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Introduction

The motion of two immiscible fluids like oil and water can be modeled as a moving boundary
problem for the two-phase Navier-Stokes equations. In a sharp-interface model, the interface
between both fluid phases is considered as a geometric hypersurface. Physicists expect that
interfacial properties such as surface tension play a prominent role when the interfacial area
is large compared to the fluid volume. In this regard, Boussinesq [Boul3] proposed to con-
sider certain surface viscosities that are related to intrinsic frictional forces within the interface.
Several decades later, Scriven [Scr60] generalized Boussinesq’s approach and obtained a model
for arbitrary coordinate systems. This model is nowadays called the two-phase Navier-Stokes
equations with Boussinesq-Scriven surface fluid and is denoted by (N) in this thesis. From a
mathematician’s point of view, it is fundamental to investigate whether this problem is well-
posed; that is, whether it admits a uniquely determined solution that depends continuously on
the initial state. Such a theory also has practical advantages. In particular, it can clarify admis-
sible ranges of relevant parameters and indicate general limitations of the model that might
be difficult to explore with experiments or numerical simulations alone. In this spirit, Bothe
and Priiss [BP10] formally analyzed a related linear model problem and proved that its well-
posedness depends on a condition for the interfacial velocity. The purpose of the present thesis
is to extend their work and to investigate whether the original nonlinear problem is well-posed.

Let us formulate the model (N). We assume that the adjacent fluid phases occupy time-
dependent disjoint open subsets 2, (t) and Q_(¢) in R" (n > 2), which are separated by the
sharp interface I'(t) = 04 (t)NIN_(t). Both bulk phases Q.+ (¢) and the interface I'(¢) fill a rigid
container 2 = Q4 (¢)UI'(¢)UQ_(t), which is a stationary domain. We employ the mass densities
p+, the velocity fields u4, and the stress tensor 74 = S4 — w1 with viscous stress tensor S
and pressure m1. With the characteristic function x4+ of 4, we put p = pi x4+ + p—x— and
analogously for the other quantities. The principles of conservation of mass and momentum in
. yield the continuity equation and the Navier-Stokes equation

Op +div(pu) =0, O(pu)+div(pu®@u—T) = pf.

We restrict our considerations to incompressible Newtonian flows for which p. are positive
constants and the viscous stress tensor S+ = 2u+ D+ depends linearly on the rate-of-strain
tensor Dy = (Vuy + [Vuy]')/2 with constant positive shear viscosities p+. By putting also
f+ = 0, we neglect external forces like gravity.

Additional conditions must be imposed on the fluid-solid boundary 0f2 and the interfaceI'.
For simplicity, the latter should not touch the boundary 9 and hence one of the bulk phases,
say {1_, should have its boundary 02— = I" in Q). Furthermore, we let the flow satisfy the no-
slip conditions uy = 0 on 02 and [u] = 0 on I', where [u] := uy|r — u_|r denotes the jump
of u across I'. We exclude phase transitions and assume that the interface is material in the
sense that the normal velocity Vr of I is given by Vi = w4 |r - vr, where vr denotes the unit
normal directed into 2. Thus, I is advected with the flow of the bulk phases. Conservation
of momentum also yields the interfacial momentum balance

- [[T]] v = diVI‘ TF,

5



6 INTRODUCTION

where Tt is the surface stress tensor and divr 7t denotes its surface divergence. When surface
viscosities are negligible, we can put 7t = o Pr with the surface tension coefficient o and the
tangential projection Pr = I — vp ® vp. With the (n — 1)-fold mean curvature Hr = — divr v,
this yields the well-known Laplace-Young law —[T'|vr = o Hrur if o is constant, and otherwise
—[Tvr = oHrvr + Vo with Marangoni force Vo, where Vi denotes the surface gradient. In
order to incorporate surface viscosities, we assume that 7t is given by the Boussinesq-Scriven
constitutive law [cf. SSO07]

Tr = oPr + (As — ps) divr u Pr + 2us Dr,
where \; and pu, are the surface viscosities and Dr is the interfacial rate-of-strain tensor
Dr =27 Pr(Vru + [Vru] ") Pr.
We can decompose 1t into
Tr={c+ As+ B —n)us/(n—1))divr u}Pr + 2us[Dr — (tr Dr/(n — 1)) Pr|,

where the first summand is an isotropic tensor field and the second one has vanishing trace.
Thus, we call 11, the surface shear viscosity and

ks =As + (3—n)us/(n—1)

the surface dilational viscosity. The latter equals ), in the case n = 3.

Bothe and Priiss [BP10] already noticed that the tangential part of the interfacial force
divr Tt is of second order in v but only of first order in w. Accordingly, when we reformulate
problem (N), we should handle the tangential and normal components separately; a compli-
cation that is not present in the situation without surface viscosities that was investigated by
Kohne, Priiss, and Wilke [KPW13], where simply divr Tt = oHryr with (n — 1)-fold mean
curvature Hr. In our situation, we decompose the velocity field u near I' into u = v + wvr with
tangential component v := Pru and normal component w := vr - v and decompose the vector
field divr Tt accordingly. Then it can be shown that divr 7t has the following structure.

divp It = ,usﬁpv 4+ AsVrdivro + ,USHF[VF’U]VF — MSL%U
—2ps LrVrw + (ps — As)Vrw Hr — (s + As)wVrHp
+ [(As = ps)Hr dive v + 2pstr(Lp Dr(v))]vr
+ [oHr — (\s — ps) Héw — 2pstr(LE)w]vr.
Here we employ a Laplace-Beltrami operator Ay that acts on tangential vector fields, the scalar

Laplace-Beltrami operator Ar = divr Vr, and the Weingarten tensor Lr.
We summarize these considerations in the aforementioned free boundary problem

Oh(pu) +divipu@u—-T)=0  inQ\ (),
divu =0 inQ\ I'(¢),
[ul =0 onI'(t),
—[TJvr —divr Tr = 0 on I'(¢),
M) Vr—u-vr =0 onI'(t),
ulpo =0  on 9,
I'(0) =T,
ulg=p =up in 2\ Ty.

\

This model is considered as an initial value problem for a given initial velocity ug:  — R"
and a given initial interface I'y C €2 and we ask for short-time existence and uniqueness of the
unknown solution (u, 7, I") and its continuous dependence with respect to (ug, I'y). More infor-
mation related to this model is given in the monographs of Aris [Ari89]; Edwards, Brenner, and
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Wasan [EBW91]; and Slattery, Sagis, and Oh [SSO07]. A more recent survey on related models
is given by Sagis [Sag11]. These authors mainly deal with theoretical properties in special situa-
tions and with experimental results. Furthermore, Barrett, Garcke, and Niirnberg [BGN14] an-
alyzed a semi-discretized version of (N), where surface tension and surface viscosities depend
on the concentration of a surfactant, whose distribution is governed by a convection-diffusion
equation on the interface. For the simplified situation of a spherical droplet 2_ in a Stokes-
Poiseuille flow, Reusken and Zhang [RZ13] carried out numerical experiments and studied the
migration velocity of that droplet.

On the other hand, the theoretical understanding of problem (N) in general bounded con-
figurations is still limited. Bothe and Priiss [BP10] have shown that the energy functional

5 [ plutta)dz + olE()

2 Ja

is always a strict Ljapunov functional for sufficiently smooth solutions and that its critical
points for constant phase volumes |2+ | are precisely the stationary states of (N). However,
the well-posedness of problem (N) has not been proved by rigorous mathematical analysis.
Even worse, they found an additional condition that determines the well-posedness of a linear
model problem in the whole space 2 = R" with flat reference interface ¥ = R"~! x {0}. In
terms of some reference velocity u, related to uy, this condition is given by

ng =0+ ()\s — Ms) diVE(PEu*) + 2 CERITI'IHI(I\ 1( . [Vg(Pgu*)]C > 0.
In case d5* < 0, the interface symbol is not invertible. Hence it is not clear whether problem
(N) is well-posed for arbitrary velocities ug, not even for short times.

This thesis attempts to fill this gap. We will reformulate problem (N) as an equivalent
transformed problem (T) where the unkown interface I'(¢) is replaced by a stationary interface
¥ and a height fucntion A(t,-): ¥ — R. As our main result, we prove that problem (T) is locally
well-posed for initial velocities subject to the following well-posedness condition:

(WPC) inf <O‘ + (A\s — ps)divg ug + 25 min - (- [Vgud(j) > 0.

s ¢eR™,|¢|=1
Thus, compared to the linear model problem of Bothe and Priiss, not only the tangential velo-
city Pxup|s, but the full velocity is important for the well-posedness of the nonlinear problem.
We further show that the corresponding condition is not only sufficient, but also necessary for
the invertibility of the interface symbol of a corresponding linear model problem.

We mainly follow the strategy of Kéhne, Priiss, and Wilke [KPW13] and employ a time-
dependent diffeomorphism ©(t, -) of the underlying domain €2, which maps a fixed hypersur-
face ¥ C Qonto I'(t) = O({t} x X). One such diffeomorphism is the well-known Hanzawa map
@Ea“ [Han81, (2.1)], which was first used by Hanzawa for transforming the one-phase Stefan
problem. It is an extension to 2 of the parametrization

Op(t,x) =x+ h(t,x)vs(z) € T(t) forte J zeX.

The Hanzawa map was also applied by Escher, Priiss, and Simonett [EPS02] for transforming
a two-phase Stefan problem and by Kohne, Priiss, and Wilke [KPW13] for transforming the
two-phase Navier-Stokes equations with surface tension. For the latter, the authors considered
the transformed functions

u(t,z) = u(t,On(t,x)), 7(t,x)=mn(t,Ont,z)),

and reformulated their original problem for (u, 7, I") as a transformed problem for (@, 7, h).
However, this velocity transformation does not seem appropriate for transforming our
problem (N) with additional surface viscosities, since, on the one hand, both v = Pru and
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w = vp - uw would depend on both ¥ = Pyu and w = vy, - @, but on the other hand, the in-
terface momentum balance requires different orders of differentiability for v and w. We there-
fore employ both a different diffeomorphism and a different velocity transformation for en-
suring that these velocity components are transformed separately. We consider a class of maps
O: J x Q — Q that we call the normal-preserving admissible maps. For such a map, the normal
derivative 0, ©(t, x) is a multiple of the original normal vector field vr(t, ©(¢, x)), whereas the
Hanzawa map satisfies 0,,, @I}fa“ = vy.. Moreover, the Jacobian 0,0 (¢, ) maps the normal space
Rvs;(z) onto the normal space Rup(t, ©(t, 7)) and the tangent space 7% onto Tg;,I'(t). We
will construct such a map ©j, in terms of a height function h by using a similar method as Abels
and Terasawa [AT09], who transformed a Stokes problem with variable viscosity in a bent half-
space. Our map O, has several advantages when we consider the velocity transformation

u(t,On(t,x)) = [0,04(t, x)]u(t, x).
First, we have
U(t, Qh(t7 LE)) = [ax@h(ta l‘)]g(t? ‘T)’ w(tv Gh(tv l‘)) = VF(ta @h(tv l‘)) . l/z(ﬂ?)@(t, IE),

and thus the velocity components are transformed separately. Second, the advected moving
interface condition Vi = vr - u is transformed to the simple identity

Oih = w.

Thus, compared to Priiss and Simonett [PS11], we can avoid perturbations in this equation.
In this way, problem (N) can be reformulated as a transformed problem

pou — uAu + V7 = Fy(u, 7, h) inJ xQ\3%,
diva = Fy(u, h) inJxQ\3,
[a] =0 onJ x X,
L, (a, 7, h;uy) = Gu(U, T, by Us, Tx, D) onJ x X,
M Oh—u-vs=0 onJ x X,
Ulpn =0 on J x 0,
hli=0 = ho onJ x X,
Uly—o = up inQ\ X.

Here the left-hand sides are linear with respect to (@, 7, h), the functions u,, 7., and h, are
chosen according to the initial data, and F},, F;, and G, are nonlinear perturbations that have
to be controlled in a suitable way. In the following, we omit the bars over u, u,, 7, and 7. For
solving problem (T), we also employ its principal linearization

pou — pAu + Vi = f, inJ xQ\X%,
divu = fy inJ xQ\X%,
[u] =0 onJ x X,
Ly(u, 7, h;uy) = gu onJ x X,
Oh—u-vs=0 onJ x X,
ulon =0 on J x 01},
hli=o =0 on >,
Uli—g = 0 inQ\ .

(PL)
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In order to define the operator L,, we decompose u, = v, + wyvx and g, = g, + guwVx as well
as Ly (u, 7, h;uy) = Ly(u, by us) + Ly (u, 7, h; uy)vs. Then we have

Ly(u, h;uy) = —,uszgv — AV divy v — [uVsw] — [uo,v] + (As + ps)wi Vs Ash,
Ly(u, 7, hyuy) = —tr ([(As — ps)Hs + 2us Ly Vyv) — 2[pod,w] + [r]
—tr ([0 + (As — ps)(divs vy — 2Hsw,) + 2ps D5y (v4) — 4usw*Lg]V2Eh) .

A crucial task is to verify that problem (PL) has optimal regularity, which means that the
solution-to-data map (u, w, h) — (fu, fa, gu) is a topological linear isomorphism between suit-
able function spaces. Hence the regularity conditions on the data must be both necessary and
sufficient for the existence and regularity of the solution. In this case, the well-posedness of the
nonlinear problem (T) can be proved simply by Banach’s fixed-point theorem. We are interested
in spaces for which the velocity u(t, z) and pressure 7 (¢, z) satisfy the regularity conditions

u € Hy(J; Lp(Q)") N Lp(J; Hy(Q\ D)%), 7€ Ly(J; Hy (2 B)),
where the Lebesgue exponent p € (1,00) will be chosen sufficiently large for controlling the
nonlinear perturbations in problem (T). In order to construct such spaces, we solve a linear
model problem for (PL) in the whole space = R""! with a flat interface > = R" x {0} under
the restriction (fu, f4, uo, ho) = 0. The generic element of R"* is denoted by (z,y) with x € R"

and y € R. Let 9, € R, ¥, € R"*", and ¥p, € R"*" denote the values of w,, Ly, and Dy (v.) at
some fixed position and define the parameters

c1 = (As + ,U's)ﬁwa co 1= (As — NS) trdp,
Cs = psdr, Cya = 2p5(Vpy — 20u91),
C5.6 € {0, 1}, Co i =0 + ()\5 — ,us) tl‘(ﬁDv — 279w79L)-
Then the aforementioned model problem is given by
p(T+0)u—pAu+Vr=0 inR, x R"H
divu=0 inR4 x R""
[ul =0  onRi xR,
—psAyv — AV divg v — e5[pVaw] — cs[noyv] + 1 VeAgh = g, onRy x R",
—tr((c2 + 2C3) V) — 2[udyw] + [7] — tr((co + C4)VZh) = gy onRy x R™,
(T+0)h—w=g, onRLxR"
hlt=o=0  onR",
ul—=o =0  inR"L
Here, 7 > 0 will be a sufficiently large number and we allow for g5, # 0. The term ¢5[pV,w] is
of lower order in our functional analytic setting and therefore negligible, in contrast to the situ-
ation without surface viscosities. Moreover, we will choose ¢ = 1 for proving well-posedness,
but also allow for ¢ € {0, 1} in the symbolic calculations.

A basic version of problem (MP) without surface viscosities was solved in an L,-setting by
Priiss and Simonett [PS10] for the parameters (c1,c2,C3,C4) = 0, ¢s56 = 1, and ¢, = 0. They
also included gravity acting in the negative x,,-direction and studied the modified equation
Oth —w + b - Vh = g, in [PS11]. Here the additional term b - Vh with b € R™ arises when the
free-interface problem is transformed by means of the Hanzawa diffeomorphism ©,, and the
velocity transformation u(t, © (¢, z)) = u(t, z) and when the transformed problem is linearized
at a non-trivial reference velocity. In this thesis we can neglect the term b - Vh.

A linear problem including surface viscosities Ag, ps > 0 was derived and analyzed by

Bothe and Priiss [BP10]. Roughly speaking, their model corresponds to (MP) with ¢; = 0,
c2=0,03=0,c6 =0+ (As — pts)Vdv, C1 = 20159y, ¢5,6 = 1. In particular, all terms arising for

(MP)




10 INTRODUCTION

non-trivial 9, are not present and their g,-equation is only of second order in h. As mentioned
above, we require the well-posedness condition
— . -9
do(Opu) =0 + (As — ps) tr O py, + 25 ge]{zg}\r}{o}g [WIpu)€l§]™= > 0.
This condition is also necessary for the invertibility of the associated interface symbol.

Denk and Kaip [DK13, Section 4.7] solved a variant of (MP) for vanishing ¢, c2, C3, Cy
which combines the models of [BP10] and [PS11] for surface viscosities and gravity. They de-
rived function spaces for the interface quantities for which the corresponding interface operator
is an isomorphism and their results cover both cases \;, 15 = 0 and A, s > 0. Fortunately,
we can adapt their method to the present situation, but we shall employ somewhat different
function spaces, due to the additional leading order term c¢; V,A,h. We will compute the inter-
face symbol and prove that it is invertible for all cases ¢5 6 € {0, 1}. Moreover, we will see that
the order structure of the system and hence also the spaces for optimal regularity depend on
c6 but not on cs. Suitable function spaces for solving problem (MP) are only constructed in the
case cg = 1 since these spaces allow for better time regularity than the case c¢g = 0. Unfortu-
nately, the g,-equation is not invariant under the parabolic scaling v(t, ) = v¢(¢t,/Cx) and in
this situation the author does not know how to perform perturbation theory on J = (0, co) for
arbitrary initial states. Therefore we deal with short time intervals J = (0,7") and use a small
end time 7T instead of a large number 7 as a perturbation parameter.

To transfer optimal regularity of the model problem to the principal linearization (PL), we
adapt the localization procedures of Kohne, Priiss, and Wilke [KPW13]; Abels and Terasawa
[AT09]; Denk, Hieber, and Priiss [DHPP03]; Amann, Hieber, and Simonett [AHS94]; and La-
dyzhenskaya, Solonnikov, and Ural’tseva [LSU68]. With also provide a theory on an elliptic
transmission problem

div(pVy) =divu inQ\ X,
o =v-u on 0f),
[10,6] = [ -u] on’S,
[¥] =0 on s,

(TP)

and its weak version
/ uV - Vodr = / u-Veodr forpe CER"), [¢]=0onX.
Q Q

This theory suffices to determine the bulk pressure 7 and to handle the inhomogeneity f; in
the divergence equation. For these problems we prove the optimal a priori estimates

VYl ar@\s) < Cllullpy@osy  for k €{0,1,2},

by means of a localization procedure based on the methods of Simader and Sohr [SS92] and
Kohne, Priiss, and Wilke [KPW13].

In this way we can conclude that (PL) induces a topological isomorphism and that the linear
solution operator corresponding to (PL) is uniformly bounded with respect to the length of the
time interval 7" — 0+ and certain reference velocities u, which satisfy (WPC). By means of
Banach'’s fixed point theorem we show that problem (T) is well-posed for small 7', for small kg
and for possibly large u that satisfies (WPC).

This thesis is organized as follows. In Chapter 1, we derive problem (N) in a mathematically
rigorous way and study some properties of this model. Chapter 2 provides an optimal regular-
ity theory for the transmission problem (TP), which is employed later on. Optimal regularity
for the principal linearization (PL) is proved in Chapter 3. Finally, we establish well-posedness
for the transformed problem (T) in Chapter 4. For keeping this thesis self-contained, we pro-
vide relevant results on differential geometry and functional analysis in Appendices A and B.



CHAPTER 1

Modeling of moving interface flows

In this chapter we derive the model (N) in a rigorous way from basic principles and consti-
tutive assumptions. To this end, we also study the concepts of moving domains and moving
hypersurfaces and recall important divergence theorems and transport theorems.

Basic notation. Throughout this thesis, the symbols N = {1,2,3,...}, Z, R, and C denote
the sets of the positive integers, the integers, the real numbers, and the complex numbers, and
we let K denote either R or C. We also put Ny := NU {0}, R} := [0,00), R_ := (—00,0], and
Ct := {# € C: Rez > 0}. The imaginary unit is denoted by i. For a real number = we let
x| :=[x] :=max{k € Z: k <z}, [z] :=min{k € Z: k >z}, and {z} ==z — |z].

The n-dimensional Euclidean space R" (n € N) is equipped with the scalar product v -

w = (vlw) = viwy + vowy + -+ + vywy, and the norm |v| = v -v for v = (vy,v2,...,0y)
and w = (w1, wy, ..., w,). The vector space C" is equipped with the scalar product (v|w) =

VW1 + VWg + - - - + v, Wy, Where the bar denotes complex conjugation. We let (v, w) =v-w =
viwy + vows + - - - + vywy, denote the bilinear product of two vectors v, w € C". The canonical
basis of K" as a K-vector space consists of the unit vectors el = e; = (0ij)i, where §;j, 6], and
5% denote the Kronecker delta.

Matrices are denoted by A = [a;j];; € K™ fori € {1,...,n} and j € {1,...,m}. The
transposed matrix of A is given by AT = [a;;];;. The symmetric part of a quadratic matrix
A€ K™ issymA = 271(A + AT) and the Kronecker product of two vectors v € K" and
w € K™ is defined by v ® w := [v;w;];;. The symbol |A| denotes the induced matrix norm of the
Euclidean vector norm; that is, |A| = max{|Av| : v € K" with |v| = 1}. The trace of A € K"*"
istr A = ai1 + - - - + anpn. Using Einstein’s summation convention, we write tr A = e; - Ael. For
two matrices A, B € R™" we put A : B := tr(A" B) = a;;b;;.

For two sets U and V, we write U C V, if U is a subset of V. We also write U UV for the
union U U V of disjoint sets U and V. The power set of U, which consists of all subsets of U, is
denoted by 2Y. We write U CC V if U and V are subsets of some metric space such that U is
bounded and its closure U is contained in V.

The notation f: X DU — V C Yor f: U C X = V C Y indicates that f is a mapping
from the subset U of the set X into the subset V' of the set Y. The set gr f = {(z, f(z)) : x € U}
is the graph of f. For a set-valued map F': U — 2¥ we put gr F := Uyep ({2} x F(z)) CU x Y.
If U and V are subspaces of topological spaces X and Y, then the vector space C'(U; V') contains
allmaps f: U — V that are continuous with respect to the topologies induced by X and Y. We
will abbreviate C(U;K) =: C(U).

The partial derivatives of a C'-map f defined in U C R" are denoted by 9, f = df/0x; and
the (Fréchet) derivative 0f of f at x, € U is the linear map v — [0f(zs)]v = (d/dh) f(zs +
hv)|p=o. The nabla operator V = (01,0s,...,0,)" is defined by Vf = (01f,...,0,f)" fora
scalar field f and Vv = e/ ® 0ju = [9;v,];; for a vector field v. The divergence is defined by
divv = 0O;v; for a vector field v and div.S = (0;5;;); for a symmetric matrix field S. Thus,
div(Sv) =divS-v+ S : Vo.

Let X be a C'-hypersurface in R” with local parametrization U C R" ™1 — ¥, u +— x = ¢(u).
We employ the tangent vectors 7;(z) = 0;¢(u), which span the tangent space 7,3, and the
cotangent vectors 7% (z), which are uniquely determined by the relations 7;(z) - 7%(z) = (5}“. The

11



12 1. MODELING OF MOVING INTERFACE FLOWS

partial derivatives of a C'-map f: ¥ — X are denoted by 0; f(z) := 0;(f o ¢)(u). We define the
surface gradient Vy f = 779; f for a scalar field f and Vyu = 77 ® d;u for a (not necessarily
tangential) vector field u. Moreover, we define the surface divergence divy v = 0;u - 77 and
divy S = (8j5)7j for a symmetric matrix field S. Thus, divy(Su) = divy S -u+ S : Vyu.
Moreover, vs: ¥ — R” is a unit normal field of ¥ and, if ¥ is of class C?, Ly, = — Vv, denotes
the Weingarten tensor and Hy, = — divy vy, = tr Ly, denotes the ((n — 1)-fold) mean curvature.

For a metric space (X,dy), the symbols Bx (z) or B () denote the open ball {y € X :
dx(z,y) < R} of radius R and center z € X. If (X, ||-| x) is a normed vector space, we abbrevi-
ate By := B (0) := {z € X : ||z|x < R}. We will write Bg() instead of B (z) if X is known
from the context. For a subset M of X we define Br(M) = {y € X : dist(xz, M) < R}, where
dist(z, M) := inf{dist(z,y) : y € M}. Two normed vector spaces X and Yare equal if they
coincide as sets and have equivalent norms. We write Y — X, if Y is continuously embedded
into X and we write Y <% X, if the embedding is also dense. The complexification of a real
vector space X = Xy is denoted by X¢ = {x1 + izo : 21,22 € X }.

The vector space of all linear operators A: X — Y between vector spaces X and Y is
denoted by £(X;Y) and we abbreviate £L(X) := L(X; X). Welet N(A) = {z € X : Az = 0}
and R(A) = {Az : x € X} denote the null space an range of a linear operator A: X — Y.
The complexification of an R-linear operator A: X — Y is givenby Ac: X¢ — Yg, (21 + izg) —
Azq+iAxy. The space of bounded linear operators A: X — Y between normed vector spaces X
and Y is denoted by B(X;Y'), and it is equipped with the operator norm ||A[[gx.v) = [[All x>y
The space of bounded k-linear maps A: X* — Y for k € N is denoted by B*(X*;Y), and its
norm is denoted by

[Allge(xkyvy = sup{l|A(z1, .. sz lly t 21, 2p € X with [z = -+ = [Jag ]| = 1}

The space of bounded linear isomorphisms from X to Y is denoted by Bisom(X;Y) and that
of linear isomorphisms by Lisom(X;Y). We let Ix: z — z denote the identity on X and
(x*,x) x*xx = (x*,z) = z*(x) denote the duality pairing for z* € X* and z € X.

We employ the theory of moving hypersurfaces and Riemannian manifolds as given by
do Carmo [Car92], Kimura [Kim08], and Priiss and Simonett [PS13]. More background infor-
mation on differential geometry and the theory of function spaces is given in Appendices A
and B.1.

1.1. Moving hypersurfaces and integral theorems
In order to define moving domains and hypersurfaces, we consider the initial-value problem
(1.1) (t) = u(t,z(t)) fort € J, z(tg) = w0,

where J is an open interval and u: G — R" (n € N) is a given vector field on an open subset
G of J x R". It is custom to understand the map ¢ — z(t) as the trajectory of a moving particle
that starts at position z( at time ¢y and moves with velocity u(t,z(t)). We say that z is the
convected coordinate of the moving particle [cf. O1d50; Scr60].

A local solution of (1.1) is a C'-map z: J(tg,79) — R™ on some interval J(¢p,zo) C R that
contains ¢y, such that (¢, 2(¢)) belongs to G for all t € J(ty, zo) and such that (1.1) is satisfied on
J(to, z0). If (¢t,x) — u(t, x) is continuous on G and locally Lipschitz with respect to z, then the
Picard-Lindelof theorem implies that for every (ty, zo) € G, there exists a unique local solution
on some interval (tgp — §,tg + ¢). Moreover, the solution has a unique extension to a maximal
interval of existence, which is again denoted by J(ty,zo). This interval is open and for any
finite t, € 0J(to, xo), the function (¢, z(¢)) tends to OG or it blows up as ¢t — t,, in the sense that
dist((t, z(t)), 0G) — 0 or |z(t)| — oc.

1.1. Proposition. Let J C R be an open interval, let G C J x R™ be open, let u € C(G)" be locally
Lipschitz with respect to x, and let t +— x(y, ,,(t) denote the unique solution to (1.1) for (to,z0) € G.
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Then the map
O (tvt()?x()) = x(to,mo)(t)v {(t7t0>x0) €eJxG:te J(t(]vx(])} — R"

has the following properties.
(i) (t,®(t,s,z)) belongs to G forallt € J(s,x)and (s,z) € G.
(i) ®(t,t,x) =z forall (t,x) € G.
(iii) ®(t,s,P(s,r,x)) = ®(t,r,x) forall (r,x) € Gandt, s € J(r,x).
(iv) ®(-, s, x) is continuously differentiable in J (s, x) for all (s, x) € G.
(v) ®(t,-,-) is locally Lipschitz in {(s,x) € G:t € J(s,x)} forallt € J.

Proof. Since ®(-,t,x) is a solution, it satisfies (i) and (ii). Next, the functions ®(-, s, ®(s,r, z))
and ®(-,r, z) are solutions to (1.1) and coincide at ¢ = s, since ®(s,r,x) = D(s,s, (s, 7, z)).
By uniqueness, we have ®(-, s, ®(s,7,z)) = ®(,r,x) on J(r,z). The C'-regularity of ®(-, s, )
follows from 0;®(t, s, x) = u(t, (¢, s, z)), and the local Lipschitz condition is a consequence of
Gronwall’s Lemma [see PW10, Satz 4.1.2]. O

1.2. Remark. We can guarantee that every solution exists for all ¢ € J, when we also assume
that G = J x R™ and that u is linearly bounded with respect to z; that is, there are a, b € C'(J;Ry)
such that |u(t, z)| < a(t) + b(t)|z| forallt € J, x € R™ [see PW10, Korollar 2.5.1].

The map ® induces a local flow in G in the following sense.

1.3. Definition. Let G be a topological space and U be an open subset of R x G that contains
{0} x G. A continuous map ®: U C R x G — G is called a local flow in G, if
(i) ®(0,z) = zforall z € G.
(ii) ®(t +s,2) = B(t, (s, 2)) forall (s,2) € U and t € R with (¢, (s, 2)) € U.
IfU = R x G, in addition, then we call ® a (global) flow in G.
1.4. Corollary. In the situation of Proposition 1.1, the mapping

i): (57 (t07$0)) = (tO + s, (I)(to + S,to,l’o)),

1.2
( ) {(S,t07l'0)€R><g1“Qt0—|—SEJ(t0,1;U)}_>grQ

is a local flow in gr 2. We also call @ the flow in gr 2 induced by the velocity field .

1.5. Definition. Let J C Rbe an open interval, n € N,and 2: J 5 ¢t — €)(¢) be a set-valued map
such that each €(¢) is a domain in R". We call 2 a moving domain, if there is a flow ®: J xgrQ —
gr ) induced by some velocity field u: gr — R" such that

Q(t) = B(t, to, Uto)) == {B(t, to,x) : x € Qto)} forallt, to € J.

This definition allows to describe fluid volumes, since €2(t) can be obtained by following the
trajectories ®(-, t9, xo) of the particles with initial position zy € (tp). We note that there may
be different velocity fields that describe the same moving domain; for instance Q(t) := (—t,t)
moves according to the velocity field u(t,z) = z/t, but also according to u(t,z) = 2/t for
|z| < t. However, the normal component u(t, z) - vao)(z) at 9§(t) does not depend on the
choice of such a velocity field; a property that holds true for general moving hypersurfaces,
which are defined as follows [cf. Kim08, Definition 5.1].

1.6. Definition. Let J C R be an open interval, n > 2, and k, | € Nj.

(i) A set-valued mapI': J >t I['(t) is called a moving hypersurface (of class C*), if each T'(t)
is an oriented C'-hypersurface in R" and its graph grI' is a C'-hypersurface in R1*".

(ii) A moving hypersurface T is of class C* [C'®D], if all its local height functions h: J' x
U C J x vy — grl in the sense of Definition A.1 on page 129 are of class C*(J' x U)
[CED (T % U)].

(iii) A moving hypersurface I' is compact, if each I'(t) is compact.
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(iv) A moving hypersurface I' is induced by a moving domain : J € ¢ — (t) with flow
O: JxgrQ—grQ,ifgrl’ C grQand I'(t) = ®(¢,t0,I'(to)) forall ¢, tp € J.

Proposition A.5 implies that for every moving C**!-hypersurface I', the (n+1)-dimensional
normal v, r of gr I belongs to the class C*(grI')!*" and the n-dimensional normal vy of T'(t)
belongs to C*(I'(¢))". Later on, we will show that every compact moving C2-hypersurface is
induced by some flow.

1.7. Proposition ([cf. Kim08, Definition 5.4]). Suppose that T is a moving C-hypersurface in R™.
Then there exists a unique function Vr: grI’ — R, called the normal velocity of I, which satisfies the
identity

(1.3) Vo(t,x) =~/ (t) - vp(x)  forallt € J, x € T(t),
for every Ct-path (t — §,t +6) 2 s+ y(s) € T'(s) with y(t) = z.

Moreover, the unit normal verr = (Vgr Tt VarTyze) € R of gr T is given by
(1.4) Vgrr = (1+ VE)Y2(=Vi,or)  with Vb = —vger (1 — v 0) 72

In particular, if T is induced by a flow with velocity u, then

Vr(t,z) = u(t,z) -vppy(z)  forallt € J, x € T'(t).

Proof. Since gr I has dimension n and each I'(¢) has dimension n — 1, we conclude that every
tangent space T(; ;) gr I' must have the form T{; ;) gr ' = {vg r(t, )} =R x Ver T,z (2, x)l with

VerT(t, ) # 0,and hence |vg 1 ¢ (¢, )| < 1. Moreover, for every (¢,z) € grI'and 7 € T,I'(t), the
vector (0, 7) belongs to T{; ;) gr I, and hence v, 1 (¢, z) must be parallel to v (). Therefore

the identity ’I/grp|2 = Vgrl“,t + |Vng,x|2 =1 yields VerT'\x = |Vng,m‘V1"(t) = (1 — Vng,t)l/Q ZNOE
Uniqueness of Vr. Let Vi satisfy (1.3) and consider a C!-path s +— (s,7(s)) in grI' with
7(t) = z. Then its derivative (1,7'(t)) belongs to T{; ,) gr I and we have

(1.5) 0= (1,7 (1) - vgr(t,x) = vgro(t, ) + (1 = vgera(t, 2)2) 2 7/ (£) - vy (@).
Since |vg, ,¢| is smaller than 1, we obtain Vi = ~/(t) - vp (2) = Vgt (1— Vgrr,t)fl/; Therefore
Vi (t, z) is uniquely determined.

Existence of Vp. The function Vi = —vg (1 — ygr”)_l/ 2 is well-defined and thus (1.5)

implies (1.3). Finally, the identity (1.4) follows from those of v4,r, and Vr in terms of vg, ;. [
1.8. Proposition. Every compact moving C?-hypersurface is induced by some flow.

Proof. LetT': J > t — I'(¢) be a moving C?-hypersurface in R" with normal velocity Vi-. From
ver € Cl(grT) and (1.4) we infer that u := Vpur is of class C1(grI')". By compactness of
I'(t) and Proposition A.12, the vector field u(t,-) is L(t)-Lipschitz on I'(¢); that is, we have
lu(t,z) —u(t,y)| < L(t)|lx — y| for all z, y € I'(t), t € J. Then the McShane-Whitney extension
[cf. Hei05, p. 5]
W (t,x) = ir%ft)(uj(t,y) +L(t)|x—y|) forje{l,....n},zeR" teJ
ye

of u = (u?); is \/nL(t)-Lipschitz on R" and linearly bounded. According to Proposition 1.1
and Remark 1.2, thereis a flow ®: J x J x R" — J x R™ with velocity @, which induces I'.  [J

We will frequently employ the following version of the divergence theorem.

1.9. Theorem (Divergence theorem). Let Q C R" (n € N) be a bounded open set with C*-boundary
O or a bent half-space {(x, ) € R" : 2, > w(a')} withw € CL(R"1). Then

(1.6) /divuda::/ u-vpa d(0Y)  forallu € Hi(;R").
Q oN
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Here [, ... d(09) denotes integration with respect to the (n — 1)-dimensional Hausdorff
measure on 92, and HY = W} denotes the Sobolev space of order k € Ny and power p € [1, c0).

Proof of Theorem 1.9. The assertion for the case 992 € C? and u € C}(R™;R") is well-known. In
the general case, it follows from an approximation argument. O

Next, we state the surface divergence theorem for tangential vector fields of class. The So-
bolev space H. Z’f (I';TT) of tangential vector fields is defined by means of trivializing coordinate
systems for the tangent bundle 7T (see page 163).

1.10. Theorem (Surface divergence theorem [cf. BPS05, Theorem A]). Let I' C R" be a compact
C2%-hypersurface with boundary OT of class C?, whose normal within TT is denoted by nor. Then

/dinvdF:/ v-nprd(OT)  forallv € H} (T;TT).
r ar

Proof. By [BPS05, Theorem A], the surface divergence theorem applies to tangential vector
fields v of class C?, and hence also to v € Hi (I'; TT) by approximation. O

The next theorem allows to differentiate integrals [, ) (¢, ) de with respect to time. As-

sume that the velocity of a moving domain Q2 belongs to the Banach space BUC®:1 (gr Q)" of
all bounded, uniformly continuous vector fields u: gr 2 — R™ whose first-order spatial deriva-
tives are bounded and uniformly continuous on gr 2. Then the induced flow ®: JxgrQ — gr{2
is continuously differentiable [cf. PW10, Satz 4.3.1], its Jacobian 0, ® with respect to the spatial
variables is invertible, and we have det 9,® > 0 on J x grQ. Hence ®(¢,%0,-): Q(to) — Q(t)
is a Cl-diffeomorphism; that is, a bijective C''-map whose Jacobian is invertible everywhere in
Q(to). For a C'-function v on gr ), the material derivative D1/ Dt with respect to the flow ® with
velocity u is defined by
Dy (t, x)

(1.7) — = d%q/)(t +5,®(t+s,t,2))

Dt = Op)(t, x) + [0u0(t, 2)]u(t, x).

s=0

1.11. Theorem (Reynolds transport theorem). Let Q: J > t — Q(t) be a moving domain in R"
with velocity u € BUC®Y (gr Q)™. Then, given a function b € H} (gr ), we have

(1.8) (ZAzﬂdxz/ﬂ(%f—i—ibdivu) dr a.einJ.

Proof. Let ® denote the flow induced by u. For fixed ¢t and x, the matrices Y (s) := 0, ®(t+s, ¢, x)
and A(s) := Oyu(t + s, ®(t + s,t,x)) satisfy Y'(s) = A(s)Y (s) by the chain rule. A well-known
identity [see e. g. PW10, Lemma 3.1.2] yields det Y'(s) = tr A(s) det Y(s). Thus,

(d/ds) det O, ®(t + s,t,z) = divu(t + s, P(t + s,t,2)) det 0, P(t + s,t, x).
Having in mind that 0,®(t,t,z) = 1 and that ®(¢ + s,t,-): Q(t) — Q(t + s) is bijective, we
conclude that ®(t + s, t, -) is a diffeomorphism. Therefore the change of variables formula gives

(1.9) / Y(t+s,y)dy —/ Yt + s, P(t+ s,t,x)) det 0, P(t + s,t, ) dx.
Q(t+s) Q)

By differentiating (1.9) with respect to s at s = 0, we obtain (1.8). O

In Theorem 1.11, the Sobolev space Hj (gr Q) has the usual meaning, since gr 2 is an open
subset of R!*7"; a fact that does not hold true for gr I' and can not be used for defining anisotro-
pic spaces. Therefore, we employ the diffeomorphism

By J X Qo) = grQ, Oy (¢, 2) = (t, D(t, to, )
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and the pull-back ((ffow)(t,x) = (o By)(t,z) = Y(t, B(t, to,x)), and we assume that J is
bounded. Having in mind that 9, ® is bounded and det 0,9 is strictly positive on gr €2, we con-
clude that @7 : H{(grQ) — H{(J x Q(ty)) is a topological linear isomorphism. This motivates
the definitions

HF(gr Q) = @; H¥(J x Qtg)), HFD(gr) := & HF(J x Q(to)),

H¥(grD) = &) HE(J x T(to)), HFD(grT) = &5 HFD(J x T(to)),

where HY"" (] x X) = HE(J; Ly(X)) N Ly(J; H(X)) for k, I € Ny, p € [1,00). Their vector-
valued versions are defined as on page 163.
The following theorem allows to differentiate integrals over moving hypersurfaces.

1.12. Theorem (Surface transport theorem [cf. BPSO5, Theorem B]). Let I': J > ¢t — I'(t) be a
compact moving C?-hypersurface with velocity u € BUCOV (gr T')" and let o» € H} (grT). Then

/wd /(W—i—wdwru) dl' a.e.in J.

Proof. The special case u € BUC!(grT')" and v € C!(grT) is treated in [BPS05, Theorem B]
and therefore our assertion follows from a straightforward approximation argument. 0

1.2. Derivation of the model

In this section we derive problem (N) from integral balance equations and constitutive assump-
tions. More information on the mathematical modeling of fluid dynamics can be found for in-
stance in [Ari89; And+07; BP10; BPS05; Den94; DS95; Old50; Scr60; SS82; SSO07; Tan93; Tan95].

We consider a bounded domain Q C R™ that contains a compact moving C?-hypersurface
I'(t) on a bounded open interval J C R. Then we can decompose Q = Q. (t) UT'(¢t) UQ_(¢t)
with moving domains 24 (¢) (see Corollary A.19 on page 138). In particular, each I'(¢) is a
compact subset of 2 and therefore the interface does not touch the boundary. We may assume
that 0Q_(t) = I'(t), and hence 02 C 0€2;. Let ux € BUC(grQ+)" be corresponding velocity
fields and define

u(t,): Q\T(t) = R", wu(t,x) :=us(t,z) forx e Qi(t),te ]

For the sake of brevity, we omit the argument ¢ if no confusion seems likely; that is, we write
Q\I and I' instead of 2\ I'(¢) and I'(¢) when we consider some fixed ¢, and we understand that

ulr(t,x) = ult, - )|lrp) (v) = ulger(t,z) forzel(t),teJ

Let vy denote the outward normal on 99+ and let vr = v_ = —v4 denote the normal at I
With the Sobolev space H), k Wk of order k£ € Ny and exponent p € [1,00), we write

Other function spaces on €2\ I" are defined analogously. The jump of u € H; (Q\T;R") onT,
[u] == ut|r —u_|r,

is well-defined in the sense of traces. Then the following divergence theorem applies.

1.13. Theorem (Divergence theorem with interface). Let Q2 C R" be an open set with C*-boundary
such that the divergence theorem (1.6) is valid and let T' C Q be a C*-hypersurface. Then

divudr = / Voo - ud(02) — / vp - [u] dU  forallu € Hi (Q\ T;R™).
o\r o9 onr

Proof. This follows by separating the integral over 2\ I into integrals over {2, and Q_, and by
applying the divergence theorem to the separate integrals. O
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1.2.1. Balance equations. Our next goal is to derive differential balance equations for a
scalar quantity ¢: J x 2 — R that satisfies certain integral balance equations. In order to apply
the previous integral theorems, we assume that 1 is of class H{ (J x ) and that

uy € BUCOD (gr Q. )™,

that is, the vector fields u and u_ and their first-order spatial derivatives are bounded and
uniformly continuous. We further assume that u is continuous across I' and that I' is advected
with the flow induced by u; that is,

[[u]] :OOI’IF7 VF:’U,‘F-Z/F.
We also assume that vaq - u|aq = 0, so that (2 is a trivial moving domain with velocity w.
We consider the density ¢ (¢, z) of an extensive scalar quantity like the mass density p or
the kinetic energy density p|u|®. Let V be a control volume in Q; that is, a moving domain

V:J 2t V(t) C Qwith the same velocity u. Suppose that ¢ € Hi (J x (2) satisfies an integral
balance equation

d
(1.10) /wdxz/gda:+/ gmﬂdr—/ i vey d(@V) aeinJ
dt Jy v vAr oV

for every control volume V with appropriate quantities g, gr—.q, and j. Here

(i) [, gdx are the sources of ¢ in V with volume density g,

(ii) frmv gr—q dor are the sources of ¢ on I' N V' with surface density gr_,q, and
(iii) 5 J - vov d(OV) is the molecular flow of 1 through 0V with flux j.
It is sufficient to impose the regularity assumptions

(111) ¢ e HI(IxQ), je H"(J x %R, g€ Li(J x Q), gro € Li(grT).
We wish to derive a differential balance from (1.10). First, Theorem 1.13 yields

jt/vil)dl’:/v(g—divj)der/ (gr—a — [j] - vr) dr.

VAT
With the transport theorem (1.8) we obtain the identity

(1.12) /V (?;f + div(¢u + j) — g> dx + /er([[j]] ‘vp — gr—q)dl = 0.

For fixed ¢, equation (1.12) is valid for every bounded smooth subset V' (¢) of 2\ I'(¢). From the
Lebesgue’s integration theory we infer that the first integrand must vanish almost everywhere
in Q \ I'(¢). Therefore the following differential balance equation is valid a. e. in J x €.

Oy +divipu+j) =g inQ\T.

Hence the surface integral in (1.12) vanishes for every time ¢ and every control volume V in Q.
It is not difficult to show that every domain in T'(t) with C2-boundary can be represented as
V(t) NI with some control volume V. Therefore the following jump condition is satisfied.

li]-vr =9r»q onT.

Next, assume that there are a scalar surface density ¢r (¢, ) for z € I'(t) and quantities gr
and jr such that the following surface integral balance equation is valid for every control volume.
d :
(1.13) — Yrdl' = / (9r — gr—q)dl’ — / Jjr - ne dC.
dt Jyar vAr C=ovAr

Here gr is the interface source density, the integral f c—ovarJr * nc dC' is the molecular flow
through the (n — 2)-dimensional surface C' = I' N 0V with outward normal n¢(t,z) € T,I'(t)
and the interface flux jr is tangential vector field on I'. Sufficient regularity conditions are

(1.14) yr € Hi(grT), jr € HV (gr T TT), gr € Li(grT),
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We combine (1.10) and (1.13) to

d
(/ Ydx + 1/1de> :/gda:+/ gr dl’
dt \Jv vAr v vAr

—/ j-Vavd<8V>—/ jp-n(;dC.
ov ovnr

Again, we wish to derive the differential balance equation that corresponds to (1.13). First,
the surface divergence theorem yields

d

dt

and the surface transport theorem (Theorem 1.12) implies

(1.15)

v dl = / (= divr jir + gr — grs) dT,
vAar vnor

D
/ /(/]F +1/erivru+divrjp—gp+gr_>g dr:o
var \ Dt

Since V is arbitary, we obtain the surface differential balance equation
DT/}F/Dt + wr diVF U+ diVF jp =4gr — gr—q on I.

Consequently, we have shown that if the quantities ¥, Yr, j, jr, g, and gr satisfy the integral
balance equations (1.10) and (1.13) and the regularity conditions (1.11) and (1.14), then these
quantities also satisfy the differential balance equations

(1.16a) oY +diviyu+j)=g inQ\T,
(1.16b) ] - vr = gr=a onT,
(1.16¢) D’l/JF/Dt + ¢Yrdivru+divrjr = gr —gr—q onl.

1.2.2. Balance of mass. In order to derive the balance equations for the mass from the
differential balances (1.16), we let ¢ = p and ¢r = pr and obtain the continuity equation

Op+div(ipu+j)=9g inQ\T.

In this thesis we study the incompressible case p = constant and j(p) = 0. We also neglect
interface mass and therefore let pr = 0 and jr(p) = 0. Assuming that {2 represents a closed
system, we further neglect sources of mass; that is, g(p) = 0 and gr(p) = 0. Hence

divu=0 inQ\T.

1.2.3. Balance of momentum. The momentum density ¢y = pu is not scalar and thus we
can not apply (1.16) directly. Instead, we consider the scalar densities ¢ (e) := v - e = pe - u for
suitable vector fields e. This well-known approach was modified by Scriven [Scr60] for deriving
the Boussinesq-Scriven law. For every constant vector e we have div(¢(e)u) = 0;((pejuj)u;) =
e;0i(pusuj) = e-div(pu®u). We neglect external forces such as gravity and therefore let g(e) = 0.
It will suffice to assume that

(1.17) us € BUCOY (gr )" n HIO(J x Qi) 0 B (gr )™,
Then v (e) belongs to Hi (J x ) and (1.16a) implies
e-O(pu) +e-divijpu®@u) =divj(e) inQ\T,

for every constant vector e. We shall prescribe a flux of the form j(e) = jr(e) + js(e) = e - T

that consists of a pressure part j.(e) and a viscous part jg(e). The quantity 7 is the stress tensor.
Consider a control volume V in Q with V(t) c Q\ I'(t). Then either V(t) C Q. (t) or

V(t) C Q_(t). One force acting on V is the pressure force fr = — [, mvay d(0V') with pressure

(1.18) me € HOY(gry).
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Here mvgy d(0V') can be understood as the pressure force which acts on a surface element per-
pendicular to vgy . For every constant vector e, the divergence theorem yields

e fr=— /{W me - vgy d(OV) = —/vdiv(ﬂe) dx.

In view of the second identity, we let j(e) := —me. The tensor J, := —n[ yields the desired
linear relations j(e) = e - J; and div jr(e) = e - div J, with respect to e.
Due to friction on 9V, there is another force acting on V, the stress fs = — f oy Svav d(OV)

with the viscous stress tensor S. We assume that both 21 consist of Newtonian fluids, which
means that the viscous stress tensor depends linearly on the rate-of-strain tensor

D := D(u) := sym[Vu] = 271 (Vu + [Vu] ).
Therefore we define the viscous stress tensor
S = S(u) :=2uD(u) = u(Vu + [Vu] "),

where the number 14 is the shear viscosity of the fluid Q4. If e is constant, then

e fs= /av e- Svgy d(0V) = / div(Se) dx.

v
Thus we let js(e) := Se and Jg := S and hence div js(e) = div(e - Jg) = e - div S. We call
(1.19) T:=T(u,m):=Jsg+ Jr =2uD(u) — 7l
the (total) stress tensor. Since the vector e is arbitrary, we obtain the differential momentum balance
(1.20) O(pu) +div(pu@u—T)=0 inQ\T.

1.2.4. Interface momentum balance. We recall that the momentum density 1) = pu induces
scalar densities ¢(e) = e - ¢, whose bulk fluxes are j(e) = e - T for a given vector field e. The
latter is allowed to have a possibly non-tangential restriction e|r = e“7, + e, v on I'. Here we
differ from Scriven [Scr60, p. 101] and Aris [Ari89, p. 238], who only considered vector fields
with vanishing covariant derivatives, which do not cover constant vectors unless I' is flat. Since
the interface has vanishing mass density, we have ¢r := pru|r = 0 and then equations (1.16b)
and (1.16c¢) yield

(121) —€- [[TﬂVF = diVF(jr‘(e)) on[

for every vector field e. Here the interface flux jr(e) = jr+(e) + jr,s(e) will consist of a surface
tension part jr,(e) and a viscous part jr g(e). We first let jr,(e) := e - (¢ Pr), where o is the
constant surface tension coefficient. If e = eg € R™ is constant, then divr(jr ,(e)) = e-divr (o Fr).

We define the viscous flux jr s(e) := e - Sr with viscous surface stress tensor Sr. Following
Scriven [Scr60], we regard I' as an (n — 1)-dimensional fluid with rate-of-strain tensor

Dr := Dr(u) := 27 Dg,p/Dt 7 @ 7°.

Similar to Sekomb and Skalak [SS82], we can derive the usual expression of Dr in Euclidean
coordinates. For every parametrization y — ¢(y) of I'(t), the map y — ®(t + s,t,¢(y)) is a
parametrization of I'(t + s). Thus the tangent vectors of I'(¢ + s) are related to those of I'(t) by

Ti(t + 5, P(t + s,t,2)) = 05, P(t + 5,8, 2) = 0, P(t + s, t, 2)73(t, ).
Having in mind that Vyu := rﬁ ® Oju, we obtain
(D/Dt)7i(t, ) = (d/ds)[0,D(t + s, t, x)]|s—07i(t, 2) = [Vru(t, )] (L, ).
Then the relations g;; = 7; - 7j and Pr = 7; ® =1 —vr®ur yield

Dr = sym(Pr[VrulPr) = 27 P(Viru + [Viu] T Pr.
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Scriven [Scr60] proposed to consider Newtonian surface fluids for which St depends linearly
on Dr. Hence we define the viscous surface stress tensor

St = Sp(u) := (As — ps)(divp u) Pr + 2usDr,

where \s and i are constant real numbers. The (total) surface stress tensor is defined by
(1.22) Tr :=Tr(u) := o Pr + Sr(u) = o Pp + (\s — ps)(divp w) Pp + 2usDr.
Then the flux jr(e) = e - Tt satisfies divp(jr(e)) = e - divp Tt + It : Vre. In Section 1.3 we will
see that jr(e) belongs to the class H 1(0’1) (grI';IT), provided that
(1.23) v=Prulp € H*? (@ T;TT), w=vp ulr € H*Y (@ D), T(t) € C3,
By choosing the constant vectors e = e; in (1.21), we obtain the interface momentum balance
(1.24) —[T)vr =divp I+ onT.

By imposing the no-slip condition u|spq = 0, the derivation of the model (N) is complete.

1.3. Properties of the model

Similar to [BP10], we will decompose the interface momentum balance (1.24) into tangential
and normal parts and derive an energy identity in arbitrary control volumes; but, in contrast
to [BP10], we employ covariant derivatives.

Let each I'(t) be of class C3. According to Einstein’s summation convention, we always sum
over repeated greek indices o, §, ... € {1,...,n — 1}, whereas latin indices i, j,... € {1,...,n—
1} denote free indices. We will use the Weingarten tensor L = l,37%® B =187, 73, the mean
curvature H = g8 lo and the Cristoffel symbols A;;, = 0;7; - 71, and Afj = 0;Tj - Tk = gklAZ-jvl.
Then we define covariant derivatives as follows: For a tangential vector field v € C}(T'; TT') and
a co-vector field w € C1(I'; T*T), we let

v = Vo = Prdjv = 0% 5, 7o = (040 + AR sv”)Ta,
Wik = ﬁkw = Prakw = Wask T = (6kwa — AEQWQ)TQ;
for a possibly non-tangential vector field u = v + wyr € CH(T'; R™), we let
U = %ku = Proju = v, 7o + wORv = (00 + Az‘ﬁvﬁ - wlkﬁgﬂa)m;
and for second-order tensor fields 7' € CY(I'; TT ® TT) and D € CY(I'; T*T' ® T*T'), we let
Ty = VT = T"‘B;k Ta @ T8 = (ORTP + A%VTW + A%T‘”)Ta ® 78,
Dy = ViD = Dop ™ ® 7° = (0 Dag — Al Dys — Al gDor) ™ @ 77

The usage of covariant derivatives (i) ensures that the derivative of a section of some bun-
dle is again a section of that bundle, (ii) provides the simple relations

(1.25) gijik =0, g7, =0,

and (iii) provides the general product rule

(1.26) (T3, SFy Yo = Ty, SR T SRy
Some relations to surface differential operators are given by

(1.27a) divp(v*7 + wrr) = 0%, — wH,

(1.27b) Dr(v*7o +wrr) = 277 @ 78 (Vo + vp.0) — WL,

(1.27¢) divp (T, @ 75) = T (75 + T lgrr  (f T = T,

(1.27d) Lijik = liksj = Ljkess-
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Second-order covariant derivatives are denoted by ﬁkﬁl = (-).x. The covariant derivatives of
tangential vector fields do not necessarily commute, but satisfy the relations
(1.28&1) vi;jk - Ui;kj = Riajkva, Visik — Uik = *UOLRQZ']']C,
(1.28b) Rk = 9" Rojn, Rijr = Ll — Lljg.
The Laplace-Beltrami operators for ¢» € C*(T') and u = v¥7, + wrr € C*(T')" are given by

Ary = dive Vi = g (0adpt) — A 30,0),

Aru = gaﬂﬁaﬁgu = (gaﬂvv;a/g — Oqwl® — wH;ggM)Ty.
We refer to Appendix A.4 for more information on these identities.

1.3.1. Decomposition of the interface balance. We decompose (1.24) into its tangential

and normal parts. From (1.22), (1.27a), and (1.27b), we infer that Tt = T¢ Pra ® 75 has the
components

(129) T = 09" + (A = 1) (7 = Hw)g™ + 1159°7 9™ (05 + v — 20l,5).
With equations (1.25), (1.26), and (1.27¢), we decompose divy Tt = T2 75 + T  losvr as
{,Usgarygﬁ(s(vé;'ya + Vryi6a — 2wl'y6;a - 2w;al'y§) + ()\s - ,Us)(v’y;'yoz - H;aw - Hw;a)gaﬁ} T8
+ [UH + (As = ps)(v7y — Hw)H + Nslaﬁgmgﬁé(vv;é + Vs — 2“’l75)] VT

Let us rewrite this equation in vector notation. We have g7 gﬁ‘svg;mm = Epv, and with (1.28a)
and (1.28b), we obtain g”gﬁ‘sv%ga = Vrdivrv. Identity (1.27d) yields g‘”gﬁ(slwg;arg = VrH.
We proceed in a similar way with the remaining terms and obtain

divr It = usﬁpv + AsVrdivr v

— (As + ps) WV H + [(s — As)H — 2p5 L] Vrw

+ [(A\s — ps) divrv H + 2us L = Dr(v)|vr

+ [oH — (As — ps) w H* — 25w tr(L?)]vr.
We conclude that the interface momentum balance (1.24) has the tangential part
—Pp[Tvr = =[p][Vrolvr — [p]Viw — [kd,0]

= s Arv 4+ AV divp v — (As + )WV H 4 [(ps — As)H — 205 L] Vrw,

(1.30)

(1.31a)

and the normal part
—vp - [Tvr = =2[pd,w] + [7]

1.31b
( 3 ) :UH—i—()\s—us)dinuH—i—Qust:L.

1.3.2. Energy identity. We consider the kinetic energy [, 2" p|u|? dz of a control volume
V in Q. By applying the transport theorem, the divergence theorem, the identity divu = 0, and
the differential momentum balance (1.20), we obtain the kinetic energy balance

d
— B|u]2da: = —/ 2uD : Ddx +/ Tu - vy d(OV) —/ [Tu] - vrdr.
dt Jy 2 v ov vAr

In view of the integral balance (1.10), we see that the scalar quantity v = 27 !p|u|? has the
bulk source density ¢ = —2upD : D, the bulk flux j = —T'u, and the interface source density
gr—q = —[Tu] - vr. The interface momentum balance (1.24) and identity (A.19) imply

—[[Tu]] U =u- diVF Tp = diV]ﬁ(TpU) — TF : Dr
= din(TFU) — O'diVF u — ()\3 — MS)(diVF u)2 — QMSDF : DF.

(1.32)
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Thus, the surface transport theorem and the surface divergence theorem yield the energy identity

d(/ p]u|2dx+/ O'dF>
dt \Jy 2 vAr

(1.33) - _/ ouD : Ddx — / ((As — ps)(divr w)? + 2usDr : Dr) dU
14 vnr

+ / Tu-vey d(OV) + / Tru - nc dC.
ov c=0vnr

In the special case V' = Q and imposing the no-slip boundary condition u|gq = 0, we recover
the energy identity from [BP10, Theorem 3.1],

d P 2 /
A Prza dr
g (/szu\ v+ [ o )

= —/ 2uD : Ddz —/ (()\s — ps)(divp u)2 + 2usDr : Dp) dr.
Q r

By comparing (1.33) with the general integral balance (1.15), we see that the energy has the bulk
density ¢ = 271 p|u|?, the bulk flux j = —T'u, the interface density ¢r = o and the interface flux
jr = —Iru = —Trv. Moreover, if \; > p1; > 0, then the bulk source density g = —2uD : D and
the interface source density gr = —(As — ps)(divp u)? — 2 tr(D%) are non-positive and thus
responsible for dissipation.

(1.34)



CHAPTER 2

Linear elliptic transmission problems

In this chapter we investigate the elliptic transmission problem (TP) in both a strong and a
weak sense. We restate problem (TP) as the strong transmission problem

—div(pVu) = f inQ\ZX,
uoyu=g  ondf,
[1Oyu] = h1  on X,
[u] = hy on%,

(2.1)

considered in a domain (2 that contains a C!-hypersurface . Here u: Q\ Y — Kis an unknown
scalar field, (f, g, h1, h2) are given data, p : Q\ X — (0, 00) is a variable coefficient, and the jump
[-] was defined on page 16. We also study the weak transmission problem

/ uVu-Véde = (F|¢) forall ¢ € D(RY),
Q
[u] = ha on X,

(2.2)

for given data (F,hy). We will see that (2.2) can be obtained from (2.1) by multiplying the
first equation with ¢ and integrating by parts. In the case ¥ = () and i = 1, problem (2.2)
is called the weak Neumann problem. Both problems (2.1) and (2.2) can be used to eliminate
the pressure and divergence in the more complex linear problem (PL); we adopt this strategy
from Kohne, Priiss, and Wilke [KPW13; Will3]. Both problems were solved in [KPW13] for
constant coefficients 4+ = 1/p+ in a bounded domain (2 and the authors established optimal
H?-regularity for (2.1), optimal H}-regularity for (2.2), and optimal W2**-regularity for (2.1)
under the restriction (g, h1,h2) = 0. Similar transmission problems are investigated in the
forthcoming monograph [PS15].

Our goal is to prove that both (2.1) and (2.2) have optimal reqularity in the sense that the
solution-to-data maps u +— (f, g, h1,h2) and u — (F, hg) are topological linear isomorphisms
between suitable Banach spaces. We impose the following basic assumption on Q2 and .

2.1. Assumption. Q C R" (n > 2) is a domain with C!-boundary 9 and ¥ C 2 is a closed
C'-hypersurface such that one of the following conditions is satisfied.
(i) Qisthe whole space R" and ¥ is empty.
(ii) Q is a bent half-space R? = {(z',z,,) € R" : z,, > w(z')} withw € CL(R""!) and ¥ is empty.
(iii) 2 is the whole space R", ¥ is a bent hyperplane 3, = {(',w(z’)) : 2/ € R" '} withw €
CHR" 1), and Q \ ¥ consists of the bent half-spaces Q. = {(2/,z,) € R" : z,, = w(z')}.
(iv) Q2 is a bounded domain with C*-boundary, 3 is compact and possibly empty, and Q \
consists of disjoint open sets {24 with 9002 C 924 and ¥ = 09 _.
We let vsq, van,, and vy, denote the exterior unit normal fields on 052, 092+, and ¥, and we
choose the orientation of ¥ such that vy, = —vpq, = vgo_ on 2.

In order to define suitable solution spaces, we recall that « belongs to H; (©2\ X) if and only
if its restrictions u+ = ulg, belong to H} (). Other function spaces on 2 \ ¥ are defined
analogously. For an open subset G C R" we consider the vector space

Hp(G) = {u € H,(G) : V'u € Ly(G)}, fork € Ny, p € [1,00).

23



24 2. LINEAR ELLIPTIC TRANSMISSION PROBLEMS

This space is semi-normed with respect to || V*-||,. We call a function u: Q \ ¥ — K a strong
solution to (2.1), if u belongs to the space (H2 N HL)(Q\ T) := H2(Q\ T) N HL(Q\ ) and if
(2.1) is satisfied in the sense of distributions. In particular, the first equation is understood in
D'(Q\ X); that is,

—/div(,uVu)(bdx:/fqzbd:L‘ forall p € D(Q2\ X),
Q )

where D(Q2\ X) denotes the space of smooth functions in € that vanish near 9Q U X. Obviously,
every constant function is a strong solution of (2.1) for vanishing data; hence, we shall choose
a semi-norm on (’H% N ’H;,)(Q \ ) whose null-space consists of all constant functions. Such a
semi-norm is given by

Jullgo == V?ull 1, ) + IVullz, @) + 1Tl

where Y C ¥ is a bounded open subset with C'*-boundary that has positive measure, provided
that 3 # (). We will prove that strong solutions are uniquely determined within the space

E” = ((H2NH)@\ D), e ) / K.

We will also study strong solutions within spaces of lower or higher regularity

k+2 k+2
Ef = (ﬂ Hp(2\ 3), 'Ek) /K, lullgs ==Y IV ullp + Tl k€ NoU{-1}.

j=1 j=1

Next, we derive suitable conditions on the data (f, g, h1, h2) that are necessary for the ex-
istence of a strong solution u € E° of (2.1). We assume in addition that 9 and ¥ are of class
C?~ and that p belongs to W1 (Q\ X); that is, y. are weakly differentiable in Q4. and both i+
and V4 belong to L (€24 ); thus, p4+ are Lipschitz functions. Given a strong solution u € EO
of problem (2.1), the corresponding data (f, g, h1, h2) satisfy the regularity conditions

(f.9,h1,ho) € Ly(Q) x WE/P(0Q) x WE1/P(2) x (V‘vg*l/p(z) NWLVP(s)n Lp(z’)) .
Here the semi-normed Sobolev-Slobodeckif spaces (WE+#(5), [V*lws(s)) are defined by
W (S) = {u € Hy1e(2) : [V¥ulwsmy < o0} fork € No, s € (0,1), p € [1,00),

and the semi-norm [-] wy (s s defined intrinsically by

sy o= ([ [ g ol asia) dz<y>>l/p.

’ s disty (2, y)" TP

Bothe and Priiss [BP07] noticed that another joint regularity condition for (f, g, h1) is nec-
essary. Indeed, let ¢ € D(R") be a test function. Then an integration by parts yields

/,uVu-qudx:—/div(uVu)gbdx—}—/ M@,,uqbd(aQ)—/[[,u&,u]qde.
Q Q onN %

The right-hand side can be expressed in terms of the data as a functional

2.3) (Fgn|®) :_/quﬁd:c+/mg¢d(89)—/EhlqﬁdE—/QuVu'V¢d:r.

Thus the triple (f, g, h1) induces a continuous linear functional ¢ — <F( £.9:h1) ]¢> on the normed
vector space (D(R"), || V-|| L)), Where 1 /p+1/p’ = 1. We can also define such a functional by

(Fuvuld) == /Q uVu-Vodr for ¢ € D(R).
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The completion of (D(R"), ||V-|| Lp,(g)) is the homogeneous Sobolev space
Hy(9) = Hy (Q)/K, 191, ) = VeI, @),

considered modulo constant functions [Gall1; Sob63]. Its topological dual space is denoted by

) , Flg)|
H 1(Q> = HI/(Q)*a ||F|| 71 = SU.p Ki
P P @ ozset, @ IVOlL, @)

The data (f, g, h1, he) must therefore satisfy the joint regularity condition
(2.4) F(f,g,h1) € f{p_l(ﬂ)

If ©2 is bounded, then this regularity condition reduces to the compatibility condtion

(2.5) /Qfd:c+/mgd(aﬂ)—/zhldz:o.

Indeed, by choosing ¢ = 1, we see that (2.4) implies (2.5). For proving the converse implication,
we consider a test function ¢ € D(R"), we let (¢)q, := |Q|! [, ¢ dz denote the mean value of
¢, and we recall the Poincaré-Wirtinger inequality

(2.6) I = (D)ally < C(Q,P)IVelly for ¢ € Hpy(Q).

Then, for a given tuple (f,g,h1) € L,(Q) x L,(0Q) x L,(X) satisfying (2.5), inequality (2.6)
yields

(Frgmn) |0 = [(F(rgm) |0 = (Do) < CIVOl,;

thatis, F;, ) belongs to I:I]; L(Q2). In this sense, (2.4) and (2.5) are equivalent, if {2 is bounded.
For a strong solution of class E¥ (k € Ny), the corresponding data belong to the spaces

Fécc = {(fa.% h17h2) S Fk : F(f,g7h1) S I:.TP_I(Q)},

FE = HF(Q\ ) x WHITVR(90) x WiH=1P(5) x (ﬂkﬂwﬂ'*l‘”f’(E) N Lp(E’)) ~

j=0""F
Now we are ready to state the main result for the strong transmission problem (2.1).

2.2. Theorem (Optimal H;f”-regularity for (2.1)). Let Q and X satisfy Assumption 2.1, let k € Ny,
suppose that OQ and X are of class C**+2~, and let p € (1, 00).
If Q) is bounded, then for given p € WfO“(Q \ ) with po < p < py v the solution-to-data map

(2.7) u— (— div(pVu), pdyu, [ud,u], [u]), EF — FE

is a topological linear isomorphism.
If Q¥ is unbounded, then for given po € (0, 1] there exists n > 0 such that if
(i) we CF 2 (R 1) with |Vw|e < nincase Q =R or ¥ = %,
(ii) p € WEPHQ\ ) with po < pp < gt and ||ps — pi|loo < n for some . € [0, 1o '],
then the map (2.7) is a topological linear isomorphism.

In order to prove Theorem 2.2, we first establish a corresponding result for the regularized
operator A — div(xV-) with some sufficiently large A > 0 (see Theorem 2.18) by means of a
localization procedure as in [LSU68; AHS94; DHP03; KPW13]. For the case A = 0 we employ
a spectral theoretic argument as in [KPW13; Will3] and the localization procedure of Simader
and Sohr [S592]. Our main result on the weak transmission problem (2.2) is the following.

2.3. Theorem (Optimal H;—regularity for (2.2)). Let Q and X satisfy Assumption 2.1 and let p €
(1, 00).
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If Q is bounded, then for given py € C Q) with inf puy > 0, the solution-to-data map

(2.8) w (Fugu, [u]), B = F = B4(Q) x (w;—l/p(z) N Lp(z')) ,

is a topological linear isomorphism.
If Q is unbounded, then for given po € (0, 1] there exists n > 0 such that if
(i) we CLHR" ) with |[Vw|e <nincase Q=R or ¥ =3,
(ii) prs € Loo(Qs) with po < pae < gt and ||ps — p || oo < 1 for some pi € [po, 1y,
then the map (2.8) is a topological linear isomorphism.

2.1. The strong transmission problem for A\ — div(¢V-)
We consider the linear operator
Ax: u— (Au—div(pVu), poyu, [udyu], [u]) forx € C\R_,
which is induced by the strong transmission problem
Ay —div(pVu) = f  inQ\ X,
uoyu =g  onof,
[nd,u] =hy  onX,
[u] = hy onX.

Our goal is to prove that A) is a topological linear isomorphism from the solution space

EF = EF(Q\ %) := Hi?(Q\ %)  fork € Ny,

(2.9)

onto the space of data
FF=FF(Q\ %) == HE(Q\ X) x WTTP(00Q) x WP () « wht2-1/e(s),
provided that | )| is sufficiently large and 0€2, 3, and p are sufficiently regular. We identify
k(mpn ; — RN —
¥ R™) ifQ=R" %=1,
FF(Q\ ) = § HEQ) x WEH/P(90) ifQ#R", % =0,
k(Rn k+1-1 k+2-1 . n
HFR™\ X) x WEITVP(D) x WEP2TU/P(8)  if Q =R", ¥ # 0.

Our strategy to solve problem (2.9) is based on solving basic model problems, perturbed
model problems, and on localization. In a basic model problem, we assume that ;. is constant,
Q is the whole space R" or a half-space R", and ¥ is a hyperplane R"~! x {0} or empty. In a
perturbed model problem, we also allow for bent half-spaces 2 = R = {(z/,z,) € R" : z,, >
w(z')}, bent hyperplanes & = ¥, = {(2/,w(2’)) : 2’ € R""!}, and variable coefficients with
small oscillations. In a small region of 2, problem (2.9) looks like a perturbed model problem,
after an appropriate rotation and translation. Hence, if these perturbed model problems have
appropriate “local” solution operators, then we can construct a “global” solution operator for
problem (2.9) in terms of the local solution operators. Such a localization technique is provided
in Section 2.1.1.

During the localization procedure, we have to control leading-order and lower-order per-
turbations, and this can be achieved by using a smallness parameter  and A\-dependent norms
for Ef and F¥%, as defined in Section 2.1.2. These norms have useful scaling properties and al-
low to reduce the operator Ay to A; for the basic model problems. Hence, if A; is invertible,
then A is uniformly invertible with respect to A. The basic model problems for ¥ = () are
well-known and we therefore turn our attention to the flat-interface model problem in Section
2.1.3. It is solved by means of the Fourier transform and with the joint %#*° functional calcu-
lus. In Section 2.1.4, we investigate the perturbed model problem for ¥ = ¥, with variable
coefficient and derive the corresponding results for the remaining model problems. Here the
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parameter 7 bounds the oscillations of the coefficient ;» and the gradient of w and allows to
control leading-order perturbations, whereas the parameter A is used to control lower-order
perturbations. Finally, we prove optimal regularity for problem (2.9) in a bounded domain in
Section 2.1.5.

2.1.1. Localization technique. We provide a localization technique that allows to invert a
“global” operator Ay : £ — F having invertible “local” versions A ;: E; — F}. This technique
is similar to the corresponding procedures in [LSU68; AHS94; DHPO03].

2.4. Definition. Let E' and E; (j € J C N) be Banach spaces, let ¢ € [1, 00), and define

1/q
Bi=[] B 1(B)i={())es € B: ol <o}, lalym = (3 luilly) -
Let further ®g ; € B(E; E;j) and ¥ ; € B(Ej; E) be bounded linear operators such that
Zje]\PEJ(I)EJx =z forallz e F,
where the series converges in E; and suppose that the maps

TE: lq(E) — E, (.’L‘j)jej — ZjEJ\I/Eij,
Ty E —1,(E), z = (PrjT)jcr,
are linear and bounded (hence, rg is a retraction with co-retraction r%). Then we say that the
triple (E, (®g;)jet, (YE,;)jes) is an lg-approximation system for E.
The spaces E and E; are related to linear operators Ay and A, ; as follows.

2.5. Assumption. (i) E and F are Banach spaces over the same scalar field K € {R, C}, which
have [,-approximation systems (E, (®g ;)jcs, (YE,;)jes) and (F,(®r;)jer, (YE; ) es) for
some g € [1,00).

(ii) For some unbounded set A C K, the families {||-||x » : A € A} consist of equivalent norms
onX € {E,F,E;,F;: j € J}and we have

sup||rel|s . < oo, sup|rellarEL FE)a < 0o.
AGAH 1B(1(B);E)) A : AeAH FllBri,m)),

(iii) Ax: E — F (A € A) are bounded linear operators such that the maps Ay: (E, ||-||g,\) —
(F, |||l 7,x) are uniformly bounded with respect to A € A.
(iv) There exist invertible operators Ay ; € Bisom(Ej; F;) (j € J, A € A) such that

supl|(f5); = (A3 F)illB0, (F), @)4 < 00
XeA
(v) The operators B) j := ®p ;A\ — Ay jPg; € B(E; F}) satisfy

| 1|iinoo = (Brgw)ils i, a0 = O

(vi) The operators C) j := A\V g ; — Vi Ay, € B(Ej; F) satisfy

tim () = 3 Cagu| = 0.
Ao (1) Zj M By ()2

For later applications, it is important to establish uniform bounds for data-to-solution maps.
A parameter-dependent operator Ay € Bisom(E; F') is called uniformly invertible with respect to
A, if there is a number C such that HA;l |F—E < C forall A
2.6. Proposition (cf. [AHS94, Proposition 3.2]). If Assumption 2.5 is satisfied, then there is \g > 0
such that Ay: (E,||-|gx) = (F,||-||F) is uniformly invertible with respect to A\ € A with |A\| > Ao.
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Proof. We consider the approximate inverse
—1
Ry: F— F, R)\f = Zj\I]E»jA)\,j(I)F»jf for f e L.

Let us write
RaAy—Ip = j‘I’E,jAX,}(‘PF,jAA — Ay % ) = Zj\IfE,jA;jBA,j,

ARy — Ip = Zj(AA\IJEJ- — UpjAs; ) A Pp, = ZjCM-A;;@FJ.
With Assumption 2.5 we can choose an upper bound M > 0 for the numbers

-1

sup||r )2, SU i (AT , sup||r§ . .
AERH EllBa,®)m)2 AEIXH(J‘})J (,\,]f])]HB(lq(F);lq(E)))\ A£H 7B, )2

Then R, is bounded by M3 and we obtain the following estimates for f € F and u € E:

[BxAvu = ullza = | 30 e A5} Brgu|| < M2 s (Brgu)ilsgg, e ullza

o= [ o], = (6175 5 0l ) W5
Therefore we can find some \g > 0 such that

IAAR) — Ipllgryn <271 [|[RAAN — Igllgma <271 for A€ A, [A] = .
Hence the operators A\R) = Ip—(Ip—A\R)) € B(F)and R\A) = Ip—(Ig—R)A\) € B(E) are
invertible. Consequently, R)(A\Ry)~! € B(F; E) is aright-inverse and (A, R)\) 'R, € B(F; E)

is a left-inverse for A). Thus, A is invertible for all A € A with |A\] > )¢ and its inverse
A;l = R)\(AAR)\)_l = (AAR)\)_IR)\ is bounded by 2M3. ]

|AXRASf — f]

Next, we provide a localization set-up that can be used to construct approximation systems.

2.7. Remark. Let Q2 be a bounded domain in R™ (n > 2) with C'-boundary 992 and let > C 2 be
a compact C'-hypersurface. We say that a family (U;) ;e of open subsets of R" is a finite open
covering for QinR?”, if J is finite and 2 is contained in | J ieJ Uj. Since Q, 99, and ¥ are compact,
there exists 79 > 0 such that for every r € (0, 9] we can choose
(i) a finite open covering of balls U; = B,(p;) with p; € Q such that the index set can be
decomposed as J = J; U Jp U J3 with

p; €Q\TandU; CQ\X ifje Jy,
p; €0Nand U;NE =10 if j € Ja,
pj € Xand U; C Q ifj € Js,
(i) a family (0;);e.s of rigid transformations
O©;:x—p;+Qjz, B.(0)—= U; = B,(pj),
with an orthogonal matrix Q; = 0,0; € R"*" such that
Q=1 if j € Ji,
—Qjen = voa(pj) ifj € Jo,
Qjen = vs(p)) if j € Js.
2.8. Definition (Localization set-up). Let Q2 be a bounded domain in R (n > 2) with C!-
boundary 99 and let & C Q be a compact C'-hypersurface. For w: R"! — R we put
R = {(2',z,) € R" : 2, > w(2')}, B :={(2',2,) €eR": 2, = w(z')}.
Letr > 0 and n > 0 be given and suppose that
(i) (Uj);es is a finite open covering for €2 in R" with U; = B, (p;) as in Remark 2.7.(i),
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(ii) (©;);es is a family of rigid transformations as in Remark 2.7.(ii),
(iii) (w;)jes is a family of functions of class C}(R"~!) which satisfy

w;(0) = [Vuy (0)] = 0, [Vl unsy <7 forallj € J,
and suppose that
wj =0 if j € Jy,
O;(Br(0)NRS ) =U;NQ if j € Jo,
0;(B,(0) NR*\ $,,) = U; NQ\ S ifj € Ja.
Then we call (Uj, ©;,w;) cs an (n, r)-localization set-up for (Q2, X).

2.9. Lemma. Let Q C R" (n > 2) be a bounded domain with C*-boundary 0Q and > C  be a compact
C'-hypersurface.
(i) If n > 0 is given, then there exists ro > 0 such that for every r € (0, ro] we can find an (n,r)-
localization set-up (Uj, ©;,w;) ;e for (£, %).
(ii) If, additionally, 0Q and ¥ are of class C*~ for some k > 2, then the w; belong to C*~(R"~1) and
there exists C' = C(n, p,0Q, %) > 0 such that

lwjll 21y < CrO= VP IVPwyllL g1y forall j € Jy U J.

Proof. As in Remark 2.7, we let U; = B,(p;) form a finite open covering for Q2 and consider the
rigid transformations ©;: x — p; + Q;x. The case j € J; is trivial and since the cases j € J»
and j € J; are analogous, we concentrate on j € J3.

We first construct the functions w; and prove that ||Vw;||« is small. For every p € ¥ we
can find a number 7(p) > 0 and a unique height function w, on B C R"™ ! such that
for ¥, = {(2',ws(2’)) : ' € B, )} we have ©(%,,) C X for some rigid transformation
©: z — p+ Qx with Qe, = vx(p). The function Vw, is related to vs, by (see also (A.3) on
page 130)

QP'Q' (vs 0 ©)

Qe, vy 00
Moreover, it satisfies w,(0) = |Vwy,(0)| = 0. Since vy, is uniformly continuous on %, we obtain
|IVwp|B,lloo = 0 ast — 0, uniformly with respect to p € ¥. By compactness of ¥, we may
choose the number r; uniforminp € X.

Let y € BR" 1) with 0 < x < 1, x(2/) = 1 for |2/| < 1 and x(z') = 0 for |2| > 2. For
r € (0,71/2] we define a function @, ,: R"~! — R with support in By, by

~ , x(@'/r)w,(z) for |2'| < 2r,
@) =9 for [2'| > 2r.

Vw, = on By, withP' =1,—e,®e,.

Then @, ,(2') = wy(a’) for all 2/ € B,. From w,(0) = 0 and the fundamental theorem of
calculus, we obtain the inequality ||wp|5,[|cc < 7[|V'wp|B,|lco- The uniform continuity of v

further implies that |V'wy|p, ||« — 0 as r — 0, uniformly in p € X. Therefore

IV@prllce < 7 HIVXllsollwpl B lloo + Vwp| 8o, oo

< (IVxlleo + DIIVwplss, lloo = 0 asr =0,

uniformly in p € 3. Thus for given 7 > 0 we can choose a number ry € (0,7/2] such that
[V@prlleo <nforallp € X, r € (0,70]. We finally put w; := @, , for j € J with a suitable finite
index set J(r). Hence assertion (i) is valid.

Having in mind that every w € W2 (R"~!) with w(0) = |Vw(0)| = 0 satisfies the estimates
(VEw(z)| < |27 VFw|« for k € {0, 1,2}, and using the substitution = = ry, we obtain

19500l = 95 e/ Pl < Cr V7P| ys [ VFwlloe - for k € {0,1,2).
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This proves assertion (ii). O

2.1.2. A-dependent norms. Let Q2 and ¥ satisfy Assumption 2.1. For p € (1,00), k € N,
and A € C )\ {0}, we define the Banach spaces

Ef = (B, |l llgy), E* = H,"*(Q\ %),
F§ = (F% |lgp),  F* = Hy(Q\ ) x WyH=VP(00) x Wyt =Vr(g) n wyt? =1/ (g),

which are equipped with the equivalent A-dependent norms

k42, (k+2—5) /207
lulley = lellggreoymy = Dy N2V 0l 1, @),
H(faga hy, hQ)HIF]f\ = Hf”H;}(Q\E),/\ + ||g||W§+1il/p(8Q),>\ + ||h1HWII,€+171/p(E),>\ + ‘|h2|’W§+271/p(2)7)\’

where
D N Pl 2 PSS
gllyyrs1-172 50y 5 = Wgﬂgﬂwﬁ‘”p(am T Z:ZO‘)"1/2_1/2p|P\(k_j)/2vf§99\|Lp(asz)7
Wl sssin gy 5 = [VERDa-vsm sy + Z;J A2 122 AED 2Ty

k41 B o
[Pallyiz-1/p sy 5 1= IVE" haly1ovn s +Zj:0|)\|1/2 VR INERD T B |1 ()

Let us first derive these norms and have a look at its advantages. We consider the scaling
ux(z) == \u(A\"Pz)  forz € Q\ ¥ with some a, 5 € R.

We only consider the cases 2 € {R", R} and ¥ € {R"! x {0}, 0} since these are invariant
under the transformation z + A~?z. Then

Au(z) — Au(z) = A¢ ()\U)\()\Bm) - )\2BAU)\()\B.Z‘)) .

Since the local operators A) ; should be uniformly invertible in A, we want to achieve that the
equations for u) do not depend on A and therefore must choose 5 = 1/2. Next, the norm of the
transformation u — u, should satisfy HuHE;; = [Juy |gx and hence we require that

k+2 . k+2 . _BitBn . k+2 o iioam .
Jullgs = ZjZOHVJUAHLp(Q) = Zj:0||)\ Pivbn/ogiy| ) = Zj:OH)\ NGy ).

Finally, we choose a = (k + 2 — n/p)/2 so that the highest order term in this norm does not
depend on ). This yields precisely the aforementioned Ef-norm. We keep in mind that

uy = AFH2)/2on /2 3 =1/2.).
Similarly, we define the rescaled data
fa = AR (U2,
gx 1= AEFD/2=0/2p g (\ =172y
hiy = )\(k+1)/2—n/2ph1()\—1/2.),
oy 1= )\(k+2)/2*n/2ph2()\*1/2.>.

When we replace the functions (u, f, g, h1, h2) by (ux, fi, gx, hix, hey) in (2.9), we see that the
system Ayu = (f, g, h1, ho) is equivalent to Ajuy = (fx, gx, hix, hoy) in case Q € {R™, R’} } and
¥ € {R*"! x {0}, 0}. Moreover,

||U’HEI§\ = ”u/\H]E]lV’ ”(fag, hl,h’Z)H]FI;\ = ||(f>\7.g)\7h1)\7h2>\)||]FIf'
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2.1.3. Basic model problems. We first consider the system A u = (f, h1, ho) in the situation
of a whole space 2 := R" (n > 2) with flat interface & := R"! x {0} = R""! and constant
coefficients pt € (0, 00); that is,

M—pAu=f inR™
(2.10) [40pu] =hy  onR"1,
[u] =hy onR™ L
Here we have put Q=0 \X = R and Q4 := R"1 x +(0, 00). The elements of 2 are denoted
by z = (2/,z,) or (z/,y) with 2’ € R ' and z, = y € R, and we let A = 97 + --- + 92,
A=+ +0> |, V=(01,...,0,),and V' = (01, ...,0,_1). The parameter \ belongs to the
open sector Xy := {A € C\ {0} : larg A\| < ¢} for ¢ € (0, 7).

We shall prove that problem (2.10) has optimal Hﬁ”-regularity in the following sense.

2.10. Lemma. Let o € (0,1], k € No, ¢ € (0,m), and p € (1, 00). Then the operator

Ay EXR™Y) = FER™),  w— (\u— div(uVu), [pdau], [u])
is uniformly invertible with respect to v € (1o, pg '] and X € Ty,

Proof. (i) In order to prove uniqueness, it is sufficient to consider a solution u € Hg(R”)
to (2.10) for trivial data Ayu = (f, h1,he) = 0. When we consider u as a function y — u(-,y)
that belongs to the space H2(R; L,(R"~1)) N L,(R; H2(R" 1)), we see that both functions y —
u4(-,y), £[0,00) — S'(R™!) are continuous. The functions w4 (€) := (Aug' + |£[?)/? satisfy
Rewx(§) > 0forall A € C\ (—00,0] and ¢ € R"1. Then the partially Fourier transformed
equations with respect to € R"~! with covariable £ € R""! are given by

Wi — 051 =0 inD'(R;S'(R"1)),
(2.11) 120, (,0) = p_dyi_(,0) =0 in §'(R"),
Uy (-,0) —a_(-,0) =0 inS'(R"1).
The first equation in (2.11) must be understood in the following sense:
(2.12) / a(-,y) (Wely) — 0ye(y)) dy = 0in S'(R"")  for ¢ € D(R).

We claim that (2.12) implies (-, +y) = (£ — e~ “=©¥)cy for all y > 0 and some ¢ € S'(R*1).
Indeed, in order to check this for @ (-, y), we write an arbitrary ¢ € D(R, ) as

(2.13) o(y) = (Wi — 0)bu(y) + ha (y) (€24 @) + h_(y) (e | ).

Here (-|-) denotes bilinear integration over R, the functions hy € D(R,) with (e*“+'|hy) = 1
and (e**+'|hz) = 0 are fixed (independent of ), and we can calculate the solution ¢, € D(R.)
of (2.13) by using Green'’s functions (see Lemma 3.3 on page 56). Then it can be readily checked
that

(i) = (@ ha) (€4 1@) + (g |ho) (e ™+ |@)  for o € D(RY),

with the constant distributions ¢ + := (G4 |h+). Since y — u(-,y) belongs to H2(R; L,(R""1)),

we must have ¢y = 0 and hence @, (-, y) = (£ — e “+¥)c, for y > 0 with ¢y = ¢y _.
Analogously, we have (-, —y) = (£ = e “-&¥)c_ for y > 0 with some ¢_ € S’'(R""!). The
remaining equations yield c; = c_ and —pyciwy — p_c_w_ = 0, and thus ¢+ = 0. Therefore

(2.10) has at most one solution in H? (R™).
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(ii) Existence for k = 0 and f = 0. We construct a solution u of (2.10) for given (0, k1, hg) €
F9. The partially Fourier transformed function y — a(-,y), R — S'(R"!) must satisfy the
system

Wwi—-02u=0 inD(R;S'R")),
(2.14) g Oyiiy (-,0) — p_8yi_(-,0) = hy inS'(R™1),
Gy (-,0) —a_(-,0) =hy inS'(R"1).

Problem (2.14) has the following D'(R; S’ (R"!))-solution.

ay(hy) |1 —- ::y poe” Yy

i-(—y)|  mr e [— —ppemeY g
In order to invert the partial Fourier transform u — @, we employ the joint functional calculus
for V' from Theorem B.69 on page 166. Here we consider V' = (9, ...,0,_1) as an operator
tuple T = (T1,...,T,—1) in X = LP(R”*I) in the sense of Remark B.65. For the symbols
wiA(z) = (M ps—2z-2)1/2, we define wy (V') = (A ps —A)V2 =t Ly 2 HY(R") = Ly(R"1).
With Theorem B.25 on page 155 we define the extensions (z,y) — (e t+\Vhy)(z) € HZ(R')
and (z,y) — (e"L+2Yhy)(2) € H}(R'). Then a solution to (2.10) is given by

u_(—y)| Bt e

iL_T_yl)\e_yIH—,A M,e_yLJW\ hy
-1 —yL_ —yL_
_L77A€ Y WA —pye Y A h2

(iii) A uniform bound with respect to A. We employ the dilations o; € Bisom(Lp(R™)) and
0} € Bisom(Lp(R"™1)) with t € (0,00) defined by ou := u(t-) for u € L,(R") and ojh := h(t:)
for h € L,(R"1). Then A'ol,,, = Ao}, ,, A and, with L. := Ly 1, we obtain
2 / / ApW; 1/2 1 / 2
Li,)\ = )‘/,U:I: - A= AU}\l/Qﬂ/N:ﬁ: —A )JA—I/Q = <)\ U)\1/2L:|:0—>\—1/2> .

Hence Ls ) = AY%0%, ,L10)_,, on D(L+) = HY(R"™'). For h € L,(R"™!), we have

Oy\—1/2 ((ZL‘, y) = e_yLi’Ah) = €xp <_)\_1/2y03\—1/2L:|:,>\U:\1/2> Gl)\—l/Qh = exp (_yLi) 0';\—1/2 h.

Then the rescaled functions u.s ) := A'="/?P0, 1 puy and hjy == M/27/2g) |, h; satisfy

upaChy) | 1
u—,)\('a_y) M++M_

For given pg € (0,1) and ¥ € (0,7), there exists M > 0 such that L2 are operators of
positive type Py (HZ(R" 1), L,(R"™1), M, ) for all pus € [uo, 1y '] (see page 154) and therefore
Theorem B.25 yields the assertion for f = 0.

(iv) If f € L,(R"™) is arbitrary, then a solution to (2.10) is given by u + v + w, where u
is defined by (2.15), v+ = (A — pxA)"'f2 € H}(R}) with vi],—o = 0 are the half-space
solutions from [DHP03, Theorem 7.3], and w is the solution to Aw — pAw = 0, [pw] = —[pv],
[0yw] = —[0yv], which is defined analogously as u in (2.15). Therefore the assertion for k = 0
is proved.

(v) Existence for k > 0. Let (f, hi1, ha) € IF"/{ be given. We shall construct a solution to (2.10)
of the form u = v + w, where v, w are defined as follows. Let £y € B(H]’f(R’i); HS(R"))

and Ey, € B (H;f ~le (RL); H;f 7'“'(]1%”)) denote the extension operators from Theorem B.6 on

—Lle vl e vl ha x

I le—yl+ —yLy
Ly e p-e ] [hl’A] fory > 0.
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page 147 with the property 03 E+g = E+ (05 g for g € HI’)‘“(RQLL) and o € Nj with |a| < k. Then
the functions vt := (A — p+A) "' EL(f|rn ) belong to H}™2(R™) and satisfy
el r2emyn < O, p, po) | FllL,@ny  for f € Hy(R™), A € S, e € [0, 15 ']-
Differentiating the equation (A — uxA)vy = Ei(f|ry ) shows that (A — up A)07v = By 207 f €
Ly(R") for [a < k. Hence the function v := xgrv4 + xrr v— belongs to Hg*Z(R”), solves the
equation (A — pA)v = fin R", and satisfies
[0llgg gy < C (0, o) F gy ey for f € HY(R™), A € B, prt € [pa0, p1g ']
The function w € Hg(R”) is defined as the solution to (A— pA)w = 0, [ud,w] = hy — [o,v],
[w] = ha — [v]. From uniqueness and (2.15) we derive the representation
[ wy () ] _ 1 —Lihe Vi pemvhea ] [hl — [10nv]
w—_(+,—y) Pt + po— —L:’l)\e_yL—vA —pigpe Y- ha — [v]

In order to verify that w belongs to H{j”(R"), we let « € N~ with |a| < k. By Theorem B.69,
the operators V' |°“L;‘§| are isomorphisms in W3 (R" 1) for every s > 0. Hence, by using the

commutativity Ly ye ¥E+2 = e ¥L+2 [, , and by applying Theorem B.25, we see that
08wl ey S 1wl gy S 191y -1/m g sy + 1102131

The normal derivatives can be estimated similarly by means of &e ¥5+x = e~ ¥l (—Ly \ ).
This shows that w belongs to H;fJr2 (R™) and satisfies (A — uA)w = 0. Hence u = v + w belongs
to EX¥(R"™) and solves Ayu = (f, h1, h2). Uniform bounds for || A} || with respect to |arg \| < ¢
can be shown again by a scaling argument. O

Lemma 2.10 includes optimal H}*2-regularity of the whole space model problem without
interface, since we can choose p14 = p_ and restrict the operator Ay to the case h1 = hy = 0.
2.11. Corollary. Let up € (0,1], k € Ny, ¢ € (0,7), and p € (1,00). Then the operator

Ay: EY(R™) = FE(R™),  u— A — div(pVu)
is uniformly invertible with respect to ju € (1o, pg ') and X € .

Finally, we consider the remaining model problem for 2 = R"} and ¥ = 0.
2.12. Lemma. Let g € (0,1], k € Ny, ¢ € (0,7), and p € (1, 00). Then the operator

Ay EERY) - FERY),  uw (A — div(pVu), —pd,u)
is uniformly invertible with respect to i € (o, g '] and A € Ty,

Proof. We obtain the assertion by following the lines of the proof of Lemma 2.10, except for the
elimination of the boundary condition. Here a solution u to Ayu = (0, g) is given by

1
u(+,y) = ;Lile_yL*g, Ly= /- pA O

2.1.4. Perturbed model problems. We next consider the model problem Ayu = (f, ha, h2)
for Q = R", for a bent hyperplane %, := 0, (R"!) with 0, (2') := (2/,w(2’)) forw € C2~ (R" 1)
and for constants parameters p+ > 0. This model problem reads as follows.
A —pAu=f inR"\ X,
(2.16) [wo,u] = h1  on X,
[u] = hey onX,.
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2.13. Remark. Problem (2.16) can be reduced to a flat interface problem with the following
transformation. We only assume that w is of class C'(R"~!) and we consider the map
O,: R" 5 R", (2, 2,) = (2, 2y +w(2))).
(i) It is easy to check that ©! is given by (2/, x,,) — (2/, 2, — w(2’)) and that

! 0], [8®w]‘1:[ ! O], det 90, = 1.

00, =
ow 1 —Ow 1

Hence both ©,,: R” — R™ and O,|x,: ¥¢ — X, are C’l—diffeomorphisms.
(ii) The hypersurface X, has

(a) the tangent vectors 7; 0 O, = e; + Jjwe, for j <mn,

(b) the unit normal vector v o ©,, = (e, — Vw) with 8 := (1 + |Vw|?)"/2,

(c) the cotangent vectors 77 0 O, = ¢; + 320;w(e, — Vw).

Forp € (1,00), k € Ny, w € CET2=(R""1),and A € C\ {0}, we employ the function spaces
E} = Eﬁ(R” \ Ew) = H5+2(Rn \ Ew)a
Fy = F5(R™\ £,) = HF(R™\ £,) x WEHITU/P(8,) x WET271/P(5,,),
equipped with the A-dependent norms from Section 2.1.2.

2.14. Lemma. Let p9 € (0,1], k € No, ¢ € (0,7), and p € (1,00). Then there exists n > 0 such that
for every M > 0 we can find some Ny > 1 such that the operator

Ax: EY(R"\ Z0) = FY(R"\ L), u > (= div(uVu), [udyul, [u]) .
is uniformly invertible with respect to
we O R, [Vwllyrss < M, [Volloo S0 px € [0, 15 '], A € By, Al 2 Xo.
Proof. (i) We study a transformation of the functions u € E’}\ and (f, hi1,he) € IF’}\ to a
flat interface situation. The map © = ©,, from Remark 2.13 is a C**+2~-diffeomorphism from

R% := R"! x £(0,00) onto Q4 := {(2/,2,) € R" : 1, = w(2’)} and from X onto %,. Both 90
and 007! belong to WX (R™). We consider the pull-backs

U=uo®, f=foO, hj=hjo0.
By means of the chain rule (B.19) and the substitution formula (A.12), it follows that
Tk = HFP2(R™),
(F, T, o) € Ty i= HE(R?) x WHHV/P(RY) 5 h+2-1/p (R

and that u — u, Ef — Ei and (f, h1, he) = (f,h1,h2), FY — FI; are topological linear isomor-
phisms. To be more precise, let 1 < j < k + 2. Then

j T
iy o A—G—)/2 i ; .
B D9 2T 6 6], 0% B+ 076

where the sum is taken over multi-indices 3 € N’ such that | 3| = j and all j! permutations o of
{1,...,4}. From det 90 = 1 we infer that || Viu 0 O||, = ||V'ul|,. This shows that

(2.17) C(n, b, M)~ H|ullgx < [allge < Cln, by M)l|ullgg

where C(n, k, M) is uniform with respect to those w and A that satisfy || Vw||;,x+1 < M and [A] >
1. The relevant estimates for f in H%(R") follow analogously and those of 7; in Hp ™'/ (R"!)
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follow from (A.12). Finally, since |00 < (1 + |Vw|?)/? and [007!| < (1 + |Vw|?)/?, we infer
again from (A.12) that the Slobodeckii semi-norm for s € (0, 1) satisfies

[9.0 Ol a1y < (L4 [[VwllZ)* 2D [g] s )
[900 Twgs.) < (L+[IVw]Z)* 22 gl gany -
We conclude that
@18) Ok p, M) (s o)l < F T, Tl < Cn B, M)|(S B, o) s
(ii) We derive the transformed problem. From (Vu) o © = [00]~ T V& we infer that
duo® = (vg, -Vu)o® = —V'w -Va+ 70,1 =1+ |Vw?!
With ©,,! := (071),, and 9,0,,! = §jin — 6mn0jw and AO,t = —6,,, Aw, we obtain
(Au) 0 © = AT + Zjlmalamu (050,19;07," = 858jm) + D OuAS;
= AT — 2V0,T - Vw + 021 |Vw|? + 0,7 Aw.
Therefore problem (2.16) is transformed to
N — pAu = f + Fu+ Fiu inR”,
[uont] = hy + Hu on R" 1,
[a] = ha onR"1,
where the perturbations F; = Fj(y,w) and H = H(p,w) are given by
Fu=—pAwi,u,
Foti = p|V'w|?0%1 — 200,V - V'w,
Hu = BV'w - [uV'u] + (1 — B~ [10d.1].
(iii) Let us derive suitable estimates for F; and H. Our goal is to show that

1301t g oy o+ s 0) gt 1y, = 0 35 = D and Ao = ox.

To be precise, we shall show that for given ¢ > 0, there exist n = n(n, po, k, ¢, p,€) € (0,1] and
o = Ao(n, po, k, ¢, p, M, e) > M~ such that the estimate

T P L (TR TRV [

isvalid for all @ € B}, all { € {1,2}, allw € C*+2-(R"~1) with [Vwlljyrr < Mand ||Vl <7,

all puy € [po, pp '] and all A € Xy with [A| > .
For an estimation of F; we let 0 < j < k. The product rule and Holder’s inequality yield

N )0y < o ) 32005202
=0

< C(n, o, b, M)A ™2l

In the norm of F»u we control the leading order terms with a factor n as follows. For oo € Ny
with |a] = k and for 0 < j < k we have

A0 By (41, ) (05 0) lp < 1 C (s oo, ) [
||>\(k_j)/2vj(F2(N’w)ﬂ)Hp < nC(n, o, k)HaHE,; + ])\|—1/2C(n, tos k, M)HEHE’;
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We emphasize that the coefficient C'(n, i, k) near n does not depend on the bound M for the
derivatives of w. For the estimations of H, we use the property |1 —5(w)|loc = 0as ||Vw||ec — 0
and the pointwise multiplication estimate (B.7). Furthermore, a scaling argument yields

[oken= Iyt gnsy p < Clmpym) ol sppya forv € HY(RY), m € N, A€ €\ {0).
Then the leading order terms in the norm of H7u are estimated by means of
O] 1170 < 1 C 10, p) 07T -7+ Ol pio,p, M0l for o] = b,

where we have used |Vw| <7 < 1and < 1. We therefore obtain the estimate

B, )y 110 g1y < 1 C 00 10, b p) [l -+ N2, o, e, M) [

(iv) We finally consider the operators

ZA: U (()‘ - MA)ﬂ, [[:uanﬂ]L [[H]D )
P(p,w): uw— (Fou+ Fiu, Hyu + Hiw,0).

In Lemma 2.10 we have proved that A, : E, — T is invertible and that
|| (Zk)il (?7 Ela EQ) ||El§\ < C(”? Ho, P, (;5) k) || (?7 Elu EQ) HF’; .
With step (iii) we can choose numbers 7(n, o, k, ¢, p) € (0,1] and Ao(n, po, k, ¢, p, M) > 1
such that ||(A) "' P(p,w)u| < 271 @[ - Then a Neumann series argument and the pull-back
estimates (2.17) and (2.18) imply that the desired solution u € E'j\ to (2.16) is given by

w= A7 (f ko) = (1= (A3 ) P(u,w) T (A) 7 (fo 07 e 0L k007 ) 0 0.
This representation also shows the uniform bounds for A; . O

Next, we consider the perturbed model problem
Ay —div(pVu) = f inR"\ X,
(2.19) [po,u]l =h1  on X,
[u] =hay onX,,
with variable coefficients
pe: Qp — (0,00), Qp :={(2',2,) €R": 2, = w(z)}.

2.15. Lemma. Lef pug € (0,1], k € No, ¢ € (0,7), and p € (1,00). Then there exists n > 0 such that
for every M > 0 we can find some \o > 1 such that the operator

Ay BY(R\ 5,) - FSR™\5,), s (- div(aVu), [ud,u], [u])
is uniformly invertible with respect to
(i) w e Ck2= (R 1) with [Vwllyprer < Mand [Vw|oo <1,

(ii) pe € WER(Qu) with po < pse < g, |l llyyier < M, sup{|ps(x) — pa(y)] 2,y € Qu} <
2n,
(i) A € Sy with |A| > o.

Proof. We may choose constants i’ € [, 1y '] such that sup{|u+(z) — pk| : z € Qx} <1, for
instance p% := (sup p+ + inf gt )/2. Then problem (2.19) can be written as
A— p*Au = f+div((p — p*)Vu)  inR"\ 3,
W Ou] = h1 + [(n* = w)Oyu]  onXy,
[u] = ho on X,,.
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Let AY: u = (A — p*A)u, [u*0pu], [u]) and P: u — (div((p — p*)Vu), [(¢* — p)0yu], 0). With
|+ — 1% ||oo < mand similar estimates as for the perturbations in Lemma 2.14, we obtain

ldiv((s — 1) V) sy < (7€, si0, k) + N 200, 10, k. M)) [l

||[[(:U* - /’L)al/u]]HWI’f“'l—l/P(Zw),)\ < (77 C(’I’L, ,U(),k,p) + ‘)\|—1/2+1/2p0(n’ MOakapv M)) HuH]E’)“\

The operators A} are uniformly invertible by Lemma 2.14 and a Neumann series argument
implies that for some 7 > 0 and \g > 1, the operator A\ = A} — P is uniformly invertible. [J

Lemma 2.15 includes the case Q2 \ ¥ = R", since p is allowed to be continuous across .

2.16. Corollary. Let g € (0,1], k € Ny, ¢ € (0,7), and p € (1,00). Then there exists n > 0 such
that for every M > 0 we can find some \o > 1 such that the operator

Ay: E¥(R™) — FE(R™), u— \u— div(uVu),

is uniformly invertible with respect to
(i) € WER(R™) with po < pu < g, [|pll s < M and sup{|u(z) — p(y)| : 2,y € R"} < 29,
(i) XA € Xy with |A| > Ao.
The bent half-space problem can be solved analogously as the bent interface problem, by
using the half-space result Lemma 2.12 instead of the flat interface result Lemma 2.10.

2.17. Corollary. Let po € (0,1], k € No, ¢ € (0,7), and p € (1,00). Then there exists n > 0 such
that for every M > 0 we can find some \g > 1 such that the operator

Ay: EYRY) = FE(RY),  u— (A — div(pVau), pd,u),
is uniformly invertible with respect to
(i) w e CF2= (R 1) with [Vwllyprerr < Mand [|[Vw|oo <1,

(i) 11 € WEF RL) with o < 11 < 1", |allypaces < M and sup{lju(e) — u(y)] : 2,y € O} < 20,
(iii) A € Sy with || > Ao.

2.1.5. Bounded domains. We solve the strong transmission problem (2.9) in a bounded
domain Q C R” (n > 2) with boundary 9Q € C**2~ (k € Ny) and compact interface > C Q of
class C**+2~ for variable coefficients i : Q4 — (0, 00).

2.18. Theorem. Let o € (0,1], ¢ € (0,7), and p € (1,00). Then there exists n > 0 such that for all
M > 0 we can find some \og > 1 such that the operator

Ay:EYQ\ D) = FEQ\ D), w— (Ou—div(uVu), pdu, [pd,u], [u]),
is uniformly invertible with respect to
(i) 11 € WEF(Q\ ) with io < ps < i and i yss < M,
(i) \ € E¢ with ’/\| > )\0.

Proof. We apply our localization technique from Section 2.1.1.
(i) We define the global spaces

E:=FE\=FE}Q\%), F:=F =F{Q\D),

equipped with the A-dependent norms from Section 2.1.2.

For definining local spaces we employ Lemma 2.9, which implies that for every n > 0
there exist a number ry = r9(n) > 0 and an (7, ro(n))-localization set-up. In particular, we can
find a finite set I = I(n,ro(n)), an open covering for 2 of balls U; = B, (p;) (j € I), rigid
transformations

@j:x>—>pj+ij, BTO(O)—>U]‘,
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and height functions w; € CA#T2~(R"!) with ||[Vwj|le < nand ||Vwl|ye1 < M(r). Further-
more, the index set can be decomposed into I = I; U I U I3, where j € I corresponds to the
whole space case 2NU; = 0;(R"NB,,), j € I corresponds to the bent half-space case QNU; =
O, (RZ]_ N B,,), and j € I3 corresponds to the bent hyperplane case ¥ N U; = @j(ij N By,)-
Then we define

Qj =R", Ej =0 for j € I,
Qj = sz, Ej =10 fOI'j € I,
Qj = Rn, Ej = ij fOI'j e ls

Now we define the local spaces
Ej = E;:=EY(\ %)), Fj:=F,=FQ\%;) forjeLULUI;.

We keep in mind that these definitions depend on the localization set-up and this will be fixed
in step (iv) during the definition of the local operators.

(ii) We next define approximation systems for E and F. Choose a smooth partition of unity
(¢j)jer for Q in R™ subordinate to (U;);jer and choose smooth cut-off functions (¢;) ;e with
supp ¢; C B;, and ¢ o G)j_1 = 1 on supp ¢;. Then we have Zj ;o @;1 ¢j = 11in . Define

P ju = (pju) o O, Dp;i(f. 9, k1, h2) == (@ f, 059, 0l pjha) 0 O;,
U juj = (ju;) 0 OF ", Wpj(f, 95, hug, haj) := (i fi, 0igs, ihug, ¥ihag) 0 O

The triples (E, (®g ), (Vg ;)) and (F, (®F;), (¥F;)) are indeed [,-approximation systems for £

and F', as can be checked by means of pointwise multiplication Wz} ey wl — W,} —ie (B.7),
the chain rule, the substitution formula (A.12), and the regularity condition w; € C5+2=(R"~1).
Moreover, we may choose any ¢ € [1,00), since the set I is finite. Furthermore, the retractions
rg and rr and the co-retractions r§, and r¢, are defined by

rpu = (P u)jer, re(f, 9, b, he) == (Pr;(f, 9, has he))jer,
re(uj)jer = ZJ.GJ‘I’EJ% re(f5, 95 haj, haj)jer = ZjGJ‘PF,j(fjagj’ hij, ha;j).-

These operators satisfy the estimate

Irx IB,x)x)x + 1T IB(x1,x) < C(nyp, ki, I(n, 1), M(r),q)  for X € {E, F}.

The numbers 7 and r will be fixed below for proving optimal regularity of the relevant model
problems. Then the remaining perturbations will be controlled only by the largeness of A.

(iii) In order to define the local operators A, ;, we first have to define local coefficients. As for
the construction of w; in Lemma 2.9, we fix a smooth cut-off function y € B(R") with0 < x <1,
x(xz) = 1for || < 1and x(x) = 0 for || > 2. For j € I3, we consider the transformed
coefficients fi; := 110 0); that are defined on B,, N, \ ¥;. Given aradius r € (0,70/2], we define

o) (O “TaO) fore e el <
Horat 0 = Hik 0 forz € Qj 4, x| > 2r.

Then fij,+(7) = 1; +(z) forallx € B, N Q1+ and [|fijr+ — 711 (0)||c — 0asr — 0 by uniform
continuity of 7z; .. Hence, for given n > 0 we can fix a number r = r(n) € (0,79/2] to ensure
that the local coefficients 1; := fi;, satisfy | +(x) — pj+(y)] < 2nforall z, y € ©; 1, and all
J € I3. In the case j € I U I, we define p; analogously.
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(iv) Now we define local operators Ay ; and fix the chart radius r such that these operators
are invertible and satisfy Assumption 2.5.(iv). Given a function u; € Ej, we let

Auj — div(p;Vuy) if j e Jy,
A)\JU,J‘ = ()\UJ — div(ujVuj),,uj&,uj) lf] S JQ,
(Auj — div(p; Vug), [10,u4], [us]) if j € Js.
By Corollaries 2.16 and 2.17 and Lemma 2.15, we can find a number 7(n, io, k, ¢, p) > 0 such

that for all M > 1, there exists \o(n, o, k, ¢, p, M) > 1 such that the operators Ay ; (j € I) are
uniformly invertible with respect to w; € CF2~(R"™) with [|[Vw;|[ e < M, [|[Vwjlleo < n;

and p1j € WM (5 \ X)) with po < iy < g, | ellyaer < M, and sup{|pj + () — pj+(y)] :
z,y € Q+} < 2n;and A € Xy with [A] > Ag. In order to fulfill these conditions, we now fix a
number 7 € (0,79/2] and an (7, 7)-localization set-up (Uj, ©;,w;) jci(y,r) such that [|[Vw;|le <7
and |p+ (z) —p+(pj)| < nforallz € U;NQ4 and all j € I(n, r). By compactness of 92 and ¥ and
since [ is finite, there exists M = M (£, X, r) > 0 such that HVWJ'HWQ,“ < M and Hﬂj”ngl <M
forall j € I(n,r). Now the aforementioned results yield suitable numbers Ay and C such that

HA;,;HB(Fj;Ej),/\ <C forjel, A€ Xy, [Al > Ao

(v) Finally, we consider the perturbations B) ; and C) ;. Since the mappings O; are affine
and since pj(z) = u(0;(z)) for x € B, N2, we obtain

Byju=®@pjA\u— Ay ;Ppju= (p;jAru) 0 ©; — Ay j((pu) 0 ©;)
= (uVj - Vu+div(uVe; u), —pudyp;, —[pu]dye;,0) 0 ©;.

This commutator is of lower order and therefore
IBxjullmyn < INTV2H2PC(0, po, k¢, p, M) |ull . foru e B, A€ C\{0}, |\ > 1,5 €.
Since [ is finite and ¢ € [1, c0), it follows that

B ju);
aup VEATBEL®L 3120260y, 0011, ).

0#ucE [ E\

For the perturbations C ; = A\V g ; — ¥ ; A, ; we obtain

1225 COxjusll e
sup

< N[V (n, o, K, 6, p, M|, ).
0£(uy) erelq(®) 1(W))jerll L, @)

Therefore Assumption 2.5 is satisfied and Proposition 2.6 yields the assertion. O

2.2. Transmission problems for div(uV-)

We prove optimal H}’f”-regularity for the strong transmission problem (2.1) and optimal H;-
regularity for the weak transmission problem (2.2). In Section 2.2.1 we define the solution space
E* and the data space F* that are equipped with equivalent A\-dependent norms. For the basic
model problems in R", R?, and R", we prove optimal Ek—regularity in Section 2.2.2, uniformly
with respect to A and w. Perturbed model problems are solved in Section 2.2.3 for sufficiently
large A. For a bounded domain €2 C R" with compact hypersurface > C 2, we solve the weak
transmission problem in Section 2.2.4 and the strong transmission problem in Section 2.2.5.
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2.2.1. A-dependent norms for div(uV-). For p € (1,00), k € Ny, and an open set G C R",
we consider the semi-normed vector space H%(G) from page 23. The semi-norm 1013y =
P

IV¥¢l| 1, () vanishes if and only if ¢ belongs to the vector space Pj_1 of all polynomials of
degree not larger than k£ — 1 [cf. Gru09, Theorem 4.19]. Therefore its quotient space

HEG) = HHG) Pt 8l = 1901, 0

the homogeneous Sobolev space, is a Banach space [cf. Galll, Exercise III.1.2]. Alternatively, the
vector space ”Hfj (G) becomes a Banach space when it is endowed with the norm

1913 Ly = IV*6ll 1, ) + 19l s

with some non-empty bounded smooth subdomain G’ C G. The corresponding norms for
different subdomains G’ are equivalent [cf. Galll, Section IIL.1].
Let ©2 and X satisfty Assumption 2.1. We consider the semi-normed vector space

Hi(Q) = HE(Q\ D) = {u € Hy1oo(Q\ 5 ux € HY 1o (Q), VFus € Lp(Qi)} :

whose semi-norm ||u|]%k(9\2) = ||Vku||Lp(Q) vanishes if and only if u+ € P;_;. Then, given
p
ke NoU{—1}, A € (0,00), and p € (1, 00), we define the solution space
k42 .
(2.20) B o= (B |y ). EF o= ( O z>) / K,

which is a Banach space with respect to the equivalent A-dependent norm
k+2 s , _
lullgg == 3 NS00l o + A2Vl sy 4 D2 = (), 0

Here Q) bounded subdomain of Q \ ¥ with C'-boundary and, in the case ¥ # (), we let 3| # 0

be a bounded subdomain of ¥ with C'-boundary. If ¥ = {), then we let ¥} = (. If the semi-

norm ||u||E;§ vanishes, then both u4 are constant in €2+ and these constants coincide because of

[u] = 0 on ¥,. Hence the null space of the semi-norm ||- HE;; consists of all constant functions

and we will see that this is precisely the space of solutions with trivial data. The parameter A

will again be useful for controlling lower-order perturbations in perturbed model problems.
In order to define the space of data, we recall from page 24 that the functionals F{; , ,) and

F,v, are considered as elements of the dual space

HY(Q) = HL(Q)* F| - = _KFe)l 1 l:1.

p @)= B0 Wi Oyéqbzlllilp;,((z) IVl @ P Ty

Then the space of data for k = —1 is defined by

Py = (P Ml ) o e o= () x W 2(e),

which is a Banach space with respect to the equivalent A-dependent norm
H(F7 h2)”1{7;!1A = HF”ﬁ;1(9) + [[hQ]]Wz}fl/p(E) + “/\1/271/2ph2HLP(E’A)-

For k > 0, it is defined by

IFICCC,)\ = (Fgcv H'H]ch,/\) ) ]F]gc = {(f?gv hla h2> € Fk : F(f79,h1) € f{P_l<Q)} )

where
k+2

F* = HE(Q\ ) x WEHP(9Q) x WEHL/P(5) x o

Wyme(s),
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which is a Banach space with respect to the equivalent A-dependent norm
1CF, 921, ho)lge = [1(F, g, by B s + IAS Y2 E gy .
1(f5. 9, b, b2l = ([ f [ a5 am) + Hg”wf“‘l/”(aﬂ),)\
+ Hh1||W§+1*1/Z’(E),>\ + HhQHOI;':FlQ ngl/p(z)ﬁ[/p(z')\),/\’

where
k i ,
1 [ mx sy x = ZFOH)\(k J)/2vaHLp(Q)7
k 3 . ,
‘|gHWZ£€+1*1/P(6Q)7>\ = vag]]wgfl/P(ag) + ijo‘)\‘l/2 1/21)”)\(k j)/2vf999||Lp(BQ)7
k 3 » )
e P Hv’éhl]]l/i/]fl/p(z) * ijowl/2 VNG, 5,

k+1 _ i ;
= [[Vg“h?ﬂwg—l/r)(g) +Zj:1W1/2 1/2pH)\(k+1 J)/2vﬂzh2\|LP(z)
+ H)\(k+2)/2—1/2ph2

Vhzllpyesz vy 17e gy, o)

L, ()

In the basic situations Q \ ¥ € {R", R ,R"}, @} = A~'/2Q}, and ¥} = A~1/2%/, we obtain
Jullgr = Neallags 1059, Pt Bl = 10 g s o) e

where the rescaled functions wuy, f), gx, h1), and ho) were defined in Section 2.1.2.

2.2.2. Basic model problems. In order to solve problem (2.1), we have to determine the
null space and range of the operator L := div(xV-), considered as an unbounded operator in
L,(€2). Itis clear that all constant functions belong to N (L) and the converse inclusion follows
for p > 2n/(n+2) from an integration by parts. For the remaining case p € (1, 2n/(n+2)), which
is more involved, Simader and Sohr [SS92] obtained the following weak a priori estimate.
2.19. Theorem ([cf. SS92]). Letn > 2, p € (1,00), and let Q2 C R™ be either

(i) the whole space R",
(ii) the half space R = R"™1 x (0, 00),
(iii) a bent half space R" = {(2/,x,) € R™ : z,, > w(z')} whose defining function w € CH(R"1)
satisfies ||V'w|oo < n for some n = n(n,p) >0,
(iv) a bounded domain in R™ with C 1—b0undary,
(v) or an exterior domain in R™ with Cl—boundary; that is, R™ \ Q is a bounded domain.
Then there exists a constant C' = C'(n, p,n, ) > 0 such that

| [ Vu - Vo da|
IVl @

We start with the analog of Lemma 2.10 for the case = R”, ¥ = R""! x {0} and A = 0;
that is, we consider the strong and the weak transmission problem

(2.21) [Vullz,@) < Csup{ RS HI},(Q) \ {O}} foru e H;,(Q)

—pAu=f inR",
(2.22) [10nu] = hy onR™L &
[u] = ha onR™ % [u] = ho onR" !,

/ uVu-Vodr = (F|p) forall ¢ € H;,(R"),

)

with constant coefficients p4. > 0. Here the functionals F),v, and F( ) on H ;, (R™) are given

(Fuvuld) ::/ puVu-Vodr, (Fiin|e) = /Rn fgﬁda:—/Rn_lhng)dx’, for ¢ € Hy)(R™).

n
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Our goal is to prove that the induced operator

(—div(uVu), [uOnu], [u]) if k>0,
22 A:Ef - Fy, Au=
(2.23) Y — FY, U { (Fuvw, [u]) ifh— 1
is an isomorphism. In order to deal with & = —1, we modify the strategy of [SS92, Lemma

3.3]; thus, we first derive a variant of the Calderon-Zygmund estimate ||V2¢|, < ||Ag||, for
¢ € D(R™).
2.20. Lemma. Letn > 2,3 :=R" ! x {0}, ux > 0, and p € (1, c), and define the vector spaces

Y=Y, := {(:pl,xn) a2 4 bp(zn) e, +eid e KV bee K} ,

X 1= Xy = {u € HARY) : [0 = [u] =00n 2}, Jlulx = [V2ullp, ooy
Then XY is a Banach space and the map

—puA: XY = Ly(R™)
is a topological linear isomorphism. In particular, there exists C'(n, p, pu+) > 0 such that
(2.24) CHIV2ul 1, ey < [nAull L@ < CIVullp,@ny  forallu e X.
Furthermore, the map
At ues (—plu, [ponu], [u]),  HER™)/Y — Ly(R™) x Wy VPR x W2—L/P (R

is uniformly invertible with respect to v € (1o, pg '], for every po € (0,1].

Proof. (i) For the injectivity of —uA modulo Y we adapt an argument of Wilke [Will3,
p. 104-105]. Suppose that u € X satisfies —pAu = 0 in the sense of D'(R™). Then we even have

Au = 0in D'(R™), but not necessarily in D' (R™). We put vy := uy —Ru_onR’} and v_ := —Ruv,
on R” where (R¢)(2',x,) := ¢(a’, —x,) denotes even reflection. From [u] = 0 we infer that
v = 0 on ¥ and hence also [Vv] = e,[d,v] on X. But since 9,,v4 = —d,(Rv-) = d,v_, we have

[0nv] = 0, which yields v € H2(R") and integrating by parts yields —Av = 0 in D'(R"). Here
the negative Laplacian represents the Riesz potential J, = —A: Hg(R”) — L,(R™), which is a
topological isomorphism (Theorem B.15). Hence v must be a linear map.

In an analogous way we can check that wy := pyuy +p_Ru_ on R’} and w_ := Rwy on
R" yield a function w € H2(R") with [w] = 0, d,w = 0 on R" !, and —Aw = 0. Hence also w is
a linear map. By using that u. are linear combinations of v+ and w4, we easily see that u € Y.

(ii) For the surjectivity of —puA, we construct u = v + w € X where v € Hg(R") is a repre-
sentative of (—A)~!(u~1f) € HZ(R") and w € H2(R") satisfies

~Aw=0inD'(R"), [w]=00onY, [udw]=—[udv]on.
By applying the partial Fourier transform and solving the resulting system, we obtain
@(€swn) = (g + )€ ) e o) (€)  for € R,y € R,

Therefore w has the following representation, which can be seen by using Jawerth’s trace theo-

rem Hg(R”)|xn:0 = Wg_l/p(R”_l) from Theorem B.31, the Riesz potential J' | = (—A’)~1/2,

and the Poisson semigroup P(z,) = eon(=ANY2,

w(e,am) = (g + p) e AR (AN T2, 0]),

Hence, w belongs to ’Hf, (R") and satisfies the asserted a priori estimate. Therefore the operator
—pA: X — Y is surjective and has a bounded right-inverse.
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(iii) Finally, we consider the map A: u — (—pAu, [ud,u], [u]), which is injective by step
(i). For proving surjectivity, we let (f, hi, ho) € Ly(R") X W;fl/p(R”_l) X ngl/p(]R"_l) be
given. We construct u = v + w with v = (—=A) 7} (71 f) € HZ(R") and —pAw = 0, [ud,w] =
hi — [po,v], [w] = he. The function w can be constructed as in step (ii) and is given by

w(e, ) = (g + po) e P AN (AN TV (hy — [u00]) £ pha).
Therefore A is uniformly invertible with respect to pi+ € [0, 11 '] O

2.21. Remark. The space X,,,, = {u € H%(R") : [uonu] = [u] = 0 on X} can be identified with
the standard space ﬁg(R”) by means of the bijection

TM e H?,(Rn) — Xp,/u (Tuu)(ﬂf/’ $n) = u(x/7 N(xn)ilxn)‘

The semi-norms ||VXT),-|| L, (&) and V5| L,(R") are equivalent on 7—1’;(11%”) for k € No.
In order to deal with the case k = —1, we provide some density results.
2.22. Lemma. Letn > 2,3 := R x {0}, pux >0, and p € (1, 00).
(i) For u € H)(R™) and e > 0 there exists u. € Xy, N H,(R™) such that ||V (ue — u)||, @&n) < &
(ii) For u € X, ,, and € > 0 there exists u. € X, , N H;(R") such that ||V (ue — u)||, @) < €.

Proof. (i) We shall construct u. by an anisotropic mollification. Let ¢, denote the Friedrichs
mollifier with support B, (0) C R"™; thatis, ¢,(x) = r~"¢(x/r) with some ¢ € D(R") such that
© >0, [gn pdz =1,and supp ¢ = B1(0). Then we consider the function

uyr = T (pp * (Tu_lu)) forr > 0.
Then ¢, (T, Lu) belongs to C*°(R™) and hence [u.] = [1dnu:] = 0. Moreover,
V(Tu’lur) = @y * V(T/jlu) — V(T/jlu) in L,(R")asr — 0,

and hence also Vu, — Vu in Ly(R"). Finally, from 7}, lu e H;(R”) and ¢, € D(R™) we infer
that o, + (T, Lu) belongs to Hg(R”). Hence, for some sufficiently small r = r(g) > 0, there exists
some g = Up(e) € Xp N H},(R”) with the desired properties.

(ii) By Remark 2.21, the function 7}, 'u belongs to the usual homogeneous space H%(R”)
and thanks to Remark B.12, there is a linear function vg: R” — K such that ¢, * (xr- (T}, 'u—10))
converges to T, 'u — vp in H2(R") as r — 0 and R — cc. Here i € D(R") denotes the radial
Sobolev cut-off function with support Br(0). Since ¢, * (xr - (T}, Ly —wp)) belongs to D(R™), the
function ue = T),(¢r * (xr - (T}, lu — vg))) belongs to X, , N ”H;(R”) and satisfies the assertion
for some small r = r(¢) > 0 and some large R = R(¢) > 0. O

We are ready to prove optimal E~!-regularity in the case ¥ = R"~! and [u] = 0.
2.23. Lemma. Letn > 2, % := R*" 1 x {0}, R" := R"\ %, o € (0,1], and p € (1, 00). Then the map
u Fuyu, Hy(R™) — H, ' (R")
is uniformly invertible with respect to i+ € (1o, pig ']-

Proof. (i) Similar asin [SS92, Lemma 3.3], we prove that v — F),v, is injective and bounded
from below. For u € (7—[}2, N H;)(R”) = %g(R") N H};(R") and ¢ € (7-.[}27/ N 7-.[;,)(]1%”) we obtain

OjuA¢pdr = / pNVu - V(9;(p o)) da + / [6;nVu V¢ — 0jud,¢]da’.
b

n

R
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(i.a) Letj = nand assume that [u] = 0 and [¢] = 0. Then [V'u] = V'[u] = 0and [V'¢] = 0.
Thus, the integrand in the interface integral vanishes; that is,

[[%Nu : V¢ - 8ju 8n¢]] = [[V’u : V’qb]] =0.

Let Z, := {¢ € (’Hi, N H;/)(R”) 1 t0ne] = [¢] = 0} = Xpy 1 0 ?:[;,(R”). Then Lemma
2.22.(ii) implies that Z,, is dense in X, ,-1. By Lemma 2.20, the map pA: X, ,-1 — Ly(R") =
pLy (R™) is bounded and surjective and the estimate || V29| Ly®r) < C(n,p, p)||Ag|| L, (R™)
applies to all ¢ € X,/ ,-1. Therefore the space AZ, is dense in L,/ (R"). Furthermore, 10,2,
is a subspace of 7-'[;, (R™). Hence for every u € ”Hg(R”) N ’H;(R”), we obtain

| [on Onu A¢p dx| | [on 1tV U - V(" 10,0) dx|
[OnullL,@®ny = sup fRA = su Jz A
6670, 0020 1ADIL, (rn) $CZn, Ad£0 1AL, mm)
| Jon VUV (u™10,0) dz|

< C(n,p,u)  sup

< C'(n,p, W Fpvull g1 gy
PEZn, Ap#0 ||v2¢HLp/(R") pVUILH, (R™)

By Lemma 2.22.(i), the inequality also applies to all u € Hé(R”).
(ib) Letj < n, [u] =0,and [p"'¢] = [0,¢] = 0. Then the interface integral vanishes, since

—[[5jnVu . qu - (9ju 8n¢]] = [[(‘)]u 8n¢]] =0.

We now let Z; := {¢ € ?—'[12), (R™) N %;,(R”) : [0n¢] = [ 4] = 0}. Then it is easy to check that
ptZy = Xy NVHL(R™) and 41719, Z; C 1, (R") and that AZ; is dense in Ly (R™). Therefore
the desired inequality follows in the same way as before.

(i) It remains to show that u > F,v, is surjective. Let F' € H,'(R") = HY (R™)*. Since
we may identify H;, (R™) with the closed subspace VH ;, (R™) of L, (R™)", there exists some
f € Ly(R™)" with || f[| L, ®&nyn = HF]]E,;1(R”) such that (F|¢) = [z, f - Vodx forall ¢ € H;/ (R™)
[cf. AF03, Theorem 3.9]. Let (fx) C H (R™)™ be a sequence such that f, — f in L,(R™)" as
k — oo and define

(Bilo) = [ g Vodo == [ divfrodo— [ [en- filods

Hence F;, — F' in H,(R"). With Lemma 2.20, we let uj, € H2(R") N #H}(R") solve the system
—pAuy = —div f,  [uOqur] = [en - fu], [ur] = 0.

Then we have F,vy, = Fj, and ||Vug—Vuy ||, wn) < C|| Ff,— Fy HHp_l(Rn). Therefore Vu;,, — Vu
in L,(R") for some u € H}(R™) and this limit satisfies Fjv, = F. O

We now prove optimal Ek—regularity for the transmission problems (2.22) in the flat inter-
face case 2 = R" and ¥ = R""! x {0}. In the definition of the norms, we let ) = A~1/2¢)/
and ¥} = A"'/2%/, where ' # () and ¥’ # () are bounded open subsets of R" and ¥ with
C'-boundaries.

2.24. Lemma. Letn > 2, jip € (0,1], k € No U {—1}, and p € (1,00). Then the map A: E§(R") —
]qu A(]R”) in (2.23) is uniformly invertible with respect to ps € [uo, 1y *] and X € (0, 00).

Proof. (i) Uniqueness. Let k = —1 and let u € H})(R”) satisfy F,v, = 0 and [u] = 0. Then u
belongs to ’H;(R") and Lemma 2.23 implies that u is constant. For k£ > 0 we consider a function
u € EY C (Hg N Hé)(R") such that xVu = 0 and [p0y,u] = [u] = 0. By Lemma 2.20, u is
constant.
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(i) Existence for k = —1. Given F' € H,;'(R") and hy € Wi~ /P(Rn-1), we construct u =
v+ w € HY(R™)/K as follows. Let £, € B(W, —U/p(Rre-1y, H(R™)) be the extension operator
from Theorem B.31. Then the equivalence class £, (ho +K) € H; (R ) has a representative vy €
’H})(Ri) with vy |5, =0 = ha. By choqsing v_ := 0, the function v belongs to ?:[:},(R”) and satisfies
[v] = ha. Next, we determine w € H,,(R") as a solution to [, uVw - Vo dx = (F — Fy,|¢) for
o € H;’ (R™) by means of Lemma 2.23. Then u = v 4+ w belongs to E;l and solves F,v, = F
and [u] = ho.

(iii) Existence for k > 0. We construct a solution u = u' + u? + u3 with

ul =gt (—8)7 (Befs)) |y -
1y (—ANY/2 _
Wd () = = (g + po) e AV (AN TR (g — [ud,ul]),
—1 _—zn(=A 1/2

ul (- ) = tp (g 4 po) e AT (g — [ul]),
where z,, > 0 and E: H;f (R}) — Hz’f (R™) is an extension operator. Indeed, the function u*
belongs to ﬂfg Hg(R”) by Theorem B.15 and satisfies —uAyl = f. Hence hy — [ud,u'] be-
longs to ﬂfill Wf)_l/p(]R"f) apd ho — [u'] belongs to ﬂfg Wi~1/?(Rn=1). Then Theorems B.15
and B.28 imply u € ﬂfi; H;(R™) and we have [ud,u] = hy and [u] = hs. Finally, Lemma 2.23
yields the estimate ||Vull, < [|Ffn)ll ) and therefore u belongs to EX.

(iv) Uniform estimates with respect to \. We employ the rescaled functions uy, fy, k1), and
hay from page 30. Then the identity Au = (f, h1, he) is equivalent to Auy = (fx, hix, hex) and
we have

lullgy = lluallgss  11(f; has ha)llgs = II(fx, hax haa)llgs-
Therefore A~! is uniformly bounded with respect to A € (0,00) and i+ € [0, g ). O
It remains to study the half-space problems
—pAu = f inRY, .
I {/ pNVu-Vodr = (F|¢) forall ¢ € H;,(R").},
—uOpu =g onR", n

with a constant coefficient ;1 > 0. The right one is (except for p # 1) the weak Neumann
problem, which is covered by Theorem 2.19. However, we still have to verify the mapping
properties with respect to the higher regularity conditions.

2.25.Lemma. Letn >2,Q=R", g € (0,1], k € NgU {—1}, and p € (1, 00). Then the operator
(—div(pVu), —uopu) ifk >0,
F, v, sz = —1,

is uniformly invertible with respect to i € [, 1y ) and X € (0, 00).

A B(RY) > Fh (R, w s Au = {

Proof. (i) Uniqueness follows from Theorem 2.19.
(ii) Existence for k > 0. We construct a solution u = u! + u? by

b= (A (B ) gy
U2('7$n) — _'u—le—xn(—A/)lm(_A/)—l/Q (g + Manul(.70)) )
Then u! belongs to ﬂfi; H2(R7) by Theorem B.15 and satisfies —pAu! = f. Hence g +

popul (-, 0) belongs to ﬂfill Wg_l/p(R”_l) and Theorems B.15 and B.28 imply u € ﬂfig H{,(Ri)
and we have —pAu = f and —udyu(-,0) = g¢. Finally, the weak a priori estimate implies
1Vull, S [1F gl i1y () and therefore u belongs to E}.

(2.25)
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(iii) Existence for k = —1. Let F' € I:Ip_ 1(]Rfﬁ) = H;,(]Ri)*. Since we may identify H;/ (R%)
isometrically with the closed subspace VH;, (R%) of Lyy (R’}r)”,. there exists f € L,(R"})" with
fllp = ||FHFI;1.(R1) such that (F'|¢) = fRi f-Vodzxforall ¢ € H;/ (R%) [cf. AF03, Theorem 3.9].
Let (fr) C H(R")" be a sequence such that fi — fin L,(R")" as k — oo and let

(Fylg) = /]R fi- Vo = —/Rn v feda+ |

en - frodx’.
n Rn—1
Then Fj, — Fin H;'(R?).
Next, we construct solutions uy = uj + u3 € H2(R") N HL(R?) of the systems
pAuy = div fp in R, poyup = ey, - fr on R,
by using (2.25) with f replaced by — div f;. Then the identity F),v,, = F}, is valid and we have
u, € Hy(Rh) and [|[Vuy — V|, < C||Fy, — Fk/Hﬁ;l(Ri). Therefore Vu;, — Vu in L,(R") for
some u € H;,(R’}r) and this limit satisfies F),v, = F'
(iv) The uniform estimates again follow from a scaling argument as on page 45. O
2.2.3. Perturbed model problems. We next solve the transmission problems
—div(pVu) = f inQ\X,
po,u =g  onodfd, / uVu-Vodr = (F|¢p) forall ¢ € H;,(Q),
[uo,u] =h1 onX ’ “ '
Hv ! ’ [u] = he on X.
[u] = ha onX.

(2.26)

for the bent interface case 2 = R* and ¥ = ¥, = {(2/,w(2)) : 2/ € R""!} with variable
coefficients py: Qy — (0,00), where Q. = {(2/,2,,) € R" : x,, = w(2')}. In the definitions
of the norms of Ef and IF’C“C)\ from page 40, we let ) := O, (A~ Y/2Q/) and ¥} := 6, (A71/2%),
where ' # () and ¥’ # () are bounded open subsets of R” and R"~! x {0} with C*-boundaries.
The C*-diffeomorphism 0,,: (2, x,) — (', 2, + w(z’)) was studied on page 34.

2.26. Lemma. Let n > 2, up € (0,1}, k € NgU{—1}, and p € (1,00). Then there exists n > 0 such
that for every M > 0 we can find some Ao > 1 such that the operator

(= div(puVu), [pouu], [u]) ifk >0,

A: B{(R"\ By) = Fi (R \ Xu), u e Au = { (Fusu, [u]) ifk =1,

is uniformly invertible with respect to
(i) w e CLHR"1) N CE2= (R 1) with [Vwllyrer < M and [[Vw|los <,
(ii) pe € C(Qux) NWE(Qp) with po < p < pgt, lpllyrsr < M, and sup{|p(z) — pa(y)] :
z,y € Q:t} S 277/
(iii) X € [Ao, 00).

Proof. (i) We first consider the case of constant coefficients u+ € [uo, 1y *]-
(i.a) Transformation to the flat interface. As for Lemma 2.14, we consider the pull-backs

U=uo0®, hy="hyo® (fork>—1),

where the C!-diffeomorphism © = O, : (2/,z,) — (2/,z, + w(z')) satisfies 90, 0~ €
WEFL(R™) (cf. p. 34). We further define

F=f00, h=Q0+|Vu)?h100 (fork>0).
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For ¢ € 7-'[11,, (R™), (f,h1,h2) € F,, ¢ = ¢ 06O, and u € E;!, we obtain the transformed
functionals

<F(f7h1)‘¢> = /R” f¢d1’—/2 higpdo
= [ [¢ldet 90| dx —/ V1 + |[Vol2(hi 0 ©) dda’ = <F(?El)
Rn Rn—1 s
(Fuvuld) = /

R

),

n

uVu-Vodr = / 1[00]” "V - [00]” T Vé|det 00| dx
= (Fpwald) + [ #va- (001001 ~1) Vid

Let Ey and ch, , denote the corresponding spaces on R". Then the maps u +— 7, Ef — B,
(k> —1) and (f, h1, ha) = (f, 1, h2), FE , — ?fc)\ (k > 0) are linear bijections and we obtain
the estimates
Cn, b, M)~ Hlullgy < [[1llgr < C(n, b, M)y,
Clon ko M) (Lol < ICF BTl < Ol MY(F Bl

Here the numbers C(n, k, M) and C(n, k, p, M) are uniform with respect to A € [1, c0) and with
respect to those w € C; >~ (R"~!) which satisfy ||Vw||;x+1 < M. Since 271Vl < [Vl <
2|Vl for ¢ € HL/(R"), the map F — F, defined by (F|¢) := (F|¢) for ¢ € HJ,(R"), is an
isomorphism of H > H(R"), and we have

27| F for F' e H, ' (R").

i ey S Iz ey < 20F 1 g0 @y

(i.b) The transformed problems are given by (cf. p. 35)
Mo — puATu = f+ Pu+ Pu  inR",
[uonu] = hy + Hu on R"1,

[a] = ha on R"1.

Fava=F +Psu  in H,'(R"),
7 [u] = heo on R™ 1.

Here the perturbations P, = P(p,w) and H = H(u,w) are given by
Piu = —uA'w o,
Pyt = p|V'w|?0%1 — 210, V't - V'w,

(piafd) = |

R
Hu = V'w- [uV'a] — |Vw|?[ud,a].

v ([8@]—1[39]—T - 1) Vo da,

Foru € E’; and A € [\, 00) we obtain the following estimates (cf. p. 35).
NI (Pl < AY2C(n, o, b, M) for0 < j <k,
NI (P, < (n C(n, no, k) + X~2C(n, o, k, M)) [llge  for0<j <k,
A
II)\(’“H)/zPﬁHH;l(Rn) < 770(7%#0)”@”@’;:

HHﬂ”W’H‘l—l/P A < (77 + )\—1/2+1/2p) C(?’L, Ho, k7p> M7 )\O)Hﬂnik for k > 0.
p ) A

(')

Therefore a Neumann series argument as on page 36 yields the invertibility of A and the uni-
form bounds in the case of constant coefficients i+ € [po, 1o .
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(ii) For variable coefficients /.+, we proceed as in the proof of Lemma 2.15. We study the
perturbed problems (cf. p. 36)

M—p*Au=f+Pu  inR"\ X,

_ . =1/
[ oyu] = hi + Hou  on X, ’ { Fyrvu = f + Psu  in H, (R ),} |
[u] = ho onY [al = ho on .
— "

where the perturbations P, = P;(u,w) and Hy = Ha (1, w) are given by
Pyu = div((p — p*)Vu),
(Psu|p) = /IR (b —p*)Vu-Vedz,

Hou = [(p* — p)oyu].

These perturbations can be estimated as follows.

HP4UHH£(R"\ZW),)\ < (77 C(n,uo, k) + /\_1/20(7%#07 k? M)) HUHE’; if k > 07

INEFD2 Psull v gy < 1 [l

||H2UHW§+1_1/IJ(ZW),)\ < (77 C(”? Ho, kap) + )\—1/2-1—1/21)0(”’ Ho, kapa M)) ||u||]E’§\ if k > 0.

Again, a Neumann series argument yields the uniform invertibility of A: Ef — F* O

cc A

The solvability of the perturbed model problem (2.26) in case 22 = R™ and Q2 = A~'/2Q)’ for
Y C R" and ¥ = ¥’ = () follows again by considering continuous coefficient functions.

2.27. Corollary. Letn > 2, ug € (0,1}, k € NoU{—1}, and p € (1,00). Then there exists nn > 0 such
that for every M > 0 we can find some Ao > 1 such that the operator

—div(pVu) ifk >0,

.k n k n _
A. E}\(R ) — IFCC,)\(R ), u — AU = {Fﬂvu lf_k _ _1’

is uniformly invertible with respect to p € C(R™) N WEH(R™) with po < p < pg el < M,
and sup{|p(x) — p(y)| : z,y € R"} < 2n,and X € [Xg, 00).

The bent half-space problems (2.26) for @ = R” and Q) = 0,(A\~'/2Q’) with & ¢ R? and
¥ = ¥’ = () can be solved analogously as the bent interface problem, by following the lines of
the proof of Lemma 2.26 and by using the half-space result Lemma 2.25.

2.28. Corollary. Letn > 2, ug € (0,1], k € NoU{—1}, and p € (1, 00). Then there exists n > 0 such
that for every M > 0 we can find some \o > 1 such that the operator

(=div(uVu), pdyu) ifk >0,

A: E¥(R™) = F* (R Au =
)\( 0.)) — CC,)\( w)? U = U {FMVU lf’k — _1’

is uniformly invertible with respect to
(i) w e CLHR") N CF2=(R™1) with [Vwllyrer < M and [[Vw|los <,
(ii) p € C(RE) N WEF(RY) with po < 1 < iy llyyn < M, and sup{lu(x) — u(y)| : 2,y €
R} < 2m,
(iii) X € [Ao, 00).

2.2.4. The weak transmission problem in bounded domains. We next consider the prob-
lems (2.26) in bounded domain 2 C R™ with Cl—boundary 09 and C'-interface ¥ C € and
variable coefficients p € C(€4). We first study uniqueness of weak solutions.
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2.29. Lemma. Let Q and X be bounded, let jix € C(Qy) with inf py > 0and p € (1, 00). Then every
solution u € H () of the problem

/ uVu-Voder =0 forall p € D(R")
Q
is a constant function.

Proof. The proof of this lemma is easy for p € [2,00), since we can choose ¢ = u, the complex
conjugate of u. For p € (1,2) we employ the localization procedure of [SS92, Lemma 3.9].

(i) First, we assume that Vu belongs to Lo(Q). If p > 2, then u belongs to H3(Q2) by the
Poincaré-Wirtinger inequality. By choosing ¢ = @ € H3(f2) we obtain [, uVu - Vudz = 0 and
hence Vu = 0 in €2, which yields the assertion. In the case p € (1, 2), we let

(2.27) 1/gj :=1/p—j/n, je€{0,1,... k},

where k € Ny is chosen such that 1/¢; < 1/2 < 1/gx_1. From the Sobolev embedding theorem
we obtain the embedding ng () = Lg;,,(Q). For j < k we have Vu € Ly(§2) — L, () and
therefore induction yields u € H, (Q) < Lg,,,(Q2) < L(). Hence u belongs to H; () and
we again obtain Vu = 0 in €. It remains to prove that Vu € Ly(Q2) for all u € HI}(Q) with
Fuvu = 0.

g (ii) Localization set-up. Lemma 2.9 implies that for every given n > 0 there exists 79(n) > 0
such that for all 7 € (0,79(n)] we can find an (7, 7)-localization set-up (Uj, ©;,w;)jer(n,) for
O\X. Let] =L1ULLUI3,0;: x — pj +Q;z, Q;, and ¥; have the same meaning as in the proof
of Theorem 2.18 on page 37. We may also assume that the sets (0;(B,4-x1))jer cover Q with k
from step (i).

There exists pig € (0, 1] such that gy < pt < pg Lin Q \ X. We now choose the number
n(n, po,p) > 0 such that Lemma 2.26 and Corollaries 2.27 and 2.28 are applicable. Then there
exists r;,(n) > 0 such that |4 () — p+(y)| < 2nforallz, y € Q4 with |z —y| < 2r,(n). We define
local coefficient functions p1; as on page 38 and obtain [|uj,+ — 4} 4[|« < 7 for some constants
;4 and all j € I(n,r), provided that r € (0,70(n)/2] N (0,7,(n)/2]. Now the aforementioned
results are applicable and yield suitable numbers A\g > 1 and C' > 1 such that

IV(A; F))lL, ) < CllFill gr1(q, for Fje HN (), j €1, X € [Ag,00),

(iii) We now show that Vu belongs to L2 (2) by refining the argument in step (i). Let j € I3
be fixed. We define the numbers ¢; (I € {0,1,...,k}) by (2.27) and letr; := r27t (1 € {0,1,...,k+
1}). We further choose ¢; € D(B;,) such that 0 < ¢y < 1and ¢; = 1 on B,,,, C R". For every

v E 7-'[;,, (R™), we let v :==v|p,, — (U)Bm. Since (yyv;) o ©; ! belongs to 7-'[[1,, () and since 0,0 is
orthogonal, we obtain '

/n 15V (uwo ©;) - V() da = /QMVU -V ((shrvr) 0 ©;1) da = 0.

With @ := u o ©, this yields

(2.28) / ;i V() - Vo doe = / wuNyy - Vo dr — / i Vu - (vyViy) de.
n Brl BT‘Z
From (2.28) we shall deduce that ¢yu € H, (}l (R™) forl € {0,1,...,k} by induction. For [ =0
the assertion is valid since ¢y = p. Next, suppose that 1;_;u belongs to H, ;F L (R™) for some
l e {1,....k}. With¢y_; = 1on B,, = B,, |, this impliesw € H,  (B,) < Lq(B,,) by
the Sobolev embedding theorem. With the dual exponents ¢;, defined by 1/q) :== 1 —1/¢ =
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(R™) C Ly

91>

1/p" +1/n (I € {0,1,...,k}), we obtain v € %;,(IR{") C 7{31;710«: loc(R™) from the

Poincaré-Wirtinger inequality and the Sobolev embedding theorem. Hence

< HujﬂHqu(Brl)valHOOHVUZHLq;(Brl) < Ci(puw, Y)[[Vurl L, me),

/ p;uNyy - Vopdx

1

‘ /B V- (09 do| < sl 1ol ()| Velle < Caliu, v0) [Vl o
7'l

Since the map v — v; + K, 7—[11), (R™) — H;, (By,) is surjective, the identity (2.28) and Lemma
2.26 imply V(i) € Lg(R") and hence ¢yu € H,(R"). Induction therefore yields ¢, u €
Hy (By,) < Hy(By,) and hence @|p _, , € Hy(B, o-k-1). Inthe case j € I; U I we proceed
analogously, by using Corollaries 2.27 and 2.28 instead of Lemma 2.26. Since the open sets
©;(B,o-#-1) cover Q, we obtain u € H3(2\ X). Then step (i) yields the assertion. O

We are ready to prove that the weak transmission problem (2.2) has optimal H, -regularity.

Proof of Theorem 2.3. The cases 2\ X € {R",R", R"\ 3} were solved in Lemma 2.26 and Corol-
laries 2.27 and 2.28. For the remaining case we follow the proof of [SS92, Theorem 1.3].
(i) We prove the weak a priori estimate

(2.29) 16Vl L) < ClFuvull g1y foru € Hy ().

Assume that it is not true. Then we find a sequence (uy) C H;(Q) such that
L= [|uVurllp,) = bl Fuvull 1) forallk € N.

We may assume that [, uy, dz = 0, so that the sequence |lux| 1, (o) is bounded by the Poincaré-
Wirtinger inequality. Since H}(Q2) is compactly embedded into L,(f2), we may also assume
that the sequence (uy) converges in L,(2) to some limit u € L,(12). Furthermore, the space
Z:={v e H;(Q) : Jovdx = 0} with norm [|uV-||1, (@) is isomorphic to the closed subspace
uVZ of L,(Q)" and therefore Z is reflexive. Hence we may even assume that u belongs to Z
and that (uy) converges weakly to u; that is, on the one hand F),v,, — Fyv, in ﬁ; 1(Q), but
also

(2.30) lim | puVug- fdx= / pVu- fdx  forall f e Ly(Q)".

Q Q

k—o0

Thus, F),v, = 0 and hence Lemma 2.29 implies that Vu = 0.

Next, as in step (ii) in the proof of Lemma 2.29, we consider an open covering (U;) for
with j € I = I; U I, U I3, and rigid transformations ©,: B,.(0) C R® — U; C R". We assume
that the smaller sets ©(B,, ;) form an open covering for Q and choose functions 1; € D(B;)
with 0 < ¢; < land®; = 1 on Brj /2- The weak a priori estimates for the model problems in
Lemma 2.26 and Corollaries 2.27 and 2.28 imply that there is a number C(n, i, p,) > 0 such
that

IV (¢ uk © ©5)l L, 0,) < ClFL,vw; woop g1, forjel, keN,
where the height functions w; € CLHR"™!), j € I, U I3, satisfy ||[V'wj|lc < 1 and the local
coefficients fi; satisfy ||p; — W loo < 1 for some locally constant functions -
Let j be fixed and put B := B,, uj, := u; o ©;. We choose a sequence (v;) C 75[}10,(3) with
[ vk de =0and ||Vuy|| L,,() = 1 which converges strongly to some v in L, (B) and satisfies

_ 1 .
‘/B ujV(wjuk) -V dr| > d, — E7 with d, 1= HFMV(%ﬂk)”ﬁ;1(Qj).
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In order to show that dj, — 0, we compute

/ ,ujV(i/Jjﬁk) -V dx
B

— [ wvae Ve [ v Vods - [ g9 @5) d.
B B B

Here the first summand on the right-hand side vanishes for k& — oo, which can be seen by
transforming the integral from B to ©;(B) with the orthogonality of 0,0; and by using that
Fyvu, — 0in I:Ip_ 1(©2). The second integral vanishes, since uj, — 0 in L,(£2) and since ||z o,
IVYilloos |VUr|lp, [[V'wjlloc are bounded. Finally, since ||vk||,y is bounded, we may use (2.30)
and Vu = 0 to conclude that also the third integral vanishes.

We have shown that limy_,o F v uoe;) = 0in H’; 1(Qj) for each j. The weak a priori
estimates for the model problems therefore imply that limy_,~, V(¢ ux, 0©;) = 0in L, (B,)" for
every j. With ¢); = 1 on B, /5 and since the sets Gj(B,,j /2) cover Q, we conclude that Vu;, — 0
in L,(€2). This is a contradiction to ||upVug||, ) = 1. Therefore estimate (2.29) is valid.

(ii) Existence for given F' € I:IZj L(Q) and hy = 0. We employ the strategy from [SS92, Lemma
3.1]. Since the space VH;,(Q) is closed in L,(12)", it follows from step (i) that X := {F,v, : u €
’H})(Q)} is a closed subspace of flp_ 1(Q2). We assume that X # pr_ 1(Q) and seek a contradiction.
The Hahn-Banach theorem yields a non-trivial functional J & (H > L(Q))*\ {0} such that J|x =
0. Since closed subspaces and quotient spaces of reflexive spaces are again reflexive, we may
identify (H,(Q))* = (H} ()™ = H)(Q). Hence there exists a ur}ique ¢ € HL(Q) with
IVollL,, @n = HJHH;(Q)* # 0 such that (J|F) = (F|¢) for every F € H,!(Q). Using assertion

(i) for p’ instead of p and considering only the functionals F),v,, for u € H})(Q), we see that

| [ uV @ - Vudz| Jlx|Eyou
IVOllL, @ < sup Jo s —  sup W
orucri@)  I1VullL,@ ozuciin@ 1VullL,@

=0.

This is a contradiction to V¢ # 0. Therefore the map u — F),v,, H}?(Q) — }AIp* L(Q) is surjective.

(iii) Existence for given F € H,'(Q) and hy € Wy~ /P()). We construct u = v + w as fol-
lows. Let £, € B (VVp1 —/p (2); H; (Q4)) denote a co-retraction for the trace operator H; (Qy) —
W, /P(S). Then we define v, := £, hy and v_ = 0, so that v € H}(Q\ ) with [v] = hy. Fi-
nally, we determine w € H}(f2) as a solution to [, uVw -V dx = (F — F,y,|¢) for ¢ € HI},(Q).

Then u = v 4+ w solves (2.2) and hence u — (F,vy, [u]) is surjective. We conclude that the map
u > (Fyvy, [u]), E7' — F~! induced by the weak transmission problem (2.2) is invertible. [

2.2.5. The strong transmission problem in bounded domains. In order to solve the strong
transmission problem (2.1) in the case A = 0, we employ the following fact.
2.30. Proposition (cf. [ENOO, Corollary 1V.1.19] and [Lun95, Remark A.2.4]). Let A: D(A) C
X — X be a densely defined linear operator in a Banach space X with compact resolvent. Then o(A)
consists only of poles of X\ +— (A — A)~! with finite algebraic multiplicity. If X € o(A) satisfies
N(Ag— A) = N((Mo — A)?), then X = N(A — A) @ R(\ — A) as a topological direct sum.

Proof of Theorem 2.2. The result for the cases Q\X € {R™\X,,, R?, R"} was proved in Lemma 2.26
and Corollaries 2.27 and 2.28 and it remains to consider a bounded domain.

(i) Homogenous boundary conditions. We define L, o(Q) := {f € L,(Q) : [, fdz = 0} and,
for k > 0, we consider the operator

L=—div(uV:), D(L)= {u € HSH(Q \Y): pdyu =00n9Q, [ud,u] = [u] =0on E} :
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Theorem 2.18 implies that A — L: D(L) — HE(Q\ ¥) is invertible for [A| > Ao and hence the
resolvent set of L is not empty. The resolvent is also compact. From Lemma 2.29 we infer that
N(L) = K and an integration by parts shows that R(L) C Hfj(Q \ X) N L,o(2). We also have
the topological direct sum L,(2) = L, () @ K where the projection onto L, ((12) is given by
u— u — (u)g where (u)q = Q™! [, udz denotes the mean value of u in €. Hence also

HYQ\ %) = (H;j(sz \ %) N LP,O(Q)) oK.

In order to apply Proposition 2.30, we let u € N(L?). Then Lu € R(L)N N(L) C L,o(?) NK
which yields Lu = 0 and hence u € N(L). Therefore we also have H}(Q\ ) = R(L) ®K which
yields R(L) = H;f(Q \X)NL,o(2). Thus, the operator L: D(L)NLyo(2) — H]’j(Q \E)NLyo(2)
is therefore bijective and bounded and therefore invertible by the closed graph theorem. As
a consequence, the strong transmission problem admits at most one solution within H]’,““(Q \
Z) N LILO(Q)'

(ii) Existence. For given data (f, g, h1, h2), we construct a solution u = u' + u? to (2.1), by
solving the subproblems

Aup — div(pVuy) = (f)g  in€Q, —div(uVug) = dui + f — (f)q InQ,
uo,u1 = g on 0f), 1oy,ue =0 on 02,

(oL ur] = hy on¥, [’ [no,u2] =0 on X,

[ui] = he on . [ue] =0 on .

The first problem is solvable for some sufficiently large A € [1,c0) by Theorem 2.18. Then the
compatibility condition on (f, g, h1) implies (Au;), = 0 and therefore A\u; + f — (f), belongs
to HY(2\ $) N Ly 0(€2). Hence the problem for u? is solvable by step (i). The proof of Theorem
2.2 is complete. O



CHAPTER 3

The linearized problem

We investigate the linear problem (PL), which we restate as
( pou— pAu+Vr=f, inJxQ\X,
divu=fg inJxQ\X,
[ul] =0 onJxZX,
Ly(u,h;uy) =g, onJx X,
(3.1) Ly(u,m hjuy) =gy onJ xX,
Oh—u-vs =g, ondJxX,
ulgn =0 on J x 01,
hli=o =0 on >,
ulg=0 =0 IinQ\X.

Here we consider a bounded domain €2 C R" (n > 2) with smooth boundary 9¢2 and compact
smooth interface ¥ C € such that 2 \ ¥ consists of disjoint open sets {2, and Q_ with 0, N
0Q_ = 3. We choose the unit normal vector field vy = vpn_ = —vgq, that points into Q.
Given two functions ¢4 on Q4, we put ¢ := ¢, x4+ + 1_x_ with the characteristic functions
x+ of Q4, and we define the jump [¢] := 91|y — ¢¥_|s. In this way we define the density
p = p+X++p—x— and viscosity i = p4 x++p—x— with positive constants p+ and y4.. Moreover,
J = (0,T) is a bounded interval with 7' € (0,00) and u,: J x ¥ — R" is a possibly non-
tangential vector field. In a tubular neighborhood B,(X) C Q of ¥, there exists a nonlinear
projection I : B,.(3) — X and we decompose the velocity field u into

u=v+wvgoll, v:=[Pgollu, w:= (vgoll|u).
Analogously, we let u, = v, + w,vs, on X. Then the operators L, and L,, are defined by

Ly(u, h;uy) == —,usﬁgv — AV divyg v — [ud,v] — [p]Vsw + (As + ps)wi Vs Ash,
Ly(u,m, hyuy) = —tr ([(As — ps)Hy + 2ps L] Vyv) — 2[pd,w] + [7]
—tr ([0 + (As — ps)(divy vs — 2Hsw,) + 2u5(Ds (vs) — 2w, Ly )|V h) .

Here the surface shear viscosity 1, is a positive constant and A, (the surface dilational visocosity
if n = 3) is a real number. Moreover, we employ the surface gradient Vsw = 7/0;w, the
surface divergence divy, u = 7I -0ju, the scalar Laplace-Beltrami operator Axh = divy, Vxh, the
tangential Laplace-Beltrami operator ﬁgv =g k%j %kv, the Weingarten tensor Ly, = —Vyxvsy,
and the (n—1)-fold mean curvature Hy, = tr Ly,. More information on the differential geometric
quantities is given in Appendix A.

In this chapter we prove that problem (3.1) has optimal regularity in the sense that, for suit-
able Banach spaces oE and (F, the solution-to-data map of problem (3.1), given by (u, 7, h) —
(fu, fas Gvs Gws gn), oE — oF, is a topological linear isomorphism. To this end, it is crucial to un-
derstand the situation of a flat interface ¥ = R x {0} = R" in the whole space 2 = R"!. For
the corresponding model problem (MP) we prove optimal regularity in Section 3.1 (see The-
orems 3.1 and 3.14). Next, in Section 3.2, we prove optimal regularity for a perturbed model
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problem with a bent hyperplane and variable coefficients (see Theorem 3.16). Finally, Section
3.3 contains the main result on optimal regularity for problem (3.1) in a bounded configuration
(see Theorem 3.21).

3.1. The interface conditions

In this section we prove optimal regularity for the model problem (MP) that corresponds to
problem (3.1) in the situation of a flat interface ¥ = R" x {0} 2 R" in the whole space = R"*!
(n € N) with (fy, fa) = 0. We restate this problem as

p(T+0)u— pAu+Vr =0 inJ x R*1
divu=0 inJ x R™"
[ul =0 onJxR",
—psAgv — AV divg v — es[pVw] — c6[poyv] + e1VaAgh =g, onJ x R”,
—tr((ca + 2C3) V) — 2[udyw] + [7] — tr((co + C4)V2h) = g, on J x R,
(T+0)h—w=g, ondJxR"
hli=o=0  onR",

ulg=o =0  inR""L

(3.2)

In this section we let p1, 14, 0, and s be positive constants, \; be a real number, 7 € [0, )
be a constant, J = (0,T) or J = (0,00), and R"*! = R” x (R\{0}). The elements of R"*! are
denoted by (z,y) with z € R” and y € R. The parameters c;, ¢, C3, C4, ¢s5, ¢, and ¢, are
defined by

c1:= (As + s) Oy, e = (As — ps) tr g,
(3.3) Cs := psvp, Cy = 2ps(Ipy — 20,91),
s, cg € {0,1}, Co =0+ (As — ps) tr(Ipy — 20,91,
and depend on
9= (Vy,V1,9py) ford, € R, 9y € R™*™ Ip, € R"*™.

In Section 3.3 we will relate these parameters to the normal reference velocity w,, the Wein-
garten map Ly, and the tangential rate-of-strain tensor Dy (v) in problem (3.1). We further
abbreviate

Vg i=tr(0r), Vg =tr(¥py), Vpu:=0py — YV, Vau:=tr(Vpy) = Vap — Vu?m,
and we define

do(py) == 0+ (As — pis) trIpy + 2, min [€]726T [0p,)€  for Ip, € R™*™.
£€R™\{0}

Then we define the following parameter set for problem (3.2) and a given number M > 0:
B4)  Pu={0= 0w, V,9py) ERX R x R™" : |9| < M, do(Ipy) > 1/M}.

Our main result on problem (3.2) reads as follows, where the solution space is denoted by
(35) oE = oE(J,7) := {(u, 7, h) € 0Eup,w(J) X 0Er [x] (J) X 0En(J) :
p(T + 0 )u — pAu+ Vr =0, divu = 0}.

Here the relevant function spaces are defined in Figure 3.1 on the next page.

3.1. Theorem. Let \s + ps > 0,¢c5 € {0,1},¢c6 =1, J = (0,00), p € (1,00), and M > 0.
Then there exists T € (0,00) such that the solution-to-data map (u, 7, h) — (gv, guw, gn), oE —
0Gy X 0Gy x oGy, of problem (3.2) is uniformly invertible with respect to ¥ € Pyy.
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0By i= {u € oHy(J; Ly(R™ )™ ) 1 Ly (J; Hy (R™)™1) : [u] = 0},
0B, 1= oW V/2P(J; Ly(R™)™) N oW/ 2722 (J; HE(R™™) 0 Ly (J; WE—YP(R™)™),
0B := oW, ™2 (J; Hy (RY) (1 Ly (J; Wy~ P(R™)),
0Ewv,w = {u = (v,w) € 0By : v|y=0 € 0Ev, w|y=0 € 0Ew},
Er = Ly(J; HY(R™M)),
0Er ] = {7 € Er : [7] € 0Guw},
0By i= o W22 (J; HY(R™)) N o Hp (J; W2~ P(R™)) N Ly (J; WP (R™)),
0Gy = oW, 73 (J; Ly (R™)™) N Ly (J; W P (R™)"),
0Gu 1= oW, 2P (T HY(R™)) N Ly(J; Wy~ /P (R™),
oG = oW, V2 (J; Hy(R™)) N Ly (J; WP (R™)).

<

FIGURE 3.1. Function spaces ¢E... and (G... for problem (MP).

This theorem is a central result of this thesis, as it provides the basic functional analytic
framework for proving that the linear problem (3.1) has optimal regularity, and these function
spaces are also appropriate for proving that problem (T) is locally well-posed. We can easily
conclude the following result on bounded time intervals.

3.2. Corollary. Let A\s + pus > 0,¢5 € {0,1},c6 =1, 7=0,p € (1,00), Tp € (0,00), and M > 0.

Then the solution-to-data map (u,m, h) — (gu, Guw, gn), 0E(J,0) = 0Gy(J) X 0Gw(J) X 0Gp(J)
of problem (3.2) is uniformly invertible with respect to 9 € Pyr and J = (0,T) with T € (0, Tp).

Proof. As in [PSS07, p. 720] and [DK13, Remark 1.70], we consider the multiplication operator
(Mru)(t) = e™u(t) foru € Lyjoc(Ri; X), 7 € R,
with exponential weight t — e™. Then it is easy to verify the operator identities
M =M_r, My =M. (7+ ).
Hence we have 0y = M (7 + 0y) M_.
Theorem 3.1 yields a number 7 > 0 such that the solution-to-data map
Soort (U, T h) = (gus Guw, gn),  oE(Ry, 7) = 0Go(Ry) X 0Guw(Ry) X 0Gr(Ry)

of problem (3.2) is uniformly invertible with respect to ¥ € Py;. By Lemma B.9 on page 148,
there exist linear extension operators £;;: ¢G;(J) = ¢G;(R4) (j € {v, w, h}) that are uniformly
bounded with respect to T' € (0, o0). The data-to-solution map for (3.2) on J is therefore given

by
(90, Gw, gn) — (u, 7, h) = (MTSO_O%TM_T (€190 Egwuw, gJ,hgh)) }[O,T} )
and its asserted mapping properties can be easily checked. O

The proof of Theorem 3.1 is prepared in the following subsections and given on page 68.
In Section 3.1.1, we apply the Fourier-Laplace transformation to problem (3.2) and express the
transformed solution (i, [#], h) by means of Green’s functions and the values of (i, 8, a4, 7, h)
at y = 0. The latter satisfy a linear system (3.12) for given unknowns (g, Ju, gn) whose deter-
minant (3.13), which we call the interface symbol of problem (3.2), does not vanish. Moreover,
the system (3.12) fits into the theory of Denk and Kaip [DK13] on N-parabolic mixed order
systems, as will be shown in Section 3.1.2. By applying their theory in Section 3.1.3, we ob-
tain suitable function spaces on J x ¥ such that the map (u|x, Oyu+|s, [7], k) — (9v, Guw, gn) is
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uniformly invertible with respect to the parameter ¥ € Pj. In Section 3.1.4, we employ an ap-
propriate extension technique as in [DHP03; DHP07; DK13] for proving that (u, 7) satisfy the
desired interior regularity conditions. Finally, inhomogeneous bulk data (f,, f4) are resolved
in Section 3.1.5 by using optimal regularity of elliptic transmission problems from Chapter 2
and of the Stokes problem in a half space from [DHPO01].

3.1.1. The interface symbol. We first adapt the computations of Denk and Kaip [DK13,
Section 4.7] and derive the linear system (3.12) for the transformed interface values of (u,, h).
Assume that (u, 7, h) is a solution of problem (3.2), which can be transformed with the Fourier
transformation = ~ §, V, ~» i and the Laplace transformation ¢ ~» A. The transformed

functions are denoted by u(\, &, y), 7(\, €, y), and h(\,€). For j € {1,2}, we define

ﬁj()‘7 ga y) = ﬁ()‘v éa (_1)jy)7 ﬁ.j(A7 67 y) = 7%()‘7 fa (_1)jy) for Yy > 0.

The transformed tangential and normal velocities 9; and w; are defined analogously and we
let p2 := p, p1 := p—, and so on. We consider the parabolic case A € ¥4 = {\ € C: |arg A\| < ¢}
with ¢ € (7/2, 7). Since 7 + ¥4 is a subset of ¥4 for 7 > 0, we may replace 7 + A € 7 + X4 by
A € ¥y in the following computations.

The Fourier-Laplace transformed equation of [u] = 0is [¢] = 0, and hence s = 4y, 02 =
01 =:9,and wy =y =: waty = 0. Forj € {1,2}, A € £4,{ € R", and k € {3,4}, we define

wilX &) = (pju; A+ 162, en(§) = 1€172¢ T Cré.

Then (3.2) is transformed to the following system.

(3.6a) piwiiy — pidya; + (i€, (=1)'9,) T#; = 0,
(3.6b) i€ - b5 + (=1 9y = 0,
(3.6¢) [4] = 0,
(3.6d) (15117 + A€ @ €) D — c6 (20D + pdyin) — es[u]id — cri€lé*h = g,
(3.6e) — (c2i€ + 2C5i8) - © — 2 (a0t + p10ythy) + [7] + (co + ca(€))IELPh = Gu,
(3.6) Y —

Equation (3.6a) can be eliminated with the following result on Green’s functions
ki(y,s) :=ke(y,s;7) = (e Wl e 7W+)) /27 fory,s >0, 7 € C\ {0}.
3.3.Lemma. For € Cand f € C([0,00)) with (s — e~ "*f(s)) € L1(0, 00), the functions
vily) = e = [ hilys)(s)ds fory =0
0

solve the initial value problems

1 > —TS
Oy — vy = f, v4(0) = p— T/o e " f(s)ds, Oyvi(0) = —Tp,
8511, —72_=f, v_(0)=p, Oyv—_(0) = —Tp —/0 e " f(s)ds.
Proof. These assertions can be verified easily. O

Consequently, equation (3.6a) can be eliminated when we represent the transformed func-
tions (9,1, 7) in terms of unknown transformed functions p;(\, &), ®3(), €), and ®4,(), €) as
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follows:
(3.72) (0, & y) = Bi(X e,
B76) o0& = OGS — [T (s, ) SRS g
0 Hj
A 00 —1) 047
679 &) = OO~ [T (s, g) TG 4
0 J
These functions satisfy the following interface conditions.
(3.8a) jly=0 = Py, [7] = p2 — p1,
. . X - . 5 iEP;
(3.8b) Vjly=0 = Pp = P2 =: D, y0ily—o = —w; Oy — ——L
J‘y Yy ]’y J Mj(wj+|§‘)
.. —1)\&lp. A
(3.8¢) ﬁ}j‘yzo =) + (=1) |£|p] ayﬁ}ﬂy:o = —qu)gu.

pjwj(w;y +1€1)°

We employ the abbreviations o := pjw;(w; + [£]) and Q4 := a1 + aa. Then, with p; = po — [7],
Wa|y—o = W1|y=0, and (3.8c), we represent p; and p, as

(3.9) p; = E'lgj (@5, - #2) + (_;z)jaj [#].

Hence the transformed functions w; and d,9; are given by

1 b=y = 2282 4 Mgl [3
(3.10a) wyp = wg = Q. + Q. Q+[[ 7,
L w2y aowii oy - wiig7]
(3.10b) Byin = 2 oL — w1 P, + ,
S O I ] RS
L 0qwaif sy Wil o - woil[7]
(3.10¢c) Oyl = o — O, —wady — .
VAT Q4 1¢] ’ Qy

It remains to formulate a linear system for the unknowns d,, @%U, @%U, ﬁ, and [#]. We abbreviate

QO = Cel1w1 + Celawr + ,U«s’é“Q?
Lq}u 1= copiw102 + coplowaay — cslu]|€le,
L%U 1= —copiw1g — coplawaay — cs[u] €|z,

Lq = CelU2Wy — Col1Wl — 05[[/1/]”5’

Then equations (3.6d) to (3.6f), (3.9) and (3.10) yield

/ fL ZfLw 1 Zqu . 27 .
(3.11a) (Qidn +AsE ® €) o, GEN w T €0, ol [[7r]] c1i€|€|*h = gy,
(3.11b) — (ci€ + 2C5i€) - By + 2p0wo P2 + 2p100 L + [[Tr]] + (o + 1) |€]Ph = Gu,
(3.11¢) Ay - 222 - QgL ﬂ[{ [ = dn.

O, v Oy O



58 3. THE LINEARIZED PROBLEM

Consequently, system (3.6) becomes

- e LZiE Lt 112 €7 a1 [
Q/In - )\Slg ® /Lf Q+‘Z§-| Q+|Z§‘ _012€’£| qullj N v g’U
Q€T —wo 0 0 0 2 0
(3.12) i€’ 0 w1 0 0 qﬁv =10
I e R A L
| —coi€ T — 206703 2pown 21wy (co 4 ca)|€)? 1 | L7 | 9w |
L(X8)
In order to compute the interface symbol det £(), §), we
(i) subtract row n + 1 from row n + 2,
(ii) add cg - (row n + 1) to row n + 4,
(iii) add Asi§ ® (rown + 1) torows 1,...,n,
(iv) add -~ 1T - (rows 1, ..., n) torow n + 1, and
(v) add 2~ 1i¢TC3 - (rows 1, ..., n) to row n + 4.
In this way we calculcate
det £(\, €)
-Q’In * * * * ]
&2 (L3, €12 Ly, [4s L 2
0 —wr+ i (g —den) Koty CR A
0 w2 w1 0 0
= det _o _o _
0 o O A Oy
(22 —ca)w 2w (cotea)lef? 25 Lq|€[2
o ¢l
_ 0 72\&55% (Qﬁ,ﬂ ,Asm) —2'55‘72,63 QLETEI 72c1§23,\£|4 1— =58 ]
—wa 'y + L2[E] = Aswa2y €7 L[] —c1g)* Lgl¢l?
Q/n—2 w2 w1 0 0
= det - - A —¢]
2
0
(2/,1,2702)&)2(2/&]_;_ 2,“41‘4‘)19/Q (CU+C )‘5|QQ/ ’
L 22 g+ 2 scawn g2 CocsLllel  2ciegielt Y+ 2ealalél’]

Here an asterisk * denotes a non-specified entry. The remaining (4 x 4)-determinant can be
calculated with the software Maxima [Max] and we refer to page 173 in Appendix B.5 for the

source code. Therefore the interface symbol can be written as

(3.13)

jump [¢] := 12 — 11, and let

d(ﬁ) =Co + 219wc3(§> + 04(5) + Ve
=0+ ()\s — Ms)(ﬁdv — 219H79w)

— 20, |€|72i€ T [us0L]i€ — |€]720E T 205 (9py — 2000L)iE + (Ns — pis) 0wV
- MS)(ﬁdv - 79H19w) + |§|_2§T wwﬁL + 2291”2#3(191% - 19w19L)]§

=0+ ()\s
=0+ ()\s - Ms)ﬁdu + 2#5’6‘72£T wDu}f

det L(,€) = —wi (X, wa (X, 2 (N TN " PN, €),
where the symbol P(), €) is defined as follows. Define the mean value (¢) := (1 + ¢2)/2, the
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Then, with 8 := \s + ps, the symbol P(\, §) in (3.13) is given by

P(X, &) = Bsd(§)I€]° + 2(u) (coco + cacs) é]*
+en (] = [ull€]) 1€
+ (2c6¢o (pw) + (293 + c2)es [u] A — [u]PesA + 2eace(pw)) [€]°
+ (4es{pw)? + 2cop 2 (0?) + des{pPw) €] + (cs[u] — eaco — 2es06) [ue][€]) M€
+ 2085 ({pw?) + {uw)|€]) Al
+ 4eg () (uw) M.

Here the underlined terms are the principal parts as we will see in the next section.

3.1.2. Invertibility of the interface symbol. Our goal is to show that £ is an N-parabolic
mixed-order system in the sense of Definition B.77 on page 168. Moreover, since our localiza-
tion procedure will require uniform invertibility with respect to the reference velocity u, = v, +
wyvs, and Ly, we will also study the dependence on the related parameters ¢ = (¢, V1, ¥py) €
Py First, we show that the interface symbol det £ of problem (3.2) is an N-parabolic symbol.
To this end, we replace

i§ vz € BYs, &~ |z|l- =V—2-2%,

and we define the complex (n + 4) x (n + 4)-matrix

L2 2 L~ 2 7
QI, — Az ® 2 o o —c1(09)z]z]% Lo~
2T —Wwo 0 0 0
(3.14) (>\ z; ) = 2T 0 w1y 0 0
0 - - vk
[ —c2(0)2T —22TC5(9) 2pown  2mwr o (V|22 —2TCs(9)z 1 |

We replace the functions d(£) and P(),¢) as

d(z;9) = 0 + (Mg — ps) tr 9py + 2us|2| "%z [Opy]iz  with cj(z;0) := —]z|_2zTCj(19)z,
P(X, 29) := Bed(z;9)|2]> + 2{u)(coco (V) + ez 9)ee) |2

+ a1 (9) ( [[/MH - [[M]HZ\—) Ef
(206cg )+ (2e3(2;9) + c2(9))es [ A — [1]PesA + 2¢a(z;9) s (puw)) 2]
+ (deg(pw)® + 206,u1u2<< ) + deg(pPw)z|-) Alz|-
(%[[M]] - 02( )eo — 2¢3(z;9)eo) [uw] Alz[2

+ 205 ({pw?) + (uw)lz]-) A=

+ deg (po?) (uw) M.

It is straightforward to check that P belongs to the symbol class in Definition B.72 on page 166.

Next, we employ the y-orders and y-principal parts of the symbols w;, €, Q4, and P, which
are defined in Definition B.73 and given in Figure 3.2 on the following page. Due to Theorem
B.75, it is sufficient to show that the principal parts of w;, 4, €', and P do not vanish, and
therefore the function d(z;1) should not vanish. Let us derive a condition on the parameter
tuple ¥ € Py which ensures that

(3.15) there is § > 0 such that Red(z;9) > 0 for all z € BXj.
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1 v € (0,2], 2 :y€(0,2],
dn(wy) = {7/2 v € [2, 00]. d () = {7 Dy € [2,00].
5 1y € (0,1],
2 € (0,00], cg =0, 44+~ v €]0,2],
dy(9) 2 €(0,4], ¢ = 1, d,(P)={ 242y :y€[2,00], c6=0,
v/2 iy €[4,0], 6 =1. 242y :y€(2,4],c=1,
5v/2 ty €400, 6 =1
|2]- 7 €(0,2),
Tywi(A, z) = (pj,u,j_lx\ +2)V2 iy =2,
(pjpe; )22 ty € (2,00].
4u)lz2 v €(0,2),
T2 =4 Q4 (z) =2,
2(p) A :7 € (2,00].
1s| 2% v € (0,00], cg =0
, ps)2|* :y€(0,4), 6 =1
PO ZN s mNE e e =1
2<<\ﬁ>>A1/2 (4,00], cg =1
sd(z39)]2[2 7 € (0,1),
sd(2;0)|2> + 485 ()22 v=1,
4ﬁs<<u>>>\|zl4 7 € (1,2),
2B ({nw®) + (pw)lz]-) A2 7=2,
CRUEE Hptvi e (@2.4)
28, () X212 + des(p) (VPN 1y =4,
28: () X° |22 7 € (4,00],¢6 = 0,
Hp) (V)N v E (4,00, c6=1

FIGURE 3.2. The vy-orders and ~-principal parts of the symbols w;, Q4, €/, and P.

It is shown in Lemma B.55 that an estimate C~'|z| < ||z|_| < C|z| applies for z € BX; \ {0}

and 0 € (0,7/4). Moreover, Lemma B.55 yields the following estimates for j € {3,4}.

lej(z:0)] < n'2|C5 (),

|Im ¢ (2;9)| < sin(49)|c;(z;9)|

Hence a sufficient condition for (3.15) is

(3.16)

d (79Du) =0+ ()\ - Ms) tr 79Du + 2N8 mln ’é‘ ZfT [ﬁDu]E > 0.

R™\{0}

Indeed, suppose that dy(¥p,) > 1/M and |¥p,| < M for some M > 0. Then

Red(z;19) > do(Vpu) + 24s (

iz [9puliz
|22

§T[79Du]§
€12

min Re
2€BT5\{0}

) — do(ﬁpu)

£eR™\{0}

for z € Bx; \ {0}, 0 € (0,7/8].
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as 6 — 0. Hence there exists 6 = 0(R) € (0,7/8) such that Red(z;9) > 1/(2M) for all z € BXY.
In view of the inclusion iR™ C BY;, we see that condition (3.16) is also necessary for (3.15).
3.4. Lemma. Let pj, 11, 0, and i, be positive constants and let \s be a real number.
(i) If Bs = As + fs > 0, then for given M > 0 and ¢ € (w/2,m) there exists § € (0,7 /8] such that
P: Y4 x BE§ x Py — Cis N-pambolzc
(ii) Conversely, if P(-,-;1): $4 x BXy — C is N-parabolic for some ¢ € (7/2,7), € (0,7/8], and
¥ € R x R™" x R™ ", then \s + ps > 0 and ¥ satisfies (3.16).

Proof. (i) In view of Theorem B.75, it is sufficient to show that the principal parts of the
symbol P do not vanish, in the sense that

P(\,29) #0 forally € (0,00], A € T4\ {0}, 2 € BEj \ {0}, 9 € Py

First, we choose 6(M) € (0, 7/8] such that Red(z;9) > 1/(2M) for z € Bx; with § € (0,5(M)).
Then Lemma B.55 implies that 7, P (), z;¢) does not vanish for all v € (0,1). Next, let v €
[1,2). Since arg(d(z;v)|z|-) < 56, there exists 51( ) € (0,0(M)] such that |d(z;9)|z|-] >

n=1/4)z|/(2M) for all § € (0,6;(M)] and z € BX;. Hence for some § = §(M,¢) < 6,(M)
w1th 50 + ¢ < m the number Byd(z;9)|z|— + 485 (1) A belongs to X4 \ {0}, which implies that

+P(\, z;19) does not vanish for v € [1,2). In the case v = 2, we write
2y /)\1/2
(3.17) moP(\, 2;9) = 285 (uw) <m>//)\m + |Z|_> Az,

Recall that w;(X, 2)? = pju; ' A+|z|2 belongs to 54\ {0}. Hence we obtain [arg({uw?) /AY?)| <
¢/2 + 26 and |arg((uw) /AY/?)| < ¢/2 + & and therefore |arg({(pw?) / (uw))| < ¢ + 35. By
choosing 6 < (m — ¢)/4, it follows that {(puw?)) / (uw) + |z|— # 0 and then moP(X, z;9) # 0. The
remaining cases v € (2, 00| can be treated similary. Therefore P has non-vanishing principal
parts and hence, by Theorem B.75, it is /N-parabolic.

(ii) To prove the converse assertion, let P(-, ;1) be N-parabolic. Then 7, P(-, ;) does not
vanish for all v € (0, 1) and we conclude that 35 # 0 and d(i&; ) # 0 for all £ € R™ \ {0}. Next,

maP(X,i&9) = (2B:(p)[€1> + 4(p) (ou)A*)N2 £ 0 forall A >0, £ € R™\ {0}
This yields 35 > 0 by using {p) > 0 and {pu) > 0. Finally,

T P(X,i&;0) = ((As + ps)d(i&; D)€ + 28, (u)A) [¢]* # 0 forall A >0, £ € R™\ {0},
and this implies d(:§;9) > 0 for all ¢ € R™ \ {0}, since 35 > 0 and (x) > 0. This in turn yields
do(Vpy) = min{d(i&;9) : £ € R™, |{| = 1} > 0. [l
3.5. Corollary. Let p;, 115, o, and i, be positive constants and let \s be a real number.

(i) If \s + ps > 0O, then for given M > 0 and ¢ € (mw/2,m) there exists 6 € (0,7/8] such that
det £: Ty x By x Py — Cis N—pambolzc

(ii) Conversely, if det L(-, -;¥): %4 x BY; — Cis N-parabolic for some ¢ € (m/2,7),6 € (0,7/8],
and ¥ € R x R™™ x R" ", then \s + pus > 0 and ¥ satisfies (3.16).

Proof. (i) Itis easy to check that wiw»Q2; " satisfies the homogeneity property
(W1WQQ_,’__1)(772)\,7]Z) = (wleQ_T_l)()\, z) foralln >0,

and therefore belongs to the symbol class Sy (X4 x BX; ) with ¢ € (7/2,7) and § € (0,7/8). We

further have Q' = copiwi + copaws + ps|2|2 € Sy (2 x BE;) and P € Sy (Z4 x By x Pyy) if

¢ € (r/2,7) and if 6 = (M, ¢) is chosen as in Lemma 3.4. These symbols have strictly positive
order functions and therefore [DK13, Lemma 3.33] yields

detﬁ = —wleerl Q. p € SN(iqg X Eg X PM)
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(ii) Let det £(-, ;1) be N-parabolic for some ¢ € P and recall that w;, Q:Ll, and ' are N-

parabolic. Hence their principal parts do not vanish and the above representation of det £ and
the identities in Figure 3.2 show that ., P(\, ;1) # 0 for all A > 0 and £ € R™ \ {0}. Therefore
Lemma 3.4 implies that \; + s > 0 and ¢ satisfies (3.16). 0

3.1.3. Function spaces. Next, we construct spaces H and F such that the interface operator

A~

L(T+Dy,Dy;¥): H—=F, (@, @2, 05, h, [7]) = (90,0,0, g1, gu)

is uniformly invertible with respect to ¥ € Py, for every M > 0. Here the operator ﬁ(r +
Dy, D,; ) is defined by the joint functional calculus of (D;, D,,) from Theorem B.70 on page 166.
We note that every component of £(), z;9) belongs to the symbol class S(Z x By x Py) from
page 166 for ¢ € (w/2,7) and some ¢ € (0, 7/8]. From now on we restict our considerations to
the case

cs € {0, 1}, cg = 1.

In order to apply Theorem B.79, we first estimate the y-orders of the components of L.

_max{Z,'y/Q} max{l,7/2} max{1l,7v/2} 3 1-— max{l,'y/Q}_
1 max{1,~v/2} —00 —00 —00
dy(L) < 1 —00 max{1,v/2} —oo —00
—00 0 0 07 1 —max{2,~v}
i 1 max{1l,v/2} max{l,v/2} 2 0 ]

Here the relation < is considered component-wise and an entry —oo corresponds to a vanishing
component of L.
We define the row-wise order functions s; and the column-wise order functions ¢; by

si(y) = =sa(7) =1, t(y) = =tau(y) == max{2,v/2} — 1,
snt+1(7) = sn+2(7) =0, tny1(y) = taga(y) = max{1,v/2},
sn+3(7) == —1, tnt3(7y) == max{1, 7} +1,
snta(y) =0, tnta(y) == 0.
Then it follows that

S si(0) + 3 i(y) = mmax{2,7/2} + 2max{1,7/2} + max{1,7}

= max{2n + 3,2n 4+ 2 +7,2n + 2v, (n + 4)v/2} = d,(det L).

Moreover, for all i, j € {1,...,n + 4}, the function s; + t; is an upper order function for ﬁji.
3.6. Corollary. Let pj, 11, o, and i, be positive constants and let \s be a real number such that \s +
ps > 0. Then for given numbers M > 0 and ¢ € (n/2,), there exists § € (0,7/8] such that the
symbol L: Sy x By x Py — COHI*0+4Y) s g N-parabolic mixed-order system.

3.7. Remark. The preceding choice of the order functions differs from [DK13, p. 223]. In parti-

cular, we take care of the additional entries £i7n+3 (¢ < n) with y-order lesser or equal to 3 and
we avoid the difference max{2,v/2} — max{1,~/2}, which is neither convex nor concave and
hence not an order function.
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I1=0,v€(0,1] [I=1,v€(1,2] [1=2v€(2,4 [1=3,v€(4,00)

ti bo(ti) + mo(ti)y  ba(ts) +mati)y  ba(ti) + ma(ts)y  bs(ti) + ma(ti)y
tp ==ty 140y 140y 140y —1+ 3y
b1 = tpt2 1+0y 1+0y 0+ 1y 0+ 1y
tn+s 2+ 0y 1+ 1y 1+ 1y 14+ 1y
tnta 04 Oy 0+ Oy 0+ 0y 0+ Oy

5 bo(sj) +mo(s;)y bi(sj) +ma(sj)y ba(ss) +ma(sj)y bs(s;) +ma(s;)y
§S]="+++=8p 1+ 0y 1+ 0y 1+ 0y 140y
Sn+1 = Sp+2 0+ Oy 0+ Oy 0+ 0y 0+ Oy
Sn+3 —1+4 0y -1+ 0y —14 0y —14 0y
Sn+4 0+ Oy 0+ Oy 0+ 0y 0+ Oy

FIGURE 3.3. Upper order functions for the symbol L.

Hy = = Hy = LWy ") N Ly(Wo ®) oW #(H2) oWy *(L,)  (for ®,),
Hloiy = Hyeo o= LWy *) N Ly(Wa #) NoWy P (HY) noWy (HD) (for @),
Hoys o= LWy ") NoHL(W) *) oW, % (H2) MW, (H2)  (for h),
Hops o= Ly(Wo P) A LyWe P) noWy  (HY) n oWy % (HY)  (for [x]).
Fy= o= o= LWy ") A LWy %) (Wi (L) NoWi # (L) (for g)
Fuit = Fuya o= LWy P) N LWy #) 1 OWE‘%(H;) N OWE‘%(H;),
Fors = Ly(We )0 Ly(We ) oW () noWy 7 (H2)  (for )
Fuva = LWy ") Ly(Wo Py noWe P (H) oW #(HY)  (for gu).
Here we abbreviate H(W}) := HS(Ry; W) (R™)) and W2 (Hyp ) := W (Ry; Hy (R™)).

FIGURE 3.4. Function spaces for the operator £(7 4 Dy, D; ).

We choose the following parameters and scales for the construction of the spaces H; and F;.

(707’71] = (07 ”7 (71572] = (172}7 (72;73] = (2)4-]7 (737’}/4] - (47 OO],
sy =0, sh =0, sh=1/2—1/2p, sh=1/2—1/2p,
ro=2—1/p, ri=2-1/p, rh =1, rh =1,

Fo(Ko) = Hp(Bpp), Fi1(K1) = Hp(Bpp), Fa(K2) = Byp(Hp),  F3(Ks3) = By p(Hp).

By using the definitions of ¢; and s;, we obtain the representations in Figure 3.3 on this page.
Then we define the spaces H; and IF; by

3 3

HZ’ = m O.F}Sl_f_ml(ti) <Ic;l+bl(ti)> ’ IF] .— ﬂ O-F}Sl_ml(sj) (,C;l_bl(sj)) )
1=0 1=0

In our situation this yields the spaces in Figure 3.4 on the current page. These spaces are ad-
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missible in the sense of Definition B.78 and therefore Theorem B.79 yields the following result.

3.8. Lemma. Let p;, uj, o, and i, be positive constants and let \s be a real number such that A+ s >
0. Then, given p € (1,00), M > 0,and ¢ € (7/2, ), there exist 6 € (0,7/8) and T € [0, c0) such that

~ n+4 n+4
E(T ~+ Dy, Dy; 19) : Hi:l H; — Hj:l Fj

is uniformly invertible with respect to 9 € Pyy.

By restricting the inverse of E(T + Dy, D,; 9) to tuples of the form (g,,0,0, g, gw), and by
using that d;h = gp, + w belongs to the subspace (G, of F,, 43 for g, € ¢G; and w € (E,, we
obtain the following result for the spaces from Figure 3.1.

3.9. Corollary. In the situation of Lemma 3.8, the map
(9vs Guws gn) = (Do, @2, @1 b [7]) " = [L(T + Dt Da; )] (90, 0,0, 9n, gu) |
0Gy X 0Gw X 0Gp, = 0By X 0Ey X 0Eqy X 0Ep, X 0Gyy

is uniformly bounded with respect to ¥ € Pyy.

3.1.4. Interior regularity. Our next goal is to verify the interior regularity conditions
we HYP(Re x R™Y) = HY(Ros L(R™) N LR HX®™Y), 7€ LRy HE(R™))

for the functions v and 7 from (3.7) and Corollary 3.9. We can easily obtain the pressure regu-
larity from the properties of the Poisson semigroup, but for the velocity we need to study more
involved extension operators. The Fourier-Laplace transformed functions 7;, v;, and w; of =
and uly = (v, w) were given in (3.7), where we employed Green’s functions k4 from Lemma
3.3, the Poisson extension symbol e 1€1¥ and the parabolic extension symbol e~ (MY with

wi(A, &) = (pjuj_l(T + )+ [€)Y? forh e Yy, EER™

Here 7 > 0 is chosen as in Lemma 3.8. For computing the integrals in ¢ and w, we let y > 0,
w € C,and n := |z|— € C with Rew, Ren, and Re(w — n) > 0. Then

00 2 p—wly—s| 4 o—w(y+s)
/ ki(y,siw)e™ " ds = / c c e " ds
0 0

2w

_ /y e;wy (ews + e—ws) e ds + /OO ewy;‘:iewe—ws—ns ds
0 w y w

e—wy (e(w—n)y —1 e (wimy _ 1) WY + oWy o—(wtn)y
+

2w w—"n + w+n 2w w+n

+ .
2w(w —n) 2w(w + 1)

From the identites g5, = (7 + 0;)h — w and (3.8c) we infer that
; (=1)7 pje; (w; + [€])
Plugging in these identities into (3.7) yields the representations in Figure 3.5 on the facing page.
In order to prove the interior regularity of the velocity, we employ general extension opera-
tors E[s] induced by an extension symbol s(), £, y) like the parabolic extension symbol e &)y
. e~ WY _e—l€lY

or the Stokes extension symbol WS

W, and W, ;. To this purpose, we first prove the boundedness of certain integral operators by
comparing their kernels with the Hilbert transform. Similar results were established by Denk,
Hieber and Priiss [DHP03, Section 6.4], [DHP07, Section 4], and by Denk and Kaip [DK13,
Section 3.5].

((T—F)\)ﬁ—gh—‘i)zv) .

and apply these to the extension symbols V,, ;, V}, ;,
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Letw;(\,§) = (pjuj_l(T +A) + [€>)1/? and define the extension symbols

(1) igw; e~ — e~ l&ly (—1)igw; e=wY — e—lEly

V’w,’ )\7573/) = ) Vh,' Avéay = ;
i g ek ) = T
e—wWi¥ — o—l€ly |E|e™wiY — wie €l
W’w,' )‘,gvy =Wy Wh,' )\,E,y = 1
]( ) J w]_|§| ]( ) OJJ—‘H
The Fourier-Laplace transforms ;(\,&,y) = a(\ & (=1)y) and 7;(\ € y) =

(A & (—1)y) of u; = (vj,w;) and 7; are given by

0 (A& y) = €YD, (A, &) + Vi s (N & 1)L (A €) + Vi (A &) (7 + VAN, €) — an(A, €)),
Wi (A&, y) = Wi\ &)L, (A, &) + Wi j (L& 9) (T + MDA, ) = dr(A,©),

(A& y) = e (1) pyw;(w; + EDIEIT (T + MR, €) = gr(A, €) — B1,(X,€)).

FIGURE 3.5. The interior Fourier-Laplace transformed velocity and pressure.

3.10. Lemma. Let E be a Banach space of class HT with property («) and let ¢ € (m/2,7) and
d € (0,7/2) such that ¢ + 26 < w. Suppose that the mapping

k: (N z,y,9) = k(N 2,y,9), XgxBI§ xRy xRy — B(F)
is holomorphic with respect to (\, z) for every (y,y) and that
M (k) := sup {|(y + 9)k(X, 2,4, 9)|pm) : A € By, z € BEF, y,5 € Ry} < o0.
With the joint functional calculus for (D, D,) from Theorem B.70 we define
kE(Dy, Dy, y,7) € B(Lp(Ry xR E))  fory, y € Ry, p e (1,00).
Define an integral operator G[k| by

(Glklu)(y) = /OOO k(Dy, Deyy, )ul-, - 9)dy, fory € (0,00), u € CX(Ry x R" x Ry E).

Then G|k] can be extended uniquely to a bounded operator in Ly(R.; L,(R"™; E)) such that
HG[k]||B(LP(R+;LP(R1+1;E))) < OMB)HT (L, @ ))-
Here H'T is the one-sided Hilbert transform on L,(R,.) and the number C satisfies
11 (Pt D)l By (R xrrs)) < Cllfllo forall f € HZ(Xg x BEE).

Proof. The one-sided scalar Hilbert transform

(HTu)(y) = / 49 4o foryeRy, ue Ly(Ry)
o Yty

is bounded in L,(R; ) with norm tan(7/2p) if p € (1, 2] and cot(r/2p) if p € [2, 00) [see MESS].

By applying Theorem B.70 to the family of bounded holomorphic functions {(y +#)k(-, -, v, 9) :

Y,y € Ry} C H™(Ey x BXY), we obtain

GO ez < M) s [~ .

< OMR)HT |y llults -l @nr -

Next, we may rearrange the ¢- and y- variables using Fubini’s theorem:

oo

|u(t,~ 9)|edy

1= ut s I, s, @t imy = 19 = wCon W @, @nie)-

Hence the assertion follows. O
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Next we define the aforementioned extension operators with the Volevich trick (3.18). We
employ the anisotropic Sobolev-Slobodeckii spaces
oWy (J x Q4 E) := oW, (J; Ly(; E)) N Ly(J5 W (O E)).

3.11. Lemma (Extension operators from y = 0 to y € Ry). Let E be a Banach space of class HT
with property (o) and let ¢ € (w/2,7) and 6 € (0,7/8] such that ¢ + 20 < m. Suppose that the

mapping
s: (A z,y) = s(\ z,y), X4 x BE§ xRy — B(E)

is holomorphic and bounded with respect to (X, z) for every y. Then we define S(y) := s(D¢, Dy, y) €
B(L,(R4 x R™; E)) by Theorem B.70 and we consider the operator

3.18)  (Elslf)(y) = SW)(fly=0) = — /OOO (OS(y+9)f (@) + Sy +9)9f(9)) dy, y>0.

acting on appropriate functions f : Ry x R — E, which are specified below. Since E|[s]f only
depends on f|,—o, we may also consider E[s] as an extension operator which maps functions f : Ry x
R" — E to functions E[s|f: Ry x R — E.
(i) Let w(\, 2) := (T 4+ X — z - 2)Y/2 with some T > 0 and suppose that s satisfies
(3.19) sup {|yw()\, z)l_jﬁis()\,z,yﬂ cy >0, ey, ze€ BYY, je {0, 1,2,3}} < 0.
Then the operator E|[s| is bounded in olLI;,%’Q(]RJr X IR’}FH; E). Hence, considered as an extension operatot,
E[s] is bounded as
Els]: qW~1/2227 PR, x R E) — oH}?(Ry x R E).
(ii) Suppose that s satisfies the weaker condition
sup {]yzs(/\,z,y)|, |yw()\,z)1_j6§s()\,z,y)\ cy >0, A€y, z€ BYY, j€ {1,2,3}} < 0.
Let P(y) = e~V~=2+Y denote the Poisson semigroup. Then E|[s] is a bounded operator as a map
{f €oH Ry xRYSE) 2 f(oy0,y) = P(y)f(-,-,0) fory > 0} = oHy?(Ry x Ry E).
Hence, considered as an extension operator, E|s] is bounded as [cf. PS10, Proposition 3.3]
E[s]: oHp(Ry; W, V/P(R™ E)) N Wy /2P2 (R x R™ E) — oHM(Ry x R B).
Proof. In order to apply Lemma 3.10 we consider the kernels
(A 2,y,9) = s(N 2,y +8),  (Azy.9) = dgs(A 2,y +7),
which are again denoted by s end 0ys, respectively. Then
E[s] = —G[0ys] — G[s]0y.

(i) By means of Theorem B.70 and Remarks B.65 we define the operator L := w(Dy, D,,). By
the Kalton-Weis-Theorem B.47 and by using Theorem B.34 and Corollary B.37, the operators

L*: oH)?(Rp x R E) = Ly(Ry x RM E),
L= (L)Y HY* (Ry x R E) — Ly(Ry x R™; E)
are invertible with R-bounded #*°-calculi of angle not larger than 7 /2 and 7 /4, respectively.

For given numbers ¢ € (7/2,7) and § € (0, 7/8] with ¢ + 2§ < 7, the functions z;w(), 2) 7},
zjzpw(A, 2) 72, and Aw (), 2)~2 are bounded with respect to A € 5 and z € BYj by Example
B.56. Therefore Theorem B.70 implies that the operators 9,, L™, 8,,0,, L2, and ;L2 are
bounded in L,(R; x R"™; E). In order to prove that E[s] maps ¢Hp” (R4 x R E) into
itself, we use the multiplicative property (ws)(Dy, Dy, y) = Ls(Dy, D,,y) of the joint functional
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calculus and deduce the following identity for f € oHy? (R x R E) and 1, m € {0,1,2}
with0 <[+ m<2:
Lo Es|f = L'O)" (—G[0ys]f — Glws|L ™10, f)
= —G[w_m8;+ms]Ll+mf - G[wl—mays]Ll+m—1ayf.

Since s satisfies (3.19), it follows from Lemma 3.10 that the operators G[w! ™/ 853] (j €{0,1,2,3})
are bounded in L,(Ry x R/ E). Moreover, the functions L'*™ f and L!*™~19, f belong to

Ly(Ry x R™; E) and depend continuously on f € oHy (R4 x RTH; E). Therefore assertion
(i) is valid.
(ii) We represent the relevant derivatives of E[s]f as

VIE[s|f = —G[0ys|VLf — Gllz|-s]Vi\/—A, ‘o ,f forj e {0,1,2},
E[slf = —G[0ys]0if — G[|2| 8]0/ Ay ‘o N
Vi0yEls]f = —Glw 02|V Lf — G[0ys|V50, f for j € {0,1},

SEls]f = —Glw ?0s|L* f — Glw™'0;s| L0, f.
The operators G[|z|_s] and G[w'=7d)s] (j € {1,2,3}) are bounded in L,(R; x R""; E) by
Lemma 3.10. For functions f € oHpy? (R, x R E) of the form f(y) = P(y)f(0), we have
Oyf = —V/—A,f and hence v—-A, 19 ,f = —f. For a given function
g € oHY(Ry; W, V/P(R™; E)) N W, /227 1P(R, x R E)
< oHL(Ry; W, V/P(R™ E)) N Ly(Ry; (W, P n W2TYP)(R™; E)),

the Poisson extension f(-, -, y) = P(y)g belongs to OHp’ (Ryx R’}fl; E) by Theorem B.28. There-
fore E[s] satisfies assertion (ii). O

In order to deal with the symbols V;, ; and W, ;, we study the Stokes extension symbol
e_w(krz)y — e_n(z)y

wn2) —n(z)
for A € ¥4, z € BX}, and y € (0, 00).

3.12. Lemma. Letn € N, ¢ € (n/2,7), 6 € (0,7/8] with ¢ + 20 < 7, and T > 0 and define s by
(3.20). Then for every j € N, there exists C > 0 such that

sup {]yzs()\,z,y)|, |yw()\,z)1_j8§s()\,z,y)| t A€ Xy, z € BYY,y € (0, oo)} <C.

(3.20) s(\, z,y) == w(\ 2) wAz) = (T+ A+ \z|2,)1/27 n(z) = |z|_,

Proof. It is useful [cf. SS08, p. 186] to represent the difference quotient as

e~WY _ o=y L g e—9(s)y

1
= — ds = y/ e 9 ds, where g(s) := (1 — s)n + sw.
w—n o ds w—mn 0

Lemma B.55 and Example B.56 imply || ~ Ren and |w| ~ Rew and hence Reg(s) 2 |z|. For
a € (0,00) and z € (0, 00), the inequality e™” < (a/ex)® is valid. Therefore

4ds 4| zw|

/\ < —Reg s)yd < / = <1
lyzs(X, 2, 9)[ <y Izw!/ s <yl 2(Reg(s))?  e*RenRew ~

Let us show that |yw!=7@)s| < 1 for j € N. Since ¢ + 26 < , the inequality (B.14) yields
7| < |wl|. In the case |n| < 27! w|, we have |w — 5| > 27!|w| and hence

. w]e_"Jy — 77.7 e—Tiy

; wPe™ ey + fyfie Rems
w—="n

1—j 57 2—
Y =
lyw 10)s| <y |w
! jw =]

< ylw|*™

<1
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Next, the Leibniz rule yields

1
y@is = _yﬁé (yw/ eIy ds>
0

1 1
= (1P [ g(sPet s (-1 [ gls) e ds
0 0

Hence, in the remaining case 2~ }|w| < |n| < |w|, we have Re g(s) ~ |w| and thus

1 1
ot 905 < g2l ? [ fupte s ds 4 jyluftd [ uple R g
0 0

1 4 1 1
§w2/ ds—l—'w/ds,il. O
P J) @Regnz ® T ) cRegls)?

We are ready to prove Theorem 3.1.

Proof of Theorem 3.1. The boundedness of the solution-to-data map (u,w, k) — (gv, gu, gn) fol-
lows from the mixed derivative embeddings on page 159 and the spatial trace theorem on
page 156. Moreover, the functions u, w, and h are Fourier-Laplace transformable in the sense of
distributions and their transforms have the representations in (3.7). Hence the uniqueness in
Lemma 3.8 and Corollary 3.9 imply that problem (3.2) has at most one solution.

In order to construct a solution, we let (gy, guw, 9n) € 0Gy X 0Gyw X 0Gy, be given and define
the functions u, 7, and h as in Figure 3.5, Lemma 3.8, and Corollary 3.9. Then (u, 7, h) solves
problem (3.2), which follows from the injectivity of the Fourier-Laplace transformation. It re-
mains to prove that the data-to-solution map (gv, gu, gn) — (u, 7, h) is uniformly bounded with
respect to ¥ € Pyy.

(i) Corollary 3.9 implies that (g,, gw, gn) — h is uniformly bounded with respect to ¥ € Py,.

(ii) The pressure 7 has the symbol 7;(\,§,y) = e"g‘yﬁj()\, ¢) where e~ €9 is the symbol of
the Poisson semigroup P(y). Therefore Theorem B.28.(iv) and 0, P(y) = /—A,P(y) yield

Hv(:r:,y)P(y)pj HLP(R+ XRT”) g Hpj ‘|Lp(R+;Wpl_l/p(R")) .
In view of the divergence conditions (3.6b) and the identity (3.9) for ;, we obtain
R e %Y’ /) 2 1D .
Qp (w1 +w2) €] Q4
Hence, by Corollary 3.9, the interface pressures p; = 7;|,—o satisfy

pj € oW, 2TV (R Ly(R™)) N Ly(R s WP (R™)) — Ly(Ry; W, VP(R™)),

and therefore 7; belongs to E, = L,(R; HZ}(RTFI)) and satisfies [7] € ¢Gy; thus, 7™ € 0Er [x]-
Moreover, the map (g, gw, gn) — 7 is uniformly bounded with respect to ¥ € P,.

(iii) Corollary 3.9 yields p; € ¢Gu, ®» € oE,, and <I>{U € oE,. Therefore the identities (3.8b)
and (3.8¢) yield v|y—9 = ®, € oE, and w|y—g € ¢E. Since ®, belongs to the Dirichlet trace
space ()I/I/pl_l/zp’z_l/p(]R{Jr x R™) of oHy?(Ry X R'*1), we conclude from Theorem B.25 that
the parabolic extension [y — e~ %¥|®, with L; := w;(D;, D,) " belongs to oHy”* (R, X R,
Next, from (3.6b) we infer that &/, = (—1)ji§wj_1<f>%, and with 0Wpl_1/2:0’2_1/1)(]1%4r x R")
OH;/ 2(R+; WI} A (R™)) (see Proposition B.44) we obtain

®), = (1)L L7 ®) € JIL T HY 2 (R W) HP(R™)) s o Hp (Ry 3 W, /P (R™)).

Hence the Poisson extension (t,z,y) — (P(y)®%)(t,z) belongs to UH; (Ry; Ly(RYTH). By
Lemma 3.12 and Example B.56, the Stokes extension symbols W,, ; and V,, ; satisfy the as-
sumption of Lemma 3.11.(ii). Since V}, ; = —V,, ; and since (7 + 0;)h — g, belongs to the space
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oH, (Ry; W, /P®m)) N oWy AR, x R™), we conclude that v belongs to o Hp (R x
R™1) and that (g,,, gu, gn) + v is uniformly bounded with respect to ¥ € P;. Finally, the sym-
bol W}, ; also satisfies the assumption of Lemma 3.11.(ii) and therefore w belongs to oHp? (R x

R"+1)" . We conclude that u = (v, w) belongs to oE,, . and that (gy, gw, gn) — u is uniformly
bounded with respect to ¥ € Pys. The proof of Theorem 3.1 is complete. O

3.1.5. Inhomogeneous bulk equations. The next step towards optimal regularity of prob-
lem (3.1) is to allow for additional data ( f,, f4); that is, we consider the problem

( pou — pAu + V= f, inJ x R
divu = f; inJ x R*!,
[ul =0 onJxR",
—psAgv — AV divg v — [uoyv] — es[pVaw] + 1V Azh =g,  onJ x R,
—tr((cg + 2C3)Vv) — 2[udyw] + [7] — tr((co + C1)VZh) = g,y on J x R™,
(T+0)h—w=g, ondJxR"
hli=0 =0 on R",

ul=o =0  inR"L

(3.21)

Here we still consider a flat interface ¥ = R" x {0} = R" in the whole space Q = R"*!, but
restrict our investigation to a bounded time interval J = (0,7") with T' € (0, 00) and 7 = 0. The
physical parameters p1, pa, 11, pi2, 0, As, and pi5, and the abbreviations ¢y, ¢z, C3, C4, and ¢, are
the same as on page 54. For the additional data ( f,, f4) we consider the conditions

fu € By i= Ly(J; Ly(R™THL),
fa € oFq = oHp(J; H \(R™T)) N Ly (J; Hy(R™H).
In the previously considered case divu = f3 = 0, the term d,w was of class (G, since
Oyw =divu —divyv = —divyv € ¢G,,  foru € gEy 4, with divu = 0.
In order to maintain this property for f; # 0, we consider the additional conditions
Oyw+|s € 0Gyw, fat|n € 0Gw.

Then the space of suitable divergence data can be characterized as follows.
3.13. Lemma. The divergence operator

div: OEu,v,w,Byw = {u € O]Eu,v,w : 8yw:i:‘yzo € OGw}

3.22
(3.22) — oFgy = {fs € oFa: fatly=0 € 0Guw}

is a retraction.

Proof. We have to show that div: ¢Ey4w0,0 — oF4x is bounded and surjective and has a
bounded right-inverse. The divergence theorem with interface implies that the map (3.22) is
bounded. In order to construct a bulk velocity field v € E, , 0, for given divergence data
fa € oFqx, we employ the data-to-solution operators Sy : fg+ +— (u+,7+) for the one-phase
Stokes problems

(&5 —A)ui +Vre =0inJ x Qy, divug = fgpin J x Oy, ui|y:0 =0onJ x R"

for Q4 = i]RCLFH from [BP07, Theorem 6.1]. The function u from (u4, 7+) = S+ (fq+) belongs to
oE., the traces v|y,—o and w|,—o vanish, and hence belong to (E, and (E,, respectively. More-
over, Oyw4|y—0 = fa+|y=0 belong to ¢G,,. Therefore f; — wu is a bounded right-inverse for
(3.22). O
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0By = {u € oH)(J; Lpy(R™)" 1) 0 L, (J; HA(R™H)" 1)« [u] = 0},

0By 1= oW V2P(J; Ly(R™)™) MWL/ 27120 (J; HE(R™)™) N Ly (J; W~ V/P(R™)™),

0B = oW, "2 (J; Hy (RY) N Ly(J; Wy~ P(R™)),

0B v,w,0,0 = {u = (v,w) € 0By : v|y=0 € 0By, w|y=0 € 0Ew, yw|y=0 € 0Gw},
Ex = Ly(J; HY(R™)),
0Er[x] = {7 € Ex : [7] € 0Gu},

0By := o W2 V2P (J; HY(R™)) N o Hp (J; WEYP(R™) 0 Ly, (J; W HP(R™)),
Fu = Ly(J; Ly(R™TH)™ ),

oFq := o H, (J; H, ' (R™) N Ly (J; Hy (R™),

oFays = {fs € oFq : fit|y=0 € 0Gw},

0Gy = oWy P72 (J5 Ly(R™)™) N Ly(J; Wy /P (R™)™),

0Go 1= oW/ 22 (J; HY(R™) N Ly (J; W2 Y/P(R™)),

oGy, i= oW /2P (J, HY(R™)) N Ly (J, WS~ 1/P(R™)).

FIGURE 3.6. Function spaces oE..., oF..., and ¢G... on (J, R+ R™).

We are ready to prove optimal regularity for problem (3.21). The relevant function spaces
are summarized in Figure 3.6 on this page.
3.14. Theorem. Let \s + ps > 0,¢c5 € {0,1},c6 =1, p € (1,00), Tp € (0,00), and M > 0. Then the
solution-to-data map

(U, , h’) — (fua fd7 Ju, Jw, gh)a
0Ew,0,w,8,w X 0Ex 7] X 0En — Fu X 0Fax X 0Gy X 0Gw X oGy

of problem (3.21) is uniformly invertible with respect to T' € (0, Tp) and ¥ € Pay.

Proof. Boundedness of the solution-to-data map follows from the mixed derivative embed-
dings on page 159, the divergence theorem with interface, and the spatial trace theorem on
page 156. Injectivity follows from Corollary 3.2. For proving surjectivity, we construct a solu-
tion

(u,m,h) = (u1,0,0) + (ug,m2,0) + (u3, 73, h3).

First, with the co-retraction div®: ¢Fgx — 0Eyw,0,w from Lemma 3.13, we choose u; = div® fy.
Second, let f, 2 := fu,— (pOr — pA)ug and let P = I — VA~ div denote the Helmholtz projection
in L,(R"™1)"*1 Then Pf, 2 belongs to F, and we seek a solution uy € oE, of the Stokes
problem

(323) patUQ — MAUQ = PfUVQ, div Ug = 0, U,2|E =0.

Since (3.23) consists of two separated one-phase Stokes problems in J x R’:"!, we obtain the
desired solution map P f,, 2 — ug from [DHPO01, Theorem 7.6]. We trivially have 0 = v2|x; € oE,,
0 = waly € oEw, and 0 = Jyws|y = divug|y — divyva|s € 0Gy. Therefore us belongs to
0Euw,v,w,0,w- With Lemma 2.23, we define 73 as the solution to the weak Neumann transmission
problem

(Vra(t,), V)gnsr = (I = P) fup(t,"), Vo)gnsr  forallp € HY(R™),  [m3] =0.
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Hence 7, belongs to 0Er 7] and satisfies Vmy = (I — P)f, 2 in F,,. The uniform boundedness
of (fu, fa) — (u1 + uz,m2,0) with respect to T € (0, Tp] follows by extension of the data from
J =(0,T) to (0, c0) with Lemma B.9 and by restriction to (0, 7p).

Finally, Corollary 3.2 yields a unique solution (us, 73, h3) € oE of

pOyuz — pAug + Vg =0 inJ x R**1,
divus =0 inJ x R*L,

Ly(us, 73, hs; ¥) = (gu, gw) — Lu(u1 + ug, m2,0;9)  on J x R”,

Oths — ws = g, + w1 + wo onJ x R",

and the map (fu, fd, 9vs Gw, gn) — (u3, w3, h3) is uniformly bounded with respect to 7" € (0, Tp]
and ¥ € Pys. Hence the proof of Theorem 3.14 is complete. O

3.2. Bent hyperplanes and variable coefficients
We generalize Theorem 3.14 to a situation where the interface is a bent hyperplane
(3.24) Y =%,:={, w@)): 2 eR"} withw e BCHR" 1)

in Q = R™ (n > 2) and the coefficients on the interface may depend on (¢,2’). In a tubular
neighborhood B, (X) with projection IIy.: B, (X) — ¥, we decompose v = v + w vy, o IT with
v := [Py oIly]u and w := (vy, o IIx;|u). We consider the perturbed model problem
poru — pAu+Vr = f, inJ x (R"\X,),
divu=fg inJx(R"\X%,),
[ul =0 onJxX,,
Ly(u,h;9,w) =g, ondJ x3,,
(3.25)
Ly(u,m,h;0,w) =gy onJ x X,
Oh—w=g, ondJxX,,
hli=o=0  on X,

uli=0 =0 InR"™

Here J = (0,T) is bounded, the parameter triple ¥ = (¥, ¥y, U py) consists of fixed functions
Ot S = RV (4, 0py): J X Sy — K x KX

and, similar to (3.3) on page 54, we define further parameters
U1 1= (As + ps)V0w, V2:= (As — ps) tr g,

(3.26) U3 := psr, Uy := 2pus[9py — 20,91),
c5 € {0,1}, Vo 1= 0 + (As — is) tr[Upy — 209,91).

Then the operators L, and L,, are given by

Ly(u, h;w,9) = —psAs, v — A\ Vs, divs, v — [10vs, V] — es[uVs, w] + 1 Vs, As, b,
Lo (u, m, h;w,9) = — tr ([92 + 203] Vs, v) — 2[udyy, w] + [7] — tr ([J6 + 9] VE_h) .
More details on these operators will be given in Figure 3.8 on page 73 and Section 4.3.

We will prove optimal regularity for problem (3.25) for the following class of parameters
and by using the function spaces from Figure 3.7 on the next page.

3.15. Definition. Given M, T, 7, R € (0, c0), the set Py 1, r consists of all (%, w, ) such that
(i) the constant tuple ¥* = (¥}, 9;,,v7},,) belongs to the parameter set P, from page 54,
(i) the map w € BC*(R""!) satisfies ||w||pcinnz <1, [w]pet < R, and w(0) = [Vw(0)| = 0,
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0By := {u € oH}(J; Lp(Q)™) N Ly(J; HA(Q\ £)") = uloq = 0},

0By 1= oW, V2P (J; Ly(5 TY))
NoW,/ 27120 (J; HA(S,TS)) N Ly (J; WEHP (5, TY),
0w = oW, ~ /2 (J; Hy (8)) 0 Ly (J; W=7 (5)),
OEu,v,w,Byw = {u € OEu : [[u]] = 07 U‘E S OElH w’E S OEwy 8Vw:t S OGw}7
Er = Ly(J; H)(Q\ %)),
OET(,[[T(]] = {71' ek, : [[7'(]] € ()Gw},

0By, := o W22 (J; HY(E)) N o HA (J; WETYP(2)) N Ly (J; Wi~ P (%)),
Fy := Ly(J x Q)",

oFq == oHp(J; Hy M (Q) N Ly(J; HY(Q\ X)),

oFax :={fs € oFa: faxt|s € 0Guw},

0Gy 1= oWy 222 (J; Ly(5,TE)) N Ly (J; WEP(5,TY)),

0Guw 1= oW/ 272 (J; HY () N Ly(J; W2TYP(R)),

oGy, := oW /2P (J; Hy (X)) N Ly (J; WEH/P(E)).

The spaces L, H}f, and W, (p € (1,00), k € Ny, s € [0,00)) are endowed with the intrinsic
norm (B.5). The corresponding spaces E..., F..., and G... are defined by replacing (W, by
W, and OH;f by H}f. The scalar-valued versions of ¢E, and (G, are denoted by the same
symbol.

FIGURE 3.7. Function spaces oE..., oF..., and ¢G... on (J, 2, ).

(iii) the triple ¥ = (91, 9w, I py) consists of functions 9y, : ¥, = R™*™ and (¥4, ¥py): (0,T) x
Y — R x R™" that satisfy the inequalities

1L = VLl BeEonme) <m0 190 = ILlBer s, < R,
10w = Do lleqomposanmisay <m0 e = lle, @ < R,
19p0 = DulleqomBosanmeny) <m0 1Wpe = Ipulle, ) < R
3.16. Theorem. Let p, pit, 0, jts, As + p1s > 0 and let p € (n +2,00), M > 0, and Ty > 0 be fixed.

Then there exists 1 > 0 such that for given R > 0 we can find a number Ty € (0,T1] such that the
solution-to-data map

(U, T, h) — (fm fda 9vs Gw> gh)a
0E = 0By v w,8,0 X 0Ex [z] X 0Er = oF :=Fy X gFg 5 X 0Gy X 0Gy X 0Gp,

of problem (3.25) is uniformly invertible with respect to T' € (0, Tp] and (V*,w, V) € Py, R-

We point out that the number 7 depends on the bound M for ¥* but not on the bound R
for w and ). This will be important for the localization procedure for a bounded domain. The
proof of Theorem 3.16 will be reduced to an application of Theorem 3.14 for the flat interface
problem (3.21). To this end, we consider the usual defining diffeomorphism

(3.27) Oy’ 2,) = (2,2, +w(2')) fora’ e R 2, € R.
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Letd = (9,0,), 8 = (81,...,001), V=07,V =T and 5, = {(«/,w(z")) : 2’ € R™}.
The defining diffeomorphism ©,,(z', ) = (2, z,, + w(a’)) for X, satisfies
I/

I 0
dw —dw 1|
The tangent vectors 7;, cotangent vectors 7/, unit normal vector v, metric components g,
¢7* and Christoffel symbols Ay, Ai, y of 3, are given by

00,=1+e¢,Vw=

(1)] . 00t =T—e,®Vw=

vo By, = fe, — Vw), B=(1+|Vw)~',
7; 00, = ej + Ojw ey, 700, = ¢; + BOjw(e, — Vw),
gjk © Oy = ;i + Ojwiw, AR djk — ﬁ28jw8kw,
Ajj 00, = 0;0,wdiw, ALy 0 ©, = B20;0wiw.
The projections P’ = I — e, ® e, and P, = I — vs, Q vy, satisfy
I' 0 I'-2VweVw BVw

P = ) PZWO@w:

0 B20'w 1—p?

For a scalar field ¢, a tangential vector field v and a not necessarily tangential vector field
u, the gradient Vy,_¢, Vy_u, divergence divy, u, scalar Laplace-Beltrami operator Ay, ¢ =
divy, Vs, ¢ and tangential Laplace-Beltrami operator Ay, v = ¢/*V; Vv are given by

VZWQOZTjang, ngu:rj@)@ju,
Agwgo = gjk(ajak(p — Aé-kalgo), dinw u = Tj . 8ju,
zzwv = gjkpzwaj(PzwakU)~

FIGURE 3.8. Differential geometric identities for bent hyperplanes.

Since 2’ — O,(2’,0) is a global parametrization for ¥, we can compute the relevant differen-
tial geometric quantities of ¥, by a straightforward application of Appendix A. The relevant
identities are collected in Figure 3.8 on this page.

In Lemma 3.17 we will prove that the induced transformations for solutions and data in-
duce isomorphisms between the function spaces in R" \ ¥, and the corresponding spaces in
R” = R" \ ¥y, which are uniformly bounded and uniformly invertible with respect to w. We
also derive transformation identities for the velocity components v and w which are collected
in Figure 3.9 on the next page. These will be employed for deriving the transformed version
(3.48) of problem (3.25). This transformed problem corresponds to the basic model problem
(3.21) with additional perturbations. We will control those pertubations by means of appropri-
ate interval-dependent estimates and estimates for pointwise multiplication and continuous
embeddings (see Lemmas 3.18 and 3.19). For proving Theorem 3.16, we require smallness of
n in order to control the leading-order perturbations and smallness of 7' for controlling the
lower-order perturbations.

3.17. Lemma. Letw € BC*(R" ') and J = (0, T) with T € (0, c0). Consider the transformations

(u,m, h) 0Oy, = ([00,]1,7,h),
(fu7 fd7gu7 gh) o @w = ([8@w]fu7?d7 [8@&1]?1/,7?}1)7

and the decompositions u = v+ wvs,, 4 =0+ Wep, gy = Jo + Guw Vs, a1d G, = G, + Gy €n-
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Define ©,, as in Figure 3.8 and let
uo®, =[00,u, u=v+wrvs, uU=V+uWe

Then the following identities are valid.

(3.29a) 7= P(vo0,)+ Qyw)woB,, Qv(w) = —fVuw,

(3.29b) W=wo B, + Quw)w o O, Qulw)=p"1-1

(3.29¢) O = %(D,w) 0 O, + B9jw(jw) o O,

(3.29d) V00O, = [l +e,®Vwt+ {(1 - %e, — B*Vw}w,

(3.29%) wo®, =w+ (B —1)w,

(3.29f1) (B,w) 0O, = d,w — fV'w - V'(Bw).

Their derivations are given in the proof of Lemma 3.17.

FIGURE 3.9. Identities for the transformed velocity field.
Then, given R > 0, the operators

(3.28a) U u, Eu(R"\ Xg) — E,(R™\ X)),
(3.28b) (v,w) — (v, w), Ey(Z0) X Ey (o) = Ey(Ew) X Ey (X)),
(3.28¢) U ou, Euvwﬁnw(Rn \ Z0) = Euvw,0,0(R"\ Xu),
(3.28d) T > T, E(R"\ Xp) — E-(R"\ ¥,),
(3.28¢) T, w7 (R"\ Xo0) = Ep - (R™\ 3y),
(3.28f) h v h, En(X0) = Exn(Zn),
(3.28¢g) fur fu, Fu(R™ \ Zo) = Fu(R™ \ Xu),
(3.28h) farr fa, Fa(R™ \ o) = Fa(R™ \ Xo,),
(3.28i) far fa, Fan(R"\ Zo) = Fan(R™\ Zu),
(3.28j) (v Gw) = (9, 9w),  Gu(Zo) X Gw(Eo) Gy(Xw) X Gu(Ew),
(3.28k) Gn = Gh, Gp(Zo) = Gr(Xw)

are uniformly bounded and uniformly invertible with respect to | Vw|

Proof.

‘303 < RandT € (0,00]

(i) In order to estimate the norms of transformed functions, we employ the chain

rule from Remark B.85 on page 171 for representing their derivatives. Define © = ©,, as in

(3.27).

(i.a) Forz € R"and @ € R" we put 2z = ©(7) and a = [00(T

and O~ read as follows.

[00(T)]a =a+ e, (V
[P~ (z)la = a —ex(V

[70(@)|(a, . . .
(707 (z)](a, . ..

w (@)
w(@)

);

@
@),

, Q) =

,@j) = en|dw(@ ) (@, . .,

fen[ajw(f/)](al, e

)]@. Then the derivatives of ©

@) for j > 2,
a;) for j > 2.

(i.b) For a sufficiently smooth function ¢ : R” — R we put ¢ := ¢ o © and obtain

[Op(z)]a =
[0%p(x)] (1, 002) =

[06(7)]e,

[0°%(T)] (a1, 0i2) —

[0%(@)][00 ()]

[0%0(Z)(ay, az).
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Omitting the arguments z and = and the square brackets around derivatives, we have
PPo(ar, oo, az3)
= 0°p(a, as, a3)
— 0*B{(00719%*0 (a1, @n), @3) + (007 19%0(ay, az), as) + (007 19%0(ay, az), @)}
+ 000 19?°0{(007 10?0 (a1, az), asz) + (007 10°0(ay, a3), az) + (00 10?0 (as, as),@1)}
— 0p 00~ 19%°0(ay, a», as).
(i.c) Forw: R” — R" we let u(z) := [00(Z)]u(T) and write u = 9O T, to be short. Then
duay = 00 dua + 0°0(u, @),
O*u(aq, az) = 00 8*u(ay, as) + 0*°0f{(0uay, as) + (ay, duas)}
— 00 0u 00~ 19%0(ay, ay) — 9*°0(u, 00190 (ay, @) + °0(u, ay, as).
(ii) Lemma B.10 on page 148 yields the pointwise multiplication estimate
(3.30) [wolwe s,y < Ul Plwe ) + Css,p, Vol pe)llullwy s o)L, )

foru e WL (3,),v e WI(2,), 0 € (0,1),p € [1,00).

(iii) Now we are prepared for proving that the operators (3.28) are uniformly invertible.
We will frequently employ the differential geometric identities in Figure 3.8.

(iii.a) The invertibility of u — wu in (3.28a), 7 ~ 7 in (3.28d) and f, — f, in (3.28g) easily
follows from (i). These operators are uniformly invertible with respect to | Vw|| g2 < M.

(iii.b) We recall that W (%) is equipped with the intrinsic Sobolev-Slobodeckii norm (B.5).
Hence, from V&'h = (Vy,®)"Vy, h (k < 2) and (3.30) we infer that the operator & + h in
(3.28f) is invertible, uniformly with respect to ||Vw| gcz < M. In a similar way we see that
gp, — gn in (3.28k) is uniformly invertible with respect to |Vw| go2 < M.

(iii.c) The transformed normal velocity satisfies

W=en T=e, [00] (v+rvs,w) o0,
= (14 |Vw|>)Y2wo 6,
=woO, + QuwwoB, with Quw):=(1+|Vu|>)/2-1=5"—-1.

Hence the identities (3.29b) and (3.29) are valid and the operator w — w, E,,(X,) — E,(Xo) is
uniformly invertible with respect to ||Vw||gcs < M.
(iii.d) The projection P’ = I — e, ® e, satisfies

P[00,] ![Ps, 00,] = P+ BVw ® (vs, 0 0,).
Therefore v is related to (v, w) by
7= Pu= P[00, Y(Ps,v+wvs,) o0,
= P'(v00,) + Quw)wo B, withQ,(w):=-Vuw(l+ |[Vw|?)™V2 = —sVw.

This yields (3.29a). With E,, — E,, it follows that (v, w) — T, E, () X 0Ew(Xw) — 0By (Xo) is
uniformly bounded with respect to || Vw| gcs < M. The inverse representation is given by

vo 0O, =[Py, 00,][I + e, ® Vw|(T+wey,)
=[I+e, @ V]t +{(1 - BHe, + f*Vw}w.

Therefore identity (3.29d) is true and the operator (v, w) — (v, w) in (3.28b) is uniformly inver-
tible with respect to ||Vw||gcs < M.
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(iii.e) With w o ©,, = W we obtain

(B) © O = Blen — V) - V(BT) 0 ©51) 0 O,
= B[ — e, ® Vw|(e, — Vw) - V(Sw)
= B(en — Vw + e,|Vw|?) - V(5w)
= 0w — BV'w - V'(Bw),

Opw = PBey - V(w o Oy)

= BlI + en ® Vwle,, - (V9w + T9;w) 0 O,
= B%(0,w) 0 O, + B20jw(djw) 0 O,,.

Thus, equations (3.29¢) and (3.29f) are valid and the operator v — 7% in (3.28c) is uniformly
invertible with respect to ||Vw||gcs < M.

(iii.f) The relation between g, o O, and g, is analogous to that of u|yx, 0 O, and u|x,. Hence
equations (3.29a), (3.29b), (3.29d) and (3.29) yield

gy = Pl(gv o @w) + Qv(w)gw S @wa
gv 00, =[I + e, ® Vuwlg, + BQ(Vw — en|Vw]2)§w, 9w © Oy = [7,,-

Therefore (3.28j) and (3.28e) are uniformly invertible with respect to ||Vw|| gc2 < M.
(iii.g) For given f; € Fy(R™\ Xo) and ¢ € H;, (R™), we obtain

(3.31)

fapdr = / fapoO,dr, with detdO, = 1.
R R

The map ¢ +— @00, H ;/ (R") — H ;, (R™) is uniformly invertible and therefore
farr fao Hy(J;H7UR™) — HY(J; Hy Y (R™))

is uniformly invertible with respect to ||[Vw||sc < M. The estimates for the remaining norms
follow similarly as above and therefore (3.28h) and (3.28i) are uniformly invertible with respect
to [[Vw|| gez < M. The proof of Lemma 3.17 is complete. O

In order to take advantage of short time intervals we will frequently employ the following
interval-dependent estimates, where we study the time-dependence of certain embedding con-
stants.

3.18. Lemma. Let X be a Banach space, J = (0,T) with T € (0,00), and p € [1,00). Then

332a)  lullg, sy < TV full Ly, foru € Ly(J; X), q € [p,o0],

(3.32b) [z, < Tl_ill/pHatUHLp(J)a forve W, (J;X),p>1,

(3320) vl < T5i5 ot [Wlwowy, — forveoWy(J; X), a € (1/p,1),

(3.32d)  [ulye < T8 “Tulys ) forue WP (J;X), a€(0,1), B € (a,1),

—a 1/
(3.326) [[U]]Wg(']) ~ Tl m H tuHLp(J) y foru S WI}(J, X), o€ (0, 1)

Proof. (3.32a) follows from Holder’s inequality. To prove (3.32b), we apply Hardy’s inequality
(B.4) to 0yv. (3.32¢) follows from Lemma B.5. (3.32d) can be verified directly:

/D
) = u(s)[% ! .
FOD (/ / s e dsdt ) <TP ey

Estimate (3.32¢) follows from Hardy’s inequality as in [PS11, Proposition 5.1]. O

Next we provide appropriate estimates for controlling perturbations in (G, (G, and ¢Gy,.
Basically, such estimates were used in [PSS07] and [PS10].
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3.19. Lemma. Let Q) be a domain in R™ (n > 2) containing a smooth (possibly empty) hypersurface ¥
such that Assumption 2.1 on page 23 is satisfied and let p € (1, 00). Then the following assertions are
valid.

(i) If p > 2, then for all 6 € (0,1/2) and Ty, € (0, 00) there exists C(5,Tp) > 0 such that

(3.33) (T~ u, T~V ||, () < C(8,To)lullr, (1)

forall u € oE,(T) and T € (0, Tp).
(ii) If p > 2, then for all Ty € (0, 00) there exists C'(Tp) > 0 such that

(3.34) (720, 774" 0) gy + 1T 0] logw iy < CT)I[0]lozy (1)

forallv € gE,(T) and T € (0, Tp).
(iii) If p > 2, then forall § € (0,1/2) and Ty € (0, 0o) there exists C'(9,Tp) > 0 such that

(3.35) (T 20, T7V'0) |6y + 1T w6y < CO To) 1wl g r)

forallw € gEy,(T) and T € (0, Tp).
(iv) If p > 3, then forall 6 € (0,3/2) and Ty € (0, 00) there exists C'(9,Ty) > 0 such that

(3.36) |(T**h, T°V'h, T7'V) ey + 1T 20, TV (1) < C(6.T0) bl s, ()

forall h € ¢Ep(T) and T € (0, Tp].
(v) There exists C' > 0 such that for all T € (0,0), p € BCY(X), and g, € G,(T) we have

(3.37) legoli,r) < Cllellsoligolic, @) + ClielPIV'ells P llgoll 0.0, ))-
and if p > 3, then for all § € (0,1/2 —1/2p) and Ty € (0, co0) there exists C'(9,Ty) > 0 such that
(3.38) 190llz, 0,752, < T°CO, To)llgollygoiry  for all go € 0Gy(T), T € (0, Th).

There exists C > 0 such that for all T' € (0, co) we have
3.39) [1Wgvllc, 1) < Clldllollgvllc,(ry + Clidlle, ) lgullec for all ¥, gu € Go(T) N Loo(J X ),
and if p > n + 2, then we have the continuous embedding
Go(T) = C([0,T]; BO(X)),
and forall § € (0,1/2 — (n+ 2)/2p) and Ty € (0, 00) there exists C'(3,Ty) > 0 such that
(3.40) lgollcqoryBosy) < T°CO, To)lgullog.ry  for all g € 0Gu(T), T € (0,00).
(vi) There exists C > 0 such that for all T € (0,00), ¢ € BC*(R" 1), and g,, € G, (T) we have

(3.41) legulle., ) < ClellLonmllgwle. o) + CllelsellgwllL, o m )
and if p > 3, then forall § € (0,1/2 —1/2p) and Tjy € (0, 0o) there exists C(0,Tp) > 0 such that
(3.42) gl 0.1:113) < T°C6 To)gwllogu(ry  for guw € 0Gw(T), T € (0,Tp).

If p € (n + 2, 00), then we have the continuous embedding
Gu(T) = Gu(T) = C([0, T); Hy (%)) N Ly(0, T; BC' (%)),
there exists C' > 0 such that for all T € (0,00), ¥ € G(T'), and g, € Gy (T) we have
(3.43) 19ulle. ) < Clldllcqmmeyllgwle.a + Clldle, o llgwle, 1)
and forall § € (0,1/2 — 3/2p) and Ty € (0, 0o) there exists C'(3,Tp) > 0 such that
(3.44) 9wl &) < T°CE T)lgulloe, ) forall gu € 6Gu(T), T € (0,00).



78 3. THE LINEARIZED PROBLEM
(vii) There is C' > 0 such that for all T € (0,00), p € BC3(R" 1), and g;, € G1,(T) we have

(3.45) legnlle,ry < CllelLanmllgnlle, @) + Cllelsesllgnll, o m2 )
and if p > 3, then for all Ty € (0, 00) there exists C(Ty) > 0 such that

(3.46) lgnll L, 075122y < T2V C(To) |l gnllygniry  for all gn € 0Ga(T), T € (0, To).

Proof. We will frequently employ the embeddings (B.1), (B.2), (B.3) page 145, and the mixed
derivative embeddings from Proposition B.44 on page 159. From Lemma B.9 on page 148 we
infer that the embedding constants for the relevant subspaces with vanishing initial values
are uniformly bounded with respect to 7" € (0, 7], by extension to (0, c0) and restriction to
(0, Ty). Moreover, Lemma 3.18 on page 76 yields a factor T°C(d, Tp) for the norm bound of an
embedding into a space with lower temporal regularity.

For 7,0 € (0,1),p € [1,00), and ¢ € [1, 0c|, we abbreviate

[[']]np;q = [['HW;(O,T;Lq(E)) ) [[']]q;a,p = [[']]Lq(o,T;Wg(z)) v A llpg == ||'”Lp(0,T;Lq(2))-
We may assume that the norms of G,, G, and Gy, are given by
HUHGv = [[(U]]l/271/2p,p;p + HUHPZP + [[Uﬂp;lfl/p,p7

Gw — [[(U}, vw)]]l/2—1/2p,p;p + ||(U}, vw)”p;p + [[vw]]p;l—l/p,p ’
HhHGh = [[(h, Vh)]]lfl/2p7p;p + H(}% Vh, Vzh)”p;p + [[V2h]]p;l—l/p,p’

[[]

since these norms are equivalent to the usual ones and the corresponding constants only de-
pend on p and n but not on 7. Lemma B.10 yields the estimate

(3.47) [uolwy < lullo [olwy + Cn.p.0) [l 27 [VulZ, ol

foru € W1 (Q) and v € W7 (Q).
The inequality (3.32c) and the mixed derivative embeddings yield

IVull L, 075, &) < T°C(S, To)llullgws o.7;m3 (rn)) < T°C(8,Ty) |l »

for 6 € (0,1/2), provided 1/2 > 1/p which is true for p > 2. Together with (3.32b), this proves
assertion (i). With (3.32¢) and (3.32d) we obtain

||/UH0G17(T) = [[U]]l/Q—l/Qp,p;p + Hv”p;p + [[,U]]p;l—l/p,p

< C{T'? 4 7Y%} o] +CT||v||

1-1/2p,p;p oWE(0,T;W, P ()

for v € oEy(T) and § € (1/p,1). Moreover, for p € (0,1/2] with 1/p < 6 < 1/2—-1/2p+ p <
1—1/2pand 2 —4p > 1 — 1/p the mixed derivative embeddings yield

HUHW[,;(O,T;Wz}fl/p(E)) < C(TO)HU|’H;/2*1/2P+P(O’T;ng‘lp(z)) < C(TO)”UH()Ev(T)'

The number p must belong to (0,1/2] N (§ — 1/2 + 1/2p,1/4 + 1/4p) and this interval is non-
empty if 6 < 3/4 — 1/4p, which is true for 6 < 1/2. The embedding estimates (3.34), (3.35),
(3.36), (3.38), (3.40), (3.42), (3.44), and (3.46) follow similarly and hence assertions (ii), (iii), and
(iv) are valid.

The bilinear estimates (3.37), (3.41), and (3.45) can be verified by means of the spatial point-
wise multiplication inequality (3.47), since the factor ¢ does not depend on time. Hence (vii) is
valid.

Finally, the bilinear estimates (3.39) and (3.43) follow from (3.47), Sobolev’s embedding, and
the pointwise multiplication estimate in Lemma B.81. Therefore (v) and (vi) are also true. [
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Proof of Theorem 3.16. For a given parameter tuple (0*,w,?¥) € Pu 1, 5 r, We define 97, 93, U5,
¥4, and 9% according to (3.26). Let z = (u,m, h), z = (u,7h), f = (fu, fi» Gvs Guw> gn), and
f=(fu, fa»Tus Gu» Gn) be related as in Lemma 3.17. We introduce the transformed operators

Ly(U, by 0*) = —pusA'v — A\ V' div' © — [u0,0] — e5[uV'w] + 95V A'h,

Lo (@, 7, h; 0%) := — tr([9% + 205]V'D) — 2[pd,w] + [7] — tr([9% + 95 V™2h),
Fo (T, w) = 1([00,] 1(Au) 0 0, — A7) + (I — [00,] 106,]" ")Vr,
Gy (U, T, h; 0%, w,9) := Ly(u, h; 9*) — P'Ly(u, h;w,9) 0 O, — Qu(w) Ly (u, 7, h;w, V) 0 O,
G, 7, h; 9, w, V) == Ly (U, 7, h;9%) — Ly (u, 7, h;w, ) 0 Oy — Qu(w) Ly (u, 7, hyw,9) 0 O,

Here actually G,, and G,, do not depend on 7 and we will therefore write G;(u, h; 9*,w, 9) for
J € {v,w}. More details on these operators will be given below and we will show that problem
(3.25) is equivalent to the following problem for ¥g = R"~! x {0}.

p0yT — IAT + V7 = f,, + F, (7,7 w) inJ x R,
diva = f, inJ x R,
[a] = on J x Xy,
(3.48) B Ly(w, ?; ) =7, + GU(Eﬁiﬁ*,w,ﬁ) onJ x Xy,
Ly(u, 7, h;9*) =G, + Gu(u, h; 9", w,9) onJ x 3,
Oth —w = g, + Gp(w;w) on J x X,
hli—o =0 on %,
Ulg=o =0 in R™.
Let us abbreviate
501 — AT + V7 [ F(umw) |
divu 0
S()z = L (u, h; 9*) , P05, w,0)2 = | Gy(T@, h; 9", w, 9)
Ly (u, 7, h; 9%) Gy (1, hy 9%, w, V)
oh—w | | Gh(ww)

Analogously as in Figure 3.7 on page 72 we let

oE := OEu,v,w,ayw X OET,[[W]] X oEp, oF :=Fy x OFd,E X 0Gy X 0Gw X oGy,
denote the corresponding spaces defined with ¥y instead of ¥,,. Our goal is to prove that
(3.49) Z f=[SW) — F(O*,w,9)]z, oE(T) — oF(T)

is uniformly invertible with respect to 7" € (0,71] and (¥*,w, ") € Par,1y n,R-

Theorem 3.14 shows that S(9*): ¢E(T) — oF(T) is uniformly invertible with respect to
T € (0,71) and ¥* € Py, for every T1 € (0,00) and M € (0,00), where Py is defined in
equation (3.4) on page 54. In order to apply a Neumann series argument, it remains to ensure
that

IS9P, )y < 1
(i) We first compute the perturbations in more detail and we abbreviate

X (@) = 0,3), X(z):=05'(z), forz,TeR"
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By using the summation convention, we have
Xk = ik + OknOw, 0, Xm = Sjm — SpmnOjw.
Then the following identity is valid, where the values of u and X are taken at (t,z) € J x (R™\
¥, and those of w and X at (¢,7) € J x (R"\ £y) with z = X (7).
Ay, = Ay + (9, Xy, 0; X 1 0; X p — 8510 jmbp) Om Oyl
(3.50) + (810p Xk, 0, X 1 0;X p — Op X 1y 0;0, X, 0; X 0, X ) Oy
+ (810m0p Xk 0;X 1 0;X p — Op X 1 0;0, X, 0; X 0,0m Xi) Wy
Moreover, a straightforward computation shows that the divergence satisfies
divu = 0, ([a@w]];llul o @w) =divuo O,

and therefore no perturbations of the divergence equation appear.

The representations of G, and G, and the corresponding equations in (3.48) follow from
(3.31).

(ii) In order to control the perturbation F, (u, 7; w) in F,,(T') = L,(0,T; L,(R™)) we note that
I — 004)lcc = 0as ||[Vw||eo — 0. Hence there exists > 0 such that

(I~ [00.])71100u]™ VTl L, 0.1:1,8m) < VT L,07:L,@mny)  for T € (0,00), [Vl < 1.
Next, we rewrite the transformation formula (3.50) as
(Au) 0 O, — AT = a/*(w)0;04T + b (w)0;T + c(w)T,

where the coefficients a’*(w), (w), and c(w) are functions on R" which satisfy the following
estimate. For given € > 0 and R > 0 there exist ) > 0, R, > 0, and R, > 0 such that

e (W)leo <& [V (W)lloo < Ry, Jle(w) oo < R,

for all w € BC3(R"!) with |Vw|le < 1 and ||[Vw||gc2 < R. By controlling the lower-order
terms w and Vu with estimate (3.33), we conclude that for given € > 0 there exists n > 0 such
that
[(Au) 0 Oy — AUl L, 0,1;1,®n)) < llull g, ) + CERElL, 07 H1R))
< ellull g, ) + CRTC(E, Tl &, (1)
provided that u € oE,(T), T € (0,71], 6 € (1/p,1/2), T1 € (0,00), |[Vw|lso <7, and ||Vwl|/ g2 <

R. We conclude that for M, T}, ¢, and R > 0 there are n(M,Ty,e) > 0 and To(M,T1,e,R) €
(0,T1] such that

17 = Fu(@, T 0) 5y, <€ forall (0%, w,9) € Pury R

(iii) We next control the perturbation G, in (G, (7). First, the estimates (3.37) and (3.38)
and Lemma 3.17 yield an estimate

|Qu(w) Luy (250, 9) © GwHO@,(T) < CUWHOE(T) + C(R)||Lw(z;w, ) o GwHLP(O,T;LP(Z))
< CUHEHOE(T) + C(R)TJC(& Tl)Hz”oE(T)’

uniformly with respect to 7 € oE(T), T € (0,T1], [[Vwlloo < 7, and [|[Vw]| s < R.

It remains to estimate the difference L, (, h;9*) — P'L,(u, h;w, ) 0 O, in (G, (T). In view
of

I[P = Ps, 00uflc =0 as||Vwlle — 0,
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and estimate (3.38), we may omit the projection P’ in the above difference and therefore it
remains to estimate the following differences in (G, (7).

(3.51a) AT — (Ag,v) 0 O,

(3.51b) V' div' 7 — (Vg divs, v) 0 O,
(3.51¢) [70,2] — [10ys,, ] © Ou,

(3.51d) [eV'w] — [uVs,w] 0 O,
(3.51e) 05V A'h — (9, Vs, As_h) 0 O,,.

The differences (3.51a), (3.51b), and (3.51d) can be controlled by applying the identities in Fig-
ures 3.8 and 3.9, Lemma 3.17, and the estimates (3.34), (3.35), (3.37) and (3.38) and we obtain

I(A'D = (As,v) 0 O, V' div' D — (Vy, divs, v) 0 O, [EV'T] — [1Vs,w] 0 Ou)| 5,1
< A{Cn+ C(RTV*C(T)H @, W)l &, (1) xoFu (1)

uniformly with respect to v € oE,(T), w € ¢Ew(T), T € (0,T1], Ty € (0,00), |[Vwl||sc < 71, and
IVw|| pes < R. For (3.51e) we employ the estimates (3.36), (3.39) and (3.40) and obtain

19,9/ AR = (9w V5, A5,h) 0 Oullyg, (1) < {Cn + CRIT° O T A g, (r)-

In order to deal with 0,v, we note that v = [Px, o Il Ju near ¥, with the nonlinear projection
IIy,, onto X, from on page 138. Hence we obtain

170,71 — [, 0] 0 Oull 5, 1y < CnllEl, 5, () + CR @ VD) 3, 1
< {Cn + CRT VO a5

We conclude that for £ > 0 there is » > 0 such that for R, 71 € (0, 00) there is Ty € (0,7}1] such
that

u,v,w,ayw(T) '

1z — G, (@, h; P w, D Er) oo S € forall (0%,w,9) € Payryr, T € (0, Ty
(iv) We next control G, in (G, (T). The estimates (3.41) and (3.42) and Lemma 3.17 yield
1Qu(@) L (z:0,9) 0 Oull 5. 1) < CllEll 1) + COR L5, 9) © Ol 0.7:11359)
< Onllzll gy + C(R)T’C(5, )1zl &7y

uniformly with respect to z € OE(T), T € (0,71], [|[Vw|leo <1, and ||Vw| ges < R. It remains to
estimate the difference L, (u, 7, h; 9*) — Ly (u, 7, h;w, ) o ©, which consists of

(3.52a) 93V — (9 Vs,v) 0 O,

(3.52b) [RO, 0] — [1Oys,, w] © O,

(3.52¢) tr(V'?h) — tr(VE_h) 0 Oy,

(3.52d) tr(tr 97, V'?h) — tr(tr 9 p, V3_h) o Oy,
(3.52¢) tr (5, tr 95 V?h) — tr(dy tr 9 V3, h) 0 O,
(3.52f) tr(95, V'?h) — tr(9p, V3_h) o O,

(3.52g) tr (95,07 V2h) — tr(9,9LVE_h) 0 O,

Again we control lower order terms by using (3.34), (3.35), and (3.36). The differences (3.52a)
to (3.52¢) can be controlled by means of the estimates (3.41) and (3.42). For the terms (3.52d)
to (3.52g) we employ the estimates (3.43) and (3.44). We conclude that for € > 0 thereis n > 0
such that for R, T} € (0, o0) there is Ty € (0,71] such that

12 G (@, B 0,0, 9) | 5, 1y gy < € forall (0%, w,9) € Pary mm T € (0,Th).
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(v) The relevant estimates of G}, in (G, (T) follow from estimates (3.45) and (3.46) and we
conclude that for 77 > 0 and ¢ > 0 there is > 0 such that for R > 0 there is Ty € (0, 71] such
that

”? — Gh(w, w)HQE(T)—)OEh(T) S 3 fOI' all (/19*,(.4], 19) € ,PM7T17777R, T S (07 TU]
(vi) The preceding steps show that for given M, T}, ¢, R > 0 there are n = n(M,T1,¢) > 0
and Ty = To(M, T, ¢, R) € (0,T1] such that
(3.53) [E(0%, w, | 5y —orry <€ forall (0, w,d) € Prry g
For fixed M and T; we apply Theorem 3.14 and obtain a finite number

C = sup { IS0 ey oy 9 € Por, T € (0,Ti] .

Next we fix ¢ € (0,C~!) and for given R > 0 we choose n(M,Ty,¢) > 0 and Ty(M, Ty, e, R) >
0 such that (3.53) is valid. Then the operator (3.49) is uniformly invertible with respect to
(V*,w, ) € Py grand T € (0,Tp] and the proof of Theorem 3.16 is complete. O

3.3. Bounded domains

We consider problem (3.1) = (PL) in a bounded domain ©2 C R" (n > 2) with smooth boundary
0 and with a compact smooth hypersurface ¥ C 2 such that Q2 \ ¥ consists of disjoint open
sets (2, and Q_ with 92 N IJQ_ = X. We will establish optimal regularity for this problem on
some short time interval (0, 7") for the following class of reference velocities .. The involved
function spaces are collected in Figure 3.7 on page 72.

3.20. Definition. Let p € (max{3, (n + 2)/2},00), M > 0, and T' > 0. The parameter set Py 1
consists of all vector fields u, = v, + wyvs € Ey(T) + E(T) - vx, such that

[willg, ) <M, [ Dz(v:)llg,r) < M,

and

(3.54)
inf  do(Dsx(us)) = inf s — 1) divs us + 21 i T"Ds(u)C ) > M1
oy 0(Ds(ux)) . <U+( fs) divs we + 24 CE]RI}},I&:lC = (u )C> >

Note that condition (3.54) makes sense due to the embeddings E, — C([0,T]; C1(3;TY))
and E,, — C([0, T); C*(X)), which are valid for p > max{3, (n + 2)/2}.

3.21. Theorem. Let pi, p4, 0, fis, As + pis > 0, and let p € (max{5,n + 2},00) and M, Ty > 0.
Then there exists Ty € (0,T1] such that the solution-to-data map

(u7 T, h) = (fu7 fd7 9v; Gw, gh)a
0E = 0Euv,w,0,w X 0Ex [] X 0En = oF = 0Fu X 0Fax X 0Gy X 0Gw X oGy,

of problem (3.1) is uniformly invertible with respect to T' € (0, Tp] and u. € Parr,.

For the proof we apply a modified version of the elliptic localization technique from Section
2.1.1, which will be presented in Section 3.3.1. As in [KPW13; Wil13], we localize problem (3.1)
in both time and space and we construct both a left- and a right-inverse for the solution-to-data
map. A different approach was used in [Gei+12] for a stationary Stokes problem, where the
authors localize in space, establish R-bounds for the data-to-solution map, and apply Weis’
characterization of maximal L,-regularity [Wei01].

As in Section 3.2, we employ T-dependent estimates for controlling lower-order perturba-
tions; however, in order to control the commutator [V, ¢;]m = V; 7, the usual elliptic localiza-
tion does not suffice. In addition, we employ certain projections on subspaces with vanishing
momentum and divergence data. These projections are constructed similarly as in [Gei+12;
KPW13; Wil13], by resolving non-trivial momentum and divergence data by means of weak
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Neumann transmission problems and one-phase Stokes problems. Then, similar to [Koh13;
KPW13; Will3], we prove in Section 3.3.2 that the pressure has additional temporal regular-
ity, if it belongs to the range of the aforementioned projection. Section 3.3.3 contains the local
spaces, approximation systems, and local operators and in Section 3.3.4 we prove the relevant
commutator estimates.

3.3.1. Localization technique. For T' € (0, 7] with some fixed number T3 € (0, co) we will
consider Banach spaces £ = E(T) and F' = F(T) of functions on (0,7") and linear operators
Ar : E(T) — F(T). For the sake of brevity, we wish to omit the 7-dependence occasionally.
To justify this we always assume that the spaces and operators are compatible in the sense that
for 0 < T < T’ < T their realizations over (0, 7T') coincide with the restrictions to (0,7) of their
realizations over (0,7”).

We fix a number ¢ € [1, 00) and an index set I C Ny and consider /,-approximation systems
(E, (®Ej)jer, (YE,j)jer) and (F, (®Pr;j)jer, (¥Fj)jer) for E and F in the sense of Definition 2.4
on page 27. Our goal is to show that a given linear operator A € B(E; F) is uniformly invertible
with respect to T' € (0, Tp] for some Ty € (0, T}]. Let us therefore assume that

(i) there are invertible linear operators A; € Bisom(Ej; F;), the local operators, such that

sup [|(fj)jer = (A7 f)jerlli, (v er))—i, By < o©-
TG(O,Tl]

Indeed, these operators A; will correspond to certain model problems and the uniform invert-
ibility of A; will follow from the boundedness of the relevant coefficients related to ¥ and wu..
We further assume that

(ii) we can find a projection Pr € B(F') and an operator Ry € B(F'; E) such that

(Ir — Pr)ARy(Ip — Pp) = Iy — Pp.
We wish to choose the projection

PF: (fuafdagv7gw’gh) — (O7O’gvvgwagh)

and therefore the operator Ry : (fu, f4,0,0,0) — (u, 7, 0) should produce functions (u, 7,0) € E
with (pd; — pA)u+ Vr = f, and divu = f;. Moreover, the operator

Pr =1 — Ry(Ir — Pp)A
is a projection in B(E) and we obtain
PpAPp = PrA(Ip — Ro(Ip — Pp)A)
=A— (Ip—Pp)A+ (Ip — Pp)ARy(Ip — Pp)A — ARy(Ip — Pp)A
=A—ARy(Ip — Pr)A = APg.

In particular, for given z = (u, 7, h) € PpE and Az = (fu, fd, 9v, 9w, gn) We have (fy, fa) = 0.
We also consider the local projections

PF,j: (fuj’fdj)gvjvgwjaghj) = (07O)gvjagwj7ghj)) PE,] = A]_l-PF,jA])

and we assume that
(iii) the projections Pr; satisfy

Qp;Pr = Pp;®r;.

This property will be trivial in our situation, since it means that for given (0,0, g, gu, gn) € F,
the tuple ®£,;(0,0, gv, gu, gr) has the form (0,0, gvj, gu;, gn;)-
Now we define an approximate inverse for A by

R: F — E, R = Zj\IIE,jAj_lq)F,jPF(IF — AR()(IF - PF)) + Ro(IF — PF)
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Note that ), Vp ; A;1<I> r,; is the usual approximate inverse in the elliptic and parabolic theory
and that the operator Ry(Ir — Pr) takes care of the momentum and divergence data (f,, fai).
The latter is constructed in Lemma 3.27 on page 91. From our assumptions (i) to (iii) we infer
that

(3.55a) AR —Ip = Zj(A\pE,j — Wp,Aj) A7 @R Pr(Ip — ARy(Ip — Pr)),
(3.55b) RA—Ip = ijIzE,jAj—l(ch,jA — Aj®y )Py
In order to apply a Neumann series argument we wish to guarantee that

HAR—IFHF_)FSQ_l, HRA—IEHE_>E§2_1 fOI'TE (O,To]

If this is true then the operators AR = I — (Ip — AR) € B(F(T)) and RA=Ip — (I — RA) €
B(E(T)) are invertible for all T € (0, Tp] and A has the inverse R(AR)~! = (RA)~!R. If further
M > 01is a bound for R, then 2M is a bound for A~ 1.

Hence, in view of (3.55), it remains to guarantee the commutator estimates

(3.56a) AV ; — VE;Ajllps  E,—F < €,
(3.56b) |®r;A — Aj®pjllppEsr; <&,
for every given € by choosing A;, ®;, and V¥, suitably and T sufficiently small, whereas the
other operators should remain uniformly bounded.
3.3.2. Time regularity of the pressure. We consider the equations

pou — pAu+Vr=f, inJxQ\X,

divu=0 inJxQ\ZX,

ulpgo-v=0 onJ x 09,
[ul =0 onJxX,

(3.57)

where 2 C R” (n > 2) is a domain with (possibly empty) C?~-boundary and ¥ C Q is a
(possibly empty) closed C?~-hypersurface. Let further p € (1,00) and assume that  and %
satisfy Assumption 2.1 where the bound 7 = 7(n,p, p~!) > 0 for |Vw||« is chosen such that
Theorem 2.2 is applicable. In this case we obtain a bounded solution operator

g0 ¥, (LN H, N (Q) = (HyNHy)(Q\5)/(p'K)
for the elliptic transmission problem
—AYp=goinQ, G =00n0Q, [0,¢]=00n%, [py]=0o0nZX.

With methods from [K6h13, Proposition 7.14], [KPW13, Corollary 1], and [Wil13, Lemma
2.1.1], we will prove the following temporal regularity result for the pressure 7, where we let
(¢) )¢ :=|K|™! [} ¢ dz denote the mean value of ¢ € L;(K) for a bounded domain K.

3.22. Lemma. Lef p1, p2, 1, p2 € (0,00), J = (0,T) with T € (0,00], p € (1,00), and o €
(0,1/2 —1/2p]. Let K be a bounded C*-subdomain of 2 and suppose that (u, w, f,,) satisfies (3.57) and

w€ By = Hy(J; Ly(Q)") N Lp(J; HY(Q\ £)),
m € R = Ly(J; H)(Q\ X)),
[7] € Wy (J; Lp(%)),
fu = fua+ pfue € W (J; Lp(Q)") + pLyp(J; Lp,o ().
Then the following estimate is valid with some C' = C(n,p, K,T) > 0.

(3.58)

(3.59) [ <7T>KHW19(J;LP(K)) <C (HUHEU + ”fU,CX”W;(J;Lp(Q)) + H[[W]]HW;;‘(J;LP(E))) .
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Moreover, the number C'is uniform with respect to T' € (0, co| under the restrictions
u € oy, [r] € W, (J; Lp(X)),  fua € W, (J; Lp(0)"), a#1/p.

Proof. For g € L,y (K) we define a function gy € L,y (2) by go(z) := g(x) — (g9) x for x € K and
go(z) =0forx € Q \ K. The Poincaré-Wirtinger mequahty for H}(K) implies

Upodds] _ i 90(6 — (9) i) da|
ol < OOl

l90ll g=1() = sup
T gep@nnoy Vol — gen@nno)

By Theorem 2.2, we can find some p1) € ’Hg, (Q\X)N ?-'l;, (€2) such that
—AYp=goinQ, Oy =00n0Q, [0,¢]=00n%, [py]=00nX,
which satisfies the estimate HV#JHH;,(Q\E) < CHgHLp,(K)
For my := 7 — (m) - and g, go, and ¢ as above, an integration by parts yields

/ ﬁogdm:/ﬂ'ogodx:/ﬂ'oAi/)dx:/Vﬂ'-V¢dx/[[W]]@V@bda.
K Q Q Q >

By using the equations in (3.57) and integrating by parts, we obtain
—/ Wogdx:/uVu:Vzwdx—/ uﬁyu-vwda—&—/[[,u&,u-vw]]da
K Q 09 s

~ [ fua Vot~ [ [0 dr = (o ge1.9)
The duality L,(K)* = L, (K) yields the estimate
1m0 ()2, (k) = 1w, o Ir] DL, (1) S M)l ar30) + 100u()] 1, 00) + [1£0pus ()1, x)
+ [ fua®llz, @) + IIr O], )
In order to apply the W;*(0, T')-seminorm, we observe that
Im0(t) = mo($) |, (k) = 1Fu(t)—u(s),fura (8)— fura (), Ir ]~ [ ()] 2,y ()

Hence, for some number C' = C(n, p, K), which does not depend on T" € (0, oo, we have
Imollwe (L, < C (||U|\W5(J;H;(Q)) + [10vullwe ;1 60) + HauU:tHW}?(J;LP(E)))

+C (I fualwg ey + 1elwg iz ) -
Since a < 1/2 — 1/2p, the trace theorem (Theorem B.32) and the mixed derivative embeddings
(Proposition B.44) yield a constant C' = C'(n, p, K, T') such that
[mollwe (L, (x) < C (”uHEu(T) + [ fuallwe ;L) + H[[?T]]HW;(J;LP(E))) :

Therefore the asserted estimate (3.59) is valid. Uniform estimates with respect to 1" follow by
extension and restriction (Lemma B.9). O

3.3.3. Local operators. With the spaces from page 72, we define the space of solutions
E(T) = oE(J,2, %) = 0By pw,0,w(J, 2, 2) X 0Er [7(J, 2, %) x oEp(J, X)),
and the space of data
F(T) :=oF(J,Q,%) :=Fu(J,Q) x oFgx(J,2,%) X ¢Gy(J,X) X 0Gy(J, X) X 0Gp(J, 2).

In order to define the local spaces E; and F; we employ Lemma 2.9 on page 29, which
implies that for every n > 0 there is ro(n) > 0 such that for every r € (0,7¢(n)] we can find
an (7, r)-localization set-up for (2, X)) in the sense of Definition 2.8. Hence for some finite set
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I = I(n,r) there exist an open covering for Q of balls U; = B,(p;) (j € I) and there are rigid
transformations

@ji J}'—>pj+ij, BT(O) —>Uj,

and height functions w; € C°(R"™ 1) with ||w;|| poin H2 <. Furthermore, the index set can be
decomposed into I = I; U I U I3, where j € I; corresponds to the whole space case @ N U; =
©;(R" N By), j € I corresponds to the bent half-space case 2 N U; = ©;(R};, N By), and j € I3
corresponds to the bent hyperplane case ¥ N U; = ©;(X,,; N B;). We define

Qj =R", Ej =10 for j € I,
Qj = RZ],, Ej =10 for j € Iy,
Qj =R", Ej = ij for j € Is.

Then we define the local spaces
E;(T) = oE(J,9,%,),  F;(T) =oF(J,Q;,%;)  forje L, Ul,UIs,
where in the case j € I} U I, we identify
oE(J,Q;,0) = {u € oEu(J,95,0) : ulpn, = 0} x Ex,  oF(J,Q;,0) = Fyu(J, Q) x 0Fa(J, ).

We choose a partition of unity (¢;)es for  in R” subordinate to (U;) je; and choose another
family of cut-off functions (¢);) ;e with supp¢; C U; and ¢); = 1 on supp ¢;. Then we have
>~ ¥ip; = 1in Q2 and we define approximation systems for E and F' by

©p(u,m, h) = (Q) (wju), (957, (psh)) ©
Vi, (uj 5, hy) == (Qg(%ug)a (Wjm)), (ihy)) 0 O 1,
O (fus fis 9o Gus 9n) 7= (QF (95 1u)s (9 fa), Q) (£590), (9i9w)s (9jgn)) © O,
U (Fujs Jajs 9ojs Gwis 9ng) = (Qj(¥5fu)s (¥5.fa) Qi (5907), (V59w;), (Wigns)) © O .

The relevant mapping properties of these maps follow as in Lemma 3.17.

Problem (3.1) induces a bounded linear operator A: ' — F by

—patu — nAu + \ved

divu

(3.60) A(u,m, h) = Ly (u, h;uy) for (u,m, h) € E

Ly (u,m, h;uy)
Oth —u - vs

For j € I U I, we define the local operators A;: E; — F; by

pou — pAu + Vi

) for (u,) € Ej, j € 1 U L.
divu

(3.61) Aj(u,m) = [

The results of Bothe and Priiss ([BP07, Theorem 5.1, Theorem 6.1]) imply that A;: E; — F} is
invertible for j € I; U I and w; = 0. For j € I and w; # 0 we employ the following result.

3.23. Lemma. Letn >2,p, > 0,and p € (n+ 2,00).
Then there exists ) > 0 such that for given R > 0 we can find a number To(R) > 0 such that the
solution-to-data map (u, ) — (fu, fa), 0By X Ex — Fy, X oFq of problem

{ pou — pAu+Vr = f, inJ xR},

.62
(36 ) divu = fd ZTZJ X RZ,
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is uniformly invertible with respect to T' € (0, To] and
(3.63) we BC*(R"™), wlper <n, |lwllpes < R.

Proof. We employ the transformation O, : R} — R{, , (2/,25) = (2, 25 + wj(2”)) from equa-
tion (3.27) on page 72. As in Lemma 3.17, we define the transformed functions
T=[00,,] 'uoB,, T=m00,, f,:=1[004]"fio0u fq:=Ff1006.,.
Then (3.62) is equivalent to
(3.64) { (pdy — pA)u + VT = Z“ + F,(a,7wj) inJxRY,
diva = fy inJ x RY,

where the perturbation F), is defined by
Fu (7, wj) := A([00.,] " (Au) 0 Oy, — AT) + (I — [00,,]'[00,,]” ") VT,

and the difference (Au)o©,,; —Au can be expressed by (3.50). As for Theorem 3.16 it follows that

the map (u,7) — (f,, f4) induced by (3.64) is uniformly invertible with respect to 7' € (0, Ty]
(3.63) for some 7 > 0 and Tp(n) > 0. The proof of Lemma 3.17 shows that the transformation
(@, 7, fu, fa) = (u, 7, fu, f2) is uniformly invertible and this yields the assertion. O

For the case j € I3 we first define the local coefficients of A;. These depend on the functions
Ly = @ Oy, we =vs-us, Ds(v,)=sym([r&® Opv.|Px),
with v, = Psu,. Their transforms under the rigid map ©;: = — Q;x + p; are given by
Ly, =Qj[Ly00,,]Qj, W.=w,00,,, Dy (v.)=Qq,[(Ds(vs))o0Ou,]Q;,

where T, = Q] (v4 0 ).

As for the construction of w; in Lemma 2.9, we fix a cut-off function x € B(R") with 0 <
x <1, x(x) =1for|z| <1, and x(z) = 0 for |x| > 2. For a given function ¢ on J x (X; N By,)
and r € (0,79/2] we define another function 4. on J x ¥; by

x(x/r)((t, z) = 9(0,0))  for |z < 2r <o,
0 for |z| > 2r.

J}r(tafw = (Srw)(tax) = 1!}(0,0) + {
Then 9, (t, x) = ¢(t,x) for all (t,z) € J x (X; N B,).

3.24. Proposition (Properties of S, : ¢ — @Zr). Let ¥ =X, be a bent Cz—hyperplane in R™,
(i) For all rq > 0 there exists C > 0 such that

(3.65) 1 = $(0)| pes)nm(s) < Crm= DY p) o snp, )

forallr € (0,70/2] and y» € BCY(X N Byy).
(ii) For all ro > 0 there exists C > 0 such that

(3.66) 1% — ¥ (O0)ll ser ynmzcs) < Cr™ VP Y peo s, ).

forall v € (0,70/2], v € BC*(X N B,,) with Vi(0) = 0.
(iii) Forall Ty > 0,rg > 0, and ~y € (0, 1) there exists C > 0 such that

(3.67) ||l — (0, OllcqorBoE)nmis) < Cpmaxth(n=/p}(1 4 7 /)l ll e jo,1); Bt (50Bay))

forall v € (0,70/2] and 1 € C7([0,T1]; BCY(X N By,)).
Given 1 > 0, the number C' in (i) to (iii) is uniform with respect to | Vw||oo < 7.
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Proof. With the substitution + = ry we obtain the identities || x(-/r)|, = ™ /7| x|, and
1(VX)(-/7)|lp = 7™ D/P||Vx]|,. We will also use the inequalities

[W(z) — (0)] < (1 +1%) 22| Vst oo,
(@) —p(0)] < (1+ )22 VEY ]  if Vs1p(0) =0,

which follow from Proposition A.12 on page 133. Then (i) and (ii) are readily checked.
Next, for t € [0,7] we have

IVt )llp < Cr VPl V(| Bensa) + 17 VxC/)[Ipl#(t 0) — (0, 0)]
< CT(nfl)/pHXHH;(l + T’y/r)kucﬁ([o,T];BC(EﬂBzr))'
The estimate of ||¢),.(, -)||,, is similar and hence (iii) is valid. O

For given u, € Py, and 7 > 0 we define

O = (V15, Yw,j, VDv,j), U7 = (97,5, U 5 VDuj)s
. P15 = 5:(Q; [z 0 04,]Q5), Vi = Q; [Ls()]Qs.
. 79w,j = ST(U}* o @wj), 19:;’] = w*(()’p])’

Ipug =S (Q] [(Dxvs) 0 04,,]Q;), Uy = Q) [(Dsv.)(0,p;)]Q;-
Then the local operators A;: E; — F} for j € I3 are defined by
—p&gu — pAu + \ved
divu
(3.69) Aj(u,m,h) == | Ly(u, h;wj,9;) for (u,m,h) € Ej, j € I3,
Ly(u,m, hywj, v))
Oth —u - Vs,

where L, and L,, are defined on page 71.

3.25. Corollary. Let p € (n+ 2,00) and M, Ty > 0. Then there are positive functions r(-) and Ty(-)
such that for some ng > 0 and every n € (0, o], the pair (2, X) has an (n, r(n))-localization set-up and
the local operators A;: E; — F; (j € 11 U I U I3) defined by equations (3.61) and (3.69) are uniformly
invertible with respect to T' € (0,To(n)], j € I, and uy € Py

Proof. For given M > 0 there exists M; = M; (M, %) > M such that
suIE) (Ls (), w«(0,2), Dyv (0, z))| < My, irzl:f do(Ds:(u]i=0)) > M7 !
FAS

for all u, € Py, and Ty € (0,00). For given n > 0, Lemma 2.9 yields a positive number
ro(n) such that for every r € (0,79(n)] the pair (€2, X) has an (7, r)-localization set-up such that
|lwjllpoinmz < n forall j € I U I3 and there exists R(r) > 0 such that ||w;|pcs < R(r) for
J € I2 U I3. Sobolev’s embedding and the mixed derivative embeddings yield an estimate

H (w*, DZU*) HCV([O,T];BCI(Z)) § CM for all Uy € PM/TI

for some v > 0 and C' > 1. By Proposition 3.24 we can find a positive number r1(n) < ry(n)
and a positive function 7 — R(r) such that the parameters (J7, ;) from (3.68) satisfy

HﬂL,j - 02,;’“30(2@01{5(2@ <n, HﬁL,j - 792,;'“30%2@ < R(r),
19w, = O jllcqo.r:BoEnnHL(S) < M) Vw5 — T jllcw ) < R(T),
1900, = v jllcqoreEanmsay) <m0 Wb = Ipujlle.m < R(r)

forallr € (0,71(n)], j € I3, and u. € Pa,1,. Hence (97, w;, ;) belongs to the set Pons, 1y 1, r(r)
from page 71 for all j € I3. By Theorem 3.16 and Lemma 3.23, there exist a positive number 7y
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and a function R — Ty(R) such thatif n < 79 and r € (0,71(n)], then the operators A;: E;(T) —
F;(T) are uniformly invertible with respect to 7" € (0, Ty (R(r))], j € I, and uy € Py O

3.3.4. Commutator estimates. For proving Theorem 3.21 it remains to verify the commu-
tator estimates (3.56) and to construct the operator Rj.
3.26. Lemma. Let p € (max{5,n + 2}, 00) and let M, Ty, (U;,©;,w;), A;, and Ty be as in Corollary
3.25. Then for all € > 0 there exists T} € (0, Ty| such that
(3.70a) AV E; — Yr;Ajll Py, BT~ F(T)
(3.70b) |Pr;A—A;Pp

forall T € (0,T], j € I, and u, € Par,.

<e€
<e

PpE(T)—F;(T)

Proof. It is sufficient to prove estimate (3.70a), since (3.70b) can be proved analogously.

For given z; = (uj, 7, hj) € Pg;E;, the pair (u;, ;) satisfies the assumptions of Lemma
3.22in Q; \ ¥; and we conclude that 7o := 7; — (7)) , belongs to 0W1/2 1/zp(J L,(Kj)) for
every bounded smooth domain K; C ©; which contains the support of Vi); and we have

G limy— ()i, |y ey < O (lsllgaianyzy + Mlllen sy
forall z; € PgjE;(T) and T € (0,7p]. We next deal with the cases j € I3, I, and I3 separately.
(1) Perturbed whole-space problem. Let j € I, be fixed and let z = (u,my) € Pg ;E;. Then

’ ’ V- u Fyj(u)

Here we let [S,T] = ST — T'S denote the commutator of linear operators S and 7.
We show that the perturbations F),; and Fy; satisfy the estimate

(3.73) | s (s, 70) [ (1) + 1 Fai (@) gy < CTH27 2 ||ul g

where F,, = F,(J,R",0) and ¢Fq := oFq(J,R",0) = oFgqx(J,R",0). From estimate (3.71), the
mixed derivative embeddings and the interval dependent estimates in Lemma 3.18 we obtain
the following estimates. For all € (1/p,1/2) and Tj > 0 we have

A, slulle, ) < CTo)lullz,or:m3) < COToO)Tlullyws 0.3y < O To)T° [[ully, ()
0 Vesle, () < C(To)T* 2P o] < O(To)TY*7V2 ul g, )

-1

-1
o,
y )

O .
J

U (AT
The estimates in the divergence space (Fq(T) = H}(0,T; H, ' (R™)) N L, (0, T; HL(R™)) are ob-
tained in two steps. First, for § € (1/p,1/2) and Tp > 0 we have

IV - ullp,0,mmy) < C(T0)|ull L, 0,7;m1) < T°C(8,T0)|ull . (1)

Second, the term V1); - u acts as a functional on ¢ € H ;, (R™) in virtue of ¢ — [ V); - u ¢ du.
The condition div u = 0 yields [, V¢, - udz = 0. Hence [,, V- u ¢ dz = [, Vibj - u ¢p d,
where ¢o = ¢ — (¢) ., and thus

Oy Vp; - uqum—/ V; - < uVTr) oo dx
(3.74) R" p

.
= - / ;(Vu) : V(V”(b]gﬁo) dx + / ;7‘(0 le(V¢j¢o) dx
n Rn
Applying the Poincaré-Wirtinger inequality to ¢g € H 1, (K;) and using (3.71), we obtain

IV - wlly s 0,0,y < CT0) [l Ly0,73m8) + C(To)Imoll 0152, < C(T To)T2 712 g,

Therefore estimate (3.73) is valid.
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(2) Perturbed half-space problem. In the case j € I, ); = RZ],, and 3; = (), the commutator is
also given by (3.72) and Fy; in F(J,Q;, %) and Fy; in L, (0,T; H}(€;)) can be estimated in the
same way as above. In view of divu = 0 and u]an = (0 it remains to estimate the functional

Fyi: ¢ (Vb - u, ) :—/Q Yiu -V de
J
in H1(0,T; H,(€;)). As for (3.74) we obtain

8t/Q. Vi -upde = —/ H(VU)T s V(V0) do + / | /1)7r0 div(V¢o) da

J Q;
Ot
p

% ) Moo, _ Q.
—l—/mj (pw ou pv Y:Vuo 7T¢> d(082;).

For every ¢ € (1/p,1/2 — 3/2p) the trace operator
7o = Tolan, : Wa/272(0,T; Ly(Q5)) N Ly(0, T; Hp () < W2(0, T Ly(99;))
is bounded since p > 5. Therefore the Poincaré-Wirtinger inequality and Lemma 3.22 yield
10:(V Y -, )M 0.15052 0 < CHVUT0) Ly 0,758,025)) + CllOuw, Tl 0m3L,(005))
< C(8, To) T\ (uy )| g (7,025 0) X (J,25,0) -

(3) Perturbed interface problem. Let j € I3 be fixed. For z = (u, m, h) € Pg jE; we have
Q3P (1w, m0)
Fyj(u)
(3.75) (AVp; — UpjAj)z = | Q;jGyi(u,h) | © O,

Gj(u)
0

where F;, Fy;, Gyj, and G, are the commutators
Fyj(u,mo) = moVibj — A u — 2[Vu] ' Vb,
Fgi(u) = Vip; - u,
Guj(u, h) = =[usBs;, 5o — N[V, divsy, o]0 = [u]0, 05
=[]V w — (As + ps)Vu,j[Vs, A, ¥jlh,
Guj(u, h) = = tr([(As — ps) tr I + 20501 5]V ¥5)v — 2[p] Ot w
— tr([o 4+ (As — ps) (tr I puj — 2670 0w 5) + 215 (D v j — 20,01 1)][VE,, i]h).

Clearly, F; in L,(J x Q;) and Fy; in L, (0, T; H)(€2;\ ©;)) can be estimated as in the case j € 1.
Due to divu = 0 and [vs - u] = 0, the functional Fy; € H}(0,T; H,*(€;)) is given by

¢ = (Vb - u, ¢) :/ Vipj-updr = —/ Yiju-Vod.
Q, Q,
Leto € (1/p,1/2 — 3/2p). With

) /Q Vi ugde = - /Q P (V)T V (Vi) da + / P o div(Ve00) de

J QJ

= [ 190 = gV s Vo - p O] d,

%j
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and the pressure estimate (3.71), we obtain
106V w051 0, < ClVU T0) Ly 0,1:L,02,)) + Cll Ot Tl Ly 03L,(5)))

6
S 0(67 T0>T H ('U,, ﬂ-) “OE1L,U,w,8yw(J7Qj7Zj)XO]Eﬂ',HTF]] (‘]79]72])

The remaining terms G.; in ¢G, and Fy+|x and G,; in ¢G,, are lower order differential
operators in (u, h) and therefore the assertions (ii) to (iv) in Lemma 3.19 yield the estimate

G (s W) g () + 11 (Fajae ()55, Gt ) oy < THAC(8, To) 2]y -

Hence, given ¢ > 0, there exists Tjj(¢) € (0,Tp] such that (3.70a) is valid. Estimate (3.70b)
follows analogously. O
3.27. Lemma (Construction of Ry). Let §2 be a bounded domain in R™ (n > 2) with smooth boundary
00, let ¥ C 2 be a compact smooth hypersurface, and let T1, p+, and p+ > 0 be fixed. Then the operator
(3.76) (u, 7T) — ((p@t — IU,A)U + Vo, div 'LL), OEu,v,w,ayw(T> X OEﬂ—’[ﬂ—]] (T) — FU(T) X OFd,E(T)
is a retraction and it has a uniformly bounded co-retraction with respect to T € (0, T7].
Proof. The spatial trace theorem, the divergence theorem and the identity divu = divyv —
Hsw — 0,w near ¥ imply that div: oEy 4 4.6, — 0Fa,x is bounded. Hence (3.76) is bounded.

From Theorem 2.3 we obtain the Helmholtz decomposition f, = VF, + f,, where f,, :=
fu—VF,belongs to L,(0,T; L, +(Q)) and F, € L,(0,T; Hy(9)) is defined as the solution to the
weak Neumann problem (VF,, Vé)q = (fu, Vo)q forall ¢ € H;,(Q).

Next, we define u' := VU, where the functions U solves the transmission problem

AU = fgin J x Q\ X, 0,Utloa =0, [pU]=0, [8,U]=0.
By Theorem 2.2 and Theorem 2.3, the operator
farm ult = VU, Fax = oHSM (T x (Q\ X)) = oHy (T3 Lp(2)) N Ly(J; Hy(2\ )

is bounded. Since the traces u'|sn and ui]g do not necessarily vanish, we construct another
function u? € OHI(;LQ) (J x (©2\ X)) by solving the problem

(pOs — pA)u? = fuy inJ xQ\3,
divu? =0 inJxQ\%,
ui‘ag = —ullpg on J x 09,

ully = —Prulls onJxX.

This problem can be decoupled into one-phase Stokes problems in the components of Q2 \ X
which can be solved by means of [BP07, Theorem 4.1] and the Helmholtz projection. Hence
there is a bounded solution operator ( f,s, ul) + u?, the function u := u' +u? satisfies u|sn = 0,
Psuly =0, and divu = f4, and therefore u belongs to oEy, .5, w-

The pressure 7 is defined as the solution to the weak transmission problem

(Vm, V) = (V(Fu = (00 — pA)U), V)q forall ¢ € Hy(Q),  [n] = =[(pd — pA)U] = [u] fa,
and hence belongs to oEr []. It is now straightforward to check that the operator Ro: (fu, fa) —
(ul4u?, ), Fy x 0Fa, s = 0Euv,w,8,w X 0Ex [] is a uniformly bounded co-retraction for (3.76). [J

Proof of Theorem 3.21. The assertions of the theorem follow from the strategy in Section 3.3.1, by
applying Lemmas 3.26 and 3.27. O






CHAPTER 4

The nonlinear problem

Let @ C R™ (n > 2) be a bounded smooth domain. In this chapter we transform problem
(N) with compact moving interface I'(¢) C 2 to problem (T) over a fixed interface ¥ C Q and
prove that problem (T) is well-posed on a sufficiently short interval J = (0,7"). The notion of
well-posedness is based on the function spaces in Figure 4.1 on the next page, and our basically
follows the strategy of Koéhne, Priifs, and Wilke [KPW13]. However, we restrict our considera-
tions to the case where the initial interface I'g = 6;,,(X) is already parametrized over X.

In order to transform problem (N), we need a time-dependent diffeomorphism ©(¢,-) of
the underlying domain €, which maps a fixed hypersurface ¥ C 2 onto I'(t) = ©({t} x X).
Such maps are studied in Section 4.1, where we construct a normal-preserving admissible map
On: J x Q — Qinduced by a height function h(t,-): ¥ — R and extending the parametrization

(4.1) On(t,x) =x+ h(t,z)vs(z) €e(t) forte J xeX
to J x Q. The map O}, yields useful identities for the velocity transformation

These identities are used to derive problem (T) in Section 4.2 and Section 4.3.
For proving well-posedness of (T), we will apply the following fixed point theorem.

4.1. Theorem (Banach’s fixed point theorem, [DMO7]). Let (M, d) be a complete metric space, A be
a topological space, and F': M x A — M be a map with the following properties:
(i) There exists q € (0, 1) such that

d(F(z,a),F(y,a)) < qd(z,y) forallz,y € Mandall a € A.

(ii) For every x € M, the mapping a — F(z, a) is continuous on A.
Then for every a € A there is a unique p(a) € M such that F(¢(a),a) = ¢(a). Moreover, the map
w: A — M is continuous.

This tool is applied in Section 4.4, where we prove our main result Theorem 4.33 with the
following technique. First, in order to eliminate the initial condition (u, h)|t=0 = (uo, ho) =: 20,
we will construct a triple z, = (us, T, hy) With (u, hy)|t=0 = 20 by means of semigroup theory
and Chapter 2. Then the desired solution is given by z = z, + 2,, Wwhere zo = (us, T, he) should
satisfy the identity L(ze;u.) = N(z;24), the operator L(-;us) is the solution-to-data map of
problem (PL), and N contains the nonlinear perturbations that arise during the transformation.
Hence, with Theorem 3.21, we can define the map F(ze; 20) := [L(*;ux)] "1 N(2e; 2«). Thus, in
view of the desired identity z, = F'(zs; 20), it remains to show that F' satisfies the assumptions
of Theorem 4.1. To this end, we will show that F'(z,; z0) and 0., F'(ze; 20) become as small as we
wish, when we choose z,, T, and h sufficiently small. Since L(-;u,) is uniformly invertible, it
remains to control the perturbation N (z,; z9) and its derivative 0., N (ze; 20).

We control these perturbations in the context of their derivations. In Section 4.2, we deal
with the transformed momentum balance and the transformed divergence equation, where we
do not yet employ an explicit representation of ©. In Section 4.3, we control the perturbations
for the transformed interface momentum balance when the moving interface is represented
as I'(t) = O,({t} x X). Here we also specialize the results from Section 4.2 to the case of a
normal-preserving admissible map.

93
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Forn >2,pe€ (3,00),and J = (0,7, we let
E, = {u € Hy(J; Ly(Q)") N Ly(J; Hy(Q\ £)") : ulpo = 0, [u] = 0 on 5},
E, = Wy Y2 (J; Ly(5,TS)) N W/ 2720 (] HA(S;T8)) 0 Ly (J; WP (S, TY)),
E, = W, (J; HY(S)) N Ly(J; W2~ 1/P (%)),
Evow={u€E, :v|y € By, wls € Ey},
Eyvwow ={t € Eypw: Owils € Gy},
Er = Lp(J; Hy(Q\ X)),
Er ] = {7 € Er : [7] € Gu},
E, = W2 Y% (J; HY(E)) N Ey,
Ey = H(J; WEYP(8)) N Ly(J; W=t /P(3)),
Eo = HY/*(J; Hy(R™)) N H, (J; Hy(R™)) N Ly (J; Hy (R™)),
Ego = W21/2P(J; Ly(%)) N Ege,
Eoe = Hy(J; Wy VP(2)) N Ly(J; W~ /P(5)),
E =Eyu w00 X Exag X En,
E = Euvwdw X Exfa] X En,
Fu = Lp(J; Lp(2)"),
Fy= Hy(J; H ' (Q) N Ly(J; HY(Q\ D)),
Fox ={fa €Fa: fatls € Gu},
Gy = W)/ (J; Ly(S5T8)) N Ly(J; Wy P (55 TR)),
G = W22 (J; H(S)) N Ly(J; W2TYP(R)),
Gy = W, V22 J; Hy(2)) N Ly(J; W P(R)),
F =T, x Fax X Gy X Gy X G, X Eyy .8, wlt=0 X Ent=0,
F = {(fu, fa, Gor Guw» 10, ho) € F ¢ fale—o = div ug, Ly(uo, ho; slt=0) = golt=0}-

Here we decompose u = v 4+ wvy, near X with v = Prsu and w = vy, - u. We will also write
E(T) or E(J, 2, X) instead of E for indicating the dependence on T or (J, (2, ) (analogously
for the other spaces).

FIGURE 4.1. Function spacesE..., F...,and G... on (J,Q, %).

4.1. Diffeomorphism and transformation

We study time-dependent diffeomorphisms O(¢, -) in a domain €2 that map a fixed hypersurface
¥ C Q onto a moving hypersurface I'(t). In Section 4.1.1 we define and study admissible maps,
admissible moving hypersurfaces, and normal-preserving admissible maps and derive useful
identities for the velocity transformation u(t, O(t,z)) = [0,©(t, x)]u(t, ). In Section 4.1.2 we
revisit the Hanzawa map ©;, and prove that it is admissible but not normal-preserving. In
Section 4.1.3 we construct a normal-preserving admissible map ©;,: J x Q — 2, which depends
analytically on its inducing height function h.

4.1.1. General admissible maps. First, we consider general admissible maps, admissible
moving hypersurfaces, and normal-preserving admissible maps.
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4.2. Definition. Let J C R be an interval and 2 C R™ be a domain.
(i) Amap

O: (t,x)—»z=0(tx), JxQ—=Q

of class C1(J x Q)" is called an admissible map, if (a) the Jacobian 0,0(t, z) is invertible for all
t € Jand all x € , (b) the map

©: (t,x) — (t,0(t,x)), JxQ—JxQ

is a diffeomorphism, and (c) we have O(t,z) = z forall t € J and all z € 0.

(ii) A map ©: Q — Q is called admissible, if (¢,z) — O(z), R x Q — Q is admissible.

(iii) A moving hypersurface I': J — 2%, ¢ + T\(t) is called admissible, if there exist a C''-
hypersurface ¥ C  and an admissible map ©: J x Q — Q such that

I't)=0({t} x%) forallte J

We easily obtain the following properties, which are useful for transforming problem (N).

4.3. Proposition. Let J C R be a compact interval, Q@ C R™ be a bounded domain, and © : J x Q — Q
be admissible. Then also (t,z) — O(t,-)"(z), J x Q — Q is admissible.

4.4. Proposition. Let t — I'(t) = O({t} x X) be an admissible moving hypersurface.
(i) The tangent vectors of I'(t) are given by

(4.3) 71 (t,x) = [0:0(t,2)]7(T) forallz = O(t,T), TE X,
and a continuous unit normal field on I'(t) is given by

00t 7)) Tvn(T o
(4.4) vp(t,x) = &af@g’x;}ﬂ;gw% forallx = O(t,7), T € X.

(ii) The normal velocity of I'(t) is given by
Vr(t,x) =vr(t,z) - 0:0O(t,Z7) forallz =0O(t,T), T € X.

Proof. (i) Since I'(t) is oriented and det 9,0 is either positive or negative in all of ), the
hypersurface 3 must be orientable. Let vs; denote a unit normal field on X and let ¢: R*™1 D
U — X be a parametrization for X. Since the restriction O(¢, -)|x.: ¥ — I'(¢) is a diffeomorphism,
the map y — O(t, p(y)): R"~1 D U — TI'(t) is a parametrization for I'(t) and the vectors

Tjr(t, x) = 0;(0(t,-) o p)(u) = %@(t,f)sz(T) forz =0O(t,7), T=¢(u) €2
form a basis of the tangent space T,,I'(¢). Hence (4.3) is valid. Since we have Tjr -vp =0 forall j,

the normal vr (¢, v) must be parallel to [0:0(t,7)] ™"

that either v (¢, z) or —vr(t, x) satisfy (4.4).
(ii) The second assertion follows from Proposition 1.7, by using the trajectories v = ©(-, 7).
u

v5,(T). From the identity |vr| = 1, it follows

Next, we introduce normal-preserving admissible maps and study their geometric proper-
ties as well as their kinematic properties associated to the velocity transformation (4.2).

4.5. Definition. Given an admissible map ©: J x Q — Q and a C!-hypersurface > C (2, we
putI'(t) = ©({t} x ¥) and we say that © is normal-preserving for ¥, if the vectors 0,,,0(t, z) and
vr)(O(t, z)) are parallel for every t € J and every x € ¥; that is, there exists 3: J x ¥ — R\ {0}
such that 0, O(t, x) = B(t, 2)vp) (O(t, 1))
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4.6. Proposition. Let ©: J x Q — Q be a normal-preserving admissible map for a C*-hypersurface
Y C Qandput T'(-) = O({-} x X). Then the following identities are valid on J x ¥:

= %9 Tvs 9,0 3 T -1
(4.5a) vroB = 10.6] oy = ’(9”2@‘, |0v©| = |[0,07 " vs| ™,
T A >
(4.5¢) .00 =0,0]""7,
(4.5d) Pro® = [9,0]P[0,0] ! = [9,0] " P5[0,0]".

Let two vector fields w: J x Q@ — R™ and w: J x Q& — R™ be related by u o e = [0.9]u, and
decompose u|r = v + w vr with v = Ppu|p and G|y, = U + w vy, with © = Pyuly,. Then we have

(4.62) vo®© =1[0,0]v,

(4.6b) wo® = 0,,0|w.

Proof. Since © is normal-preserving, the general identity (4.4) in Proposition 4.4 yields
0y, ©

(vr 0 ©|0,40)

and therefore (4.5a) is valid. Identity (4.5b) is a repetition of (4.3). From the relations Tjr TE =6 J’“

vro® = = ([0,0] "vx|0,,,0,

and TjF Sup = 7-12 -vr = 0 we obtain (4.5¢), and then (4.5d) is readily checked.
The remaining identities can be verified as follows.

v o © = [Pr 0 0][0,0]u = [0,0] P = [0,0]7,
wo® = (uoO|vro0) = (1|[0:0] " (|0,.0][0:0] "vx)) = |9, 0| w. O

4.1.2. The Hanzawa map. Next, we revisit the Hanzawa map ©;, and prove that it is ad-

missible but not normal-preserving. In order to construct it, we recall that
x— Oh(x) =+ h(x)re(x), X —T
is a parametrization for ', = 0,,(3) over X. If ¥ is of class C?, then for |h(z)| < |Lx(z)], the
matrix
Mi(x) = [I, — h(z) Ly ()] "
from page 138 is invertible, maps 7% onto itself, and satisfies M} vs; = vs;. Moreover,
4.7) vr,, © 0, = ﬁh(l/z - MhV2h), with 8, := (VE‘VF;L o Gh) = (1 + ’MhVEh‘Q)il/?
A hypersurface ¥ C R" is said to have a tubular neighborhood of radius r > 0, if the map
X: (pt) = p+trs(p), XX (—rr)— B (X):={zeR":dist(z,X) < r}
is a homeomorphism; that is, X is bijective and continuous and has a continuous inverse (see
Definition A.16). The inverse of X is denoted by
XY(2) = (T(z),d(x)) = (p,t) forz = p+ twn(p) € By(S).

Proposition A.17 implies that every compact C*-hypersurface has a tubular neighborhood.
4.7. Definition (cf. [Han81, p. 309]). Let 2 C R™ (n > 2) be a domain and let ¥ C Q2 be a closed
C?%-hypersurface with tubular neighborhood B, (X) C € of radius r > 0. Choose a function
x € C*®(R; [0, 1]) such that x(s) = 1if |s| < r/3 and x(s) = 0if |s| > 2r/3 and ||x/||cc < 6/7.

Then, for a given height function h: ¥ — R, we define the stationary Hanzawa map

o z 4 x(d(2)) h(Il(z)) vs(ll(z))  forz € B.(%),
M=, forz € 0\ B,(%).
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For J C R and a height function h: J x ¥ — R, we define the time-dependent Hanzawa map
@h(t, $) = @h(t’.)(x) for (t, .%') eJx0.

4.8. Theorem. Let Q2 C R™ (n > 2) beadomain, k > 1, and let ¥ C 2 be a compact Ck“-hypersurface
with tubular neighborhood B,.(X) C Q of radius r < || Lx||5}. Then, for a given height function

heCHD)  with ||hlle < 1/[X s,

the stationary Hanzawa map ©y,: Q — Q is a C*-diffeomorphism, and in B,.(X) we have

0,0y, = Psoll — xod [hLs]oll [Psoll — d Lyoll] ™' (purely tangential part)
(4.8) + (1 + x'od holl) [vs®vs]oll (purely normal part)

+ xod [vs ® Vsh]oIl [Psoll — d Lyoll] ™! (tangential-to-normal part)

and

[0.05] ! = [Psoll — (d + xod hoIl) Lyoll] "} [Psoll — d Lyoll]
(4.9) + (1 4 xod hoIl) ! [vs@vs]oll

— xod(1 + x'od hoIl) " rg®@Vsh]oIl[Psoll — (d + xod holl) LyoIl] L.

In particular, the following identities are valid on X:
(4.10a) 0:On]y = Py — hLy + vs®us + vy ® Vyh,
(4.10b) [0:04]5] ! = [Ps — hLs] ' Py + vs®vy — vs®@Vsh[Py — hLy] L.
Proof. Local invertibility. We check that the inverse [9,0),] ! exists everywhere in Q2. Clearly,

it suffices to consider the case = € B,(X). Proposition A.20 and a straightforward calculation
show that (4.8) is valid in B,.(3). The purely tangential part of 9,0, can be written as

[Ps;oll — (d + yod holl) Lyoll] [I — d Lyoll] ™!

The conditions ||h||« < /3 and x(s) = 0 for |s| > 2r/3 yield |d + xod holl|o, < 7 < ||Lx||3}
in B,(X). Hence the purely tangential part is a linear isomorphism of Ty,)¥. The purely
normal part is a linear isomorphism of Rus;(z), since ||h]| < [X/||o!- Therefore 9,0, (z) is an
isomorphism of R". For every invertible A € C"*™ and a,b € C" we have

A b A Ta
1+A1%.a "

Then also (4.9) follows by straightforward calculations. Hence [9,0,(+)] ! isbounded in © and,
by the implicit function theorem, ©,: Q — Q is a local C*-diffeomorphism.

Surjectivity. Since the map ©,: Q — Q is a local homeomorphism, the set O(€2) is an open
subset of (2. We now show that it is closed as a subset of 2. Let (y,), C ©,(Q2) converge to
y € Q. Since B, (%) is compact and ©(z) = zin Q \ B,(X), the preimages =, = ©; ' (y,) have
a convergent subsequence z,, — = € (. Therefore y = limy y,, = limy Op(z,, ) = Op(x) also
belongs to ©(12). Consequently, ©(2) is open, closed, and nonempty in (2, thus 0, () = €,
which implies that ©,: 2 — ) is surjective.

Injectivity. It suffices to show that the restriction of O, to B,(X) is injective. If O, (x) =
O©n(y), then the tubular neighborhood property of ¥ implies

I(z) + (d(z) + x(d(2))h(I(z))) v (I(z)) = (y) + (d(y) + x(d(y))(11(y))) v=(11(y))

and hence II(z) = II(y) and d(z) + x(d(z))h(II(z)) = d(y) + x(d(y))h(II(y)). Since s — s +
x(s)h(II(z)) is injective by |hy/| < 1, we obtain d(z) = d(y), and thus = = y.
We conclude that the stationary Hanzawa map 0y, is a C*-diffeomorphism of . O

(4.11) [A+bRa =471~
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4.9. Corollary. Let X C Q be a compact C%-hypersurface with tubular neighborhood B,(X) C € of
radius v < || Lx.|| 5}, and let ©}, denote the time-dependent Hanzawa map induced by

(4.12) he CH[0, T x ) with |h]l < [IX ]l

Then the map ©y, : [0,T] x Q — Q and the moving hypersurface t — Tp(t) = On({t} x X) are
admissible, but the map ©y, is not normal-preserving unless Vsh = 0.

Proof. Admissibility follows from Theorem 4.8 and identity (4.10) yields

vy, — [[z — hLE]_IVEh
(14 |[Iz — hLs]"1Vgh|?)1/2

Thus, 8,,.© and vp o O}, are not parallel for Vi # 0. O

&/E@h:VEa VFO@:

4.1.3. A normal-preserving admissible map. We will construct a normal-preserving ad-
missible map ©j: J x Q — Q, which, considered as an element of some Banach space Eg,
depends analytically on its inducing height function h € E;. We first construct a diffeomor-
phism O : R™ — R" which maps a compact smooth hypersurface ¥ onto I' := ©,,(X) such that
Oys,On () is parallel to vr (O (z)). For this construction, we employ a co-retraction & for the
trace operator

k .
ws (uls, dyuls, ..., uls), WHR") — szowg—ﬂ—l/z’(z).

4.10. Lemma. Let 2 C R" (n > 2) be a domain, ¥ C 2 be a compact smooth hypersurface, and let
p€ (1,00), k € Ng,and s € (k+ 1/p,00). Then there exists a bounded linear operator

: szowgfffl/p(z) — W3 (R™)
with the properties
S(fo,--, f)lrma =0, &_(&(fo,--.. f)ls =f; forje{0,1,... Kk},
for all
(for--s /) eH WiImlr(x).
The operator & only depends on ¥ and k but not on s or p.

Proof. With Corollary A.19 we decompose Q \ ¥ = Q, UQ_ such that ¥ = 9Q_ and v5, =
voa_ = —Vpq, . Let Q' C Q be a bounded smooth domain which still contains ¥ and let {2/, :=
' N Qy. Triebel [Tril0, p. 3.3.3] has shown that there exist bounded linear operators

k ,
. s—7—1 s
Sy ”j:OWp IR (00, ) — W)
with the property

9;S+(gos- -, gr) = gjon Y, forall j € {0,...,k}, (g0,-- -, k) eH WP (00, ).

For a tuple (fo, ..., fx) € H;LOW; ~1717(5)) we define a linear operator & by

0 inR™\ ¢,
S(for-- s fx) = S+(xm - (1) fj) =0 + xo0r - (0,...,0)) in €,
S*(fov"'afk) in Q.
This operator has the asserted properties. O

We are ready to construct a normal-preserving map.
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4.11. Definition. Let Q C R" (n > 2) be a domain and > C 2 be a compact smooth hypersur-
face.
(i) Letp e (1,00)and s € (1 +n/p), and let h € W;_l/p(E) be a height function satisfying

(4.13) [Alloo < [ Lzl

Then we define the stationary normal-preserving map

(4.14) Op(x) ;= + S(hvs, gp)(x) forz € R,
where & denotes the linear operator from Lemma 4.10 with k£ = 1, and
(4.15) gn = [(vr, ®vr,) 00y, — Ivs, = Brvr, o0y —vs.

(i) Let J = (0,T) with T € (0,00), and let h: J x ¥ — R be a height function such that
h(t,-) satisfies the assumptions of (i) for almost all ¢ € J. Then we define the time-dependent
normal-preserving map

(4.16) On(t,z) == Op,.)(z) = v+ &(h(t, )vs, ghe,)(v) fort e J, z € R".

4.12. Proposition. Let Oy, denote the stationary normal-preserving map.
(i) ©p, maps ¥ onto I'y, := 6;,(2).
(ii) 8V29h = [&,;G)h]ug = [(Vph & Vrh) o Hh]VE =0Bn vr, © 05, on 3.
(iii) ©p, =1Id, in R™\ Q.
(iv) For My, := (I — hLx)~! as on page 138, we have

(4.17) 9:On|s = Py — hLy — BiMpVsh ® vs + vs @ Vsh + Bivs @ vy,
(4.18) [0,04]s] ™t = My, — BiMEVsh @ MyVsh + i MiVsh ® vs — vs @ M Vsh.
Proof. All assertions are obvious, except for (4.18), which can be derived from (4.11). O

It remains to prove that the stationary normal-preserving map is a diffeomorphism of R"
and that its time-dependent version is an admissible map. Compared to the Hanzawa map
whose Jacobian has an explicit inverse (4.9) in all of ), the normal-preserving map ©j, as in
(4.14) and (4.16) lacks such a representation. We therefore want to show that

supy |l — [Om@h(t,x)]_1| <1,

and this can be shown for height functions which are sufficiently small in an appropriate norm.
As in Chapter 3 we consider height functions in the class

Ey = W2 V2 (J HY(S) N HY(J; WETYP(8)) N Ly (J; W= V/P(D)).
Then the Jacobian 9,0} |x. belongs to the space
Ege := Wy~ V2P (J; Ly(2)) N HYy(J; Wy~ P(8)) 0 Ly(J; WP ().

The space Eyg is considered as the target space of the nonlinear map h — 9,04|x, and for
proving analyticity of the latter, we employ the following properties of Epe.
4.13. Lemma. Let ¥ C R"™ (n > 2) be a compact smooth hypersurface, J = (0,T) be bounded,
p € ((n+2)/2,00), and m € N. Then the following assertions are valid:

(i) The space Egg is continuously embedded into C1(J x ).

(ii) Egpe is a multiplication algebra and there exists C(T') > 1 such that

@19 Ifgllese < @) (I lesollgllon sy + 1fllor sy lllese ) forall £,g € Boo.

(iii) The operator A — A™', {A € EJS™ : sup . 5|A71(-)| < oo} = Egg is analytic.
(iv) The operator f +— fY/2,{f € Egg : inf yux dist(f(-),R_) > 0} — Epg is analytic.
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Proof. (i) We abbreviate W(W}) := WE(J; W3(%)), C*(C!) := C*(J; C'(X)), and similarly
for the other spaces. The mixed derivative embeddings and Sobolev’s embedding (B.1) imply
W22 (L) N Hy (W Py e Wy t0 (2 HP=20)) o Wt /pber (n=intes) oy C1(C),

for sufficiently small ¢, e > 0, provided that 6 € (0,1 — 1/2p) satisfies 1 +60 > 1+ 1/p and
2—-1/p—20 > (n—1)/p. Such a number 0 exists if 1/p < 1 — n/2p, and this is true for
p > (n+ 2)/2. Analogously, we obtain

HY W22y A LWy — WHHSTYP0) — o(CY),
provided that 6 € (0, 1) satisfies > 1/pand 3—1/p—0 > 1+ (n—1)/p. Such a number 6 exists

if 1/p < 2 — n/p, and this is true if p > (n + 1)/2. Hence we have Egg — C1(J x X).
(i) The norm of Eyg consists of the semi-norms

[[at']]l—l/2p,p;pa [[(atafﬂa8%7816)']]27;1—1/17,;07 ”(Lahatawal’vag)"‘%
where we recall the following abbreviations from page 78:
[leww = [lwew,),  Ulpsw = Flo,ovns 1l =1z, @,)-
With Lemma B.81 and Lemma B.10 we control some of the leading-order terms of || f¢||r,e by
Hatf gﬂ1—1/2p,p;p S [[atfﬂl—l/Qp,p;p”g”OO + HatfHOO [[g]]l—l/Qp,p;p7
[[ataﬂ?f g]]p;l—l/]%p S Hataﬂﬁf]]p;l—l/papHgHoo + ”61561"pr”(9’ aﬂc.g)HOOa

1021 Slpia-1/pp S 107 Flpr-1/ppl19]l0 + 102 £ 119 029) loo-

These terms and the remaining ones can be estimated by the right-hand side of (4.19). Therefore
the pointwise multiplication estimate (4.19) is valid and Eyg is a multiplication algebra.

(iii) Let us check that A~! belongs to EjS™ for every A € EjS™ with A™! € Loo(J x ).
Abbreviating 7 = 1 — 1/2p and using Lemma B.81, we obtain

[[atA_l]]T,p;p = [[A_l[atA]A_l]]T,p;p S [[atA]]ﬂp;pHA_lHZo + [[A_l]]T,p;pHA_l||00||8tA”oo-
Next, from the inequality
At 2) ™ = At 2) 7 < AT A 2) — At )],

we infer that [A7!]; ., < [|[A7Y|4 [A]-pyp is finite and therefore [9; A~ 1], ., is finite. Analo-
gously,

[[Ail]]p;a,p S HAilHio[[A]]p;mp < o0,
witho =1 — 1/p. Hence, for j € {1,...,n — 1}, we obtain
[0:0;A™ Do = [ATH O AJATH O AJAT! + AT O AJATHO;AJATY — AT B0, AJA™ oy
S AT SN Alpsopll 05 Allocl10eAll oo + A2 [0 Alpiop |9t Alloo + 1A 13 [0 Alpiorp 195 All o
1A 18005 Alpsop + (AT, VAT [loo |00 Allp | A7 oo < o0

The semi-norm [0;04 A™'],.+,, can be estimated analogously. We further have

1A < TYPIZYP A o < oo,

and the remaining terms in |A™!||g,, are also finite. Therefore A~ belongs to E}J"™", and

Proposition B.88 yields analyticity of the inversion operator 4 — A~1.
(iv) Every bounded function f with infdist(f(-),R_) > 0 satisfies both inf|f| > 0 and
suplarg f| < m. Hence f1/? and f~! are bounded. The Cauchy-Schwarz inequality yields

T 1/p
£, = ( I [ 1-|f!p/2d2dt> < TV FY? < oo



4.1. DIFFEOMORPHISM AND TRANSFORMATION 101

Since sup|arg f1/2| < 7/2, there exists ¢ > 0 such that
() 2+ f(E )2 > e f ()2 + £, 2)]?)
by Lemma B.54. Then the estimate

[f(tz) = f{ o) |f( ) = f( o)

1/2 / 1/2) _
72y = ) = ey f ) P~ iy

yields

[[fl/Q]]T,p;p S (inf’f‘)il/zﬂfﬂﬂp;p <0
for 7 = 1 — 1/2p, and therefore

[00f Py = 127 £ 200 f T
S Tewn I F1L10 oo + 11 oo (wa
is finite. For 0 = 1 — 1/p we similarly obtain

[ o S (ELf1) [l < oo

a0 oo + 172 oo [0 D

Next,
[V fY pop = 27 27 F 32V fOuf + £V flpop
SIFTHE o U2 o0 + 12 o) 1 F 1o
+ 11, V) f oo (V0 lpiop + V50 |lp) < 0.

The remaining terms in || f/?||g,, can be estimated similarly. Hence f'/2 belongs to Egg for
every f € Epg with inf ;.5 dist(f(-),R_) > 0, and Proposition B.89 yields analyticity of f
fl /2 O

The next step towards analyticity of A — O}, is to show that h — vr, o 6}, is analytic.

4.14. Lemma. Let ¥ C R" (n > 2) be a compact smooth hypersurface.
(i) Letp € (1,00), s € (1+n/p,00),and T € (1+n/p, s|. Then there exists 65, = Op, (X, p,7) > 0
such that all height functions

h e W;—l/p(z) NUp,, withUy, == {h € Wpf—l/p(E) : HhHWg_l/p(E) < Ono
satisfy (4.13). In this case the map
hes vp, 00h, Wi VP(S) Ny, — W7 1P(5)"

is analytic.
(ii) Let p € ((n+2)/2,00), 7 € (1 +n/p,4 — 1/p|, and let J = (0,T) be bounded. Then there
exists 0, = 0p(X,p, 7) > 0 such that all height functions

(4200  hE€E,NUy, withUy, == {h € Loo(0,T; W7 /P(%)) : 1l oy -1/ ssy) < O
satisfy (4.13). In this case the map

h — vr, 0O, E,NUy— E3e
is analytic.

Proof. (i) The identity (4.15) shows that the values of hvs, and g;, depend analytically on
those of (h,Vsh) € R x R" such that |h| < ||Lx| 3! and |[Vsh| < (1 — |h||Ls|ll) ™t From
Sobolev’s embedding W, ' /?(X) < BC(X) we infer that there exists d, such that (4.13)
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is satisfied if [|Al] -1/ (s < Ono- By Remark B.80, the space Wi P(8) is a multiplication
p

algebra, and since vy; and Ly; are smooth, we infer from Lemma B.10 that
hi (hvs, I —hLs), WYP(8) = Wi V/P(2)" x W= t=1/p(g)ym=n
is affine and continuous. The inversion operator
A A7 {Ae W)™ |AT | < oo} — Wi /p(mynxn
is analytic by Lemma B.90. Hence, by Corollary B.86, the map
h (I —hLy)™t, WS VP(2) Ny, — Wit e(mymn
is analytic, and therefore also
h— |(I — hLy)'Vsh|?, Wi YP(S) 0y, — Wi Hp(m)men
is analytic. Again by Lemma B.90 and Sobolev’s embedding, the square root operator and the
inversion operator are analytic operators from {u € W, —imie (2) : infy dist(u(-),R_) > 0} to
W, —1=1/p (). Thus, in view of (4.15), we conclude that
h—vr, 00, WSTVP(S) N Uy, — W=7 1P(D)

is analytic.

(ii) The temporal trace theorem yields the embedding

En(T) < C(10,T]; W, *7(£)) = C([0, T; W, /7 (2)).

By employing Lemma 4.13 instead of Lemma B.90, assertion (ii) follows analogously. O

Now we can prove that the normal-preserving map O, is a diffeomorphism and that it

depends analytically on the height function h. We consider O}, as an element of Id, + Eg",
where

Ee := HY?(J; HA(R™)) N Hp (J; H3(R™)) N Ly (J; Ha(R™)).
4.15. Theorem. Let Q C R" (n > 2) be a domain, ¥ C ) be a compact smooth hypersurface, and

p € (1,00).
(i) Let s € (1 +n/p,00) and T € (1 + n/p, s|. Then for some oy, > 0 and all height functions

h e W;—l/p(E) NUp, withUy, :=={h € WpT—l/p(E) : ||h||W;_1/p(E) < Oho

the inequality (4.13) is satisfied, the stationary normal-preserving map ©p,: R™ — R" from (4.14) is an
admissible map, and the map
h— O —1d,, Wi VP(2) Ny, — Wi(R™)"

is analytic.
(ii) Letp € ((n+2)/2,00) and 7 € (14 n/p,4 — 1/p|. Then there exists 6, > 0 such that for all
T € (0,00) and all height functions

(421) heEy(T)NU, withUy == {h € Loo(0,T; W /P(%)) : 1P, 0wy 177 (sy) < On}s

the following assertions are true:
(ii.a) The inequality (4.13) is satisfied by h(t,-) forall t € [0, T.
(ii.b) ©p:[0,T] x Q — Q is a normal-preserving admissible map for .
(ii.c) The following maps are analytic:
(4.22) h — ©p, —1dg, En(T) Uy, — Ee(T),

(4.23) h— [8x@h]|2 =1+ aj(hVE) ® 7’% + gn Q vy, Eh(T) NUp — Eggn(T)
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Proof. (i) From Lemma 4.14.(i) we infer that the map
h gn, W7 YP(E)NUy, — W] P(E)
is analytic for every 7 € (1 4+ n/p, s|. Moreover,
||hVE||W;—1/P(E) + ||thW;,—_1_1/p(E) —0 as ||h||W;_1/p(E) — 0.

Therefore the map ©, — Id, belongs to W (R")" N C L(R™)", satisfies Oy |y, = ), and 0, O]y, =

[(vr, @ vr,) o 0]vs, and depends analytically on h € W}f*l/p(E) N Up,. From Lemma 4.10 we
infer that &(hvy, g5) has compact support in (2, and hence ©;, = Id, in R \ Q. In order to
guarantee that O}, is a diffeomorphism, we observe that

10501 = Lol ey S 16 0hws, g0) Iz ey S Wy zsim )+ Nl essm -

Hence, if A1/ (= is sufficiently small, then ||0,0) — I||c < 1, and thus ©, is a global
P

)
diffeomorphism of R".

(ii) It is shown in Lemma 4.13 that Eyg is a multiplication algebra and the subset {u €
Epe : infy dist(u(-),R4) > 0} is invariant under pointwise inversion and square root. Let
J = (0,T). From Lemma 4.14.(ii) we infer that hvy, € E;, and g5, € Ege defined by (4.15)
depend analytically on h € E;(T") N Uj,. The mixed derivative embeddings yield

hvs, € W2TL1207P (g HIT2P ()™, g, € WETV2P7P(J; H2P(S))"  forall p € [0,1 — 1/2p).

We choose p := 1/2—1/2p. By Lemma 4.10, the map (4.22) is well-defined and analytic. Analyt-
icity of (4.23) follows from analyticity of h — (hvs, g5,) and Lemma B.10. The diffeomorphism
property follows from assertion (i).

(iii) From Sobolev’s embedding (B.1) we deduce

W) (J; W, (R")) < C(J; BC*(R™)),
provided that§ > 1/pand 4 — 6 —n/p > 2. Since p > (n + 2)/2, we have
H32(J; HA(R™) N HY(J; HY(R™)) — C'(J; BCY(R™)).
Hence the map ©j, is admissible. O

We complete this section with a collection of useful transformation identities for the normal-
preserving admissible map ©;, and the velocity transformation u o ©, = [0,,0}]u.

4.16. Lemma. The relations (4.24) and (4.25) on the next page are valid.

Proof. Most identities follow from Propositions 4.6 and 4.12 and equation (4.15). The remaining
identity (4.25c) can be verified as follows.

(Orw) © O, = (V((Byw) © O}, )|vr) 0 Of = V(BpW) - [0:04] '8, [0:On)vs = dpyw. O

4.2. The transformed bulk equations
In this section we transform the momentum balance and the divergence equation
(4.26) pou+ p(u-Viu — pAu+Vr =0 forte J, x e Q\T(¢),
(4.27) divu=0 forteJ zecQ\I(t).

Here J = (0,7) is a bounded interval, Q@ C R"™ (n > 2) is a domain, and I" is an admissible
moving hypersurface in 2, which is induced by an admissible map ©: J x Q = Qand a
compact smooth hypersurface ¥ C Q2. We do not yet employ an explicit representation of ©.
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Let ©,: J x Q — Q denote the normal-preserving map for ¥ C 2 as defined in Theorem
415, T'(t) = Oy (¥), and My, = (I, — hLys)~!. Then the following identities are valid on
J x X

(4.24a) B = (vr 0 Oplvs) = |[0:On]vs| = |[0:04]) Tvs| ™,

(4.24b) vr 0 Oy, = B, ' [0:0n]vs, = Bu[0,04] T vs,

(424c) 71" 0Oy = [0,04]77,

(424d) 7, 00y =[0,0,] "7,

(4.24e) Pr o Oy, = [0,05]Px[0,04] 7,

(4.24f) 9,0}, = Pg — hLy, — B M,Vsh ® vs + vs ® Vsh + Bivs @ vy,

(4.24g) 0.0t = My, — BiMEVsh ® MyVsh + BiMPVsh ® vs — vs @ My Vsh.

Let u = v + wyr and @ = T + wWry, be related by u o 0 = [0.04]u. Then we also have

(4.25a) vo @ = [0:04]7,
(4.25b) wo O =B,
(4.25¢) Dypw 0 O = D, T,
(4.25d) Vi, 0 ©p = Broih.

FIGURE 4.2. Transformation identities for the normal-preserving map Oy,.

Our first task is to derive the transformed equations

(4.28) pou — AU+ V7 = Fy(u,7,0) inJ x (2\X),
(4.29) diva = Fy(u, ©) inJ x (Q\Y),

for the transformed velocity

(4.30) u(t,T) = [0:0(t, )] Lu(t, 0(t, 7)),
and the transformed pressure

(4.31) w(t,T) = m(t,O(t,T)).

The nonlinear perturbations F,, and F,; are derived in Lemmas 4.17 and 4.19.

Second, for proving well-posedness of the transformed problem (T) with Banach’s fixed
point theorem, we have to control the perturbations F,, and Fy. To be precise, we will show that
their values and their first order Fréchet derivatives can be deemed as small as we wish, by
choosing T sufficiently small and by requiring that ©|,—¢ is sufficiently close to the identity
(Lemmas 4.21 and 4.23). These perturbations are polynomial Nemytskii operators with respect
to the functions (u, 7, ©, [0z0] ') and some of their derivatives. In order to prove their analyt-
icity, we employ their polynomial structure and certain 7-dependent embedding estimates.

4.17. Lemma. Assume that © is of class C1(J; C1(Q)) N C(J; C3(QQ)) and put
X(t,7):=0(t,7), X(tz):=0(t ) ().

For given m € Ly joc(J; Hy 1, (Q\T)) and u € H] ) (J; L1 joc(GR™) N Ly goe(J; Hy 1o (2 \ T3 R™))

1,loc 1,loc 1,loc

we define wand 7 as in (4.30) and (4.31). Then the identities in Figure 4.3 on the facing page are valid.
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For an admissible map ©: J x Q — Q and for u(t,z) = [0:0(¢,7)|u(t,T) and 7(t,z) =

7(t,T) with x = X (¢,7) and T = X (¢, x) as in Lemma 4.17, we have
WX m = -0 Xm0 X,
Ojug, = 05Uk + (0, Xk 0;X m — Ok10m) Oy + 010m Xy 0; X m, T,
Opup, = Oy, + (01 Xy — Op1) 0ty — 01 X; 0, Xy 0i X m, Oy
+ (8:0 X — 0: X 010y X, 0i X ) i,
divu = diva + 8,0, X, 0; X m w,
Ay, = ATig + (X5, 05X m 0, X5 — 01a0m0;5) OmOiTiy
+ (010X 0, X m X s — i X 0;0,X; 0;X 1 0, X ) Oy
+ (OO0 Xk 05X ;X s — i X 0;0,X; 05X 010 X) T,
w;Oju, = O Xy, ;X 0; X m WiOmTy + 0,0 Xy, 0; X 0; Xy Wik,
0jm = 05T + (0, X m — 6jm)OmT.

Here the values of u, m, and X are taken at (¢, z), and those of u, 7, and X at (¢, 7).

FIGURE 4.3. Transformed differential operators.

Proof. By the inverse function theorem we have
O X (t,x) = 0,(O(t,) " (z) = [0:O(t,7)] ",
atY(t,l') = —[%@(t,x)}_late)(t,f) = —amY(t,CL')atX(t,f), atym = —8nym8tXn

In order to transform J;uy, we apply the chain rule for weak derivatives ([Hun13, Proposition
3.21]). Neglecting the dependence on ¢, we obtain

Oy un () = 0, (0, Xk (X (2)) W (X (x)))
= 0,k (T) + (O, Xp(T) O, Xm () = O10jm ) O, Wy (T)
+ 05,0z, X (2) 00, X () W(T).
The remaining equations follow by straightforward computations. O

In every transformation formula in Figure 4.3, the first summand on the right-hand side
is the principal part and the remaining summands are treated as perturbations. In order to
abstract their polynomial structure, we employ the following convention.

4.18. Convention. For amap f: £y x --- x E, — Y between Banach spaces Ej, ..., B, and Y
over K € {R, C}, and the induced Nemytskii operator

F:uw— fou, F(uy,...,ug)(x)= f(ui(x),...,ux(z)),

actingon Ej X --- x Eg-valued maps v = (uy, ..., ux), we write
F(u) = L(u) if f is linear and bounded,
F(ui,...,ug) = M(u,...,up®) if f is a monomial of degree o € N,
F(u,...,ux) = P(ug,...,ug) if f is a polynomial,
F(ui,...,ug) = Py(u1,...,ug) if f is a polynomial of degree at most o € N'g,
F(ui,...,ux) = Pyo(ui,. .., ux) if f(uy,...,ux) = Py(uq,...,ux)and f(0) = 0.

The symbols L, M, P, P,, and P, may denote a different mapping at every occurrence.
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=I \

Forz = X(t,T) = O(t, %), 0. X (t,z) = [00(t,Z)] "}, and O(t,T) = (t, O(t,T)) we have
Fu(u,7,0) := —((pdsu) o © — pdyu)
— ((pu- V)u) 0 &
— ((Vr) 0o © — V7)
+ ((nAu) 0 © — mAT),

where
(Dyur) 0 © — Oy, = (O Xp — o) Oty — Oy X0t X0 X Oyl
+ (0101 Xy — 010 X501 X0 X m) T,
=M (050 — I,0u) + M (0,X,0:X, 0, X, Ozt
M ((0:0:X,0,X), P (02X,0,X) ,u) ,
(u;05ur) 0 © = O X100 X;0; Xy, Un Oy + 010y X100 X ;05 Xy Wyl
= M (P (02X, 0:X,0,X) ,u, (u,071)) ,
Auo© — AU = (8, Xy, 0;X1m0; X n — 61k0;mOjn) OmOnTy
+ (2618nXk8ij 0; X n + 01Xk Aym) Omy
+ (010m0n Xy 0, Xm0 X n, — 0;0, X1010m X0k X m0; X 1) Wy
=M (P20 (0sX — 1,0, X — 1) ,02u)
+ M (P (02X,0:X,0,X) , (u,0zw)) + M (02X, (0,X)* 1),
(0;m) 00 — ;T = —(0;Xm — Ojm)0mT = M (0zX — I,0:7).

Here the values of u, =, and X are taken at (t,x) € J x (Q\ I'(t)), and those of w, 7, and X at
(t,7) € J x (Q\ ¥) withz = X (t,7).

FIGURE 4.4. The perturbations in the transformed momentum equation.

4.2.1. The transformed momentum equation. In the next Lemma 4.19, we derive the trans-
formed momentum equation for admissible diffeomorphisms ©(¢, ). The map F,(u, 7, ©) is a
polynomial operator in (u, 7, ©, [0,0]1). For suitable © € Ug we obtain analyticity of F,, and
smallness of a certain Fréchet derivative of F, in Lemma 4.21. Sufficient 7-dependent embed-
dings are given in Lemma 4.20. Later on we will specialize this result to normal-preserving
diffeomorphisms ©y,(t, ) with h € U}, (Corollary 4.27).

4.19. Lemma. The momentum equation (4.26) corresponds to the transformed momentum equation
(4.28), where the vector-field F,(u, 7T, 0): J x (2\ X) — R™ is given in Figure 4.4 on the current page.
Therefore F, is a polynomial Nemytskii operator with respect to (u, 7, ©, [0:0] 1) of the form

Fu(u,7,0) = M (P20 (0:0 — 1,[0z0] " — 1), (0w, 021)) + M (9:0 — I, 057)
+ M (P (820,050,[0:0]7") 4, (1, 051)) + M (P (820,050, [00] ") , 951)
M ((8,0:0,8,0,820), P (920, [0:0]7') 1) .

Proof. This follows from Lemma 4.17 by straightforward calculations. 0
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In the remainder of this section we omit the bars on © and 7; that is, © and © denote the
transformed velocity and pressure. We recall from Figure 4.1 that
Ey = {u € Hy(J; Ly(0)") N Lp(J; HZ(Q\ E)") : ulog = 0, [u] = 0on T},
Eo = H32(J; HA(R™) N H(J; HA(R™) 1 Ly(J; H(R™)).
We consider the map (u, 7, 0) — F,(u,w, ©) with target space F,, defined for u € E,, 7 € E,
and © € Eg, provided that [9,0]! is bounded on J x (2. Therefore we let
(4.32) Us :={O € E} : O], q: J x Q — Qis an admissible map}.

From Proposition 4.3 we infer that for © € Eg NUg, the map [0,0] ! isbounded on J x Q. In

order to control the nonlinearities on small time intervals, we consider the closed subspaces
OEu = {uo S Eu : uo’t:O = O}, OEG = {770 S E@ : n-’t:O — O, atn.‘t:o = 0}

4.20. Lemma. Let p € (1,00) \ {3/2,3} and T € (0, 00). Then the continuous embeddings

(4.33) E,(T) < C([0,T] x Q)" ifp>(n+2)/2,
(434) Eo(T) < H,(0,T; Hy(2)") N C([0,T]; C*(Q)") N Ly(0,T; Hy(Q)")  ifp> (n+1)/2,
435  Ee = C'([0,T};C'()™) nC([0,T];C*()™) ifp>n+2,

are valid, and for some §g > 0 and all § € (0, 0o}, To > 0, and T € (0, Ty] we have

(4.36) [tell L, 0,711 (0\5)) < T°C(8,T0) |uallry () ifp> 2,

(437) el qoa1m < T°CE To)lualloenry i p > (n+2)/2,

(4:38) [1mally 13 0,113 0 0C 01102 @ 07130 S T CE o) melleory i p > (n+1)/2

Proof. We proceed as in the proof of Lemma 3.19.
Assertions (4.33) and (4.37) follow from Proposition B.44, (B.2), (3.32c), and (3.32d), since

E, — W™ (0,T; W2=P(Q\))"
< W/PTEe(0, T W/PHe (Q\X))™ < C([0,T]; BUC(Q\X))"

for some 7, ¢, €5 > 0, and p € (0,1),if p > 1/p and 2(1 — p) > n/p, and this is possible if
p > (n +2)/2. Since u € E, satisfies [u] = 0, we obtain u € C([0,T] x Q)". Estimate (4.36)
follows from Lemma 3.19.(i). Again by Proposition B.44 and Sobolev’s embedding (B.1) we
have

Eo — Wy (J; W, (R")) = C(J; BC*(R")),

provided that § > 1/pand 4 —§ —n/p > 2, and this is possible if p > (n+ 1) /2. Therefore (4.34)
is valid, and estimate (4.38) also follows from (B.2), (3.32c), and (3.32d). The embedding (4.35)
can be verified similarly. O

We are ready to control the perturbation F,.
4.21. Lemma. Letp € (n+2,00) and T € (0, 00). Then the map
Fy: {(u,7,0) € Ey(T) x E+(T) x Eo(T) : © € Ug} — Fu(T)

is analytic and has the following properties:
(i) For given Ty € (0,00), R € [1,00), u € E,,(Tp), m € Ex(Tp), and © € Eg(Th) NUe, we have

and this convergence is uniform with respect to

(4.39) el ey + 1l (1) + 1Ol ) + 110201 Mooz < B
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(ii) For given Ty € (0,00), R € [1,00), uyx € Ey(1p), and O, € Eg(Tp), the map
(Uey Ty M) > Fiy(ts + te, T, Ok + 1),
{(te,m,Mme) € 0Eu(T) X Ex(T) X ¢Eo(T) : Ok 4+ ne € Ug} — Fo(T),
satisfies
10ua,7me) Fu(ts + e, T, O + 10) | B(oEoy (T) X B (T) x 0B (T):Fu () — O
as T — 0, 1020 — L[l oo, r1xm) — 0
and this convergence is uniform with respect to
(440) | (s we) g (z0) + 17l (z5) + 1O 1) g0 (20) + 1[02(O + 1))l 0,115 < B

Proof. Lemma 4.19 shows that F,(u,,©) depends polynomially on (u, 7, 0,[0,0]71). With
Theorem 4.15 and the embeddings (4.33) and (4.34), it is straightforward to check that F,, is
analytic. It is also bounded and uniformly continuous with respect to (4.39).

(i) Assume thatT" < 1. First, Hardy’s inequality (B.4) yields the estimate

T 1/p 1/p
leale. o s( J dt) n / / D it
(4.41) ) 0 Lp() LP(Q)

< OTY? (|luol () + 10vullp, (1)) < CTYPR.

Here the latter inequality follows from E,(Tp) — C([0,Tp] x Q) < C([0,To}; L,(2)) (see also
(4.33)). Second, with inequality (3.32c) and the mixed derivative embeddings we obtain

(4.42) 10wz, (1) < CT"Plluo | () + OT* [u = wol ywa o7 a1y < CTV/PR

for some o € (1/p,1/2). Hence, by using embedding (4.35) and choosing T' > 0 sufficiently
small, we can control those terms in F,(u, 7, ®) which contain a lower-order factor u or 9, u.
The leading-order terms d;u, d>u, and 9,7 only appear in products with a factor 9,0 — I,
or [0,0]7! — I, = [0,0] ![I, — 0,0], and can therefore be controlled with the smallness of

1026 — Ix”o([o,T}xﬁ)'
(ii) For given u, € E, (1), ue € 0Ey(T0), O« € Eg(Tp), and ne € (Eo(Tp), we let

U= Usx + ue € Ey(Tp), © = 0O, +ne € Eg(Tp).
With Convention 4.18 we can express the derivative of ue — F,(us« + e, T, ©) applied to e €
0E.(T) as
[Ouy Fu(u, 7, 0)]tie = (P(1 2,0 (020 —1,[0,0] " — 1), (Otu.,a iis))
(020,0,0,[0,0]7") , e, (u, Opu))
(020, 0,0,[0,0]7") ,u, (iie, Oyila))
(020,0,0,[0,0]7 ") , Oila)
+ M (P (0,0:0,9,0,020,070,[0,0] ") , i) .
Together with (4.36) and (4.37), a straightforward estimation yields

P
P

M(
M(
M (P

10ue Fu(tt, 7, ©) | 5o 5, (1) Fu(r)) = 0 a8T =0, 1020 = Lull oo,y — 0.

uniformly with respect to (4.40).
Next, the derivative of E(T) > 7 — F,(u, 7, ©) applied to © € E,(T) is given by

[0 Fy(u,m, ©))7 = M ([0,0] ! — I,0,7),
and therefore

|0 Fou (u, T, @)HB(EW(T);IFu(T)) =0 asd,0 — IxHC([Q,T]XQ) — 0.
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Finally, we study the derivative of (Eg(T") 3 ne — Fy(u, 7, ©4 + 1,). With
(4.43) (09, ([0:0])]ile = ~[0:0] " [0:716][0:0] " = M (a7, ([0:0]1)?)
we obtain
[0na P1,2)0(020 — I,[0:0] " = I)]ije = M (907}, P(9:0,0:0] 1)) .
Hence
(O Fu(u, 7, ©)]ie = M (Oyiie, P (020, [0,0]7") , (Oru, 92u, 9,7))
+M ((833 e, OxTe ), P (020, 0,0, [61,@]*1) , Pi(u), (u, 0yu))
+ M ((8:0xje, Oila, 03718), P (920, 10,0] ") ,u)
+ M (0,040, 0,0, 020), (0271e, Oyiia), P (9020,[0,0] 1) ,u) .
By a straightforward estimation and by using (4.33), (4.34), and (4.38) we conclude that
10ne Fu(w, 7, ©) || B(oEe (T)iFu(T)) — 0 asT — 0. O

4.2.2. The transformed divergence equation. We have transformed the equation
divu(t,z) =0 forte J x e Q\T(t),
to the following equation for (7, ©) with u o © = [9,0]u:
divu = Fy(u,0) inJ x (Q\X).
Here the perturbation Fy(w, ©): J x  — Ris given by
(4.44a) Fa(, 0)(t,T) = —010m0;(t, T)[0:0(t, T)],,.; w(t, ) = M (970, [0,0]",u) .

Again we replace u by u. Abels and Wilke [AW13] noticed that the identities divu = Fj(u, ©)
and [, divudz = 0 imply that the integral [, F;(u, ©)dz vanishes, but this might be false for
arbitrary u € E,,. Therefore we replace Fy(u, ©) by its part

(4.44b) Fu(u, ©) = Fy(u, ©) — Sln /Q Fy(u, ©) dz

with vanishing mean value [~ [, Fy(u,©)dx = 0. We will exploit the fact that Fj(u, ©) is

trilinear in (u, 920, [9,0]~1), and with the embeddings in Lemma 4.22 we will show that F}; is
analytic and can be controlled in a similar way as F;, (Lemma 4.23).

4.22. Lemma. The embedding

(4.45) Eo < H)(0,T;C*(Q)* N C([0,T]; H3(Q))"*  ifp > n,

is continuous, and for some 5o > 0 and all § € (0,0¢], Tp > 0, and T € (0, Ty|, we have

(4.46) 196lly 73 0,752 @m0 oz @) < T°COTo)mallome () if > n+2.

Proof. Sobolev’s embedding (B.1) yields (4.45). Next, Holder’s inequality yields
1ellgc (0,713 (02)) < Tlil/p”atno”LP(O7T;H3(Q)) < T2 el oo (1)-

With the embeddings (B.3) and (B.1), the estimates (3.32b), (3.32c¢), and (3.32d), and the mixed
derivative embeddings (Proposition B.44) we obtain

1/p+
HUOHOH;((),T;W(Q)) ST /P EH”‘HOW,}+1/P+5(0,T;CQ(§))

ST ] oo S T o,

with suitable numbers £ > 0 and p € (0,1/2) which exist if p > n + 2. Thus (4.46) is valid. O

(0,7 Hy 2P ()
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4.23. Lemma. Forp € (n,00) and T € (0, 00), the map
Fy: {(u,0) € B, (T) x Eg(T) : © € Ug} — Fy(T)

is analytic. Assume in addition that p > n + 2. Then the following assertions are valid:
(i) For given Ty € (0,00), R € [1,00), u € E,, (1), and © € Eg (1) NUe, we have

||Fd(u, G)HFd(T) —0 asT — 0, H@x@ - IZ‘HC([O,T],Cl(ﬁ)) — 07
and this convergence is uniform with respect to
lulle,,(7y) + 1€k (1) + 110201 ez x3) < B-

(ii) For given Ty € (0,00), R € [1,00), ux € Ey(10), ue € 0Eu(Th), © = Ox+1ne € Eo(Th) NUe
with ©, € Eg(Tp), and ne € oEo(Tp), we have

180 ma) Fa (s + ttes O + 1) | B(oEw (1) xoEe (TyEa(r)) = O 85 T = 0, 10260l 0. 11201 ) — O

and this convergence is uniform with respect to
1ty )l (1) + 1O 1) i) + 10O+ 10)] 0,100 < B-

Proof. The divergence theorem implies

/Qdivf pdr = —/Qf -Veodz, forpec H;/(Q), fe H];O(Q).
Therefore we can extend the divergence operator to a bounded operator on L,({2) such that
(4.47) ldiv fll g1, @) < Ifllz,@  for f € Ly(€).
For f € L,(Q2) and ¢ € C°(R"), we have

[ = aleds = [ (¢~ (a)(e~ (ela)da
@ 0

Hence the Poincaré-Wirtinger inequality [|¢ — (¢)q |l < Crw ||Vl for ¢ € H;,(Q) implies

@48) 17 = Dallis o < Crwllf = Dally < Cow (1+19172) £l for £ € L ().
The inequality (4.48) implies
(4.49) If - <f>Q||H;(07T;H;/(Q)*) < Cpw (1 + |Q’71/p) 1 a2 0,752,(02))-
From the embedding H, (0,T; X) < C([0,T]; X) we infer that pointwise multiplication
o: H)(0,T; Loo(2)) x Hy(0,T; Lp()) — Hy(0,T; Ly(K2))
is continuous and that H} (0, T; Lo, () is a multiplication algebra. Moreover,
o: Loo(0, T3 Hy () x Lp(0,T; Hy () — Ly(0,T; Hy(2))
is continuous and L (0, T; H, (€2)) is a multiplication algebra for p > n. Thus
Y :=H(0,T; Loo(Q)) N Loo(0,T; Hy ()
also is a multiplication algebra, and from (4.49) we infer that

(4.50) lgf = 9N alle, S Ngfllmrxa) S Ngly Il mir<a)-
Estimate (4.50) and multiplication in Y imply that the trilinear map
(A, B,u) — almjbmjul — <almjbmjul>9, YR o YIXT H;((O,T) X Q)n — Fd(T)

is continuous. The map © — A := 920, Eg — Y"*™*" s linear and bounded by (4.45), and the
map O — B := [0,0]7!, Ug — Y™ " is analytic by Proposition B.88. Therefore F} is analytic.
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(i) With estimate (4.42) we obtain

(4.51a) atmibmsull L,y < 1Al | Blly - TYPC(To) [ullg, (1),
(4.51b) 104 (@msbmg )ullz, (%0 < (1Adllpl Bllse + | Allol| Bellp) - TPC(To) |[ullg, 1y
(4.51¢) | @tmjbmiOuill L, (1xq) < | Allsoll Blloollullg, (1)

Hence the first estimate in (4.50) yields the assertion.
(ii) With (4.44a) and (4.43) we obtain the partial Fréchet derivatives

[8u.Fd(U* + Ue, O, + no)]ﬂo = Fd(’[L., @) =M (ag%@u {a:c@]_la 'EL.) s
[67]-Fd(u* + Use, @* + 770)]770 =M (a:%ﬁﬁ [aﬂﬁ@]_la u) + M (6567 ([aﬂﬁ@]_l)2 785137703 U) .
From (4.46) with p > n + 2 we infer that
12m6lly < T°C(8,To) |6l (1) for 5 € {1,2}.
This estimate and (4.51) yield the assertion. O

4.3. The transformed interface equations

In this section we transform the interface momentum balance
(4.52) —[T(u,m)]vr —divp Tr(u) =0 onI'(¢), t € J,

which was derived on page 19. We assume that the unknown moving interface is represented
as I'(t) = T'n(t) = On({t} x ¥) in terms of the unknown height function h and the normal-
preserving map Oy, from page 99 and Theorem 4.15.(ii). Our goal is to decompose (4.52) into a
principal linear part and a remaining nonlinear part, and to handle the latter as a perturbation
with respect to the function spaces on page 94. An explicit description of these perturbations
is given on the following page. As the main result of this section we prove that the nonlinear
perturbations can be deemed as small as we wish provided that the time interval J = (0,7") and
the initial height function hy = h|;—¢ are sufficiently small (Lemma 4.26). In Corollaries 4.27
and 4.28 we prove the corresponding results for the transformed bulk equations by specializing
Lemmas 4.21 and 4.23.
Let us take a closer look at (4.52). From the identities (1.19) and (1.22) we recall that

T(u,m) = QMD( ) —l,
D(u) = 274(Vu + [Vu] "),
(4.53) Tr(u) = oPr + (As — ps)(divp ) Pr + 2us Dr(u),
) =

Dr(u) = 27 Pr(Vru + [Vpu] )Pr.
Define a tangential vector field N, (u,I") and a scalar field N,,(u, 7, T") by
Ny(u,T') := —Pr[T(u,0)]vr — Prdivr Tt (u)

—([nop] + [l [Vrvlvr + [p]Vrw)
— (s Arv + AV dive v 4 (ps + A)wVrHr + [(1s — As) Hr — 25 Lr]Viw),

Ny(u,m,T') := —vp - [T(u, 7)]Jvr — vr - dive Tr(u)
—(2[pdyw] - [x])
— (6Hp + (As — ps) divp w Hp + 25 Dr(u) @ Lt).

Here we have again used the decomposition © = v + wyr near I', and the underlined terms are
considered as the principal part with respect to the chosen function spaces. Thus, the interface
momentum balance (4.52) can be written as

Ny(u,I') + Ny(u, 7, T)vpr =0 onI'(¢), t € J.
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For given
Ze = (Ue, Tu, hy) €E, 2o = (Ta, To, he) € oF,  with h = h, + he € Uy,
we define ©}, as in Theorem 4.15, Oy, (t, z) := (t, Ox(t, x)), Ti(t) := Ox(t,¥), and
U =Ty + Ty, up, = ([0,04]7) 0 6} 1,

and decompose uj, = vy, + wpr, near I'y, and T, = v, + Wivs, and Ue = Ue + WeVs, Near X.
Then the maps G, and G, from (4.57) have the representations

Gy(ze; 2x) = Gy(TUe, Ne; Ty, hy)

(4.55a) = [11{[0:04] ' (Dur, vn) © Op — BT}
(4.55b) + 11{[0:04] " (Ar,vn) 0 ©) — AxTa}
(4.55c¢) + Xs{[0:04]"H(Vr, divy, v3) 0 O, — Vs divs Te }
(4.55d) + (s + 115){[0:08) " (wp Vi, Hr,) 0 ©), — W, Vs Ashe}
(4.55¢) +[0:05] " ([(1s — As)Hr, — 215 L1, ]Vr, (wh)) © Oy,
(4.55f) + [1][0:01) [V, vnlrr, ) © O
(4.55g) + [1]{[0:04] "1 (Vr,wp) 0 O — Vst },
Guw(2ze; 2) = Guy(Te, hey Ui, Ty hs)
(4.56a) = 2[udw.] + [7]
(4.56b) + o{Hr, 0 O}, — Axhe}
(4.56¢) + (As — ps){(divr, up Hr,) 0 O, — Hy divs Te — (divs T, — 2Hx W) Axhe}
(4.56d) +2p5{(Dr, (un) : Lr,) 0 O — Dx(0) : Ly, — [Dx(,) — 2w.Ls] : VEha},

FIGURE 4.5. The perturbations G, and G,.

Next, we derive the transformed version of (4.52). For given transformed functions @ € E,,
7 € Er, and h € E;, NUy, and with O, (¢, z) = (t,O4(t, z)), we define

up, := ([0,O4]7) o (:),:1, Ny(u, h) = [(%;G)h]*le(uh,Fh) 0 Oy,
T ::ﬁo(:)gl, No(@, 7, h) := Ny(up, 7, T1) 0 Op.
Then the transformed interface momentum balance is given by
(4.54) N,(u,h) + Ny(u, 7, h)vs =0 onJ x X.

In order to resolve this interface condition, we decompose both N; (j € {v,w}) into a principal
linear part L; and a nonlinear perturbation ;. By means of Lemma 4.16, it is straightforward
to compute more explicit representations of G, and G, and we will employ the identities (4.55)
and (4.56) in Figure 4.5 on the current page.

For controlling the perturbations G, and G, and for proving their analyticity, we first pro-
vide some estimates for the lower-order terms in Lemma 4.24. Then we study pointwise mul-
tiplication, inversion, and square root in the function spaces G, and G,, in Lemma 4.25. It is
sufficient to consider the larger class of height functions

By, := H(J; W3=VP(2)) 0 L,(J; WA—1/P(%)),
p p p p
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which contains Ej,. Then 9,0},|x. belongs to the space
Ego = Hy(J; W, V/P(2)) N Ly(J; Wi H/P()),

which satisfies Ego < Ego < Gy, N Gy
We will consider triples z = z, + z, of the form

2 = (U, T, hs) € B(Ty) = By pw,0,0(To) X Ep x(To) x Ep(Th),
%o = (Ta, Ta; hta) € 0E(T) 1= 0Eu0,00,0,0(T) % 0Er 21(T) % oEn(T).
The operators L; are chosen as follows:
Ly(Tie, he; W) = —1sAsTe — AV divs Te — [10,7a] — [1] Ve — (As + 115)W0x Vs Assha,
Lyy(Te, e, he;Us) = —tr ([(As — pts)Hs + 2us Ly |VsUs) — 2[10,We | + [Te]
—tr ([0 4+ (As — ps)(dive Uy — 20, Hy) + 2p5( D5 (V) — 20, L) [ Vha) -
These operators are linear with respect to z,. The nonlinear perturbations G; are given by
(4.57a) G (Ta, hei T, Be) = Ly (Ue, he; Tx) — Noy(Us + T, B + ha),
(4.57b) G (e, Ne T, Ty hi) := Loy (e, 0, he; Ts) — Noy (U + e, T, hs + N ).
Note that the right-hand side of (4.57b) satisfies
Luy(Tie, ey he; Us) — Noy(Us + Ue, Ts + T, hic + ha)
= Ly(Te, 0, he; W) — Noy(Us + T, Tx, h + o)

and hence does not depend on 7,.

The lower-order terms of G, and G, will be controlled with the following estimates.
4.24. Lemma. Letp € (n+ 2,00).

(i) There exists g > 0 such that for all § € (0, o], To > 0, and T € (0, Tp], we have

(4.58a) 1(he, Ve, VER) oG, (1) < C(6,T0)T HhOHOfEh(T)
(4.58b) (e, Vshe)lloe(ry < CO,T0)T el g, (r
(4.58¢) (e, Vstta)|loG, () < C(8,TH)T° HU-HOEU(T
(4.58d) el (1) < C(6, To)T° ||t o, (7

for all he € oy, (T) and all not necessarily tangential vector fields ue € oE,(T).
(i) Given e > 0, there exists 6o > 0 such that for all 6 € (0,d¢], To > 0, and T € (0, Ty], we have

(4.59%) 1hellocorics sy < C6, To)T°lhell g, (1)
(4.59b) uellc(o,11:01(x)) < C(6, To)T° ||us o5, (1)
for all he € oEp,(T) and ue € oE,(T), and

5
(4.60a) [(h, Vsh)g, ) < C(6,To) (T 17l () + Hh0||W1372/p(2)) ;
(4.60D) 1Plleqoros ) < €6, To) <T6|’h”ﬁh<T) * ”ho”wﬁ("*””“(z)) ’
(4.60c) [(h, Vsh)lg,, 1) < C(6,To) <T5||h||ﬁh(T) + ||h0||Wg—2/p(E)) ;

forall T € (0, Tp) and h € Ey(T) with h|—o = ho.

Proof. We proceed as in the proofs of Lemmas 3.19 and 4.20 and we also employ temporal

extension operators of initial values from Corollaries B.26, B.58 and B.59 on pages 155, 163
and 164.
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(i) For proving (4.58), we first observe that (with all spaces considered over (0,7") x X))
(he, Ve, Viha) € oHy (W, ™HP) o oW 27120 (L) 01 Ly(W, 7H7) = oG,
and estimate (4.58a) follows by using the inequalities (3.32b) and (3.32e). Similarly,
(he, Vshe) € oHY(W2TYPY s qW3/A=120 (L) 0 oW L2V2P(HY) 0 Ly(W2THP) = 4G,
and hence (4.58b) is valid. Next,
(te, Vsitta) € oW/ 4122 (L) M oW 2P (HY) < oWE2TV2P(L,) 0 Ly (W HP) = Gy,
and therefore estimate (4.58c) follows from Lemma 3.18. Similarly, (4.58d) follows from
Us € 0By — oW~ Y2P(L,) N oWE/ATY2 (HY) 0 g HY 2P (WEP) G,

(ii) Estimates (4.59) follow similarly, by using Sobolev’s embedding (B.1).
In order to prove the estimates (4.60) for h € E;,(1") we employ the decomposition

h=Erho+ (h — Ephg),  (Erho)(t) := e ™VFB3hg,  hg := h|—g.
From Corollaries B.26 and B.58 we infer that the realizations
Ep: WEP(S) —» WamYP(0, T, HY(S)) N Ly (0, T; W2HP(3)),
Er: WET2P(2) — B (T)
are bounded, uniformly with respect to T' € (0, Tp|. With estimate (4.58a) we obtain
IVshlle,r) < IVs(h = Erho)llocu ) + IVsErhollg, ()
< C(6,T0) (T Illg, o7y + Nhollyz-2/n(sy ) -
Therefore (4.60a) is valid. Next, the realization
Ep: WEHO=DIPTE () 5 HL(0, T; W2H/PHE(8)) 0 L,y (0, T; WT/PTe(x))
is also bounded and its target space is embedded into C ([0, 7]; C*(%)). This yields an estimate
IAllcqomc3 sy < b = Erhollycqor.03x)) + lI€Thollcqo, 11,03 (=)
< CO.10) (T°Ihllg, 7y + ol )
which proves (4.60b). With the boundedness of
Er: WETAP(S) — HY0,T; W2 /P(2)) N Ly (0, T; WP (5)),
and with estimate (4.58b) we obtain
1(h, Veh) g,y < [I(1, V) (h = Erho)lloe, () + I(1, Ve)rholi, ()
< CO.To) (T llg, o7y + Mhollyya-2rn(sy )
and thus (4.60c) is valid. O

Next, we provide estimates for controlling products with leading-order terms. Let X (T')
denote the scalar version of one of the spaces Eso(T), G,(T), or G, (T) from Figure 4.1 on
page 94. Analogously as for Ege(T') in Lemma 4.13, we will show that X (7") is multiplication
algebra, and that pointwise inversion and square root are analytic operators in suitable subsets
of X(T). We also consider certain larger spaces Y (T) = C([0,T];C*(X)) D X(T) with the
property

I lloy ) < T°CO,To)lIfllox(ry  for f € o X(T), T € (0, T},
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where ¢ X (T) := {f € X(T) : flt=0o = 0} and oY(T') := {f € Y(T) : fli=o = 0}. Moreover,
the temporal trace space 70X of X (T') is embedded into a larger space Z for which we obtain a
T-dependent estimate

I fllxery < T°CE,To) (£ lx(ry + 1 fle=ollvox) + C(To)| fle=ollz  for f € X(T), T € (0, Ty).
Hence, together with a bilinear estimate

If9llxcry < COUSIxalgllyay + 1 lly @ lgllxe),

we can control || fg|| x () by choosing T, || f|¢=o|| z, and ||g|¢=o|| z sufficiently small.
4.25. Lemma. Let ¥ C R™ (n > 2) be a compact smooth hypersurface and let

(4.61a) X(T) =Eoe(T), Y(T)=C([0,T;C*(%)), Z =W, Drte(s),

(4.61b) or X(T)=Gy(T), Y(I)=C(0,T];C(X), 2Z=wbrrem),

(4.61¢) or  X(T)=Gu(T), Y(T)=C(0,T];CH(%)), Z=w,rr=birte(y)

wherep € (n+2,00), T € (0,00),and e € (0,1 — (n+ 2)/p|. Then the following assertions are valid:
(i) We have X (T') — Y (T), and for some 60 > 0andall § € (0,60, To > 0, and T € (0,Tp] we

have

(4.62) Ifllyery < T°CE D) flloxery  for f € oX(T) = {f € X(T): fli=o = 0}.

(ii) Fore € (0,1 — (n + 2)/p| there is 5o > 0 such that for all § € (0, o], To > 0, and T € (0, Tp)
we have

4.63)  Ifllyr) < T°C(,To) (If I xcry + I flizollnox) + C(T) flizollz ~ for f € X(T).
(iii) X (T') is a multiplication algebra, and there exists C(T") > 1 such that

(4.64) I£9llxcry < C(T) (Ifllxcrllglly ) + £ lvenylglixer)) — for £,9 € X(T),
and for given Ty € (0, 00) there exists C(Ty) such that for all T € (0, Tp] we have
(4.65)

I£glloxcry < C(To) (Iflloxcryllglly ry) + 1oy lgllx(ry)) — for f € 0X(T), g € X(To).

(iv) The inversion operator A — A7, {A € X™*™ : sup ;, »|A71| < 0o} — X is analytic.
(v) The square root operator f +— f(-)'/2, {f € X : infyxx dist(f(-),R_) > 0} — X is analytic.

Proof. We only deal with (4.61a) since the remaining assertions can be proved analogously.
(i) We abbreviate W(W;) := Wi (J; W3(%)), C*(C) := C*(J; CY()), and similarly for the
other spaces. The mixed derivative embeddings and Sobolev’s embedding (B.1) imply

HY(W2YP) 0 Ly(W2P) s WE(HVP=0) s (C?),

provided that 6 € (0, 1) satisfies# > 1/pand 3—1/p—0 > 2+ (n—1)/p. Such a number 6 exists
if 1/p <1 —n/p, and this is true if p > n + 1. Moreover, Lemma 3.18 yields the estimate (4.62).
(ii) By Corollaries B.26 and B.58 on pages 155 and 163, the extension operator

Ryt xes [t e Ma], WT272P(8) — HI(0,T; WS(E)) N Ly(0, T; Wit2(2))

for A=1— Ay and s € [0, c0) is uniformly bounded with respect to T" € (0, 7p]. By decompos-
ing f(t) = (f(t) — et £(0)) + et f(0) and applying (4.62), we obtain (4.63).
(iii) The norm of X (7) consists of the semi-norms

[[(VE? 8tv27 V%)']]p;lfl/p,pv H(L ata atvE? Vz, v%)”??
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where []p:0p =[], wg) and ||-[|p == |||, (z,)- With Lemma B.10 we control the leading-order
terms of || f¢||x by

[9:Vsf 9lpa-1/pp S [0V flpi-1/ppll9llee + 10V fllpl[(9: V) oo,
[0:f Veglpa-1/pp < Oeflpi-1pplIVEglloo + 10uf 16l (VEg, VE9) oo,
V&S 9lpi-1/p0 S [VEp1-1/ppll9l0 + IVEF 161 (9: Vg)lloo-

These terms and the remaining ones can be estimated by the right-hand side of (4.64). Therefore
(4.64) is valid and the uniform estimate (4.65) follows by means of extension ¢ X (T") — 9 X (c0)
and restriction ¢ X (c0) — ¢X(7p), where the temporal extension operator (X (1) — (X (o0)
from Lemma B.9 on page 148 is uniformly bounded with respect to T" € (0, Tp].

(iv) Let us check that A~! belongs to X™*™ for every A € X™*™ with A~! € C(J x
¥). From the inequality |A(t,z)"! — A(t,2)7!] < ||[A7Y2|A(t,2) — A(t,2')| we infer that
[A Ypop S NATHZ[Alpep < oo for o = 1 — 1/p. For given j € {1,...,n — 1}, Lemma B.10
yields

[0:0; A Npiop = [[AT 0, A]AT O AJAT! + AT O AJATH O AJAT! — AT 00, AJATH]]

S AT Ao [0: Alpierp + (IATHIS N (A, Ve A) 12 + AT [(VEA, VEA) ) 10:All

+ 1 ATZ 10005 Al + (AT, Ve AT ool | AT 01005 Al < 00

The semi-norm [0;04 A™'].+, can be estimated analogously. We further have
1A, < TSP A | < oo

and the remaining terms in || A~!|| x are also finite. Therefore A~! belongs to X™*™, and then
Proposition B.88 on page 172 yields analyticity of the inversion operator A — A1,
(v) Assertion (v) follows by a similar proof as on page 100. O

We are ready to control the perturbations G, and G.,. The triple 24 = (Ts, e, he) € oE(T)
has vanishing initial values, and z, = (4., 7+, hi) € E(Tp) should satisfy the compatibility
conditions

(4.66) Gj(0;2¢)[t=0 =0 for j € {v,w}.

Then we can control Gj(z.; z«) in ¢G;(T") by choosing T € (0, Tp] and h.|;—g sufficiently small.
Even without requiring (4.66) we can control the partial Fréchet derivative

az. Gj(zd Z*) € B(OE(T)a OGj (T))
4.26. Lemma. Letp € (n+2,00), 7 € (1+n/p,4—1/p], Ty € (0,00), T € (0,Tp)], and
Uy = {h € LOO(07Ta W];’—l/p(z)) : HhHLOO(QT;W;*l/P(E)) < 6}1}

with 0,,(2, X, p, 7) > 0as in Theorem 4.15. Then the maps

(Zey 2x) = Lyy(Te, e us), oE(T) x E(T) — 0Go(T),
(Zey 2x) > Liy(Te, Tay has Us), oE(T) x E(Tp) — 0Gw(T),
(2a, 24) > Go(Ta, ha; Ts, ha), {(2e; 2¢) € 0E(T) X E(Tp) : he + hs € Uy} — Go(T),
(Za, 24) > Gy (T ho3 T, Ty he),  { (205 20) € 0B(T) X B(Tp) : he + hs € Up} — G (T)

are analytic and depend polynomially on ze, 2., 02Oh, +ha, [0:On, +ha) ™Y Bhuth, and 6,;1”“.
In addition, let T € (3+n/p,4 — 1/p). Then G, and G, have the following properties:
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(i) For ze € oB(T0), 2y € E(Ty) with h = hy + he € Uy (Tp) and (4.66), we have
1Gu(ze3 2) 6y (1) + G (205 2y = 0 a8 T =0, ho = hafr=o — 0in Wy~ H/P(%).

Given R € [1, 00), this convergence is uniform with respect to
467)  [1(z0s 2z + 10O +10s [0: O] Mz ) + 1B By < B

(ii) For given Ty € (0,00), zo € oE(Tp), and z, € E(Tp) with h = hy + he € Uy,(Ty), we have
(468) H@Z. GU(Z.; z*)‘|OE(T)4>OGU(T) + Haz.Gw(Zo; Z*)HOE(T)HOGW;(T) — 07
asT — 0, hg — 0in Wy, —/p (). Given R > 1, this convergence is uniform with respect to (4.67).

Proof. Analyticity. We first note that the scalar-valued versions of the spaces G, and G,, are
multiplication algebras by Lemma 4.25. The maps L, and L,, consist of linear and bilinear dif-
ferential operators, and hence their analyticity follows from the mixed derivative embeddings
and the spatial trace theorem. In order to prove the analyticity of G, and G, it is sufficient to
prove that the map

(@7, h) = (No(@ ), No(@ 7, 1)) : Eypwo,0 X Ex g X En VU, = Gy x Gy

is analytic. Theorem 4.15, the identities (4.24) and Lemma 4.25 imply that the quantities

By Bty vry © O, (02045, [0:04] sz, 7, 0 O, 7, 0O

considered in Ege depend analytically on h € Ej, NU,. Next, the Weingarten tensor Lr and the
mean curvature Hr are given by

(4.69) Lr=-Virr =@ =l o =T o1, Hpr=trLr = —divror.

Therefore the maps h — Lr, 0Oy, Ennlly, — (GyNGy)™™™and h — Vr, Hr, 00y, E,NUy, — Gy
are analytic, and their values depend polynomially on (9,0, [0,05]7Y, Bn, 5;, ). Lemma 4.16
yields

(4.70) Vp, © (:)h = [ax@h]ﬁ, Wp, © éh = Brw, (&,Fh wh) o (:)h = &,E@,

and we conclude that, given h € E;, NU,, the map U — N, (U, h), Eyuw — G, is linear and con-
tinuous, and (U, 7) — No(U, T, k), Eyp 8,0 ¥ E; x] = Gu is affine and continuous. Therefore
N, and N, are analytic and depend polynomially on (@, 7, h, 9,04, (0071, B, B 1)

(i) Smallness of G;(ze; 2). With G(0; 24)|1=0 = 0 we rewrite

(4.71) Gj(2e; 24) = Gj(2e; 24) — Rj(G;(0; 24)]e=0),
where we employ the temporal extension operators

—t(l—ﬁz) _(I_AE)

R,: gvo [t = e gv0]a Ry Guwo [t = e ng]

from Corollaries B.26, B.58 and B.59. Then we can rewrite the representations (4.55) and (4.56)
for G; in such a way that every difference has a vanishing initial value. For instance, with
ho = hul|i=0, the first difference (4.55a) in G (z; 2+) becomes

11020117 (Bur, v) © On = Doy Te = R (102007 (O, ¥o) © O ) }]| -
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With (4.24) and (4.25) we rewrite and decompose the difference in the curled brackets as
[0:01) 718, ([0:04)(Ts +Ta)) [0:04) " (B;, ' [0:0n]v5)
— OyTa = Ry ([0:000] " (Dur, h0) © Oy )
= Oy, Te(BF — 1)
+ B, 00D — Ry (5}701(9”2@0)
+ By [0:01) 1 [0:[0:0n) (s + Vo) [0:On]vs] — Ry (B [0:Ony) ™ [0:[0:Ono [00) [0:Ono]v) -
These differences belong to (G, (7'), and from the estimates (4.63) and (4.65) we infer that they

tend to zero in ¢G,(T) as T — 0 and [0,05,]"! — I, in W2 ED/PE (53 for some e € (0,1 —

(n + 1)/p]. The latter follows from kg — 0in W, /?(S)since 7 — 1/p > 3+ (n+ 1)/p+ ¢
for some ¢ > 0. The remaining differences in (4.71) can be estimated similarly, and therefore
assertion (i) is valid.

(ii) Smallness of Oz, G,. For proving estimate (4.68) we first investigate the directional deriv-
ative Oy, Gy (T, he; U, hy) applied to U € 0Euv.w,0,w(T). The map Te — Gy(Tie + e, he; Tx, hy)
is affine, and therefore GG, satisfies

[%.Gv<ﬂn he; s, h*)]ﬁo = Gv(ﬁn he; 0, h*>7

and has the lower-order terms (4.55d) to (4.55g) with respect to u = u, + U,. Their directional
derivatives with respect to %, applied to %, only depend on the values of U, and Vxis|s, and
with estimate (4.58c) we can control these terms by choosing 7" small. Applying the identities
in Figure 4.2, the leading-order terms in the u,-derivatives of (4.55a) to (4.55c) are given by

02068y ' [02Onlvs — v}, {(gt 0 On) — 91000, {[1, ® 7. ] 0 O — [18 @ 7L},
By means of estimate (4.60a), we can further control (h, Vsh) in the G, (T")-norm and obtain
1Bn — 1,8, = Dllgur) + 1(10:O0] — I, [0:04) " = L) |Gy (1) — O
asT — 0, hg — 0in Wg_Q/p(E), and therefore
|0, G (Ue, he; Us, h*>”oIEu,v,w,auw(T)—va(T) —0 asT — 0, hg — 0in Wp2—2/p(2),

uniformly with respect to (4.67).

Smallness of Oy,G.. For the computation of 0y, Gy (e, he; Us, T, hy)|te We only have to
consider the differences (4.56c) and (4.56d) where Vs, | and V%h are of leading order. The
lower-order terms can be controlled with estimate (4.58d). Concerning the leading-order terms
we note that by using the identities (4.7), (4.53), and (4.69), it remains to control the products
[Vste][V&R] and [VsTe]Vsh in the Gy, (T)-norm. From Lemma 4.25 we infer that

V=t (IVEA], Ve lloeum) S IVl ooy lPlg, @) + 10le.@ 1Pllogcs sy
and therefore, by using the estimates (4.59a) and (4.60b), we obtain
H%Gw(ﬂ., Re; Uy, Ty, h*)HoEu,u,w(T)%on(T) —0 asT — 0, hg = 0in WpT—l/p(Z),

for some 7 > 3 4+ n/p, and this convergence is uniform with respect to (4.67).
Smallness of Oy, G,. We control [0, Gy (Te, he; Us, hs)]he in the (G, (T')-norm for he € oEp (7).
Estimate (4.58a) allows to control all the terms in [0}, G, (Ue, he; Ux, I+ )| he by T', except for

ah.([ax@h]_l(wththh) o éh)] ;L. - @VEAZB., h := hy + he,
which contains the leading-order term

[0:01] "1 81 w[0:01]" T Vs ([ax@h}—%g ]aj(ﬁh = th]_1ngz.)) _ WV divsy V.
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In order to control this term in (G, (7)), it suffices to control 0,0 — I, and thus (h, Vyh) in
Gy(T), and that was already done in (4.60a). We conclude that

Hah.GU(ﬂ., he; U, h*)HO[EIh(T)—va(T) —0 asT — 0, hg — 0in Wpl'i‘(n—l)/P-i-a(E),

for some ¢ > 0, uniformly with respect to (4.67).

Smallness of dy,,Gy. It remains to control [Op, Guy(Te, he; Ts, Tx, e )| e in oGy (T). All its
summands which only contain (he, Vshe) but not VZhe can be controlled by T’ with estimate
(4.58b). With estimate (4.60c) we can also control all terms which contain (h, Vgh) but not V4h.
Furthermore, with the estimates (4.60b) and (4.64), we can also control the bilinear leading-
order term

IVER[VER)loGw () S IVEAl Gy @) [ VERelocoriony + VR oo 10):0) [ VE R oG (1)
< HhHlEh(To) 'T5||h.||0f5h(T) + Hh0||Wg+(n—1)/p+s||h.|

o (T)"
Among the leading-order terms, we consider the directional derivative
[Ony (Hr, © Op)lhe = —[0h, (1., 10j11,) © Op)lhe, b := hy + he.
Its leading-order part containing Vh, is given by
0.0 7.+ (Ball = hLs] ™0, Vssha + 0 (10, Bulhe) [T = hLz]'Vsh)

With estimate (4.60c) we can estimate the first summand by

|

asT — 0and hg — Oin W;’ 2/ (X). For the second summand we use

— 0,

0ER(T)—=0Gw(T)

Fre ([axeh]—%g ([ = hLs)'9;Vsha) — Agﬁ.)

[ah.ﬁh]il. = —ﬁ% (Vgh‘([ — th)_Q (VgiL. — iL.Lg(I — hLz)_IVEh)) ,
and therefore the estimates (4.60b) and (4.60c) yield 9;([Op, Brlhe) = 01in oGy (T) as T — 0 and
ho — 01in W§+(n_1)/p+6(2). Therefore
(472) ”[8h. (Lph o éh)ﬁl,. — V%EOHOGM(T) — 0,

asT — O0and by — 0in W;’ Hn=1)/p *(%). This allows to control the directional derivative
of (4.56b). Concerning the remaining terms (4.56¢c) and (4.56d), we note that (see (A.17) on
page 140)

divpu = (7'12|8jv) —wHr, Dr(u)=Dr(v) —wLr = Sym(TIZ ® Projv) —wLy.

Therefore it is sufficient to consider the differences

(4.73a) [0 (divr, (up)) © ©p)]he Hr, 0 O, + W Ashe Hs,
(4.73b) divp, (un) © Oy, [Oh. (Hr, © O4)]he — divs: (@) Asha,
(4.73c) [Oh ((Dry, (un) © O)he : [Lr, 0 O4] + WVEhe : Ly,
(4.73d) [Dr, (up) © ©4] : [Oh (LT, © On)]he — Dx(T) : VEhe.

With the estimates (4.60b), (4.60c), (4.64), and (4.72), we can control the directional derivatives

of (4.73) in (G (T) with T — 0 and hy — 0 in W£’+(n_1)/p+e(2). The proof of the lemma is
complete. O
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We also have to specialize the corresponding results for F;, and Fj to the case of a normal-
preserving admissible map. Theorem 4.15 implies that the map

h— 0, —1d, = G(hl/g,gh), E, NU, — Eo NUp

is analytic for p € ((n +2)/2,00) and 7 € (1 4+ n/p,4 — 1/p|, where the subsets U}, and Ug were
defined on pages 102 and 107. For h = h, + he with h, € E(1p) and he € oE(7)), the Fréchet
derivative of ©; — Id, is given by
[0 (On —1ds) he = &(havs, [On, (91)]Da),
and becomes G(E.yg, —ngz.) ath =0.
4.27. Corollary. Letp € (n+2,00)\ {3}, 7€ (1 +n/p,4—1/p), T € (0,00), and
Fy(u,m, h) = Fy,(u,7,0p) foruek,, mecE; heE,NU,.

Then F,: {(u,m,h) € E, x Ex x Ep, : h € Uy} — T, is analytic and has the following properties:
(i) Given Ty € (0,00), R € (;,,00), u € Ey(Ty), m € Ex(Tp), and h € Ey,(Tp) NUy, we have

|Fu(u, 7, h)|lgy )y — 0 as T — 0, ho == hli—g — 0 in W] 1/P(),
uniformly with respect to
lulle, (1) + 7 llE, (70) + 1Pl (1) < R, ||h||LOo 0Ty~ VP(s)) S Oh— R

(ii) Given Ty € (0,00), R € (6;',00), us € Ey(Tp), te € o0Eu(To), © € Ex(To), hi € En(T),
and he € oEyp,(To) with h = hy + he € Uy, we have

[0(ua,m,he) Fultis + tey Ty B + ho) || oE,, (1) B (T) x 0B (T)—Fu(T) = 0
as T — 0and hg — 0in W, —/p (3). This convergence is uniform with respect to
H(u*7u.)H]Eu(T()) + HWHEW T()) + H(h*7 h')HEh(To) S R7
[ + Rall . <é,— RN

0o (0,T0; W5~ /P(£))

Proof. In order to apply Theorem 4.15 and Lemma 4.21, it remains to show that ||0,0}, — I =
I6(hvS, gn)llos — 0as T — 0 and hg — 0in Wy /?(S). Given 7 > 1 + n/p we have

10:0n — Lell Lo ((0,1)x0) = 16 (hvs, gn)ll Lo ((0,7) %)
< ||hVE” OTWT 1/1’(2)) + thH OTWT 1— 1/1’(2)) - O’
as [|n[l, O sy 0. As on page 114, we decompose h = (h — Erhg) + Erho. The
embeddmg

C(Wy=ry o Hy/Pre (W =Py o HY (W =1) 0 Ly(Wy ) D By,
and Lemma 3.18 yield an estimate

(4.74) 1All < O, To)(T° | Pl (my) + 1hollyyr—1/

c(o,r,wy; P () <z>)’

for some §p > 0 and all 6 € (0,dp] and T € (0, Tp], provided that 7 < 4 — 1/p. This yields the

required convergence ||A|| —0asT — 0and hy — 0in Wy /7(%). O

o (0.T5W, /P ()

For an estimation of the divergence perturbation F; we also use the compatibility condition

(4.75) divug = Fy(ug, ho) in Q.
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4.28. Corollary. Letp € (n+2,00), 7 € 34+ n/p,4—1/p), T € (0,00), and
Fd(u, h) = Fd(u, @h) fOT u e Eu,v,w,ayw7 h € E,NU,.

Then the map Fy: {(u,h) € Evvwa,w(T) x Ex(T) : h € Uy} — Fax(T) is analytic and has the
following properties:

(i) For given Ty € (0,00), R € (6;,*,00), u € Eypaw.d,uw(To), b € E(To) NUy, and ho = hli—o,
we have

1Fa(u, h) = divullg, o) =0 asT =0, [[hollyr-1ms) =0,

and this convergence is uniform with respect to
-1
||u||]Eu,v,w,8yw(T0) + HhHEh(T()) S R7 ||h‘|| OT W"' 1/17( )) S 6h - R .

(ii) For given Ty € (0,00), R € (8,',00), s € Eypw0,0(T0), te € 0Bupuwow(Td), b €
E(T0), he € 0Ex(To) with h = hy + he € Uy, and hy = h.|i—o, we have

Ha(“-,h-)ﬁd(u* + e, hx + h.)HOEu,v,w,é)yw(T)XOEh(T)‘)Fd,Z(T) — 0,

as T — 0and [|hol| |, — 0, and this convergence is uniform with respect to

T— l/p(E)

(4.76) H(UMU-)HEUW@W(TO + [ (hs ho) g (1) < R

Proof. We recall from pages 94 and 109 that Fy(u, h) is trilinear in (820}, [0,04] ', u), and that

I falleas = lfalle, + (farls, faIs) 6w

where J = (0,T). The assertions for the F;-norm follow from Theorem 4.15 and Lemma 4.23,
as soon as we have ensured that the difference 9,0, — I, = 9,6 (hvy, g) tends to zero in the
C([0,T); C1(2))-norm. Since 7 > 2 + n/p, we have

||aﬂ€@h I ||Loo(0T)><Q S ||hVE|| OTWT 1/P + thH OTWT 1— 1/?(2)) 07

as [l

follow.
The space G,, is a multiplication algebra by Lemma 4.25, and from the mixed derivative
embeddings and the T-dependent estimates in Lemma 3.18, we obtain the estimate

o (OTWI () — 0. By using (4.74) and 7 < 4 — 1/p, the assertions for the F;-norm

(4.78) [velsllo@n @) < TPC(6,T0)[telloE, .00 u(T)-
With 82_&(hvs, gn)ls = 0, it follows that the values of 92&(hvs, gp)|s depend linearly on
those of (h, Vsh, V&h, gn, Vsgn). Therefore h — 026 (hvs, gn), En(T) NU, — Gy(T) is ana-
lytic. Moreover, with the estimates (4.60b), (4.65), and (4.78), we can control Fy(u,h) — divu
in 0Gy(T') and Oy, ny) Falu, h) in B(oEuvw,o,w(T) X 0Ea(T);0Gw(T)) by choosing T" and hg in

wHn=D/pte 5y sufficiently small. Therefore both assertions of Corollary 4.28 are true. O



122 4. THE NONLINEAR PROBLEM

4.4. Local well-posedness of the transformed problem

Finally, we prove well-posedness for the transformed problem (T), which we restate as

(4.79a) poyu — pAu+ V= Fy(u,m,h) inJxQ\X,
(4.79b) divu = Fy(u, h) inJ xQ\3%,
(4.79¢) [ul =0 onJ x X,
(4.79d) Ny(u,h) + Ny(u, 7, h)vg =0 onJ x X,
(4.79) Oh—u-vs=0 onJ x ¥,
(4.79f) ulpn =0 on J x 0f),
(4.79¢g) h|i=o0 = ho on Y,

(4.79h) uli=0 = up inQ\ X.

Here J = (0,7T) is a bounded interval and (2 is a bounded smooth domain in R™ (n > 2) that
contains a compact smooth hypersurface . We employ the operators F,, from page 106, F,;
from page 109, and N, and N, from page 112. We decompose u = v + wvy, o Iy near X. Both
u and 7 denote transformed quantities; that is, we omit the bars over u and .

An E-solution of problem (4.79) = (T) on J = (0,T) is a triple

(U, T, h) € E(T) = Eu,v,w,a,,w(T) X Eﬂ.’[[ﬂ.]] (T) X (Eh(T) N Z/[h),

which satisfies (4.79) pointwise almost everywhere. The relevant function spaces are collected
in Figure 4.1. The nonlinearities are well-defined if the height function satisfies the smallness
condition h € U}, from Theorem 4.15.(ii) on page 102.

We will consider E-solutions of the form

(u,m, h) = (Ux + Ue, Tx + Te, hi + he)  With (s, e, he) € 0E, (ts, Tx, hi) € E,

where (us, 7o, he) has vanishing initial values and (us, 7., h.) satisfies the initial conditions. In
Definition 4.29 we define the state space X, of initial data (ug, ko), which is a subset of some
Banach space X,,. It is shown in Lemma 4.31 that for every (ug, ho) € X,, there exists a tuple
(us, Ty, hy) € E(T') which satisfies (ux, hs)|t=0 = (10, ho) and depends linearly and continuously
on (ug, ho). Then it remains to solve a variant of problem (4.79) with vanishing initial values.
In Theorem 4.33 we finally prove that (4.79) is locally well-posed in X, with respect to E in the
sense of Definition 4.32 on page 125, and that the trajectories ¢t — (u(t), h(t)) remain in X,.
First, we deal with the non-homogeneous initial conditions in problem (4.79). For p > 3
and a given tuple (u, 7, h) € E(T"), the temporal trace theorem yields
ue C(T;,W22/P(Q\ £)"), ulog = 0, [u] =0,
uls € C(J; W 3/P(2)),
al/w’27 [[77]] € C(j7 W5*3/P(E))’
he C(T; WP (x)).
This observation motivates the following definition of initial states.
4.29. Definition (State space X, (7, M) C X,,). (i) Given p € (3,00), we let X, denote the
Banach space of all pairs (uo, ho), which satisfy the conditions
ug € W2 HP(Q\ 5 R™), uglag = 0, [ue] =0,
UO‘Z S W573/p(2; Rn),
duwoly € W23/P(S;R),
ho € W, */P(Z:R);
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and X, is equipped with the norm
1, )z, = Wty 227 gy + N0y -7y + 1905y -7y + Il

(ii) Givenp € (max{3,(n+2)/2},00) and 7 € (1+n/p,4—1/p|, we choose the number §;, =
0n(Q, X, p, 7) > 0 such that both assertions of Theorem 4.15 are valid. For given M ¢ (6;1, o],
the (nonlinear) state space X, (7, M) consists of all pairs (ug, ho) € X, with

[ (uo, ho)llx, < M,

which satisfy the compatibility conditions

(480&) diV ug = Fd(UQ, ho) = —Zj’lvm(uo)laﬁm(@%)j@j(@,jol)m,
(4.80b) G4(0,0;ug, ho) = 0,
the smallness condition
-1
(481) ||h0||W;_1/p(E) < 5’1 -M )
and the well-posedness condition
(4.82)
. . . . T 1
;Ielg do(Dx(ug)(z)) = lIzlf <O’ + (As — ps) tr Dy (uo) + 215 CERI}},I\%:IC [Dg(uo)]g“> > M.

For given 1 € (0, 00), we further let
Xp<T7 M; 77) = {(Uo,ho) € XP(T7 M) : HhOHWI;'*UP(E) < 77}

4.30. Remark. The compatibility conditions (4.80) arise since both spaces F; and G, have well-
defined initial traces. There is no compatibility condition for L,, and G,, since the initial value
[7]|¢=0 is not prescribed. Condition (4.81) and p > (n+2)/3 allow to define the diffeomorphism
Ony: Q — Q with O] : ¥ — I'p, by means of Theorem 4.15. With p > max{3, (n + 2)/2} we
obtain ug|x € C*(X), and condition (4.82) will be used to employ the linear solution operator
from Theorem 3.21. Equipped with the induced metric of X, the space X,,(7, M) is a metric
space. If My < M and 19 <, then X, (, Mo, no) C Xp,(7, M,n).

Next, we construct functions (u,, h) € E(1p) satisfying the initial condition (u, h)|t=0 =
(uo, ho) for given (ug, ho) € X, € {X, (7, M), X, (7, M, n)}, together with corresponding interior
data (fu, fa) € Fu x Fgqx. We also show that the trajectories ¢t — (u(t, ), h(t,-)) remain in X,.

4.31. Lemma. Lef p € (max{3, (n+ 2)/2},00) and 7 € (1+n/p,4 —1/p].
(i) For every Ty € (0, 00), there exists a bounded linear operator
(Uo, ho) = (U, 7 hy fu, fd)a
Xp(T, OO) — Eu,v,w,ayw(TO) X EW,[[W]] (To) X Eh(To) X Fu(Tg) X FdZ(TO)

whose values satisfy

(4.83a) (pOy — uA)yu+Vm=f, inJ xS,
(4.83b) divu=f; inJxQ,
(4.83¢) Oh —vs-uly =0 onJ x X,
(4.83d) U= = ug in €,
(4.83¢) hli=o = ho on X.

(ii) Moreover, if T < 4 — 1/p and My < M, then there exists T' € (0, Ty] such that
(4.84) (u, ) € C(10,T); X,(r, M) for all (uo, ho) € X,,(7, Mo),
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and for My < M and ny < n, there exists T € (0, Tp| such that
(4.85) (u, h) € C([0,T; Xp(, M, m))  forall (uo, ho) € Xp(7, Mo, np)-
Proof. (i) Let (ug, ho) € Xp(7,00) be given. With wg := vy, - ug|x, we define

h(t) == ha(t) + hp(t) = (Qe_tA — e_2tA) ho + (e_tB - e_QtB) B lwy,  w(t) := dh(t),
where the operators A = /1 — Ay and B = 1 — Ay are realized in L,(X). With hg € D(4 —
2/p,p) and Corollaries B.26 and B.58 on pages 155 and 163, we see that h4 belongs to Ej.
Similarly, with B~lwy € W, */?(S) = Dp(2 — 3/2p,p) and wy € Wy *(3) = Dy(3/2 —
3/2p,p), we obtain hg € Wy /P(J x £) and 8ihp € Wp'* V(I L(2)) N Ly(J; W P (%)),
and thus hp belongs to E;,. We conclude that h is well-defined in Ej, the function w = 0;h
belongs to E,,, both functions depend linearly and continuously on wy € W;’ 8/ (X) and hg €
Wy~ ?/P(3), and (4.83¢) is satisfied.

Next, with the operator Ay, = gaﬁvavﬂ : Hg(E; TY) = Ly(E; TY), we define

u(t, ) == e"t1=A2) (Poygls).

The complexification of 1 — Ay, belongs to the class RS (Lp(%; (TE)c)) with R-angle zero by
Corollary B.59, and to ”HOO(Wpl i (3; (TS)c)) by Theorem B.27. Hence the semigroup e!2* is
analytic in Wp1 i/ (3; (TY)c), and from Theorem B.25 we infer that v belongs to

W32 (J Ly (S;T8)) N Ly(J; W VP (S, T8)) < E,.

Let us construct the divergence data f; on J x (2\ X). From p > (n+2)/2, Sobolev’s embed-
ding (B.1), and Lemma B.81, we deduce that Wg —2/p (Q\ X) and Wg —2/p (3) are multiplication
algebras. The compatibility condition (4.80a) implies divug € W, ~2p (2\ X¥) and divug|y €
W2~2/7(5). By Corollary B.58 and Theorem B.25, the function fys(t) := e~{1=2%)(div ug|x;) be-
longs to H,) (J; Ly(%))NLy(J; Hg(Z)) — Gy. Let fy solve the heat problem (0, —A) fg = 0in J x
Qy, falon =0, falx = fas, and fqli—o = divug. Then we let fq|o, = falo, — (fa)or F 2] (w)y,
and this function fy belongs to H,(.J; L,(2)) N Ly(J; H}(Q\ ¥)). In view of [, fgdz = 0 and
the Poincaré-Wirtinger inequality, it also belongs to H}(.J; H 1)), and hence f; € Fyx.

Next, we obtain the bulk velocity field v € E, ; 4.9, from the solution (u, q) of the one-
phase Stokes problems (p1+0; — p+A)usr + Vgr = 0in Qy, divu = fgin Q, uy|po = 0, and
us|y = v + wrs, with [BP07, Theorem 4.1]. For the construction of 7, we first define go = [qo]
by eliminating [go] from the equation G,(0,0;uo, go, ho) = 0. Then t — g(t) := e~ t(1=4z) g,
belongs to G,,. The function 7 € E, 5] is defined with Theorem 2.3 as the unique solution
of the weak transmission problem (V7,Vp)q = —((p0: — pA)u, V)q for all ¢ € H;,(Q) and
[7] = g. Finally, the function f,, := (p0; — pA)u + V7 belongs to F,,. Therefore assertion (i) is
valid.

(ii) We employ the following estimates, which follow from Sobolev’s embedding, Lemma
3.18, the mixed derivative embeddings, and Theorem B.25. For ¢ € (0,1 — 1/p|, we have

< C(TO) HhAHH;(o,To;W;*H“(E))QLP(O,TO;W;”(E))
< C(To)HhoHW;fl/pﬁLé < C(TO)M07

HhA "H;/p+6(O,T0;W;_1/p(Z))

)
provided that1 - <s<4—1/pandd <4 —1/p—s;and

< C(To)||hsl|

”hB”Hé/”+‘5(o,To;W5‘l/”<z>> HL(0,To; W3~ 22 (£)NLy (0,T0; W, /712 (2))

= C(TO)\|B_1w0||W;_1/p+25(2) < C(To) Mo,
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rovided that2 — 20 < s <5—2/pand d < 5/2 —1/p — s/2. Thus, for s = 7, some §y > 0, and
p
all 0 € (0,d0], T € (0,Tp], and (ug, ho) € X,(7, My), we have

1A C) = Poll cxo.mmr =177y < TO2C (5, Th) () — holl yy1/m+s o pawr =117y < T2 (6, To) M

Next, recall that w = 0,h s + O;hp. For 6 € (0,1 — 1/p], we have
1Bt all y1so+s .y yrs=17m sy < CADARAN g1 0 10w+ () Ly 0,10+ ()
< C(To)[|Aholl - St sy S C(To) Mo,
provided that1 -9 <s<3—1/pand § <3 — 1/p—5;
HathBH 1/P+5(OT Wé 1/P(E)) < C(TO)HBhBHHl 0,7y Ws 2+25(E))0Lp(0 To: W b+1/P+25(Z))
< C(To)l[wollyys=1/m+2s 5y < C(To) Mo,

provided that2 — 2§ <s <3 —-2/pand 6 < 3/2 — 1/p — 5/2; and

100 gz 400 g2y = CAON Ny 0 152425 sy 0,705 /7425 ()
< O(To)[[vollys-1/p+28 5y < C(To) Mo,
provided that2—2§ < s < 3—2/pand < 3/2—1/p—s/2. Thus, for given s € (1+n/p,3—2/p)
there exists dp > 0 such that for all § € (0, dp], T € (0, Tp], and (ug, ho) € X, (7, M), we have
lu(-) = wollycorpcr sy < T°2C0, To)llv(-) — vo + (w(-) — WOV || gy /45 (g gy =2/ 3y
< T92C(6,Ty) M.
We conclude that there exists 7' = T'(My, M) > 0 such that
Y e B ) —1
fggﬂh( )|| 1/ < op — M7, tlél;l%fdo(u(t, ) > M,

for all (uo, ho) € X, (1, Mp). The assertion for X, (7, M, n) follows similarly. O

In order to formulate our main result, we first specify our notion of well-posedness.

4.32. Definition. Let X, = X, (7, M,n) and E have the same meaning as on pages 94 and 122.
Problem (4.79) = (T) is called locally well-posed in X, with respect to E, if

(i) for every zp. € X, there exist 7' > 0 and ¢ > 0 such for all zy = (ug, ho) € X, N B;gp(zo*),
problem (4.79) has a unique E-solution (u, 7, ) on (0,T),
(ii) the map zp — (u,m, h), X, N Big”(zo*) — E(T) is continuous,
(iii) the trajectory ¢ — (u(t), h(t)) belongs to C(]0,7]; X,), and the map zy — (u,h), X, N
B;g”(zo*) — C([0,T7]; Xp) is continuous.
Our main result for the transformed problem (4.79) = (T) is the following.
4.33. Theorem (Main result). Letp >n+2,7 € (3+n/p,4—1/p), and M < oco. Then there exists
n > 0 such that problem (4.79) is locally well-posed in X, (t, M, n) with respect to E.

Proof. For given zy = (ug, ho) € X,,(7,00) we seek a solution of the form
z=(u,m, h) =z, + ze € E(T) with z¢ = (e, e, he) € )E(T"), 2+ = (s, s, hi) € E(T)
on some small time interval J = (0, 7T") such that
Zo|t=0 = (Us, he)|t=0 = (0,0),  2«|t=0 = (s, hs)|t=0 = (w0, ho) = 20
We abbreviate the transformed problem (4.79) as
(4.86) L(ze;2:) = N(ze324), 2elt=0 =0, z|t=0 = 20,
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where L(ze; 2+) = L(Ue, Te, he; Us) and N (ze; 2) = N (Us, Te, N} Uy, Ty, hy) are given by

[(p0; — nA)ue + Ve | Fo(thy + e, T + 7o, B + ha) |
div ue Fi(us + te, hy + he) — div us
L(ze;2:) = Ly (te, hes 1) ;o N(zej2:) = G (Ue, has Us, D)
Ly (te, e, e Uy ) Gy (Ue, Nej U, Ty Iy
Othe — we i i 0 |

(i) Comstruction of z,. Let M € (5,:1, oo, let (ug, ho) = (s, Tx, ey fu, fa) denote the bounded
linear operator from Lemma 4.31, put E7(ug, ho) := (u«, T«, h«), and let Pr 1, denote the set of
admissible parameters u, from page 82. Then for given My < M and ny < 7, there are Tp > 0
and R > 1 such that the realizations

Er: X,(1,My) = {(us, ms, hy) € E(T) : us € Pry, (s, hye) € C([0,TT]; Xpp (7, M))},

Er: X,(1, Mo, m0) = {(us, ms, hy) € E(T) : us € Pr1y, (s, hi) € C([0,T; Xp(7, M, 1))}
are linear and bounded for every T € (0, Tp].

(ii) Strategy to determine z,. It remains to determine the solution z, € ¢E(T’) of the equation
L(ze; ET(20)) = N(ze; ET(20)). In Theorem 3.21, we have shown that L(-; z.): ¢E(T) — oF(T)
is uniformly invertible with respect to T' € (0, 7] and u, € Pr,, for given Ty € (0, 00) and
R € [1,00). Therefore we intend to apply Banach'’s fixed point theorem to the map

F: (20, 20) = [L(-5 Er(20))] 7' N (ze; Br(20)),
{(2e,20) € 0E(T) x Xp(7, M, )} — oE(T),

with suitable > 0 and 7' > 0, depending on M € (6, ', 00). To this end we will show that

@87) (i 20)ll i) + 10 F oo 20) ey = 0 a5 T =0, ol zvsmgy = 0,

uniformly with respect to z € X, (7, M) and z, € B,(T'), where
B, (T) = {2 = (e, T, ha) € 0E(T) : [|zalor(r) < 7}

(iii) Properties of F. Let Ty € (0,00), T € (0,Tp), and R € [1,00). The map u, — L(-;uy),
Euvw(To) = B(oE(T); oF(T)) is affine and therefore uniformly continuous on BE“ vw(T0) Theo-
rem 3.21 implies that u. — [L(;u.)] ™Y, Pr, — B(F(T);0E(T)) is uniformly bounded. Since
Er is linear and bounded, the map zo — [L(+; Br(20))] ™%, X,(1, M) — B(oF(T);0E(T)) is uni-
formly continuous. The function N(z,; E7(20)) and its derivative with respect to z, depend
polynomially on the functions zs, 2. = Er(20), 0,0, [0:04]7}, 81, and 6}:1, where h = hy + ha.
From estimate (4.74) we infer that there exists § > 0 such that

el co.rpmwr 17y < T°C(6,To)||hellym, )y for ha € oEA(T), T € (0,Tp].

Hence for given M € (3, ', 00) there exist Ty, r € (0, 00) such that the maps
Xp(r, M)} — oE(T),
Xp(1, M)} = B(E(T))

(ze;20) — F(ze; 20), {(ze,20) € X
S (O,T()].

B,(T)
(205 20) = 02, F(20520), {(ze,20) € B,(T) x
y T

are well-defined and uniformly continuous for ever
Corollaries 4.27 and 4.28 and Lemma 4.26 yield

1N (zo: Br(20)) [l o) + 1024 N (205 B (20)) | (r)—or(r) = 0 @8 T =0, [[hollyyr-1/p 5y = 0,

uniformly with respect to zy € X,,(1, M) and z, € B,(T). Therefore (4.87) is valid.
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(iv) Strict contraction. Let us prove that F'(-; zp) is a strict contraction within the closed set
B, (T) for some r, T' > 0. From estimate (4.87) we infer that for given ¢ € (0,1) and M €
(5}:1, 00) there exist positive numbers 7, Ty, and r such that

1024 F (203 20) | B(or(ry) < @ forall ze € B.(T), T € (0,To], 20 € Xp(7, M, n).

Estimate (4.87) and the differentiability of F'(-, z9) imply that there are positive numbers 7, Ty,
and r such that

1 (ze3 20)ll ey < @120l gy + 1F(0; 20) gy < 7

forall z, € B,(T), T € (0,Tp], and zy € X,(7, M,n). Therefore F(-; zo) maps B, (T) into itself as
a g-contraction.

(v) Banach’s fixed point theorem implies that F'(-; zp) has a unique fixed point z, within
B, (T) C ¢E(T) and z, depends continuously on zy € X,(7, M, n). Moreover, ze+ E7(20) is an E-
solution of problem (4.79) on (0,T") and (u, h) = (u«+ue, h«+he) belongs to C([0, T]; X, (7, 00)).
Let us show that its trajectory remains in X, (7, M, n). For given zo. € X,(7,M,n) there are
My < M and ng < 7 such that zy. belongs to X,,(7, My, 19). Therefore Lemma 4.31 yields some
numbers T € (0,7p] and r; < r such that, given zy € X, (7, M,n) N Bigp(zo*), T € (0,71], and
ze € B, (T), the solution z = 2z, + Er(z0) satisfies (u, h) € C([0,T]; X, (7, M, n)).

(vi) Inorder to prove uniqueness within the larger space E(7') = Er(29)+oE(T) for T' < T7,
we assume that there is a different E-solution 2! = z, + z{ on (0, T). Since F(-, z9) has at most
one fixed point within B,.(T'), the triple 2! € (E(T) does not belong to B, (7). But since the
norm of E(T) consists of integrals over (0,7), we have ||zJ||g) — 0 as 7" — 0, and hence
ze and 2z} coincide on some interval (0,7"). We may assume that this interval is maximal in
the sense that for every e > 0, the triples 2, and z} do not coincide on (7’,7" + ¢). Since
2= = z|i—1 belongs to X, (7, M,n), we can repeat the fixed point argument and obtain a
contradiction. Hence problem (4.79) has at most one E-solution. The proof of Theorem 4.33 is
complete. O






APPENDIX A

Differential geometry of hypersurfaces in R"

We provide results on hypersurfaces in the n-dimensional Euclidean space R™ that are used in
the main part of this thesis. Kimura [Kim08] and Priiss and Simonett [PS13] developed such a
theory of hypersurfaces that is applicable for moving boundary problems.

A.1. Classes of hypersurfaces in R"

We will define hypersurfaces in terms of parametrizations over hyperplanes, where the hyper-
surface is locally represented as a translated and rotated graph of a scalar height function. The
regularity of that surface is defined by the regularity of its height functions. We next introduce
tangent vectors, normal vectors, and differential operators and characterize the regularity of
a hypersurface by the regularity of its normal. According to Einstein’s summation convention,
we always sum over repeated greek indices a, 3,... € {1,...,n — 1}, whereas latin indices
iyj,... €{1,...,n — 1} denote free indices.

A.1. Definition. We say that ¥ C R" is a Lipschitz hypersurface or hypersurface of class C1~, if
every point p € X has a neighborhood U of p in ¥, such that there are a hyperplane

v ={zeR":z-1p=0} withyyeR", |v|=1,
a point pp € R”, a number r > 0, and a Lipschitz function
h:vg NB(0):={ucvyy:|u <r} =R,
such that U is parametrized by
©: Vg NB(0) Cyy — %, u— po+u+ h(u)w.

We call ¢ a parametrization of ¥ over the hyperplane vy with height function h.
(i) X is called C*-hypersurface (k > 1) or hypersurface of class C*, if the height function in
every parametrization satisfies h € C*(B,.(0)).
(ii) The notions of C*~-hypersurfaces, analytic or C*-hypersurfaces, and W, -hypersurfaces are
defined accordingly, where k£ > 1, s > 0, and p € [1, o0].
(iii) X is called closed resp. compact if it is closed resp. compact as a subset of R”".
A.2. Remark. Our definition of hypersurfaces exhibits the following topological properties.

(i) Clearly, every hypersurface is a C''~-submanifold of R" of dimension n — 1. Therefore
it may have a boundary and even an infinite number of connected components, but no self-
intersections. A closed hypersurface has no boundary and a compact hypersurface has a finite
number of connected components.

(ii) If X is a connected compact hypersurface, then Jordan’s theorem asserts that ¥ sepa-
rates R" in a bounded and an exterior domain, both having the same boundary ¥ [Brol1]. Any
connected closed hypersurface ¥ separates R" in precisely two domains [cf. Sam69].

A.3. Definition (Tangents, normal, differential operators). Let ¥ be a C'-hypersurface in R”
and ¢: B, (0) C 1/0L — X, u > po + u + h(u)vy be a local parametrization.

129
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(i) Let f: ¥ — X be a map with values in a Banach space X. For a given parametrization
¢ and a basis {e; }; of the hyperplane v, we define the partial derivatives of f by

07 f(p) = 0if (p) = Oui(f o p)(u)  for p = p(u).

(ii) The tangent space T,%. is the vector space {¢/(0)u : u € vy }, its elements are the tangent
vectors. In particular, 9;¢(u) =: 7;(p) with p = ¢(u) are tangent vectors and the set {7;(p)}; is
a basis for T,,%. The dual basis {7¢(p)}; of the cotangent vectors 7(p) = 7&(p) is defined by the
relation 7;(p) - 77 (p) = 52‘-7 . We will also use the notation T]-E (p) to indicate the dependence on the
hypersurface 3. In terms of the parametrization ¢, we can choose the tangent vectors

7j(p()) = 777 (p(u) = e; + ih(u)wo.

(iii) For a closed connected C!-hypersurface ¥ C R", there exists a continuous unit normal
field vs,: ¥ — R™, also called Gauss map [cf. Sam69]. Locally, the unit normal can be chosen as

vy — Vyh(u)
V1 + [Veh(u)?

where the (n — 1)-dimensional gradient V,h := €40, h is considered as an element of R".
(iv) The tangential projection Ps(p): R” — T,X onto T, X is given by

(A1) vs(p(u)) =

P =717 =T @7 =1 —vy Qus,

where I € R™*" denotes the identity matrix.
(v) For a scalar function f: ¥ — K, a possibly non-tangential vector field u: ¥ — R", and
a matrix field S: ¥ — K"*", we define the surface gradient

Vrf i =1%.f, Vru:=71"® 0,u,
and the surface divergence
divp u := (Opu|7®), divp S := (0,5)7°.
If ¥ is of class C?~, then we define the scalar Laplace-Beltrami operator
Arf = dive Vrf = ¢°7(8a0sf — A 30, 1),
where g¢;; = 7; - 7; are the compontents of the Riemannian metric tensor, the components g% are
defined via g'®g,; = (5;, and A;;; = 0;7; - 7 and Afj = g**\;j o are the Christoffel symbols.

A.4. Remark. We shall use further relations between height function h and normal vy, of a C!-
hypersurface ¥ in order to extend a given parametrization ¢: B,.(0) C vg — 3, u — po +
u + h(u)vy. With the projection Py := I — 1y ® 1 of R" onto the hyperplane 13-, we obtain

|Povs:(p(u))|? =1 — (vo|vs(¢(u)))? and therefore (A.1) implies
PP 1= als(p)?
N | e D )

This shows that, if we want to extend the domain B, (0), we have to ensure that VA remains
bounded, which is equivalent to vs(¢(u)) - v9 > n for some n € (0,1] and all u, where the
optimal 1 and the Lipschitz constant ||V /||« are related by

n=(1+[VhIZ)™2  [Vhle = (7% =112

For the height function h we obtain

for p = p(u), u € B.(0) C vy

(A.3) Vh(u) = _V](jO'VVZZ((];)) for p = p(u).
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For a fixed basis {¢; }; of Ud‘, the parametrization ¢ induces the tangent vectors
ej - vs(p)
vy - vs(p)

Further properties of ¢ in terms of the intrinsic distance are given in Proposition A.12.

sz(p) = Oy, p(u) = e + Ojh(u)vy = ej — vy forp=(u).

In the spirit of Priiss and Simonett [PS13], we can also characterize the regularity of a hy-
persurface by the regularity of its normal.
A.5. Proposition. Fora compact C'~-hypersurface ¥ C R™ with normal vs: € Loo(X;R™) and k € N,
the following characterizations are valid.
(i) % is a C*TL-hypersurface if and only if vs, € CF(3;R™).
(i) ¥ is a C*1=-hypersurface if and only if vs, € CF~(X; R™).
(iii) X is an analytic hypersurface if and only if vs, € C¥(X; R™).

Proof. We employ local coordinates u € U C R"~! and, for simplicity, we neglect the rotation
and translation; that is, we assume ) = I and py = 0. Then we can express the normal vy, as

(A4) v(u, h(u)) = B(u)(=Vh(u),1), Bu)= 1+ |Vh(u)>)"Y? forueU c R

(i) If© € C**1, then we have h € C**1. With identity (A.1), this implies that u — v/(u, h(u))
is C* in local coordinates, which means that vs; € C*(3;R"). Conversely, let vs; € CF(Z;R™).
Then 8 = v - e, is C* and therefore also Vh = —371P; _,,_1v belongs to C* by (A.3). Together
with h € C'~ this gives h € C*1.

(ii) This equivalence follows analogously.

(iii) It is sufficient to note that h € C'~ and Vh € C¥ imply h € C¥, since

VA" (ug)
CES]

[e.e]

1
h(u) — h(ug) = /0 Vh(uog + s(u—up)) - (u—up)ds = Z

k=0

(w —up)* - (u—wup). O

A.6. Remark. For a C*~-hypersurface X in R", we define the Weingarten tensor
L:=Ly:=—Vsvs = —T*Q0vs: ¥ — R,

For every p € ¥, the matrix L(p) is symmetric and vanishes on Ruy;(p) so that L(p)T,> C TpX.
The Weingarten tensor induces the second fundamental form I1,(v,w) = Ly(p)v-w = loz(p)v*w?
for v, w € T,3. The eigenvalues x;(p) of L(p) are the principal curvatures of ¥ at p and the
corresponding eigenvectors are the principal directions [Kim08, Theorem 2.10]. For every C?~-
pathv: [a,b] — X with |y/(¢t)| = 1 forall ¢ € [a, ], the curvature of y at y(¢) is 7" (¢) and we have
1Y’ (t)] < |L(y(t))|. The (n — 1)-fold mean curvature is given by

Hy :=k1+ -+ Kp_1 =trLy = —divy vs.
The Christoffel symbols satisfy the following relations [PS13, (12), (14)],
0ij = AjiTa + lijv, o, = —AgaTO‘ + l{u.
We recall a well-known fact from differential geometry.

A.7. Theorem (see e. g. [Ale62]). Let X be a compact connected C?-hypersurface in R™ (n > 2) with
constant mean curvature. Then X is a sphere.

A.2. The intrinsic distance of a hypersurface

In this thesis, a C''~-hypersurface ¥ is equipped with the Riemannian metric induced by the
scalar product of R"; that is, for p € ¥, a scalar product in 7),X is defined by (7|7), := 7 - 7 and
therefore 7,,% has the induced norm |7| = (}_7_, (e; - 7)?)!/%. The intrinsic distance distx(p, q)
for p, ¢ € ¥ is defined as the infimum of the lengths of all C'~-curves in ¥ joining p to ¢. In
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Proposition A.12, we prove that the intrinsic distance and the induced norm of R" are equiv-
alent for compact connected C!'~-hypersurfaces. If ¥ is of class C®~, then we can find a curve
v from p to ¢ with minimal length () = distx(p, ¢), which is a minimizing geodesic [see e. g.
Car92, Chapter 3].

A.8. Remark. Geodesics can be defined for every C3~-hypersurface ¥ C R" (n > 2). Let
v: [a,b] — ¥ be a Cl-curve and let v: [a,b] — T'S be a tangential vector field along ; that is,
v(t) belongs to the T’ ;)X and therefore has a representation v(t) = v®(t)7.(v(t)). The covariant
derivative of v along + is defined by

Do(t do(t
Y0 Ror() P = 90 (1) (10)) + 0 (00 () Py ()57 (1 (1)
We call a C%-curve v: [a,b] — ¥ a geodesic, if it satisfies the geodesic equation
Ddy _ i_ g
D dt (Pgov)y" =0 in(a,b).

In local coordinates z'(t) = e’ - ¢~ 1(v(t)), the geodesic equation becomes a system of ordinary
differential equations

R ) dz® dxP
G A @
gz T asem) g

Here the Christoffel symbols Afj = ¢**(di7j|7) are locally Lipschitz continuous. From the

(A.5)

theory of ordinary differential equations, we infer that (A.5) has a unique local C*~-solution
t — x(t) = x(t;x0,21) that satisfies prescribed initial conditions z(ty) = x¢ and 2/(tg) = 1.
Moreover, z(t; zo, 1) depends continuously on (z¢,z1). Consequently, for given p € ¥ and
v € T,X, there exists a unique geodesic ¢t — 7(t; p, v) such that v(0; p,v) = p and +/(0; p, v) = v.
The geodesics are homogeneous in the sense that for a geodesic v(-;p,v) on (—4,0) and
every a > 0, the map t — ~(at;p,v) is also a geodesic on (—d/a,d/c) and the identity
v(at;p,v) = y(t; p, av) applies to all t € (-4, ) [Car92, Lemma 3.2.6]. Moreover, the map

(t, (p,v)) = (y(t;p,v), 7 (t;p,v))

is a local flow on T3, called the geodesic flow. We say that X is (geodesically) complete, if every
geodesic v: [a,b] — ¥ can be extended to a geodesic 7: R — . In this case, the geodesic flow
is global with respecttot € R,p € ¥,and v € T),%.

A geodesic locally minimizes the distance between two points in the sense that for every
t € [a,b] thereise > 0 such that disty (y(t1),v(t2)) = ttf |7/(s)|ds forall ¢y, to € [a,b]N(t—e,t+€)
with ¢; < tp [Car92, Remark 3.3.8]. Conversely, if p, ¢ € X are given, then every piecewise
differentiable curve joining p to ¢ with minimal length is a geodesic [Car92, Corollary 3.3.9].

A.9. Remark. For a C3~-hypersurface 3, we define the exponential map
expp(v) =7(L;p,v) =v(v|;p,v/|v]) forpe X, ve B.(0) CTHE,
for some r > 0 [see Car92, Chapters 3, 13]. In view of

dexp d d
(“52200)) v = s expy(t0)l g = 5 (6o =70 p0) =0

we see that (d/dv) exp,(0) = Ps(p). Therefore, by the inverse function theorem, exp,, is a local
C*'-diffeomorphism at 0 € 7,,%. into .. The number

i(X,p) = sup{r > 0: exp,: B:(0) C T);> — exp,(B;(0)) C X is a diffeomorphism}

)
is called the injectivity radius of ¥ at p and i(X) := inf{i(X, p) : p € X} is the injectivity radius
of X. Clearly, if 3 is compact, then i(3) > 0. If ¢ € exp,(B;(x)(0)), then there exists a unique
geodesic joining p and ¢ that minimizes disty; (p, ¢) [Car92, Corollary 13.2.8].
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The Hopf-Rinow theorem [HR31] characterizes geodesic completeness of general C®~-class

Riemannian manifolds.
A.10. Theorem (Hopf-Rinow [cf. Car92, Theorem 7.2.8]). Let M be a Riemannian C3~-manifold.
Then the following assertions are equivalent.

(i) The exponential map exp,, is defined on all of T,,M for every p € M.

(ii) Every closed and bounded subset of M is compact.
(iii) The metric space (M, distps(-,-)) is complete.
(iv) M is geodesically complete.

(v) There exists a sequence of compact subsets K C M with K; C Kj1 and \J; K; = M such that

if ¢; ¢ K, then distar(p, g;) — oo for every p € M.
If, in addition, M is connected, then any of the statements above implies that
(vi) Forany p, q € M, there exists a geodesic ~y joining p and q with [(~y) = dist s (p, q).
A.11. Corollary ([Car92, Corollaries 7.2.9, 7.2.10]). Every compact Riemannian C3~-manifold is
complete and every closed C3~-submanifold of a complete Riemannian C3~-manifold is complete in the
induced metric. In particular, every closed C3~-hypersurface in R™ (n > 2) is complete.
The following relations between intrinsic distance and Euclidean distance will be used later

on for dealing with the intrinsic Slobodeckii semi-norm.
A.12. Proposition. Let > C R" be a C'~-hypersurface.

(i) Let p € X be fixed, let ¢: T, DU — X, u — p+ u + h(u)vs(p) be a parametrization over the

tangent space where U is convex, and let h € C1=(U) so that | Vh||o < 0o. Then

fu—v] < () — p(v)] < dists(p(u), (v) < 1+ [IVAIZ)u—v| forallu, veU.
(i) Let ¥ € C'~ be compact and connected. Then dists (-, -) is bounded and for some C > 1 we have
Ip—ql < dists(p,q) <Clp—q| forallp,qeX.
(iii) Let XX € C?~ and ||Ls||oo < oc. If p, q € ¥ satisfy dists:(p, q) < V2 ||Ls||2, then
v (p) = ve(g)] < dists(p, g)l|Lsllo,  v2(p) - vs(g) >0
(iv) Let ¥ € C%~ and | Ls||oo < 00. If p, q € ¥ satisfy dists(p, q) < 2 || Ls||2), then

< P —4q| ,
1-— EdIStE(p’ Q) HLE”OO

Ip — q| < dists(p, q)

Proof. (i) For almost all u € U, we have ¢'(u) = Ps(p) + vs(p) ® Vh(u) and |¢(u)|> =
1+ |Vh(u)|?. The map [0,1] — op(u + (v — u)t) is a curve from ¢(u) to p(v) in X and therefore

dists(io(u), 9(0)) < ¢/ loclu = 0| < (L 4+ | VAIZ) P u o,
dists(p(u), ¢(v)) = () = ()| = (Ju— o + |(h(w) = h())rs(P)*)/? = Ju —o].

(it) For every p € ¥, there exists r(p) > 0 such that ¥ N B, (p) can be parametrized over
T,3 via pp(u) = p + u + hy(u)vs(p), where h satisfies ||Vh,||co < 1. From (i) we obtain that

lg — ] < dists(q,q) < V2]g— g for q,d € N By (p)-

In particular, we have dists;(p, ) < v/2r(p) for every ¢ € ¥ N B,.(p)(p). By compactness, there
exist finitely many sets ¥ N B, (p) with the above properties and r; = r(p;) such that ¥ is the
union of these sets. Since ¥ is connected, the numbers disty;(p;, p;,) have a finite maximum R.
Therefore disty (-, -) is bounded by R + 2v/2 max ;.

Assume that the assertion is false. Then there exist p,,, g, € ¥ with dists(pn, gn) > n|pn—an|-
Since ¥ is compact we may assume that p, — p € ¥ and ¢, — ¢ € ¥ and since disty; is bounded,
the p, and ¢,, converge to the same limit p = ¢. But then almost all p,,, ¢,, are contained in some
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¥ N By, (po) and hence n|p, — ¢,| < dists(pn, @n) < V2|pn — qul, a contradiction. Therefore (ii)
is valid.
(iii) For a curve v joining ¢ to p in ¥, we have

i)
/O ! %VZ( (1)) dt| =

The inequality vs,(p) - vs(q) > 0is valid if and only if |vs(p) — vs(q)|? = 2 — 2vs(p) - vs(q) < 2
and this is true if distx(p, ¢) < v2||Ls |2}

1(7)
vs(p) — vs(q)| = (A Ls(v()'(8) dt| < 1(+) || Ls]l.,

(iv) Letbe a geodesic from g to p with minimal length I(y) = distx(p, ¢) and |7/| = 1. Since
Pa(y(1)7"(t) = 0 and vs(y()) - (1) = 0, we obtain v"(t) = vx(y(t)) (Lz(v(1)y'(£) - ' (1))-
Hence

1)
pq:/ v (t)dt = 1(~y / / s)dsdt,
0
1(7) 1(7)? )2
p-al i)~ | /wz Ddsdt > 1)~ "2 | L]l
This yields the assertion. 0

The next result provides parametrizations that are defined on balls with uniform radius.

A.13. Proposition. Let > C R"™ (n > 2) be a C*~-hypersurface such that Ly is bounded and put
R. = V2| Ls| 3t € (0,00], 6(R) := 1 — R?||Lg||%, /2 € (0,1], and r(R) := RS(R) for R € (0, R..).
Then for every x € ¥, there exists a parametrization

¢zt Brgr)(0) CTpY — Bi(z), u— x+u+ hy(u)vs(z)
with height function h, € C*~ (B, (g)(0)) such that h,(0) = |Vhy(u)| = 0.

Proof. Given = € %, there exists a parametrization ¢, : V; — X on some small neighborhood
V. of the origin such that ¢, (u) = = + u + hy(u)vs(z) for some h, € C?~(V,) with h;(0) =
|Vh;(0)| = 0. Our goal is to show that ¢, can be extended to map with the asserted properties.
Such an extension is uniquely determined by the representation (A.3) of VA, in terms of vy.
The identity (A.2) shows that

Vha(u)? = (@)l (ea(u)) 2 =1 forue V.
With Remark A.4 we obtain

1— 62 —
(vs(x)|vs(pe(u)) > 6, |Vhe(u)* < 52 forallu e V,, x € X.

Therefore we can extend h, and ¢, uniquely onto B, (g)(0). O

A.3. Neighborhoods of hypersurfaces

We show that every compact hypersurface of class C?~ satisfies a uniform ball condition and
has a tubular neighborhood with uniform thickness. Within such a neighborhood, we study
further hypersurfaces that are induced by height functions. For the corresponding diffeomor-
phism between the original and the new hypersurface, we derive an integral transformation
formula that does not use local coordinates (see (A.12)). We also provide a level function for a
possibly disconnected compact hypersurface.

A.14. Definition. A hypersurface ¥ C R" satisfies the ball condition of radius r > 0 at the point
p € %, if the open balls B, (p — rvs(p)) and B, (p + rvs(p)) do not intersect ¥. We say that
satisfies the uniform ball condition of radius r» > 0, if it satisfies the ball condition of the same
radius r at every p € X.



A.3. NEIGHBORHOODS OF HYPERSURFACES 135

A.15. Remark. Let S be a closed subset of R" of the form S = R™ \ (24 U Q_) with disjoint
open subsets 2 and Q2_ of R"”. As in [Kim08, Section 3.1], we define the signed distance

dist(z, S) forz € Q,
d(z) =<0 forz € S,
—dist(z,S) forz e Q_.

By [Kim08, Theorem 3.2], both maps dist(-, S) and d(-) are Lipschitz continuous.

A.16. Definition ([cf. PS13]). A hypersurface ¥ C R"™ has a tubular neighborhood of radius r > 0,
if the map

(A.6) X:(pt) = p+trs(p), XX (-r,r)— B(X):={zxeR":dist(z,X) < r}

is a homeomorphism; that is, X is continuous and bijective and therefore has a continuous in-
verse. We say that the tubular neighborhood is of class C* (k > 1), if X is a C*-diffeomorphism;
that is, X is of class C*¥ and 0X (p,t): T, x R — R is invertible for all (p, t). We decompose

X Yz) = (I(z),d(z)) withll(z)=peX, dz)=te (—rr), z=0z)+d(z)vs((x)).

A.17. Proposition. The following assertions are valid.
(i) A closed hypersurface ¥ C R™ has a tubular neighborhood of radius r if and only if it satisfies the
uniform ball condition of radius r. In this case, it also has a tubular neighborhood of radius

ry, := sup{r > 0 : X has a tubular neighborhood of radius r}.

(it) If % is a compact C*~-hypersurface in R™, then it has a tubular neighborhood of radius rs, > 0, the
homeomorphism X in (A.6) has a locally Lipschitz continuous inverse and the principal curvatures
of ¥ and the Weingarten map Ly, are bounded by 1/rs, almost everywhere.

(iii) If ¥ is a compact C*+-hypersurface (k > 1), then X is a C*-diffeomorphism with derivative

(A7) 8(p,t)X(p, t)(v,s) =v+svs(p) —tLs(p)v, (p,t)€eXx(—rr), (v,s)€TX xR.

Proof. (i) Ball condition = tubular neighborhood. Suppose that ¥ satisfies the uniform ball
condition of radius r. It remains to show that the continuous map X: (p,t) — p + tvs(p),
Y x (=r,r) = B (X) :={z € R" : dist(z, X) < r} is bijective.

Surjectivity. Given x € B,(X), we put § := dist(z,X) < r. Then Bs(z) N ¥ is empty and,
since ¥ is closed, there exists p € ¥ with |z — p| = ¢, so that p € 9B;(x). Since none of the balls
Bgs(z) (8" < ) intersects X, the vector p — x is normal to 7),¥ and hence = belongs to the image
of X.

Injectivity. Suppose that for some x € B,.(X) there are two different points p, ¢ € ¥ such that
X(p,s) = X(q,t) = x for some s, t € (—r,r). Then we must have |s| = [p — x| = |¢ — z| = [t].
Therefore the balls B, (p + ovs(p)) with o € (s,r)if s > 0and o € (—r, s) if s < 0 are tangent to
¥ atp and contain the point ¢ € X. But this means XN B, (p+(sign s)rvs(p)) # 0, a contradiction.
Hence ¢ = p. The map X is therefore bijective and continuous and therefore 3 has a tubular
neighborhood of radius r.

Tubular neighborhood = ball condition. Suppose that 3 has a tubular neighborhood of radius
r. We show that none of the balls B, (p + rv5(p)) (p € ¥) intersects X. Assuming the contrary,
there exist two different p, ¢ € ¥ such that ¢ € B, (x¢) with 2 := p+ rvs(p) (the case p — rvs(p)
can be handled analogously). Then for some § < r, the ball Bs(zo) touches ¥; that is, there
exists gy € X N 0Bs(xp) with 6 := |gy — xo| = dist(zg,X) < r and thus T;,;¥ coincides with
T4,0Bs(x0) and hence zg = gy +0vs(qo). Butsince X : ¥ x (—r,r) — B,(X) is bijective, we have
qo = II(xg) = p which implies p € Bs(p + rvs(p)), a contradiction to p ¢ B, (p + v=(p)). Hence
Y satisfies the uniform ball condition of radius r.

The number ry,. Suppose that B.(p + srvs(p)) N X = Qforallp € ¥, s € {—1,1}, and
r € (0,ry). For fixed s € {—1,1} and p € %, the ball B, (p + srsvs(p)) is the union of the
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balls B, (p + srvs(p)) (r € (0,rx)) and hence we obtain B, (p + srsvs(p)) N X = 0. Therefore X
satisfies the uniform ball condition of radius 7y, and has a tubular neighborhood of radius ry.

(ii) We show that every compact C?~-hypersurface ¥ satisfies a uniform ball condition.

(ii.a) For given ¢ > 0, we first prove that there is a number § > 0 such that every surface
piece XN Bs(po) (p € ) satisfies a ball condition at py. It is sufficient to consider the case py = 0
and vx(po) = en, = (0,...,0,1), since the assertion for general py € ¥ and vs(pg) follows by
using an appropriate rotation and translation. We choose a local coordinate system ¥.N Bs(0) =
{(u, h(u)) : u € Us} for some open subset Us C R"~! and a C'!-function h: Us; — R. The lower
half sphere of 0B, (re,) and the upper half sphere of 0B, (—re,,) are parametrized by (u, k,(u))
and (u, —k,(u)), respectively, where k, is defined by

ky(u) =7 —/r2—|ul2 forue B,(0) c R" !

The ball condition requires that the following inequality is satisfied.
(A.8) —kr(u) < h(u) < ky(u) foru € B.(0) N Us.

In order to guarantee this condition, we seek a sufficient upper bound for the radius r. Fix
v € R"! with |v| = 1 and consider the rescaled functions h( ) := h(rsv) and k(s) := k.(rsv) =

r(1— (1 —s?)'2) for s € (-1, ) Then h(0) = #'(0) = k(0) = k/(0) = 0 and R"(s) = v -
(V%(srv))v and k" (s) = (1 — s*)~3/2. For t € (0, 1) this yields

t—// (K"(s') — h"(s"))dsds

/ (t—s) (r(l — )32 2y (V2h(sm}))v) ds
Ot
> /0 (t—s)(r— r2|V2h(srv)|) ds.

The integrand is non-negative if we choose r < sup{|V2h( ) :u e Us}~' and § > 0 such that
the supremum is finite. In this case both k — h and k + h are non-negative and hence the local
ball condition (A.8) is satisfied. This means that ¥ N B; satisfies the ball condition at pg = 0.

(ii.b) Next we prove an estimate of sup{|V?h(u)| : u € Us} in terms of the global quantity
| Ls||cc- We may again assume that py = 0 and vs(py) = e,. Letting where p = (u, h(u)),
we want to express the local map Us > u ~ VZ?h(u) in terms of the global map ¥ 3 p
Ls(p) = —Vsvs(p). Let v(u) := vs(u,h(u)) and L(u) := Lx(u,h(u)). From (A.4) we obtain
v(u) = (v(u)|en)(en — Vh(u)) and therefore Pv(u) = —(v(u)|e,)Vh(u) with P := T — e, ® ey,.
The identities £(0) = 0 and Vh(0) = 0 yield Vsvs(po) = Vr(0) = V2h(0). Moreover,

—L(u) = Vss(p) = %(p) @ du,vs(u, h(w)) = Vv (u) + ((p) — €;) ® 9jv(w),
where 7'% (p) tends to e/ as p — po. A straightforward computation gives
Pv(u) PVv(u)P  Pr(u) @ ((Vr(u))ey)
: 2h(u) =V | — = — :
ao) = (gt ) = - P
Since X is compact, the quantities vx and 7-% are uniformly continuous and thus v(u) — v(0)

and 73.(p) — ¢; as p tends to pp, uniformly with respect to py € ¥. Hence for some 6(e) > 0 and
all pg, we have

VRl oy < IVsvslln. ) + e

(ii.c) The previous steps imply that for all r < ||[Vxvs|st = ||Ls|/ot, there is a number
d = 6(r) > 0 such that every part ¥ N Bs(po) (po € X) satisfies the uruform ball condition of
radius 7 at the point py. Since ¥ is compact, there exists r € (0, || Lx:|| 1) such that 3. satisfies the
uniform ball condition of radius r.
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Next, we prove the local Lipschitz continuity of X! = (II,d): 2 = p + svg(p) — (p,s).
The signed distance d is Lipschitz with constant 1 and by Proposition A.12, the map X -1
is continuous. For every zp € B,(X) there exists ¢ > 0 such that B.(z¢) C B,(X) and
disty,(II(22),1I(z1)) < 2||Ly|ls for 1, z2 € Be(x). For x; = p; + d(xj)vs(pj) € Be(xo)
(7 € {1,2}), we obtain

|zo — 21| > |p2 — p1| — |d(22)||vs(p2) — vs(p1)| — |d(z2) — d(21)||vs(p2)]

> |p2 — p1| — |d(z2) Tdis'ﬁz(p%pl) — |@g — 21|

[ p2 — p1
V22— ||Ls|le dists(p2, p1)

Therefore Proposition A.12 implies that X ~! is locally Lipschitz.

It remains to prove the estimate for the principal curvatures. Fix an arbitrary point p € X
and a principal curvature direction v € T),X so that Lyv = kv and |k| < || Ly|/w. By means
of a parametrization over 7,¥ and by reduction to the case p = 0 and vx(p) = e,, the ball
condition yields the inequality |h(tv)| < k,(t) := r — V/r? — ¢? for some § € (0,r] and all |¢| < 4.
Using k,.(0) = k.(0) = 0 and £/(0) = 1/r, we obtain |d?h(tv)/dt?|;—o| < 1/r and therefore
k| = |Kkv - v] = |[V2h(0)(v,v)| < 1/r. Taking sequences (pn)n, (Vn)n, and (kn ), with v, € T, %,
Lyvy, = kpvp, and |ky| — ||Lx||c, we obtain the desired inequality || Lx||o < 1/7.

(iii) Let ¥ be of class C*! (k > 1). For 7 € T, and s € R, we obtain X'(p,t)(,s) =
74+ t(Vsvs)(p)T + svs(p). If X' (p,t)(r,s) = 0, then (Ps(p) + t(Vsrs)(p))T = 0 and svg(p) = 0.
Using |Ps(p) + t(Vxers)(p)| > 1 — |t||Vsrs| > 0 and |vs(p)| = 1, this implies (7,s) = 0 and
therefore X'(p,t): 7,3 x R — R™ is bijective. By the inverse function theorem, the map X is a
C*-diffeomorphism. O

A.18. Lemma (A level function [cf. PS13]). Let ¥ C R" be a closed (possibly unbounded and possibly
disconnected) hypersurface with tubular neighborhood of radius r > 0. Then X is a level set ¥ =
0~ 1({0}) with a function p € C*(R™), which has the following properties:

(i) Vs is a continuous unit normal field on ¥,

(ii) p(x) € {—1,1} for z € R* \ B,(X%).

Proof. We extend the construction of [PS13, Section 4.2], which is valid for compact connected
hypersurfaces. Let ¥; and €2, denote the at most countably many connected components of
and R™ \ X, respectively. For every j, the component ¥; is a closed connected hypersurface and
hence there are precisely two domains 2, such that ¥; C 9, [cf. Sam69].

In the terminology of graph theory, the vertices V := {Q,} and the edges £ = {¥,} form a
connected graph (V, £) with two vertices Q, (; being adjacent if and only if Q2 N Q; # (. Since
there exists precisely one edge ¥; C 0%, N 0€); that joins €, to €2, the graph is undirected and
simple. Suppose that (Q, , Qk,, . .., Q,,) is a cycle with distinct vertices Q, (I € {1,2,...,m})
and corresponding edges (¥j,,Yj,,...,%;,,). This means %5, C 0Q, N O, for I < m and
Y, C 0, N0, . Then there exists a closed curve y: [1/2, m+1/2] — R" such thaty(I) € ¥,
forall i, y(I —t) € Q, foralll, t € (0,1) and y(m +t) € Q, forallt € (0,1/2). The component
¥;, separates R" in two components U; and Us; such that ©,, C U;. But then () belongs to
U forall t € (1, m + 1/2], which is a contradiction. Hence the graph contains no cycles and is
therefore bipartite. Consequently, there exists a function x: R" — {—1,0, 1} such that

(i) x(z) =0ifand onlyif z € 3,
(ii) x is constant in every connected component €2, of R" \ %,
(iii) if 5 N €Y # 0, then (x (%), X (1)) = (—1,1) or (x(), x()) = (1, -1).

On the connected components ¥; of ¥, we can therefore choose the orientation in such a
way that the normal v|y; points into Q4 = {z € R" : x(x) = 1}. We also put Q_ := {z €
R™ : x(x) = —1}. Then Q4 U Q_ = R" \ ¥ and the signed distance satisfies d(x) > 0 for

> |p2 — p1| — |d(z2)] — |xg — 1.
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x € Qi NB.(X)and d(x) < 0 forx € Q_ N B,(X). We fix some 1) € D(R) such that ¢)(t) = 1 for
[t| <1/3,4(t) = 0 for |t| > 2/3. Then a possible choice for ¢ is

_Jd@)pd(@)/r) + (1 = ¢(d(x)/r)) sign(d(z)) forz € B, (%),
(A0 el = { xa, ()~ xo_(2) for a ¢ B,(%),
In particular, we obtain Vo(r) = Vd(z) = vs(Il(z)) for z € B, /3(X). O

A.19. Corollary. Every domain Q C R" (n > 2) that contains a compact C*-hypersurface 3> can be
decomposed into

=0, UXUQ_ withQy ={xe€Q:px(z) =0},
where @y, denotes a level function as in Lemma A.18.
The next results deals with important geometric quantities of C?~-hypersurfaces.
A.20. Proposition. Let X C R™ be a compact C*~-hypersurface with tubular neighborhood B, (%) and
X: (p,s) = x = p + svx(p) be the corresponding diffeomorphism with inverse X~ = (1L, d). Then

the following assertions are valid.
(i) The map

M: zw— [I —d(z)Ly(I1(z))]™}, B.(%) » R™"
is essentially bounded and, for almost all x € B(X) and p = Il(x) € X, the linear map M (x)
satisfies M (x)vs(p) = vs(p) and maps T, onto itself.
(ii) The map d is of class C*~ and satisfies Vd(x) = M (x)vs(p) = vs(p).
(iii) The map Il is of class C*~ and satisfies

I (z) = Po(Il(2))M(x) = M(z) — vs(p) @ vs(p) = '(2) .

Proof. Let + € B.(X) and p = II(z). In view of |d(z)Ls(p)| < r-r~! = 1, the matrix I —
d(z)Lyx(p) has maximal rank. It is also symmetric and in view of Lyvs, = 0, it satisfies [/ —
d(z)Ls(p)vs(p) = vs(p) for all p € 3. Therefore its inverse M (z) = [I — d(x)Lx(p)] ! satisfies
M (z)vs(p) = vs(p) and maps T,¥ onto itself.

Let o: U C R*! — ¥, u + p = ¢(u) be a chart for ¥. For each \ € (—r,7), the identities
H(X (6(u), X)) = 6(u) and = = X (¢(u), \) imply

7i(p) = Ou,d(u) = T (x)(1s(p) + Ajvz(p)) = ' (x)(I — ALs(p))7(p),
(@)(I = ALz (p))vs(p) = ' (z)vs(p) = lim E(H(fﬂ + svs(p)) —I(z)) = 0.

Hence IT'[I — dLy, o II] = Py, and this yields II' = Po[l —dLy o] ™' = PeM = M — vy @ vy =
M Py, = II'". Using the relations d(x) = (z — p) - vs(p) and (9;vs(p)|vs(p)) = 0, we obtain

Vd(x) = vs(p) — ve()IT' () + I () Vsvs(p)d(z)vs(p) = vs(p). O

As in [PS13], we consider hypersurfaces that are defined in tubular neighborhoods of a
given hypersurface.

A.21. Proposition. Let ¥ C R™ be a closed hypersurface of class C**+1 [resp. C*+1=] (k > 1) with
tubular neighborhood of radius v > 0 and let h € C*(X) [resp. h € C*=(X)] satisfy ||h|lco < 7. Then
the following assertions are valid.

(i) The image X, = 0,(X) of On: p — p + h(p)vs(p) is a closed hypersurface of class C* [resp.
C*~ ] and the map 0),: ¥ — %, is a C*-diffeomorphism [resp. C*~-diffeomorphism if k > 2 and a
homeomorphism with locally Lipschitz continuous inverse if k = 1].

(ii) The normal vy, of ¥y, is [in the case k = 1 almost everywhere] given by

A1) 1w, (0 + h(ps(p)) = 2P = MaP)VEh(p)

= LoV T ME) = (e Le(e)




A.4. COVARIANT DIFFERENTIATION 139

(iii) Suppose in addition that ||Vxh||s < co. Then the normal of ¥y, satisfies the inequality
ve, (p+ h(p)ve(p) - ve(p) = (L+ | MpVsh|3) ™2 >0 forpe S,

(iv) The following integral transformation formula is valid for f € L1(3y).

(A.12) fdX, = / fobpdet(Ps — hLy)\/1+ |[M,Vsh|? dX.
h b
Proof. (i) Let p: R"! D U € u + p € ¥ be a parametrization for X and let 6,: ¥ — 3,
p = p+ h(p)vs(p). Then the derivative 0}, : T,X — Ty, (, X is given by
(A.13) H;L =P +uvs ®Vsh+ hVsvs = Ps +vss ® Veh — hLy.

If 0}, (p)u = 0 for some u € T,%, then u — h(p)Lx(p)u = 0. The assumption ||h||o < r implies
|h(p)(Ls)(p)] < 1 and this yields u = 0. Therefore 6} is bijective for all p € ¥ and thereby
0p: X — Xy is a local diffeomorphism. The map 6}, is also surjective and coincides with a
restriction of the map X : B, (X) — ¥ x (—r,r) from Proposition A.17 to {(p,t) € Ex(—r,7) : t =
h(p)}. Since X is bijective, the map 6, is a global diffeomorphism and 6,0 ¢ is a parametrization
for ¥, which shows that ¥, is of class C* [C*~].

(ii) A derivation of (A.11) can be found in [PS13, Section 3.2]. The inverse M(p) of I —
h(p)Lx(p) is well-defined because of || h||s < 7.

(iii) This estimate is a direct consequence of (A.11).

(iv) By means of the parametrization p = ¢(u) we obtain dX(p) = /g(u) du where g =
detG, G = ¢'T¢/, as well as d%, (0, (p)) = \/gn(u) du, g5, = det G},. Since 0, o ¢ is a parametriza-
tion for X, we have Gy, = [0, 00 ¢']"0,0p ¢ = ¢'T[0)0p]" [0} 00]¢’. Hence identity (A.13)
yields

[04,00] " [0},00] = (Ps — hLyx)® + Vsh ® Vsh = M, 2(Ps + MZVsh ® Vsh).

For computing det G}, we recall two facts from linear algebra. First, for any two isomor-
phisms A: X — Y and B: Y — X between n-dimensional vector spaces X and Y we have
detx(BA) = dety(AB), since the determinant detx in X is given by the identity detx (C) =
V(Cxy,...,Cxy,)/V(z1,...,z,) forany C € L(X), any volume form V' in X and any basis (z;)
of X. Second, we have det(I + a ®b) =1+ a-bfor a, b € R". These facts yield

gn = detgn—1(¢""¢') detrn—1 (&' [B,00] " [Bh00]¢")
= g detgpn-1 (gp’fth_Qcpl) detgn-1(¢" ' Pey’ + ¢TI M2Vsh @ ¢' T Vsh)
=g detsz(PE — hLE)Q(l + |MhV2h’2).

Therefore the asserted equation (A.12) follows. O

A.4. Covariant differentiation

Let I be a C*-hypersurface of R", equipped with the induced Euclidean metric (v|w)y(,) = v-w
forv, w e T,I' C R"and p € I'. Welet 7y, ..., 7,—1 be a basis of tangent vectors on 7,,I' with
dual basis 71, ..., 7" ! so that T - k= 6;“, we let v denote the unit normal on I', and we let
P = I —v®v denote the projection onto the tangent space. Moreover, we let C*(T'; TT") (k € Ny)
denote the Banach space of all tangential vector fields v = v¥7, of class C* on T

A.4.1. Firstorder covariant derivatives. We define the (partial) covariant derivative V ;v with
respect to the coordinate x; by

v = Vv 1= PO;(v71,) = (0jv* + AJO-‘EUB)Ta =: 0% ;7,.



140 A. DIFFERENTIAL GEOMETRY OF HYPERSURFACES IN R¥

Here Afj is the Christoffel symbol of the second kind. Moreover, we let

Vo := Vo := V5T @ TP = (Opv* + AG 0 )Ta ® ™ forve CHI;TT),
so that
Vv = [Vo]u = (950 u” + Agvv'Vu’B)Ta foru e C(I';TT).

This definition of %uv coincides with the Levi-Civita connection on I' and ensures that %uv is
again a tangential vector field.
For a possibly non-tangential vector field u = v + wv = v*7, +wv € C*(I'; R") we define

(A.14) Uy 1= Vi = POk (v47q +wv) = 6;6(1)0‘7'@) — Wl T4,

where [;;; denote the components of the Weingarten tensor L = [,37% ® 8 = —Vrv. Then
O = Vyu + [V ®v]|Oku = (va;k — wgaﬂlw) Ta + (V¥1ga + Opw) v.

By abbreviating v, := g,v7, we rewrite the surface gradient Vru = 7% ® d,u as

Vru =7 77 (Vg0 — Wlag) + 7% @ V(7 lap + daw)

(A.15) ~ T

=[Vv] —wL+ (Lv+ Vrw) ® v.
With the mean curvature H := tr L = — divy v, the surface divergence divr u satisfies
(A.16) divpu := 7% 0qu = v, — wH = divpv — wH.

The symmetric part Dr(u) of P[Vru|P is given by
(A17) Dr(u) :=sym(P[Vru]P) = 2779 ®@ 7% (0o + vg.0) — wL = 27 (Vo + [Vo] 1) — wL.

We note that tr Dr(u) = divr u.
Second order tensors have the form S*°r, ® 78, SapT" ® B8, 8« BTa ® 78, or 8,P1% ® 73, and
their first order covariant derivatives are given by

S = SV 4+ NS 4 N S ST = 9pST + AL,SY, — A%S
Sijik = OkSij — AiSaj — AGy.Sia, S = S — A% ST + AL, S0
Then the surface divergence of a second order symmetric tensor S*°7, ® 75 is given by
(A.18) divy S = divr(S*7, @ 75) = [0,(5%F 14 @ 75)]77 = S 75 + SPlapsur.
For symmetric S = S Br, @ 78 and u = v*7, + wr we have
(A.19) divp(Su) =divp S -u+ S : Vru.
By using the identity 0y 7; - 7; = A{}.ga; , we can easily deduce the useful identities
(A.20) gij =0, g7, =0.
Thus, the metric tensor P = ¢¥1; ® 7; = g;;7' @ 77 satisfies
(A.21) divp P = Hv.
The components /;; = —7; - ;v of the Weingarten tensor satisfy the relations

(A.22) lijike = likyj = Ljksi-



A.4. COVARIANT DIFFERENTIATION 141

More generally, let T be a tensor with the components T;;;:, where we agree on not raising

or lowering indices when the order between the contravariant and the covariant indices is not
indicated. Then the covariant derivative of 7" with respect to z}, is given by

a b
i1t i1tq ip 11 lp—1Qhp41-ia _ a i1-da
(A.23) le'"jb;m - amle'"jb + Z Ao‘mle-"jb Z A]imjjjl“'jpflaijrl“'jb'
p=1 p=1
For two tensors S and T the following product rule is valid.
ivia pkieke ) qiteia kieke | qiteeia qokneke
(A.24) (Sjl"'jb Th“'ld )m - Sjl"'jb;m Tll"'ld + Sjl"'jb Tl1'“ld%m‘

A.4.2. Relation to bulk differential operators. Let Q C R" be open and let ' C Q) be a C3-
hypersurface which admits a C'!-class tubular neighborhood map (z, s) — X (z,s) = = + sv(x)
from an open subset U C I' x Rwith U D T' x {0} onto V C Q. Let (II,d) = X! so that
II(x + sv(z)) = x and d(x + sv(z)) = s. For a vector field u: V' — R™ we let

u=v+wroll, v:=[Polllu, w:= (voll|u).

Then we easily find the following identities on I'.

(A.25a) Vu=Vru+rv® o,u,
(A.25b) Vru =Vrv —wL + Vrw ® v,
(A.25¢) divu = divp u — (v|0,u).

A.4.3. Second order covariant derivatives. For a tangential vector field v = v*1,, we con-
sider the second order covariant derivatives

ﬁﬁk(v%a) = ﬁj(vo‘;;ﬂa) = 0% ki Ta-
The operators V j and V. do not necessarily commute but satisfy the relations
(A.26) vi;jk — vi;k]— = Riajkva, Visjk — Viskj = —VaBR%ijk,
where R, ik = Tt R(7j, 1) are the components of the Riemann curvature tensor R, given by
Riljk = 8in1 - 8kA§'z + A;a R~ ka JO?, gimRiljk = lejk-
This tensor has the symmetries
Rijii + Ririj + Rajr = 0, Rijit = —Rijik = —Rjiki = Rpij-
For a hypersurface I' in R"” we have
(A.27) Rijr = Lkl — Lalj.
A.4.4. The tangential Laplace-Beltrami operator. We define
Av:= Apv := g“ﬁ%%v = g 517 forv e C*(I;TT).
This definition is consistent with Av = —V*Vv, where V* is the formal L, (I')-adjoint of v,
which means that V*W (W € CY(TI'; TT ® T*T")) is defined by the relation
(VW) pyrrry = (WIVO) pyrarerry  forallv € CHI;TT).

To check this, we write W = W5 7, ® 7 and Vv = v*.53 7, © 77 and obtain
(WIV0) Ly rrrarr) = /r Wt Vavdl

= / go"BVVAYBT7 . Ué;oﬂ'g dl' = / gaﬁwvﬁngé;a dr'.
I T
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From divr v = v*,,, identities (A.20), and the surface divergence theorem, we infer that
(WIV) Ly rirrerT) = _/Fgaﬁwvﬁ;angé dl' = _(gaﬁwvﬁ;ava)Lg(F;TP%

and thus V*W = —g*Pw? g, 7. This yields Av = —V*Vo,
Finally, for u € CY(I'; IT) and v € C?(I'; IT'), we calculate
(&)Iu)Lg(r;Tr) = /gaﬁvﬁaﬁa - rsud dT
(A.28) g o
=— / W;au‘s;ggaﬁgm; dl’ = — / Vv : Vudl,
r r

where S : T = tr(STT) = (S74|T7®). Therefore A is symmetric and negative semi-definite.
For a non-tangential vector field © = v + wv, equation (A.14) yields

(A.29) A(v+wv) = Av — LVrw — wVpH.



APPENDIX B

Functional analytic methods

B.1. Function spaces

B.1.1. Classical function spaces. Let {2 be an open subset of R" (n € N), let X be a Banach
space over K € {R,C}, and let £ € Ny. The vector space C*(; X) consists of the k times con-
tinuously Fréchet-differentiable functions from Q to X. We abbreviate C*(Q) := C*({; K) and
CF(Q)" := Ck(£; K"), analogously for all subsequent spaces. The subspace C*(€); X) consists
of those u € C*(£); X) that have a continuous extension onto the closure € of 2, together will
all derivatives up to order k. The Banach space BC*(Q; X) consists of all bounded functions
u € C*(Q; X) with bounded derivatives up to order k, equipped with the norm

lull powo:xy = sup{l|0Fu(@)x : 8 € Ny, |8] < k, z € Q}.

The space BUC*(); X) consists of all bounded, uniformly continuous functions u € C*(Q; X)
with bounded, uniformly continuous derivatives up to order k. For an interval J C R, we
let Co(J; X) = {u € C(J;X) : |lu(t)|x — 0ast — oo}. For given Banach spaces X and Y
and an open subset U C X, the spaces C*(U;Y), BC*(U;Y), and BUC¥(U;Y) are defined
analogously. For k € N, a € (0,1], and f: R" — X, we define the seminorm

o 1P @) = PP W)llx
[flene = sup o — g -

The space C**(R™; X) := {f € C*(R™; X) : [f]cra < 0o} is called Holder space if « < 1 and
Lipschitz space if @ = 1. We also write C*+® := C* if o € (0,1) and C*~ = {f € Ck 1 :
£ =1 is locally Lipschitz}. Rademacher’s theorem implies that a function u € C(R") belongs
to C%1(R") if and only if it is almost everywhere differentiable and its derivative is bounded.

The support supp u of a function u € C(€2; X) is the closure of the set {z € Q : ¢(z) # 0}
in R". The space C¥(; X) consists of all u € C*(Q; X) such that suppu is compact and a
subset of . We let D(; X) = C(; X) denote the Fréchet space of test functions. The
space of distributions D'(2; X') consists of all continuous linear maps D(2) — X. A function
u € C®(R™; X) is called rapidly decreasing, if = +— |x||a‘8§ u(z) is bounded on R" for every
pair of multi-indices «, 8 € Nij. Here we let |o| = |ay| + - -+ + || and a8 = 8151 .- 98" The
Schwartz space of rapidly decreasing functions is denoted by S(R"; X') and the space of tempered
distributions S'(R™; X) consists of all continuous linear maps S(R") — X.

Given a measure space (€2, A, 1), we let Lo(£2; X) := Lo(12, A, i1; X) denote the vector space
of all equivalence classes of strongly p-measurable functions 2 — X. Given p € [1,00] and
m € Ny, we employ the usual Bochner-Lebesgue space L,(2; X)) = L,(Q, A, p1; X) and the Sobolev
space W' (2; X ). The Bessel potential space of order s € R is defined by

H3R" X) = {u € SR X) - |l gsqun ey = 171 = (U P EFE iy < 0}

The operator J7: f — F~H& w (1 + [£2)7/2(Ff)(€)) is called Bessel potential of order o and
its realization J7: H;“' (R™; X) — H, (R™; X) is an isomorphism; that is, a bijective, bounded
linear map with bounded inverse.
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For s = m € Ny and p € (1,00), the spaces H}'(R"; X) and W"(R"; X) coincide with
equivalent norms if and only if X is of class H7 [McC84; Zim89]. For p € [1,00), we have
(Hy(R™))" = H_*(R"™) [BL76]. The Sobolev-Slobodeckil space W (£2; X) of order s € (0,00) \ No
with s = [s] 4 {s}, [s] € Ng, {s} € (0,1), and p € [1, 00) is defined by

|ar|=[s]

Wy (€ X) == {u € D'( X) : lullwyax) = lullyigu + D [0y 0. < OO}

as in [Ama97, p. 10] and [Tri10, Theorem 2.5.7], where the seminorm [[~]]W1?(Q; X) is defined by

|u(z X 1
[[u]]We(QX \x — ‘n+6p dx dy for 0 € (0,1).

We also refer to [Tri95, Theorem 4.2.4] and [Lud14] for some properties of this norm and
[KPW13, Section 3.2] for an equivalent norm. Following [Joh95; RS96; Tri10; SSS12], we intro-
duce Besov spaces and Triebel-Lizorkin spaces over R" in terms of the Fourier transform F on
S'(R™) and a partition of unity. Let {;}32, C S(R") satisfy the following properties.
(i) There exist A, B, C € (0, 00) such that supp pg C B4, supp ¢; C Begj+1 \ Bgyi—1 for j € N.
(ii) For every a € N¥ there is ¢, € (0, 00) such that 27/ D%p;(z)| < ¢, forallz € R", j € Ny,.
(i) >°72 wj(@ ) =1forall z € R™.
The Besov space B, (R"; X') and the Triebel-Lizorkin space F,,(R"; X) of order s € R, integral-
exponent p € [1, oo] and sum-exponent ¢ € [1, oo] are defined by

By, (B X) = {u € SR X) : |lull g, = [[{29F[g;Ful}y ), () < o).
Fpy(R™ X) := {u € S'(R™ X) ¢ ||ull gy, = [{2YF i Fullyll ) < 00}
We recall that the identity
W, (R"™ X) = By, (R"; X)  fors € (0,00) \N, p € (1,00),
is valid for every Banach space X [see Ama97, (5.8), (5.9)], whereas
H'(R™; X) = W"(R"; X)  form € Ny, p € (1,00),
is valid if and only if X is a Banach space of class H7 [McC84; SSS12]. Moreover,
Hy(R™; X) = F(R"; X)  fors € R, p e (1,00),

is valid if and only if X can be renormed as a Hilbert space [SSS12, Section 2.2].

We collect some properties of interpolation spaces from the monographs [BL76; Lun09;
Tri95]. Let Xy and X; be Banach spaces with dense embeding X —4 X, and let also X, Y,
Yy, and Y7 be Banach spaces. The space Y is called interpolation space for the couple (X, X1),
if X1 — Y — Xy and if every operator T € B(Xy) with T'|x, € B(X) satisfies T|y € B(Y).
For ¢ € [1,00) and 6§ € (0,1), we let Xy, = (X0, X1)g,q denote the real interpolation space and
Xy = [Xo, X1]p denote the complex interpolation space. The following inequalities are valid.

Il xo,x1)60 < CEDINo T on X1, -l xage < -llo~°ll-l17 on X,
If X; =Y <4 X, then
(X0, X1)o.g =% (X0,Y)o.q, [ X0, X1]o = [Xo, Yo
If 0 € (0,1),q € (1,00) and 7j: X; — Y are isomorphisms with 7 = 79| x,, then

(r0X0,m1X1)0,g = 70(X0, X1)o,,  [10X0,m1X1]o = 10[ X0, X1]o-
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For p € [1,00) and a o-finite measure space (€2, A, i), we have
(Lp(€2%; Xo), Lp(Q§X1))9,q = Lp(Q; (Xo, X1)o,q);
[Lp (€2 Xo), Lp($2 X1)]y = Lp(€%; [Xo, X1]p).
For two sectorial operators A and B in X with commuting resolvents, we have
(X, D(A)N D(B))y, =Dal0,q) N Dp(f.q) forb € (0,1), q € [1,00].
Let us abbreviate § := §(R"; X) for § € {L,, Wy, Wlf} In terms of real interpolation,
[Ama97, (5.8), (5.9)] yields the representation

W, =B, = (Lp,W];”) forp € [1,00), s € (0,00) \ N, m € N, s < m.

s/m,p
From [Ama97, (5.2)-(5.6), (5.8), (5.15)] we derive the embedding

Wy <—>W; ifs,t €[0,00), s—n/p>t—n/q, 1>1/p>1/q>0.
Moreover, from [Ama97, (5.2)-(5.6), (5.8), (5.16)] we obtain
(B.1) W]f<—>BUCt ifs—n/p>t, pell, o0).
By [Ama97, (5.2), (5.15)], we further have
(B.2) Bt s Wit s Bi? fore > 0,6 € (0,m), m € Ny, p € [1,00).
By [SSS12, Proposition 2.13, Theorem 2.20] and [Ama97, (5.2)] we have
(B.3) B;;E%H;%B;;E fore >0,s€R, pell,o0).

B.1.2. Regularity of domains, embeddings, and extensions.
B.1. Definition (Cone condition). Givenz € R™,r > 0,6 > 0, v € R™\ {0}, the set
z+Crr=x+{yecR":y=0o0r|yl € (0,7], Z(y,v) <0/2}
is called finite cone with vertex x, height r, direction v(x) and opening angle §. The angle
a = Z(y,v) € [0, ] between y,v € R™ \ {0} is defined by y - v = |y| |v| cos c.
A domain Q C R"”, (n € N), satisfies the cone condition if there exist r > 0, # > 0 such that
each = € Q is the vertex of a finite cone = + C,. 4 ,(») C €2, for some v(z) € R™\ {0}.

B.2. Definition (Local Lipschitz Condition). A bounded domain 2 C R" satisfies the local Lip-
schitz condition, if each z € 02 has a neighborhood U, C R" such that U, N 0 is the graph of
a Lipschitz continuous function; that is, there is V c R"" !, f € C%}(V;R) and an orthogonal
transformation @ such that U, N 9Q = x + Q graph f = {z + Q(v, f(v)) : v € V}.

B.3. Theorem. Let 2 C R™ be a domain, X be a Banach space, p € [1,00), ¢ € [1,00], s € R, k € Ny.
If ) satisfies the cone condition, then

By (9 X) — BCH(Q; X),  ifs—n/p>0.
If 2 satisfies the strong local Lipschitz condition, then
B X) < BUCK(;X),  if s —n/p > 0.

Proof. The assertions for the scalar-valued case X = K are known [AF03, Theorem 7.34, Theo-
rem 7.37]. To obtain the vector-valued result we consider u € W5(; X) and 2’ € X’. Then

a’ oubelongs to W5 (Q) with ||2/ OUHW;M < ||| x ||U”Wg+k(X). The scalar-valued embedding
implies 2’/ o u € BC*(Q) with |2/ o u||gex < Clj2’ 0 U||W;+k, where C' denotes the embedding
constant for W5%(Q2) < BC¥((2). Assume in addition that u € S(R"; X). Then

lullporxy = sup [l2'(u)llper < sup Clla(w)llyyser < Cllullyerr -

[l <1 [l <1
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Hence the identity is bounded from a dense subset of W;*k (€; X) into BC*(Q; X). Approxima-
tion yields W;’*k(Q; X) = BC*(; X). The second embedding can be shown analogously. [J

B.4. Lemma (Hardy’s inequality [cf. Dur70, Appendix B]). Let p € [1,00), r € (=1 4 1/p, 0),
T € (0,00] and let X be a Banach space. If [t — t~"g(t)] € L,(0,T; X), then [z — x="~1 [ g(t) dt] €
L,(0,T; X) and the following inequality is valid.

T z P 1/p T 1/p
e ([ | [awa| @) < ([ S laora)

Proof. The result can be proved similarly as in [Dur70, Appendix B], where the case r = 0 is
considered. First let T' < co. We employ the substitution ¢ = xs/T" and the continuous version

T
< / £tz o
Lp(#) 0

of Minkowski’s inequality with respect to the measure du(z) = dz/x"™. Then

x / 1/
([ (5 [ 1) dx)l " ( [ G [ o)), ) dx) '
T 1/p
S% o (/0 2P ‘g(?)Hi dz) s,

provided that the right-hand side is finite. But this follows with the substitution zs/T = u,

([ S

L[ e (12
— T1+r—1/p 0 0 urp

1 T 1 1/p
< - — P .
<t ([ lawin )

By Fubini’s theorem and the finiteness of the right-hand side, the left-hand side is also finite
and this proves Hardy’s inequality for the case T' < co. The assertion for T' = oo follows by
taking limits as 7" — oo. 0

(t,) dt

1/p
Wl du)

B.5. Lemma. Let X be a Banach space, p € [1,00), T € (0,00), o € (1/p, 00). Then the following
inequality is valid for every w € Lo(0,T; X) with [t — t~*u(t)] € L,(0,T; X).

T 1/p T 1/p
1 P l11+a-1/p / / [[u(t) = u(s)I%
(/0 tap'“()”th> S® a-1/p < \t—sl“ap st

Proof. This inequality can be checked by an inspection of the proof of [PSS07, (6.8)]. O

The spaces L, (%; X ), W, (Q2; X), W75 (Q; X) were defined intrinsically; that is, by using only
the values of functions at points in €. Alternatively, we consider the corresponding spaces of
restrictions to €2 of functions on R", defined by

F(X) =FR"; X)|qg :={ulg : v e FR" X)},
||u”S(Rn,X)|Q = lnf{”UHS(R”,X) V€ @(R”,X), ’U|Q = U},
where § € {L,, W, W;}. Then we obtain the embeddings
Ly(R™; X))o = Lp(Q; X), WHR™ X)|g — W (X)), W, (R"; X)[q — W, (; X).
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If @ C R" is a bounded domain of cone-type (see [Tri95, Definition 4.2.3]), then
pa(R")|o = Hy*(R™)|o = W5 (Q)

form € N, p € (1, 00) [Tri95, Theorem 4.2.4]. The Besov space B, ((2) is also given as the real
interpolation space

By, (Q) = (Lp(Q), H' () s € (0,00), p€l,0), q€[l,00],

s/m.q’
where m is the smallest integer larger than s [AF03, p. 7.32]. If @ = R", we can choose any
m € Nwith m > s [Tri95, 2.4.2 Remark 2].

The trivial extension by zero is bounded from L, (€2; X) to L,(R"™), thus the spaces L,(2; X)
and L,(R")|q coincide with equal norms. However, this operator does not map continuous
functions on {2 to continuous functions on R™ and is hence not necessarily bounded from
W (Q; X) to W*(R™). In fact, function spaces on domains defined via restriction maybe
smaller then those defined intrinsically, by nonexistence of extension operators [AF03, Para-
graphs 3.20, 6.47.1, 7.32].

Extension theorems guarantee the existence of bounded extension operators, if the bound-
ary of Q) is sufficiently regular. Then it follows immediately, that the space of restrictions co-
incides with the intrinsically defined space and the corresponding norms are equivalent, see
Corollary B.8 for an example. This is very useful to transfer properties of function spaces on
R™ to those on domains.

We will employ the following extension operators from 2 = R’} to R" (n € N), which are
defined in [AFO03, Theorem 5.19] by higher order reflections.

B.6. Theorem. Let k € Ny. We define extension operators E* and E¥ (o € N7, |a| < k) from R to
R™ by (the sum over 1 < j < 0 is considered as zero)

k
Bruel,—an) =3, Al jan)

k
Eru(z, —xy) == 2

where u € Ll,loc(@)/ ' € R, z, € Ry, and the numbers Aj i solve the linear system

k
ijl(_j)l)\j,k =1 foralll €{0,1,...,k—1}.

DT (e )

Then
E* € B(HL(RL); HY(R™)), Ef e BHL1W(RY); HIM(R), 00 = E,0%,
forallp € [1,00),1 € {0,1,...,k}, a € Nj with || < 1.
B.7. Theorem (Stein’s extension theorem [Ste70], [AF03, Theorem 5.24]). If 2 is a domain in R™

that satisfies the strong local Lipschitz condition, then there exists a linear extension operator, which is
bounded from W;*(Q2) to W (R™) for all m € No and all p € [1, c0).

B.8. Corollary. Let p € [1,00) and suppose that the domain Q C R™ (n € N) satisfies the strong local
Lipschitz condition. Then the following norms on W (2; X) are equivalent:

1/p
o= (X loule) T

For a bounded interval (0,7") and a fixed order of differentiability k& € Ny or s € [0,00),
it is possible to construct an extension operator with a uniform norm bound with respect to
T € (0,00) and power p € [1,00). We also refer to [PSS07, Proposition 6.1].

For s € [0,00) with s — 1/p ¢ Ny and a Banach space X, we define the space

[

2.0 = inf{|[vll1 g : v € W (R™; X), vlo = u}.

oW (0,73 X) o= C((0,7, %) "% = Lu € Wi (0,73 X) : 0fulyco = 0 for j < [s — 1/7]}.
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Here [s — 1/p| := min{k € Z : k < s — 1/p} denotes the integer part of s — 1/p € R\ Ny and the
above characterization of (W7 (0, T’; X) follows from [Ama09, Theorem 4.6.2].

B.9. Lemma ( [MS12, Lemma 2.5]). Let J = (0,T) be finite, p € (1,00), p € (1/p,1] and X be a
Banach space of class HT . Given k € N, there is an extension operator £y from J to Ry with

EreB(W), (J; X)W, ,(Ri; X)) NB(H; ,(J;X); Hy ,(Ry; X)), forall s € [0, k].
Here we can replace W by oW and H by oH. There is further an extension operator
E9 € B (oW, (J: X);oW, . (Ry; X)) N B (0H, . (J: X);0H; (R X)), forall s € [0,2],
which is independent of the space X and whose operator norm has a uniform bound with respect to
T € (0, 00). Moreover,
E7, €Y € B(Loo(J; X); Loo(Ry; X)),
where the operator norms have a uniform bound with respect to T € (0, 00).

B.1.3. Intrinsic spaces on hypersurfaces. Let ¥ C R"™! (n € N) be a compact smooth
hypersurface (without boundary) and let p € [1,00] and s € [0, 00). There are two approaches
to define the vector-valued Sobolev-Slobodeckii spaces W, (¥; X) for a Banach space X over
K € {R, C}. For the intrinsic approach we define it as the closure of C*°(%; X)) in the norm

1/p
L 1) — (@) —v@IPP oo
(B.5) ullwy = Nl + [0 u] s [y (/EXZ dist(z.g) o dx(z,y) |

where we require that p < oo if s ¢ Ny and in the case s € Ny, the seminorm [9l*. uf 10y is
P

omitted. The intrinsic distance disty. is studied on page 133. Note that for a function u: ¥ — X,
the derivative c‘%u(p) of order j belongs to B’((T,X)’; X) and can be identified with some
element of B/ ((R"*1)/; X).

It is useful to relate the space W (3; X) to the corresponding spaces on the whole space
R™, for the purpose of using the known embedding and interpolation properties of the latter
spaces. To this end we consider the extrinsic definition of W7 (3; X) as a retract of W, (R"; X R
with some N € N. A bounded linear operator r: X — Y between normed vector spaces X and
Y is called retraction if there exists a bounded linear operator 7°: Y — X such that rr¢ = Iy In
this case we say that ¢ is a co-retraction for r and Y is a retract of X. As in [Tril0, Definition

3.2.2/2], we shall show that the map r defined by r(u) = ((x;u) o np;l) j is a retraction, where
(5, U. j)j»vzl is an atlas and (Xj)é‘vzl is a finite partition of unity for 3, subordinate to (U. j)é-vzl.
B.10. Lemma. Letn € N, p € [1,00), s € (0,1) and let X, Y, Z be Banach spaces with continuous
multiplication X x Y — Z, (x,y) — zy. Let wy, denote the (n — 1)-dimensional area of {x € R" :
] = 1}.

(i) Foru e WL(R™; X) and v € W5(R™;Y') we have

1/p
_s Wn, —s s
B fucl < ol el + 27 (5255 ) e IVl ol

(ii) Forn=1,T € (0,00), u € Wi (0,T; X), and v € W5(0,T;Y'), we also have (B.6).
(iii) Let ¥ C R"™! be a C'~-hypersurface such that the numbers

1/p 1/p
dists:(x, y)P dX dx
Ci(ry=swp ([ BEEDEN) oy oy ([ O
z€X BZ(z) d15t2<m7y) P z€Y S\BE(z) dlStz<$,y) P

are finite for some R > 0. Then for all u € W1 (3; X) and v € W3(3;Y) we have

1/p
[uwvlyws sy < lull o) [Wlws ) + (Cl(R)p IVsull}_ ) + Ca(R)” Hqum(g)> vl z,(2)-
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(iv) Let X C R bea C3~-hypersurface. If Ly, = — Vs is bounded, then for R, := /2| Ls ||},

R e (0,R.),and § = §(R) := 1 — R?||Lx||%,/2 € (0,1], we have

1 _
Wn/pRl s

e (I

If ¥ is compact, then

2|%|1/P
Cy3(R) < B2l < 00

— Rstn/p
If %X is a perturbed hyperplane {(x, h(x)) : x € R"} with h € C2~(R"), then

2on " (1 + [|VAIIZ) /%
Ca(R) < < oo.
2( )— (Sp)l/pRS o

Proof. (i) First, Minkowski’s inequality yields

=

ok = ([, DT =) b)), )

[y|n e

1
u(e +y) —u@P@)P N
<l Bl + ([ PO )

Next, we may consider the case Vu # 0 and let R := 2 ||u|| , /||Vu|o. Then

lu(z +y) — u(@)[Plo(z)[P

IVull}_ e 29 [|ullf_ (g
n ly|<R ‘y| ly|>R Yy

o(1-s
= ﬁ H ||Loo (R") HVUHLOO Rn) HUHJ‘Zp(Rn) .

Combining these estimates, we obtain inequality (B.6).
(ii) For R = 2||u||oo/Hu’||OO we obtain

[ e )

< / ( / T g e 2 [T dy) o(@) da.
0 « R |lz—yl*® R

Hence, with 2 = wy, the assertion follows analogously as above.
(iif) From Minkowski’s inequality and Fubini’s theorem we infer that

[uolys < l[ullo [y + ( /L. [u(e +y) —u(@)lox ”pdzz@,y))”p

disty (z, y)ntsp

lu(x + y) — u(z)P 1/p
) .
- diStz(m', y)n+5p d (y) ”UHP

<l Tl + sup (
X

Clearly,
[u(z +y) — w(z)| < min{||Vyulle dists(z, y), 2[|ullo} ,
and therefore
lu(z +y) — ()P
5, disty(x,y)"tsp

which yields the asserted estimate.

d%(y) < CL(R)?|[Vsullg, + Co(R)P[|ull%,
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(iv) With Proposition A.13 we can parametrize every geodesic ball Bx(x) by
g Uy %B}E{(x)a QO:E(U) :x+Qzu+hx(u)V§3($)7

where U, C R" is a neighborhood of the origin, Q, € R"*1)*("+1) j5 an orthogonal matrix with
Queni1 = vs(z), and hy: U, — R is a C3~-function with h,(0) = |Vh,(0)] = 0. We further
have Brsgr) C Ur C Br and

1— 62 _
(vs(@)|vs(pe(u)) > 6,  |Vhe(u)]* < 5 forallu € U, x € X.

Proposition A.12 yields |u| < dists(x, ¢, (u)) < (1 + ]th(u)P)l/zlu\ < §7!|u| and thus

/ dists (z, ) 7P AN (y) = / dists (z, vz (u "1+ |Vhg(u)? du
z
BR(x) Um

1 r -5 —nyn—
A R TR
0B1 J0

wnR(lfs)p
< .
— 5(1—s)p+1(1 _ s)p
This yields the estimate for C;(R). The other estimates follows easily. 0

The previous estimates allow pointwise multiplication with test functions; for instance,
B7) Nuvllwye < Cnp,s) (ulloo Plys + lulwy [0]) — foru e WLRY), v e Wi(R").

This in turn yields the equivalence of intrinsic and extrinsic spaces.

B.11. Lemma. Let X C R"™! (n € N) be a smooth bounded hypersurface with smooth compact bound-
ary 0%, let s € [0,00), p € [1,00), and let X be a Banach space. Then the space W (%; X) endowed
with the intrinsic norm (B.5) is a retract of W3 (R"; X )V for some N € N.

Proof. By Lemma B.10 we can find a smooth atlas (;(U;), ¢; ) | for ¥ and a smooth partition
of unity (XJ)J , subordinate to (U, )j | where Bpsr) C U; C BR C R" and pj(u) = z; +

u + hj(u)vs(z;) with z; € ¥ and h; € C°°(U;). Then Lemma B.10, the chain rule (B.19), the
transformatlon formula (A.12), and Proposmon A.12 imply that

r: Wi (% X) — W;(Rn;X)Na u = ((xyu) © ‘Pj)y:l

is well-defined and bounded.
Let further (1/;]) , be a collection of smooth functions ); € D(¢;(U;)) with ¢»; = 1 on
supp ¢;(U;). Then it is also straightforward to check that

re WERY XN = W2 X),  (v)) — Z Wil o3
is a co-retraction for r. O

B.1.4. Homogeneous function spaces. We define the homogeneous spaces H; (Q), qu(Q),

and szq(Q) and collect some of their properties. Further information on homogeneous spaces
is given by Bergh and Lofstrom [BL76], Kozono and Sohr [KS91], Simader and Sohr [SS96],
Maz'ya [Maz11], and Triebel [Tri10].

There are two main approaches to define the homogeneous spaces on a domain 2 C R"
or on a possibly disconnected open subset 2 C R". In the case 2 = R", these spaces can
be defined as subspaces of Sj(R"), see Definition B.13. These spaces consist of distributions
modulo polynomials. Then the spaces on domains can be defined extrinsically as spaces of
restrictions of functions over R™. For instance we can define H;(Q) = H;’ (R")|q == {u: Q@ —

X:Fe H;(R”) : v|q = u}, equipped with the norm HuHHS(Q) = inf{”””g;(w) :v|lg = u}. The
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extrinsic approach allows to transfer known results on embeddings, lifting properties (Theorem
B.15) and traces (Theorem B.31, Theorem B.28) to the spaces over domains.

The homogeneous spaces can also be defined intrinsically as equivalence classes of func-
tions on {2 modulo polynomials whose degree does not exceed some k € Ny. The norm only
depends on the chosen subset (2 C R™ and is independent of the representative. In the whole
space case {2 = R", the intrinsic and extrinsic norms are equivalent (Remark B.14). The same
is true for a subset {2 C R" that admits a bounded extension operator from (2 to R" for the
intrinsic norm.

B.12. Remark (Approximation of H Z’f-functions by C2°-functions). Asin[Galll, Theorem I1.7.1]
we consider Sobolev’s cut-off function (see Sobolev [Sob63])

Xr(r) = X <

Thus xgr(z) = 1if |z| < eV'8f, xg(x) = 0if |z| > R and the support of Vg is contained in
{eVIee !t < |z| < R}. For every a € N with |a| > 1 and Ry > e we have the estimate

log log|z|

loglogR> with R > e and y € C*([0,00);[0,1]), x =1on [0, 3], x = 0 on [1,0).

Ca,Ry 1

, foreVlsE < || <R, R>Ry>e.
glog R o] logla] s kls B

« <
0 xR(@)] < 1

Furthermore, let p,(x) = r~"p(z/r) denote Friedrichs’ mollifiers with some p € C°(R") such
that supp p = B1(0), p > 0, p(x) > 0 for |z| < 1, and [, p(z)dx = 1.

Letn >2,pe[l,0), k€ Nypandletu € 7—[’;, (R™). Then we can find a polynomial g in R" of
degree < k — 1 such that u — ug can be approximated in the norm ||[V*-||, gny by test functions

Ukzprk*(Xk(u_UD))’ kEN?
with some sequence (7);, such that 7, — 0 as k — oc.

B.13. Definition (Extrinsic definition of homogeneous spaces). Let Sp(R") := {¢ € S(R") :
(0“F)(0) = 0 for all « € Njj} The dual space S|(R") can be identified with S’(R™)/P, where
P = Up>0Px and Py, is the linear space of all polynomials of degree not larger than k. Then the
homogeneous Besov space and the homogeneous Triebel-Lizorkin space are defined by

o X n n js — a0\ 1/p
B, (R") := {u € SR < ull g, = (Z]EZ (2] |17 1¢jquLp(Rn)) ) < oo},

. ) 1/q
s ny .__ / ny . A R js—1, . q
Fp(R?) := {U € Sp(R™) ||U”F;q(m) = H( E j€Z|2 F i Ful ) - < oo}

Furthermore, we define the homogeneous Bessel potential space Hy(R") := Fj,(R™). We refer to
[Tri10, Chapter 5], [BL76, Chapter 6] and [RS96, Section 2.6] for further information.

B.14. Remarks (Properties of homogeneous spaces). (i) For p € (1,00), s € R, the follow-
ing embeddings are continuous and dense (see [Tril0, Theorem 5.1.5].

So(R™) — HZ(R") — SH(R™), So(R™) — B;p(R”) — SH(R™).
(ii) We have || f|| = 0 if and only if f is a polynomial [see BL76, Section 6.3].
(i) f s € R, p,q € [1,00],and 0 € (0, 1), then [see BL76, Theorem 6.3.1],
(H;O (R™), H;l(R”))aq = B;q(]R{”), ifs=(1—-0)so+06s1,0¢€(0,1).
(iv) If s € (0,00) and p, g € [1, <], then [see BL76, Theorem 6.3.2]
B, (R") = L,(R") N B5,(R™), H3(R") = Ly(R") N Hy(R").

(v) If m € Ny and p € (1,00), then u — >, 10%ul[, (mn) the space H;T(R") can be
identified with the space W;)”(R”) (see [Tril0, Theorem 5.2.3/1]).
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(vi) If s € (0,1) and p, ¢ € [1,00), then the space BSP(R”) can be identified with the space
W3 (R™) (see [Tril0, Theorem 5.2.3/2]).
B.15. Theorem ([Tri10, Theorem 5.2.3 /1], [Ste70, Section V.1]). Let

Jow = (—A)7Pu=FHE — |7 Fu()) foro € R, u € SHR™)
denote the Riesz potential.
(i) IfseRoeR,ge[l,00,p € 1, go}, then J, : By, (R") — B, 7 (R") is an isomorphism.
(ii) If in addition p € [1,00), then J,: Fj (R") — F; "7 (R") is an isomorphism.

B.2. Sectorial operators and maximal regularity

B.16. Definition ([cf. DHP03, Definition 3.1]). A family of operators 7 C B(X) is called R-
bounded, if there are numbers C' > 0 and p € [1, o) such that the inequality

N N
[Z5o]y = [

isvalid forall N € N, T; € T, z; € X and for all independent, symmetric {1, 1}-valued
random variables €; on a probability space (2, M, 11). The smallest such number C'is called the
R-bound of T, denoted by R(T).

B.17. Definition ([cf. AHS94; DHP03]). Let X be a complex Banach space and let ¥y denote the
open sector

Yo :={A € C\{0}:|arg\| <8} = {re’? : 7 € (0,00), ¢ € (—6,0)}, 6 ¢€(0,x].

Lp(;X Lp(9X)

We write f € H(Xy) if f: ¥y — C is a bounded holomorphic function such that there exists

s > 0 such that | f|(\) < % in Xy for some ¢ > 0.

(i) A linear operator A: D(A) — X is called sectorial (of type (K,9) with K > 1,9 € (0,7))
if both D(A) and R(A) are dense in X and

Yy Cp(—A) and AN+ A)_1||B(X) < K forall A € Xy.

We call ¢4 :=inf{mr — 9 : 3K > 1: Ais of type (K,V)} the spectral angle of A.
(ii) A sectorial operator A: D(A) — X is called R-sectorial (of type (K, 1)) if

Yy Cp(—A) and R({AMA+A)':xeXy}) <K.

We call ¢% := inf{m — 9 : {A\(A+ A)~1: X € 3y} is R-bounded} the R-angle of A.
(iii) A sectorial operator A is said to be of type (K, 1), if

Sg:=%y Cp(—A) and (14 |AD[|(A+A4) sx) <K forall A € Sy.

(iv) A sectorial operator A is said to have bounded imaginary powers (of type (C, 9)), if A® €
B(X) forallt € R and

|A | px) < CePMl - fort € R.

(v) We say that a A has a bounded H>-calculus (of type (M, 1)), if A is sectorial of type (K, )
with some K > 1 and

1F(A)llsx) < M| flloos  for f € H?(Zry),

where f(A) is defined by the extended functional calculus, see Remark B.33.
(vi) We say that A has an R-bounded H>°-calculus (of type (M, 1)), if

M :=R{f(A) € B(X): f € HZ(Zrv), [|fllc <1}) < o0
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We introduce the abbreviations
S(X; K,9) :={A: Ais sectorial in X of type (K,9)},

RS(X; K,0) :={A: Ais R-sectorial in X of type (K,9)},
P(X;K,v¥):={A: Aisof type (K;9) in X},
BIP(X;C,0) :={A: Ahasbounded imaginary powers of type (C, ) in X'},
)

{

H>P(X;M,0) .= {A: Ahas abounded H*°-calculus in X of type (M,¥)in X},
RH™(X; M,V) := {A: Ahas an R-bounded #H*°-calculus in X of type (M,¥)in X} .
Furthermore, we define S(X;9) := UxgS(X; K,9) and S(X) = UpS(X;9) and we will write
S(K,9) = S(X; K,v) and S(¥) := S(X;7) if no confusion seems likely, analogously for the

other classes. Then we define the angles
pa:=inf{p >0: Ae S(r—9¢)},
o% :=inf{p>0: A e RS(m— )},

it
el AT _ iupgo > 0: 4 e BTPO),

04 = limsup
lt—oo Il

dF =inf{p >0: A€ H®(m — )},
PR :=inf{ > 0: A€ RH®(1 — $)}.

B.2.1. Maximal L,-regularity. We collect some material on analytic semigroups and maxi-
mal L,-regularity from [Dor93], [Ama95], [Lun95], [Wei01], [Pr{i02], and [DHP03]. We assume
that A: D(A) — X is a closed linear operator in a complex Banach space X and that D(A) is
equipped with the graph norm ||-|| x + || A:]| x-

B.18. Definition (Analytic semigroup). Let § € (0,7/2] and £y = {A € C\ {0} : |arg \| < 6}. A
family T := {T'(t) : t € ¥y U{0}} C B(X) is called (strongly continuous) analytic semigroup, if
(i) themap ¢t — T'(t): ¥y — B(X) is analytic,
(i) T(0) =Iand T'(t)T(s) = T(t + s) forall t, s € £g U {0} (semigroup property),
(iii) T(tp)xr - xin X as Xy o t, — 0forallz € X, 0" € (0,0) (strong continuity).
B.19. Definition. The generator A: D(A) — X of an analytic semigroup 7 is defined by

Az = lim T(t)r —x T(t)x

, D(A) := {x € X : lim —27 "7 exists in X}.
t—0+ t t

t—0+

From now on we let — A be the negative generator of the analytic semigroup e~*4 := T(¢).
For a given function f € Lj jo.([0, 00); X') we consider the abstract Cauchy problem

(B.8) Jyu(t) + Au(t) = f(t), te(0,00), u(0)=0.

It is known [Ama95, Remarks I1.2.1.2] that the unique mild solution v € C([0, c0); X) of (B.8) is
given by the variation of parameters formula

t
u(t) = / e =941 (s)ds, te[0,00).
0
We study the solvability of problem (B.8) with respect to the function spaces
oE(T) := oHL(0,T; X) N Ly(0,T; D(A)), F(T) = Ly(0,T; X),
where T' € (0,00] and p € (1, 00).
B.20. Definition. We say that A has maximal L,(0,T; X )-reqularity or maximal Ly-regularity on

(0,7) in X if for every f € F(T'), the mild solution of problem (B.8) belongs to (E(7"). We let
MR, (J; X) denote the class of all operators with maximal L, (0, T; X )-regularity.
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B.21. Remarks. The following facts are shown in [Dor93], [Ama95], and [Prii02]. (i) If A €
MR, (J; X) is valid for some p € (1,00), then it is valid for all p € (1, oo) We will therefore
simply write MR instead of MR, in the following. (ii) If A € MR((0,Tp); X) for some T €
(0,00], then A € MR((0,T); X) forall T € (0, 00). (iii) If A € MR((0,1); X), then thereis u > 0
such that u + A € MR(Ry; X).

The translations p+A with large o > 0 can be avoided if the spectrum o (A) of A is contained
in the positive right half-plane.

B.22. Theorem (Kato [see Dor93, Theorem 2.4]). If u + A € MR(Ry; X) for some p € C and if
o(A) c{A € C:ReX >0}, then A € MR(R;; X).

It is useful to define the larger class () MR(Ry; X) D MR(R;; X) of all A € MR((0,1); X)
for which the mild solution u to (B.8) satisfies the weaker a priori estimate
0wl L, @, x) + [[Aullp, @, x) < Cllfll,®,x) forall f € Ly(Ry; X).

We note that A € MR(Ry; X) if and only if A € e MR(R;; X) and 0 € p(A) [see PS15]. The
following characterization of maximal L,-regularity is very important and useful.

B.23. Theorem (Weis, [Wei01, Theorem 4.2], [cf. DHP03, Theorem 4.4]). Let X be a Banach space
of class HT and let A generate a bounded analytic semigroup in X. Then A belongs to e MR(Ry; X)
if and only if {\(\ + A)~1 : X\ € Xy} is R-bounded for some 0 > /2.

Next, we study exponentially decaying solutions of the abstract initial value problem
Ou+ Au= fonJ, wu(0)==zx.

Let E, X(J) be Banach spaces such that X(.J) — Lj joc(J; E) where J = (0,T) for T' € (0, o0]
and let w € R. We employ the exponentially weighted space

X = 1 € Dagoel 3 B) : [t o5 ()] € X()),
equipped with the norm [|ul|o-wx () = [|[t = e“ u(t)]|lx s

B.24. Proposition ([cf. Ama95, Proposition II1.1.5.3]). Suppose that w + A: D(A) — X has maxi-
mal L,(R.; X)-regularity for some w € R. Then

(O + A, v0) : € [Hy(Ry; X) N Lp(Ry; D(A))] — € Lp(Ry; X) x Da(1—1/p,p)
is an isomorphism.

B.2.2. Fractional domains and abstract trace spaces. For two Banach spaces Xy and X;
with dense embedding X; — X and for M > 1 and ¢ € (7/2, 7), we define the class

Pi(X1, Xo; M, ) := {A € P(Xo; M, 9) N Bisom (X1 Xo) : [|Allxix0) < M,

(14 AN IO+ A) s,y < M for j € {0,11, A€ Ty f.

If A belongs to Pi(X1,Xo; M,0), then —A generates an exponentially stable analytic semi-
group t e A, Arguing as in [AHS94, Section 1], it can be shown that there are wy =
wo (X1, Xo, M,9¥) > 0and M" > 1such thatforallw € (0,wp) we have A—w € Py (X1, Xo; M',9).

For a € (0,1) and p € (1, c0) we define the seminorms

. oo tl OcA _tA @ 1/p o [e%e] t_a A g » @ 1/p
[Z]DA(ap) = ; \ el " , =lpaay = ; 7% (e J2l, :

It is shown in [Lun95, Proposition 2.2.4] that these seminorms are equivalent. The fractional
domains of A for o € (0,1) and p € (1, c0) are defined by

DA(OZ,]?) = {33 € XO : [x]DA(a,p) < OO} ‘$|DA (a,p) *— ’x‘Xo + [x}DA(a,p)'

We also put D4(1,p) := D(A) with [x]p, (1) = |Az|x, and we let (Ra7)(t) = e g,
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B.25. Theorem (cf. [Lun95, Section 2.2.1], [Ama95, Proposition 111.4.10.3]). Let X, X be Banach
spaces with dense embedding X1 — Xoandlet M > 1,9 € (n/2,7), p € (1,00), a € (1/p,1] be
fixed. Then the following norms are equivalent in x € D(A) with uniform constants with respect to
Ace Pl(Xl,Xo; M, 19) and T € (0, OO]

1Z| D g(a=1/pp)s  |Tl(x0,D(4)) I1Razl|1,0:Da(ap)) 1 RAZ]We(0,7:x0)-

a=1/p.p’
In particular, the operator
Ry:x v (t— e_tAa:) , Dala—1/p,p) — W;(0,T; Xo) N Ly(0,T; Da(c, p))
is uniformly bounded with respect to A € P1(X1, Xo; M, 9) and T € (0, o<].
For the spaces D (k + a, p) := (D(A¥), D(A¥*1)), , we obtain the following result.

B.26. Corollary. Let A: D(A) — X be the negative generator of a bounded analytic semigroup in X
such that A is invertible and let k € Ny, p € (1,00), o € (1/p, 1]. Then the operator

Ra:uw— (t — e_tAu) , Dalk+a—1/p,p) — W;‘W(RJF;X) N Ly(Ry; Da(k + a,p))
is a bounded right-inverse for trace operator -|¢—o.
Proof. This follows from Theorem B.25 and the identity Ope A = —Ae7tA — otA Y, [l

B.27. Theorem ([Dor99]). Let A be invertible and sectorial in X with spectral angle ¢ o. Then A has
a bounded H> functional calculus in D (o, p) (o € (0,1), p € (1,00)) with ¢5° < ¢ 4.

B.2.3. Some concrete trace spaces.
B.28. Theorem (Poisson semigroup [Tril0, Remark 5.2.3/4], [Tri95, p. 2.5.3]). Let n € N, let
Cn

p(z) = 1+ [z]2)m D2

denote the Poisson kernel and put p,(z) = t~"p(z/t). Then the following assertions are valid.
(i) The Poisson semigroup

with ¢, > 0 such that / p(z)dr =1,

n

(PO = (s u)(w) = [t e L@, >0

is a bounded analytic Co-semigroup in L,(R™), p € (1, 00).
(ii) The identity P(t)u = F =1 (& v e €It Fu(€)) is valid for every u € S(R™).
(iii) Let A denote the generator of P. Then A*™ = (—1)™A™, D(A*™) = H2™(R") for m € N.
(iv) For s € (0,00), q € [1,00], m € N, m > s, the following norms are equivalent.

lall s, gy ~ ol ey + ( /0 tm=e

1/q
o) B 8mp(t)u q dt .
. N (m—s)q || &2 \YJY it s (Ton
lull 5, eny </0 t o > . ue B (RY).

B.29. Theorem ([Zac03, Theorem 3.2.1]). Let X be a Banach space of class HT, p € (1,00), v €
[0,1/p) and s +~v > n + 1/p with n € Ny. Let further J = [0,T] or R, and A be an R-sectorial
operator in X with R-angle ¢% < m/s. Then forall 0 < k < n,

Hy™(J; X) N H)(J; Das) < BUC*(J; Das + 7 — k= 1/p,p))

" P(t)u
otm

v

Ly(®n) T

1/q
) | € B[R,

and

By (. X) N H (J; Da(s, p) = BUCH(J; Da(s +4 = k = 1/p,p)).
B.30. Theorem ([SSS12, Theorem 4.19]). Let X be a Banach space and p € (1,00), m € N, s €
(1/p, o0). For the restriction operator ¢ + @|gn—1, C(R"; X) — C(R"Y; X), the following assertions
are valid.
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(i) The restriction operator can be extended uniquely to a continuous surjective mapping
. . -1 -1,
tr: W(R™; X) — B VPR X)

and tr has a continuous right-inverse ext: Baw “/P(R"1; X) — W (R™; X).
(ii) The restriction operator can be extended uniquely to a continuous surjective mapping

. s n. s—1 n—1,
tr: HS(R™; X) — Bo VPR X)

and tr has a continuous right-inverse ext: By /P(R"1; X) — HE(R™; X)).

B.31. Theorem ([Jaw77, Theorem 2.1], [Jaw78, Theorem 5.1]). Let p € [1,00), ¢ € [1,00], s €
(1/p,o0), n € N, n > 2. For the restriction operator o — p|gn-1, So(R") — S(R"™1), the following
assertions are valid.

(i) The restriction operator can be extended to a continuous surjective mapping

. i
tr: B3, (R") — B /P(R"1)

and there exists a linear operator ext: SH(R"™1) — S)(R) (independent of p, q, s) such that the realiza-
tion ext: By /P(RM1) — B3, (R") is a continuous right-inverse of tr.
(ii) The restriction operator can be extended to a continuous surjective mapping

s o .
tr: F5 (R™) — B3 /PR
and there exists a linear operator ext: SH(R"™1) — S} (R) (independent of p, q, s) such that the realiza-
tion ext: Boy /P(RM1) — F3 (R™) is a continuous right-inverse of tr.
B.32. Theorem (Spatial trace theorem [cf. MS12, Theorem 4.5]). Let E be a Banach space of class
HT, J = (0,T) be finite or infinite, p € (1,00), m € N, s € (0,1], such that 2ms € N. Assume that
Q) C R™ is a domain with compact smooth boundary, or Q@ € {R" R }. Then the trace
u s ulog: H(J; Lp(Qs E)) N Ly(J; H2™ (s E))
— WmY2mP(J; Ly(0Q; E)) N Ly(J; W2 ~Y/P(00; E))
is continuous and surjective and has a continuous right-inverse. The restriction of the trace to

0 H(J; Lp(: B) N Ly (J; Hy™ (9 ),

is uniformly bounded with respect to the length of J.

B.2.4. Functional calculus for sectorial operators.
B.33. Remark (Functional calculus). Let A € S(X;9).

(i) The (primary) H>-functional calculus ® 4 : HF (X,—y) — B(X) is defined by
_ 1
 2mi

@4(f)) (2) = f(A)z /Ff()\)()\+A)_1d)\, for z € X,

where the curve I' = e~*¥[0, 00) U €0, 00) C p(—A) surrounds o(—A) counterclockwise.
(ii) Extended functional calculus. ...

B.34. Theorem (Spectral mapping theorem, [Haa06, Theorem 2.7.8]). Let A € S(X), ¢ € (¢a, )
and let f € Hp(E4) have polynomial limits at {0, 00}. Then

f(e(4)) = a(f(A)),
where 6(A) := o(A) if Ais bounded and 6(A) := o(A) U {oo} otherwise.
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B.2.5. Fractional powers. Set p(\) = A(1+ \)~2. This function belongs to H°(%,) for each
o € (0,m) withnorm [p|;,_(s,) = (2(1 + cosc)) . For given o € (0, ) the function A — A is
holomorphic and bijective from ¥, to ¥}, for all « € R with |a| < 7 /0.
Let A € S(X, ¢4) and let
Su=(fr— f(A): H(Xs) = B(X),
4= (f = f(A): Hp(¥) = B(X)
denote the primary and the extended H*°-calculi of A, respectively. Then the fractional powers
A%, a € C, are defined by
A% =D (A= AY) = @ a(p) DA = p(N)FAY),
for k € N, k > a. Their natural domains are given by
D(A%) = {x € X : DA\ p(NFAY)z € D(AF) N R(Ak)} .
B.35. Theorem ([DHP03, Theorem 2.3]). Let A be sectorial in X with spectral angle ¢4 and let
a € (—m/dpa,m,¢/A). Then A% is also sectorial in X with ¢ ga < |a|Pa.
A sufficient condition for A* € H*°(X) can be derived with the following composition rule.

B.36. Theorem ([cf. Haa06, Theorem 2.4.2]). Let A € S(w) (w € [0, 7)) be injective and, for some
¢ € (w,m)and ' € [0,7), let g € Hp(Zy) be a function such that g(A) € S(w') and such that for
every ¢' € (W', ) there exists ¢ € (w, ) such that g € Hp(Zy) and g(Xy) C . Then

(fog)(A) = f(g(A)) foralld' € (,m), f € Hp(Sy).
B.37. Corollary. The following implications are valid.

A€ H™(X), _MTT <a< @ = A% e H™(X), ¢%a < |a|oT,

AERHX(X), — s <a < gfm = AT €RHX(X), PRE < || .

B.38. Corollary. For A € H>°(X; M, ), the following assertions are valid.
(i) Ae BIP(M,n —9).
(ii) For s € [0,7/(m — 1)), we have A* € H*®(M,9 + (1 — s)(7 — 9)).
(iii) For e > 0, we have ¢ + A € P(My, 1) for every 91 € (0,99), where My = 2Mc(1 + e=2)1/2 and
¢=1/min{1,1 + cos(m — (¥ — 1)) }.

Proof. (i) The assertion follows from |z%| = |eit(nlzl+iarg2)| — o—targz < cft|arez,

(ii) The function gs: z — 2° maps ¥,y onto ¥,_y). Hence for f € H>(Z;_y)) we
have f o g € H™(X,_y) with the same L.,-norm. Moreover, the composition rule implies
f(A®%) = (f 0 gs)(A) and this yields the assertion.

(iii) Using (A +e+ A)~t = (A +e+ )7 }(A) and (B.14), we obtain

T+ AN +e+A <A+ ADMIA+e+ ) ey

- V2M 1+ Al
~ min{1,1 + cos(m — (9 — 1)) }1/2 |X + ¢
2M 1
< 1+ —. (|
= min{Litcosr—@—oV T2

B.39. Theorem (cf. [Ama95, (1.2.9.9)] and [Tri95, Theorem 1.15.3]). If A € BIP(X), then
D(A%) = [X,D(A)]a, forael0,1],

where D(A®) is equipped with the norm x — ||z||x + ||A%x| x. Moreover, given § > 0, ¥ € (0, ),
M > 1, a €[0,1], there exists C > 1 such that for all A € BIP(X; M,0) NP(X; M, ), we have

C Mzl piaey < lzllx,peay. < Cllwlipasy for x € D(A%).
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B.40. Corollary. Let M > 1,9 € (0,7), s € (0,1), e > 0, let Xy, X1 be Banach spaces with dense
embedding X; — Xoandlet 0 < ¢ < Vs := s9 + (1 — s)m. Then there exists N > 1 such that if

A € P1(X1, Xo; M,9) N H™(Xo; M, ),
then
e+ A® € Pi([Xo, Xils, Xo; N, ¢) N H>(Xo; N, ¢).

Proof. First, the norms ||z||p(a) = ||7|x, + [|Az||x, and ||z] x, are equivalent, uniformly with
respect to A € P1(X1, Xo; M, ¥), since both || Al 5x,;x,) and [|A~!||5(xy;x,) are bounded by M.
Hence, by Theorem B.39 and Corollary B.38, the norms of [ Xy, X1]s, [Xo, D(A)]s and D(A®) are
equivalent, uniformly with respect to A € P (X1, Xo; M, ) N H*(Xo; M, ), and this implies

1A% 8(1x0,x115:x0) ~ 1A% |B(D(A%);x0) < 1-

Therefore ||e + A°|| 3(1xy,x,]: X,) 18 uniformly bounded. Again by Corollary B.38 and basic resol-
vent identities like A*(A+ A%)~! = I — A\(A+ A%)~! we obtain ¢ + A% € P;(D(A*), Xo; My, ¢) for
all A € P1(X1, Xo; M,9) N H>®(Xo; M, V). By the uniform equivalence of the norms of D(A®)
and [Xo, X1], there exists N > 1 with ¢ + A% € P([Xo, X1]s, Xo; N, ¢), uniformly in A. O

B.2.6. Sums and products of sectorial operators. Let (A, D(A)) and (B, D(B)) be densely
defined closed linear operators in a Banach space X. We collect several results for the sum
A + B and the product AB under the condition that A and B are resolvent commuting. We
define the sum A + B, the product AB and the commutator [A, B] by

(A + B)z = Az + Ba, D(A+ B) := D(A) N D(B),
(AB)z = A(Bx), D(AB) :={x € D(B) : Bz € D(A)},
[A, B]z = ABx — BAu, D(|A, B)) := D(AB) N D(BA).

B.41. Remark (Commuting operators). (i) A bounded operator T' € B(X) is said to com-
mute with a closed operator A: D(A) C X — X,if TA= AT on D(A). If p(A) # 0, then this is
equivalent to [T, R(\, A)] = 0 for some (and hence all) A € p(A) [Ama95; Haa06].

(ii) Suppose that p(4) # 0, p(B) # 0. We say that A and B are resolvent commuting, if
[(A— A)~1 (u— B)~!] = 0 for some (and hence all) A € p(A), 1 € p(B). It can be shown that if
A and B are resolvent-commuting, then ABx = BAz for all x € D(AB) N D(BA).

(iii) If A, B € S(X) are resolvent commuting, then also f(A), g(B) are resolvent commuting
forall f € Ha(Ey), g€ HB(3)), ¥ € (pa,7), p € (B, 7).

Next we state a version of the mixed derivative theorem of Sobolevskii [Sob75, Theorem
6]. A linear operator A: D(A) C X — X is called positive if it has the properties of a sectorial
operator (Definition B.17) except that R(A) does not need to be dense in X and the resolvent
estimate is valid in a set {\ = re : |p| € [0, 7], r € [rg,0)} with some ry > 0, which may be
smaller than the sector —%y. In this case k + A for k > r is sectorial and invertible and D(A) is
a Banach space for the norm ||(k + A)-||x. We say that two linear operators A and B in X form
a coercive pair if for some numbers M > 0 and k € Ny we have the estimate

I(k + A)z|| + [|(k + B)z|| < M||(k + A)z + (k + B)z| forallz € D(A) N D(B).

B.42. Theorem (Mixed derivatives [cf. Sob75, Theorem 6]). Let X be a Banach space and let A and
B form a coercive pair of positive operators with commuting resolvents such that their spectral angles
satisfy ¢4 + ¢p < m. Then A + B is positive, and for sufficiently large k and arbitrary 0 < o < 1 we
have the continuous embeddings

D(A+ B) = D((k+ A)*(k + B)"*) N D((k + B)"*(k + A)®).
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B.43. Corollary ([MS12, Proposition 1.1]). Let X be a Banach space of class H'T and suppose that the
operators A, B € BIP(X) are resolvent commuting and satisfy 04 + 6p < . If A or B is invertible,
then A+ B is invertible, A+ B € BIP(X) with0a,p < 04 +0p and A*B'~*(A+ B)~! is bounded
in X for every a € [0, 1].

B.44. Proposition (Mixed derivative embeddings [cf. MS12, Proposition 3.2]). Let J = (0,T) be
finite or infinite, p € (1,00), let X be a Banach space of class HT and let Q@ C R" be a domain with
compact smooth boundary, or @ € {R",R"} }. Let furthert, s > 0, a € (0,2), 8> 0, p € [0,1], and set
H(H}) := H}(J; H3(; X)), and analogously for the other anisotropic spaces. Then

HIY(HS) 0 HE(HST) — HEPPe(H5H10)8)
and moreover each of the spaces
HYP (W) 0 Hy(WstF), Wit (Hy) n Wh(HSP), Wit (Hy) n H (W)
is continuously embedded into
W£+pa(H;+(1*p)ﬂ) N H]thrpa(W;Hlfp)B)’

provided that all the occurring W-spaces have a non-integer order of differentiability. Finally, assuming
all orders of differentiability to be non-integer, we have

Wit (W) O WE(WHF) < Witee (Wt (=ef),

These embeddings remain true if Q) is replaced by its boundary. They are also valid if all Hy-, W)-spaces
with respect to time are replaced by oH)-, oW,-spaces, respectively. Restricting in the latter case to
t + a < 2, the embedding constants have a uniform bound with respect to to the length of J.

B.45. Remark. The following mixed derivative embeddings are valid.

(B9)  HIF(Ry; HI(RY) N H3(Ry: HP(RY) > HE (R, T 0-09(RM)),
ifs, Be€]0,00),a€[0,2],7€R,0€]0,1] and

(BA0)  Wrt(RL HRY) N Wy (R HYP(RY)) o HyHo (R Wyt (R™)),
ifs, B € (0,00),a€(0,2),recR,0ec(0,1)and s, s+, 7+ (1 —0)3 ¢ Zand

(B.11) Hy P (R Wy (R™)) N Hy (R Wyt (R™)) — Wt (R Hy =08 (R™)),
if s € [0,00), 2 € (0,2), € (0,00), 7€ R, 0 € (0,1)and r, 7+ 5, s+ 0 ¢ Z.

Proof. The strategy is the same as for the non-homogeneous spaces ([MS12, Proposition 3.2]).
We abbreviate 7 (K) := F(Ry;K(R")) for F € {H,,W;}, K € {H,,W,}. By applying the
mixed derivative theorem B.42 to the BZP-operators (1 — 0;)*: Hy**(H)) — Hy(H;) and
(—A)P/2: H;’(H]’; NHSY = H;(H;) (see theorems B.68, B.15 and Section B.2.5), we obtain

(1 — at)éa(_A)(lfG)ﬁ/QwHH;(H;) < Hw||H;+a forall 0 € [0, 1].

(Hp)NH ()
By using the invertibility of the operators
(1= 0y HyP(H)) — H3(H}),
(_A)(l—é’)ﬂ/Q . H;+0a(H;+(1_0)B) N H;+0a(H;),
we further have

(1= 80P (= )10 2] oy~ (=AY 20l gy~ ] s 008,

Hence (B.9) is shown.
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Next, for proving the embedding (B.10), we choose some sufficiently small ¢ > 0 and put
st :=stag, 0y :=0Fe. Thens+at+ae =sy +o, s+ ac =54,s5+0a = sy + 0o and
r+(1—-6)8tef =r+(1—601)5. Wenow apply (B.9) with s, 6. instead of s, # and obtain

H;-f—a:l:aa (H;) N H;:taa(H;—i—ﬁ) SN H;—&-Ga(H;-i-(l—G),B:Fa,B).

Applying the real interpolation functor (-, )/, and the identity (Hzﬁo, Hlﬁl)g’p = sz fort =
(1 —0)to + 6t; € R\ Z, we obtain (B.10). The embedding (B.11) follows similarly by choosing
ry:=rFfe 0L :=0Fecsothats+b0a=s+0ratacandr+(1-0)f=ry+(1—-01)5. O

B.46. Theorem ([PS90, Theorem 5]). Let X be a Banach space of class HT, let A, B € BIP(X) with
04 + 0p <  be resolvent commuting, and let § = max(04,0p), 04 # 0p. Then A+ B € BIP(X)
with O+ < 0.

B.47. Theorem (Kalton-Weis [KWO01, Theorem 6.3]). Suppose A € H>*(X) and B € RS(X) are
resolvent commuting and ¢ + ¢% < w. Then A+ B with domain D(A) N D(B) is a closed operator
and there is a constant C such that

|Az| + |Bz| < C|Ax + Bz|, forallx € D(A) N D(B).

Thus, A + B is invertible if either A or B is invertible. Furthermore, if X has property («), then
A+ B € RS(X) with ¢% 5 < max(¢%, ¢7).
B.48. Corollary ([PS07]). Suppose A € H>*(X) and B € RH*(X) are commuting such that ¢5° +
¢R>* < 7. Then A+ B € H>®(X).

Next, we consider the product AB of two sectorial operators A, B.

B.49. Theorem ([PS90, Corollary 3]). Suppose X is of class HT, let A, B € BIP(X) with 0 <
04 + 0p < 7 be resolvent commuting. Then AB is closable and AB € BIP(X) with Oap < 04 + 0p.
If in addition A is invertible, then AB is closed.

B.50. Corollary ((HDHO5, Corollary 2.2]). Let X be a Banach space and assume that A € H>(X)
and B € RS(X) are resolvent commuting such that 0 € p(A) and ¢ + ¢ < 7. Then AB € S(X)
and pap < ¢X + ¢%. If in addition B € RH™(X) with ¢F + ¢R> < 7, then AB € H>(X) with
P%p < 6% + G5

B.2.7. Estimates for Fourier-Laplace symbols. In order to obtain the mapping properties
of linear pseudo-differential operators, we will establish estimates of their Fourier-Laplace-
symbols with respect to the temporal and spatial covariables ), z for 9; and v/—A, respectively.
B.51. Remark (Laplace transform). Let R, = [0,00) and C5p = {z € C : Rez > 0}. Let
[ € L1,0c(Ry; X) be of exponential growth; that is, the integral [ e™“*| f(t)|x dt is finite for
some w € R. Then we define the Laplace transform Lf: w + Cso — X of f by

FON = (L)) = /Ooo e NI d,  (Re > w).

Then Lf € BUC(w + C=0; X) N H(w + Cs0; X). For given 6y € (0, 7], let Hype(Xg,) denote the
vector space of all functions on Xy, that are holomorphic in ¥y, and bounded and continuous
on each closed sector Xy, 6 € [0,6p). Then Cauchy’s theorem leads to

{LF: feHpe(Z0)} = {9 € H(Zr/240,) : A= Ag(A) € Hoe(Er/210,) } -

See [Prii93, Theorem 0.1]. Uniqueness of the Laplace transform: The complex inversion for-
mula

N
f(t) = lim ZL / <1 - ‘J@‘) eHPILf (o +ip) dp

-N



B.2. SECTORIAL OPERATORS AND MAXIMAL REGULARITY 161

applies for almost all ¢ € R and each o > w. The real inversion formula

2\n+1
f(t) = UILI{:OZ Mﬁf(n)(a)

applies for almost all ¢ > 0. The Laplace transform has the following relation to the Fourier
transform F. For each f € L;(R; X) such that f(t) =0, (t < 0),itis Ff(p) = Lf(ip), (p € R).

B.52. Definition (o« < 8, a ~ ). Let D be a set, (X, |- |) be a normed vector space and consider
two functions o, : D — X. We say that « is dominated by 3 (in D) and write

aSpB(@nD) ifandonlyif 3C > 0Vx € D :|a(z)| < C|B(z)].
The functions «, § are said to be equivalent, and we write « ~ 3,if « < fand 5 < a.

B.53. Example. By the concavity of the logarithm and the monotonicity of the exponential func-
tion, we obtain the following estimate.

Va,b € (0,00), 0 € [0,1] : a’' 7% < fa+ (1 — )b < max{f,1 — 0}(a +b).
We will use it frequently. In particular, it implies that a + b < a + a’b' =% + b < 2(a + b); that is,
(B.12) ' <a+bin (0,00)%, a+b~a+a’ % +bin (0,00)2
for every 0 € [0, 1].
Let us generalize these estimates to complex numbers.

B.54. Lemma. For ¢ € (0,7),let ¥4 := {\ € C\ {0} : |arg \| < ¢} denote the open sector centered
at zero with opening angle 2¢. Then

(B13) A+ A~ M|+ Ao in Xy, x g, if o1+ g2 <,
(B.14) |A1 + Ao| > 272 /1 4+ min{0, cos(|arg A1| + |arg Xo|)} (JA1] + [A2])  in C x C,
(B15) A+ da~ A +MTON F N inDy, x By, if0 € [0,1], ¢ € [0,7/2), ¢1 + 2 < 7/2.

Proof. (i) Clearly, the estimate A\; + A2 < |A1] +|\2| applies in C? by the triangle inequality.
Let (Z)l c [0,71’), ¢2 € [0,7‘( — (Z)l) and )\1 S Edn/ )\2 S 2¢2' Then Re()\l/\g) > |)\1)\2| COS((ﬁl -+ ¢2)
where cos(¢1 + ¢2) € (—1,1]. Fora, b, ¢, s € R, s < 1 we obtain

a? + 2abc + b = s(a +b)? + (1 — s)(a + b)® + 2ab(c — 1) > s(a + b)* + 4ab(1 — s) + 2ab(c — 1).
Choosing s = (1 + ¢) yields a® + 2abc + b* > (1 + ¢)(a + b)%. Taking ¢ = cos(¢1 + ¢2) yields
|)\1 + )\2|2 = ’)\1‘2 + 2Re()\1)\2) + |/\2’2 > 5(1 + cos(qbl + ¢2))(|)\1| + |)\2|)2, for )\j € E¢j.

This inequality and the triangle inequality yield the asserted inequalities.
(ii) Let \j € 3y, for ¢; € [0,7), 1 + ¢p2 < mand 0 € [0, 1]. Then (B.12) implies

A AN e S I el 4+ el S I el S A+ g in Dy, x By,
To prove the converse, we estimate as follows.
A+ AN+ A = M2+ 2Re (M da) + Mo+ IATON? 4+ 2Re (()\1 + AQ)XHXQ) ,
2Re (A1 + A2)A028) = 2cos(0(91 + d2))IMa 2~ al? + 2cos((1 = 0)(61 + g2)) M|~ rol H.

Let us abbreviate cs := cos(s(¢1 + ¢2)) for s € R. Since both ¢y and ¢;_¢ are non-negative, we
have 2Re((A1 + A2)A17?)9) > 0 and (B.15) is established. O

Let us derive some inequalities for the elements z = (z;)}_; € BX of the closed bisector

BY§ = (BY)", BYs:= {z =re® cC:reR, |argp — /2| < 5} =iXs U —i%s.
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B.55. Lemma. Let n € N, § € [0,7) and define |z| - := /=2 2= /=", 27 for z € BX; \ {0}.
(i) If § € [0,7/4), then |2| - € s for every z € Bxy \ {0}.
(ii) If 6 € [0,7/4) satisfies 1 + (n — 1) cos(46) > 0, then

n

n — COS 1/4 —n
Hz]_|2<1+( 1 (45)) 2| forall z € BSL\ {0}.

(iii) If § € [0, 7/8], then every z € BX5 \ {0} satisfies

(B.16) n Y4z <|lz|-| < |z|, Relz|- >n"Y*cos(8)|z], Iml|z|_ <sin(d)|z].
Proof. (i) Forevery z = (z;) € BX; \ {0} we have —27 € X5 and hence —z-2 = — 7, 2% €

Y5 by (B.13) and therefore 2| = |/~ ", 27 belongs to Xs.
(ii) Holder’s inequality yields

1/2
|2* = |z[5 = Zj\z]'!2 < nt/? <Zj\2j\4) =n'?|2[] forzeC™

Then the assertion follows from the following estimate.
4 _ 212 _ 279 _ 22 279
el = -3 AP =Y AE=3 AP +0Y  Re ()
212 2112
> Zj\zj| + 200s(45)zj<k]zj|]zk|
= (1 - cos(49)))_ |23 + cos(49) (ijzfﬁ + 22j<k\z§|yzg|)
1— 46
> (COS() + Cos(45)) 12[3.
n

(iii) This is a simple consequence of (i) and (ii). O
B.56. Example. We consider the parabolic symbol
w(X z) =v/p(T+ ) —pz2, XeXy, z € BYY,

where p > 0,7 > 0 and ¢ > 0 are constants and ¢ € (7/2,7) and 0 € (0, 7/8] satisfy ¢ + 20 < =.
Clearly, |w| < 1+ |A[*/? 4 |z|. Then from inequality (B.14) and Holder’s inequality a 4 b + ¢ <
V3Va?2 + b2+ 2 fora, b, ¢ > 0 we obtain

C1 C1 Co
> s 2
lw(A, 2)| > \/\/ 2p7'+\/ 2\ 3 (PIAl + p[22])
1 Je V/C1€2 V/C1C2 n
> 3 /21p7+\/ G p])\]—i-\/ 5 plz?|  for A € ¥y, z € BXY,

where ¢? =1+ cos ¢ > 0 and 3 = 1 + cos(¢ + 2nd) > 0. From (B.16) we conclude that
w\,2) = Vp(T+A) —pu22 ~ 1+ A2 422 forde Yy, 2 € BY§.

B.2.8. Elliptic differential operators on manifolds. The subsequent theorem of Amann,
Hieber and Simonett [AHS94] guarantees that certain elliptic operators on compact manifolds
are R-sectorial and have a bounded %> functional calculus in L,(M;G). Here (M, g) is a com-
pact n-dimensional Riemannian C"™-manifold without boundary (m € N) and G := (G, 7w, M)
is a C™-class vector bundle over M whose fibers 771({z}) (x € M) are isomorphic to a Banach
space E = C of finite dimension N. A trivializing coordinate system (, x,) for G consists
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of a chart x: U, — E and a trivializing map 7~ }(U,) — U, x E, g — (7(9), xx(9))- The lo-
cal representation of a section u of G with respect to (k, xx) is given by u, = xx o uo k™,
k(Ux) = E.

For given p € (1,00) and k € {0,1,...,m}, we define the Sobolev spaces H]’j(M; G) of
all sections u of G such that gu, belongs to H}(R™; E) for every ¢ € C¥(k(Uy)) and for ev-
ery trivializing coordinate system (k, x.). Moreover, HI’f(M ;G) is a Banach space with re-
spect to the norm HUHH;;(M;G) = > |(px o Iﬁ_l)u,iHHg(Rn;E) where the sum is taken over a
finite partition of unity (¢,). for M, subordinate to (U,).. Hence for K = |{x}|, the map
ro HY(R™ CN)E — HE(M; G), (uy)x — uis a retraction and thus H (M; G) inherits many em-
bedding and interpolation properties from the space Hf(R"). The Lebesgue spaces L,(M;G)
and the Sobolev-Slobodeckii spaces W,; (M; G) for s € [0, m] are defined analogously.

Let A: H'(M;G) — L,(M;G) be differential operator with representation A, (y, D) =
2 la<m Wr,a(y) D for y € K(Uy), where axo € C(k(Uy); L(E)) and D; := —id; for1 < j < n.
The operator A is called ¢-elliptic (6 € [0, 7)), if its principal symbol A satisfies

o(A-(&)) c{Ae C\{0}: larg\| <0}, forallz e M, e TryM\ {0}.

Note that A, (&%) € L(m~1({z})) is a homogeneous polynomial in &;.

B.57. Theorem ([AHS94, Theorem 10.1, Theorem 10.3]). Let M be a compact n-dimensional C"™-
manifold (m € N) without boundary, let G be a complex C™ {2} vector bundle over M and let p €
(1,00). Let A: HY(M;G) — Ly(M; G) be a linear differential operator with continuous coefficients
such that A is Oy-elliptic for some 0y € [0, ).
(i) For every 6 € (0o, ) there exists pg > 0 such that pg + A: H'(M;G) — Lp(M;G) is an
isomorphism and R-sectorial with R-angle 6.
(ii) If Ax has C®-coefficients for some ¢ € (0,1), then for every 0 € (0,00) there exists pg > 0 such
that 119 + A has a bounded H> functional calculus in L,(M;G) with H*°-angle 6.

B.58. Corollary. Let ¥ C R"™ (n > 2) be a compact C*-hypersurface, let Ay, = divy, Vs, = ¢¥(0,0; —
Afjék) denote the scalar Laplace-Beltrami operator and let p € (1,00), K = C.
(i) For every ji € (0,00), the operator i — Ax: HY(X) — Ly,(X) is invertible and R-sectorial with
R-angle zero.
(i) If ¥ € C?*¢ for some ¢ € (0,1), then for every 6 € (0,7) there exists g € (0,00) such that
po — Axy has a bounded H> functional calculus in Ly(X) with H>-angle 6.
(iii) Let \y > 0 denote the smallest non-zero eigenvalue of —Ay.. Then for every jn € (—A1,00), the
operator ju — Ax: H2(X) N Ly o(X) — Lyo(X) is invertible and R-sectorial with R-angle zero.
(iv) Let s € [0, 00) and assume that ¥ be smooth and let s € [0, 00). Then for every p € (0,00), the
operator j1 — Ayx;: W;*Z(Z) — W (%) is invertible and R-sectorial with R-angle zero.

Proof. (i) The domain H2(X) of Ay is compactly embedded into the ground space L, (%)
and therefore the spectrum of Ay, consists solely of eigenvalues with finite multiplicity. The
surface divergence theorem implies that all eigenvalues are non-positive and that zero is an
eigenvalue with multiplicity one (the corresponding eigenfunctions are the constant functions).
Hence, by considering the operators —e? Ay, (1 € (—7/2,7/2)) and using Theorem B.57.(i),
Theorem B.22 and Theorem B.23, we obtain the assertion.

(ii) Since g” € C*¢ and Afj € (¢, the assertion follows from Theorem B.57.(ii).

(iii) We have the direct decomposition L,(X) = L, 0(X) ® K, where we identify K with the
constant functions, which form the eigenspace for the eigenvalue zero. Hence the spectrum of
the realization of —Ay; in L, o(X) is contained in [, c0) and the assertion follows as in (i).

(iv) By means of a localization procedure as in Section 2.1 it can be shown that the operator
w— Ay H;,“*Q(E) — HI’f(E) is invertible for large ;.. This assertion holds true for all x> 0
by Theorem B.22. By means of retractions r: W3 (R"~ )% — W3$(%) and real interpolation, it
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follows that 1 — Ay: W;*z(E) — W, () is invertible and R-sectorial with R-angle zero for
every s € [0,00). O

B.59. Corollary. Let ¥ C R™ (n > 2) be a compact C2-hypersurface, let p € (1,00), let Vs, denote

the covariant derivative on X and let Ag H2(E TY) = Ly(3;TY), sz = go‘ﬁV ng denote the
Laplace-Beltrami operator for tangential vector fields on ¥ (see page 141).
(i) For every p € (0, 00), the operator p — As: H2(3;TY) — Ly(3; TY) is invertible.
(ii) Let (TX)c denote the complexification of TY. Then for every p € (0,00), the operator jn —
NSE H2(3; (TE)c) = Lyp(%; (T'S)c) is an isomorphism and R-sectorial with R-angle zero.
(iii) If ¥ € C?T¢ for some € € (0,1), then for every 6 € (0, ) there exists ug € (0,00) such that
19 — Ay, has a bounded 1> functional calculus in L,(3; (T'Y)c) with H*-angle 6.

Proof. The proof is similar as for Corollary B.58. O

B.3. Joint functional calculus and mixed-order systems

B.3.1. The joint 7{*°-functional calculus for (J;, V). We collect some results of Denk and
Kaip [DK13] on the joint functional calculus operator tuples like V = (0,...,0,) and (0}, V).

B.60. Definition ([KW04, p. 4.9]). We say that a Banach space X has property («), if there exists

C > 0 such that
dudv<C/ / HZ] . (V)X N

//HZ“ S —

foralln € N, Qi € C with ]aij] <1, Tij € X.
B.61. Remarks ([KW04, p. 4.10], [DK13, Remark 1.15]). Let X have property («).
(i) If Y is a closed subspace of X, then Y has property («).

(ii) If Y is isomorphic to X, then Y has property («).

(iii) If (€2, p) is a o-finite measure space and p € [1, 00), then L, (€2, i; X) has property ().

(iv) Every Hilbert space has property («).
B.62. Definition (Ground space W, [DK13, Definition 1.71], [Kail2, Definition 2.25]). Letn € N,
D0, P1, q0, q1 € (1,00), s, w € [0,00), r € R and X be a Banach space of class H7 with property
(). Then we let

du dv

{BPO,QO?H:DO}ﬂ if s > 0,

W:=e" o F (R K' (R X)), Ke{Bp g, Hpy}, Fe€ {{Hpo}’ s

Here the space e (F*(R;Y) consists of all functions ¢ — e“'u(t) such that u € (F*(R;;Y),
equipped with the norm ||t — e“*u(t)||, 7= (= ;v)-

B.63. Definition (Sectors, bisectors, curves, cf. [DK13, Definition 1.1]). For ¢ € (0,7),let ¥, C
C denote the open sector

Ye={z=re:r € (0,00), || < ¢} ={z€C\{0}:|argz| < ¢}.
For ¢ € (0,7/2), let BEs C C denote the open bisector
BYs ={z=7re%:r c R\ {0}, |¢ — /2| <} =i¥s U —i%s.
For ¢ € (0,7) we define the curve I';, C C by means of the parametrization R > r —
r|e~®sien” Hence I'y, = 0%, is oriented counter-clockwise around .
B.64. Definition ([cf. DK13, Definition 1.17]). Let n € N, let Q@ C C" be open and let Y be a
Banach space. We define
(i) H(;Y), the vector space of all holomorphic Y-valued functions on €2,

(i) H>(2;Y), the vector space of all bounded holomorphic Y-valued functions on €2,
(i) HC(Y)={f e H®(Y):3C, s >0Vz2€Q:|f(2)]y < C’H;‘:l(min{\zj\, |z;71H)*},
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(iv) Hp(; ) ={f e H(Y):3C, s >0Vz € Q: |f(2)]y < C’H?Zl(max{]zﬂ, Ei
Thus the spaces H3°(£2; Y') and H p(£2; Y') consists of functions that have a polynomial decay
or a polynomial growth at zero and at infinity.

B.65. Remarks ([DK13, Definition 1.20]). Let 7j (j € {1,...,n}) be closed linear operators in a
complex Banach space X such that each T} is sectorial or bi-sectorial and such that all resolvents
the A\ —T;)7 %, (u— T}) ! commute (\ € p(T Y, e p(Ty),i,1€{1,...,n}).

For sectorial T; we choose €2; := Xy, with some 0; € (¢r;, ) and Ij :=T,,0%.... For
bi-sectorial T; we choose (2; := BY;s, with some §; € (QO%,T('/ 2) and T'; := 0%y, with some
¢j € (). Weput Q :=Qy x--- x Q andI' :=T'; x --- x I';, and we let By C B(X) denote the
commutator algebra of {(A —T})™' : X € p(T}), j € {1 .,n}}in B(X).

(i) Joint H>°-functional calculus. For f € 7—[0 (€ BT) we define

FT) = (2m / H 14z € BX).

(i) Joint H p-functional calculus. For k, n € N, the functions
k22, K2z,
(I+kz)(k+21) (L+kzn)(k+ 2n)
belong to H§°(2) and for every f € Hp(£2;Y) there exists m € Ny such that ¢}, f € HG"(€%; Br)

for all £ € N. Hence, for f € Hp(€2; Br) we may choose m € No with 47", f € H(Q; Br) and
define

Yrn(2) =

f(T): D(f(T) = X, z—=p(T) """ )Tz

with domain D(f(T)) :={z € X : (W™ f)(T)x € R(Y(T)™)}.
B.66. Definition (Joint H*°-functional calculus for (u + 9, V), [Kail2, Definition 1.10]). Put

Q:=%4 x BYs, x---BY;,, where¢ e (n/2,m),d; € (0,7/2).

Let 1o € [0,00) and consider the operators 0y, 0y, ..., 0z, as closed operators in W. For the
tuple (i + 0¢, V) we define the joint H*°(£2)-functional calculus

f=f(p+0,V): / / fr,2)(r—p—0) | (2 — 8,.) 7 td(T, 2),
( ' 27” (2mi)n Ly JTI1,; Fa{.U(*FSQ)) (72X " H](] ]) (7:2)

where f € H°(2) and gb’ € (7/2,¢), 8; € (0,0;) (the integrals do not depend on ¢/, &}). The
resolvents (7 — p — ;) ~! and (z; — 9y, ) are considered as bounded linear operators in the
same ground space W according to Definition B.62.

B.67. Theorem (Time derivative, [DK13, Theorems 1.83, 1.84]). Let r, s, w € [0, 00) and let F, I,
X be as in Definition B.62. Let

Di:us Opu, e oFTHR,; X) = e o F5 (R, ; X)

denote the realization in e (F*(R; X) of the time derivative. Then the following assertions are valid.
(i) Dy has an R-bounded H*°-calculus with qﬁ%fo =m/2.
(ii) The operator Dy has
(a) the resolvent set p(D;) = {z € C: Rez < w},
(b) the residual spectrum o,(D;) = {z € C: Rez > w},
(c) the point spectrum o,(Dy) = 0,
(d) the continuous spectrum o.(Dy) = iR + w.



166 B. FUNCTIONAL ANALYTIC METHODS

B.68. Theorem ([MS12, Proposition 2.9]). Let p € (1,00), X € HT, s € [0,00), a € (0,2),
€ (0,00). Then the operators
(w—08)* in Hy(Ry; X) with domain Hy™(Ry; X),
(w—08)* in W3 (Ry; X) with domain W7(Ry; X), s, s +a ¢ Ng

are invertible and have bounded H> functional calculi with angle not larger than o /2.
B.69. Theorem (Space derivatives, [DK13, Theorem 1.81]). Let
Dyt Opyu, €20 F 3Ry KT R™ X)) — e 0 F5(Ry; K'(R™; X))
denote the realizations of the partial derivatives in e oF°*(Ry; K"(R™; X)). Let 6; € (0,7/2) and
Q, = [, BY;,. Then the tuple D = (Dy, ..., Dy, ) has a bounded joint H>(2y)-calculus.
B.70. Theorem ([Kail2, Definition 1.15, Theorem 2.47]). Let W = ¥ o F*(R4; K" (R™; X)) be as

in Definition B.62, let Q = ¥4, x BXs, x --- x B, be as in Definition B.66 and let o > 0. Then the
tuple (o + Dy, D) has a bounded joint H>°(Q)-functional calculus in W.

B.3.2. Parabolic mixed-order systems. We define order functions and Newton polygons.
An example is given in Figure B.1 on the facing page. Then we consider a class of parameter-
dependent symbols S(X4 x BY; x K), which are used in Section 3.1 for solving the Fouier-
Laplace transformed differential equations.

B.71. Remarks ([DK13]). (i) A continuous and piecewise linear function y: [0,00) — R is
called an order function if p is convex or concave. In this case there exist M € Nand v, > 0,
my(p), bi(p) € Rforl e {0,..., M} with0 =:v <y < - - < vy < Ym+1 := 0o such that

n(y) = bi(p) +mu(p)y  fory € (i, vi41),

and we have
mi—1(p) < m(p),  bi—a(p) = bi(p)  forie{l,..., M}
(that is, i is convex) or
mi—1 () > my(p),  bi—i(p) <bi(p)  forie{l,...., M}
(that is, p is concave). If p is convex, then we have
w(y) = max {b(p) + my(p)y:1€{0,...,M}} fory € 0,00).

(ii) A convex [concave] order function p is increasing [decreasing] if my(p) > 0 [my(p) < 0]
foralll € {0,...,M}. A convex [concave] order function p is increasing [decreasing] if m;(p) > 0
[mi(u) <O0]foralll €{0,...,M}.

(iii) An order function p is called strictly positive if u is convex and my(p) > 0 and by () > 0
foralll € {0,..., M}. An order function 1 is called strictly negative if —p is strictly positive.

(iv) For a given finite set v = (7}, sj)j+01 C [0,00)?%, J € Ny, the associated Newton polygon
N(v) is defined as the convex hull in R? of the set of vertices (0,0), (0,s;), (r,0), (r;,5;),
je{0,...,J+1}.

B.72. Definition (Symbol class S(X4 x BYj x K), cf. [DK13]). Let K C C™ be compact, ¢ €
(7/2,7), 5 € (0,7/2). Then we let (X4 x BE; x K) be the set of all functions
(B17)  P:TyxBIy x K = C, (Az9) 0 P\ z9) =Y x;(0)w;(X 2)e;(M)i;(2),

JjeJ

where J is a finite index set and for all j € J,
(i) x;: K — Cis continuous and nontrivial,
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FIGURE B.1. y-order and Newton polygon of the symbol w(), z) = (A + |22 )'/2.

(ii) w; is holomorphic in %y x BX?, continuous in ¥, x BY; and satisfies
wj(772)‘7772) = anwj()‘v Z) 7é 0 for n >0, (>\a Z) € i(ﬁ X ﬁg \ {(07 0)}
with some N; € [0, 00),
(iii) ¢; is holomorphic in ¥4, continuous in ¥, and satisfies
pi(mA) =n"igj(\) #0  forn >0, A e Ty \ {0}
with some M; € [0, c0),
(iv) %; is holomorphic in BX}, continuous in BY5 and satisfies
pi(nz) =n"i(z) 0  forn >0, z € BE; \ {0}
with some L; € [0, 00),
(v) for every v € (0, oc], the y-principal part 7, P (see below) is not identical zero.
B.73. Definition (y-order and y-principal part, cf. [DK13, cf. Definition 2.10]). Let P € S(X x
BX§ x K) with representation (B.17). We put P[] := P(-,;¢) and J[V¥] := {j € J : x;(¥) # 0}.
For ¢ € K with J[¥] # () we define the y-order

m%]{’YMj + Njmax{y/2,1} + L;}  fory € (0,00),

Jje

d(PIY]) := { max {M; + N;/2} for v = oc.
jeJ1]

Let
9o {7 € J:yM; + Njmax{v/2,1} + L; = d,(P[9))} for v € (0, c0),
T = {j€J:M;+ N;/2=d(P[Y))} for v = ooc.

We define the y-principal part

. P('\nz;9)
nlgglo RN R Z X (0)myw; (A, 2); (N (2) for v € (0, 00),
PO\ 2 0) K jed [9)
Ty ,2;0) =
. P\ z9)
Jm S = 2 (0w 0ei(An(x)  fory = oo,
JE€Jso|V]
where

wi(0,2)  fory € (0,2),
Tywj (A, 2) 1= ¢ wi(A, 2) forv =2,
w;(A,0) for v € (2, 00].

B.74. Definition (N-parabolic symbol, cf. [Kail2][DK13]). The class Sy (X4 x BX; x K) of
N-parabolic symbols consists of all functions P € S(X4 x By x K) such that
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(i) mP(:,-,?) is nontrivial for all v € (0, 00], ¥ € K and all ¥ — d(P(-,-, 1)) are constant,
(ii) P satisfies a two-sided estimate

[P(A, 2, 0)] ~ Z(r s)ENy

where Ny denotes the set of the vertices of the Newton polygon associated to d-(P).

B.75. Theorem (cf. [DK13, Theorem 2.56, Corollary 2.57]). The symbol P € S(X4 x BX5 x K) is
N-parabolic if and only if

TP\, 2,9) #0  forally € (0,00], A € £\ {0}, 2 € BEy \ {0}, ¥ € K.

The next result implies that every N-parabolic symbol induces a topological linear isomor-
phism with uniform bounds with respect to a compact parameter set K. We let 7°(K") be as
in Definition B.62 and apply the joint functional calculus for (p + 0%, Oy, . . ., O, ) from Remark
B.65.

B.76. Theorem (cf. [Kai12; DK13]). Let P € Sy(34 x BX; x K), ¢ € (1/2,7), 6 > 0. Then there
exists pig > 0 such that 9 — P(uo + -, -,9) 71, K — H® (X4 x BXY) is bounded. Moreover, for every
such i, there exists C' > 0 such that for all j € [, 00) and ¥ € K, the realization

P(,u + 8t, 8z1, . ,&Cn, 29) : ﬂ(r DENy(P) (Ofs’+8(]CT’+7")> — Ofs/ (]Cr/)

is an isomorphism and both P(y + 04,0y, s - ., 0, 9), [P(1t + 04, Oy - - -, O, , V)] 1 are bounded by
C.
B.77. Definition (cf. [DK13]). Let ¢ € (7/2,7), 6 € (0,7/2) and K be a compact topological
space. A function £: ¥4 x BX; x K — C™*™ is called an N-parabolic mixed-order system if

(i) L(-,-,v) is holomorphic and polynomially bounded, uniformly in ¥ € K,

(ii) det £ is N-parabolic in the sense of Definition B.74,
(iii) there are order functions s; and ¢; such that s; 4 ¢; is an upper order function for £;; for

allj,i e {1,...,m},
(iv) dy(det £) = 377, (s;(7) + ti(7)) for all v € (0, o0].
B.78. Definition (cf. [DK13, Definition 2.78]). Let x; and p2 be convex increasing order func-
tions such that ;1 — pe9 is an order function. Let p € (1, c0). The scale
(]:la ’Cl) € {(Bpp, Hp)a (Hp’ Bpp)}a le {Oa s M}a
is called (p1, p2)-admissible, if that there exists k € {0,..., M — 1} such that
(Fo, Ko) = -+ = (Fk, Ky) = (HP7BPP)>

(Frt1:, K1) = - = (Fur, Knr) = (Bpp, Hp),

IAI°|2|”  uniformly with respect to (A, z,9) € X4 x BXg x K,

and

Ok (p2), Mk (p2)) # (b1 (p2), me+1(p2))  if g1 — po is convex,

Ok (p1), mi(p1)) # (b1 (pa), k41 (1)) if gy — pg is concave.
B.79. Theorem (cf. [DK13, Theorem 2.69, Corollary 2.80]). Let X be a Banach space of class HT
with property (o). Let L: Y4 x BYs x K — C™ ™ be an N-parabolic mixed order system such that for

each i, j € {1,...,m}, the order function sj + t; is convex and increasing or concave and decreasing.
Let p>0,s,> 0,7 €R,1€{0,..., M}, such that

i (7) = max{[s) + mu(t:)]y + i+ bu(t:)}, >0,
iy (7) 1= mac{[sp —m(s))ly + 11 = bils)}, v 20, g€ {l,...,m},

are convex increasing order functions. Furthermore, let p € (1, 00) and let the scale
(ﬂvlcl) € {(Bpp7Hp)7(Hp7Bpp)}7 l € {07‘-'7M}7
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be (pim, , piv, )-admissible for all i, j € {1,...,m} and let

;> max{max{—my(t;),m(s;)} : 4,5 € {1,...,m}} foralll €{0,... k},
with k from Definition B.78. With o F (K]) := oF} (R4; IC] (R™; X)) we define the spaces

M sp+my(ti) (p-rj+bi(ti) M s;—my(s;) r—bi(s5)

Hi:= ﬂl:ooj:ll (Kll ) ’ K= ﬂl:ooj:ll J (’Cll ] ) '
Then there exists 19 > 0 such that for all T > T,
L(r+ Dy Dy 9): [ [ B> T F
is a topological linear isomorphism and its inverse
(L(T 4+ Dy, Dy, 9)) " = L7 + Dy, Dy, 9)

is uniformly bounded with respect to ¥ € K.

B.4. Analytic Nemytskil operators

The nonlinear problem (T) contains nonlinear operators (u, 7, h,t,z) — F(u, 7, h)(t,z) where
F(u,m, h)(t,z) only depends on the values of (u, 7, h) and its derivatives at (t,z). These so-
called Nemytskii operators are studied in Section B.4. In order to prove the analyticity of a
Nemytskii operator, we define it in an open subset of a Banach space X such that

(i) X — BUC(M;K) for some metric space M,

(ii) X is a Banach algebra with respect to pointwise multiplication,
(iii) we have u~! € X for every u € X with inf{|u(z)|: 2z € M} > 0.
B.80. Remark. Let ¥ C R" be a compact smooth hypersurface and let § € (0,1), p € (1,00).
Then we have

Vo foru, ve WHE)N Lo(E).

[[UU]]Q,p < HU’HOO [[vﬂﬁ,p + [[u]]ﬁ,p
Therefore the spaces Wlﬁ“*e(E) NWE(S) (k € No, 0 € [0,1], p € (1,00)) are multiplication
algebras.

One more general result is given in
B.81. Lemma (cf. [Mey10, Lemma 1.3.19]). Let 2 C R" be a domain with compact smooth boundary,
or 2 € {R™, R }, or let §) be the boundary of such a domain. Let further X be a Banach space of class
HT,let s € (0,00) and p € (1,00). Then there exists C > 0 such that

1f9llws@:x) < Clf sy lgllws@x) + Cllf lws@seo 19l L. @:x)
forall f € W5 (4 B(X)) N Loo($2;B(X)) and g € W, (25 X) N Loo(2; X).

Hence W (¥) is a multiplication algebra for s € (0,00), p € (1,00) with s — (n —1)/p > 0.
B.82. Definition. Let M be a measure space, let X, Y be Banach spaces, U C X be open and
f: M x U — Y be a Carathéodory function; that is,

(i) u— f(x,u) is continuous for almost all x € M,
(ii)) x — f(x,u) is measurable for all u € U.
Then the map
F: UM Y M  ues o Fu)(z) = flz,u(z)))
is called the Nemytksii operator (of order zero) induced by f.

B.83. Definition. Let M be a set and K € {R, C}. A Banach space X C K™ is called a multipli-
cation algebra if pointwise multiplication

XxX =X, (u,0)—u =[zx— ulx)v(x)]

is continuous. In this case there exists Cx > 0 such that ||uv| x < Cx|lul/x|v||x forall u,v € X.
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We collect some information on analytic operators between open subsets of Banach spaces
from Appell and Zabrejko [AZ90], Deimling [Deil0], and Zeidler [Zei86].

Let Xy, ..., Xk, Y be Banach spaces over the same scalar field K € {R,C}. We say that
a k-linear operator 7': Xy x --- x X, — Y is bounded, if there exists a number C' > 0 such
that | T(z1,...,z)|ly < Cllzi||lx, - - ||zk| x, for all tuples (z1,...,zx). The infimum of such
numbers C'is the norm of 7', denoted by ||T'[| or ||T[[gx(x, x...x x,.;v)- We put

Bk(Xl X X X3 YV):={T: Xy x -+ x X} = Y : Tis k-linear and bounded}.

For k = 0, we put Xj x --- x X := {0} and B°({0};Y) := Y. For a multi-index o € N§ we let
={je{l,....k} o #0}and ¢: {1,..., K} = {1,...,k} be strictly increasing such that

ag(j) # 0 for all j. Then we identify X" x --- x X with X(Z(‘Ol()” -x X E"[((I)() and define

B (X" x - x XY = Blel(xor x ... x XY,

AmapT: XF=Xx--xX — Y is called symmetricif T'(x1,. .., xx) = T(T5q), - - -, Tor)) for
all tuples (1, ...,z;) and all permutations o of {1,2,...,k}. Themap T: X" x--- x X;** (a €
NEY is called partially symmetric, if it is symmetric with respect to every tuple (z;1,. .. ' Tjay) €
XJ%' when the other variables are fixed. We define

nym( Y):={T € B¥(X*;Y) : T is symmetric},

Bom (X7 % -+ X X,?k;Y) = {T € BlI(X{ x - x X, Y) : T is partially symmetric}.

sym

Amap M: X; x --- x X, — Y is called monomial (operator) of degree o € NE induced by the
multilinear map T' € lS’Sym(Xf‘1 X oo x XPEY) if
M(xy,...,xp) =T, ... ap*)  forall (z1,...,2x) € X1 X -+ x X,

where 27 denotes the tuple (z;,...,2;) € X;”.

A map P: X; x --- x X, — Y is called polynomial (opemtor) of degree lesser than or equal
to o € NE, if there exist finitely many monomials M@ : X7 x -+ x X, — Y of degree a(?) € Nk
with o) < asuch that P = Y, M),

B.84. Definition (Analytic operator). Let X, Y be Banach spaces over K € {R,C} and U C X
be open. We say that F': U C X — Y is (K-) analytic at u € U, if there exists » > 0 and
symmetric operators Fj, € Bt (X Y), k> 0,such that

sym
(B.18) Zk:0||Fk||Bk(Xk;y)||h||’;< <ocoand F(u+h) = ZkzoFkhk forall h € BX.

A function is called analytic in U, if it is analytic at every point ug € U.

If F is analytic at u, then F is C™ near u and we have Fj, = F¥)(u)/k!. We next define

rr(u) == min {distx (u,0U),Cp(u) "'}, Cr(u) = lim supy, .|| F® (u) /! HlB/,ka )

Then the Taylor series ;- F (k) (u)R* /k! converges in Y and equals F(u+ h) for ||h|x < 7p(u).
If K = C, then a function is analytic in U if and only if it is holomorphic in U. We then have

k! F(u+Ch)
F) (hF = 2 Sl 1)
FF (u)h* = 57 /IC o d¢  for 0 < p||hllx <rp(u), k € Ny,
and Cauchy’s estimates are valid:

k!
17O @) ey € Gl F sy for0.< 8 <rr(u), k € No.
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B.85. Remark (Chain rule). Let U C R" and V' C R¥ be open subsets. The following chain rule
is valid for sufficiently smooth maps f: V — Rand u: U — V atz € U (see [RS96, (5.2.1/6)]).

(foue) = 3 S b0, 0 FO ()0 ) -+ 07 (),

-----

Here the second sum is taken over all multi-indices 8V, ..., 30 ¢ Ni \ {0} such that g +
-+ BU) = wand Caj,p(1), . pl) are some constants that do not depend on f and w.
We next state Fraenkel’s chain rule [Fra78, Formula A]. Let X, Y, Z be Banach spaces,
UCX,V CYbeopensetsandlet f € CN(V;Z),u € CN(U;V). Then f ou € CV(U; Z) and
forne{l,...,N},z € Uand (vi,...,v,) € X", we have

f () o u .
(B.19) (fou Un e ZZ 'B' u 0'(1)‘..,UO'(,Bl))".(U(B])UO'(TL—,B]'—FI)..'/UO'(H))7

Jj=1 B,o

where the sum Z is taken over multi-indices 8 € N/ such that |3| = n and all n! permuta-
tions o of {1,. n} It can be shown that

(B.20) Zﬁemwzﬂ {B e N :|B| = n} <j_1> for1 < j <n.

B.86.Corollary. If F: U C X -V CYandG:V CY — Zareanalytic, then GoF: U C X — Z
is analytic.

Proof. Let Mp = sup;cy||[FY(2)/5!]|*9, Mg = sup;cy||GY) (F(x))/4!]|/7 for 2 € U. The chain
rule (B.19) yields

Go FY™ (g . n . .
NE DN < gy aiiip e - 16 = )|
! 2
< MR M (’;_ i) = MpMg(1+ Mg)* ™t
j=1

Therefore 3, (G o F)(™ (z)h" /n! converges for ||h| < [Mr(1 + Mg)]~". The representation

J
0)(P(a | 0 (F(a O ()
c(F(e+h) =3 CEED) (i gy peyy = 3 @) (Z Fz(|)h) |

! !
iz > 1>1
is valid for small h. As in the proof of [Fra78, Formula A] we rewrite the right-hand side as
+ZZ Z Z '5' F(ﬁl)( VP - (FO) (2)nP).
n>1j=1 BeNJ, |Bl=n ©

By the chain rule, G(F(z + h)) coincides with its Taylor series for small h. Therefore G o F'is
analytic at . O

B.87. Proposition. Let M be a metric space, X — BUC(M; K) be a multiplication algebra, U C K™
(m € N) beopen and f: U C K™ — K be analytic. Define

U={ue X" u(M)CU, infru(M)) >0, foueX, Cp(u) < oo},
Cr(u )—hmsup]_ona fou/j! HBJ(XM)]X foru e X™ withu(M) C U.

Then F: uw— fou U C X™ — X is analytic.



172 B. FUNCTIONAL ANALYTIC METHODS

Proof. For all u € X™ with u(M) C U and all h € X™ with ||| xm < C(u)~!, the Taylor
series .- FU)(u)h? /§! converges in X. Since f is analytic on u(M) C U, we obtain the
representation

Fu+h)(x) = f(u(z) + h(z)) = ijo
provided |h(z)| < rf(u(x)). From X — BUC(M;K) we infer that
(h(@)] < Ihlsucann < 1 socon lbllxn < infrp@u(dD) < rpu(z)  foralls € M,

& f(u(z))h(z) /! fora e M,

for h € X™ with || bl xm < ||IH)_(1_>BUC(M) inf r¢(u(M)). Therefore F is analytic at v with
re(u) > min{HIH)_(LBUC(M) infrp(uw(M)),Cp(u)~'} > 0. O

B.88. Proposition. Let M be a metric space, X — BUC(M;K) be a multiplication algebra and
m € N. Then the map A — [A(")]71, {A()) € X™*™: [A(-)]7L € XX} — X™X™ s gnalytic.

Proof. Let U := {A € K™*™ : Aisinvertible} and f: A+~ A~1, U Cc K™*™ — K™*™, Then
(B21) & f(A)(By,..., By) = (1> (HJ

i=1
where the sum is taken over all j! permutations o of {1,. .., j}. Hence C;(A) = |A~!|for A € U.
For A € U and B € K™ ™ with |B| < |[A7!|7! we have A+ B = A(I + A™!'B) € U and thus
distgmxm (A, 0U) > |A71|71. Therefore f is analytic with r¢(A4) = |A~1|~1.
The space X™*™ with norm ||-|| x := ||-|| xmxm is a Banach algebra with respect to pointwise
matrix multiplication and there exists Cy > 0 such that || AB| x < Cx||A| x|/ Bl x. Hence

107 FAC)) |lx < CHATHT 5! forj € N, A € X™* ™ with A~! e X™*™,
Proposition B.87 with Cr(A4) = C%||A7!||x < oo yields the assertion. O

(A’lBg(i))> A=Y forj € Ny, B € K™,

B.89. Proposition. Let M be a metric space and X — BUC(M;K) be a multiplication algebra. Then
the map F: u v u(-)/2, {u € X :infy dist(u(-),R_) > 0, u'/?, u~' € X} — X is analytic.

Proof. The map f: z — z/2, K\ R_ — K is analytic with Cf(z) = |2| and r;(2) = dist(z,R_)

and
Ffoull”" |1 1 2k =3\ [ pirja sk 1k
S D (R RPN - < O 1/21/k), —1
12 =l ((am) - (FB2)| e < el 211
with limy,_, ¢, = 1. Hence Cp(u) < Cx||u™!||x and Proposition B.87 yields analyticity. O

B.90. Lemma. Let ¥ C R" (n > 2) be a compact smooth hypersurface and let s € [0,00), p € (1,00),
and m € N. Then the pointwise matrix inversion operator

A = ACTH {A e (W NO) (K™ ™) [JAC) oo < 00} = (W NO)(S; K™ ™)
and the pointwise square root operator
u() = Vu(), {ue (W;nC) (L) infydist(u(-),R_) > 0} — (W5 N C)(Z;K™™)
are analytic.

Proof. The matrix inversion operator is well-defined, since we can control A~ lin the W;-norm
by means of the identity (B.21), Lemma B.81 and the inequalities

1A < [ZPPIA oo, [A™ o < 14712 [ATo-
Then Proposition B.88 yields analyticity. The second assertion follows from the estimates

IWall, < 1S1VPulli?, [Vadop < (2infs[ul/?) " [u],, - O
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B.5. Computation of the boundary symbol

For the derivation of the boundary symbol in Section 3.1.1 we have employed the identity (3.13)
on page 58. This identity can be checked with the software Maxima [Max] with the following
source code.

gaml: %Somegal[l]+z;
gam2: %Somegal[2]+z;
%alpha[l]: %smu[l]x%omega[l]+*gaml;
%alphal[2]: %mul[2]*x%omega[2]xgam2;
%0megal[p]l: %mul[l]=*x%omega[l]rgaml+3Imul[2]*x%omega[2]+xgam?2;
%$0megals]: $muls]*z"2
cl[6]l*smu[l]*%omegal[l]+c[6]*x¥mul[2] x%omega[2]+;
Lwl: c[5]*xzx%alpha[l]* (Smull]-%mul2])
+ c[6]*%mull]*%omegall]*x%alphal2]
+ c[6]*%mul2] *%omega[2]*x%alphal[l];
Lw2: c[5]*zx%alpha[2]*« (smu[l]-%mul[2])
- c[6]*%mull]*%omegall]*x%alphal2]
- c[6]*%mul2] *%omega[2]*x%alphal[l];
Lg: c[S5]*z*x(smul[l]-%mul2])
+ c[6]*%mul2] x%omega[2] — c[6]x%mu[l]*%omegall];

ratvars(z,%smul[l],%mu[2],%omegal[l], $omegal[2], $lambda) ;
B: matrix ([-%omega[2]+x%0mega[s]*%$Omega [p]

+z+xLw2-z"2*%0mega [p] *%lambda[s] *%omega[2],
Lwlxz, —-c[l]l*xz"4, Lg*xz"2],
[$omega[2], %omegal[l], O, 0],
[-%alpha[2], —-%alphall], %lambda, -z],
[(2x%mu[2]-c[2]) *%omega[2] *%0mega [p] *$0mega [s]
-2x%theta[3] xz*xLw2
+2+%theta[3]*x%lambdal[s] *%omega[2] xz  2x%0mega [p],
2xsmu[l]+x%omegal[l] *$0Omega [p] *%0mega [s]
—-2+%theta[3] *Lwlx*z,
(c[%$sigma]l+%thetal4]) *%0Omegal[s]*z 2
+2+xc[1l]*%theta[3]*z"4,
%0mega [s] *$0Omega [p]

—-2x%theta[3]1*xz"2*xLqgl);
detB: expand (determinant (B));

factor (detB) ;

P: expand(divide (detB, $omega[l]*x%Somegal[2]
*(smu[2] x%omega[2] xz+¥mu[l] x%omega[l] *z
+$mu[2] *%omega[2] "2+%mu[l] *%Somegal[l] "2)
* (Smul[s]*z " 2+c[6]x%smu[2] xSomega[2]

+c[6]*x%mu[l]*x%omegal[l])) [1]);
Q: —-scsimp (P,

+%$lambdal[s])

($theta[4]+c[%sigmal) » ($mu[s]
=%beta[s] *d,

+c[l]*xc[2]+2xc[l]*%theta[3]
$mu[s]+%lambda[s]=%betal[s]);
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List of symbols

Numbers
C the complex numbers. 11
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diffeomorphism, 15
differential balance, 17

Index

182

distance in a hypersurface, 131
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divergence, 110
of a surface tensor, 140
theorem, 14, 16
divergence theorem, 15
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exponential map, 132
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flux, 17
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integral transformation , 139
fractional domain, 154, 157
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functional calculus, 153, 156, 165, 166
R-bounded H°, 152
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for (0¢, V), 165
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Hardy’s inequality, 146
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Volevich trick, 66

weak Neumann problem, 23
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