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Abstract

Background: We present one patient with an initial diagnosis of Guillain-Barré syn-

drome (GBS) and one with Charcot–Marie–Tooth disease (CMT) type 1A.

Methods: Both patients underwent ankle tibial nerve fusion-imaging of high-

resolution ultrasound (HRUS) with 7T MR neurography (MRN).

Results: In GBS, the nerve was enlarged, T2-hyperintense, and showed increased

vascularization 21 months after symptom onset. In CMT1A, the enlarged nerve was

T2-isointense with normal endoneurial blood flow.

Conclusions: We demonstrate the utility of 7T-MRN-HRUS-fusion-imaging. In GBS,

there was evidence of ongoing inflammation resulting in a changed diagnosis to

acute-onset chronic demyelinating polyradiculoneuropathy and maintenance of

immunotherapy. By MRN-HRUS-fusion, patients with presumed peripheral axonal

degeneration could be shown to display imaging markers associated with peripheral

nervous system inflammation. Thus, more accurate identification of a treatable

inflammatory component may become possible.
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1 | INTRODUCTION

Despite rapid technical progress and continued expansion of indications

for the clinical use of in vivo high-resolution ultrasound (HRUS) of the

peripheral nervous system (PNS)1 various shortcomings (e.g., user-depen-

dence, inability to image tissue down to the bone) remain. Another chal-

lenge is to capture the extent of (ongoing) inflammation or demyelination

compared to axonal processes during the course of peripheral nerve dis-

ease. Fusion imaging of real-time HRUS with 7T MR neurography (MRN)

could help to overcome this challenge, and would not only help inform

the evolution of PNS pathophysiology, but also aid in therapeutic decision

making in patients with challenging peripheral nerve disorders. We

describe two patients who underwent lower limb nerve fusion imaging.

1.1 | Patient 1

A 52-year-old woman presented with progressive neuropathic/radicular

pain, symmetrical severe sensory and motor flaccid quadriparesis,

reduced tendon reflexes, and bilateral facial paresis, that began 1 week

after an upper respiratory tract infection and developed over 5 days.

Electrodiagnostic studies 5 days after symptom onset revealed
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detectable A-waves and prolonged distal motor and F-wave latencies;

3 weeks after onset compound muscle action potential (CMAP) ampli-

tudes were low (Table 1) and needle electromyography (EMG) revealed

positive sharp waves and fibrillation potentials in the tibialis anterior

and deltoid muscles. Symptoms peaked within 4 weeks with loss of all

voluntary limb movement, dysphagia, autonomic/respiratory failure

with the need for ventilation. Four weeks after symptom onset, periph-

eral nerves were electrophysiologically inexcitable. Cerebrospinal fluid

(CSF) revealed a mild increase in cell count (17 cells/μL) and elevated

protein concentration (130 mg/dL). The patient fulfilled the Brighton

criteria for Guillain-Barré syndrome (GBS) with the highest level of diag-

nostic certainty.2 We excluded alternative diagnoses, such as infectious,

neoplastic, vascular, and toxic etiologies, or other neuromuscular dis-

eases, through blood and CSF immunological and microbiological test-

ing, bone marrow aspiration, sural nerve biopsy, whole-body computed

tomography, abdominal sonography, and spinal cord MR imaging.3

Beginning 5 days after symptom onset, three plasma exchanges and

three immunoadsorption sessions were performed. The patient showed

a protracted and at times stagnating recovery period (see Supporting

Information Table S1 and Supporting Information Figure S1, which are

available online), with pain, anxiety, depression, and fatigue4 that is still

ongoing. Twenty-one months after symptom onset, examination rev-

ealed persistent moderate, distally-predominant, motor quadriparesis

and mild neuropathic pain with distal sensory loss. Dysphagia and respi-

ratory failure had fully recovered. At this time, peripheral nerves were

electrophysiologically excitable, showing partial recovery (Table 1).

1.2 | Patient 2

A 22-year-old woman had longstanding, distal, symmetrical mild sen-

sory deficits and motor weakness, atrophy of the small hand and foot

muscles, and high arched feet. Genetic testing revealed Charcot–

Marie–Tooth disease (CMT) type 1A with a duplication of the periph-

eral myelin protein 22 gene (locus 17p11.2).5 Symptom onset was in

her first decade. Motor conduction velocities were severely and uni-

formly slowed (< 20 m/s); CMAP amplitudes were low (Table 1).

2 | MATERIALS AND METHODS

2.1 | 7T MRN

MRN was performed with a Siemens MAGNETOM 7T scanner using a

28-channel knee-coil. The protocol included a high-resolution 2D

T2-weighted turbo spin echo sequence with weak fat-saturation (echo

time 64 ms; repetition time 6000 ms; flip angle 150�; field of view

120 mm; matrix size 480 × 480; slice thickness 2 mm with 0.4-mm

gap; number of slices 50; voxel size after interpolation 0.125 mm ×

0.125 mm × 2.4 mm).

The patients entered the scanner feet first; one leg was inside the

coil at any time, for a scanning time of 6 min each. Before the scan,

three markers (vitamin E capsules) were applied to the skin in a trian-

gular pattern (Figure 1A) as reference markers for later fusion.

2.2 | High-Resolution 7T MRN-Ultrasound Fusion
Imaging

Ultrasound fusion imaging was carried out immediately after the 7T

scan on a high-resolution ultrasound device (Philips Medical Systems,

Affiniti 70G with PercuNav navigation and fusion system, with an

eL18-4 18 MHz broadband ultrasound probe); imaging settings

remained identical for both patients. The duration of the fusion pro-

cess was 10–15 min for registration and 15–20 min for measure-

ments with each patient.

Patient 1 underwent 7T and fusion imaging 21 months after

symptom onset, and patient 2 after approximately 15 years after

symptom onset. Neither patient was receiving disease-specific treat-

ment at the time of imaging.

Co-registration between MRN and HRUS is demonstrated in

Figure 1.

3 | RESULTS

3.1 | Patient 1

In GBS, the ankle tibial nerve showed a distinct hyperintense T2 signal

of the prominent and well visualized nerve fascicles across the entire

cross-sectional nerve area (CSA) (Figure 2A1). HRUS confirmed tibial

nerve CSA (left 19 mm2, right 18 mm2) and fascicle size enlargement

(Figure 2A2). Power Doppler (pD) ultrasound indicated several color-

encoded lines and spots of microvascular blood flow signals in the

endoneurial vessels, i.e., increased nerve vascularization (Figure 2A3).

7T-MRN-HRUS-fusion took advantage of the different nerve informa-

tion provided by each of the two imaging modalities at exactly the

same nerve position (Supporting Information Video S1).

3.2 | Patient 2

In CMT1A, the signal of the (again well visualized) enlarged fascicles

was conversely T2 isointense (Figure 2B1). HRUS confirmed tibial

nerve CSA (left 25 mm2; right 25 mm2) and fascicle size enlargement

as well (Figure 2B2), but pD ultrasound revealed only a few color-

encoded spots, compatible with normal endoneurial blood flow

(Figure 2B3). Subsequent 7T-MRN-HRUS-fusion is demonstrated in

the Supporting Information Video S1.

4 | DISCUSSION

The technical capability of 7T-MRN-HRUS fusion imaging is demon-

strated in this “proof-of-concept” report of the ankle tibial nerve of

one GBS and one CMT1A patient.

In both, we expected axonal processes to predominate. Based on

electrophysiological studies, many clinicians would expect that, in

patient 1, the inflammatory component had “burnt out” and axonal
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processes, either damage (secondary to demyelination or primary

through inflammation) or regeneration/reinnervation, would be the

main substrate of any ongoing PNS changes.6,7 Permanent motor

axon loss and very slow axonal regeneration are further likely respon-

sible for the patient's long-term disability and delayed clinical

recovery,6,8,9 observable in the Supporting Information Table S1.

Although demyelination is the pathological hallmark in CMT1,

secondary axonal degeneration is the cause of the clinical signs and

symptoms.10 Consistent with this, electrophysiological studies in

longstanding CMT1A demonstrate predominantly axonal injury.11

Active de- and remyelination are evident in nerve biopsies in early

childhood CMT1A; in contrast, there is characteristically nearly no

ongoing de- and remyelination in older CMT1A subjects.12,13

The combination of 7T MRN and HRUS provided, somewhat

unexpectedly, evidence of ongoing inflammation (T2 signal and end-

oneurial blood flow increase)14,15 in the our patient with GBS,

whereas it confirmed axonal degeneration in the CMT1A patient.

GBS is a clinically diverse disorder that includes several distinctive

variants and atypical cases.3 Around 5% of patients initially fulfilling

diagnostic criteria for GBS will later be classified as having acute-

onset chronic inflammatory demyelinating polyradiculoneuropathy

(CIDP).16 Distinction between GBS and acute-onset CIDP is of pivotal

importance as the latter may respond to maintenance immunomodu-

latory treatment. In the absence of reliable biomarkers, acute-onset

CIDP is commonly diagnosed on clinical grounds, i.e. deterioration

9 weeks after symptom onset and/or at least three relapses.17 Our

GBS patient, however, did not meet these clinical criteria for CIDP, as

there was protracted recovery but no deterioration/relapses (see

Supporting Information Figure S1). Fusion imaging provided the data

that led to a change of the diagnosis during the course of disease

because ongoing nerve inflammation (active disease) is a feature of

CIDP but would not be expected many months after onset of GBS.18

The diagnosis of CIDP led to treatment with immunotherapy in the

form of intravenous immunoglobulin.

Based on these findings, it appears that some patients with pre-

sumed peripheral axonal degeneration can be shown to display imaging

markers thought to be associated with PNS inflammation19,20 by using

combined MRN and HRUS. Thus, more accurate identification of a

(A) (C)(B)

f
f p

a
Co-registrationMRNMRN preparation

F IGURE 1 7T MRN-ultrasound fusion imaging process. A-C, The technical aspects of the 7T MRN-ultrasound fusion. A, Three markers were
applied to the patient's skin (circled). B, One of the markers in the resulting MRN T2 sequence is visible (circled). C, Co-registration between MRN
and HRUS is shown: image fusion was made possible by tracking the position and rotation information of tracking sensors in the form of
dedicated trackers (a), measuring the electro-magnetic field generated by the field generator (f). Co-registration of MRN and ultrasound images
was achieved by selecting the marker positions in the MRN slab (B) and then indicating the corresponding position of these markers on the
examinee (B, circled) with the tracker (C, a). C, A patient tracking sensor (p) was placed on the lower leg to detect (in)voluntary movements and to
enable continuous motion compensation preserving the previously set co-registration [Color figure can be viewed at wileyonlinelibrary.com]

*
A

HRUS

*
A

MRN

0.5 cm

*
A

HRUS pD

0.5 cm0.5 cm

(A1) (A2) (A3)

(B1) (B2) (B3)

* 0.5 cm * 0.5 cm 0.5 cm*

GBS HRUSMRN GBSGBS HRUS pD

CMT1A CMT1A CMT1A

F IGURE 2 7T ultra-high resolution MRN and ultrasound. In GBS, the tibial nerve (TN) was T2-hyperintense (A1), with sonographic nerve
area/fascicle enlargement (A2), and increased microvascular blood flow (A3, rectangle). In CMT1A, the TN was T2-isointense (B1), with
sonographic nerve area/ fascicle enlargement (B2), and normal microvascular blood flow (B3, rectangle). A1, A2, B1, B2, Dashed lines outline the
transverse left ankle TN. B1-B3, A, tibia. A1−B3, Asterisks, tibial artery [Color figure can be viewed at wileyonlinelibrary.com]
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treatable inflammatory component in patients with primary axonal dis-

ease (e.g., amyotrophic lateral sclerosis) may become possible.21,22

Additional advantages of the fusion technology are that it could

allow for the precise correlation of MRN and HRUS findings, identifi-

cation of biomarkers, and characterization of the time course of fas-

cicular and deep nerve microstructural changes in axonal and

demyelinating disorders.

The technical equipment required for the fusion process is not

yet commonplace, and where available, is presently used mostly for

biopsies and other percutaneous interventional procedures.23,24

Moreover, compared to established PNS imaging methods, fusion

imaging requires additional processing time, which might not always

be feasible in clinical settings. A growing number of device manufac-

turers are offering similar 3D navigation systems, though, and it is

expected that these will become more commonplace in the future, all-

owing for systematic studies in larger cohorts to confirm the potential

utility of the fusion imaging technique.

In conclusion, this report addresses the feasibility of fusing ultra-

sound and MRN. The thoughtful use of this approach might enhance

our understanding of challenging peripheral nerve pathophysiology.
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Abstract

Introduction: A single and simple question, namely “What percentage of normal

(PoNL) do you feel regarding your disease?” is feasible and valid in myasthenia gravis.

In this study, we aimed to determine the validity of this question in patients with

nondiabetic polyneuropathy.

Methods: Clinical, electrophysiological, and functional and disability assessments

were performed in 151 patients with nondiabetic polyneuropathy. One hundred forty

patient answers were recorded for the PoNL question, and these were included in

the current study.

Results: The PoNL correlated moderately with functional and disability scales.

Discussion: “What PoNL do you feel?” is a simple, quick, and valid question, which cor-

relates moderately with functional and disability scales in nondiabetic polyneuropathy,

and it may be incorporated in polyneuropathy assessment.

K E YWORD S

disability, functional scales, percentage of normal, TNCS

1 | INTRODUCTION

The number of patient-reported scales has been increasing in the

last several years, as neurological examination, electrophysiological,

imaging, and laboratory test findings do not include significant infor-

mation regarding patients' experiences, and they are inadequate to

assess quantitatively several important disease components, such as

pain and fatigue.1 However, as some of these scales are time-

consuming, they may not be feasible in situations in which time is

limited.

We have previously shown that a single simple question, which is

not time consuming, namely “What percentage of normal do you feel

regarding your disease?” is feasible and valid in myasthenia gravis

(MG).2 In the current study, we aimed to determine the validity of this

question in patients with polyneuropathy.

2 | METHODS

We performed a prospective study at the Prosserman Family Neuro-

muscular Clinic, Toronto General Hospital, University Health Network,

Abbreviations: ANOVA, analysis of variance; CIDP, chronic inflammatory demyelinating

polyneuropathy; MG, myasthenia gravis; ONLS, Overall Neuropathy Limitations Scale; RODS,

Rasch-built Overall Disability Scale; TCNS, Toronto Clinical Neuropathy Score.
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