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1 Summary

1.1 English version

The versatility of organisms and their adaptability to environmental changes are essential
for their viability and are achieved by expressing proteins on demand. The expression of
proteins is orchestrated by the process of gene regulation, which belong to the most complex
and comprehensive processes in nature. Hence, the understanding of gene regulation is a
prerequisite in modern biology, medicine, and, biodiversity research. A crucial sub-process
in gene regulation is the transcriptional initiation, i.e., the interaction of transcription
factors (TFs) with their transcription factor binding sites (TFBSs). Hence, predicting
TFBSs and their binding motifs in biological sequences is essential for the understanding
of gene regulation.

Identifying TFBSs and binding motifs using wet-lab experiments is expensive and time-
consuming, and thus neither economical nor feasible. Consequently, bioinformatics ap-
proaches have been developed for, first, data acquisition and data preparation, second,
for the prediction of putative TFBSs on genomic scale, and third, for the visualization of
models for TFBSs.

A typical task in bioinformatics covering these three fields is the prediction of TFBSs in
ChIP-sequencing (ChIP-seq) data. This task starts with obtaining sequence data directly
from a ChIP-seq experiment or some database. After transforming the data into an ap-
propriate format, de-novo motif discovery is performed and putative TFBSs are predicted.
Finally, the results are visualized and compared to related work. This thesis covers six
peer reviewed articles and one work-in-progress article, which fit into the mentioned three
fields as follows.

First, demanded by business and academic needs, the number of data-intensive processes
in bioinformatics, like next generation sequencing, is continuously increasing and so is the
amount of produced data. The post-processing of these data increases this amount even
further. By combining various data sources and different types of data, like sequence data
with gene expression data, the data to manage becomes more and more complex. Hence,
new databases are needed for an appropriate handling of complex data and new concepts
are needed for an efficient handling of increasingly large data volumes.

My colleagues and I developed miRGen, a relational MySQL database that stores mi-
croRNA (miRNA) transcripts with target genes, contained single nucleotide polymor-
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1. SUMMARY

phisms (SNPs), TFBSs in near distance, and prominent literature sources. Over the
last years, miRGen has already become an important resource for researchers that are
interested in miRNA regulation and miRNA function.

We also developed the open-source Java libarary DRUMS which is designed to store bil-
lions of position specific DNA related records. DRUMS is capable of performing fast
and resource sparing requests and runs on a single standard computer. When comparing
DRUMS to the standard database MySQL regarding insert performance and lookup per-
formance on two data sets, it outperforms MySQL by a factor of two up to a factor of
15456.

Second, predicting TFBSs in sequence data is essential for the understanding of gene reg-
ulation and dozens of bioinformatics approaches have been developed for the prediction
of TFBSs. These approaches use diverse statistical characteristics to distinguish TFBSs
from their flanking Deoxyribonucleic acid (DNA) and can be subdivided in phylogenetic
and non-phylogenetic approaches. Phylogenetic approaches take into account phylogenetic
dependencies in aligned sequences of more than one species whereas non-phylogenetic ap-
proaches based on sequences of only one species typically take into account intra-motif
dependencies. The articles comprising this thesis are related to de-novo motif discovery
using phylogenetic approaches as follows.

We extended a traditional phylogenetic footprinting model (PFM) by the capability to
take into account the binding affinity bias (BA bias) in ChIP-seq data. The BA bias is
a result of the over-representation of high-scoring binding sites in ChIP-seq data, causing
the inference of potentially distorted motifs. My colleagues and I found that correcting
the binding-affinity bias typically leads to softened motifs and significantly improves motif
prediction.

We further studied the influence of phylogenetic trees on the performance of phylogenetic
footprinting and motif prediction. We surprisingly found that unrealistic phylogenetic trees
often lead to more accurate predictions of TFBSs than realistic phylogenetic trees.

Based on these results, we developed an approach for de-novo motif discovery that extends
phylogenetic footprinting by the capability of taking into account intra-motif dependencies
of higher order. My colleagues and I found intra-motif dependencies of order 1 and 2 in
motifs of all investigated species and we found that modelling intra-motif dependencies
within phylogenetic footprinting significantly improves classification performance.

Third, visualizing the results of motif discovery is fundamental for researchers to interpret,
present, and share their findings and sequence logos are the de facto standard in biology
and bioinformatics to accomplish this task. The number of data sets and motif extraction
algorithms is continuously growing and therefor the number of published motifs. Hence,
it is often not sufficient to just show motifs but it becomes more and more important
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1.1 English version

to perceive differences between motifs. Comparing multiple sequence motifs by visual
inspection of the corresponding sequence logos can be tricky and especially differences of
multiple motifs of the same TF are often hard to perceive.

To address this problem my colleagues and I developed DiffLogo, an R-package that is
specifically designed for visualizing differences between similar sequence motifs. DiffLogo
visualizes differences between multiple motifs in a tabular plot of all pairwise comparisons.
The resulting matrix guides the viewer to the most prominent pairwise differences be-
tween motifs. DiffLogo is already used in several articles of this thesis to depict differences
between motifs of the same TF from phylogenetically related species and to depict differ-
ences between motifs of the same TF but captured by different de-novo motif discovery
approaches.

We know that not all researchers have access to hardware with R and DiffLogo installed and
not all researchers have the time or the technical background to use R and DiffLogo without
high effort. Hence, we integrated DiffLogo into the web-server WebDiffLogo accessible via
http://difflogo.com. This web-server allows the user to upload motifs in several common
formats. Further, WebDiffLogo allows the user to upload motifs of different length and
orientation. Hence, WebDiffLogo is much easier to use and thus applicable to a much
larger community.

Taken together, the findings of this thesis may advance our understanding of transcriptional
gene regulation and its evolution. Specifically, our work in the field of data acquisition and
data preparation may improve knowledge transfer among researchers and data handling.
Our findings in the field of de–novo motif discovery based on phylogenetic footprinting
may lead to an improved prediction of TFBSs. Our work in the field of comparative motif
visualisation may help researchers regarding decision making, knowledge sharing, and the
presentation of results.

3
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1. SUMMARY

1.2 German version

Die Vielseitigkeit existierender Lebewesen und die Anpassungsfähigkeit an ihre Umwelt ist
eine Grundlage für das Leben selbst und ist nur möglich durch die bedarfsbedingte Expres-
sion von Proteinen. Die Expression von Proteinen wird durch den Prozess der Genregula-
tion gesteuert, wobei die Genregulation selbst zu den komplexesten und umfangreichsten
Prozessen in der Natur zählt. Folglich ist das Verständnis des Genregulationsprozesses
sowohl für biologische und medizinische Forschung, als auch für Forschung im Bereich
der Biodiversität unabdingbar. Ein entscheidender Teilprozess der Genregulation ist die
transkriptionelle Initiation, mit anderen Worten, die Interaktion von Transkriptionsfak-
toren (TFen) mit den korrespondierenden Transkriptionsfaktorbindestellen (TFBSen). Die
Vorhersage von TFBSen und die Inferenz ihrer Bindemotive ist somit eine unabdingbare
Grundlage um den gesamten Prozess der Genregulation zu verstehen.

Die Identifikation von TFBSen und ihren Bindemotiven mittels klassischer Laborexperi-
mente ist jedoch teuer und zeitaufwändig und damit weder ökonomisch noch praktikabel.
Folglich wurden bioinformatische Methoden und Ansätze entwickelt, um Daten effizient
zu beschaffen und vor zu verarbeiten, um mögliche TFBSen genomweit vorherzusagen und
um Modelle für TFBSen zu visualisieren.

Eine typische bioinformatische Aufgabe, welche diese drei Bereiche umfasst, ist die Vorher-
sage von TFBSen in ChIP-seq Daten. Diese Aufgabe beginnt mit der Akquisition von
Sequenzdaten entweder direkt aus einem ChIP-seq Experiment oder aus entsprechen-
den Datenbanken. Nachdem die Daten aufbereitet und in ein passendes Format trans-
formiert wurden, kann die eigentliche Motivvorhersage beginnen. Abschließend werden die
Ergebnisse typischerweise visualisiert und mit denen ähnlicher Arbeiten verglichen. Die
vorliegende Dissertation umfasst sechs begutachtete Publikationen und ein Manuskript,
welches noch in Arbeit ist, die sich folgendermaßen in die genannten drei Bereiche einglie-
dern.

Erstens, aufgrund industriellen und akademischen Bedarfs steigt die Zahl der dateninten-
siven Prozesse in der Bioinformatik an. Ein Beispiel dafür ist Next Generation Sequencing.
In gleichem Maße wächst der Umfang produzierter Daten. Die Nachverarbeitung dieser
Daten steigert die Datenmenge nochmals. Des Weiteren wird durch die Kombination ver-
schiedener Datenquellen und Datentypen, wie Sequenzdaten und Expressionsdaten, die
Komplexität der zu verwaltenden Daten stetig erhöht. Damit steigt der Bedarf an neuen
Datenbanken, die in der Lage sind, komplexere Daten zu verwalten. Außerdem werden
neue Konzepte benötigt um die immer größer werdenden Datenmengen effizient verwalten
zu können.
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1.2 German version

In diesem Kontext haben meine Kollegen und ich miRGen entwickelt, eine relationale
MySQL Datenbank zur Speicherung von microRNA (miRNA) Transkripten, angereichert
mit deren Zielgenen, mit enthaltenen Einzelnukleotid-Polymorphismen (SNPs), mit TFBS-
en in direkter Umgebung und mit prominenten Literaturquellen. miRGen ist bereits zu
einer wichtigen Ressource für Forscher geworden, die an der Regulation und der Funktion
von miRNAs interessiert sind.

Des Weiteren haben wir die open-source Java Bibliothek DRUMS zur Speicherung von Mil-
liarden von Datensätzen entwickelt, welche sich positionsspezifisch auf Sequenzen beziehen,
wie es bei z. B. SNPs der Fall ist. DRUMS ist in der Lage Anfragen schnell und
ressourcenschonend zu beantworten und läuft auf Standard-Desktop-Hardware. Bei dem
Vergleich von DRUMS mit der Standarddatenbanklösung MySQL bezüglich Einfügege-
schwindigkeit und Anfragegeschwindigkeit istDRUMS 2 bis 15456mal schneller alsMySQL.

Zweitens, die Vorhersage von TFBSen in Sequenzdaten ist unabdingbar für das Verständ-
nis des Genregulationsprozesses. Dutzende bioinformatische Ansätze existieren, um dies
zu bewerkstelligen. Diese Ansätze nutzen verschiedene statistische Eigenschaften, um
TFBSen von flankierender DNA zu unterscheiden. Phylogenetische Ansätze verwenden
phylogenetische Abhängigkeiten in alignierten Sequenzen mehrerer Spezies, wohingegen
nicht-phylogenetische Ansätze basierend auf Sequenzen von nur einer Spezies normaler-
weise Nukleotidabhängigkeiten innerhalb des Motivs berücksichtigen können. Die Arbeiten
dieser Dissertation sind fokussiert auf die Motiverkennung unter Verwendung phylogene-
tischer Ansätze.

In diesem Kontext haben wir als Erstes ein traditionelles Phylogenetic Footprinting Modell
um die Fähigkeit erweitert den Bindeaffinitätsbias (BA bias) von TFen in ChIP-seq Daten
zu berücksichtigen. Der BA bias resultiert aus der Überrepräsentation von hochqualitativen
Bindestellen in ChIP-seq Daten und verursacht die Vorhersage von potentiell verzerrten
Motiven. Wir konnten zeigen, dass das Korrigieren des BA bias in der Regel zu weicheren
Motiven führt und die Motivvorhersage signifikant verbessert.

Des Weiteren haben meine Kollegen und ich den Einfluss phylogenetischer Bäume auf die
Leistung von Phylogenetic Footprinting und Motivvorhersage untersucht. Überraschender-
weise haben wir entdeckt, dass unrealistische phylogenetische Bäume oftmals zu genaueren
Vorhersagen von TFBSen führen als realistische phylogenetische Bäume.

Aufbauend auf dieser Erkenntnis haben wir einen Ansatz zur Motiverkennung entwickelt,
welcher Phylogenetic Footprinting um die Fähigkeit erweitert Nukleotidabhängigkeiten
höherer Ordnung innerhalb eines Motivs zu modellieren. Wir haben Nukleotidabhängig-
keiten erster und zweiter Ordnung in Motiven aller untersuchten Spezies gefunden und
wir konnten zeigen, dass das Modellieren von Nukleotidabhängigkeiten im Rahmen von
Phylogenetic Footprinting die Vorhersagegüte signifikant verbessert.
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1. SUMMARY

Drittens, die Visualisierung der Modelle, die während der Motiverkennung generiert werden
ist für Wissenschaftler fundamental um zum einen ihre Ergebnisse selbst interpretieren zu
können und zum anderen um Erkenntnisse zu präsentieren und zu teilen. In vielen Be-
reichen der Biologie und Bioinformatik werden dafür Sequenzlogos verwendet. Durch die
stetig steigende Zahl an verfügbaren Datensätzen und Algorithmen zur Motiverkennung
wächst die Zahl der veröffentlichten Sequenzmotive. Damit ist es oft nicht mehr aus-
reichend Sequenzmotive lediglich zu präsentieren bzw. zu visualisieren, sondern es wird
immer wichtiger auch Unterschiede zwischen Sequenzmotiven hervorzuheben. Der Ver-
gleich mehrere Sequenzmotive mittels Sequenzlogos kann sich als äußerst schwierig erweisen
und im Besonderen ist es auf diese Weise kaum möglich Unterschiede zwischen Motiven
des gleichen TFs aus z. B. unterschieldichen Zelllinien zu erkennen.

Meine Kollegen und ich haben dieses Problem mit der Entwicklung von DiffLogo adressiert,
ein speziell für die Visualisierung von Motivunteschieden entwickeltes R-Paket. DiffLogo vi-
sualisiert Unterschiede mehrerer Motive in einer tabellarischen Darstellung aller paarweisen
Vergleiche. Die resultierende Visualisierung hebt prominente, paarweise Unterschiede farb-
lich hervor und fokussiert somit den Betrachter auf das Wesentliche. DiffLogo wird bereits
in mehreren Publikationen dieser Dissertation verwendet.

Da nicht alle Wissenschaftler Zugang zu entsprechender Hardware mit installiertem R und
DiffLogo haben und außerdem viele Wissenschaftler nicht genügend Zeit oder technische
Erfahrung haben um R und DiffLogo ohne Probleme zu verwenden, haben wir DiffLogo in
einen WebServer integriert. Dieser ist über http://difflogo.com erreichbar. Der Nutzer
kann Sequenzmotive in verschiedenen Formaten hochladen. Außerdem dürfen die Motive
unterschiedlich lang sein und eine unterschiedliche Orientierung haben. DiffLogo versucht
in diesen Fällen die Sequenzmotive zu alignieren. http://difflogo.com ist wesentlich ein-
facher zu verwenden als DiffLogo und damit für eine größere Nutzerschaft zugänglich.

Abschließend kann ich sagen, dass die Erkenntnisse dieser Arbeit unser Verständnis der
transkriptionellen Genregulation und deren Evolution voranbringen können. Im Detail:
Unsere Arbeit und unsere Erkenntnisse im Bereich der Datenakquisition und Datenvorbe-
reitung können den Wissenstransfer zwischen Wissenschaftlern und das allgemeine Daten-
management verbessern. Unsere Erkenntnisse im Bereich der Motivvorhersage mittels
Phylogenetic Footprinting können zu einer verbesserten Vorhersage von TFBS führen.
Unsere Arbeit im Bereich der vergleichenden Darstellung von Sequenzmotiven kann Wis-
senschaftlern bei der Entscheidungsfindung, beim Wissenstranfer, bei der Dokumentation
und Präsentation ihrer Ergebnisse helfen.

6
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2 Introduction
From 1857 to 1864, Gregor Mendel studied the inheritance patterns in pea plants and
suggested the idea of the existence of discrete inheritable units. At the same time Darwin
published his famous work “On the Origin of Species,” proposing continual evolution of
species (Darwin, 1859). It took over 50 years (1909) until Wilhelm Johannsen coined the
word gene to name those inheritable units proposed by Mendel, and it took another 44
years before James Watson and Francis Crick published their model for DNA, which is now
known as the double-helix model of DNA structure (Watson et al., 1953). Three years later,
Francis Crick stated the central dogma of molecular biology for the first time. This
dogma describes the relationship between DNA, Ribonucleic acid (RNA), and proteins and
was finally published in 1970 (F. Crick et al., 1970). Ever since then, molecular biology has
undergone a rapid and extensive development and after 150 years, terms like gene, DNA,
RNA, proteins, evolution, and mutation have found its way into our daily language.

This development was accompanied by the digital revolution, starting with the invention
of the transistor in 1947, the fundamental building block of any modern digital device.
In the 70s, home computers were introduced and the transformation of analog to digital
data began. In 1969 the first message was sent over the ARPANET, the predecessor of the
Internet, which became publicly accessible in 1991 as the World Wide Web. Nowadays,
50% of the world population has access to the Internet1 and everybody is passively and
actively generating data that can be used to improve our daily lives. For example, GPS
data of many individuals can be used to predict traffic anomalies (Pang et al., 2013), data
of fitness trackers can be used to prevent cardiovascular diseases (Neubeck et al., 2015), and
differences in human genomes can be used to understand the genetic contribution to various
diseases (E. P. Consortium et al., 2012; 1. G. P. Consortium et al., 2012; Sudmant et al.,
2015). It is expected that in 2020 the digital universe will comprise over 5, 200 gigabytes
per living person, summing up to 40 trillion gigabytes of data (Gantz et al., 2012; Dragland,
2013). The continuously growing quantity of information and its availability at any time,
in any place, already permeates both our work and our daily lives.

The digital revolution also enabled new data sources and new technologies in the field of
molecular biology, e.g., sequence data and sequencing technologies. Starting in 1990, it
took 13 years to sequence the first human genome, whereas in 2015, this task could be
accomplished in 26 hours (Miller et al., 2015). The extensive and continuously growing
amount of data enabled the emergence of new sciences like bioinformatics, unleashing

1http://www.internetworldstats.com/stats.htm
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2. INTRODUCTION

new potentials regarding the study of fundamental biological processes like the complex
process of gene regulation. Nowadays, molecular biology is a field of research that serves a
broad audience with a scientific background as well as non-scientific backgrounds. In this
sense, with this thesis, I want to contribute to a deeper understanding of the process of
gene regulation and its evolution. Specifically, my colleagues and I try to contribute to
data acquisition and data preparation by developing new databases for knowledge sharing
and for efficient data handling. We also attempt to develop new approaches based on
phylogenetic footprinting for the de–novo motif discovery in ChIP-seq data. Finally, we try
to develop a new approach for the comparative visualization of sequence motifs. The next
four sections introduce the reader to molecular biology, computer science, bioinformatics,
and the research objectives of this thesis.

2.1 Biological background

This section gives a general introduction into gene expression and gene regulation. The
introduction also includes a description of the transcriptional initiation and the post–
transcriptional gene regulation by miRNAs.

2.1.1 Gene expression and gene regulation

DNA is the intra–cellular substance that carries the definition of an organism’s potentials.
It is composed of the nucleotides of the four organic bases adenine (A), cytosine (C ), gua-
nine (G), and thymine (T ). The sequence of these bases encodes the genetic information.
Genes are information units on the DNA and gene expression is the process used by all
known life that translates genes into proteins or functional RNA. In all organisms, gene
expression comprises at least two processes, transcription and translation (Figure 2.1).
Transcription is the process that transcribes a DNA sequence to the corresponding mes-
senger RNA (mRNA) sequence. Translation is the process that translates the mRNA into
the corresponding polypeptide, which may then fold to a protein.

Gene regulation is the process that regulates gene expression and is the basis for cellular
differentiation, morphogenesis, versatility, and adaptability of any organism. Whenever a
protein is needed, due to e.g., environmental stimuli, a complex signaling cascade is initi-
ated to first, make the corresponding DNA region accessible for the transcription machinery
and second, to ensure the correct processing of the genetic information. This fundamental
process is established by diverse sub–processes such as epigenetics (Reik, 2007; Slotkin
et al., 2007; Dolinoy et al., 2007), regulation by miRNAs (He et al., 2004; K. Chen et
al., 2007), siRNA interference (Fougerolles et al., 2007; Tam et al., 2008), and alternative
splicing (Sultan et al., 2008; Luco et al., 2010).
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Figure 2.1: Flowchart of gene expression. A gene is an information unit on the DNA.
The process of gene expression typically comprises the two sub–processes transcription and
translation. Transcription is the process that transcribes the gene to the corresponding mRNA.
Translation is the process that translates the mRNA into the corresponding protein.

2.1.2 Transcriptional initiation

An important sub–process is the initiation of transcription, which is mediated by the
interaction of TFs with the DNA. Specifically, TFs are proteins that bind to specific DNA
signals, so called TFBSs. TFBSs are often located in the upstream promotor region of
a gene but can also be found in other, more distant, intergenic regions. The binding
of a TF to a TFBS can enhance or represses the expression of the gene. Figure 2.2
shows a schematic representation of the binding of three TFs to the DNA to initiate the
transcription of the downstream located gene.

Uncovering TFBSs in genomic DNA and inferring DNA binding motifs for TFs, also known
as de–novo motif discovery, is a prerequisite in modern biology, medicine, and biodiversity
research (D’haeseleer, 2006). TFBSs cover short DNA regions of about 10 bases in contrast
to the human genome which is about 3.3 billion bases long (Tompa et al., 2005). The com-
plexity of de–novo motif discovery even doubles due to the double strand property of the
DNA that allows TFBSs to be located on either of the two reverse complementary DNA
strands. Hence, studying gene regulation by time-consuming and expensive wet-lab exper-
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Figure 2.2: Initiation of transcription. Three transcription factors bind to the DNA to
mediate the binding of the basal transcription complex and hence the start of transcription.
The gene to transcribe consists of three exons (red) and two introns (yellow).

iments is neither economical nor practical, and the computational investigation of DNA
binding motifs and their binding sites seems to be feasible. New approaches for uncovering
TFBSs in genomic DNA using phylogenetic footprinting are studied in Sections 3.2.2
and 3.2.3 and in Sections 5.2 and 5.3.

2.1.3 Gene regulation by miRNAs

miRNAs are short single stranded non-coding RNAs with a length of about 22 bases. These
post–transcriptionally influence gene expression by binding to specific sites within the 3’-
untranslated region (UTR) of mRNAs, causing a decrease of gene expression by inhibiting
the translation of mRNAs or by directly causing degradation of mRNAs. miRNAs appear
to target about 60% of the human genes and other mammals and hence play a key role in
the development of organisms (Carrington et al., 2003).

Especially in medicine, the understanding of gene regulation by miRNAs is of great interest
since these have been linked to several human pathologies such as cardiovascular and
neurodegenerative diseases as well as human malignancies (Calin et al., 2006; Nelson et al.,
2008). Further, miRNAs are believed to be involved in many stages of cancer progression
by both promoting and suppressing oncogenesis, tumor growth, invasion, and metastasis
(Farazi et al., 2011; Small et al., 2011). The influence of miRNAs on gene regulation is
studied in Sections 3.1.1 and 4.1.
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2.2 Computer science background

This section gives a general introduction to the programming techniques and concepts used
in this thesis. Specifically, the first subsection will introduce the reader into Java and the
open source Java library Jstacs. The second subsection gives a short overview about R.
In the third subsection, the reader finds a brief overview to relational and non relational
databases.

2.2.1 The Java programming language and the Java library Jstacs

Java is one of the most popular programming languages in use (O’Grady, 2015). It is
concurrent, class-based, and object-oriented (Gosling et al., 2014). Java code needs to
be compiled into standard byte code before it can be executed on all platforms that sup-
port Java. Regarding this thesis, we use Java to implement DRUMS (Sections 3.1.2
and 4.2) and new approaches for de–novo motif discovery based on phylogenetic footprint-
ing (Sections 3.2.1-3.2.3 and 5.1-5.3).

Jstacs is an open source Java library for the statistical analysis of biological sequences de-
veloped by the groups Pattern Recognition and Bioinformatics at the Institute of Computer
Science of Martin Luther University Halle-Wittenberg and the Bioinformatics group of the
Julius Kuehn Institute (Grau, Keilwagen, et al., 2012). Jstacs provides convenient and
efficient classes for the representation of sequence data, many statistical models suitable
for the prediction of TFBSs in sequence data, ready to use numerical optimization proce-
dures, and several performance measures. The design of Jstacs is a strictly object-oriented
framework with a deep class hierarchy and there is a rich documentation. Hence, Jstacs is
easy-to-use, extensible, and customizable to a great extend.

In this thesis, my colleagues and I use Jstacs to implement prototypes of new approaches
for de–novo motif discovery based on phylogenetic footprinting (Sections 3.2.1-3.2.3 and
Sections 5.1-5.3). Specifically, we extend the class Sample from Jstacs by the capa-
bility to handle multi-dimensional sequence data (e.g. alignments). We the resulting
class PhyloSample also provides convenient methods for the processing of phylogenetic
data. Further, we implement several Models related to phylogenetic footprinting extending
Jstacs’ AbstractModel class. This allows us to use optimization procedures and perfor-
mance measures available in Jstacs and thus facilitates development and decreases the
probability of implementation bugs. Finally, we extend Jstacs’ numerical optimization
procedures by the capability to optimize parameters from phylogenetic trees and PFMs.
We make our implementations available in the PhyFoo project on GitHub1. Figure 2.3

1https://github.com/mgledi/PhyFoo
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shows a high-level overview regarding the usage of Jstacs for prototyping new approaches
for de–novo motif discovery based on phylogenetic footprinting.
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Figure 2.3: High level overview regarding the usage of Jstacs within the PhyFoo
project. Blue puzzle pieces denote Jstacs classes. Green puzzle pieces denote parts of the
PhyFoo project.
The phylogenetic footprinting (PF) related models in the PhyFoo project extend
Jstacs’ AbstractModel to allow the usage of Jstacs’ optimization procedures and per-
formance measures. This also includes the possibility to wrap PF related models in
Jstacs’ StrandModel to allow modelling TFBSs on both DNAs strands. Finally, Jstacs’
SingleHiddenMotifMixture class comprises methods to run an EM algorithm on the PF
related models. All PF related models need a PhyloSample as input whereas the
PhyloSample class extends Jstacs’ Sample class by the capability to handle multi-dimensional
sequence data.

2.2.2 The R programming language and Bioconductor

R is a programming language and software environment for statistical computing. In
contrast to Java, R is an interpreted language, i.e., R code does not need to be compiled and
hence can be executed at any time, allowing the developer to easily and quickly prototype
new computational methods. Another reason for the continuously growing popularity of
R among researchers is that many libraries exist providing, inter alia, a wide variety of
statistical and graphical techniques (Tippmann et al., 2015). At the end of 2016 the
Comprehensive R Archive Network (CRAN) package repository features 9699 available
packages. Another interesting feature for advanced users is that they can manipulate R
objects directly using other, more efficient programming languages like Java, C, C++, or
Phyton.
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R is extensively used in the field of bioinformatics and Bioconductor is an open development
software project that provides many high quality R packages regarding this field (R. C.
Gentleman et al., 2004). Specifically, the Bioconductor project provides over 1000 powerful
statistical and graphical packages for the analysis of genomic data. Popular examples are
the package genefilter for the filtering of genes from high–throughput data (Bourgon et
al., 2010), the package GenomicAlignments for the handling of short genomic alignments
(M. Lawrence et al., 2013), and the package seqLogo for the visualization of sequence
motifs (Bembom, n.d.). It also provides over 900 packages with annotation data for, e.g.,
human, mouse, yeast, or rockcress (Huber et al., 2015). A popular example in this group
is the biomaRt package which integrates BioMart data resources (e.g. Ensembl) with data
analysis software in Bioconductor (Durinck et al., 2005). Further, the Bioconductor project
contains more than 300 packages providing extensive experimental data of any kind, e.g.,
sequencing data or expression data.

I also want to mention the two projects Shiny1 and OpenCPU 2 that allow the integration
of R into a web-server and hence make it easy to publish and share work with other
researchers.

Regarding this thesis, R is used to implement DiffLogo (Sections 3.3.1, 3.3.2 and 6.1).
DiffLogo is available as R package in the Bioconductor software suite3 and via GitHub4.

2.2.3 Databases

Databases are used to store collections of data. The data are typically organized in a
structured way enabling fast and purposeful access. There exist hundreds of different
databases that can be divided into two groups.

The first group, relational databases, comprises databases that are based on the relational
model of data (Codd, 1970). That means, that data is organized in tables consisting of
rows and columns, where each row can be identified with a unique key. Data in a relational
database can be queried using structured query language (SQL). Relational databases are
used when the structure of the data is well defined, i.e., rely on a schema, and when the
data is mainly accessed using complex queries with many relations. Examples for relational
databases are MySQL, DB2, or PostgreSQL. Regarding this thesis, MySQL is used for the
implementation of miRGen (Sections 3.1.1 and 4.1).

The second group, not only SQL (NoSQL) databases or non relational databases, are
often simpler designed than relational databases and typically lack tabular relations. The

1https://shiny.rstudio.com/
2https://www.opencpu.org/
3http://bioconductor.org/packages/release/bioc/html/DiffLogo.html
4https://github.com/mgledi/DiffLogo
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data stored in NoSQL databases can be unstructured, i.e., NoSQL databases are typically
schema-free. Hence, these databases are typically faster, can store more data, have a higher
scalability, and are easier to maintain. Examples for NoSQL databases are MongoDB,
Cassandra, or BerkleyDB.

Sometimes, it is not sufficient to just choose a meaningful database or database manage-
ment system for a certain data handling problem. In these cases a comprehensive storage
concept is needed. One example for such a storage concept is the Disk Repository with
Update Management (DRUM ) concept which was initially proposed by Lee et al. to store
billions of URLs with meta-data using a single-server implementation (Lee et al., 2009).
The central idea of the DRUM concept is to maintain fast sequential read and write access
from and to the underlying storage device by holding and preparing as much records as
possible in memory.

In context of this thesis, my colleagues and I propose a NoSQL database based on the
DRUM concept for the management of large biological datasets on single desktop hardware
(Sections 3.1.2 and 4.2).

2.3 Bioinformatics background

This section introduces the reader into the fields of bioinformatics touched by this thesis
and its limitations. Specifically, this section includes a brief description of integration of bi-
ological data (Section 2.3.1) and ChIP-seq data analysis (Section 2.3.2). The reader will
also be introduced to the idea of de–novo motif discovery based on phylogenetic footprinting
(Section 2.3.3) and to the visualization of sequence motifs (Section 2.3.4).

2.3.1 Integration of biological data

With the continuously growing amount of biological data, the need to store, share, and
organize it also grows. The current NAR database issue comprises 62 articles describing
new biological databases and 112 articles describing updates on existing databases for
e.g., storing ChIP-seq data (Daniel J Rigden et al., 2016). The online molecular biology
database collection therewith now comprises 1685 biological databases (Daniel J. Rigden
et al., 2016).

Biological databases can be divided into primary and secondary databases. Primary
databases typically contain data of only one type. Their main purpose is completeness
and up-to-dateness. Secondary databases often combine data from primary databases and
typically already analyze the data depending on the corresponding requirements.
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My colleagues and I identified two limitations regarding biological databases. First, there
exists no database that provides comprehensive information about miRNA transcripts to-
gether with their regulation by transcription factors, expression profiles, SNPs, and miRNA
targets. We address this problem in Sections 3.1.1 and 4.1. Second, there exists no
database that is capable of storing billions of position-specific DNA-related records, per-
forming fast and resource saving requests, and running on a standard personal computer.
We propose a database which fulfills these requirements and we present our idea in Sec-
tions 3.1.2 and 4.2.

2.3.2 ChIP-seq data analysis

ChIP-seq is a powerful experimental method for identifying binding sites for TFs and other
proteins on a genomic scale (T. Bailey et al., 2013). The idea is to immunoprecipitate the
DNA-bound protein using a specific antibody. The bound DNA is then coprecipitated,
purified, and sequenced resulting in extremely large sets of raw data which necessitate
different post–processing steps like quality control, read mapping, and peak detection.
Figure 2.4 gives a high level overview over a ChIP-seq experiment.

cross-link & shear 

immunoprecipitate 

unlink protein and purify DNA 

sequencing 

DNA with  

interacting proteins 

DNA-protein complexes 

map to reference genome 

Figure 2.4: High level overview of a ChIP-seq experiment. The ChIP-seq experiment
starts with crosslinking a protein to DNA. The DNA-protein complexes are sheared by, e.g.
sonication, and immunoprecipitated using a specific antibody. Next, the proteins are unlinked
and the DNA fragments are purified. The purified DNA is sequenced and the resulting millions
of short DNA sequences are mapped against a reference genome.

The filtered ChIP-seq data is then typically subjected to de–novo motif discovery and
dozens of approaches exist for this purpose (Tran et al., 2014). Unfortunately, as many
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other techniques, motifs predicted by these computational approaches are distorted by the
presence of various biases, such as the ubiquitous binding-affinity bias (Håndstad et al.,
2011; Ross et al., 2013; Timothy L. Bailey, Krajewski, et al., 2013). My colleagues and I
propose an approach to estimate and diminish the BA bias in ChIP-seq data. We present
our idea in Sections 3.2.1 and 5.1.

2.3.3 De–novo motif discovery based on phylogenetic footprinting

The last decade has witnessed a spectacular development of sequencing technologies un-
leashing new potentials in identifying TFBSs (D. S. Johnson et al., 2007; I. V. Kulakovskiy
et al., 2010; Furey, 2012). Countless approaches exist for predicting TFBSs of known TFs
and for de–novo motif discovery of TFBSs in sequence data. There are many meaningful
ways to group these approaches. Tran et al. (Tran et al., 2014) grouped several mo-
tif finding web tools by the way the sequence motif is modelled. The resulting groups
are Profiles, consensus sequences (Consensuses), Projections, Graph representations, Clus-
tering of k-mers, and Tree-based data structures. Another way to distinguish different
approaches could be by learning principle like generative learning principles and discrim-
inative learning principles. A list with 36 different tools for motif discovery is available
in the supplement of the work of Zambelli et al. (2012). In this thesis, we divide ap-
proaches for de–novo motif discovery into phylogenetic approaches and non-phylogenetic
or single-species approaches.

Due to the increasing number of available genomes from different organisms and due to
ever-increasing computational resources, approaches that incorporate sequence informa-
tion from phylogenetically related species have become increasingly attractive. These ap-
proaches can typically be assigned to phylogenetic footprinting or phylogenetic shadowing.
The border between both is very blurry as phylogenetic footprinting is called phylogenetic
shadowing when a large number of closely related species is used.

The idea behind phylogenetic footprinting and phylogenetic shadowing is that regions
containing functional elements, like TFBSs, are considered to evolve more slowly than
regions without any functional elements. The reason for this is that mutations in functional
elements are more likely to be lethal than mutations in non-functional sequences. Thus, we
observe manifested mutations more often in regions without any functional elements than in
regions comprising functional elements. With other words, sequences comprising functional
elements are subject to a larger evolutionary pressure than sequences without functional
elements. To profit from this idea, approaches incorporating sequence information from
phylogenetically related species typically use alignments of orthologous sequences as well as
a phylogenetic tree that represents the relationship among the species of interest. Figure
2.5 illustrates this idea.
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Figure 2.5: Idea of phylogenetic footprinting. Sequences are denoted by black lines and
binding sites are depicted by blue boxes. The upper panel illustrates the idea of de–novo
motif discovery ignoring dependencies among orthologous sequences from phylogenetically
related species. Orthologous sequences are arranged in rows. All sequences among all species
are assumed to be statistically independent from each other.
The lower panel illustrates the idea of de–novo motif discovery incorporating dependencies
among orthologous sequences from phylogenetically related species. Each set of orthologous
sequences is now aligned. The sequences of an alignment are phylogenetically related, i.e.,
statistically dependent. The phylogenetic context is given by the phylogenetic tree on the left.

The above described idea helps methods incorporating phylogenetic dependencies to detect
functional elements like TFBSs with higher sensitivity compared to methods neglecting
phylogenetic dependencies (Moses et al., 2004; Gertz et al., 2006). Several tools using
alignments of orthologous sequences have been proposed to uncover TFBSs, e.g., Foot-
Printer (Blanchette et al., 2003), PhyME (Sinha et al., 2004), MONKEY (Moses et al.,
2004), PhyloGibbs (Siddharthan et al., 2005), Phylogenetic Gibbs Sampler (Newberg et al.,
2007), PhyloGibbs-MP (Siddharthan, 2008), and MotEvo (Arnold et al., 2012).

All of these approaches use a phylogenetic tree with predefined substitution probabilities
as preliminary input, but none of them investigates the influence of different phylogenetic
trees and different substitution probabilities on classification performance and motif pre-
diction on ChIP-seq data. My colleagues and I fill this knowledge gap in Sections 3.2.2
and 5.2. Another limitation of these approaches is that they neglect intra–motif dependen-
cies, although it has been shown that more complex motif models that take into account
intra–motif dependencies outperform simpler motif models like the position weight matrix
(PWM) model. We address this problem in Sections 3.2.3 and 5.3.
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2.3.4 visualization of sequence motifs

An important task in research is the visualization of results and sequence logos are the
de facto standard for visualizing sequence motifs obtained from de–novo motif discovery
(Schneider et al., 1990). A sequence logo represents the characteristics of each motif
position by the two properties stack height and symbol height within a stack. The stack
height is proportional to the information content of the symbol distribution and the symbol
height is proportional to the degree of symbol abundance. Figure 2.6 shows an example
of two similar sequence logos of the TF CTCF.
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Figure 2.6: Sequence logos of the CTCF motifs from the cell lines H1-hESC (left)
and HUVEC (right). The two sequence logos are highly similar in their conservation profile
(height of stacks) and nucleotide preferences at the individual motif positions.

Sequence logos are used by researchers to interpret findings, document work, share knowl-
edge, and present results. However, comparing multiple sequence logos by visual inspec-
tion is tricky, especially when the sequence motifs to compare are highly similar as in
Figure 2.6. My colleagues and I address this problem in Sections 3.3.1 and 6.1.

2.4 Research objectives

The previous three sections introduced the reader to molecular biology, computer sci-
ence, and bioinformatics. Six limitations in fields “data acquisition and data preparation,”
“de–novo motif discovery using phylogenetic footprinting,” and “visualisation of sequence
motifs” were shown, which my colleagues and I wish to address as follows.

First, we wish to improve knowledge sharing in the field of miRNA induced gene regulation
and we wish to develop a new approach for the efficient storage of sequence related data
with standard desktop hardware. Second, we wish to develop new approaches for de–novo
motif discovery based on phylogenetic footprinting. Specifically, we propose an approach
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based on phylogenetic footprinting to detect and correct the ubiquitous BA bias in ChIP-seq
data. Further, we systematically study the influence of phylogenetic trees with different
substitution probabilities on the classification performance of phylogenetic footprinting
using synthetic and real data. Finally, we extend phylogenetic footprinting by the capability
of taking into account intra-motif dependencies. Third, we wish to improve the comparative
visualization of sequence motifs.

An important task in bioinformatics is the prediction of TFBSs in sequence data. This
task typically starts with data acquisition and data preparation, e.g., sequence data are
obtained from a ChIP-seq experiment. After transforming the data into an appropriate
format, de–novo motif discovery is performed and putative TFBSs are predicted. Finally,
the results are visualized and compared to related work. With this thesis, I wish to
contribute to each of these three steps.
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3 Context of publications
This chapter introduces the reader to the articles assembling this thesis. As indicated
in Section 2.4, these articles can be divided into the three groups “Data acquisition
and data preparation,” “De–novo motif discovery using phylogenetic footprinting,” and
“Visualisation of sequence motifs.” With all six publications and the one work-in-progress
article my colleagues and I want to contribute to the understanding of the process of gene
regulation and its evolution. Figure 3.1 shows the applicability of the six peer reviewed
publications and the one work-in-progress article and their relatedness to the process of
gene regulation.
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Figure 3.1: Articles of this thesis in context of gene expression. The first column
summarizes the process of gene regulation. The second column (red) shows the two publica-
tions related to “Data acquisition and data preparation”. The third column (blue) shows the
three publications related to “De–novo motif discovery using phylogenetic footprinting”. The
fourth column (green) shows the publications and the one work-in-progress article related to
“Visualisation of sequence motifs”.

Data acquisition and data preparation are essential and preliminary tasks in all natural
sciences. In the context of this thesis it would be impossible to perform phylogenetic
footprinting without acquiring sequences from databases or similar sources and without
aligning them in a preprocessing step. Further, the comparative visualization of sequence
motifs using DiffLogo would be hardly possible without databases providing sequence
motifs. Publications presented in this thesis related to this “Data acquisition and data
preparation” are “miRGen 2.0: a database of microRNA genomic information and reg-
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ulation” and “DRUMS: Disk Repository with Update Management and Select option for
high throughput sequencing data”. Regarding the process of gene regulation, miRGen sup-
ports researchers that are interested in miRNA regulation and miRNA function providing
miRNA transcripts with target genes, SNPs, TFBSs in near distance, and prominent lit-
erature sources. Whereas DRUMS is applicable when dealing with hundred millions up
to billions of DNA related information, like SNPs, TF binding site probabilities or human
endogenous retrovirus (HERV) occurrences in the human genome.

De–novo motif discovery is an essential task in bioinformatics and a preliminary for under-
standing the process of gene regulation. Phylogenetic footprinting comprises approaches for
de–novo motif discovery that take into account sequences of at least two phylogenetically
related species. Publications presented in this thesis related to “De–novo motif discovery
using phylogenetic footprinting” are “Detecting and correcting the binding-affinity bias in
ChIP-seq data using inter-species information”, “Unrealistic phylogenetic trees may improve
phylogenetic footprinting”, and “Combining phylogenetic footprinting with motif models
incorporating intra-motif dependencies”. All three proposed approaches may lead to an
improved prediction of TFBSs and thus advance our understanding of transcriptional gene
regulation and its evolution.

The visualization of results is an essential task in all sciences and it is needed to interpret
findings, document work, share knowledge, and present results. Work related to “Visu-
alisation of sequence motifs” in this thesis are the publication “DiffLogo: a comparative
visualization of sequence motifs” and the work-in-progress article “WebDiffLogo: A web-
server for the construction and visualization of multiple motif alignments”.

The following subsections will introduce the reader into the publications and the one work-
in-progress article comprising this work (Figure 3.1) and provide for each work a summary
on the addressed objectives, the used methods, and the results. The full articles are
presented in Chapters 4, 5, and 6.

3.1 Data acquisition and data preparation

The next two subsections provide a short summary of our publications “miRGen 2.0: a
database of microRNA genomic information and regulation” and “DRUMS: Disk Reposi-
tory with Update Management and Select option for high throughput sequencing data”.
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3.1.1 miRGen 2.0: a database of microRNA genomic information and
regulation

The main objective of this work is to provide miRNA transcripts with related information
to researchers of diverse disciplines who are interested in the regulation and function of
miRNAs. Therefore, we collect miRNA transcripts from prominent literature sources and
enrich these transcripts with information about TFBSs near the transcription start sites
(TSS), miRNA expression profiles, and SNPs in miRNA hairpins.

Methods

In this work, we collect 812 human miRNA coding transcripts and 386 mouse miRNA
coding transcripts from four literature sources. We identify for each miRNA primary tran-
script putative TFBSs in the region 5 kb upstream and 1 kb downstream of the TSS using
MatchTM (Kel et al., 2003) and all vertebrate PWMs from Transfac 6.0 (Matys et al.,
2003) minimizing the number of falsely predicted TFBSs. We provide for each predicted
TFBS the matrix similarity score and the core similarity score calculated by MatchTM.
We also identify miRNA expression profiles using the mammalian miRNA expression at-
las (Ozsolak et al., 2008). We integrate data about SNPs located within the genomic
positions corresponding to miRNA hairpins and TFBSs from the UCSC table browser
(Karolchik et al., 2009). All data of the miRGen repository are stored using the relational
database management system MySQL. Figure 3.2 shows the relational schema of the
database.

Results, discussion, and conclusions

Over 800 miRNA transcripts with TFBSs near their TSS, miRNA expression profiles, and
SNPs in the miRNA hairpins are stored in the miRGen repository and are accessible via a
user-friendly interface that allows searches for miRNAs and/or TFs of interest. The inte-
gration of the different information sources enables in-depth studies of miRNAs functions
and contributes to the understanding of post-transcriptional gene regulation. Currently,
miRGen is cited by more than 100 articles, specifically in the field of cancer research (Juan
et al., n.d.; H.-D. Huang, 2012; Mar-Aguilar et al., 2016) and hence contributes to cancer
diagnostics and therapeutics.

The TFBS annotations in miRGen from 2009 could be improved by using more sophisti-
cated algorithms and motif models (instead of the PWM motif model) for the prediction
of TFBSs. In addition, http://www.factorbook.org/ (J. Wang et al., 2012) meanwhile
provides extensive information for 167 TFs and their PWM representations for many exper-
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pathways through the application DIANA-mirPath (15).
Figure 3 shows an overview of the interface and highlights
links to external databases—UCSC genome browser (13),
iHop (16), dbSNP (14), mirBase (11).

DISCUSSION

This version of miRGen is the first attempt to build
a widely accessible and user-friendly database that
connects TFs and miRNAs through putative and experi-
mentally supported functional relationships. The
connections identified in the database will further our
understanding of the TF-mediated regulation of miRNA
genes, and pave the way for the mapping of the interplay
between TFs and miRNAs as regulatory molecules.
The identification of SNPs on miRNA locations and
their corresponding TFBSs, as well as the expression
profiles of miRNAs can improve our insight into the

involvement of miRNAs in developmental processes
and disease.

Deregulation of TF-mediated gene expression has been
shown to extensively affect protein coding genes, and lead
to disease (17,18). MiRNA expression levels have also
been shown to change significantly in different disease
states (19,20). The availability of both these resources
in the same database will allow researchers to identify
regulatory elements, such as TFs that may affect the
expression of miRNAs. For this reason, we believe
miRGen 2.0 will be an important resource for researchers
of diverse disciplines interested in miRNA regulation and
function.

AVAILABILITY

The miRGen database will be continuously maintained
and freely available at http://www.microrna.gr/mirgen/.

Figure 2. The miRGen database schema. TFs (top right) bind through TF binding sites to miRNA genes. miRNA genes (top) contain miRNA
hairpins that signify the genomic location of the mature miRNA-miRNA* duplex. miRNA hairpins are processed into mature miRNAs. Usually,
one miRNA hairpin produces two mature miRNAs, but a mature miRNA can be produced by more than one hairpin in different genomic locations.
Both TFBSs and miRNA hairpins are genomic features that can contain SNPs. Mature miRNAs are associated with their expression levels in
different tissues and cell types.

D140 Nucleic Acids Research, 2010, Vol. 38, Database issue

Figure 3.2: The miRGen database schema. TFs (top left) activate miRNA genes
(top center) by binding to TFBSs (middle left). miRNA genes (top center) contain miRNA
hairpins (middle right) that signify the genomic location of the mature miRNA-miRNA*
duplex. miRNA hairpins are processed into mature miRNAs. Typically, one miRNA hairpin
produces two mature miRNAs, but a mature miRNA can be produced by more than one
hairpin from different miRNA genes. Both TFBSs and miRNA hairpins are genomic features
that can contain SNPs. Mature miRNAs are associated with expression levels in various
tissues and cell types.
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iments from the ENCODE project (E. P. Consortium et al., 2004). Since many researchers
use data from the ENCODE project for their research it would be of advantage if miRGen
would use PWMs predicted on the very same data.

This work refers to version 2.0 of miRGen. The current version of miRGen is 3.0. miRGen
is freely available at http://www.microrna.gr/mirgen/.

3.1.2 DRUMS: Disk Repository with Update Management and Select
option for high throughput sequencing data

An important task of bioinformatics in the scope of computational biology projects is the
efficient and well-organized data management. In fact often neglected, this issue becomes
essential when dealing with many data sets that consist of millions or even billions of
records. In addition, researchers from biology and biochemistry prefer to keep and analyze
these data sets on a standard desktop machine for reasons of data privacy, limited computer
skills, and convenience. Noble, 2009 describes how to organize data in computational
biology projects and Wilson et al., 2014 describes best practices for scientific computing.
In this work we tackle the problem of handling large data sets on a single standard desktop
machine.

One kind of data extensively used in bioinformatics is position specific data related to
DNA sequences. Examples are SNPs (Single Nucleotide Polymorphism 2012), transcription
factor binding affinities, and probabilities (M. Bulyk, 2003; Nguyen et al., 2009), RNAseq
data (Z. Wang et al., 2009; Malone et al., 2011), and mapping data from BLAST (M.
Johnson et al., 2008). These data are essential for the understanding of biological and
biochemical processes. We generalize this kind of data by the term position-specific DNA
related data (psDrd).

Due to the rapid development of sequencing technologies and the ever-increasing number of
tools and algorithms for analysing, manipulating, and combining psDrd, the data volume
is growing exponentially. Thus, requesting data becomes challenging and expensive and is
often tackled using specialised and/or distributed hardware. The objective of this work is
the development of a data repository that is capable of storing billions of records of psDrd,
performing fast and resource saving requests, and running on a single standard desktop
hardware.

Methods

psDrd records have the following three characteristics that are important for finding or
developing a suitable data repository. First, a psDrd record is representable by a key-value
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pair, consisting of a unique key that defines a position on a sequence and a value that
is associated to this sequence position. Second, all psDrd records of the same kind are
storable using the same amount of memory. Third, researchers who work with psDrd are
usually interested in all records near a certain sequence locus and the exact position of this
locus is typically unknown.

By literature research we found the DRUM concept which was designed to store billions
of URLs with meta data when crawling the world wide web (Lee et al., 2009). DRUM
is already capable of storing large collections of key-value pairs by supporting fast bulk
inserts without generating duplicate entries. Unfortunately, DRUM was not designed to
request data in an efficient manner. We extended the DRUM concept by the capability of
requesting a single record by key or a set of records in an interval between two keys. We
developed the open-source Java library DRUMS meeting our requirements.

During the implementation of DRUMS, we focused on decoupling I/O-processes from mem-
ory processes to avoid blocking single components. We made extensively use of the proto-
type design pattern and the flyweight design pattern to reduce object instantiations. This
relieves Java’s object heap and hence dramatically reduces the number of runs of Java’s
garbage collector. Figure 3.3 gives a high level overview of the insert process and the
select process.

Results, discussion, and conclusions

We compared the performance of our implementation of DRUMS to the widely spread
standard database MySQL on two data sets, considering database inserts, random lookups,
and random range selects. The smaller data set contains SNPs for 251 accessions of the
reference plant Arabidopsis thaliana. The larger data set represents a mapping of over 7000
HERV-fragments to the human genome which comprises more than 800 million records.
In each test, DRUMS was considerably faster than MySQL by a factor of 2 up to a factor
of 15456.

Based on this work, we added an additional feature to DRUMS which has not been eval-
uated systematically nor published yet. Namely, we added the capability of performing
state dependent updates without rewriting or reorganising the files on disk. For example,
to increment a counter in a traditional key-value store, first the counter is requested by
key, then the fetched counter is incremented, and finally the incremented counter is writ-
ten back as a new key-value pair. In contrast, DRUMS is capable of manipulating the
corresponding data directly on disk resulting in a dramatic performance increase.

DRUMS is freely available at http://mgledi.github.io/DRUMS/.
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Figure 3.3: High level overview of the insert (left) and the select process (right)
in DRUMS.
Insert process (left): Key-value pairs are sent to DRUMS. The incoming records are dis-
tributed between k buffers (memory buckets), based on their key. If a bucket Bi exceeds a
predefined size or overall memory limitations are reached, a synchronisation process is instan-
tiated.
Select process (right): A request is sent to DRUMS, typically providing a lower and an
upper key. The following four steps are performed to get the requested records. 1) The bucket
of interest is determined. 2) The correct chunk of the first requested record is identified, using
a sparse index. 3) The position of the requested key-value pair is determined. 4) A sequential
read is performed until the requested range is completely processed.

3.2 Predicting transcription factor binding sites using phylo-
genetic footprinting

The next three subsections provide a short summary of our publications “Detecting and
correcting the binding-affinity bias in ChIP-seq data using inter-species information”, “Un-
realistic phylogenetic trees may improve phylogenetic footprinting”, and “Combining phy-
logenetic footprinting with motif models incorporating intra-motif dependencies”.

A common mathematical starting point for all three publications is the statistical model
for a motif bearing alignment. The probability that the alignment Xn of length Ln is
generated by the PFM as a motif bearing alignment is:

p(Xn|θ) =
Ln−W+1∑
`n=1

1

Ln −W + 1

Ln∏
u=1

∑
Y un

p(Y u
n |`n, θ)

O∏
o=1

p(Xu,o
n |Y u

n , `n, θ) (3.1)

where O denotes the number of species, W denotes the length of the motif, `n denotes the
position of the motif, Xu,o

n denotes the u-th symbol of the o-th sequence of the n-th align-
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ment, and Y u
n denotes the u-th symbol in the ancestral sequence. θ denotes the set of model

parameters, namely the topology of the phylogenetic tree, the substitution probabilities,
and the evolutionary model with its stationary probabilities for the flanking regions as well
as for the binding site regions. I refer this formula in the following subsections.

3.2.1 Detecting and correcting the binding-affinity bias in ChIP-Seq
data using inter-species information

The computational investigation of genomic regions containing TFBSs is a prerequisite for
elucidating the process of gene regulation. ChIP-seq has become the major technology to
uncover genomic regions containing TFBSs and countless approaches exist for predicting
motifs from these genomic regions. It is known that ChIP-seq data and similar experimental
data is contaminated with false positive genomic regions and there is evidence that there is
an enrichment with high-affinity binding sites. Both factors potentially distort the results
of de novo motif prediction which would affect all downstream analyses (Ross et al., 2013;
Park et al., 2013; Teytelman et al., 2013; Elliott et al., 2015).

The contamination with false positive genomic regions leads to the contamination bias (Tim-
othy L. Bailey, Krajewski, et al., 2013) and thus to the prediction of artificially softened
motifs, whereas the enrichment of sequences with high-affinity binding sites leads to the
binding-affinity bias (Håndstad et al., 2011) and thus to the prediction of artificially sharp-
ened motifs. Most existing approaches for de novo motif prediction are capable of detecting
and correcting the contamination bias and it has been shown that this increases the qual-
ity of motif prediction considerably (Timothy L. Bailey and Elkan, 1995; Wilbanks et al.,
2010; Gomes et al., 2014).

The main objective of this work is to detect and correct the binding affinity bias and
to improve phylogenetic footprinting by extending a traditional PFM that already takes
into account the contamination bias by the capability to also take into account the BA
bias.

Methods

To our knowledge, it is impossible to detect the BA bias based on sequence data from
only one species, but detecting the BA bias appears to be possible using sequences from
phylogenetically related species. The key idea is that mutations decrease the effect of
BA bias in phylogenetically related species. Hence, the direct effect of the BA bias in
the reference species is stronger than the indirect effect of the BA bias in phylogenetically
related species. Under this assumption the information content of the predicted motif in the
reference species should be higher than the information content of the predicted motifs in

28



3.2 Predicting transcription factor binding sites using phylogenetic
footprinting

phylogenetically related species. More specifically, the information content of the predicted
motifs in the phylogenetically related species should decrease with the phylogenetic distance
from the reference species. The detailed idea and a toy example can be found in the section
"Using sequence information of phylogenetically related species to detect the binding-
affinity bias" of the corresponding article (Nettling et al., 2016).

We investigate our hypothesis on 2132 sequence alignments comprising human ChIP-seq
data of the five TFs CTCF, GABP, NRSF, SRF, and STAT1 with orthologous regions from
the monkey, dog, cow, and horse by comparing the degree of information content in species-
specific motifs. We propose a PFM capable of taking into account the contamination bias
(MC
−), the BA bias (M−BA), neither one or the other (M−−), or both (MC

BA). We model the
contamination bias using the popular zero or one occurrence of a binding site per sequence
(ZOOPS) model, which is widely used for de-novo motif discovery (C. E. Lawrence et al.,
1993; Redhead et al., 2007; Keilwagen et al., 2011; Agostini et al., 2014) and we model the
effect of the BA bias using the Boltzmann distribution from thermodynamics (Maza et al.,
1993). We transformed Formula 3.1 in a way that the statistical model of a motif bearing
alignment Xn of length Ln consisting of sequences from O species is defined as:

p(Xn|θ) =
Ln−W+1∑
`n=1

1

Ln −W + 1

Ln∏
u=1

p(Xu,1
n |`n, θ) (3.2)

∑
Y un ∈A

p(Y u
n |Xu,1

n , `n, θ) ·
O∏
o=2

p(Xu,o
n |Y u

n , `n, θ). (3.3)

The inner factors of the sum are defined as follows:

p(Xu,1
n |`n, θ) =

π
a
0 , if u < `n or u ≥ `n +W
(πau−`n+1)

β∑
b∈A(πbu−`n+1)

β , if `n ≤ u < `n +W
(3.4)

p(Yn = a|Xu,1
n = b, `n, θ) =

{
γ1 · πa0 + (1− γ1) · δa=b , if u < `n or u ≥ `n +W

γ1 · πau−`n+1 + (1− γ1) · δa=b , if `n ≤ u < `n +W

(3.5)

p(Xu,o
n = a|Yn = b, `n, θ) =

{
γo · πa0 + (1− γo) · δa=b , if u < `n or u ≥ `n +W

γo · πau−`n+1 + (1− γo) · δa=b , if `n ≤ u < `n +W

(3.6)

where πa0 denotes the probability of a base a in the background sequence, πaw denotes the
probability of a base a in the motif sequence, γo denotes the substitution probability from
the primordial species to species o.
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β denotes the inverse temperature from the Boltzmann distribution and quantifies the
degree of the BA bias in the reference species. We assume that a TF binds the binding
site B with a probability proportional to p(B|π)β−1. As B occurs in vivo with probability
p(B|π), it occurs in the set of immunoprecipitated sequences with a probability propor-
tional to p(B|π) · p(B|π)β−1 = p(B|π)β . A value for β greater than one indicates that the
ChIP-seq data set is affected by the binding-affinity bias, i.e., high-affinity binding sites
are over-represented.

In Supplementary Section 1 of the corresponding article and in Section 7.1.1 of this
thesis, the reader can find a detailed definition of the probabilistic model that is capable
of taking into account both the contamination bias and the BA bias. In the corresponding
article, we describe the PFM that is capable of taking into account the BA bias from the
perspective of the data generating process.

We measure the classification performance of the four models M−−, M
−
BA, M

C
−, and MC

BA

using 100 fold stratified repeated random sub-sampling validation. We calculate the in-
formation contents of the motifs predicted by the models taking into account the BA
bias and the models neglecting the BA bias. We use DiffLogo to investigate differences
in sequence motifs predicted by M−BA and MC

BA and the traditional motifs predicted by
M−− and MC

−.

Results, discussion, and conclusions

We found in case of all five TFs that the information contents of the human motifs are
significantly higher than the information contents of the motifs from the monkey, dog,
cow, and horse. We also found that the correction of the BA bias is possible using the
proposed PFM leading to a more accurate inference of sequence motifs and to a more
precise prediction of TFBSs. Interestingly, we found that the enrichment of ChIP-seq
data with high-affinity binding sites causes a distortion of DNA binding motifs that is
even stronger than the distortion caused by the contamination bias. The comparison of
novel and traditional motifs showed small but noteworthy differences, suggesting that the
refinement of traditional motifs from literature and databases might lead to the inference
of novel binding sites, cis-regulatory modules, and gene-regulatory networks and may thus
advance our attempt of understanding transcriptional gene regulation as a whole.

3.2.2 Unrealistic phylogenetic trees may improve phylogenetic footprint-
ing

Two prerequisites for most phylogenetic footprinting algorithms are multiple sequence align-
ments (MSAs) of the DNA regions to analyse and phylogenetic trees, including substitution
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probabilities attached to the branches. These phylogenetic trees are used to quantify the
evolution of functional elements and their flanking DNA in the input MSAs. Hence, the
choice of the phylogenetic trees and the substitution probabilities has a strong influence
on the performance of phylogenetic footprinting and hence on the prediction of TFBSs (Kc
et al., 2011). Typically, the phylogenetic trees used by nature to evolve the DNA regions of
interest have been lost and are unknown. Estimating appropriate phylogenetic trees with
appropriate substitution probabilities is hardly possible (Blanchette et al., 2003), so that
the needed information is often simply taken from literature or guessed.

There are many articles that state that phylogenetic footprinting improves motif prediction
but none of them investigates the influence of different phylogenetic trees on classification
performance and motif prediction on non-synthetic data (Moses et al., 2004; Gertz et al.,
2006; Clark et al., 2007; Hardison et al., 2012). Thus, the main objective of this work
is to study systematically the influence of the phylogenetic trees on the performance of
phylogenetic footprinting.

Methods

To systematically investigate the influence of phylogenetic trees on the performance of phy-
logenetic footprinting we made the following simplification. The PFM uses a star topology
instead of a more complex phylogenetic tree with all branches having the same length, i.e.,
the substitution probability γ is the same for all species. With this simplification it is now
possible to investigate the performance of a PFM as function of the substitution proba-
bility γ, where small γ encode closely phylogenetic relations and large γ encode loosely
phylogenetic relations. The statistical model of a motif bearing alignment looks different
to Formula 3.1 but is the same. We extracted the parameter γ from the set of parameter
set θ. The probability that the alignment Xn of length Ln consisting of sequences from O

observed species can be calculated as follows:

p(Xn|γ, θ) =
Ln−W+1∑
`n=1

1

Ln −W + 1

Ln∏
u=1

∑
Y un

p(Y u
n |`n, γ, θ)

O∏
o=1

p(Xu,o
n |Y u

n , `n, γ, θ) (3.7)

The inner factors are defined as follows:

p(Y un |`n, γ, θ) =

{
πa0 if u < `n or u ≥ `n +W

πau−`n+1 if `n ≤ u < `n +W
(3.8)

p(Xu,k
n |Y un , `n, γ, θ) =

{
γ × πa0 + (1− γ)δa=b if u < `n or u ≥ `n +W

γ × πau−`n+1 + (1− γ)δa=b if `n ≤ u < `n +W
(3.9)
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where πa0 denotes the probability of a base a in the background sequence, πaw denotes the
probability of a base a in the motif sequence, γk denotes the substitution probability from
the primordial species to species k. The complete statistical model and all parameters are
explained in Methods 1 of the corresponding article.

We investigate the classification performance and the likelihood of the PFM for γ =

{0.05, 0.1, . . . , 1.0} on human ChIP-seq data of the five TFs CTCF, GABP, NRSF, SRF,
and STAT1 enriched with orthologous regions from the monkey, dog, cow, and horse as
well as on synthetic data generated using a PFM with γ = 0.2. We further compare the
classification performance of the three PFMs using a tree from literature (Arnold et al.,
2012) (Mtree

lit ), a star topology with the maximum likelihood estimated γ (Mstar
ML ), and a

star topology with γ = 1 (Mstar
γ=1.0).

Results, discussion, and conclusions

When studying the likelihood, we found that on synthetic data the best likelihood is
achieved when using the same phylogenetic tree for learning as for data generation. We
also observed that on organic data the best likelihood is achieved when using realistic
phylogenetic trees indicating that we are capable of identifying reasonable substitution
probabilities for synthetic and for real data using the maximum-likelihood principle.

When investigating the classification performance, we found that on synthetic data the best
classification performance is achieved when using the same phylogenetic tree for learning
as for data generation. In contrast, we found that on organic data unrealistic phylogenetic
trees often lead to more accurate predictions of transcription factor binding sites than re-
alistic phylogenetic trees. We also observed that Mstar

γ=1.0 significantly outperforms Mstar
ML

and Mtree
lit . With other words, choosing unrealistic model assumptions with phylogenetic

footprinting – namely using a star topology with unrealistic large substitution probabili-
ties – may yield higher classification performances than using realistic phylogenetic trees
with more realistic substitution probabilities.

Although we have no concrete explanation for this observation, we speculate that evolution-
ary effects like heterogeneous and heterotachious substitution probabilities among different
DNA positions are violating model assumptions like the assumption of time reversibility.
Further, these effects might already have lead to the construction of incorrect or at least
partially erroneous MSAs. PFMs using a star topology with substitution probabilities of
γ = 1 seem to be more robust toward these effects than PFMs using realistic phyloge-
netic trees with realistic substitution probabilities. Hence, we need to give the strange but
practical recommendation to use PFMs based on these unrealistic model assumptions until
there are more appropriate PFMs that take into account heterogeneity and heterotachy as
well as putative misalignments in the input MSAs.
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3.2.3 Combining phylogenetic footprinting with motif models incorpo-
rating intra-motif dependencies

As stated repeatedly in this work, de-novo motif discovery is a challenging task in bioin-
formatics and many different approaches exist for solving this task. These approaches can
be divided in two groups.

The first group comprises approaches using sequences of only one species, which we refer
to as one-species approaches. Within this group, a variety of statistical models are used for
the binding of TFs to their TFBSs, ranging from the simple PWM model, neglecting intra-
motif dependencies, to more complex models, taking into-account intra-motif dependencies
(Grau, Posch, et al., 2013; I. Kulakovskiy et al., 2013; Ma et al., 2014; Alipanahi et al.,
2015; Siebert et al., 2016).

The second group comprises approaches using sequences of at least two phylogenetic related
species, which is known as phylogenetic footprinting. Within this group, statistical models
are used that are capable of modeling the binding of TFs to their TFBSs and their evolution
simultaneously (Blanchette et al., 2003; Sinha et al., 2004; Moses et al., 2004; Siddharthan
et al., 2005; Neph et al., 2006; Newberg et al., 2007; Siddharthan, 2008; Arnold et al.,
2012).

It has been shown that more complex motif models taking into account intra-motif depen-
dencies outperform simpler motif models like the PWM model and that models that take
into account phylogenetic dependencies also outperform the PWM model (M. L. Bulyk
et al., 2002; Salama et al., 2010; Eggeling et al., 2015). One-species approaches neglect
phylogenetic information, whereas phylogenetic footprinting, which incorporates this infor-
mation, neglects intra-motif dependencies.

The main objective of this work is to improve phylogenetic footprinting by taking into ac-
count base dependencies, i.e., developing an approach for de-novo motif discovery that takes
into account both phylogenetic dependencies and base dependencies simultaneously.

Methods

We extend a PFMmodel based on the Felsenstein evolutionary model (Felsenstein, 1981) by
the capability of taking into account base dependencies resulting in a model that is capable
of taking into account base dependencies and phylogenetic dependencies simultaneously.
We use Formula 3.1 as starting point and split up the product

∏Ln
u=1 that takes into

account the whole alignment into three products, namely the region left of the motif, the
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motif region, and the region right of the motif. The statistical model of a motif bearing
alignment Xn of length Ln consisting of sequences from O species is defined as:

p(Xn, θ) =

Ln−W+1∑
`n=1

1

Ln −W + 1

O∏
o=1

p(Xi(`n),o
n |`n, θ) · p(Xm(`n),o

n |`n, θ) · p(Xe(`n),o
n |`n, θ) (3.10)

The inner factors are defined as follows:

p(Xi(`n),o
n |`n, θ) =

∏
u∈{1,...,`n−1}

πa,ζ0 (left flanking region) (3.11)

p(Xm(`n),o
n |`n, θ) =

∏
u∈{`n,...,`n+W−1}

πa,ζu−`n+1 (motif region) (3.12)

p(Xe(`n),o
n |`n, θ) =

∏
u∈{`n+W,...,Ln}

πa,ζ0 (right flanking region) (3.13)

where the probability of a base a in the background sequence provided that its predecessors
are in joint state ζ is given by the parameter πa,ζ0 and the probability of a base a in the
motif sequence provided that its predecessors are in joint state ζ is given by the parameter
πa,ζw . The complete statistical model and all parameters are explained in Methods 2 of
the corresponding article.

We study the proposed PFMs on datasets based on ChIP-seq data of 35 TFs. First, we
measure the degree of intra-motif dependencies captured by the proposed PFMs by com-
puting the position–wise mutual information (mutual information). We call the resulting
vector of mutual information values mutual information profile. For each of the 35 TFs,
we compute the mutual information profiles of orders 1 and 2 from the motifs obtained by
the PFMs of order 2. Moreover, we study for each TF the similarity of the species–specific
motifs using DiffLogoand the similarity of the species–specific mutual information profiles
using statistical tests.

Second, we study the classification performance of the PFMs of orders 0, 1, and 2 using
25–fold stratified repeated random sub-sampling validation. We calculate and show for
each TF the relative increase of the PFMs of orders 1 and 2 relative to the PFM of
order 0 Moreover, we compare the classification performance of phylogenetic footprinting
and one-species approaches when neglecting and taking into account base dependencies of
order 2.
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Results, discussion, and conclusions

First, we found for the studied TFs statistically significant intra-motif dependencies be-
tween neighboring bases at all positions and we found even stronger intra-motif depen-
dencies between dimers and their neighboring bases at all positions. We excluded the
possibility that the captured intra-motif dependencies are an artifact resulting from a mix-
ture of different species–specific motifs.

Second, we found that modeling base dependencies of order 1 improves phylogenetic foot-
printing for 31 TFs and we found that modeling base dependencies of order 2 improves
phylogenetic footprinting for all 35 TFs and always outperforms modeling base dependen-
cies of order 1. By comparing the classification performances of the four cases of one-species
approaches and phylogenetic footprinting when neglecting and taking into account base de-
pendencies, we found that taking into account both phylogenetic dependencies and base
dependencies outperforms the other three approaches in 31 of the 35 TFs.

These findings suggest that combining phylogenetic footprinting with motif models incor-
porating intra-motif dependencies may lead to an improved prediction of TFBSs and thus
advance our understanding of transcriptional gene regulation and its evolution.

3.3 Visualization of sequence motifs

The next two subsections provide a short summary of the publication “DiffLogo: a com-
parative visualization of sequence motifs” and the work-in-progress article “WebDiffLogo:
A web-server for the construction and visualization of multiple motif alignments”.

3.3.1 DiffLogo: A comparative visualization of sequence motifs

An important task in bioinformatics is the visualization of results from the analysis of
biological data. In the field of de-novo motif discovery and TFBSs prediction, sequence
motifs are used to represent functional regions of biological sequences, e.g., TFBSs, splice
sites in pre-mRNAs, miRNA binding sites, or phosphorylation sites of proteins. Sequence
logos are the de facto standard for the visualization of these sequence motifs and are
essential for researchers to interpret findings, document work, share knowledge, and present
results (Schneider et al., 1990).

Due to the increasing number of datasets and due to the increasing number of approaches
for de-novo motif discovery, the research focus has shifted from inferring only “the” sequence
motif towards comparative analyses to study the reasons for, e.g., the differential binding
of TFBS under different conditions. Sequence logos are not suited for the discovery of the,
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sometimes subtle, differences between, e.g., cell type - specific sequence motifs resulting
from the differential binding of the TF of interest.

Initial approaches for comparative visualization of sequence motifs can be found in iceLogo
(Colaert et al., 2009; Maddelein et al., 2015), MotifStack (Jianhong Ou, 2014), STAMP
(Mahony et al., 2007), and Two Sample Logo (Vacic et al., 2006). None of them allows a
configurable and comparative visualization of multiple sequence motifs. Table 1 in “Diff-
Logo: a comparative visualization of sequence motifs” shows an comparative overview of
the main features of each tool. The objective of this work is to develop an easy to use and
configurable tool for the comparative visualization of multiple sequence motifs.

Methods

Inspired by the intuitive sequence logo approach, we propose the difference logo to present
differences between two sequence motifs. A difference logo depicts position-wise differences
between two motifs of length L by L symbol stacks. The height of a stack is proportional to
the degree of symbol distribution dissimilarity and the height of a symbol is proportional
to the degree of differential symbol abundance. In case of N > 2 motifs, we take into
account all N × (N − 1) pair-wise motif comparisons and arrange the resulting difference
logos in a N × N grid with one row and one column for each motif. Similar motifs are
placed in nearby rows and columns.

Since the software environment R already has a large community among researchers from
natural sciences, we implement this idea using R and make it publicly available in the
R package DiffLogo. By default, DiffLogo uses the Jensen-Shannon divergence to calcu-
late symbol distribution differences depicted by the height of the symbol stack at posi-
tion `:

H` =
1

2

∑
a∈A

p`,a log2
p`,a
m`,a

+
1

2

∑
a∈A

q`,a log2
q`,a
m`,a

,

where m`,a =
p`,a+q`,a

2 .

The height of a symbol in stack ` is by default determined by the probability difference
normalized by the sum of absolute probability differences at position `:

H`,a = H` ·


p`,a−q`,a∑

a′∈A |p`,a′−q`,a′ |
if p` 6= q`

0 otherwise.
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3.3 Visualization of sequence motifs

DiffLogo orders sequence motifs using hierarchical clustering and optimal leaf ordering to
ensure that similar motifs are close to each other in the N × N grid of difference logos.
The viewer is able to overlook the overall motif differences by the background color of each
difference logo and a leaf-ordered cluster tree on top of the grid.

Results, discussion, and conclusions

We developed the R package DiffLogo for the visualization of differences between various
types of sequence motifs. We demonstrated the utility of DiffLogo using binding motifs of
the human insulator CTCF from different cell types and successfully reproduced findings
from literature. In addition, we applied DiffLogo to E-box motifs of three basic helix-loop-
helix transcription factors and to the F-Box binding domain from three different species
groups revealing noteworthy motif differences.

Using DiffLogo, it is easily possible to compare motifs from different sources. Hence,
DiffLogo facilitates decision making, knowledge sharing, and the presentation of results.
The DiffLogo package comprises example data, example code, and further documentation
and is freely available at Bioconductor1. In 2016, DiffLogo was downloaded more than 100

times per month and more than 1000 times in total.

3.3.2 WebDiffLogo: A web-server for the construction and visualization
of multiple motif alignments

In the previous work (Nettling, Treutler, Grau, et al., 2015), we presented DiffLogo, an
R package developed for the comparative visualization of sequence motifs. We think that
DiffLogo is already easy to use, but we know that not all researches have access to hardware
with R and DiffLogo installed and that not all researches have enough technical background
or the time to use R and DiffLogo without high effort. Another hindering preliminary is
that all input sequence motifs must have the same length and the same orientation in case
of TFBSs to get meaningful difference logos. We experienced that this is often hard to
accomplish, especially for users that do not have any background in bioinformatics.

The objective of this work is to make DiffLogo usable to researchers that are less expe-
rienced with the R programming language and to researchers without any background in
bioinformatics. First, we extend DiffLogo by the capability to align sequence motifs. Sec-
ond, we integrate DiffLogo into the intuitive to use web-server WebDiffLogo accessible via
http://difflogo.com.

1http://bioconductor.org/packages/release/bioc/html/DiffLogo.html
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Methods

First, the multiple motif alignment is computed by adjusting the relative shifts and relative
orientations of the single sequence motifs based on a heuristic algorithm using the UPGMA
algorithm and an extension of the sum-of-pairs score from symbols to conditional proba-
bility distributions (Sokal, 1958; Wheeler et al., 2007). We adapted the visualization of
difference logos indicating unaligned flanking regions with a gray background. Further, all
sequence logos and difference logos in a table of difference logos are shown aligned. Thus, a
visual inspection of sequence logos and difference logos can be easily accomplished.

Second, we integrated DiffLogo into the web-server http://difflogo.com. Frontend and
backend are fully implemented using the Javascript library ReactJS 1. The front-end is
designed as a single page application that permanently communicates with the web-server
to e.g., validate files or generate sequence logos. This gives the user the feeling of a desktop
application.

The source code of the web-server is publicly available at https://github.com/mgledi/
DiffLogoUI.

Results, discussion, and conclusions

WebDiffLogo allows building difference logos of two sequence motifs and tables of difference
logos of more than two sequence motifs via a user friendly single page application. The
user starts by uploading the input set of sequence motifs or the input set of sets of aligned
sequences in one of several common formats2. WebDiffLogo converts collections of aligned
sequences to sequence motifs automatically, and the user is then allowed to select sequence
motifs for the subsequent comparison. Sequence motifs of different length and different
orientation will be automatically aligned. WebDiffLogo finally compares the aligned motifs
in a position-wise manner and visualizes the over- and under-represented symbols as differ-
ence logos. The visualization is shown in the browser window. The output data are kept
for 24 hours and can be downloaded by the user as PNG files as well as publication-ready
vector graphics files. The user can also download and adapt the R code that generated the
results. Figure 3.4 shows an example difference logo and the sequence logos of two CTCF
motifs differing length and strand orientation.

1http://github.com/facebook/react
2https://github.com/mgledi/DiffLogoUI/wiki/Supported-file-formats

38

http://difflogo.com
https://github.com/mgledi/DiffLogoUI
https://github.com/mgledi/DiffLogoUI
http://github.com/facebook/react
https://github.com/mgledi/DiffLogoUI/wiki/Supported-file-formats


3.3 Visualization of sequence motifs

Figure 3.4: Difference logo (bottom) and sequence logos of CTCF motifs from cell
lines H1-hESC (top left) and HUVEC (top right). The H1-hESC motif is two bases
shorter than the HUVEC motif. The two motifs also differ in their strand orientation. The
resulting difference logo depicts the small differences of the aligned motifs. Unaligned regions
are indicated with gray background.
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3.4 Conclusions and outlook

In this thesis, my colleagues and I have addressed six limitations in three related fields.

First, we proposed miRGen and DRUMS, two approaches to improve “data acquisition and
data preparation.” Specifically, by providing access to over 800miRNA transcripts enriched
with information about TFBSs near their TSS, with miRNA expression profiles, and with
SNPs, miRGen improves the insights into the involvement of miRNAs in gene regulation
and thus contributes to cancer diagnostics and therapeutics. Further, DRUMS is a key-
value store optimized to handle psDrd running on standard desktop hardware. DRUMS
is considerably faster than MySQL by a factor of 2 up to a factor of 15456 regarding this
kind of data.

In comparison to many other NoSQL databases, neither is DRUMS horizontally scalable
nor does it support redundancy. It would be an interesting follow-up project to investigate
if the DRUMS concept could be extended by those capabilities.

Second, we proposed three approaches to improve “de–novo motif discovery using phyloge-
netic footprinting.” Specifically, we found that it is possible to detect and correct the BA
bias using inter–species information and that taking into account this bias leads to a more
precise prediction of TFBSs using phylogenetic footprinting on ChIP-seq data. Further, we
found that phylogenetic footprinting using a star topology with unrealistic high substitu-
tion probabilities seem to be more robust toward violation of model assumptions caused by
evolutionary effects like heterogeneous and heterotachious substitution probabilities. Fi-
nally, we found that combining phylogenetic footprinting with motif models incorporating
intra–motif dependencies lead to an improved prediction of TFBSs. Each of these findings
advance our attempt of understanding transcriptional gene regulation as a whole.

Regarding “De–novo motif discovery using phylogenetic footprinting,” I propose the follow-
ing future works. It would be interesting to investigate more complex evolutionary models
like the HKY model or the GTR model with the phylogenetic footprinting approaches
proposed in this thesis . Further, it seems promising to combine the phylogenetic foot-
printing approaches proposed in this thesis to one approach that is capable of detecting
and correcting the BA bias and to model intra-motif dependencies. Finally, a combination
of phylogenetic footprinting with more complex motif models like parsimonious Markov
models or Bayesian Markov models could improve de–novo motif discovery based on phy-
logenetic footprinting (Eggeling et al., 2015; Siebert et al., 2016).

Third, we proposed DiffLogo to improve “visualisation of sequence motifs.” DiffLogo is an
R package publicly available via Bioconductor1 or GitHub2, developed for the comparative

1http://bioconductor.org/packages/release/bioc/html/DiffLogo.html
2http://github.com/mgledi/DiffLogo
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visualization of sequence motifs. DiffLogo was downloaded more than 100 times per month
and more than 1000 times in total in 2016. To make DiffLogo applicable to a broader user-
ship, we integrated the R package into the easy-to-use web-server WebDiffLogo1. DiffLogo
and WebDiffLogo facilitate decision making, knowledge sharing, and the presentation of
results.

An interesting extension of DiffLogo could be the higher order comparative visualization
of sequence motifs, i.e., the comparative visualization of intra–motif dependencies. An
interesting follow-up of WebDiffLogo could be a web-server that allows the investigation of
sequence motifs with several existing tools like IceLogo, motifStack, or Two Sample Logo
(Colaert et al., 2009; Jianhong Ou, 2014; Vacic et al., 2006). Additionally, the investigation
of sequence motifs could be dramatically improved by allowing user interactions with the
results, e.g., investigating only a few motif positions of interest.

1http://difflogo.com
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Glossary
AUC area under receiver operating character-

istics curve.

BA bias binding affinity bias.

bp base pair.

ChIP-seq ChIP-sequencing.

DNA Deoxyribonucleic acid.

DRUM Disk Repository with Update Man-
agement.

DRUMS Disk Repository with Update Man-
agement and Select option.

EM Expectation Maximization.

F81 evolutionary model Felsenstein 81.

HERV human endogenous retrovirus.

hMM(k) homogeneous Markov model of
order k.

iMM(k) inhomogeneous Markov model of
order k.

KLD Kullback—Leibler divergence.

miRNA microRNA.

mRNA messenger RNA.

MSA multiple sequence alignment.

mutual information mutual information.

NoSQL not only SQL.

PFM phylogenetic footprinting model.

PR precision recall.

psDrd position-specific DNA related data.

PWM position weight matrix.

RISC RNA-Induced Silencing Complex.

RNA Ribonucleic acid.

ROC receiver operating characteristics.

SNP single nucleotide polymorphism.

SQL structured query language.

TF transcription factor.

TFBS transcription factor binding site.

TSS transcription start site.

UTR untranslated region.

ZOOPS zero or one occurrence of a binding
site per sequence.
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ABSTRACT

MicroRNAs are small, non-protein coding RNA
molecules known to regulate the expression of
genes by binding to the 30UTR region of mRNAs.
MicroRNAs are produced from longer transcripts
which can code for more than one mature
miRNAs. miRGen 2.0 is a database that aims to
provide comprehensive information about the
position of human and mouse microRNA coding
transcripts and their regulation by transcription
factors, including a unique compilation of both
predicted and experimentally supported data.
Expression profiles of microRNAs in several
tissues and cell lines, single nucleotide poly-
morphism locations, microRNA target prediction
on protein coding genes and mapping of miRNA
targets of co-regulated miRNAs on biological
pathways are also integrated into the database
and user interface. The miRGen database will be
continuously maintained and freely available at
http://www.microrna.gr/mirgen/.

INTRODUCTION

MicroRNAs (miRNAs) are single-stranded non-coding
RNA molecules of �21 nucleotides in length, that
function as regulators of gene expression by binding to
messenger RNA (mRNA) molecules and destabilizing

them or inhibiting their translation. They are found to
be implicated in a wide range of physiological molecular
processes, and their deregulation leads to diverse
diseases (1–3).
MiRNAs are located in intergenic regions or in the

introns of protein coding genes. They are transcribed by
RNA Polymerase II as independent transcripts or as part
of the transcript of a host gene. Only a small group of
miRNAs located inside ALU repetitive elements is
transcribed by RNA Polymerase III. A miRNA transcript
can host more than one miRNA and can be several
thousand nucleotides long including introns.
A promoter region is located around the transcription

start site (TSS) of a transcript and is regulated by proteins
that bind to this region. Evidence thus far suggests that
binding sites for transcription factors (TFs) are similarly
distributed within the promoters of both protein coding
genes and miRNA transcripts (4). MiRNA primary
transcripts (pri-miRNA) are processed in the nucleus to
form pre-miRNAs, �70-nucleotide stem–loop structures
also called miRNA hairpins. These are later processed
into mature miRNAs in the cytoplasm via interaction
with the endonuclease Dicer, which also initiates the
formation of the RNA-induced silencing complex
(RISC). Since primary transcripts are short lived and
present only inside the nucleus, it is hard to identify
them with standard molecular techniques.
After the Dicer enzyme cleaves the pre-miRNA

stem–loop, two complementary short RNA molecules
are formed, but only one of them—the guiding strand—
is predominantly integrated into the RISC complex.
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The remaining strand, known as the miRNA*, anti-guide
or passenger strand, is usally degraded. However, the pro-
portion of the integration of each strand varies with the
miRNA species, with some miRNAs having almost equal
abundance of each of the two strands incorporated into
RISC. Another common nomenclature for complemen-
tary miRNA strands is the –3p and –5p naming conven-
tion—these names do not imply which miRNA is more
commonly incorporated to the RISC complex.
The miRNA–miRNA* and miRNA-3p–miRNA-5p
nomenclatures are both widely used in the community,
often to denote the same complementary miRNA pair.
Mature miRNA molecules are bound by the RISC
complex, are guided to specific motifs within the 30UTR
of protein coding mRNAs, and prevent these mRNAs
from being translated into protein. The biogenesis of
miRNAs and their regulation by TFs is diagrammed in
Figure 1.
Single-nucleotide polymorphisms (SNPs) are

DNA sequence positions at which a single nucleotide
varies between individuals of the same species. SNPs are
fairly common in mammalian genomes (the human
genome contains �20million SNP sites) and have
been extensively linked to genetic abnormalities and
disease (5).

In the previous version of the miRGen database (6),
co-expressed miRNA clusters were identified based on
their distance and genomic features surrounding them.
With the availability of experimental data we were able,
in miRGen 2.0, to mine prominent literature sources that
identify miRNA primary transcripts in mammals (human
and mouse genomes). Moreover, we have mapped TF
binding sites (TFBSs) within the regions upstream of
these miRNA primary transcript TSSs and incorporated
expression profiles of miRNAs in several tissues, the
mapping of SNPs within genomic locations of miRNA
hairpins and the mapping of SNPs within the TFBSs
found upstream of miRNA genes. The interplay of these
different information sources concerning genomic features
associated with miRNA genes and their expression levels
can be used to study the function of miRNAs and their
deregulation in disease. For instance, a user interested in
a specific TF can find miRNA genes associated with this
TF, find the expression levels of these miRNAs in a
possible tissue of interest, possibly find some SNPs on the
TFBSs or the miRNA locations on the genome that relate
to a possible disease of interest and finally find predicted
targets of the miRNAs associated with the TF of interest,
and molecular pathways in which the targets of each of
these miRNAs separately or together are implicated.

Figure 1. A miRNA gene (top) is controlled by several TFs whose binding sites (TFBSs) are located near the TSS of this gene. When transcribed,
the miRNA gene produces a long pri-miRNA molecule. The pri-miRNA molecule is cleaved by Drosha and yields the pre-miRNA stem-loop
(hairpin) structure. The enzyme Dicer cleaves the loop part of the hairpin and produces the miRNA-miRNA* duplex. One chain of the miRNA
duplex is incorporated into the RISC complex and can regulate mRNA translation by binding in a sequence specific manner to the 30UTR region of
mRNAs. In this example, the miRNA (produced after a TF binds to its promoter) regulates the translation of the promoter in a typical negative
feedback control loop.
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DATA GENERATION

miRNA coding transcripts

MiRNA transcripts in human and mouse were identified
from four literature sources:

(i) Corcoran et al. (7) used PolII immunoprecipitation
data and ChIP–chip on lung epithelial cells to
identify miRNA transcripts and their promoter
regions.

(ii) Landgraf et al. (8) sequenced 250 small RNA
libraries corresponding to 26 different organ
systems and cell types of human and mouse, with
�1000 miRNA clones per library and identified
miRNA coding genes. In this study the whole
transcripts of miRNA coding genes were identified,
as well as protein coding genes that contain
miRNAs.

(iii) Oszolak et al. (9) predicted the location of the prox-
imal promoters of human miRNAs by combining
nucleosome mapping with promoter chromatin
signatures in MALME, HeLa and UACC62 cells.
Although the TSS of miRNA genes was identified
in this study, the end of the transcript was not
provided. We have provided end of the last
miRNA that is a member of a gene as an approx-
imation of the transcript end.

(iv) Marson et al. (10) used ChIP-seq data to identify
promoters of miRNA genes in embryonic stem cells.
They identified promoters and co-regulated
miRNAs, but the exact position of the TSS was
not identified. For this reason we have used the
start of the first miRNA of each cluster as the
putative TSS. Additionally, coordinates provided
by Marson et al. had to be lifted over using
‘UCSC lift over tool’ to the current genome build
(hg18, mm9). In cases where putative rather than
experimentally verified positions are used, they
are denoted in the graphical interface as ‘computa-
tional TSS’.

In total, 812 human miRNA coding transcripts and 386
mouse miRNA coding transcripts were identified. Of
them, 423 were shown in the corresponding papers to be
associated with protein coding genes (intragenic miRNA
transcripts). More than one of the above publications
have usually identified transcripts corresponding to a
miRNA. When this is the case, transcripts from all
methods are returned to the user.

Since these studies were published, additional
miRNAs have been identified. When novel miRNAs
are located within the coordinates of clusters given
by any of these publications, this miRNA is added
to the cluster. For names that changed or were given
differently than the current standard, manual curation
with reference to mirBase (11) was used to identify and
replace these names according to the current standard.
For all the above reasons it is possible that the number
of genes used in miRGen (Table 1) does not correspond
perfectly to the number stated in the corresponding
publications.

TFBS identification

In order to determine putative TFBSs near the TSS of
miRNA primary transcripts, we used the freely available
tool MatchTM (12). MatchTM uses the public library of
position weight matrices from Transfac 6.0—cite:
TRANSFAC: an integrated system for gene expression
regulation. We matched all vertebrate TF matrices to
the regions spanning from 5kb upstream of each TSS to
1 kb downstream of the TSS. As criterion for determining
the cut-off values we chose the minimization of false
positives in order to produce a strict set of predictions
without too many falsely predicted TFBSs. Two scores
are calculated for each putative TFBS. The matrix simi-
larity score describes the quality of a match between a
whole matrix and an arbitrary part of the input sequences.
Analogously, the core similarity score denotes the quality
of the match between the core sequence of a matrix
(i.e. the five most conserved positions within a matrix)
and a part of the input sequence.

miRNA expression profiles

miRNA expression profiles were identified from the mam-
malian miRNA expression atlas (8). Information for the
expression profiles of 548 human and 451 mouse miRNAs
over 172 human and 68 mouse small RNA libraries were
derived from cell lines and tissues.

SNPs

SNPs located within the genomic positions of miRNA
hairpins and corresponding TFBSs were downloaded
from the UCSC table browser (13). For human,
Polymorphism data from dbSnp database (14) or
genotyping arrays SNP130 were used with 18 833 531
identified SNPs. For mouse, SNP128 was used with
14 893 502 identified SNPs.

Implementations

The miRGen repository has been implemented using
relational database technology. All data are stored in
a MySQL relational database management system.
Figure 2 illustrates part of the entity-relationship model
of our application. All results are available through a user-
friendly interface that allows searches for miRNAs and for
TFs of interest. For mature miRNAs, it is possible to view
targets predicted by the program microT-ANN and for
miRNAs found in the same transcript, the user can see
a functional annotation of their targets on molecular

Table 1. Number of miRNA coding genes and mature miRNAs

identified in each of the experimental studies used to populate the

miRGen database

References Human
Genes

Human
miRNA

Mouse
Genes

Mouse
miRNA

Corcoran et al. (7) 73 148 – –
Landgraf et al. (8) 201 347 191 590
Ozsolak et al. (9) 191 268 – –
Marson et al. (10) 346 507 195 422
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pathways through the application DIANA-mirPath (15).
Figure 3 shows an overview of the interface and highlights
links to external databases—UCSC genome browser (13),
iHop (16), dbSNP (14), mirBase (11).

DISCUSSION

This version of miRGen is the first attempt to build
a widely accessible and user-friendly database that
connects TFs and miRNAs through putative and experi-
mentally supported functional relationships. The
connections identified in the database will further our
understanding of the TF-mediated regulation of miRNA
genes, and pave the way for the mapping of the interplay
between TFs and miRNAs as regulatory molecules.
The identification of SNPs on miRNA locations and
their corresponding TFBSs, as well as the expression
profiles of miRNAs can improve our insight into the

involvement of miRNAs in developmental processes
and disease.

Deregulation of TF-mediated gene expression has been
shown to extensively affect protein coding genes, and lead
to disease (17,18). MiRNA expression levels have also
been shown to change significantly in different disease
states (19,20). The availability of both these resources
in the same database will allow researchers to identify
regulatory elements, such as TFs that may affect the
expression of miRNAs. For this reason, we believe
miRGen 2.0 will be an important resource for researchers
of diverse disciplines interested in miRNA regulation and
function.

AVAILABILITY

The miRGen database will be continuously maintained
and freely available at http://www.microrna.gr/mirgen/.

Figure 2. The miRGen database schema. TFs (top right) bind through TF binding sites to miRNA genes. miRNA genes (top) contain miRNA
hairpins that signify the genomic location of the mature miRNA-miRNA* duplex. miRNA hairpins are processed into mature miRNAs. Usually,
one miRNA hairpin produces two mature miRNAs, but a mature miRNA can be produced by more than one hairpin in different genomic locations.
Both TFBSs and miRNA hairpins are genomic features that can contain SNPs. Mature miRNAs are associated with their expression levels in
different tissues and cell types.
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Figure 3. The user is able to query the database either by miRNA name, or by the name of the TF of interest. When a miRNA search is performed
(Figure 3a), all distinct locations on the genome (hairpins) that could code for this miRNA are returned, and the user can see details for any of the
possible overlapping transcripts identified for each location, usually predicted by different papers. Each transcript tab contains information about
TFBSs located from 5kb upstream to 1 kb downstream of the transcript start. Additionally, information on the expression levels of the mature
miRNA are displayed as a heat map. Searching for a TF of interest (Figure 3b) returns all miRNA coding genes for which at least one binding site
for this TF is found. Information on the gene, the TFBSs, and the mature miRNAs coded for by the gene can be seen in tabs. All instances of TFBSs
and miRNA hairpins are associated with corresponding SNPs mapping on their genomic locations. For all transcripts, the literature source of the
gene is displayed, the identification of the TSS (experimental if the TSS was identified in the paper, computational if it was calculated by
computational means and first miRNA if the start of the first miRNA serves as a substitute for an unknown TSS), and whether the gene is
intragenic or is co-expressed with a protein-coding gene.
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throughput sequencing data
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Abstract

Background: New technologies for analyzing biological samples, like next generation sequencing, are producing a
growing amount of data together with quality scores. Moreover, software tools (e.g., for mapping sequence reads),
calculating transcription factor binding probabilities, estimating epigenetic modification enriched regions or
determining single nucleotide polymorphism increase this amount of position-specific DNA-related data even further.
Hence, requesting data becomes challenging and expensive and is often implemented using specialised hardware. In
addition, picking specific data as fast as possible becomes increasingly important in many fields of science. The
general problem of handling big data sets was addressed by developing specialized databases like HBase, HyperTable
or Cassandra. However, these database solutions require also specialized or distributed hardware leading to expensive
investments. To the best of our knowledge, there is no database capable of (i) storing billions of position-specific
DNA-related records, (ii) performing fast and resource saving requests, and (iii) running on a single standard computer
hardware.

Results: Here, we present DRUMS (Disk Repository with Update Management and Select option), satisfying demands
(i)-(iii). It tackles the weaknesses of traditional databases while handling position-specific DNA-related data in an
efficient manner. DRUMS is capable of storing up to billions of records. Moreover, it focuses on optimizing relating
single lookups as range request, which are needed permanently for computations in bioinformatics. To validate the
power of DRUMS, we compare it to the widely used MySQL database. The test setting considers two biological data
sets. We use standard desktop hardware as test environment.

Conclusions: DRUMS outperforms MySQL in writing and reading records by a factor of two up to a factor of 10000.
Furthermore, it can work with significantly larger data sets. Our work focuses on mid-sized data sets up to several
billion records without requiring cluster technology. Storing position-specific data is a general problem and the
concept we present here is a generalized approach. Hence, it can be easily applied to other fields of bioinformatics.

Keywords: Database, HERV, SNP, DNA related data, High throughput data

Background
With the beginning of the information age in the 90s of
the last century, a large set of processes are established
to manipulate and analyze data. In particular in the field
of bioinformatics, many different workflows produce a
growing amount of data. One example are sequencing
technologies, which are capable of sequencing an entire

*Correspondence: andreas.both@unister.de
2R&D, Unister GmbH, Leipzig, Germany
Full list of author information is available at the end of the article

human genome in less than a day. Moreover, extensive
software suites for analyzing biological data sets exist, e.g.
http://galaxy.psu.edu/ [1-3]. In addition, it is possible that
an analyzing process producesmore output data than pro-
vided input. For example, the input size of the HERV data
set used in this work is about 4 GB. The output of the
mapping with BLAST is about 50 GB large. Hence, rapid
processes for storing and querying data are needed as it
has impact on the general performance of the analytic
processes.

© 2014 Nettling et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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Position-specific DNA related data (psDrd)
In the field of bioinformatics, data related to DNA
sequences are of particular importance. Examples are
single nucleotide polymorphisms (SNPs) [4], transcrip-
tion factor binding affinities and probabilities [5,6], and
RNAseq data [7,8]. We generalize these types of data by
the term position-specific DNA-related data (psDrd). A
psDrd record is an information related to a specific DNA
position. psDrd records have three characteristics. First,
a psDrd record R can be represented by a key-value pair
R = (K ,V ). The key K is composed of the sequence iden-
tifier and the position of the associated value V. Hence,
the key is unique, and records can be easily sorted. Sec-
ond, psDrd records are usually requested by region (e.g.,
querying for all mutations in a specific gene or looking for
transcription factors that are binding near a given posi-
tion). We call this kind of access range select. Third, all
psDrd of the same kind need the same space to be stored
on device, i.e., two different records are represented by
the same number of bytes. In contrast, textual annota-
tions are generally of variable length. These three specific
properties can be utilized for optimizing data handling of
psDrd.

Time- and resource-intensive computations on psDrd
Many biological processes and bioinformatics algorithm
have psDrd as input or output. This type of data is
essential for understanding biological and biochemical
processes. Furthermore, diagnostics in medicine for can-
cer prediction and genetic diseases are using psDrd
[9-11].
Many activities in bioinformatics focus on analyzing

psDrd. However, often file and folder strategy or a stan-
dard databases like MySQL [12] are used for data man-
agement. These approaches are straightforward but not
optimized for the intended processing of psDrd. In addi-
tion, data types used in these tools are expensive and
might lead to an exhaustive usage of valuable resources
[13]. Both problems lead to resource-intensive requests of
psDrd. For example, when performing range selects using
MySQL, nearly each record in the range must be fetched
by a costly random access to the storage. Because of the
limits of standard desktop hardware, this might cause a
bottleneck during data processing.

Requirements
The following requirements result from the above men-
tioned problems: The data management must be usable
with standard desktop technology. It must be possible
to store billions of data records. Platform independency
was defined as an additional requirement (derived from
the well-known segmentation of operation systems). Han-
dling massive read requests during analytic processes has
to be possible. While optimizing data handling of psDrd,

the three specific properties from section “Position-spe-
cific DNA related data (psDrd)” have to be obeyed.

Implementation
In this section, we first describe a concept called DRUM,
on which DRUMS is based. Subsequently, we describe
the architecture of DRUMS. Finally, we briefly sketch the
implementation of DRUMS in Java considering the three
main requirements of handling psDrd data sets efficiently.

DRUM concept
The DRUM (Disk Repository with Update Management)
concept [14] allows to store large collections of key-value
pairs (KVs). DRUM allows fast bulk inserts without gener-
ating duplicate entries. To enable fast processing, incom-
ing psDrd records (K ,V ) are allocated based on their key
K to separate buffers B in the main memory:M(K) → Bi.
Those buffers are continuously written to their counter-
parts on disk (D), where they are called buckets. If a bucket
on disk reaches a predefined size, a synchronisation pro-
cess with the persistently saved data (on the hard disk)
starts. The process is executed in the following way: A disk
bucket is entirely read to a disk cache. There it is sorted.
Thereafter, a synchronisation is performed by combin-
ing each bucket after the other with the corresponding
cache. As the records of the disk cache are also sorted,
using mergesort is efficient. The synchronisation process
is blocking all other processes within DRUM.
The DRUM concept is very suitable for storing psDrd.

However, requesting data efficiently was never a goal of
this approach. Hence, neither single lookups nor range
selects have been optimized. Furthermore, when synchro-
nisation is performed, DRUM is not able to receive and
cache new psDrd records. In the following, we propose an
extension of DRUM that addresses these shortcomings.

Extensions by the DRUMS concept
We extend the DRUMconcept by allowing the selection of
records by key (single lookup) or by range (range selects).
Within this concept we decoupled I/O-processes from
memory processes to avoid blocking single components.
Following the three psDrd data properties, the following

architecture decisions were made for DRUMS in addition
to the DRUM concept: 1) All records are equally sized, so
that jumping to the start position of an arbitrary record in
the file is possible. Therefore, a sparse index [15] can be
applied efficiently, making rapid single selects possible by
the following two steps: The sparse index points to a block
of records, where the psDrd of interest might be found. To
finally find the requested record, a binary search is per-
formed. The binary searchmassively benefits from equally
sized records. 2) Records, which are close to each other on
DNA are stored close on disk according to their keys. This
enables efficient range selects. 3) Records are organized in
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buckets and chunks, which permits efficient prefiltering
of regions of interest within a bucket.

Architecture of DRUMS
DRUMS is composed of the interacting components
described in this section. Before each component is
described in detail, we give a high-level overview of the
insert and select process of DRUMS.

Processes
Insert process The high-level overview of the insert pro-
cess of DRUMS is shown in Figure 1. KV pairs are sent to
DRUMS. As in DRUM, the incoming records are already
distributed in memory between n buffers B (called mem-
ory buckets). Each bucket Bi in memory has a corre-
sponding bucket Di on disk. The sizes of the buckets are
dynamic. If a bucket Bi exceeds a predefined size or mem-
ory limitations are reached, a synchronisation process,
consisting of four phases, is started:
1) The bucket Bi is taken and replaced by an empty

one. Hence, incoming data can still be buffered. 2) The
KV pairs of Bi are sorted by their keys. 3) Bi and
Di are synchronised using mergesort. Already existing
records can be updated using state-dependent operations.
4) Themerged data is continuously written back to bucket
Di. Hence, input data is now saved persistently on the
disk.
Note: Step 3 and 4 of the synchronization process are

performed chunk-wise, so that optimal read and write
performance can be achieved. The optimal chunk-size
depends on the used hardware, the size of a single
record, the expected data volume, and several param-
eters in DRUMS. Therefore, it has to be determined
empirically.

incoming data
<key, value> tuples

RAM disk

<key, value> buffer 1

<key, value> buffer 2

<key, value> buffer k

...

bucket 1

bucket 2

bucket k

...

S
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ng
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Figure 1 High level overview of insert process. Key-value pairs are
sent to DRUMS. The incoming records are distributed between k
buffers (memory buckets), based on their key. If a bucket Bi exceeds a
predefined size or memory limitations are reached, a synchronisation
process is instantiated.

Range select process Figure 2 shows the high-level
overview of the select process. When a request is sent to
DRUMS, four steps are performed to read the requested
records given by the keys KS and KE (start and end of
the range). 1) The requested bucket Di is identified by
M(K) → Di. 2) The index of Di is used for determin-
ing the correct chunk Ck of the first requested record
RS = (KS,VS). 3) Within Ck a binary search is performed
for finding RS. The binary search massively benefits from
equally sized records. 4) A sequential read is performed
untilKE was found and consequently RE returned. It might
be needed to perform the sequential read over chunk and
bucket boundaries.

Single select process A request of a single row (single
select) is considered as special case of the range select pro-
cess where KS = KE . Therefore, it is covered by step 1
to 3.

Components of DRUMS
BucketContainer and its buckets
The BucketContainer is a buffer that is organized in buck-
ets B (memory buckets). It manages the distribution of
incoming records to the buckets in RAM. As in DRUM,
the distribution of the incoming records R = (K ,V ) to
the Buckets B is based on a predefined mapping function
M(K) → Bi.
The BucketContainer is decoupled from any I/O-

operation, so that preparing the data for writing can be
done in parallel to the I/O-processes. The larger the size
of the BucketContainer, the larger are the parts of the data

requesting records 
between key1 and key2

RAM disk

bucket 1

bucket 2

bucket k

Mapping and Indices

determine bucket with key1 
and its position in this bucket

Read Buffer
sequentially read from determined 
position until key2 is reached and 
filter affected records into buffer

...

Figure 2 High level overview of select process.When a request is
sent to DRUMS, four steps are done to read the requested records.
1) The bucket of interest is determined. 2) The correct chunk of the
first requested record is identified, using a sparse index. 3) The
position of the requested key-value pair is determined. 4) A sequential
read is performed until the requested range is completely processed.
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that can be processed sequentially. This increases the per-
formance significantly as sequential I/O-operations are
the most efficient on HDDs and SSDs.

SyncManager, SyncProcess, and Synchronizer
The SyncManager manages all SyncProcesses. It observes
the BucketContainer and verifies the preconditions for the
synchronisation of buckets B with their counterparts on
disk D. If these preconditions are fulfilled, the SyncMan-
ager instantiates new SyncProcesses. Several SyncPro-
cesses can be run in parallel. In our implementation, a
bucket in memory must reach a predefined fill level or age
to be synchronized.
A new SyncProcess is always instantiated with the

largest bucket in the BucketContainer fulfilling the above
mentioned condition. When a new SyncProcess is started,
the affected bucket in the BucketContainer is replaced
by an empty one. In this way the synchronization pro-
cess is not blocking further insert operations for this
bucket.
The SyncProcess instantiates new Synchronizers. A

Synchronizer is in charge of writing data from the bucket
Bi in memory to the bucket Di on disk. All records are
sorted in Bi and in Di. Hence, the Synchronizer is capa-
ble of using mergesort for synchronizing the records in
memory with those on disk.

Representationand structure of the data
Each persistent bucket is represented by a file on a hard
disk. The file is structured into two parts (see Figure 3):
(i) the header with meta information and the index struc-
ture referencing chunks of a predefined size and (ii) the
rest of the file used for the records to store, which are
organized in chunks. A sparse index [15] is applied as it
is memory efficient and takes advantage of the order of
psDrds.
Whenever a bucket D is opened for reading or writ-

ing, the header and the index are read into memory.
In this way, a rapid access to the required chunks is
possible.
The internal representation of a record in a chunk is a

sequence of bytes. This sequence is composed of a key-
part and a value-part. Each part may consist of several
subparts, each of its own data-type (e.g., integer, long, char
or even high level data structures like objects). Because of
the fact that each record is of equal size, data structures
and memory can be easily reused by application of the
adaptor and the prototype pattern [16].

Implementation of DRUMS
DRUMS is build upon Oracle Java 1.6. Therefore, it is plat-
form independent. We developed DRUMS in an atomic
thread-based way. All components work asynchronously

File on storage device

Header

Index

C
ontent

Chunk 1 Chunk 2 Chunk 3

Chunk 4 .....

Chunk n-2 Chunk n-1 Chunk n

Chunk n-3.....

R
ecord

R
ecord

R
ecord

...

Chunk i

Figure 3 Structure of a file on storage device. The file is structured
into (i.) a header, (ii.) an index structure and (iii.) the content,
containing the records.

and are exchangeable. This allows fast adaptations on
single subprocesses or exchanging whole components like
the Synchronizer.

Results and discussion
In this section we first give a short introduction into
two different psDrd sets used for evaluation. Second, we
present the results and the evaulation approach consider-
ing (i) inserts, (ii) random lookups, and (iii) random range
selects.
To prove the superiority of DRUMS in comparison

with standard solutions within a desktop environment,
we compare it to MySQL which is used widely in the
bioinformatics community.
Two different psDrd sets are evaluated. The data sets are

described below. DRUMS as well as MySQL were tested
comparatively using the three measures: (i) - (iii). For
all tests a standard desktop computer was used. MySQL
as well as DRUMS are limited to use only 2 GB of the
available memory. Details can be obtained from Table 1.

Data sets
SNP-Data from the 1001 genomes project
The 1001 Genomes Project [17,18] has the goal to
understand the resulting of small mutations in different
accessions of the reference plant Arabidopsis thaliana.
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Table 1 Test system

Processor Intel Xeon E31225
(4 native cores, no hyperthreading)

Memory 8 GB

Operation system Debian 6.0 (Squeeze)

Hard drive Western digital WD10EALX-759, 32 MB cache

The desktop system which was used for the tests. MySQL as well as DRUMS are
limited to use only 2 GB of the available memory.

Each accession mainly consists of five attributes: acces-
sion identifier, sequence identifier, position on sequence,
source base, and target base. We downloaded filtered
quality data of the strains sequenced by the Gregor
Mendel Institute and the Salk institute on 2012-01-15,
containing 251 data sets, with 137, 369, 902SNPs. From all
files, we extracted the data of the following five columns:
accession name, chromosome, position on chromosome
reference nucleotide, and mutated nucleotide. For the def-
initions of the used data types and their configuration
(e.g., index properties) used in MySQL and DRUMS see
Table 2.
All data are public available at http://1001genomes.org/

datacenter/.

HERV data
Human endogenous retroviruses (HERVs) have integrated
themselves in the human genome millions of years ago.
Because of the high number of existing HERV fragments,
they are thought to have a regulatory role. To investigate a
possible influence of HERVs, it is needed to locate HERV
fragments. Therefore, over 7000 known HERV fragments
were blasted against the human genome to find new
putative HERV-like regions. In the work of Konstantin
Kruse [19] all regions with an E-value less than 1e − 20
were accepted as putative HERV-like region. This lead to
802, 710, 938 single records, stored in 20 files with tab-
separated data field, with a total size of 50 GB. From these
files we used the following seven columns: query id, sub-
ject id, query start, query end, subject start, subject end,
and E-value. For the definitions of the used data types and
their configuration (e.g., index properties) used inMySQL
and DRUMS see Table 3.

Table 2 Data types used for SNP data

Column MySQL properties DRUMS properties

Accession name TINY INT, primary key 1 byte, key part 1

Chromosome SMALL INT, primary key 2 byte, key part 2

Position on chromosome INT, primary key 4 byte, key part 3

Reference nucleotide VARCHAR 1 byte, value part 1

Mutated nucleotide VARCHAR 1 byte, value part 2

Used data types in MySQL and DRUMS for SNP data. All columns being part of
the primary key are indexed.

Insert performance
DRUMS must be able to store hundreds of millions of
records. Because of this, it is needed to evaluate the insert
performance.
To estimate the insert performance, we measure the

time for inserting 106 records. We obtain 140 time mea-
surements points in case of SNP-Data and 800 for HERV
data. Figures 4a and 4b show the insert performance of
DRUMS (blue) and MySQL (green). Despite using bulk-
requests for inserting the data, it was impossible to insert
all 800 million HERV records into the MySQL instance.
MySQL inserts about 200 million records in the first
week, but Figure 4b shows that the insert performance has
dropped to 300 records per second after one week. The
insert performance of DRUMS also decreases, but it was
able to insert the whole data set within 4.53 hours. At the
end of the test, DRUMS was still able to perform more
than 20000 inserts per second.
Figure 4a and 4b show that DRUMS has a better insert

performance than MySQL on both test datasets. The
insert performance of MySQL and of DRUMS decreases
with the number of records already inserted. Regard-
ing MySQL one possible explanation is the continuous
reorganistation and rewriting of the index.
The insert performance of DRUMS decreases slowly

in comparison to MySQL. The reason for this is the
decreasing ratio of read- to write-accesses with each
round of synchronisation. With other words, DRUMS
must read more and more records per new record to
write with the growing amount of data already stored
on disk. However, DRUMS still inserts more than 20000
records per second at the end of the insert test for
HERV data, corresponding to approximately 400 kB per
second.

Performance on random lookups
From the view of bioinformatics, single lookups make
no sense in both experiments. However, the performance
of single-lookups is a significant indicator for the over-
all performance and the suitability of the implementa-
tion of a tool for handling data sets. Moreover, the test
may show how close the measured performance to the
theoretical hardware limits of the used standard desk-
top hardware is. Considering the test environment, it
is assumed that a random access would take approxi-
mately 20 ms. Hence, if no other disk accesses are done,
it would be theoretically possible to read 50 records per
second.
Figures 5a and 5b show the performance of MySQL

and DRUMS, when performing random lookups. Again,
DRUMS performs better than MySQL in case of han-
dling our two data sets. Figure 5a implies that DRUMS is
able to do 160 times more random lookups than theoret-
ically possible, when accessing SNP data. In comparison,
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Table 3 Data types used for HERV data

Column MySQL properties DRUMS properties

Chromosome TINY INT, primary key 1 byte, key part 1

Start-position on chromosome INT, primary key 4 byte, key part 2

End-position on chromosome INT, primary key 4 byte, key part 3

Start-position on HERV SMALL INT, primary key 2 byte, key part 4

End-position on HERV SMALL INT, primary key 2 byte, key part 5

Id of referenced HERV SMALL INT, primary key 2 byte, key part 6

Strand on chromosome TINY INT, primary key 1 byte, key part 7

E-value DOUBLE 4 byte, value part 1

Used data types in MySQL and DRUMS for HERV data. All columns being part of the primary key are indexed.

only 20 random lookups per second are performed when
accessing HERV data. The reason for this difference are
cache structures provided by the operating system and the
underlying hardware.
In case of accessing SNP data, the complete data set

might be cached by the operating system after approxi-
mately 650, 000 lookups. Hence, organizing the SNP data
as DRUMS structure results in a file size small enough
that it could be loaded into memory. Therefore, nearly
each request could be answered from the operating sys-
tems cache after a warm up. In contrast, the HERV data
set is too large to fit into memory, so only a few random
lookups could be answered from cache. The increasing

performance of MySQL and DRUMS in Figure 5b is also
an indication for the use of caches. Figure 5b shows that
DRUMS can perform 20 random lookups of theoretically
possible 50.
While considering the experimental results of MySQL,

the impression is conveyed that the defined index was
not used correctly. However, a closer look validates the
results as the explicit MySQL index for the SNP table has
the size of 2380 MB, which will not fit into the allowed
2 GB of main memory. Hence, even index-based searches
in MySQL need several accesses to the hard disk result-
ing in worse performance. In contrast, the sparse index of
each bucket of DRUMS requires just 0.5 MB, which sums
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Figure 4 Insert performance. The blue line represents DRUMS, the green line represents MySQL. (a) Insert performance on SNP-data (b) Insert
performance on HERV data. Concerning MySQL, it was impossible to insert all 800 million HERV records. DRUMS inserted the complete data set
within 4.53 hours.
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Figure 5 Random lookups performance. The blue line represents DRUMS, the green line represents MySQL. (a) Random lookup performance on
SNP-data. (b) Random lookup performance on HERV data.

up to only 123 MB for all buckets. To find a single record
in a chunk, DRUMS performs a binary search. The binary
search can be done very efficiently for the reason that all
records are of equal size. Because of the reduced demands
on the hardware, DRUMS provides a good performance
even on very large data sets like HERV.

Performance on random range selects
As described in the section Background, psDrd-records
are mostly requested by range. Therefore, the need to
benchmark the performance of range requests is obvious.
The request for the SNP-data is as follows: Select all

SNPs on chromosome c between position x and y for
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Figure 6 Range select performance. The blue line represents DRUMS, the green line represents MySQL. (a) Range select performance on SNP-data.
(b) Range select performance on HERV data. Concerning MySQL, we stopped the test after 26.35 hours. DRUMS read 64 billion records in 9.61 hours.
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all ecotypes in the database. To perform the read test
for SNP-data, we first randomly generated 106 ranges of
length 103 to 104. Second, we request records within those
ranges randomly distributed over the whole genome of
Arabidopsis thaliana.
Analogously, we generate 106 test requests for theHERV

data set with lengths from 105 to 106. Again, we ran-
domly distributed range-requests over the whole human
genome. It might be a common task to filter the requested
data by value. MySQL provides this functionality by
defining the filter condition in the WHERE-clause. To
accomplish this in DRUMS, the returned records must
be checked iteratively. In this test, we filter the requested
HERV records by an E-value less than 10−20, 10−25, 10−30,
10−35, 10−40, 10−45 or 10−50, randomly chosen.
Figures 6a and 6b show the results of the range select

test. Once more, both databases perform much better
on the smaller SNP-data set. Besides caching, this time
another explanation for this observation is that a range
request on the SNP-data contains in average 3 times fewer
records than a range request on the HERV data. The per-
formance increases with the number of read records. The
performance of DRUMS increases by a factor of 10 and of
MySQL by a factor of 26. However, DRUMS performs in
average on the SNP-data 24 times faster than MySQL.
Regarding the larger HERV data set, DRUMS is able to

perform 30 range-selects per second in average. This is
over 15000 times faster than MySQL.
Within the whole test, 64 billion records were read

in 9.61 hours. That corresponds to an overall read per-
formance of 35.7 MB per second, filtering included. In
contrast, MySQL read 6.6 million records in 26.35 hours,
which corresponds to only 1.3 kB per second.

Conclusions
We defined psDrd (position-specific DNA related data)
and showed three important properties of this kind of
data. The flaws of DRUM were shown, which is already
suitable for storing psDrd, but not for requesting it
efficiently. The article introduces DRUMS, a data man-
agement concept optimized to tackle the challenges of
dealing with mid-size data sets in form of psDrd using
standard desktop technology instead of expensive cluster
hardware.
An implementation of the DRUMS concept was com-

pared to the widely spread standard database manage-
ment solution MySQL considering two data sets of the
bioinformatics context. On the larger HERV data set,
the evaluated DRUMS implementation was 23 times
faster inserting all records, two times faster perform-
ing random lookups, and 15456 faster performing range
requests. Hence, the experiments show that dealing with
psDrd benefits significantly from the characteristics of
the DRUMS concept. Therefore, our main contribution

is suggesting this data management concept for increas-
ing the performance during data intensive processes while
keeping the hardware investments low.
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Detecting and correcting the
binding-affinity bias in ChIP-seq data using
inter-species information
Martin Nettling1*, Hendrik Treutler2, Jesus Cerquides3 and Ivo Grosse1,4

Abstract

Background: Transcriptional gene regulation is a fundamental process in nature, and the experimental and
computational investigation of DNA binding motifs and their binding sites is a prerequisite for elucidating this process.
ChIP-seq has become the major technology to uncover genomic regions containing those binding sites, but motifs
predicted by traditional computational approaches using these data are distorted by a ubiquitous binding-affinity
bias. Here, we present an approach for detecting and correcting this bias using inter-species information.

Results: We find that the binding-affinity bias caused by the ChIP-seq experiment in the reference species is stronger
than the indirect binding-affinity bias in orthologous regions from phylogenetically related species. We use this
difference to develop a phylogenetic footprinting model that is capable of detecting and correcting the
binding-affinity bias. We find that this model improves motif prediction and that the corrected motifs are typically
softer than those predicted by traditional approaches.

Conclusions: These findings indicate that motifs published in databases and in the literature are artificially
sharpened compared to the native motifs. These findings also indicate that our current understanding of
transcriptional gene regulation might be blurred, but that it is possible to advance this understanding by taking into
account inter-species information available today and even more in the future.

Keywords: Binding-affinity bias, ChIP-seq, Phylogenetic footprinting, Evolution, Transcription factor binding sites,
Gene regulation

Background
Predicting transcription factor binding sites and their
motifs is essential for understanding transcriptional gene
regulation and thus of importance in almost all areas
of modern biology, medicine, and biodiversity research
[1, 2]. Countless approaches exist for predicting motifs
from these genomic regions [3–6], but predicting motifs
from ChIP-seq data and similar experimental data is ham-
pered by the contamination with false positive genomic
regions as well as the enrichment of high-affinity binding
sites [7–9].

*Correspondence: martin.nettling@informatik.uni-halle.de
1Institute of Computer Science, Martin Luther University, Halle (Saale),
Germany
Full list of author information is available at the end of the article

The contamination with false positive genomic regions
is caused by at least three reasons. First, the transcrip-
tion factor or other DNA binding protein pulled down by
immunoprecipitation may not bind directly to the binding
site [10]. Second, ChIP-seq target regions may not con-
tain a binding site due to experimental settings such as
sequencing depth or DNA fragment length [11, 12]. Third,
false positive regions may be predicted in the subse-
quent ChIP-seq data analysis due to never perfect analysis
pipelines and too low signal cutoff thresholds [8]. These
three effects may lead to the selection of false positive
ChIP-seq regions that do not contain at least one binding
site.
The enrichment of high-affinity binding sites is caused

by at least two reasons. First, most antibodies have a pref-
erence of binding high-affinity binding sites with a higher
probability than low-affinity binding sites, causing the set

© 2016 Nettling et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

5. PREDICTING TRANSCRIPTION FACTOR BINDING SITES USING
PHYLOGENETIC FOOTPRINTING

72



Nettling et al. BMC Genomics  (2016) 17:347 Page 2 of 10

of binding sites bound in the ChIP-seq experiment to
be partially different from the set of binding sites bound
in vivo [13, 14]. Second, true positive regions with low-
affinity binding sites are rejected due to too high signal
cutoff thresholds [5, 8]. These two effects may lead to
an under-representation of low-affinity binding sites and
an over-representation of high-affinity binding sites in
ChIP-seq regions.
Taken together, the contamination with false positive

genomic regions leads to the contamination bias [15]
and thus to the prediction of artificially softened motifs,
whereas the enrichment of sequences with high-affinity
binding sites leads to the binding-affinity bias [16] and
thus to the prediction of artificially sharpened motifs.
Neglecting these effects leads to distorted motifs and
could potentially affect all downstream analyses [17–20].
Existing approaches for predicting motifs are capable of
detecting and correcting the contamination bias, which
has been found to increase the quality of motif predic-
tion considerably [8, 21, 22], and here we investigate the
possibility of detecting and correcting the binding-affinity
bias.
Detecting the binding-affinity bias seems impossible

based on sequence data from one species alone, but it
seems possible based on inter-species information. This
is possible due to the fact that the binding-affinity bias
is stronger in the target regions of the ChIP-seq experi-
ment in the reference species than in orthologous regions
of phylogenetically related species. This stronger binding-
affinity bias yields more biased motifs in the reference
species than in phylogenetically related species, and this
difference may be used for detecting and potentially cor-
recting the binding-affinity bias.
Phylogenetic footprinting models typically (i) take into

account ChIP-seq data of only one species and (ii) do
not take into account heterogeneous substitution rates
among different DNA regions, heterotachious evolution
of DNA regions, and loss-of-function mutations in bind-
ing sites. The consideration of (i) ChIP-seq data of more
than one species and (ii) heterogeneity, heterotachy, and
loss-of-functionmutations are likely to improve both phy-
logenetic footprinting as well as the detection and cor-
rection of the binding-affinity bias, but in this work we
investigate if the detection and correction of this bias is
possible based on (i) ChIP-seq data of only one species
and (ii) a simple phylogenetic footprinting model that
neglects heterogeneity, heterotachy, and loss-of-function
mutations.
We first investigate if the effect of observingmore biased

motifs in the reference species than in phylogenetically
related species is measurable beyond statistical noise in
target regions of five ChIP-seq data sets of human and
in orthologous regions of monkey, dog, cow, and horse.
We then develop a phylogenetic footprinting model that

incorporates the binding-affinity bias, investigate if this
model improves or deteriorates motif prediction com-
pared to traditional models that do not incorporate it,
and compare the motifs predicted with and without the
correction of the binding-affinity bias.

Results and discussion
In subsection “Using sequence-information of phyloge-
netically related species to detect the binding-affinity
bias”, we describe the basic idea of how the binding-
affinity bias could be detected based on inter-species
information using a toy example. In the remaining sub-
sections we perform three studies based on ChIP-seq
data sets of five transcription factors and on multiple
alignments of the human ChIP-seq target regions with
orthologous regions from monkey, dog, cow, and horse.
In subsection “Decrease of information contents in motifs
from phylogenetically related species” we investigate if the
effect of observing more biased motifs in the reference
species than in phylogenetically related species is measur-
able in these five data sets. In subsection “Modeling the
binding-affinity bias increases classification performance”,
we investigate if a correction of the binding-affinity bias
leads to an improvement or a deterioration of the classi-
fication performance. In subsection “Modeling the bind-
ing-affinity bias leads to softened motifs”, we compare the
sequence motifs predicted with and without the correc-
tion of the binding-affinity bias.

Using sequence-information of phylogenetically related
species to detect the binding-affinity bias
Detecting and correcting the binding-affinity bias might
be possible because the binding-affinity bias inherent
to the ChIP-seq experiment in the reference species
(Fig. 1a) is stronger than the indirect binding-affinity
bias in orthologous regions from phylogenetically related
species. Under this assumption, the information content
of the predicted motifs [23] should decrease with the phy-
logenetic distance from the reference species due to the
increasing number of mutations.
To illustrate this idea, we present a toy example consist-

ing of six binding sites from four phylogenetically related
species in Fig. 1b and Table 1. In this toy example, we
assume an exaggerated binding-affinity bias of three high-
affinity binding sites captured by the ChIP-seq experiment
and three low-affinity binding sites not captured by the
ChIP-seq experiment. In real world applications the native
motif is unknown and the motif predicted on the avail-
able data is biased to an unknown degree. In the presented
toy example, however, the native motif is considered to be
known so that the effect of the binding-affinity bias on the
motifs of the reference species (species 1) and the phy-
logenetically related species (species 2, 3, and 4) can be
illustrated.

5.1 Detecting and correcting the binding-affinity bias in ChIP-Seq data using
inter-species information
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Fig. 1 Influence of binding-affinity bias on information content. a Binding-affinity bias in the reference species. The left column shows binding sites
bound in vivo as well as the sequence logo. In the right column, enrichment of high-affinity binding sites by chromatin immunoprecipitation leads
to a different motif with higher information content. b Binding-affinity bias in the reference species and three phylogenetically related species. The
left column shows binding sites bound in vivo and the information content of the species–specific motifs. In the right column, the enrichment of
high-affinity binding sites in the reference species and the other three species leads to different motifs with different information content in each
species. The effect of this enrichment decreases with the phylogenetic distance from the reference species as reflected by decreasing information
contents. Please find the sequences of all species in Table 1

Table 1 Influence of binding-affinity bias on information
content. We illustrate the effect of binding-affinity bias with the
given toy example of a ChIP-seq experiment for six binding sites
in four species. Due to low binding-affinity, red binding sites are
insufficiently bound. This results in the absence of red binding
sites in the measured data which we denote binding-affinity bias.
Binding sites with low binding-affinity typically comprise
dissimilar bases in contrast to black binding sites with high affinity
and common bases. The absence of red binding sites leads to a
sharpening of the resulting motif, which we indicate using the
information content. The information content without binding-
affinity bias is equal in all species, whereas the information
content with binding-affinity bias increases in all species. The
vital point is that the effect of binding-affinity bias decreases with
phylogenetic distance, which involves an increasing number of
mutations. Please find a visualization of this toy example in Fig. 1b

Species 1 Species 2 Species 3 Species 4

Binding site 1 A C G T A C G T A C T T A A T T

Binding site 2 A A T T A A T T C A G T A C G T

Binding site 3 A A G T C A T G A A G T A A T G

Binding site 4 C A T G A A G T A C T G A A G T

Binding site 5 A C G G A C G G A A G T C A G T

Binding site 6 A A T T A A T T A A T G A C T G

Number of mutations 0 6 9 14
in all binding sites

Information content 1.13 1.13 1.13 1.13
without binding-affinity
bias

Information content 1.77 1.54 1.31 1.31
with binding-affinity bias

The motif predicted from the three target regions con-
taining high-affinity binding sites is strongly biased in
reference species 1, and it is impossible to predict the
native motif from only those three target regions. How-
ever, a shadow of this strong binding-affinity bias also
exists in orthologous regions of species 2, 3, and 4,
so the motifs predicted from these orthologous regions
in species 2, 3, and 4 are biased, too. This bias in
species 2, 3, and 4, however, is weaker than the bias in
reference species 1, and this difference can be exploited
for detecting and correcting the binding-affinity bias
and for predicting the native motif from the three tar-
get regions of high-affinity binding sites in reference
species 1 and their orthologous regions in species 2, 3,
and 4.
Specifically, the binding-affinity bias introduced by the

ChIP-seq experiment in reference species 1 causes a
strong increase of the information content of the pre-
dicted motif (1.77 bit) compared to the native motif (1.13
bit). The shadow of the binding-affinity bias in species 2, 3,
and 4 also causes an increase of the information contents
of the motifs predicted in species 2 (1.54 bit), species 3
(1.31 bit), and species 4 (1.31 bit), but this increase in
species 2, 3, and 4 is smaller than in reference species 1
(Table 1 and Fig. 1b). The increase of information con-
tent decreases with the number of observed mutations
and thus the phylogenetic distance of species 2, 3, and 4 to
reference species 1 in which the ChIP-seq experiment has
been performed. Hence, the observation of a decreased
information content of motifs predicted in orthologous
regions of phylogenetically related species compared to
the information content of the motif predicted in the
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reference species could indicate the presence of a binding-
affinity bias and possibly allow the correction of that
bias.

Decrease of information contents in motifs from
phylogenetically related species
We investigate this hypothesis on human ChIP-seq data
of five transcription factors [10, 24] and multiple align-
ments of the human ChIP-seq target regions with orthol-
ogous regions from monkey, dog, cow, and horse [25]
(“Data” Methods). We calculate the information contents
of motifs from human (reference species), monkey, dog,
cow, and horse for each of the five data sets (“Decrease
of information contents in motifs from related species”
Methods) and present the results in Fig. 2. We find for
each of the five data sets that the information content
of the motif from the reference species is significantly
higher (p < 1.83 × 10−14, Wilcoxon Signed-Rank Test,
Additional file 1: Table S1) compared to the information
contents of the motifs from monkey, dog, cow, and horse.

Modeling the binding-affinity bias increases classification
performance
Motivated by this observation, we develop a phy-
logenetic footprinting model capable of taking into
account the contamination bias (MC−), the binding-
affinity bias (M−

BA), neither one or the otherM
−−, or both

(MC
BA) (“Modeling the binding-affinity bias”Methods and

Additional file 1: Section 1). In order to study to which
degree these models are capable of modeling multiple
alignments originating from ChIP-seq data, we consider
the principle of parsimony [26], which states that the sim-
plest of competing explanations is the most likely to be
correct. As the new model MC

BA is more complex than
the traditional model MC−, we should accept it only if it
provides a more accurate representation of the data. A

standard approach for measuring how accurately a model
represents a data set is to measure its performance of
classifying, in this case, motif-bearing and non-motif-
bearing alignments, and a standard approach for measur-
ing classification performance is stratified repeated ran-
dom sub-sampling validation (“Measuring classification
performance” Methods, Fig. 5).
Using this approach we measure the performance of the

four modelsM−−,M−
BA,MC−, andMC

BA to classify each of
the five data sets against the other four. Fig. 3a shows that
MC

BA yields a higher classification performance thanMC−
in all five data sets (p < 2.3 × 10−17, Wilcoxon Signed-
Rank Test, Additional file 1: Table S2), indicating that the
new model MC

BA is more realistic than the traditional
model MC−. We also find that M−

BA yields a significantly
higher classification performance thanMC− in all five data
sets (p < 1.8×10−17, Wilcoxon Signed-Rank Test), which
indicates that taking into account the binding-affinity bias
has a larger impact on the classification performance than
taking into account the contamination bias (Additional
file 1: Figure S1, Figure S2, Figure S10, Figure S11, Figure
S12, Figure S13, Figure S14, Figure S15 and Figure S16).

Modeling the binding-affinity bias leads to softenedmotifs
Next, we investigate the information contents of the cor-
rected motifs predicted by models M−

BA and MC
BA that

take into account the binding-affinity bias and the tra-
ditional motifs predicted by models M−− and MC− that
neglect this bias. Fig. 3b shows that the information con-
tents of motifs predicted by MC− are significantly higher
than the information contents of motifs predicted by
MC

BA (p < 4.0 × 10−18, Wilcoxon Signed-Rank Test).
We also find that the information contents of motifs pre-
dicted by M−− are higher than the information contents
of motifs predicted by MC

BA (p < 4.0 × 10−18, Wilcoxon
Signed-Rank Test, Additional file 1: Table S4), stating that
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Fig. 3 Comparison of modelsMC− andMC
BA. aMean classification performance and standard error of the two modelsMC− andMC

BA quantified by
the area under the receiver operating characteristic curve. We find for each of the five data sets a significantly increased classification performance
forMC

BA compared toMC− . Examples for ROC curves are shown in Additional file 1: Figure S10, Figure S11, Figure S12, Figure S13, Figure S14 and
Figure S15. bMean information content and standard error of the motifs predicted by the two modelsMC− andMC

BA. We find for each of the five
data sets a significantly decreased information content in motifs predicted byMC

BA compared toMC− (p < 4.0 × 10−18)

the binding-affinity bias is stronger than the contamina-
tion bias. Equivalently, this states that the joint effect of
both biases leads to an artificial sharpening of the motifs
and an artificial overestimation of the binding affini-
ties (Additional file 1: Figure S3, Figure S4, Figure S17,
Figure S18).
Finally, we inspect the differences of the corrected

motifs predicted by M−
BA and MC

BA and the traditional
motifs predicted byM−− andMC−. Fig. 4 shows the differ-
ences between the base distributions of pairs of motifs for
MC− andMC

BA by difference logos (“Visualizing motif dif-
ferences with DiffLogo” Methods). We find for each of the
five data sets that the corrected motifs are softer than the
traditional motifs distorted by the binding-affinity bias.
Specifically, we find that the amount of decrease of the
most abundant bases in the corrected motifs compared to
the traditional motifs is roughly proportional to the base
abundance, whereas the increase of the remaining bases is
not proportional to the base abundance. Hence, the cor-
rected motifs are not simply a uniformly softened version
of the traditional motifs, but motifs with different degrees
of dissimilarity at different positions (Additional file 1:
Figure S5, Figure S6,Figure S7, Figure S8 and Figure S9).

Conclusions
We studied the possibility of detecting and correcting
the binding-affinity bias in ChIP-seq data using inter-
species information.We found that the fact that this bias is
stronger in target regions of the reference species than its
shadow in orthologous regions of phylogenetically related
species enables the detection and correction of this bias.
We proposed a phylogenetic footprinting model capable
of taking into account the binding-affinity bias in addition
to the contamination bias, and we applied this model and
its three special cases that neglect one of the two biases
or both to five ChIP-seq data sets. We found by stratified
repeated random sub-sampling validation that taking into
account the binding-affinity bias always improves motif
prediction, that the motif binding-affinity bias leads to a

distortion of motifs that is even stronger than the distor-
tion caused by the contamination bias, and that the cor-
rected motifs are typically softer than those predicted by
traditional approaches. The comparison of corrected and
traditional motifs showed small but noteworthy differ-
ences, suggesting that the refinement of traditional motifs
from databases and from the literature might lead to the
prediction of novel binding sites, cis-regulatory modules,
or gene-regulatory networks and might thus advance our
attempt of understanding transcriptional gene regulation
as a whole.

Methods
In this section we describe “Decrease of information con-
tents in motifs from related species” (i) the determina-
tion of the information contents of motifs in the reference
species and phylogenetically related species, “Modeling
the binding-affinity bias” (ii) the phylogenetic footprint-
ing model that can take into account the binding-affinity
bias, the contamination bias, neither one or the other,
or both, “Measuring classification performance” (iii) the
measurement of the classification performance of these
four phylogenetic footprinting models using stratified
repeated random sub-sampling validation, and “Visualiz-
ing motif differences with DiffLogo” (iv) the visualisation
of differences between the corrected and the traditional
motifs.

Decrease of information contents in motifs from related
species
We determine the information content I(P) of a motif P as
described in [23]:

H�(P) = log2(|A|) −
∑

a∈A
p�,a · log2(p�,a)

I(P) =
W∑

�=1
H�(P),

(1)
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base stacks represent high motif differences. We find significant motif differences exceeding 0.1 bit for all five data sets (Additional file 1: Figure S5,
Figure S6, Figure S7, Figure S8 and Figure S9)

where A = A,C,G,T is the alphabet, p�,a is the
probability of base a at position � in motif P, and
H�(P) denotes the information content of position � in
motif P.
We measure the information contents of motifs in five

species using repeated random sub-sampling as follows.
Initially, we choose one motif for each of the tran-
scription factors CTCF, GABP, NRSF, SRF, and STAT1
from the JASPAR database, namely MA0139.1 for CTCF,
MA0062.2 for GABP, MA0138.2 for NRSF, MA0083.2 for
SRF, and MA0137.3 for STAT1 [27]. In the first step,
we generate a test set from the set of positive align-
ments (Table 2) by removing randomly 200 alignments.
In the second step, we predict for each transcription
factor one binding site per target region in all target
regions of the reference species (human) in the cor-
responding test data set, extract the predicted binding
sites from the reference species as well as the binding
sites at the same positions in the orthologous regions,
and calculate for each species the information content
of the resulting motif as specified above. We perform
both steps 100 times and report the mean and stan-
dard error of the information content for each of the five
species.

Modeling the binding-affinity bias
In this section we describe the probabilistic model for
modeling the binding-affinity bias as a data generating
process. A derivation of the log-likelihood for motif-
bearing and non-motif-bearing alignments can be found
in Additional file 1: Section 1.
Let O be the number of species. A data set com-

prises N independent multiple sequence alignments.
We use Xn to refer to the n-th sequence alignment.
Every alignment is formed by O sequences. The o-th

Table 2 Data set statistics for human ChIP-seq data. For each of
the five transcription factors (TFs) CTCF, GABP, NRSF, SRF, and
STAT1, we specify the (i) average length of transcription factor
binding site (TFBS), the (ii) number of alignments, and the
(iii) average length of alignments

TF TFBS length Number of alignments Avg. length

CTCF 20 bp 467 213 bp

GABP 12 bp 451 236 bp

NRSF 21 bp 460 245 bp

SRF 12 bp 394 242 bp

STAT1 11 bp 360 244 bp

5.1 Detecting and correcting the binding-affinity bias in ChIP-Seq data using
inter-species information
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sequence is denoted by X .,o
n . By convention, the refer-

ence species (that in which the selection process has
taken place) is species 1. Each sequence of alignment
Xn is composed of Ln nucleotides. We denote by Xu,o

n
the u-th nucleotide of the o-th sequence of the n-
th alignment. All nucleotides are presented by the set
A = {A,C,G,T}.
We assume the existence of a common ancestor of all

of O species. The sequence of the common ancestor of
the n-th alignment is a hidden variable Yn, with Yu

n rep-
resenting its u-th nucleotide. The substitution probability
that nucleotide Yu

n is substituted by the nucleotide Xu,o
n is

denoted by the variable γo.
An alignment Xn may contain a binding site or not. This

is denoted by the variable Mn. The length of the binding
site is denoted by the variable W and the position of the
binding site in alignment Xn is denoted by the variable �n.
The n-th alignment Xn is sampled as follows. The first

decision to be made is whether or not the alignment con-
tains a binding site. This is denoted by variableMn which
follows a Bernoulli distribution with parameter 1 − α.
Thus, whenever variable Mn is equal to 1 (M1

n), the align-
ment contains a binding site and when Mn is equal to 0
(M0

n), it does not.
Thus, parameter α is the probability that alignment Xn

contains no binding site. If α equals 0, the sampled data is
uncontaminated, because all alignments contain a copy of
the binding site. The larger the value of α, the higher the
percentage of non motif-bearing alignments in the sam-
pled data. A value of α equal to 1 models a data set where
no binding sites are present.
Next we introduce the data generating process for non-

motif-bearing alignments and later we explain that for
motif-bearing alignments.

1. Sample the primordial sequence as follows: For each
position u of the sequence sample nucleotide Yu

n
from the background equilibrium distribution π0
independent of the previous nucleotides.

2. For each of the descent species o ∈ {1, . . . ,O},
sample its sequence given the primordial sequence as
follows: To sample nucleotide u of the descent
species o, we apply to nucleotide u of the primordial
sequence the F81 [28] mutation model with the
background equilibrium distribution π0 and the
substitution probability γo.

The generating process for motif-bearing sequences is
slightly more complex, since it has to deal both with
the generation of the binding site and with the selection
process. First, we describe how to sample an alignment
without taking into account the selection process. Sec-
ond, we show how to modify this procedure so that the
selection process is considered.

Sample a motif-bearing alignment Xn as follows:

1. Sample the start position of the binding site �n from
the uniform distribution.

2. Sample the primordial sequence. For each position u
of the sequence outside the binding site, we sample
nucleotide Yu

n from the background equilibrium
distribution π0. For each position u of the binding
site, we sample nucleotide Yu

n from the equilibrium
distribution πu−�n+1.

3. For each of the descent species o ∈ {1, . . . ,O},
sample its sequence X .,o

n as follows: For each position
u of the descent species o outside the binding site,
apply to nucleotide Xu,o

n of the primordial sequence
the F81 mutation model taking as equilibrium
distribution π0. For each position u of the descent
species o inside the binding site, apply to nucleotide
Xu,o
n of the primordial sequence the F81 mutation

model taking as equilibrium distribution πu−�n+1.

Finally, to model the selection process, we introduce
the variable β . β is used to quantify the degree of the
binding-affinity bias in the reference species. We assume
that a transcription factor binds binding site B with a
probability proportional to p(B|π)β−1. As B occurs in vivo
with probability p(B|π), it occurs in the set of immuno-
precipitated sequences with a probability proportional to
p(B|π) · p(B|π)β−1 = p(B|π)β .
We can interpret the meaning of β as follows: If β is

greater than one, low-affinity binding sites are more fre-
quently rejected with respect to p(B) and high-affinity
binding sites are less frequently rejected with respect to
p(B). This leads to an under-representation of low-affinity
binding sites and an over-representation of high-affinity
binding sites in the ChIP-seq data set, thus modeling a
data set that is affected by the binding-affinity bias. If
β is equal to one, low-affinity binding sites are rejected
as frequently as high-affinity binding sites, leading to
a representative set of binding sites in the ChIP-seq
data set, which is not affected by the binding-affinity
bias.
Based on that selection model, sample a motif-bearing

alignment that has passed the selection process as follows:

1. Sample a motif-bearing alignment disregarding the
selection process following the procedure specified
above.

2. Decide whether the alignment is accepted or rejected
based on the probability of acceptance of the binding
site found at the reference species. If the alignment is
rejected, go to step 1.

Thus, we denote (i) the model with α = 0 and β = 1
by M−−, (ii) the model with with α > 0 and β = 1 by

5. PREDICTING TRANSCRIPTION FACTOR BINDING SITES USING
PHYLOGENETIC FOOTPRINTING
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MC−, (iii) the model with α = 0 and β > 1 by M−
BA, and

(iv) the model with α > 0 and β > 1 MC
BA. M

−− can
neither handle the contamination bias nor the binding-
affinity bias.MC− can only handle the contamination bias,
but not the binding-affinity bias. M−

BA can only handle
the binding-affinity bias, but not the contamination bias.
AndMC

BA can handle both the contamination bias and the
binding-affinity bias.
We call M−−, MC−, M−

BA, and MC
BA foreground mod-

els. For modeling the background alignments, we use the
model with α = 1 and β = 1, which we call background
model and which we denote by B.

Measuring classification performance
For measuring the classification performance of the four
models M−−, M−

BA, MC−, and MC
BA we perform stratified

repeated random sub-sampling validation as illustrated in
Fig. 5 using data sets of the five human transcription fac-
tors CTCF, GABP, NRSF, SRF, and STAT1 that have been
used for benchmarking the phylogenetic footprinting pro-
gramMotEvo [25].
In step 1, we generate two training sets and two dis-

joint test sets for each of the five transcription factors as
follows. We randomly select 200 alignments from the set
of alignments (Table 2) of a particular transcription fac-
tor as positive training set, and we choose the set of the
remaining alignments as positive test set. We randomly
select 500 alignments from the set of alignments of the
four remaining transcription factors as negative training
set and another disjoint set of 500 alignments as negative
test set.

In step 2, we train a foreground model (M−−, M−
BA,

MC−, or MC
BA) on the positive training set and a back-

ground model (B) on the negative training set by expec-
tation maximization [29] using a numerical optimization
procedure in the maximization step.
We restart the expectation maximization algorithm,

which is deterministic for a given data set and a given
initialization, 150 times with different initializations and
choose the foreground model and the background model
with themaximum likelihood on the positive training data
and the negative training data, respectively, for classifica-
tion. We use a likelihood-ratio classifier of the two chosen
foreground and background models, apply this classifier
to the disjoint positive and negative test sets, and calculate
the receiver operating characteristics curve, the precision
recall curve, and the area under both curves as measures
of classification performance.
We repeat both steps 100 times and determine (i) the

mean area under the receiver operating characteristic
curve and its standard error and (ii) the mean area under
the precision recall curve and its standard error.

Data
The data used in this work originate from human ChIP-
seq data of the five human transcription factors CTCF,
GABP, NRSF, SRF, and STAT1, where the ChIP-seq data
for GABP and SRF published in [10] are available from the
QuEST web page [30], and the ChIP-seq data for CTCF,
NRSF, and STAT1 published in [24] are available from
the SISSRs web page [31]. All five data sets have been fil-
tered for high-quality reads and mapped to a reference

testing data

Data preparation

Model training

Model definition
positive 

alignments

training data

Classification

negative
alignments

foreground
model

select randomly
data for training

and testing

background
model

train model using
Expectation

Maximization

classify positive and
negative testing data
by likelihood ratios

Sequence logos

Difference logos

ROC curves average AUCs

Fig. 5 Overview of the workflow presented in this manuscript. In the data preparation step, we randomly compile disjoint training data and testing
data each with positive alignments and negative alignments for each of the transcription factors CTCF, GABP, NRSF, SRF, and STAT1. In the model
training step, we train each of the four presented foreground models as well as a background model by expectation maximization with 150 restarts.
We choose the foreground model and the background model with maximum likelihood, classify the testing data using a likelihood-ratio classifier,
and extract different characteristics such as the ROC curve, the PR curve, the inverse temperature, and the inferred motif. We repeat the described
procedure 100 times and calculate mean values and standard errors for several quantities such as the areas under the ROC curves or the PR curves
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genome [10, 24], and peak calling has been performed by
MACS [32]. Peaks have been extended or cropped to 400
bp, binding regions that potentially comprise more than
one of the five transcription factors have been removed,
and the 900 binding regions with the highest MACS
score have been retained [25]. Orthologous regions from
mouse, dog, cow, monkey, horse, and opossum have been
extracted from the UCSC database [33], multiple align-
ments of these orthologous regions have been obtained
using T-Coffee [34], and these multiple alignments are
kindly provided by [25].
To prepare ungapped alignments from these gapped

data sets of the five transcription factors CTCF, GABP,
NRSF, SRF, and STAT1, we perform the following three
steps. (i) Remove the species that cause the highest num-
ber of gaps in all alignments. Accordingly, we remove
mouse and opossum and keep orthologous regions from
human, monkey, cow, dog, and horse. (ii) Remove all
columns in each of the alignments that contain at least
one gap to obtain ungapped alignments. (iii) Remove all
ungapped alignments that are shorter than 21 bp, which
is the length of the longest motif (NRSF) in the performed
studies. Table 2 shows details about the resulting data. All
data are available as Additional file 2.

Visualizing motif differences with DiffLogo
We used the R package DiffLogo [35] to depict the differ-
ences between the predicted motifs of the models M−−,
M−

BA, MC−, and MC
BA. DiffLogo is an open source soft-

ware that is capable of depicting the differences between
multiple motifs [35]. This is realized by visualizing all pair-
wise differences in anN×N–grid with an empty diagonal.
Each entry in the grid is called difference logo. The degree
of difference of two motifs is calculated by the sum of all
stack heights in the corresponding difference logo and is
indicated by the background color from red (most dissimi-
lar among all motif pairs) to green (most similar among all
motif pairs). The individual sequence logos of the motifs
are shown above the table.
A single difference logo depicts the position-specific dif-

ferences between the base distributions of two sequence
motifs. Differences are visualized using a stack of bases
for each motif position. The height of each base stack
is calculated by the Jensen-Shannon divergence, which
is proportional to the degree of base distribution dis-
similarity. The Jensen-Shannon divergence is zero if both
base distributions are identical, increases with increas-
ing difference of the two base distributions, and reaches a
maximum of 2 bit if the two base distributions are maxi-
mally different, i.e., if two bases occur only in one of the
two motifs each with a probability of 1/2 and the other
two bases occur only in the other motif each with a prob-
ability of 1/2. The height of each base within a stack is
given by the difference of abundance. Thus, the height of

a base is proportional to the degree of differential symbol
abundance. Bases with a positive height indicate a gain of
abundance and bases with a negative height indicate a loss
of abundance. The stack height in the positive direction
must be equal to the stack height in the negative direction,
because the sum of base abundance gain must be equal to
the sum of base abundance loss.

Additional files

Additional file 1: Supplementary Methods, Results, Figures, and
Examples. This file is structured in four sections.
In section 1,Modeling the binding-affinity bias, we describe how to
determine the likelihood of non-motif-bearing and motif-bearing
alignments modeling the contamination bias and the binding-affinity bias.
In section 2, Example interpretation of difference logos, we give an exemplary
interpretation of some difference logos.
Section 3, Supplementary Figures, contains supplementary Figures S1-S18.
Section 4, Supplementary Tables, contains supplementary Tables S1-S10.
(PDF 3492 kb)

Additional file 2: Sequence data. This archive contains data files of
gap-free alignments of the ChIP-seq positive regions for each of the
transcription factors CTCF, GABP, NRSF, SRF, and STAT1 in FASTA format.
(ZIP 645 kb)
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Abstract

Background: Transcriptional gene regulation is a fundamental process in nature, and the experimental and
computational investigation of DNA binding motifs and their binding sites is a prerequisite for elucidating this
process. Approaches for de-novo motif discovery can be subdivided in phylogenetic footprinting that takes into
account phylogenetic dependencies in aligned sequences of more than one species and non-phylogenetic
approaches based on sequences from only one species that typically take into account intra-motif dependencies. It
has been shown that modeling (i) phylogenetic dependencies as well as (ii) intra-motif dependencies separately
improves de-novo motif discovery, but there is no approach capable of modeling both (i) and (ii) simultaneously.

Results: Here, we present an approach for de-novo motif discovery that combines phylogenetic footprinting with
motif models capable of taking into account intra-motif dependencies. We study the degree of intra-motif
dependencies inferred by this approach from ChIP-seq data of 35 transcription factors. We find that significant
intra-motif dependencies of orders 1 and 2 are present in all 35 datasets and that intra-motif dependencies of order 2
are typically stronger than those of order 1. We also find that the presented approach improves the classification
performance of phylogenetic footprinting in all 35 datasets and that incorporating intra-motif dependencies of order
2 yields a higher classification performance than incorporating such dependencies of only order 1.

Conclusion: Combining phylogenetic footprinting with motif models incorporating intra-motif dependencies leads
to an improved performance in the classification of transcription factor binding sites. This may advance our
understanding of transcriptional gene regulation and its evolution.

Keywords: ChIP-Seq, Phylogenetic footprinting, Evolution, Transcription factor binding sites, Gene regulation

Background
Gene regulation is an essential process in every living
organism that controls the activity of gene expression
and enables the concerted up- and down-regulation of
gene products. Gene regulation involves a wide range of
sub-processes such as transcriptional regulation includ-
ing DNA methylation [1], histon modifications [2], and
promotor escaping [3] as well as post-transcriptional reg-
ulation including modulated mRNA decay [4], siRNA
interference [5, 6], and alternative splicing [7, 8]. One
important process in gene regulation is the interaction
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of transcription factors (TFs) with their corresponding
transcription factor binding sites (TFBSs) [9, 10]. The
algorithmic discovery of TFBSs and the simultaneous
inference of their motifs is known as de-novo motif dis-
covery and a challenging task in bioinformatics. Many
different approaches exist for de-novo motif discovery,
which can be divided in two groups.
The first group comprises approaches based on

sequences of only one species, which we refer to as one-
species approaches in this work, using statistical mod-
els for the binding of TFs to their TFBSs. One of the
most popular motif models is the simple position weight
matrix (PWM) model, which does not take into account
any dependency between different positions of the same
TFBS, but there are also more complex motif models that

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
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Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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take into account intra-motif dependencies. Irrespective
of the wide variety of different motif models used, all
of these approaches have in common that they do not
take into account phylogenetic information available from
orthologous sequences of phylogenetically related species.
Complex motif models that take into account intra-

motif dependencies have been shown to outperform sim-
pler motif models like the PWMmodel [11–13]. Examples
for highly popular tools that model intra-motif dependen-
cies are Dimont [14], MEME-ChIP [15], DeepBind [16],
and diChIPMunk [17].
In contrast, the second group of de-novo motif dis-

covery approaches known as phylogenetic footprinting
incorporates orthologous sequences of at least two phy-
logenetically related species. The basic idea of these
approaches is that TFBSs tend to be subject to nega-
tive selection during evolution, which can increase the
recognition of TFBSs in the reference species. Phyloge-
netic motif models, which model the binding of TFs to
their TFBSs and their evolution simultaneously, are based
on evolutionary models such as the popular Felsenstein
model [18]. Irrespective of the wide variety of different
phylogenetic motif models used, all of these approaches
have in common that they do not take into account intra-
motif dependencies.
Not all sequences from the reference species may have

orthologous sequences in phylogenetically related species,
and not all aligned sequences may comprise functional
TFBSs at the same alignment positions [19]. Moreover,
alignment errors, binding site turnovers, and spurious
alignments from convergent evolution may affect the
utility of phylogenetic footprinting. Nevertheless, phy-
logenetic footprinting has been shown to outperform
one-species approaches for many TFs and have become
increasingly attractive due to next generation sequencing
and the resulting avalanche of data [20–22].
Examples for highly popular phylogenetic footprinting

tools that have been applied to eukaryotes and prokary-
otes are FootPrinter [23], PhyME [24], MONKEY [25],
MicroFootprinter [26], Phylogenetic Gibbs Sampler [27],
PhyloGibbs [28], PhyloGibbs-MP [29], orMotEvo [30].
In summary, one-species approaches neglect phylo-

genetic information, whereas phylogenetic footprinting,
which incorporates this information, neglects intra-motif
dependencies. The main objective of this work is to
develop an approach that combines these two ideas and to
investigate if taking into account intra-motif dependencies
can improve phylogenetic footprinting. Specifically, we
propose a simple phylogenetic footprinting model (PFM)
capable of taking into account both intra-motif depen-
dencies and phylogenetic information in Methods, and
we study if modeling intra-motif dependencies improves
phylogenetic footprinting based on human ChIP-Seq data
of 35 TFs and more than 105 multiple alignments of

human ChIP-seq positive regions and their orthologous
sequences of 9 mammalian species ranging from chimp to
cow in Results.

Methods
In this section we describe (i) the studied datasets, (ii) the
used notation and the likelihood calculation of the PFM,
(iii) the performance measure, (iv) the calculation of the
mutual information, and (v) details regarding the esti-
mation algorithm and implementation of the proposed
model.

Data
We use freely available ChIP-Seq data for 50 transcrip-
tion factors from the ENCODE project [31, 32]. The
ChIP-seq experiments were performed by several produc-
tion groups in the ENCODE Consortium and analysed
by the ENCODE Analysis Working Group based on a
uniform processing pipeline developed for the ENCODE
Integrative Analysis effort [33]. We focus on datasets for
the human H1-hESC cell line. The uniform processing
pipeline utilizes the SPP peak caller [34] and biological
replicates (at least two per transcription factor) are anal-
ysed jointly with a Irreproducible Discovery Rate (IDR)
score of at least 2%. The resulting ChIP-seq regions of the
Uniform TFBS track reference the hg19 assembly [35] and
each comprise the chromosome, start position, end posi-
tion, and an enrichment score. We exclude 15 datasets
which yield repetitive motifs analog to [13] and hence
retain datasets of 35 TFs.
For each TFs we select the top 20% of the available

ChIP-seq regions ranked by enrichment score. We denote
these regions as ChIP-seq positive regions and use them
as basis for the positive dataset (Additional file 1: Table S1
and Additional file 1: Section 1.3). We denote the regions
between ChIP-seq positive regions on one chromosome
as ChIP-seq negative regions. For each TF we extract two
regions of length 500 bp from each ChIP-seq negative
region centered at one third and two thirds, and use these
as basis for the negative dataset. Hence, there are roughly
twice as many negative regions than positive regions. We
remove regions from the positive and the negative region
sets that are shorter than 20 bp. For each region in the pos-
itive and negative region sets we extract the correspond-
ing alignment consisting of 46 mammals using the freely
available multiple genome alignment from UCSC [36].
We apply the following steps to each alignment. We

remove alignment columns with gap-symbols or ambigu-
ous symbols in the human sequence and concatenate the
remaining alignment columns. We retain the 10 species
with the best alignment coverage, namely Human (hg19),
Chimp (panTro), Baboon (papHam), Orangutan (pon-
Abe), Rhesus (rheMac), Marmoset (calJac), Horse, (equ-
Cab), Dog (canFam), Gorilla (gorGor), and Cow (bosTau).
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We replace ambiguous symbols with gap-symbols. We
remove all alignments which comprise no base symbols
for 20% or more species. See Additional file 1: Table S1 for
statistics on the number of ChIP-Seq positive regions and
the number of extracted alignments and see Additional
file 1: Table S2 for details about the origin of the used
ChIP-Seq data and Additional file 2 contains all extracted
alignments.

Phylogenetic footprinting model
Notation
Each dataset of each TF contains N alignments, with
each alignment containingO sequences (one per observed
species). Of course the number of alignments per TF, N,
varies from TF to TF (See Additional file 1: Table S1). The
n-th alignment is denoted by Xn and its length is denoted
by Ln. Each sequence of alignment Xn is composed of Ln
symbols. We denote by Xu,o

n the u-th symbol of the o-
th sequence of the n-th alignment. All symbols belong to
the set A = {A,C,G,T ,−} where A,C,G, and T denote
the bases and − denotes a gap in the alignment. Miss-
ing sequences in alignment n are represented by Ln gap
symbols.
An alignment Xn may or may not contain a binding site.

This is encoded in the variable Mn, with Mn = 0 indi-
cating that alignment Xn does not contain a motif and
Mn = 1 indicating that alignmentXn does contain a motif.
This model is known as ZOOPS (zero or one occurrence
of a binding site per sequence) or NOOPS (noisy OOPS)
model. Due to its simplicity and its modularity this model
is widely used for de-novo motif discovery [37–40].

Likelihood
The probability that the alignment Xn is generated by our
PFM can be written as

p (Xn|θ) = p (Xn|Mn = 0, θ) · p (Mn = 0|θ)

+ p (Xn|Mn = 1, θ) · p (Mn = 1|θ) (1)

with variable Mn taking a Bernoulli distribution and θ

denoting model parameters, namely (i) the topology of the
phylogenetic tree, (ii) the substitution probabilities, and
(iii) the evolutionary model with its stationary probabili-
ties for the flanking regions as well as for the binding site
regions.
We need to specify the probability for non-motif-

bearing p(Xn|Mn = 0, θ) and for motif-bearing align-
ments p(Xn|Mn = 1, θ). For reasons of clarity we omit θ

in the following.

Likelihood of a non-motif-bearing alignment
Since sequences are assumed to be conditionally indepen-
dent, the probability of an alignment decomposes as the
product of the probability of each of its sequences:

p (Xn|Mn = 0) =
O∏

o=1
p

(
X .,o
n |Mn = 0

)
(2)

Now, the probability of each sequence follows a homo-
geneous Markov Chain of order C:

p
(
X .,o
n |Mn = 0

) =
Ln∏

u=1
p

(
Xu,o
n |Xp(u,1),o

n ,Mn = 0
)
, (3)

where p(u, k) stands for the (at most C) predecessors of
the u-th base for a sequence starting at position k, namely
the set p(u, k) = {v|max(k,u − C) ≤ v < u}, and

p
(
Xu,o
n = a|Xp(u,1),o

n = ζ ,Mn = 0
)

= π
a,ζ
0 (4)

where π
a,ζ
0 is the parameter encoding the probability of

a base a in the background sequence provided that its
predecessors are in joint state ζ .

Likelihood of amotif-bearing alignment
We noteW for the length of the motif. Since the motif can
be present in different positions, the probability of amotif-
bearing assignment is a weighted sum over each possible
motif position �n:

p (Xn|Mn = 1) =
Ln−W+1∑

�n=1
p (Xn|�n,Mn = 1, θ , )

× p (�n|Mn = 1) (5)

We assume motifs to be uniformly distributed a pri-
ori, thus having that p(�n|Mn = 1) = 1

Ln−W+1 . Again,
conditional independence of sequences allows to express
probability of an alignment as a product of the probability
of its single sequences

p (Xn|�n,Mn = 1) =
O∏

o=1
p

(
X .,o
n , �n,Mn = 1

)
(6)

And the probability of each single sequence breaks into
three parts: (i) an initial non-motif bearing part contain-
ing bases i(�n) = {1, . . . , �n − 1}, (ii) the motif, containing
bases m(�n) = {�n, . . . , �n + W − 1} and (iii) a final
non-motif bearing part formed by bases e(�n) = {�n +
W , . . . , Ln} :

p
(
X .,o
n |�n,Mn = 1

) = p
(
Xi(�n),o
n |�n,Mn = 1

)

×
(
Xm(�n),o
n |�n,Mn = 1

)

× p
(
Xe(�n),o
n |�n,Mn = 1

)
(7)

with the non-motif bearing parts following a homoge-
neous Markov Chain of order C as described above
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and the motif-bearing part following a non-homogeneous
Markov Chain defined as

p
(
Xm(�n),o
n |�n,Mn = 1

)

=
∏

u∈m(�n)

p
(
Xu,o
n |Xp(u,�n),o

n , �n,Mn = 1
)
, (8)

with

p
(
Xu,o
n = a|Xp(u,�n),o

n = ζ , �n,Mn = 0
)

= π
a,ζ
u−�n+1

(9)

where π
a,ζ
w is a parameter that encodes the probability

of a base a, at position w of the motif provided that its
predecessors are in joint state ζ .

Management of gaps
A sequence may have gaps introduced by the alignment
algorithm. We compute the probability of a gap by sum-
ming over all possible nucleotides at that position in
that sequence. For example to assess p

(
Xu,o
n = −|Xp(u,1),o

n

= ζ ,Mn = 0
)
, we use

∑
a∈{A,C,G,T} p

(
Xu,o
n = a|Xp(u,1),o

n

= ζ ,Mn = 0
)
.

The used model estimation procedure and the freely
available implementation are specified in Methods 5, and
run times are exemplified in Additional file 1: Section 1.6.

Measuring classification performance
We evaluate all PFMs by a stratified repeated random sub-
sampling validation by estimating all PFMs from a training
set and measuring classification performance on a test set
as follows.
In step 1, we generate two training sets and two dis-

joint test sets for each of the 35 transcription factors
as follows. We randomly select 70% but maximal 1000
alignments from the set of alignments of a particular tran-
scription factor as positive training set, and we choose the
set of the remaining alignments but maximal 1000 as pos-
itive test set. We randomly select 70% but maximal 1000
alignments from the corresponding set of negative align-
ments of this transcription factor, and we choose the set
of the remaining alignments but maximal 1000 as negative
test set.
In step 2, we train a foreground model on the posi-

tive training set and a background model on the negative
training set by expectation maximization [41] using a
numerical optimization procedure in the maximization
step. In all cases, we attempt to find a motif of length
W = 20 bp. It is known that the motifs of many TFs have a
length smaller thanW bp, but adding some possibly unin-
formative positions in case of short motifs is less harmful
than not being able to take into account all motif positions

in case of long motifs. We restart the expectation max-
imization algorithm, which is deterministic for a given
dataset and a given initialization, 100 times with differ-
ent initializations and choose the foreground model and
the background model with the maximum likelihood on
the positive training data and the negative training data,
respectively, for classification. We use a likelihood-ratio
classifier of the two chosen foreground and background
models, apply this classifier to the disjoint positive and
negative test sets, and calculate the area under the receiver
operating characteristics curve and the area under
the precision recall curve as measures of classification
performance.
We repeat both steps 25 times and determine (i) the

mean area under the receiver operating characteristic
curve and its standard error and (ii) the mean area under
the precision recall curve and its standard error.

Relative increase of classification performance
We compute the relative increase or decrease of the clas-
sification performance of the PFM(1) and the PFM(2)
relative to the PFM(0), where PFM(C) denotes a PFMs
taking into account base dependencies of order C. We
compute RPFM(C) as the ratio of the improvement of the
PFM(C) relative to the PFM(0) divided by the maximum
possible improvement to the PFM(0) as given by

RPFM(C) = AUCPFM(C) − AUCPFM(0)
1 − AUCPFM(0)

.

Negative values of RPFM(C) denote a decrease of classifi-
cation performance and positive values of RPFM(C) denote
an increase of classification performance up to a maxi-
mum of RPFM(C) = 1 which denotes perfect classification
(provided that the AUC of PFM(0) is smaller than 1).

Mutual information
The mutual information (MI) is a standard measure for
quantifying statistical dependencies. We compute the MI
between a base at positionw in a motif and itsC preceding
bases for w > C as follows

IC(w) = I
(
Xw,XC

w

)
=

∑

a∈AC

∑

b∈A
p

(
XC
w = a,Xw = b

)

× log2
p

(
XC
w = a,Xw = b

)

p
(
XC
w = a

)
p(Xw = b)

where Xw denotes the base at position w and XC
w =

(Xw−C , . . . ,Xw−1) denotes the context of Xw. IC(w)

denotes the amount of information in theC-mer ending at
position w− 1 about its adjacent base at position w. IC(w)

is undefined for w ≤ C.
We denote the vector of MIs values IC(w) for w ∈ {C +

1, . . . ,W } by IC = (IC(C+1), . . . , IC(W )), whereW is the
length of the motif, and we call this vector MI profile.

5. PREDICTING TRANSCRIPTION FACTOR BINDING SITES USING
PHYLOGENETIC FOOTPRINTING

86



Nettling et al. BMC Bioinformatics  (2017) 18:141 Page 5 of 10

Implementation
We implement the proposed PFM based on the freely
available Java Framework Jstacs [42]. Among others,
Jstacs provides ready-to-use sequence models for reuse,
numerical and non-numerical optimization procedures
for model estimation, serialization of models, and meth-
ods for the statistical evaluation of results. In contrast to
existing tools which are typically focused on application,
using Jstacs we are able to compare different PFMs in a
detailed way by extracting mandatory information about
the inferred models and the predicted binding sites.
Algorithm 1 shows the pseudocode for inferring a PFM

from a set of alignments. The implementation of the
proposed phylogenetic footprinting model is available at
https://github.com/mgledi/PhyFoo/.

Algorithm 1 Motif discovery algorithm for the proposed
PFM. Upon random initialization of the model parame-
ters we iteratively estimate sequence weights and model
parameters with multiple algorithm restarts, where R
denotes the number of restarts of the whole algorithm,
and S denotes the number of iterations. The result is the
set of model parameters with maximum likelihood
1: Data: Set of alignments {X1, . . . ,XN }
2: for r = 1 . . . R do
3: Initialize θ1 randomly
4: for s = 1 . . . S do
5: E-step:Estimate p(Xm(�n),o

n |�n,Mn = 1, θ s) for
each position �n in each alignment Xn given
the model parameters θ s (see Eq. 8)

6: M-step: Maximize p(Xn|θ s+1) regarding
θ s+1 given all alignments and the probabilities
p(Xm(�n),o

n |�n,Mn = 1, θ s) (see Eq. 1)
7: end for
8: Keep θS+1 denoted θr
9: end for

10: Result: θ ∈ {θ1, . . . θR} with maximum likelihood

Results and discussion
We propose a model for phylogenetic footprinting that is
capable of taking into account intra-motif dependencies as
specified in Methods 2. Specifically, we model intra-motif
dependencies in TFBSs as well as dependencies among
adjacent bases in flanking sequences by Markov models
of orders 0, 1, and 2, and we denote the proposed PFM by
PFM(0), PFM(1), and PFM(2).
In the first subsection we study if the proposed PFMs

can capture intra-motif dependencies of orders 1 and 2
in ChIP-Seq data of 35 TFs. In the second subsection we
study if modeling base dependencies can improve phy-
logenetic footprinting. Both studies are based on human
sequences extracted from ENCODE ChIP-seq data [33]

and corresponding orthologous sequences of 9 mam-
malian species, yielding 35 data sets comprising 135196
multiple sequence alignments with an average length of
124 bases (Methods 1).

Intra-motif dependencies can be captured by phylogenetic
footprinting
In this subsection we study to which degree intra-motif
dependencies can be captured using the PFMs of orders 1
and 2.
We measure the degree of intra-motif dependencies of

order 1 between two neighboring bases or of order 2
between a dimer and its neighboring base by the MI as
described in Methods 4. The MI quantifies the amount
of information in a base or a dimer about the neighbor-
ing base in units of bits and ranges from 0 bits in case
of statistical independence to 2 bits in case of determin-
istic dependency of the considered base on the preceding
base or the preceding dimer.We compute theMI for every
position of a binding site and call the resulting vector of
MI values MI profile.
For each of the 35 TFs, we compute the two MI profiles

of orders 1 and 2 from themotifs obtained by phylogenetic
footprinting using the PFM(2). We present the resulting
35 × 2 MI profiles as Additional file 3 and the 2 × 2 MI
profiles of the two TFs CJUN and Nrf as examples in
Fig. 1a.
First, we study the MI profiles of order 1 for these

two TFs. For both TFs we find statistically significant
intra-motif dependencies between neighboring bases at
all positions. ForCJUN, intra-motif dependencies of order
1 are particularly strong at motif positions 2 to 4, yield-
ing a maximum MI of 0.52 bits at motif position 4. For
Nrf, intra-motif dependencies of order 1 are particularly
strong at motif positions 8 to 11 and 14 to 15, yielding a
maximumMI of 0.23 bits at motif position 11.
Next, we study the MI profiles of order 2. Again, we find

statistically significant intra-motif dependencies between
dimers and their neighboring bases at all positions for
both CJUN and Nrf. For CJUN, intra-motif dependencies
of order 2 are particularly strong at motif positions 2 to 4,
yielding a maximum MI of 0.70 bits at motif position 3.
For Nrf, intra-motif dependencies of order 2 are particu-
larly strong at motif positions 8 to 11 and 13 to 15, yielding
a maximumMI of 0.28 bit at motif position 11.
Moreover, we find that intra-motif dependencies of

order 2 are significantly stronger than the corresponding
intra-motif dependencies of order 1 at several positions
for both CJUN and Nrf. Comparing the MI profiles of
orders 1 and 2, we find that the MI profile of order 2 is
up to twofold higher than the MI profile of order 1 for
CJUN and up to sevenfold higher for Nrf, stating that in
both TFs there are significant intra-motif dependencies of
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a b

Fig. 1 Sequence logos and intra-motif dependencies for the TFs a CJUN and b Nrf. We depict for both TFs (i) the sequence logo inferred by the
PFM(2) from all species in the first row and (ii) the MI profiles of orders 1 and 2 inferred by the PFM(2) in the second row. The MI profiles of order 2
are larger than the MI profiles of order 1. Please see Additional file 3 for the MI profiles of all 35 TFs and Additional file 5 for all sequence logos of all
35 TFs for the PFMs of orders 0, 1, and 2

order 2 beyond those expected from the corresponding
intra-motif dependencies of order 1.
Next, we study theMI profiles of orders 1 and 2 for all 35

TFs. In order to condense the results and to allow a visual
comparison of the results for both profiles and all 35 TFs,
we show for each MI profile and each TF the maximum
and mean MI values in Fig. 2a.
We find that the average of the 35 maximum MI val-

ues of order 1 is 0.39 bits, whereas the average of the 35
maximum MI values of order 2 is significantly greater at
0.56 bits. Likewise, we find that the average of the 35mean
MI values of order 1 is 0.14 bits, whereas the average of
the 35 mean MI values of order 2 is significantly greater
at 0.23 bits. These observations suggest that intra-motif
dependencies are present in all of the studied TFs and that
intra-motif dependencies of order 2 are typically stronger
than those of order 1.
By scrutinizing Figs. 2a and b, however, we also find

that the maximum and meanMIs values vary significantly
fromTF to TF. For example, we find amaximum andmean
MI value of order 1 of 0.11 bits and 0.05 bits for CEBPB
and a maximum and meanMI value of order 1 of 0.89 bits
and 0.20 bits for Mxi. Analogously, we find a maximum
and mean MI value of order 2 of 0.16 bits and 0.07 bits for
CEBPB and a maximum and mean MI value of order 2 of
1.15 bits and 0.37 bits forMxi.
To study the possibility that these captured intra-motif

dependencies are an artifact resulting from a mixture
of different species-specific motifs, we finally study the

similarity of the 10 species-specific motifs as well as
the 20 species-specific MI profiles of orders 1 and 2.
We find that the observed pairwise differences between
the species-specific motifs are not significant (Additional
file 1: Section 1.1.1). Moreover, we find that the species-
specific MI profiles are similar to each other and to the
corresponding MI profiles captured by phylogenetic foot-
printing (Additional file 4, Additional file 1: Section 1.1.2).
Both findings indicate that the intra-motif dependen-
cies shown in Fig. 1b and in Additional file 3 cannot
be explained as an artifact resulting from a mixture of
different species-specific motifs.

Modeling intra-motif dependencies improves
phylogenetic footprinting
In this subsection we study if modeling base dependencies
can improve phylogenetic footprinting.
First, we compute the classification performance of the

PFMs of orders 0, 1, and 2 as described in Methods 3.
Second, we determine the increase of the classification
performance of the PFMs taking into account base depen-
dencies of orders 1 and 2 relative to the classification
performance of the PFM neglecting base dependencies
as described in Methods 3. Here, positive values indicate
an increase of classification performance, while negative
values indicate a decrease of classification performance.
Figure 3a shows the classification performances of the

PFMs of orders 0, 1, and 2 for each of the 35 TFs, and
Fig. 3b shows the corresponding relative increases. We
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a

b

Fig. 2Maximum and average MIs of MI profiles inferred by the PFM(2) for all 35 TFs. In Fig. a we show the maximumMI of the MI profiles of orders 1
and 2. In Fig. b we show the average MI of the MI profiles of orders 1 and 2. The dashed lines indicate the mean of the maximumMIs and the mean
of the average MIs for both MI profiles respectively. The degree of intra–motif dependencies depends of the TF and is always larger in case of
intra–motif dependencies of order 2. Please see Additional file 3 for the MI profiles of all 35 TFs

find that modeling base dependencies of order 1 increases
the classification performance in 31 of 35 cases, and we
find that modeling base dependencies of order 2 increases
the classification performance in all of the 35 cases. More-
over, we find that modeling base dependencies of order 2
always yields a higher classification performance than
modeling base dependencies of order 1.
By scrutinizing Fig. 3a, we find that the differences of

the classification performances of the PFMs of orders 1
and 2 and the PFMs of order 0 vary significantly from TF
to TF. For example, in case of base dependencies of order 1
we find the highest difference of 11% for CHD2 and the
lowest difference of−1% for Rad21. In case of base depen-
dencies of order 2 we find the highest difference of 13%
for Rad21 and the lowest difference of 1% for RXRA.
By scrutinizing Fig. 3b, we find that also the relative

increases of classification performances vary significantly
from TF to TF. For example, in case of base dependen-
cies of order 1 we find the highest increase of 70% for
JARIDA1A and the lowest increase of −7% for Rad21. In
case of base dependencies of order 2 we find the highest
increase of 78% for JARIDA1A and the lowest increase of
7% for RXRA.
Figure 4 summarizes the results by showing (a) the clas-

sification performance of the PFMs of orders 0, 1, and 2
averaged over all 35 TFs and (b) the relative increases

of classification performances averaged over all 35 TFs.
We observe that the average classification performance
increases significantly from order 0 to order 1 and from
order 1 to order 2. Specifically, we find that the average
classification performance of the PFM(1) is 4.6% higher
than that of the PFM(0) and that the average classifica-
tion performance of the PFM(2) is 3.5% higher than that
of the PFM(1). We find that the average relative increase
of the classification performance of the PFM(1) over
that of the PFM(0) is 25% and that the average relative
increase of the classification performance of the PFM(2)
over that of the PFM(0) is 42%.
Next, we study the robustness of the proposed approach

with respect to the number of species in the multiple
sequence alignments. We perform the same study on the
same 35 datasets with alignments comprising only subsets
of the 10 species, and we find that for all subsets the classi-
fication performance increases significantly from order 0
to order 1 for many of the 35 TFs and from order 1 to
order 2 for all of the 35 TFs (Additional file 1: Section 1.2).
These findings indicate that taking into account base

dependencies improves phylogenetic footprinting, but
they also indicate that this improvement is small. Given
the fact that taking into account base dependencies
improves one-species approaches, too, it could well be
that the improvement obtained by taking into account
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a

b

Fig. 3 Classification performance for PFMs with base dependencies of orders 0, 1 and 2. aWe show the mean and standard error of the ROC AUC for
PFMs of orders 0, 1, and 2 averaged over 25–fold stratified repeated random subsampling. bWe plot the mean and standard error of the relative
increase of the ROC AUC for the PFMs of orders 1 and 2 relative to the PFM or order 0 for each of the 35 TFs. Taking into account base dependencies
of order 1 increases the classification performance for 31 TFs. Taking into account base dependencies of order 2 increases the classification
performance in all cases and is larger compared to taking into account base dependencies of order 1 in all cases. See Additional file 6 for detailed
ROC and PR curves for the PFMs of order 2

a b

Fig. 4 Classification performance averaged for all 35 TFs. aWe show
the ROC AUC for PFMs of orders 0, 1, and 2 in percent averaged over
25–fold stratified repeated random subsampling and averaged over
all 35 TFs. The overall classification performance increases with the
order of the PFM. bWe show the improvement of the ROC AUC for
the PFMs of orders 1 and 2 relative to the PFM of order 0 averaged
over 25–fold stratified repeated random subsampling and averaged
over all 35 TFs

base dependencies in one-species approaches is greater
than in phylogenetic footprinting. Such a difference could
result in the situation where the advantage of phylogenetic
footprinting over one-species approaches when neglect-
ing base dependencies decreases or even turns into a dis-
advantage when taking into account base dependencies.
To study to which degree the small improvement of phy-

logenetic footprinting by taking into account base depen-
dencies might be overshadowed by a possibly greater
improvement of one-species approaches, we compare
the classification performances of the four cases of one-
species approaches and phylogenetic footprinting when
neglecting and taking into account base dependencies
(Additional file 1: Section 1.3). Consistent to previous
studies, we find that phylogenetic footprinting yields a
higher (lower) classification performance compared to
one-species approaches for 23 (12) of the 35 TFs when
neglecting base dependencies. When taking into account
base dependencies, however, phylogenetic footprinting
yields a higher (lower) classification performance com-
pared to one-species approaches in 31 (4) of the 35 TFs.
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This finding indicates that the small improvement of
phylogenetic footprinting by taking into account base
dependencies is greater than the corresponding improve-
ment of one-species approaches. It also indicates that the
previously observed advantage of phylogenetic footprint-
ing over one-species approaches when neglecting base
dependencies (23 to 12) does not decrease or turn into
a disadvantage, but becomes even more pronounced (31
to 4), when taking into account base dependencies. This
increased advantage of phylogenetic footprinting over
one-species approaches achieved by taking into account
base dependencies is surprising as it indicates the pres-
ence of some synergy of modeling both phylogenetic and
base dependencies.
We finally study for each of the 35 TFs which of

the four models yields the highest classification perfor-
mance, and we find that one-species approaches neglect-
ing base dependencies yields the highest classification
performance for one TF (CEBPB), one-species approaches
taking into account base dependencies yields the high-
est classification performance for three TFs (BCL11A,
MafK, and RXRA), phylogenetic footprinting neglecting
base dependencies never yields the highest classification
performance, and phylogenetic footprinting taking into
account base dependencies yields the highest classifica-
tion performance for 31 TFs. This finding indicates that
phylogenetic footprinting can be improved by taking into
account base dependencies, that one-species approaches
using base dependencies can be improved by taking into
account phylogenetic dependencies, and that there is a
surprising synergy of simultaneously modeling both phy-
logenetic and base dependencies.

Conclusions
In this work, we introduced a phylogenetic footprinting
model capable of taking into account base dependen-
cies and evaluated this phylogenetic footprinting model
on ChIP-seq data of 35 TFs. We found significant intra-
motif dependencies of orders 1 and 2 in all 35 datasets
and that the inferred intra-motif dependencies of order
2 are stronger than those of order 1 for all 35 TFs. We
also found that these intra-motif dependencies cannot
be explained as an artifact resulting from a mixture of
different species-specific motifs. We further found that
the classification performance of the introduced phyloge-
netic footprinting model is higher than that of phyloge-
netic footprinting models neglecting base dependencies
for all of the 35 TFs and higher than that of one-species
approaches for 31 of the 35 TFs. These findings sug-
gest that combining phylogenetic footprinting with motif
models incorporating intra-motif dependencies may lead
to an improved prediction of TFBSs and thus advance our
understanding of transcriptional gene regulation and its
evolution.

Additional files

Additional file 1: Supplementary Material. This file is structured in three
sections, presenting four additional studies, details about the
implementation and some statistics regarding the datasets of all 35 TFs.
In Section 1, Supplementary Results, we first study differences among
species–specific motifs of 35 TFs. We then study the robustness of the
proposed PFM to different species compositions on data of 35 TFs. Third,
we examine the impact of base dependencies and phylogenetic
dependencies on classification performance. In the fourth subsection, we
compare the proposed PFM(2) with a state of the art tool by Eggeling et al.
2015 [13] on data of 35 TFs. In the fifth subsection, we show statistics of the
distances between ChIP-seq positive regions and the alignment coverage
of ten species. Finally, we specify the run–time of our freely available
implementation of the proposed PFM.
In Section 2, Supplementary Methods, we specify details about the
estimation of species–specific motifs and we define a statistical test for the
significance of differences among species–specific motifs.
In Section 3, Supplementary Tables, we show statistics of the datasets of 35
TFs, summarize results regarding the significance of species–specific motifs
and the impact of base dependencies and phylogenetic dependencies, and
show the alignment coverage of ten species for 35 TFs. (PDF 1034.24 kb)

Additional file 2: Sequence data. This archive contains data files of
alignments of the ChIP-seq positive regions and negative control regions
for each of the 35 TFs in FASTA format. (ZIP 83763.2 kb)

Additional file 3: Sequence logos, MI profiles of order 1, MI profiles of
order 2, and species-specific MI profiles of orders 1 and 2. The file contains
for each of the 35 TFs the sequence logo inferred using the PFM(2) aligned
with MI profiles of order 1, the MI profiles of order 2, and species-specific MI
profiles of orders 1 and 2 for each of the 10 species. (PDF 2129.92 kb)

Additional file 4: Tables of difference logos. The file contains for each of
the 35 TFs a 10 × 10 table of difference logos for a pair-wise visual
comparison of species-specific motifs. (ZIP 26112 kb)

Additional file 5: Sequence logos of predicted binding sites. The file
contains sequence logos and their reverse complements of predicted
binding sites inferred using the PFM(0), the PFM(1), and the PFM(2) for
each of the 35 TFs. (PDF 11776 kb)

Additional file 6: ROC curves. The pdf file comprises for each TF one plot
that shows the 25 ROC curves and one plot that shows the 25 PR curves
from the 25–fold stratified repeated random sub-sampling validation
procedure described in Methods 3. (PDF 2611.2 kb)
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Abstract

Motivation: The computational investigation of DNA binding motifs from binding sites is one of the

classic tasks in bioinformatics and a prerequisite for understanding gene regulation as a whole. Due

to the development of sequencing technologies and the increasing number of available genomes,

approaches based on phylogenetic footprinting become increasingly attractive. Phylogenetic foot-

printing requires phylogenetic trees with attached substitution probabilities for quantifying the evolu-

tion of binding sites, but these trees and substitution probabilities are typically not known and cannot

be estimated easily.

Results: Here, we investigate the influence of phylogenetic trees with different substitution proba-

bilities on the classification performance of phylogenetic footprinting using synthetic and real data.

For synthetic data we find that the classification performance is highest when the substitution prob-

ability used for phylogenetic footprinting is similar to that used for data generation. For real data,

however, we typically find that the classification performance of phylogenetic footprinting surpris-

ingly increases with increasing substitution probabilities and is often highest for unrealistically

high substitution probabilities close to one. This finding suggests that choosing realistic model as-

sumptions might not always yield optimal predictions in general and that choosing unrealistically

high substitution probabilities close to one might actually improve the classification performance

of phylogenetic footprinting.

Availability and Implementation: The proposed PF is implemented in JAVA and can be down-

loaded from https://github.com/mgledi/PhyFoo

Contact: martin.nettling@informatik.uni-halle.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Gene regulation is a highly complex process in nature based on sev-

eral sub-processes such as transcriptional regulation including DNA

methylation (Smith and Meissner, 2013), histone modifications

(Tessarz and Kouzarides, 2014) and promotor escaping (Sainsbury

et al., 2015) as well as post-transcriptional regulation including

modulated mRNA decay (Schoenberg and Maquat, 2012), siRNA

interference (de Fougerolles et al., 2007; Tam et al., 2008) and al-

ternative splicing (Luco et al., 2010; Sultan et al., 2008). One im-

portant step in this complex process is the regulation of

transcriptional initiation by the interaction of transcription factors

(TFs) with their binding sites (Hobert, 2008; Voss and Hager,

2014). Hence, identifying transcription factor binding sites (TFBSs)

and inferring their binding motifs is a prerequisite in modern

VC The Author 2017. Published by Oxford University Press. 1
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biology, medicine and biodiversity research (Nowrousian, 2010;

Villar et al., 2014).

The last decade has witnessed a spectacular development of

sequencing technologies unleashing new potentials in identifying

TFBSs (Kulakovskiy et al., 2010; Furey, 2012; Lasken and McLean,

2014; van Dijk et al., 2016). Due to the increasing number of avail-

able genomes of different species and due to increasing computa-

tional resources, approaches for de-novo motif discovery based on

phylogenetic footprinting have become increasingly attractive.

Examples of highly popular tools for phylogenetic footprinting are

FootPrinter (Blanchette and Tompa, 2003), PhyME (Sinha et al.,

2004), MONKEY (Moses et al., 2004a), PhyloGibbs (Siddharthan

et al., 2005), Phylogenetic Gibbs Sampler (Newberg et al., 2007),

PhyloGibbs-MP (Siddharthan, 2008) and MotEvo (Arnold et al.,

2012). Supplementary Table S1 provides a comparison of these tools

regarding the used evolutionary model, sequence model and learning

principle.

One prerequisite for most phylogenetic footprinting approaches

are multiple sequence alignments (MSAs) of upstream regions of

orthologous genes of multiple not too closely related species

(Anisimova et al., 2013). These MSAs capture phylogenetic infor-

mation, and the key idea of using these MSAs as starting point for

phylogenetic footprinting results from the observations that (i) func-

tional TFBSs are phylogenetically conserved and (ii) phylogenetic-

ally conserved TFBSs are aligned in MSAs. Examples of highly

popular tools for aligning non-coding genomic regions are T-Coffee

(Notredame et al., 2000), WebPRANK (Löytynoja and Goldman,

2010) and MAFFT (Katoh and Standley, 2013).

Phylogenetic footprinting improves the de-novo motif discovery

by incorporating phylogenetic dependencies within the MSA in con-

trast to approaches based on sequences from only one species.

Substitution models of DNA sequence evolution such as the F81

model (Felsenstein, 1981) have been adapted to model the evolution

of TFBSs in a position-specific manner, and it has been shown that

these adapted models, which we call phylogenetic footprinting mod-

els (PFMs) for brevity, can detect TFBSs more accurately than mod-

els that neglect phylogenetic dependencies (Clark et al., 2007; Gertz

et al., 2006; Hardison and Taylor, 2012; Hawkins et al., 2009;

Moses et al., 2004a; Nettling et al., 2017).

One fundamental prerequisite for phylogenetic footprinting is a

phylogenetic tree including substitution probabilities attached to

each of its branches, and choosing an appropriate phylogenetic tree

and appropriate substitution probabilities is pivotal for the classifi-

cation performance of phylogenetic footprinting (Kc and Livesay,

2011). However, estimating substitution probabilities within TFBSs

is substantially harder than estimating them e.g. in protein-coding

regions for at least two reasons:

First, the positions of TFBSs are unknown when performing

phylogenetic footprinting, whereas the positions of protein-coding

regions are known when estimating substitution probabilities there.

Second, protein-coding regions are much longer than TFBSs, so one

can use a much larger number of bases for estimating substitution

probabilities for protein-coding regions than for TFBSs.

Estimating substitution probabilities within TFBSs is challeng-

ing, but several valuable studies have been performed in this direc-

tion (Doniger and Fay, 2007; Pollard et al., 2010; Schaefke et al.,

2015; Tu�grul et al., 2015). For example, studies on synthetic data

have indicated that small substitution probabilities in the motif and

moderate substitution probabilities in the flanking sequences can be

preferable for motif recognition (Sinha et al., 2004), and studies on

different yeast species have confirmed these findings and shown that

the likelihood of the Jukes-Cantor model (Jukes and Cantor, 1969)

increases relative to a thymine background (‘polyT’) for small sub-

stitution probabilities in the motif and moderate substitution proba-

bilities in the flanking sequences (Moses et al., 2004b).

These and similar findings, however, have not lead to a robust

approach of estimating substitution probabilities within TFBSs prior

to or as part of phylogenetic footprinting, so the substitution proba-

bilities are often simply taken from the literature or guessed, and

their influence on the classification performance of phylogenetic

footprinting has not yet been studied systematically.

Here, we study this influence based on a synthetic dataset and

five real datasets of the TFs CTCF, GABP, NRSF, SRF and STAT1.

Specifically, we describe the PFM, the datasets, the tested phylogen-

etic trees, the performance measure, and implementation details in

section Methods, and we study the classification performance of

phylogenetic footprinting as a function of the substitution rate for

synthetic and real datasets, compare the results to those of phylogen-

etic footprinting based on expert trees from the literature, and dis-

cuss the findings in the context of several factors that affect the

evolution of TFBSs in sections 3 and 4.

2 Materials and methods

In this section we describe (i) the used notation and the likelihood

calculation of the PFM, (ii) the investigated datasets, (iii) the per-

formance measure, (iv) the systematic investigation of phylogenetic

trees and (v) the implementation of the PFMs.

2.1 Phylogenetic footprinting model
2.1.1 Notation

Our data contains N alignments, with each alignment containing O

sequences (one per observed species) of length Ln.

Our phylogenetic model incorporates the existence of H add-

itional hidden species, that is, species for which we cannot observe

their sequences. Both hidden and observed species conform a tree.

Thus, for each species k but the root, pa(k) denotes the ancestor of

species k in the tree. The root species is noted r.

Our probabilistic model contains a random variable Su;k
n for each

nucleotide 1 � u � Ln of each species 1 � k � OþH of each

alignment 1 � n � N. These random variables take values in the

set of bases A ¼ fA;C;G;Tg. We note paðSu;k
n Þ the uth nucleotide in

the nth alignment of species pa(k) (the ancestor of k). By definition,

the root has no ancestor and hence paðSu;r
n Þ ¼1. We also refer to

nucleotide Su;k
n as Au;k

n when species k is observed, and as Yu;k
n when

species k is hidden. Furthermore we note by Yu;:
n (respectively Su;:

n )

the set containing each random variable Yu;k
n (respectively Su;k

n ), with

Oþ 1 � k � OþH and Yn the set containing every random vari-

able in Yu;:
n with 1 � u � Ln:

An alignment An may or may not contain a TFBS. This is

encoded in variable Mn, with M0
n indicating that alignment An does

not contain a motif and M1
n indicating that alignment An does con-

tain a motif.

2.1.2 Likelihood

The probability that the alignment An is generated by the PFM can

be written as

pðAnjhÞ ¼ pðAnjM0
n; hÞ � pðM0

njhÞ þ pðAnjM1
n; hÞ � pðM1

njhÞ

with variable Mn taking a Bernoulli distribution and h denoting

model parameters, namely the topology of the phylogenetic tree, the

substitution probabilities and the evolutionary model with its

2 M.Nettling et al.
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stationary probabilities for the flanking regions as well as the TFBS

regions.

We need to specify the probability for non-motif-bearing pðAnj
M0

n; hÞ and for motif-bearing alignments pðAnjM1
n; hÞ. For reasons of

clarity we omit h in the following.

2.1.3 Likelihood of a non-motif-bearing alignment

The probability that alignment An is generated by the PFM as a non-

motif bearing alignment is

pðAnjM0
nÞ ¼

X
Yn

pðAnjYn;M
0
nÞ: (1)

We assume that each single nucleotide alignment is independent

of any other nucleotide alignment given h and M0
n. Furthermore, we

assume that in each nucleotide alignment, the species satisfy the con-

ditional independencies encoded by the phylogenetic tree. Thus,

pðAnjM0
nÞ ¼

QLn

u¼1

P
Yu;:

n
pðSu;:

n jM0
nÞ (2)

¼
QLn

u¼1

P
Yu;:

n

QOþH
k¼1 pðSu;k

n jpaðSu;k
n Þ;M0

nÞ (3)

where

pðSu;k
n ¼ ajpaðSu;k

n Þ ¼ b;M0
nÞ ¼

pa
0 if k ¼ r

ck � pa
0 þ ð1� ckÞda¼b if k 6¼ r

(

according to the F81 model, where the base distribution of each pos-

ition of the background sequence is denoted by p0, the probability

of a nucleotide a in the background sequence is denoted by pa
0, and

the substitution probability from the ancestor species to species k is

denoted by ck. For more realistic phylogenetic models ck might also

depend on specific nucleotide transitions.

2.1.4 Likelihood of a motif-bearing alignment

The probability that alignment An is generated by the PFM as a

motif bearing alignment is

pðAnjM1
nÞ ¼

XLn�Wþ1

‘n¼1

X
Yn

pðAn;Yn; ‘njM1
nÞ: (4)

where W is the length of the TFBS and ‘n is the position of the TFBS

in alignment An. Since single nucleotide alignments are assumed in-

dependent and considering the conditional independencies in the

phylogenetic tree we have

pðAnjM1
nÞ ¼

XLn�Wþ1

‘n¼1

pð‘njM1
nÞ
YLn

u¼1

X
Yu;:

n

pðSu;:
n j‘n;M

1
nÞ (5)

with pðSu;:
n j‘n;M1

nÞ ¼
QOþH

k¼1 pðSu;k
n jpaðSu;k

n Þ; ‘n;M
1
nÞ and

pðSu;k
n jpaðSu;k

n Þ;‘n;M1
nÞ

¼

pa
0 if k¼ r and u< ‘n or u� ‘nþW

pa
u�‘nþ1 if k¼ r and ‘n � u< ‘nþW

ck�pa
0þð1�ckÞda¼b if k 6¼ r and u< ‘n or u� ‘nþW

ck�pa
u�‘nþ1þð1�ckÞda¼b if k 6¼ r and ‘n � u< ‘nþW

8>>>>>><
>>>>>>:

As for the non-motif-bearing alignment, the base distribution of

each position of the background sequence is denoted by p0 and the

probability of a nucleotide a in the background sequence is denoted by

pa
0. The base distributions of a motif sequence of length W are denoted

by pw with w 2 ½1; . . . ;W� and the probability of a nucleotide a at

position w in a motif sequence is denoted by pa
w. The substitution

probability from the ancestor species to species k is denoted by ck.

Finally we assume motifs to be uniformly distributed, thus hav-

ing that pð‘njM1
nÞ ¼ 1

Ln�Wþ1, which completes the specification of

the likelihood function.

2.2 Data
2.2.1 Real data

The data used in this work originate from human ChIP-Seq data of

the five TFs CTCF, GABP, NRSF, SRF and STAT1 Jothi et al. (2008);

Valouev et al. (2008) and gapped alignments of the ChIP-Seq target

regions from human with orthologous regions from monkey, cow,

dog and horse. The original data provided by Arnold et al. (2012)

consist of 900 gapped alignments for each of the five TFs. Each

gapped alignment consists of sequences from six species. Since gapped

alignments have a higher risk of showing mathematical side effects,

we process them to derive ungapped alignments following three steps:

(i) We remove the species that causes the highest number of gaps in all

alignments. Accordingly, we remove sequences from opossum and

keep orthologous regions from human, monkey, cow, dog and horse.

(ii) In each alignment, we remove all alignment columns that contain

at least one gap. (iii) We remove all alignments that are shorter than

21bp, which is the length of the longest TFBS motif (NRSF) in the

presented studies. Supplementary Table S2 shows details about the re-

sulting datasets. All datasets are available as Supplementary Material.

2.2.2 Synthetic data

The synthetic dataset used in this work is generated using the PFM

specified in section 2.1 with a star topology.

A negative set of 1000 non-motif-bearing alignments each of

length L ¼ 300 is generated. Each non-motif bearing alignment is

generated in two steps as follows. (i) Sample the primordial se-

quence. For each position u 2 ½1;L� of the sequence, sample a nu-

cleotide from the uniform distribution p0. (ii) For each of the

descent species o 2 f1; . . . ;5g, sample a mutated sequence given the

primordial sequence position-wise. For each position u 2 ½1;L�,
apply the F81 Felsenstein (1981) mutation model with the equilib-

rium distribution p0 and substitution probability c ¼ 0:2 to the nu-

cleotide of the primordial sequence at position u.

A positive set of 750 motif-bearing alignments each of length

L ¼ 300 is generated. Each motif-bearing alignment is generated as

follows:

(i) Sample the primordial sequence given a TFBS length of W ¼ 15.

(a) Sample the start position ‘ 2 ½1;L�W þ 1� of the TFBS

from the uniform distribution.

(b) For each position u 2 ½1; ‘� 1� and u 2 ½‘þW;L� of the

flanking sequence, we sample the nucleotide at position u

from the uniform distribution p0. For each position

u 2 ½‘; ‘þW � 1� of the TFBS, we sample the nucleotide

at position u from the distribution pu�‘nþ1. The distribu-

tion pw with w 2 f1; . . . ; 15g is uniformly drawn from the

simplex.

(ii) For each of the descent species o 2 f1; . . . ; 5g, sample a mutated

sequence given the primordial sequence position-wise.

(a) For each position u 2 ½1; ‘� 1� and u 2 ½‘þW;L� of the

flanking sequence, apply the F81 mutation model with the

equilibrium distribution p0 and substitution probability

c ¼ 0:2 to the nucleotide of the primordial sequence at

position u.

(b) For each position u 2 ½‘; ‘þW � 1� of the TFBS, apply the

F81 mutation model with the equilibrium distribution

pu�‘nþ1 and substitution probability c ¼ 0:2 to the nucleo-

tide of the primordial sequence at position u.
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2.3 Phylogenetic trees
To systematically investigate the influence of different phylogenetic

trees on classification performance and hence on motif prediction,

we introduce two simplifications. First, the underlying phylogenetic

tree is a star topology implying that all species have one common an-

cestor. Second, all branches in the star topology have the same

length, i.e. the probability that a base in the primordial sequence is

replaced by a new base in a descendant sequence is the same for all

sequences.

Now, it is possible to systematically vary the substitution proba-

bilities c ¼ f0:05; 0:1; . . . ;1:0g, where c is inversely proportional to

the phylogenetic relatedness. Small c encode close phylogenetic rela-

tions and large c encode distant phylogenetic relations. Especially,

c ¼ 1:0 implies that the species are phylogenetically unrelated,

i.e. the sequences of each alignment are statistically independent.

2.4 Classification performance
We evaluate all PFMs by a stratified repeated random sub-sampling

validation by estimating all PFMs from a training set and measuring

classification performance on a test set as follows.

In step 1, we generate two training sets and two disjoint test sets

for each of the five TFs as follows. We randomly select 200 align-

ments from the set of alignments of a particular TF as positive train-

ing set, leaving the remaining alignments as positive test set. We

perform a base shuffling on the positive set of alignments of the

same TF to get a negative set of alignments. We randomly select 200

alignments from this set of alignments as negative training set and

leave the remaining alignments as negative test set.

In step 2, we train a foreground model on the positive training

set and a background model on the negative training set by expect-

ation maximization (Lawrence and Reilly, 1990) using a numerical

optimization procedure in the maximization step. We restart the ex-

pectation maximization algorithm, which is deterministic for a given

dataset and a given initialization, 20 times with different initializa-

tions and choose the foreground model and the background model

with the maximum likelihood on the positive training data and the

negative training data, respectively, for classification. We use a

likelihood-ratio classifier of the two chosen foreground and back-

ground models, apply this classifier to the disjoint positive and nega-

tive test sets, and calculate the area under the receiver operating

characteristics curve and the area under the precision recall curve as

measures of classification performance.

We repeat both steps 100 times and determine (i) the mean area

under the receiver operating characteristic curve and its standard

error and (ii) the mean area under the precision recall curve and its

standard error.

2.5 Implementation
In order to investigate the influence of different phylogenetic trees in

a fair and detailed way, we implement the proposed PFM based on

the freely available Java Framework Jstacs (Grau et al., 2012).

Among others, Jstacs provides ready-to-use sequence models for re-

use, numerical and non-numerical optimization procedures for

model estimation, serialization of models and methods for the statis-

tical evaluation of results. In contrast to existing tools which are typ-

ically focused on application, using Jstacs we are able to compare

different PFMs in a detailed way by extracting mandatory informa-

tion about the inferred models and the predicted TFBSs.

Algorithm 1 shows the pseudocode for inferring a PFM from a

set of alignments. The implementation of the proposed PFM is avail-

able at https://github.com/mgledi/PhyFoo/.

3 Results

In this section, we investigate the classification performance of the

PFM specified in section 2.1 as function of the substitution prob-

ability for a synthetic dataset and five real datasets. The synthetic

dataset is generated using the PFM described in section 2.2. The five

real datasets originate from human ChIP-Seq experiments of the five

TFs CTCF, GABP, NRSF, SRF and STAT1 and MSAs of the pre-

dicted target regions with orthologous regions from monkey, cow,

dog and horse as described in section 2.2.

In section 2.1.1, we study the likelihood of the popular PFM

specified in section 2 as a function of the substitution probability for

the synthetic dataset and the real dataset of TF CTCF. In section

2.1.2, we study the classification performance of the PFM as a func-

tion of the substitution probability for the same datasets. In section

2.1.3, we perform the studies of subsections 1 and 2 for the four

datasets of the TFs GABP, NRSF, SRF and STAT1. In section 2.1.4,

we study the classification performance of the PFM based on three

selected phylogenetic trees for all five datasets of the TFs CTCF,

GABP, NRSF, SRF and STAT1.

3.1 Likelihood on synthetic and real data
First, we test the implemented expectation maximization algorithm

for the PFM specified in section 2.1 and summarized in Algorithm 1

by applying it to synthetic data generated with a substitution prob-

ability of 0.2 as described in section 2.2 and to real data of TF

CTCF. In both cases, we vary the substitution probability c of the

PFMs from 0.05 to 1.0 with increments of 0.05.

In case of synthetic data, we expect the best fit of the PFMs and

thus the highest likelihood when the substitution probability c of the

PFMs is close to the substitution probability of 0.2 used for data

generation. In case of real data of TF CTCF, we expect the best fit of

the PFMs and thus the highest likelihood when the substitution

Algorithm 1. Motif discovery algorithm for the proposed

PFM. Upon random initialization of the model parameters we

iteratively estimate sequence weights and model parameters in

multiple algorithm restarts, where R denotes the number of

restarts of the whole algorithm, and T denotes the number of

iterations. The result is the set of model parameters together

with maximum likelihood.

1: Data: Set of alignments A ¼ fA1; . . . ;ANg
2: Flanking model: Maximize pðAjh1Þ for the model

parameters p0 � h1

3: for r¼1 . . .R do

4: Initialize pw � h1 randomly for w 2 f1; . . . ;Wg
5: for t¼1 . . .T do

6: E-step: Estimate pðAnj‘n;M
1
n; h

tÞ for each position

‘n in each alignment An given the model

parameters ht

7: M-step: Maximize the expected value of the com-

plete-data log-likelihood with respect to

model parameters pw and denote the

resulting argmax by htþ1.

8: end for

9: Keep hTþ1 denoted hr

10: end for

11: Result: h 2 fh1; . . . hRg with maximum likelihood
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probability c of the PFMs is in the range of 0:1 � c � 0:4 accord-

ing to Gertz et al. (2006).

Figure 1a shows the likelihood as a function of the substitution

probability c ranging from 0.05 to 1.0 with increments of 0.05 for

synthetic data, and we observe the expected function with a max-

imum at the substitution probability of c ¼ 0:2, which is equal to

the substitution probability used for data generation. Figure 1b

shows the likelihood as a function of the substitution probability c

for real data of TF CTCF, and we again observe the expected func-

tion with a maximum at the substitution probability of c ¼ 0:2,

which is a reasonable value and in the range of 0:1 � c � 0:4 sug-

gested by Gertz et al. (2006).

These findings indicate that the applied PFM and the applied

maximum-likelihood principle are capable of identifying reasonable

substitution probabilities for synthetic and real data of TF CTCF,

where reasonable substitution probabilities mean substitution prob-

abilities close to those used for data generation in case of synthetic

data and in the range suggested by experts for real data of TF

CTCF.

3.2 Classification performance on synthetic

and real data
Second, we study the classification performance of the PFMs by the

method described in section 2.3 on the same two datasets. We again

vary c from 0.05 to 1.0 with increments of 0.05 and compute

the classification performance as a function of c as described in sec-

tion 2.4.

In case of both synthetic and real data, we expect that the classi-

fication performance looks qualitatively similar to the likelihood as

a function of c, i.e. we expect that the classification performance is

highest for c close to 0.2 for synthetic data and in the range of 0:1

� c � 0:4 for real data of TF CTCF.

Figure 2a shows the classification performance as a function of c

for synthetic data, and we observe the expected function with a

maximum at c ¼ 0:2, which is equal to the substitution probability

used for data generation and equal to the location of the maximum

of the likelihood. These results are in agreement with those of Sinha

et al. (2004) who additionally find that an underestimation of the

true substitution probability leads to a more severe degradation of

the classification performance than an overestimation of equal

magnitude.

Figure 2b shows the classification performance as a function of c

for real data of TF CTCF, but here we observe a function that is dif-

ferent from the expected function, different from the function

observed for synthetic data, and different from the likelihood func-

tion of Figure 1b. Specifically, we observe that the maximum is

achieved for an unrealistically high value of c ¼ 1:0, which is clearly

outside of the range of substitution probabilities of 0:1 � c � 0:4

suggested by Gertz et al. (2006) and much greater than the value of

c ¼ 0:2 at which the maximum of the likelihood is located.

This observation is surprising because a substitution probability

of c ¼ 1:0 corresponds to a PFM that assumes the orthologous se-

quences in the MSAs be statistically independent, i.e. phylogenetic-

ally unrelated. It indicates that choosing a realistic substitution

probability in the range of 0:1 � c � 0:4 might lead to an inferior

classification performance of phylogenetic footprinting compared to

choosing an unrealistic substitution probability of c ¼ 1:0.

3.3 Classification performance and likelihood on four

additional real datasets
Third, we study if the phenomenon that the maximum classification

performance is achieved for an unrealistically high value of c is spe-

cific for TF CTCF or possibly also present in other TFs. Hence, we

perform the studies of sections 2.2.1 and 2.2.2 for four additional

ChIP-Seq datasets of TFs GABP, NRSF, SRF and STAT1.

Figure 3a–d shows the four classification performances and the

four likelihoods as functions of c. For the likelihoods, we observe

clear maxima for realistic substitution probabilities in the range of

0:1 � c � 0:2 in all four cases. However, for the classification per-

formances, we observe the four maxima for unrealistically high sub-

stitution probabilities c � 0:8. This observation is again surprising

and states that the classification performance of phylogenetic foot-

printing is higher for an unrealistically high substitution probability

of c ¼ 1:0 than for realistic substitution probabilities in the range of

0:1 � c � 0:4 for all five TFs CTCF, GABP, NRSF, SRF and

STAT1.

In order to test if this result could be an artifact of the choice of

the negative dataset, we study the classification performance when

negatives are taken from the positives of the other datasets as done

by Arnold et al. (2012). We obtain the same surprising results that

the classification performance is higher for a substitution probability

of c ¼ 1:0 than for realistic substitution probabilities for all five TFs

(Supplementary Figs S5, S9, S13, S17 and S21).

Next, we scrutinize the motifs obtained by PFMs with a substitu-

tion probability of c ¼ 1:0. For synthetic data, we find that the

motifs obtained by PFMs with c ¼ 1:0 are highly similar to the

motifs used for data generation (Supplementary Fig. S1). For real

data, we find that the motifs obtained by PFMs with c ¼ 1:0 are

highly similar to the motifs obtained by PFMs with realistic substitu-

tion probabilities in the range of 0:1 � c � 0:4 (Supplementary

Figs S2, S6, S10, S14 and S22). These findings suggest that the

(a) (b)

Fig. 1. Likelihood for different substitution probabilities. We plot the likelihood

on synthetic data and CTCF data for a PFM using a star topology with all sub-

stitution probabilities set to c 2 f0:05; 0:1; . . . ; 1:0g. (a) Synthetic data.

Maximum likelihood is achieved for c ¼ 0:2, the substitution probability used

for data generation. (b) CTCF data. Maximum likelihood is achieved for

c ¼ 0:2, lying in the range of 0:1 � c � 0:4 suggested by the literature

(a) (b)

Fig. 2. Classification performance for different substitution probabilities. We

plot the classification performance on synthetic data and CTCF data for a PFM

using a star topology with all substitution probabilities set to

c 2 f0:05; 0:1; . . . ; 1:0g. (a) Synthetic data. Highest classification performance

is achieved for c ¼ 0:25, which is close to c ¼ 0:2, the substitution probability

used for data generation. (b) CTCF data. Highest classification performance is

achieved for c ¼ 1:0, which is unrealistic and different from the expected re-

sult. We obtain similar results when quantifying the classification perform-

ance by the area under the PR curve (Supplementary Fig. S4)
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motifs obtained by PFMs with an unrealistically high substitution

probability of c ¼ 1:0 might be less biased than naively expected.

3.4 Classification performance using realistic

phylogenetic trees
Fourth, we study if the phenomenon that the maximum classifica-

tion performance is achieved for unrealistically high values of c,

which we observed for PFMs with a star topology, also occurs when

using realistic phylogenetic trees. This study is motivated by obser-

vations that PFMs with phylogenetic trees with realistic tree topolo-

gies have the potential to yield higher classification performances

than PFMs with phylogenetic trees with unrealistic star topologies

(Newberg et al., 2007; Palumbo and Newberg, 2010).

Hence, we study the classification performances of PFMs on syn-

thetic data with different tree topologies and different substitution

probabilities, and we find in all cases the highest classification per-

formances near the substitution probabilities used for data gener-

ation (Supplementary Material section 4.2 and Supplementary Fig.

S25). In addition to generating synthetic data by the F81 substitu-

tion model (Felsenstein, 1981), we also generate them by the more

realistic HKY substitution model Hasegawa et al. (1985) in combin-

ation with different tree topologies and different substitution proba-

bilities, and we find again the highest classification performances

near the substitution probabilities used for data generation

(Supplementary Material sections 4.4 and 4.5 and Supplementary

Figs S27 and S28).

Next, we study the classification performance of the PFM on

real data using a phylogenetic tree and substitution probabilities

from the literature (Arnold et al., 2012). We denote the PFM with a

phylogenetic tree and substitution probabilities from the literature

byMtree
lit , the PFM with a phylogenetic tree with a star topology and

substitution probabilities according to the maximum-likelihood esti-

mates of Figures 1b and 3a–d by Mstar
ML, and the PFM with a

phylogenetic tree with a star topology and substitution probabilities

of c ¼ 1:0 byMstar
c¼1:0.

Figure 4 shows the classification performances of Mtree
lit ;Mstar

ML

andMstar
c¼1:0 for each of the five TFs CTCF, GABP, NRSF, SRF and

STAT1. Interestingly, we find that Mstar
c¼1:0 yields a significantly

higher classification performance than the other two PFMs. In add-

ition, we investigate the classification performances of PFMs with a

star topology and a tree topology from the literature with branch

lengths estimated from the data, and we find also in this case that

Mstar
c¼1:0 yields a significantly higher classification performance than

the other two PFMs (Supplementary Material section 3 and

Supplementary Fig. S23).

These findings state that, in case of real data, choosing unrealis-

tic model assumptions—namely a phylogenetic tree with a star top-

ology and substitution probabilities of c ¼ 1:0—might yield higher

classification performances than the same PFMs with more realistic

phylogenetic trees and more realistic substitution probabilities.

4 Discussion

Possible explanations for this unexpected observation might be un-

realistic model assumptions of the substitution model, heteroge-

neous substitution probabilities at different TFBS positions and in

different DNA regions, heterotachious substitution probabilities at

different times of evolution, or the construction of incorrect or at

least partially erroneous MSAs.

Violations of model assumptions sometimes lead to a poor classi-

fication performance or to a strange dependence of the classification

performance on one or several model parameters. Such a situation

might occur in phylogenetic footprinting, where PFMs typically as-

sume the same phylogenetic tree and the same substitution probabil-

ities for all positions of all TFBSs, for all TFBSs and all of their

flanking regions, and for all chromosomal regions and all MSAs des-

pite the fact that all of these assumptions are almost certainly vio-

lated (Conrad et al., 2011; Lercher and Hurst, 2002; Moses et al.,

2003; Schuster-Böckler and Lehner, 2012; Tian et al., 2008; Weber

et al., 2007; Wolfe et al., 1989).

Heterogeneous substitution probabilities among different DNA

regions are omnipresent and typically taken into account when mod-

eling the evolution of proteins or protein-coding genes. However,

this heterogeneity is typically neglected in PFMs, where this

Fig. 4. Classification performance of three PFMs on real data of five TFs. The

PFM Mstar
c¼1:0 (right) outperforms the PFMs Mtree

lit (left) and Mstar
ML (middle),

which implies that assuming phylogenetic independence generally improves

motif prediction. The PFMMtree
lit typically achieves a higher classification per-

formance than the PFMMstar
ML (see Supplementary Table S3 for significances).

For each of the five TFs, we find qualitatively similar results by the area under

PR curve (see Supplementary Fig. S23) with similar significances shown in

Supplementary Table S4. Supplementary Figures S23 also shows a compari-

son ofMstar
c¼1:0;Mstar

ML andMtree
lit with two additional PFMs

(a) (b)

(c) (d)

Fig. 3. Classification performance and likelihood for different substitution proba-

bilities. We plot the classification performance (decreasing) and likelihood

(increasing) on data of the four TFs GABP, NRSFm, SRF and STAT1 for substitu-

tion probabilities c 2 f0:05; 0:1; . . . ; 1:0g. (a) GABP. The maximum likelihood is

achieved for c ¼ 0:2. The best classification performance is achieved for c ¼ 1:0.

(b) NRSF. Maximum likelihood is achieved for c ¼ 0:15. The best classification

performance is achieved for c ¼ 0:8. (c) STAT1. The maximum likelihood is

achieved for c ¼ 0:15. The best classification performance is achieved for c ¼ 1:0.

(d) SRF. The maximum likelihood is achieved for c ¼ 0:15. The best classification

performance is achieved for c ¼ 1:0. For each of the four TFs, we find qualitatively

similar curves when quantifying the classification performance by the area under

the PR curve (see Supplementary Figs S8, S12, S16 and S20)
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assumption would lead to potential over-fitting (Hawkins, 2004)

due to the facts that the positions of TFBSs are unknown in phylo-

genetic footprinting and that TFBSs are much shorter than protein-

coding genes.

Heterotachious substitution probabilities, i.e., substitution prob-

abilities that vary with time, are another feature that is typically neg-

lected in PFMs despite being omnipresent in both functional TFBSs

as well as their flanking regions. Neglecting heterotachy might lead

to the estimation of severely biased substitution probabilities, to in-

correct motif predictions, and thus to a poor classification perform-

ance (Kolaczkowski and Thornton, 2004).

Incorrect or at least partially erroneous MSAs are another prob-

lem that might lead to the violation of model assumptions (Kim and

Ma, 2011; Löytynoja et al., 2012). In particular, insertions and dele-

tions as well as heterogeneity in sequence composition such as a

varying GC-content (Hardison and Taylor, 2012) might cause MSA

algorithms to become potentially imprecise and might thus affect all

downstream analyses (Löytynoja and Goldman, 2008).

Maximum-likelihood estimators can be proven to achieve the

highest classification performance in the asymptotic limit of infin-

itely large datasets and under the prerequisite that the models used

for classification are exactly those used for data generation.

However, both prerequisites are typically not fulfilled in practice, so

it often happens that the highest classification performance is not

achieved by those parameters that maximize the likelihood.

This situation apparently occurs for phylogenetic footprinting

in a surprisingly pronounced manner, which seems to indicate that

the likelihoods of currently used PFMs are less affected by violated

model assumptions than their classification performances. On an

intuitive level, PFMs with realistic phylogenetic trees and realistic

substitution probabilities seem to be more strongly affected by het-

erogeneity, heterotachy and errors in MSAs than PFMs with un-

realistically high substitution probabilities, so using such

unrealistically high substitution probabilities might by a temporar-

ily useful choice until more sophisticated PFMs capable of coping

with heterogeneity, heterotachy and errors in MSAs are being

developed.

5 Conclusions

We have studied the influence of choosing different phylogenetic

trees and different substitution probabilities on the likelihood and

the classification performance of PFMs. We have performed these

studies on synthetic and real data obtained from ChIP-Seq experi-

ments performed in human and MSAs of ChIP-Seq positive regions

with upstream regions of orthologous genes in monkey, cow, dog

and horse.

We find that the likelihood depends on the substitution probabil-

ity in a qualitatively similar manner for synthetic and real data,

where it reaches a maximum for realistic substitution probabilities

in the range of 0:1 � c � 0:2. In contrast, we find that the classifi-

cation performance depends on the substitution probability in a

qualitatively different manner for synthetic and real data.

For synthetic data, the classification performance reaches a max-

imum at the values of the substitution probability used for data gen-

eration, which coincide with those values that maximize the

likelihood. For real data, however, it increases with the substitution

probability and stops increasing only at unrealistically high values of

the substitution probability in the range of 0:8 � c � 1, which are

very different from those values that maximize the likelihood.

We find in all of the studied datasets that PFMs using unrealistic

substitution probabilities of c ¼ 1:0 yield higher classification per-

formances than PFMs using realistic substitution probabilities.

One possible explanation for this strange behavior of the classifi-

cation performance on the substitution probability is the presence of

heterogeneous and heterotachious substitution probabilities, which

are neglected by currently used PFMs, and the sensitive dependence

of PFMs on the reconstructed MSAs that might be partially

incorrect.

Apparently, PFMs using unrealistic substitution probabilities of

c ¼ 1:0 are more robust to these and possibly other violations of the

model assumptions than PFMs based on realistic substitution proba-

bilities, and this robustness might lead to less biased parameter esti-

mates and thus more accurate phylogenetic footprints.

This observation leads to the strange practical recommendation

of using PFMs using unrealistic substitution probabilities of c ¼ 1:0

instead of using PFMs using realistic substitution probabilities until

there are more sophisticated models for the evolution of TFBSs and

their flanking regions that take into account heterogeneity and het-

erotachy as well as partially erroneous alignments in a position-

specific manner.
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6 Visualisation of motifs

6.1 DiffLogo: A comparative visualisation of sequence motifs
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Abstract

Background: For three decades, sequence logos are the de facto standard for the visualization of sequence motifs in
biology and bioinformatics. Reasons for this success story are their simplicity and clarity. The number of inferred and
published motifs grows with the number of data sets and motif extraction algorithms. Hence, it becomes more and
more important to perceive differences between motifs. However, motif differences are hard to detect from individual
sequence logos in case of multiple motifs for one transcription factor, highly similar binding motifs of different
transcription factors, or multiple motifs for one protein domain.

Results: Here, we present DiffLogo, a freely available, extensible, and user-friendly R package for visualizing motif
differences. DiffLogo is capable of showing differences between DNA motifs as well as protein motifs in a pair-wise
manner resulting in publication-ready figures. In case of more than two motifs, DiffLogo is capable of visualizing
pair-wise differences in a tabular form. Here, the motifs are ordered by similarity, and the difference logos are colored
for clarity. We demonstrate the benefit of DiffLogo on CTCF motifs from different human cell lines, on E-box motifs of
three basic helix-loop-helix transcription factors as examples for comparison of DNA motifs, and on F-box domains
from three different families as example for comparison of protein motifs.

Conclusions: DiffLogo provides an intuitive visualization of motif differences. It enables the illustration and
investigation of differences between highly similar motifs such as binding patterns of transcription factors for different
cell types, treatments, and algorithmic approaches.

Keywords: Sequence analysis, Sequence logo, Sequence motif, Position weight matrix, Binding sites

Background
Biological polymer sequences encode information by the
order of their monomers, i.e., bases or amino acids. Often
specific parts of the polymer sequence are of particular
interest, as they encode, for instance, the binding of tran-
scription factors to specific binding sites [1, 2], the binding
to micro-RNA-targets in mRNAs, splice donor sites and
splice acceptor sites in pre-mRNAs [3, 4], the presence
of phosphorylation sites in proteins, or the folding of
specific protein domains [5]. The set of subsequences of
one specific biological process are often represented as a
sequence motif.
A sequence motif is a model, that represents the pref-

erence for the monomers based on a set of aligned

*Correspondence: martin.nettling@informatik.uni-halle.de
†Equal contributors
1Institute of Computer Science, Martin Luther University Halle-Wittenberg,
Halle (Saale), Germany
Full list of author information is available at the end of the article

biopolymer sequences. Sequence motifs are the result of
pipelines comprising wet-lab experiments and motif pre-
diction algorithms, and are frequently used as the basis of
in silico predictions [6]. Thus, sequence motif are critical
for research of a wide range of problems in biology and
bioinformatics.
Considering a particular transcription factor, there are

many pipelines that combine wet-lab experiments such as
HT-SELEX [7, 8], ChIP-Seq [9] or DNase-Seq footprinting
[10] with motif prediction algorithms such as MEME
[2, 11], ChIPMunk [12], POSMO [13], or Dimont [14].
Wet-lab experiments differ in their experimental setup,
e.g., ecotypes, cell types, developmental stage, time
points, or treatment, and motif prediction algorithms
differ in their mathematical theory and implementation
details.
Visualizing the results of motif discovery is nowa-

days accomplished by sequence logos [15], the de facto

© 2015 Nettling et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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standard for visualizing motifs in biology and bioinfor-
matics. Sequence logos emerged as an essential tool for
researchers to interpret findings, document work, share
knowledge, and present results.
However, comparing multiple sequence logos by visual

inspection is sometimes tricky. Differences between
sequence logos of two unrelated transcription factors are
usually obvious, whereas differences between sequence
logos of the same transcription factor are often less
obvious and rather hard to perceive as depicted in
Fig. 1. Moreover, the results of motif discovery algorithms
need to be compared against huge reference databases
such as JASPAR [16] or UniProbe [17] or motifs from
literature.
For this reason, the comparison of motifs is of primary

interest. Several numerical measures including variants
of Euclidean distance, Pearson correlation, and Jensen-
Shannon divergence have been used to compare motifs
[18–21]. These measures express the difference of motifs
as a single number that can be easily utilized subsequently,
e.g., for rankings or clustering algorithms. However, these
measures lose the information of what exactly makes
the difference between the motifs of interest. Hence, the
comparison ofmultiple pairs of motifs can result in similar
measures.
There are various tools for the analysis and visualiza-

tion of motifs as summarized in Table 1. The R package
seqLogo [22] is an implementation of sequence logos. In
the context of motif comparison, sequence logos may be
interpreted as a comparison of the input motif with a
uniformly distributed motif. The web application iceL-
ogo [23] extends this approach by comparing the input
motif with a motif that follows the same background
distribution at each motif position. Basically, seqLogo and
iceLogo are designed for the presentation of single motifs.
In contrast, the R package MotifStack [24] and the web
application STAMP [25] are designed for the presentation
of multiple motifs. Here, the input motifs are clustered
and presented as sequence logos. Thus, the approach of

both tools may be interpreted as multiple comparisons
with a uniformly distributed motif. The web application
Two Sample Logo [26] is capable of comparing two input
motifs on the basis of probability theory. This compari-
son is performed for each motif position individually and
results in a sophisticatedmotif comparison. Depending on
the focus of each tool, the input format is a set of aligned
sequences and/or a position frequency matrix or position
weight matrix. In addition, some tools focus exclusively
on DNA motifs, while others cover DNA, RNA, and pro-
tein motifs or even allow arbitrary alphabets. Table 1
summarizes tools and their capabilities. In section 4 of
Additional file 1, we additionally provide comparative
example plots generated by seqLogo, iceLogo, STAMP, Two
Sample Logo, and DiffLogo.
We intend the pair-wise comparison of motifs and

extend this idea towards the comparison of multiple
motifs as follows.
We focus on the comparison of position-specific sym-

bol distributions of two motifs. We neglect dependencies
between different motif positions to reduce complexity.
As suggested by the sequence logo approach, we intend
to represent the characteristics of each motif position by
the two properties stack height and symbol height within
a stack. The stack height is to be proportional to the
degree of distribution dissimilarity. The symbol height is
to be proportional to the degree of differential symbol
abundance.
We intend to compare three or more motifs on the

basis of pair-wise motif comparisons. This comparison
is to take into account all pair-wise motif comparisons,
suggesting an arrangement in a grid with one row and
one column for each motif and one cell for each motif
comparison. Similar motifs are to be placed in nearby
rows and columns, and the degree of similarity between
all motifs is to become obvious at a glance analogous
to heatmaps. The grid is to be complemented with
a display of the individual sequence logos for further
comparisons.

Fig. 1 Sequence logos of CTCF motifs from cell lines H1-hESC and HUVEC. The two sequence logos are highly similar in their conservation profile
(height of stacks) and nucleotide preference at the individual motif positions
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Table 1 Comparison of related tools. We compare six publicly available tools on the basis of five criteria

Features

Tools Alphabet Input format Comparison Clustering Extensible

seqLogo DNA matrix uniform - -

iceLogo DNA/RNA, proteins sequences average - -

MotifStack any matrix uniform hclust -

STAMP DNA sequences, matrix uniform UPGMA/SOTA -

Two Sample Logo DNA/RNA, proteins sequences position-specific - -

DiffLogo any sequences, matrix position-specific hclust, optimal leaf ordering �
In the first and second column, we examine the kind of supported input, in the third and forth column we examine the mode of action, and in the fifth column we examine
whether the tool is extensible. For the criterion “alphabets” we summarize the supported biopolymers out of DNA, RNA, and proteins or arbitrary alphabets in case of “any”.
For the criterion “input format” we discriminate a set of “sequences” versus “matrix”, which addresses at least one out of the formats position weight matrix (PWM), position
frequency matrix (PFM), and position count matrix (PCM). For the criterion “comparison” we characterize the kind of distribution that is used for motif comparison (“uniform” is
the uniform distribution, “average” is the average base distribution in a set of sequences, and “position-specific” is a position-specific distribution). For the criterion “clustering”
we point out whether there is a clustering of motifs and which cluster-algorithm is used. For the criterion “extensible” we note whether the tool is extensible by the user

Implementation
In this section, we first define the used notation. We then
briefly describe the classical sequence logo. Subsequently,
we introduce the difference logo for the visualization of
pair-wise motif differences. We discuss this new method
and explore potential biological interpretations. Finally,
we propose an approach for employing difference logos
for the joint comparison of multiple motifs.

Basic notation and sequence logo
Consider a motif as an abstract description of a given
set of aligned sequences of common length L from the
alphabet A. The relative frequency of symbol a ∈ A at
position � ∈ [1, L] corresponds to the (estimated) proba-
bility p�,a. In case of two motifs, we use p�,a for the first
motif and analogously q�,a for the second motif.
The well-known sequence logo visualizes a motif with a

symbol stack for each position. We denote the height of
the stack at position � by H� and the height of symbol a
within this stack by H�,a. In the traditional sequence logo,
H� and H�,a are defined by

H� = log2(|A|) −
∑
a∈A

p�,a · log2(p�,a) (1)

H�,a = p�,a · H�, (2)

which states that the height of a stack at position � reflects
the degree of conservation at position � quantified by the
information content and that the height of each symbol at
position � is proportional to its frequency at position �.
Hence, the traditional sequence logo is an intuitive visu-
alization of both (i) conserved motif positions and (ii)
abundant bases.

The approach of DiffLogo
As specified earlier, we compare motifs per position. Sim-
ilar to the sequence logo, we show a symbol stack for each

position. We redefine the calculation of H� and use this
measure as the total height of position � reflecting the dif-
ference of the symbol distribution of both motifs at this
position. We redefine the calculation of H�,a and use this
measure as the height of a symbol within the stack at
position �. In the following, H�,a can be positive or nega-
tive. Symbols with positive valuesH�,a are plotted upward.
Symbols with negative values H�,a are plotted downward.
Generally, there is a plethora of well-understood mathe-

matical criteria that can be combined to define the height
of a symbol stack and the relative heights of symbols
within the stack such as probability differences, informa-
tion divergences, distance measures, or entropies [27]. In
the following, we present DiffLogo with the example of
the Jensen-Shannon divergence for the calculation of H�

and normalized probability differences for the calculation
ofH�,a. We denote the combination of these twomeasures
as weighted difference of probabilities.

Weighted difference of probabilities
We calculate the stack height for each motif posi-
tion using the Jensen-Shannon divergence. The Jensen-
Shannon divergence is a measure for the dissimilarity of
two probability distributions based on information the-
ory [28] (see Fig. 2). In contrast to other measures, the
Jensen-Shannon divergence shows a comparable behavior
when evaluating dissimilarities of distributions near the
uniform distribution. The Jensen-Shannon divergence of
two motifs at position � is given by

H� = 1
2

∑
a∈A

p�,a log2
p�,a
m�,a

+ 1
2

∑
a∈A

q�,a log2
q�,a
m�,a

, (3)

wherem�,a = p�,a+q�,a
2 .

We define the height of each symbol by

H�,a = r�,a · H�, (4)
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Fig. 2 Exemplary comparison of four DNA motifs of length one using the Jensen-Shannon divergence. Motif 1 and motif 2 are depicted as
sequence logos. For each column, we compare the motif in the first row with the motif in the second row using the Jensen-Shannon divergence
listed in the third row. In the first example we depict the case with only one base in each motif resulting in a maximal Jensen-Shannon divergence
of 1 bit. In the second example we depict the case with two equally abundant bases both in motif 1 and motif 2 (both different) resulting again in a
maximal Jensen-Shannon divergence of 1 bit. In the third example we depict the case with two equally abundant bases both in motif 1 and motif 2
(one equal and one different) resulting in a Jensen-Shannon divergence of 0.5 bit. In the fourth example we depict the case with two bases both in
motif 1 and motif 2 (differentially abundant) resulting in a Jensen-Shannon divergence of 0.25 bit

where we define the weight r�,a as

r�,a =
{ p�,a−q�,a∑

a′∈A |p�,a′−q�,a′ | if p� �= q�

0 otherwise.
(5)

r�,a is the probability difference of symbol a at position �

between two motifs normalized by the sum of absolute
probability differences at this position. We use normal-
ized probability differences as these are indicators for the
gain or loss of symbol abundance and provide a view on
the symbol distribution differences of both motifs. As a
consequence, symbols less abundant in the second motif
compared to the first motif are plotted upward, and sym-
bols more abundant in the second motif compared to the
first motif are plotted downward.
This representation emphasizes a high gain or loss of

probability in co–occurrence with a high gain or loss of
information content. The sum of the heights of symbols
with a gain of probability and the sum of the heights
of symbols with a loss of probability are equal at every
position, because each gain of probability of one symbol
implies a loss of probability of the remaining symbols. The
advantage of this approach is that we are capable of see-
ing differences of position-specific symbol distributions
and of seeing those symbols that are responsible for these
differences by gaining or losing abundance.

Comparison of multiple motifs
According to the requirements formulated above, we pro-
pose a visualization for the joint comparison of N ≥ 3
motifs given the measure H� as follows.
We plot the difference logos of all N × (N − 1)

motif pairs with a common ordinate scaling. We define
a scalar dissimilarity value D for a pair of motifs as the

sum of all stack heights in the corresponding difference
logos,

D =
L∑

�=1
H�. (6)

We compute amotif order to group similar motifs. Here,
we take the optimal leaf order of a hierarchical clustering
of the motifs based on D (function hclust in R package
stats and function order.optimal in R package cba). We
arrange the difference logos ordered in anN×N grid with
an empty diagonal. Difference logos opposing each other
across the diagonal of the grid correspond to each other
by an inversion of the ordinate. We visualize D with the
background color of the corresponding difference logo
using a color gradient from green (most similar among
all pairwise comparisons) to red (most dissimilar). We
outline the motif names above each column and left of
each row. In addition, we allow the possibility of drawing
the classic sequence logos and the cluster tree above the
columns as auxiliary information.
The advantage of this approach is that we are capable

of surveying the overall similarities and dissimilarities
in the resulting difference logo grid. Greenish regions
indicate similar motif groups and reddish rows and
columns indicate less similar motifs. Given a region of
interest, it is furthermore possible to comprehend the
origins of dissimilarities from the individual difference
logos and optionally the sequence logos.

R package
DiffLogo is written in R [29]. We provide the implemen-
tation as a ready-to-use R package. For symbol draw-
ing, DiffLogo uses adapted methods from the package

6.1 DiffLogo: A comparative visualisation of sequence motifs
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seqLogo [22] in the software suite bioconductor [30].
DiffLogo allows the analysis of sequence motifs defined
over arbitrary alphabets.
The core functions can be parameterized with func-

tions for H� and r�,a. Hence, the user is capable of com-
bining different formulae for H� and r�,a. We provide
implementations of the Jensen-Shannon divergence and
the normalized probability difference used for the dif-
ference logos presented in this manuscript. In addition,
DiffLogo provides other implementations for H� and r�,a
as alternatives. Exemplarily, we show the result of eight
different combinations of measures for stack height and
symbol height in Additional file 1: Tables S1 and S2. The
DiffLogo package comprises example data, example code,
and further documentation.

Results and discussion
In this section, we present three examples demonstrat-
ing the utility of DiffLogo in different applications. First,
we examine differences in motifs of DNA binding sites of
the same transcription factor from five different cell lines.
Second, we examine differences in motifs of DNA binding
sites of three different transcription factors with similar

binding motifs. Third, we examine differences in motifs of
a protein domain.

DNAmotifs of same transcription factor
We consider sequence logos and difference logos of bind-
ing sites of the human insulator CTCF in different cell
lines as obtained by motif discovery from ChIP-seq data
[31] based on preprocessed ChIP-seq data from the
ENCODE project. For CTCF motif inference, sequences
with p-values smaller than 10-6 were selected. All data
are freely available as Additional File of the original pub-
lication [31]. Since CTCF is a DNA-binding protein, the
alphabet corresponds to the four nucleotides in this case.
In Fig. 1, we plot the sequence logos for two of these

cell types, namely H1-hESC and HUVEC. Considering
the sequence logos, both motifs look highly similar with
regard to the conservation as well as the nucleotide
preference of individual motif positions, and differences
between both motifs are hard to perceive. Considering the
corresponding difference logo in Fig. 3 (row 1, column 5
or row 5 column 1), however, we instantly see that indeed
a large number of motif positions exhibits differences in
nucleotide composition. We find the largest difference

Fig. 3 Comparison of five DNA motifs using DiffLogo. Comparison of five CTCF motifs from cell lines H1-hESC, MCF7, HeLa-S3, HepG2, and HUVEC.
We plot all pair-wise sequence logos and display the distance between each motif using the background color from green (similar) to red
(dissimilar). We plot the sequence logos of each motif as well as the leaf-ordered cluster tree above. The motifs of H1-hESC and MCF7 are highly
similar and substantially different from the other motifs, while the motifs of HeLe-S3, HepG2, and HUVEC are similar to each other as well. Due to leaf
ordering, the difference between compared motifs increases with increasing distance from the main diagonal in the difference logo grid

6. VISUALISATION OF MOTIFS
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according to the difference logo at position 8 of the motifs,
where nucleotide C is more prevalent in cell type H1-
hESC compared to HUVEC, whereas the opposite holds
for nucleotide T. This difference is less visible in the
sequence logos, even with hindsight from the difference
logo, due to the low conservation at this position. Specif-
ically, the probability of C increases from 0.35 (HUVEC)
to 0.58 (H1-hESC), whereas the probability of T drops
by a factor of 2 from 0.44 (HUVEC) to 0.21 (H1-hESC).
Depending on the application, this difference at position
8 might have a decisive influence on the outcome of, e.g.,
in silico binding site prediction.
In the literature, several positions with substantial motif

differences uncovered byDiffLogo are known to be related
to CTCF binding affinity. For instance [32] show that “low
occupancy” CTCF binding sites are enriched for C or G at
position 18 compared to “high occupancy” sites, which in
our case might indicate that the H1-hESC ChIP-seq data
set contains a larger number of such “low occupancy” sites
than the HUVEC data set.
In a large-scale study [33], CTCF core motifs are parti-

tioned by the presence or absence of additional upstream
and downstream motifs, where the greatest variations in
the core motifs between partitions can be found at posi-
tions 1-3, 6, 8, 11, 12, 18, and 20, which cover those
positions varying in the difference logo. Again, these par-
titions are related to binding affinity and occupancy of
CTCF.
In summary, DiffLogo helps to identify several motif

positions with substantial variation between cell types,
known to be related to CTCF binding affinity and binding
site occupancy.
In real-world applications, motifs for more than two cell

types are often studied, which might render the pairwise
comparison of difference logos a tedious task. We support
such an evaluation across multiple cell types by a struc-
tured visualization of multiple difference logos as shown
in Fig. 3. Here, we compare the pairwise difference logos
of CTCF motifs from five cell types, namely H1-hESC,
MCF7, HeLa-S3, HepG2, and HUVEC. The cluster tree
and background color of the cells are based on numeri-
cal measures of motif differences (cf. Implementation) and
guide us to the most notable differences between pairs of
motifs. For instance, we observe from the tree and back-
ground colors that the motifs of H1-hESC and MCF7 are
highly similar. The same holds true for themotifs of HeLa-
S3, HepG2, and HUVEC, whereas motifs show substantial
differences between these two groups. To further facilitate
the visual comparison of multiple motifs, we leaf-order
the cluster tree such that neighboring motifs are as similar
as possible. Due to this ordering, the difference between
motif pairs increases with increasing distance from the
main diagonal of the difference logo grid. For instance,
the topology of the clustering would allow to invert the

order of the three leaves under the right sub-tree in Fig. 3,
which, however, would bring the quite dissimilar motifs of
HUVEC and MCF7 in direct neighborhood. From Fig. 3,
we also observe that the two motifs of H1-hESC and
HUVEC are the most dissimilar ones among the motifs
studied. A visualization of all nine available motifs can be
found in Additional file 1: Figure S1.

DNAmotifs of different transcription factors
We demonstrate the utility of DiffLogo for motifs derived
from binding assays for the human transcription factors
Max, Myc, and Mad (Mxi1) from Mordelet et al. [34].
These three basic helix-loop-helix transcription factors
are members of a regulatory network of transcription fac-
tors that controls cell proliferation, differentiation, and
cell death. Each transcription factor binds to different
sets of target sites, regulates different sets of genes, and
thus plays a distinct role in human cells. However, Myc,
Max, and Mad have almost identical PWMs, which all
correspond to an E-box motif with consensus sequence
CACGTG.
The PWMs considered here have been derived from

probe sequences and corresponding binding intensities
of in-vitro genomic context protein-binding microarrays
[34]. The exact binding sites within the probe sequences
are predicted by the de-novo motif discovery tool Dimont
[14] using Slim models [35]. For each of the three tran-
scription factors, the top 1,000 predicted binding sites are
used to generate the corresponding PWM.
In Fig. 4, we plot the sequence logos and difference logos

of Myc, Max, and Mad. We observe from the sequence
logos that the binding motifs are almost identical. Con-
sidering the difference logos, we observe that the six core
nucleotides are conserved in the motifs of all three tran-
scription factors. We find the largest differences between
the motif of Max and the motifs of Myc and Mad. In case
of Max and Myc, we find a Jensen-Shannon divergence
greater than 0.01 bit at positions 11, 12, 22, and 26. In
case of Max and Mad, we find a Jensen-Shannon diver-
gence greater than 0.01 bit at positions 3, 12, 22, and 25.
In both cases, we mainly find more purine (adenine and
guanine) in the motif of Max than in the motifs of Myc
and Mad.

Protein motifs
As a third example, we demonstrate the utility of Diff-
Logo using the F-box domain, which plays a role in
protein-protein binding. The complete F-box domain in
this example is 48 amino acids long [36]. Here, we inves-
tigate the middle section from the 12th to the 35th amino
acid.
In Fig. 5, we plot the sequence logos and difference

logos of F-box domains from the three kingdoms meta-
zoa, fungi, and viridiplantae. We observe from the cluster

6.1 DiffLogo: A comparative visualisation of sequence motifs

109



Nettling et al. BMC Bioinformatics  (2015) 16:387 Page 7 of 9

Fig. 4 Comparison of E-Box motifs of Max, Myc, and Mad using DiffLogo. We plot all pair-wise difference logos and display the distance between
each motif using the background color from green (similar) to red (dissimilar). We plot the sequence logos of each motif as well as the leaf-ordered
cluster tree above. The motifs of the transcription factors Myc and Mad are more similar to each other than to the motif Max. The six core nucleotides
with consensus sequence CACGTG are conserved in the motifs of all three transcription factors and, hence, are not visible in the difference logos

tree and the background colors that the motifs of meta-
zoa and fungi are highly similar, whereas motifs of this
group show substantial differences to viridiplantae. The
largest difference can be seen between motifs of metazoa
and viridiplantae.
When comparing metazoa and fungi with viridiplantae,

DiffLogo identifies positions 6, 17, and 22 with high val-
ues of the Jensen-Shannon divergence. The differences at
positions 6 and 22 could be expected from the differences
of the sequence logos, whereas the differences at position
17 are not immediately obvious from them. At position 6
the abundance of arginine (R) in viridiplantae is 0.54 and
thus more than 10 times higher than in fungi and 12 times
higher than inmetazoa. At position 22 tryptophane (W) is
highly abundant in viridiplantae and 4 and 3.4 times more
abundant than in metazoa and fungi. At position 17 the
most noticeable differences in viridiplantae to fungi and
metazoa can be seen for amino acid cysteine (C), valine
(V), alanine (A), and serine (S). The overall abundance
increases from 0.13 in metazoa and 0.12 in fungi to 0.64 in
viridiplantae. In contrast, the abundance of arginine (R),
glutamine (Q), and lysine (K) is only 0.044 in viridiplantae
and 0.44 in metazoa and fungi. A visualization of the

full F-Box domain from four kingdoms can be found in
Additional file 1: Figure S2.

Conclusion
We present DiffLogo, an easy-to-use tool for a fast
and efficient comparison of motifs. DiffLogo may be
applied by users with only basic knowledge in R and
is highly configurable and extensible for advanced
users. We introduce weighted differences of probabili-
ties to emphasize large differences in position-specific
symbol distributions. We present visual comparisons
of multiple motifs stemming from motifs of one
transcription factor in different cell types, different
transcription factors with similar binding motifs,
and species-specific protein domains. Figures gener-
ated by DiffLogo enable the identification of overall
motif groups and of sources of dissimilarity. Using
DiffLogo, it is easily possible to compare motifs from
different sources, so DiffLogo facilitates decision making,
knowledge sharing, and the presentation of results. We
make DiffLogo freely available in an extensible, ready-to-
use R package including examples and documentation.
DiffLogo is part of Bioconductor.

6. VISUALISATION OF MOTIFS
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Fig. 5 Comparison of three F-box domain motifs using DiffLogo. We compare the F-box domains from the kingdoms metazoa, fungi, and
viridiplantae and plot all pair-wise difference logos and display the distance between each motif using the background color from green (similar) to
red (dissimilar). We plot the sequence logos of each motif as well as the leaf-ordered cluster tree above. The motifs of metazoa and fungi are highly
similar. All other pairwise comparisons show substantial differences
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7 Appendix
The following sections contain important additional studies important for the understand-
ing of this thesis. More supplementary studies, figures, and tables can be found in the
additional files of the corresponding articles.

7.1 Detecting and correcting the binding-affinity bias in ChIP-
Seq data using inter-species information

The supplementary material of “Detecting and correcting the binding-affinity bias in ChIP-
seq data using inter-species information” consists of two additional files. Additional File 1
consists of 3 sections. In Section 1, Modeling the binding-affinity bias, we describe how to
determine the likelihood of non-motif-bearing and motif-bearing alignments modeling the
contamination bias and the binding-affinity bias. In Section 2, Example interpretation of
difference logos, we give an exemplary interpretation of some difference logos. Section 3,
Supplementary Figures, contains Supplementary Figures S1-S18. Additional File 2
contains the sequence data used in the studies of this work. Here, I provide a copy of
Section 1 of Additional File 1. This section is the mathematical counter part to the
section “Modeling the binding-affinity bias” in “Methods” in the main manuscript, where
modeling the binding-affinity bias is explained from the data generating perspective.

7.1.1 Modeling the binding-affinity bias

In this section we describe the probabilistic model for modeling the binding-affinity bias.
We define the model in mathematical terms by providing the likelihood function. We use
the notation from the manuscript.

Following the data-generating process described in the manuscript, the probability that
the model generates an alignment Xn can be written as

p(Xn|θ) = p(Xn|Mn = 0, θ) · p(Mn = 0, θ) + p(Xn|Mn = 1, θ) · p(Mn = 1, θ)

= p(Xn|Mn = 0, θ) · α+ p(Xn|Mn = 1, θ) · (1− α)

To complete the model, we need to specify the probability for non-motif-bearing alignments
p(Xn|Mn = 0, θ) and that for motif-bearing alignments p(Xn|Mn = 1, θ).
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Likelihood of a non-motif-bearing alignment

Looking at the description of the generating process for non-motif-bearing alignments we
get

p(Xn|Mn = 0, θ) =
∑

Yn∈ALn
p(Yn|Mn = 0, θ)

O∏
o=1

p(X .,o
n |Yn,Mn = 0, θ).

Note that given θ and Mn = 0, each single nucleotide alignment is independent of any
other single nucleotide alignment. Thus, the likelihood can be expressed as

p(Xn|Mn = 0, θ) =

Ln∏
u=1

∑
Y un ∈A

p(Y u
n |Mn = 0, θ)

O∏
o=1

p(Xu,o
n |Y u

n ,Mn = 0, θ).

Here we denote p(Y u
n |Mn = 0, θ) and p(Xu,o

n |Y u
n ,Mn = 0, θ) by parameters

p(Y u
n |Mn = 0, θ) = π

Y un
0

p(Xu,o
n |Y u

n ,Mn = 0, θ) = γo · πX
u,o
n

0 + (1− γo) · δXu,o
n =Y un

according to the F81 model, where the base distribution of each position of the background
sequence is denoted by π0, the probability of a nucleotide a in the background sequence is
denoted by πa0 , and the substitution probability from the primordial species to species o is
denoted by γo.

Likelihood of a motif-bearing alignment

In the data generating process for motif-bearing alignments we sample alignments until one
of them is accepted. Mapping this into a likelihood requires the usage of the Felsenstein’s
pulley principle Felsenstein, 1981, that allows us to select any particular species as the
root of the tree. In this case it will come handy to select the reference species as the root.
Thus, the likelihood can be expressed as

p(Xn|Mn = 1, θ) =

Ln−W+1∑
`n=1

p(X .,1
n |Mn = 1, `n) ·

∑
Yn∈ALn

p(Yn|X .,1
n ,Mn = 1, `n)·

O∏
o=2

p(X .,o
n |Yn,Mn = 1, `n)p(`n|Mn = 1, θ),

where the base distributions of the positions 1, . . . ,W of the binding sites are denoted by
π1, . . . , πW and the probability of a nucleotide a in the binding site at position w is denoted
by πaw.
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inter-species information

Given π, `n ∈ {1, . . . , Ln − W + 1}, and Mn = 1, each single nucleotide alignment is
independent of any other single nucleotide alignment, and we obtain

p(Xn|Mn = 1, θ) =

Ln−W+1∑
`n=1

Ln∏
u=1

p(Xu,1
n |Mn = 1, `n) ·

∑
Y un ∈A

p(Yn|Xu,1
n ,Mn = 1, `n)·

O∏
o=2

p(Xu,o
n |Yn,Mn = 1, `n)p(`n|Mn = 1, θ).

We need to determine the probability of a particular nucleotide in a specific position of
the reference species after selection, that is p(Xu,1

n |Mn = 1, `n). On one hand, notice that
selection does not affect the probability distribution of those nucleotides outside the binding
site. Thus, for u < `n or u ≥ `n +W we have that p(Xu,1

n = a|Mn = 1, `n) = πa0 . On the
other hand, for nucleotides in the binding site, the distribution after filtering is p(Xu,1

n =

a|Mn = 1, `n) ∝ (πau−`n+1)
β. Thus, p(Xu,1

n = a|Mn = 1, `n) =
(πau−`n+1)

β∑
b∈A(πbu−`n+1)

β .

The probabilities for the nucleotides in the ancestral sequence and in the non-reference
species are given by the F81 model. In particular, for the ancestral sequence

p(Yn = a|Xu,1
n = b,Mn = 1, `n) =

{
γ1 · πa0 + (1− γ1) · δa=b , if u < `n or u ≥ `n +W

γ1 · πau−`n+1 + (1− γ1) · δa=b , if `n ≤ u < `n +W

and for the non reference species

p(Xu,o
n = a|Yn = b,Mn = 1, `n) =

{
γo · πa0 + (1− γo) · δa=b , if u < `n or u ≥ `n +W

γo · πau−`n+1 + (1− γo) · δa=b , if `n ≤ u < `n +W

Finally, since we assume binding sites to be uniformly distributed, we have that p(`n|Mn =

1, θ) = 1
Ln−W+1 . This completes the specification of the likelihood function.
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7.2 Unrealistic phylogenetic trees may improve phylogenetic
footprinting

The supplementary material of “Unrealistic phylogenetic trees may improve phylogenetic
footprinting” consists of one additional file that contains Supplementary Methods, Results,
Figures, and Examples. This file comprises five sections. In Section 1, Accuracy of pre-
dicted motifs, we scrutinize the motifs obtained by PFMs with a substitution probability
of γ = 1.0. Section 2, Likelihood, classification performance, and difference logos for
5 transcription factors, contains supplementary Figures to the studies on the five TFs pre-
sented in the main manuscript. In Section 3, Comparison of classification performances of
PFMs basing on five different phylogenetic trees, we extend the study presented in the main
manuscript and compare the calssification performance on the five PFMs Mtree

lit , Mstar
ML ,

Mstar
γ=1.0, Mtree

γ̂ , and Mstar
γ̂ . In Section 4, Synthetic tests, we provide exemplary studies

on synthetic data. Section 5, Supplementary Tables, comprises tables regarding related
phylogenetic footprinting approaches, dataset statistics, and P-values for the in the main
manuscript presented results. Here, I provide a copy of Section 1 and Section 3.

7.2.1 Accuracy of predicted motifs

In the main manuscript, we show that on real data PFMs basing on unrealistic substitution
probabilities (unrealistic PFMs) outperform PFMs basing on realistic substitution prob-
abilities (realistic PFMs) in contrast to synthetic data where realistic PFMs outperform
unrealistic PFMs. Here, we investigate the degree of similarity between the motifs inferred
with realistic PFMs and unrealistic PFMs in two studies. First, on synthetic data, we
compare the accuracy of inferred motifs for different combinations of substitution proba-
bilities used for data generation and for motif inference. Second, on real data, we compare
the motif similarity of the motif inferred using an unrealistic PFM to the motifs inferred
using more realistic PFMs.

7.2.1.1 Test on synthetic data

We study on synthetic data to which amount different substitution probabilities for data
generation and different substitution probabilities for the inference of a PFM affect the
accuracy of de–novo motif prediction. We generate synthetic datasets basing on different
substitution probabilities and we infer on each synthetic dataset a set of PWMs using
PFMs basing different substitution probabilities as follows.

First, we generate for each substitution probability α = {0.1, 0.2, . . . , 1.0} a dataset con-
sisting of N = 1000 motif alignments of lengthW = 10 each with O = 5 species. The set of
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ancestor sequences is sampled from a PWM π of length W whose probability distribution
is generated randomly. Each ancestor sequence is mutated using the F81 model with a
star topology with all O substitution probabilities set to α.

Second, for each generated dataset we estimate for each substitution probability γ =

{0.1, 0.2, . . . , 1.0} a PFM with a star topology with all substitution probabilities set to γ.
For each estimated PFM we extract the PWM π̂γ and quantify the dissimilarity between π̂γ
and π by the symmetric Kullback—Leibler divergence (KLD). A KLD equal to 0 indicates
identical PWMs π̂γ and π. The KLD is proportional to the degree of dissimilarity between
the PWMs π̂γ and π.

We repeat both steps 50 times and determine the mean KLD for each combination of
α ∈ {0.1, 0.2, . . . , 1.0} and γ ∈ {0.1, 0.2, . . . , 1.0}. In Figure 7.1 we show the mean KLD
for each combination of α and γ.

Figure 7.1: Motif accuracy for different combinations of substitution probabilities
used for data generation and substitution probabilities used for motif inference.
We represent the datasets generated with a star topology with substitution probabilities set to
α = {0.1, 0.2, . . . , 1.0} in the rows. We represent the PFMs basing on substitution probabilities
γ = {0.1, 0.2, . . . , 1.0} in the columns. For each combination of α and γ, we specify the mean
KLD of the true and the estimated motif and we visualize these values with the background
color from green (similar) to red (dissimilar). For each row, we find the smallest KLD for
α = γ and we find highly similar results for γ = 1.0.

For each dataset we find minimal KLDs for the PWM π̂γ=α and the PWM π̂γ=1.0. With
other words, the motifs inferred with a PFM basing on a substitution probabilities with γ
equal to α (the substitution probability that was used for data generation) and the motifs
inferred with a PFM basing on substitution probabilities γ equal to 1.0 (which implies
conditional independence between sequences) are highly similar. The KLDs of the PWMs
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π̂γ with γ 6= α and γ 6= 1.0 are greater than or equal to the KLDs for the PWMs π̂γ=α and
π̂γ=1.0 in every case.

7.2.1.2 Test on real data

In the previous study on synthetic data we have shown that the PWM inferred using the
most realistic PFM (π̂γ=α) and the PWM inferred using the most unrealistic PFM (π̂γ=1.0)
are most similar. We study whether this relationship is also true in case of real data. In
case of real data we do not know the true α, i.e., the substitution probability between the
ancestor species and the observed species–specific sequences. Hence, we compare the PWM
π̂1.0 with the PWMs π̂γ for γ ∈ {0.05, 0.1, . . . , 1.0}. Again, we quantify the dissimilarity
between π̂1.0 and π̂γ by the symmetric KLD.

For each of the five TFs described in Methods 1 and each decomposition of the 100–fold
stratified repeated random sub–sampling validation procedures described in Methods 4,
we calculate the KLDs of the PWM π̂1.0 and the PWMs π̂γ for γ ∈ {0.05, 0.1, . . . , 1.0}
inferred on the positive training dataset. We compute mean and standard error of the
resulting 100 KLDs for each pair of the the PWM π̂1.0 and the PWMs π̂γ . We show mean
and standard error of the KLDs as function of γ in Figure 7.2 for each of the five TFs.
Based on the previous study and the results presented by Gertz et. al 2006 (Gertz et al.,
2006), we expect a local minimum of the KLDs for 0.1 < γ ≤ 0.4.

We find for each TF a local minimum of the KLD between the PWM π̂1.0 and the PWM
π̂γ for realistic substitution probabilities 0.1 < γ ≤ 0.4 (γ = 0.35 for CTCF, γ = 0.3 for
GABP, γ = 0.25 for NRSF, γ = 0.4 for SRF, γ = 0.35 for STAT1). For γ smaller than
these minimums the KLD increases monotonically and for γ greater than these minimums
the KLD first increases, reaches a local maximum for 0.6 ≤ γ ≤ 0.7, and again decreases
for γ greater this local maximum (with a KLD equal to zero for γ = 1.0 per definition). In
accordance to the results on synthetic data, we show that the motifs inferred using a PFM
basing on unrealistic substitution probabilities are similar to the motifs inferred using a
PFM basing on realistic substitution probabilities. Since the true substitution probabilities
are not known in case of real data, the estimation of motifs using an unrealistic PFM is a
potential more robust way to avoid errors from falsely estimated substitution probabilities,
i.e., unrealistic PFMs seem to be more robust against model violations in the dataset.

7.2.2 Synthetic tests

In the main manuscript, we show that PFMs with unrealistic substitution probabilities
outperform realistic PFMs on real data in contrast to synthetic data. Here, we investigate
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Figure 7.2: Motif dissimilarity between π̂1.0 and π̂γ for CTCF, GABP, NRSF,
SRF, and STAT1. For each TF, we plot the mean and standard error of the KLD between
the PWM π̂1.0 and the PWMs π̂γ with γ = {0.05, 0.1, . . . , 1.0} (green line). In addition, we
plot the mean and standard error of the likelihood of the corresponding PFMs (red line). We
find for the KLD a local minimum for 0.1 < γ ≤ 0.4 in every case.We find for the likelihoods
a global maximum for 0.1 < γ ≤ 0.4 in every case (red cross).
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the influence of various data properties on classification performance in order to reproduce
this observation on synthetic data.

We generate synthetic datasets as described in Methods 2 and modify this procedure
in different ways as follows. We vary the ratio of the size of positive and negative test
data in section 7.2.2.1, we use different trees for data generation instead of a star in
section 7.2.2.2, we model heterogeneity during data generation in section 7.2.2.3, we
use the more realistic HKY evolutionary model instead of the F81 model for data generation
in section 7.2.2.4, and we use different trees in combination with the more realistic HKY
evolutionary model for data generation in section 7.2.2.5. All datasets are available at
https://github.com/mgledi/PhyFoo/tree/master/data/synthetic_data/.

We apply the PFMs described in Methods 1 on each of the generated datasets with
varying substitution probability γ of the PFMs from 0.05 to 1.0 with increments of 0.05
as described in Methods 3. We study the classification performance of the PFMs by the
method described in Methods 4.

7.2.2.1 Unbalanced positive and negative test data
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Figure 7.2: Classification performance for different substitution probabilities on
synthetic data. We plot classification performance on synthetic data for a PFM using a
star topology with all substitution probabilities set to γ ∈ {0.05, 0.1, . . . , 1.0}, where the ratio
between positive and negative test data is chosen as 1 : 1, 1 : 2, 1 : 3, 1 : 4, 1 : 5, 1 : 6, 1 : 7,
and 1 : 8 respectively. The classification performance behaves as expected.

121



7. APPENDIX

7.2.2.2 Using trees for data generation

Tested data generation with the following three trees with five species each and all branches
having the length γ = 0.2. Find below the Newick representation of the trees and the
corresponding visualisation Fredslund, 2006.

Unbalanced binary tree:

(
(

(
(

SPECIES_0 : 0 . 2 ,
SPECIES_1 : 0 . 2

) : 0 . 2 ,
SPECIES_2 : 0 . 2

) : 0 . 2 ,
SPECIES_3 : 0 . 2

) : 0 . 2 ,
SPECIES_4 : 0 . 2

)

Balanced binary tree:

(
(

(
SPECIES_0 : 0 . 2 ,
SPECIES_1 : 0 . 2

) : 0 . 2 ,
SPECIES_2 : 0 . 2

) : 0 . 2 ,
(

SPECIES_3 : 0 . 2 ,
SPECIES_4 : 0 . 2

) : 0 . 2
)
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Balanced ternary tree:

(
(

SPECIES_0 : 0 . 2 ,
SPECIES_1 : 0 . 2

) : 0 . 2 ,
(

SPECIES_2 : 0 . 2 ,
SPECIES_3 : 0 . 2 ,
SPECIES_4 : 0 . 2

) : 0 . 2
)
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Figure 7.3: Classification performance for different substitution probabilities on
synthetic data. We plot classification performance on synthetic data for a PFM using a
star topology with all substitution probabilities set to γ ∈ {0.05, 0.1, . . . , 1.0}, where the
data was generated using (i) an unbalanced binary tree, (ii) a balanced binary tree, and (iii) a
balanced ternary tree respectively (trees shown above). The classification performance behaves
as expected.
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7.2.2.3 Heterogeneity

Tested data generation with three different combinations of heterogeneity. In case of en-
abled heterogeneity for motif generation each position in each binding-site is generated
using an individual star topology with each substitution probability drawn individually
from beta(3, 10). In case of enabled heterogeneity for background and flanking region ev-
ery position in the alignments that does not correspond to a binding site is generated
using an individual star topology with each substitution probability drawn individually
from beta(3, 10).
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Figure 7.4: Classification performance for different substitution probabilities on
synthetic data. We plot classification performance on synthetic data for a PFM using a
star topology with all substitution probabilities set to γ ∈ {0.05, 0.1, . . . , 1.0}, where the data
was generated using heterogenous substitution probabilities (i) only in the background and
flanking regions, (ii) only in the binding sites, and (iii) in the background, the flanking regions,
and the binding sites respectively. The classification performance behaves as expected.

7.2.2.4 Using HKY model for data generation

Tested data generation using HKY model with two different combinations of transversion
and transition probability.
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Figure 7.5: Classification performance for different substitution probabilities on
synthetic data. We plot classification performance on synthetic data for a PFM using a star
topology with all substitution probabilities set to γ ∈ {0.05, 0.1, . . . , 1.0}, where the data was
generated using the HKY evolutionary model with (i) α = 0.4 and β = 0.2 and (ii) α = 0.2

and β = 0.4 respectively. The classification performance behaves as expected.

7.2.2.5 Using more complex phylogenetic trees with HKY model for data
generation

Tested data generation using three different trees with the HKY model with two different
combinations of transversion and transition probability.
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Figure 7.6: Classification performance for different substitution probabilities on
synthetic data. We plot classification performance on synthetic data for a PFM using a star
topology with all substitution probabilities set to γ ∈ {0.05, 0.1, . . . , 1.0}, where the data was
generated using the HKY evolutionary model with (Ai) α = 0.4 and β = 0.2 and (Aii) α = 0.2

and β = 0.4 in combination with (Bi) an unbalanced binary tree, (Bii) a balanced binary
tree, and (Biii) a balanced ternary tree respectively (trees shown above). The classification
performance behaves as expected.
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7.3 Combining phylogenetic footprinting with motif models
incorporating intra-motif dependencies

The supplementary material of “Detecting and correcting the binding-affinity bias in ChIP-
seq data using inter-species information” consists of five additional files. Additional File
1 contains for each of the 35 TFs a 10× 10 table of difference logos for a pair-wise visual
comparison of species-specific motifs. Additional File 2 contains for each of the 35 TFs
the sequence logo inferred using the PFM(2) aligned with mutual information profiles of
order 1, the mutual information profiles of order 2, and species-specific mutual information
profiles of orders 1 and 2 for each of the 10 species. Additional File 3 contains sequence
logos and their reverse complements of predicted binding sites inferred using the PFM(0),
the PFM(1), and the PFM(2) for each of the 35 TFs. Additional File 4 contains for each
TF two plots showing the 25 ROC curves and the 25 PR curves from the 25–fold stratified
repeated random sub-sampling validation procedure described inMethods 3. Additional
File 5 This file contains three supplementary sections, presenting four additional studies,
details about the implementation and some statistics regarding the datasets of all 35 TFs.
Additional File 6 contains data files of alignments of the ChIP-seq positive regions and
negative control regions for each of the 35 TFs in FASTA format.

Here, we show Section 1.1 and Section 1.3 of Additional File 5. In the first subsection
(former section 1.1), we study differences among species–specific motifs of 35 TFs. In the
second subsection (former section 1.3), we examine the impact of base dependencies and
phylogenetic dependencies on classification performance.

7.3.1 Species–specific motifs are highly similar for most TF

Intra-motif dependencies may be a constant phenomenon conserved across the examined
species or a rather dynamic phenomenon significantly changing during the evolution of
these species. The latter case may imply that species–specific motifs are different to a
certain degree. Consequently, the estimation of base dependencies across species may
result in the estimation of spurious results. Hence, first we visually study differences
among the species–specific motifs for each of the 35 TFs using difference logos, second
we determine whether observable differences between species–specific motifs are significant
or not, and third we examine the distribution of position-specific MIs for each species.
Therefore, we extracted for each of the 35 TFs one motif for each of the 10 species resulting
in 35 × 10 species–specific motifs as described in Supplementary Section 2.1. Please
note that the extracted species–specific motifs for other species than the reference species
are not representative for these phylogenetically related species.
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7.3.1.1 Primates show almost no differences in their sequence logos

We use the freely available R package DiffLogo for the visual inspection of motif differences
Nettling, Treutler, Grau, et al., 2015. DiffLogo enables the illustration and investigation of
differences between highly similar motifs such as binding motifs of TFs from different ex-
periments, different motif prediction algorithms, or different species. Hence, we use tables
of difference logos generated with DiffLogo for a pair-wise comparison of all species–specific
motifs. Each difference logo displays position-specific differences of base distributions by
a stack of bases which height is proportional to the base distribution difference quantified
by the Jensen-Shannon divergence. The Jensen-Shannon divergence is zero in case of two
identical base distributions and 1 in case of two maximally different base distributions. The
tables of difference logos for all 35 TFs can be found in Additional File 1. All sequence
logos of PFM(0), PFM(1), and PFM(2) can be found in Additional File 3.

Exemplary, Supplementary Figure 7.7 shows the table of difference logos for the TF
Bach1. We find that the species–specific motifs segregate into two main groups, where one
group comprises seven higher primates and the second group comprises three species from
the Laurasiatheria superorder, i.e., dog, horse, and cow. We find differences between the
motifs of both groups at various motif positions, where the motif differences of relatively
high degree are located at rather conserved motif positions as well as at more variable
motif positions. For instance, we find relatively high differences at motif position 8, where
guanine is more abundant in the primate motifs and the remaining bases are more abundant
in the Laurasiatheria motifs. However, the maximum Jensen-Shannon divergence in all
difference logos for Bach1 is below 0.01 bits.

We examine the motif differences between species–specific motifs for all 35 TFs. We see for
14 TFs that the set of ten species segregates into the two groups of seven higher primates
and three from the Laurasiatheria clade as before in case of Bach1 (CEBPB, CTCF, EGR1,
MafK, Max, NRSF, POU5F1, Rad21, SRF, TCF12, TEAD4, USF1, USF2, YY1). We find
for the remaining 21 TFs that the motifs of the seven higher primates are more similar
to each other compared to the motifs of dog, horse, and cow. With other words, in these
cases the pairwise difference logos of dog, horse, and cow do not form a second cluster. The
differences observed among species–specific motifs could partly result from missing binding
sites in some species. Supplementary Table S6 shows for each species and for each TF
the proportion of sequences which are available for the computation of species–specific
motifs.
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Figure 7.7: Comparison of species-specific motifs for the TF Bach1. We depict
a table of difference logos with one row and one column for each species-specific motif to
emphasize the differences between species-specific motifs. Each difference logos depicts the
motif differences position-wise with a stack of bases, which height is calculated by the Jensen-
Shannon divergence of the position-specific base distributions. The overall similarity between
species-specific motifs is calculated by the sum of Jensen-Shannon divergences of all motif
positions and depicted by the background color of the difference logos from green (similar) to
red (dissimilar). The table of difference logos indicates, that the ten species-specific Bach1
motifs primarily segregate into two clusters, where one cluster comprises seven primates and
the other cluster comprises three non-primates (cow, dog, and horse).

7.3.1.2 Species–specific motifs are typically highly similar

We study the statistical significance of differences between species–specific motifs as follows.
We examine for each of the 35 TFs the similarity of species–specific motifs using a statistical
test for each two species ((10 ∗ 9)/2 = 45 species pairs). We calculate for each TF and
for each two species the p-value for the null hypothesis that two species–specific motifs
arise from the same distribution as described in Supplementary Section 2.2 resulting
in 35 ∗ 45 = 1575 pairwise comparisons. We count for each two species how often we reject
the null hypothesis for a confidence level of α = 0.05. These counts range from 0 to 35,
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where 0 means that the species-specific motifs of two species show no significant differences
for each transcription factor and 35 means that the species-specific motifs of two species
show significant differences for each transcription factor. The binary nature of the results
of statistical tests can lead to the issue that comparisons between three species are not
transitive, i.e., if there are no significant differences between the species–specific motifs
of species A and B and there are no significant differences between the species–specific
motifs of species B and C it can happen that there are significant differences between the
species–specific motifs of species A and C.

Supplementary Table S3 shows the results for each pair of species. We find that the
seven primate-specific motifs are highly similar to each other and that the three species-
specific motifs of cow, dog, and horse show greater differences compared to those of the
seven primates. Using a significance level of 95%, we expect 5% of all 1575 pairwise
differences to be significant by chance. We find for only 47 of 1575 pairwise comparisons
that two species–specific motifs show significant differences. However, we find only 47 (3%)
of the pairwise differences to be significant, stating that the observed differences are not
greater than expected by chance.

Specifically, we find that these 47 cases apply only to 6 of the 35 TFs, namely Bach1,
CEBPB, MafK, Max, SP1, and USF1 and typically only apply to comparisons between
a primate species and one of the species dog, cow, and horse. We find no significant
differences between the seven primates reflecting the close phylogenetic relationship and
accordingly the high sequence similarity. Amongst the three species dog, cow, and horse
we find for 1 of the 105 pairwise comparisons significant differences.

These results imply that the motifs estimated across species as presented in the previous
section are typically not a mixture of species–specific motifs.

7.3.1.3 Intra–motif dependencies are highly similar for all species

We examine for each of the 35 TFs the distribution of species–specific MIs using mutual
information profiles IS1 and IS2 as described in Methods 4 for each species S ∈ {hg19,
panTro, papHam, ponAbe, rheMac, calJac, equCab, canFam, gorGor, bosTau}. Fig-
ure 7.8 shows two examples of species–specific mutual information profiles IS1 and IS2 for
the two TFs CJUN and Nrf. All species–specific mutual information profiles are available
in Additional File 2.

First, we study the species–specific mutual information profiles IS1 . We find for each of
the 35 TFs that the species–specific mutual information profiles IS1 are highly similar for
all species. We also find that the MIs in the mutual information profiles I1 are sometimes
stronger, sometimes weaker, and often averaged compared to the species–specific MIs IS1
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Figure 7.8: Sequence logos and intra-motif dependencies for the TFs (left) CJUN
and (right) Nrf. We depict for both TFs (i) the sequence logo inferred by the PFM(2)
from all species in the first row, (ii) the species-specific mutual information profiles inferred
from the PFM(1) in the second row, and (iii) the species-specific mutual information profiles
inferred from the PFM(2) in the third row. The species-specific mutual information profiles
inferred from both models are highly similar to each other.

implying that the mutual information profiles I1 inferred from all species are partly a result
of interference of species–specific MIs. For example, in case of TF CJUN at motif positions
w ∈ {2, 3, 4}, the MIs I1(w) are smaller than the MIs IS1 (w) for all species except horse
and marmoset and in case of TF Nrf at motif positions w ∈ {8, 9, 10, 11} the MIs I1(w) are
higher than the MIs IS1 (w) for all species. Specifically, we find the largest difference between
two IS1 for FOSL1 with 0.35 bits. However, the mutual information profiles I1 inferred from
all species are typically highly similar to the species–specific mutual information profiles
IS1 .

Second, we examine species–specific mutual information profiles IS2 . We find for each of
the 35 TFs that the species–specific mutual information profiles IS2 are highly similar for
all species. We also find that the MIs in the mutual information profiles I2 are sometimes
stronger, sometimes weaker, and sometimes averaged compared to the species–specific MIs
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IS2 implying that the mutual information profiles I2 inferred from all species are partly a
result of interference of species–specific MIs. For example, in case of CJUN the mutual
information profile I2(w) is typically smaller than the mutual information profile IS2 (w) for
all species at all motif positions w and in case of Nrf at motif positions w ∈ {8−11} the MIs
I2(w) are higher than the MIs IS2 (w). Specifically, we find the largest difference between
two IS2 for FOSL1 with 0.48 bits. However, the mutual information profiles I2 inferred from
all species are typically highly similar to the species–specific mutual information profiles
IS2 as in case of I1 and IS1 .
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intra-motif dependencies

7.3.2 Taking into account phylogeny improves classification performance
in almost all cases.

It has been shown that taking into account base dependencies improves one-species ap-
proaches neglecting phylogenetic dependencies and it has been shown that taking into
account phylogenetic dependencies can improve one-species approaches neglecting base
dependencies. In the manuscript we have shown that taking into account base depen-
dencies improves phylogenetic footprinting. Unfortunately, it can not be concluded from
these observations that a model taking into account base dependencies and phylogenetic
dependencies outperforms a model taking into account base dependencies but neglecting
phylogenetic dependencies, because phylogenetic dependencies may potentially impair the
model taking into account base dependencies.

Here, we systematically study the impact of both higher order base dependencies and
phylogenetic dependencies to classification performance. Therefore, we study the per-
formances of four different models, namely i) a model taking into account neither base
dependencies nor phylogenetic dependencies (human(0)), ii) a model taking into account
base dependencies of order 2 and neglecting phylogenetic dependencies (human(2)), iii)
a model neglecting base dependencies and taking into account phylogenetic dependencies
PFM(0), and iv) a model taking into account both base dependencies and phylogenetic
dependencies (PFM(2)) as described in Methods 2. The models PFM(0) and PFM(2)
take into account phylogenetic dependencies and are inferred from the alignments described
inMethods 1. The models human(0) and human(2) do not take not into account phyloge-
netic dependencies and are inferred from the human sequences of the alignments described
in Methods 1. The models human(0) and human(2) are special cases of PFM(0) and
PFM(2) incorporating only one species.

Based on these four models we perform all pair–wise comparisons, namely a) human(0)
against human(2), b) human(0) against PFM(0), c) PFM(0) against PFM(2), d) human(2)
against PFM(2), e) human(0) against PFM(2), and f) human(2) against PFM(0).

For case a), it has been shown that human(2) typically outperforms human(0), i.e., that
modeling base dependencies improves classification performance. For case b), it has also
been shown that PFM(0) typically outperforms human(0), i.e., modeling phylogenetic de-
pendencies improves classification performance. For case c), we have shown that PFM(2)
outperforms PFM(0), i.e., that taking into account higher order base dependencies im-
proves phylogenetic footprinting. For case e) we assume that PFM(2) outperforms hu-
man(0) considering the cases a) and b). The cases d) and f) are unknown so far.

We measure the classification performance of all four models as described in Methods 3
on datasets of 35 TFs. Figure 7.9 shows the corresponding values for the four models
human(0), PFM(0),human(2), and PFM(2) for each of the 35 TFs. See Supplementary
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Table S4 and Supplementary Table S5 for statistics of the results shown in Supple-
mentary Figure 7.9.

It is not surprising that the model taking into account both base dependencies and phylo-
genetic dependencies outperforms the model ignoring base dependencies and phylogenetic
dependencies (case e). We find that modeling base dependencies typically improves classifi-
cation performance (cases a and c). Interestingly, we find that modeling base dependencies
clearly outperforms modeling phylogenetic dependencies (case f). In fact, solely taking into
account phylogenetic dependencies shows only a partial improvement (case b), but taking
into account both phylogenetic dependencies and base dependencies shows a clear perfor-
mance improvement compared to solely taking into account base dependencies (case d).
These results suggest that phylogenetic footprinting approaches benefit from taking into ac-
count base dependencies and that approaches on single species already taking into account
base dependencies benefit from taking into account phylogenetic dependencies.
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Figure 7.9: Classification performance of the models human(0) and human(2) on
human sequences and PFM(0) and PFM(2) on alignments of ten species for each
of the 35 TFs. We show the mean and standard error of the ROC AUC. See Table S4 and
Table S5 for summary statistics.
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Figure 7.10: Classification performance of the two models PFM(0) and PFM(2)
incorporating phylogenetic dependencies for each of the 35 TFs. We show the mean
and standard error of the relative increase of ROC AUC of (top) PFM(0) relative to the
classification performance of human(0) and (bottom) PFM(2) relative to the classification
performance of human(2). Typically both models show a higher classification performance.
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Figure 7.11: Classification performance of the two models human(2) and PFM(2)
incorporating base dependencies of order two for each of the 35 TFs. We show the
mean and standard error of the relative increase of ROC AUC of (top) human(2) relative to
the classification performance of human(0) and (bottom) PFM(2) relative to the classification
performance of PFM(0). Typically both models show a higher classification performance.
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7.4 DiffLogo: A comparative visualisation of sequence mo-
tifs

The supplementary material of “DiffLogo: a comparative visualization of sequence motifs”
consists of one additional file that contains Supplementary Methods, Results, Figures, and
Examples. This file comprises four sections. Section 1, Additional examples, contains
Figures S1 and S2. In Section 2, CTCF with and without clustering, we show in detail
the impact of clustering and optimal leaf ordering for a DiffLogo grid of nine CTCF motifs.
In Section 3, Alternative combinations of stack heights and symbol weights, we describe
the mathematical background of four implementations of H` and two implementations
of r`,a and show an exemplary comparison of the eight combinations. In Section 4,
Tool comparison, we compare DiffLogo with the five tools seqLogo, iceLogo, MotifStack,
STAMP, and Two Sample Logo. Here, I provide a copy of Section 3.

7.4.1 Alternative combinations of stack heights and symbol weights

We consider two motifs represented by two PWMs p and q. The height of symbol a in the
symbol stack at position ` of the difference logo is denoted H`,a and given by

H`,a = r`,a ·H`,

where H` represents the height of the symbol stack at position ` and the weight r`,a
represents the proportion of symbol a ∈ A in the symbol stack at position `, where A is
the alphabet. We calculate H`,a for different measures H` and r`,a to emphasize different
facets of distribution differences. We propose various alternatives to calculate the measures
H` and r`,a as follows (illustrated in supplementary Table S1.

In the following sections, the information content of a PWM p at position ` is denoted Hp
`

and given by

Hp
` = log2(|A|)−

∑
a∈A

p`,a · log2(p`,a),

where p`,a is the probability of symbol a at position ` in PWM p. Hq
` is defined analo-

gously.

7.4.1.1 Different calculations of stack heights H`

Jensen–Shannon divergence
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The Jensen–Shannon divergence is a measure for the difference of two probability distri-
butions based on information theory. The Jensen–Shannon divergence at position ` is
denoted by H(i)

` and given by

H
(i)
` =

1

2

∑
a∈A

p`,a

(
log2(p`,a)− log2(m`,a)

)
+

1

2

∑
a∈A

q`,a

(
log2(q`,a)− log2(m`,a)

)
,

where m`,a =
1
2(p`,a+q`,a). H

(i)
` is symmetric and limited to [0, 1]. This measure especially

emphasizes large distribution differences.

Change of information content (stack)

The change of information content (stack) is a measure for the absolute change of infor-
mation content between two probability distributions. The change of information content
(stack) at position ` is denoted by H(ii)

` and given by

H
(ii)
` =

∑
a∈A
|p`,aHp

` − q`,aH
q
` |.

H
(ii)
` is symmetric and limited to [0, 2 ∗ log2(|A|)]. This measure especially emphasizes

large changes of information content.

Relative change of information content

The relative change of information content is a measure for the absolute change of infor-
mation content relative to the average information content of the two probability distri-
butions. The relative change of information content at position ` is denoted by H(iii)

` and
given by

H
(iii)
` =


∑
a∈A
|p`,aHp

` − q`,aH
q
` |

1
2
(Hp

`+H
q
` )

if p` 6= q`

0 otherwise.

H
(iii)
` is symmetric and limited to [0, 2 ∗ log2(|A|)]. This measure especially emphasizes

large changes of information content relative to the information content of the given dis-
tributions.

Change of probabilities (stack)
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The change of probabilities (stack) is a measure for the absolute change of probabilities
between two probability distributions. The change of probabilities (stack) at position ` is
denoted by H(iv)

` and given by

H
(iv)
` =

∑
a∈A
|p`,a − q`,a|

H
(iv)
` is symmetric and limited to [0, 2]. This measure especially emphasizes large changes

of probabilities.

7.4.1.2 Different calculations of symbol weights r`,a

Change of probability (symbol)

The change of probability (symbol) is a measure for the change of symbol-specific prob-
ability relative to the sum of absolute symbol-specific probability differences of the given
probability distributions. The change of probability (symbol) of symbol a at position ` is
denoted by r(i)`,a and given by

r
(i)
`,a =


p`,a−q`,a∑

a′∈A |p`,a′−q`,a′ |
if p` 6= q`

0 otherwise.

r
(i)
`,a is antisymmetric and limited to [−1

2 ,
1
2 ]. This measure especially emphasizes a large

change of symbol–probability. For each position of the difference logo, the height of the
symbol stack with negative measures r(i)`,a is equal to the height of the symbol stack with

positive measures r(i)`,a, because each gain of symbol–probability implies a loss of probability
for the remaining symbols and vice versa.

Change of information content (symbol)

The change of information content (symbol) is a measure for the symbol-specific change
of information content relative to the sum of absolute symbol-specific differences of infor-
mation content of the given probability distributions. The change of information content
(symbol) of symbol a at position ` is denoted by r(ii)`,a and given by

r
(ii)
`,a =


p`,aH

p
`−q`,aH

q
`∑

a∈A |p`,aH
p
`−q`,aH

q
` |

if p` 6= q`

0 otherwise.

r
(ii)
`,a is antisymmetric and limited to [−1, 1]. This measure especially emphasizes a large
change of symbol-specific information content.
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7. APPENDIX
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Table 7.1: Exemplary comparison of different stack heights and symbol weights
using four artificial DNA motifs of length one.
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