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Abriss

In der vorliegenden Arbeit wird die zeitaufgelöste Lumineszenz an Dünnschichthalbleitern

mithilfe analytischer und numerischer mathematischer Methoden studiert. Die Grund-

lage der Berechnungen bilden die Kontinuitätsgleichungen, die Stromgleichungen sowie

die Poisson-Gleichung. Diese werden sowohl numerisch mit Hilfe des Softwarepakets

Synopsys® TCAD, als auch approximativ analytisch gelöst. Untersucht wurde der Ein-

fluss von Band-zu-Band und Shockley-Read-Hall-Rekombination im Volumen und an den

Grenzflächen sowie der Einfluss von Drift- und Diffusionstransport von Ladungsträgern

auf den zeitlichen Verlauf der Lumineszenz. Die Ergebnisse zeigen, dass für einzelne

Absorberschichten unter geringen Anregungen ein exponentieller zeitlicher Verlauf der

Lumineszenz zu erwarten ist. Dabei korreliert die Zeitkonstante des Abfalls mit der

Leerlaufspannung der Solarzelle. Im konkreten Fall der Halbleiter Cu(In,Ga)Se2 und

Cu2ZnSnSe4 kann diese Korrelation jedoch nicht experimentell bestätigt werden. Dies

ist unter anderem auf die Veränderung der Absorberschicht durch die darauffolgende

Präparation zurückzuführen, was eine Charakterisierung des Absorbers am Ende des

Zellprozesses sinnvoll macht. Es wird gezeigt, dass die dabei auftretenden Drifteffekte

in einer spannungsabhängigen zeitaufgelösten Lumineszenzmessungen dahingehend aus-

genutzt werden können, nicht nur die Lebensdauer sondern auch die Beweglichkeiten

im Absorber zu charakterisieren. Damit bleibt jedoch der Ursprung von experimentell

beobachteten multi-exponentiellen Transienten bei einzelnen Absorberschichten unklar.

Um diesen auf den Grund zu gehen, wird die zeitaufgelöste Lumineszenz unter erhöhten

Anregungen und Temperaturen in Experiment und Simulation studiert. Die gefundenen

Abhängigkeiten können mit dem gängigen Modell aus Rekombination, Drift und Diffusion

nicht beschrieben werden. Eine Erweiterung des Modells ist daher unabdingbar. Auf der

Grundlage der Rechnungen wird gezeigt, dass die Hinzunahme von Potentialfluktuationen

im Absorber nicht die gefundenen Transienten wiederspiegeln kann. Erst die Berücksich-

tigung flacher Haftstellen für Minoritätsladungsträger kann die Lumineszenzexperimente

erklären. Als Folge geht im Einklang mit den experimentellen Befunden die Korrelation

der Leerlaufspannung und der Zeitkonstante des Lumineszenzabfalls verloren.





Abstract

In this work, time-resolved luminescence on thin-film semiconductors is studied by means

of analytical an numerical mathematical methods. The calculations are based on the con-

tinuity equations, the current equations as well as the poisson equation. These are solved

both numerically using the simulation tool Synopsys® TCAD and approximate analyti-

cally. In course thereof, the effect of band-to-band and Shockley-Read-Hall-recombination

in the bulk and at the surfaces, as well as the impact of drift and diffusion of charge car-

riers on the time-dependent decay of the luminescence are investigated. The results show

that for single absorber layers under low injections, an exponential time-dependent decay

of the luminescence is expected. Additionally, the time-constant of the decay is supposed

to correlate with the open-circuit voltage of the solar cell. In the concrete case of the

semiconductors Cu(In,Ga)Se2 and Cu2ZnSnSe4, this correlation can not be confirmed,

though. Among others, this can be traced back to a change of absorber properties by the

subsequent processing. This makes a characterization of the absorber at the end of the

cell processing more reasonable. It is revealed that drift effects, which thereby occur, can

be exploited by time-resolved luminescence measurements under different bias voltages in

that sense, that not only the lifetime but also the mobilities in the absorber are charac-

terized. With that, the origin of experimentally observed multi-exponential decay curves

on single absorber layers remains unclear. For clearification, time-resolved luminescence

under elevated injection and temperature is studied in experiment and simulation. The

observed dependencies cannot be described with the common model consisting of recom-

bination, drift and diffusion. Therefore, the developement of a more general model is

indispensable. Based on the calculations, it is shown that the additional consideration

of potential fluctuations in the absorber cannot reflect the found decay curves. Only the

consideration of shallow traps for minority carriers is capable to describe the lumines-

cence experiments. In consequence of these trap states, the correlation of the open-circuit

voltage and the time-constant of the luminescence decay becomes lost, in accordance with

experimental findings.
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1 Introduction

In the thin-film photovoltaic industry, semiconductor materials generally have to meet

high qualities in terms of large charge carrier lifetimes and mobilities, and low densities

of recombinative defects. These quantities must be determined during the preparation

process as early as possible without altering the sample’s properties. This not only en-

ables the retrieval of malfunctions at an early stage, but also accelerates optimization.

The conventional current-voltage or quantum efficiency measurements do not comply with

these requirements, since a characterization is possible only at the end of the preparation

and the deduced quantities only deliver a limited insight into the microscopic dynamics.

Therefore, the demand arose for new non-destructive, fast, and sensitive characterization

techniques with the potential for in-line application.

Traditionally, the following two techniques can be mentioned as the best-established: Hall

measurements and transient photoconductivity measurements. Hall measurements allow

the determination of the minority carrier mobility [1]. In fact, this method can be applied

to blank absorbers, but it suffers from the disadvantage that the determined mobility

values differ from those under solar cell conditions due to scattering in the magnetic field.

Furthermore, neither defect properties nor minority carrier lifetimes can be determined.

In order to assess these quantities likewise, a measurement of the transient photoconduc-

tivity can be performed. The lifetime is thereby determined from the transient decay of

the photoconductivity after a pulsed excitation [2]. By additional illumination with bias

light, also the density and energy of shallow defects can be determined [3].

The mentioned methods require an electrical contacting and - in case of transient pho-

toconductivity - only allow time-resolutions larger than 100 ns [4]. Both facts militate

against the application of the techniques to thin-film semiconductors. In the first in-

stance, this is due to the metallic back contact on which thin-film semiconductors are

typically grown. These do not allow the inductive measurement of the conductivity. Sec-

ondly, some thin-film semiconductors exhibit time-constants smaller than 100 ns, which

is not experimentally resolvable.

A method, that may overcome this dilemma due to its contactless measurement with

time-resolutions down to a few 10 ps is the measurement of time-resolved luminescence

(TRL). Depending on the excitation, one can distinguish among others between time-

resolved cathodoluminescence (TRCL), electroluminescence (TREL), and photolumines-

cence (TRPL). For convenience, TRPL is exemplarily investigated in this work. Differences

1



CHAPTER 1. INTRODUCTION

Figure 1.1: An electron jumps into a higher
energy state by absorption of a
photon γ. After a certain time the
electron jumps back by emission
of a photon.

effective 

lifetime 

𝛾 𝛾 

to the other methods are discussed when appropriate. For the purpose of TRL, a semi-

conductor is excited, e.g. by light as drawn schematically in figure 1.1. The generated

charge carriers recombine radiatively and the emission of photons is observed. In doing so,

the average time between charge carrier generation and recombination can be measured.

This is called the effective carrier lifetime. It is very sensitive to charge carrier recom-

bination, drift, diffusion, and trapping processes, as well as to material inhomogeneities.

Hence, TRL in principle can be used to detect small variations in many material proper-

ties. The samples are thereby not destroyed, because the measurement is non-destructive

and non-invasive due to excitation with light. It can be applied to any semiconductor

independent from the back contact, the substrate, or the number of semiconductor layers

in the stack. Apart from that, the measurement setup is very simple, which led to an

extensive application of TRL on photovoltaic thin-film semiconductors. In the course

thereof, a correlation between the luminescence decay time and the solar cell efficiency

has been reported for Cu(In,Ga)Se2 (CIGSe) by Ohnesorge et al. [5] and by Keyes et al.

[6]. Metzger et al. [7] showed similar results for CdTe. Since then, the luminescence decay

was an important quantity for characterizations of photovoltaic devices. It was used to

optimize the annealing temperature of Zn1−xMgxO/Cu(In,Ga)Se2 interfaces [8], or as a

process monitor in CIGSe solar cell preparation [9, 10].

Despite the numerous successfull applications of TRL in photovoltaics, further experi-

ments on the semiconductors Cu(In,Ga)Se2 and Cu2ZnSnSe4 (CZTSe), which will be the

working examples in this thesis, still pose lots of open questions. For instance, the lumi-

nescence decay can be mono- or bi-exponential, which is exemplified in figure 1.2 (a) for

two different CZTSe absorbers. Such a characteristic of TRL has often been reported not

only for CZTSe but also for CIGSe absorbers [11–15]. However, the origin of a lumines-

cence decay with more than one time constant was still not clear and the time constants

could not be related to the effective carrier lifetime either. Figure 1.2 (b) demonstrates

two other pecularities mainly occuring on CIGSe absorbers. The figure shows the lumi-

nescence decay time for CIGSe absorbers (determined from the 1/e decay) plotted against

the open-circuit voltage of the complete solar cell. First of all, decay times in the range

of radiative recombination (∼500 ns [16]) occur, in agreement with decay time values

reported in literature [17]. This fact is not comprehensible, since CIGSe is a very defec-

tive semiconductor with estimated effective recombination lifetimes τeff,r of a few 10 ns.1

1This follows from simulations of V oc(τeff,r) with values from Ref. [16]. It comes out, that the current record
efficiency of a Cu(In,Ga)Se2 solar cell of 22.6 % [18] may be achieved with τeff,r ≈ 10 ns.

2
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Figure 1.2: (a) Mono- and bi-exponential luminescence decay of two different Cu2ZnSnSe4 absorber layers and
(b) luminescence decay time (determined from the 1/e decay) of Cu(In,Ga)Se2 absorbers measured
immediately after the preparation process vs. open-circuit voltage of the final solar cell. With kind
permission of Stefan Hartnauer and Enrico Jarzembowski.

Furthermore, the figure shows that there is no clear correlation between the open-circuit

voltage and the luminescence decay time in contrast to the above mentioned correlations

reported for CIGSe and CdTe. This suggests that the luminescence time constant and

the effective carrier lifetime are not equal. This is due to the large number of effects in

polycrystalline thin-film semiconductors, that influence the luminescence decay thereby

hindering the determination of the effective carrier lifetime. Actually, this variety of ef-

fects raises two more problems of the luminescence decay analysis: first, the time constant

may strongly depend on experimental conditions such as excitation intensity or excitation

duration, because the recombination and transport processes may become different. In

consequence, material parameters determined under steady state excitation (e.g. open-

circuit voltage measurement) cannot be extrapolated from measurements under pulsed

excitation (TRL measurement). Secondly, an optimum experimental route must be de-

signed aiming at the discrimination of each effect influencing the luminescence decay,

which will then enable the isolation of the effective carrier lifetime. The definition of such

an optimized experiment is still a big challenge for the TRL data analysis [19]. Therefore,

at this time the data cannot be interpreted automatically by an algorithm applied to only

one time-resolved luminescence measurement. This makes an in-line characterization by

means of TRL difficult.

The claim for an “ideal” experimental route and an interpretation algorithm raises the

demand for a broad theory of TRL, which was first provided by Richard K. Ahrenkiel for

III-V semiconductors [20]. He calculated the luminescence time constants for radiative

and non-radiative recombination and addressed its strong excitation dependence. Fur-

ther, he explained that the time constant will be below the effective carrier lifetime, if the

charge carriers are generated within an electric field. This has often been approved for

solar cells by experiment [21–23] and by numerical solution of the semiconductor equa-

tions applied to a GaAs pn-junction [24]. A more detailed but mostly numerical analysis

of charge recombination within an electric field was done by Kanevce et al. [25] by simu-

lation of TRL on a CdTe solar cell.

3



CHAPTER 1. INTRODUCTION

On the basis of these preliminary results, the present thesis was written with the setted

goal to characterize a thin-film semiconductor by time-resolved luminescence. For this

purpose, the following milestones are defined: the present theoretical understanding of

TRL in III-V semiconductors has to be adopted first to thin-film semiconductors in gen-

eral. This includes the derivation of analytical formulae for the time constants of the

luminescence governed by space charges, charge carrier transport, trapping, surface, or

bulk recombination. As will be shown, the time constant of each effect exhibits a differ-

ent dependence on excitation intensity and device temperature. Therefore, measurement

scenarios can be figured out to discriminate each effect, and by using the formulae for

the time constants, lifetimes, mobilities and recombination velocities can be quantified.

Finally, a model of the semiconductor can be set up based on the determined values. Af-

terwards, this model must be approved or improved if necessary by loop-wise comparison

of experimental and theoretical luminescence decay curves.

To attain these milestones, this cumulative thesis starts with a derivation of the basic

semiconductor equations in chapter 2. This derivation is carried out explicitely to high-

light the necessary assumptions, since these limit the reliability of the simulations. In

the course of the derivation, the very important material parameter of the recombina-

tion lifetime occurs. Therefore, chapter 3 adresses time constants in general. After a

few introductive definitions of decay times and lifetimes, their determination by means of

TRL is described and problems are highlighted. Then, the method is compared to other

lifetime measurement techniques, and advantages and disadvantages are pointed out. On

the basis of chapters 2 and 3, TRL can be simulated. A description of the simulations

and the numerical solution of the semiconductor equations will be carried out in chapter

4.

After establishing the basis of TRL in chapters 2−4, the results of the simulations and

experiments are presented in chapter 5. First, the influence of drift, diffusion, bulk- and

surface recombination on the luminescence decay is investigated for different injection

levels by simulation. It turns out, that the luminescence decay in solar cells is mostly

dominated by bulk recombination and drift transport. With this knowledge, the lumi-

nescence decay of a solar cell is measured to determine the charge carrier mobilities and

the minority carrier lifetime of the absorber layer. The result is approved by comparison

of experiment and simulation. Despite the good congruence, the theory of TRL at that

point may not explain bi-exponential decays with decay times up to the radiative limit.

Therefore, the model is extended to shallow defects that are defects close to the conduc-

tion or valence band. These are studied by simulation in general. Then, this extended

model is used to approximate experimental TRL of absorbers which yields a good fit. The

chapter ends with a generalization of the simulations to higher dimensions to account for

the impact of lateral inhomogeneities on the luminescence decay. A short conclusion of

the results with propositions for future work closes the thesis.

4



2 Charge carrier dynamics

In this chapter, the semiconductor equations required for the simulation and analyzation

of time-resolved luminescence are introduced. Each equation will be derived or justified to

point out the assumptions and the limitations of the model. First, the density of electrons

and holes in a semiconductor is calculated using statistical quantum mechanics. Due to

the mobile charge carriers, macroscopic electric fields may occur. Therefore, the Poisson

equation is derived, which is one of the three basic semiconductor equations. It relates the

electrostatic potential and the charge carrier densities. As a consequence of the electric

field the charge carriers drift. For this reason, the current equations and the continuity

equations are deduced from the semi-classical, bipolar Boltzmann equation. These are the

second and the third fundamental semiconductor equations. An input of the continuity

equation is the generation and recombination of electrons and holes - both are the basis

for TRL. The rate of generation and recombination is calculated for band-to-band and

free-to-bound transitions. In the end, all assumptions are summarized and discussed

regarding the comparability of experimental and simulated time-resolved luminescence.

This is intentionally not done at the place of application, since many assumptions are

related to each other which makes an overall discussion more reasonable.

2.1 Charge carrier statistics

In this section, electrons in a compensated semiconductor with direct band gap are con-

sidered. The energy diagram is drawn schematically in figure 2.1 for the first Brillouin

zone (1. BZ). According to the Born-Oppenheimer and the Hartree-Fock approximation

[26, 27] the state of an electron can be described by three discrete quantum numbers:

the band index ν, the pseudo-wavevector k ∈ 1.BZ, and the spin s. Hence, the energy

of an electron is denoted by Eν,s(k). As stated in the introduction, the electrons change

energy 

k 

ED 

Ec 

Ev 

EA 

Eν+3,s(k) 

Eν+2,s(k) 

Eν+1,s(k) 

Eν,s(k) 

Figure 2.1: Schematic energy diagram of elec-
trons in a compensated semicon-
ductor in reduced zone scheme with
valence band edge Ev, conduction
band edge Ec, acceptor level EA,
and donor level ED. Each state of
electron can be denoted by the spin
s, the pseudo-wavevector k and the
main quantum number ν.
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CHAPTER 2. CHARGE CARRIER DYNAMICS

their energy state when being excited. The rate of transitions depends on the average

occupation f of the quantum states which is deduced in the following. For macroscopic

diameters of the semiconductor the number of electrons is ∼ 1023 and the derivation of f

can be made by a statistical approach using the grand canonical partition function [27].

For non-degenerate energy states, the result is the Fermi-Dirac distribution

f (Eν,s(k)) =

(
1 + e

Eν,s(k)−Ef
kB T

)−1

(2.1.1)

with the Boltzmann constant kB and the Fermi-level Ef of electrons, that depends among

others on the temperature T and on the energy levels Eν,s(k). In particular, it de-

pends on the total number of electrons Ne, and can be determined from the condition

Ne =
∑

ν,k,s f (Eν,s(k)). This is comprehensible, since f (Eν,s(k)) is the mean number of

electrons in the quantum state {ν, s, k}. Therefore, summation over all quantum states

must equal the total number of electrons. By the volume V of the semiconductor, this

condition can be rewritten for the total electron density ne:

ne =
Ne
V

=
∑

ν

∫

R


 1

V

∑

k,s

δ(E − Eν,s(k))




︸ ︷︷ ︸
=Dν(E)

f(E) dE. (2.1.2)

δ is the Dirac-distribution and Dν(E) is the density-of-states of the ν-th energy band.

It gives the number of quantum states in the ν-th energy band within the energy range

E . . . E + dE. For discrete acceptor levels, this can be easily calculated. For acceptor

states it holds EA,s(k) = EA. If there are NA acceptors in the semiconductor, each being

able to capture only one electron, the degree of degeneracy of the energy level EA will be

NA. Similarly, discrete donor levels with ED,s(k) = ED can emit one electron and the

energy level ED is degenerated ND-times. The density-of-states of acceptors and donors

become

DA(E) = nA δ (E − EA) (2.1.3a)

DD(E) = nD δ (E − ED) (2.1.3b)

with nA = NA
V and nD = ND

V being the acceptor and donor density, respectively. The

acceptor states are neutral (0) when being unoccupied by an electron. They are negatively

charged (−) when being occupied by an electron. The probability of occupation is given

by f . By contrast, the donor states are neutral (0) when being occupied and positively

charged (+) when being unoccupied. The probability of unoccupation is given by the

complementary function 1− f . The equilibrium densities n−A and n+
D of ionized dopants
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follow from equation (2.1.2):

n−A =

∫

R
DA(E)f(E) dE =

nA

1 + e
EA−Ef
kB T

Ef−EA>3 kB T≈ nA (2.1.4a)

n+
D =

∫

R
DD(E) (1− f(E)) dE =

nD

1 + e
−ED−Ef

kB T

ED−Ef>3 kB T≈ nD. (2.1.4b)

It turns out that most of the acceptors will be ionized if the Fermi-level lies far above EA

with respect to kB T . Analogously, almost all donors will be ionized if the Fermi-level lies

far below ED with respect to kB T . This is the so-called impurity exhaustion.

For broad energy bands, the inner sum in equation (2.1.2) is more difficult to evaluate.

However, for large semiconductor diameters the pseudo-wavevectors are quasi-continuous

and the sum over k can be transformed into an integral over the first Brillouin zone by∑
k → V

8π3

∫
1.BZ

dk. Hence, the density-of-states of the ν-th energy band can also be

calculated by

Dν(E) =
1

8 π3

∑

s

∫

1.BZ

δ(E − Eν,s(k)) dk. (2.1.5)

For further evaluation the dispersion relation Eν,s(k) must be known. From the k·p-

theory it follows Eν,s(k) ≈ Eν,s,0 + ~2

2m∗
ν,s
k2 for isotropic semiconductors. Here, ~ is the

reduced Planck constant and m∗ν,s is the effective mass of electrons in the ν-th energy

band with spin s. The parabolic energy dispersion approximates the energy bands only

close to the extrema; at the boundaries of the 1. BZ the error can become very large. In

the following it is exemplified for the conduction band how this problem is circumvented.

The conduction band is the lowest unoccupied energy band. Following the notation from

figure 2.1, it is denoted by the subscript c. Additionally, the electrons shall have a positive

effective mass independent of spin or direction: m∗c,s = m∗c > 0. It is now assumed that

the number of electrons in the conduction band is small. Then, only energy states close

to the conduction band minimum are occupied (due to energy minimization), and higher

energy states (with poorly approximated energy dispersion) do not contribute to the

electron density anyway. This is the keynote of the low-density-approximation. Actually,

this allows an extension of the integration volume in (2.1.5) to R3. Consequently, the

density-of-states of the conduction band becomes

Dc(E) =
1

2 π2

(
2m∗c
~2

)3/2
{√

E − Ec, E ≥ Ec

0, E < Ec.
(2.1.6)

Now, the equilibrium density n0 of electrons in the conduction band can be calculated:

n0 =

∫

R
Dc(E)f(E) dE = Nc F1/2

(
Ec − Ef
kB T

)
Ec−Ef>3 kB T≈ Nc e

−Ec−Ef
kB T . (2.1.7)

7
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Nc = 2
(
m∗
c kB T

2π ~2

)3/2

is the effective density-of-states of the conduction band. The func-

tion F1/2(·) is the Fermi-Dirac integral which converges for large arguments against a

Boltzmann distribution function. This is the so-called Boltzmann approximation and will

be valid if the Fermi-level is far below the conduction band edge with respect to kB T .

The highest occupied energy band is called valence band, is denoted by the subscript v,

and the effective mass of electrons is negative and assumed to be independent of spin

and direction: m∗v,s = −m∗v < 0. Due to the high occupation of the valence band it is

more reasonable to study the unoccupied states - these are termed holes. By applying the

low-density-approximation to the holes the density-of-states of the valence band becomes

Dv(E) =
1

2 π2

(
2m∗v
~2

)3/2
{√

Ev − E E ≤ Ev

0 E > Ev.
(2.1.8)

The probability for unoccupation again is 1 − f . Therewith, the equilibrium density p0

of holes in the valence band becomes

p0 = Nv F1/2

(
Ef − Ev
kB T

)
Ef−Ev>3 kB T≈ Nv e

−Ef−Ev
kB T (2.1.9)

with the effective density-of-states of the valence band Nv = 2
(
m∗
v kB T

2π ~2

)3/2

. Again, the

Boltzmann approximation holds for Fermi-levels far above the valence band edge with

respect to kB T .

A consequence of equation (2.1.2) is the neutrality condition. For a temperature T = 0,

only valence band and donor states are occupied by electrons. Hence, the total electron

density becomes

ne = nD +

∫

R
Dv(E) dE. (2.1.10)

By equation of (2.1.2) and (2.1.10) follows n0 + n−A = p0 + n+
D. This neutrality condition

determines the Fermi-level and thus all carrier densities by the equations (2.1.4), (2.1.7),

and (2.1.9). Hence, in equilibrium the densities cannot be set independently. This changes

for small perturbations from equilibrium, e.g. due to illumination. Then, the electron

and hole densities n and p are still given by a Fermi-Dirac distribution, but each has its

own Fermi-level Efn and Efp, respectively; thereby, enabling the independence of both:

n = Nc F1/2

(
Ec − Efn
kB T

)
Ec−Efn>3 kB T≈ Nc e

−Ec−Efn
kB T (2.1.11a)

p = Nv F1/2

(
Efp − Ev
kB T

)
Efp−Ev>3 kB T≈ Nv e

−Efp−Ev
kB T . (2.1.11b)

In contrast to electrons and holes, the density of ionized dopants in non-equilibrium can
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no longer be described by a Fermi-Dirac distribution. Instead, the occupation of the

dopants has to be determined from transition rates of electrons into or from the doping

level (see sec. 2.4). This leads to a density of occupied dopants, which will be given

later for the steady state by equation (2.4.15). It turns out that in the limit of the low-

density-approximation impurity exhaustion n−A ≈ nA and n+
D ≈ nD can be assumed even

in non-equilibrium.

2.2 Poisson equation

Due to the mobile charge carriers and immobile donors and acceptors, space charges may

occur. The space and time dependent space charge density %(r, t) is given by

%(r, t) = e0

(
p(r, t)− n(r, t) + n+

D(r, t)− n−A(r, t)
)

(2.2.1)

with the elementary electric charge e0 > 0. Because of the impurity exhaustion approxi-

mation, it is n+
D(r, t) = nD(r) and n−A(r, t) = nA(r). The space charge in equation (2.2.1)

creates an electric field. The interplay of space charges and electric fields is described by

Maxwell’s equations which are used in the following form [28]:

divD = % (2.2.2a)

divB = 0 (2.2.2b)

rotE = − ∂

∂t
B (2.2.2c)

rotH = J +
∂

∂t
D. (2.2.2d)

D is the displacement field, B is the magnetic field, E denotes the electric field, H is

the magnetizing field, and J denotes the total current density. The equation (2.2.2b) is

formally solved by B = rotA with the so-called vector potential A. Inserting this into

equation (2.2.2c) yields the formal solution

E = −∇rϕ−
∂

∂t
A (2.2.3)

with the gradient operator ∇r acting on the scalar electric potential ϕ. The materials

studied in this work are not magnetic. Therefore, magnetic effects are mostly neglected

and the vector potential A becomes zero. Then, the electric field can be calculated from

the electric potential by

E = −∇rϕ. (2.2.4)

By equation (2.2.4), the calculation of the electric field has been transformed into the

calculation of ϕ. As a conditional equation for ϕ, the first Maxwell equation (2.2.2a) is

9
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used. For this purpose, the displacement field D is formally expanded by powers of E. For

small electric fields it is D = ε0εrE, with the permittivity of vacuum ε0 and the relative

permittivity of the material εr. The relative permittivity εr is a tensor of second order.

In this thesis, εr is assumed to be isotropic, piecewise homogeneous, and independent

of time. This excludes ferroelectric and non-linear optic effects. Inserting D = ε0εrE,

equation (2.2.3), and εr = const. into the Maxwell equation (2.2.2a) yields the Poisson

equation:

∆rϕ = − %

ε0εr
= − e0

ε0 εr
(p(r, t)− n(r, t) + nD(r)− nA(r)) . (2.2.5)

This is a conditional equation for the electric potential ϕ and allows the determination of

the electric field by equation (2.2.4).

2.3 Transport equations

Due to the electric field in equation (2.2.3) the charge carriers move. Knowledge about

this motion is indispensable for a theory of time-resolved luminescence since the transport

of charge carriers can enhance or reduce the recombination. The theory of charge carrier

transport, whose derivation will be carried out in this section, is of statistical nature to

account for the statistically distributed velocities of the charge carriers. In the end, the

very important transport equations of electrons and holes will arise. However, before

starting with the derivation the scope of the theory has to be defined: the basic transport

equations of charge carriers in semicondutor devices can be distinguished by semi-classical

and quantum mechanical approaches [26, 29]. The quantum mechanical approaches will

become important, if the device size is in the range or even smaller than the charac-

teristic lengths of carrier-carrier, carrier-lattice, or carrier-defect scattering. Since the

devices in this thesis are larger than 500 nm in diameter, quantum effects do not have to

be considered and semi-classical approaches are sufficient and appropriate due to their

calculation time saving properties. The semi-classical approaches in turn are divided into

diffusive and hydrodynamic models depending on the characteristic lengths. Here, only

the drift-diffusion model is studied, which is derived from the electron distribution func-

tion fν,s(r, k, t) - the subscripts s and ν in the following are left out. The starting point

is d
dtf(r(t), k(t), t) = 0, which is a consequence of the Liouville theorem [26]. Evaluating

the time derivative leads to

∂

∂t
f +

dr

dt
∇rf +

dk

dt
∇kf = 0, r ∈ R3, k ∈ 1.BZ, t > 0. (2.3.1)

In accordance with k·p-theory it is dr
dt = 1

~∇kE(k) and dk
dt = F

~ , with F being the force

acting on the charge carriers. F is a superposition of external forces Fex, for example by an

applied electric field, and inner forces Fin due to the scattering of electrons with phonons,

impurities, or other charge carriers. Therefore, the unipolar Boltzmann transport equation
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(2.3.1) is written in the form [28]

∂tf +
1

~∇kE(k)∇rf +
Fex
~ ∇kf = −Fin~ ∇kf = Q(f), (2.3.2)

with Q being an operator acting on f ; thereby, describing the net-collision of electrons.

For the collision operator Q the following ansatz is made [30]:

Q(f) =

∫

R3×R3×R
f(r′, k′, t′) (1− f(r, k, t))P (r′, k′, t′; r, k, t)dt′dr′dk′

−
∫

R3×R3×R
f(r, k, t) (1− f(r′, k′, t′))P (r, k, t; r′, k′, t′)dt′dr′dk′. (2.3.3)

P (r′, k′, t′; r, k, t) is the probability rate of electron scattering from the state (r′, k′, t′)

into the state (r, k, t). The equation (2.3.2) together with (2.3.3) is a semi-classical,

microscopic integro-differential equation for the distribution function f . In general, it

can only be solved numerically, e.g. by Monte-Carlo-methods. To obtain an approximate

analytic solution, the following assumptions are made:

• The scattering is assumed to be localized and fast compared to macroscopic length

and time scales: P (r′, k′, t′; r, k, t) = δ(t− t′) δ(r − r′) Π(r′, k′; k). The scatter prob-

ability rate Π is assumed to be independent of time.

• The electron temperature is homogeneous and equals the lattice temperature.

• Low occupation is assumed, in accordance with section 2.1. Low occupation means

f � 1 and 1− f ≈ 1. This will be true, if the Fermi-level is far below the electron

energy with respect to kB T . Then, the equilibrium Fermi-Dirac distribution (2.1.1)

is approximated by a Maxwell-Boltzmann distribution feq = e
−E(r,k)−Ef

kB T .

• The energy dispersion is approximated by a parabola E(r, k) = E0(r)+ ~2

2m∗k2, since

the high energy states (with poorly approximated energy) are not occupied.

• The deviations from equilibrium are small.

By using this, the Boltzmann equation (2.3.2) in low density and relaxation time approx-

imation becomes

∂tf +
~
m∗

k∇rf +
e0

~ ∇rϕeff ∇kf = Qτ (f) = −f − feq
τrel

. (2.3.4)

In equation (2.3.4), τrel = τrel(r) is the relaxation time, Qτ (f) is the relaxation time

operator, and ϕeff is an effective electric potential to account for external forces. Equation

(2.3.4) is a partial differential equation for the distribution function f of electrons with

spin s in the ν-th energy band. It is pointed out that the electrons neither change the

energy band (ν) nor the spin (s) when being scattered as a result of the special collision
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operator (2.3.3). If the solution f(r, k, t) of (2.3.4) was known, macroscopic quantities

could be evaluated, e.g. the density of electrons in the conduction band by n(r, t) =
1
V

∑
k,s fc,s(r, k, t) with the volume V of the semiconductor. To find an approximate

solution of (2.3.4), dimensionless quantities r̃, k̃, t̃, ϕ̃eff , Q̃τ are at first defined as follows:

r = λ r̃, t = τ t̃, k =
m∗ u
~ k̃, u =

√
kB T

m∗
, ϕeff =

kB T

e0
ϕ̃eff ,

λc = u τc, τ =
λ2
c

λ2
τc, Qτ =

1

τc
Q̃τ , f̃eq = e

−E0−Ef
kB T e−

k̃2

2 . (2.3.5)

τ describes a macroscopic time and λ a macroscopic length, whereas τc describes the

mean time between two scattering events and λc the mean free path. It is emphasized

that even the equilibrium Maxwell-Boltzmann distribution function is scaled. By this

scaling, equation (2.3.4) is rewritten as the scaled Boltzmann equation (the ∼ is left out)

α2 ∂tfα + α
(
k∇rfα +∇rϕeff ∇kfα

)
= −fα − feq

τrel
, (2.3.6)

where the Knudsen-number α is defined by α = λc
λ =

√
τc
τ . fα denotes the solution

of the scaled Boltzmann equation (2.3.6) parametrized by α. This thesis assumes time

scales larger than the collision time and device diameters larger than the collision length.

Thus, it is α � 1. To solve (2.3.6) within the limit α → 0 the formal Chapman-Enskog-

expansion fα = feq + α gα is made, which is motivated by the presumed small deviation

from equilibrium. Insertion of this expansion into equation (2.3.6) yields a differential

equation for the unknown function gα. Within the limit α→ 0 this equation becomes

Q
(

lim
α→0

gα

)
= k∇rfeq +∇rϕeff ∇kfeq (2.3.7a)

⇒ g := lim
α→0

gα = feq − τrel
(
k∇rfeq +∇rϕeff ∇kfeq

)
. (2.3.7b)

The last step before formulating the transport equations restarts with equation (2.3.6).

The sought function f = limα→0 fα is formally known from the Chapman-Enskog-expan-

sion, since gα is known in the limit α→ 0 from equation (2.3.7). However, for the scope

of this work an exact expression for f is not of interest because only the average motion

of charge carriers is important anyway. Therefore, the Chapman-Enskog expansion is

inserted into equation (2.3.6) and the whole equation is integrated in k-space. Then, the

transition α→ 0 is performed. With the notation 〈h(k)〉 := 1
8π3

∫
R3

∑
s h(k) dk the result

reads

∂t 〈feq〉+ divr 〈k g〉+ 〈∇kg〉 ∇rϕeff = 0. (2.3.8)

Each term in (2.3.8) only depends on the equilibrium distribution feq which is given by

the scaled Maxwell-Boltzmann distribution (2.3.5). For electrons in the conduction band,
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this can be expressed by feq = n
Nc

e−
k2

2 , using the result (2.1.7) for the electron density

n. Considering this as well as the definition (2.3.7) of g, equation (2.3.8) can be further

evaluated:

∂tn− divrτrel
(
∇rn− n∇rϕeff

)
= 0. (2.3.9)

This is the transport equation of electrons in a scaled, dimensionless form. Scaling back

and introducing the electron mobility µn = e0 τrel
m∗
n

> 0, the electron diffusion constant

Dn = kB T
e0

µn > 0, and the effective potential ϕeff = ϕ+ 1
e0
χ with the electron affinity χ

yields the unscaled drift-diffusion equation of electrons

∂tn+ divrΓn = 0, Γn = −Dn∇rn+ µn n∇rϕ+
µn n

e0
∇rχ. (2.3.10)

Γn is the current density of electrons. With the hole mobility µp = e0 τrel
m∗
p

> 0, the hole

diffusion constant Dp = kB T
e0

µp > 0, and the effective potential ϕeff = ϕ + 1
e0
χ + 1

e0
Eg

with the band gap Eg, a similar drift-diffusion equation for holes can be derived, relating

the hole density p and the hole current density Γp:

∂tp+ divrΓp = 0, Γp = −Dp∇rp− µp p∇rϕ−
µp p

e0
∇rχ−

µp p

e0
∇rEg. (2.3.11)

The equations (2.3.10) and (2.3.11) are the transport equations for electrons and holes.

Throughout the derivation, two restricting assumptions about the scattering were made:

the scattering of electrons in the ν-th energy band is not influenced by the occupation

of other energy bands, and the electrons cannot be scattered into other energy bands

either. More precisely the charge carriers in different energy bands do not interact. In

semiconductors, however, this is unsustainable because transitions of electrons between

different energy bands always occur. The energy bands of particular importance are the

conduction and the valence band. Accounting for transitions between these two bands

leads to the bipolar Boltzmann equation for electrons in the conduction band2

∂tfc +
1

~∇kEc(k)∇rfc +
e0

~ ∇rϕeff,c∇kfc = Qτ,c(fc) + In(fc, fv) (2.3.12a)

with In(fc, fv) =

∫

R3

(
gn(r, k′; k)(1− fc)(1− f ′v)− rn(r, k; k′)fc f ′v

)
dk′. (2.3.12b)

Now, the scattering processes are the sum of intraband transitions (Qτ,c) and additional

interband transitions (In) from or into the valence band. These interband transitions also

depend on the occupation distribution fv of holes in the valence band. The quantity rn

describes the probability rate for an electron transition from an occupied state k in the

conduction band into an empty state k′ in the valence band. This is termed recombination.

Similarily, gn describes the probability rate for the transition of an electron from an

2A similar equation holds for holes in the valence band.
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occupied state k′ in the valence band into an empty state k in the conduction band.

This process is termed generation. The bipolar Boltzmann equation (2.3.12) is a coupled,

non-linear integro-differential equation. The approximate solution of (2.3.12) is similar

to the above procedure: First, the low-density and the relaxation time approximation are

assumed and the Boltzmann equation is scaled. Then, the Chapman-Enskog-expansion

is inserted and finally the integration over k-space is performed. The result reads

∂tn+ divrΓn = −
(
n p− n2

i

)
· ξ(r, t) (2.3.13a)

∂tp+ divrΓp = −
(
n p− n2

i

)
· ξ(r, t). (2.3.13b)

ξ is a function containing information on the transition probabilities, and n2
i = n0 p0 is the

product of the equilibrium electron and hole densities from equation (2.1.7) and (2.1.9).

Γn and Γp are the electron and hole current densities from equation (2.3.10) and (2.3.11).

The equations (2.3.13) are termed the continuity equations of electrons and holes.3 The

right-hand sides are the net-recombination rates - the difference of generation and re-

combination - written in a general form for band-to-band recombination. For radiative

band-to-band recombination, the function ξ is calculated in the next section. After this,

the recombination process is generalized to transitions via energy states in the band gap

within the framework of the Shockley-Read-Hall theory.

2.4 Charge carrier recombination

In the course of the derivation of the continuity equations (2.3.13), the terms genera-

tion and recombination have been introduced. Recombination of an electron means the

transition of an electron from the conduction band into an unoccupied state with lower

energy. In analogy, recombination of a hole means the transition of a hole from the va-

lence band into an occupied state with higher energy. Depending on the involved energy

states, the recombination processes are divided into band-to-band recombination, defect

assisted recombination, and Auger recombination. The excess energy is either transferred

to phonons of the crystal lattice or emitted by photons. This leads to another classification

into radiative and non-radiative recombination processes.

2.4.1 Radiative band-to-band recombination

If an electron e in the conduction band recombines with a hole h in the valence band, the

energy difference will either be used to generate phonons (a few ten at room temperature),

or to be emitted by a photon γ. The latter process in general is more likely than the

3The continuity equations have been derived under the assumption of the Boltzmann-approximation. It is worth
mentioning that the same continuity equations can be derived also for Fermi-Dirac statistics. In that case,
additional terms in the current densities of electrons and holes occur.
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non-radiative phonon generation because only three particles are included. Multi-photon

events are, however, excluded throught the whole thesis. The generation of one photon

may occur by spontaneous emission e+h→ γ or by stimulated emission γ+e+h→ γ+γ.

The rate of spontaneous emission of a photon with energy ~ω is arranged by

rsp(~ω) =
∑

s,kc,kv

Ac→v δ (Ec(kc)− Ev(kv)− ~ω) fc(Ec(kc))) fv(Ev(kv)). (2.4.1)

Ac→v is the transition rate of electrons in the conduction band with pseudo-wavevector kc

transferred into an unoccupied state in the valence band with pseudo-wavevector kv. The

δ-distribution ensures that the energy difference of the electron Ec(kc) − Ev(kv) equals

the photon energy ~ω. At last, the state in the conduction band must be occupied and

the state in the valence band must be unoccupied, which is provided by the Fermi-Dirac

distributions fc and fv of the conduction and the valence band. The transition rate

Ac→v is hard to evaluate directly. Therefore, it is related to Einstein’s coefficient Bc→v
for stimulated emission, which can be calculated easier using Fermi’s Golden rule. From

detailed balance follows [31]

Ac→v = Dop(~ω)Bc→v (2.4.2)

with the optical density-of-states Dop(~ω) =
n3
r (~ω)2

π2 ~3 c30
, the refractive index nr, and the

vacuum speed of light c0. The transition rate Bc→v can be calculated using Fermi’s

Golden rule Bc→v = 2π
~ |〈c |H ′| v〉|

2
with the Bloch functions of the electron |c〉 and |v〉,

and the perturbation Hamiltonian H ′. Since the transition into the valence band is due

to the interaction of the electron with the electric field of an electromagnetic wave, the

perturbation Hamiltonian reads [31]

H ′ = − e0

m0
Ap+

e2
0

2m0
A2 (2.4.3)

with the dipole momentum p. It is A = 1
2 A0 ê ei kop r the vector potential (see sec. 2.2)

of the electromagnetic wave with polarization vector ê and amplitude A0. By assuming

small optical intensities |e0A| � |p| and long optical wavelengths |kop| � |kc| , |kv|, the

perturbation Hamiltonian becomes H ′ ≈ − e0
2m0

A0 ê p. The transition rate is given by

Bc→v =
1

V
C0 δkc,kv |ê pcv|

2
with C0 =

2π

~
e2

0A
2
0

4m2
0

V =
π e2

0

n2
r ε0m2

0 ω
. (2.4.4)

It is pointed out that the electrons do not change the pseudo-wavevector because of the

negligible photon momentum. It remains the calculation of the squared interband mo-

mentum matrix element |ê pcv|2. To this end, the semiconductor again is assumed to be

isotropic with parabolic energy bands - the latter again presumes the low density approx-

imation. Kane’s formalism then yields a momentum matrix element being independent
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from k:

Mcv := |ê pcv|2 =

(
m0

m∗n
− 1

)
m0Eg (Eg + ∆)

6
(
Eg + 2

3
∆
) . (2.4.5)

In (2.4.5), ∆ is the split-off energy to account for light and heavy holes. With (2.4.2) -

(2.4.5) the rate of spontaneous emission of a photon with energy ~ω becomes

rsp(~ω) = Dopt(~ω)
C0

V
Mcv

∑

k,s

δ (Ec − Ev − ~ω) fc(Ec) (1− fv(Ev)) (2.4.6)

with the abbreviations Ec = Ec(k) and Ev = Ev(k). In order to calculate the sum over k

and s it is advisable to introduce a new energy Er := Ec(k)− Ev(k)− Eg. For parabolic

bands it is Er = ~2
2µr

k2 with the reciprocal of the reduced effective mass µ−1
r = 1

m∗
n

+ 1
m∗
p
.

Similar to section 2.1, the pseudo-wavevectors k are quasi-continuous and the sum can

be transformed into an integral by the substitution
∑

k,s → V
4π3

∫
dk. To perform the

integration, it is convenient to define the reduced density-of-states by

Dr(Er) =
1

2 π2

(
2µr
~2

)3/2 √
Er, Er ≥ 0. (2.4.7)

The reduced density-of-states gives the density of energy states in the conduction and

valence band, whose energetic distance is Er . . . Er + dEr. By this, the integration over k

can be done without difficulties and the rate of spontaneous emission is expressed by

rsp(~ω) =C0McvDopt(~ω)Dr(~ω − Eg) fc
(
Ec0 +

µr
m∗n

(~ω − Eg)
)
×

×
(

1− fv
(
Ev0 −

µr
m∗p

(~ω − Eg)
))

. (2.4.8)

The quantity rsp is the number of photons with energy ~ω . . . ~ω + d~ω emitted per time

and per volume by spontaneous emission. For the continuity equations (2.3.13), the total

spontaneous recombination rate Rsp is needed. This is obtained by integration of rsp with

respect to ~ω:

Rsp =

∫ ∞

Eg

rsp(~ω)d~ω. (2.4.9)

In general, the expression (2.4.9) can only be calculated numerically. However, in the

low-density-approximation fc and fv equal the Maxwell-Boltzmann distribution and the

integration can be performed analytically:

Rsp =
e2

0Mcv nr
(
Eg + 3

2
kB T

)

π ~2 c3
0m

2
0 ε0

1

2

(
2 π ~2

(
m∗n +m∗p

)
kB T

)3/2

︸ ︷︷ ︸
B

n p =: Rrad. (2.4.10)

B is a material constant depending on the temperature according to T−3/2. It contains
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2.4. CHARGE CARRIER RECOMBINATION

information on the transition probabilities and corresponds to the function ξ in equation

(2.3.13), as will be shown next.

Equation (2.4.10) gives the total rate of radiative band-to-band recombination. For the

continuity equations (2.3.13), however, the net-recombination rate is needed. Therefore,

the rate of the reverse process must be known meaning the generation of electron-hole pairs

by absorption of photons. This generation rate is commonly separated into a generation by

illumination Gph and into a generation by irradiation from the environment Gth. The first

is usually treated separately (see section 2.5.1). Therefore, the radiative net-recombination

rate here is defined by Rrad,net = Rrad − Gth. In equilibrium, the generation by the

environment must equal the recombination, which implies Gth = B n0 p0. Thus, the

radiative net-recombination rate becomes

Rrad,net = B (n p− n0 p0) . (2.4.11)

2.4.2 Defect assisted recombination

In the previous section, the rate of radiative band-to-band recombination was derived.

Now, recombination is considered, which is assisted by additional energy levels in the

band gap. These energy levels are caused by defects of the semiconductor crystal, e.g.

by acceptor and donor levels, as they have been introduced in section 2.1. The defect

levels can be close to the conduction or valence band (shallow defects) or in the middle of

the energy gap (deep defects). As for dopants, these defects can be charged by capturing

or emitting an electron or a hole. The rates of these capture and emission processes

are derived in the following for a single defect level with energy Et. Assuming the low-

density-approximation, the derivation is mostly similar to that of radiative band-to-band

recombination (see eq. 2.4.10). Thus, the capture and emission rates are linear in the

involved charge carrier densities [32, 33]:

Cn = σn vn (Nt − nt) n (2.4.12a)

Cp = σp vp nt p (2.4.12b)

En = βn nt (2.4.12c)

Ep = βp (Nt − nt) . (2.4.12d)

Cn and Cp are the capture rates of electrons and holes, and En and Ep are the emission

rates of electrons and holes. Further, it is v the thermal velocity, σ the capture cross-

section, and β the emission coefficient of electrons and holes, respectively. nt denotes the

density of occupied defects and Nt the density of all defects where each defect can capture

only one charge carrier.

For now, the semiconductor is in equilibrium. Then, the defect occupation nt0 is deter-

mined by the Fermi-Dirac distribution (2.1.1): nt0 = Nt f(Et). Furthermore, detailed
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CHAPTER 2. CHARGE CARRIER DYNAMICS

balance requires “electron capture = electron emission” and “hole capture = hole emis-

sion”. This yields the emission coefficients which come out as

βn = σn vnNc e
−Ec−Et

kB T = σn vn n
∗ (2.4.13a)

βp = σp vpNv e
−Et−Ev

kB T = σp vp p
∗. (2.4.13b)

n∗ = Nc e
−Ec−Et

kB T and p∗ = Nv e
−Et−Ev

kB T will be the carrier densities if the Fermi-level lies in

the defect level Et.

Now, non-equilibrium is considered. To this end, the semiconductor is excited homo-

geneously with a generation rate G of electron-hole pairs. Since for this derivation the

semiconductor is assumed to be homogeneous and any other recombination path shall be

neglected, the continuity equations (2.3.13) become

∂

∂t
n = G+ En − Cn (2.4.14a)

∂

∂t
p = G+ Ep − Cp (2.4.14b)

∂

∂t
nt = Cn − En + Ep − Cp. (2.4.14c)

The quantity Cn − En is the net-transition rate of electrons from the conduction band

into an energy state with lower energy, thus, the net-recombination rate.4 For its de-

termination, the quantities βn, βp, and nt must be known. The emission coefficients are

approximated by the equilibrium values in equation (2.4.13), since the deviation from

equilibrium will be small if the excitation is small. The non-equilibrium density of oc-

cupied defects nt has to be determined from (2.4.14c) which is a non-linear differential

equation. By using the steady state condition ∂
∂tnt

∣∣
steady

= 0, at least the steady state

occupied defect density can be calculated:

nt|steady =
Nt (σn vn n+ σp vp p

∗)
σn vn (n+ n∗) + σp vp (p+ p∗)

. (2.4.15)

Now, the net-recombination rate under steady state conditions (Cn − En)|steady can be cal-

culated. In honor of the authors of the original papers [32, 33], this is termed the Shockley-

Read-Hall-(SRH)-recombination rate Rsrh. By using the equations (2.4.12), (2.4.13), and

(2.4.15), the SRH-recombination rate becomes

Rsrh := (Cn − En)|steady =
n p− n0 p0

1
σp vpNt

(n+ n∗) + 1
σn vnNt

(p+ p∗)
. (2.4.16)

The same result will arise if (Cp − Ep)|steady is considered. Therefore, in steady state the

electron and hole recombination rates are equal.

4It shall be mentioned that in the nomenclature of this work the recombination of an electron does not imply
the recombination of a hole because the transition rates Cn − En and Cp − Ep are not necessarily equal.
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2.4. CHARGE CARRIER RECOMBINATION

The defect density Nt in (2.4.16) has the dimension of a volume density, if the defects

are within the semiconductor bulk. Then, 1
σn vnNt

and 1
σp vpNt

have the dimension of a

lifetime. Therefore, the minimum lifetimes τn0 := 1
σn vnNt

and τp0 := 1
σp vpNt

are defined

and the SRH-recombination rate for bulk-defects is rewritten by

Rsrh =
n p− n0 p0

τp0 (n+ n∗) + τn0 (p+ p∗)
. (2.4.17)

For interface-defects, Nt has the dimension of an area density and σn vnNt and σp vpNt

have the dimension of a velocity. Therefore, the recombination velocities Sn0 := σn vnNt

and Sp0 := σp vpNt are defined and the SRH-recombination rate for interface defects

becomes

Rsrh =
n p− n0 p0

1
Sp0

(n+ n∗) + 1
Sn0

(p+ p∗)
. (2.4.18)

Especially for deep interface defects in a p-type semiconductor, one finds for low excita-

tions (p ≈ p0)

Rsrh = Sn0 (n− n0) = Sp0 (p− p0). (2.4.19)

At last, the temperature dependence of the SRH-recombination is studied. Apart from

the carrier densities n0, p0, n, p, n
∗, p∗, also the minimum lifetimes and recombination

velocities are temperature dependent due to the temperature dependence of the thermal

velocity and the capture cross-section. A common ansatz is a power law [Mai3, Mai7]

τn0, τp0 ∼ T−bn,p (2.4.20a)

Sn0, Sp0 ∼ T bn,p (2.4.20b)

with a constant bn,p > 0 depending on the material, the doping, and the defect.

Radiative vs. non-radiative defect assisted recombination

The above derivation of the SRH-recombination rate is based on the semi-classical rate

equations (2.4.12) for electrons and holes, and disregards the energy transfer to photons

or phonons. The treatment of the interaction with photons is similar to that described in

section 2.4.1. For dealing with the coupling with phonons, the influence of the semicon-

ductor lattice has to be taken into consideration. For a specification of a lattice state, the

configuration coordinate Q is introduced, which for example may be the distance of an

intrinsic defect to the next neighbours. In harmonic approximation, the lattice potential

then comes out parabolic in Q. In the following, two energy parabolae are considered:

one for an electron in the conduction band Ec and one for an electron captured by the

defect Et. These are shown in figure 2.2 (a). Both parabolae are shifted on the energy

axis due to the energy loss when the electron is captured. The equilibrium configuration

in the two cases (electron in conduction band or electron in defect state) depends on the
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Figure 2.2: (a) Energy parabolae in a configuration coordinate diagramm with and without electron-lattice inter-
action. (b) Due to the interaction, the minima (Qt, Et(Qt)) and (Qc, Ec(Qc)) of the parabolae are
not equal and both intersect in a point (Qis, Eis). The figures are adapted from ref. [34].

electron-lattice interaction. If both do not interact, the equilibrium configuration will be

equal for both states. However, if the electron and the lattice interact, the lattice will

deform due to the charge of the defect by the captured electron and a new equilibrium

configuration will materialize. Therefore, the parabolae of the free and the captured elec-

tron are also shifted on the Q axis and both intersect. Due to this intersection there are

two possibilities for an electron transition from (Qc, Ec(Qc)) in the conduction band into

(Qt, Et(Qt)) in the defect state (see fig. 2.2 (b)):

If the electron-lattice interaction is strong or if the defect is close to the conduction band,

the energy difference Eis−Ec(Qc) will be small. Therefore, the electron in the conduction

band can be thermally excited into the state (Qis, Eis). Here, the energy parabolae of

the conduction band and the defect intersect. Thus, the transition probability is not van-

ishing and the electron can get from Ec(Qis) into Et(Qis). Then, it thermalizes into the

minimum Et(Qt) by emission of phonons which is why this transition is a non-radiative

process.

If the coupling of the defect with the surrounding lattice is small or if the defect is far

below the conduction band (and close to the valence band), the activation energy of the

state (Qis, Eis) will become large. Hence, it is more likely that the electron jumps from

(Qc, Ec(Qc)) into the defect state (Qc, Et(Qc)) by emission of a photon, and then ther-

malizes by phonon emission into the minimum (Qt, Et(Qt)). Since now also a photon is

emitted, this process is a radiative electron transition.

Following these considerations, radiative transitions of electrons dominate for weak inter-

actions (Qc ≈ Qt) or for defects far below the conduction band (Et(Qt)� Ec(Qc)). This

is revealed by the following equation for the ratio of radiative and non-radiative electron

transitions, which has been derived for the special case Ec(Qt) > Ec(Qc), Ec(Qis), Et(Qt)

[35]:
radiative transitions

non-radiative transitions
=

(
1− 2

Ec(Qt)− Ec(Qc)

Ec(Qt)− Et(Qt)

)2

. (2.4.21)
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The mechanism of capturing holes in the valence band by a defect is similar to the above

described electron capture. Therefore, the following conclusions are drawn: if the defect

is close to the conduction or valence band, the recombination will be radiative since for

the first case the holes are captured radiatively and for the latter case the electrons are

captured radiatively. But, if the defect is in the middle of the band gap, electrons and

holes will be captured non-radiatively and the recombination will be non-radiative, too.

Charge carrier trapping vs. recombination

As it was the case in the above considerations, a defect always (except from a few special

cases) enhances the steady state recombination of electron-hole pairs, independent from

the defect density or the defect energy. This becomes obvious from the SRH-recombination

rate in equation (2.4.16), which is always positive. The steady state behavior of defects,

however, is of minor importance for this work, since the scope are transient processes.

Hence, transient charging and discharging of defects is investigated in the following. Prior

to that, a discrimination of defects is appropriate which is justified through the following

preliminary consideration.

If an electron is captured by a defect, there will be two possibilities: the electron can

recombine with a captured hole or it can be thermally reexcited to the conduction band.

In the first case, the defect is referred to as a recombination center. In the latter case,

the defect is called an electron trap due to the temporary preservation of the electron

from recombination. This trapping of charge carriers is a pecularity of time-dependent

processes and will become very important in the course of this thesis. Therefore, it

is reasonable to have criteria for the discrimination between recombination centers and

electron traps. These can be found by the hole capture and electron emission rate (2.4.12),

which are equal only in the steady state. The defect is designated as an electron trap, if

the electron emission rate is larger than the hole capture rate. This leads to the electron

trap condition:

En > Cp ⇒ σn vn
σp vp

>
p

n∗
. (2.4.22)

For a p-type semiconductor with a defect near the conduction band (p � n∗) and with

similar thermal velocities (vn ≈ vp), the hole capture cross-section must be much smaller

than the electron capture-cross section to obtain an electron trap. This is characteristic

for donor like traps meaning they are uncharged when being occupied [36, 37].

The above thoughts on electron traps can be transferred one-to-one to holes. This yields

the hole trap condition:

Ep > Cn ⇒ σp vp
σn vn

>
n

p∗
. (2.4.23)

For defects that fulfill the trap condition, the charge carrier capturing as well as emission

must be determined from the rate equations (2.4.12). For recombination centers, meaning

defects that do not fulfill the trap conditions, the net-recombination of electrons Cn−En
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and holes Cp − Ep is given by the SRH-recombination rate (2.4.16) only in steady state.

Hence, in general they must be determined from the rate equations, too. This needs

knowledge about the defect occupation nt; therefore the solution of the rate equation

for nt. This is laborious and very inconvenient. Hence, the net-recombination rates of

electrons and holes under transient conditions are often approximated by the steady state

net-recombination rate Rsrh (2.4.16). This will be possible, if (Cn−En) ≈ (Cn − En)|steady
and (Cp −Ep) ≈ (Cp − Ep)|steady hold. Evaluating this for example for electrons leads to

the simple condition

nt ≈ nt|steady . (2.4.24)

In other words, at any time the occupation must equal the steady state occupation (2.4.15)

for the given electron and hole density. This will be true if the densities n and p vary

on a larger time scale than nt. Then, the defect will be in a quasi-steady state. To

quantify this, a relaxation time constant of the occupation of recombination centers is

calculated. Therefore, it is assumed that the system is in a steady state “1” with the charge

carrier densities n1 and p1. The steady state occupation nt1 results from the condition
∂
∂t
nt
∣∣
steady1

= 0. Omitting the emission rates, which are negligible for recombination

centers, yields

nt1 =
σn vnNt n1

σn vn n1 + σp vp p1

. (2.4.25)

Now, the steady state is perturbed by a small, instantaneous change of the electron density

n1 → n1 + δn with δn� n1 for example by a generation of electrons.5 As a consequence,

the hole capturing is over- or undercompensated by the electron capturing and the system

evolves into a new steady state “2” with the carrier densities n2 = n1 + δn, p2 = p1, and

nt2 =
σn vnNt (n1 + δn)

σn vn (n1 + δn) + σp vp p1

. (2.4.26)

The relaxation time δt is the time, which the defect with steady state occupation nt1

needs to reach the new steady state occupation nt2. This time is extrapolated from the

rate equation (2.4.12) by replacing the time derivative by the difference quotient:

nt2 − nt1
δt

≈ d

dt
nt ≈ Cn − Cp = σn vn (n1 + δn) (Nt − nt1)− σp vp p1 nt1 (2.4.27a)

⇒ δt ≈ (σn vn n+ σp vp p)
−1 . (2.4.27b)

Now, the recombination center will be in quasi-steady state - and therefore (Cn − En) ≈
Rsrh will hold -, if δt is much smaller than the time scale of variation of the electron and

the hole density. In other words, the relaxation time must be smaller than the effective

carrier lifetimes, that will be defined in chapter 3.

5A perturbation of the hole density p instead of the electron density yields the same result (2.4.27).
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2.4.3 Alternative recombination paths

To conclude this section about charge recombination in semiconductors and for the sake

of completeness, other recombination processes are discussed. As they have only a minor

influence on the room temperature TRL in thin-film semiconductors, they are only ex-

plained shortly.

At the beginning of this section the radiative band-to-band recombination was described.

This was generalized to the recombination of free charge carriers assisted by one defect in

the band gap, which arises the denomination “free-to-bound” recombination. Going one

step further leads to the bound-to-bound or donor-acceptor (DA) recombination, where

an electron captured by a donor recombines radiatively with a hole captured by an ac-

ceptor. This situation is shown in the spatial energy diagramm in figure 2.3 (a). Before

the recombination, the donor is neutrally charged due to the occupation by the electron

and the acceptor is neutrally charged due to the occupation by a hole. After the recom-

bination, however, the donor and acceptor are ionized and interact with each other. For

large distances R between both, the Coulomb interaction contributes the major part to

the interaction energy. For smaller distances an additional interaction term J(R) must be

taken into consideration due to the overlap of the wavefunctions. Therefore, the energy

of the emitted photon becomes:

~ω = Eg − (EA + ED) +
e2

4 π ε0 εr R
− J(R). (2.4.28)

The derivation of the total rate RDA of radiative DA-recombination is similar to that

of radiative band-to-band-recombination (2.4.10), if the low-density-approximation is ap-

plied and if the donor and acceptor state are treated as energy bands with infinity effective

mass. The result reads [34]

RDA = TDA nD nA. (2.4.29)

In equation (2.4.29), nA is the density of neutral acceptors, nD is the density of neutral
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Figure 2.3: (a) Recombination of an electron bound to a donor (D0) with a hole bound to an acceptor (A0) by
emission of a photon hω. Donor and acceptor have a distance R. (b) A hole and an electron are
bound together within a distance R. The joint centre of mass moves with the momentum ~K. [38]
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donors, and TDA is the coefficient of DA-recombination, depending among others on the

donor and acceptor levels ED and EA, and on the dielectric permittivity εr.

Another recombination mechanism, being predominant in highly doped semiconductors,

is the Auger recombination. Thereby, an electron-hole pair recombines and the excess

energy is transferred by a photon to a third charge carrier. If this charge carrier is a

second electron, this will be excited into higher states of the conduction band. Then, it

thermalizes non-radiatively into the conduction band minimum. If the charge carrier is

a second hole, this will be excited into deeper states of the valence band, and then ther-

malizes non-radiatively to the valence band maximum. Due to the complete conversion of

the photon into phonons, the Auger recombination is another non-radiative recombination

mechanism. Again, the transition rates are arranged linearly in the participating carrier

densities. Thus, the rate of Auger recombinationen for which the energy is transferred to

a second electron is arranged by An n
2 p with the Auger coefficient An for electrons. The

rate for which the energy is transferred to a second hole is arranged by Ap n p
2 with the

hole Auger coefficient Ap. Hence, the total rate of Auger recombination becomes

RAug = An n
2 p+ Ap n p

2. (2.4.30)

In the preceeding cases, recombination of charge carriers was considered that are either

free or bound to defects. However, there is also the possibility that charge carriers are

attracted to each other. An electron and a hole which are bound to each other are called

an exciton. This is demonstrated in figure 2.3 (b). Here, the electron and hole are bound

within a distance R and the joint center of mass moves with the pseudo-wavevector K.

The energy of the exciton then is discretized similarly to the hydrogen atom according to

En(K) = Eg −
m∗nm

∗
p

m∗n +m∗p

Ry

m0 ε2 n2
+

~2K2

2 (m∗n +m∗p)
, n ∈ N (2.4.31)

with the Rydberg energy Ry ≈ 13.6 eV. From equation (2.4.31) it becomes obvious,

that the binding energy of the exciton is large only for large dielectric permittivities ε.

Otherwise, the binding energy is small and most of the excitons are thermally dissociated

at room temperature.

If the bound electron and hole recombine, a photon with energy ~ω = En(K) < Eg will be

emitted. In the low-density-approximation, the net-rate Rex of exciton recombination is

arranged linearly in the exciton densities nex,0 and nex in equilibrium and non-equilibrium,

respectively, by the ansatz [39]

Rex =
1

τex
(nex − nex,0) . (2.4.32)

τex is the so-called exciton lifetime (see chapter 3).
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2.5 Generation of free charge carriers

The variety of charge carrier generation mechanisms is as wide as the the possibilities

for recombination. Free electrons and holes can be generated by excitation with light,

by thermal irradiation or by excitation with electrons. These mechanisms are discussed

in this section. Other possibilities like heating and doping of the semiconductor, or the

injection of charge carriers are not studied here, since they are of minor importance for

time-resolved luminescence experiments.

2.5.1 Generation by absorption of light

As a photon with energy ~ω > Eg is emitted by radiative recombination of an electron-

hole pair, free charge carriers can be generated by the reverse process: the absorption of

a photon γ → e + h with an energy ~ω > Eg. The number of absorbed photons and

thus the number of generated electron-hole pairs strongly depends on the light intensity.

Therefore, knowledge about the propagation of light is indispensable for the calculation of

the generation rate. The derivation of this is carried out in the following. For reasons of

simplicity, monochromatic light propagating in z-direction and incidenting perpendicular

to the semiconductor surface is considered. As light is an electromagnetic wave, it is

described by Maxwell’s equations (2.2.2). The wave equation for the electric field reads

∂2

∂t2
E +

σ

ε0 εr

∂

∂t
E − c2 ∂2

∂z2
E + c2 grad divE = 0, (2.5.1)

with the speed of light c = c0/
√
εr in matter, the speed of light in vacuum c0, and the

conductivity σ. Again, εr is the isotropic, homogeneous relative permittivity of the mate-

rial, that does not depend on the field E. It is further assumed, that the semiconductor

is uncharged (divE = 0). Equation (2.5.1) then is solved by

E(t, z) = Re
(
Ẽ0 e−i ω t−i k̃ z

)
with k̃ = ± ω

c0

√
εr + i

σ

ε0 ω
. (2.5.2)

Re(·) means the real part of the argument, i is defined by i =
√
−1, and Ẽ0 is a complex

constant. Obviously, k̃ is a complex function depending on the angular frequency ω and

on the material parameters σ and εr. Decomposing k̃ into the real and imaginary part,

it can be written as k̃ = kz0 · (nr − i κ) with the wavenumber kz0 = ω
c0

in vacuum. The

complex function n := nr − i κ is called the complex refractive index, with the refractive

index nr and the extinction coefficient κ, both depending on ω, σ and εr.
6 7 Thus, the

6It is worth mentioning that nr and κ are not independent, but have to fulfill a Kramers-Kronig-relation since
n is a meromorphic function [40].

7The complex refractive index depends on the conductivity and thus, on the density of free charge carriers. For
reasons of simplicity, this relationship is disregarded in this work.
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general, monochromatic plane-wave solution of (2.5.1) is

E(t, z) = Re
(
E0(t) e−kz0 κ z e−i kz0 nr z

)
, (2.5.3)

with E0(t) = Ẽ0 e−i ω t. The electric field of the electromagnetic wave must now be related

to the intensity I because this determines the number of photons; therefore, the generation

of charge carriers. In non-magnetic materials, as supposed for this thesis, the intensity

is calculated from the electric field E(t, z) by the absolute value of the Poynting-vector

averaged over time: I(z) = 1
µ0
〈|E ×B|〉t. Prior to that, the magnetic field B must be

calculated from the third Maxwell equation (2.2.2c). Using the electric field E(t, z) in

equation (2.5.3) this yields

B(t, z) =
1

c0

e−kz0 κ z Re
(
(nr + i κ)E0(t) ei nr kz0 z

)
. (2.5.4)

Evaluating the cross-product E ×B and the time-average 〈·〉t the intensity becomes

⇒ I(z) =
1

2
nr ε0 c0

∣∣∣Ẽ0

∣∣∣
2

e−2κ k0 z. (2.5.5)

The results show that the light intensity decays exponentially in direction of propagation.

This is Lambert-Beer’s law of light absorption. For its derivation, the amplitude Ẽ0 was

assumed to be time-independent, that is, the intensity of incident light is constant in

time. Otherwise, (2.5.3) would not be a solution of the wave equation. In luminescence

experiments, however, the intensity of incident light varies with time (see chapter 3). If

the time scale of intensity variation is � ω−1, equation (2.5.3) will still be a solution

of the wave equation, but with a time-dependent amplitude Ẽ0(t). The intensity (2.5.5)

then will also be time-dependent

I(z, t) =
1

2
nr ε0 c0

∣∣∣Ẽ0(t)
∣∣∣
2

e−2κ k0 z. (2.5.6)

Normalizing to z = 0 and dividing by the photon energy, equation (2.5.6) can also be

written for the photon current density

jγ(z, t) = jγ(z = 0, t) e−α z. (2.5.7)

This is Lambert-Beer’s law written for the photon current density jγ. It is only valid for

small electric fields, since εr was assumed to be independent from E. The absorption of

photons is characterized by the absorption constant α := 2κ k0. Just like the extinction, it

depends on the frequency, as well as on the relative permittivity εr and on the conductivity

σ.

As the current density of photons is known now as a function of time and space, the

generation rate of electron-hole pairs can be calculated. For this purpose, a small volume
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2.5. GENERATION OF FREE CHARGE CARRIERS

∆V = [x, x+ ∆x]× [y, y + ∆y]× [z, z + ∆z] and the time interval [t, t+ ∆t] is considered.

The number of photons being absorbed in ∆V within the time [t, t+ ∆t] is achieved by

integration of (2.5.7) with the result ∆Nγ = jγ(z, t)
(
1− e−α∆z

)
∆x∆y∆t. Each of the

absorbed photons is assumed to generate one electron and one hole if the photon energy

is larger than the band gap. Hence, the number ∆Nn, ∆Np of generated electrons and

holes is related to the number of absorbed photons by: ∆Nn = ∆Np = ∆Nγ Θ(~ω−Eg).
Here, Θ denotes the Heaviside function.

The generation rate is the number of charge carriers generated per time per volume.

Therefore, the generation rate of free electron-hole pairs by light becomes

Gph(z, t) = lim
∆V,∆t→0

∆Nn

∆V ∆t
= α jγ(z, t) Θ(~ω − Eg). (2.5.8)

This equation gives the generation rate for a given photon current density jγ(z, t). The

photon current density does not necessarily need to meet (2.5.7), but can be an arbitrary

function of space. This will become relevant, if the considered device structures have

reflecting interfaces. In this thesis, there are at least two: the semiconductor front and

back surface. The reflection and transmission of a plane wave at an interface between

two materials with different optical constants is described by Fresnel’s formulae which are

derived from boundary conditions for the electric and the displacement field.

A plane wave is assumed to propagate in a medium with complex refractive index nr1−i κ1.

It falls perpendicular on an interface to a second medium with complex refractive index

nr2−i κ2. The amplitude of the incident, reflected and transmitted wave shall be Einc, Er,

and Et respectively. Then, the reflection coefficient r12 and the transmission coefficient

t12 are given by

Er

Einc
= r12 =

nr1 − i κ1 − nr2 + i κ2

nr1 − i κ1 + nr1 − i κ1

(2.5.9a)

Et

Einc
= t12 = 2

nr1 − i κ1

nr1 − i κ1 + nr2 − i κ2

. (2.5.9b)

Due to the reflection, the electric field is a superposition of plane waves propagating

in opposite directions. Therefore, the electric field in each layer is given by E(t, z) =

Re(E0(t) (A(z) +B(z))) with complex functions A(z) and B(z) describing the local de-

pendence of the incident and reflected wave respectively, in each layer. They are calculated

by the Transfer-Matrix-Method (see chapter 4). From this, the magnetic field and the

Poynting-vector are calculated. This leads to the total photon current density

jγ(z) = jγ,0
nr
nr0
|A(z) +B(z)|2 , (2.5.10)

with the incident photon current density jγ,0, and the refractive indices nr and nr0 of the

layer and the medium of incidence, respectively.
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CHAPTER 2. CHARGE CARRIER DYNAMICS

2.5.2 Generation by thermal irradiation

A special case of the generation of electron-hole pairs by absorption of an electromagnetic

wave is the generation by thermal irradiation, which is not least an electromagnetic wave,

either. The spectrum jth(~ω) of such a temperature irradiation is given by Planck’s law.

Using equation (2.5.8) for z = 0 and jγ(z = 0, t) = jth(~ω), the generation rate Gth

becomes [16]

Gth =
16 π4 n2

r

c2
0 ~3

∫ ∞

Eg

α(~ω) (~ω)2

e
~ω
kB T − 1

d~ω. (2.5.11)

In equilibrium, the absorption of thermal photons must equal the emission of thermal

photons. The latter is given by Rrad = B n0 p0 (see equations (2.4.10) and (2.4.11)).

Then follows from detailed balance

B =
Gth

n0 p0

=
16π4 n2

r

c2
0 ~3 n0 p0

∫ ∞

Eg

α(~ω) (~ω)2

e
~ω
kB T − 1

d~ω. (2.5.12)

Therewith, the material constant B can be calculated from the absorption coefficient α.

2.5.3 Generation by impact ionization

Apart from the generation due to irradiation with an electromagnetic wave, electron-hole

pairs may also be generated by collision of particles with electrons - this is the reverse

process to the Auger recombination. This so-called “impact ionization” is often used for

cathodoluminescence measurements in an electron microscope. To this end, an electron

beam excites electrons from the valence band into the conduction band; thereby, creating

an electron-hole pair. For excitation, the incoming electrons must have sufficient kinetic

energy. Hence, the generation rate depends on the velocity and thus, on the current

densitiy of the electron beam. Therefore, the generation rate by impact ionization Gimp

is arranged by

Gimp(t, z) = αn Γn,beam(t, z), (2.5.13)

with Γn,beam being the electron current density of the incident electron beam. αn is the

impact ionization rate defined as the number of electron-hole pairs, generated by electrons

per unit distance traveled with the velocity vn [41]:

αn =
1

nbeam

dn

d (t vn)
=

1

Γn,beam

dn

dt
. (2.5.14)

It is worth mentioning, that the generation rate due to impact ionization (2.5.13) is

completely analogue to the generation rate by a photon current density (see equation

(2.5.8)). In this case, however, the profile Γn,beam(r) is difficult to calculate and will not

be studied here.
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2.5. GENERATION OF FREE CHARGE CARRIERS

2.5.4 Generation by reabsorption

As a conclusion of this section, radiative recombination of charge carriers is studied again.

After a photon is created, it moves through the semiconductor. On its way to the surfaces

it may be reabsorbed. Due to this self-absorbtion or photon-recycling, electron-hole pairs

may be generated without external generation, but only due to the radiative recombi-

nation. This effect can be accounted for by an additional generation term GPR(r, t) in

the continuity equations (2.3.13) [42]. For GPR(r, t) the photon current density must be

.

Figure 2.4: A spectral photon flux density b
is created at a position z within
a volume S. Along the trajectory,
photons are absorbed and emitted
within the path du which effects a
change of the spectral photon flux
density db [42]

known at each position and at each time. The calculation of this is illustrated in figure

2.4. The spectral photon flux density b,

b :=
d2jγ

dE dΩ
, (2.5.15)

is defined by the photon current density per energy E, which is emitted from an area s per

solid angle Ω. As the photons travel through the semiconductor, they can be absorbed

with a rate Aph; thereby, generating electron-hole pairs. Alternatively, also new photons

can be generated with the rate Gph by radiative recombination.8 Within the resulting

continuity equation for photons,

db

du
= Gph − Aph, (2.5.16)

u describes a length along the photon trajectory (see fig. 2.4). The spectral photon flux

b is here determined as a function of space, time, energy and solid angle. Knowing b, the

electron-hole pair generation rate per energy and solid angle becomes d2GPR = α d2jγ =

α b dE dΩ (see equation (2.5.8) and (2.5.15)). Hence, integration over all Ω and E yields

the total generation rate GPR of charge carriers due to photon recycling

GPR =

∫
α b dE dΩ. (2.5.17)

8It is pointed out, that the rates are also defined per energy E and per solid angle Ω as well as per length u.
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CHAPTER 2. CHARGE CARRIER DYNAMICS

2.6 Boundary conditions

The continuity equations of electrons and holes (2.3.13), together with the Poisson equa-

tion (2.2.5), are the three fundamental semiconductor equations. For their numerical

solution (see chapter 4) boundary conditions must be definied, more precisely three con-

ditions for each boundary. These are provided by the model of ohmic contacts [28]. This

treatment assumes a contact, which is always in thermal equilibrium and without of space

charges. More explicit, it is n p = n0 p0 and n− p = n+
D −n−A. Using Boltzmann statistics

and the impurity exhaustion, this can be transformed into a Dirichlet boundary condition

for the electrostatic potential

ϕ|boundary =
kB T

e0

asinh

(
ND −NA

2ni

)
+ U |boundary , (2.6.1)

where U |boundary means the outer applied voltage. For the boundary conditions of the

two continuity equations, the following consideration is taken as a basis: the interface

between the semiconductor and the contact is very defective and leads to a high interface

recombination rate with recombination velocities Sn0 and Sp0 (see (2.4.19)). This recom-

bination locally reduces the charge carrier density and causes a charge carrier transport

to the contact. Thereby, only as many charge carriers can recombine as are transported

to the contact. Hence, the constraint becomes Γ|boundary = RSRH |boundary with the current

density Γ and the interface recombination rate RSRH . By using equation (2.4.19) for the

interface recombination rate, this boundary condition becomes

n̂ · Γn|boundary = Sn0 (n− n0)|boundary (2.6.2a)

n̂ · Γp|boundary = Sp0 (p− p0)|boundary , (2.6.2b)

in which n̂ is the outer normal vector.

2.7 Reliability of the simulations

In the above sections and subsections, all relevant equations for the simulation of room-

temperature time-resolved luminescence in thin-film semiconductors have been derived.

Throughout the derivation, many assumptions were necessary to simplify the calculations

and to obtain analytical expressions. For the most important assumptions, the justifica-

tion and the consequences for TRL simulation will be discussed in the following.

The low-density-approximation has been used for the derivation of the charge carrier

densities, for the continuity equations, and for the recombination rates. It includes the

Boltzmann approximation of the charge carrier distribution, the parabolic energy band

approximation, the impurity exhaustion, and the requirement of small deviations from

equilibrium. All these assumptions require low electron and hole densities. In the fol-
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2.7. RELIABILITY OF THE SIMULATIONS

lowing, this requirement is quantified by the estimation of an upper limit to the charge

carrier densities.

For the Boltzmann approximation, the Fermi-level must not be closer than approximately

3 kB T from the energy band edges. By the effective density-of-states Nc,v = 2× 1018 cm−3

[16], equation (2.1.11) then yields an upper limit of n, p < 1017 cm−3. For the parabolic

band approximation, the maximum pseudo-wavevector of electrons in the conduction band

is defined by the highest occupied conduction band energy state, which is approximately

Ec,max ≈ Ec+5.67 kB T .9 Assuming an effective electron mass m∗n ≈ m0 [16], the parabolic

energy dispersion yields a maximum pseudo-wavevector kmax ≈ 5× 109 m−1, which is

much smaller than the size of the Brillouin zone (typically 5× 1010 m−1 [16]). Therefore,

99% of the electrons in the conduction band are close to the conduction band minimum

which is the presupposition of the parabolic band approximation. Now, it remains the

impurity exhaustion. To this end, the electron density always must be smaller than n∗

and the hole density must be smaller than p∗ (see equation (2.4.13)). For donors close

to the conduction band and acceptors close to the valence band, it is n∗, p∗ ≈ 1017 cm−3.

This again leads to the condition n, p < 1017 cm−3.

Apart from the amount of generated charge carriers, the time scale in the simulations is

restricted. The derivation of the transport equations from the Boltzmann equation pre-

sumed a macroscopic time scale being larger than the scattering time of charge carriers,

which is in the range of femtoseconds. Therefore, throughout the whole simulations the

charge carriers are in thermal equilibrium with the crystal lattice. This excludes the sim-

ulation of thermalization processes. Another constraint on the time scale arose from the

derivation of Lambert-Beer’s law: the optical intensity of the excitation must vary slower

than the inverse frequency of the light. For the light considered in this thesis (wavelength

638.9 nm), the time period is 1 fs. Therefore, the length of a pulsed excitation must not

be smaller than approximately 10 fs. Additionally, it follows a wavenumber of the light of

kop ∼ 107 m−1. This is much smaller than the maximum pseudo-wavevector of electrons.

Therefore, the photon momentum is much smaller than the charge carrier momenta and

all charge carrier transitions can be assumed vertical.

The next point adresses the homogeneity and isotropy. The permittivity, temperature,

and effective mass were assumed to be homogeneous. The effective mass, permittivity,

carrier scattering, and transition matrices were assumed to be isotropic. Further, the

surfaces are plain and not rough, so the light is coherent. In general, there is no justifi-

cation for these assumptions. Thin-film semiconductors especially like Cu(In,Ga)Se2 or

Cu2ZnSnSe4 are polycrystalline materials with material properties being neither homoge-

neous nor isotropic. Therefore, homogeneity and isotropy are maintained for convenience,

but they always must be questioned depending on the context.

9For the estimation of Ec,max, the energy range [Ec, Ec,max] in the conduction band, which encloses 99% of the

free electrons is calculated. This results from equation (2.1.7) by
∫ Ec,max

Ec
Dc(E)f(E) dE = 0.99n0.
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A further restriction to the simulations is the omission of Auger-, donor-acceptor-, and

exciton recombination. In contrast to the above points, the neglect of these recombination

mechanisms is no consequence of the derivations in this chapter. Instead, this is due to a

reduced complexity of the simulations. A justification for this approach is carried out in

the following:

For the materials studied in this thesis, the Auger-coefficient is A ≈ 10−28 cm−6 s−1 [37].

In consequence, Auger recombination becomes critical for doping densities in the range

of 1018 cm−3 or above [16]. However, all doping densities in the simulations in this work

are smaller than 1017 cm−3. Hence, Auger-recombination is of minor importance and can

be neglected. The exciton recombination as an alternative radiative recombination path

can be disregarded, since excitons are dissociated at room-temperature. It remains the

donor-acceptor-recombination. The defects included in this recombination path are shal-

low defects with small activation energies. It follows, that the interaction of the donors

and acceptors with the conduction and the valence band, respectively, is fast at room-

temperature. Then, recombination via two defects can be dealt with by the approach of

Shockley, Read, and Hall using effective charge carrier lifetimes.

The last point concerns the calculation of the luminescence intensity. By a specification

of the simulation tool, only band-to-band recombination may contribute to the lumines-

cence intensity. Recombination via defects is always non-radiative. However, this does

not influence the luminescence decay, since radiative defect recombination is assisted by

shallow defects, which reveal a time constant being similar to the band-to-band recombi-

nation (see ref. [Mai3]).

To conclude this discussion on the limitations of the TRL simulations in this thesis, the

main consequences are summarized:

• The charge carrier densities must be n, p� 1017 cm−3.

• The minimum time resolution of the simulation is about 10 fs. The length of a pulsed

excitation must be larger than 10 fs.

• Inhomogeneities of permittivity, temperature, and effective mass, as well as anisotropy

of effective mass, permittivity, carrier scattering and transition matrices are not sim-

ulated.

• Auger-, donor-acceptor-, and exciton-recombination are neglected.

• The doping density must be below 1018 cm−3.

• Only band-to-band recombination contributes to the luminescence intensity.
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3 Lifetimes and techniques for their

measurement

In the previous chapter, numerous properties of semiconductors have been described. The

most important of these for photovoltaic applications is the possibility of charge carrier

generation and recombination. In equilibrium, both equal each other in accordance with

detailed balance. Hence, the net-recombination vanishes. But, in non-equilibrium there

may be a noticible net-recombination of charge carriers. Assuming, the electron and hole

densities are equal, these net-rates may become very different depending on the under-

lying recombination mechanism. Therefore, a recombination lifetime is assigned to each

recombination mechanism which is thought to be independent from the charge carrier

densities. Thus, dominant recombination processes are easier to retrieve. The concept

and the measurement of these lifetimes will be the issue of this chapter.

First, the recombination lifetimes are motivated and exactly definied. Because of the

high relevance, techniques for their measurement have been developed, which are re-

viewed below. One of these is the measurement of the time-resolved luminescence. This

is of particular importance for this work. Hence, it is explained and discussed in de-

tail exemplarily for time-resolved photoluminescence. Thereby, also the problems that

already have been touched on in the introduction are picked up. In the end, TRL is

compared with other lifetime measurement techniques, especially with the measurement

of the photoconductivity decay, which is probably the most competing method.

3.1 Definitions of lifetimes

The strength of recombination processes depends on “the deviation from equilibrium”,

thus, on the difference of the charge carrier densities n and p to the equilibrium values

n0 and p0. Therefore, it is reasonable to introduce excess carrier densities ∆n and ∆p of

electrons and holes by

∆n := n− n0 and ∆p := p− p0. (3.1.1)

In the following, Ri,(n,p) denotes the net-recombination rate of electrons or holes by a

recombination mechanism i. In equilibrium then holds ∆n = ∆p = 0 and Ri,(n,p) = 0, as

a consequence of detailed balance; in non-equilibrium holds ∆n, ∆p 6= 0 and Ri,(n,p) 6= 0.
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Therefore, a factorial correlation between ∆n and ∆p, and Ri,(n,p) can be presumed and

it is reasonable to arrange the net-recombination rates by

Ri,n =
1

τi,n
∆n and Ri,p =

1

τi,p
∆p. (3.1.2)

Each net-recombination rate can always be written in this form because the factors 1/τi,n

and 1/τi,p are arbitrary and can be chosen properly, so that (3.1.2) is fulfilled. The

quantities τi,n and τi,p are called the recombination lifetimes of electrons and holes. By

τi,n = ∆n/Ri,n and τi,p = ∆p/Ri,p a unique lifetime can be always attributed to each

recombination mechanism. Therefore, the characterization of the recombination can be

exchanged for the characterization of the recombination lifetime. The advantage is that

this facilitates the requirements on the experiment since in first approximation the life-

times are independent from excitation.10 For multiple recombination paths, the effective

recombination lifetime τeff,r,(n,p) is defined by

Rtotal,net = R1,net +R2,net + . . .⇒ 1

τeff,r,(n,p)
:=

1

τ1,(n,p)

+
1

τ2,(n,p)

+ . . . . (3.1.3)

If recombination is not exactly compensated by generation of charge carriers, it will lead

to a decay of the charge carrier density. To make this clear, it is assumed that an excess

electron density is generated by any mechanism within a homogeneous semiconductor.

These excess electrons shall recombine by only one recombination mechanism with a

constant recombination lifetime τr,n. Then follows d
dt

∆n(t) = − ∆n
τr,n

from the continuity

equation and the time-dependence of the excess electron density becomes

∆n(t) = ∆n(t = 0) e
− t
τr,n . (3.1.4)

This shows that the excess electron density decays exponentially and the effective electron

lifetime τeff,n - the time-constant of the decay - equals the recombination lifetime τr,n.

A second important finding of equation (3.1.4) is that the electrons do not recombine

simultaneously, but at different times after the generation. This means, the electrons do

not have a distinct lifetime but a distribution of lifetimes according to a certain probability

density function fτ,n(τ) (see figure 3.1). For the calculation of fτ,n it is pointed out, that

within the time [t, t+ ∆t] after the generation all of the electrons recombine which have

a lifetime τ ∈ [t, t+ ∆t]. Therefore, it holds

∆n(t+ ∆t)−∆n(t) = −fτ,n(t) ∆t ∆n(t = 0) (3.1.5a)

⇒ fτ,n(τ) = − d

dt

∆n(t)

∆n(t = 0)

∣∣∣∣
t=τ

. (3.1.5b)

10One should be aware that this is only true in first approximation. In general, the recombination lifetimes are
not constant but may be functions of ∆n and ∆p, too.

34



3.1. DEFINITIONS OF LIFETIMES

time of generation 

lifetime 

e
le

ct
ro

n
 l

if
e
ti

m
e
  

p
ro

b
a

b
il

it
y
 d

e
n

si
ty

 

𝜏 = 0 

shadowed region corresponds 

    to time interval  

𝜏 

𝑡, 𝑡 + ∆𝑡  

Figure 3.1: Electron lifetime probabil-
ity density fτ,n. The elec-
tron density ∆n(t = 0) is
generated at the time t =
0, thus, recombination at
t = 0 corresponds to τ =
0. Analoguously, within the
time [t, t+ ∆t] all electrons
recombine that have a life-
time τ ∈ [t, t+ ∆t].

For the special result (3.1.4), the electron lifetime probability density becomes an expo-

nential distribution

fτ,n(τ) =
1

τr,n
e
− τ
τr,n . (3.1.6)

Taking τr,n = τeff,n into consideration, it turns out for this special case that the effective

electron lifetime is the expected value with respect to all electrons.

The one-exponential decay of electrons like in equation (3.1.4) is not the general case,

especially, if the electrons trap. To account for such non-exponential decays, the effective

carrier lifetime τeff,(n,p) (not to be confused with the effective recombination lifetime

τeff,r,(n,p)!) is defined on the basis of equation (3.1.4) by

τ−1
eff,n = − d

dt
log ∆n(t) and τ−1

eff,p = − d

dt
log ∆p(t). (3.1.7)

It is pointed out, that the effective carrier lifetime in these definitions will be time-

dependent if the decay of the excess carrier density is not mono-exponential.

When the charge carriers recombine, the net-rate of radiative recombination decreases

and consequently the luminescence intensity I decays.11 This luminescence decay can be

mono- or bi-exponential or even curved (see chapter 5). Therefore, the time-constant for

the decay - the so-called decay time - has to be defined similar to the effective carrier

lifetime in equation (3.1.7). Due to this, the decay time may become time-dependent. In

some cases, however, the indication of a time-dependent decay time is very inconvenient.

Therefore, the luminescence decay is also often characterized by the 1/e decay of the

intensity. This leads to two different definitions of the decay time:

τdecay := − d

dt
log I(t) or by the condition I (τdecay) =

1

e
Imax. (3.1.8)

From the context it should be always clear, which definition is used. It shall be mentioned,

that both definitions are equivalent for exponential decays.

To conclude this section, the numerous lifetime definitions are exemplified for radiative

band-to-band recombination. To this end, the net-recombination rate (2.4.11) is expressed

by the excess carrier densities by Rrad,net = B (n0 ∆p+ p0 ∆n+ ∆n∆p). It is now assumed,

11Of course only in non-steady state when the recombination is not exactly compensated by a generation.
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that the electrons and holes have equal effective lifetimes. This is mostly true for semi-

conductors without charge carrier traps and without space charges (see chapter 5). Then,

∆n = ∆p can be assumed. Further, p-doping is presumed (n0 � p0) and the excitation

shall be small (∆p � p0). Then, the inverse of the recombination lifetime of electrons

becomes

τ−1
rad,n = B p0. (3.1.9)

By solving the continuity equation, the time-dependent excess electron density becomes

∆n(t) = ∆n(t = 0) e
− t
B p0 ⇒ τ−1

eff,n = B p0. (3.1.10)

Finally, the luminescence decay time is calculated. The luminescence intensity is pro-

portional to the radiative recombination. By using (3.1.10), the luminescence intensity

becomes

I(t) ∼ B p0 e
− t
B p0 ⇒ τ−1

decay = B p0. (3.1.11)

The result of a time-resolved luminescence measurement is the decay time. However, as

the equations (3.1.9) - (3.1.11) show, this decay time is equal to the effective electron

lifetime and in particular equal to the recombination lifetime. Hence, the recombination

can be easily characterized from the luminescence decay, which led to the considerable

attention to this method.

3.2 Time-resolved luminescence

The key message of the section above is that recombination lifetimes are supposed to

be determined from the decay of the luminescence intensity. In order to do so, charge

carriers must be generated first, as demonstrated in figure 3.2. Depending on the gener-

ation mechanism, the luminescence is distinguished by cathodoluminescence (generation

by impact ionization with electrons), by electroluminescence (generation by application

of a voltage), or by photoluminescence (generation by absorption of light). After the

generation G is turned off, a part of the charge carriers recombines by radiative band-

to-band recombination with the intensity IB, the rest recombines via defects; thereby,

emitting luminescence of the intensity IM . The sum of both - IB and IM - then gives the

time-resolved luminescence intensity I, which is recorded.

A general advantage of this procedure is the contactless measurement of the luminescence.

In particular, the luminescence decay only depends on the rate of excitation. Thus, each

of the above mentioned techniques will basically yield the same luminescence decay as

long as the generation rates are equal. For the scope of this work, however, photolumi-

nescence enables a simpler calculation of the generation rate. Thus, for convenience the

following will focus on photoluminescence measurement techniques only.

36



3.2. TIME-RESOLVED LUMINESCENCE

Figure 3.2: Principle procedure of a time-resolved
luminescence experiment. Charge
carriers are generated with a rate
G. They recombine by band-to-band-
recombination with intensity IB or
thermalize and recombine by impurity
recombination with intensity IM . Fig-
ure is adapted from ref. [38].

The options for measuring the time-resolved photoluminescence are various. In the direct

imaging method, the semiconductor is excited by a pulsed laser. The luminescence is

detected by a photomultiplier, whose output is displayed on the Y-axis of an oscilloscope

and swept in time by its horizontal time base. Then, the luminescence decay can be ob-

served on a screen or on a computer and the decay time can be determined. This method

is very simple. However, the instrument response functions of all components (mainly

photomultiplier, excitation source, and oscilloscope) must be short enough for a sufficient

time resolution.

In the phase shift method, the excitation intensitiy is modulated sinusoidally with an

angular frequency ω. Therefore, the photoluminescence response is also modulated sinu-

soidally with the same frequency but with a phase shift φ, due to the finite lifetime of the

charge carriers. If a single exponential decay with one time constant τdecay is presumed,

it holds [38]

tanφ = ωτdecay. (3.2.1)

Therefore, the decay time can be easily determined from the phase-shift. The disadvantage

of this method is that it does not account for multi-exponential decays nor it makes a

statement about their contribution to the total luminescence intensity.12

In this work, the time-correlated single photon counting (TCSPC) method with the setup

illustrated in figure 3.3 (a) is used for measurement of the luminescence decay. A laser

generates a pulse of photons directed to the sample. The absorption of these photons

generates charge carriers, which then recombine radiatively. The luminescence is collected

and directed to a photomultiplier for detection.13 For each detected photon, the time

between emission of the laser pulse and detection of the photon is measured. In order to

do this, the laser pulse serves as the start signal and the photon detection serves as a stop

signal. Hence, only one photon can be detected for each laser pulse. In order to detect a

large number of photons for statistical reasons this procedure must be often repeated.

12For further details on theses methods, reference is made at this point to reference [38].
13For further information on the setup see reference [Mai5].
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Figure 3.3: (a) Experimental setup for measuring TRPL. The light is focused on the sample by a lense L1. The
photoluminescence is collected by a second lense L2 and directed to the detector. (b) Principle of the
time-correlated single photon counting method. The luminescence transient is gradually reconstructed
by repeatedly measuring the luminescence photons. Figure is adapted from ref. [43]

Due to the finite time resolution, the time scale is separated into channels j of width ∆t

(see fig. 3.3 (b)). After the time for the detection of the photon is measured, a counter

in the corresponding channel [tj, tj + ∆t) is increased by one. Hence, the counter gives

the number of detected photons for which the time between generation and detection is

between tj and tj + ∆t. In accordance with equation (3.1.11), the luminescence intensity

I(t) is the number of photons, emitted per time. Therefore,
∫ tj+∆t

tj
I(t)dt ≈ I(tj) ∆t is

the number of photons for which the time between generation and emission is between tj

and tj + ∆t. However, except a scaling, this is the value of the counter of the channel j.

Therefore, the histogramm in figure 3.3 (b) approximates the time-resolved luminescence.

Hence, TCSPC is capable to record the full luminescence decay in contrast to other

methods like the phase-shift method. This is a prerequisite for understanding the full

recombination kinetics.

3.3 The problem of determining material parameters from TRL

Up to now, time-resolved (photo)luminescence turned out to be easily measured by means

of TCSPC and the luminescence decay can be easily analyzed, because the equations

(3.1.9)−(3.1.11) show that the decay time equals the recombination lifetime. Unfortu-

nately, this is not the general case but only valid for low-injection levels and negligible

defect-enhanced recombination. To make this clear, the presumption of low-injection lev-

els is dropped now. Then, the net-rate of radiative recombination and the inverse of the

recombination lifetime of electrons in a p-type semiconductor with p0 � n0 and ∆n = ∆p

become

Rrad,net = B∆n (p0 + ∆n) and τ−1
rad,n = B (p0 + ∆n) . (3.3.1)

It is obvious, that the recombinaton lifetime is not constant but may implicitely depend
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on the excitation by the excess carrier density ∆n. By solving the continuity equation,

the time-dependent excess electron density ∆n can be calculated as a function of time.

Knowing ∆n(t), also the luminescence intensity I(t) can be determined. The effective

electron lifetime, the radiative recombination lifetime, and the decay time come out as

τ−1
eff,n = B p0

p0 + ∆n(t = 0)

p0 + ∆n(t = 0)−∆n(t = 0) e−B p0 t
= τ−1

rad,n (3.3.2a)

τ−1
decay = B p0

p0 + ∆n(t = 0) + ∆n(t = 0) e−B p0 t

p0 + ∆n(t = 0)−∆n(t = 0) e−B p0 t
6= τ−1

rad,n. (3.3.2b)

This shows that the decay of the electron density is not exponential since the effective

electron lifetime depends on time. Further, this shows that the decay time is neither equal

to the effective electron lifetime nor to the radiative recombination lifetime.14

Another problem addresses the discrimination of different recombination paths by TRL.

Therefore, it is assumed that there are two recombination mechanisms with constant

recombination lifetimes τr1,n and τr2,n. The effective electron lifetime and the decay time

then are

τ−1
decay = τ−1

r1,n + τ−1
r2,n = τ−1

eff,n = τ−1
eff,r,n. (3.3.3)

Now, only the sum of the inverse recombination lifetimes can be determined from the

decay time. It is not possible, to calculate τr1,n and τr2,n separately. For this purpose,

at least two decay times are needed, which may come out from TRL measurements at

different experimental conditions, e.g. different excitation levels or temperatures.

3.4 Alternative lifetime measurement techniques

The above sections can be summarized as follows: The measurement of time-resolved

luminescence is easy and straight forward. From the decay of the luminescence a decay

time can be determined, which is supposed to characterize the recombination. Unfor-

tunately, this decay time can only be related to recombination lifetimes in exceptional

cases. In general, analytical formulae and experimental variations are necessary for the

semiconductor characterization. Therefore, alternative lifetime measurement techniques

have been developed which are introduced and compared with TRL in the following. One

possibility is to measure the so-called diffusion length Lx, which is defined by

Lx =
√
Dx τeff,r,x, x = n, p, (3.4.1)

with the charge carrier diffusion constant Dx and the effective recombination lifetime

τeff,r,x. This diffusion length can be measured in EBIC measurements on a pn-junction

[44]. In order to do so, a charge carrier density is locally generated. By diffusion, a certain

14Therefore, it is misleading to call the decay time a lifetime.
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amount of charge carriers reaches the collecting space charge region of the pn-junction

and generates a photo current. By the variation of the distance of generation to the space

charge region, the diffusion profile and, thus, the diffusion length can be measured. The

advantage of this method is the rather simple analysis. But the measurement is stationary

which means transient effects like charge carrier trapping cannot be observed. Further-

more, the charge carrier mobility must be known and a charge carrier collecting junction

is needed. Therefore, EBIC measurements cannot be applied to sole absorbers. Both are

considerable disadvantages compared to TRL.

Another possibility is to apply a forward voltage to a solar cell [45]. Thereby, minority

charge carriers are injected. Then, the sign of the voltage is changed almost instanta-

neously. Due to the finite lifetime of the charge carriers, a large reverse current (due to

the injected charge carriers) flows which decays in time. From this, the effective minority

carrier lifetime is determined. The advantage is that due to the transient measurement

transient effects can be observed. However, again blank absorbers cannot be characterized

since complete solar cells are needed, which additionally have to be electrically contacted.

Further, the analyzation is very difficult due to the complex currents and the interaction

with internal electric fields.

Probably the most competing method is the measurement of the photoconductivity [2,

37]. Therefore, charge carriers, for example electrons, are generated and the conductivity

σn is measured either contactless by an inductivity or by application of a voltage. Then,

the electron density can be determined from the conductivity as a function of time by

n(t) =
σn(t)

e0 µn
. (3.4.2)

Due to the factorial relation, the decay of the electron density and, thus, the effective elec-

tron lifetime can be directly measured without knowledge of the electron mobility. This

is an important advantage compared to TRL, where τeff,n has to be determined from the

decay time in a roundabout way. Furthermore, this method is also applicable to blank

absorber layers and also to semiconductors that have poor luminescence properties. Main

disadvantages of this method are the limited time resolution of approximately 100 ns [4]

and the required absence of a metallic back contact due to the inductive measurement.
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4 Simulation of TRL with Synopsys® TCAD

In chapter 3, the measurement of TRL has been explained. For its description, all nec-

essary equations are provided in chapter 2. Hence, all requirements for the simulation of

a TRL experiment are fulfilled. How this is done using the tool Synopsys® TCAD will

be the issue of this chapter. For a better understanding, the basic procedure for running

a simulation is explained first. Then, strategies for each individual step - which is the

discretization of the semiconductor, the calculation of the generation, and the numerical

solution of the semiconductor equations - are presented without going into a detailed

mathematical description. The output of the simulations will be the electrostatic poten-

tial, the electron density, and the hole density as a function of space and time. From

these quantities, any other quantity can be calculated, e.g. the rate of radiative recom-

bination. By its numerical integration over space for each time step, the TRL intensity

can be determined as a function of time.

4.1 The workflow of a TRL simulation

At the beginning, the basic simulation procedure of TRL with Synopsys® TCAD is

described. Afterwards, a more mathematical analysis will be given.

Defining the geometry, material profiles, and the mesh

First of all, the geometry and the boundaries of the device under simulation are defined

using the Sentaurus Structure Editor. Here, the dimensionality of the simulation is chosen,

lengths are specified, regions with specific materials are definied, and ohmic contacts are

assigned to the boundaries. Further, profiles of material properties, such as the doping

density, the band gap or the SRH-lifetime are definied. In the end, the mathematical

grid for the numerical solution of the semiconductor equations is calculated (see section

4.2) according to user defined specifications, e.g. mesh refinements next to interfaces,

maximum grid distances, etc.

Generation of parameter files

Each vertex (grid point of the mesh) contains information on the material at this posi-

tion. The properties of these materials are stored in parameter files. For semiconducting

materials, these contain at least the electron affinity, the complex refractive index as a
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numerical table of the wavelength, the effective densities-of-states, the charge carrier mo-

bilities, the constant for radiative recombination, and the trap parameters. If not given

by a profile, they also contain the SRH-lifetimes and the band gap.

In order to account for the pulse shape, the pulse width, the number of excitation pulses,

and the excitation frequency, another file is created providing a numerical table for the

time-dependence of a scaling factor [0, 1] for the generation function (see section 4.3).

The advantage is that the generation function does not need to be recalculated but can

be used for each time step again.

Performing the simulation

With the mesh file and the parameter files, it remains the specification of the boundary

conditions and the physical models, prior to being able of performing the simulation. This

means, the applied voltages and the contact recombination velocities have to be assigned

to each ohmic contact and recombination processes, mobility models or temperature de-

pendencies must be defined. Afterwards, the simulation starts with the calculation of the

generation function. In this thesis, an optical excitation is chosen with specified wave-

length, intensity, time-dependence, angle of incidence, and method for calculation (see

section 4.3). Then, an equilibrium solution as a starting point for the transient simula-

tion is calculated by solution of the Poisson equation with previously defined options for

the numerical solver.15 Afterwards, the simulation of the experiment is performed, which

in this work is the transient simulation of the luminescence. Thereby, the solution of the

coupled Poisson and continuity equations is calculated at each time-step (see sections 4.4

and 4.5). In doing so, the time-discretization, the number of steps, and the final time can

be set individually.

Postprocessing of the simulation output

The output of the simulation are the electrostatic potential, and the electron and hole

densities (or equivalently the quasi-Fermi levels) at each grid point at each time-step.

From these, almost any other quantity can be calculated as a function of space and

time, in particular the rate of radiative recombination. For each time-step, this rate is

integrated numerically over space. Following the discussion in section 2.7, the result of

this integration is taken as the luminescence intensity, which can be processed further

(see section 4.6). For example, it can be convoluted with an experimentally determined

instrument-response-function to approximate experimental time-resolved luminescence.

Alternatively, it can be fitted exponentially in order to determine decay times.

15For the initial equilibrium solution, the continuity equations are purposely not solved due to a pecularity of
the simulation tool: Independent from the time-dependence of the optical scaling, a maximum generation is
assumed at t = 0. Thus, the solution of the continuity equations then would lead to a large amount of charge
carriers and a non-equilibrium state of the device.
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4.2 Delaunay triangulation for mesh generation

The first step in performing a simulation is the generation of the mesh in order to descretize

the semiconductor equations. The mesh generator reads the input geometry from a file

and generates a set of Nm vertices {v1, v2, . . .} according to user specified requirements

(refinements near interfaces etc.). Then, a so-called axis aligned Delaunay triangulation

is used in order to interconnect the vertices. The resulting mesh confines triangles (or

tetrahedra in three dimensions16) fully covering the semiconductor without overlap.

The mesh, however, is not arbitrary since it must fulfill the Delaunay condition. For its

revisal, the circumcircle is determined for each triangle. If there are no vertices in the

interior of the circumcircles, the Delaunay condition will be fulfilled. This is exemplified

No Delaunay mesh Delaunay mesh 
Figure 4.1: Two different options of the triangula-

tion of four vertices. In the left figure,
the Delaunay condition is not fulfilled,
since the green circumcircle contains
vertices (marked by an arrow) apart
from the three of the corresponding
green triangle. In the right figure, the
Delaunay condition is fulfilled.

in figure 4.1 for a triangulation of four vertices. Here, the green and the red circle are

the circumcircles of the green and the red triangle, respectively. On the left-hand side,

the Delaunay condition is not fulfilled since the green circle contains, besides the green

triangle, other vertices marked by an arrow. In contrast, for the same vertices the trian-

gulation shown on the right-hand side complies with the Delaunay condition.

This Delaunay triangulation brings several numerical advantages along. For instance, it

maximizes the internal angles of the triangles, which minimizes rounding errors when the

semiconductor equations are solved.

4.3 Calculation of the generation function

The next step in the simulation process is the calculation of the generation function. In

this work, the generation of charge carriers is achieved by an optical excitation. The

calculation of the corresponding generation function is done by two ways: by RayTracing

or by the Transfer-Matrix-Method (TMM). Both are described in the following.

4.3.1 RayTracing

For RayTracing, the incident light is simulated by a set of starting rays that is distributed

randomly on the surface of incidence. These rays propagate through the material and

16The three dimensional terminology will be disregarded in the following.
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Figure 4.2: (a) Schematic illustration for the consideration of photon recycling by RayTracing. By crossing an
optically active layer, a ray emitted by spontaneous recombination is absorbed (Abs), absorbed and
instantaneously reemitted into another direction (ReEmit), and the rest is amplified by stimulated
emission (ASE). The figure is adapted from ref. [39]. (b) Illustration of forward and backward waves
in a stack of three materials with optical constants nr, κ, α. M01 and M12 are the interface matrices
relating the incident, transmitted, and reflected intensity, and M1 is the transfer matrix of the layer.

they are reflected and transmitted at interfaces; thereby, being split into two new rays.

From the resulting ray tree, the generation function can be calculated from the absorption

of each ray. The advantage is that this method allows non-planar surfaces and interfaces.

Furthermore, it enables the calculation of the generation due to photon recycling. To this

end, a second ray tree is generated, where the starting rays originate from a spontaneous

emission process. If such a ray with intensity I passes an optically active layer such as in

figure 4.2 (a), the fraction Abs will be absorbed in the layer, the fraction ReEmit will be

absorbed and instantaneously reemitted into another direction, and the rest 1 − Abs −
ReEmit will be amplified by stimulated emission with the coefficient ASE ≥ 1. If the

incident ray carries a rate number Nph of photons, the net-generation rate due to photon

recycling will become

GPR = Nph ((ASE − 1) (1− Abs−ReEmit)− Abs) . (4.3.1)

In doing so, photon recycling can be easily accounted for in the simulations without

solving the photon equation (2.5.16). A major disadvantage, especially for thin-film semi-

conductors, is that the rays do not carry information on the phase. Thus, interference

effects are not modeled by RayTracing. Apart from this, photon recycling has only a

minor influence on the TRL decay anyway according to paper [Mai1].

4.3.2 Transfer-Matrix-Method

To account for interference effects, the Transfer-Matrix-Method described in the following

is more appropriate. The electric field strength of incident, reflected, and transmitted light

at each interface is thereby related by matrices. For their derivation, a layer of thickness

d1 with optical constants nr1, κ1, α1 is presumed (see figure 4.2 (b)). This layer shall be
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surrounded by two (other) materials with optical constants nr0, κ0, α0 and nr2, κ2, α2.

Due to internal reflections, there is light propagating in forward and backward direction

with the complex electric field strengths A and B. These are related in Fresnel’s equations

(2.5.9) by

B+
0 = r01A

+
0 + t10B

−
1 , A−1 = t01A

+
0 + r10B

−
1 . (4.3.2)

This system of equations is now arranged in matrix form by

(
A+

0

B+
0

)
= M01

(
A−1
B−1

)
⇒ M01 :=

1

t01

(
1 r01

r01 1

)
, (4.3.3)

which defines the interface matrix M01. The propagation of the forward and backward

waves through layer 1 is described by the solution (2.5.3) of Maxwell’s equations:

B−1 = e−
α1
2
d1ei k0 nr1 d1 B+

1 , A−1 = e
α1
2
d1ei k0 nr1 d1 A+

1 . (4.3.4)

Again, this equation system can be arranged in matrix form by

(
A−1
B−1

)
= M1

(
A+

1

B+
1

)
⇒ M1 :=

(
e−

α1
2
d1ei k0 nr1 d1 0

0 e
α1
2
d1e−i k0 nr1 d1

)
, (4.3.5)

which defines the transfer matrix M1. Both, the interface matrix and the transfer matrix

can be determined for any other interface or layer in the same way. The combination of

equation (4.3.3) and (4.3.5) then yields

(
A+

0

B+
0

)
= M01

(
A−1
B−1

)
= M01M1

(
A+

1

B+
1

)
= M01M1M12

(
A−2
B−2

)
= . . . . (4.3.6)

This is continued up to the last interface N , for which the boundary conditions A−N = 0

and A+
0 = E0(t) hold. Equation (4.3.5) then is a linear system of equations for the

unknown quantities B+
0 = Ereflected and B−N = Etransmitted. By its solution, the photon

current density can be calculated at any depth using equation (2.5.10), and from this the

generation function is known after equation (2.5.8).

4.4 Linearization of the semiconductor equations using the box

discretization and the TRBDF composite method

After the calculation of the generation function, the semiconductor equations are solved

numerically. In order to do so, the equations are discretized by the box discretization [39].

A box is thereby designed around each of the Nm vertices (see figure 4.3 (a)). The box

Ωi around the vertex vi is confined by the perpendicular bisectors of the mesh elements.17

17For the existence and the convexity of the box the mesh must fulfill the Delaunay criterion.
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Figure 4.3: (a) Delaunay mesh (black lines) around a vertex vi. The box Ωi (blue lines) of vertex vi is constructed
by determining the perpendicular bisectors of interconnections dij . The length of the bisector on dij
(or the area in three dimensions) is denoted by Sij . The figure is adapted from [46]. (b) Schematic
illustration of a time-discretization. To get from time ti to time ti+hi, an intermediate time-step ti+
γ hi is inserted. Then, in the first step the continuity equations are solved by trapezoidal integration.
In the second step the time derivative is approximated by the backward differentiation rule.

The semiconductor equations then are solved within each box Ωi. To this end, they are

arranged in the form
div (ε0 εr∇rϕ) = −% (4.4.1a)

divΓn = Gn −Rn −
∂

∂t
n (4.4.1b)

divΓp = Gp −Rp −
∂

∂t
p. (4.4.1c)

Hence, each equation can be written as divF = g with a vector function F and a scalar

function g. These then are integrated over the box Ωi and Gauss’s theorem is applied

to the divergency term. If ∂Ωi denotes the boundary of the box and n̂ the outer normal

vector on ∂Ωi, the result will become

∫

∂Ωi

F n̂ dS =

∫

Ωi

g dr. (4.4.2)

It is now assumed that the box is small since the mesh is fine. Then, the function g can

be assumed constant in Ωi and equation (4.4.2) becomes

∫

∂Ωi

F n̂ dS ≈ µ(Ωi) gi. (4.4.3)

Here and in the following, the index i means that the function is evaluated at the vertex

vi, thus, it is gi = gi(t) = g(vi, t). Further, µ(Ωi) denotes the measure of the box Ωi. The

surface ∂Ωi is now decomposed into the segments Sij which are the bisectors between

vertex vi and its connected vertices vj (see figure 4.3 (a)). Then, it follows from equation

(4.4.3) ∑

j
vj connected to vi

∫

Sij

F n̂ dS ≈ µ(Ωi) gi. (4.4.4)

It is again assumed, that Ωi is small. Hence, the surface is small, too. Therefore, F can
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be assumed constant on each Sij and it follows

∑

j
vj connected to vi

µ(Sij) F n̂|Sij
≈ µ(Ωi) gi, (4.4.5)

with µ(Sij) being the measure of Sij. It remains the calculation of F n̂|Sij
which must be

done seperately for each of the three equations (4.4.1a)−(4.4.1c).

For the Poisson equation it is g = −% and F n̂|Sij
= ε0 εr (n̂∇rϕ)|Sij

. The latter is the

directional derivative of the electrostatic potential and can be approximated by finite

differences. This yields the following discretization of the Poisson equation:

∑

j
vj connected to vi

µ(Sij) ε0 εr
ϕj − ϕi
dij

= −µ(Ωi) %i, ∀i = 1, . . . , Nm. (4.4.6)

The same procedure can be applied to the continuity equations. For the electron conti-

nuity equation especially follows gi = Gn,i − Rn,i − ∂
∂tni and F n̂|Sij

= −Dn (n̂∇r n)|Sij
−

µn (n n̂∇r ϕ)|Sij
. However, in this case the directional derivative cannot be approximated

by finite differences since these may lead to numerical oscillations [47]. Besides, nega-

tive charge carrier densities could result, if the drift dominates the diffusion [29]. Thus,

a Scharfetter-Gummel approach is used instead [48] which presumes a constant electric

field and a constant current density along dij. This defines a differential equation for the

electron density n(r) with the boundaries n(vi) = ni and n(vj) = nj. By its solution the

projection of F = Γn on n̂ becomes

F n̂|Sij
=
Dn

dij

(
niB

(
e0

kB T
(ϕi − ϕj)

)
− nj B

(
e0

kB T
(ϕj − ϕi)

))
(4.4.7)

with the Bernoulli function B(x) = x/(ex− 1). With that, the spatial discretization of the

electron continuity equation becomes

∑

j
vj connected to vi

µ(Sij)
Dn

dij

(
niB

(
e0

kB T
(ϕi − ϕj)

)
− nj B

(
e0

kB T
(ϕj − ϕi)

))

≈ µ(Ωi)

(
Gn,i −Rn,i −

∂

∂t
ni

)
, ∀i = 1, . . . , Nm. (4.4.8)

A similar discretization can be derived for the hole continuity equation:

∑

j
vj connected to vi

µ(Sij)
Dp

dij

(
pj B

(
e0

kB T
(ϕj − ϕi)

)
− piB

(
e0

kB T
(ϕi − ϕj)

))

≈ µ(Ωi)

(
Gp,i −Rp,i −

∂

∂t
pi

)
, ∀i = 1, . . . , Nm. (4.4.9)

The equations (4.4.6), (4.4.8), and (4.4.9) are the spatial discretization of the Poisson
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and the continuity equations. In other words, instead of calculating the functions n(r, t),

p(r, t), ϕ(r, t), only the values at the vertices n(vi, t), p(vi, t), ϕ(vi, t) are determined by

3Nm implicit equations.

In accordance with the spatial dependence, also the time dependence must be discretized

within a transient simulation. In order to do so, it is pointed out that the two continuity

equations (4.4.8) and (4.4.9) in discretized form can be written as

∂

∂t
qi(t) = fi(t) with qi = ni, pi. (4.4.10)

As the equations were integrated over boxes for the spatial discretization, equation (4.4.10)

can be integrated over time intervals [tn, tn + hn). However, it turns out that the results

will be more stable in a numerical sense, if an intermediate step [tn, tn + γ hn, tn + hn)

with γ = 2 −
√

2 is inserted (see figure 4.3 (b)). The integration over one time interval

then is ∫ tn+γ hn

tn

∂

∂t
qi(t) =

∫ tn+γ hn

tn

fi(t)dt (4.4.11a)

∫ tn+1

tn+γ hn

∂

∂t
qi(t) =

∫ tn+1

tn+γ hn

fi(t)dt. (4.4.11b)

The right-hand side of equation (4.4.11a) is solved by trapezoidal integration, the right-

hand side of equation (4.4.11b) is solved by the backward differentiation method [49, 50].

This yields

2 qi(tn + γ hn)− γ hn fi(tn + γ hn) = 2 qi(tn) + γ hn fi(tn) (4.4.12a)

qi(tn+1)− 1− γ
2− γ hn fi(tn+1) =

1

γ (2− γ)
qi(tn + γ hn)− (1− γ)2

γ (2− γ)
qi(tn). (4.4.12b)

With qi = ni, pi and fi from equation (4.4.8) or (4.4.9), these are the time- and space di-

cretized continuity equations. Equation (4.4.12a) is an implicit equation for the unknown

ni(tn+γ hn) or pi(tn+γ hn) that can be determined from ni(tn) and pi(tn), and from that

ni(tn + hn) and pi(tn + hn) can be calculated from the implicit equation (4.4.12b). Thus,

the state of the system at any time step is determined from the previous time step.

4.5 Numerical solution of the semiconductor equations using the

Bank-Rose-algorithm

For each time step tn and for each vertex vi there are three implicit equations for the three

unknown quantities ni(tn), pi(tn), ϕi(tn). Thus, for Nm vertices, 3Nm implicit equations

for the unknown quantities n1(tn), . . . , nNm(tn), p1(tn), . . . , pNm(tn), ϕ1(tn), . . . , ϕNm(tn)

must be solved for each time step. These 3Nm unknowns can be arranged in a 3Nm

dimensional vector un := (n1(tn), . . . , nNm(tn), p1(tn), . . . , pNm(tn), ϕ1(tn), . . . , ϕNm(tn)),
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where the index n denotes the time step. In analogy, the 3Nm implicit equations can be

arranged in a 3Nm dimensional vector function Tn. Therefore, the system of equations is

compactly written as:

Tn (un) = 0, ∀tn. (4.5.1)

For the solution of the system (4.5.1), a global and damped Newton method is applied

[51]. If T ′n denotes the Jacobian matrix of Tn, the Newton iteration will read

xn,k T
′
n(un,k) = −Tn(un,k), un,k+1 = un,k + ωn,k xn,k k ∈ N, ∀tn. (4.5.2)

According to this, the solution un is calculated iteratively for each time step tn with a

certain damping parameter ωn,k. For each iteration step k, (4.5.2) is a linear system of

equations for the unknown xn,k. Its solution can either be done directly or again itera-

tively using the three different solvers provided in Synopsys® TCAD.

The PARDISO and the SUPER solvers are direct methods calculating a LU factorization

of the sparse coefficient matrix T ′n(un,k). Both yield very long calculation times for high

dimensions of the matrix T ′n(un,k) and for a large number of non-zero entries. Thus, their

application is only convenient for a number of vertices below 10000 which is not appro-

priate for three dimensional simulations.

Therefore, in this work an iterative linear solver (ILS) is used, more precisely the method

of the generalized minimal residual (GMRES) [52]; this gives the best results in terms

of the number of iterations, time to compute the solution, and reliability. Thereby,

the approximation xmn,k of the solution xn,k in the m-th iteration step is arranged by

xmn,k = x0
n,k +Vm y

m, where Vm is a matrix of m basis vectors that have to be chosen prop-

erly. x0
n,k is arranged by x0

n,k = −Tn(un,k). y
m then is determined so that the eucledian

norm of the residuum ||xmn,k T ′n(un,k) + Tn(un,k)||2 is minimal. If the residuum complies

with a specified tolerance, the algorithm will stop. Otherwise the procedure is repeated

with m+ 1 basis vectors.

To improve the convergence velocity of the GMRES method and in order to reduce calcu-

lation times, the equation system (4.5.2) is preconditioned. Therefore, an incomplete LU

factorization of T ′n(un,k) is calculated so that T ′n(un,k) ≈ LU .18 If the equation system

(4.5.2) then is multiplied from the right with (LU)−1, it will be

xn,k T
′
n(un,k) (LU)−1

︸ ︷︷ ︸
≈unity matrix

= −Tn(un,k) (LU)−1 . (4.5.3)

Therefore, the preconditioned coefficient matrix is already close to the unity matrix; there-

fore, the starting value x0
n,k = −Tn(un,k) (LU)−1 of the GMRES method is close to the

solution xn,k, which reduces the number of iterations significantly.

18The factorization is incomplete in the sense that elements smaller than a parameter ε are disregarded, which
saves memory and computation times. The smaller ε is, the more accurate the preconditioner becomes.
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Finally, to enhance the calculation of the incomplete LU factorization, the matrix T ′n(un,k)

is ordered non-symmetrically to improve the condition of the matrix that means the prob-

lem is more stable concerning numerical errors. The result then is re-ordered symmetri-

cally to reduce the fill-in in the preconditioner [28].

4.6 Calculation of the TRL intensity

In the end, the postprocessing of the simulation is shortly described. The output of

the simulations are the electrostatic potential, and the electron and hole densities at

each vertex and time step: ni(tn), pi(tn), ϕi(tn) for all i = 1, . . . , Nm. From this, the

spontaneous recombination rate or the radiative recombination rate can be determined

after equation (2.4.10). The numerical integration over the device volume V yields the

luminescence intensity I(tn) at each time step:

I(tn) =

∫

V

Rsp(r, tn)dV or I(tn) =

∫

V

Rrad(r, tn)dV. (4.6.1)

Following the discretization methods in section 4.4, it is for example

I(tn) ≈ B
Nm∑

i

µ(Ωi)ni(tn) pi(tn). (4.6.2)

This is the number of photons which are generated per time in the whole device. It is

worth mentioning that this definition of the luminescence in the simulations does not

account for limited collection of the luminescence.

The result (4.6.2) can be processed further. For example it can be convoluted with a

theoretically or experimentally determined instrument response function IRF such as

[53]

Iconv(t) =

∫ +∞

−∞
I(τ) IRF (t− τ) dτ, with IRF (t) = e

− (t−t0)2
τ2
IRF . (4.6.3)

This is very important when simulated luminescence decays are compared with experi-

mental TRL in order to account for the limited time resolution of an experimental setup.
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5 Results of the TRL simulations and

experiments

After establishing the basis for the measurement and the simulation of TRL, this chapter

presents the results of this work by means of peer-reviewed articles and focuses on the

open questions and problems of luminescence decay introduced in chapter 3:

• The reason for bi- and multi-exponential decays is not accurately known.

• Material parameters cannot be determined from one single luminescence decay due

to ambiguities.

• Reasons for decay times in the range of the radiative lifetime are not clarified.

• The reason for the non-correlation of the open-circuit voltage and the decay time is

not exactly known.

• The relation of the steady state of a solar cell under operation to its response in TRL

is still unclear, especially concerning similar carrier densities and defect occupation.

A strategy for dealing with these problems has already been proposed in the introduc-

tion: The first step is to study the luminescence decay for all imaginable charge carrier

eliminating processes, and to derive analytical formulae for the decay time as function of

the injection level or the temperature. This is attended by the transfer of the theory by

Ahrenkiel [20] on the impact of space charges, charge carrier transport, and surface and

bulk recombination from III-V semiconductors to thin-film semiconductors. All this has

been carried out in [Mai1, Mai2], which is summarized and discussed with regard to solar

cell characterization in the subsequent section 5.1.

With the findings on the TRL in thin-film semiconductors, the decay curves of a CIGSe

solar cell can be measured and analyzed. This has been demonstrated in [Mai5, Mai6],

which is the focus of section 5.2. It is shown that the current understanding of TRL under

the influence of space charges and bulk-recombination is approved by the measurements,

which becomes apparent through the good approximation of experimental decay curves by

simulated ones. Under these circumstances, an analytical formula is derived which allows

the determination of the minority carrier lifetime and the calculation of an upper limit for

the charge carrier mobilities from the measured decay times. Both give reasonable values

that are in accordance with literature data.
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Despite the successful application and analyzation of TRL on solar cells, at this point

the theory is not capable of reliably answering the reason for bi-exponential decays with

decay times in the range of the radiative limit; neither it is able to satisfactorily explain

the non-correlation of the decay time and the open-circuit voltage. This is due to an

important material property that up to that point has not been considered - charge car-

rier traps. For this reason, a general theory of the impact of traps on the TRL has been

derived in ref. [Mai3]. The results are summarized in section 5.3. It is shown, that the

TRL under the influence of traps has a unique dependence on the excitation intensity

and the temperature. Based on this result, it is proposed to detect charge carrier traps

by means of an injection and temperature dependent TRL, which has been examined

exemplarily on CIGSe and CZTSe absorbers in [Mai7, Mai8]. In doing so, traps can be

verified for both materials. By the reproduction of the decay curves in simulations, also

the trap properties can be determined.

Another important issue that has not been dealt with so far, is the problem of material

inhomogeneities on the lateral scale, which are predominant in thin-film semiconductors.

For this reason, the simulations are generalized to higher dimensions in the last section 5.4,

and the effect of inhomogeneous charge carrier lifetimes, doping densities, band gaps, and

excitations are studied in order to specify the limits of the one-dimensional simulations.

5.1 General considerations on the TRL decay

At first, the time-resolved luminescence decay has been studied in general by combination

of simulations and analytical calculations for a steady state excitation in [Mai1] and for

a pulsed excitation in [Mai2]. In doing so, charge carrier diffusion, charge carrier drift,

surface recombination, bulk recombination, and photon recycling have been investigated.

For these effects, an impact on the charge carrier density (and thus on the luminescence

intensity) is expected, which is expressed by the continuity equation. First, photon re-

cycling has been studied. This is an artificial effect since it obscures the real charge

carrier kinetics. It mostly occurs in luminescent materials due to their high absorptivity,

for which reason photon recycling may become very important for TRL experiments. A

proof of this strong influence of reabsorption on the TRL decay has been obtained by

Ahrenkiel et al. by means of theoretical calculations combined with experimental TRL

on GaAs [20]. Because of the similar absorptivity of CIGSe and GaAs, such strong im-

pact of photon recycling on TRL is also expected for thin-film semiconductors. However,

according to the results in ref. [Mai1], photon recycling in CIGSe should be negligible

due to the following reasons:

• The spectrum of the luminescence reveals peak energies below the energy band gap

[11]. For these energies the absorption coefficient is small [Mai10], which makes

reabsorption improbable.
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• Photon recycling bends TRL decay curves during the homogenization of charge

carriers. The time for homogenization of the charge carriers is close to or even below

the time resolution of the experimental setup used in this work. For this reason,

bending of luminescence transients due to photon recycling cannot be detected.

• The recombination of charge carriers in thin-film semiconductors is mostly mediated

by non-radiative defect recombination. This reduces the photons for reabsorption.

On the basis of these findings, the effect of photon recycling has been omitted throughout

the following simulations, which enabled faster simulation times.

In the listing above, surface and bulk-recombination have been adressed. Both govern

a luminescence decay which has been studied for a p-doped semiconductor in [Mai1,

Mai2]. By doing so, only radiative band-to-band recombination according to equation

(2.4.11), and non-radiative defect assisted Shockley-Read-Hall recombination according

to equation (2.4.17) have been considered.19 Following the definition in section 3.1, bulk

recombination lifetimes have been deduced for thin-film semiconductors [Mai1, Mai2] that

equal the results of Ahrenkiel et al. for III-V semiconductors [20]. The obtained equa-

tions revealed an excitation dependence of the recombination lifetimes. For a systematic

investigation of the recombination mechanisms, low and high excitation levels therefore

had to be distinguished. For a low excitation, the density of majority carriers remains al-

most unchanged and only the density of minority carriers is substantially changed. Then,

the bulk-recombination lifetimes are equal to the TRL decay times. For recombination

of charge carriers at surfaces, the related decay time τs is not equal to the recombina-

tion lifetime, since surface recombination is mediated by the diffusive transport of charge

carriers which requires a solution of the whole transport equation. This led to a transcen-

dental eigenvalue equation for τs [Mai2], which is equal to that derived by Hooft [54] and

Ahrenkiel [55] for GaAs. While Sproul et al. suggest a graphical solution [56], in [Mai2]

an approximation by a Laurant series is proposed which yields an algebraic equation for

τs. In consequence, analytical expressions for the lifetimes of recombination in the bulk

and at the surfaces are known and the total decay time under low injection comes out as

τdecay =

(
1

τrad
+

1

τSRH
+

1

τs

)−1

= τeff,r. (5.1.1)

At this point, a few remarks will be made. First of all, equation (5.1.1) shows that the

decay time under low excitation equals the effective recombination lifetime τeff,r whose

determination from the TRL of the semiconductor thereby becomes straight forward.

This allows a deeper investigation of material properties by means of TRL, which is the

starting point for this theoretical work. For instance, the surface degradation of a freshly

19It is always assumed that the deep defect relaxation time δt (see equation (2.4.27)) is smaller than the effective
charge carrier lifetimes.

53



CHAPTER 5. RESULTS OF THE TRL SIMULATIONS AND EXPERIMENTS

prepared semiconductor that is exposed to air can be investigated. It is expected that

the semiconductor surface then becomes more defective as the time passes. Consequently,

τs should decrease and the decay time should decline by time in accordance to equation

(5.1.1) and figure 5.1 (a). This has been revealed for a CIGSe layer by Metzger et al.

[17] whose results are given in Fig. 5.1 (d). Further he found that the decline of the

decay time due to the surface degradation is attended by a decrease of the solar cell

parameters. Here, the solar cell parameters are the short-circuit current density Jsc and

the open-circuit voltage Voc. For both holds [16]

dVoc
dτeff,r

> 0 and
dJsc

dτeff,r
> 0. (5.1.2)

Accordingly, the efficiency of the cell increases with increasing effective recombination life-

time. Taking equation (5.1.1) into account this means that absorbers with larger decay

times will also yield solar cells with higher efficiencies. In other words, the decay time and

the solar cell parameters correlate as it has been numerously confirmed experimentally for

thin-film semiconductors such as CdTe [7] and CIGSe [5, 6, 8, 11, 14]. This is the crucial

factor for the realization of TRL experiments since they enable a fast characterization of

the cell already after the absorber preparation.

But for all that, a differentiation of different recombination mechanisms by low injection

TRL is not possible, because there is only one decay time for the various unknowns. To

obtain such a discrimination one may use the different excitation dependencies of the re-

combination lifetimes under high excitations. In ref. [Mai1, Mai2] it has been calculated

that the SRH-recombination lifetime increases with excitation as shown schematically in

fig. 5.1 (b). In figure 5.1 (e) it is illustrated that this lifetime increase being calculated

for thin-film semiconductors is in agreement with experimental findings on AlGaAs [57].

The additional fast decay at the beginning of the decay curve is due to bimolecular re-

combination. This bimolecular recombination is a term for band-to-band recombination

in highly excited semiconductors. In contrast to SRH-recombination, for band-to-band

recombination the lifetime declines with increasing excitation [Mai1, Mai2]. Due to this,

the luminescence decay becomes curved under high excitations as shown schematically in

figure 5.1 (c). This is in agreement with experimental findings on GaAs [23], CZTSe [15],

and CIGSe [17, 23, 58], as exemplified in figure 5.1 (f).

By this bimolecular recombination another influence on the TRL decay is mediated -

the diffusion of charge carriers as a consequence of the generation profile. Although this

diffusion keeps the number of charge carriers constant, it may reduce the luminescence

intensity. This is a pecularity of bimolecular recombination for which reason an impact

of diffusion requires high excitations. Furthermore, it has been shown in [Mai1, Mai2]

that diffusion only affects the TRL decay if the excitation duration is below the homog-

enization time τDiff,car. This quantity is defined by that time which the charge carriers

54



5.1. GENERAL CONSIDERATIONS ON THE TRL DECAY

 

 
Lo

g T
RL

T i m e

( a )
R e c .  v e l o c i t y

 

 

Lo
g T

RL

T i m e

( b )

E x c i t .

 

 

Lo
g T

RL

T i m e

( c )

E x c i t .

Figure 5.1: (a) Schematic of the increased TRL decay under increasing front surface recombination velocity (b)
Schematic of the increased TRL decay time due to deep defect saturation under increasing excitation
(c) Schematic of the TRL decay due to bi-molecular recombination under increasing excitation (d)
Experimentally observed decrease of the decay time after air exposure of a CIGSe absorber layer [23]
(e) Luminescence decay of a AlGaAs layer under increasing excitation [57] (f) Experimental TRL on
a CIGSe absorber layer under increasing excitation [23]. The subfigures (d)-(f) have been modified
for better visibility.

need after their generation to take on a homogeneous profile. In [Mai2], τDiff,car has been

calculated from a solution of the transport equation. On the basis of this solution, in

[Mai2] also the decay time τDiff due to diffusion in thin-film semiconductors has been

calculated, which again is in agreement with the results of Ahrenkiel for GaAs [20].

The last effect being discussed in [Mai1, Mai2] is the drift of charge carriers in the electric

field of a junction, e.g. a solar cell. Electrons and holes thereby become locally separated.

In consequence of the absence of recombination partners, the recombination rate is small

yielding a more pronounced luminescence decay. This has been already verified by com-

parison of the TRL of an absorber and a solar cell by experiment for CIGSe [9, 17] and

GaAs [59], and by simulation as well for GaAs [24, 59] and CdTe [25]. Apart from the

confirmation of these findings especially for CIGSe, in [Mai1, Mai2] also the impact of

excitation duration and intensity on the drift effects has been investigated.

In [Mai2] it is shown, that the three decay times of a TRL decay in a solar cell can be

assigned to (see fig. 5.2 (a)) 1○ drift in the space charge region 2○ recombination in the

quasi-neutral region, and 3○ diffusion across the space charge region. Due to the strong

drift, the initial decay time is much smaller than that of the sole absorber. For that

reason it does not reflect the recombination in the absorber. Instead, the second decay

time being related to recombination in the quasi-neutral region can be used. As there

is no electric field, the corresponding decay time 2○ in fig. 5.2 (a) reveals the effective

recombination lifetime of the absorber. In course of the charge separation, electrons are
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Figure 5.2: Schematic TRL decay of an absorber and a solar cell for (a) a pulsed, low excitation, (b) a steady-state
low excitation, and (c) a pulsed, high excitation.

collected in the n-type semiconductor (positive space charge) and holes are collected in the

p-type semiconductor (negative space charge), thereby screening the electric field. This

enables a diffusive recombination current of charge carriers across the potential barrier.

Following the model of Dashdorj [60], this is similar to the leakage current of a capacity.

In [Mai1], the time-dependent leakage current and the related luminescence decay have

been calculated. It turns out that the decay may become very slow for low excitations as

shown by 3○ in fig. 5.2 (a).

Both, the charge separation and the discharge of the capacity can be obscured by an

extended [Mai1] or by an increased excitation [Mai2]. In case of an extended excitation,

the charge separation will be already finished when the excitation is turned off. Then, the

TRL will not reveal a fast initial decay as figure 5.2 (b) shows. Furthermore, more charge

carriers will accumulate at the boundaries of the space charge region. This reduces the

discharge of the capacity (compare 3○ in Fig. 5.2 (a) and (b)). In case of an increased ex-

citation, again more charge carriers accumulate leading to an almost completely screened

electric field. Consequently, the TRL at high excitations does not exhibit a fast decay

being related to drift (Fig. 5.2 (c)). Hence, the decay time increases with increasing

excitation in agreement with experimental observations on CIGSe solar cells [17, 58].

In conclusion, in [Mai1, Mai2] the theory of TRL in bulk semiconductors has been trans-

ferred to thin-film semiconductors. The deduced analytical expressions for the time-

constants are equal for thin-film and bulk semiconductors. The predicted decays are in

agreement with experimental observations. For low excitations of a single semiconductor,

the TRL is expected to decay mono-exponentially with a decay time being correlated to

the solar cell efficiency. In this regard, the experimentally observed non-correlation of the

open-circuit voltage and the decay time could not be solved by the simulations. In the

first instance, this may be due to a change of the absorber properties during cell prepara-

tion. Hence, it appears reasonable to characterize an absorber after the cell preparation.

This will be the focus of the next section 5.2.
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Time-resolved luminescence (TRL) is a non-destructive, non-invasive, and contactless characteri-

zation method. We studied TRL decay on semiconductor layers and thin film homostructures after

a steady state illumination by simulation with Synopsys TCAD
VR

and by analytical approximate so-

lution of the appropriate equations. First, we show that the luminescence decay time in general

equals the minority carrier lifetime only for a homogeneous and time-independent carrier lifetime.

Then, we investigate the influence of photon recycling, injection level, charge carrier diffusion,

defects in the bulk and at the surfaces, as well as space charge on the TRL decay separately by

quasi one-dimensional simulations of semiconductor layers and semiconductor homostructures.

We further study the influence of sample non-homogeneity as may be found in polycrystalline

semiconductors. We show how carrier lifetime can be extracted from the TRL transients and how

the samples can be characterized by excitation dependent measurements in the open circuit case.

We can explain some effects found in luminescence experiments, like a decrease of the decay time

with an increasing excitation, a maximum in the decay time due to saturated bulk-defects and

curved luminescence transients due to high injections or sample inhomogeneities. Furthermore, we

are focussing on the question, how single layers within a semiconductor stack can be characterized.
VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4896483]

I. INTRODUCTION

Time-resolved luminescence (TRL) can be used to

investigate carrier dynamics and recombination processes in

semiconductors. In solar cells, it may give access to an im-

portant 3rd level parameter, which is the minority carrier

lifetime.1 This parameter is linked to second level parame-

ters such as open circuit voltage VOC and short circuit current

JSC and finally to the 1st level parameter being the energy

conversion efficiency g of the cell.

There are already many publications about transient lu-

minescence experiments on semiconductor layers and thin

film solar cells. It has been revealed that the TRL decay time

correlates with the open circuit voltage VOC and the cell effi-

ciency.2–4 Furthermore, charge separation dynamics was

investigated by TRL to show that the absorber bulk of a het-

erostructure solar cell can be characterized by TRL under

high excitation.5,6 However, there are only a few theoretical

approaches to understand experimental TRL decay curves,

especially the shape of the transients and their dependence

on excitation.6,7 To fill this gap and to provide a more quanti-

tative theory, we performed quasi one-dimensional simula-

tions of the luminescence decay in combination with

analytical approximate solution of the appropriate equations.

In the first part of this series, the sample is illuminated to a

steady state until the illumination is turned off instantane-

ously and the decay of the luminescence signal is observed.

Experimentally, this decay from a quasi-steady state is real-

ized in transient cathodoluminescence (CL) measurements.8

We show, how defect densities in the bulk and at the surfaces

can be studied and how minority carrier lifetimes can be

determined. In the second part, we present simulations calcu-

lated for a short excitation accounting for short laser pulses

in photoluminescence (PL) measurements.

For simulation, we used Synopsys TCAD
VR

which solves

the Poisson equation and the continuity equation by finite

elements methods (FEM) and finite difference methods

(FDM). The absorption and reflection were calculated with

the transfer matrix method (TMM). The radiation of lumi-

nescence was calculated by RayTracing. Bulk defects were

introduced as deep traps and ohmic boundary conditions

were used to account for surface defects.9 The semiconduc-

tor CuIn1�xGaxSe2 is considered as a working example with

material parameters typical for highly efficient solar cells.

II. SEMICONDUCTOR AND EXCITATION PARAMETERS

We simulated the experiment with monochromatic light

at room temperature (300 K). The generation profile is expo-

nential with a characteristic length of 1=a where the absorp-

tion coefficient a is 3.805 lm�1. This corresponds to a

wavelength of 900 nm in the semiconductor CuIn0.7Ga0.3Se2

with Eg ¼ 1:15 eV where Eg is the bandgap.10 The mobilities

of electrons and holes are assumed to be equal and set to

ln ¼ lp ¼ 20 cm2 V�1 s�1. The value of the material param-

eter B describing the radiative recombination was set to

1:67� 10�10 cm3 s�1.10 The doping of the semiconductor is

p-type with an acceptor concentration NA ¼ 1016 cm�3. The

capture cross sections of deep defects were set to be rn ¼
10�13 cm s�1 for electrons and rp ¼ 10�15 cm s�1 for holes

if not stated otherwise.10 The thickness of the semiconductor

slab was chosen to be 3 lm. Except for distinct cases, thea)matthias.maiberg@physik.uni-halle.de
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surfaces of the semiconductor were passivated leading to

equal electron and hole surface recombination velocities of

0 cm s�1. If photon recycling was included, the probability

of reabsorption of an emitted ray crossing a finite element of

the semiconductor layer was 0.2.

Finally, a process i which effects a recombination of a car-

rier density Dn with the rate Ri can be described by si ¼ Dn
Ri

,

where si is the lifetime of the recombination process.

However, the decay time s of the luminescence signal is

defined by Iðt0 þ sÞ ¼ Iðt0Þ=e for an arbitrary chosen t0. In the

following, if not stated otherwise, t0 will be equal to zero. Both

si and s need not to be constant in time, for instance if the

decay is multi-exponential. At last, we define the lifetime sn of

an excess carrier density Dn by Dnðt ¼ snÞ ¼ Dnðt ¼ 0Þ=e.

III. THE IDEAL CASE

First, we deduce mathematically necessary conditions

for the direct extraction of the carrier lifetime from TRL

decay measurements. We use the model of Ahrenkiel7 and

extend it by photon recycling. We start with the continuity

equation for electrons

@

@t
nþ divCn ¼ Gext þ GPR � Rrad � Rnrad: (1)

Here, n is the electron density, Cn is the electron current den-

sity, Gext is the generation due to external illumination, GPR

is the generation due to photon recycling, Rrad is the radiative

net-recombination, and Rnrad is the non-radiative net-recom-

bination. All quantities first depend on time t and position r.

In experiments often a transient excitation is used, which

means the generation function becomes

Gextðt; rÞ ¼ >0 for t < 0

¼0 for t � 0
;

�
(2)

and the excess electron density Dnðt ¼ 0; rÞ turns out to be

greater than 0. Accordingly, for t> 0 Dn fulfills the equation

@

@t
Dnþ divCn ¼ GPR � Rrad � Rnrad: (3)

Integration of (3) over the volume V of the sample (including

its surfaces) and requiring no carrier flux out of the specimen

leads toð
V

Rrad � GPRð Þdr ¼ �
ð

V

@

@t
Dnþ Rnrad

� �
dr: (4)

The left-hand side equals the number of luminescence-

photons emitted per time I(t). The right-hand side can be

transformed using the lifetimes srad ¼ Dn
Rrad

and snrad ¼ Dn
Rnrad

of

radiative and non-radiative recombination, respectively. In

general, srad and snrad depend on time and position. Evaluation

of (4) leads to

I tð Þ ¼ �
ð

V

@

@t
Dnþ Dn

snrad

� �
dr: (5)

Up to now, we have only assumed that the sample is isolated

that means
Ð
@VCndS ¼ 0, where S is a surface element. Apart

from this, there are no restrictions concerning internal

currents.

Without loss of generality the decay of the excess carrier

density can be written by Dnðt; rÞ ¼ Dnð0; rÞ e�
t

snðt; rÞ for

t � 0. Inserting this into (5) reveals

I tð Þ ¼
ð

V

1

sn
� 1

snrad

� �
e�

t
sn Dn 0; rð Þdr

�t

ð
V

@
@t sn

s2
n

e�
t

sn Dn 0; rð Þdr: (6)

From Eq. (6), it becomes clear that in general the transient

evolution of Dn and I is different leading to distinct decay

times, sn 6¼ s. For example, if the lifetime is homogeneous

and time-dependent, it follows from Eq. (6)

I tð Þ ¼ 1

sn
� 1

snrad

� t
@
@t sn

s2
n

 !
e�

t
sn

ð
V

Dn 0; rð Þdr: (7)

Then, the decays of I(t) and Dn are only identical for

snðtÞ / 1
logt.

Concerning the special case of a time and space inde-

pendent lifetime sn Eq. (6) can be simplified to

I tð Þ ¼ 1

sn
� 1

snrad

� �
e�

t
sn

ð
V

Dn 0; rð Þdr: (8)

Equation (8) shows that in this particular case the decays of

the minority carrier density and the luminescence are equal.

As will be shown later, a time and position independent car-

rier lifetime can be realized in a homogeneous semiconduc-

tor layer under low excitation conditions. For further

evaluation of (8) photon recycling has to be modeled: The

number of reabsorbed photons is assumed to be proportional

to the number of spontaneously emitted photons, hence

GPR � aRrad with 0 � a < 1 can be assumed. In fact, this is

an approximation, because the photons are not reabsorbed

instantaneously, thus in an exact theory the photon-rate-

equation must be used.11 The carrier lifetime then reads

1

sn
¼ 1

snrad

þ 1� a
srad

: (9)

Inserting (9) into (8) finally leads to

I tð Þ ¼ 1� a
srad

e�
t

sn

ð
V

Dn 0; rð Þdr: (10)

Equation (10) shows that the luminescence decay time s
equals the carrier lifetime sn if the sample is isolated and if

the carrier lifetime is homogeneous and time-independent.

Furthermore, (9) shows that the influence of photon recy-

cling on the carrier lifetime becomes smaller if there is non-

radiative recombination.

IV. ISOLATION OF EFFECTS

Luminescence decay may not only reflect the carrier

lifetime but also may be influenced by other effects, e.g.,

123710-2 M. Maiberg and R. Scheer J. Appl. Phys. 116, 123710 (2014)

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

141.48.166.83 On: Mon, 16 Mar 2015 12:05:36



photon reabsorption, diffusion of charge carriers and space

charges. In the following, we treat these effects separately.

A. Photon recycling

As was explained at the beginning, reabsorption of pho-

tons can decrease the luminescence-intensity and increase

the decay time. Photon recycling according to our simula-

tions only plays a role if the excitation is lower than used in

this study (see Figure 2). This can be explained with the spa-

tial exponential profile of the excess carrier density into the

sample as a consequence of the inhomogeneous generation.

Therefore, most of the luminescence-photons are generated

near the surface of the semiconductor and they can be

directly emitted without reabsorption. Increasing the excita-

tion increases the absolute difference of photons generated

near the surface and deep in the bulk. Hence, an increasing

part of photons can be emitted without reabsorption and the

effect of photon recycling vanishes.

If non-radiative recombination takes place the number

of luminescence-photons decreases, thus further reducing

reabsorption and photon recycling. Hence, in the following,

we neglect photon recycling in our simulations.

B. Dependence on excitation intensity

First, we excited a homogenous semiconductor layer

homogenously with different generation rates. The semicon-

ductor layer was ideal, meaning there were no defects at the

surfaces or in the bulk and there was no current flowing out

of the sample. Figure 1 shows calculated TRL transients. It

is obvious that the luminescence-signal falls off exponen-

tially in case of low excitations and non-exponentially for

short times and high excitations. The reason is the increasing

contribution of the parabolic term to the radiative net-

recombination

Rrad ¼ B ðn0 þ p0ÞDn|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
low excitation

þ B Dn2|fflffl{zfflffl}
high excitation

; (11)

where B is a constant and n0 and p0 are the equilibrium elec-

tron- and hole-densities, respectively. If the excitation

increases, not only the number of electrons but also the num-

ber of holes increases. For Dp � p0, there is a transition from

monomolecular to bimolecular recombination, which leads

to a decrease in the decay time. This is called the high-

injection case in the following.

Solving the continuity Eq. (3) leads to

Dn tð Þ ¼ n0 þ p0ð ÞDn 0ð Þ
Dn 0ð Þ þ n0 þ p0

� �
eB n0þp0ð Þ t � Dn 0ð Þ

; (12)

and with

IðtÞ ¼
ð

V

Rradðt; rÞdr; (13)

it holds

I tð Þ � eB n0þp0ð Þ t

Dn 0ð Þ � Dn 0ð Þ þ n0 þ p0

� �
eB n0þp0ð Þ t

� �2
: (14)

With (14) the transients can be described very well, as shown

in Figure 1. The exponential luminescence decay comes out

as

IðtÞ � e�B ðn0þp0Þ t; (15)

for Dnð0Þ � n0 þ p0. The non-exponential decay in case of

high excitation becomes apparent for Dnð0Þ 	 n0 þ p0

I tð Þ � 1

sinh 1
2

B n0 þ p0ð Þ t
� �2

: (16)

It can be seen that the decay time for low injection s ¼
1

B n0þp0ð Þ ¼ srad is excitation-independent. This further proves

the equality of the decay time and the carrier lifetime for low

injection levels.

C. Excitation profile

Next, we show that diffusion of charge carriers due to

an inhomogeneous generation profile does not influence the

luminescence-decay in case of a homogeneous absorber

layer. To this end, we illuminated only one side of the layer

with different intensities. The calculated transients are shown

in Figure 2. The intensity decay qualitatively has the same

form as in the case of a homogeneous generation since we

start from a stationary state. If the mobilities are large, then

most of the inhomogeneities of charge carriers are already

vanished due to diffusion at the time the excitation is turned

off. The diffusion currents are small because of the small

gradients in the carrier densities. However, if the mobilities

are small, then the grade of inhomogeneity is larger, but dif-

fusion is still inhibited due to the reduced mobility.

Altogether, diffusion currents are small for a wide range of

carrier mobility values above 0.01 cm2 V�1 s�1. That means,

the full homogenization of excess minority carriers due to

diffusion runs on a much longer timescale than the recombi-

nation of the carriers.

Now, we assume that the inhomogeneous minority

excess carrier density after an inhomogeneous excitation is

FIG. 1. TRL-transients of a homogeneous and homogeneously excited semi-

conductor slab without defects for different generation rates G. Analytical

approximation after Eq. (12).
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known and denoted by Dnð0; rÞ. The function Dnð0; rÞ can

be calculated by solving the inhomogeneous, time-

independent diffusion equation numerically, e.g., with direct

methods of variational calculus. According to the considera-

tions above, we neglect the diffusion current. Then, Eq. (12)

can be adapted,

Dn t; rð Þ ¼
n0 þ p0ð ÞDn 0; rð Þ

Dn 0; rð Þ þ n0 þ p0ð Þ eB n0þp0ð Þ t � Dn 0; rð Þ :

(17)

Calculating the TRL signal with (13) and (17) and compar-

ing with the simulated results (Fig. 2) further proves the

assumption of a negligible influence of diffusion on the TRL

decay. Hence, the exponential as well as the non-exponential

decay can be explained with the mono- and bimolecular

recombination in the low and the high injection case, respec-

tively. In consequence provided that diffusion and photon

recycling are negligible, CL and PL experiments should give

the same carrier lifetime value. The dependence of the shape

of the transients on the illumination intensity was already

found experimentally.5

The fact that diffusion does not influence the lumines-

cence decay is still true for defective absorber layers, as will

be shown below. However, for charge separation processes

in an internal electric field zone, diffusion and drift of charge

carriers play a role (see Sec. IV G).

D. Deep bulk defects

The most relevant application of TRL is the characteri-

zation of deep defects in semiconductors. By spatial-

resolved measurements local inhomogeneities or especially

the spatial density distribution of deep defects can be deter-

mined, whereas the resolution is determined by the carrier

mobilities.12 In the following, we show that the density of

deep defects can be estimated using different excitation lev-

els. In Figure 3, we calculated two maps showing the influ-

ence of excitation density and defect density on the decay

time for different defect capture cross sections. First, we

look at Figure 3(a) (asymmetric capture). Two different

effects can be found: With increasing excitation, the decay

time initially increases. This is so because the minority

excess carrier density increases, depending on the majority

carrier lifetime the defects become negatively charged, and

the Shockley-Read-Hall recombination (SRH) becomes

kinetically inhibited. For exceedingly higher excitation, the

decay time again decreases due to bimolecular recombina-

tion. Hence, a maximum of the decay time is formed for a

certain excitation density. With increasing defect density,

this maximum shifts to higher excitation.

Now, we look at Figure 3(b) (symmetric capture). The

intersection of the isolines with the coordinate axes is the

same as in Figure 3(a), but in contrast no initial increase of

FIG. 3. Contour map of decay times in nanoseconds depending on the exci-

tation, Iex, and the density of deep defects, Nd, in an homogeneous semicon-

ductor slab for capture cross sections rp ¼ rn ¼ 10�13 cm s�1 and

rp ¼ 100 rn ¼ 10�13 cm s�1.

FIG. 2. Simulated and approximated luminescence-transients of an inhomo-

genously excited semiconductor layer without defects for different injection

levels with and without photon recycling. Analytical approximation after

Eq. (17).
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the decay time with increasing excitation can be found, since

now also the majority carrier lifetime is quite small. Hence,

SRH-recombination does not become inhibited and the

decay time stays small. However, the excitation for which

bimolecular recombination becomes apparent depends on

the defect density.

The well known equation after Shockley, Read, and

Hall describing non-radiative recombination reads

RSRH ¼
n p� n0 p0

sn0 pþ p
ð Þ þ sp0 nþ n
ð Þ : (18)

Here, n
 and p
 are the electron and hole density, if the

Fermi-level lies on the defect level. sn0 and sp0 denote the

minimal SRH-lifetimes of electrons and holes, respectively.

The lifetimes can be rewritten as sn0 ¼ 1=Nd rn vn and

sp0 ¼ 1=Nd rp vp, where Nd is the defect density, rn and rp

are the capture-cross sections, and vn and vp are the thermal

velocities.

If there is no trapping, it is Dn � Dp. Then follows from

Eq. (18) for a p-doped semiconductor

RSRH Dnð Þ ¼ p0 þ Dn

sn0 þ sp0ð ÞDnþ sn0 p0 þ p
ð Þ þ sp0 n

Dn

) sSRH Dnð Þ ¼
sn0 þ sp0ð ÞDnþ sn0 p0 þ p
ð Þ þ sp0 n


p0 þ Dn
:

(19)

By means of excitation dependent TRL the lifetimes sn0 and

sp0 can be estimated by analyzing the TRL transients as

shown in the following.

1. Low defect densities

For low excitation Dn� p0= 1þ sp0

sn0

� 	
< p0, it is (see

Eqs. (15) and (19))

sSRH � sn0; srad �
1

B p0

: (20)

Because of (20) there is mathematically the same depend-

ence of RSRH und Rrad on Dn. Thus, for low excitations there

is still only a single exponential decay. Moreover, the elec-

tron lifetime is time-independent that means due to the con-

siderations in III the decay time equals the electron lifetime.

If the excitation increases, the minority lifetime

increases, too, because of d
dDn sSRHðDnÞ � sp0 p0

p0þDnð Þ2 > 0.

Depending on the value of sp0, this leads to an initial

increase of the decay time (Figure 3(a)) or virtually no

increase in the decay time (Figure 3(b)).

If the excitation becomes further increased, the minority

carrier density becomes Dn	 p0. Then one finds

srad �
1

B Dn
; (21)

sSRH � sn0 þ sp0 �
sn0 for rn � rp

sp0 for rn 	 rp
:

�
(22)

Comparing the SRH-lifetimes in (20) and (22) it becomes

obvious that the SRH-lifetime increases heavily, if it is

rn 	 rp and hence sp0 	 sn0. In this case, one finds a dis-

tinct rise in the luminescence-decay time (Figure 3(a)). On

the contrary, the increase is comparably small if it is sp0 �
sn0 (Figure 3(b)).

From now on the decay time becomes again reduced

with increasing excitation, since we are in the high injection

case as governed by Eq. (16). Due to Eq. (22), there is an ex-

ponential decay for high and due to Eq. (21) a non-

exponential decay for very high excitations.

With Dn; p0 	 n
; p
; n0, rn 	 rp, and a negligible

diffusion current, the continuity equation

d

dt
Dn ¼ � Bþ 1

sp0 Dnþ sn0 p0

� �
Dn p0 þ Dnð Þ; (23)

has to be solved, where Dn depends on time t and position r.

There is no analytical solution. The numerically approxi-

mated data calculated by a numerical solution of Eq. (23) are

shown in Figure 4.

By distinguishing the low and the high injection case,

Eq. (23) can be solved analytically with the approximations

(20) and (22). The result reads

Dn t; rð Þ � Dn 0; rð Þ e� B p0þ 1
sn0

ð Þ t
; (24)

for the low injection case Dn� p0= 1þ sp0

sn0

� 	
< p0 and

Dn t; rð Þ �
eB p0 t � e

t
sp0 p0

1þ B Dn 0; rð Þ sp0

Dn 0; rð Þ þ p0

�B sp0 eB p0 t þ e
t

sp0
1þ B Dn 0; rð Þ sp0

Dn 0; rð Þ þ p0

; (25)

for the high injection case Dn	 p0.

2. High defect densities

If the density of defects is above 1014 cm�3, the TRL

decay time is very small and increases only for very high

excitations as shown in Figure 5. The SRH-recombination

FIG. 4. Simulated and approximated TRL-transients of a semiconductor

layer with a bulk defect density of 1013 cm�3 for different excitations. Depth

dependent (exponential) generation function. Numerical approximation after

Eq. (23).
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dominates for low excitations, so (20) is still valid and there

is only a single exponential decay with a small decay time.

If the excitation increases, SRH-recombination saturates

and the decay time increases and becomes limited by

sn0 þ sp0. After a certain time, the excess minority carrier

density is reduced, and the defects are not saturated anymore.

Then, the TRL intensity decays with a second (much

smaller) decay time sn0 and a multi-exponential decay can

be found. The SRH-lifetime can be determined by TRL for

low injection levels and small observation times.

In the case of high defect densities, the TRL transients

can again be approximated by a numerical solution of the

continuity equation neglecting the diffusion current.

However, an analytical approximate solution is not reasona-

ble, since in this case the assumptions above make only

sense for a small time range.

E. Specimen non-homogeneity

In many experiments it was found that the luminescence

decays non-exponentially.13–15 Especially in polycrystalline

materials there are multiple grains, each contributing another

decay time to the TRL signal due to varying defect densities.

In the following, we give a short illustration, how the distri-

bution of lifetimes can be determined. We further investigate

how different distributions perturb a single-exponential

decay.

Assume a measured TRL intensity I(t). This can be rep-

resented by a Laplacian transformation13

IðtÞ ¼
ð1

0

HðkÞ e�k tdk: (26)

By the transformation k ¼ s�1, Eq. (26) leads to

I tð Þ ¼ I0

ð1
0

f sð Þ e� t
sds; (27)

f sð Þ ¼ 1

I0 s2
H

1

s

� �
; (28)

with I0 ¼ Iðt ¼ 0Þ. Hence, I(t) can be seen as a sum of transi-

ents with a continuous spectrum of decay times and f ðsÞ is

the probability density of a certain decay time. By the

inverse Laplacian transformation

H kð Þ ¼ 1

2 p i

ðþi1

�i1
I tð Þ ek tdt; (29)

the function H(k) can be determined, and by Eq. (28) f ðsÞ is

determined, too. However, the evaluation of (29) is numeri-

cally ill conditioned.13

Therefore, in the following we suppose different distri-

butions f ðsÞ and calculate the corresponding TRL intensity

I(t). In principle, the calculated f ðsÞ can be distinct from the

spatial distribution of s, since the charge carriers can diffuse.

However, following the considerations in Sec. IV C the dif-

fusion currents shall be small.

1. Gaussian distribution of lifetimes

In the following, we assume a Gaussian distribution of

SRH-lifetimes with the average �s ¼ hsi and the standard

deviation rs:

f sð Þ ¼ 1ffiffiffiffiffiffi
2 p
p

rs
e
� s��sð Þ2

2 r2
s : (30)

Equation (30) is only meaningful if �s � 3 rs, otherwise also

negative decay times would be allowed. In the following the

integral:

I tð Þ ¼ I0ffiffiffiffiffiffi
2 p
p

r

ð1
0

e
� s��sð Þ2

2 r2 e�
t
sds; (31)

has to be evaluated. This is not possible analytically.

Because of the fast decay of f next to s ¼ �s, it is sufficient to

know e�
t
s in the vicinity of �s. Hence, e�

t
s is approximated by

a Taylor polynomial of order 4 around s ¼ �s. This is inserted

into Eq. (31). Considering �s > 3 rs, the integration can be

extended to R, so the odd terms become zero.

By introducing the scaling t ¼ �s T the result reads

I �s Tð Þ � I0 e�T

�
1þ T T � 2ð Þ

2

rs

�s

� �2

þT T3 � 12T2 þ 36 T � 24ð Þ
8

rs

�s

� �4�
: (32)

From Eq. (32), it can be seen that the deviation of I(t) from a

single exponential decay depends on the powers of rs
�s .

Hence, for 3 rs < �s, the perturbance is very small.

Therefore, a Gaussian distribution of SRH-lifetimes cannot

explain a strong non-exponential decay.

2. Equal distribution of lifetimes

Now, we assume an equal distribution of decay times

f sð Þ ¼
1

s2 � s1

; s1 � s � s2

0; elsewhere:

8><
>: (33)

The decay times s1 and s2 can be expressed by

FIG. 5. Simulated and approximated TRL-transients of an absorber layer

with a bulk defect density of 1015 cm�3 for different excitations. Depth de-

pendent (exponential) generation. Numerical approximation after Eq. (23).
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s1 ¼ �s �
ffiffiffi
3
p

rs s2 ¼ �s þ
ffiffiffi
3
p

rs; (34)

where �s and rs are the average and the standard deviation,

respectively. Since the decay times have to be positive �s �ffiffiffi
3
p

rs must be fulfilled. Again the integral (27) has to be

evaluated. e�
t
s is approximated by a Taylor polynomial of

order 4 in the vicinity of �s. Then it follows with t ¼ �s T:

I �s Tð Þ � I0 e�T

�
1þ T T � 2ð Þ

2

rs

�s

� �2

þ 3 T T3 � 12 T2 þ 36 T � 24ð Þ
40

rs

�s

� �4�
: (35)

Again the perturbation depends on the powers of rs
�s . Since it

is
ffiffiffi
3
p

rs � �s the perturbation is small, so an equal distribu-

tion of decay times has only a little impact on the single-

exponential decay.

3. Equal distribution of defect densities

Now, we investigate the case that the decay times com-

ply with a Pareto distribution

f sð Þ ¼ s1 s2

s1 þ s2

1

s2
; s1 � s � s2: (36)

This is valid, if the density of deep defects Nd complies with

an equal distribution and so the probability density distribu-

tion of sn0 ¼ ðrn vn NdÞ�1
follows (36). The integral (27) can

be evaluated analytically. It holds

I tð Þ ¼ I0

s1 s2

s1 � s2

e
� t

s1 � e
� t

s2

t
: (37)

By the curvature of I(t) for small times the variation of SRH-

lifetimes can be determined.

4. Gaussian distribution of defect densities

Finally, we consider the case that the defect densities

comply with a Gaussian distribution with average ld and

standard deviation rd. Then, one finds by transformation

f sð Þ ¼ 1ffiffiffiffiffiffi
2 p
p

rd rn vn s2
e
�

1
rn vn s�ldð Þ2

2 r2
d : (38)

Evaluating the integral in (27) leads to

I tð Þ ¼ I0 e�ld rn vn t e
1
2
r2

d r2
n v2

n t2 : (39)

It can be seen that the decay is non-exponential, if rd is

large. This is the case, if the distribution of defects is broad.

The above calculations show that common distributions

of lifetimes cannot explain curved luminescence decay, since

the spectra are not broad enough. It is a variation in the

defect density that causes a curved luminescence decay.

Because of the reciprocity sn0 ¼ ðrn vn NdÞ�1
, small varia-

tions in Nd are sufficient to cause a large variation of sn0 and

hence a curved decay.

F. Dependence on surface defects

In the following, we show the influence of deep defects

at the contacts or surfaces of a semiconductor slab. Assume

that we have Sn0 ¼ Sp0 ¼ S. Then, the surface SRH-

recombination rate becomes12

Rs;SRH ¼ S Dns
p0 þ Dns

p0 þ 2 Dns
; (40)

where the subscript s denotes the value at the surface. Due to

surface recombination, the excess minority carrier density is

locally reduced and Dns � p0 is fulfilled even for high illu-

mination intensities up to 10 W cm�2. Therefore, Eq. (40)

leads to

Rs;SRH ¼ S Dns: (41)

From Eq. (41), it follows an excitation independent sSRH-

lifetime, so no saturation effects can be found. Furthermore,

it follows the boundary condition

jn;s n ¼ e0 Sn Dns; (42)

where n is the inner surface vector. The carriers for recombi-

nation at the surfaces are collected from all sample depths.

Assuming that the depth dependent collection probability is

constant, which is the case for not too small carrier mobili-

ties, than the surface SRH-recombination (41) can be trans-

formed into a bulk-recombination rate

~RsSRH ¼
S

d
Dns; (43)

where d denotes the thickness of the sample. The carrier den-

sities are reduced only near the surfaces. One can estimate

Dn � ð1þ 2 d S
5 Dn
ÞDns by solving the continuity equation for a

homogeneous generation. Thereby, Eq. (43) leads to

~RsSRH ¼
S

d 1þ 2 d S

5 Dn

� � Dn: (44)

Therefore, one finds the sSRH-lifetime

1

ssSRH

¼ Sf

d 1þ 2 d Sf

5 Dn

� 	þ Sb

d 1þ 2 d Sb

5 Dn

� � ; (45)

where the subscripts f and b denote the recombination at the

front and the back side, respectively. Equation (45) shows

that for Sb=f � 105 cm s�1 the sSRH-lifetime becomes satu-

rated, because with the provided mobility value of 20 cm2

V�1 s�1 the transport of the carriers towards the surfaces is

limited by diffusion.

Figure 6 shows some simulated TRL-transients of a

semiconductor layer including surface recombination using

the boundary condition (42), as well as some analytically

approximated data after Eq. (44). In this case, there were no

defects in the bulk.

It can be seen that surface recombination reduces the

decay time. Because of the constant sSRH-lifetime, a high
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injection case can still be found, but no saturation of surface

defects. So we state that surface recombination does reduce

the decay time, but does not change the shape of the

luminescence-transients. This will be shown in Sec. V A.

G. Space charge

Finally, we discuss the impact of space charge or in gen-

eral the effect of an electric field on the TRL-decay. Space

charge can result from junction regions, charged grain boun-

daries or surfaces. Figure 7 shows TRL-transients calculated

for an np-homojunction in the open circuit case with no

external current. Here, defects in the bulk or at the surfaces

are initially excluded. For sufficiently low injection, the

decay time is large compared to that of a single semiconduc-

tor slab. If the excitation increases, the decay time decreases.

This is contrary to the behavior found by Metzger et al.5,6

for pulsed excitation. We consider the low and the high

injection case separately.

1. Low injection

For low excitations. the few photogenerated carriers are

separated by the electric field and accumulate at the edges of

the space charge region (SCR) where they are majorities.

When the steady state is reached, we turn off the illumination

and start to simulate the TRL-transients. At this time, there

are charge carriers in the SCR, which are separated by the

electric field within a few 10 ps after the excitation is turned

off. Since the lifetime is comparatively long und the number

of charge carriers in the SCR is negligible for low injection

levels, the transients do not reflect a fast initial decay due to

the separation. Hence the largest part of the charge carriers

are majorities at the edges of the space charge region and

only a few minority carriers are within the SCR or in the

quasi-neutral region (QNR) (see Figure 8).

Due to the low excitation, the dark space charge is only

partly screened by the accumulated charge carriers and a

small open circuit voltage is built up (see Figure 9).

Therefore, a small dark diffusion current of majorities flows

across the SCR into the QNR, where the carriers become

minorities and recombine. Since the open circuit voltage is

comparatively small, the diffusion current is small, too. This

in turn means that the charge carriers are stored for a long

time. Moreover, the recombination and hence the lumines-

cence is determined by the dark diffusion current (Figure 9).

This leads to a large decay time of the open circuit voltage

and a large decay time of the TRL intensity compared to the

case of a bare semiconductor slab (see Figures 8 and 9).

The semiconductor junction can be recognised as a

charged capacity and the diffusion current as a leakage cur-

rent. It is

djQj
dU
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0 e0 er

2

ND NA

ND þ NA

r
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

UD � U
p ; (46)

where UD is the diffusion voltage and Q is the charge per

area of unscreened ionized dopants. The charge djQj

FIG. 6. Simulated and approximated TRL-transients of a semiconductor

layer with a recombination velocity Sf ¼ 103 cm s�1 at the front contact and

different recombination velocities at the back contact. Analytical approxi-

mation after Eq. (44).

FIG. 7. Simulated TRL-transients of an np homojunction with ND ¼ NA ¼
1016 cm�3, dp ¼ 2:5 lm, dn ¼ 500 nm (lines) and of a single semiconductor

layer (dots) without surface or bulk-defect recombination.

FIG. 8. Excess electron (solid) and hole (dashed) distribution in a CIGS/

CIGS-homojunction for an illumination intensity of 0.01 W cm�2 immedi-

ately after excitation is turned off. The edges of SCR (dotted) are calculated

according to the Schottky approximation.
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increases with time due to a diffusion current j of electrons

and holes with the saturation current density j0: djQj ¼ jjj dt.
Hence, it is

d

dt
U tð Þ ¼ �jj0j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

e0 e0 er

ND þ NA

ND NA

r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UD � U tð Þ

p
e

e0 U tð Þ
k T � 1

� 	
: (47)

As can be seen in Figure 9, it is UðtÞ 	 k T
e0

for reasonable

times. Hence, it is e
e0 UðtÞ

k T 	 1 and Eq. (47) yields

d

dt
U tð Þ ¼ �M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UD � U tð Þ

p
e

e0 U tð Þ
k T

M ¼ jj0j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

e0 e0 er

ND þ NA

ND NA

r
:

(48)

The solution of Eq. (48) fulfills the equation

erf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0

k T
U tð Þ � UDð Þ

r
¼ i

ffiffiffiffiffiffiffiffiffiffi
e0

p k T

r
M e

e0 UD
k T t

þ erf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0

k T
U0 � UDð Þ

r
; (49)

where “erf” denotes the error function. For short times, it is

UðtÞ � U0 and further evaluation of Eq. (49) leads to

U tð Þ ¼ � k T

e0

log e�
e0 U0

k T þ e0 M

k T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UD � U0

p
t

� �
: (50)

Equation (50) describes the decay of the open-circuit volt-

age. The TRL-signal then is proportional to the radiative

recombination which is determined by the diffusion current.

Hence, it is

I tð Þ ¼ A

e0

jj tð Þj ¼ jj0jA
e0

e�
e0 U0

k T þ e0 M

k T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UD � U0

p
t

� ��1

;

(51)

where A is the cross section of the sample. It can be seen that

the decay time is small if the constant M is large. Looking at

the definition (48) this is the case for large saturation current

densities jj0j and small electric fields.

2. High injection

Increasing of the excitation has the following effects:

The space charge of ionized dopants becomes further

screened, since there are more majority carriers accumulat-

ing at the edges of the SCR lowering the diffusion barrier.

Now, there is fairly no charge separation and the charge car-

riers have the same distribution as in a single semiconductor

layer (Fig. 10). Hence, bulk recombination and the bulk-

lifetime can be observed in the TRL-signal. The recombina-

tion is not determined by the dark diffusion current (see

Figure 9), which in turn gives rise to a decay that is the same

as in the case of a semiconductor slab including high injec-

tion effects (Fig. 7). This is in agreement with the findings of

Metzger et al.5,6

After a certain time all minority carriers in the quasi-

neutral regions have been recombined and only the majority

carriers stored at the edges of the SCR remain (Fig. 10).

Then, recombination is again limited by the diffusion of ma-

jority carriers across the SCR (see Figure 9) and TRL is lim-

ited by the diffusion current.

3. Influence of mobility

At last, we investigate the influence of the carrier mobil-

ity on the TRL-decay of a junction in the low injection case.

A lowering of the mobility has two effects:

• A smaller carrier mobility gives rise to a smaller dark satu-

ration current density.
• The open circuit voltage increases due to a lowered dark

saturation current (see Fig. 11).

Since it holds j � j0 e
e0 VOC

k T for the dark diffusion current

a decrease in j0 is compensated by an increase in VOC.

Hence both effects cancel each other and the total dark dif-

fusion current j is nearly unchanged by the mobility. Since

the TRL-intensity is determined by the dark diffusion cur-

rent, the luminescence’s transients are unchanged, too (see

Fig. 11).

To compare the influence of the mobility on the tran-

sient’s decay, we varied the illumination intensity such

that the initial open circuit voltage is equal for each pro-

vided carrier mobility. Again it holds j � j0 e
e0 VOC

k T for the

dark current, but now VOC is fixed and only j0 varies. The

results are shown in Figure 12. Due to an increase in j0
with increasing carrier mobility, the decay of the open cir-

cuit voltage is faster and in turn the dark current decays

faster, too. Because of the limitation of the TRL-intensity

by the dark current, the TRL decay time also decreases.

Furthermore, the dark current density increases with

increasing mobility and fixed open circuit voltage.

Therefore the TRL-intensity becomes larger with increas-

ing mobility.

V. COMBINATION OF EFFECTS

A. Bulk and surface defects

More realistic is the case where deep defects are present

in the bulk and at the surfaces of a semiconductor layer. We

have already mentioned that in this case the dependence of

FIG. 9. TRL intensity (dots) and transient open circuit voltage (lines) for an

illumination intensity of 0.01 W cm�2 and 1000 W cm�2.
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the measured decay time on the excitation is similar as in the

case without surface recombination. Indeed the maps in

Figure 13 show that the trend of the decay time does not

change qualitatively with Sf. However, decay time values are

systematically reduced (compare also Fig. 3 with

Sf ¼ Sb ¼ 0). Because of the decrease of the carrier density

by surface recombination, the maximum of the decay time at

a given defect density is shifted to higher excitations, mean-

ing higher intensities are necessary to reach saturation of

bulk defects and onset of bimolecular recombination. For

surface recombination velocities above about 105 cm s�1 a

further increase of S does not affect the decay time anymore,

since the transport of charge carriers towards the surfaces is

limited by diffusion.

Assuming a certain defect density Nd and excess carrier

density Dn, there is a unique relation between the absolute

value of the decay time and the surface recombination veloc-

ity, since it is

FIG. 10. Excess electron (solid) and hole (dashed) distribution in a CIGS/CIGS-homojunction for an illumination with 1000 W cm�2 at different times after ex-

citation. The edges of SCR (dotted) are calculated with Schottky approximation.

FIG. 11. TRL- and VOC-transients for an illumination intensity of 0.01 W

cm�2 and for carrier mobilities l ¼ 0:2 cm2 V�1 s�1, 2 cm2 V�1 s�1, and

20 cm2 V�1 s�1.

FIG. 12. TRL- and VOC-transients for carrier mobilities 0.2 cm2 V�1 s�1,

2 cm2 V�1 s�1, and 20 cm2 V�1 s�1 and varying illumination intensity such

that VOCðt ¼ 0Þ is constant.
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1

s Dnð Þ ¼
1

sSRH Dnð Þ þ
1

srad Dnð Þ þ
1

ssSRH Sð Þ ; (52)

d

dS
ssSRH 6¼ 0: (53)

If one assumes a certain surface recombination velocity,

there is a biunique relation between the excess carrier density

Dnm at the decay time maximum and the defect density,

since it follows from d
dDnm

sðDnÞ ¼ 0

Dnm ¼
�C p0 rp þ rn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B Nd p0 rp vn

p
C rn þ rpð Þ

> 0: (54)

Equation (54) also shows that the maximum does only exist

for Nd >
C p0 rp

vn r2
n

, as was already explained. Hence the func-

tions SðsÞ and NdðDnmÞ exist and the values can be deter-

mined, if Dnm is known. This can be determined for example

with microwave conductivity.

For higher accuracy, the TRL-decay time can be meas-

ured depending on excitation and the parameter values can

be calculated by fitting the data with (52).

B. Space charge and bulk defects

In practical terms, we will often have a combination of

bulk defects and a space charge region, the latter being either

the result of a pn junction or surface band bending. Again,

we calculated a map showing the decay time depending on

the bulk-defect density and on the excitation intensity. This

is displayed in Fig. 14. That the bulk recombination can be

observed for high injection levels is still valid. This becomes

clear, if Fig. 3 is compared with Fig. 14. In the following, we

investigate the dependence of the decay time on excitation

for different defect densities separately.

1. Low defect densities £1012 cm23

For low defect densities, the isolines in Fig. 14 are largely

parallel to the ordinate. Hence, SRH-recombination does not

affect the TRL-signal. For low injection levels, the TRL-signal

is determined by the dynamics of the small diffusion current

across the space charge region. For high excitation, the excess

carrier densities decay from more homogeneous distributions,

recombination in the quasi-neutral regions becomes dominant,

and is of bimolecular type. Hence, the decay time decreases.

2. Defect densities between 1012 cm23 and 1014 cm23

For low injection levels, the diffusion current determines

the TRL-signal and the decay time is high. For high excita-

tions, again recombination in the quasi-neutral regions

determines the TRL-signal. First, the number of electron-

hole-pairs is low and SRH-recombination is dominating.

Hence, the decay time is small. If the excitation is further

increased, the defects are saturated and the decay time

increases. For very high excitations, the bimolecular recom-

bination lowers the TRL-decay time again.
FIG. 13. Dependence of TRL-decay time in nanoseconds on the excitation

and the density of deep defects in an homogeneous semiconductor slab for

different surface recombination velocities.

FIG. 14. TRL-decay time in nanoseconds of an np-homojunction with ND ¼
NA ¼ 1016 cm�3, dp ¼ 2:5 lm, dn ¼ 500 nm depending on excitation inten-

sity Iex, and the density of deep defects Nd.
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In the case of high excitations and short observation

times, the TRL-transients in Fig. 15 have the same shape as

the transients in Fig. 4. This reflects the fact that the PL-

decay shows the recombination in the quasi-neutral regions.

3. High defect densities �1015 cm23

Some TRL-transients calculated for high defect den-

sities are shown in Fig. 16. As can be seen, there is a fast

decay for small times and low injection levels. This causes

the very small TRL-decay times shown in the map of Figure

14. The electron-hole-pairs that are in the space charge

region at the time the excitation is turned off, recombine

before they can be separated. After a short time the space

charge region is depleted of mobile charge carriers and the

TRL-signal again is determined by the diffusion current.

For high injection levels once more, recombination in

the quasi-neutral regions dominates, and because of the large

defect density the fast decay of the PL-signal persists.

VI. CONCLUSION AND OUTLOOK

In this study, we could explain the behavior of the TRL

transient’s shape with varying excitation. We could replicate

some experimental findings, as well as findings of other theo-

retical works.

We have shown that the TRL intensity of an homogene-

ous semiconductor slab decays non-exponentially for high

injection levels due to bimolecular recombination in agree-

ment with Metzger et al.5 The decay time decreases with

increasing excitation. This is still valid if there are deep

defects in the bulk or at the surfaces of the layer.

Multi-exponential decays can be explained by parallel

radiative and non-radiative recombination processes. Both

dominate for a certain range of excess carrier densities.

During a TRL decay the number of excess carriers changes

and the dominating recombination process changes, too. The

transition of recombination processes depends on the density

of deep defects. Only if the number of defects is small

(<1014 cm�3), the defects can be saturated and the SRH

recombination can become limited by majority carrier cap-

ture. If one has a spatial distribution of defect densities, the

TRL decay can also be multi-exponential where we find that

the largest deviation from mono-exponential decay arises

from a distribution of defect densities.

Further, we could show that the absorber layer of a com-

plete solar cell can be studied under high excitation inten-

sities. Therefore, we could reproduce the work of Metzger

et al.5,6 However, for low excitation we calculated different

transients. This can be explained with the different initial

state: Under a stationary illumination the dynamics of charge

separation is not reflected in the decay curves. This will be

different under short laser pulses which are investigated in

the second part of this work.
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FIG. 15. TRL-transients of an np-homojunction with ND ¼ NA ¼ 1016

cm�3, dp ¼ 2:5 lm, dn ¼ 500 nm, and Nd ¼ 5� 1013 cm�3 for different

injection levels.

FIG. 16. TRL-transients of an np-homojunction with ND ¼ NA ¼ 1016

cm�3, dp ¼ 2:5 lm, dn ¼ 500 nm, and Nd ¼ 1015 cm�3 for different injec-

tion levels.
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In the second part of this series, we studied TRL decay on semiconductor layers and thin film

homostructures after a pulsed excitation by simulation with Synopsys TCAD
VR

and by

mathematical approximation. Again, our working example is Cu(In,Ga)Se2. We investigate the

influence of the excitation pulse length, axial diffusion, bulk-defects, and defects at the contacts, as

well as space charge on the TRL-decay separately by quasi one-dimensional simulations of semi-

conductor layers and semiconductor homostructures. Material parameters like defect density, car-

rier mobility, and surface recombination velocity are varied in a wide range, such that the

calculations are applicable to other semiconductors. We further study the influence of multi-pulse

excitation. We show how material parameters such as carrier lifetime and carrier mobility can be

extracted from the TRL transients and how the samples can be characterized by excitation depend-

ent measurements in the open circuit case. We can explain some effects found in luminescence

experiments, like an increased decay in semiconductor junctions due to the electric field in the

space charge region. However, we also discuss the effect of charge storage which may lead to

decreased decay. It is revealed that under high injection conditions single layers within a semicon-

ductor stack can be characterized in terms of carrier lifetime. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4896484]

I. INTRODUCTION

In the first part of this work, we have investigated the

influence of excitation, defects, and space charges on the tran-

sient luminescence signal by simulation with Synopsys

TCAD
VR

.1 For systematic reasons, we have chosen a steady

state illumination as an initial state. Thereby, we could elimi-

nate the influence of experimental quantities like the excita-

tion pulse length and at the same time could simulate the

principle effects in cathodoluminescence decay experiments.2

In the second part of this work, we will present results on

time-resolved luminescence (TRL) calculated for a pulsed ex-

citation of Cu(In,Ga)Se2 as a working example. This method

also known as time-resolved photoluminescence (TRPL) has

been used in numerous experimental studies of semiconduc-

tors.3–10 First, we address the comparability of TRL experi-

ments with different pulse properties such as pulse length and

intensity. Then, we tie in with the results in the first part of

this work and investigate the influence of axial diffusion and

defects in semiconductor layers. We show that both can lead

to curved TRPL transients, which is often observed in TRPL

experiments.5,6,10 We give an analytic formula that describes

bimolecular recombination, axial diffusion, bulk, and surface

recombination. These are distinct from those of Ahrenkiel,11

where bimolecular recombination is not included. Then, we

study the different influences of space charges in semiconduc-

tor devices. We show that the TRPL decay time can decrease

due to charge separation6 and it can increase as a result of

multi-pulse excitation.3 At the moment, there are already sev-

eral works concerning simulation of charge separation effects

with focus on the time dependent carrier distribution, for

example, in a GaAs-junction12 and in CdTe solar cells.13 We

also show such simulation complemented with calculations of

the photovoltage that builds up for different carrier lifetimes

and excitation frequencies.

All our simulations are one-dimensional. However,

comparison with TRPL-experiments is possible as long as

the experimental focus diameter is much larger than the dif-

fusion length. Additionally, the influence of grain boundaries

that are not included in our simulations can be estimated by

an effective bulk-lifetime. The one-dimensional simulations

reach their limits, if lateral effects cannot be neglected, that

is, for inhomogeneous charge carrier lifetimes, band gaps, or

charge carrier mobilities. Furthermore, we again neglect the

influence of Photon Recycling, since most of the lumines-

cence photons are generated at the front side of the semicon-

ductor and can by directly emitted before reabsorption.

II. PROVIDED QUANTITIES

The main semiconductor parameters have been given in

the first part of this series. In the present part II, the time de-

pendent excitation is realized by a time dependent photon

flux density jc(t) incident on the sample (after front surface

reflection). jc(t) fulfills a Gaussian time dependence

jc tð Þ ¼ ncffiffiffi
p
p

sp
e
� t�t0ð Þ2

s2
p ; (1)

where t0 can be an arbitrary time, sp is the length of the

pulse, and nc is the number of photons incident per area per

pulse. If not stated otherwise, it is sp¼ 100 fs and t0¼ 1 ps.a)Electronic mail: matthias.maiberg@physik.uni-halle.de
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III. SOME BASIC DEFINITIONS

In order to compare different TRL transients being

obtained from experiment or simulation, one has to clarify

the impact of different experimental conditions. Most impor-

tant in this context are different excitation lengths and inten-

sities. We will show that it is necessary to define a unique

initial state of excitation. Another aspect of concern is the

depth resolution of TRL. We will show how the experimen-

tal requirements are related to material parameters such as

absorption coefficient and charge carrier mobility.

A. The influence of pulse length

Experimentally, the pulse length today can be varied in

a wide range. Since the photon flux follows a Gaussian distri-

bution, most of the charge carriers are generated within the

time range [t0 – 3sp, t0þ 3sp] (compare Eq. (1)). As t0 is ar-

bitrary, we set t0¼ 3sp and approximate the pulse start at

time t¼ 0 and pulse end at time t¼ 6sp. Assuming no sub-

stantial axial diffusion and recombination for times t< 6sp,

the continuity equation reads

@

@t
Dn t; zð Þ � a jc tð Þ e�a z; 0 < t < 6 sp: (2)

Integration of (2) up to t� 6sp yields

DnðzÞ � a nc e�a z: (3)

The generated carrier density increases linearly with photon

density nc but does hardly depend on the pulse length.

Naturally, these conclusions are only valid as long as the

above assumptions are fulfilled. Errors are made for high car-

rier mobilities, when the pulse length is in the range of the

diffusion time (see Sec. III B).

B. Axial diffusion time

Next, we investigate the rearrangement of photogenerated

carriers due to an inhomogeneous generation. We want to clar-

ify, on which timescale axial diffusion takes place. Hence,

recombination in the bulk and at the surfaces was excluded. The

excitation density as well as the mobility of the charge carriers

was varied. As a measure of inhomogeneity, we calculated the

ratio of the carrier density at the front and at the back surface.

Figure 1 shows that the homogenization of the carriers

is independent of the excitation and depends only on the mo-

bility. Furthermore, the inhomogeneities are reduced with a

characteristic time constant sDif,car of 10�10 s…10�8 s for all

chosen mobilities. Below, we give calculated values of

sDif,car. Thus, in general, axial diffusion effects mostly take

place long times after the excitation pulse. This approves the

assumption above, that for the investigated mobilities there

is no diffusion during the excitation.

The axial diffusion effects can be described with analyti-

cal expressions. Since we are only interested in diffusion, we

neglect recombination and solve the continuity equation with

the initial value (3) and the boundary conditions @
@z Dnðt; 0Þ

¼ @
@z Dnðt; dÞ ¼ 0, where d is the slab thickness. The result

reads

Dn t; zð Þ ¼ A0 þ
X1
k¼1

Ak e
�D p2 k2

d2 t
cos

p
d

k z

� �
; (4)

A0 ¼
nc 1� e�a dð Þ

d
;

Ak ¼
2nc

d

1� �1ð Þk e�a d

1þ k p
a d

� �2
:

In Eq. (4), D denotes the diffusion coefficient. The coeffi-

cients A0 and Ak are linear in nc and hence Dn(t, z) is linear

in nc, which means, we can write Dn(t, z; nc, D, d, a)¼ nc �
f(t, z; D, d, a). Thus, the ratio r(t)¼Dn(t, 0)/Dn(t, d) indeed

is independent from the photon density nc in agreement with

Figure 1.

Next, we calculate the time scale on which diffusion takes

place. To this end, we suppose an exponential time decay of

the ratio r(t) and calculate the decay time of diffusion sDif,car

from the time derivative of the logarithm of this ratio, that is,

1

sDif ;car
¼ � d

dt
log r tð Þ

����
t�0

: (5)

If x is defined by x¼ ad and y is defined by y ¼ e
�D p2 t

d2 , then

Eq. (5) can be rewritten as

1

sDif ;car
¼ 2 D p2 x2

d2

X1
k¼1

�1ð Þk � e�x

x2 þ k pð Þ2
k2 yk2

1� e�x þ 2 x2
X1
k¼1

�1ð Þk � e�x

x2 þ k pð Þ2
yk2

0
BBBB@

�

X1
k¼1

1� �1ð Þk e�x

x2 þ k pð Þ2
k2 yk2

1� e�x þ 2 x2
X1
k¼1

1� �1ð Þk e�x

x2 þ k pð Þ2
yk2

1
CCCCA: (6)

Numerical evaluation of (6) for small times ðt� d2

D p2

() y � 0:99Þ leads to

FIG. 1. Ratio
Dnðt;0Þ
Dnðt;dÞ for carrier mobilities 1 cm2 V�1 s�1, 10 cm2 V�1 s�1,

and 100 cm2 V�1 s�1, photon doses nc¼ 109 cm�2 (lines) and

nc¼ 1013 cm�2 (dots). The absorption coefficient is a¼ 3.805 lm�1 and

the slab thickness is d¼ 3 lm. Carrier recombination is turned off.
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1

sDif ;car
� 2 D p2

d2
1:8 a d: (7)

Inserting the parameter values of Figure 1 (ad� 3.6) reveals

sDif,car� 27 ns for l¼ 1 cm2 V�1 s�1, sDif,car� 2.7 ns for

l¼ 10 cm2 V�1 s�1 and sDif,car� 0.27 ns for l¼ 100 cm2

V�1 s�1. This fits the data in Fig. 1.

Due to the considerations above, a pulse length

sp< sDif,car should be chosen to exclude substantial axial

diffusion during the excitation. Then, the electron density directly

after the excitation (t � t0þ 3sp) can easily be calculated and is

a good criterion for comparison of TRL-experiments.

C. Depth resolution

Finally, we ask for the depth of luminescence generation.

According to Eq. (3), the photogenerated carrier density at

t � t0 decays exponentially into the absorber layer for mono-

chromatic light excitation. Hence, nearly all electrons are in a

thin layer of 3ka thickness from the illuminated surface, where

ka¼ 1/a is the absorption length. Therefore, the main part of

the radiative recombination takes place near the front surface

up to that time at which the electrons are homogeneously dis-

tributed. Hence, one can state that luminescence comes from

the front surface for t< sDif,car and from the whole slab for

t> sDif,car.

IV. ISOLATION OF EFFECTS

A. Impact of axial diffusion

First, we discuss the influence of axial diffusion on the

TRL decay. Therefore, we investigate the slope of I(t), where

I(t) is the total number of generated luminescence photons

per time. For a semiconductor slab with thickness d, the

slope d
dt IðtÞ can be calculated from

d

dt
I tð Þ ¼ d

dt

ðd

0

Rrad t; zð Þdz

¼
ðd

0

@

@t
Rrad t; zð Þdz

¼ B

ðd

0

n t; zð Þ
@

@t
p t; zð Þ þ p t; zð Þ

@

@t
n t; zð Þ

� �
dz; (8)

where Rrad is the radiative net-recombination rate and B is

the radiative constant. Inserting the continuity equations for

electrons and holes leads to

d

dt
I tð Þ ¼ �B

ðd

0

n Rp þ p Rnð Þdz|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
að Þ

�B Sn p Dnjz¼d � B Sn p Dnjz¼0 � B Sp n Dpjz¼d � B Sp n Dpjz¼0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
bð Þ

þB

ðd

0

E lp p
@

@z
n� ln n

@

@z
p

� �
dz|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

cð Þ

�B

ðd

0

Dn þ Dpð Þ
@

@z
n
@

@z
p dz|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dð Þ

; (9)

where D, l, R, and S denote the diffusion coefficient, mobil-

ity, bulk-recombination rate, and surface recombination ve-

locity of electrons and holes, respectively. E denotes the

electric field strength.

Since R, p, and n are positive quantities, (a) in Eq. (9) is

always negative. This means bulk-recombination of charge

carriers leads to a decay of the luminescence intensity. All

terms in (b) are negative, because S, n, p, Dn, and Dp are

always positive. Hence, surface recombination further

reduces the decay time. The third term describes the influ-

ence of drift effects on d
dt IðtÞ, for example, in the space

charge region of a solar cell. The last term in Eq. (9)

describes axial diffusion effects. Its sign is not unique which

means diffusion of charge carriers can increase or decrease

the decay time of the luminescence. In general, it is
@
@z n � @

@z p. Then, diffusion effects further decrease the lumi-

nescence decay time. However, as will be shown below,

term (d) is only relevant compared to term (a) for high injec-

tion levels.

Now, we look at the calculated TRL-transients in

Figure 2 starting with low excitation (see label (1)). There

is only one decay time due to radiative recombination.

Though diffusion takes place, it does not affect the decay,

since the minority carrier lifetime is homogeneous. That

means, it is not important, where the charge carriers

recombine. If we look at the net-radiative recombination

we have

Rradðt; zÞ � B p0 Dnðt; zÞ; (10)

FIG. 2. TRL-transients of a semiconductor slab without defects and with a

carrier mobility of 20 cm2 V�1s�1 for different injection levels. The solid

lines represent simulated data, the dots represent approximated data.
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since we have a low photogenerated carrier density. p0 is the

equilibrium hole density. If we calculate the TRL-intensity,

it holds

IðtÞ ¼
ðd

0

Rradðt; zÞdz ¼ B p0

ðd

0

Dnðt; zÞdz: (11)

According to Eq. (11), the intensity is proportional to the

total number of generated carriers and hence not influenced

by diffusion, because the rearrangement of electrons does

not change their number. This can be traced back to the

recombination probability of the electrons as minority charge

carriers. The recombination of one electron depends only on

the number of holes. Since the hole density is homogeneous

for low injection levels (p(z)� p0), the recombination proba-

bility is equally distributed. Therefore, the recombination of

the whole electron population is independent of its

distribution.

If the excitation increases, the quadratic term in

Rradðt; zÞ ¼ B ðn0 þ p0ÞDnðt; zÞ þ B Dnðt; zÞ2; (12)

where n0 is the equilibrium electron density, becomes impor-

tant (bimolecular recombination). Now, the TRL-intensity

decays very fast because of diffusion (label (2)). Again, the

recombination probability depends on the hole density, that

is inhomogeneous for high injection levels (p(z)�Dp(z)). If

one electron is removed from a region of high hole density

to a region of low hole density, its recombination probability

decreases leading to a reduced recombination rate. In conclu-

sion, a reduction of the recombination rate causes a decay of

the luminescence intensity. After homogenization, the elec-

trons are minorities and Eq. (11) can again be applied: The

measured decay time equals the radiative lifetime (label (3)).

For even higher injection levels, diffusion again initially

reduces the decay time. As shown above, the homogeniza-

tion process is finished after a few nanoseconds. Now, the

electron density is equally distributed, but equals the doping

concentrations. That means, we are still in the limit of bimo-

lecular recombination and the transient is curved (label (4)).

After a certain time, the electrons become minorities and

recombine in the limit of monomolecular recombination,

where the TRL-decay is exponential and the decay time

equals the radiative lifetime.

To approximate the data in Figure 2 by an analytical

expression, one can utilise that axial diffusion takes place on

a much shorter timescale than radiative recombination.

Therefore, we first solve the continuity equation without

recombination and the result is inserted as an initial value for

the continuity equation with recombination, but without the

diffusion term. The result reads

Dn t; zð Þ ¼
p0 Dn0 t; zð Þ

p0 þ Dn0 t; zð Þ
� �

eB p0 t � Dn0 t; zð Þ
(13)

where Dn0(t, z) equals the expression of Dn(t, z) in Eq. (4).

In Figure 2, it can be seen that (13) fits the data.

Furthermore, one can prove the above considerations evalu-

ating Eq. (13) for the different cases. Under low injection, it

is Dn0(t, z)� p0 and it follows:

IðtÞ ¼
ðd

0

Rradðt; zÞdz � p0 A0 d e�B p0 t: (14)

The decay time becomes s ¼ 1
B p0
¼ srad, which equals the

minority carrier lifetime.

If we consider a high injection level and short times

t� 1
B p0

it follows:

Rradðt; zÞ � B Dn0ðt; zÞ ðp0 þ Dn0ðt; zÞÞ; (15)

which means that the decay of radiative recombination is

due to the decay of Dn0(t, z) and hence due to diffusion. To

analyze for which injection levels axial diffusion becomes

apparent, we integrate Eq. (15)

I tð Þ ¼
ðd

0

Rrad t; zð Þdz

¼ B d A0 p0 þ A2
0 þ

A2
1

2
e
�2 D p2

d2 t þ � � �
� �

: (16)

Since it is jA1j > jA2j > …, the time-dependence of I(t) in

Eq. (16) becomes only apparent, if it is
A2

1

2
� A0 p0 þ A0ð Þ.

Evaluation of the ratio leads to

A2
1

2
A0 p0 þ A0ð Þ

� 2 nc

d p0 þ nc
for a d � 1;

� 1 for a d � 1 and arbitrary nc:

8><
>:

(17)

This shows that the appearance of diffusion effects does not

only depend on the injection level but also on the value of ad.

If it is ad� 1, then follows from (17) for the minimum pho-

ton density per pulse for the appearance of diffusion effects

nc � d p0 for a d � 1: (18)

This proves mathematically that axial diffusion effects can

only be seen for high injection levels. Additionally, accord-

ing to Eq. (16), we can define a decay time of the lumines-

cence intensity due to diffusion by

sDif f ¼
d2

2 p2 D
: (19)

We point out, that sDiff in Eq. (19) has to be distinguished

from sDif,car in Eq. (7).

Finally, we consider high injection levels and long times.

Then one has Dn0(t, z)�A0, which is time-independent, and it

follows a combination of bi- and monomolecular recombination

according to the considerations in the first part of this series.

B. Impact of surface defects

Now, we want to investigate the influence of surface

defects. To this end, we simulated some TRL-transients for

different back surface recombination velocities and different

injection levels. The recombination velocity at the front sur-

face was set to Sf¼ 103 cm s�1. As can be seen in Figure 3

and by comparison with Figure 2, in principle, the transient’s

decay does not change. For low injection levels, one still has
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a single-exponential decay, whereas the decay is multi-

exponential for high injection levels due to diffusion, bimo-

lecular recombination, and monomolecular recombination.

Thus, surface recombination adds a lifetime to the carrier

lifetime, which is nearly independent of the charge carrier

density and hence independent of time and space.

To fit the data, we use the above mentioned model. First,

we solve the diffusion equation with the boundary conditions

Sf Dn0 t; 0ð Þ ¼ D
@

@z
Dn0 t; 0ð Þ (20)

Sb Dn0 t; dð Þ ¼ �D
@

@z
Dn0 t; dð Þ: (21)

The solution can be represented by

Dn0ðt; zÞ ¼ A0 þ
X1
k¼1

Ak UkðzÞ e�D b2
k t (22)

with

Uk zð Þ ¼ cos bk zþ Sf

D bk

sin bk z: (23)

The set {bk} with 0¼ b0 < b1 < b2 <…is the set of solu-

tions of the well known eigenvalue equation14

tan bk d ¼ �D Sb þ Sfð Þbk

Sb Sf � D2 b2
k

(24)

and has to be determined numerically. Since the Uk(z) in Eq.

(23) represent an orthogonal basis on [0, d), one can deter-

mine the Ak by integration of the initial value

Ak ¼ a nc

ðd

0

e�a z Uk zð Þdz

ðd

0

Uk zð Þ2dz

: (25)

For A0, it holds

A0 ¼
nc 1� e�a dð Þ

d
; Sf ¼ Sb ¼ 0

0; else:

8><
>: (26)

This makes sense, since it is limt!1 Dnðt; zÞ ¼ A0. If there is

a current across the surfaces (Sf, Sb 6¼ 0), the total number of

electrons decreases, until all carriers are flown out and

A0 ¼ limt!1 Dnðt; zÞ ¼ 0. If there is no carrier current

across the contacts, the total number of electrons is con-

served and it is A0 ¼ limt!1 Dnðt; zÞ > 0. Furthermore, it

can be seen that Dn0(t, z; nc, d, D, a)¼ nc � f(t, z; d, D, a) still

holds, which means that diffusion times are again independ-

ent of the injection level nc.

Now, Dn0(t, z) is inserted as an initial value into the con-

tinuity equation without diffusion, but only with radiative

bulk recombination. Again the solution is Eq. (13). As can

be seen in Figure 3, the data calculated with (13) fit the simu-

lated data. The reason for such a good approximation may

not be obvious, since the condition for the model above, that

diffusion only takes place at the beginning, is not fulfilled.

Therefore, we simplify Eq. (13) for low injection levels and

get

Dnðt; zÞ ¼ Dn0ðt; zÞ e�B p0 t: (27)

Moreover, Dn0ðt; zÞ � A1 U1ðzÞ e�D b2
1 t holds for long times,

since A0¼ 0 for Sf 6¼ 0 or Sb 6¼ 0. Inserting this into (27) leads

to

Dnðt; zÞ � A1 U1ðzÞ e�ðB p0þD b2
1Þ t: (28)

This shows that the time dependence of Dn0 accounts for dif-

fusion as well as for surface recombination. Furthermore,

surface recombination can be understood as a bulk recombi-

nation with the corresponding lifetime ssSRH ¼ 1
D b2

1

. To eval-

uate b1, there are approximative solutions of (24) assuming

Sf¼ Sb¼ S or Sf¼ 0 found by graphic considerations.11,14 In

order to evaluate an approximative, but general solution, one

can approximate tan x by

tan x � 8

p2
x

p� x

p� 2 x
for x 2 0; p½ � (29)

with an average relative error of 6% for x � [0, p]. By this

approximation, Eq. (24) becomes a third order equation in

b1, which can be solved analytically.

C. Impact of bulk defects

Now, we discuss the impact of deep bulk defects on

the TRL-transients neglecting surface recombination. As

in the first part of this work, we calculated a map, which

shows the TRL-decay time depending on the density of

deep defects and the injection level in the case of asym-

metric capture cross sections rn¼ 100rp. This map can be

seen in Figure 4. While comparing it with Figure 3, in

the first part of this work, in principle, no differences

become obvious. A saturation of deep defects is visible

FIG. 3. TRL-transients of a semiconductor layer without bulk defects for

different injection levels and different back surface recombination velocities

Sb. The front surface recombination velocity was Sf¼ 103 cm s�1. The lines

represent simulated data, the dots approximated data.
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due to asymmetric carrier capture and majority carrier

limited recombination. Moreover, the decay time shows a

decrease for high injection levels due to bimolecular

recombination and diffusion in contrast to the results in

Sec. IV D in the first part, where the decline was only

due to bimolecular recombination.

1. Low defect densities

First, we look at the transients calculated for a defect

density Nd¼ 1013 cm�3 in Figure 5. For low injection levels,

the decay time is small, since all carriers recombine non-

radiatively with a lifetime sn0 ¼ 1
rn vn Nd

. As the injection level

increases, the decay time increases too, because there are not

enough majority carriers in the defect level (for asymmetric

carrier capture) and defect recombination becomes inefficient.

In this case, the SRH-lifetime is sn0þ sp0 with sp0 ¼ 1
rp vp Nd

.

Since it is sn0 þ sp0 � 1
B p0
¼ srad for low defect densities,

radiative recombination becomes the dominating recombina-

tion path and the transient’s decay time is quite large.

After a certain time, the minority carrier density is such

reduced that defect recombination becomes again efficient

with lifetime sn0. The transients exhibit a biexponential

decay. For further increased excitation, diffusion effects, and

bimolecular recombination become apparent and one meas-

ures a third decay time or curved transients.

2. High defect densities

For low injection levels, the transients show the same

principle behaviour. The luminescence decays with a small

decay time s¼ sn0, since the carriers recombine non-

radiatively. Increasing the injection level increases the SRH-

lifetime and one gets s¼ sn0þ sp0. For high defect densities,

it holds sn0þ sp0 � srad and therefore the charge carriers

keep recombining non-radiatively, but with a larger lifetime.

For very high injection levels again diffusion effects cause a

fast decay at short times.

3. Analytical approximation

To approximate the data one again has to solve the con-

tinuity equation. In the case that we have no trapping and sp0

� sn0, the rate of Schockley-Read-Hall-recombination reads

RSRH t; zð Þ ¼
Dn t; zð Þ p0 þ Dn t; zð Þ

� �
sn0 p0 þ sp0 Dn t; zð Þ

: (30)

Now, we again make the assumption that we can use the so-

lution of the diffusion Eq. (4) as an initial value for the conti-

nuity equation without diffusion, but complemented with

(30). Again, this is distinct from Ref. 11, where bimolecular

recombination is not included. In this case, we have an ordi-

nary differential equation that has no analytical solution. If

we solve it numerically, we get the approximated data shown

in Figures 5 and 6. We see that the decay of the intensity is

approximated in a wide range. Only at the point of transition

from majority limited (sp0þ sn0) to minority limited recom-

bination (sn0), there are considerable differences. The reason

is that in this range the rate of recombination is very sensi-

tive to the carrier density. This means, small differences in

FIG. 4. Contour map of decay times in nanoseconds depending on the den-

sity of deep defects and on the injection level in a homogeneous semicon-

ductor slab with asymmetric capture cross sections.

FIG. 5. TRL-transients for Nd¼ 1013 cm�3and different nc. The solid lines

represent simulated data, the dots represent approximated data.

FIG. 6. TRL-transients for Nd¼ 1015 cm�3 and different nc. The solid lines

represent simulated data, the dots represent approximated data.
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the carrier density due to non-correct treatment of diffusion

at small times cause large differences in the rate of recombi-

nation at later times. By further calculations, we have shown

that the above model yields good approximation even if the

carrier lifetime and the carrier mobility are small that means

sDif,car> sn0þ sp0.

By distinguishing between high- and low injection lev-

els the continuity equation can be solved analytically. For

low injection levels, it is Dn� sn0

sp0
p0, and hence,

RSRH t; zð Þ ¼
Dn t; zð Þ p0 þ Dn t; zð Þ

� �
sn0 p0

: (31)

Then, the solution of the continuity equation reads

Dn t; zð Þ ¼
p0 Dn0 t; zð Þ

p0 þ Dn0 t; zð Þ e B p0þ1=sn0ð Þ t � Dn0 t; zð Þ
� �

� p0 Dn0 t; zð Þ e� B p0þ1=sn0ð Þ t; (32)

and for the decay it holds for not too small defect densities

s� sn0.

For high injection levels, it is Dn� sn0

sp0
p0, and hence,

RSRH t; zð Þ ¼
Dn t; zð Þ p0 þ Dn t; zð Þ

� �
sp0 Dn t; zð Þ

: (33)

In this case, the solution of the continuity equation reads

Dn t; zð Þ ¼
Dn0 t; zð Þ þ p0 � p0 1þ B sp0 Dn0 t; zð Þ

� �
e 1=sp0�B p0ð Þ t

�B sp0 Dn0 t; zð Þ þ p0

� �
þ 1þ B sp0 Dn0 t; zð Þ
� �

e 1=sp0�B p0ð Þ t
: (34)

For reasonable defect densities, such that sp0 � srad holds,

Eq. (34) simplifies to

Dn t; zð Þ ¼ p0 þ Dn0 t; zð Þ
� �

e
� t

sp0 � p0: (35)

Equation (35) shows that indeed the TRL decay for high car-

rier densities, that is, for TRL intensities above 1014 s�1 in

Figs. 5 and 6, is determined by diffusion (Dn0(t, z)) and ma-

jority carrier limited recombination (sp0).

D. Combination of bulk and surface defects

Now, we investigate the case of a combination of bulk

and surface defects on the luminescence’s decay. In Subsec.

IV B, we already discussed that surface recombination contrib-

utes an excitation independent carrier lifetime to the minority

bulk lifetime in case of a non-defective semiconductor slab. As

can be seen in Figure 7, this still holds if there are deep defects

in the bulk of the semiconductor. The principle effects of axial

diffusion, bi- and monomolecular recombination can still be

found in the presence of surface recombination. In conse-

quence, one cannot easily distinguish a TRL decay due to sur-

face or bulk recombination.

1. Distinguishing front and back surface
recombination

If the bulk lifetime is large, surface recombination may

be the limiting recombination process. In this case, TRL-

transients can exhibit different decays for front and back sur-

face recombination, respectively, due to an inhomogeneous

generation profile.

In Figure 8 TRL-transients are shown for a large, fixed

bulk lifetime of 200 ns and two different carrier mobilities

l¼ 10 cm2 V�1 s�1 and l¼ 100 cm2 V�1s�1. Either the front

or the back surface recombination velocity was adjusted, such

that the effective lifetime is equal for both mobilities.

As can be seen, the TRL transient bends upwards for

back surface recombination and small carrier mobilities.

Directly after excitation, the carrier density at the back side

is small compared to the average carrier density. Therefore,

back surface recombination is small, too, leading to a large

effective carrier lifetime seff� sbulk. During homogenization,

the carrier density at the back surface increases giving rise to

an enhanced back surface recombination and a decreased

effective lifetime seff � ssurf < sbulk. This can also be seen by

applying (b) in Eq. (9): an increase in Dn at the back

side due to diffusion decreases the slope d
dt IðtÞ and hence the

PL-decay time.

According to Fig. 8, the TRL transient bends downwards

for front surface recombination and small carrier mobilities. In

this case, the carrier density at the front surface decreases due

to homogenization causing an inhibited front surface recombi-

nation and an increasing effective carrier lifetime.

The time for which back surface recombination is

diminished and front surface recombination is enlarged

depends on the length of homogenization and thus on the

FIG. 7. TRL-transients of a semiconductor slab with a defect density of

Nd¼ 1013 cm�3 and asymetric capture cross sections for varying injection

levels and surface recombination velocities at the back contact.
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carrier mobility. Increasing the carrier mobility accelerates

homogenization and prevents bending of the TRL transients

as shown in Fig. 8.

E. Impact of space charges

In the first part of this work, we have shown that under

the influence of space charges the decay time can increase, if

the time-resolved luminescence starts from the steady state.

For pulsed excitation experimentally the opposite is

observed.6,7 Therefore, we simulate the excitation of a

defectless homojunction by one short laser pulse. The system

n-Cu(In,Ga)Se2/p-Cu(In,Ga)Se2 may serve as a working

example. The luminescence transients are shown in Figure 9.

1. High injection levels

If the excitation is turned off, there are charge carriers in

the space charge region as well as in the quasi-neutral region.

If the injection level is high (see label (1) in Fig. 9), the car-

rier density in the space charge region is large enough to

screen the electric field of the junction. In consequence, there

are no drift-effects. Hence, the luminescence decay is equal

for the homojunction as well as for the sole semiconductor

layer and shows diffusion and bulk-recombination effects.

If the injection level decreases, small differences

between the two cases become apparent. Now, the electric

field cannot be fully screened. Hence, a small part of elec-

tron-hole-pairs is separated within the first 100 ps (label (2)),

which leads to a reduction of n(t, z) � p(t, z) and therefore to

a smaller luminescence intensity. After the separation, the

recombination of the minority carriers generated in the

quasi-neutral regions becomes apparent (label (3)) and the

decay time equals the bulk-lifetime.

2. Low injection levels

If the excitation becomes further decreased drift effects

increase. Now, the decay due to charge separation is very

fast (label (2)) and a large number of charge carriers accu-

mulate at the edges of the space charge region, where they

are majority carriers (see Fig. 10). Afterwards again the

charge carriers in the quasi-neutral region recombine (label

(3)). After most of the minority carriers in the quasi-neutral

regions are recombined, the majority carriers at the edges of

the space charge region remain. They cannot recombine,

FIG. 8. TRL-transients of a semiconductor layer with a bulk lifetime of 200 ns and two carrier mobilities l¼ 10 cm2 V�1 s�1 and l¼ 100 cm2 V�1s�1 for dif-

ferent front and back surface recombination velocities.

FIG. 9. TRL-transients of a semiconductor-homojunction with Na¼Ne¼ 1016 cm�3, de¼ 0.5 lm, and da¼ 2.5 lm (lines) compared with that of a sole semi-

conductor layer with Na¼ 1016 cm�3 and da¼ 3 lm (dots).
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since the density of minorities as recombination partners is

very low, and they cannot flow out, since the homojunction

is under open circuit. Therefore, a large open circuit voltage

builds up. Now, the charge storage effect that we have al-

ready explained in the first part of this work applies. The

recombination is limited by a small diffusion current of the

majority carriers across the space charge region and a very

large decay time can be detected (label (4)). Since in real

experiments, a luminescence’s decay of only two or three

orders of magnitude is measured, generally, only drift and

diffusion effects as well as the bulk recombination can be

measured, but no charge storage effects.

3. Estimation of drift-time

By supposing the Schottky-approximation to be valid,

the luminescence intensity that originates from the space

charge region in the p-doped semiconductor can be esti-

mated. The calculations for a SCR in the n-doped semicon-

ductor are equal. Therefore, we make some assumptions

• The electric field in the SCR is unscreened and has an av-

erage field strength E.
• The photogenerated excess carrier densities have exponen-

tial shape and move in opposite directions with the veloc-

ities vn and vp, respectively (see Figure 11).

• Charge separation is fast. Hence, no recombination has to

be considered.
• No charge carriers from the quasi-neutral region are col-

lected by the space charge region.

The two exponential curves in Figure 11 are shifted

against each other with the velocities vn and vp leading to the

following time dependence:

FIG. 10. Excess electron (solid) and hole (dashed) distribution in a semiconductor-homojunction for an injection level nc¼ 1011 cm�2 for different times after

excitation. Edges of SCR (dotted) are calculated according to Schottky approximation.

FIG. 11. Photogenerated density of electrons (solid) and holes (dashed) in

the space charge region. For better visibility, the two curves are shifted. In

reality, the densities are equal.
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Dnðt; zÞ ¼ Dnð0; zþ vn tÞ
Dpðt; zÞ ¼ Dpð0; z� vp tÞ:

(36)

Inserting Eq. (36) into Rradðt; zÞ ¼ B ðn0ðzÞDpðt; zÞ þ
p0ðzÞDnðt; zÞ þ Dnðt; zÞDpðt; zÞÞ and integrating over the

SCR one gets

IðtÞ / sinhða ðwa � ðvn þ vpÞ tÞÞ; (37)

where wa is the width of the space charge region in the p-

semiconductor. With Eq. (37) one can estimate the time sCS

for charge separation. It is

I sCSð Þ ¼ 0 () sCS ¼
wa

vn þ vp
: (38)

Providing a symmetric doping of NA¼ND¼ 1016 cm�3 and

mobilities ln¼ lp¼ 20 cm2 V�1s�1 it is E� 1.7� 104 V

cm�1, vn¼ vp� 3.4� 105 cm s�1, and wa� 250� 10�7 cm.

Evaluation of Eq. (38) reveals sCS� 40 ps. This means after

40 ps electrons and holes are separated and the space charge

region is depleted from excess carriers. In reality, the time

for charge separation will be longer than 40 ps since the

space charge becomes screened leading to a diminished

charge separation. In addition, the SCR collects charge car-

riers from the QNR. Thus, I(t)¼ 0 will not be fulfilled for a

junction that is not in equilibrium.

At last, we investigate the dependence of (38) on the

carrier mobility and electric field strength. From Schottky-

approximation follows wa / E
1
2 and v / lE. Inserting this

into (38) reveals

sCS /
1

ln þ lp

1

E
1
2

: (39)

V. INFLUENCE OF MULTI-PULSE EXCITATION

Up to here, we have always considered the case of

single-pulse excitation. At last, we focus on the impact of a

multi-pulse excitation, meaning the photon current density in

Eq. (1) is modified in the following way:

jc tð Þ ¼ ncffiffiffi
p
p

sp

X
k

e
� t�t0�k Tð Þ2

s2
p ; (40)

where f¼T�1 is the frequency of the excitation. We simulated

a multi-pulse excitation of a np-homojunction for varying ex-

citation frequency, carrier lifetime and injection level, and

concentrate on the output voltage which is shown in Figure

12. For each pulse charge carriers in the space charge region

are generated and accumulate at the edges of the SCR as

explained in Subsec. IV E. The charge carriers are stored for a

long time. This is why the voltage is not complete decayed

until the next pulse generates more charge carriers. Therefore,

a bias photovoltage is applied even for pulsed luminescence

experiments leading to a dark diffusion current. Due to this

current, there is a bias luminescence shifting the background

to higher TRL intensities. This hinders the determination of a

decay time due to recombination. Hence, a low injection level

is advisable, since this leads to a small bias photovoltage and

hence to a low background luminescence intensity.

VI. CONCLUSION AND OUTLOOK

In the presented work, we have done one-dimensional

simulations of time-resolved photoluminescence on semi-

conductors. First, we have shown that an initial state in a

semiconductor layer can be defined by the number of pho-

tons per pulse per area and by the absorption coefficient.

This initial state is largely independent of sample properties

or the experimental setup and is hence suitable for compari-

son of different luminescence experiments.

In the next part, we have demonstrated that axial diffu-

sion effects and bimolecular recombination have to be con-

sidered for high injection levels. Both lead to a decrease in

the luminescence decay and can be found for short observa-

tion times. For longer times monomolecular recombination

can be measured. This is a superposition of surface and bulk

recombination and can be described by an effective bulk-

lifetime. Therefore, recombination at grain boundaries can

also be considered by one-dimensional simulations. By an

excitation dependent measurement the minority and the ma-

jority carrier lifetime can be determined.

Moreover, we deduced an analytical model, which pro-

vides a good approximation for axial diffusion, bimolecular

recombination, defect recombination, and surface recombi-

nation. This model can be used to fit experimental data and

to deduce carrier lifetime and mobility.

In the last part, we analyzed the impact of space charges

on the transient luminescence. We could reproduce the ex-

perimental finding, for which low injection levels the transi-

ent’s decay time can increase and decrease due to space

charge. This can be explained with different frequencies of a

multi-pulse excitation. In the limit of single-pulse excitation,

charge separation effects lead to a decrease of the decay

time. For high frequencies, a bias voltage drops across the

junction that causes a lowered space charge and therefore

reduced charge separation. In this case, the diffusion of car-

riers over the barrier of the junction limits the recombination

and leads to an increased decay time.

FIG. 12. Formation of a large photovoltage due to multi-pulse excitation

with varying excitation frequency, carrier lifetime, and injection level.
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CHAPTER 5. RESULTS OF THE TRL SIMULATIONS AND EXPERIMENTS

5.2 Voltage dependent TRL for solar cell characterization

At the end of the preceding section it has been pointed out that the properties of a solar

cell’s absorber may change during the subsequent processing. In that case, an absorber

characterization is advisable at the end of the cell preparation. However, the results in the

previous section show that the luminescence decay may then be determined by recombina-

tion and charge carrier storage, and in particular by charge carrier drift. For this reason,

the TRL of the solar cell will reveal the recombination in the absorber only in particular

cases. Besides, the impact of drift on the TRL can hardly be estimated, because the

electric field is determined by the stored charge carriers whose number in turn depends

on the mobilities, the recombination lifetimes, the injection level, and the frequency of

excitation. It is worth mentioning, that the latter is revealed by an increase of the pho-

tovoltage with increasing frequency as demonstrated in [Mai5], which is in accordance

with the simulations presented in [Mai2]. This is also unveiled in the TRL transients

by a slower decay at higher frequencies due to the increased amount of charge carriers

screening the electric field [11, 22]. Altogether this means that the state of the solar cell

is almost undetermined, which makes the analysis of TRL decays nearly impossible.

For this reason, the demand raised for the avoidance of charge storage in solar cells by the

drain of the charge carriers. In [Mai5, Mai6] it is shown that this is achieved by electrical

contacting of the cell. The electric field then is not screened and thus well-defined. With

that, the TRL is also unaffected by charge storage. In particular, it is not influenced by

mediated effects such as the dependence on the excitation frequency [Mai5]. The electrical

contacting additionally allows a regulation of the electric field in order to study the drift

of the charge carriers. This was already shown rudimentarily by Shirakata et. al. [9],

who compared the TRL of a solar cell under short-circuit and open-circuit conditions. In

this work, the voltage has been increased more systematically. The measurements reveal

a bi-exponential decay of the luminescence. The fast initial decay depends on the voltage,

whereas the second slow decay is nearly independent from the voltage. This is illustrated

by figure 5.3. At the very beginning, the charge carrier densities are high making the

semiconductor intrinsic. Therefore, the space charge region is expected to vanish. How-

ever, the potential drop across the solar cell must persist due to the fixed bias voltage

(see figure 5.3 (a)). Because of the resulting electric field, the first decay time is mostly

influenced by the drift and the drain of the charge carriers. If the voltage is increased, the

potential drop will be reduced leading to a smaller electric field (see figure 5.3 (b)). This

weakens the drift and drain of the charge carriers and the decay time increases. By time,

the density of charge carriers decreases and the p-doped state of the absorber is reestab-

lished. Then, the electric field is again confined to the equilibrium space charge region (see

Fig. 5.3 (c)) and the luminescence is dominated by recombination in the quasi-neutral

region. Since there is no electric field, the time constant of this second decay reveals the
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Figure 5.3: (a) Band energies (solid lines) and quasi-Fermi levels (dashed lines) in a solar cell under short-circuit
conditions (a) 2 ns after excitation and (c) 50 ns after excitation. The subfigure (b) shows the band
energies in the absorber 2 ns after the excitation for an applied voltage V = 0 (solid lines) and V > 0
(dashed lines).

recombination in the absorber, which is independent from the applied voltage.

In [Mai5, Mai6], an analytical expression for the voltage dependence of the initial decay

time has been calculated presuming a homogeneous electric field. By fitting of this func-

tion to experimental data, recombination lifetimes and mobilities have been determined.

The values of both quantities are not ambiguos, which has been discussed in [Mai6]. It

is remarkable that a simulation of the TRL with these values yields decay curves that

approximate the experimental TRL very well. For these reasons, the TRL under bias

voltages comes out as a powerful method for the characterization of absorbers in solar

cells. Furthermore, the non-correlation of the decay time and the solar cell parameters

can be (at least partly) circumvented. Therefore, from the list at the beginning of this

chapter only two problems remain; namely the origin of multi-exponential TRL decays

and the reason for decay times in the range of the radiative limit. Both will be discussed

in the next section.
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Time-resolved photoluminescence (TRPL) is a promising method for the investigation of charge carrier
dynamics and recombination kinetics in semiconductor devices. To characterize Cu(In,Ga)Se2 (CIGSe) solar
cells, we measured TRPL for different applied external forward voltages. We show that the TRPL decay time
increases with increasing voltage in case of a high excitation intensity. This result is valid for a wide range
of excitation frequencies of the laser. By simulation of themeasured transients we determined semiconductor
parameters which allow fitting the experimental photoluminescence transients for different voltages. The
deduced quantities are the lifetime for deep defect assisted Schockley–Read–Hall recombination, doping den-
sity and charge carrier mobilities of the solar cell's absorber layer with values of 10 ns, 2 × 1015 cm−3 and
1 cm2 V−1 s−1, respectively, for a standard CIGSe solar cell. We further studied the appearance of a
photovoltage in TRPL experiments with single-photon-counting methods. By experimental results we show
a dependence of the open circuit voltage on the laser repetition rate, which influences the TRPL decay.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Cu(In,Ga)Se2 (CIGSe) has become a competitive absorber materi-
al for thin film solar cells. Though such CIGSe solar cells already
exhibit efficiencies above 20% [1], important material parameters
such as theminority carrier lifetime and the charge carrier mobilities
are not accurately known. Hall measurements [2] on p-type CIGSe,
for instance, bring out hole mobilities of 1 − 20 cm2 V−1 s−1

whereas time-of-flight measurements [3] lead to hole mobilities of
0.02 − 0.7 cm2 V−1 s−1. The electron mobility, on the other hand,
was determined to be 75 − 230 cm2 V−1 s−1 by time-resolved
photoluminescence [2] and 0.02 − 0.05 cm2 V−1 s−1 by time-of-
flight measurements [3].

Time-resolved photoluminescence (TRPL) under forward bias volt-
ages may be amethod for simultaneous determination of charge carrier
mobilities and the minority carrier lifetime of a solar cell's absorber. To
this end, we first study TRPL of an industrially prepared solar cell under
open circuit conditions and under external bias voltages for different ex-
citation frequencies. Then, we show by simulation that the electric field
in the solar cell's space charge region can be varied by orders of magni-
tude compared to equilibrium by the application of a forward bias volt-
age and high excitation intensities meaning the photogenerated carrier
density is in the range or above the absorber doping density. Therefore,
the influence of charge carrier drift on the photoluminescence is varied.

Finally, we give experimental results on TRPL for different bias voltages of
the industrial solar cell. By simulation and experimental results we deter-
mine themobilities for electrons andholes of the solar cell's absorber layer.

2. Experimental

For measurement of TRPL at room temperature we use the setup
shown schematically in Fig. 1. For excitation a pulsed diode laser
with an excitation wavelength of 638 nm, a pulse length of 88 ps
and a repetition frequency of 0.02 − 20 MHz is used. The maxi-
mum pulse energy is 12.5 pJ which corresponds to 4 × 107 photons
per pulse. The laser light is focused on the sample by a collecting
lens (L1) with a focus area of A = (6.0 ± 2.0) × 10−5 cm2. Hence,
the maximum incident photon density per pulse is nλ = (6.7 ±
2.3) × 1011 cm−2. By a second lens (L2) the luminescence photons
are collected and directed on a photomultiplier. To avoid detection
of laser light, a long-pass filter with a cutoff wavelength of 850 nm
in front of the detector was used. For time-correlated single photon
counting the signal of the detector is analyzed by a PCI-card, which
has a minimum channel width of 28 ps. However, the minimum
time resolution is limited by the instrument response function
and is about 700 ps for a chosen excitation frequency of 1 MHz.
This frequency provides a good signal-to-noise ratio as well as suf-
ficient long periods for a complete decay of luminescence for multi-
pulse excitation. Since only one sample is studied, the quantum
yield does not strongly change. Hence, a normalization of the
transient's maxima for better comparison of the TRPL decay is
justified.

Thin Solid Films 582 (2015) 379–382

⁎ Corresponding author. Photovoltaics Group, Institut of Physics, Martin-Luther-
University Halle-Wittenberg, Von-Danckelmann-Platz 3, 06120 Halle, Germany.

E-mail address: matthias.maiberg@physik.uni-halle.de (M. Maiberg).

http://dx.doi.org/10.1016/j.tsf.2014.09.022
0040-6090/© 2014 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Thin Solid Films

j ourna l homepage: www.e lsev ie r .com/ locate / ts f



2.1. Sample preparation

Westudy TRPL on an industrially produced absorber layer.Molybde-
num as the back contact was sputtered on soda-lime glass. Thereon, the
CIGSe absorber was deposited by a two-stage co-evaporation process
with a final absorber thickness of 2.0 μm. CdS as a 50 nm thick buffer
layer was deposited on the absorber layer by chemical bath deposition.
The window layer of 100 nm thick intrinsic ZnO and 300 nm thick
aluminum-doped ZnO was sputtered on the CdS layer.

2.2. Model for simulation

The simulation of voltage-dependent TRPL was done with Synopsys
TCAD®. The simulations were one-dimensional. With the experimental
focus area given above, lateral effects can be neglected. Since recombi-
nation velocities at the absorber/buffer and the absorber/Molybdenum
interface are not conclusively known [4–6] interface recombination is
considered by an effective bulk lifetime τSRH for deep defect assisted
Shockley–Read–Hall (SRH) recombination. Since further experiments
have revealed a Gallium gradient, we considered a V-shaped band gap
gradient [7] with parameters as given in Table 1. To fit experimental
photoluminescence the simulated data are convoluted with a Gauss-
ian-shaped instrument response function. The most important simula-
tion parameters are given in Table 1. The simulated incident photon
density is about a third of the experimental photon density. In experi-
ment, the intensity distribution has a Gaussian shape, whereas the in-
tensity is homogeneous in simulation. Hence, there is no direct
relation between experimental and theoretical photon densities. The
excitation parameters lead to amaximumgenerated excess carrier den-
sity of Δnmax = Δpmax = 2 × 1016 cm−3. Therefore, flat defects with
densities up to 1015 cm−3 are saturated and are not considered in the

simulations. Additionally, it will be shown by experimental results
that the luminescence's decay for forward bias voltages is not influ-
enced by the frequency of excitation. In this case it is sufficient to simu-
late an excitation by only one laser pulse.

3. Results and discussion

3.1. Solar cells under open circuit

First, we consider a solar cell under open circuit conditions that is ex-
cited by one laser pulse. The photogenerated electrons and holes are
separated by the electric field and remain at the edges of the space
charge region. The charge carriers cannot recombine radiatively, since
they are locally separated. This leads to a decrease of the
photoluminescence intensity. The time for charge separation depends
on the drift velocity, thus depending on the charge carrier mobility
and the electric field strength. For a high electric field the drift velocity
is large leading to a small charge separation time and hence to a fast
decay of the luminescence intensity [8,9]. With each pulse, more charge
carriers are stored at the edges of the space charge region. Therefore, a
photovoltage builds up and the electric field becomes screened, causing
a diminished charge separation time and an inhibited luminescence
decay.

The number of charge carriers at the edges of the space charge re-
gion depends on excitation parameters, e.g. excitation intensity and
repetition frequency, and also on the minority carrier lifetime [9].
Thus, the photovoltage and the TRPL decay dependon the repetition fre-
quency as shown for the solar cell in Fig. 2.

Since the open circuit voltage depends on excitation parameters, the
electrical boundary conditions are not accurately defined. Therefore,

Fig. 1. Scheme of the setup for measurement of voltage-dependent transient photoluminescence.

Table 1
Main parameters used for simulation of TRPL.

Simulation parameter Value

Window doping ND,w 1018 cm−3

Buffer doping ND,b 4 × 1016 cm−3

Absorber doping NA,a 2 × 1015 cm−3

Window thickness dw 300 nm
Buffer thickness db 50 nm
Absorber thickness d 2 μm
Incident photon density nγ 1.95 × 1011 cm−2

Incident photon wavelength λ 638 nm
Absorber's absorption coefficient α 8 μm−1

Absorber charge carrier lifetime τSRH 8 ns
Absorber charge carrier mobility μn, μp 0.9 cm2 V−1 s−1

Recombination at all interfaces S 0
Absorber minimum bandgap Eg 1.18 eV
Front band gap gradient ΔEf 20 MeV
Back band gap gradient ΔEb 40 MeV
Notch distance from buffer dn 50 nm
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Fig. 2. TRPL transients of a solar cell for a fixed pulse energy and repetition frequencies of
105, 106 and 107 s−1. The inset shows the photovoltage for different excitation
frequencies.
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TRPL experimentswithfixed forward bias voltages are considered in the
following.

3.2. Solar cells under short circuit

Now, we consider a solar cell under short circuit conditions. Again,
for each laser pulse the generated charge carriers are separated by the
electric field. Since we are in the short circuit case, the charge carriers
do not remain at the edges of the space charge region, but flow out of
the cell. Hence, the electric field of the space charge region is un-
screened and no photovoltage is build up. Therefore, the TRPL decay is
independent of the number of laser pulse excitations and hence inde-
pendent of the excitation frequency. This can be seen in Fig. 3. The inde-
pendence of the repetition frequency and clearly-defined electrical
boundary conditions are the advantages of TRPL under forward bias
voltage, since it makes time-resolved photoluminescence experiments
with single photon counting methods comparable.

3.3. Solar cells under forward bias voltages

Finally, we consider a solar cell under forward bias conditions that
is excited by a laser pulse of high photon flux densities. Due to the
high injection level the density of charge carriers generated at the
front side of the absorber layer is in the range of the absorber doping
density. Therefore, the space charge region becomes partly screened.
Furthermore, the excess hole density at the back contact is higher
than the excess electron density due to drift transport. Thus, the
space charge region in the solar cell's absorber layer ranges up to
the back contact. This is shown in Fig. 4 as a result of simulation. For
short circuit conditions the drop of the electrical potential equals the
built-in voltage Vbi. Since the space charge region ranges over the
whole absorber layer the electric field is reduced compared to the
equilibrium state by at least one order of magnitude with E zð Þ≈Vbi

d ,
where d is the absorber thickness. If the applied voltage V increases,
the potential drop decreases leading to a further reduced electric
field E zð Þ≈Vbi−V

d . Due to the electric field in the absorber the electrons
drift toward the window layer. Contrary the holes drift to the rear
contact. The separation of electrons and holes causes a luminescence
decay. If the bias voltage is small (high electric field) the charge sepa-
ration is very fast inducing a fast luminescence decay. For an increased
forward bias voltage the electric field is decreased leading to an
inhibited charge separation and hence to an increased luminescence
decay time. Fig. 5 shows the TRPL transients at room temperature
under increasing bias voltages. In agreement with expectation, the
decay time becomes larger for increasing voltage bias. Using the

parameters listed in Table 1, the simulation fits the experimental
data for μn = μp = 0.9 cm2 V−1 s−1 and τb = 8 ns. Deviations in
the very initial decay may be caused by different instrument response
functions in experiment and simulation besides the above-mentioned
inaccurate photon density.

In order to describe the voltage dependence of the luminescence
decay time τeff we have to solve the continuity equations of electrons
and holes including drift, diffusion, mono- and bimolecular recombina-
tion. In the following this is done roughly for the electron continuity
equation without deeper mathematical analysis. As shown in Ref. [9]
the carrier density can be well-described by solving the continuity
equation without any recombination and using the result as an initial
value for the recombination equation. Therefore, we first solve the
drift-diffusion-equation

∂
∂t n−

∂
∂z μn n E þ Dn

∂
∂z n

� �
¼ 0: ð1Þ

Here, Dn denotes the diffusion coefficient of electrons. The bias
voltage is assumed to be small (large electric fields). Then, the
dark current can be neglected. Furthermore, the electric field
strength E as well as the absorber material properties is quite homo-
geneous according to the considerations above. Hence, it follows
from Eq. (1)

∂
∂t n−μn E

∂
∂z n−Dn

∂2

∂z2
n ¼ 0: ð2Þ
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A separation ansatz for Eq. (2) leads to the following representation
of the solution:

n t; zð Þ ¼ e−
μn E
2 Dn

z X
k

Ak cos
eCk z
2 Dn

 !
þ Bk sin

eCk z
2 Dn

 ! !
e−Ck t

eCk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 Dn Ck−E2 μ2

n

q
≠ 0:

ð3Þ

The constants Ak, Bk and Ck have to be determined from initial values
and boundary conditions.We choose the followingboundary conditions
for the electron current density:

jnjz¼d≈−μn E njz¼d ¼ 0 ð4Þ

jnjz¼0 ¼ vth;n njz¼0: ð5Þ

Eq. (5)means, that the electron supply from thewindow into the ab-
sorber is limited by the thermal velocity of electrons vth,n. Conditions
(Eq. (4)) mean, drift transport dominates the electron current due to a
high electric field. The current in turn vanishes because of a passivated
back contact. Combination of Eqs. (3), (4) and (5) leads to the following
equation for the decay constants 0beC1beC2b…

tan
d eCk

2 Dn

 !
¼

eCk

2 E μn−vth;n
� � : ð6Þ

The dominating decay of the electron density is determined by the
smallest decay constant eC1. By the approximation tan x≈ 8

π2 x π−x
π−2 x ∀x∈

0; π½ � (compare Ref. [9]) we find for large electric fields

eC1≈
2 Dn π

d

⇒C1≈
Dn π2

d2
þ μ2

n

4 Dn
E2≈ μ2

n

4 Dn
E2:

ð7Þ

C1≈ μ2
n

4 Dn
E2 ¼: 1

τs; n
describes the dominating decay of the electron

density due to drift and diffusion. Inserting Eq. (3) into the
recombination equation, the effective electron decay time τeff ,n
becomes

1
τeff ;n

¼ 1
τb;n

þ 1
τs;n

¼ 1
τb;n

þ μ2
n

4 Dn
E2 ð8Þ

with the electron bulk lifetime τb,n. In principle, the transport is
the same for electrons and holes. Therefore we find for holes

1
τeff ;p

¼ 1
τb;p

þ 1
τs;p

¼ 1
τb;p

þ μ2
p

4 Dp
E2: ð9Þ

The decay time of the electron and the hole density can now be used
to estimate the decay of the luminescence intensity. Since we have bi-
molecular recombination due to high injection levels the rate of radia-
tive recombination Rrad is

Rrad∼n p∼e−
t

τeff ;n e−
t

τeff ;n

⇒
1
τeff

¼ 1
τeff ;n

þ 1
τeff ;p

:
ð10Þ

Rewriting Eq. (10) by E≈Vbi−V
d and the Einstein relation D = VT μ

(VT ≈ 25 mV for room temperature) yields

1
τeff

¼ 1
τb;n

þ 1
τb;p

þ μn þ μp

4 VT d2
Vbi−Vð Þ2: ð11Þ

Therefore, measuring the effective decay time τeff for different
applied voltages V and fitting the data by the expression in Eq. (11)
allow the determination of the bulk lifetime and the charge carrier
mobility. The fit of the data which is shown in the inset of Fig. 5
leads to a bulk lifetime τb,n + τb,p = 32 ns and a charge carrier mo-
bility μn b μn + μp = 3.2 cm2 V−1 s−1. For symmetric carrier cap-
ture by deep defects it is τb,n = τb,p = 16 ns. This is in good
agreement with the simulation.

Both, simulation and analytics, assume linear-shaped energy bands
directly after excitation. In the presence of potential fluctuations this is
still valid, since local space charges are screened for high excitation
intensities.

4. Conclusion

In summary, we have presented photoluminescence decay of a solar
cell under open circuit conditions and for different forward bias volt-
ages. For a cell under open circuit a dependence of the photovoltage
on the excitation frequency exists, whichmakes comparison and analy-
sis of different TRPL experiments difficult. For a cell under forward bias
voltage the TRPL decay does not depend on the excitation repetition fre-
quency. Furthermore, we found by simulation that the electric field in
the solar cell's space charge region is reduced due to high excitation in-
tensities by at least one order of magnitude. Therefore, charge separa-
tion can be observed with TRPL. By comparison with simulated TRPL
data we found for the carrier mobilities for electrons and holes μn =
μp ≈ 0.9 cm2 V−1 s−1 and a bulk lifetime of τb ≈ 20 ns. However,
by analytics we found μn + μp b 3.2 cm2 V−1 s−1 and τb ≈ 10 ns.
Both, simulations and analytics are in good agreement. Further simula-
tions revealed that these values are unambiguous.
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Characterization of Cu(In,Ga)Se2-solar cells by voltage dependent
time-resolved photoluminescence
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Time-resolved photoluminescence (TRPL) can give information on charge carrier dynamics and recombination
kinetics in semiconductor devices. To characterize Cu(In,Ga)Se2 (CIGSe) solar cells, we measured TRPL for
different applied external forward voltages. We show that the TRPL decay time increases with increasing
voltage in case of a high excitation intensity. By simulation of the measured transients we determined a set
of parameters which allow to fit the experimental photoluminescence transients for different voltages. These
parameters are the lifetime for deep defect assisted Schockley-Read-Hall recombination, the doping density
and the charge carrier mobilities (electrons and holes) of the solar cell’s absorber layer with values of 20 ns,
3× 1015 cm−3 and 2 cm2 V−1 s−1, respectively, for a standard CIGSe solar cell. By further simulations we
show that the determined lifetime and mobility values are unambiguous.

Keywords: transient, photoluminescence, solar cell, voltage, Cu(In,Ga)Se2

Cu(In,Ga)Se2 (CIGSe) has become a competitive ab-
sorber material for thin film solar cells. Though such
CIGSe solar cells already exhibit efficiencies up to
20.8%1, important material parameters such as the mi-
nority carrier lifetime and the charge carrier mobilities
are not accurately known. Hall measurements2 on p-
type CIGSe, for instance, bring out hole mobilities of
1−20 cm2 V−1s−1 whereas time-of-flight measurements3

lead to hole mobilities of 0.02 − 0.7 cm2 V−1s−1. The
electron mobility, on the other hand, was deter-
mined to be 75 − 230 cm2 V−1s−1 by time-resolved
photoluminescence2 and 0.02−0.05 cm2 V−1s−1 by time-
of-flight measurements.3

Time resolved photoluminescence (TRPL) may be a
method that can be used for simultaneous determina-
tion of charge carrier mobilities and the minority carrier
lifetime of the absorber. By application of an external
forward voltage and by high excitation intensities the
electric field in the solar cell’s space charge region can
be varied, thus, varying the influence of charge carrier
drift on the photoluminescence. We give experimental
results on TRPL for different bias voltages of the solar
cell. By simulation, mathematical analysis and experi-
mental results we determine the mobilities for electrons
and holes of the solar cell’s absorber layer. Finally, we
show by simulations that the determination of charge car-
rier mobility and charge carrier lifetime is unambiguous if
the charge carrier mobility is between 0.01 cm2 V−1 s−1

and 20 cm2 V−1 s−1 and if the minority carrier lifetime
is greater than 10 ns.
For measurement of TRPL at room temperature we use
the setup shown schematically in figure 1. For excita-
tion a pulsed diode laser with an excitation wavelength of
638 nm, a pulse length of 88 ps and a repetition frequency
of 1 MHz is used. The maximum pulse energy is 12.5 pJ.
The laser light is focused on the sample by a collecting
lens (L1) with a focus area of A = (6.0± 2.0)×10−5 cm2.
Hence, the maximum incident photon density per pulse

FIG. 1. Scheme of the setup for measurement of voltage de-
pendent transient photoluminescence.

is nλ = (6.7± 2.3) × 1011 cm−2. By a second lens (L2)
the luminescence photons are collected and focused on
a photomulitplier. To avoid detection of laser light, a
long-pass filter with a cutoff wavelength of 850 nm in
front of the detector was used. For time-correlated single
photon counting the signal of the detector is analyzed
by a PCI-card, which has a minimum channel width of
28 ps. However, the minimum time resolution is limited
by the instrument response function and is about 700 ps.
For better comparison of the TRPL decay the transient’s
maxima are normalized.
The absorber layer of the solar cell was prepared by
a three-stage co-evaporation process on a Molybdenum
back contact sputtered on soda-lime glass. The final

[Ga]
[Ga]+[In] -ratio was 0.3, the final [Cu]

[Ga]+[In] -ratio was 0.91

and the final absorber thickness was 2.8 µm. CdS as a
50 nm thick buffer layer was deposited on the absorber
layer by chemical bath deposition. The window layer of
100 nm thick intrinsic ZnO and 300 nm thick aluminium
doped ZnO was sputtered on the CdS layer. Finally, an
Ni/Al-grid was deposited by electron beam evaporation.
The simulation of voltage dependent TRPL was done
with Synopsys TCAD R©. The simulations were
onedimensional. With the experimental focus area
above lateral effects can be neglected. Since re-
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simulation parameter value
window doping ND,w 1018 cm−3

buffer doping ND,b 4 × 1016 cm−3

absorber doping NA,a 3 × 1015 cm−3

window thickness dw 300 nm
buffer thickness db 50 nm
absorber thickness d 2.8 µm
incident photon density nγ 2.77 × 1011 cm−2

incident photon wavelength λ 638 nm
absorber’s absorption coefficient α 8 µm−1

absorber charge carrier lifetime τSRH 21 ns
absorber charge carrier mobility µn, µp 1.95 cm2 V−1 s−1

recombination at all interfaces S 0
absorber minimum bandgap Eg 1.15 eV
front band gap gradient ∆E 60 meV
back band gap gradient ∆E 120 meV
notch distance from buffer dn 650 nm

TABLE I. Main parameters used for simulation of TRPL.

combination velocities at the absorber/buffer and the
absorber/Molybdenum interface are not conclusively
known4–6 interface recombination is turned off, but is
considered by an effective bulk lifetime τSRH for deep
defect assisted SRH-recombination. Since further exper-
iments on absober layers have revealed a Gallium gradi-
ent, we considered a V-shaped band gap gradient with
parameters as given in table I.7 To fit experimental pho-
toluminescence the simulated data are convoluted with
a Gaussian shaped instrument response function. The
most important simulation parameters are given in ta-
ble I. The incident photon density in the simulations
is about a half of the experimental photon density. In
experiment, the intensity distribution has a Gaussian
shape, whereas the intensity is homogeneous in simula-
tion. Hence, there is no direct relation between exper-
imental and theoretical photon density. The excitation
parameters lead to a maximum generated excess carrier
density of ∆nmax = ∆pmax = 2× 1016 cm−3. Therefore,
flat defects with densities up to 1015 cm−3 are saturated
and are not considered in the simulations. Additionally,
further experiments and simulations have shown, that the
luminescence’s decay is not influenced by the frequency
of excitation.8 Hence, it is sufficient to simulate an exci-
tation by only one laser pulse.
First, we consider a solar cell under short circuit con-
ditions that is excited by a laser pulse of high photon
flux densities. Due to the high injection level the den-
sity of charge carriers generated at the front side of the
absorber layer is in the range of the absorber doping den-
sity. Therefore, the space charge region becomes partly
screened. Furthermore, the excess hole density at the
back contact is higher than the excess electron density
due to drift transport. Thus, the space charge region
in the solar cell’s absorber layer ranges up to the back
contact. This is shown in figure 2. In the short cir-
cuit case the drop of the electrical potential equals the
built-in voltage Vbi. Since the space charge region ranges
over the whole absorber layer the electric field is reduced
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FIG. 2. Conduction and valence band in the absorber layer
about 5 ns after excitation for short circuit conditions (solid)
and for an applied voltage of 0.5 V (dashed). Vbi denotes the
built-in voltage.

compared to the equilibrium state by at least one order
of magnitude with E(z) ≈ Vbi

d , where d is the absorber
thickness. If the applied voltage V increases, the po-
tential drop decreases leading to a further reduced elec-
tric field E(z) ≈ Vbi−V

d . Due to the electric field in
the absorber the holes drift to the rear contact and con-
tribute to the photocurrent. Accordingly, the electrons
are collected by the emitter. The separation of electrons
and holes reduces the number of recombination partners.
This causes a luminescence decay. If the bias voltage
is small (high electric field) the charge separation is very
fast inducing a fast luminescence decay. For an increased
forward bias voltage the electric field is decreased lead-
ing to an inhibited charge separation and hence to an
increased luminescence decay time. Figure 3 shows ex-
perimental TRPL transients at room temperature under
increasing bias voltages. In agreement with expectation,
the decay time becomes larger for increasing voltage bias.
Using the parameters listed in table I, the model fits the
experimental data for µn = µp = 1.95 cm2 V−1 s−1 and
τb = 21 ns. In order to describe the voltage dependence
of the luminescence decay time τeff we have to solve
the continuity equations of electrons and holes including
drift, diffusion, mono- and bimolecular recombination. In
the following this is roughly done for the electron conti-
nuity equation without any deep mathematical analysis.
As shown in Ref.9 the carrier density can be well de-
scribed by solving the continuity equation without any
recombination and using the result as an initial value for
the recombination equation. Therefore, we first solve the
drift-diffusion-equation

∂

∂t
n− ∂

∂z

(
µn nE +Dn

∂

∂z
n

)
= 0. (1)

Here, Dn denotes the diffusion coefficient of electrons.
The bias voltage is assumed to be small (large electric
fields). Then, the dark current can be neglected. Fur-
thermore, the electric field strength E as well as the ab-
sorber material properties are quite homogeneous accord-
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FIG. 3. Experimental and simulated TRPL transients for
external voltages of 0, 0.1, 0.2, 0.3, 0.4, 0.5 V.

ing to the considerations above. Hence, it follows from
equation (1)

∂

∂t
n− µnE

∂

∂z
n−Dn

∂2

∂z2
n = 0. (2)

A separation ansatz for equation (2) leads to the follow-
ing representation of the solution:

n(t, z) = e−
µn E
2Dn

z
∑

k

(
Ak cos

(
C̃k z

2Dn

)
+Bk sin

(
C̃k z

2Dn

))
e−Ck t

C̃k =
√

4Dn Ck − E2 µ2
n 6= 0. (3)

The constants Ak, Bk and Ck have to be determined from
initial values and boundary conditions. We choose the
following boundary conditions for the electron current
density:

jn|z=d ≈ −µnE n|z=d = 0 (4)

jn|z=0 = vth,n n|z=0 . (5)

Equation (5) means, that the electron supply from the
window into the absorber is limited by the thermal veloc-
ity of electrons vth,n. Conditions (4) means, drift trans-
port dominates the electron current due to a high electric
field. The current in turn vanishes because of a pas-
sivated back contact. Combination of (3), (4) and (5)
leads to the following equation for the decay constants

0 < C̃1 < C̃2 < . . .

tan

(
d C̃k
2Dn

)
=

C̃k
2 (E µn − vth,n)

. (6)

The dominating decay of the electron density is deter-

mined by the smallest decay constant C̃1. By the approx-
imation tanx ≈ 8

π2 x
π−x
π−2 x ∀x ∈ [0, π] (compare Ref.9)

we find for large electric fields

C̃1 ≈
2Dn π

d

⇒ C1 ≈
Dn π

2

d2
+

µ2
n

4Dn
E2 ≈ µ2

n

4Dn
E2. (7)

C1 ≈ µ2
n

4Dn
E2 =: 1

τs,n
describes the dominating decay of

the electron density due to drift and diffusion. Inserting
(3) into the recombination equation, the effective electron
decay time τeff,n becomes

1

τeff,n
=

1

τb,n
+

1

τs,n
=

1

τb,n
+

µ2
n

4Dn
E2 (8)

with the electron bulk lifetime τb,n. In principle, the
transport is the same for electrons and holes. Therefore
we find for holes

1

τeff,p
=

1

τb,p
+

1

τs,p
=

1

τb,p
+

µ2
p

4Dp
E2. (9)

The decay time of the electron and the hole density can
now be used to estimate the decay of the luminescence
intensity. Since we have bimolecular recombination due
to high injection levels the rate of radiative recombination
Rrad is

Rrad ∼ n p ∼ e
− t
τeff,n e

− t
τeff,n

⇒ 1

τeff
=

1

τeff,n
+

1

τeff,p
. (10)

Rewriting equation (10) by E ≈ Vbi−V
d and the Einstein

relation D = VT µ (VT ≈ 25 mV for room temperature)
yields

1

τeff
=

1

τb,n
+

1

τb,p
+
µn + µp
4VT d2

(Vbi − V )
2
. (11)

Therefore, measuring the effective decay time τeff for
different applied voltages V and fitting the data by the
expression in equation (11) allows the determination of
the bulk lifetime and the charge carrier mobility. The
fit of the data which is shown in the inset of figure 3
leads to a bulk lifetime τb,n + τb,p = 30 ns and a charge
carrier mobility µn < µn + µp = 1.55 cm2 V−1 s−1.
For symmetric carrier capture by deep defetcs it is
τb,n = τb,p = 15 ns. This is in good agreement with the
simulation.
Both, simulation and analytics, assume linear shaped
energy bands directly after excitation. In the presence of
potential fluctuations this is still valid, since local space
charges are screened for high excitation intensities.

Finally, we adress the unambiguousness of the de-
termined parameters. Charge carrier lifetime and charge
carrier mobility are determined by measuring the decay
time τ0mV for short circuit conditions and the decay
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FIG. 4. Decay times τ0mV for 0 V and τ500mV for 500 mV
for bulk lifetimes τb = 10, 30, 100 ns, charge carrier mobilites
µn = µp = 0.01 . . . 100 cm2 V−1 s−1 and absorber thickness
d = 2.8 µm.

time τ500mV for a voltage of 500 mV. Here, the de-
cay time τ is defined by IPL(t0 + τ) = IPL(t0)/e
and IPL(t0) = IPL,max. To study if the map
(τ0mV , τ500mV )→ (τb, µ) is unique, we calculated decay
times for τb = τSRH = 10, 30, 100 ns and equal mobili-
ties for electrons and holes µ = 0.01 . . . 100 cm2 V−1 s−1.
The results are shown in figure 4. For very small mo-
bilities (≈ 0.01 cm2 V−1 s−1) recombination of charge
carriers is much faster than drift transport. Thus, the
luminescence decay is independent of the carriers’ drift
leading to equal decay times τ0mV ≈ τ500mV . Already for
charge carrier mobilities larger than 0.02 cm2 V−1 s−1,
drift and recombination contribute equally to the decay
time. Small deviations in the bulk lifetime cause large
variations of τ500mV . Furthermore, the isolines for con-
stant bulk lifetime do not intersect. This means, charge
carrier mobility and bulk lifetime can be clearly deter-
mined and with high precision from (τ0mV , τ500mV ). If
the mobility is even higher (≈ 1 cm2 V−1 s−1) the drift
determines the luminescence decay and the mobility can
be well determined from τ0mV . However, the isolines
are close together. Thus, the charge carrier lifetime can
not be clearly ascertained. In this case, one can make
use of the luminescence transient’s shape to determine

the bulk lifetime with more accuracy. Finally, for high
charge carrier mobilities > 20 cm2 V−1 s−1 we are in the
limit of the time resolution and charge carrier lifetime
and charge carrier mobility can not be determined.
Further simulations revealed that the simulation do not
fit the experimental TRPL if the electron mobility is
smaller than 1 cm2 V−1s−1 or larger than 3 cm2 V−1 s−1.
Therefore, unequal carrier mobilities are excluded by
simulations.
For the experiment given in figure 3 we get τ0mV ≈ 1.8 ns
and τ500mV ≈ 5.5 ns and conclude µ = 1.95 cm2 V−1s−1

and τb = 21 ns. According to the considerations above,
the value of the charge carrier mobility is unique and of
high precision. However, the determined charge carrier
lifetime is subject to uncertainties.
In summary, we have presented photoluminescence
decay of a solar cell under different forward voltages.
By simulation we have shown that the electric fields are
reduced due to high excitation intensities by at least one
order of magnitude. Therefore, charge separation can
be observed with TRPL. By comparison with simulated
TRPL data we found a carrier mobility for electrons and
holes of µ ≈ 1 . . . 2 cm2 V−1 s−1 and a bulk lifetime of
τb ≈ 20− 30 ns. Further simulations revealed that these
values are unambiguous.
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CHAPTER 5. RESULTS OF THE TRL SIMULATIONS AND EXPERIMENTS

5.3 The impact of minority carrier trapping

So far, the impact of drift, diffusion, bulk recombination, and surface recombination on

the TRL decay have been investigated in general in [Mai1, Mai2]. It came out that

the effect of drift and diffusion of charge carriers on the TRL decay can be neglected

for low excitations of absorber layers. The luminescence decay time then equals the

effective recombination lifetime of the minority charge carriers and Eq. (5.1.1) holds.

Accordingly, a correlation between Voc and τdecay has been postulated and confirmed by

several experiments. Furthermore, it has been found that multi-exponential decay curves

occur only for high excitations or in the presence of space charges. For this reason, for

absorber layers always mono-exponential decay curves are expected with decay times in

the range of 10 ns (see footnote 1).

Although the above theoretical findings often have been confirmed by experiments, there

are observations which are not compatible with the understanding of TRL so far. The

still persisting discrepancies are:

• For absorbers often a bi-exponential luminescence decay is observed [2, 14, 61, 62].

• For absorbers often decay times beyond 100 ns occur [Mai7, 17, 19, 23].

• The decay time of the absorber does not correlate with the open-circuit voltage.

The reason for these discrepancies is twofold: Either the model is incomplete or funda-

mental assumptions are wrong. For instance, the assumption of zero space charges in

absorber layers is incorrect, since thin-film semiconductors often are compensated and

reveal electric fields due to inhomogeneities of the defect densities. These space charges

may explain the bi-exponential decay curves and the non-correlation of τdecay and Voc.

However, they may not explain decay curves with time constants above 100 ns.20

As another possibility, several authors propose to take minority carrier traps into con-

sideration [2, 19]. As p-type semiconductors are studied in this work, the considered

traps must be donor-like defects and close to the conduction band in accordance with the

findings in section 2.4.2.21 Therefore, at the time of generation the traps are unoccupied

as illustrated in the right figure 5.4 1○. Afterwards, the electrons start to recombine. Si-

multaneously, they are captured by the trap, which leads to the pronounced initial decay

of the luminescence with a decay time τdecay,1 (see 2○ in fig. 5.4). By time, the electron

density is reduced and the conduction band becomes almost empty. The radiative recom-

bination then is borne by electrons which are reemitted to the conduction band. This

process is thermally activated and may become very slow. Consequently, the luminescence

intensity is low and decays slowly with a decay time τdecay,2 as marked by 3○ in figure 5.4.

20This will be shown in the next section 5.4.
21Acceptor like traps are also allowed. In that case, the trap energy must be smaller than 50 meV to comply with

the trap condition (2.4.22). As shown below, such shallo defects would not affect the room-temperature TRL.
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Figure 5.4: left: Bi-exponential luminescence decay measured on a CZTSe absorber layer. With kind permission
of Stefan Hartnauer. right: 1○ Charge carriers are generated and the trap is empty of electrons. 2○
Electrons recombine and additionally they are captured by the trap leading to a pronounced decay.
3○ The conduction band is almost empty and the radiative recombination is limited by the electron

supply by emission of electrons from the trap. This can become very slow.

In [Mai3], analytical expressions for the two decay times have been obtained by solution

of the rate equations (2.4.14) in the limit of low excitations:

τ−1
decay,1 ≈

1

τc
+

1

τe
+

1

τn

(
1− τc

τe

)
τe�τc−−−→ 1

τc
+

1

τn
(5.3.1a)

τ−1
decay,2 ≈

τc
τe

1

τn
. (5.3.1b)

Here, τc is the capture time, τe is the emission time, and τn is an abbreviated symbol

for τeff,r. Expression (5.3.1a) is equal to the result of Ahrenkiel et al. [2]. Expression

(5.3.1b), however, is not equal to his findings since he did not account for recapturing of

electrons in contrast to the approach in this work.

In [Mai3], TRL decays for different τe and τc are given. It is shown that minority carrier

trapping indeed may lead to bi-exponential luminescence decays of sole absorbers even un-

der low excitations. It is demonstrated that the first decay time can become much smaller

than the recombination lifetime, whereas the second decay time can become much larger

than the recombination lifetime. This unveils that the recombination lifetime in the TRL

decay is obscured by minority carrier traps. For the purpose of a lifetime measurement

in terms of TRL, minority carrier trapping therefore must be switched off. To this end,

in [Mai3] various methods have been discussed. Several authors suggest to occupy the

traps using increased excitations or a bias illumination in addition to the pulsed exci-

tation [2, 3]. These approaches work very well for transient conductivity measurements

as demonstrated in [3]. For transient luminescence measurements, however, the calcu-

lations in [Mai3] reveal undesired high injection effects that occur when applying both

techniques. For this reason, bias illumination and increased excitations are inappropri-
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ate to get rid off trapping effects in TRL experiments. In order to avoid high injection

effects, it has been suggested in [Mai3] to use low excitations and to empty the traps

instead of filling them by a faster reemission of charge carriers. The faster reemission is

achieved by an increase of the temperature. This reduces both, the impact of carrier cap-

ture and of carrier emission, and the decay curves become mono-exponential and reveal

the recombination in the absorber as shown in [Mai3]. The experimental realization of

the proposed temperature and excitation increase has been examined for Cu2ZnSnSe4 in

[Mai8] and for Cu(In,Ga)Se2 in [Mai7]. The measurements yield decay curves that exhibit

all pecularities of trapping: bi-exponential decays with very long decay times that strongly

decrease at elevated temperatures. The trap properties of the investigated absorbers have

been quantified by means of simulations, which give a trap density of 1015 . . . 1016 cm−3, a

trap energy of approximately 200 meV, and a capture cross-section for electrons of about

10−13 cm2. These values are in accordance with the findings of admittance spectroscopy

measurements [63, 64] and of theoretical calculations using the supercell method [65]. In

particular, this knowledge about the trap properties allows a discrimination of the minor-

ity carrier trapping from the recombination in the TRL. This enables the determination

of the recombination lifetime, which comes out as 1 . . . 10 ns [Mai7, Mai8].

Finally, the question concerning the correlation of the open-circuit voltage and the decay

time from Fig. 1.2 has been discussed in [Mai9] with regard to the impact of minority

carrier trapping. This question is not easy to answer, because a pulsed excitation for TRL

and a steady state excitation for Voc must be compared. These difficulties particularly

emerge when traps are studied, since trapping is actually a transient phenomenon. In the

stationary case, trapping does not occur and shallow defects act as recombination centers.

This suggests that the effective recombination lifetime is smaller when Voc is measured

compared to TRL. However, at least under low excitations the contribution of traps to

the steady state recombination can be disregarded and the same effective recombination

lifetime can be used for the calculation of Voc and τdecay. On the basis of this result, in

[Mai9] the open-circuit voltage has been calculated as a function of the decay time. To

this end, Voc(τn) has been taken from [16] for QNR-recombination and τn(τdecay) has been

taken from equation (5.3.1b). Using the definition of the capture and the emission time,

this can be rewritten as τn = n∗
Nt
τdecay. The combination of both led to the following

dependence of the open-circuit voltage on the decay time:

Voc

(
τdecay;

n∗

Nt

)
=
k T

e0

log
Jsc(

n∗
Nt
τdecay)

J0(n
∗
Nt
τdecay)

. (5.3.2)

It is J0 the saturation current density, and Jsc again denotes the short-circuit current

density. In Eq. (5.3.2) Voc is a function of τdecay but with a parameter n∗/Nt, which

can reach any positive value. Accordingly, equation (5.3.2) describes an entire family of

curves as indicated in figure 5.5. The solid red curves are boundaries to the measured data
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Figure 5.5: Scatter plot of the open-circuit voltage
Voc of approximately 60 CIGSe solar cells
measured as a function of the decay time
τdecay of the absorber. The red curves
are calculated Voc(τdecay) graphs accord-
ing to equation (5.3.2) for constant n∗/Nt
ratios of 1, 0.15, 0.015, 0.003 (from top to
bottom). With kind permission of Enrico
Jarzembowski.

and correspond to n∗/Nt = 0.003 and n∗/Nt = 1, respectively. Thus, for each solar cell

0.003 ≤ n∗/Nt ≤ 1 must hold, which is a restriction to the trap properties. On the basis

of the fixed trap energy, which has been revealed in the TRL measurements [Mai7], n∗

can be treated as a material constant. Thus, for all cells only the trap density is allowed

to vary in the range 1015 cm−3 . Nt . 1017 cm−3. Here, it is pointed out that only by

measuring Voc as a function of the decay time boundaries to the trap density in CIGSe

can be determined. In particular, these values are in good agreement with the densities

determined by temperature and excitation dependent TRL [Mai7]. This is a remarkable

result since it combines minority carrier trapping, TRL, and electrical measurements.

At the end of [Mai7], this finding is further pursued with regard to the often reported

correlation of Voc and τdecay [5–8, 11, 14, 17, 23], which is, however, in contradiction to

figure 5.5. This has to do with the small open-circuit voltages below 600 mV in all of

these works. For these rather small voltages, the curves in figure 5.5 approximate each

other. But then, the decay time is not disturbed by trapping and it correlates with the

open-circuit voltage.

In conclusion, in [Mai3] a theory of TRL decays governed by minority carrier trapping

has been deduced, which is more general than that of Ahrenkiel et al. [2]. It has been

demonstrated that trapping may explain bi-exponential decays that are observed on sole

semiconductor layers. For verification of traps, a temperature and excitation increase has

been proposed which has been carried out in [Mai7, Mai8] for CIGSe and CZTSe. The

observed luminescence characteristics cannot be explained by charge carrier drift [Mai9].

Only a model that includes shallow defects is capable to describe the temperature and

excitation dependence of the bi-exponential decay curves correctly. As a consequence of

trapping, the solar cell parameters cannot be predicted unambiguosly by measuring the

TRL decay time. However, it is admitted that there are even more reasons for the non-

correlation. In the previous section it has been addressed that the impact of the overlying

layers or resistances on the Voc are not revealed by the TRL of the absorber. Furthermore,

the absorptivity, mobility, acceptor density, and diode quality factor may vary between

different solar cells, which is reflected in Voc but not in the decay time. Further origins for

the non-correlations are material inhomogeneities, which are adressed in the next section.
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In the third part of this series, we study the influence of trap states in the band gap of

semiconductors on the time-resolved luminescence decay (TRL) after a pulsed excitation. The

results based on simulations with Synopsys TCAD
VR

and analytical approximations are given for

p-doped Cu(In,Ga)Se2 as a working example. We show that a single trap can be mostly described

by two parameters which are assigned to minority carrier capture and emission. We analyze their

influence on the luminescence decay and study the difference between a single trap and an

energetic Gaussian trap distribution. It is found that trap states artificially increase the TRL decay

and obscure the recombination dynamics. Thus, there is a demand for experimental methods which

can reveal the recombination of minority carriers in a TRL experiment without trapping effect. In

this regard, a variation of the device temperature, the excitation frequency, the injection level,

as well as a bias illumination may be promising approaches. We study these methods, discuss

advantages and disadvantages, and show experimental TRL for prove of concept. At the end, we

validate our approach of simulating only band-to-band radiative recombination although

photoluminescence spectra often exhibit free-to-bound radiative recombination of charge carriers.
VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4929877]

I. INTRODUCTION

In the first and second part of this work, the influence of

excitation, diffusion, deep defects, and space charges on the

transient luminescence of a homogeneous semiconductor

was investigated by one-dimensional simulations.1,2 We

found that the decay of the luminescence intensity equals the

decay of the minority carriers if a homogeneous semiconduc-

tor layer without space charges is excited with low injection

levels. On the contrary, high injection levels can cause bimo-

lecular recombination and diffusion of charge carriers.

Curved transients can also arise from a spatial defect distri-

bution. Both lead to curved, multi-exponential luminescence

transients. Then, the decay time is not well-defined since it is

not constant with time.

In the third part of this work, the time-resolved lumines-

cence (TRL) is studied for semiconductors that contain trap

states for minority carriers. Such shallow defects are often

used to explain biexponential luminescence decays with very

long decay times up to the radiative recombination life-

time.3,4 In Cu(In,Ga)Se2, for instance, the radiative lifetime

amounts to a few hundred nanoseconds up to microseconds

depending on the acceptor density.5 In the case of biexpo-

nential transients due to minority carrier trapping, the lumi-

nescence decay may not reveal the carrier recombination,

and therefore, the minority carrier lifetime should not easily

be determined from simple TRL measurements. On the other

hand, in some cases, a correlation between the TRPL decay

time and the open circuit voltage has been revealed experi-

mentally. Examples for measurements on Cu(In,Ga)Se2 and

CdTe, where the decay times were below 100 ns, can be

found in Refs. 4, and 6–9. The contradiction between experi-

mental correlation and theoretical uncorrelation of the TRPL

decay time and the minority carrier lifetime defines the need

for a more thorough study on the impact of trapping in TRL

experiments.

The theoretical description of minority carrier trapping

is based on the rate equations of Shockley, Read, and

Hall.10,11 Ahrenkiel calculated analytical approximate

solutions making the following assumptions: the initial fast

decay can be assigned to carrier capture and carrier recombi-

nation. For later times, the recombination is limited by the

rate of electron emission to the conduction band.12 In the

present work, a more general solution of TRL is given

including minority carrier traps. An exact analytic expression

is given if a low trap occupation is supposed. Using these

results, it is shown that long decay times are not only influ-

enced by carrier emission (as assumed by Ahrenkiel) but

also by carrier re-capturing. As many experimentalists

actually are interested in carrier recombination, TRL experi-

ments with disabled carrier trapping are desirable. Different

methods for trapping suppression are proposed such as an

increase of the injection level, a variation of the device tem-

perature, as well as application of a bias illumination. We

show that elevated temperature is most easily employed and

using this approach we present a practical example. At the

end, we shortly concentrate on the validity of our simulations

which implicitly assume that the luminescence comes from

radiative band-to-band recombination while in TRL experi-

ments often photon energies being smaller than the band

gap are detected. The latter can be assigned to radiative free-

to-bound recombination. We discuss that the decay by band-

to-band and free-to-bound transitions mostly occur on thea)Electronic mail: matthias.maiberg@physik.uni-halle.de
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same time scale if we exclude inhomogeneous band gaps

and non-local recombination.

II. SIMULATION PARAMETERS

In this work, the same simulation parameters as in the

second part are used. Since numerous experimental parame-

ters in the simulations will be varied, a list of the most im-

portant standard simulation parameters is given in Table I.

Using these parameters, the effective electron density comes

out as n� ¼ 9� 1013 cm�3, the capture time as sc ¼ 100 ns,

and the emission time as se ¼ 120 ns (compare Equation (5)

in Section III).

III. BASICS ON MINORITY CARRIER TRAPS

A. Rate equations

First, the trapping dynamics of a single minority carrier

trap is investigated and we look for an approximate analytic

description. The transition rates provided by Shockley, Read,

and Hall10,11 are applied to a trap state in a p-type semicon-

ductor. For the electron density n in the conduction band, the

hole density p in the valence band, and the density of elec-

trons in the trap state nt the following rate equations are

found (neglecting any carrier current):

d

dt
n ¼ G� Rn þ ee � ec;

d

dt
p ¼ G� Rp þ he � hc;

d

dt
nt ¼ ec � ee þ he � hc:

(1)

Here, G is the generation rate, R is the recombination rate, ee

is the electron emission rate, ec is the electron capture rate,

he is the hole emission rate, and hc is the hole capture rate.

The latter are given by10,11

ee ¼ rn vn n� nt;

ec ¼ rn vn n ðNt � ntÞ;
he ¼ rp vp p� ðNt � ntÞ;
hc ¼ rp vp p nt:

(2)

In the above equation, Nt is the trap density, rn;p denotes the

capture cross-section, and vn;p denotes the thermal velocity

of electrons and holes, respectively. Further, it is n� ¼
Nc e�

Ec�Et
k T the electron density and p� ¼ Nv e�

Et�Ev
k T the hole

density if the Fermi-level lies at the defect level Et.

The trap state shall be donator like and close to the con-

duction band. Otherwise it would be occupied even in equi-

librium and electrons could not be captured. Furthermore,

we demand rn vn n� � rp vp p. Otherwise defect assisted

recombination of electrons would be more probable than

electron trapping. Recombination, however, for systematic

reasons shall only be included in the recombination lifetime

sn and take place via the trap states. Altogether, it is

he; hc � G; R; ee; ec and it follows:

d

dt
n ¼ G� Rn þ rn vn n� nt � rn vn n Nt � ntð Þ;

d

dt
p ¼ G� Rp;

d

dt
nt ¼ rn vn n Nt � ntð Þ � rn vn n� nt;

p t ¼ 0ð Þ ¼ p0; n t ¼ 0ð Þ ¼ n0; nt t ¼ 0ð Þ ¼ nt0;

(3)

where n0 and p0 are the equilibrium carrier densities, and nt0

is the equilibrium occupied trap density with nt0 � Nt for

donor like defects near the conduction band. For reasons of

simplicity, low injection levels are studied, that means the

generated carrier density Dn0 ¼ Dp0 is much smaller than

p0, much larger than n0, and not much larger than Nt. Then

we have monomolecular recombination with the rates

Rn ¼ n�n0

sn
� n

sn
and Rp ¼ p�p0

sp
� 0, where sn and sp are the

recombination lifetimes of electrons and holes, respectively,

considering all recombination paths. For this reason, the rate

equation for holes is decoupled from those of n and nt and

(3) can be simplified

d

dt
n ¼ G� n

sn
þ rn vn n� nt � rn vn n Nt � ntð Þ;

d

dt
nt ¼ rn vn n Nt � ntð Þ � rn vn n� nt;

n t ¼ 0ð Þ ¼ n0; nt t ¼ 0ð Þ ¼ nt0:

(4)

Additionally, it follows nt � Nt due to low injection levels.

With the notation 1
se
¼ rn vn n� and 1

sc
¼ rn vn Nt we get

d

dt
n ¼ G� 1

sn
þ 1

sc

� �
nþ nt

se
;

d

dt
nt ¼

n

sc
� nt

se
;

nt 0ð Þ ¼ nt0; n 0ð Þ ¼ n0:

(5)

TABLE I. Main simulation parameters used in all simulations if not stated

otherwise.

Simulation parameter Value

Trap density Nt 1014 cm�3

Trap distribution width DE 0

Electron capture cross-section rn 10�14 cm2

Hole capture cross-section rp 10�18 cm2

Thermal velocity vn; vp 107 cm s�1

Trap distribution maximum Ec � Et 0.26 eV

Device temperature T 300 K

SRH-related carrier lifetime sSRH 20 ns

Free carrier mobility l ¼ ln ¼ lp 20 cm2V�1s�1

Surface recombination velocity S 0

Absorber acceptor density Na 1016 cm�3

Absorber thickness d 3 lm

Absorber bandgap Eg 1.15 eV

Effective density of states Nv; Nc 2� 1018 cm�3

Excitation wavelength k 900 nm

Absorption coefficient a 3:8 lm�1

Excitation frequency f 106 Hz

Pulse length spulse 100 fs

Photon density per pulse nc 109 cm�2
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Comparing the definition of se and sc with the electron cap-

ture and emission rates in (2), se can be seen as the average

time for emission and sc can be seen as the average time for

capturing of an electron by the shallow defect. Finally, the

laser excitation pulse is assumed to be short with a pulse

length spulse � sc; sn. Then Equation (5) becomes

d

dt
n ¼ � 1

sn
þ 1

sc

� �
nþ nt

se
;

d

dt
nt ¼

n

sc
� nt

se
;

nt 0ð Þ ¼ nt0; n 0ð Þ ¼ n0 þ Dn0 � Dn0:

(6)

Equation (6) shows that the impact of a shallow defect on a

luminescence decay can be fully described by only two pa-

rameters se and sc, which in turn depend on rn; vn, Nt, and

Et. The equation system (6) may be written in the form

d

dt
n tð Þ ¼ A n tð Þ (7a)

with

n tð Þ ¼ n tð Þ
nt tð Þ

� �
and A ¼

� 1

sn
þ 1

sc

� �
1

se
1

sc
� 1

se

0
BB@

1
CCA: (7b)

The solution of (7) can be found by the fundamental matrix

and yields

n tð Þ ¼ a 1� se k2ð Þ
se

e�k2 t � b 1� se k1ð Þ
se

e�k1 t

nt tð Þ ¼ a

sc
e�k2 t � b

sc
e�k1 t

with

a ¼ se Dn0 � nt0 sc 1� se k1ð Þ
k1 � k2ð Þ se

b ¼ se Dn0 � nt0 sc 1� se k2ð Þ
k1 � k2ð Þ se

k1 ¼
1

2
x1 þx2ð Þ; k2 ¼

1

2
x1 �x2ð Þ

x1 ¼
1

sn
þ 1

se
þ 1

sc
; x2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

sn
þ 1

se
þ 1

sc

� �2

� 4

sn se

s
:

(8)

The result is a biexponential decay with a short decay time

1=k1 and a long decay time 1=k2.

B. Impact of carrier capture and emission on
luminescence decay

Now, the electron capture and emission are varied and

the general effects on the electron kinetics are studied. For

very large capture times compared to the effective recombi-

nation lifetime sn, the electrons recombine before they can

be captured by the shallow defect. Therefore, the traps have

only a minor influence on the luminescence decay and

the decay is mono-exponential (see Fig. 1(a)). This is inde-

pendent of electron emission and can be revealed by

Equation (8), which gives k1 ¼ 1
sn

and k2 ¼ 1
se

for sc � sn

and hence nðtÞ ¼ Dn0 e�
t

sn .

If the capture time is in the range or even smaller than

the effective lifetime, most of the electrons are captured and

trapped until being re-emitted to the conduction band after

the emission time. Now two limiting cases have to be distin-

guished: If the emission time is much smaller than the

recombination lifetime and capture time, the electrons are

instantaneously re-emitted to the conduction band and they

are hardly trapped. In this case, the electron density decays

mono-exponentially with the recombination lifetime sn

(see Fig. 1(b)). Evaluation of Equation (8) gives k1 ¼ 1
se

and

k2 ¼ 1
sn

for se � sn; sc and leads to nðtÞ ¼ Dn0 e�
t

sn .

In the other case, the emission time is in the range or

larger than the capture and recombination time and the elec-

trons are trapped and are slowly re-emitted to the conduction

band. Since the conduction band is almost empty due to elec-

tron capture and electron recombination for times t� sn, the

recombination of electrons with an abundant hole is limited

by the electron supply by re-emission from the shallow

defect. If the emission time is large, the re-emission is very

small leading to a small electron supply and a large lumines-

cence decay time (see Fig. 1(b)). If the capture time is small,

too, the electrons are directly re-captured. This further

reduces the electron supply and further increases the

luminescence decay time (see Fig. 1(a)). This can also be

calculated from Equation (8). For se > sc we find by a

Taylor Series of (8)

FIG. 1. TRL-transients of a semiconductor layer with a carrier SRH-lifetime

of sSRH ¼ 20 ns � sn, a trap density Nt ¼ 1014 cm�3 and varying capture or

emission time.
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k1 ¼
1

sn
þ 1

sc
þ 1

se
1� sc

sn

� �
k2 ¼

sc

se sn
:

(9)

This shows that the long decay time 1=k2 is not only influenced

by se but also by sc according to the considerations above. This

is in contrast to the result of Ahrenkiel et al.12 who found

k1 ¼ 1
sn
þ 1

sc
and k2 ¼ 1

se
, which is only valid for sn > sc � se.

Furthermore, Figure 1 illustrates that the electron cap-

ture affects both decay times 1=k1 and 1=k2 whereas the

electron emission mostly affects the long decay time 1=k2.

Now, in experiments it can occur that for very small captur-

ing times the initial decay cannot be seen due to limited

experimental time resolution. Then, only the second long

decay can be detected which does not correlate with the

recombination lifetime sn. In such a case, the luminescence

decay time would exhibit no correlation to the open-circuit

voltage of a solar cell device.

C. Impact of a trap distribution on the luminescence
decay

The results above calculated for a single trap can be gen-

eralized if there is not a single shallow defect but a Gaussian

trap distribution with a trap density ~NtðEÞ according to

d ~Nt

dE
¼ Ntffiffiffiffiffiffi

2 p
p

DE
e
� Ec�Et�Eð Þ2

2 DE2 ; (10)

where Nt is the total density of traps, DE describes the ener-

getic width of the distribution, and Et denotes the position of

the distribution’s maximum in the bandgap. We demand that

each trap state can only interact with the conduction band

but not with other trap states. Figure 2(a) shows the occupied

trap states after 1 ns and after 256 ns. It can be seen that

states closer to the conduction band are emptied much faster

than the states deeper in the band gap, since the emission

rate ee increases with decreasing Ec � Et. Therefore, the ini-

tial decay of the transients in Figure 2(b), which is mostly

uninfluenced by carrier emission, is independent of DE, since

the carrier capture depends only on the total density of

defects. For later times, the luminescence decay becomes

curved with increasing trap distribution broadness, since the

decay is now a superposition of an infinite number of expo-

nential decays with different emission times.

D. Impact of multi-pulse excitation on trap occupation

Finally, the trap occupation is studied if the semiconduc-

tor is excited by more than one laser pulse with a frequency

f ¼ 1=Tp, where Tp is the pulse period. Then, the trap will

not be fully emptied up to the next laser excitation if Tp is in

the range or smaller than the decay time of the luminescence.

Due to incomplete evacuation of the traps at the time of the

next excitation, the trap occupation immediately before the

k� th excitation nt0;k increases with each laser excitation and

it is nt0;0 < nt0;1 < nt0;2 < …. This is shown in Figure 3(a).

In turn, this leads to an increased carrier emission with each

laser excitation (ee / nt). Both effects compensate each other

and we find a “steady state” trap occupation nt0;k�1 � nt0;k for

a large number of excitations. From Equation (8), we find

nt0;k ¼ A
1� �Bð Þk

1þ B
(11a)

with

A ¼ Dn0

sc

e�k2 Tp � e�k1 Tp

k1 � k2

B ¼ 1

se

1� se k1ð Þ e�k2 Tp � 1� se k2ð Þ e�k1 Tp

k1 � k2

:

(11b)

By evaluation of B one finds �1 < B < 0 (since it is

k1 > k2) which induces nt0;k to converge. Physically, this

corresponds to a “steady state” trap occupation as we have

stated above. The steady state trap occupation nt;s immedi-

ately before the next laser excitation is

) nt;s ¼ lim
k!1

nt0;k ¼ Dn0

se

sc

eTp k1 � eTp k2

1� se k1ð Þ eTp k1 þ se k1 � k2ð Þ eTp k1þk2ð Þ � 1� se k2ð Þ eTp k2
: (12)

FIG. 2. Trap occupation and TRL-transients of a semiconductor layer with a

carrier SRH-lifetime of sSRH ¼ 20 ns, a trap density Nt ¼ 1014 cm�3, and a

Gaussian trap distribution with maximum at Ec � Et ¼ 0:26 eV and varying

energetic width DE. The incident photon density is nc ¼ 109 cm�2 per pulse.
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This result is valid as long as nt;s � Nt and Dn0 � p0 holds.

Equation (12) already shows that the trap occupation can be

increased if the period Tp is reduced (k1 > k2) or if the injec-

tion level Dn0 is increased, which will be discussed in detail

in Section IV A.

The last question is, how many laser excitations are

needed to saturate the trap occupation. From Equation (11),

we find for the necessary number of laser excitations to reach

99% of the saturation value

k99% �
log 0:01� log 1:01þ Bð Þ

log jBj (13)

with B as in Equation (11). This means nt;k99%
¼ 0:99 nt;s.

Inserting the values from Table I with sn � sSRH gives

k99% ¼ 4 for Tp ¼ 200 ns; k99% ¼ 6 for Tp ¼ 100 ns and

k99% ¼ 10 for Tp ¼ 50 ns. Hence, it is sufficient to simulate

only the first ten laser excitations to retrieve the full

information.

IV. TRL WITH SUPPRESSED CARRIER TRAPPING

As carrier trapping can strongly influence the lumines-

cence decay—thus hindering the determination of the minor-

ity carrier lifetime—trapping has to be switched off in the

TRL experiment. To do so we look at Equation (3). We have

to demand Rn � G� rn vn n ðNt � ntÞ � rn vn n� nt. To

reduce electron capture (	Nt � nt), the traps have to be filled

such that nt � Nt holds, which can be achieved by an

increased injection level (increased Dn0), by a reduced de-

vice temperature (reduced n�), or by a bias light illumination.

In turn, occupied traps lead to an increased emission (	nt) to

the conduction band. This has to be compensated by an

increased injection level (increased Rn) or by a reduced

device temperature (reduced n�). Alternatively, electron

emission may be increased in order to reduce the trap effect.

This calls for an elevated device temperature. In the follow-

ing, it will be discussed in detail that trapping effects can be

reduced by increased excitation intensities and frequencies,

by a variation of the device temperature, or by bias

illumination.

A. Trap filling using increased injection levels

First, we study how the impact of shallow defects on a

luminescence decay can be reduced by increased injection

levels and excitation frequencies. As Equation (12) suggests,

the average trap occupation can be increased by increased

excitation intensities and frequencies. This is shown in

Figure 3(a). Furthermore, this figure demonstrates the inde-

pendence of the trap occupation dynamics from the excita-

tion pulse number k even at the very beginning, as it has

been calculated in Sec. III D.

Looking at Figures 3(b) and 3(c), indeed the influence of

electron capture on the luminescence decay vanishes with

increased excitation intensity and frequency.

For high injection levels nt � Nt can be assumed. Then

we have dn
dt ¼ �Rn þ ee � ec � � n

sn
þ rn vn n� Nt (see Eq. 1).

Hence, electron emission ee can be neglected as long as the

electron density fulfills nðtÞ � sn rn vn n� Nt. When the elec-

tron trapping is negligible, nðtÞ ¼ Dn0 e�
t

sn can be assumed.

Using this, the condition for negligible electron emission can

be formulated as follows:

Dn0 �
sn

sc
e

Tp
sn n�; (14)

where Tp is the period of excitation. This has two consequen-

ces: First, the electron emission can be neglected for

increased excitation intensities. Second, the influence of

FIG. 3. Trap occupation and TRL-transients of a semiconductor layer with a

single trap for different excitation period Tp ¼ 50; 100; 200 ns, different

carrier SRH-lifetimes and different injection levels. Capture time

sc ¼ 100 ns and emission time se ¼ 120 ns.
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electron emission depends on the effective electron lifetime

sn. If the lifetime time is large, the electron density decays

slowly (see Figure 3(c)). Therefore, in Figure 3(c) less inten-

sity (compared to Figure 3(b)) is needed to make electron

emission negligible.

The problem of increased injection levels is that the

high intensities, necessary to switch off electron capture and

to make electron emission negligible, lead to bimolecular

recombination or to hole limited recombination,1,2 which

hinders to determine the low injection minority carrier life-

time. This can be seen in Figure 3(b) where the transients

bend at the highest injection levels.

B. Trap filling and reduced carrier emission by
reduced device temperatures

Next to the excitation energy, the sample temperature

may provide an experimental parameter to reduce trap effects.

Again, we look at Equation (12). The average trap occupation

increases if the emission time se increases, because the elec-

trons are trapped for longer times. The emission time is

defined by se ¼ ðrn vn n�Þ�1
. The capture cross-section rn and

the electron velocity vn are only weakly temperature depend-

ent. However, the electron density n� strongly depends on the

temperature and can be reduced by decreased device tempera-

tures leading to increased se. Therefore, a decrease of the tem-

perature should increase the average trap occupation. This is

shown in Figure 4(a). It can be seen that the trap occupation

can be increased by about one order of magnitude if the tem-

perature is reduced from 300 K to 225 K for an incident photon

density of nc ¼ 109 cm�2 per pulse. In consequence, for 300 K

a photon density of about nc ¼ 1011 cm�2 per pulse is neces-

sary to fill the traps, whereas for 225 K a photon density of

about nc ¼ 1010 cm�2 per pulse is sufficient to fill the traps.

The temperature dependent photoluminescence decay is

shown in Figures 4(b) and 4(c). The impact of trapping is

reduced by increased recombination lifetimes, by increased

excitation intensities and by reduced device temperatures.

Further, the effect of a reduction of the temperature is

smaller for low injection levels than for high injection levels.

To understand this, we again look at the condition for negli-

gible electron emission

Dn0 � sn rn vn n� Tð Þ nt e
Tp
sn �

T#;nc" sn

sc
e

Tp
sn n� Tð Þ; (15)

where T means the device temperature. This again explains

that the impact of electron emission can be reduced if sn or

the excitation intensity increases. For low intensities, n�

decreases with reduced temperature and nt increases with

reduced temperature. Both effects mostly compensate and

their combined influence of the temperature is small. For high

intensities, nt � Nt is fixed and independent of the tempera-

ture. Then, again n� decreases with reduced temperature and a

strong dependence on the device temperature can be seen.

C. Trap filling using bias light illumination

In this section, it is demonstrated, how traps can be filled

by a bias light illumination. The case shown in Figure 5 is

considered in the following. A constant bias light with pho-

ton energies smaller than the band gap is used. Superposed is

the pulsed light with photon energies larger than the band

gap. This can be described by

d

dt
n ¼ G� Rn þ ee � ec

d

dt
nt ¼ ec � ee þ Gb;

(16)

FIG. 4. Trap occupation and TRL-transients (after 60 excitations) of a semi-

conductor layer with a single trap for reduced device temperatures

T ¼ 225; 300 K, different carrier SRH-lifetimes and different injection lev-

els nc ¼ 109; 1010; 1011 cm�2 per pulse.
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which is analogue to Equation (4), but now a generation rate

Gb has to be added for the transition of electrons from the va-

lence band into the trap state by absorption of a photon. For

the bias generation rate into the trap, we set

Gb ¼ jc;b aT ðNt � ntÞ: (17)

Here, a linear dependence of the transition rate on the photon

flux density of the bias light jc;b is assumed. aT accounts for

the transition probability of an electron from the valence

band into the trap state by absorption of a photon. Under

steady state conditions, this leads to a bias occupation nt;b of

trap states and to a bias electron and hole density nb and pb.

These can be calculated from Equation (16) if low excita-

tions pb � p0 and monomolecular recombination Rn � nb

sn
are

assumed

nb ¼
�aT jc;b � rn vn n� þ

ffiffiffiffi
X
p

2 rn vn
<

sn

sc
n�

nt;b ¼
rn vn n� þ 1þ 2 rn vn Nt snð ÞaT jc;b �

ffiffiffiffi
X
p

2 rn vn aT jc;b sn
< Nt

X ¼ aT jc;b þ rn vn n�
� �2 þ 4r2

n v2
nn� Nt aT jc;b sn:

(18)

The carrier densities saturate for large aTjc;b values. Far

away from saturation, a Taylor Series in aT jc;b yields

nb � sn Nt aT jc;b

nt;b � 1þ sn

sc

� �
se Nt aT jc;b:

(19)

Now the luminescence decay under bias light illumination is

studied. This can be described by

d

dt
n ¼ �Rn þ ee � ec

d

dt
nt ¼ ec � ee þ Gb

n t ¼ 0ð Þ ¼ nb þ Dn0; nt t ¼ 0ð Þ ¼ nt;b;

(20)

where nb and nt;b are defined as in (18) and Dn0 is the elec-

tron density generated per laser pulse. Figure 6 shows that a

bias generation into the trap state can reduce carrier captur-

ing. However, there may be a large background lumines-

cence due to the steady state electron density nb. Again, this

must be compensated by an increased excitation and we ask

for the necessary intensity. The conditions nðtÞ � nt;b and

Rn � ee for 0 
 t 
 Tp lead to

Dn0 � max
n�

sc
; Nt aT jc;b

� �
� sn e

Tp
sn : (21)

Equation (21) yields the condition aT jc;b <
1
se

. Otherwise

the background luminescence would be higher than the

luminescence due to carrier emission. In that case, a bias

illumination would be of no advantage. On the other

hand, we demand nt;b > 0:1 Nt in order to reach a trap

filling from the bias illumination. From this, we find

aT jc;b > 10 se 1þ sn

sc

� �� ��1. Both conditions limit the useful

values of aT jc;b to

10 se 1þ sn

sc

� �� ��1


 aT jc;b 

1

se
: (22)

Inserting the parameters from Table I gives 7� 106 s�1

< aT jc;b < 9� 106 s�1. This shows that bias illumination is

only useful for traps that exhibit small emission times and

can only be used for trap filling. However, the electron emis-

sion must be compensated by increased injection levels.

D. Reduced carrier trapping by increased device
temperatures

In the foregoing Sections IV A–IV C, ways to reduce

electron capture, i.e., increase sc, by trap occupation have

been discussed. However, all measures A-C as a side effect

also increase the electron emission making high injection

levels necessary to compensate for. In this section, we follow

another idea: If the device temperature increases, the emis-

sion time se decreases. If the temperature is increased such

that se � sc holds, the electrons are trapped but almost

directly re-emitted to the conduction band. This already has

been shown in Figure 1(b) and has been calculated in

Section III B. We now look at the luminescence decay in

Figure 7. The impact of trapping can indeed be diminished if

the device temperature is moderately increased. The origin is

the almost instantaneous re-emission of the electrons to the

FIG. 5. Allowed transitions of electrons in a semiconductor with a trap state

in the band gap. The semiconductor is excited by constant bias light jc;b with

photon energies smaller than the band gap and by pulsed laser light G(t)
with photon energies larger than the band gap.

FIG. 6. TRL-transients of a semiconductor layer for carrier SRH-lifetimes

sSRH ¼ 20 ns � sn and for different bias generation rates aT jc;b ¼
0; 7� 106; 108 s�1 and different injection levels nc ¼ 109; 1011 cm�2.

Dashed lines are related to luminescence decay without shallow defects and

solid lines to luminescence decay with impact of shallow defects.
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conduction band. This effect already happens for low injec-

tion levels and no high photon densities are needed, such

that bimolecular and hole limited recombination can be

avoided. It also occurs for a moderate temperature increase.

From Section III B, se < sn; sc can be estimated for negligi-

ble electron trapping leading to the condition

n� Tð Þ > 1

rn vn sn
;

1

rn vn sc
; (23)

which is independent from the excitation.

On the other hand, also the Shockley-Read-Hall lifetime

sSRH;ðn;pÞ is providing a competing temperature effect. The

Shockley-Read-Hall lifetime is defined by sSRH;ðn;pÞ
¼ ðvn;p Nd rd;ðn;pÞÞ�1

, where Nd is the density of deep defects

and rd;ðn;pÞ is the capture cross-section of the deep defect.

For the thermal velocity it holds vn;p / T1=2. At room tem-

perature, a localized defect performs harmonic oscillations

with amplitude Ad / E1=2 / T1=2. The capture cross-section

is assumed to be circular shaped, thus rd;ðn;pÞ / A2
d / T.

Altogether we find sSRH;ðn;pÞ / T�3=2. In experiment, the

temperature coefficient of Shockley-Read-Hall (SRH)

recombination typically is even larger than 3/2, e.g., for sili-

con the temperature coefficient is 	3.13 This has to be

regarded in temperature dependent TRL experiments.

E. Experimental TRL under increased temperatures

The above considerations show that a slight increase of

the device temperature leads to a strong decrease of minority

carrier trapping even for low injection levels. In the follow-

ing, this is demonstrated experimentally for the semiconduc-

tor Cu(In,Ga)Se2. In Cu(In,Ga)Se2, it was found by two

wavelength excited photoluminescence spectroscopy that

one possible trap state lies approximately 800 meV above the

valence band maximum.14 Electrical spectroscopy techni-

ques also reveal a defect state in Cu(In,Ga)Se2 with energies

between 100 meV and 250 meV.15–19 Both observations may

have a common origin and may be interpreted as a shallow

trap state with about 200 meV activation energy. The setup

used for the experiments is described in Ref. 20. By using

the metallic molybdenum back contact of the cell as a heat-

ing element with electric current passing through it the sam-

ple temperature can be increased. The resulting

photoluminescence is shown in Figure 8. The luminescence

decay time at room temperature is 	300 ns and decreases

strongly by a factor of four if the temperature is increased by

30 K. Now we show that this experimental result cannot be

due to the SRH temperature dependence. Therefore, we

assume sSRH;ðn;pÞðTÞ / T�3 also for CIGSe which is equal to

sSRH;ðn;pÞðTÞ ¼ sSRH;ðn;pÞðRTÞ T
RT

� ��3
if we normalize to room

temperature (RT). We know for low excitations of semicon-

ductors without traps1,2 that the decay time equals the minor-

ity carrier lifetime and the minority carrier lifetime equals

the Shockley-Read-Hall lifetime. By that we find the theoret-

ical temperature effect sSRH;nð329 KÞ=sSRH;nð296 KÞ � 0:75

which is much smaller than the experimental temperature

effect sdecayð329 KÞ=sdecayð296 KÞ � 0:25. This means, the

temperature effect of the Shockley-Read-Hall lifetime is too

small to explain the experimental findings. This is also dem-

onstrated in the inset of Figure 8 which shows simulated

decay times with and without traps as a function of tempera-

ture. Next we show that also fluctuations of the electrostatic

potential cannot explain the experimental data. In CIGSe,

the band gap and the net-doping density are fluctuating

FIG. 7. TRL-transients (after 20 excitations) of a semiconductor layer with a

single trap for increased device temperatures T ¼ 300; 325; 350; 375 K and

different injection levels nc ¼ 109; 1010; 1011 cm�2 per pulse. Dashed lines

are without shallow defects and solid lines with shallow defects.

FIG. 8. Experimental (lines) and simulated (dots) TRL data of a Cu(In,Ga)

Se2 layer under increasing temperatures of T ¼ 296; 308; 319; 329 K and

low photon density of nc ¼ 9� 109 cm�2 per pulse. The inset shows the

dependence of the decay time of the simulated data (lines) and the experi-

mental data (dots) on the temperature. Simulation with parameters as in

Tables II and III.
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leading to a fluctuation of conduction and the valence band

with deviations up to 80 meV on a sub-micron length

scale.21,22 Such a fluctuation of the electrostatic potential is

attended by large electric fields which cause a decay time

much smaller than the recombination lifetime due to charge

separation effects (see Fig. 9 in Ref. 2). In turn, for decay

times of a few hundred nanoseconds, this would mean

recombination lifetimes larger than the radiative recombina-

tion lifetime which does not make sense physically.

Therefore, we assign the temperature effect in CIGSe to

electron traps. Using the values described in the Appendix,

the TRL can be simulated. The simulated transients are

shown in Figure 8 and approximate the experimental TRL

well. Residual deviation can be due to inhomogeneous defect

distribution in the sample.

V. TRAPS WITH CARRIER RECOMBINATION

In Section V, we want to focus on the validity of our sim-

ulations compared to real photoluminescence experiments. In

all simulations, the luminescence intensity is calculated from

the radiative band-to-band recombination. However, photolu-

minescence spectroscopy often shows radiative recombination

due to electronic free-to-bound transitions. One may ask,

under which circumstances the decay by both recombination

paths are equal. Band gap gradients or tunnelling assisted

non-local recombination are excluded and Equations (1) and

(2) are chosen to be the starting point. Now, hc � ec; ee can

no longer be assumed, since we are interested in defect

assisted recombination. Since donor like defects near the con-

duction band are studied it is rn vn n� rp vp p�. Further

p0 � nðtÞ � n0 is assumed. This leads to

d

dt
n ¼ � 1

sn
þ rn vn Nt

� �
nþ rn vn n� nt

d

dt
nt ¼ rn vn Nt n� rn vn n� þ rp vp p0

� �
nt:

(24)

With the assumption hc�ee (24) can be solved yielding

d
dt nt

d
dt n
� 1

2
þ p0 vp rp

2 n� vn rn
þ 1

2 rn

ffiffiffiffi
w

p
¼ constant (25a)

with

w ¼ r2
n þ

4 r2
n Nt

n�
þ rp vp Nt

v2
n n�2

þ 1

v2
n n�2 s2

n

� 2 rn

vn n� sn

� 2 rp vp p0

v2
n n�2 sn

: (25b)

From Equation (25) follows d
dt nt � B

d rp vp

d
dt n for all times

with an appropriate number d. Integration of this leads to

B p0 n|fflffl{zfflffl}
RBTB

� d rp vp p0 nt|fflfflfflfflfflffl{zfflfflfflfflfflffl}
RFTB

; (26)

where RBTB is the rate of radiative band-to-band recombina-

tion and RFTB is the rate of radiative free-to-bound recombi-

nation. Both rates are proportional. Hence, they have the

same time dependence and finally they exhibit the same

decay times. The reason is that we have to demand capture

times sc�sn. Otherwise the defect would not have any

impact on the electron density in the conduction band (see

Sec. III B). Further, it is known from luminescence spectros-

copy that the defects are close to the conduction band and

therefore the emission time se is small. In summary, such

defects are communicating very fastly with the conduction

band. A variation of the electron density in the conduction

band leads to an almost immediate variation of the occupied

defects and vice versa. Therefore, the decay is almost equal

for band-to-band and free-to-bound recombination and the

decay time does not depend on the emission wavelength

even if the recombination time is not constant as assumed in

(24) but a function of time snðtÞ.
By time-resolved photoluminescence in Cu(In,Ga)Se2

measured at different emission wavelengths, it is revealed that

the decay time is mostly independent from the wave-

length.4,8,9 In some cases, however, the decay time decreases

with increasing wavelength. The effect becomes stronger if

the temperature is reduced which indicates a temperature acti-

vated red shift.8,9 This may be due to potential fluctuations

which are predominant in Cu(In,Ga)Se2 and Cu2ZnSnSe4.23,24

VI. CONCLUSIONS

In the present work, the impact of minority carrier trap-

ping on the luminescence decay has been studied. We have

seen that trapping can cause a biexponential decay, where the

first fast decay can be assigned to carrier capture and recom-

bination, whereas the second slow decay can be assigned to

carrier emission, re-capture, and recombination. Due to

incomplete emission, the trap occupation may depend on the

excitation frequency which has to be considered in simula-

tions. The impact of trapping can be reduced by increased ex-

citation intensities and frequencies. Though this is very easy

to realize, bimolecular and hole limited recombination are

disadvantages. A small variation of the device temperature

can decrease the injection level necessary to reduce carrier

trapping. Here, a temperature increase has a larger effect than

a reduction of the temperature. We consider temperature

increase as the method of choice, which we have also demon-

strated experimentally. Using CIGSe as an example, we show

that by fitting experimental decay curves recombination pa-

rameters and trapping parameters can be derived. Finally it

has been demonstrated that trap states can be filled by a bias

illumination with photon energies smaller than the band gap.

TABLE II. Main parameters used for simulation of TRL.

Simulation parameter Value

Absorber thickness d 2.8 lm

Absorber’s absorption coefficient a 8 lm�1

Absorber charge carrier mobility ln;p 2 cm2V�1s�1

Recombination at all interfaces Sn;p 10 cm s�1

Minimum absorber bandgap Eg 1.17 eV

Notch distance from front side dn 780 nm

Band gap gradient to front side DEf 40 meV

Band gap gradient to back side DEb 100 meV

Temperature coefficient b of sSRH;ðn0;p0Þ 3

Hole capture-cross section by trap rp 10�18 cm2
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However, due to thermal emission to the conduction band

this causes a bias induced free electron density and leads to a

bias luminescence. In Section V, it has been shown that the

decay of band-to-band luminescence and the decay of free-

to-bound luminescence is almost equal as long as the shallow

optically active defects which give rise to the TRL signal are

close the conduction band.

APPENDIX: SIMULATION PARAMETERS USED IN
SECTION V E

Simulation of TRL was done with Synopsys TCAD
VR

.

With the experimental laser excitation diameter of about

70 lm, lateral effects can be neglected and one-dimensional

simulations are sufficient. Since recombination velocities at

the CIGSe/Mo and the CIGSe/air interface are not conclu-

sively known,7,25,26 interface recombination is set to a low

value, but is taken into account by an effective bulk recombi-

nation time sSRH;ðn0;p0Þ for deep defect assisted SRH recombi-

nation.10,11 Here, the lifetimes exhibit a temperature

dependence according to sSRH;ðn;pÞðTÞ / T�b where the tem-

perature coefficient b is assumed to be 3 as in Silicon.13 For

the carrier mobilities, we chose values as determined by ear-

lier voltage dependent TRL on similar absorber layers.20

These have to be distinguished from the “standard” mobili-

ties for simulation of Table I. As further experiments on

CIGSe layers revealed a Gallium gradient, a V-shaped band

gap gradient is considered.27,28 For simulation of trapping

and detrapping of charge carriers by a donor like defect with

an energetic Gaussian distribution, we again use the equa-

tions of Shockley, Read and Hall (see Eqs. (1), (2), and (6)).

The hole capture cross-section of the trap defect is chosen

much smaller than the capture cross-section of electrons (see

Table II) in order to avoid capture of a hole and thereby dis-

tinguishing from recombination centers. To fit experimental

photoluminescence, the simulated data are convoluted with a

Gaussian shaped instrument response function. The most im-

portant simulation parameters are given in Table I.

By finding the best approximation of experimental

TRL by simulated ones, we derive the trap parameters,

acceptor density, and effective SRH lifetime summarized in

Table III.
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The main objective of time-resolved photoluminescence (TRPL) is to characterize minority car-

rier recombination in semiconductors. However, trap states in the band gap can lead to artificially

long decay times thus distorting the measured minority carrier lifetime. In this work, we propose

to measure TRPL under elevated temperature and excitation in order to reduce minority carrier

trapping. Taking three Cu(In,Ga)Se2 layers as examples, we show that the decay time decreases

with increasing temperature—in accordance with simulations. Under increasing excitation, the

decay time can become smaller due to trap saturation but also can become larger due to asymmet-

ric hole and electron lifetimes. By comparison of simulation and experiment, we can find the

energy, the density, and the electron capture cross-section of the trap which in the present exam-

ple of Cu(In,Ga)Se2 films gives values of �200 meV, �1015 cm�3, and �10�13 cm2, respectively.
VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4931632]

One of the most important parameters characterizing the

quality of doped semiconductors is the minority carrier life-

time. A well-established method for its determination in silicon

or GaAs is the measurement of time-resolved photolumines-

cence (TRPL).1 However, in thin film semiconductors such as

Cu(In,Ga)Se2 and Cu2ZnSnSe4 the luminescence decay is of-

ten biexponential with first and second decay time, the latter

often being much larger than the former. The reason for two

decay times (as well as their correlation with the minority car-

rier lifetime) is still not accurately known.2–5 One possibility is

the presence of minority carrier trap states in the band gap.

The so called N2 defect in Cu(In,Ga)Se2, for instance, which is

revealed by admittance and two-photon spectral photolumines-

cence, would have an appropriate activation energy for minor-

ity carrier trapping of 250 meV.6,7 Then, we expect a decrease

of the second decay time with increasing temperature due to

enhanced detrapping.8 Further, for increasing excitation the

traps may saturate.

In this work, we perform TRPL measurements on co-

evaporated Cu(In,Ga)Se2 (CIGSe) films at measurement

temperatures between 296 K and 334 K and under different

injection levels. We indeed find the predicted dependencies

expected for absorber layers with minority carrier traps.8

Considering minority carrier trapping in simulations, we can

determine the trap density, trap activation energy, and trap

electron capture cross-section as well as the carrier lifetimes

by approximation of experimental and simulated TRPL.

Three different CIGSe absorbers were selected in order

to demonstrate the variety of effects to be observed in CIGSe

thin films. In the following, we call them CIGSe1, CIGSe2,

and CIGSe3. The layers were grown on different Mo coated

soda-lime substrates which we refer to by Mo(A) and

Mo(B). The samples were prepared by the standard three-

stage co-evaporation method9 with similar deposition times

and temperatures in the first and second stage. The final
Cu½ �

Ga½ �þ In½ � and Ga½ �
Ga½ �þ In½ � concentrations as well as KF treatment

are summarized in Table I. It is worth mentioning that TRPL

measurements were carried out on fresh absorbers immedi-

ately after preparation.

For the measurement of TRPL, the time-correlated sin-

gle photon counting setup described in Ref. 10 is used. The

time resolution of the setup is about 1 ns. First, a variation of

the excitation is performed. For photoexcitation, a 638 nm

pulsed diode laser with a pulse length of 88 ps and a repeti-

tion frequency of 500 kHz is used. The maximum incident

photon density per pulse is nk¼ (9 6 2)� 1011 cm�2 which is

denoted in the following by I¼ 100%. After this, the temper-

ature is increased under constant excitation starting at room

temperature. To this end, the molybdenum thin film layer is

contacted at two opposite sides of the substrate and a voltage

is applied. Due to the electrical current through the Mo layer,

the temperature can be adjusted between room temperature

and 340 K. Each temperature and excitation variation needs

about 1 h of time. Afterwards excitation and temperature are

reset to the start values to retrieve possible degradation dur-

ing the measurement. Only for the temperature variation on

sample CIGSe1, the decay time reduces to 75% compared to

the beginning which can be assigned to temperature induced

degradation. Since the quantum yield of all samples was sim-

ilar, the transients’ maxima are normalized and the back-

ground is subtracted.

Simulation of TRPL was done with Synopsys TCAD
VR

.

With the experimental laser excitation diameter of about

70 lm, lateral effects can be neglected and one-dimensional

simulations are sufficient. Since recombination velocities at

the CIGSe/Mo and the CIGSe/air interface are not conclu-

sively known,3,4,11 interface recombination is set to a low

value but is taken into account by an effective bulk recombi-

nation time sSRH,(n0,p0) for deep defect assisted Shockley-

Read-Hall (SRH) recombination.12,13 Here, the lifetimes

exhibit a temperature dependence according to Equation (1)

where the temperature coefficient b is assumed to be 3 as in

silicon.14 For CIGSe1, b¼ 5 is used to account for an addi-

tional decrease of the lifetime because of degradation during

0003-6951/2015/107(12)/122104/4/$30.00 VC 2015 AIP Publishing LLC107, 122104-1
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the temperature measurement. For the carrier mobilities, we

chose values as determined by voltage dependent TRPL on

similar absorber layers.10 As further experiments on CIGSe

layers revealed a gallium gradient, a V-shaped band gap gra-

dient is considered.15,16 For simulation of trapping and

detrapping of charge carriers by a donor like defect with an

energetic Gaussian distribution, we again use the equations

of Shockley, Read, and Hall.8,12,13 The hole capture cross-

section of the trap defect is chosen much smaller than the

capture cross-section of electrons (see Table III) in order to

avoid capture of a hole and thereby distinguishing trap states

from recombination centers. To fit experimental photolumi-

nescence, the simulated data are convoluted with a Gaussian

shaped instrument response function. The most important

simulation parameters are given in Table II.

Figure 1 shows the TRPL of absorber layer CIGSe1. For

fixed excitation, we find a decrease of the long decay time

with increasing temperature, and we have considered three

alternative explanations for this behaviour. In the first place,

this may be due to a smaller electron recombination lifetime

sn at higher temperatures. The electron recombination life-

time is defined by Rn ¼ Dn
sn

, where Rn is the rate of electron

recombination with the abundant holes and Dn is the excess

electron density. A rough calculation8 predicts a temperature

dependence of the SRH lifetime according to

sSRH;n0 Tð Þ ¼ sSRH;n0 300 Kð Þ T

300 K

� ��b

; (1)

with b¼ 5 for CIGSe1. For measurement at different temper-

atures we use low injection levels, thus, the generated minor-

ity carrier density Dn0 is much smaller than the doping

density. Furthermore, Shockley-Read-Hall recombination is

dominating. Then it is sn� sSRH,n0 and we would have17,18

IPL t; Tð Þ � Dn t; Tð Þ � e
� t

sSRH;n0 Tð Þ: (2)

However, this theoretical dependence of the luminescence

decay on the temperature (sSRH;n0ð334 KÞ=sSRH;n0ð296 KÞ
� 0:5) comes out too weak to explain the strong temperature

dependence in experiments (sdecayð334 KÞ=sdecayð296 KÞ
� 0:2).

In the second place, the temperature effect may arise

from fluctuations of the electrostatic potential with amplitudes

being up to 80 mV.19,20 If so, we expect a decay time smaller

than the recombination lifetime (see Fig. 9 in Ref. 18). In

turn, for decay times of a few hundred nanoseconds, this leads

to recombination lifetimes larger than the radiative recombi-

nation lifetime which does not make sense physically.

In the third place, the temperature effect on the second

decay may be due to thermally enhanced detrapping of elec-

trons from trap states more than 100 meV below the conduc-

tion band. Then, we find for the long decay time8

sdecay �
se sn

sc
; (3a)

with

s�1
c ¼ rn vn Nt s�1

e ¼ rn vn Nc e�
Ec�Et

k T ; (3b)

where sn is the recombination, sc is the capture, and se is the

emission time. Ec–Et is the energy of the trap below the con-

duction band, Nc is the effective density of states of the con-

duction band, vn is the thermal velocity of electrons, rn is the

capture cross-section of electrons, and Nt is the density of trap

states. Again, sn� sSRH,n0 is assumed and with Equations (1)

and (3) we find

sdecay � e
Ec�Et

k T � T�b: (4)

Thus, the trap effect predicts the decay time to strongly

decrease with temperature.

TABLE II. Acceptor density Na, SRH-lifetimes sSRH,n0 and sSRH,p0 of electrons and holes trap energy Ec–Et, trap density Nt, trap distribution FWHM, and elec-

tron capture cross-section rn extracted from simulation of TRPL of sample CIGSe1, CIGSe2, and CIGSe3. Other simulation parameters from Table III.

SRH-lifetime Trap parameter

Sample

Acceptor

density (cm�3) Electron (ns) Hole

Energy below CB

(meV)

FWHM

(meV)

Density

(cm�3)

Electron capture

cross section (cm2)

CIGSe1 7� 1015 2 130 ns 220 30 4� 1015 2� 10�13

CIGSe2 1.6� 1016 4 2 ls 185 35 1.1� 1016 2� 10�13

CIGSe3 5� 1016 6 2 ls 185 30 3� 1016 2� 10�13

TABLE III. Main parameters used for simulation of TRPL.

Simulation parameter Value

Absorber thickness d 2.8 lm

Absorber’s absorption coefficient a 8 lm�1

Absorber charge carrier mobility ln,p 2 cm2 V�1 s�1

Recombination at all interfaces Sn,p 10 cm s�1

Minimum absorber bandgap Eg 1.41 eV (CIGSe1)

1.17 eV (CIGSe2/3)

Notch distance from front side dn 340 nm (CIGSe1)

780 nm (CIGSe2/3)

Band gap gradient to front side DEf 80 meV (CIGSe1)

40 meV (CIGSe2/3)

Band gap gradient to back side DEb 230 meV (CIGSe1)

100 meV (CIGSe2/3)

Temperature coefficient b of sSRH,(n0,p0) 5 (CIGSe1)

3 (CIGSe2/3)

Hole capture-cross section by trap rp 10�18 cm2

TABLE I. CIGSe processing parameters.

Sample Final Cu½ �
Ga½ �þ In½ � Final Ga½ �

Ga½ �þ In½ � KF-treatment Substrate

CIGSe1 0.88 0.76 Post deposition Mo(A)

CIGSe2 0.85 0.32 No Mo(A)

CIGSe3 0.85 0.32 No Mo(B)
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For fixed temperature and increasing excitation, a

decrease of the long time part of the transient is found. This

may have two reasons. First, due to bimolecular recombina-

tion, the recombination time sn can decrease with increasing

excitation. This would lead to a decrease of the decay time

regardless of trap states. Second, the electron supply from

the trap states becomes negligible if8

Dn0 �
sn

sc
e

Tp
sn Nc e�

Ec�Et
k T (5)

holds for the photogenerated electron density with Tp being

the period of excitation. This means, the traps are saturated,

trapping effects are reduced and only recombination (with

shorter decay times) affects the luminescence decay. After

these considerations, we adjust trap parameters in the simula-

tion in order to find the best approximation of experimental

by simulated TRPL. The thereby obtained parameters are

given in Table III.

Next, the TRPL of sample CIGSe2 is analyzed which is

illustrated in Figure 2. Again, a strong decrease of the long

decay time with increasing temperature is found due to a

decrease of the recombination time and thermally enhanced

detrapping as discussed above. The intensity dependence,

however, shows a behaviour being different from that of

sample CIGSe1, i.e., an increase of the decay time with

increasing excitation. To understand this, the SRH lifetime

of electrons is studied. For defects with mid-bandgap energy

in a p-type semiconductor, the SRH-recombination rate is

given by

RSRH ¼
p0 þ Dp

sn0 p0 þ Dpð Þ þ sp0 Dn
Dn; (6)

with p0 being the equilibrium hole density and Dn and Dp
being the excess electron and hole density. By defining the

electron SRH-lifetime by sSRH;n :¼ Dn
RSRH

, it comes out as

sSRH;n ¼ sn0 þ sp0
Dn

p0þDp. Considering the two limiting cases

Dp	 p0 and Dp� p0, the electron SRH-lifetime becomes

sSRH;n �
sSRH;n0 for Dp	 p0;

sSRH;n0 þ
Dn

Dp
sSRH;p0 for Dp� p0:

8<
: (7)

It is always Dn
Dp > 0 regardless of electron trapping because

Dn and Dp are positive quantities. According to Equation

(7), the high injection electron SRH-lifetime sSRH;n0

þ Dn
Dp sSRH;p0 then is larger than the low-injection electron

SRH-lifetime sn0. This shows that the Shockley-Read-Hall

lifetime of electrons increases with excitation regardless of

electron trapping. Then, also the decay time increases for

higher excitation in agreement with Equation (3a). In experi-

ment, the maximum excess hole density is Dpmax� p0, thus,

being between the two limiting cases of Equation (7). The

material parameters determined by simulation are given in

Table III. Trap energy, electron capture cross-section, and

electron SRH-lifetime are in the same range as for CIGSe1.

The trap energy is slightly reduced due to the lower band

gap. However, the hole SRH-lifetime is now larger than for

CIGSe1. According to Equation (7), this causes a stronger

increase of the electron SRH-lifetime with excitation com-

pared to CIGSe1 which leads to different trends. Further, the

acceptor density is increased. Since Cu(In,Ga)Se2 is a com-

pensated semiconductor, the density of donor traps is

increased, too, which causes stronger carrier trapping and

longer decay times.

Finally, the TRPL of absorber layer CIGSe3 shown in

Figure 3 is studied. Here, the well-known temperature de-

pendence of the TRPL decay is found but now the decay

does hardly depend on the excitation intensity. This can

be understood by the parameters in Table III, where the

acceptor is increased. Due to the compensation in CIGSe,

this also leads to increased trap densities which can barely be

FIG. 1. Experimental (lines) and simu-

lated (circles) TRPL-transients of

absorber layer CIGSe1 for (a) I¼ 5.5%

and temperature T¼ 296, 315, and

334 K and (b) for 296 K and I¼ 1%,

18%. Parameters for simulation from

Tables II and III.

FIG. 2. Experimental (lines) and simu-

lated (circles) TRPL-transients of

absorber layer CIGSe2 for (a)

I¼ 0.44% and temperature T¼ 296,

304, and 313 K and (b) for 296 K and

I¼ 0.7%, 5.6%. Parameters for simula-

tion from Tables II and III.
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saturated. Therefore, trapping is dominating and recombina-

tion of charge carriers with asymmetric lifetimes is not appa-

rent. One explanation for higher acceptor densities may be a

higher Na content21,22 as a consequence of the different sub-

strate. On the other hand, sodium induces a reduction of do-

nor states located at grain boundaries, thus, leading to an

increased net hole density.23,24 Since the donor traps in this

work are apparently not passivated by sodium, they are pre-

sumably located in the grain interior. The effect of an

improved bulk quality by Na as shown in Ref. 28 is not

reflected in the simulation parameters.

The donor trap energy of �0.2 eV determined for all

samples has also been revealed by admittance, two-photon,

and capacitance spectroscopy, however, with much smaller

capture cross-sections of �10�16 cm2.6,7,25 Furthermore,

capacitance measurements revealed an acceptor density

of 1016 cm�3 which is in agreement with the values in

Table III.26 Finally, the decrease of the recombination life-

time with higher gallium content is consistent with JV-

measurements.27

In summary, photoluminescence decay of three different

CIGSe absorber layers was presented. The decay time

strongly decreases at slight temperature increase. Excluding

other origins, minority carrier trapping has been identified as

source of the strong temperature effect. A donor trap about

200 meV below the conduction band is appropriate to simu-

late the temperature dependent transients which is in agree-

ment with defect activation energies determined by spectral

photoluminescence and admittance spectroscopy.

At increased excitation either trapping effects are

reduced due to trap saturation or the recombination lifetime

is increased due to deep defect saturation. Both effects can

counterbalance or dominate each other, thus, leading to a

decrease, an increase or nearly no excitation dependence.

This study suggests that in typical CIGSe layers the carrier

dynamics is governed by recombination and trapping,

both acting on similar time scales. We find that small

changes in material parameters can influence trapping and

recombination.
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FIG. 3. Experimental (lines) and simu-

lated (circles) TRPL-transients of

absorber layer CIGSe3 for (a) I¼ 1%

and temperature T¼ 296, 308, 319,

and 329 K and (b) for 296 K and

I¼ 0.3%, 18%. Parameters for simula-

tion from Tables II and III.
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In this work we present time-resolved photoluminescence (TRPL) measurements on Cu2ZnSnSe4 and alloyed
Cu2ZnSnSe4-CuInSe2 layers. In the latter case we find one-exponential decays. In the first case the decay
is bi-exponential indicating a large amount of minority carrier traps. By approximation of experimental
Cu2ZnSnSe4 TRPL by simulated decay curves we determine the trap energy, the trap density, and the
electron capture cross-section of the trap with reasonable values of ∼1015 cm−3, ∼250 meV, and 10−13 cm−2.
The trap density of the alloyed Cu2ZnSnSe4-CuInSe2 layers, however, is estimated to ≤ 1013 cm−3.

Keywords: transient, photoluminescence, trap states, Cu2ZnSnSe4

One of the most important material parameters
of doped semiconductors is the minority carrier life-
time. The measurement of transient photoluminescence
(TRPL) is a prevalent method for its determination in sil-
icon or GaAs.1 For co-evaporated Cu2ZnSnSe4 (CZTSe)
and Cu(In,Ga)Se2 (CIGSe), however, the luminescence
decay is often bi-exponential and the reason for two decay
times as well as their correlation with the minority car-
rier lifetime is still not accurately known.2–5 One reason
for a bi-exponential decay may be the trapping of minor-
ity carriers6, which has already been approved by time-
resolved photoluminescence in Cu(In,Ga)Se2.7 Therefore,
it is evident to find a large amount of trap states also in
Cu2ZnSnSe4 due to the similar electronic structure. De-
fects with energies suitable for trapping are revealed by
spectral photoluminescence and admittance spectroscopy
with activation energies of 70 meV-200 meV whereas de-
fects deeper in the band gap are predicted by theoretical
calculations with energy values of ∼300 meV below the
conduction band edge.8–12 It now depends on the capture
cross-sections of these defects, whether they will act as re-
combination centers or as minority carrier traps. In the
first case, a one-exponential decay of the time-resolved
photoluminescence is expected, and in the latter case
the decay will be bi-exponential with a long decay time
decreasing with increasing excitation and temperature.6

Hence, the transients’ shape and dependence on excita-
tion and temperature can be used to discriminate recom-
bination centers from minority carrier traps.

In this work, we verify minority carrier traps in CZTSe
by finding the expected dependencies of the luminescence
decay from temperature and excitation. By the approx-
imation of the experimental luminescence by simulation
we can determine the density, activation energy and elec-
tron capture cross-section of the trap, as well as the mi-
nority carrier lifetime and the acceptor density. Thereby,
we further show that the alloying with CuInSe2 reduces
the amount of minority carrier traps in Cu2ZnSnSe4-
CuInSe2 (CZTISe).

Three slightly different chalcogenide samples were pre-
pared on a glass substrate coated with molybdenum

TABLE I. Thickness and elemental composition determined by EDX
of the Cu2ZnSnSe4 (CZTSe1 and CZTSe2) and Cu2ZnSnSe4-CuInSe2
(CZTISe) layers.

Sample Thickness Final
[Zn]
[Sn]

Final
[Cu]

[In]+[Zn]+[Sn]
Final

[In]
[In]+[Zn]+[Sn]

CZTISe 1.6 µm 1.39 0.84 0.08

CZTSe1 2 µm 1.27 0.82 0

CZTSe2 2.4 µm 1.82 0.68 0

by means of a two-stage Cu-rich/Cu-free co-evaporation
process being similar to that described in section 3.3
“Process C” of Ref. 13. By this process, two
Cu2ZnSnSe4 layers CZTSe1 and CZTSe2, and one al-
loyed Cu2ZnSnSe4-CuInSe2 layer CZTISe were prepared,
the latter by additional incorporation of indium in both
stages. Further information on alloyed CZTSe can be
found in Ref. 14 and 15. After the preparation, the ele-
mental composition was determined by energy dispersive
X-ray spectroscopy (EDX) with the values summarized
in table I.

For the measurement of TRPL the setup described in
Ref. 16 is used with an equal workflow for all samples.
First, a variation of the injection level is performed. To
this end, a pulsed diode laser with an excitation wave-
length of 638 nm, a pulse length of 88 ps, and a repetition
frequency of ∼1 MHz is used. The maximum incident
photon density per pulse is nλ = (9 ± 2) × 1011 cm−2

which in the following is denoted by I = 100%. After-
wards, the temperature is varied starting at room tem-
perature. We use the molybdenum back contact layer as
a heating element. Due to the electrical current through
the Mo layer, the CZT(I)Se temperature can be adjusted
between room temperature and 340 K. After each vari-
ation, excitation and temperature are reset to the start
values. By doing so, degradation during the measure-
ment may be retrieved. However, it comes out that all
samples do not exhibit any degradation. At the end, the
transients’ maxima are normalized and the background
is subtracted which is reasonable since the quantum yield
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TABLE II. Main parameters used for simulation of TRPL.

simulation parameter value

max. incident photon density nγ 9 × 1011 cm−2

incident photon wavelength λ 638 nm

absorber’s absorption coefficient α 8 µm−1

absorber charge carrier mobility µn,p 5 cm2 V−1 s−1

recombination velocity at all interfaces Sn,p 10 cm s−1

absorber bandgap Eg 1 eV

hole capture cross-section by trap σp 10−18 cm2

width of energetic trap distribution ∆E 50 meV

of all samples was similar.
The simulation of TRPL was done with Synop-

sys TCAD R©. With a laser excitation diameter of
about 70 µm lateral effects can be neglected, thus, one-
dimensional simulations are sufficient. Since recombi-
nation velocities at the absorber/molybdenum and the
absorber/air interface are not conclusively known3,4,17

interface recombination is set to a low value, but
is considered by an effective bulk recombination time
τSRH,(n0,p0) for deep defect assisted Shockley-Read-Hall

(SRH) recombination.18,19 Here, the lifetimes are fur-
ther supposed to be temperature dependent according
to equation (1). In order to simulate minority carrier
trapping and detrapping we again use the equations of
Shockley, Read, and Hall18,19 and apply them to a donor
like defect near the conduction band. Here, the hole
capture cross-section of the trap defect is chosen much
smaller than the capture cross-section of electrons to dis-
tinguish the trap state from recombination centers. To
fit experimental photoluminescence the simulated data
are convoluted with a Gaussian shaped instrument re-
sponse function to account for the time resolution of the
measurement setup which is approximately 1 ns. The
most important simulation parameters are given in table
II.

First, the TRPL of sample CZTISe is studied which is
shown in figure 1. The decay of the luminescence is one-
exponential with a decay time of a few nanoseconds. The
decay time decreases slightly if the temperature increases.
This may in the first place be due to a smaller electron
recombination lifetime τn at higher temperatures. Here,
the electron recombination lifetime is defined by Rn =
∆n
τn

, where Rn is the rate of electron recombination with
an abundant hole and ∆n is the excess electron density.
A rough calculation6 predicts a temperature dependence
of the SRH lifetime according to

τSRH,n0(T ) = τSRH,n0 (300 K)

(
T

300 K

)−b
, (1)

where b is around 3, e.g. in silicon b is between 2.7 and
3.4.20 For measurement at different temperatures low in-

jection levels were used leading to a generated minority
carrier density ∆n0 much smaller than the doping den-
sity. Furthermore, Shockley-Read-Hall recombination is
dominating. Then it is τn ≈ τSRH,n0 and we have21,22

IPL(t;T ) ∼ ∆n(t;T ) ∼ e
− t
τSRH,n0(T ) . (2)

Equation (2) describes a temperature dependent lumi-
nescence decay with a decay time

τdecay(T ) ≈ τSRH,n0(T ) ∼
(

T

300 K

)−b
. (3)

From experiment we find a decrease of the decay time by
about 25% if the temperature is increased by 40 K. From
equation (3) the temperature coefficient in CZTSe then
becomes b ≈ 2.7. A similar dependence is revealed during
the excitation variation where we find a slight decrease
of the luminescence decay time if the injection level is
increased. This may be due to additional bimolecular
recombination at increased excitation which reduces the
electron recombination lifetime. Both effects are included
in the simulation of TRPL, so that the experimental data
can be approximated by simulation (see Fig. 1) using the
material parameters from table II and III. We note that
the TRPL effects described for CZTISe is typical and has
been found on several samples.

We now study TRPL on CZTSe layers that were pro-
cessed without incorporation of indium. The lumines-
cence decay for CZTSe1 having a moderate Zn/Sn ex-
cess of 1.27 is shown in figure 2. For this sample, the
luminescence decay is different from the previous: First,
the decay is bi-exponential. Second, we find a strong de-
crease of the decay time of about 75% for a temperature
increase of 40 K, which cannot be traced back to the de-
crease of the Shockley-Read-Hall lifetime. Both lead to
the need for consideration of other (additional) effects.
As mentioned in the introduction, minority carrier trap-
ping may explain bi-exponential luminescence decays and
strong temperature dependencies. Then, it holds for the
long decay time6

τdecay ≈ τe τn
τc

(4a)

with

τc = (σn vnNt)
−1

(4b)

τe =
(
σn vnNc e−

Ec−Et
k T

)−1

, (4c)

where τn is the recombination time, τc is the capture
time, τe is the emission time, Ec − Et is the energy of
the trap below the conduction band, Nc is the effective
density of states of the conduction band, vn is the thermal
velocity of electrons, σn is the capture cross-section of
electrons by the trap, and Nt is the density of trap states.
Again, we assume τn ≈ τSRH,n0 due to the low injection
levels, and with equation (1) and (4) we then find

τdecay ∼ e
Ec−Et
k T · T−b. (5)
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FIG. 1. Experimental (lines) and simu-

lated (dots) TRPL-transients of absorber
layer CZTISe for (a) I = 5.6 % and tem-
perature T = 296, 334 K and (b) for 296 K
and I = 1, 50 %. Parameters for simula-
tion from table II and III.

TABLE III. Acceptor density Na, SRH-lifetimes τSRH,(n0,p0)(300 K) of electrons and holes, temperature coefficient b of the SRH-lifetime, trap
energy Ec − Et, trap density Nt, and electron capture cross-section σn extracted from simulation of TRPL of sample CZTISe, CZTSe1, and
CZTSe2. Other simulation parameters from Table II.

sample acceptor density
SRH-recombination trap parameter

lifetime temperature coefficient energy below CB electron capture cross-section density

CZTISe 5 × 1016 cm−3 2 ns 2.7 250 meV 4 × 10−13 cm2 ≤1013 cm−3

CZTSe1 5 × 1016 cm−3 2 ns 2.7 250 meV 4 × 10−13 cm2 1 × 1015 cm−3

CZTSe2 3 × 1016 cm−3 2 ns 2.7 250 meV 4 × 10−13 cm2 3 × 1015 cm−3

Thus, the trap effect predicts the decay time to strongly
decrease with temperature.
For fixed room temperature and increasing excitation we
find decay times that are mostly constant and only the
intensity of the second, long time part reduces. This is
due to the limited electron supply from the trap states,
which becomes negligible if6

∆n0 � τn
τc

e
Tp
τn Nc e−

Ec−Et
k T (6)

holds for the photogenerated electron density ∆n0 with
Tp being the period of excitation. This means, on these
time scales there are enough charge carriers for recombi-
nation and the recombination is not limited by the elec-
tron supply from the trap. Hence, trapping effects are re-
duced and only recombination (with shorter decay times)
affects the luminescence decay. As the figure shows, this
can be confirmed by simulation using the material pa-
rameters listed in table II and III.

It comes out, that the time-resolved photolumines-
cence of both samples can be approximated by means of
simulation using equal material parameters, e.g. accep-
tor density, lifetime, temperature coefficient, trap energy,
and electron capture cross-section. The independence of
the lifetime and the acceptor density from the alloying
with indium is in accordance with the experimental find-
ing that the open-circuit voltage as a measure of recombi-
nation does not change for such low amounts of indium.14

Furthermore, it shows that the acceptor density is not in-
fluenced by the alloying with indium. This is due to the
same principle copper deficiency in both samples (see ta-
ble I), since copper vacancies VCu are the dominating
acceptor states in CZTSe.12

The only difference in the parameters of both samples is

the trap density which is smaller by orders of magnitudes
if indium is incorporated. A possible donor state with
an activation energy of approximately 300 meV would be
the Zni defect.12 It can now be concluded, that the in-
corporation of indium reduces the density of Zni defects.
This is in agreement with in-situ XRD measurements at
elevated temperatures, which show that the amount of
the secondary ZnSe phase is reduced by indium below
the detection limit.13 Hence, less ZnSe is dissolved in the
kesterite and therefore, the amount of Zni trap states
may be reduced.

We also performed TRPL measurements on a second
CZTSe sample CZTSe2 with higher Zn/Sn ratio. Since
the decay is almost similar to that of CZTSe1 in figure
2, a presentation of the results is omitted and only the
simulation parameters are listed in table III. Now, two
parameters change. First, the trap density is slightly in-
creased which can be traced back to an increased density
of Zni defects due to the increased amount of Zn (see Tab.
I). Furthermore, the acceptor density is smaller, though
the density of copper vacancies is expected to be larger
due to the lower copper content. However, an increased
amount of indium and a reduced amount of copper lead
to a higher density of ZnCu and SnCu defects, which both
act as donors thereby compensating the increasing accep-
tor density.12

In summary, we have presented photoluminescence de-
cays of slightly different CZT(I)Se layers at different tem-
peratures and excitations. We found bi-exponential de-
cays on Cu2ZnSnSe4 layers and one-exponential decays
for alloyed Cu2ZnSnSe4-CuInSe2 layers. Both led to the
conclusion that there must be a large amount of minority
carrier traps 1015 cm−3 in CZTSe, that can be substan-
tially reduced by alloying with CuInSe2. It further comes
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FIG. 2. Experimental (lines) and simu-

lated (dots) TRPL-transients of absorber
layer CZTSe1 for (a) I = 1 % and tempera-
ture T = 296, 335 K and (b) for T = 296 K
and I = 1, 50 %. Parameters for simula-
tion from table II and III.

out, that the recombination lifetimes and acceptor den-
sities are rather independent from the indium content,
however, the latter depends on the Cu and Zn content.
These effects can be explained by the defect model of
Chen et. al.12 where - according to the present work
- the following defects are the most important: copper
vancies VCu as acceptor states, ZnCu and SnCu as donor
states, and Zni as trap states. The trap states still are
sufficiently shallow for not being active as recombination
sites. Deeper defects must be present which are not sup-
pressed by alloying.
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11K. Hönes, E. Zscherpel, J. Scragg, and S. Siebentritt, Physica
B: Condensed Matter 404, 4949 (2009).

12S. Chen, A. Walsh, X.-G. Gong, and S.-H. Wei, Advanced Ma-
terials 25, 1522 (2013).
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Verification of minority carrier traps in Cu(In,Ga)Se2 and Cu2ZnSnSe4 by
means of time-resolved photoluminescence
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Abstract

The decay of the room-temperature time-resolved photoluminescence (TRPL) on thin-film semiconductors
such as Cu(In,Ga)Se2 and Cu2ZnSnSe4 often is bi-exponential. This can be traced back either to fluctuations
of the electrostatic potential or to minority charge carrier trapping. We show by means of simulations that
both effects can be discriminated by a measurement of the TRPL decay at different excitation intensities
and temperatures. Application of the standard semiconductor theory yields, that the bi-exponential photo-
luminescence decay in Cu(In,Ga)Se2 and Cu2ZnSnSe4 must result from a strong minority carrier trapping.
By simulation of experimental TRPL decay curves we can determine the minority carrier lifetime, the trap
energy, the trap density, and the doping density of these materials with values in the ranges of 1 − 10 ns,
200 meV, 1015 − 1016 cm−3, and 1015 − 1017 cm−3. These yield reasonable solar cell parameters and they
also explain the non-correlation of the open-circuit voltage and the luminescence decay time.

Keywords: transient, photoluminescence, minority carrier traps, Cu(In,Ga)Se2, Cu2ZnSnSe4

1. Introduction

Time-resolved photoluminescence (TRPL) is a
well-established technique for the measurement of
minority carrier lifetimes in Cu(In,Ga)Se2 (CIGSe)
and Cu2ZnSnSe4 (CZTSe). However, due to the
polycrystallinity of these materials, the decay is
very complex and still not well-understood. This is
demonstrated by the increased amount of recently
published theoretical papers [1, 2, 3, 4, 5, 6].
In the first place, the photoluminescence decay is
governed by the recombination of charge carriers.
In that case, a mono-exponential decay is predicted
with a decay time being equal to the minority re-
combination lifetime [1, 2, 7]. The latter is related
to the open-circuit voltage Voc of a solar cell, for
which reason a correlation of the decay time and
the solar cell parameters is expected. For CdTe
and CIGSe, this correlation has already been ap-
proved in the 1990’s [8, 9]. However, more recent
and detailed experiments show that the photolumi-
nescence decay is not necessarily mono-exponential,

1matthias.maiberg@physik.uni-halle.de

nor does the decay correlate with the PV parame-
ters [10, 11, 12, 13]. It has been suggested that
this may be due to minority carrier traps or due
to potential fluctuations [14, 15, 3, 4]. Both may
influence the decay time without affecting the re-
combination, thus, without impact on the PV pa-
rameters.
In this paper, we compare minority carrier traps
and potential fluctuations to each other, and show
that both can be distinguished by means of TRPL
under elevated temperatures and excitations. Af-
terwards, we show that the bi-exponential photo-
luminescence decay observed on CIGSe and CZTS
must result from a strong minority carrier trapping.
Equipped with this information, we can simulate
the experimental decay curves. An outcome of the
simulations are the trap parameters. Furthermore,
we can derive Voc as a function of the decay time
and show that the non-correlation of both is also
due to minority carrier traps.

Preprint submitted to Thin Solid Films June 24, 2016
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Figure 1: Schematic photoluminescence decay of an absorber layer governed by recombination and potential fluctuations (left
figures), or by recombination and minority carrier traps (right figures). The dashed lines show the room-temperature TRPL
without potential fluctuations and minority carrier traps.

2. Theory of bi-exponential decays

2.1. Potential fluctuations

In CIGSe and CZTSe, potential fluctuations can
reach values between 20 and 100 meV at tem-
peratures below 10 K [16, 17, 18] but at room-
temperature they are reduced to only a few meV
[19, 17]. As a result, electric fields occur and charge
carriers being generated by light separate due to
the drift (see figure 1). The simultaneous recom-
bination and charge separation leads to a fast ini-
tial decay of the photoluminescence with a decay
time being smaller than the recombination lifetime
τr [2, 4]. Afterwards, the charge carriers recombine
which is limited by the thermally activated over-
coming of the potential barriers. It turns out that
the barriers at room-temperature are too small in
order to strongly affect the recombination. For this
reason the second decay time equals the recombi-
nation lifetime τr.
If the excitation is increased, the potential barriers
are screened [4]. Without electric fields the charge
carriers do not drift and the TRPL approximates
the decay curves of an absorber without potential
fluctuations (see figure 1). Thereby, in particular
the first TRPL decay vanishes.
If the temperature is increased, in the first place the
defect related recombination lifetime will decrease
according to a power law [3, 20, 21]

τr ∼ T−b, b ≈ 2 . . . 4. (1)

Consequently, both decay times decrease at ele-
vated temperatures. Especially the second decay

time, which is equal to the recombination lifetime
τr, decreases according to the power law in Eq. (1).

2.2. Minority carrier traps

In CIGSe and CZTSe numerous shallow defects
have been found with energies of Et = 100 −
300 meV being suitable for minority carrier trap-
ping [22, 23, 24, 25, 26, 27, 28, 29]. These de-
fects may capture photogenerated charge carriers.
The simultaneous recombination and capturing of
charge carriers leads to a fast initial decay (see fig-
ure 1). Thereby, the first decay time can become
much smaller than the recombination lifetime de-
pending on the capture cross-section and the den-
sity Nt of the traps [3, 14]. The second decay ap-
pears, when the conduction band is almost empty.
The recombination is then limited by the electron
supply from the trap resulting in a very slow decay
with the decay time [3]

τdec =
Nt
n∗

τr, n∗ = Nc e−
Et
k T (2)

being larger than τr. Here, it is Nc the effective
density-of-states of the conduction band.
If the excitation is increased the number of charge
carriers in the conduction band will increase.
Therefore, the onset of the second decay in the
TRPL indicating an almost empty conduction band
shifts to later times. In consequence, the first decay
becomes more pronounced. Thereby, the excitation
does only affect the intensities but not the decay
times.
For increased temperatures, the reemission becomes
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stronger which leads to less trapping of the charge
carriers. At the same time, the recombination life-
time decreases again. From Eq. (1) and (2) then
follows

τdec ∼ T−b e
Et
k T . (3)

Due to the additional exponential term, the tem-
perature dependence of the decay time is much
stronger for minority carrier trapping than for po-
tential fluctuations.

3. Experimental application

3.1. Measurement setup

In order to discriminate the effect of potential
fluctuations from minority carrier traps, excitation
and temperature dependent TRPL is performed on
a CZTSe and different CIGSe absorbers. Details
on the preparation of the absorbers can be found
in Ref. [20, 30]. For the measurement, the setup
described in Ref. [31, 20] is used with an equal
workflow for all samples. First, a variation of the
injection level is performed. To this end, a pulsed
diode laser with an excitation wavelength of 638 nm
and a maximum incident photon density per pulse
of nλ = (9± 2)×1011 cm−2 is used. Afterwards, the
temperature is varied starting at room-temperature
up to 340 K. After each variation, excitation and
temperature are reset to the start values. By doing
so, no degradation during the measurement could
be retrieved. At the end, the transients’ maxima
are normalized and the background is subtracted.

3.2. Application to CZTSe absorbers

The transients for the CZTSe absorber are shown
in figure 2. The decay at room-temperature un-
der low injection conditions is bi-exponential with
a long decay time of approximately 300 ns, which is
far above the often reported recombination lifetime
of approximately 1− 10 ns [10, 32]. Such a long de-
cay time being much larger than the minority car-
rier lifetime is the first indication for a strong mi-
nority carrier trapping, since potential fluctuations
will yield decay times smaller than the recombina-
tion lifetime. This is also verified by the excita-
tion dependence, for which the first decay becomes
more pronounced while the second decay time is
not influenced. We remind, that for potential fluc-
tuations a vanishing first decay would be expected.
Thirdly, the second decay time decreases by more
than 75 % if the temperature is increased by approx-
imately 40 K. The simple power-law dependence in

Eq. (1) as expected for potential fluctuations can-
not explain this strong decrease. Instead, the tem-
perature dependence of Eq. (3) must be applied,
which is the third indication for minority carrier
traps. Based on these findings, the TRPL is sim-
ulated including minority carrier trapping. These
simulations yield the trap-values Nt = 1015 cm−3,
Et ≈ 250 meV, NA = 5× 1016 cm−3, and τr = 2 ns.
For further information on the simulations see Ref.
[1, 2, 3, 20].

3.3. Application to CIGSe absorbers

For the CIGSe absorbers, in principle the same
dependence of the TRPL on the excitation and the
temperature is found [20]. For the same reasons,
the time-resolved photoluminescence must be gov-
erned by a strong minority carrier trapping even in
CIGSe. The experimental decay curves are then
again approximated by simulations, which yield
Nt = 5× 1015 − 5× 1016 cm−3, Et ≈ 200 meV,
NA = 5× 1015 − 5× 1016 cm−3, and τr = 1− 10 ns
[20].

4. Relation of TRPL to JV-parameters

The above results show that the recombination
in an absorber is obscured by minority carrier trap-
ping. At the end of this paper we study the conse-
quences for the absorber characterization by means
of TRPL. To this end, the open-circuit voltage of
CIGSe solar cells has been measured as a function
of the decay time, that reveals a strong scattering
as show in figure 3. We now ask, if this scattering
is due to the impact of minority carrier trapping.
Primarily, it is pointed out that minority carrier
trapping is a transient phenomenon and does not
influence neither the steady state nor the transient
recombination. According to this, under low exci-
tations the same effective recombination lifetime τr
can be used for the determination of Voc (steady
state excitation) and the decay time τdec (pulsed
excitation). Based on that, the open-circuit volt-
age and the decay time can be related. First, the
open-circuit voltage is given as a function of τr by

Voc =
k T

e0
log

Jsc

J0
with J0(τr) = e0 n

2
i

√
Dn

NA

1
√
τr
, (4)

which is valid for a solar cell in the limit of QNR-
recombination [33]. In this equation, J0 is the sat-
uration current density and Jsc is the short-circuit
current density. For an accurate description, it
must be kept in mind that also Jsc depends on τr.
This can be modelled by evaluating the product of
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Figure 2: Experimental
(lines) and simulated
(dots) TRPL-transients
of a CZTSe absorber for
(a) I = 1 % and tem-
perature T = 296, 335 K
and (b) for T = 296 K
and I = 1, 50 %.
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Figure 3: Scatter plot of the open-circuit voltage Voc of
CIGSe solar cells measured as a function of the decay time
of the absorber. The curves are calculated Voc(τdec) graphs
according to equation (6) for n∗ ≈ 9× 1014 cm−3 (this cor-
responds to Et = 200 meV) and for Nt = 1015, 1017 cm−3.

the generation function Gph(z) and the charge car-
rier collection function η(z) [33]:

Jsc(τr) = e0

∫ d

0

Gph(z) η(z, τr)dz

≈ Jsc,0
√
Dn αeff

√
τr

1 +
√
Dn αeff

√
τr
. (5)

For reasons of simplicity, the thickness d of the ab-
sorber is assumed to be much larger than the dif-
fusion length. Furthermore, the generation func-
tion is arranged according to Lambert-Beer’s law
with an effective absorption coefficient αeff , and
the charge carrier collection function is arranged
by η(z, τr) = e

− z√
Dn τr . Together with equation

(5), the open-circuit voltage in equation (4) is a
well-defined function of the recombination lifetime
τr. In order to rewrite Voc as a function of τdec,
equation (2) is used. Inserting this into equation
(4) yields

Voc

(
τdec;

n∗

Nt

)
=
k T

e0
log

Jsc(
n∗

Nt
τdec)

J0(n
∗
Nt
τdec)

. (6)

Here, Voc is a function of τdec parametrized by
n∗/Nt. Accordingly, equation (6) describes an en-
tire family of curves, which already demonstrates
that there is no clear correlation between Voc and
τr. The function (6) is now evaluated for typical
CIGSe solar cell values of NA = 5× 1015 cm−3,
Jsc,0 = 25 mAcm−2, and ni = 109 cm−3 [33], and
diffusion constant of Dn = 0.05 cm2s−1 [31]. Fur-
thermore, the electron density is fixed to n∗ =
9× 1014 cm−3, which follows from the above deter-
mined trap energy Et = 200 meV. Thus, only the
trap density Nt is allowed to vary. As the figure
3 shows, the lower and the upper boundary to the
measured data can be achieved for trap density val-
ues of 1015 cm−3 ≤ Nt ≤ 1017 cm−3 which exactly
matches the trap density values determined by sim-
ulation of the TRPL [20]. This is a remarkable
result since it combines minority carrier trapping,
TRPL, and electrical measurements. In turn, only
by measuring Voc as a function of the decay time
boundaries to the trap density in CIGSe could be
determined.
Although the model of minority carrier trapping
may explain the recently found non-correlation of
the decay time and the open-circuit voltage, it is
still open why earlier papers reported a clear cor-
relation between both, though [34, 12, 35, 8, 9, 11,
36, 13]. A thorough study of these works reveals
that the open-circuit voltage at that time was below
600 meV. For so small voltages, the curves in figure
3 approximate each other due to a higher recombi-
nation, for which reason minority carrier trapping
becomes less important. Then, the decay time is
not disturbed by trapping and it correlates with
the open-circuit voltage. Hence, the problem of the
non-correlation only occured in the recent years af-
ter the solar cells had become more efficient.
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5. Conclusion

In this work, we have shown that the impact of
minority carrier traps and potential fluctuations on
the TRPL can be distinguished by measurements
at elevated temperatures and excitations. We have
discussed for the two semiconductors CIGSe and
CZTSe that potential fluctuations may not explain
the observed photoluminescence decay, for which
reason both materials must contain a substantial
amount of minority carrier traps. These have a
density of Nt = 1015 − 1017 cm−3 and an energy
of Et ≈ 200 meV. Based on this result, we could
calculate the open-circuit voltage as a function of
the decay time for absorbers containing traps. It
came out that there is an entire range of possible
open-circuit voltages for each decay time as a con-
sequence of a varying n∗/Nt ratio. Hence, the solar
cell parameters cannot be predicted unambiguosly
by measuring the TRPL decay time. However, this
model is still very inaccurate, because it implies
equal absorptivity, diffusion constant, and acceptor
density in all solar cells, and it neglects the impact
of other effects on the Voc such as resistances and
the quality of the overlying layers.
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5.4. BEYOND THE ONE-DIMENSIONAL MODEL

5.4 Beyond the one-dimensional model

Up to now, all simulations have been one-dimensional and inhomogeneities only have

been considered on the axial scale, e.g. in a pn-junction. However, most of the thin-film

semiconductors such as CIGSe are highly inhomogeneous even on the lateral scale. This

becomes apparent especially by electron microscopy that reveals the polycrystallinity of

the material with grain sizes of approximately 1 µm [16, 63]. Further evidence for the

fluctuations is given by measurements of the micro-photoluminescence and quasi-Fermi

level splitting. These unveil different characteristic fluctuation lengths of 20− 30 µm de-

termined by PL mapping [66], 3−6 µm measured from the quasi-Fermi level splitting [67],

or < 1 µm as estimated by near-field photoluminescence [68]. These results indicate that

there must be a diversity of material inhomogeneities each acting on a different length

scale. For this work, this leads to the question how such material non-uniformities af-

fect the time-resolved luminescence. This issue has been adressed in [Mai4] by means of

three-dimensional simulations.

For non-homogeneous recombination lifetimes, it has already been shown in [Mai1] that

the TRL decay curves may bend depending on the lifetime-distribution and the standard

deviation στ of the distribution. In [Mai4] it has been shown, that the effect also depends

on the length scale of the inhomogeneities. If the length scale is small, the charge carri-

ers will be able to diffuse to the position of highest recombination, that is, the smallest

recombination lifetime will govern the luminescence decay. An increase of στ will further
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Figure 5.6: (a) TRL decay and (b) open-
circuit voltage for a fluctu-
ating recombination lifetime
with fixed average and vary-
ing standard deviation στ .
The dashed lines mark στ =
0. For “small grains”, the
fluctuation length is in the
range of the average diffusion
length and for “large grains”
it is above.

reduce the minimum lifetime, and consequently the luminescence will decline faster. This

is illustrated in Fig. 5.6 (a). In Fig. 5.6 (b) it is shown that also the open-circuit voltage

will become smaller with increasing στ . It is pointed out that the correlation of the decay

time and the open-circuit voltage is not corrupted. Contrary to that, it has been shown for

large length scales that no recombination lifetime is preferred. Then, the TRL becomes a

sum of exponential decays, which yields bent decay curves. Remarkably, this equality of

high and low recombination lifetimes in the TRL is not reflected in Voc (see fig. 5.6 (b)).

Instead, the smallest recombination lifetime still dominates the open-circuit voltage. In

consequence, the decay time and the open-circuit voltage become anti-correlated.
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CHAPTER 5. RESULTS OF THE TRL SIMULATIONS AND EXPERIMENTS

Apart from the lifetime there are further inhomogeneous physical properties in CIGSe.

One of these is the band gap due to alloy, non-stoichiometry, or strain induced fluctu-

tations. Such non-uniformities of the band gap may become detrimental for the solar

cell’s performance, since they increase the saturation current density thereby reducing

the photovoltaic parameters [69, 70]. In contrast, the results in [Mai4] reveal a negligible

impact of band gap fluctuations on the luminescence decay. This may be another reason

for the non-correlation of the decay time and the open-circuit voltage.

Similar to the non-uniform composition and band gap also the doping densities can be

considered inhomogeneous. This leads to a varying net-doping density and consequently

to a fluctuation of the electrostatic potential [71]. As a result of these potential fluctu-

ations, electric fields come up which make the charge carriers drift in-plane. In [Mai4],

it has been demonstrated that this drift leads to bi-exponential decay curves with a first

decay being related to drift and a second decay, that is related to recombination. Despite

the similarity to the transient luminescence of a junction, it is pointed out that the TRL

decay governed by potential fluctuations does not exhibit a third decay, which earlier has

been assigned to the diffusion current across the barrier. The reason is that the potential

drop of potential fluctuations - in particular at room-temperature - is much smaller than

the built-in voltage in solar cells [71, 72]. In consequence of the missing contribution

of the diffusion current to the TRL decay, the decay time for potential fluctuations is

always smaller than the recombination lifetime, while it can become much larger than the

recombination lifetime for minority carrier traps.

It is pointed out that the TRL for potential fluctuations is bi-exponential under low ex-

citations. Accordingly, in principle there is no difference to the bi-exponential decay for

minority carrier trapping. In order to distinguish both effects, the temperature and ex-

citation dependence have been studied for potential fluctuations in [Mai4]. The results

have been compared in [Mai9] to the earlier findings for the case of minority carrier traps

[Mai3]. It has been found, that the temperature dependence is much smaller for potential

fluctuations than for minority carrier trapping because of the smaller energy barriers.

Under excitation increase, a vanishing first decay is expected for potential fluctuations,

while it should become more pronounced for minority carrier traps. Thus, measurements

of TRL under elevated excitations and temperatures enable an unambiguous discrimi-

nation of the effect of minority carrier traps and potential fluctuations. Based on this

finding, it has been demonstrated in [Mai9] that the TRL decay curves on Cu(In,Ga)Se2

and Cu2ZnSnSe4 are governed by minority carrier trapping.

In [Mai1–Mai3, Mai5–Mai9], the excitation in the simulations has been considered uni-

form in-plane. However, in real experiments the excitation in general is localized. This

may lead to lateral diffusion currents and inhomogeneous trap and defect occupation.

In [Mai4], this case of a local excitation and a global detection of the luminescence has

been investigated. It has been shown that the same effect of lowly and highly excited
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5.4. BEYOND THE ONE-DIMENSIONAL MODEL

regions being combined under a local excitation on the TRL cannot be simulated by a

uniform excitation with average photon density. In other words, an accurate simulation

of micro-TRL requires the consideration of a local excitation. Furthermore, the case of a

local excitation and a local detection of the luminescence has been studied. It has been

calculated that the resolution of such an experiment is limited by the size of the excitation

spot and by the diffusion length.

Concluding, in [Mai4] the effect of material and excitation inhomogeneities on the TRL

decay have been studied by three-dimensional simulations. It has been mentioned that

lifetime non-uniformities, band gap, and potential fluctuations may reduce the open cir-

cuit voltage by an increase of the saturation current. Regarding the TRL, however, the

effect is not straight forward. Lifetime and potential inhomogeneities lead to bi- or multi-

exponential decays whereas band gap fluctuations do not have a strong impact on the

luminescence decay. Accordingly, material inhomogeneities may be another reason for

the non-correlation of the decay time and Voc. For the purpose of the detection of such

fluctuations, micro-TRL experiments could be performed. It has been demonstrated, that

an accurate simulation of such experiments requires the consideration of localized excita-

tions. Another possibility, which goes beyond the scope of this work, is the measurement

of spectrally time-resolved luminescence. Thereby, band gap fluctuations appear by a red

shift in the transient luminescence spectra, whereas potential fluctuations are revealed by

a blue shift [71, 72].
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Theoretical study of time-resolved luminescence in semiconductors.
4. Lateral inhomogeneities
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Germany
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In the fourth part of this series, we study the impact of lateral inhomogeneities on the time-resolved lumines-
cence decay (TRL) after a pulsed excitation by means of simulation with Synopsys R© TCAD and analytical
approximation. This work consists of two parts: In the first part, the effect of excitations being inhomo-
geneous on a lateral scale is investigated. It turns out that for localized excitations there may be a strong
lateral diffusion of charge carriers thereby limiting the resolution of a micro-TRL experiment. In this case, a
replacement of the inhomogeneous excitation in the simulation by a homogeneous excitation and an average
photon density is not allowed, especially due to bi-molecular recombination and due to defect saturation
depending non-linear on the excitation. In the second part, we consider a homogeneous excitation and study
inhomogeneous material parameters, namely inhomogeneous charge carrier lifetimes, band gaps, and doping
densities. We find that their effects strongly depend on their characteristic lengths of variation. For length
scales smaller than the diffusion length, inhomogeneous material parameters can lead to curved luminescence
decays.

Keywords: simulation, luminescence, semiconductor, inhomogeneities

I. INTRODUCTION

The method of time-resolved luminescence is used
to determine material parameters, e.g. the minor-
ity carrier lifetime in a semiconductor. However, due
to the size of the excited area the obtained data are
mostly mean values averaged over a typical region of
10−4 cm2.1,2 Especially in polycrystalline semiconductors
such as Cu(In,Ga)Se2 (CIGSe) with grain diameters of
approximately 1 µm,3 the determined values are averaged
over 10,000 grains each exhibiting (slightly) different ma-
terial parameters. This can be illustrated by the spa-
tially resolved measurement of the photoluminescence or
the quasi-Fermi level splitting, both revealing inhomo-
geneities on a micrometer and sub-micrometer scale.4–7

The reasons for these inhomogeneities in CIGSe can be
various. For example, the measurement of the time-
resolved microphotoluminescence shows that the lumi-
nescence decay time may vary on a micrometer and sub-
micrometer scale by about 30%, which may in the first
place be due to a minority carrier lifetime being differ-
ent in each grain.5 It is found that this variation of the
lifetime cannot be due to non-uniform grain boundaries
only.4 Accordingly, also the bulk properties must differ
from grain to grain. This includes amongst others a
fluctuating band gap due to a non-uniform composition,
which is revealed by the measurement of the spectral
microphotoluminescence and the quasi-Fermi-level split-
ting. Reported values in CIGSe for the band gap inhomo-
geneities are in the range of 10− 80 meV.7–9 Apart from
these variations in defect density and composition, also

a)Electronic mail: matthias.maiberg@physik.uni-halle.de

a local variation of the doping density must be consid-
ered leading to fluctuations of the electrostatic potential.
Since CIGSe is very prone to such potential fluctuations
because of the high compensation, the deviation of the
potential may become up to 20− 100 meV.6,8–11

All these non-uniformities may limit the performance
of solar cells.8,12 The impact thereby depends on the
strength and the length scale of the inhomogeneities,
which in turn depend on material properties like the Ga
and Cu content in the case of Cu(In,Ga)Se2.5,10 There-
fore, it is indispensable to investigate all these inhomo-
geneities in order to develop a microscopic model of the
semiconductor, which then allows the optimization of the
semiconductor processing.
As time-resolved luminescence (TRL) is a method of
choice for such an investigation, the impact of inhomo-
geneities in general on the TRL decay is studied in this
work by three-dimensional simulation with Synopsys R©

TCAD. This work is divided into two parts. In the first
part, the effect of laterally inhomogeneous excitations is
studied. Here, it is discussed if the previous simplifica-
tion in the parts I-III2,13,14, namely the approximation
of a local excitation in the simulations by a uniform ex-
citation with average photon density, is justified. Af-
terwards, the impact of lateral diffusion induced by the
generation profile is investigated and consequences for
the resolution of a micro-TRL experiment are deduced.
In the second part, the impact of inhomogeneous mate-
rial properties is studied keeping the excitation laterally
homogeneous. We start with inhomogeneous charge car-
rier lifetimes, for which the ratio of the structure size and
the diffusion length will turn out as a crucial parameter
for the impact on the TRL decay. After this, the impact
of electrostatic fluctuations due to band gap or doping
density inhomogeneities is studied. It will be shown that
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the effect is rather similar to that of space charges de-
scribed in Ref. 13 and 14, but now also the temperature
dependence will be shown in order to detect such poten-
tial fluctuations in experiments. At the end, we give a
summary of TRL decay curves which have been observed
in all the simulations of the four parts of this work. This
will allow a classification of semiconductor decay curves
in order to narrow down the effects governing a concrete
luminescence decay.

II. EXCITATION INHOMOGENEITIES

In the first part of this paper we study excitations be-
ing inhomogeneous on the lateral scale. For systematic
reasons we demand homogeneous material parameters,
in particular homogeneous absorption coefficient, carrier
mobilities, and defect densities. With regard to TRL ex-
periments we suppose Gaussian shaped incident photon
flux densities of the form

jγ(x, y, t) =
Nγ

π3/2 σ2
r τp

e
− (x−x0)2

σ2r e
− (y−y0)2

σ2r e
− (t−t0)2

τ2p , (1)

that impinge at z = 0 perpendicular to the semiconduc-
tor surface. In (1), Nγ is the number of incident photons
per pulse, τp is the pulse length, σr is the standard devi-
ation in x and y direction. x0 and y0 refer to the center
of excitation and t0 corresponds to the excitation peak
maximum. Here we chose t0 = 1 ps and τp = 100 fs as
in Ref. 2, 13, and 14. Integration of (1) over time yields
the incident photon density per pulse

nγ(x, y) =
Nγ
π σ2

r

e
− (x−x0)2

σ2r e
− (y−y0)2

σ2r . (2)

In experiments, it is common to define an average photon
density instead of specifying an expression like in (2). To
this end, the region of excitation Ap is defined by the
1/e2 decay of nγ , more precisely by

Ap := {(x, y) ∈ R2 : nγ(x, y) ≥ 1

e2
nγ(x0, y0)}. (3)

Then, the area of the excitation spot becomes

Ap = ||Ap||2 = 2π σ2
r =

π

2 log 2
FWHM2

r , (4)

where FWHMr = 2σr
√

log 2 is the full width of half
maximum in x and y direction. In this work, we will use
both terms, FWHMr and σr for convenience. Knowing
the area Ap and the number of photons Nγ the aver-
age incident photon density nγ,av of a Gaussian shaped
excitation pulse can be defined by

nγ,av =
Nγ
Ap

=
Nγ

2π σ2
r

. (5)

The rate of electron-hole pair generation is given by
G = Rα jγ e−α z where R is the reflection coefficient at

(a) (b) (c) 

FIG. 1. (a) uniform excitation and global detection of the
luminescence (b) local excitation but global detection of the
luminescence (c) local excitation and local detection of the
luminescence

the front surface and α is the absorption coefficient. As-
suming excitations with pulse lengths shorter than both
diffusion and recombination time constants we find for
the generated charge carrier density (compare Ref. 14):

∆n0(x, y, z) ≈ Rα Nγ
π σ2

r

e
− (x−x0)2

σ2r e
− (y−y0)2

σ2r e−α z. (6)

From this, we find the maximum generated charge carrier
density ∆n0,max and from equation (5) the average gen-
erated charge carrier density ∆n0,av(z) for which holds

∆n0,max = Rα
Nγ
π σ2

r

(7a)

∆n0,av(z) =
1

2
∆n0,max e−α z. (7b)

A crucial parameter for the excitation in this work is
the standard deviation σr. If it is chosen sufficiently
small such as in micro-photoluminescence experiments,
the charge carrier densities will become much larger than
the doping density according to equation (7). This will
lead to high injection effects, that depend non-linearily
on the excitation. We will show that some high injection
effects occuring by local excitation cannot be simulated
by a laterally homogeneous (uniform) excitation with av-
erage photon density. Afterwards, the in-plane diffusion
as a consequence of the local excitation will be studied
and its impact on the luminescence decay will be inves-
tigated. In this regard, problems for the resolution of
TRL mapping on the micrometer scale arise. These will
be adressed at the end of the first part.

A. Comparability with one-dimensional simulations

In the parts I-III of this work,2,13,14 the excitation
was assumed uniform in-plane and the overall radia-
tive recombination was taken as the luminescence in-
tensity. This is illustrated by the pictogram 1 (a). In
experiments such as micro-photoluminescence or micro-
cathodoluminescence, the excitation is localized (see fig.
1 (b)). For this reason, precise simulations of lumines-
cence experiments actually must be three-dimensional
with overproportional longer computation times. In the
following, it is discussed if this higher dimensionality can
be circumvented by replacing in the simulations the lo-
cal excitation in equation (2) by a uniform excitation
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with an average photon density as defined in equation
(5). The discussions are based on equation (9) in Ref.
14, that gives an expression for the slope of the lumines-
cence intensity I(t) derived for the one-dimensional case.
However, for the purpose of the following considerations
it must be generalized to three dimensions, first. This
yields the following equation:

d

dt
I(t) =−B

∫

V

(nRp + pRn) dr

︸ ︷︷ ︸
(a)

−B
∫

∂V

(Sp n∆p+ Sn p∆n) dS

︸ ︷︷ ︸
(b)

+B

∫

V

E (µp p∇rn− µn n∇rp) dr

︸ ︷︷ ︸
(c)

−B
∫

V

(Dp +Dn) ∇rn∇rp dr

︸ ︷︷ ︸
(d)

+B

∫

V

p (ee − ec) dr

︸ ︷︷ ︸
(e)

. (8)

The quantities in equation (8) are as follows: B is
the coefficient of radiative recombination, Rp and Rn
are the net-recombination rates, Dp and Dn are the
diffusion constants, Sp and Sn are the space-dependent
surface recombination velocities, and µp and µn are
the charge carrier mobilities of electrons and holes,
respectively. Furthermore, it is V the volume of the
semiconductor, ∂V the surface of the semiconductor, ∇r

the nabla operator, E the electric field strength with
E|∂V = 0, and ee and ec are the emission and capture
rates of electrons by an electron trap in the band gap.
The terms (a) and (b) describe volume and surface
recombination and are always negative. The terms (c)
and (d) describe drift and diffusion of charge carriers
and can be positive or negative. The term (e) describes
trapping and de-trapping of electrons (see Ref. 2).

1. Low injection levels

We begin the considerations with low injection condi-
tions. This requires excess carrier densities being smaller
than the density of majority carriers (holes) and a den-
sity of occupied traps being smaller than the total trap
density, that is ∆n, ∆p, n0 � p0 and nt � Nt. In conse-
quence, the recombination rate of electrons can be writ-

ten as Rn = ∆n
τn

and equation (8) becomes

d

dt
I(t) = −B p0

1

τn

∫

V

∆ndr

︸ ︷︷ ︸
(a)

−B p0

∫

∂V

Sn ∆ndS

︸ ︷︷ ︸
(b)

+

+B p0 σn vn n
∗
∫

V

nt dr−B p0 σn vnNt

∫

V

∆ndr

︸ ︷︷ ︸
(e)

. (9)

First, it is pointed out that the drift and diffusion terms
(c) and (d) in equation (8) become 0 for low injection
conditions. The other integrands in term (a), (b), and
(e) of equation (9) are linear in ∆n and nt, respectively.
Therefore, the luminescence decay depends only on the
total number of (trapped) electrons but not on their dis-
tribution. Then, for local and for uniform excitations
with equal average photon densities the luminescence in-
tensities decay equally.

2. Bimolecular recombination and axial diffusion

If a semiconductor is excited by a high, laterally in-
homogeneous excitation there will be regions having a
generated carrier density smaller than the doping den-
sity and regions having a generated charge carrier density
larger than the doping density. For the latter, the TRL
decay will exhibit characteristics of bimolecular recombi-
nation and axial diffusion (see Ref. 14). We now ask, if
the same effect of lowly and highly excited regions being
combined under one Gaussian pulse on the TRL decay
can also be achieved by a uniform excitation being either
low or high. For the considerations we naturally omit lat-
eral diffusion of charge carriers but allow axial diffusion.
Defect and trap saturation effects are first neglected and
discussed separately. The radiative recombination can
then be written as follows (see equation (32) in Ref. 14):

Rrad(t, z,r) = B p2
0 e

t
τn ×

× ∆n0(t, z, r) (p0 + ∆n(t, z, r))(
∆n0(t, z, r)− e

t
τn (p0 + ∆n0(t, z, r))

)2 . (10)

Here, the in-plane distance r from the middle of the ex-
citation spot has been introduced by r2 = (x − x0)2 +
(y − y0)2. The charge carrier density ∆n0(t, z, r) is the
solution of the homogeneous diffusion equation, that is
without recombination term. For t = 0, it equals the gen-
erated charge carrier density, which either will be close
to the doping density p0 or far below. Then, equation
(10) can be expanded by powers of ∆n0/p0 which yields

Rrad(t, z,r) ≈ B p0 ∆n0(t, z, r) e−
t
τn

−B∆n0(t, z, r)2
(

e−
t
τn − 2 e−2 t

τn

)
. (11)

As in-plane diffusion of charge carriers has been omit-
ted, the density ∆n0(t, z, r) can be expressed by
∆n0(t, z, r) = nγ(r) f(t, z) with the photon density per
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pulse nγ(r) as in equation (2) and a function f(t, z) de-
scribing the axial diffusion (see equation (4) in Ref. 14).
Equation (11) then becomes

Rrad(t, z,r) ≈ B p0 nγ(r) f(t, z) e−
t
τn

−B nγ(r)2 f(t, z)2
(

e−
t
τn − 2 e−2 t

τn

)
. (12)

The photon density nγ(r) must now be related to the
average photon density nγ,av. To this end, we write

nγ(r) = nγ,av Θ(
√

2σr − r) + η(r) using the Heaviside
step function Θ. This includes a new function η(r), which
is the difference between the Gaussian function and the
average value. This function fulfilles

∫ ∞

0

r η(r) dr = 0,

∫ √2σr

0

r η(r) dr = −nγ,av σ2
r/e

2, (13a)

and

∫ ∞

0

r η(r)2 dr = 2n2
γ,av σ

2
r/e

2. (13b)

By this, equation (12) can be integrated over the volume
V which gives an approximation to the luminescence in-
tensity for the localized excitation. All integrals contain-
ing η(r) or η(r)2 vanish and it remains

I(t) ≈
∫

V

(
B p0 nγ,av f(t, z) e

− t
τn

−B n2
γ,av f(t, z)2

(
e
− t
τn − 2 e

−2 t
τn

))
dV. (14)

However, the integrand is the rate of radiative recombi-
nation if the semiconductor is excited uniformly with an
average photon density nγ,av (see eq. (12) and replace
nγ(r) by nγ,av). This shows that in first and second or-
der approximation the effect of bimolecular recombina-
tion and axial diffusion due to a localized excitation can
also be obtained by a uniform excitation with an average
photon density. In figure 2 (1), this result also has been
approved by simulation. It can be seen, that the decay
curve for a localized excitation indeed can be simulated
by a uniform excitation. Note, that these simulations
also include lateral diffusion. Accordingly, the result in
equation (14) will be still correct if the above assumption
of negligible lateral diffusion is not made.

3. Trap and deep defect saturation

Next, the impact of a high and localized excitation
on the saturation of deep and shallow defects is studied.
The effects as revealed by simulation are exemplified in
figure 2 (2) and (3). First, it is obvious that the decay
of the transients depends on the size of the excitation
spot which indicates an impact of the lateral diffusion
of charge carriers. However, as shown below it cannot
be the lateral diffusion itself that influences the lumines-
cence decay. Instead, the lateral diffusion leads to the
reduction of charge carrier densities in highly excited re-
gions which in turn reduces the saturation of defects.
Secondly, the figure demonstrates that the saturation ef-
fects are more pronounced if the excitation spot becomes
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FIG. 2. TRL-transients of a semiconductor layer which is excited
uniformly (dashed lines) and locally (full lines) with FWHMr =
1, . . . , 10 µm. The electron and hole SRH-lifetimes and charge car-
rier mobilities are τSRH = 20 ns and µ = 20 cm2 V−1 s−1. For
the simulation of trapping (2), the trap parameters are Nt =
1015 cm−3, Et = 260 meV, and σn = 10−14 cm−2. For the simula-
tion of defects with asymmetric lifetimes (3), the hole SRH-lifetime
is τSRH = 200 ns. The average photon density per pulse is always
nγ,av = 3 × 1012 cm−2 (corresponds to ∆n0,max = 20Na). For
visibility, the curves are shifted.

larger than the diffusion length L = 1 µm. Then, the
diffusion currents are small and charge carrier densities
are hardly reduced by diffusion which preserves the de-
fect saturation. Furthermore, highly and lowly excited
regions compensate each other, for which reason the de-
cay of the transients are equal to that of a homogeneous
excitation with equal average photon density.
All in all, local excitations with excitation diameters
larger than the diffusion length can be simulated by uni-
form excitations if the average photon density is equal.
Errors are made for small excitation spot sizes, because
lateral diffusion leads to different charging and discharg-
ing of defects.

B. Direct impact of lateral diffusion on TRL decay

In the following, the effect of lateral charge carrier dif-
fusion on the global TRL decay is studied. In other
words, we again consider local excitation and global de-
tection as illustrated by figure 1 (b). To study the influ-
ence of lateral diffusion on the TRL decay we focus on
term (d) in equation (8). This term describes the direct
impact of diffusion on the TRL decay. For its evalua-
tion, a homogeneous semiconductor with∇rp0 = ∇rn0 =
∇rDn = ∇rDp = 0 is assumed. Furthermore, ∆n and
∆p must be known as functions of time. However, for
this estimation knowledge about the maximum diffusion
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current is sufficient. Since this maximum current flows at
the very beginning, ∆n = ∆p = ∆n0(x, y, z) with ∆n0

from equation (6) is used. By this, the following two
integrals can be evaluated:

∫

V

∇rn∇rp dr =
1

4
π ασ2

r

(
1− e−2αd

)
(15a)

∫

V

∂

∂z
n
∂

∂z
p dr =

1

4

π

α

(
2 + α2 σ2

r

) (
1− e−2αd

)
(15b)

with d being the semiconductor thickness. Equation
(15a) describes the impact of lateral and axial diffusion
on the TRL decay, whereas in equation (15b) only ax-
ial diffusion is allowed. By divison of (15b) by (15a) the
contribution of the impact of axial diffusion to that of
total diffusion is found to be:

axial diffusion

total diffusion
=

α2 σ2
r

2 + α2 σ2
r

α σr�1≈ 1. (16)

This shows that the impact of axial diffusion on the
TRL decay is dominating for strong absorption (α) or for
broad excitations (σr). For typical values of α = 4 µm−1

and σr = 10 µm equation (16) yields 0.999 and even for
σr = 1 µm as in micro-luminescence experiments the ra-
tio is 0.889, which shows that the impact of lateral dif-
fusion can mostly be neglected. Accordingly, no curved
decay due to lateral diffusion is expected. However, it
is pointed out that this is true only if the global lumi-
nescence from the whole semiconductor is considered. If
only a confined region is considered, these statements are
no longer valid which will be discussed in the next section
II C

C. TRL mapping

Above it has been calculated, that the impact of axial
charge carrier diffusion on the global luminescence decay
is dominating against lateral diffusion impact. This is no
longer true for local-local luminescence mapping experi-
ments, when the luminescence decay is observed spatially
resolved as illustrated in figure 1 (c). To make this clear,
we consider the following experiment: For mapping of
the luminescence decay time an excitation as in equation
(1) is used with FWHMr = 1 µm. The resulting lumi-
nescence is observed spatially resolved and we ask for the
region the luminescence comes from. Therefore, we calcu-
late the luminescence from a cylindrical region with cen-
ter (x0, y0) and diameters of dcyl = 1, . . . , 50FWHMr

which is shown in figure 3. In reality, such an experi-
ment could be realized by a cover layer which is trans-
parent only for the excitation but exhibits a pinhole for
the luminescence. An example may be a metal layer let-
ting pass an electron beam. Another realization could be
confocal TRPL.
First, it is obvious (see (1) in Fig. 3) that the lu-
minescence intensity at t ≈ 0 from the cylinder with
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FIG. 3. TRL-transients of a semiconductor layer that is excited by
a Gaussian laser pulse focused to FWHMr = 1 µm with nγ,av =
109 cm−2. The intensity is calculated by integrating the radiative
recombination in cylindrical regions around (x0, y0) with diameters
of dcyl = 1FWHMr, 2FWHMr, 5FWHMr, 50FWHMr. The
carrier SRH-lifetime is τSRH = 20 ns and the carrier mobilities are
µ = 1, 100 cm2 V−1 s−1.

dcyl = 1FWHMr is only ∼45% of the total lumines-
cence approximated by dcyl = 50FWHMr. This is in
accordance with the fact, that also only 50% of the ex-
cited semiconductor are within 1FWHMr. Already for
dcyl = 2FWHMr the luminescence intensity is ∼90% of
the total intensity and the difference becomes negligible.
Secondly, the luminescence intensity in the cylinders de-
cays faster than the total luminescence due to the evac-
uation of charge carriers (see (2) in Fig. 3). This means,
though lateral diffusion does not affect the global lumi-
nescence decay it may affect the local luminescence decay.
This limits the spatial resolution of charge carrier lifetime
mappings.
An estimation of the resolution shall be carried out in
the following. To this end, the electron density must
be known as a function of space and time which can
be obtained by the solution of the inhomogeneous dif-
fusion equation. Due to the symmetric excitation we
use cylindrical coordinates r, ϕ, z with x = x0 + r cosϕ,
y = y0 + r sinϕ, and z = z. Then, the initial-boundary-
problem reads

∂

∂t
∆n−Dn ∆r ∆n = −Rn (17a)

∂

∂z
∆n

∣∣∣∣
z=0

= Sf ∆n|z=0 (17b)

∂

∂z
∆n

∣∣∣∣
z=d

= −Sb ∆n|z=d (17c)

lim
r→±∞

∆n = 0 (17d)

∆n|t=0 = ∆n0 (17e)

where ∆r is the Laplacian operator, Sf and Sb are the
front and back surface recombination velocities, and ∆n0

is given by equation (6). The recombination rate is ar-
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ranged by Rn = ∆n
τn

with the recombination lifetime τn
which is valid for low excitation intensities. The ex-
act solution of (17) can then be found by a separation
ansatz. This leads to Bessel functions which are difficult
to process further. Thus, only an approximate solution
is searched for that can be obtained by replacing (17b)
and (17c) by limz→+∞∆n = 0 which is fulfilled for thick
absorbers. In this limit, the solution reads

∆n(t, r, z) =
Nγ Rα

2π (σ2
r + 4Dn t)

(
1 + erf

(
z − 2Dn α t

2
√
Dn t

))

e−α z+Dn α
2 t e
− r2

σ2r+4Dn t e
− t
τn (18)

with erf(x) being the error function. Approximately
knowing the time-dependent electron density we can cal-
culate the rate Rrad = B p0 ∆n of radiative recombina-
tion. From this, we calculate the function A(t) defined
by:

A(t) =
2π

∫ dcyl/2
0

∫∞
0
Rrad r dzdr

2π
∫∞

0

∫∞
0
Rrad r dzdr

= 1−e
−

d2cyl

16Dn t+4 σ2r . (19)

A(t) gives the fraction of luminescence that comes from
a cylinder with diameter dcyl in relation to the total
(global) luminescence. Hence, the time-dependence of
A describes the evacuation of charge carriers out of the
cylinder. If the time-dependence of A is weak, the evac-
uation will be slow and the decay of the luminescence
from the cylinder will only exhibit the recombination of
the charge carriers. This means for the estimation of the
resolution of a TRL mapping we have to determine dcyl
such that the time-dependence of A is weak. In other
words, we require that A(t) stays close to A(0). This is
expressed by

A(3τn) ≥ 0.9A(0), (20)

which allows a 10% deviation within [0, 3τn]. This equa-
tion must now be rewritten for dcyl using A(t) from equa-
tion (19). This is not possible analytically. However, by
applying a Taylor approximation equation (19) can be
linearized and the result becomes approximately

dcyl =

{
2
√

log 10
√
σ2
r + 12L2

n, for Ln > 0.15σr,

< 2
√

3σr, for Ln ≤ 0.15σr.
(21)

Here, Ln =
√
Dn τn is the diffusion length. In figure

3, it was FWHMr = 1 µm, τn = 20 ns, and Dn =
0.026 cm2V−1s−1. Equation (21) then yields dcyl ≈ 3 µm.
This means, if the size of the pinhole is chosen to 3 µm,
the recombination of the charge carriers can be observed
with an error of less then 10%. For Dn = 2.6 cm2V−1s−1,
however, equation (21) yields dcyl ≈ 24 µm. This shows
that the resolved region is broad due to charge carrier
diffusion. Therefore, TRL mapping is possible only in
particular cases.
The second problem in TRL mappings is the quantum
yield of the experimental setup. In typical TRL map-
pings with laser excitation the number of photons per
pulse is approximately Nγ = 107 to achieve a good sig-
nal to noise ratio. However, if the light is focused to a
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FIG. 4. TRL-transients of a semiconductor layer with a car-
rier SRH-lifetime of τSRH = 20 ns and carrier mobilities µ =
1, 100 cm2 V−1 s−1. The semiconductor is excited by a Gaussian
laser pulse with Nγ = 107 photons focused on varying spot sizes
with FWHMr = 1, 2, 5, 10, 20, 50, 100 µm. The dashed curve
marks ∆n0,max ≈ NA.

spot size with FWHMr = 1 µm the maximum gener-
ated electron density ∆n0,max will be in the range of
1019. . . 1020 cm−3. This is far above the limit of low
excitations and leads to strong bimolecular recombina-
tion and defect saturation.13,14 Figure 4 shows the TRL
decay for a semiconductor excited by Nγ = 107 pho-
tons per pulse that are focused to different spot sizes
FWHMr = 1 . . . 100 µm. For large spot diameters, the
photon density is low and hence the semiconductor is
only weakly excited. Then, the above considerations on
the TRL-mapping can be applied. For small spot sizes,
however, the photon density per pulse becomes large and
the semiconductor is highly excited. The transition is
marked by the dashed curve, for which the maximum
charge carrier density equals the doping density. It can
be seen, that the curves with small FWHMr strongly
bend which can be assigned to bimolecular recombina-
tion and axial diffusion (since the effect of lateral diffu-
sion can be excluded according to (16)).
All in all, one has to make a compromise between the
TRL-mapping resolution given by σr, the signal-to-noise
ratio determined by Nγ , and the accuracy of the lifetime
measurement perturbed by high injection effects and the
evacuation of charge carriers.

III. SEMICONDUCTOR INHOMOGENEITIES

In contrary to the previous considerations, in this part
we assume a homogeneous excitation and study semi-
conductors with inhomogeneous material parameters. As
mentioned in the introduction, in polycrystalline mate-
rials these are primarily fluctuating minority carrier life-
times, band gaps, and doping densities.
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A. Inhomogeneous carrier lifetime

If a polycrystalline semiconductor is excited by light,
the spot may cover 10,000s of grains. If each grain has
a distinct defect density, there will be a multitude of
minority carrier lifetimes jointly affecting the lumines-
cence decay. In Ref. 13 we have already shown under
the assumption of negligible diffusion currents that the
effect strongly depends on the exact distribution of the
minority carrier lifetimes. Thereby, we studied equal and
Gaussian lifetime distributions, and equal and Gaussian
defect distributions. We found that lifetime distribu-
tions being symmetric cannot lead to strongly curved
luminescence transients. However, equal and Gaussian
defect distributions lead to asymmetric lifetime distri-
butions and may result in strongly curved luminescence
transients. These results will be tested in the following
by three-dimensional simulations. In order to do so, the
simulated semiconductor is divided into a mesh of 11×11
vertical, columnar grains. Electron Shockley- Read-Hall
lifetimes are then assigned randomly and pairwise inde-
pendently to the grains. The latter means, a correlation
of lifetimes between neighboring grains is not considered.
But in contrast to the analytical approach, the simulation
accounts for carrier transport between different grains.
Grain boundary recombination and potential barriers are
omitted.

1. Simulated lifetime distributions

Prior to presenting the results of the simulation, we in-
troduce the simulated lifetime probability functions f(τ),
their average, and their standard deviation. To this end,
we define the n-th moment of τ by

〈τn〉 =

∫ ∞

0

τn f(τ)dτ. (22)

Here, the integration is carried out only for values larger
than zero, since only positive lifetimes are physically rea-
sonable. By this notation, the average µτ and the stan-
dard deviation στ of τ are defined by

µτ = 〈τ〉 , στ =

√
〈τ2〉 − 〈τ〉2. (23)

These definitions are now applied to the four lifetime
probability density functions. First, equally distributed
lifetimes are considered for which the probability density
function is given by

f(τ) =

{
1

τ2−τ1 , τ1 ≤ τ < τ2,

0, else.
(24)

τ1 and τ2 are two parameters. Using equation (22) and
(23) yields the average and the standard deviation for
equally distributed lifetimes:

µτ =
1

2
(τ1 + τ2) , στ =

1

2
√

3
(τ2 − τ1) . (25)

G a u s s  τ

f(τ
)

τ

e q u a l  τ

f(τ
)

τ
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 f(τ
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e q u a l  N d

 

 

f(τ
)

τ

FIG. 5. Schematic graph of the four studied lifetime probability
density functions f(τ) for the case of an equally and Gaussian dis-
tributed lifetime τ , and for an equally and Gaussian distributed
defect density Nd.

The parameters τ1 and τ2 can now be expressed by
τ1 = µτ −

√
3στ and τ2 = µτ +

√
3στ . Since only

positive lifetimes are reasonable (τ1, τ2 ≥ 0) it follows
στ ≤ 1√

3
µτ . This means, for a given average µτ , the

distribution can not be broadened arbitrarily.
If the lifetimes are Gaussian distributed, the probability
density function will approximately be given by

f(τ) =





1√
2π στ

e
− (τ−µτ )2

2 σ2τ , µτ − 3στ ≤ τ < µτ + 3στ ,

0, else

(26)

Again, only positive lifetimes are reasonable for which
follows στ ≤ 1

3 µτ . Thus, the broadness for both distri-
butions - the equal and the Gaussian lifetime distribution
- have an upper limit due to their symmetry around the
average. This is shown schematically in figure 5.
We now consider a defect densityNd, which is equally dis-
tributed. The probability density function is then similar
to Eq. (24):

f(Nd) =

{
1

Nd,2−Nd,1 , Nd,1 ≤ Nd < Nd,2,

0, else.
(27)

With the substitution τ = (σn vnNd)
−1

, this can be
transformed into a probability density function of life-
times:

f(τ) =

{
τ1 τ2
τ1−τ2

1
τ2 , τ2 < τ ≤ τ1,

0, else,
(28)

with τi := (σn vnNd,i)
−1

. Again, the distribution is de-
scribed by two parameters τ1 and τ2. Unfortunately, a
relation to the average and standard deviation µτ and
στ is not possible analytically and must be done numer-
ically. By the implicit function theorem, however, it can
be shown that τ1 and τ2 always exist for an arbitrary
µτ > 0 and στ > 0. In turn this means that στ has no
upper limits for an equal defect distribution!
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Finally, we assume a Gaussian distribution of deep de-
fects Nd with average µd and standard deviation σd:

f(Nd) =





1√
2π σd

e
− (Nd−µd)2

2 σ2
d , µd − 3σd ≤ Nd < µd + 3σd,

0, else,

(29)

With the transformation τ = (σn vnNd)
−1

, the probabil-
ity density function of lifetimes becomes

f(τ) =





1√
2πσn σd vn τ

2 e
−
(

1−σn vn µd τ√
2 σn σd vn τ

)2

, τ2 < τ ≤ τ1,
0, else

(30)

with τ2 = (µd + 3σd)
−1

and τ1 = (µd − 3σd)
−1

. Again,
the two parameters σd and µd or equivalently τ1 and
τ2 have to be determined numerically for each given µτ
and στ . It turns out that also in this case στ has no
upper limits. Hence, a symmetric defect distribution
leads to an asymmetric lifetime distribution (as shown
in Fig. 5), which enables an unlimited broadening of the
distribution.

2. Resulting TRPL

Now, we study the impact of each distribution on the
luminescence decay. To this end, the average of each life-
time distribution is fixed to µτ = 20 ns, and the standard
deviation στ is varied from 0 ns up to µτ√

3
≈ 11.5 ns for

the equal lifetime distribution, up to µτ
3 ≈ 6.5 ns for the

Gaussian lifetime distribution, and up to 20 ns for equal
and Gaussian defect distributions. The charge carrier
mobility is 20 cm2 V−1 s−1 which yields an average dif-
fusion length of Ln ≈ 1 µm. In order to study the effect
of lateral diffusion, we therefore chose two sizes of the
grains: 1 µm and 6 µm. The results are shown in Fig. 6.
First, we focus on the decay for a large grain size of 6 µm
which is much larger than the diffusion length. Then,
the luminescence transients bend with increasing broad-
ness στ of the underlying distribution f(τ). The effect is
smaller for the equal and Gaussian lifetime distribution,
since here the standard deviation cannot be increased ar-
bitrarily. In turn, the effect is larger for the equal and
Gaussian defect distribution, since here the standard de-
viation has no upper limits.
Due to the grain size being larger than the diffusion
length, most of the charge carriers recombine in the same
grain where they have been generated. This means, the
lifetime distribution is only little changing during the de-
cay and the luminescence intensity can be calculated by

I(t) = I0

∫ ∞

0

f(τ)e−
t
τ dτ (31)

with a normalization factor I0. For each of the four dis-
tributions, the integrals have been evaluated in Ref. 13
and the result is drawn in figure 6 (dashed lines) for the

largest values of στ . It can be seen, that these theo-
retical curves are upper limits for the simulated tran-
sients. The difference may have two reasons. First, the
random sample of 121 lifetimes in the simulation may
be too small. Then, especially the high lifetimes with
low probability density as for the equally and Gaussian
distributed defect densities may be not sufficiently rep-
resented. Secondly, lateral diffusion is not completely
switched off. This means, charge carriers diffuse to grains
with small charge carrier lifetime, since these form sinks
for the charge carriers. This weakens the impact of grains
with high lifetime and strengthens the impact of grains
with low lifetimes. For this reason, the transients decay
faster than the theoretical ones.
The effect is more pronounced, if the grain size is re-
duced. Then, grains with high minority carrier lifetimes
have almost no impact on the luminescence decay, which
is only determined by grains with small minority carrier
lifetime. Therefore, all transients decay faster with in-
creasing στ , though the average lifetime is always fixed
to 20 ns. Thereby, the effect is again smaller for the equal
and Gaussian lifetime distribution due to the limitation
of στ . In summary, we find curved transients due to life-
time distributions if diffusion of charge carriers is small,
that is if the average diffusion length is larger than the
grain size.

B. Inhomogeneous band gap

The above discussed fluctuations of the lifetime may
strongly affect the TRL and the solar cell parameters.
However, estimates show that in the case of CIGSe the
effect is too small in order to explain the intensity inho-
mogeneities that are observed in micro TRPL4. Hence,
apart from the lifetime there must be other inhomo-
geneous physical properties. One of these may be the
band gap due to alloy-, non-stoichiometry, or strain in-
duced fluctuations. This assumption is supported by
the observed correlation of the quasi-Fermi level split-
ting and the gallium content in CIGSe (which in turn
results in an inhomogeneous band gap). The analysis of
these data yields band gap fluctuations of 10−80 meV7–9;
in Cu2ZnSnSe4 these are even larger with 70 − 90 meV
due to order-disorder phenomena9. Such strong non-
uniformities of the band gap are detrimental for the so-
lar cell’s performance, since they increase the satura-
tion current density thereby reducing the photovoltaic
parameters8,12.
In this section, we study the impact of a fluctuating band
gap on the TRL decay. We first study the impact of a
fluctuating band gap on the bulk properties, in particu-
lar on the absorption coefficient and the recombination
lifetimes. It will turn out, that these properties have
only negligible impact on the integral luminescence de-
cay. For investigation of the impact on surface recombi-
nation we must account for a V-shaped band gap grading
which has been often observed in CIGSe. The band gap
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FIG. 6. Simulated TRL-transients of a semiconduc-
tor with 121 grains. For each grain, the SRH-lifetime
is determined using a random number generator and
by a transformation the lifetime is calculated accord-
ing to one of the four lifetime distributions. The av-
erage SRH-lifetime is always 20 ns. The standard de-
viation στ is varied from 0 ns up to 11.5 ns for equally
distributed lifetimes, up to 6.5 ns for Gaussian dis-
tributed lifetimes, and up to 20 ns for both defect dis-
tributions. For the largest στ , the theoretical TRL-
transients are calculated after equation (31) (dashed
lines). The simulations were done for a large grain
size of 6 µm (upper graphs) and a small grain size of
1 µm (lower graphs). The photon density per pulse
is nγ = 109 cm−2 and the charge carrier mobility is
20 cm2 V−1 s−1 leading to an average diffusion length
of 1 µm.

gradient towards the back side is found to be laterally
homogeneous whereas the front band gap gradient may
fluctuate.15 Thereby, the fluctuation length exceeds the
size of the grains and becomes approximately 3 µm.

1. Impact on photon absorption

If the band gap varies, this will simultaneously cause
a variation of the absorption coefficient. To estimate its
fluctuation strength, the absorption coefficient is related
to the band gap by16

α(~ω) = C1

√
~ω − Eg. (32)

It is C1 a specific material constant and Eg = Eg(x, y, z)
is the space-dependent band gap. We rewrite the band
gap using the constant average band gap Eg,av and the
space-dependent fluctuation δEg = δEg(x, y, z):

Eg = Eg,av + δEg. (33)

For CIGSe with Eg,av = 1.15 eV we take an average value
of δEg ≈ 50 meV.7 Thus, the deviations of the band gap
from the average value are small and Eq. (32) can be
expanded by orders of δEg:

α(~ω) = C1

√
~ω − Eg,av −

1

2
C1

δEg√
~ω − Eg,av

(34a)

= αav + δα. (34b)

In the first term of Eq. (34a), only the average band
gap enters which is therefore assigned to the average ab-
sorption coefficient αav. The second term is then the
fluctuation δα of the absorption coefficient for which it
holds

δα

αav
= − δEg

2 (~ω − Eg,av)
. (35)

For typical values of Eg = 1.15 eV, ~ω = 1.9 eV, and
δEg = 50 meV this yields δα/αav ≈ 3%. With equation
(7), then also the fluctuation δ∆n0,max of the maximum
generated charge carrier density can be estimated, which
becomes

δ∆n0,max

∆n0,max,av
=

δα

αav
≈ 3%. (36)

Both effects are very small. Therefore, the impact of
band gap fluctuations on the photon absorption and
charge carrier generation can be neglected.

2. Impact on bulk recombination

For the study of the impact of a band gap fluctuation
on the bulk recombination we consider two cases: ra-
diative band-to-band recombination and defect assisted
SRH-recombination. In the first case, the recombination
rate is given by Rrad = B (n p− n0 p0). For a p-type
semiconductor we then find for the radiative lifetime of
electrons

τrad,n =
∆n

Rrad
=

1

B (p0 + ∆p)
. (37)

We now estimate the fluctuation strength of the radiative
lifetime due to the band gap fluctuation. The hole den-
sity p0 shall be constant, since in semiconductors such as
CIGSe band gap fluctuations are related mainly to the
conduction band. Furthermore, the transition rate B is
assumed to be constant, since the variations due to the
fluctuating band gap are small. It remains the excess
hole density ∆p, which varies weakly according to Eq.
(36). Again, we write the excess hole density as a super-
position of the average generated charge carrier density
∆pav and the fluctuation δ∆p. Inserting this into Eq.
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(37) and expanding it by powers of δ∆p yields

τrad,n =
1

B (p0 + ∆pav)
− δ∆p

B (p0 + ∆pav)
2 (38a)

= τrad,n,av + δτrad,n. (38b)

Again, the first term is the average radiative recombina-
tion lifetime of electrons, since only the average charge
carrier densities enter. Therefore, the second term must
be the variation due to the band gap fluctuation for which
holds

δτrad,n
τrad,n,av

=
δ∆p

p0 + ∆pav
. (39)

For the evaluation of equation (39), low and high injec-
tions must be distinguished. One finds

δτrad,n
τrad,n,av

≤
{

δ∆p
p0
≈ 0 for low injections

δ∆p
∆pav

≈ 3% for high injections.
(40)

for the parameters stated above. The same is done for
recombination assisted by defects deep in the band gap.
For a p-type semiconductor, the SRH-lifetime of electrons
then becomes

τSRH,n =
∆n

RSRH
= τn0 + τp0

∆n

p0 + ∆p
. (41)

Here, the lifetimes τn0 and τp0 do not depend on the
band gap. Hence, only fluctuation of ∆n and ∆p must
be considered. Expansion of Eq. (41) by orders of δ∆n
and δ∆p then yields the variation δτSRH,n of the electron
SRH-recombination lifetime. The resulting expression is
very long for which reason it is not shown here. The
discrimination into low and high excitations yields

δτSRH,n

τSRH,n,av
≤
{ τp0

τn0

δ∆n
p0

≈ 0 for low injections
δ∆n

∆nav
+ δ∆p

∆pav
≈ 6% for high injections.

(42)

According to the equations (40) and (42), the variation
of the bulk lifetime due to band gap fluctuation is neg-
ligible for low injection conditions. For high excitations,
it becomes less than approximately 10%. Such small life-
time inhomogeneities will not substantially influence the
luminescence decay as discussed in the previous section.

3. Impact on front surface recombination

Finally, we discuss the impact on the front surface re-
combination. Above it was pointed out that in CIGSe
often V-shaped band gap gradients are found.17,18 Such
a band gap grading may reduce surface recombination of
charge carriers, since it hinders the charge carrier trans-
port towards the surface. Hence, a laterally fluctuating
band gap grading may influence the surface recombina-
tion and thus the luminescence decay. From lumines-
cence measurements it is known that only the front gra-
dient of the band gap varies.15 The band gap gradient
towards the back surface is constant. This is exemplified
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FIG. 7. TRL-transients of a semiconductor layer with V-shaped
band gap gradient with a minimum band gap of 1.15 eV within a
distance of 0.8 µm from the front surface, a front surface gradient
of 60 meV, and a back surface gradient of 120 meV. Thereby, the
front surface gradient is fluctuating sinusoidally with amplitudes
0 and 1, and a period of 3 µm. Furthermore, the front surface
recombination velocities were 0 and 107 cm s−1, the charge carrier
mobilities were 20 cm2 V−1 s−1, and the bulk SRH-lifetimes were
20 ns. The photon density per pulse was nγ = 109 cm−2.

in the inset of figure 7.
For the simulation, we vary the front band gap gradient
sinusoidally with a period of 3 µm. The amplitude of the
variation is thereby increased from 0 to 1, where zero cor-
responds to no fluctuation, and 1 corresponds to no front
surface gradient in the minima. We further vary the re-
combination velocity at the front surface. If this is zero,
the band gap fluctuation will not affect the luminescence
decay (see Fig. 7), because the semiconductor is not lim-
ited by surface recombination. This means, the recombi-
nation is not influenced by the transport of charge car-
riers towards the front surface and hence it is unaffected
by the fluctuation. However, if the surface recombination
velocity is 107 cm s−1 the semiconductor will be limited
by front surface recombination, the recombination will
depend on the transport of charge carriers towards the
front surface (which makes the transient bend), and the
band gap fluctuation will influence the luminescence de-
cay.

C. Inhomogeneous doping density

At the end of this work we study fluctuations of the
electrostatic potential. Since these are predominant in
compensated semiconductors such as Cu(In,Ga)Se2 and
Cu2ZnSnSe4 it is assumed that they result from an inho-
mogeneous net-doping due to an inhomogeneous ratio of
donors and acceptors. Therefore in the simulations, we
again divide the semiconductor into 121 grains and dis-
tribute acceptor and donor densities randomly. The ac-
ceptor density NA follows a Gaussian distribution (com-
pare Eq. (26)) with average µA and standard deviation
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FIG. 8. Cross-section of the net-doping density for a grain size
of 100 nm, an average net-p-doping of NA,av = µnet = 1016 cm−3,
and a doping fluctuation of σdop = 9.6 × 1015 cm−3. The dashed
lines mark NA,net = 0 and NA,net = NA,av . The lower figure
shows the resulting electric field strength.

σdop. Correspondingly the donor density ND follows a
Gaussian distribution with average µD and standard de-
viation σdop. The net p-doping NA,net = NA−ND is then
again Gaussian distributed with average µnet = µA−µD
and standard deviation σnet =

√
2σdop. An example for

such an inhomogeneous net-doping is given in figure 8.
Due to the inhomogeneous net-p-doping, the semiconduc-
tor becomes a series of p-p-junctions (see z < 0.6 µm in
Fig. 8). For strong doping fluctuations the net-p-doping
can become negative which results in a net-n-doping.
Then, there may be also p-n-junctions (see z > 0.6 µm in
Fig. 8). Both lead to an electric field on a lateral scale
as demonstrated in figure 8. Expressions for the maxi-
mum electric field strength and the space charge widths
are summarized in the appendix A.

1. Impact of net-doping fluctuation strength and length
on the TRL decay

We now vary these electric fields by net-doping fluctu-
ations of different fluctuation strengths and study the
impact on the TRL decay. As the net-doping inho-
mogeneities increase, the potential drop across the p-
p junctions increases according to equation (A3). In
the following, we adjust the doping fluctuation strength
σdop such that the width ∆ϕ of the resulting potential
fluctuation (see the inset of figure 9) becomes ∆ϕ =
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FIG. 9. Simulated TRL-transients of a semiconductor with 121
grains. For each grain, the net-acceptor (or net-donor) density is
determined using a random number generator and by a transforma-
tion the density is calculated according to a Gaussian distribution.
The average net-p doping of NA,av = 1016 cm−3 is fixed. The
strength σdop of fluctuation is varied such that the strength of po-
tential fluctuation becomes ∆ϕ = 0, 30, 55, 75, 90, 100 mV. The
inset shows an exemplary cross-section of the electrostatic poten-
tial. Furthermore, two grain sizes 100 nm and 1 µm are chosen. The
photon density per pulse is nγ = 109 cm−2, the bulk SRH-lifetimes
are 20 ns, and the mobilities are 20 cm2 V−1 s−1.

0, 30, 55, 75, 90, 100 mV. Thereby, the average net-
acceptor density is fixed by NA,av = 1016 cm−3, which
leads to a room temperature screening length ∼ 40 nm
(see equation A8). On this basis, for the study of the
effect of the characteristic fluctuation length we also con-
sider the two grain sizes 100 nm and 1 µm, which are ei-
ther in the range of the screening length or much larger.
The resulting TRL-decay is shown in figure 9 which il-
lustrates three important findings on lateral potential
fluctuations: First, the luminescence decay becomes bi-
exponential due to the impact of potential fluctuations.
Thereby, only the first decay time is influenced by the
potential fluctuation strength ∆ϕ (or equivalently by the
maximum electric field strength Emax), which indicates
that the first decay includes the separation of charge car-
riers by drift, and the second decay describes the bulk
recombination of charge carriers.
Secondly, the effect of a potential fluctuation becomes
less for increased characteristic length scales. This is due
to the arising quasi-neutral region in the semiconductor
if the structure size exceeds the screening length. Ac-
cordingly, even for constant fluctuation strength ∆ϕ, the
average electric field becomes reduced and the drift ef-
fects in the TRL decay diminish.
Thirdly, the decay time is always smaller than that for
a semiconductor without potential fluctuations which is
similar to the results in Ref. 13 and 14. This is in contrast
to the expectation that the charge carriers are preserved
from recombination by the potential barriers. A reason
why preservation from recombination is not found here
may be the small barrier height of at most 100 mV which
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is much smaller than the barrier height of a typical pn-
junction (∼ 800 mV). Furthermore, it must be taken into
account that the electrostatic potential equalizes at the
metallic back contact. This means, the electrostatic po-
tential close to the contact is homogeneous which leads
to a path of higher conductivity and reduces the effect of
charge separation.

2. Temperature and excitation dependence of TRL-decay
due to doping inhomogeneities

Now, we study the effect of potential fluctuations under
different experimental conditions. Therefore, we simulate
the TRL for a fixed fluctuation strength of ∆ϕ = 90 mV
and vary the temperature and excitation intensity. The
results are shown in figure 10. In the left subfigure, the ef-
fect of a temperature increase is illustrated. It comes out
that both decay times become smaller for higher temper-
atures. The decrease of the second decay is due to a de-
creasing bulk SRH-lifetime of the charge carriers, which
can be expressed by1,2,19

τbulk ∼ T−b. (43)

The decrease of the first decay time indicates a tempera-
ture dependent drift of the charge carriers. In the simu-
lations, however, the mobility is assumed to be constant.
Hence, the electric field must depend on the temperature,
more precisely the electric field increases with increasing
temperature. This comes out from equation (A10), which
predicts a larger electric field at elevated temperatures
due to the higher diffusity of the charge carriers. How-
ever, this is only true for small temperature increases.
For high temperatures, when the semiconductor becomes
intrinsic, the electric field becomes smaller due to screen-
ing.
In the right subfigure of Fig. 10, the influence of an
increasing injection level is shown. Two effects can be
found. First, the potential fluctuations can be screened
if the injection level is increased. This is due to the higher
charge carrier densities that screen the space charge. Sec-
ondly, the screening effect is more pronounced for larger
characteristic lengths of the fluctuation. This is due to
the smaller space charge, thus, less charge carriers are
necessary for screening.

IV. CONCLUSIONS

In this work we studied the impact of lateral inhomo-
geneities on the time-resolved luminescence decay. For
systematic reasons we distinguished inhomogeneities of
the excitation and inhomogeneities of the semiconductor
material properties.
For laterally inhomogeneous excitations with high injec-
tion levels we found that contrary to axial diffusion, the
lateral diffusion of charge carriers does not directly affect

the decay of the luminescence. However, indirectly lat-
eral diffusion influences the decay via the occupation of
deep and shallow defects in the band gap. We then stud-
ied the spatial resolution of a micro-TRL experiment,
which is limited by the diffusion length of the charge
carriers and by the size of the excitation spot. Due to
this, the resolved spot size can be more than ten times
larger than the width of the excitation spot, if the diffu-
sion length is sufficiently large. This means, micro-TRL
is not applicable in all cases. The approximation of an
inhomogeneous excitation profile by a homogeneous ex-
citation with an average photon density is possible for
low injection levels and even for high injection levels, if
the excitation spot is large. This can facilitate the simu-
lation. However, for small excitation spots and high in-
jection levels, the occupation of defects in the band gap
is strongly determined by lateral diffusion. Hence, sim-
ulations must be performed under consideration of the
inhomogeneous excitation profile.
In the second part, we studied inhomogeneous material
parameters. First, we considered inhomogeneous bulk-
recombination lifetimes. Thereby, we divided the simu-
lated semiconductor into 121 grains on a quadratic mesh,
where each grain has uniform properties, and distributed
SRH-lifetimes randomly on the grains according to dif-
ferent distribution functions. It comes out, that the ef-
fect is larger for asymmetric lifetime distributions than
for symmetric lifetime distributions. Furthermore, the
effect does strongly depend on the characteristic length
of the inhomogeneities. For length scales smaller than
the diffusion length, regions of high recombination at-
tract carrier and the decay is increased. For large length
scales, the effect of lateral diffusion is reduced and the
decay exhibits multiple decay times according to the life-
time distribution. This leads to curved transients. Next,
we studied inhomogeneities of the band gap. It is found,
that these are small and the effects on the bulk proper-
ties (absorption coefficient, bulk-lifetime) are negligible.
Only an laterally inhomogeneous band gap gradient may
influence the luminescence decay, if the semiconductor is
limited by surface recombination. At the end we studied
inhomogeneities of the doping density since these cause
fluctuations of the electrostatic potential which are of-
ten observed. These fluctuations lead to bi-exponential
luminescence decays. Thereby, the first smaller decay
time is mostly determined by charge carrier separation
due to drift, and the second larger decay time is deter-
mined by bulk recombination. A third decay time which
is longer than the bulk-recombination lifetime is not ob-
served, probably due to the small barrier heights and the
paths of higher conductivity at the metallic back con-
tact. A moderate increase of the temperature leads to a
decrease of both decay times due to smaller recombina-
tion lifetimes and higher electric fields. A screening of the
space charge at higher temperatures is not found, since
this requires much higher temperatures. However, the
space charge can be screened, if the excitation intensity
is increased.
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FIG. 10. Simulated TRL-transients of a
semiconductor with 121 grains each with a
size of 100 nm and 1 µm. For each grain,
the net-doping density is asigned randomly
according to a Gaussian distribution. The
average net-p doping of NA,av = 1016 cm−3

and the fluctuation strength of ∆ϕ = 90 mV
are fixed. The bulk SRH-lifetimes are 20 ns
and the mobilities are 20 cm2 V−1 s−1. In
the left figure, the incident photon den-
sity is nγ = 109 cm−2 and the tempera-
ture is T = 300, 325, 350, 375, 400 K. In
the right figure, the temperature is T =
300 K and the incident photon density is
nγ = 109, 1010, 1011, 1012, 1013 cm−2. The
dashed line shows the TRL decay for a semi-
conductor without potential fluctuations.

V. SUMMARY OF TRL DECAY CURVES

At the end of this work, we give a summary of all the
decay curves that have been simulated for a blank semi-
conductor layer in the parts I-IV. In order to provide a
base for the interpretation of low-injection and spec-
trally integrated TRL decay curves, we classify the
transients into mono-exponential, bi-exponential, and
multi-exponential decays.

A. Mono-exponential decays

Effects that may lead to mono-exponential lumi-
nescence decays are radiative band-to-band and non-
radiative SRH-recombination in the volume or at the sur-
face of the semiconductor layers. Also minority carrier
trapping may yield mono-exponential decay curves if the
capture time is below the time-resolution of the exper-
imental setup. A summary of the different excitation
dependencies is given in table I.

TABLE I. Overview of the different dependencies under ex-
citation increase for mono-exponential decay under low injec-
tion (dashed curve).
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Effects leading to mono-exponential decays but without
excitation dependence:

• SRH-recombination with symmetric lifetimes

• a distribution of lifetimes with small structure sizes

• surface recombination with small recombination ve-
locities or large mobilities

B. Bi-exponential decays

Effects that may lead to bi-exponential luminescence
transients are surface recombination in semiconductors
with small charge carrier mobilities and low bulk recom-
bination, the drift of charge carriers due to potential fluc-
tuations, and the trapping of minority charge carriers. A
summary of the different excitation and temperature de-
pendencies of the TRL is given in table II.

TABLE II. Overview of the different dependencies under ex-
citation and temperature increase for bi-exponential decays
under low injection (dashed curve).
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Effects leading to bi-exponential decays but without exci-
tation dependence:

• surface recombination with large recombination ve-
locities, low bulk recombination, and small carrier
mobilities

C. Multi-exponential decays

In the simulations, also multi-exponential decays of the
luminescence under low-excitation have been observed.
The following list provides a summary of effects that may
lead to multi-exponential decays, but for which the TRL
decay does not exhibit any excitation dependence.

• (mostly asymmetric) distribution of lifetimes with
large structure sizes
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• diffusion of charge carriers out of an observation
volume

• photon recycling

D. Effects without impact on the TRL decay

Finally we give a list of effects, that do not have (a
strong impact) on the luminescence decay.

• charge carrier diffusion at low injections

• lateral charge carrier diffusion at high injections

• band gap fluctuations in semiconductors limited by
bulk recombination

Appendix A: Electric field of p-n and p-p-junctions

For a junction of a p-type semiconductor with accep-
tor density NA and a n-type semiconductor with donor
density ND, the maximum electric field strength Emax,
and the space charge widths wp and wn in the p- and
n-type semiconductor, respectively, are20:

Emax =

√
2NAND

ε0 εr (NA +ND)

(
Eg − kB T log

NcNv

NAND

)
(A1a)

wp =

√
2 kB T ε0 εr

e20

ND

NA (NA +ND)
log

NAND

n2
i

(A1b)

wn =

√
2 kB T ε0 εr

e20

NA

ND (NA +ND)
log

NAND

n2
i

. (A1c)

Here, Nv is the effective density-of-states of the valence
band, Nc the effective density-of-states of the conduc-
tion band, ni the intrinsic charge carrier density, kB is
the Boltzmann constant, e0 the elementary charge, ε0

the dielectric permittivity of vacuum, and εr the relative
permittivity of the material.
For a junction of two p-type semiconductors, the results
are strongly different. For this reason, they are derived
below for the following space dependent acceptor density

NA(z) =

{
NA,l z < 0

NA,h z > 0
(A2)

with NA,h > NA,l. In the limits of impurity exhaustion
and Boltzmann approximation, the built-in voltage Vbi
then becomes

e0 Vbi = lim
z→−∞

(Ef − Ev)− lim
z→+∞

(Ef − Ev)

= −kB T log
NA,l
Nv

+ kB T log
NA,h
Nv

= kB T log
NA,h
NA,l

. (A3)

Thereby, Ef denotes the Fermi-level and Ev is the valence
band edge. In contrast to a p-n-junction, there are no

positively ionized donors. Thus, the positive space charge
results from an excess of mobile holes. These are then
screened with Debye’s screening length which motivates
the following ansatz for the space charge density %

% =

{
Al e

z
wl z < 0

Ah e
−z
wh z > 0.

(A4)

with parameters Al, Ah, wl, wh > 0 that have to be de-
termined by a self-consistent solution of Poisson’s equa-
tion and the two continuity equations. The electron cur-
rent equation can be omitted due to the negligible num-
ber of electrons. The Poisson equation is solved by twice
integration of equation (A4) which gives the electric field
E(z) and the electrostatic potential ϕ(z). Since both
must be continuous functions, this leads to the following
conditions

Al wl −Ah wh = 0 (A5a)

Al w
2
l +Ah w

2
h = ε0 εr Vbi. (A5b)

Using these conditions, Poisson’s equation is solved self-
consistently. What remains, is the solution of the hole
current equation. In equilibrium, the hole current Γp
must vanish. Hence, it must be

p(z)E(z)− kB T

e0

dp(z)

dz
= 0. (A6)

Since the amount of electrons can be neglected, the hole
density can be expressed by p(z) = 1

e0
%(z)+NA(z). Fur-

thermore, E(z) is known from integration of the space
charge density. Inserting both into equation (A6) yields

kB T ε0 εr − e2
0 NA,l w

2
l = e0 Al w

2
l e

z
wl for z < 0 (A7a)

kB T ε0 εr − e2
0 NA,h w

2
h = e0 Ah w

2
h e
− z
wh for z > 0 (A7b)

It comes out, that the terms on the right hand sides of
each equation can be neglected. Then, the parameters
wl and wh are given by

wl =

√
kB T ε0 εr
e2

0NA,l
, wh =

√
kB T ε0 εr
e2

0NA,h
. (A8)

By equations (A5) and (A8), the constants Al and Ah
can be determined:

Al =
e2

0

kB T

NA,l
√
NA,h√

NA,l +
√
NA,h

Vbi, (A9a)

Ah =
e2

0

kB T

√
NA,lNA,h√

NA,l +
√
NA,h

Vbi. (A9b)

The quantities Al, Ah, wl, wh in Eqs. (A8) and (A9)
are parameters of a self-consistent solution of the two
continuity equations and Poisson’s equation. The lat-
ter allows the calculation of the maximum electric field
strength which becomes

Emax =
Al wl
ε0 εr

=

√
kB T

ε0 εr

√
NA,l

√
NA,h√

NA,l +
√
NA,h

log
NAh
NA,l

. (A10)
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6 Summary and suggestions for further studies

The goal of this work was to essentially improve the current understanding of room-

temperature time-resolved luminescence in thin-film semiconductors by putting the nu-

merous distinct phenomena into order and interpreting them with the help of simula-

tions. In order to do so, all equations needed for describing generation, transport, and

recombination of charge carriers have been derived first. Many simplifying assumptions

have thereby been made, that are, however, fulfilled for thin-film semiconductors such as

Cu(In,Ga)Se2 in a wide parameter range. On the basis of these equations, the effective

recombination lifetime has been introduced as an important material parameter of semi-

conductors, relating the density of excess carriers to the recombination rate. It could be

shown that this quantity in special cases can be determined from the luminescence decay,

which gives a reason for the high interest in TRL as a characterization technique. Based

on the example of band-to-band recombination under high extitations, however, it has

been demonstrated that the equality of the effective recombination lifetime and the decay

time is not universal. Thus, there are cases in which the measurement of the effective

recombination lifetime by means of TRL would yield wrong results. Therefore, in order

to retrieve such artificial effects and to increase the significance of a TRL decay, more

thourough studies have been performed in chapter 5 of this work.

The first step consisted in the investigation of the effects of charge carrier drift, diffusion,

recombination via defects, direct band-to-band recombination, and photon recycling on

the TRL decay of thin-film semiconductors, because so far these have been studied only

for bulk semiconductors [20, 24, 59]. As a first result it turned out that photon recycling

basically can be neglected due to the mainly subbandgap luminescence. This essentially

simplified further simulations. The other effects - recombination, drift, and diffusion - are

non-linear effects in terms of the behaviour of the TRL decay under excitation increase.

For this reason, these have been discussed for low and high excitations separately.

The diffusion of charge carriers does always occur. However, such a diffusion current in-

fluences the luminescence decay directly only under high injection conditions. Under low

injection levels, it can be disregarded. In contrast, the drift of charge carriers occurs only

in electric fields, e.g. in the space charge region of semiconductor junctions. In this case,

the luminescence decay under low excitations exhibits at least two time constants, with a

fast initial decay due to charge separation and a second slow decay that reveals the recom-

bination lifetime. Under high excitations, the electric field can be screened partially. This
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reduces the impact of drift and makes the decay curve mono-exponential. Concerning

the recombination of charge carriers, the behaviour under excitation increase is inverse:

the decay of the luminescence is mono-exponential under low excitations, but under high

excitations the luminescence decay will become either faster and multi-exponential if bi-

molecular recombination is dominating, or slower and concave bi-exponential due to an

inhibited defect recombination. Altogether this means that the luminescence of sole ab-

sorber layers under low excitation does not exhibit drift or diffusion effects. Instead, the

decay is governed only by recombination and the decay time equals the effective recom-

bination lifetime. This relation implies that the open-circuit voltage of a solar cell is a

function of the low injection decay time of the absorber. Based on this assumption, it

could be estimated that the decay times for CIGSe absorbers must be in the range of a

few 10 ns in order to achieve typical open-circuit voltages of 700 . . . 800 mV [18]. In exper-

iment, however, noticeably longer decay times have been observed, which additionally do

not correlate with the solar cell parameters either (see figure 6.1). In the first instance,

this may be due to a change of the absorber properties through the subsequent processing.

For this reason, a technique has been developed that allows the characterization of the

absorber after finishing the cell process. This is achieved by a measurement of TRL un-

der varying bias voltage. The advantages of this method are manyfold. For instance, the

absorber in the cell is protected from degradation effects by the adjacent layers. Further-

more, the electric field in the solar cell can be adjusted which allows the discrimination of

the recombination from the drift. By doing so, recombination lifetimes have been deter-

mined with values of 10−20 ns. These lie exactly in the expected range. Thus, it could be

indeed the case that an absorber is modified through the further processing. In that case,

it is advisable to perform lifetime measurements on complete cells in order to determine

the relevant recombination lifetime. But then, it still poses the question for the origin of

bi-exponential decay curves with time-constants of several 100 ns (see figure 6.1) observed

on absorbers, because all studied recombination mechanisms lead to mono-exponential

decays under low excitations.

One approach to solve the problem was to consider potential fluctuations. These are

variations of the electrostatic potential due to inhomogeneities of the doping density. In

consequence, electric fields are created even in absorber layers, that make the charge car-

riers drift and lead to a bi-exponential luminescence decay. As an outcome of absorption

measurements, these potential fluctuations already have been determined to be below

100 meV. The simulations have shown that these fluctutations are too small in order to

substantially influence the luminescence decay. Even the simulation of an inhomogeneous

recombination lifetime or band gap did not yield the above described bi-exponential decays

with long decay times. For this reason, the current model of absorbers has been extended

by shallow defects that may capture and reemit charge carriers. By these, the charge

carriers are preserved only but they do not recombine. Because of the additional capture,
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Figure 6.1: (a) One- and bi-exponential luminescence decay of two different Cu2ZnSnSe4 absorber layers and
(b) luminescence decay time (determined from the 1/e decay) of Cu(In,Ga)Se2 absorbers measured
immediately after preparation process vs. open-circuit voltage of final solar cell. The red curves are
theoretical Voc(τdecay) curves calculated after equation (5.3.2) for n∗/Nt = 1, 0.15, 0.015, 0.003. With
kind permission of Stefan Hartnauer and Enrico Jarzembowski.

the charge carrier densities decay faster compared to the case of pure recombination. Af-

terwards, the charge carriers are stored in the trap for a characteristic time and then they

are thermally reemitted to the energy bands and recombine. Depending on the barrier

height, this emission may become very slow leading to a slow, second luminescence decay.

Thus, the model extended by traps finally could explain the bi-exponential decay curves.

Accordingly, the black graph in figure 6.1 (a) is related to a semiconductor with only little

shallow defects, and the blue curve is related to a semiconductor with similar recombina-

tion but with a high density of traps. In the end, this hypothesis of a dominant minority

carrier trapping has been further confirmed in terms of a combination of experiment and

simulation. First of all, the transients show a strong temperature dependence which is in

agreement with the expectations due to the thermally activated reemission. Apart from

this qualitative argument, the decay curves could be approximated by simulated ones as

well. A result of the simulations are the recombination lifetime, the trap energy, and

the trap density in the absorber with values that are in accordance with admittance and

spectral luminescence experiments. Therefore, the trap model could reasonably describe

all transients observed on absorbers, and only the relation remained of the TRL decay to

electric quantities, such as the open-circuit voltage. In order to deal with this problem,

it has been shown first that traps do not influence the open-circuit voltage but only the

decay time. Hence, traps act as an independent variable for which reason Voc does not

correlate with τdecay. For a more detailed investigation, the open-circuit voltage has been

calculated as a function of τdecay which yielded the red curves in figure 6.1 (b). It turned

out, the there is an entire range of possible open-circuit voltages for one single decay

time. This is due to differences in the trap density, for instance because of a different

preparation.
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Figure 6.2: Sketch of the dependencies under excitation increase (the red curve marks a low injection excitation)
for dominating (a) bimolecular recombination (b) asymmetric defect recombination (c) front surface
recombination (d) potential fluctuations (e) minority carrier trapping (f) minority carrier trapping
with capture times below the resolution of the experimental setup.

Altogether, the goals of this work have been attained. A model has been found, that

is capable to describe the luminescence transients observed on thin-film absorbers. This

model is one-dimensional and includes the drift, the diffusion, the recombination, and the

trapping of charge carriers. Each single effect brings a different excitation dependence of

the TRL decay about - these are sketched in figure 6.2. This shows, that the consideration

of minority carrier traps is indispensable in order to describe the observed transients.

This minority carrier trapping hinders the characterization of the recombination, which

is important in particular for an application in photovoltaics. Thus, trapping should be

avoided, e.g. by measurements under slightly increased temperatures.

Despite the outstanding progress in the application of TRL to thin-film semiconductors

and its analyzation, several problems are still not dealt with. Building on that, the

following concerns for further studies are proposed:

• The microscopic model of thin-film semiconductors that has been developed in this

work describes the observed TRL decays very well. However, so far there is still

a lack of combined simulations of time-resolved luminescence (temperature, exci-

tation, and voltage dependent), current-voltage measurements, quantum efficiency

measurements, and so on. In doing so, the model will be further validated and im-

proved. In particular, this will reveal the role of grain boundaries and local shunts,

that are not included in the presented one-dimensional model.

• The material parameters so far have been determined by manually changing the

input values for simulations until the simulated decay curves approximate the ex-

perimental luminescence transients. This is time-consuming, for which reason a fit
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routine must be developed in order to determine material parameters from the lu-

minescence decay automatically. This is indispensable for the in-line application of

TRL and for the optimization of preparation processes.

• With regard to the prior point, it is unclear how semiconductors are affected by

material compositions, growth conditions, and processing. It is proposed to system-

atically vary the material preparation and to study the effect in order to retrieve

correlations.

• Finally, the measurement routine proposed in this work requires measurements on

sole absorber layers or complete solar cells. However, most published works show

TRL on absorbers covered with a thin semiconducting layer that shall protect the

absorber. The impact of this additional layer on the TRL decay is still not accurately

known and needs further investigations.
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Zuerst möchte ich mich bei Prof. Dr. Roland Scheer bedanken, dass er mir die Möglichkeit
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