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General Introduction 

Wheat (T. aestivum L.) is one of the most important crops, providing 20% of the total calories for the 

world’s population (Bushuk 1997; Kumar et al. 2011). In contrast to maize and rice, wheat provides 

higher protein content and serves as the major ingredient producing a wide variety of food such as 

bread, biscuit, and cakes (Johnson and Lay 1974). Worldwide wheat production needs to be doubled to 

feed an estimated world population of 9 billion by 2050 (Godfray et al. 2010; Ray et al. 2013). 

Nevertheless, it is becoming increasingly difficult to satisfy this rising global demand because the 

arable land and water are increasingly becoming scarce, average living standards are rising, and 

investments in increasing agricultural productivity are growing slowly (Fischer et al. 2014; Laidig et al. 

2014). Wheat breeding is one viable and sustainable solution to increase grain yield and to improve 

yield stability.  

Classical wheat breeding methods 

Wheat is a self-pollinated plant (Wright 1980). Although major efforts have been put in initiating 

hybrid breeding, most programs are still devoted to inbred line breeding (Kempe and Gils 2011; Mette 

et al. 2015; Whitford et al. 2013). Becker (2011) suggested classifying the available line breeding 

approaches into pedigree and bulk methods. Both methods start with the generation of variation by 

crossing diverse parents. In the pedigree method, selection occurs then within each subsequent 

generation and inferior candidates are discarded. In this approach the relatedness plays an important 

role because breeders are able to trace lines from superior families through pedigree. In contrast, only 

natural selection occurs during early stages using the bulk method until a minimum level of 

homozygosity is reached. Then, high selection intensity is applied to identify superior varieties. Two 

popular modifications of the bulk method have been proposed which are often used in wheat breeding. 

In the single-seed descend method (SSD), the population is not handled as a bulk but F2 plants are 

selfed individually, avoiding presence of closely related sister lines in later stages of selection. The 

SSD method can be implemented in green houses, and allows off-season selection; thus, accelerating 

the breeding cycle by one year for winter wheat (Knott et al. 2008; Malla et al. 2010; Tee and Qualset 

1975). In the double haploid (DH) method, inbred lines are generated in a single step using haploid 
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tissues. The DH method can shorten the breeding cycle by an additional year in comparison to SSD 

(Inagaki et al. 1998; Thomas et al. 2003).  

All breeding methods are implemented applying multi-stage selection. This includes that 

breeding starts with traits exhibiting a high plot-based heritability moving forward to more complex 

traits in later stages of selection (Becker 2011). Moreover, in the course of selection, number of test 

candidates decreases and phenotyping intensity and consequently heritability increases (Fig. 1; He et 

al. 2016b; Longin et al. 2015; Würschum 2012).  

 

Figure 1 Multi-stage selection of line breeding  

Breeding goals for wheat 

There are several traits playing an important role for wheat breeding, which can be classified into: (1) 

yield and yield components, (2) biotic and abiotic stress resistance, and (3) quality traits. 

Corresponding plot-based heritabilities of relevant traits specifically for European wheat populations 

are listed in Table 1. Among the long list of relevant traits, grain yield as well as resistance against 

Fusarium head blight (FHB) and Septoria tritici blotch (STB) are major issues for wheat breeding in 

Central Europe. FHB, caused by Fusarium graminearum, and STB caused by Mycosphaerella 

graminicola entail a reduction of grain yield and quality (Buerstmayr et al. 2009; Miedaner et al. 
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2013). In order to control these diseases, fungicides with similar active ingredients or similar mode of 

action have been widely applied resulting in mutations/selection of pathogens showing resistance 

against fungicides. In this context, breeding for resistance becomes the most sustainable and efficient 

way of control (Miedaner et al. 2013; Mirdita et al. 2015). 

Table 1 Plot-based heritabilites of relevant traits estimated in wheat populations adapted to Europe 

Group  Trait Heritability Literature  

Yield and yield 

components 

Grain yield 0.33 Reif et al. (2011b) 

0.20 Longin et al. (2013) 

0.20 He et al. (2016b) 

Thousand-kernel  

weight 

0.69 Reif et al. (2011a) 

0.62 Liu et al. (2016) 

Biotic and abiotic stress 

resistance 

Fusarium 0.58 Miedaner et al. (2011) 

0.57 Jiang et al. (2015) 

0.30 Mirdita et al. (2015) 

0.37 Miedaner et al. (2001) 

Septoria 0.54 Miedaner et al. (2013) 

0.18 Longin and Würschum (2014) 

0.14 Mirdita et al. (2015) 

Frost tolerance 0.72 Zhao et al. (2013a) 

0.72 Longin et al. (2013) 

Quality traits Protein content 0.58 Reif et al. (2011a) 

0.43 Longin et al. (2013) 

 0.47 Liu et al. (2016) 

Sedimentation 

volume 

0.64 Longin et al. (2013) 

0.89 Reif et al. (2011a) 

 A recent study based on official variety test in Germany revealed a 0.89% increase in grain 

yield (Laidig et al. 2014). This relatively small increase in grain yield would hardly cope with the 
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demand of 100%-110% yield improvement and would not be enough to feed 9 billion people by 2050 

(Fischer et al. 2014; Godfray et al. 2010; Tilman et al. 2011). Hence, the advent of more efficient 

breeding tools is imperative, boosting up the selection gain in wheat.  

 

Figure 2 Principle of marker-assisted selection (MAS) 

Marker-assisted selection 

The rapid advancement in genomics paved the way for marker-assisted selection (MAS). In MAS, 

selection is based on molecular markers which reflect causal genes underlying traits of interest. MAS 

reduces the length of breeding cycles, decreases labor for intensive phenotyping, and potentially 

enhances the selection gain per unit time. Three stages are involved in MAS (Fig. 2): (1) Reliable 

diagnostic markers are identified in genome-wide mapping studies. (2) The identified markers are 

validated and their effects are then estimated. (3) The estimated effects of the diagnostic markers are 

applied using the genotypic profiles of non-phenotyped candidates to estimate their genotypic values. 
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MAS is successfully implemented in wheat breeding programs for traits that are controlled by large 

effect quantitative trait loci (QTL) such as leaf or stripe rust resistance (Helguera et al. 2003; Kumar et 

al. 2010). Nevertheless, the implementation of MAS for traits with a complex genetic architecture such 

as grain yield failed so far. Hence, there is a necessity to search for alternative approaches which allow 

exploiting the genomic toolbox for breeding of complex traits. 

Genomic selection 

Genomic selection (GS) has been proposed to improve the prediction accuracy for complex traits 

which are controlled by many genes each exhibiting a small effect (Meuwissen et al. 2001). In GS, 

many markers are used and their effects are estimated in large training populations. The estimated 

marker effects are then applied to predict the performance of non-phenotyped individuals based on 

their molecular marker profiles. Genomic selection takes advantage of linear mixed models rather than 

regular linear models exploited in MAS. In particular, GS models could be divided into marker-based 

and individual-based models (Gianola and van Kaam 2008; Habier et al. 2011; Hayes et al. 2009a; 

Jiang and Reif 2015; Meuwissen et al. 2001; Whittaker et al. 2000). The most popular approaches of 

marker-based models are RRBLUP (Meuwissen et al. 2001) and Bayesian models (Habier et al. 2011; 

Meuwissen et al. 2001). The unified formula for marker-based models is: 

𝒚 = 𝜇 + 𝑿𝜶 + 𝒆, 

where 𝑦 is the vector of phenotypic records, 𝜇 is a common intercept, 𝛼 is the vector of additive effects 

of markers, 𝑋 is the design matrix for 𝛼, and 𝑒 is the residual term. RRBLUP assumes each marker 

follows an identical normal distribution: 𝛼 ~ 𝑁(0, 𝐼𝜎𝛼
2). Bayesian approaches assumes each maker has 

its own normal distribution: 𝛼𝑗 ~ 𝑁 (0, 𝜎𝛼𝑗
2 ), being 𝑗 the 𝑗th

 marker. With respect to individual-based 

models, GBLUP (Hayes et al. 2009a; VanRaden 2008) and kernel Hilbert space regression (RKHS; 

Gianola and van Kaam 2008) are two prominent approaches. The unified formula for individual-based 

models is: 

𝒚 = 𝜇 + 𝒈 + 𝒆, 

where 𝑔 is the vector of total genotypic values. The basic assumption for 𝑔 is 𝑔 ~ 𝑁(0, 𝐺𝜎𝑔
2) where 𝐺 

refers to the genomic relationship matrix (VanRaden 2008). Habier et al. (2007) has shown that there 
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is a underlying homogeneity that RRBLUP is theoretically equivalent to GBLUP inspecting that in 

RRBLUP 𝑣𝑎𝑟(𝑋𝛼) = 𝑋𝑣𝑎𝑟(𝛼)𝑋𝑇 = 𝑋𝑋𝑇𝑣𝑎𝑟(𝛼) and in GBLUP the G matrix is a scaling pattern of 

𝑋𝑋𝑇. 

 Genomic selection has been evaluated using populations with a maximum of ~400 wheat lines 

adapted to Europe in the context of line breeding (Bentley et al. 2014). The findings revealed that GS 

is a valuable tool to boost selection gain in wheat breeding (Heffner et al. 2010; Longin et al. 2015; 

Zhao et al. 2013b). Evaluating the potential of GS for elite wheat breeding populations including 

thousands of lines were missing. In this context, it is central so study the optimum implementation of 

GS in wheat breeding specifically for each trait, because the genetic architecture is expected to 

strongly impact the prediction accuracy (Daetwyler et al. 2010; Hayes et al. 2010).  

Genetic architecture of grain yield 

Increasing grain yield is primarily concerned by breeders and regarded as the main goal in wheat 

breeding. The genetic architecture of grain yield is expected to be complex with absence of large effect 

QTL (Bordes et al. 2014; Charmet et al. 2014; Snape et al. 2007). Despite this, many studies detected 

QTL individually explaining more than 10% of the total genetic variation (Bogard et al. 2011; Groos 

et al. 2003; Maccaferri et al. 2008; Snape et al. 2007) pointing to the potential use of MAS. These 

findings are astonishing and can be explained most likely by small n (individuals) large p (markers) 

scenarios (Beavis effect) in the context of small-scale populations under consideration in genome-wide 

QTL mapping (Beavis 1994; Beavis 1998; Xu 2003). Nevertheless, presence or absence of reliable 

QTL underlying grain yield has not been examined based on experimental data of large mapping 

populations but is of great importance for the optimum design of genomic-assisted breeding programs.  

 Epistasis refers to interactions between alleles from two or more genetic loci (Carlborg and 

Haley 2004). A first pioneering study based on populations of elite wheat lines adapted to Europe 

revealed presence of digenic epistasis but individual effects explained only a small proportion of the 

genetic variance (Reif et al. 2011b). Nevertheless, the results have to be interpreted with care because 

mapping epistatic effect is even more vulnerable to a small n large p scenario: The number of tests is 
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not a linear but a quadratic function of the number of markers. Therefore, sophisticated strategies are 

required to examine the role of epistasis for grain yield in wheat based on large mapping populations. 

Genetic architecture of resistances to FHB and STB 

FHB infection severely jeopardizes worldwide wheat production (Anderson et al. 2007; Buerstmayr et 

al. 2009; Mirdita et al. 2015; Yang et al. 2005b). Therefore, major efforts have been spent in 

unraveling the genetic basis of resistance to FHB (Löffler et al. 2009; Miedaner et al. 2011; Yang et al. 

2005b). A few major QTL for FHB resistance have been identified in populations derived from 

crosses with exotic donor lines (Buerstmayr et al. 2003; Jia et al. 2005; Rawat et al. 2016; Somers et al. 

2003; Yang et al. 2005a). These major QTL have so far not been used successfully in wheat breeding 

in Central Europe mainly because of a grain yield penalty associated with the resistance alleles. 

Identification of QTL in adapted European wheat germplasm revealed a lack of congruency of QTL 

results across studies (Buerstmayr et al. 2009). This suggests a complex genetic architecture 

underlying FHB resistance requiring large populations for QTL mapping. 

 STB infection caused by Mycosphaerella graminicola has become a disastrous leaf disease in 

Central European winter wheat nowadays (Arraiano and Brown 2006; Ghaffary et al. 2011; Kollers et 

al. 2013). Twenty major resistance loci have been identified and mapped such as Stb2, Stb3 (Adhikari 

et al. 2004) and Stb5 (Arraiano et al. 2001). Most are effective only against virulent genotypes of 

Mycosphaerella graminicola and resistances have been broken through the evolution of pathogen 

virulence (Krenz et al. 2008). Therefore, it is crucial to gain a clear picture of the presence of 

resistance loci which are still effective and thus useful for wheat breeding and production in Central 

Europe.  

Marker imputation for an economic fingerprinting in marker-assisted and genomic selection  

Detection of QTL in MAS as well as GS relies on molecular markers that are tightly linked with any 

relevant casual gene or QTL (Collard and Mackill 2008; Goddard 2009). Nevertheless, fingerprinting 

many genotypes with high-density marker platforms is costly. In order to counter this dilemma, 

genotype imputation technology has emerged facilitating to focus on a limited training population for 

dense genotyping and to predict the marker profiles for the total population (Hickey et al. 2012; Hozé 
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et al. 2013). Imputation approaches are classified into map-dependent and map-independent 

algorithms (Browning and Browning 2007; Howie et al. 2009; Sargolzaei et al. 2011; Stekhoven and 

Bühlmann 2012; Troyanskaya et al. 2001). Map-dependent methods such as Beagle (Browning and 

Browning 2007), FImpute (Sargolzaei et al. 2011), and IMPUTE2 (Howie et al. 2009) necessitate the 

availability of physical or genetic maps. Map-dependent methods are precise because they efficiently 

exploit linkage disequilibrium information among markers. In contrast, map-independent methods are 

grounded on mathematical algorithms (Breiman 2001; Troyanskaya et al. 2001). Thus, information of 

linkage disequilibrium is largely ignored which can introduce bias in imputation. As comprehensive 

physical or genetic maps are for several crops not yet available, map-independent approaches are still 

demanded.  

 The potential and limits of marker imputation based on map-dependent and map-independent 

algorithms for an economic fingerprinting strategy in marker-assisted and genomic selection was not 

studied in wheat. In particular, it is of interest to examine whether prediction accuracies of genomic 

selection can be enhanced if missing values are imputed when merging low- and high-density marker 

data in contrast to a scenario excluding missing marker data. The same holds true for the power of 

genome-wide association mapping where the question arises whether the power can be boosted if 

missing values are imputed. 

Optimum design of a training population in genomic selection 

The size and composition of the training population is an important factor driving the prediction 

accuracy of genomic selection (Habier et al. 2007; Jannink et al. 2010; Pszczola et al. 2012). The most 

economic approach to calibrate genomic selection models is to use a training population consisting of 

individuals that are routinely phenotyped in the course of wheat breeding (Dawson et al. 2013; 

Rutkoski et al. 2015). Nevertheless, breeding populations are selected which could result in a 

reduction in accuracy of genomic selection. The impact of selection on the genetic variation is lower at 

early breeding stages but phenotypic data is often generated in a reduced number of environments, 

entailing low heritability values. In contrast, phenotypic data of breeding population of late selection 

stages rely on many environments resulting in high heritabilities. Nevertheless, these populations are 

highly selected, implying a reduced genetic variation. Thus, there is the need to study sophisticated 
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approaches to compile optimal training populations based on phenotypic data routinely generated in 

breeding programs. 

Prediction accuracy of individual genotypes  

In plant breeding, prediction accuracies of genomic selection are most often estimated for entire 

breeding populations (Mirdita et al. 2015; Philipp et al. 2016; Poland et al. 2012a; Zhao et al. 2012a; 

Zhao et al. 2013b). This is in contrast to animal breeding where prediction accuracies are estimated 

also for individual genotypes, denoted as reliability (Heslot et al. 2015; Pszczola et al. 2012; 

VanRaden et al. 2009). The concept of reliability is based on the assumption that genomic selection 

strongly exploits relatedness between the training and test population for prediction (Habier et al. 2007; 

Habier et al. 2010; Jannink et al. 2010). Thus, it is relevant whether selection candidates are well 

represented by the training population or not. The reliability is estimated purely based on genotypic 

data and its application in plant breeding possesses the potential to speed up the implementation of 

genomic selection. Nevertheless, compared to animal breeding, reliability criterion hitherto has not 

been examined based on experimental data from plant breeding programs.  
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Objectives of this thesis 

The thesis is based on experimental data generated for two European elite wheat breeding populations. 

One consists of 372 varieties fingerprinted with 9,926 single nucleotide polymorphism (SNP) markers. 

Another is composed by up to 3,816 elite lines genotyped with 13,901 SNP markers. The objectives 

were to:  

(1) investigate the accuracy of genotype imputation in wheat and its influence on prediction 

accuracy of genomic selection and detection power of genome-wide association mapping (He 

et al. 2015),  

(2) study the potential and limits of marker-assisted selection and genomic selection for 

enhancing resistance to FHB and STB (Mirdita et al. 2015),  

(3) explore how to enhance prediction ability of genomic selection by means of optimizing the 

constitution of training population, extending genomic prediction models, and exploiting 

relatedness (He et al. 2016b), and  

(4) try to unravel the genetic architecture of grain yield in wheat and dissect the relevance of local 

and global epistasis in grain yield (He et al. 2016a).  
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General discussion and conclusion 

Genomics-assisted breeding is a promising toolbox to boost selection gain (Heffner et al. 2010; 

Heffner et al. 2009). The research and development phases required to establish genomics-assisted 

breeding were often considered as separate processes from the routine breeding of improved cultivars. 

This held true to discover functional markers for marker-assisted selection (Podlich et al. 2004) and to 

establish diverse training populations for genomic selection (Heffner et al. 2009). Nevertheless, large 

population sizes are needed to detect minor QTL which segregate in elite germplasms. Moreover, 

genome-wide prediction models should be established based on representative training populations. 

Thus, an economic implementation of genomic-assisted breeding would profit from mining 

phenotypic and genomic data, which have been routinely generated in applied plant breeding programs. 

Data generated in the course of breeding is highly unbalanced because the intensity of phenotyping 

strongly varies for the different stages of selection. Moreover, platforms for generating genomic data 

are often updated leading to a mosaic of genetic fingerprints available. The integration of these 

unbalanced data sets is challenging but required in order to implement successfully genomics-assisted 

breeding. In my thesis, I used experimental data from the wheat breeding program of KWS LOCHOW 

and elaborated strategies to combine and analyze the unbalanced phenotypic and genomic data. Based 

on the experimental data, I then examined the potential and limits of genomics-assisted wheat 

improvement of grain yield and resistances against Fusarium head blight and Septoria tritici. 

Imputation of missing values paved the way to integrate heterogeneous genomic data across 

different genotyping platforms 

Several marker platforms are available for high-throughput genotyping in wheat such as SNP arrays 

(Cavanagh et al. 2013; Wang et al. 2014a), diversity arrays technology (Akbari et al. 2006; Peleg et al. 

2008) and genotyping-by-sequencing (Poland et al. 2012a; Poland et al. 2012b). Amongst them, SNP 

arrays are often used in wheat breeding (Cavanagh et al. 2013; Wang et al. 2014a). The advantages of 

these SNP arrays in contrast to other marker platforms are a straight-forward quality assessment and a 

low number of missing values in the genotype-marker matrices (Mammadov et al. 2012). The 

potential risk of an ascertainment bias resulting from the establishment of the marker platform using 
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non representative panels of lines is for the narrow genetic basis of the European elite germplasm pool 

limited. 

 The progress in developing SNP arrays covering a larger number of markers in wheat is rapid: 

In the year 2013 a 9,000 SNP array (Cavanagh et al. 2013) was introduced, followed by a 90,000 SNP 

in 2014 (Wang et al. 2014a) and a 600,000 SNP array in 2016 (Winfield et al. 2015). Based on these 

platforms, optimized haplotype-based arrays have been developed for cost-efficient use in wheat 

breeding such as a 15,000 SNP array (He et al. 2016a). As a consequence of the rapid progress in 

designing optimized genotyping platforms in wheat, breeding lines of different years are often 

fingerprinted based on altered SNP arrays. This was the case for the wheat lines of KWS LOCHOW 

which were fingerprinted in the year 2012 by a 9,000 SNP array followed by a 90,000 SNP array in 

2013, and a 15,000 SNP array in 2014 (Fig. 3; He et al. 2016a). It is projected that the dynamic in the 

field of optimizing marker platforms will not slow down in the coming years. Thus, there exists the 

need to integrate the genomic data across the different genotyping platforms. 

 One option to combine heterogeneous genomic data sets is to focus only on the overlapping 

markers. Nevertheless, this strategy tremendously reduces the marker density. As an alternative, 

missing values can be imputed in order to integrate the unbalanced genomic data. Our findings have 

revealed that linkage disequilibrium is the central parameter determining the imputation accuracy (He 

et al 2015). Moreover, imputation accuracy is hampered for loci exhibiting low minor allele 

frequencies. Rare alleles exhibiting positive effects are of particular interest for breeding (Jannink 

2010; Sun and VanRaden 2014). Thus, the question arises to which extent genome-wide association 

mapping and prediction profits from imputation of markers.  

 The accuracy for marker imputation depends on linkage disequilibrium which is also the 

central parameter driving the power of genome-wide QTL mapping (Hamblin et al. 2011) and the 

accuracy of genomic selection (Heffner et al. 2009). The extent and distribution of linkage 

disequilibrium strongly depends on the diversity of the population under consideration (Chao et al. 

2010; Maccaferri et al. 2005; Somers et al. 2007). The estimated effective population size in the 

Central European elite wheat population amounted to around 30 individuals (He et al. 2016a), which 

leads to a substantial extent of linkage disequilibrium (He et al. 2016a; He et al. 2015). He et al. (2015) 
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estimated based on the observed decay of linkage disequilibrium with genetic map distance that 

around 45,000 markers are required to portray the diversity of the gene space guaranteeing high power 

of QTL detection in the Central European elite wheat population. Expanding the diversity outside of 

the gene space which reflects around 1% of the wheat genome leads to an up to 100 times larger 

number of markers required for genome-wide association mapping. In contrast, the required marker 

density for genomic selection is lower because prediction is driven by a combination of knowledge of 

the genetic architecture and relatedness (Habier et al. 2007). Using the formula provided by Solberg et 

al. (2008) in combination with the estimated effective population size for Central European wheat (He 

et al. 2016a) suggests that around 12,000 markers are required to facilitate high prediction accuracy in 

genomic selection. In line with these expectations we observed that genome-wide prediction accuracy 

increased only little when imputing missing marker values from the 9,000 to the 90,000 SNP array (He 

et al. 2015). In contrast, genome-wide association mapping profited substantially from imputing 

missing values. Thus, using a mix of high and low-density genotyping of wheat breeding populations 

is an attractive approach for an economic implementation of association mapping in breeding 

populations.  

Strategy to integrate phenotypic data across different selection cycles 

Phenotypic selection is commonly based on data from one specific selection cycle. Thus, once 

phenotypic data have been applied for selection they were in the pre-genomics era of no further use. In 

contrast, implementing genomics-assisted breeding profits from large population sizes which adds 

tremendous value to historic data. This entails substantial challenges on the design of field trials, 

quality assessment, and analyses of phenotypic data in order to integrate information across different 

breeding cycles.  

 Field trials in plant breeding are often designed in a way to maximize the precision of the 

contrasts among lines within selection cycles considering also important released check varieties. The 

presence of check varieties served in our studies as important bridge for integrated analyses across 

selection cycles (Fig. 3; He et al. 2016b). We used a two-step analyses approach with a first step 

consisting in calculating the Best Linear Unbiased Estimates (BLUEs) of genotypes evaluated in all 

field trials conducted within a particular environment, i.e. year-by-location combination. This first step 
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enabled a quality assessment by inspecting the repeatability within each environment. In a second step, 

BLUEs of genotypes were estimated across environments and used for genome-wide prediction or 

association mapping. The two-step approach of the analyses of phenotypic data was reported to 

perform nearly equivalent compared to one-step approaches despite that the latter strategy exploits 

more information (Möhring and Piepho 2009). We observed also in our study only marginal 

differences between a one- and two step approaches (data not shown). The major advantage of a two-

step analysis is the decrease in computational time (Möhring and Piepho 2009) and the ease to stack 

continuously data across years. Thus, the implemented two-step strategy is a vital approach to 

integrate phenotypic data across different selection cycles in wheat breeding programs.  

 

Figure 3 Current field trial design. Check varieties enable to bridge selection cycles and perform 

integrated data analyses. 

Despite the fact that the presented strategy seems to be robust in order to implement 

genomics-assisted breeding based on phenotypic data routinely generated in the course of breeding, 
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the question remains whether a complete redesign of field trials is beneficial or not for plant breeding 

in the genomics era. Increasing the precision of contrasts among genotypes across selection cycles 

requires more balanced field designs mixing germplasm across cycles. This can increase the prediction 

accuracy of genome-wide selection. Nevertheless, the comparisons among lines within the same 

breeding cycles based on phenotypic values will become less precise, which may be partially 

compensated when combining it with genome-wide predictions. Further research is needed to 

ultimately answer the question on the optimal design of field trials in the genomic era. 

Potential and limits of marker-assisted and genomic selection for complex traits 

Marker-assisted selection exploits linkage disequilibrium between diagnostic markers and QTL 

underlying the trait under consideration and to a lesser extent also the relatedness between the training 

and test population (Heffner et al. 2009; Jiang et al. 2015; Wang et al. 2014b). Thus, the accuracy of 

marker-assisted selection depends crucially on the choice of stable diagnostic markers. Our genome-

wide association mapping study revealed that grain yield (He et al. 2016a) and resistances against 

Fusarium head blight and Septoria tritici (Mirdita et al. 2015) are complex traits approximating an 

infinitesimal model which ultimately impede the usefulness of marker-assisted selection. In contrast, 

genomic selection is able to exploit genetic relatedness for predicting grain yield (He et al. 2016b) and 

resistances against Fusarium head blight and Septoria tritici (Mirdita et al. 2015) more efficiently 

compared to marker-assisted selection and is therefore the method of choice. The prediction accuracies 

for the three traits ranged from 0.74 for resistance against Fusarium head blight to 0.87 for Septoria 

tritici corresponding to phenotyping in up to 7 environments for grain yield (He et al. 2016b) and up to 

19 environments for resistance against Septoria tritici underpinning the large potential of genomic 

selection.  

 Relevance of variance due to genotype-by-year interactions determines to a large extent the 

stability of the developed prediction models across time. The grain yield data in our study from the 

year 2012 were impacted by frost stress (Zhao et al. 2013a). Nevertheless, prediction accuracies for 

grain yield were stable across the years 2012 and 2013 (He et al. 2016a). In contrast, prediction 

accuracies across the years decreased tremendously for resistance against Fusarium head blight 

(Mirdita et al. 2015). This is in line with pronounced genotype-by-year interactions which have been 
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reported for resistances against Fusarium head blight in wheat (Buerstmayr et al. 2002; Mesterhazy 

1995; Steiner et al. 2004) pointing to the need to phenotype training populations across years. Multi-

year data for resistances against Fusarium head blight have to be collected outside of the routine 

breeding process and can be accomplished most efficiently by applying two-tailed selection (Zhao et 

al. 2012b). In summary, our study revealed that genomic selection is a powerful tool for Central 

European wheat improvement of grain yield and resistances against Fusarium head blight and Septoria 

tritici.  

Choice of biometric model for genomic selection 

We contrasted the prediction accuracies of four biometric models for genomic selection. Two of the 

four models, RRBLUP and Bayes-Cπ, exploit additive effects and vary with respect to the distribution 

from which marker effects are sampled. RRBLUP assumes that markers are independently and 

identically distributed but BayesCπ allows marker-specific and independent variance (Habier et al. 

2011; Meuwissen et al. 2001). Thus, it is expected that RRBLUP fits better the infinitesimal model 

and BayesCπ is supposed to outperform RRBLUP in tackling traits controlled also by major genes 

(Meuwissen et al. 2001; Sun et al. 2011; Wolc et al. 2016). In our study, we observed only marginal 

differences between both approaches (He et al. 2016b; Mirdita et al. 2015). This finding is in line with 

previous studies (Haws et al. 2015; Heslot et al. 2012; Jiang et al. 2015). RRBLUP is less 

computational demanding (Heslot et al. 2012). Therefore, RRBLUP seems to be the method of choice 

for genomic selection based on additive effects for the traits grain yield and resistances against 

Fusarium head blight and Septoria tritici.  

Another two popular biometric models, EGBLUP and RKHS, directly estimate genotypic 

values by means of constructing relationship matrices on the basis of SNP profiles. The main 

difference between EGBLUP and RKHS versus RRBLUP and BayesCπ is that the first two 

approaches are both capable to exploit besides main also epistatic effects (de los Campos et al. 2010; 

Heslot et al. 2012; Jiang and Reif 2015). Our study revealed higher prediction accuracies for EGBLUP 

and RKHS versus RRBLUP and BayesCπ in wheat for all three examined traits grain yield (He et al. 

2016b) and resistances against Fusarium head blight and Septoria tritici (Mirdita et al. 2015). 

Consequently, genomic selection based on EGBLUP and RKHS are the methods of choice for 
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selecting superior lines. Using EGBLUP additionally enables to decompose the genotypic value into 

the breeding value and a non-additive component. The former is in particular of interest because it 

reflects an interesting source of information for parental selection to initiate the next cycle of selection. 

Global epistasis cannot be exploited in a recurrent fashion, because independent assortment 

and recombination would break the established linking phase of pairs of QTL (Falconer and Mackay 

1996; Akdemir and Jannink 2015). In contrast, local epistasis originating from regional linkage blocks 

could be conserved across breeding generations and exploited in a recurrent fashion (Akdemir and 

Jannink 2015). Local epistasis can be portrayed using haplotype-based genomic selection approaches 

(He et al. 2016a; Wei et al. 2014). Our study indicated presence of local epistasis in the elite winter 

wheat population with improved prediction abilities when shifting from marker- to haplotype-based 

genome-wide prediction approaches. Therefore, haplotype-based genomic selection offers an 

opportunity to consider local epistasis when selecting parents to initiate the next cycle of selection. 

Optimum composition of a training population for genome-wide predictions 

The composition of training populations is crucial to establish genome-wide prediction models. On 

one hand, marker effects are estimated from training populations and subsequently used for predicting 

genotypic values of selection candidates. On the other hand, relatedness between training populations 

and selection candidates is an important factor influencing the prediction accuracy (Habier et al. 2007; 

Hayes et al. 2009b; Rutkoski et al. 2015). A vast amount of historical phenotypic data generated from 

different selection cycles provide a promising repository to build up a diverse training population. 

Focusing on relatedness, Rincent et al. (2012), Akdemir et al. (2015), and Isidro et al. (2015) proposed 

strategies to optimize the composition of training populations by specifically selecting training subsets 

for each selection candidate. The merit of relatedness is fully exploited when closely related 

individuals of a given selection candidate have been incorporated in the training population. 

Nevertheless, genetically more distant individuals in the training population are not decreasing the 

prediction accuracy. Thus, there is no need to compose training populations by sampling only 

individuals related to selection candidates, when historical data of breeding programs are considered 

(Heslot et al. 2015). Consequently, optimizing the composition of training populations based on 

historical data should focus on other factors than relatedness.  
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 The quality of the phenotypic data and the diversity of the training population are possible 

alternative criteria to sample training populations based on historical data. Best linear unbiased 

estimates (BLUEs) of genotypic values are used commonly as response variable in genome-wide 

prediction models. The precision of BLUEs depends on the underlying phenotyping density which 

varies among selection candidates (Lorenz 2013). In the early selection cycles, phenotyping intensity 

is low but a large amount of selection candidates is evaluated. Thus, BLUEs of selection candidates 

which are rejected in early selection cycles are imprecise impairing the response variable of genomic 

prediction models. By contrast, selection candidates of late selection cycles have been intensively 

evaluated in field trials but the population size is small. We inspected the best compromise between 

population size and phenotyping intensity/phenotypic data quality (He et al. 2016a) and observed that 

selection candidates solely evaluated in one location should be discarded in order to optimize the 

prediction accuracy of genomic selection.  

Prediction accuracy is highly variable among genotypes but can be assessed with genomic data 

Prediction accuracy of genomic selection in plant breeding is commonly estimated for the entire 

breeding population (Mirdita et al. 2015; Philipp et al. 2016; Poland et al. 2012a; Zhao et al. 2012a; 

Zhao et al. 2013b). Nevertheless, the degree of relatedness between test candidates and the training set 

is highly variable in the population of test candidates. Therefore, prediction accuracy is treated in 

animal breeding separately for each individual which is denoted as reliability (Heslot et al. 2015; 

Pszczola et al. 2012; VanRaden et al. 2009). The reliability criterion was so far not been implemented 

in the context of plant breeding. Our findings points to the great merit of using the reliability criterion 

in plant breeding (He et al. 2016b): The prediction accuracy of the total population amounted to 0.71 

but was approaching one for the subset of the most reliable genotypes. These differences in prediction 

accuracies reflect differences in phenotyping intensities ranging from field evaluation in 5 to 50 

environments (Fig. 4). Thus, fast-track genomics-based breeding strategies can be implemented and 

require genomic selection strategies specifically designed for every genotype. This genomic selection 

specifically tailored for each genotype entails a paradigm shift and strongly depends on massive 

adjustments in the logistic chains of wheat breeding programs. These adjustments are for instance 

relevant for selection candidates with low reliabilities being genetically distant from training 
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population. For these selection candidates phenotypic evaluations cannot be replaced by genomic 

selection.  

 

Figure 4 (a) Prediction accuracy of genomic selection for grain yield inspecting different subsets 

composed by genotypes with top 60% to 10% reliabilities; (b) The association between selection 

accuracy and number of test environments 

Implementation of genomic selection in breeding programs using historical data 

Genomic selection is expected to shift the paradigm of breeding schemes in the genomics era. 

Towards a conservative attitude utilizing genomic selection, it is suggested to treat it as an auxiliary 

means assisting traditional phenotypic selection. Focusing on phenotypic selection, in the early stages 

phenotyping intensity is limited due to a vast amount of selection candidates needed to be tested. In 

consequence, heritabilities in early stages are unambiguously low entailing a disappointing selection 

gain (Endelman et al. 2014; Heslot et al. 2015). Nevertheless, having a powerful training population 

available, genomic selection could markedly increase the selection accuracy in preliminary stages 

boosting selection gain. Endelman et al. (2014) and Lorenz (2013) even proposed to entirely ignore 

phenotyping at preliminary stages and focusing exclusively on genomic predicted values. The main 

constraint for applying genomic prediction is the extra expenditure on genotyping in contrast to 

phenotypic selection. Nevertheless, this additional cost would become more and more trivial as the 

advent of cost-effective platforms such as genotyping-by-sequencing (Riedelsheimer and Melchinger 
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2013). By contrast, in the medium or late stages of breeding programs genomic selection would not 

arouse remarkable profit because intensive field evaluations implemented in phenotypic selection has 

guaranteed a high accuracy level (He et al. 2016b).  

 Once genomic selection has demonstrated its merits, breeders have to gain the knowledge on 

how to allocate resources between genotyping and phenotyping (Longin et al. 2015; Lorenz 2013); 

how to interpret genotype-by-environment interaction in the genomics era (Lopez-Cruz et al. 2015; 

Schulz‐Streeck et al. 2013); and how to renew the design of field trials to better connect different 

selection cycles and tune the tradeoff between investment on number of tested location and replicates 

per location (Lorenz 2013). More empirical studies with regard to the effectiveness of genomic 

selection are needed to provide more evidence and reference on the way to optimize the application of 

genomic selection in practice.  
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Summary 

Wheat (Triticum aestivum L.) is one of the most important crops providing 20% of the total calorie 

consumption of the entire human population. Worldwide wheat production needs to be doubled to feed 

an estimated human population of 9 billion by 2050. Wheat breeding is considered as an 

environmentally sound approach to boost grain yield and to improve yield stability. The advent of 

high-throughput molecular markers offers new perspectives to realize these goals in the genomics era. 

Genomic selection jointly exploits pedigree information, co-segregation, and linkage disequilibrium 

between markers and QTL to predict complex traits and has been widely applied in animal breeding. 

Nevertheless, this was not the case for wheat improvement. The main goal of this research was to 

examine the potential and limits of genomics-assisted wheat improvement of grain yield and 

resistances against Fusarium head blight and Septoria tritici. The comprehensive phenotypic and 

genomic data of the study comprising up to 3,816 elite wheat lines adapted to Central Europe were 

generated in a commercial wheat breeding program.  

 As a consequence of a rapid progress in designing optimized genotyping technologies in 

wheat, breeding lines of different years have been often fingerprinted based on altered marker 

platforms. Thus, there exists the need to integrate these unbalanced genomic data. Genotype 

imputation is a promising approach to merge data of different marker platforms. The objective of the 

presented simulation study was to investigate the accuracy of genotype imputation in wheat. 

Imputation accuracy was highly dependent on linkage disequilibrium between markers in reference 

panels and the marker to be imputed. The detection power of genome-wide association mapping can 

be increased substantially by imputing missing values. Genomic selection profited marginally from 

genotype imputation. 

 The complexity of the genetic architecture plays a crucial role for the selection of the optimal 

genomics-assisted breeding strategy. Genomic selection is expected to outperform marker-assisted 

selection if the trait under consideration approximates an infinitesimal model with presence of many 

genes contributing to the phenotypic variation. The goal of the presented experimental studies were to 

use genome-wide association mapping in combination with cross-validations or validations in 
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independent data sets to investigate the genetic architecture of grain yield and resistances against 

Fusarium head blight and Septoria tritici. The genome-wide association mapping analyses revealed 

that the three traits are complex approximating the infinitesimal model. Consequently, genomic 

selection outperformed marker-assisted selection. Contrasting different genomic selection models 

suggested that interaction effects among genes, i.e. epistasis, contribute substantially to the phenotypic 

variation. Nevertheless, only 5% of the epistatic effects occurred within conserved local linkage blocks 

and can therefore exploited across generations. 

 Prediction accuracy of genomic selection is ordinarily expressed as an average value of the 

total population. Nevertheless, the degree of relatedness between training set and selection candidates 

which serves as the most essential factor influencing genomic prediction is highly divergent among 

predicted candidates. Reliability criterion offers a prospect to inspect the degree of relatedness 

specifically for each individual candidate. The findings of an experimental study demonstrated that a 

subset of genotypes with high reliability values were prone to possess a high prediction accuracy 

whilst low reliable ones could not be accurately predicted. This finding implies a paradigm shift in 

genomic selection which should be designed specifically for each genotype and entails massive 

adjustments in the logistic chains of wheat breeding programs. 
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Zusammenfassung 

Weizen (Triticum aestivum L.) ist eine der wichtigsten Kulturpflanzen und trägt 20 % zum gesamten 

Kalorienbedarf der menschlichen Bevölkerung bei. Die Weizenproduktion muss bis zum Jahr 2050 

verdoppelt werden, um die geschätzte Weltbevölkerung von 9 Milliarden Menschen zu ernähren. Die 

Weizenzüchtung ist ein nachhaltiger Ansatz zur Steigerung des Ertrags und der Ertragsstabilität. Die 

Entwicklung von hochdurchsatzfähigen molekularen Markertechnologien eröffnet im Zeitalter der 

Genomik neue Ansätze, um diese Ziele in der Züchtung zu erreichen. Die genomische Selektion 

kombiniert Informationen über die Herkunft, die Kosegregation und das 

Kopplungsphasenungleichgewicht zwischen Markern und QTL, um komplexe Merkmale 

vorherzusagen und wird bereits in größerem Umfang in der Tierzucht verwendet. Zur züchterischen 

Verbesserung von Weizen fand diese Methode jedoch bislang keine Anwendung. Das Hauptziel dieser 

Forschungsarbeit war es, das Potenzial und die Grenzen von Genomik-basierter Verbesserung des 

Kornertrags, sowie der Resistenz gegen Ährenfusariosen und Septoria tritici zu untersuchen. Die 

phänotypischen und genomischen Daten dieser Studie umfassen bis zu 3,816 mitteleuropäische 

Weizenelitelinien und wurden im Rahmen eines kommerziellen Weizenzuchtprogramms generiert. 

Als eine Konsequenz aus dem schnellen Fortschritt im Design von optimierten 

Genotypisierungstechnologien bei Weizen, wurden Zuchtlinien in den verschiedenen Jahren oft mit 

unterschiedlichen Markerplattformen charakterisiert. Es ergibt sich daraus die Notwendigkeit, diese 

nicht balancierten, genomischen Daten zu integrieren. Das Schätzen von fehlenden Markerdaten ist 

eine vielversprechende Herangehensweise, um die Daten verschiedener Markerplattformen 

zusammenzuführen. Das Ziel der Simulationsstudie war es, die Präzision der Schätzung von fehlenden 

Markerdaten zu untersuchen. Die Genauigkeit der Schätzung wurde stark vom 

Kopplungsphasenungleichgewicht zwischen den Markern im Referenzpanel und den einzelnen 

betroffenen Markern beeinflusst. Die Güte der genomweiten Assoziationskartierung kann deutlich 

durch die Schätzung fehlender Werte erhöht werden. Die genomische Selektion hat geringfügig von 

der Schätzung von Fehlwerten profitiert. 
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Die Komplexität der genetischen Architektur spielt eine entscheidende Rolle bei der Wahl der 

optimalen Genomik-basierten Zuchtstrategie. Die genomische Selektion wird gegenüber der 

markergestützten Selektion als überlegen angesehen, wenn die zu selektierenden Merkmale annähernd 

einem infinitesimalen Modell mit einer Vielzahl von Genen entsprechen, die zur phänotypischen 

Variation beitragen. Das Ziel der experimentellen Studien war es, genomweite Assoziationskartierung 

zusammen mit Kreuzvalidierung oder Validierungen an unabhängigen Datensätzen zur Untersuchung 

der genetischen Architektur von Kornertrag und Resistenz gegen Ährenfusariosen und Septoria tritici 

zu nutzen. Die Analyse der genomweiten Assoziationskartierung ergab, dass diese drei Merkmale 

komplex vererbt werden und näherungsweise dem infinitesimalen Modell entsprechen. Die 

genomische Selektion war folgerichtig der markergestützten Selektion überlegen. Der Vergleich 

verschiedener biometrischer Modelle zur genomischen Selektion deutet darauf hin, dass die 

Auswirkungen der Interaktion zwischen Genen, d. h. Epistase, deutlich zur phänotypischen Variation 

beitragen. Allerdings traten nur 5 % der epistatischen Effekte innerhalb konservierter lokaler 

Kopplungsgruppen auf und können über Generationen hinaus genutzt werden.  

Die Vorhersagegenauigkeit der genomischen Selektion wird gewöhnlich als ein Mittelwert für 

die gesamte Population ausgedrückt. Der Grad der Verwandtschaft zwischen dem Training-Set und 

den Selektionskandidaten, als wichtigster Faktor der genomischen Vorhersage, ist dessen ungeachtet 

hochgradig divergent zwischen den vorhergesagten Kandidaten. Die Resultate der experimentellen 

Studie demonstrieren, dass eine Untergruppe von Genotypen mit Werten hoher Verlässlichkeit zu 

einer hohen Vorhersagegenauigkeit tendierte, während gering verlässliche nicht korrekt vorhergesagt 

werden konnten. Dies bedingt einen Paradigmenwechsel für die genomische Selektion, die daher 

spezifisch für jeden einzelnen Genotyp geplant werden sollte, und verursacht substantielle 

Anpassungen in der Logistikkette von Weizenzuchtprogrammen.  
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