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GENERAL INTRODUCTION 
Interactions between humans and honeybees (genus Apis) date back to prehistoric time 

(Crane, 1999). The relationships between our ancestors and these insects began when man still 

lived in caves, and bee colonies were hunted for their honey and brood which formed a highly 

nutritive resource (Crane, 1986; Crittenden, 2011). Today, these interactions have intensified and 

honeybees have become very popular due to their ecological (Hepburn and Radloff, 2011) and 

economical value (Klein et al., 2007). Also the scientific world has been fascinated by honeybees 

for millennia, and many features of the biology of these species have sparkled the interest of 

researchers worldwide (Winston, 1987). 

Apis is a moderately diverse genus, including at least nine species (Hepburn and Radloff, 

2011). Eight of these species are native to East and South-East Asia, whereas the last one, A. 

mellifera, is endemic to Western Asia, Africa and Europe (Ruttner, 1988). These species have 

particular characteristics separating them from the rest of the Apidae family, such as extreme 

multiple mating by queens (Palmer and Oldroyd, 2000), reproduction via swarms that make a clear 

break from the nest (Oldroyd and Wongsiri, 2006) and reuse of brood cells for brood rearing or 

honey storage (Oldroyd and Wongsiri, 2006). Honeybees are commonly grouped in three 

subgenera: Microapis (the dwarf honeybees), Apis (the cavity-nesting honeybees) and Megapis 

(the giant honeybees). These subgenera are primarily reflecting the morphological differences 

among the species, but other traits vary among these groups such as the architecture of their nests 

and the time and location of their reproductive swarms (Otis et al., 2000).  

In addition to these biological differences, human influence is different among the 

subgenera. This is especially pronounced in the cavity-nesting species, where management has 

become more and more intense over time (Oldroyd and Wongsiri, 2006). Contrary to the dwarf 

and giant honeybees, these species build multiple combs in cavities which can easily be 
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identified. Hence, their colonies can be frequently harvested without destroying the totality of the 

brood and represented a very valuable and sustainable food source for prehistoric men. Later on, 

the development of hives further enhanced the intensity of the interactions, and led to the 

domestication of some species like the Western honeybee (A. mellifera) and the Eastern hive bee 

(A. cerana). Finally, the development of transportation tools and selective breeding in A. mellifera 

has profoundly changed the population dynamics of this species. Today, wild colonies of A. 

mellifera and A. cerana are still common in some parts of the world, but are often in close contact 

with managed apiaries (Pirk et al., 2016). 

Honeybees are eusocial insects nesting in colonies headed by a single polyandrous queen 

which lives for several years. Two major natural events shape the dynamics of these colonies: 

reproductive swarming and migration. In all honeybee species, reproductive swarming is initiated 

when colonies are strong enough and start producing sexual individuals (queens and drones). In 

natural conditions, this event is initiated by the current queen leaving the colony to start a new 

colony with approximately half the worker force. A few days later, a next generation of queens 

emerge. After mating in a swarm, one of these daughter queens will take over the colony. In 

parallel, migration is frequent in Asian honeybees and common in some subspecies of A. mellifera 

(Hepburn and Radloff, 2011). This event is characterized by absconding of the queens together 

with the entire colonies’ working force because of resource depletion. Hence, this behaviour is 

highly influenced by the availability of pollen and nectar in the surrounding of the nests. 

Remarkably, the distance the colonies travel varies greatly between species and subspecies 

(Oldroyd and Wongsiri, 2006).  

Altogether, natural reproductive swarming and migration result in a loss of part or whole 

colonies and significantly reduce the honey and bee product yield of a given colony. Obviously, 

this is not in the interest of beekeepers that tend to prevent these natural events as much as possible 

by manipulating food resources (i.e. feeding colonies) or managing reproduction (i.e. by placing 
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more brood frame and/or destroying queen cells). Thus, the influence of humans on the dynamics 

of managed honeybee colonies is colossal. Yet, the most extreme human impact on honeybees 

results from the transportation of colonies (Moritz et al., 2005; Mutinelli, 2011). As a result of a 

long period of domestication and because of its high productivity, A. mellifera was introduced in 

almost all the regions of the globe. Several risks are associated with these introductions (Goulson, 

2003) including for instance competition for floral or nesting resources with other pollinators 

(Gilpin et al., 2016; Paini, 2004), interspecific hybridization (Li, 1998) and pathogen transmission 

between native and introduced species (Morse and Flottum, 1997; Pirk et al., 2016).  

In fact, the most harmful parasite of A. mellifera, Varroa destructor (Anderson and Trueman, 

2000) has been transferred to the western honeybee because of transportation of colonies outside 

of their native range (Crane, 1978). This ectoparasite was originally confined to South-East Asia 

where its native host is the eastern hive bee, A. cerana (Anderson and Trueman, 2000). But after 

the introduction of A. mellifera in the natural range of V. destructor, the mite successfully 

established in colonies of the western honeybee and consequently spread worldwide due to the 

transfer of infected colonies from Asia (Rosenkranz et al., 2010; Wilfert et al., 2016). Today, V. 

destructor represents a major global threat for A. mellifera (Boecking and Genersch, 2008; Dainat 

et al., 2012; De la Rúa et al., 2009; Le Conte et al., 2010). 

The Varroa genus includes at least four species, all initially infecting Asian cavity-nesting 

honeybees. In addition, there is strong evidence that at least two distinct species from the 

Philippines could be added to this list (Anderson and Trueman, 2000). The life cycle of the mite 

is composed of a series of reproductive and phoretic phases (Sammataro et al., 2000). 

Reproduction takes place in the honeybee brood cells where one or several mature foundress(es) 

enter at the prepupal stage one or two days prior to capping and hide in the bottom of the cell on 

the remaining brood food. Approximately 70 hours after the cell is sealed by the honeybee workers, 

the mite(s) lay a first haploid male egg (Ifantidis, 1983). Subsequent female eggs are produced 
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every 30 hours after that point, and once the offsprings are mature they mate with each other. Thus, 

when only one foundress infests a cell, brother and sister mate together. This may change if more 

than one mite originally invades the cell and offsprings from different mothers admix (Fuchs and 

Langenbach, 1989). Not all the offsprings will have time to reach maturity before the pupa 

emerges. In each of her reproductive cycle, a female will produce in average 1.3-1.45 mature 

daughters when infesting a worker cell and close to double this amount in a drone cell, due to the 

longer time of development of honeybee males (Martin, 1995, 1994). However, the reproductive 

success of the mites is negatively correlated to the number of foundresses invading the brood cell 

(Fuchs and Langenbach, 1989). Once the honeybee emerges, all mature females leave the cell and 

the male(s) die(s). In general, the females perform several distinct mating cycles during their 

lifespan, ranging from two or three under field conditions (Fries and Rosenkranz, 1996; Martin 

and Kemp, 1997) to as many as seven in the laboratory (de Ruijter, 1987). Between each cycle, a 

mite stays a few days in a phoretic phase while feeding directly on adult bees. 

To date, only two species of the genus Varroa (V. destructor and V. jacobsoni) have been 

detected in A. mellifera colonies (Anderson and Trueman, 2000; Roberts et al., 2015) and only one 

(V. destructor) is found outside its natural range. These mites impact honeybee colonies on two 

different levels. On the one hand, the parasite feeds on the haemolymph of the brood and adults, 

weakening these individuals. On the other hand it plays an important role as a vector and/or 

symbiont of multiple honeybee viruses (Boecking and Genersch, 2008; Di Prisco et al., 2016; 

Genersch and Aubert, 2010; Martin et al., 2012; McMenamin and Genersch, 2015), which seems 

to cause even more devastation than the feeding itself.  

While the mite is very harmful for A. mellifera, V. destructor has very moderate effects on 

A. cerana (Peng et al., 1987). These differences of sensibility to V. destructor between the two 

hosts are reflecting the period these two honeybee species have been in contact and co-evolved 

with the mite. Host-parasite coevolution is generally perceived as reciprocal selection on host 
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resistance and parasite infectivity (Thompson, 1994). On the one hand, there is a strong selection 

on host defences to limit the fitness impacts of parasites. On the other hand, parasites must 

constantly adapt to overcome these defences and enhance their transmission. As generations pass 

and this evolutionary arms race goes on, adaptations evolve in both parts and a fluctuating 

equilibrium may be reached. This evolutionary theory was defined by Van Valen (1973) as the 

“Red Queen Hypothesis”. In the long term, this powerful evolutionary force can drive entire 

population apart (Fumagalli et al., 2011; Paterson et al., 2010). As results of this coevolution, 

several behavioural traits of A. cerana have evolved to hinder the growth of Varroa populations 

such as an effective hygienic behaviour (Peng et al., 1987; Rath and Drescher, 1990; Rath, 1999), 

“entombment” of the drones if they are too heavily infected (Rath, 1992) and social apoptosis 

(Page et al., 2016). In addition, the mite mainly reproduces in drone brood in the colonies of the 

Asian host, not impeding directly the worker development and colony productivity ( Koeniger et 

al., 1983; but see De Jong, 1988). 

In contrast, V. destructor remains a major global threat to colonies of A. mellifera despite 

many generations of interactions between these species. In most parts of the world, the parasite 

can cause rapid colony death if no treatments are performed by beekeepers (Martin, 1998). This is 

mainly due to the fact that the mite can also reproduce in the highly available worker cells in the 

western honeybee, causing an annual increase of the parasite population up to 2000-fold (Martin 

and Medina, 2004; Vandame et al., 2000). However, adaptations of the western honeybee towards 

V. destructor have arisen independently in different parts of the world (Locke, 2015) and defence 

mechanisms such as hygienic and grooming behaviour are also present in some A. mellifera 

populations (Fries et al., 1996; Kurze et al., 2016). Although these adaptations are less effective in 

controlling the mite than in A. cerana, they can significantly improve the survival of A. mellifera 

colonies (Büchler et al. 2010; Rinderer et al. 2010; Locke et al. 2012). 
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In addition to these behavioural adaptations, the population dynamics of the host might play 

a significant role in reducing the impact of V. destructor infestation. For instance, the frequent 

migration of colonies represents consecutive bottlenecks hindering the growth of parasite 

populations, as only a limited number of phoretic mites reaches the new nests, where less brood is 

available for them to reproduce. This migrating behaviour is found in some African subspecies of 

A. mellifera and may explain why these populations were originally able to survive V. destructor 

infection, and could develop adaptations to further tolerate mite infestation (Pirk et al. 2014; 

Strauss et al. 2016). 

Despite the numerous projects on the coevolution between the genera Apis and Varroa, most 

studies have focused on the host or the parasite independently. Yet, the mite is highly dependent 

on the honeybee colony development to reproduce and in return strongly influences the health 

status of its host (Seeley et al. 2015). Hence, the population dynamics of the parasite can also 

influence the outcome of the infestation. For instance, infestation of brood cells with too many 

foundresses may result in negative reproductive success in V. destructor (Fuchs and Langenbach 

1989; Donzé and Guerin 1997). Up to now, all colonies of A. mellifera which developed tolerance 

to the parasite have in common the fact that they were not actively managed (Locke 2015). This 

characteristic highlights the important role of beekeeping on the development of the parasite 

infection. By interfering with the population dynamics of both, the honeybee and the mite, humans 

can greatly modify the interactions between these organisms.  

To fully understand the relationships between the genera Apis and Varroa and the 

importance of human interference in this system, both the parasite and the host have to be 

considered simultaneously. If one wants to investigate the interaction dynamics between any host 

and parasite at the population level, it is important to first understand the population structure of 

the host, then that of the parasite to finally address potential interactions. The aim of this thesis is 

to study the genetic structure of honeybees and their parasite in order to assess the main biological 
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parameters influencing the population dynamics in Apis and Varroa. In all three of the following 

chapters, microsatellite markers were used to estimate several parameters reflecting the levels of 

genetic diversity and gene flow of different populations and species of honeybees and the mite. 

Among other things, the level of human impact varies greatly between these populations and 

species. The conclusions we can draw from the research conducted in this thesis will therefore 

help understanding how the population dynamics honeybees and Varroa may be altered by human 

management. More particularly, this work will bring new insights on the way beekeeping can 

hinder adaptations in the host populations and influence the virulence, the transmission and/or the 

dispersal of the parasite.  



 

ϴ 
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Chapter I 

 

Extensive population admixture on drone congregation areas of the 
giant honeybee, Apis dorsata (Fabricius, 1793) 

 

A. Beaurepaire, F. B. Kraus, G. Koeniger, N. Koeniger, H. Lim and R. F. A. Moritz 

Keywords: Apis dorsata, Drone Congregation Area, Microsatellites, Population Genetics, Sibship 

Reconstruction Analyses, Spatio-Temporal Analyses 

Journal: Ecology and Evolution 

DOI: 10.1002/ece3.1284 

 

Preface 

To visualize how the genetic diversity of honeybee populations is maintained in the wild, I 

first dissected mating strategies of the giant honeybee Apis dorsata. This species is characterized 

by long distance seasonal migration (Koeniger and Koeniger 1980), nest aggregation in the same 

trees (Paar et al. 2004; Rattanawannee et al. 2013), nest site fidelity (Neumann et al. 2000; Paar et 

al. 2000) and tremendous intracolonial levels of genetic diversity as a single queen can mate with 

over a hundred males (Moritz et al. 1995). In addition, as A. dorsata cannot be kept in apiaries, it 

is almost free of any impact of bee management. Thus, this work brings new insights into the 

colony dynamics of wild honeybees that can then be compared with the available knowledge on 

managed honeybee populations in order to understand the epidemiological consequences of 

beekeeping with regard on the spread of parasites and potential selection for resistant host types. 
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Apis dorsata often forms dense colony aggregations which can include up to 200 often 

closely related nests in the same location, setting the stage for inbred mating. Yet, like in all other 

Apis species, A. dorsata queens mate in mid-air on lek like drone congregation areas (DCAs) where 

large numbers of males gather in flight (Figure I.1). This study aims at providing insights on the 

reproductive behaviour of the drones of Apis in the wild and help understanding how these 

individuals may contribute to the gene flow of honeybees in space and time. Because drones are 

preferentially targeted by Varroa in honeybee colonies (Boot et al., 1995), the selection pressure 

on these individuals is tremendous. Thus, understanding the dispersal abilities of honeybee males 

will help inferring how adaptations towards parasites such as Varroa can spread among colonies 

and populations. 

 

Figure I.1 – Reproduction in Apis dorsata 
Figure illustrating the reproduction of A. dorsata. 1. Drones fly to the canopy of a tall emergent 

tree; 2. Virgin queens join them once the DCAs are formed; 3. Within the DCAs, queens mate in 

average with 44.2 ± 27.15 drones over up to six consecutive days; 4. Once mating is finished, the 

queens return to their natal nest; 5. The freshly mated queens will then leave with a part of the 

workers to found a new colony or take over their natal nest. 
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Chapter II 
 

Seasonal cycle of inbreeding and recombination of the parasitic mite 
Varroa destructor in honeybee colonies and its implications for the 

selection of acaricide resistance 

 

Alexis L. Beaurepaire, Klemens J. Krieger and Robin F.A. Moritz 

 

Keywords: Population Genetics, Host-Parasite Coevolution, Population Dynamics, 

Microsatellites, Varroa destructor, Apis mellifera 

Manuscript under review in Infection, Genetics and Evolution 

Preface 

After investigating the reproduction of wild honeybees, the aim of this second chapter is to 

bring new insights into the genetic structure of V. destructor. In the first global survey of the 

genetic diversity of this parasite, Solignac et al. (2005) claimed that the invasive types of the mite 

were two partly isolated clones. Although this can be explained by the bottlenecks following V. 

destructor spill-over and invasion of the mite and due to its incestuous reproduction system 

involving brother-sister mating in the cell (Figure II.1), these claims are not compatible with other 

observations on the biology of this parasite. In fact, when V. destructor faces strong selection 

pressure, the emergence and the spread of adaptations can be very swift, such as in the case of 

acaricide resistance (Milani, 1999). Yet, for adaptations to arise and spread so rapidly significant 

levels of genetic variation must be maintained in the populations of the mite and gene flow must 

be significant; which is not coherent under a strict inbreeding hypothesis. 
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Figure II.1 – Single mite reproduction in Varroa 

Figure illustrating the life cycle of a V. destructor female in case of a single mite infestation. 1: 

The mite enters a honeybee brood cell with a fifth instar larva; 2: At approximately 70H post-

capping, the foundress produces a first unfertilized, haploid egg which will develop into a male; 

3: The foundress lays females eggs every 30H; 4: Once they are mature (approximately 160H for 

males, 140H for females), mating takes place between brothers and sisters; 5: Once the infected 

bee hatches, the mature females exit; 6: These females spend some time on a phoretic phase, 

attached to adult bees and dispersing within and/or between colonies; 7: After this phoretic stage, 

the mated females can infect new brood cells and a new cycle can start again. 

 

To clarify these aspects of the biology of V. destructor, this study aims at tracking the 

temporal evolution of the mite inbred lineages in colonies of A. mellifera. Given the particular 

reproductive system of the mite (Figure II.1), a model reflecting temporal evolution of inbreeding 

in V. destructor is compared to empirical data. This part will provide crucial information to 

determine the main mechanisms involved in the selection and the spread of adaptations in this 

supposedly almost clonal system. 
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Chapter III 
 

Host specificity in the honeybee parasitic mite, Varroa spp. in Apis 

mellifera and Apis cerana 

 

Alexis L. Beaurepaire, Tuan A. Truong, Alejandro C. Fajardo, Tam Q. Dinh, Cleofas Cervancia 

and Robin F. A. Moritz 

Keywords: Host-Parasite Coevolution, Reproductive Isolation, Hybridisation, Parasite Spill-over, 

Varroa, Apis 

Journal: Plos One 
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Preface 

After investigating the genetic structure of the honeybees and V. destructor separately, the 

third and last part of this thesis aims at comparing populations of the mite between its two hosts 

(A. cerana and A. mellifera) and over several regions of the Philippines and Vietnam. In Asia, 

beekeeping of A. cerana is less and less popular and the native bee is often replaced with A. 

mellifera, which is gentler, more productive and less prone to abscond. However, keeping the 

western honeybee requires intense management practices, contrary to the native bee that can be 

transferred to boxes from wild nests. For these reasons, beekeepers often possess a large number 

of A. mellifera hives and sometimes a few colonies of A. cerana located on the same apiary (Figure 

III.1). These mixed-species apiaries represent a great opportunity to study the patterns of intra- 

and inter-specific transmission of the parasite as well as the effect of colony dynamics of A. cerana 

and A. mellifera on the genetic structure of mites sharing the same environmental conditions. 
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To date, only two haplogroups of V. destructor from Korea and Japan have been reported 

in A. mellifera colonies (Anderson and Trueman, 2000). This observation is surprising given that 

the western honeybee has been introduced to most parts of Asia and is currently in contact with 

many more haplotypes of the parasite (Figure III.1). Yet, analyses of the mitochondrial genome of 

other Asian Varroa haplotypes revealed a high host specificity in Vietnam (Fuchs et al., 2000) and 

Thailand (Rueppell et al., 2011; Warrit et al., 2006). 

 
Figure III.1 – Comparison of the major Varroa haplogroups in Asia 

Map indicating the distribution of the main Varroa haplogroups in Asia. The different solid line 
forms stand for different species (circle: V. destructor, square: V. jacobsoni from Thailand, 
triangle: V. rindereri, parallelogram: V. underwoodi) and the two dashed lines forms are 
hypothetical species (diamond: Varroa Luzon sp., hexagon: Varroa Mindanao sp.). The two 
circles filled with black (K and J) represent the two V. destructor haplogroups which managed to 
switch to A. mellifera and are nowadays found in other regions of Asia. The matrix illustrates the 
pairwise distance (p-distance, calculated as proportion of nucleotide sites at which the two 
compared sequences are different) between these Cytochrome Oxidase I (COI) haplogroups (one 
sequence per group). The locations of the forms on the map indicate the region where the mites 
providing the sequences used in the matrix were sampled. References for the sequences: 1: 1088bp 
COI sequences from Navajas et al. (2010), 2: 458bp COI sequences from Anderson and Trueman 
(2000), 3: Anderson and Fuchs (1998). 
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Interestingly, hybridization between these different haplotypes may occur but cannot be 

detected with mitochondrial markers. To date, only Solignac et al. (2005) have addressed the 

hybridization potential among distinct V. destructor haplotypes. They reported in their study that 

over 8% of the mites they analysed from Japan (where the Korean and Japanese haplotypes are 

found in sympatry) were direct F1 hybrids, indicating that these events can be common where 

hosts switches can occur. The following study aims at identifying the probability of recombination 

between the multiple haplotypes found in Vietnam and in the Philippines. As these hybrids may 

represent potential new threats for honeybee health, these results will help assessing the risks 

generated by the transportation of A. mellifera to Asia. In addition, this work will provide details 

on the influence of A. mellifera and A. cerana colonies dynamics and the effects of the differential 

beekeeping management of these hosts on the population structure of the mite. 
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GENERAL DISCUSSION 
This thesis aims at bringing new insights into the coevolution between Apis and Varroa as 

well as the impact of beekeeping on this system. This is achieved by analyzing the spatio-temporal 

genetic structure of these organisms in order to assess the main parameters shaping their 

interactions. The first paragraphs of this discussion will summarize the knowledge on the 

population dynamics of honeybees and their parasitic mites based on the three chapters of this 

thesis and available literature. This will provide a strong foundation to further investigate how new 

adaptations can emerge and disperse in the populations of hosts and parasites. The second part will 

address how these adaptations can interact in a natural setting. Finally, the third and last part of 

this discussion will focus on how beekeeping and human management can destabilize the arms 

race between the genera Apis and Varroa. 

 

1. Selection and Spread of Adaptations in Apis and Varroa 

Genetic variation is paramount for adaptations to take place in a host-parasite system. This 

variation originates through mutations in the genome of organisms and is shaped by multiple 

parameters relative to their biological traits and surrounding environment (Hughes et al., 2008). 

The aim of this first part is to highlight which of these parameters influence the selection and the 

spread of adaptations in Apis and Varroa separately before looking at their interactions. 

 

1.1. Selection and Spread of Adaptations in Apis 

Several parameters are influencing the selection of adaptations in Apis. For a more 

comprehensive understanding, these parameters will be displayed here chronologically according 

to the life cycle of a honeybee colony. 
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A first parameter that will influence the selection of adaptations to Varroa in honeybees is 

the ploidy of the brood (Figure IV.1). In honeybees, sex of individuals is determined by their 

ploidy; with males being haploid and females diploid. In addition, selection operates only on 

drones and queens, unless the workers reproduce (Barron et al., 2001). As the infestation of V. 

destructor in queen cells is very low (Calderone et al., 2002), drones will be particularly targeted 

by the selective pressure induced by the parasite. Interestingly, the parasite is exclusively 

reproducing in male brood in A. cerana in natural conditions (Tewarson et al., 1992). Therefore, 

the selection of adaptations in that host species is likely to be particularly swift because in case of 

high parasite infestation any male cell will be highly infested and under strong selective pressure. 

In A. mellifera, despite the fact that V. destructor prefers drone cells (Boot et al., 1995), the overall 

selective pressure on males may be lower because the mite can also reproduce in worker cells. In 

addition, haplo-diploidy can also directly influence the selection of adaptations (Kidner and 

Moritz, 2015; O’Donnell and Beshers, 2004), for example by direct selection of recessive alleles 

in the haploid males. 

After an initial selection has occurred in the brood, mating will further affect the selection 

and the spread of adaptations in honeybees (Figure IV.1). Reproduction in Apis is very demanding 

and any resource loss before the mating flight may significantly decrease the reproductive success 

of the drones and queens. As the result of the first chapter of this thesis highlights, this is 

particularly pronounced for honeybee males that have to disperse, fly over long distances, and 

finally race after a queen to mate with. Hence, only the drones which are less affected and/or more 

adapted to Varroa will successfully reproduce in DCAs. This panmictic reproduction system will 

tend to rapidly distribute any resistance allele within and between populations. Altogether, due to 

their high level of polyandry, honeybees retain a substantial amount of genetic diversity at the 

colony level (Sherman et al., 1998; Tarpy et al., 2004). If selection operates on drones -as may be 
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the case for adaptations to Varroa- any adaptive trait will be quickly disseminated within and 

between populations. 

 

Figure IV.1– Main parameters involved in the arms race between Apis and Varroa 
Figure summarizing how the different parameters of the populations of Apis (in blue) and Varroa 

(in red) discussed in this thesis can influence the interactions between these two organisms. The 

arrows indicate where each parameter acts more predominantly. 

 

To date, no details are available on the genetic diversity and structure of A. cerana DCAs. 

However, the eastern hive bee also forms swarms including large number of drones in which the 

queens mate multiple times (Koeniger and Koeniger, 2000; Oldroyd and Wongsiri, 2006). Hence, 

as for A. mellifera and A. dorsata, DCAs are likely to play a similarly important role in the gene 

flow of A. cerana. Although there is still a lot to learn on this topic, the consequences of the 

honeybee lek-like reproductive system are clear: enhancing the gene flow between colonies and 

subpopulations and promoting high levels of intracolonial genetic diversity.  
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In addition to that, migration will increase the gene flow and enhance the spread of 

adaptations within and among honeybee populations over even larger scales (Hepburn and 

Radloff, 2011). Noticeably, the influence of this parameter is variable, as the tendency for 

migratory swarming is different between Apis species and populations, and highly dependent on 

the environment (Oldroyd and Wongsiri, 2006). 

 

1.2. Selection and Spread of adaptations in Varroa 

The study of the temporal dynamics of V. destructor populations in temperate regions 

suggests a seasonal increase of multiple cell infestation correlated to the brood availability of the 

host. Thus, both inbreeding and outbreeding may vary over time in very tight dependency on the 

host colony dynamics. These two phases can have a bilateral influence on the selection and spread 

of alleles in the populations of Varroa (Figure IV.1). 

Initially, when a large amount of brood is available early in the season, V. destructor 

reproduces mainly through inbred mating and a phase of swift selection may take place. Inbreeding 

is often considered to be deleterious although it may also be beneficial if the costs associated with 

incestuous mating do not exceed certain thresholds (Keller and Waller, 2002; Kokko and Ots, 

2006). The first and most important benefit of inbreeding is the reduction of the cost of sex 

(Maynard-Smith, 1978). In V. destructor, the indirect reduction of the cost of sex (e.g. the genome 

of the mother passes entirely to the next generation when she performs inbred mating) is coupled 

to a direct reduction in exposure to the host defences, as actively looking for multiple infestations 

may reinforce the time being vulnerable to the host grooming behaviour. The second benefit is 

that inbreeding can enhance the expression of advantageous recessive phenotypes in diploid 

organisms. This way, inbreeding may boost the fixation of adaptations such as acaricide resistance 

alleles in V. destructor. Finally, inbreeding is the most effective way of purging deleterious 
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mutations from diploid individuals (Muller, 1964, 1950). However, this is not as important in 

haplo-diploid organisms such as V. destructor, in which their elimination is also achieved by 

selection on haploid males (Crozier, 1970; Kidner and Moritz, 2016; O’Donnell and Beshers, 

2004). 

Later in the season, as the mite infestation builds up in the honeybee colony and/or the brood 

availability decreases, the proportion of multiple cell infestations increases. Multiple infestations 

may not always result in outbreeding if the different foundresses are from the same lineage or if 

the multiple lineages found in a cell do not admix. Yet, the overall heterozygosity increases in V. 

destructor populations at that stage, suggesting that at least a few lineages recombine. In addition 

to this lineage recombination, the dispersal of mites between colonies due to honeybee worker 

drift is also frequent in late summer and fall (Forfert et al., 2015; Greatti et al., 1992) and may 

further spread the mite and their alleles among colonies. 

 

2. Natural interactions between Varroa and Apis 

As explained in the previous paragraphs, cycles of in- and out-breeding in V. destructor are 

very tightly linked to the colony dynamics of its host. Accordingly, the demography of different 

Apis species, subspecies and populations can shape the genetic structure of mite populations. The 

next paragraphs will aim at dissecting the main parameters involved in the arms race opposing the 

different species and populations of Apis and Varroa in order to further understand the potential 

influence of their population dynamics on the coevolution between these organisms. 

 

2.1. Interactions between Varroa and A. cerana 

Due to a longer period of coevolution with V. destructor, A. cerana is not as much affected 

by the mite as A. mellifera (Peng et al., 1987a). In addition to the differences in behaviour of the 
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host (i.e. grooming) and the parasite (i.e. preference for reproduction in drone brood), the colony 

dynamics of the honeybees can play an important role in the reduction of the impact of the mite.  

Reproductive and migrating swarms are very frequent in A. cerana, especially in the tropical 

and subtropical distribution of this species (Oldroyd and Wongsiri, 2006). Because there is a pause 

in egg-laying during these events and mite reproduction is not possible, the parasite prevalence in 

colonies that swarm is significantly lower (Fries et al., 2003; Loftus et al., 2016). In addition, the 

length of the swarming period will also greatly influence the reproduction of the mite, because 

longer periods of phoretic stage significantly decrease its reproductive success (Rosenkranz and 

Bartalszky, 1996). In tropical regions, colonies of A. cerana can swarm for weeks (Oldroyd and 

Wongsiri, 2006). After the colonies have started a new nest, only a few drone cells will be available 

at the beginning for the surviving mites to reproduce. Thus, swarming events will significantly 

affect the population size but also the growth rate of their parasites in the new colonies.  

New colony founding events in A. cerana may also lead to high levels of multiple infestation 

and recombination of mite lineages due to the small amount of drone brood, potentially breaking 

any local adaptation of the mite. Accordingly, significantly higher levels of heterozygosity were 

observed in V. destructor and V. jacobsoni populations infecting A. cerana compared to A. 

mellifera mites (third chapter of this thesis; Roberts et al., 2015). Although this may in part be due 

to the host switch, it could also reflect the impact of the swarming behaviour on the mite’s genetic 

structure. Comparing mites from sympatric managed and wild colonies of A. cerana would help 

exploring this hypothesis. 

 

2.2. Interactions between Varroa and A. mellifera 

The first contacts between A. mellifera and V. destructor occurred about two centuries ago 

in Eastern Russia (Danka et al., 1995). However, most populations of the Western honeybee 
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affected by the mite nowadays were only exposed to the parasite in the last decades. Hence, the 

relationship between A. mellifera and V. destructor is very recent in terms of evolutionary time 

scales (Oldroyd, 1999). This short period of coevolution may partially explain why the mite is 

more virulent in its new host (Fries et al., 2001). In addition, as mite reproductive cycles are much 

more frequent than the generations of its host, adaptations of the parasite may take place more 

rapidly (Hafner et al., 1994). Yet, many populations of A. mellifera have developed adaptations to 

Varroa infestation (Locke, 2015). Interestingly, all of the populations have in common the fact 

that they are wild or feral. However, not all wild and feral Western honeybee populations show 

these adaptations to the mite. Some specific traits of these populations probably predisposed them 

to adapt so rapidly to the parasite (Loftus et al., 2016).  

As breeding of resistant honeybee populations is believed to be the most promising and 

sustainable solution against Varroa (Büchler et al., 2010; Rinderer et al., 2010), many studies have 

focused on analyzing the resistance and tolerance traits in these surviving populations. The results 

of these studies highlighted the importance of the colony dynamics to decrease the impact of the 

parasite. Like in A. cerana, frequent swarming and absconding may have initially limited the 

population size and population growth of the mite and therefore its deleterious impact (Loftus et 

al., 2016). Additionally, the density of colonies being smaller in nature compared to managed 

apiaries, horizontal transmission may be much reduced in feral and wild A. mellifera. This is well 

illustrated in the African A. mellifera subspecies, which generally tend to survive Varroa 

infestation more than the European subspecies (Allsopp, 2006; Ritter, 1993; Rosenkranz, 1999; 

Strauss et al., 2014). One of these subspecies, A. mellifera scutellata, presents an interesting set of 

characteristics which further enhance its tolerance to parasites, such as high rates of absconding, 

smaller colony size and faster colony development (Moritz and Jordan, 1992; Schneider et al., 

2004). In some A. mellifera populations, high mite death and infertility rates are common (Le 

Conte et al., 2007; Locke and Fries, 2011; Moretto, 2002; Strauss et al., 2016). Interestingly, this 
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feature may be influenced by the host, as the brood of some subspecies appears to be less attractive 

to the mite (Frey et al., 2013; Guzmán-novoa et al., 1999) due to different components of the brood 

cuticle volatiles (Behrens et al., 2011; Lattorff et al., 2015). 

Therefore, many mechanisms to hinder the mite’s population growth may have been present, 

or have evolved in the resistant and tolerant honeybee populations. Yet, a common point among 

these studies is that the variability of the parasite has been neglected. Importantly, the genetic 

variation found in V. destructor (second and third chapters of this thesis; Dynes et al., 2016) is 

coupled with a significant diversity in the phenotypes of the mite, such as their level of acaricide 

resistance (González-Cabrera et al., 2016; Milani, 1999) and their ability to mimic cuticular 

hydrocarbons of their host (Le Conte et al., 2015). The study of A. mellifera in the Arnot forest 

(USA) reflects well the importance of considering the parasite variation as well when looking at 

honeybee resistance and tolerance (Seeley, 2007). That study revealed that the low impact of V. 

destructor in the honeybee population in Arnot forest may have nothing to do with the host, but 

could be explained by the lower virulence of the mite infecting these populations (de Guzman and 

Rinderer, 1999). 

 

3. Interference of beekeeping on Varroa and Apis interactions 

The introduction of A. mellifera in Asia is certainly the most extreme and extensive way 

humans have influenced the relationships between honeybees and their pathogens (Moritz et al., 

2005; Mutinelli, 2011). It resulted in numerous parasites and pathogens spill-over besides Varroa 

(Anderson and Trueman, 2000), such as Tropilaelaps (Anderson and Morgan, 2007), Nosema 

ceranae (Fries, 2010), multiple viruses (Forsgren et al., 2015; Yañez et al., 2015) and most likely 

other yet unknown organisms. Today, the impact of A. mellifera on the health of Asian honeybees 

is poorly understood (Chantawannakul et al., 2015; Oldroyd et al., 2009). But as the transportation 
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of A. mellifera into other regions of the globe changed the pathosphere of other pollinators (Fürst 

et al., 2014; Graystock et al., 2015), its congeneric species may be also greatly affected. 

In addition to these effects at the global scale, transhumance is also affecting honeybee health 

at smaller ranges. This is the case in the USA, where millions of colonies are transported every 

year all over the country to pollinate different crops. This non-natural migration is not only causing 

high stress for the honeybees, but may also greatly facilitate the horizontal transmission of Varroa 

and the spread of the mite and other pathogens over the country (Cavigli et al., 2016; Cox-Foster 

et al., 2007; Dynes et al., 2016). Hence, it is not surprising to see that beekeepers think that this 

parasite is at least partially implicated (31.7%) in the high colony losses experienced in the USA 

over the last decades (van Engelsdorp et al., 2008). In addition to that, the movement of managed 

honeybee colonies in the vicinity of feral or wild resistant populations may result in the rapid loss 

of natural adaptations (Pirk et al., 2016). Due to the high admixture in the DCAs, adaptations of 

the feral or wild colonies would rapidly decrease in frequency in the regions such as in Europe 

where managed honeybees are dominant (Jaffé et al., 2009).  

Horizontal transmission of honeybee parasites may also be enhanced by beekeeping 

practices at the apiary level (Fries et al., 2001). In nature, honeybee colonies are found in low 

densities because nesting sites such as tree hollows are scattered around the landscape. By keeping 

many colonies in a reduced area, beekeepers drastically enhance the population densities of 

honeybees and the interactions between individuals of different colonies, with inevitable 

consequences on the transmission and the virulence of their parasites (Bull, 1994). A direct effect 

of these high densities is the common use of feeding sites between the colonies. Honeybees from 

different colonies may exchange parasites readily as they intensively use common floral resources 

(Durrer and Schmid-Hempel, 1994; Kevan et al., 1990). In addition, the drifting and robbing of 

honeybees are greatly enhanced when colonies are placed in high densities (Greatti et al., 1992; 

Pfeiffer and Crailsheim, 1998). Finally, the movement of combs from one colony to another by 
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beekeepers (i.e. to strengthen a weak colony) or the use of contaminated material will also greatly 

facilitate horizontal transmission of parasites and pathogens. 

Once transmission has occurred between colonies, it does not take long for a parasite to 

spread in a nest. The density of individuals being very high in honeybees nests, once a few workers 

get in contact with a new parasite, the time needed for this organism to spread between individuals 

and throughout the entire nest is much reduced (Schmid-Hempel, 1998). At this level again, 

humans may facilitate the transmission of Varroa. Beekeepers commonly prevent their colonies 

from absconding by feeding them extra pollen. This is common in A. mellifera, but also in managed 

A. cerana colonies in Asia, where this practice is very popular to restrain the tendency of this 

species to abscond (personal observations). However, by doing so, beekeepers let the brood 

accumulate in the colonies, offering great opportunities for Varroa populations to build up. 

Inversely, beekeeping may also reduce the rate of vertical transmission in Varroa. As 

beekeepers want to optimize honey production they often prevent natural reproductive swarming 

and purchase queens from professional breeders as they want to keep other traits of their bees (i.e. 

low aggressiveness). This will tend to homogenize the genetic diversity in their apiaries and may 

increase the overall susceptibility of their colonies (Schmid-Hempel, 2011; Sherman et al., 1998).  

Interestingly, the rate of vertical and horizontal transmission of parasites can also influence 

their virulence (Bull, 1994; Fries et al., 2001). On the one hand, vertical transmission may select 

for decreased virulence of parasites, as in that case the successful reproduction of the pest depends 

on its hosts fitness. On the other hand, if the rate of horizontal transmission is too high, this trade-

off may disappear as the costs associated with parasite virulence are lower. In fact, reproduction 

does not occur naturally in most managed A. mellifera colonies in contrast to unmanaged 

populations of the western honeybee and A. cerana. Therefore, transmission is mostly horizontal 

in managed colonies, which may explain why V. destructor is more virulent in A. mellifera. 
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Finally, control strategies also greatly influence the populations of parasites and their effect 

on hosts. For instance, the use of treatments against V. destructor may result in swift selection as 

documented on the second chapter of this thesis. Even with elaborated strategies involving 

multiple compound turnovers, the impact of the acaricide residues (e.g.  Martel et al., 2007) on the 

selection of resistance are hard to predict. Furthermore, acaricides can indirectly impact other mite 

traits. Fitness trade-offs associated with pesticide resistance have been documented in many 

organisms (Georghiou and Taylor, 1977) but have not yet been thoroughly explored in Varroa.  

Thus, many more parameters have to be included in order to design efficient control 

strategies of V. destructor. Management of this pest by involving the arms race with its host seems 

to be the most adapted control strategy in the case of V. destructor as it can result in the evolution 

of a complex set of effective counter-adaptations towards this particularly dynamic parasite. 



 

Ϯϴ 
 

 

   



 

Ϯϵ 
 

CONCLUDING REMARKS 
As genetic variation greatly influences the outcome of the arms race between hosts and 

parasites, one may be tempted to think that more diversity gives a better advantage in this type of 

coevolution. If so, A. mellifera would possess a clear lead over its ectoparasite V. destructor. As a 

matter of fact, the results exposed in this thesis confirmed that the populations of Varroa possess 

much lower levels of genetic diversity compared to honeybees which are characterized by extreme 

intracolonial diversity. This is due to polyandry and high gene flow between colonies because of 

a very effective population admixture in DCAs. However, the successful invasion and spread of 

the inbred mite around the globe shows that the interactions between Varroa and Apis are complex 

and that other features of their biology are involved in the coevolution among these organisms. 

Among other things, the ability of the mite to mimic the cuticular hydrocarbons of its host to avoid 

detection (Le Conte et al., 2015; Martin et al., 2001) and of the honeybee to manipulate these 

signals to detect infected cells (Salvy et al., 2001) illustrate very well the dynamism of the ongoing 

arms race between V. destructor and A. mellifera. 

So far, most knowledge on the biology of honeybees concerns A. mellifera and much less 

effort has been put in studying the other Apis species. Yet, many more studies are needed to fully 

appreciate the diversity of honeybees in Asia (Hepburn and Radloff, 2011; Oldroyd and Wongsiri, 

2006). Among other things, these studies should aim at comparing the genetic structure of other 

honeybees’ DCAs and try to identify the biotic and/or abiotic factors influencing the dispersal 

behaviour of honeybee drones and queens. In addition, the fact that A. cerana and other species of 

cavity-nesting bees (A. koschevnikovi, A. nuluensis and A. nigrocincta) are found in sympatry in 

some parts of Southeast Asia and that these species can be either managed or wild provides great 

opportunities to test for the impact of beekeeping on honeybee health. 
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Curiously, the genetic structure of Varroa populations has started to be explored only 

recently despite the importance of this parasite for honeybee health and the fact that microsatellite 

markers were developed over a decade ago (Evans, 2000; Solignac et al., 2003b). Contrary to 

previous suggestions based on very few individuals per colonies and populations (Solignac et al., 

2005), the analyses of the colony level structure presented here show that the levels of genetic 

diversity in V. destructor are considerable and that the population structure of this parasite is very 

dynamic both in space and time. However, if these findings may be reflected in mites infecting A. 

mellifera in temperate climate, it is important to keep in mind that these observations may not 

apply to all Varroa species and populations. Notably, the dynamics of V. destructor populations 

are also greatly influenced by the climate, natural flowering resources and density of colonies 

(Giacobino et al., 2016; Leza et al., 2016). Comparing the spatio-temporal evolution of the genetic 

structure of mites from diverse locations reflecting these biotic and abiotic factors would greatly 

help optimising control strategies of the mite by adapting these strategies to their environment.   

In addition, the interactions between Apis and Varroa will inevitably influence the dynamics 

of their populations. To date, not much is known on the interactions between these genera in Asia. 

For the conservation of honeybees, it is reassuring to see that Varroa is not able to spill-back to A. 

cerana in Vietnam and the Philippines, although this may not be the case in other locations. 

Interestingly, a study showed that in Thailand -where different haplotypes of the host and species 

of parasite live in sympatry- the Mainland host lineage is infected by several mite species but not 

the Sundaland type (Warrit et al., 2006). These different host lineages may exhibit different 

resistance traits against the mite. Therefore, further work on the co-phylogeny of these species is 

also needed to determine patterns of association between the different hosts and parasites in Asia. 

Finally, many other organisms parasitize Asian honeybees, some of which have not been 

thoroughly studied yet (Chantawannakul et al., 2015). As A. mellifera beekeeping is rapidly 

expanding in Asia (Moritz et al., 2005; Moritz and Erler, 2016; Pirk et al., 2016), new spill-overs 
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could lead to very rapid global spread of these pests as in the case of V. destructor (Muñoz, 2008; 

Wilfert et al., 2016). Inversely, the spread of non-native mites via the transportation of A. mellifera 

between different regions of Asia could additionally threaten the Asian honeybees. In addition, the 

impact of other organisms such as viruses (McMahon et al., 2016; Wilfert et al., 2016) and the 

effect of the environment (Costa et al., 2012; De Jong et al., 1984; Giacobino et al., 2016; Leza et 

al., 2016) are likely to play important roles in the interactions between Apis and Varroa. Despite 

the fact that wild honeybee populations may quickly adapt to invasive Varroa haplotypes, the 

transfer of non-native viruses facilitated by this vector could change the outcome of the arms race 

(Di Prisco et al., 2016; Manley et al., 2015; Wilfert et al., 2016). Understanding how these different 

organisms interact represents a new challenging question in the fascinating disciplines of host-

parasite coevolution and honeybee research.
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SUMMARY 
Honeybees (genus Apis) and humans have been interacting for millennia. These 

interactions have intensified over time and the development of beekeeping. Nowadays, the most 

extensive impact of beekeeping on honeybee populations is certainly the transportation of colonies 

of the western honeybee, Apis mellifera. Because of honey and bee product business, this species 

has been introduced to most regions of the world, among which South-East Asia. After being 

transported there, A. mellifera came in contact with other Apis species, together with many new 

parasites and pathogens. Among these, the ectoparasitic mite Varroa destructor managed to switch 

from Apis cerana, its original host, to the introduced western honeybee. Today, the parasite has 

spread to most parts of the globe and most colonies of A. mellifera cannot survive without 

beekeeping management practice such as acaricide treatments. Thus, beekeeping influence on this 

host-parasite system is not limited to dispersal of the honeybees. Consequently, understanding how 

human management practices impact the interactions between Apis and Varroa is crucial to 

develop efficient management strategies of the mite. 

The aim of my PhD was to investigate the population structure and genetic diversity of 

different populations and species of honeybees and Varroa in order to understand their dynamics 

and infer how beekeeping can disrupt the interactions between these organisms. To do so, I used 

molecular tools to analyse how these populations and species disperse and reproduce. I first studied 

a wild honeybee species, Apis dorsata, in order to understand how diverse and dynamic Apis 

species are without human interference. I then looked at the dynamic of V. destructor, and more 

specifically how the mite population structure evolves in space and time.  In the third and last part 

of this thesis, I investigated the factors shaping the population 
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structure of different mite populations by comparing the dispersal and hybridisation potential of 

Varroa between hosts and populations in Asia.  

Altogether, my results show that wild Apis population are very dynamic and that 

reproduction contributes greatly to the admixture of their populations. The second part of this 

thesis revealed that V. destructor is more diverse than previously claimed and its populations very 

dynamic. In this parasite species, inbreeding and recombination fluctuate over time according to 

the availability of its host brood. The third chapter of this work highlighted great differences in the 

host specificity between haplogroups and species of Varroa. Although mites from A. cerana and 

A. mellifera did never switch hosts in northern Vietnam, we found that a potential new species 

found in Luzon, the Philippines, is able to infect both hosts.  

With these findings and the available literature, I discussed how beekeeping may change 

the dynamic of Apis and Varroa population and disrupt their natural host-parasite interactions. 

Evidences of A. mellifera populations surviving infestation with Varroa have gotten more and 

more numerous in the last years. A common point between these populations is that beekeeping 

influence was very limited, or even non-existent, permitting natural adaptations against the parasite 

to evolve and spread. As an alternative to chemical treatment, these natural adaptations may be 

used for selective breeding and could help limiting the impact of the pest on colonies of A. 

mellifera. However, if the biology of Varroa and Apis are not taken into account in future control 

strategies, mites counter-adaptations may develop and spread very quickly. In addition, new mite 

populations will likely switch host in Asia as A. mellifera beekeeping keeps developing in that part 

of the globe. Thus, all breeding efforts will be futile if the biology of the host and the parasite are 

not taken into account. Therefore, the work summarized in this thesis can provide knowledge to 

help designing new control strategies that are more sustainable and help preventing new host 

switches of the parasite in South-East Asia.   
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ZUSAMMENFASSUNG 
Die Honigbiene (Apis) und der Mensch interagieren miteinander seit Jahrtausenden. Diese 

Wechselbeziehung nahm im Laufe der Zeit immer mehr zu und das Imkern entstand. Der größte 

Einfluss des Menschen heute, ist die Verbreitung der westlichen Honigbiene Apis mellifera in alle 

Welt. Da Honig und Bienenprodukte überall beliebt sind, wurde diese domestizierte Art in fast 

allen Teilen der Welt eingeführt, so auch in Süd-Ost Asien. Nach ihrer Ankunft kam sie dort mit 

den einheimischen Bienenarten, sowie deren Parasiten und Pathogenen, in Kontakt. Varroa 

destructor, einem Ektoparasit, gelang es schlussendlich von Apis cerena, seinem ursprünglichen 

Wirt zur eingeführten westlichen Honigbiene zu wechseln. Inzwischen hat sich der Parasit auf der 

ganzen Welt ausgebreitet und die meisten A. mellifera Kolonien können nicht mehr ohne 

imkerische Maßnahmen, wie den Einsatz von Akariziden, überleben. 

Deshalb ist der Einfluss des Menschen auf das Wirts-Parasiten System heute nicht mehr 

nur auf die Verbreitung der Honigbiene beschränkt. So ist es ausschlaggebend zu verstehen in 

welchem Maße sich das Imkern auf die Interaktionen zwischen Apis und Varroa auswirkt, um 

effektive Strategien zur Bekämpfung der Milbe zu entwickeln. 

Das Ziel meiner Doktorarbeit war es die Populationsstruktur und genetische Diversität 

verschiedener Populationen und Arten von Honigbienen und Varroa zu untersuchen, um die 

Wechselwirkungen zwischen diesen Organismen besser zu verstehen und herauszufinden wie der 

Mensch am effektivsten in dieses System eingreifen kann. Um das zu erreichen verwendete ich 

molekulare Werkzeuge um zu analysieren wie sich Populationen und Arten beider Organismen 

verbreiten und vermehren. Zuerst untersuchte ich die wilde Honigbienen Art Apis dorsata, um zu 

verstehen wie divers und dynamisch Apis Arten ohne menschlichen Einfluss sind. 

 Dann sah ich mir die Dynamik von V. destructor an und wie die Populationsstruktur der 

Milbe sich über Zeit und Raum verändert. Im dritten und letzten Teil meiner Arbeit untersuchte 

ich welche Faktoren die Populationsstruktur von verschiedenen Milbenpopulationen 
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beeinflussten, indem ich das Verbreitungs- und Hybridisierungspotential von Varroa zwischen 

verschiedenen Wirten und Wirtspopulationen in Asien verglich. 

Meine Ergebnisse zeigen, dass wilde Apis Populationen sehr dynamisch sind und die 

Reproduktion einen wichtigen Teil zur Diversität in den Populationen beiträgt. Der zweite Teil 

dieser Arbeit zeigte, dass V. destructor diverser ist als bisher angenommen und die Populationen 

sehr dynamisch sind. Inzucht und Rekombinationen fluktuieren in diesem Parasit über die Zeit, 

abhängig von der Verfügbarkeit der Wirtsbrut. Das dritte Kapitel zeigte große Unterschiede in der 

Wirtsspezifität von Haplogruppen und Arten von Varroa auf. Obwohl Milben von A. cerana und 

A. mellifera in Nordvietnam nie den Wirt wechselten, fanden wir eine potentielle neuer Art in 

Luzon, auf den Philippinen, die in der Lage ist beide Wirte zu infizieren. 

Ich diskutierte meine Ergebnisse auf Basis der momentan vorhandenen Literatur, um aufzuzeigen 

wie imkern die Dynamik zwischen Apis und Varroa Populationen beeinflussen könnte. Es gibt 

zunehmend Hinweise auf A. mellifera Populationen, die den Befall durch Varroa überleben. Eine 

Gemeinsamkeit zwischen diesen Populationen ist, dass der menschliche Einfluss so gering wie 

möglich oder sogar gar nicht vorhanden war und so natürliche Anpassungen gegen den Parasiten 

entstehen und verbreitet werden konnten. 

Diese natürlichen Anpassungen könnten eine Alternative zur chemischen Behandlung 

darstellen, für selektive Züchtung genutzt werden und so den Einfluss des Schädlings auf die 

Kolonien von A. mellifera minimieren. Wenn jedoch in zukünftigen Strategien die Biologie von 

Varroa und Apis nicht berücksichtigt wird könnte die Milbe sich den Resistenzen in den neuen 

Kolonien anpassen und weiterhin A. mellifera Kolonien weltweit bedrohen. Es ist außerdem 

wahrscheinlich, dass neue Milbenarten den Wirtswechsel zu A. mellifera in Asien vollziehen, 

wenn  deren Haltung dort weiterhin zunimmt. Alle Züchtungsbemühungen könnten zunichte 

gemacht werden, wenn diese Punkte nicht berücksichtigt werden. Die Ergebnisse dieser Arbeit 
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sollen deshalb helfen neue nachhaltige Kontrollstrategien zu entwickeln um zu verhindern, dass 

es zu weitere Wirtswechsel des Parasiten in Süd-Ost Asien kommt. 
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