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Chapter I — General introduction

Review: Parasite resistance and tolerance in honeybees at the
individual and social level
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Abstract

Organisms living in large groups, such as social insects, are particularly vulnerable to
parasite transmission. However, they have evolved diverse defence mechanisms which
are not only restricted to the individual’s immune response, but also include social
defences. Here, we review cases of adaptations at the individual and social level in the
honeybee Apis mellifera against the ectoparasitic mite Varroa destructor and the
endoparasitic microsporidians Nosema ceranae and Nosema apis. They are considered
important threats to honeybee health worldwide. We highlight how individual resistance

may result in tolerance at the colony level and vice versa.

Keywords: Innate immunity; Social immunity; Honeybee parasites; Varroa; Nosema
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Abstract

Host-pathogen coevolution leads to reciprocal adaptations, allowing pathogens to
increase host exploitation or hosts to minimise costs of infection. As pathogen
resistance is often associated with considerable costs, tolerance may be an evolutionary
alternative. Here, we examined the effect of two closely related and highly host
dependent intracellular gut pathogens, Nosema apis and Nosema ceranae, on the
energetic state in Nosema tolerant and sensitive honeybees facing the infection. We
quantified the three major haemolymph carbohydrates fructose, glucose, and trehalose
using high-performance liquid chromatography (HPLC) as a measure for host energetic
state. Trehalose levels in the haemolymph were negatively associated with N. apis
infection intensity and with N. ceranae infection regardless of the infection intensity in

sensitive honeybees. Nevertheless, there was no such association in Nosema spp.
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Chapter II — Nosema infection & energic stress

infected tolerant honeybees. These findings suggest that energy availability in tolerant
honeybees was not compromised by the infection. This result obtained at the individual
level may also have implications at the colony level where workers in spite of a Nosema
infection can still perform as well as healthy bees, maintaining colony efficiency and

productivity.
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Nosema tolerant honeybees (Apis mellifera) escape parasitic
manipulation of apoptosis

Authors

Christoph Kurzel*, Yves Le Contez, Claudia Dussaubatz, Silvio Erlerl, Per Kryger3,
Oleg Lewkowski', Thomas Mﬁller4, Miriam Widder4, and Robin F.A. Moritz'>°

Affiliations

'Institute for Biology, Martin -Luther-Universitit Halle-Wittenberg, Halle (Saale)
Germany

2UR 406 Abeilles et Environnement, INRA, Avignon, France

*Department of Agroecology, Aarhus University, Flakkebjerg, Denmark
4Depalrtment of Internal Medicine IV, Martin-Luther-Universitdt Halle-Wittenberg,
Halle (Saale), Germany

>German Institute for Integrative Biodiversity Research (iDiv), Leipzig, Germany

SUniversity of Pretoria, Department of Zoology and Entomology, Pretoria, South Africa

*Corresponding author E-mail: christoph.kurze@zoologie.uni-halle.de

Abstract

Apoptosis is not only pivotal for development, but also for pathogen defence in
multicellular organisms. Although numerous intracellular pathogens are known to
interfere with the host’s apoptotic machinery to overcome this defence, its importance
for host-parasite coevolution has been neglected. We conducted three inoculation
experiments to investigate in the apoptotic respond during infection with the
intracellular gut pathogen Nosema ceranae, which is considered as potential global
threat to the honeybee (Apis mellifera) and other bee pollinators, in sensitive and
tolerant honeybees. To explore apoptotic processes in the gut epithelium, we visualised
apoptotic cells using TUNEL assays and measured the relative expression levels of
subset of candidate genes involved in the apoptotic machinery using qPCR. Our results

suggest that N. ceranae reduces apoptosis in sensitive honeybees by enhancing inhibitor



Chapter III — Apoptosis & Nosema tolerance

of apoptosis protein-(iap)-2 gene transcription. Interestingly, this seems not be the case
in Nosema tolerant honeybees. We propose that these tolerant honeybees are able to
escape the manipulation of apoptosis by N. ceranae, which may have evolved a
mechanism to regulate an anti-apoptotic gene as key adaptation for improved host

invasion.

Keywords: programmed cell death, host-parasite interaction, selection, susceptibility,

immune defence

PLoS ONE (2015); accepted 21* of September 2015
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Chapter IV — Proteomics of Nosema—honeybee interactions

Summary

Host manipulation is a common strategy by parasites to reduce host defence responses
and enhance development, host exploitation, reproduction and ultimately transmission
success. As these parasitic modifications reduce host fitness, natural selection is
predicted to result in counter adaptions of the host, which may eventually lead to Red
Queen dynamic. Comparing two lincages of the honeybee Apis mellifera, one tolerant
and the other sensitive towards the microsporidian gut parasite Nosema ceranae; we
compared the underlying host-parasite interactions on the proteome level. We found
that Nosema infections affected the abundance of 10 out of 661 protein spots studied,
which were more abundant in sensitive compared to tolerant honeybees. Infections of
Nosema resulted in an up-regulation of the honeybee’s energy metabolism. There was
an increased abundance of proteins with immune defence functions in infected tolerant
honeybee compared to sensitive ones. We also detected three Nosema proteins (N.
ceranae HSP 70 and two uncharacterised proteins), which provide key candidate genes

involved during host invasion.

Key index words: host-parasite interaction; Apis mellifera; Nosema ceranae; tolerance;

proteome; coevolution

Scientific Reports; submitted 23" of March 2016



Chapter V

Synthesis

Due to long co-existence and continuous antagonistic interactions between parasites and
their hosts, natural selection has shaped a variety of very complex and intimate
relationships (Schmid-Hempel, 2011). Parasites have independently evolved multiple
strategies to invade and exploit a broad spectrum of host taxa, which can consequently
severely reduce the fitness of their hosts (Moore, 2002; Schmid-Hempel, 2011). Host
manipulation is a strategy often employed by parasites to increase their
replication/reproduction and transmission success (e.g. Bruchhaus et al., 2007; Moore,
2002; Thomas et al., 2010). Thus, it is not surprising that the selection pressure imposed
by a parasite may result in reciprocal adaptations of the host, eventually leading to
either avoidance, resistance (i.e. reducing the infection) or tolerance of an infection (i.e.
limiting the harm by the parasite for a given infection intensity) (Raberg et al., 2009).
Although resistance is the best-known adaptive host response, this strategy does not
necessarily increase host fitness as immune responses can also impose high costs for the
host (Lochmiller and Deerenberg, 2000; Schmid-Hempel, 2005). In the last decade,
tolerance has been recongnized by evolutionary ecologists as an important alternative
strategy in animals (Raberg et al., 2007).

In social insects host defence mechanisms are typically more complex than in
solitary individuals as they are not only limited to the individual, but also achieve
defences against parasites at the social level (known as ‘social immunity’, Cremer et al.,
2007). Especially, honeybee health and associated parasites have been studied
intensively and present an important model system for host-parasite interactions (Ball
and Bailey, 1991; Evans and Schwarz, 2011; Fries, 2010; Rosenkranz et al., 2010). This
is primarily because the important role bees play in crop pollination and ecosystem
functioning (Klein et al., 2007; Potts et al., 2010). Thus, I reviewed our current
knowledge of resistance and tolerance mechanisms at the individual and the colony
level in the honeybee Apis mellifera in chapter I (general introduction). In this chapter, I
primarily focused on two globally crucial infectious agents, the ectoparasitic mite
Varroa destructor and the intracellular gut pathogen Nosema ceranae, which have

clearly predominated scientific discussion in the context of honeybee colony declines
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over the past decade. Notably, individual resistance against Varroa (i.e. mite’s delayed
egg-laying) may result in tolerance at the colony level, if for example only a fraction of
the colony are resistant (Le Conte et al., 2007; Locke and Fries, 2011; Locke et al.,
2012). On the other hand, individual tolerance against N. ceranae (i.e. they develop
high infection intensities, but energy metabolism (chapter II) and survival (Huang et al.,
2012) was not impaired) may appear resistant at the colony level (Hatjina et al., 2014)
in case parasite transmission would be limited or even prevented (chapter I).

Since empirical data describing tolerance mechanisms in animals are scares
(Raberg, 2014), I compared bees from a Nosema tolerant linage with sensitive bees in
my dissertation (chapters II, IIT and IV). The Nosema tolerant honeybees were the result
of an intensive breeding programme conducted by beekeepers in Denmark over two
decades (Hatjina et al., 2014). Interestingly, although Nosema prevalence decreased by
more than 50 % in those colonies (Hatjina et al., 2014), Nosema ceranae still developed
similarly high infection intensities in individuals of the tolerant linage compared to
honeybees of the sensitive linage in laboratory controlled inoculation experiments
(Huang et al., 2012; chapter II, III and IV). Nevertheless, survival experiments clearly
showed that Nosema tolerant honeybees had a significantly higher survival than
sensitive honeybees (Huang et al., 2012).

The work presented in this thesis provides novel insights into the reciprocal
adaptations between the microsporidian gut parasite N. ceranae and its honeybee host.
In particular, I have been focusing on the molecular interactions between this
intracellular fungal pathogen and its honeybee host (chapters III and IV). I conducted a
series of inoculation experiments to take snapshots of the intimate interplay between N.
ceranae and the honeybee in the relatively early phase of an established infection.
International collaboration with several colleagues allowed me to integrate research
covering energetics, quantitative genetics, immunohistochemistry and proteomics to

gain a more holistic understanding of:

1. What effects N. apis and N. ceranae infections have on the available energy
budget in the Nosema sensitive and tolerant honeybees? (chapter II)
2. How does N. ceranae manipulate the sensitive honeybee to its own advantage?

(chapter IIT and 1V)
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3. What is the adaptive mechanism in the Nosema tolerant honeybee linage?
(chapter IIT and 1V)

My data on the energetic consequences of Nosema infections clearly showed that
infections with both N. apis and N. ceranae significantly reduced the availability of
trehalose in the haemolymph in sensitive honeybees (chapter II). Trehalose is the major
energy store in honeybees and other insects and can be used to measure for the host
energetic state (Blatt and Roces, 2001; Thompson, 2003). Hence, these results supports
the notion that Nosema-infected honeybees experience nutritional and energetic stress
(Mayack and Naug, 2009, 2010; Moffett and Lawson, 1975), which may ultimately lead
to decreased survival (Dussaubat et al., 2012; Higes et al., 2007). My study further
extends their results as I included honeybees of the tolerant lineage (chapter II), in
which the survival was not negatively affected by N. ceranae infections (Huang et al.,
2012). Interestingly, I did not detect any significant effect of neither N. apis nor N.
ceranae infection on trehalose levels in honeybee of the tolerant lineage. This may
indicate an adaptive mechanism that maintains the energy availability in the
haemolymph in spite of an infection (chapter II). Possibly, this might be also crucial for
the maintenance of the host immune response and may help explaining why bees from
the tolerant linage better withstood Nosemosis than Nosema sensitive honeybees
(Huang et al., 2012).

Also my proteomic analyses using 2D-DIGE (2-Dimensional Differential In-Gel
Electrophoresis) followed by subsequent mass spectrometry for protein identification
(chapter IV) showed that the host energy metabolism is affected by N. ceranae
infections. I detected an increase of abundance for three central proteins of the energy
metabolism (cytochrome C oxidase subunit 6A1, alpha-glucosidase precursor and ATP
synthase subunit beta) in the infected honeybees, which were more pronounced in
individuals of the sensitive than of the tolerant linage. As the enhanced abundance of
these proteins may lead to increase ATP production in the host, this would be clearly
beneficial for N. ceranae, which are highly dependent on the ATP supply from their
host (Williams, 2009). Thus, my results support the notion that N. ceranae manipulates
the host’s energy metabolism to increase its own fitness (Vidau et al., 2014).

Maintaining energy homeostasis in tolerant honeybees might not only improve the

10
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health at the individual level, but may also increase the general performance and
consequently the overall fitness of the whole colony (chapters II).

To identify and develop an understanding of the underpinning mechanisms for
Nosema tolerance, I studied the host-parasite interactions in the midgut of both sensitive
and tolerant honeybees (chapter III and IV). As apoptosis (most common form of
programmed cell death) plays a crucial role in the host immune response, it is not
surprising that numerous intracellular pathogens, including microsporidia, commonly
manipulate apoptosis (Bruchhaus et al., 2007; Faherty and Maurelli, 2008; Mocarski et
al., 2012). Data documenting how a host may escape this manipulation is largely
unexplored. Hence, I first prepared longitudinal histological sections of the midgut
epithelium and visualized apoptotic cells using TUNEL assays (labelling of signal- and
double-strand DNA nicks). This allowed me to quantify any alterations in apoptosis
associated with N. ceranae infections and whether this might differ between host
lineages (chapter III). I found a significantly decreased proportion of apoptotic cells in
N. ceranae-infected sensitive honeybees after 6 days post infection (dpi), which
confirmed results by Higes et al. (2013) after 10 dpi. Nevertheless, there was no
significant difference between Nosema-infected tolerant honeybees compared to the
controls. This may suggests that the host’s apoptotic machinery plays a central role in
the host pathogenesis of Nosema infections.

Extending this data even further, I measured the relative gene expressions of nine
candidate genes from the apoptotic cascade, which were predicted from the fruit fly
Drosophila melanogaster (Hay et al., 2004). The most striking result, however, was a
ten-fold increased expression of the inhibitor of apoptosis protein 2 gene (iap-2) in the
Nosema-infected sensitive honeybees compared to all other treatment groups. This
observation is in agreement with previous in vitro studies, where protozoan and
bacterial infections were also associated with enhanced iap gene expression and resulted
in the inhibition of apoptosis in host cells in vitro (Binnicker et al., 2003; Molestina et
al., 2003; Pedron et al., 2003). Although I found no clear signal for the inhibition of the
apoptosis using quantitative proteomics (chapter I'V), the detection of Nosema HSP70 in
sensitive honeybees might indicate a mechanisms by which N. ceranae manipulates its
host cell (chapter IV; Vidau et al., 2014). HSP70 may trigger the activation of the key
transcription factor NF-kB in the host cell (Joly et al., 2010), which may increases IAP

abundance, which will then potentially binds to host cell caspases, inhibiting their

11
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activity, and ultimately leads to an inhibition of apoptosis (Binnicker et al., 2003;
Molestina et al., 2003). Furthermore, the proteome data revealed also significantly
higher abundance of an uncharacterized N. ceranae protein in the sensitive honeybees,
which would be an interesting candidate for future research. Studying the actual
functions of those Nosema proteins might be very helpful in developing a better
understanding of the molecular cross-talk between Nosema and the honeybee. In the
end it might even unveil the fundamental mechanism for host invasion in microsporidia.

Overall my dissertation describes how an intracellular pathogen affects its host
and how a tolerant host is able to “live with its enemy” using the Nosema-honeybee
system. Despite the never ending desire for higher resolution of the molecular host-
pathogen interactions major pathways of host tolerance could be identified. Future
research should also focus on the role of microbiota in shaping a metaorganism, i.e.
microbial community associated with the host. Understanding how the microbiome may
positively affect honeybees and their associated pathogen may shed new light on bee
health (Katsnelson, 2015). For example, Forsgren et al. (2010) discovered a new lactic
acid bacteria (LAB) in the honey stomach, which beneficial properties against the
bacterium Paenibacillus larvae in vitro and in American foulbrood infected honeybee
larvae in vivo. Another study showed that the core of the gut microbiota is crucial for
the protection against virulent trypanosome Critidia bombi in bumblebees (Koch and
Schmid-Hempel, 2011). These studies highlight that host health is not only limited to
the host’s immune system, but pathogen defence is extended by the host microbiota.
Thus, studying host-microbiota interactions may also unravel novel insights into the

evolutionary ecology of host-parasite (co)evolution.
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