the DIP is able to replicate. Virus production in MDCK-PB2 cells was not 

compromised by the modification and high DIP titers could be achieved [141]. An 

additional benefit is the absence of STVs, which do not have to be removed from the 

product to obtain pure DIPs for antiviral application. Therefore, the usage of a modified 

cell line like MDCK-PB2 may be preferable to the conventional production of DIPs 

using STVs to provide the missing viral proteins.  

 

Optimal dose for therapeutic application 

For infections in humans, about 0.6 to 3 infectious units were reported for airborne 

transmissions [18]. Extrapolating the required MODIP-to-MOI ratio derived from our 

model predictions, the administration of 3 × 104 DIPs, e.g., via a nasal spray, could be 

sufficient to limit infection spread severely. However, as the preferred target tissues of 

IAV in humans do not correspond to a well-mixed cultivation system, the administration 

of higher doses is likely necessary. If we assume that the respiratory tract comprises 

about 4 × 108 cells [218] and that at least an MODIP of 10-1 should be achieved to 

induce strong infection suppression at such low MOIs, 4 × 107 DIPs would be required 

for a strong inhibiting effect. This amount of DIPs would also theoretically protect 

against up to 4000 infectious units, which is 1300 times the airborne infectious dose. 

However, if we consider an advanced infection already subject to strong virus 

replication, high MOI conditions would be prevalent. Assuming MOIs of 1 or above, at 

least 4 × 1012 DIPs would be necessary to achieve a strong inhibition according to our 

predicted MODIP-to-MOI ratio. Most likely, the application of such high DIP doses 

would not be reasonable due to safety concerns. Therefore, the use of DIP 

preparations shows the biggest promise shortly after infection or for prophylaxis. 

Previous in vivo experiments, which administered DIPs to mice at varying times before 

and after infection, support this hypothesis [287].  
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Impact of the replication advantage 

An additional factor that affects the balance between STV and DIP production in co-

infected cell populations is the replication advantage of DI over FL genomes [113]. By 

using an optimal factor for this advantage, which is implemented as an increased 

synthesis rate of DI cRNA over its FL counterpart in our model, up to 3.6 times more 

total DIPs could be generated in model simulations (Figure 4.22). Furthermore, model 

predictions suggest a more prominent replication advantage could also improve STV 

titer reduction in high virus concentration scenarios. A potential strategy to obtain DIPs 

with higher advantages over the STV is the selection of strongly accumulating DIPs 

from long-term continuous bioreactor cultivations [121]. Such DIPs consistently 

replicated at high levels indicating an increased advantage over their competition, i.e., 

other emerging DIPs. 

 

Impacts of effective MOI and MODIP 

Predictions of effective MOIs and MODIPs show that using an initial MOI of 3 or above 

induces a fast infection of MDCKsus cells. This implies that the change of these 

multiplicities over time does not have a large impact on the infection. Cells are infected 

in a confined time window with effective MOIs and MODIPs similar to the initially 

applied values. However, when applying a low MOI of 10-3, cells are infected over a 

longer period of time. Thus, cells are infected under highly different conditions at the 

start of the infection compared to later phases.  

Using a low MOI and a low MODIP, the infection progresses in multiple waves starting 

at 0, 4, 9 and 13 hpi (Figure 4.23B). Initially, the effective multiplicities behave similarly, 

but after the first infected cells start to produce progeny virions, the effective MOI 

always stays at least two logs above the effective MODIP. At the start of the infection, 

only single-hit infections by either a STV or a DIP occur, which prevents the replication 

of DIPs (Figure 4.24B). Even after 15 hpi, when most cells were already infected, the 

effective MODIP only reaches a value around 10-2. Therefore, the vast majority of 

infections occurs with low MODIPs. However, the MOI changes drastically over time 

resulting in low MOI infections during the early phase, i.e., until about 12 hpi, but high 

MOI infections thereafter.  
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The combination of a low MOI with high MODIPs leads to constantly ongoing infections 

until 60 hpi. At the start, cells are infected rapidly by DIPs and the effective MODIP 

increases as the number of cells that are not already infected by a DIP decreases. The 

effective MOI drops as the initially available STVs infect cells inducing co-infections. 

These co-infected cells produce a small number of progeny STVs that can then infect 

DIP-only infected cells. This propagation continues until the end of the cultivation and 

the effective MOI increases in multiple waves, which start around 7, 16, 27, 40, 50 hpi 

for initial MODIPs of 3 and 30. The amount of infections by these progeny STVs 

produced in co-infected cells increases over time and may show even higher levels if 

the cultivation would have continued after 60 hpi. For a combination of MOI 10-3 and 

MODIP 3, the model predicts that the effective MOI would reach values above 1 at 65 

hpi. Therefore, an increasing number of co-infections would occur leading to apoptosis 

and cell death, which indicates that the protection provided by an initial MODIP of 3 

may be lost after 65 hpi. For an initial MODIP of 30, an effective MOI above 1 would 

be achieved at 118 hpi indicating a prolonged phase of protection from virus-induced 

apoptosis. 

When observing the occurrence of single- and multiple-hit infections in different MOI 

and MODIP conditions, the distribution of scenarios does not show a large variety in 

most cases. When high MOIs and MODIPs are provided, mostly multiple-hit infections, 

which either are mediated by STVs, DIPs or in co-infections by both virus particles, are 

performed (Figure 4.24C-L). When both multiplicities are set to 3, co-infections 

represent the majority of infections. However, the remaining infectious are divided 

between single- and multiple-hit infections by only STVs or DIPs (Figure 4.24G). The 

largest shift between the types of infection can be observed for a combination of MOI 

and MODIP 10-3. Here, the model predicts a slow start with a mixture of STV and DIP 

single-hit infections. Then, as the effective MOI increases, only single-hit followed by 

only multiple-hit infections by STVs occur. During later phases when the MODIP starts 

to increase, co-infections can take place. However, as shown in Figure 4.23B, only 

very few infections occur in this last phase, so that co-infections still represent a 

minority of infection types in this scenario. These co-infections lead to the production 

of progeny DIPs to achieve medium DIP titers in the model simulations, despite the 

non-optimal conditions for DIP replication. However, the surprisingly high DIP titers 
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measured in an experiment using these infection conditions could not be 

reached (Figure B.2) [125]. 

 

Limits of model prediction using infection condition-dependent parameters 

To enable the description of infection dynamics measured in experiments performed 

at highly different MOIs and/or MODIPs, we introduced specific infection condition-

dependent parameters in the models developed in this thesis.  

For the multiscale model of STV infection, we implemented the FIVR, which was 

reduced for MOI 73 compared to the lower MOIs 10-4 and 3 enabling the description of 

observed virus titers. The change in the FIVR was introduced, because the model of 

STV infection calibrated to experiments from MOI 73 infections was not capable to 

capture the results obtained for lower MOIs. By increasing the initial FIVR from 

Par (0) 0.034F   to 
Par (0) 0.26F  , the infectious STV titers in low MOI condition could 

be described. It is likely, that MOI conditions above 73 and below 10-4 could also be 

captured with the corresponding FIVR. However, for MOI values between 3 and 73, 

the correct FIVR is not deducible from the experimental data and model predictions 

may not be reliable. Between these two MOI values, the FIVR is transitioning from a 

high to a low value. We theorized that this is caused by DIP interference and that the 

increased chance of multiple-hit infections, which would lead to STV and DIP co-

infections, is responsible for a reduction in infectious STV release. Therefore, an MOI 

that results in a high number of multiple-hit infections and in which even small fraction 

of DIPs contained in the seed virus are amplified to sufficient levels could determine 

the characteristics of this transition. To define this transition in more detail, follow-up 

experiments are required. However, an adjustment of the FIVR to different infection 

conditions was not required for the STV and DIP co-infection model indicating that this 

effect can be completely described by including DIPs in the model.  

For the model of STV and DIP co-infection, we adjusted the rate of vRNA synthesis, 

which was constant for low MODIP conditions and reduced for higher MODIPs, and 

the specific cell growth rate, which was reduced for high viral loads. The change of the 

specific growth rate was introduced to capture the experimental data and only affects 

infections using high MOIs and/or MODIPs. As all cells are productively infected and 

cease to grow shortly after the start of the cultivation when high MOIs are applied, 
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there is only one scenario where this is relevant, i.e., low MOI and high MODIP 

conditions. This scenario does not strongly affect model prediction, because infection 

is strongly inhibited.  

On the other hand, the adjustment of the vRNA synthesis rate is based on the MODIP-

to-MOI ratio and adapts to the current virus concentrations during infection. However, 

the switch between the regular and a reduced rate, which is determined by the 

parameter 
MODIPF , could not be exactly defined. Based on the performed experiments, 

we could determine that this reduction was prevalent when an MODIP of at least 3 was 

applied, but not when an MODIP of 10-3 was used. Therefore, in the range between 

10-3 and 3, the impact first appears and increases with the used MODIP-to-MOI ratio. 

It is likely that this reduction of vRNA synthesis is related to the occurrence of co-

infections, which implies that DIPs have to be present in a large enough portion of 

infected cells. To confirm the exact value at which this reduction starts to impact virus 

replication, follow-up experiments are required.  

For the prediction shown in Figure 4.21 we used an 
MODIPF  of 10-3 to show a wide 

range of the impact of vRNA synthesis reduction on STV production. A potentially 

higher value of 
MODIPF  would lead to an increase of STV and DIP titers in very low 

MOIs and MODIPs between 10-3 and 3. This would, however, not affect the predicted 

MODIO-to-MOI ratio of 104:1 for potent STV inhibition, but imply that for successful 

STV suppression MODIPs below 3 may not be sufficient. DIP production would also 

be affected for infection conditions in the specified range if the value of 
MODIPF  is 

increased. However, the maximum DIP titers achieved are not affected by this change. 

 

Summary 

We have developed two mathematical multiscale models that capture a wide range of 

experimental data. These models enabled the prediction of IAV infection dynamics and 

the analysis of how these are impacted by the amount of initially provided virus 

particles. We employed these models to estimate the dynamics of the effective MOI 

and MODIP, the distribution of single- and multiple-hit infections and the production of 

progeny STVs and DIPs. Furthermore, we predicted that a ratio of DIPs to STVs of at 

least 104:1 is required for the potent inhibition of IAV infection. Additionally, model 
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predictions show that low initial STV and DIP concentrations provided at roughly 

equimolar levels are preferable for DIP production. Lastly, we observed the importance 

of seed virus quality and the impact of de novo generation for infection, which is 

relevant for experimental set-up and vaccine production. An important next step to 

enable the prediction of in vivo infection dynamics is the implementation of an immune 

response. Furthermore, virus spreading in tissues on a 2D or 3D level should be 

considered. However, for a reliable model calibration, experiments quantifying the 

immune response and the spread of infections in tissues using relevant infection 

scenarios need to be performed.  
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5. Conclusion 

 

The general target of this thesis was the development of a mathematical model of STV 

infection and DIP replication at the intracellular and cell population level that explicitly 

considers the initial MOI and MODIP conditions. These multiplicities strongly influence 

infection outcomes and understanding their impact is a key factor to uncover virus-host 

interactions and the dynamics of IAV infection as well as mechanisms of DIP 

interference. With the models developed in this thesis, we explored various 

mechanisms of viral RNA regulation to capture a wide range of experimental data 

closely. Furthermore, we used these models to predict how infection dynamics are 

affected by varying amounts of STV and DIP input and the optimal MOI-to-MODIP ratio 

to limit infection spread. The co-infection model is well calibrated to optimize cell 

culture-based DIP production and provides a solid basis for the analysis of DIP 

application strategies for prophylaxis and treatment of IAV infections. 

 

Multiscale model of STV infection 

With the aim to capture IAV infection dynamics on the intracellular and cell population 

level measured simultaneously in a high MOI experiment, we employed a previously 

published multiscale model of infection. However, to capture the observed dynamics 

fully, a model extension was required. By considering a logistic function for the 

description of infected cell apoptosis, the transition of cells to an apoptotic state could 

be captured closely. Additionally, we analyzed the impact of a regulatory feedback on 

vmRNA production mediated by RdRp. Model fitting results comparing this hypothesis 

with an implementation without this feedback suggest that its inclusion is favorable. 

After applying these changes, the model could capture infection dynamics observed in 

high MOI experiments closely and was capable to describe both infectious and non-

infectious virus titers.  

Then, we challenged the model with virus titer measurements obtained from 

experiments using lower MOIs and model simulations could not describe the dynamics 

and magnitude of virus production. Here, we identified the FIVR as a critical parameter. 

While its value was estimated to be very low for the high MOI experiment, the 
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application of lower MOIs resulted in an increased production of infectious STVs. 

Therefore, we increased its value, which enabled the successful description of virus 

titers in the other conditions. This indicates that for low MOI infections a significantly 

larger portion of produced STVs is infectious. A likely cause for this difference is the 

effect of DIPs during virus replication. In high MOI conditions, all cells are infected by 

multiple virus particles, which strongly increases the impact of DIP interference. At an 

intermediate MOI of 3, such a strong reduction of virus titers could not be observed. 

This suggests that there might be a balance between single- and multiple-hit infections 

at which infectious virus particle production is not affected. 

 

Multiscale model of STV and DIP co-infection 

In the second part of this work, we based our modeling efforts on experimental data 

specifically tailored to identify the interactions between STVs and DIPs during IAV 

infection. Therefore, 12 different MOI and MODIP conditions were used for infection of 

MDCKsus cell cultures, which resulted in a large set of observed infection dynamics. 

To implement the impact of DIPs on STV infection, we expanded our previously 

developed multiscale model to consider DIP replication and propagation. To that end, 

this model introduces an age-segregated population of cells co-infected by STVs and 

DIPs, which also considers the dynamics of competition between the two virus particles 

during intracellular replication. As the initial implementation of this model did not 

capture all observed infection conditions with a single set of parameters, we extended 

the model by considering additional mechanisms of regulation that could be identified 

in the experimental data. To that end, the regulation of vRNA and vmRNA represented 

crucial processes which were adjusted in the model to enable a close description of 

intracellular infection dynamics. In particular, the implementation of an MODIP-to-MOI 

ratio-dependent vRNA synthesis rate was required to capture all conditions 

simultaneously. This dependence on the multiplicity ratio implies that the balance 

between the initially provided STVs and DIPs affects intracellular replication. However, 

this effect is not necessarily induced during vRNA synthesis and could be related to 

other factors, such as anti-proliferative or cytopathic effects. A further elucidation of 

such mechanisms cannot be achieved by mathematical modeling, but requires 

biological experiments exploring specific details of virus co-infections. 
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Model fitting suggest that the DI genomes provided by DI244 replicate 30% faster than 

their FL counterparts. Previously, higher replication advantages were assumed for 

DIPs due to the large differences in genome segment length. However, very high 

advantages would lead to a strong imbalance towards defective genomes during co-

infection, which would reduce overall replication and propagation affecting DIPs 

themselves. DIPs that were shown to accumulate successfully to high levels during 

virus infections are more likely to have achieved a balance with the STV supporting 

moderate advantages. Artificially created DIPs may provide higher replication 

advantages, but due to an excessive restriction of virus replication, they could prevent 

their own propagation. This could reduce their overall therapeutic potential, because 

the amplification of the defective genomes, which is an important part of antiviral DIP 

activity, could be reduced severely. However, the optimal strategy for DIP application 

is still a topic of research and different types of DIPs need to be considered.  

 

Prediction of infections in different MOI and MODIP conditions 

We applied the multiscale model of STV infection to predict the dynamics of the 

effective MOI during the course of an infection in different conditions. Model simulation 

results show that low MOI infections progress in multiple waves and the cells are 

infected at MOIs ranging over 14 orders of magnitude. This suggests that during later 

stages of infection most cells are infected with high MOIs, even if the infection itself is 

initiated with few virus particles. Furthermore, it enables the prediction of the 

distribution of single- and multiple-hit infections over the course of a complete cell 

culture infection. This shows that when infecting with a low MOI, multiple-hit infections 

only become relevant during later stages and the initial infection activity is driven by 

single-hit infections. Additionally, the origin of the infecting virus particles is different 

for low and high MOI conditions. In higher MOI conditions, cells are infected exclusively 

by virions from the seed virus. In lower MOI conditions, progeny virus particles mediate 

most infections. This has interesting implications for vaccine production in regards to 

the necessity of the generation of clean seed viruses or if the de novo generation of 

DIPs affects virus yields.  

In order to study the impact of different MOI and MODIP conditions, we simulated a 

wide range of multiplicity combinations to study the optimal conditions to reduce STV 
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propagation and to improve DIP production. The best conditions to generate DIPs in 

co-infections were determined to be roughly equimolar concentrations of STVs and 

DIPs, if multiplicities above 10-2 were used. Furthermore, we studied the impact of the 

replication advantage in co-infections and found that it mostly affects DIP production, 

which can be improved using an optimal advantage. However, when the advantage is 

increased further, DIP production is reduced. Model simulations suggest that to 

interfere severely with STV production, the ratio between STVs and DIPs is the critical 

factor rather than the absolute number of DIPs. An MODIP-to-MOI ratio of 104:1 was 

predicted to induce a reduction of STV titers by four logs when applying DI244. Taken 

together, our model predictions show how the conditions for cell infections change 

dynamically over time and the models can be used to estimate the DIP input required 

for antiviral application. 

 

Summary 

We have developed two mathematical multiscale models of IAV infection that consider 

the initial MOI and MODIP conditions and their dynamics during infection. These 

models provide insights into virus replication and propagation as well as how they are 

impacted by varying STV and DIP inputs. In contrast to previous models of virus 

infection, the models presented here capture a wide range of data measured on the 

intracellular and cell population level from multiple experiments performed in different 

conditions using only a single set of parameters. This enabled a robust prediction of 

not experimentally identifiable infection mechanisms and the system dynamics in other 

conditions. Model simulations predict how different MOI conditions affect the origin and 

number of virions infecting cells at different times after infection of a cell culture. 

Additionally, the co-infection model predicts the MODIP-to-MOI ratio required for 

significant IAV suppression that could be applied for antiviral therapy. Taken together, 

the models presented here support a comprehensive understanding of IAV infection 

as well as the interactions between STVs and DIPs during co-infection providing a solid 

platform for the optimization of vaccine manufacturing, DIP production, and DIP 

application for therapeutic use. 
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6. Outlook 

 

The mathematical multiscale models developed in this thesis closely describe a wide 

range of measurements obtained from in vitro experiments performed in highly 

different infection conditions. We focused on identifying a single set of parameters that 

is capable to capture all conditions simultaneously supporting the predictive power of 

these models. Thus, we could identify the impact of the infection conditions on model 

parameters and overall infection dynamics. Going forward, we think it is essential to 

develop models that can describe the effects of different conditions on a system to 

represent its characteristics accurately. Otherwise, only a snapshot of a system can 

be captured and crucial properties may be missed, e.g., due to artifacts induced for 

individual conditions. The ability to create such condition-sensitive models relies on 

data availability, which is quite challenging for in vivo infections compared to in vitro 

experiments. However, models describing in vivo infection dynamics would benefit 

from the calibration of uniform parameter sets for different conditions as it could 

improve model analysis and prediction. 

Applying the multiscale models developed here to in vivo infections could show great 

promise for the description of virus propagation in tissues or even animals and humans. 

To that end, an expansion of the models towards the second or third dimension would 

be required. Furthermore, tissue cells do not correspond to a well-mixed system, but 

are arranged in specific patterns and might be covered by mucosa. These differences 

have to be considered for modeling of such systems. Moreover, high-resolution data 

for intracellular dynamics during in vivo infections is, unfortunately, not readily 

available. This impedes a calibration of detailed virus infection models describing in 

vivo systems. Additionally, the immune response of the host should be considered in 

such scenarios as it plays a crucial role during infections. Our multiscale models were 

calibrated using data from infections of MDCK cells, which produce a myxovirus 

resistance protein 1 in response to an infection that does not shows an activity against 

human IAV due to its canine origin. To inform the model regarding processes mediated 

by the immune system, a different cell line, e.g., A549 cells of human origin, might be 

suited better to provide detailed experimental data. Furthermore, the immune response 
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to DIP infection has been shown as an important factor for the antiviral properties of 

DIPs. Therefore, to describe their therapeutic effects in animals or humans accurately, 

the incorporation of the immune response to DIP infection is required. 

Another potential application for our multiscale models is the combination with 

epidemiological models that describe between-host transmission of virus particles. 

Such overarching models could account for the competition and spreading of different 

virus strains based on the properties of their intracellular replication. Additionally, they 

could be employed to estimate the impact of specific mutations, which result in altered 

virus protein functionality, on virus competition and their potential to induce dangerous 

epi- and pandemics. Furthermore, such models could provide insights regarding the 

effect of therapeutic interventions in a population, e.g., the treatment of certain groups 

of people with larger social circles or a higher risk for severe outcomes, and provide 

support for the optimal distribution of antivirals to combat infection spread. 

The description of the intracellular level of virus replication could benefit from 

incorporating experimental data describing the dynamics of virus proteins during 

infection. Especially during STV and DIP co-infection, the limitation of specific viral 

proteins was proposed to impact interference significantly. Additionally, DIPs can have 

defects on different genome segments, which introduces various ways the viral protein 

balance can be affected. Furthermore, viral protein data may support the evaluation of 

semi-infectious virus particles that contain less than the full eight genome segments 

and cannot provide the complete set of required proteins. The impact of such particles 

is currently not well understood and could be investigated by mathematical modeling. 

Another aspect of virus infection is the impact of host cell factors, which may play a 

large role for virus production. This is especially relevant for the engineering of cell 

lines for vaccine production. Modeling could support the design of such cells by 

predicting the importance of different factors. However, the availability of experimental 

data regarding relevant host cell factors during IAV infection is still a bottleneck that 

needs to be considered for such a model extension. 

The multiscale model of STV and DIP co-infection considers changing virus 

concentrations during an infection, which affect the intracellular dynamics of cells 

infected at different time points. This is especially relevant for DIP interference, 

because the number of infecting STVs and DIPs determines the balance between the 
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accumulation of functional and defective genome segments. Additionally, for the 

description of a continuous IAV production set-up, in which virus titers generally show 

oscillations, such an implementation is necessary. However, by considering different 

MOIs and MODIPs on the intracellular level of infection, the computational burden is 

increased quite substantially and parameter estimation requires more resources. For 

future applications, a strategy to reduce these requirements would be beneficial. A 

potential approach would be the pre-simulation of intracellular infection dynamics for 

different MOI and MODIP conditions. However, this would not benefit testing different 

parameter sets. Furthermore, the inherent heterogeneity observed in IAV infections 

could also be considered in the model by transitioning to a stochastic implementation. 

However, to inform such a stochastic model, specific single-cell experiments observing 

intracellular dynamics in individual cells would be required. Additionally, the 

consideration of individual cell infection dynamics in such a large system consisting of 

millions of cells would again lead to large computational efforts. A potential solution to 

that problem is the application of a hybrid simulation approach, which uses a stochastic 

implementation when molecule numbers are low but can switch to a deterministic 

representation when molecule numbers increase above a certain threshold. Overall, 

the development of potentially more efficient simulation approaches and powerful 

computational hardware may provide a large boost to the ability to model complex 

systems in the future. This could support the solution of the aforementioned issues and 

enable detailed infection models that consider stochastic effects and the highly 

dynamic nature of virus infections. 

As proven in the past two years in response to the newly emerged SARS-CoV2, 

mathematical modeling can greatly benefit the societal response to a pandemic. 

Following the current trajectory of global events, such undertakings may become highly 

relevant in regards to other viruses and especially influenza virus in the near future. 

Therefore, it is of utmost importance to further develop and improve our current models 

and understanding of virus infection to prepare us for the challenges we are facing. 
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Appendix A 

Model of STV infection 

 

Here, we report the initial conditions and model parameters employed to simulate the 

multiscale model of STV infection. Furthermore, the correlation between the decrease 

of the FIVR and the accumulation of DIPs in an infection performed using an MOI of 3 

are presented.  

 

Table A.1.: Initial conditions for the multiscale model of STV infection. 

MOI condition Figure Sub model 
Non-zero initial 

conditions 

MOI 73 

Figure 4.4, 4.5, 

4.6, 4.7, 

4.18 (dotted) 

intracellular model 
 Ex 0 73 virionsV   

2

Par (0) 3.4 10F    

reduced intracellular 

model 

 Cyt 0 297.84 moleculesVp   

2

Par (0) 3.4 10F    

extracellular model 

  50 4.24 10  cells / mLT  

  4

A 0 2.63 10  cells / mLT  

  50 1.75 10  cells / mLI  

  3

A 0 3.53 10  cells / mLI  

  70 3.1 10  virions / mLV    
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MOI condition Figure Sub model 
Non-zero initial 

conditions 

MOI 3 

Fig 4.8A-C 

(dashed), 

4.18 (dash-

dotted) 

intracellular model 
 Ex 0 3 virionsV   

Par (0) 0.26F   

reduced intracellular 

model 

 Cyt 0 12.24 moleculesVp   

Par (0) 0.26F   

extracellular model 

  50 5.99 10  cells / mLT    

 A 0 0 cells / mLT   

 0 0 cells / mLI   

 A 0 0 cells / mLI   

  60 1.8 10  virions / mLV    

MOI 10-4 

Fig 4.8D-F 

(dashed), 

4.18 (solid) 

intracellular model 
 Ex 0 1 virionV   

Par (0) 0.26F   

reduced intracellular 

model 

 Cyt 0 8 moleculesVp   

Par (0) 0.26F   

extracellular model   50 5.99 10  cells / mLT    

 A 0 0 cells / mLT   

 0 0 cells / mLI   

 A 0 0 cells / mLI   

 0 59.9 virions / mLV   
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Table A.2.: Parameters of the intracellular model of STV infection. 

Parameter Value Unit Source 

Tot

HiB  150 sites [269] 
Tot

LoB  1000 sites [269] 

RibD  160 nucleotides [288] 

FusF  0.51  [242] 

Spl7F  0.02  based on ratio of M2 to M1 

Spl8F  0.125  [289] 
Att

Hik  8.09 × 10-2 site-1·h-1 adjusted to data in reference [269] 
Att

Lok  4.55 × 10-4 site-1·h-1 adjusted to data in reference [269] 
Bind

M 1k  1.09 × 10-6 moluecules-1·h-1 model fit in Figure 4.7 
Bind

NPk  3.01 × 10-4 moluecules-1·h-1 [242] 
Bind

RdRpk  1 moluecules-1·h-1 [242] 

Deg

Mk  0.63 h-1 model fit in Figure 4.7 
Deg

Rk  36.36 h-1 [242] 
Deg

Rnpk  0.09 h-1 [242] 

Deg

RRdRpk  4.25 h-1 [242] 

Enk  4.8 h-1 [242] 
Eq

Hik  1.13 × 10-2 sites-1 [269] 
Eq

Lok  8.33 × 10-5 sites-1 [269] 
Fusk  0.31 h-1 model fit in Figure 4.7 
Impk  6 h-1 [48] 

RK  1.1 × 107 molecules model fit in Figure 4.7 
RdRpk  1 moluecules-2·h-1 assuming rapid complex formation 
Relk  1270 virions·h-1 model fit in Figure 4.7 
Rel

Redk
 5.17 × 10-2 h-1 model fit in Figure 4.7 

Syn

Ck  0.9 h-1 model fit in Figure 4.7 
Syn

Mk  1.73 × 105 nucleotides·h-1 model fit in Figure 4.7 
Syn

Pk  64800 nucleotides·h-1 [290] 
Syn

Vk  8.33 h-1 model fit in Figure 4.7 

RelV
K  1250 virions model fit in Figure 4.7 

1L  2320 nucleotides [24] 

2L  2320 nucleotides [24] 

3L  2211 nucleotides [24] 

4L  1757 nucleotides [24] 
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Parameter Value Unit Source 

5L  1540 nucleotides [24] 

6L  1392 nucleotides [24] 

7L  1005 nucleotides [24] 

8L  868 nucleotides [24] 

VL  1700 nucleotides based on reference [24] 

RdRpPN  45 molecules·virion-1 [24] 

HAPN  500 molecules·virion-1 [24] 

NPPN  1000 molecules·virion-1 [24] 

NAPN  100 molecules·virion-1 [24] 

M 1PN  3000 molecules·virion-1 [24] 

M 2PN  40 molecules·virion-1 [24] 

NEPPN  165 molecules·virion-1 [24] 
Nuc

M 1N  200 nucleotides [291] 
Nuc

NEPN  1700 nucleotides adjusted to data in reference [292] 
Nuc

NPN  24 nucleotides [292] 
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Table A.3.: Parameters of the cell population model of STV infection. 

Parameter Value Unit Source 

Max  0.03 h-1 [231] 
Tot

HiB  150 sites·cell-1 [269] 
Tot

LoB  1000 sites·cell-1 [269] 

InfF  1 cells·virion-1 [38] 

IK
 0.11 h-1 model fit in Figure 4.7 

Apo

Tk  6.97 × 10-3 h-1 model fit in Figure 4.7 
Att

c,Hik  3.32 × 10-8 mL·sites-1·h-1 adjusted to data in reference [269] 

Att

c,Lok  1.85 × 10-10 mL·sites-1·h-1 adjusted to data in reference [269] 

Deg

Vk  1.15 × 10-2 h-1 model fit in Figure 4.7 
Enk  4.8 h-1 [242] 
Eq

c,Hik  4.48 × 10-9 mL·sites-1 [269] 

Eq

c,Lok  3.32 × 10-11 mL·sites-1 [269] 

Fusk  0.31 h-1 model fit in Figure 4.7 
Lysk  9.34 × 10-3 h-1 model fit in Figure 4.7 

MaxT  1 × 106 cells·mL-1 
maximum cell concentration 

observed in control flasks 

Apo  19.8 h model fit in Figure 4.7 

Apov  0.76 h-1 model fit in Figure 4.7 
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Figure A.1.: Correlation of the accumulation of DIPs and the reduction of 

infectious virus particles released. (A) Percentage of infectious virus particles 

released compared to the total number of virions released based on TCID50 and HA 

assay results. Time course data of three individual experiments for an infection at 

MOI 3 are shown. (B) Samples of one time series (A, circles) were analyzed via 

segment-specific RT-PCR to reveal intracellular accumulation of viral RNAs. FL and 

DI RNAs are depicted for segment 1. Segment 5 FL RNA is shown as a control. Figure 

taken from Rüdiger et al. [181]. 
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Appendix B 

STV and DIP co-infection model 

 

Here we report all model parameters used to simulate the multiscale model of STV and 

DIP co-infection. Furthermore, the calculated parameter sensitivities as well as the AIC 

results for a comparison of the basic and extended co-infection model are presented. 

Lastly, the full model fitting results for all experimental data measured in 12 different 

infection conditions are provided.  

 

B.1 Model parameters and model analysis 

 

Table B.1.: Parameters of the intracellular STV and DIP co-infection model. 

Parameter Value Unit Source 

Tot

HiB  150 sites [269] 
Tot

LoB  1000 sites [269] 

RibD  160 nucleotides [288] 

AdvF
 0.32  model fit in Figures B.2–B.9 

FusF  0.51  [242] 

MF
 

0.12  model fit in Figures B.2–B.9 

MODIPF
 

1.1 × 10-3 virion·cell-1 
vRNA synthesis reduction only 

observed for MODIPs > 10-3 

Spl7F  0.02  [38] 

Spl8F  0.125  [289] 
Att

Hik  8.09 × 10-2 site-1·h-1 [38] 
Att

Lok  4.55 × 10-4 site-1·h-1 [38] 
Bind

M 1k  1 × 10-7 molecules-1·h-1 model fit in Figures B.2–B.9 
Bind

NPk  3.01 × 10-4 molecules-1·h-1 [242] 
Bind

RdRpk  1 molecules-1·h-1 [242] 
Cplxk  1 molecules-7·h-1 [257] 
Deg

Mk  0.33 h-1 [242] 
Deg

Rk  36.36 h-1 [242] 

 



Appendix B 170 

 

Parameter Value Unit Source 

Deg

Rnpk  0.09 h-1 [242] 
Deg

RRdRpk  4.25 h-1 [242] 
Enk  4.8 h-1 [242] 
Eq

Hik  1.13 × 10-2 sites-1 [269] 
Eq

Lok  8.33 × 10-5 sites-1 [269] 
Fusk  58.3 h-1 model fit in Figures B.2–B.9 
Impk  6 h-1 [48] 

RK  7.8 × 103 molecules model fit in Figures B.2–B.9 
RdRpk  1 molecules-2·h-1 [38] 

Relk  6.15 × 103 virions·h-1 model fit in Figures B.2–B.9 
Rel

Redk
 4.1 × 10-4 h-1 model fit in Figures B.2–B.9 

Syn

Ck  0.9 h-1 [181] 
Syn

Mk  1.73 × 105 nucleotides·h-1 [181] 
Syn

Pk  64800 nucleotides·h-1 [290] 

VK
 

20.1 h-1 model fit in Figures B.2–B.9 

RelV
K  1.8 virions model fit in Figures B.2–B.9 

1L  2320 nucleotides [24] 

2L  2320 nucleotides [24] 

3L  2211 nucleotides [24] 

4L  1757 nucleotides [24] 

5L  1540 nucleotides [24] 

6L  1392 nucleotides [24] 

7L  1005 nucleotides [24] 

8L  868 nucleotides [24] 

9L  373 nucleotides 
extrapolated from DI segment 

vRNA and cRNA length  

V,1L  2341 nucleotides [24] 

V,2L  2341 nucleotides [24] 

V,3L  2233 nucleotides [24] 

V,4L  1778 nucleotides [24] 

V,5L  1565 nucleotides [24] 

V,6L  1413 nucleotides [24] 

V,7L  1027 nucleotides [24] 

V,8L  890 nucleotides [24] 

V,9L  395 nucleotides [287] 
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Parameter Value Unit Source 

HAPN  500 molecules·virion-1 [24] 

NAPN  100 molecules·virion-1 [24] 

M 1PN  3000 molecules·virion-1 [24] 

M 2PN  40 molecules·virion-1 [24] 
Nuc

M 1N  200 nucleotides [291] 
Nuc

NPN  24 nucleotides [292] 

1v
 

5.2  model fit in Figures B.2–B.9 

2v
 

0.1  model fit in Figures B.2–B.9 

 

Table B.2.: Parameters of the cell population model of STV and DIP co-infection. 

Parameter Value Unit Source 

Max  0.03 h-1 [231] 
Tot

HiB  150 sites·cell-1 [269] 
Tot

LoB  1000 sites·cell-1 [269] 

InfF  1 cells·virion-1 [38] 

F  0.63 - model fit in Figures B.2–B.9 

IK
 0.27 h-1 model fit in Figures B.2–B.9 

Apo

Tk  1.2 × 10-2 h-1 model fit in Figures B.2–B.9 
Att

c,Hik  3.32 × 10-8 mL·sites-1·h-1 [38] 
Att

c,Lok  1.85 × 10-10 mL·sites-1·h-1 [38] 

Deg

Vk  0.2 h-1 
adjusted to infectious titer reduction 

observed in experiments 
Enk  4.8 h-1 [242] 
Eq

c,Hik  4.48 × 10-9 mL·sites-1 [269] 
Eq

c,Lok  3.32 × 10-11 mL·sites-1 [269] 
Fusk  58.3 h-1 model fit in Figures B.2–B.9 
Lysk  0.16 h-1 model fit in Figures B.2–B.9 

MaxT  1 × 107 cells·mL-1 
maximum cell concentration  

observed in control flasks 

Apo  6.65 h model fit in Figures B.2–B.9 

Apov  1.7 h-1 
fixed to value inducing  
a normal distribution 
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Table B.3.: Sensitivity of model parameters on the intracellular and cell population 

level of the STV and DIP co-infection model. 

Parameter 
Local sensitivity (%), 

intracellular model output 
Local sensitivity (%), 

cell population model output 
Tot

HiB  3.0 × 10-6 2.4 × 10-6 
Tot

LoB  1.0 × 10-7 1.2 × 10-7 

RibD  1.5 × 10-4 1.0 × 10-5 

AdvF
 2.5 × 10-4 1.3 × 10-4 

FusF  3.5 × 10-5 1.9 × 10-5 

MF
 

2.3 × 10-4 1.0 × 10-5 

Spl7F  2.1 × 10-7 6.4 × 10-9 

Spl8F  2.5 × 10-6 9.2 × 10-7 
Att

Hik  1.4 × 10-7 6.3 × 10-8 
Att

Lok  2.2 × 10-8 2.5 × 10-8 
Bind

M 1k  7.4 × 10-5 1.5 × 10-5 
Bind

NPk  6.0 × 10-6 2.8 × 10-6 
Bind

RdRpk  1.4 × 10-7 6.8 × 10-8 
Cplxk  2.3 × 10-11 2.7 × 10-12 
Deg

Mk  2.0 × 10-5 1.1 × 10-6 
Deg

Rk  1.7 × 10-7 8.3 × 10-8 
Deg

Rnpk  8.4 × 10-5 1.9 × 10-5 
Deg

RRdRpk  1.4 × 10-5 2.3 × 10-6 
Enk  4.9 × 10-6 3.9 × 10-6 
Eq

Hik  3.3 × 10-7 1.6 × 10-7 
Eq

Lok  1.9 × 10-8 2.2 × 10-8 
Fusk  1.7 × 10-7 3.2 × 10-7 
Impk  5.8 × 10-7 2.8 × 10-7 

RK  5.0 × 10-5 5.5 × 10-6 
RdRpk  3.9 × 10-11 2.2 × 10-11 

Relk  1.4 × 10-4 2.4 × 10-4 
Rel

Redk
 1.8 × 10-9 1.2 × 10-9 

Syn

Ck  9.9 × 10-4 3.5 × 10-4 
Syn

Mk  9.3 × 10-5 1.0 × 10-5 
Syn

Pk  1.5 × 10-4 1.0 × 10-5 

VK
 

2.9 × 10-3 1.0 × 10-3 

RelV
K  2.9 × 10-9 1.0 × 10-9 
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Parameter 
Local sensitivity (%), 

intracellular model output 
Local sensitivity (%), 

cell population model output 

1L  2.7 × 10-4 9.9 × 10-6 

2L  9.5 × 10-5 2.2 × 10-6 

3L  7.9 × 10-11 3.4 × 10-11 

4L  1.6 × 10-11 4.3 × 10-12 

5L  9.7 × 10-4 1.9 × 10-5 

6L  2.0 × 10-11 4.9 × 10-12 

7L  4.9 × 10-4 1.5 × 10-5 

8L  2.5 × 10-6 9.1 × 10-7 

9L  2.9 × 10-5 1.1 × 10-11 

V,1L  1.6 × 10-5 2.6 × 10-7 

V,2L  2.3 × 10-5 3.2 × 10-7 

V,3L  2.1 × 10-5 2.9 × 10-7 

V,4L  1.4 × 10-5 1.9 × 10-7 

V,5L  1.1 × 10-5 1.4 × 10-7 

V,6L  8.6 × 10-6 1.2 × 10-7 

V,7L  4.5 × 10-6 6.2 × 10-8 

V,8L  3.4 × 10-6 4.7 × 10-8 

V,9L  1.1 × 10-6 4.1 × 10-9 

HAPN  1.5 × 10-11 3.7 × 10-12 

NAPN  1.5 × 10-11 4.0 × 10-12 

M 1PN  2.3 × 10-4 3.8 × 10-6 

M 2PN  2.7 × 10-11 1.2 × 10-11 
Nuc

M 1N  5.4 × 10-7 3.5 × 10-10 
Nuc

NPN  8.2 × 10-4 1.0 × 10-5 

1v
 

2.1 × 10-3 8.1 × 10-4 

2v
 

1.6 × 10-3 6.8 × 10-4 

Max
 8.2 × 10-6 1.5 × 10-5 

InfF
 3.3 × 10-4 1.7 × 10-4 

F  1.6 × 10-6 4.4 × 10-6 

IK
 1.0 × 10-3 3.4 × 10-4 

Apo

Tk
 3.0 × 10-6 2.0 × 10-5 

Att

c,Hik
 2.6 × 10-6 2.3 × 10-6 
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Parameter 
Local sensitivity (%), 

intracellular model output 
Local sensitivity (%), 

cell population model output 
Att

c,Lok
 3.8 × 10-9 3.2 × 10-9 

Deg

Vk
 4.1 × 10-6 2.9 × 10-5 

Eq

c,Hik
 7.7 × 10-7 9.1 × 10-7 

Eq

c,Lok
 9.3 × 10-10 7.8 × 10-10 

Lysk  4.1 × 10-5 4.5 × 10-5 

MaxT
 1.2 × 10-6 1.3 × 10-6 

Apo
 1.6 × 10-3 8.5 × 10-4 

Apov
 5.0 × 10-7 1.0 × 10-6 

 

Table B.4.: Evaluation of model fits performed for the basic and the extended STV 

and DIP co-infection model for individual infection conditions. 

Condition SSR AIC 

MOI MODIP 
Basic 
model 

Extended 
model 

Basic 
model 

Extended 
model 

10-3 0 2.0 × 101 6.6 × 100 11.8 -90.3 

10-3 10-3 2.6 × 101 1.4 × 101 -21.3 -100.9 

10-3 3 1.6 × 101 2.1 × 101 -282.8 -231.1 

10-3 30 3.4 × 101 2.9 × 102 -142.9 236.8 

3 0 1.6 × 101 4.5 × 100 18.2 -85.4 

3 10-3 6.0 × 101 8.5 × 101 96.0 129.7 

3 3 1.1 × 102 3.2 × 101 155.5 15.2 

3 30 4.1 × 102 1.4 × 102 295.1 172.8 

30 0 1.7 × 101 8.7 × 100 20.6 -35.7 

30 10-3 1.9 × 101 1.9 × 102 -4.2 214.6 

30 3 2.4 × 101 1.3 × 101 -12.8 -80.4 

30 30 7.3 × 101 3.7 × 101 106.1 29.6 

 

SSR: sum of squared residuals (errors of each variable were normalized to the 

          respective maximum measurement value); 

AIC:   Akaike information criterion 
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Figure B.1.: Model extension significantly improves description of experimental 

measurements. The sum of squared residuals for each individual measured property 

is depicted. Logarithmic errors of each variable were normalized to the respective 

maximum measurement value. The (A) basic model and the (B) extended model were 

calibrated to a wide range of experimental data. Measured properties include vRNA 

and vmRNA of FL segment 1, DI segment 1 and S5, the concentration of uninfected, 

infected and apoptotic cells, total and STV titers as well as DIP titers. Figure taken from 

Rüdiger and Pelz et al. [125]. 
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B.2 Complete model fitting results 

 

Figure B.2.: Experimental data and model simulations for virus titers. Model fits 

to measurements of the infectious STV titer, the total amount of STVs and the total 

amount of DIPs for MDCKsus infections with MOI 10-3, 3 and 30 using different 

MODIPs. Figure taken from Rüdiger and Pelz et al. [125]. 
 

 

Figure B.3.: Experimental data and model simulations for cell populations. Model 

fits to measurements of the fraction of uninfected, uninfected and apoptotic, infected, 

infected and apoptotic cells for MDCKsus infections with MOI 10-3, 3 and 30 using 

different MODIPs. Figure taken from Rüdiger and Pelz et al. [125]. 
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Figure B.4.: Experimental data and model simulations for FL vmRNA dynamics. 

Model fits to measurements of the intracellular levels of FL vmRNA for MDCKsus 

infections with MOI 10-3, 3 and 30 using different MODIPs. Figure taken from Rüdiger 

and Pelz et al. [125]. 

 

 

Figure B.5.: Experimental data and model simulations for DI vmRNA dynamics. 

Model fits to measurements of the intracellular levels of DI vmRNA for MDCKsus 

infections with MOI 10-3, 3 and 30 using different MODIPs. Figure taken from Rüdiger 

and Pelz et al. [125]. 
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Figure B.6.: Experimental data and model simulations for segment 5 vmRNA 

dynamics. Model fits to measurements of the intracellular levels of segment 5 vmRNA 

for MDCKsus infections with MOI 10-3, 3 and 30 using different MODIPs. Figure taken 

from Rüdiger and Pelz et al. [125]. 

 

 

Figure B.7.: Experimental data and model simulations for FL vRNA dynamics. 

Model fits to measurements of the intracellular levels of FL vRNA for MDCKsus 

infections with MOI 10-3, 3 and 30 using different MODIPs. Figure taken from Rüdiger 

and Pelz et al. [125]. 
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Figure B.8.: Experimental data and model simulations for DI vRNA dynamics. 

Model fits to measurements of the intracellular levels of DI vRNA for MDCKsus 

infections with MOI 10-3, 3 and 30 using different MODIPs. Figure taken from Rüdiger 

and Pelz et al. [125]. 

 

 

Figure B.9.: Experimental data and model simulations for segment 5 vRNA 

dynamics. Model fits to measurements of the intracellular levels of segment 5 vRNA 

for MDCKsus infections with MOI 10-3, 3 and 30 using different MODIPs. Figure taken 

from Rüdiger and Pelz et al. [125]. 
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