Aus der Universitätsklinik und Poliklinik für Dermatologie und Venerologie an der Martin-Luther-Universität Halle-Wittenberg

(Direktor: Prof. Dr. med. Wolfgang Christian Marsch)

und

dem Institut für Medizinische Epidemiologie, Biometrie und Informatik an der Martin-Luther-Universität Halle-Wittenberg (Direktor: Prof. Dr. rer. nat. Johannes Haerting)

Ulcus cruris Lässt die Klinik auf die Ätiologie schließen?

Dissertation zur Erlangung des akademischen Grades Doktor der Medizin (Dr. med.)

vorgelegt
der Medizinischen Fakultät
der Martin-Luther-Universität Halle-Wittenberg

von Jakob Garbe

geboren am 08.02.1990 in Hameln

Betreuer: Prof. Dr. med. Klaus-Michael Taube

Gutachter: 1. Prof. Dr. K.-M. Taube, Halle (S.)

2. Prof. Dr. J. Hafner, Zürich

3. Prof. Dr. J. Dissemond, Essen

Eröffnung des Verfahrens: 15.09.2015 Datum der Verteidigung: 27.01.2016

Referat

Chronische Wunden stellen eine außergewöhnliche Belastung sowohl für den Patienten als auch für das Gesundheitssystem dar. Zeitdruck und personelle Ressourcenverknappung im Gesundheitssystem erfordern eine rasche und ressourcenschonende zielgerichtete Diagnostik, um eine kausale Therapie frühzeitig einzuleiten. Diese Studie sollte über ein prognostisches Modell die Schätzkraft einzelner klinischer Basisparameter auf die häufigsten Ätiologien des Ulcus cruris (UC) evaluieren. Darüber hinaus sollte versucht werden, einfache und einprägsame Regeln für die Klinik aus dem Modell abzuleiten.

Ein Datensatz, bestehend aus 225 in der Universitäts-Hautklinik stationär behandelten Patienten, wurde mit Hilfe multipler Imputation vervollständigt. Im Anschluss wurde ein multinominales logistisches Regressionsmodell mit den unabhängigen Variablen Geschlecht, Alter, BMI, Dynamik, Schmerzen, Wundgrund, Lokalisation und Anzahl der Wunden formuliert. Aus den eindeutig klassifizierten Fällen wurden Risikoprofile als prägnante Heuristiken für den klinischen Alltag, bestehend aus zwei Merkmalen, extrahiert und anschließend am Patientengut und dem Regressionsmodell validiert.

Das Modell klassifizierte die Ätiologien unterschiedlich präzise, wobei CVI, Neoplasien, Pyoderma gangraenosum und Calciphylaxie sehr gut erkannt wurden (83,3% - 100% richtig). Ulcus cruris mixtum und traumatische Ulzera klassifizierten die Modelle wenig präzise (28,6% - 39,3% richtig). Insgesamt wurden 68,9% der Fälle richtig klassifiziert. Der Anteil erklärter Varianz lag zwischen 86% und 88%. Die interne Validierung der Risikoprofile zeigte eine Genauigkeit analog der Regressionsmodelle. Profile für CVI (weibliches Geschlecht, Lokalisation über dem Innenknöchel), Calciphylaxie (dorsolaterale Lokalisation, nekrotischer Wundgrund) und Vasculitis allergica (regionenüberspannende Wunden, hämorrhagischer Wundgrund) wiesen eine hohe Treffsicherheit auf, während die Profile für Neoplasie und Pyoderma gangraenosum trotz präziser Modelle unsicher klassifizierten.

Über die Schätzkraft der Profile kann ohne externe Validierung keine abschließende Aussage getroffen werden, jedoch schätzen die Profile für CVI, Calciphylaxie und Vasculitis allergica in der internen Validierung präzise. Morphologisch inhomogene Ätiologien, wie Ulzera traumatischer und infektiöser Genese, werden nicht präzise erkannt. Größere Patientenkollektive und eine externe Validierung könnten helfen, die Modelle noch präziser schätzen zu lassen und für Akzeptanz in der klinischen Praxis sorgen. Die vorliegende Studie unterstreicht den differentialdiagnostisch-prädiktiven Wert klinischer Merkmale, wie der Ulkuslokalisation und zeigt, dass aus prognostischen Modellen abgeleitete Regeln eine Hilfestellung in der Diagnostik des UC sein können.

Inhaltsverzeichnis

Referat

	Inhaltsverzeichnis	I
	Verzeichnis der Abkürzungen und Symbole	II
1	Einleitung	
2	Zielstellung	5
3	Material und Methode	7
3.1	Klinische Merkmale	7
3.2	Zielgröße: Ätiologie	12
3.3	Ein- und Ausschlusskriterien	12
3.4	Rekrutierung der Studienpopulation	13
3.5	Auswertung	15
3.5.1	Umgang mit fehlenden Werten	16
3.5.2	Multinominale logistische Regression.	18
3.5.3	Formulierung von Risikoprofilen	19
4	Ergebnisse	21
4.1	Deskriptive Statistik	21
4.2	Induktive Statistik	26
4.2.1	Fehlende Werte und Imputation.	26
4.2.2	Multinominale logistische Regression	27
4.2.3	Formulierung von Risikoprofilen	30
5	Diskussion	33
6	Zusammenfassung und Ausblick	46
7	Literaturverzeichnis	48
8	Bildnachweis und Bildbeilage	52
9	Anhang	
10	Thoson	76

Verzeichnis der Abkürzungen und Symbole

AWMF Arbeitsgemeinschaft der wissenschaftlichen medizinischen

Fachgesellschaften e.V.

BMI Body Mass Index (deutsch: Körper-Masse-Index)

CVI chronisch venöse Insuffizienz

DGfW Deutsche Gesellschaft für Wundheilung und Wundbehandlung e.V. FIPAT Federative International Programme for Anatomical Terminology

LL Leitlinie

LV Livedo-Vaskulopathie

MAR Missing at random (deutsch: zufälliges Fehlen (von Werten))

MI multiple Imputation

MLR multinominal logistische Regression
OR odds-ratio (deutsch: Quotenverhältnis)

PG Pyoderma gangraenosum

PTS postthrombotisches Syndrom

pAVK periphere arterielle Verschlusskrankheit

SD standard deviation (deutsch: Standardabweichung)

UAW unerwünschte Arzneimittelwirkung

UCH Ulcus cruris hypertonicum (auch: Ulcus cruris Martorell)

VAS Visuell-Analog-Skala

1 Einleitung

Das Lokalisationsprinzip von Hautkrankheiten wird seit langem in der Dermatologie erörtert (Schönfeld, 1962). Jedoch bleibt es in mancher Hinsicht rätselhaft. So sind bei charakteristisch lokalisierten exanthematischen Dermatosen (mit Effloreszenzenentwicklung aus normaler Haut und späterer Wiedererlangung der Erscheinungsfreiheit) trotz aller investigativer Möglichkeiten die zumeist typischen Befallsmuster immer noch ungeklärt. Eine schnelle und korrekte Diagnosestellung bei den häufigen Hautkrankheiten wie Psoriasis vulgaris vom Plaque-Typ, atopische Dermatitis und Lichen ruber planus ist abgesehen von den Primäreffloreszenzen durch die charakteristischen Prädilektionsstellen leicht möglich. Bei der klinischen Konstellation von "Ulkus und Unterschenkel" lässt sich indes die Lokalisation des Geschwürs über dem Innenknöchel bei zugrunde liegender chronisch-venöser Insuffizienz (CVI) aus der Pathophysiologie und der topographischen Anatomie der großen Stammvene Vena saphena magna erklären (Ramelet und Blazek, 2012). Die Blickdiagnose Schneider-Fischer-Syndrom, infolge einer beidseitigen Beckenvenenthrombose mit pathognomonischen bilateralen Pigmentierungen (Purpura jaune d'ocre), Atrophien und letztlich Ulzerationen über den Innenknöcheln, unterstreicht diese venöse Ätiologie der Ulkustopographie (Gallasch et al., 1978).

Im Licht immer ausgefeilterer laborchemischer und apparativer Testdiagnostik wurde der Stellenwert des Lokalisationsprinzips inzwischen vernachlässigt. Aktuell stoßen Hafner et al. (2010) den Dialog über den prädiktiven Wert klinischer Merkmale wieder an, indem sie auf die typische dorsolaterale Lokalisation des Ulcus cruris hypertonicum Martorell (UCH) hinweisen. Diese Neubewertung der Aussagekraft der Ulkustopographie führt zu einer weiteren Frage: Gibt es neben der Lokalisation eines Ulkus weitere klinische Basisparameter mit zusätzlichem prädiktiv-differentialdiagnostischem Wert, die bisher außer Acht gelassen wurden?

Gerade bei eher seltenen, aber häufig interventionsbedürftigen Unterschenkelulzera, die nicht einem Ulcus cruris venosum, arteriosum oder mixtum entsprechen, wäre zwecks schneller und fokussierter diagnostischer wie nachlaufender therapeutischer Orientierung die Validierung zusätzlicher klinischer Parameter nützlich.

Das Ulcus cruris (UC) stellt mit seiner Vielzahl kausaler Grunderkrankungen die moderne Medizin und das Gesundheitssystem vor große Herausforderungen. So ist die Therapie des Ulkus oft von langer Dauer und belastet somit nicht nur Therapeuten und Pflegepersonal, sondern auch den Patienten selbst, der nachweislich deutliche Einbußen in der Lebensqualität erleidet.

Die erfolgreiche Behandlung mit dem Ziel der Abheilung des Ulkus setzt die Erkennung der zugrunde liegenden Erkrankung voraus. Dabei gestaltet sich der Diagnoseprozess aufgrund der komplexen Differentialdiagnose im stationären Patientengut oft langwierig, sodass eine kausale und effektive Therapie erst zeitversetzt begonnen werden kann.

Prognostische Modelle als Basis für Diagnosen, Therapieentscheidungen und Prognoseabschätzung etablieren sich zusehends im klinischen Alltag. In der Differentialdiagnostik des Ulcus cruris könnten sie auf Basis von klinischen Symptomen helfen, rasch und sicher zu einer Voreinschätzung zu gelangen.

Epidemiologie des Ulcus cruris. Eine zentrale Erfassung von Patienten mit Ulcus cruris erfolgt nicht regelhaft, sodass epidemiologische Daten nur auf Basis kleinerer Kollektive abgeleitet werden können. Eine Meta-Analyse von Bevölkerungsstudien zur Prävalenz des Ulcus cruris zeigt eine Prävalenz von 0,12% bis 1,1% (Graham et al., 2003). Für den deutschen Raum stellte die Bonner Venenstudie (Rabe et al., 2003) in der Allgemeinbevölkerung eine Prävalenz von 0,7% für ein florides oder abgeheiltes Ulcus cruris venosum (C5 und C6 nach der CEAP-Klassifikation) fest. Dabei ist die venöse Genese für etwa 65% der chronischen Wunden am Unterschenkel (mit-)verantwortlich, sodass von einer Gesamtprävalenz von ca. 1,2% ausgegangen werden kann (Körber et al., 2011). Die Prävalenz steigt mit zunehmendem Alter deutlich an, auf 2,4% in der Spitzengruppe der 70-79-jährigen, und es zeigt sich eine Wendigkeit zum weiblichen Geschlecht.

Weiterhin zeichnet sich das Ulcus cruris durch eine lange Abheilungszeit aus, im Mittel 30,48 Monate (SD: 77,43), die eine erhebliche Belastung für das Gesundheitssystem und die Betroffenen darstellt (Augustin et al., 2014).

Ökonomische Dimension. Vor dem Hintergrund der demografischen Entwicklung ist bei dem hohen Altersgipfel des Ulcus cruris mit einem erheblichen Anstieg der Kosten in den nächsten Jahrzehnten zu rechnen. Die ökonomische Bedeutung des Ulcus cruris resultiert aus der Dauer der Erkrankung und den häufigen Rezidiven, hohen Materialkosten, einer regelmäßigen Beanspruchung von Gesundheitsleistungen und sozioökonomischen Kosten durch den Ausfall von Arbeitstagen und Frühberentungen (Richert et al., 2004; Purwins et al., 2010).

Schätzungen gehen davon aus, dass chronische Wunden für ca. 1-2,5% der Kosten in mittelund nordeuropäischen Gesundheitssystemen verantwortlich sind (Nelzèn, 2000; Dt. Ges. f. Phlebologie, 2008). Zusätzlich zu den direkten Kosten entstehen indirekte, sozioökonomische Kosten. Gesamtgesellschaftliche Schätzungen für Deutschland gehen von einem Verlust von ca. 2,8 Millionen Arbeitstagen und 2500 Frühberentungen – im Schnitt 8,5 Jahre vor dem

eigentlichen Renteneinstiegsalter – jährlich aus, wobei hier auch andere Stadien der chronisch venösen Insuffizienz mit eingerechnet werden (Balschun, 2004).

Psychosoziale Belastung. Für Betroffene stellt das Ulcus cruris eine beachtliche psychosoziale Belastung dar. Der *allgemeine und krankheitsbezogene Verlust von Lebensqualität* wurde in verschiedenen Studien belegt. So wiesen Wissing et al. (2002) nach, dass ältere Patienten (> 65 Jahre) mit chronischen Unterschenkelwunden signifikant schlechter in den Bereichen physisches und psychisches Wohlbefinden, Aktivität im täglichen Leben, Wahrnehmung, soziale Interaktion und Zeitmanagement abschnitten, als solche ohne chronische Wunden. Franks et al. (2006) konnten als Langzeitfolge des Ulcus cruris eine deutliche Einschränkung der Mobilität und insgesamt empfundenen Lebensqualität feststellen. Weitere Studien bestätigen diesen starken Einfluss des Ulcus cruris auf die Lebensqualität der Patienten (Phillips et al., 1994; Renner et al., 2009).

Diagnostik und Therapieprinzipien. Die *Diagnostik* basiert auf Anamnese und Inspektion der Wunde(n), sowie einem Basislabor. Weitere apparative Diagnostik, Histologie und laborchemische Anforderungen in Abhängigkeit differentialdiagnostischer Überlegungen runden die Diagnostik ab. Ein von Meyer et al. (2011) vorgeschlagenes Diagnostikschema verdeutlicht die Vielschichtigkeit und Komplexität der Differentialdiagnose (Abb. 1).

Ulcus cruris Anamnese: Untersuchung: technische Diagnostik: - Doppler - Dauer - Wundcharakteristika - ABI - Schmerzen - Wundumgebung - ggf. Duplex - Reisen - Allgemeingesundheit? Basisdiagnostik - Medikamente - Farbe - Vorerkrankungen - Temperatur Labor: - Lymphknoten - Bestrahlung - Blutbild, BSG, Urin, - Familienanamnese - Pulse Nüchtern-Blutzucker - Psyche Wundabstriche Maßnahmen: - Allergiediagnostik ANA, ANCA, Blutzuckerprofil, Serum und Urin - Angiographie Calcium/Phosphat, CCP, CRP, Differential-- Biopsie Blutbild, Protein, Proteinelektrophorese, - Immunofluoreszenz Elektrolyte, Gerinnungslabor (Protein C/S, erweiterte - Kapillarmikroskopie Antiphospholipid-Antikörper), HbA1c, Diagnostik - Mikrobiologie Hepatitis B/C & HIV Serologie, Kryoglobuline, - MR-/CT-Angiographie Syphilis Serologie, Kreatinin, Harnstoff, -säure, - neurologische Diagnostik Transaminasen, Parathormon, Quantiferon o. - Oszillographie Tuberkulin-Test, Rheumafaktor - Rheumalabor - Thorax-Röntgen

Abbildung 1: Diagnostikschema angepasst nach Meyer et al. (2011)

Die *Therapie chronischer Wunden* fußt auf *zwei Säulen*: kausale Therapie der ermittelten *ätiologischen Grunderkrankung* sowie *Beseitigung wundheilungsstörender Faktoren* und *multimodale Wundversorgung* mit modernen Wundverbänden. Während moderne Wundverbände ein physiologisch feuchtes Milieu schaffen und so den Abheilungsprozess günstig beeinflussen, kann eine dauerhafte Abheilung nur erreicht werden, wenn auch das kausale Grundleiden diagnostiziert und therapiert wird (Dissemond, 2012, S.13 & 271ff; Dt. Gesellschaft für Wundheilung, 2012, S.78).

Die stationäre Aufnahme von Patienten erfolgt zumeist bei therapierefraktären Ulzerationen und rasch progredienten Verläufen. Im Vergleich zum ambulanten Sektor sind Kapazitäten für eine konzentrierte Diagnostik vorhanden, die es erlaubt, auch seltene Ursachen des Ulcus cruris zu identifizieren. Während im ambulanten Patientengut die Gefäßerkrankungen überwiegen (vornehmlich Ulcus cruris venosum, Ulcus cruris arteriosum und die Mischform Ulcus cruris mixtum), können unter stationären Versorgungsbedingungen eine Vielzahl weiterer Ätiologien abgeklärt werden. Dissemond (2012) benennt in seinem Buch "Blickdiagnose chronischer Wunden" über 50 Ätiopathogenesen des Ulcus cruris (vgl. auch Ramelet und Blazek, 2012). Damit nimmt zwangsläufig auch der Anteil von Ulzera mit kombinierten Ursachen zu (Altmeyer und Paech, 2005).

Das DRG-System hat zu sinkenden stationären Verweildauern (Zäsur durch "Grenzverweildauern") geführt. Dies nötigt zur raschen zielgerichteten Diagnostik, damit auch eine kausale Therapie frühzeitig begonnen werden kann. Ziel der stationären Behandlung ist die Identifizierung der Ätiologie(n) des Ulcus curis und die Einleitung einer suffizienten Therapie bis zum Auftreten klarer Heilungstendenzen. Danach erfolgt die Entlassung, sofern die Therapie auch im ambulanten Sektor mit Aussicht auf Erfolg fortgeführt werden kann (Gesellschaft für Wundheilung, 2012, S. 244).

2 Zielstellung

Diverse Studien zur Differentialdiagnose des UC wurden publiziert (exemplarisch: Miller und Ruzicka, 2001; Dissemond et al., 2006; Sick und Ruzicka, 2010; Meyer et al., 2011; Pannier und Rabe, 2013). Die Prävalenz inspektorischer und sonstiger hinweisender diagnostischer Befunde wird jedoch nur im Bezug auf die jeweilige Ätiologie beschrieben. So wird beispielsweise die Lokalisation bei Ulcus cruris venosum untersucht oder Kofaktoren des Pyoderma gangraenosum (Abbade et al., 2011; Al Ghazal et al., 2012). Es fehlt an einer systematischen Auswertung des Auftretens klinischer Merkmale über alle Ätiologien hinweg.

Diese Lücke könnte ein prognostisches Modell schließen, das aus den wichtigsten klinischinspektorischen Merkmalen die Wahrscheinlichkeit für diverse Ätiologien schätzt und so die Differentialdiagnostik unterstützt. Dabei wird das klinische Erscheinungsbild unterschiedlicher Ätiologien systematisch miteinander verglichen und Unterschiede offensichtlich, die sich bei einzelner Betrachtung verschließen.

Eine Automatisierung des diagnostischen Prozesses soll dabei nicht angestrebt werden, vielmehr soll dem Kliniker ein einfaches Hilfsmittel an die Hand gegeben werden, um die Diagnostik zu planen und zu systematisieren.

Prognostische Modelle finden im klinischen Alltag bisher wenig Anwendung, da neben dem reinen Zeitaufwand für die Erhebung der Daten oft auch ein Computer zur Berechnung der Ergebnisse vorhanden sein muss. Einige Scores auf Basis prognostischer Modelle etablieren sich dennoch, wie beispielsweise in der Dermatologie der "Erlanger Atopie Score" (Diepgen et al., 1996) oder der "postoperative nausea and vomiting"-Score (van den Bosch et al., 2005) auf dem Fachgebiet der Anästhesie. Beide wurden auf Basis logistischer Regressionsmodelle erstellt, jedoch stark vereinfacht, um ihre Anwendung zu gewährleisten.

Ein komplexes mathematisches Modell zur Anwendung auf dermatologischen Stationen zu propagieren, scheint daher unsinnig. Vielmehr könnten, analog zu den beiden vorgenannten Scores, prägnante und leicht zu verinnerlichende Regeln aus dem Modell abgeleitet werden. Die Regeln könnten als "Risikoprofile" aus zwei bis drei Merkmalen bestehen, mit denen sich Ulzera einer bestimmten Ätiologie vom restlichen Ulkus-Patientengut abheben und so die Differentialdiagnostik vereinfachen. Dem klinisch tätigen Arzt könnten diese Regeln in der zielgerichteten Diagnostikplanung helfen.

Mit dieser Studie wird in einem retrospektiven Ansatz im stationären Patientengut der Universitäts-Hautklinik Halle über ein multinominales logistisches Regressionsmodell untersucht, welche klinischen Befunde aus den Bereichen Anamnese, Inspektion und

Zielstellung

biometrische Daten im Vergleich zu den übrigen Ulkus-Patienten hinweisend auf die häufigsten Ätiologien bei Ulcus cruris sind.

Dabei ergeben sich folgende Fragen:

- 1. Kann die *Ätiologie* des Ulcus cruris anhand klinischer Basisparameter über ein prognostisches Model bereits am Aufnahmetag abgeschätzt werden?
- 2. Kann dieses Model soweit vereinfacht werden, dass einprägsame Regeln für den klinisch tätigen Arzt entstehen, die ihm helfen, die *Differentialdiagnostik rasch zu strukturieren*?

3 Material und Methode

3.1 Klinische Merkmale

Es wurden folgende Voraussetzungen für die klinischen Parameter, die als mögliche Schätzer für die Ätiologie bei Ulcus cruris in Frage kamen, definiert:

- 1. Aus Studien **bekannte oder zumindest vermutete Assoziation** des Merkmals mit wenigstens einer Ätiologie des Ulcus cruris.
- 2. **Kein Kostenaufwand** in der Erhebung des Parameters durch apparative Diagnostik oder Testverfahren
- 3. **Geringer Zeitaufwand** in der Erhebung, beispielsweise im Rahmen der normalen Patientenaufnahme und Anamnese.
- 4. **Regelmäßige Dokumentation**, schriftlich in der Patientenakte oder fotografisch.

Nach diesen Kriterien wurde auf Basis der verfügbaren Literatur zur Diagnostik des UC und durch Befragung des Betreues der Arbeit, sowie Fachärzten in unterschiedlichen Positionen innerhalb der Universitäts-Hautklinik Halle (Saale) eine Liste von möglichen Merkmalen eruiert. Die fertige Liste wurde den Experten erneut zur Evaluation vorgelegt und zusätzlich mit Bitte um Stellungnahme an Prof. Dissemond von der Universitäts-Hautklinik Essen geschickt.

Im Anschluss wurde eine Piloterhebung durchgeführt, um die Konsistenz der Daten in den Patientenakten zu überprüfen. Die Akten von zehn kürzlich auf den Stationen der Universitäts-Hautklinik behandelten Patienten mit Ulcus cruris wurden zusammen mit den entsprechenden Aufnahmen aus dem Fotoarchiv der Hautklinik gesichtet. Es zeigte sich, dass einige der in der Expertenbefragung identifizierten Merkmale nicht regelhaft dokumentiert worden waren. Schließlich wurden 20 Merkmale erhoben (Tab. 1).

Auf Basis klinischer Erfahrung, Expertenmeinungen und der Vollständigkeit der Daten in den Patientenakten wurden nach der Erhebung die acht Merkmale Geschlecht, Alter, Body Mass Index (BMI), Dynamik, Schmerzen im Wundbereich, Wundgrund, Lokalisation und Anzahl der Wunden für das multinominal logistische Regressionsmodell (MLR-Modell) ausgewählt.

Tabelle 1: Liste erhobener Merkmale

Merkmal	Anmerkung
Soziodemografische Daten	
Geschlecht	
Alter	
Body Mass Index (BMI)	Errechnet nach der Formel: BMI = Masse[kg] / Länge[m]²
Anamnese	
Dynamik	Dauer und Verlauf der chronischen Wunde(n)
Schmerzen	
Kriterien der Wundbeurteilung	
Wundgrund	
Wundbegrenzung	
Wundrand	≤ 1cm um die Wund-Epithel-Grenze
Wundumgebung	> 1cm um die Wund-Epithel-Grenze
Lokalisation	bis zu 2 Lokalisationen wurden dokumentiert
Anzahl	
Untersuchung	
Fußpulse	
Temperatur	
Blutdruck	systolischer, diastolischer und mittlerer RR
Nebendiagnosen	
arterieller Hypertonus	
Diabetes mellitus	unabhängig von Insulinbedarf
Herzinsuffizienz	
Niereninsuffizienz	

Für viele der Merkmale existiert keine standardisierte konsensbasierte Dokumentationsweise, oder Merkmalsausprägungen sind nicht einheitlich definiert. Davon waren alle Kriterien der Wundbeurteilung (mit Ausnahme der Anzahl der Wunden) und die anamnestischen Merkmale "Dynamik" und "Schmerzen" betroffen. Tools zur Bewertung von Wunden werden aufgrund fehlender Standardisierung und Alltagstauglichkeit nicht empfohlen (Panfil und Linde, 2006). Daher erfolgte in diesen Fällen mit Hilfe von Expertenbefragungen und anhand von Referenzstudien eine eigene Einteilung (Tab. 2). Hauptsächlich orientierten wir uns an den Empfehlungen der Deutschen Gesellschaft für Wundheilung und Wundbehandlung e.V. (DGfW) als federführende Gesellschaft der AWMF S3-Leitlinie: "Lokaltherapie chronischer Wunden bei

Patienten mit den Risiken periphere arterielle Verschlusskrankheit, Diabetes mellitus, chronisch venöse Insuffizienz".

Dynamik: Die DGfW definiert in ihrer Leitlinie eine Wunde bei einer "fehlenden Abheilung innerhalb von acht Wochen" (Dt. Gesellschaft für Wundheilung, 2012, S. 32) als chronisch. Diese Definition wurde zur besseren Unterscheidung akuter und subakuter, sowie rezidivierender Verläufe erweitert, sodass vier Merkmalsausprägungen entstanden: "akuter Verlauf" (1 – 21 Tage), "subakuter Verlauf" (3 – 8 Wochen), "chronischer Verlauf" (>8 Wochen) und "chronisch rezidivierend".

Tabelle 2: Übersicht der gewählten Ausprägungen nicht standardisierter Merkmale

Merkmal	Ausprägungen			
Anamnese				
Dynamik	akut (1 – 21 Tage)			
	subakut (3 – 8 Wochen)			
	chronisch (>8 Wochen)			
	chronisch rezidivierend			
Schmerzen	keine/gering			
	zeitweise/mäßig			
	dauerhaft/stark			
Kriterien der Wundbeurteilung				
Wundgrund	sauber/granuliert			
	fibrinbelegt			
	hämorrhagisch			
	superinfiziert			
	nekrotisch			
Lokalisation	prätibial			
	Malleolus medialis			
	Malleolus lateralis			
	dorsal			
	(dorso)medial			
	(dorso)lateral			
	regionenüberspannend			

Schmerzen: In der zeitsparenden und einfach anzuwendenden Erfassung von Schmerzen im Rahmen stationärer Krankenhausaufenthalte hat sich die Visuell-Analog-Skala (VAS) als gut validiertes und verlässliches Instrument durchgesetzt (Carlsson, 1983). Aufgrund der

¹ In der Version 1 vom 12.06.2012, gültig bis 30.04.2016.

Erkenntnisse aus der Piloterhebung musste von dem ursprünglichen Plan abgesehen werden, die VAS als Instrument für die Erfassung von Schmerzen heranzuziehen. Angepasst an den Dokumentationsduktus wurde die Einteilung der Schmerzen folgendermaßen festgelegt: "keine/geringe Schmerzen", "zeitweise/mäßige Schmerzen" und "dauerhafte/starke Schmerzen".

Wundgrund: In der Beurteilung des Wundgrundes (im Sprachduktus der DGfW "Wundfläche") gibt es verschiedene Verfahren, die allerdings von der Leitlinie als nicht valide und reliabel bewertet werden. Die DGFW betrachtet die "übliche medizinisch-morphologische Nomenklatur" (Dt. Gesellschaft für Wundheilung, 2012, S. 68) als ausreichend in der Beschreibung des Gewebes am Wundgrund, ohne diese jedoch genauer zu definieren. Dieser Empfehlung folgend wurden nach der in der Universitäts-Hautklinik üblichen klinischen Einteilung "saubere/granulierte", "fibrinbelegte/superinfizierte", "hämorrhagische" und "nekrotische" Wunden (Abb. 2) unterschieden. Eine analoge Einteilung nimmt Dissemond (2012) vor.

Abbildung 2: Wundgrund. (a) sauber/granuliert; (b) fibrinbelegt/superinfiziert; (c) hämorrhagisch; (d) nekrotisch.

Da nicht ausgeschlossen werden konnte, dass in Einzelfällen mehrere Kategorien zutreffend waren, wurde stets diejenige gewählt, die als schwerer wiegend oder überwiegend beurteilt wurde. Ein gleichmäßig von Fibrin und Nekroseplatten belegter Wundgrund wurde beispielsweise als "nekrotisch" klassifiziert.

Lokalisation: Anatomisch wird der Unterschenkel (Regio cruris) in 4 Regionen unterteilt: Regio curis anterior, Regio cruris posterior, Regio talocruralis anterior und Regio talocruralis posterior (FIPAT, 2011, S. 5). Diese Einteilung ist für die Beschreibung der Wundlokalisation unzureichend, sodass folgende Einteilung festgelegt wurde: "prätibial", "Malleolus medialis", "Malleolus lateralis", "(dorso)lateral", "(dorso)medial", "dorsal", "regionenüberspannend" (Abb. 3).

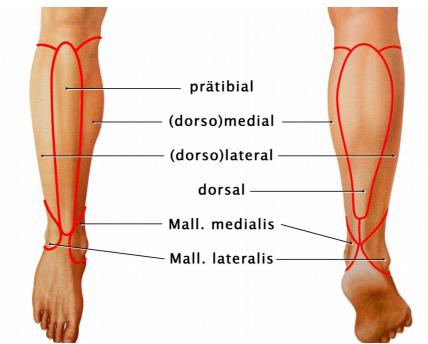


Abbildung 3: Merkmal Lokalisation, Einteilung der Regionen; Mall.: Malleolus

Diese Einteilung wurde als Kompromiss zwischen höchstmöglicher Genauigkeit der Beschreibung der Wundlokalisation und Brauchbarkeit für statistische Auswertungen sowie Alltagstauglichkeit gewählt.

Insbesondere für größere Wunden, die Grenzen der Regionen überschreiten, wurden bis zu zwei Lokalisationen erfasst, sofern sie nicht klar überwiegend einem Ort zuzuweisen waren. Nach der Datenerhebung wurde zufällig eine der beiden Regionen ausgewählt, damit die Variable "Lokalisation" eine definitive Ausprägung erhielt.

In Fällen, in denen mehr als zwei Regionen betroffen waren, beispielsweise Gamaschenulzera oder disseminierte Befunde bei Vasculitis allergica, wurden die Wunden als "regionenüberspannend" klassifiziert.

3.2 Zielgröße: Ätiologie

Das Ulcus cruris kann eine Vielzahl verschiedener Ätiopathogenesen aufweisen. Häufige Ursachen, wie CVI und pAVK werden über verschiedene Klassifikationssysteme in unterschiedliche Stadien unterteilt (z.B. Hach et al., 2000). Weiterhin existieren Subdiagnosen, beispielsweise werden für die CVI das Arthrogene Stauungssyndrom und das Postthrombotische Syndrom beschrieben (Hach, 2003; Dissemond, 2012, S. 22). Auf eine Aufspaltung der Ätiologien in Subtypen wurde verzichtet, zumal eine *morphologische Similarität* angenommen werden kann. Da a priori schwer abzuschätzen war, mit welcher Häufigkeit einzelne Ätiologien im Patientengut auftreten würden (vgl. Abb. 4, S. 15), wurde die definitive Klassifizierung erst nach Abschluss der Datenerhebung vorgenommen. Die Verteilung der Ätiologien des Ulcus cruris im Patientengut der Studie findet sich im Ergebnisteil in Abbildung 9, S.22.

Diabetische Fußulzera und Dekubitus-Ulzera wurden analog zu anderen Studien zur Ätiologie des Ulcus cruris nicht in die Studie aufgenommen (Dissemond et al., 2006; Meyer et al., 2011; Jockenhöfer et al., 2014).

Das MLR-Modell erlaubt eine Ätiologie pro Fall. Polyätiologische Ulzera sind im stationären Bereich jedoch nicht unüblich (Altmeyer und Paech, 2005). Insbesondere die Kombination aus CVI und pAVK "Ulcus curis mixtum" tritt häufiger auf: Patienten mit Ulcus cruris mixtum wurden mit einer eigenen Ätiologie "UC mixtum" klassifiziert, wodurch diese Fälle nicht mehr als CVI oder pAVK gewertet wurden. Ulzera mit anderen Ätiologiekombinationen, beispielsweise CVI und Pyoderma gangraenosum, wurden in zwei Fälle aufgespalten.

Im Sinne einer verständlichen Sprache wird der Begriff "Ätiologie" synonym für alle für das Ulcus cruris kausalen, terminologisch definierten Entitäten genutzt.

3.3 Ein- und Ausschlusskriterien

Um dem Anspruch, ein repräsentatives Patientengut auf dermatologischen Stationen abzubilden, gerecht zu werden, wurden die Ein- und Ausschlusskriterien so gewählt, dass möglichst viele Patienten aufgenommen werden konnten und eine artifizielle Selektion des Patientengutes vermieden wurde. Um eine Verzerrung der Stichprobe zu vermeiden, beispielsweise durch unzureichende Befunde bei mangelnder Compliance des Patienten, mussten Ausschlusskriterien definiert werden.

Einschlusskriterien: Bei stationärer Aufnahme mussten die Patienten:

- ein florides Ulkus am Unterschenkel präsentieren und
- bei Aufnahme volljährig sein.

Ausschlusskriterien: Als Ausschlusskriterien wurden definiert:

- Akte im Archiv der Universitätsklinik Halle nicht vorhanden oder längerfristig entliehen (> 6 Monate),
- keine gesicherte Diagnose bei Entlassung, z.B. bei Ausbleiben von Untersuchungen aus Kapazitätsgründen,
- vorzeitige Verlegung vor Abschluss der Diagnostik, z.B. bei dekompensierter Herzinsuffizienz,
- schwer multimorbide oder moribund, z.B. bei fortgeschrittenem Tumorleiden,
- Ulcus cruris nicht Behandlungsgrund, entsprechend keine zielgerichtete Diagnostik,
- unzureichende oder fehlende Dokumentation, z.B. bei Fehlen des Aufnahmebogens,
- mangelnde Compliance des Patienten und
- Ätiologie zu selten für statistische Auswertung.

Während der Ausschluss bei den ersten sieben Kriterien bereits während der Erhebung erfolgte, wurden Patienten, deren Ätiologie nicht häufig genug auftrat, a posteriori ausgeschlossen. Als Grenzwert wurde eine Häufigkeit von \leq 3% im Datensatz festgelegt.

3.4 Rekrutierung der Studienpopulation

Auswahlmethode: Um eine zufällige repräsentative Erhebung der Stichprobe zu gewährleisten, erhoben wir alle Ulkus-Patienten der Universitäts-Hautklinik ab dem 31.12.2012 rückwärtsgerichtet bis die nötige Anzahl Fälle erreicht war. Ein Auszug aus dem Patientendatenmanagementsystem der Universitätsklinik Halle über eine Liste von ICD-10 Schlüsseln wurde angefordert. Diese Liste (s. Tab. 3) enthielt ICD-10 Codes (Deutsches Institut für Medizinische Dokumentation und Information, 2012), die entweder eine Ätiologie verschlüsseln, die wahrscheinlich mit einem Ulcus cruris einhergeht (z.B. I83.0 – Varizen der unteren Extremität mit Ulzeration) oder einen allgemeinen Schlüssel für chronische Wunden darstellt (z.B. L97 – Ulcus cruris, anderenorts nicht klassifiziert). Diagnosen, die im Regelfall nicht mit einer Ulzeration einhergehen, für diese aber dennoch ursächlich sein können (z.B. Syphilis oder Radioderm) wurden nicht in die Liste mit aufgenommen, da hier ein allgemeiner Schlüssel für chronische Wunden koverschlüsselt wurde. Damit erfolgte die Kodierung in der Universitäts-Hautklinik den Empfehlungen der S3-LL "Lokaltherapie chronischer Wunden bei Patienten mit den Risiken periphere arterielle Verschlusskrankheit, Diabetes mellitus, chronisch venöse Insuffizienz" (Dt. Gesellschaft für Wundheilung, 2012, S. 57f).

Material und Methode

Tabelle 3: ICD-10 Schlüssel und Bezeichnung für die Rekrutierung des Studienkollektivs

Ätiologie	ICD-10	Bezeichnung
Chronisch venöse Insuffizienz	183.0	Varizen der unteren Extremität mit Ulzeration
(CVI)	183.2	Varizen der unteren Extremitäten mit Ulzeration und Entzündung
Periphere arterielle Verschlusskrankheit (pAVK)	170.23	Atherosklerose der Extremitätenarterien, Becken- Bein-Typ, mit Ulzeration
Stadium IV nach Fontaine	170.24	Atherosklerose der Extremitätenarterien, Becken- Bein-Typ, mit Gangrän
Livedovaskulopathie	L95.0	Livedo-Vaskulitis
Pyoderma gangraenosum	L88	Pyoderma gangraenosum
Malignes Melanom	C43.7	Bösartiges Melanom der unteren Extremität, einschließlich Hüfte
Sonstige Neubildungen (Basaliome, Plattenepithelkarzinome, etc.)	C44.7	Sonstige bösartige Neubildungen der Haut, Haut der unteren Extremität, einschließlich Hüfte
Allgemeine Wundschlüssel	L98.4	Chronisches Ulkus der Haut, anderenorts nicht klassifiziert
	L97	Ulcus cruris, anderenorts nicht klassifiziert

Studienumfangsberechnung: Die ungefähre Verteilung und Häufigkeit verschiedener Ätiologien ist aus Studien zur Differentialdiagnose des Ulcus cruris bekannt (Abb. 4) (Körber et al., 2011; Jockenhöfer et al., 2014). Um Vorhersagen über seltenere Ätiologien treffen zu können, wurde die Studienpopulation auf 250 Fälle festgelegt. Dadurch konnten für Ätiologien mit einer Häufigkeit von 5% im Ulkus-Patientengut ca. 12 Fälle erwartet werden.

Insbesondere für die Neoplasien wurde erwartet, dass ein wesentlicher Anteil der Patienten kein florides UC präsentieren würde. Ebenso war der Ausschluss einiger Fälle aufgrund der o.g. Kriterien zu erwarten (vgl. Kapitel 3.3). Daher wurden mindestens 500 Patienten in der Vorauswahl erfasst, um eine ausreichende Anzahl Fälle in der Studienpopulation zu gewährleisten.

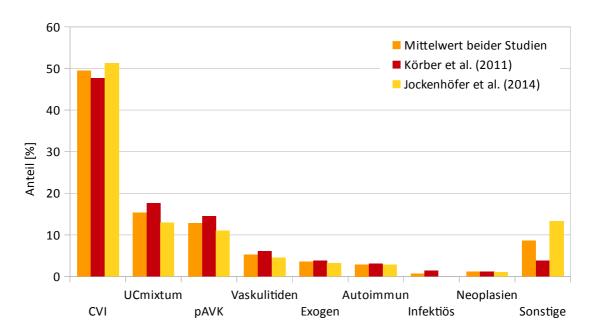


Abbildung 4: Verteilung der Ätiologien in verschiedenen Studien im Vergleich

Multiple Aufenthalte: Waren Patienten mehrmals in stationärer Behandlung, wurde nur der erste Aufenthalt ausgewertet, auch wenn dieser vor dem frühesten vom Screening erfassten Jahrgang lag. Zwei Überlegungen führten zu diesem Vorgehen: Erstens, die früheste stationäre Aufnahme liegt dem Initialbefund des Ulkus zeitlich am nächsten, daher kann eine höhere Aussagekraft der Wundparameter als bei Folgeaufenthalten vermutet werden. Zweitens kann davon ausgegangen werden, dass bei einem der Universitäts-Hautklinik unbekannten Patienten eine aufwendigere Differentialdiagnostik durchgeführt wird als bei bekannten Patienten mit gesicherter Diagnose.

Über einen Behandlungsvertrag bei Aufnahme stimmten die Patienten einer wissenschaftlichen Auswertung der im Verlauf ihrer Behandlung auf dermatologischen Stationen der Universitäts-Hautklinik erhobenen Daten zu.

3.5 Auswertung

Zur simultanen Untersuchung der Zusammenhänge von klinischen Parametern und der Ätiologie des Ulcus cruris wurde ein *multinominales logistisches Regressionsmodell* mit dem Ziel der Prädiktion der Ätiologie formuliert.

Die metrischen Merkmale BMI, Alter und Anzahl der Wunden wurden kategorisiert, um eine praktikable Auswertung zu ermöglichen. Für den BMI konnte auf definierte Grenzwerte für die Kategorien zurückgegriffen werden (WHO, 2004). Das Merkmal Alter wurde in Dekaden stratifiziert. In einer Abwägung zwischen Informationsverlust und Praktikabilität legten wir für

die "Anzahl der Wunden" die Kategorien "1", "2 bis 5" ">5" fest. Die Kategorien der entsprechenden Merkmale sind in Tabelle 4 aufgeführt.

Tabelle 4: Kategorisierte Merkmale

Merkmal	Bemerkung
Body Mass Index	
Untergewicht	< 18,50 kg/m ²
Normalgewicht	18,50 - 24,99 kg/m²
Übergewicht	25,00 - 29,99 kg/m ²
Adipositas	≥ 30,00 kg/m²
Alter	
< 60 Jahre	
60 – 69 Jahre	
70 – 79 Jahre	
≥ 80 Jahre	
Anzahl der Wunden	
1	
2 bis 5	
über 5	

3.5.1 Umgang mit fehlenden Werten

Multiple Imputation: Da kein Standard zur Dokumentation von Wunden vorliegt, waren fehlende Daten in den Patientenakten zu erwarten. Nur vollständige Datensätze können ohne Datenverlust in einem multiplen Regressionsmodell verarbeitet werden. Unter der Annahme des missing at random (MAR) (vgl. S. 36) wurde daher entschieden, unvollständige Datensätze mithilfe der von Donald B. Rubin beschriebenen Regeln zu imputieren (Rubin, 1987).

Obwohl die multiple Imputation den *Goldstandard* zur Schätzung fehlender Daten darstellt, wird das Verfahren aufgrund der Komplexität nicht häufig genutzt. Die Methode wird folgend kurz dargestellt.

Die MI schätzt Werte für fehlende Datenpunkte, um vollständige Datensets zu erzeugen. Im Gegensatz zu einfachen Imputationsverfahren werden mehrere vollständige Datensets erzeugt, parallel ausgewertet und schließlich die Ergebnisse zusammengefasst. Unterschiede in den Ergebnissen aus den einzelnen Datensätzen drücken die durch die MI generierte Unsicherheit aus, die in einfachen Imputationsmodellen keine Beachtung findet (Baltes-Götz, 2013).

Die MI verläuft in drei Phasen (Abb. 5): Imputation, Analyse und Zusammenfassung. In der Imputationsphase werden für jede Variable in einer Regression Werte für fehlende Daten geschätzt. Die mathematischen Prinzipien sind bei Baltes-Götz (2013) übersichtlich dargestellt. In der Analysephase wird die induktive Statistik (hier: multinominale logistische Regression), die auf einen (vollständigen) Originaldatensatz angewendet worden wäre, für jedes generierte Datenset einzeln durchgeführt. Die Daten werden zusammengefasst (engl. *Pooling*), indem die Ergebnisse gemittelt werden. Der MI-Standardfehler wird aus der datensatzinternen und datensatzexternen Varianz errechnet und bezieht die Unsicherheit durch die fehlenden Daten mit ein (Baltes-Götz, 2013, S. 62ff).

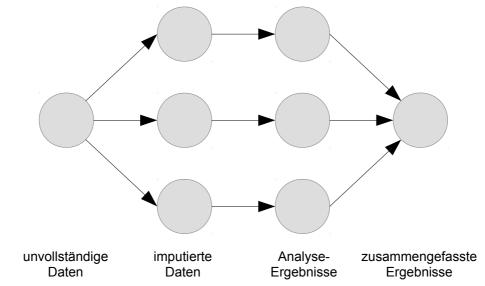


Abbildung 5: Schema der multiplen Imputation

Mit steigender Anzahl der Imputationen sinkt der Standardfehler im kombinierten Datensatz. Nach der Empfehlung von Enders wurden *20 Imputationen* durchgeführt (Enders, 2010, S. 214).

Es wurden Hilfsvariablen in die Erstellung des Modells miteinbezogen, um ein möglichst genaues Imputationsmodell zu erzeugen. Diese waren anfänglich erhoben worden, fanden aber aufgrund zu vieler Fehlwerte in der multinominalen logistischen Regression später keine Verwendung mehr (vgl. Enders, 2010, S. 54f).

Das Pooling erfolgte schließlich nach den von Rubin definierten Regeln, wobei die aus 20 Imputationen nach multinominaler logistischer Regression gewonnenen Punktschätzer gemittelt wurden und so den gepoolten Schätzer der MI ergaben (Rubin, 1987).

3.5.2 Multinominale logistische Regression

Die multinominale logistische Regressionsanalyse (MLR) ist eine Regressionsanalyse, die eine Untersuchung der Abhängigkeit einer Variable (hier: Ätiologie des Ulcus cruris) von mehreren anderen Variablen erlaubt. Als Besonderheit weist die abhängige Variable ein mehrstufiges kategoriales Skalenniveau auf, sodass die Ätiologien des UC im Bezug auf ihre klinische Präsentation simultan untersucht werden können (vgl. Abb. 6).

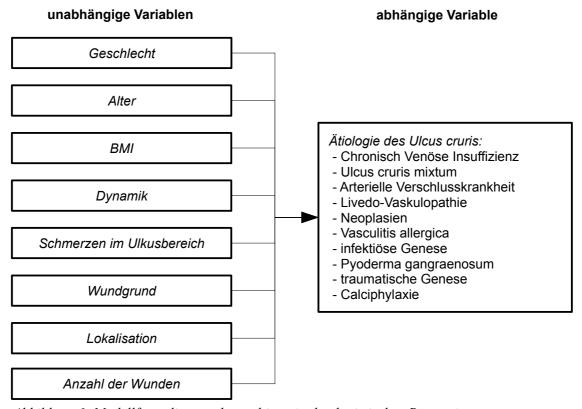


Abbildung 6: Modellformulierung der multinominalen logistischen Regression

Im Folgenden wird das Verfahren kurz dargestellt. Als Ergebnis liefert die Regression eine Regressionsgleichung z für jede Kategorie der abhängigen Variable (hier: Ätiologie des UC) in der Form von Gleichung 1 für $X_1,...,X_k$ unabhängige Variablen², wobei β_0 ein konstanter Term ist und jedes Paar β_n * x_n für eine Merkmalsausprägung multipliziert mit ihrem Regressionskoeffizienten steht.

$$z = \beta_0 + \beta_1 * x_1 + \beta_2 * x_2 + \dots + \beta_k * x_k \tag{1}$$

Die Regressionskoeffizienten (auch: Parameterschätzer) repräsentieren die von allen anderen unabhängigen Variablen adjustierte Stärke des Einflusses auf die abhängige Variable. Weiterhin nimmt x_n bei kategorialen Merkmalen immer den Wert 1 für die entsprechende Ausprägung an.

² In unserem Modell: X_1 = Geschlecht, X_2 = Alter, X_3 = BMI, X_4 = Dynamik, X_5 = Schmerzen, X_6 = Wundgrund, X_7 = Lokalisation, X_8 = Anzahl der Wunden

Da eine Kategorie als Referenzkategorie herangezogen wird – sowohl bei der abhängigen, als auch bei den unabhängigen Variablen – resultieren bei M Kategorien der abhängigen Variable M-I Gleichungen nach (1). Bei unabhängigen Variablen nimmt der Regressionskoeffizient β_n für die Referenzkategorie den Wert 0 an. Ihr Einfluss verbirgt sich im konstanten Term β_0 .

Die Wahrscheinlichkeit p für eine Ätiologie in Abhängigkeit der unabhängigen Variablen errechnet sich dann nach Gleichung (2), wobei n-l die Kategorien der abhängigen Variable ohne die Referenzkategorie und k alle Kombinationen der unabhängigen Variablen repräsentiert.

$$p_{n-1,k} = \frac{e^{z_{n,k}}}{1 + \sum_{i=1}^{n} e^{z_{k}}}$$
 (2)

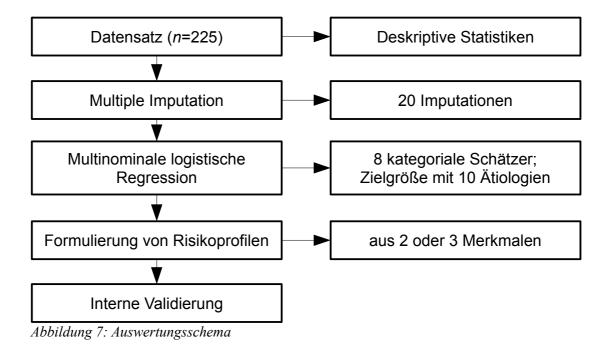
Für die Referenzkategorie der abhängigen Variable gilt Gleichung 3.

$$p_{ref,k} = \frac{1}{1+\sum e^{z_k}} \tag{3}$$

Weitere Betrachtungen zur Bewertung der Modellgüte und mathematischen Hintergründen sind in Hosmer und Lemeshow (2000) zu finden.

3.5.3 Formulierung von Risikoprofilen

Die regelhafte Anwendung eines komplexen MLR-Modells im klinischen Alltag ist aufgrund der Hürden im Umgang unwahrscheinlich, da die Eingabe von Patientendaten Zeit kostet und ein PC vorhanden sein muss. Die Anwendung von vereinfachten Punktewerten (Scores) auf Basis logistischer Regressionsmodelle hält jedoch zunehmend Einzug in den klinischen Alltag (vgl. Kapitel 2). Da kein Standard für die Erstellung vom Scores aus komplexen MLR-Modellen besteht, entschlossen wir uns, Risikoprofile bestehend aus einer für die Ätiologien typischen Merkmalskombination anhand der MLR-Daten zu formulieren.

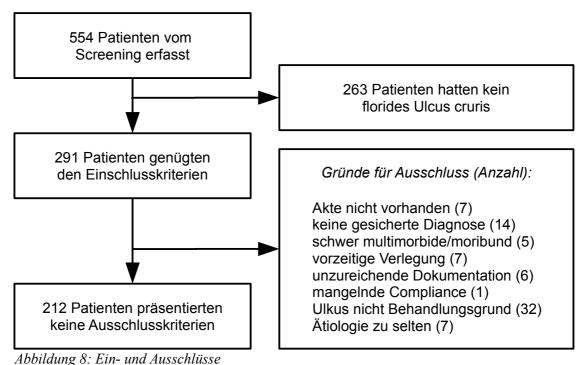

Risikoprofile: Für jede mögliche Kombination der Ausprägungen unabhängiger Variablen ergeben sich nach (2) und (3) zehn Wahrscheinlichkeiten, eine pro Ätiologie, die zusammen 100% ergeben. Bei acht Merkmalen mit insgesamt 31 Ausprägungen (vgl. Tab.6, S.25) existieren 32.256 mögliche Kombinationen. Diesen Kombinationen, die auch als "theoretische Fälle" angesehen werden können, weist das MLR-Modell auf Basis der Patientendaten jeweils eine Wahrscheinlichkeit pro Ätiologie zu.

Eindeutig klassifizierte Kombinationen, also solche die das Modell mit hoher Wahrscheinlichkeit einer Ätiologie zuweist, können als besonders repräsentativ für diese Ätiologie angenommen werden. Sie spiegeln die klinische Präsentation der Ätiologie wieder, mit der sie sich am meisten von anderen Grunderkrankungen des UC abhebt. In diesen

theoretischen Fällen häufen sich bestimmte Ausprägungen. Solche, die besonders häufig bei einer Ätiologie auftraten, wurden zu einem "Risikoprofil" zusammengefasst, also einer leicht zu merkenden und unkompliziert anwendbaren Heuristik für die klinisch-praktische Tätigkeit. Zur Überprüfung der Vorhersagekraft der Profile wurden sie anschließend validiert.

Validierung: Da kein konfirmatorischer Anspruch bei relativ wenigen Fällen und entsprechender statistischer Instabilität erhoben wurde, konnte nur über eine Validierung eine Aussage über die Schätzkraft der Profile abgeleitet werden (vgl. Diskussion S.36). Die extrahierten Risikoprofile wurden intern validiert. Dazu wurde der Anteil der von den Risikoprofilen richtig klassifizierten Fälle im Originaldatensatz errechnet.

Zusammenfassend ist das *Schema zur statistischen Auswertung* der Studiendaten in Abbildung 7 dargestellt. Alle Berechnungen wurden mit dem Statistikprogrammpaket IBM® SPSS® Statistics in der Version 21 für Windows® durchgeführt. Eine statistische Beratung durch das Institut für Medizinische Epidemiologie, Biometrie und medizinische Informatik wurde in Anspruch genommen.


4 Ergebnisse

4.1 Deskriptive Statistik

Vom 01.01.2010 bis zum 31.12.2012 wurden 554 Patienten, die in der Universitäts-Hautklinik Halle (Saale) stationär behandelt worden waren, erfasst und ausgewertet. Eine Zusammenfassung der Erhebung findet sich in Abbildung 8.

Den Einschlusskriterien genügten 263 der 554 erfassten Patienten (47,5%) nicht, da sie zum Aufnahmezeitpunkt kein florides Ulkus am Unterschenkel präsentierten. Alle Patienten waren am Aufnahmetag volljährig.

Weitere 79 der 291 verbleibenden Patienten (27,1%) präsentierten Ausschlusskriterien. Der häufigste Ausschlussgrund war mit 32 Ausschlüssen ein anderer Behandlungsgrund, beispielsweise Erysipel oder Exazerbation bei Psoriasis. Weniger häufig waren eine nicht gesicherte Diagnose zum Zeitpunkt der Entlassung (14 Ausschlüsse, 4,8%), vorzeitige Verlegung des Patienten, seltene Ätiologie, nicht vorhandene Akte (jeweils 7 Ausschlüsse), unzureichende Dokumentation (6 Ausschlüsse) und schwer multimorbide bzw. moribunde Patienten (5 Ausschlüsse). Ein Patient wurde aufgrund mangelnder Compliance ausgeschlossen.

Ätiologie des Ulcus curis: Die 212 eingeschlossenen Patienten zeigten folgende Verteilung der Ätiologien, wobei Polyätiologien möglich waren: CVI (142 Fälle), pAVK (53), Livedo-

Vaskulopathie (12), Neoplasie (12), Vasculitis allergica (11), infektiöse Genese (10), Pyoderma gangraenosum (8), traumatisches Ulcus cruris (8) und Calciphylaxie (7).

Patienten mit seltener Ätiologie (Frequenz ≤ 3%) wurden ausgeschlossen. Davon betroffen waren Ekthymata (4), Artefakt (3), unerwünschte Arzneimittelwirkung (UAW) bei Hydroxy-Urea-Einnahme (2), Morbus Sjögren (1), Bullöses Pemphigoid (1) und Ulcus cruris hypertonicum Martorell (1).

Bei 38 Patienten (16,8%) konnte sowohl eine CVI als auch eine pAVK für das Ulcus cruris verantwortlich gemacht werden, sodass diese gemäß Protokoll ätiologisch als Ulcus cruris mixtum gewertet wurden. Weiterhin wiesen 13 Patienten (6,1%) andere Kombinationen von zwei Ätiologien auf. Diese Fälle wurden in zwei Fälle aufgeteilt, sodass der endgültige Datensatz 225 Fälle enthielt (vgl. dazu den Abschnitt "Diskussion" auf S. 34).

Die Häufigkeitsverteilung der Ätiologien in diesem Datensatz ist in Abbildung 9 dargestellt und war erwartungsgemäß inhomogen: 104 Fälle chronisch venöser Insuffizienz (46,2%), 38 Fälle Ulcus cruris mixtum (16,9%), 15 Fälle pAVK (6,7%), jeweils 12 Fälle Livedo-Vaskulopathie (LV) und Neoplasie (5,3%), 11 Fälle Vasculitis allergica (4,9%), 10 Fälle infektiöser Genese (4,4%), jeweils 8 Fälle Pyoderma gangraenosum und traumatischer Genese (3,6%) und 7 Fälle Calciphylaxie (3,1%).

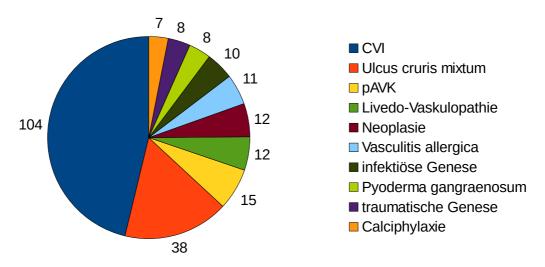


Abbildung 9: Häufigkeitsverteilung der Ätiologien; CVI: chronisch venöse Insuffizienz; pAVK: periphere arterielle Verschlusskrankheit

Die Ätiologien "CVI", "UC mixtum" und "pAVK" machten zusammen 69,8% aller Fälle in der Studienpopulation aus. In Abbildung 10 ist die Verteilung der Ätiologien denen anderer Studien zur Ätiologie des Ulcus cruris von Körber et al. (2011) und Jockenhöfer et al. (2014) gegenüber gestellt. Dabei zeigte sich, dass unser Datensatz mit n = 255 Fällen ähnlich verteilt war wie die Stichproben von Körber et al. mit 31.619 Fällen und Jockenhöfer et al. mit 1.000 Fällen.

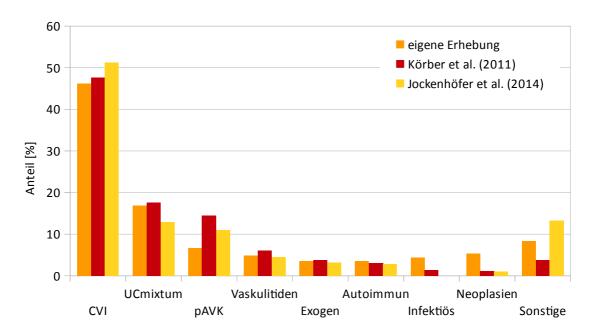


Abbildung 10: Verteilung der Ätiologien im Vergleich; Calciphylaxie- und Livedo-Vaskulopathie-Fälle wurden als "Sonstige" klassifiziert

Soziodemografische und klinische Daten: Das mittlere Alter der *n*=225 Patienten betrug 70,5 Jahre (Standardabweichung (SD): 12,04, Bereich: 28-94), während der Median mit 72 Jahren knapp höher lag (Tab. 5); 134 (59,6%) waren weiblich. Die Aufenthaltsdauer in der Universitäts-Hautklinik betrug im Mittel 14,85 Tage (SD: 8,25, Median: 13) und reichte von 2 bis zu 60 Tagen. Eine fotografische Dokumentation des Aufnahmebefundes war für 150 Patienten (66,7%) verfügbar. Der mittlere BMI der Studienpopulation betrug 30,92 (SD: 8,48, Bereich: 14,19-74,07) und der Median lag mit 29,77 knapp darunter. Aufgeteilt nach Geschlecht lag der mittlere BMI der Männer bei 29,12 (SD: 8,15, Median: 27,85, Bereich: 15,57-74,07) und der mittlere BMI der Frauen bei 32,13 (SD: 8,51, Median: 31,11, Bereich: 14,19-59,73).

Anamnesedaten: Die Dynamik des Ulcus cruris war für alle Patienten dokumentiert (Tab. 6, S.25). 28 Fälle (12,4%) zeigten einen akuten Verlauf mit einem Bestehen \leq 21 Tagen, 32 (14,2%) einen subakuten Verlauf (3-8 Wochen), 114 (50,7%) einen chronischen Verlauf (> 8 Wochen) und 51 (22,7%) einen chronisch rezidivierenden Verlauf.

Schmerzen im Ulcusbereich wurden in 177 Fällen (78,7%) dokumentiert. Fehlende oder geringe Schmerzen wurden für 21 Patienten (9,3%) angegeben, zeitweise oder mäßige Schmerzen für 76 Patienten (33,8%) und 80 Fälle (35,6%) zeigten dauerhafte oder starke Schmerzen.

Tabelle 5: Soziodemografische und klinische Daten des Studienkollektivs (n=225)

Variable	n	%	\bar{x}	SD	Median	Bereich
Geschlecht	225					
männlich	91	40,4				
weiblich	134	59,6				
Fotodokumentation	150	66,7				
Liegezeit [Tage]	225		14,85	8,25	13	2-60
Alter [Jahre]	225		70,5	12,04	72	28-94
Größe [cm]	220		167,7	10,27	168	140-194
Gewicht [kg]	218		87,2	25,66	84	41-240
BMI [kg/m²]	216		30,92	8,48	29,77	14,19-74,07
nur Männer	87	40,3	29,12	8,15	27,85	15,57-74,04
nur Frauen	129	59,7	32,13	8,51	31,11	14,19-59,73

SD: Standardabweichung; BMI: Body-Mass-Index

Daten zu Kriterien der Wundbeurteilung: Die Beschaffenheit des Wundgrundes war in 223 (99,1%) Fällen dokumentiert. 26 (11,6%) Fälle präsentierten einen sauberen, 158 (70,9%) einen fibrinbelegten, sklerotischen oder superinfizierten, 8 (3,6%) einen hämorrhagischen und 31 (13,8%) einen nekrotischen Wundgrund.

Die *Lokalisation* war in 223 (99,1%) Fällen dokumentiert. 139 (62,3%) Fälle präsentierten eine oder mehrere Ulzerationen nur an einer Stelle (beispielsweise über dem Innenknöchel), während 51 (22,7%) Fälle Ulzerationen an zwei Lokalisationen zeigten. 33 (14,8%) Patienten hatten multiple Ulzerationen an mehr als zwei Orten oder regionenüberspannende Gamaschenulzera. Die Wunden verteilten sich wie folgt auf die Regionen: 56 prätibial, 65 über dem Malleolus medialis, 41 über dem Malleolus lateralis, 20 dorsal, 31 (dorso)medial und 28 (dorso)lateral. Die häufigsten *Lokalisationskombinationen* waren Malleoli medialis et lateralis (14), (dorso)medial und prätibial (9), dorsal und prätibial (6), Malleolus medialis und prätibial (5), Malleolus lateralis und prätibial (4) und Malleolus medialis und (dorso)medial (4). Für alle 51 Fälle mit zwei Lokalisationen wurde zufällig eine der beiden ausgewählt. Nach der zufälligen Auswahl waren 38 (17%) Wunden prätibial, 52 (23,3%) über dem Innenknöchel, 33 (14,8%) über dem Außenknöchel, 18 (8,1%) dorsal, 25 (11,2%) (dorso)medial, 24 (10,8%) (dorso)lateral und 33 (14,8%) regionenüberspannend.

Die *Anzahl der Wunden* war in 219 (97,3%) Fällen dokumentiert. 105 (47,9%) zeigten eine singuläre Ulzeration, 89 (40,6%) 2 bis 5 Ulzerationen und 25 (11,4%) über 5 Ulzerationen.

Tabelle 6: Übersicht der unabhängigen Merkmale im MLR-Modell

Merkmal	Kategorie	n	%
Geschlecht	männlich	91	40,4
	weiblich*	134	59,6
	Gesamt	225	100,0
Alter	<60	44	19,6
	60-69	51	22,7
	70-79	74	32,9
	>80*	56	24,9
	Gesamt	225	100,0
BMI	Untergewicht	7	3,2
	Normalgewicht	44	20,4
	Übergewicht	59	27,3
	Adipositas*	106	49,1
	Gesamt	216	100,0
Dynamik	akut	28	12,4
	subakut	32	14,2
	chronisch	114	50,7
	chronisch rezidivierend*	51	22,7
	Gesamt	225	100,0
Schmerzen	keine/gering	21	11,9
	zeitweise/mäßig	76	42,9
	dauerhaft/stark*	80	45,2
	Gesamt	177	100,0
Wundgrund	sauber/granuliert	26	11,7
	fibrinbelegt	158	70,9
	hämorrhagisch	8	3,6
	nekrotisch*	31	13,9
	Gesamt	223	100,0
Lokalisation	prätibial	38	17,0
	Malleolus medialis	52	23,3
	Malleolus lateralis	33	14,8
	Dorsal	18	8,1
	(dorso)medial	25	11,2
	(dorso)lateral	24	10,8
	regionenüberspannend*	33	14,8
	Gesamt	223	100,0
Anzahl der Wunden	1	105	47,9
	2-5	89	40,6
	>5*	25	11,4
	Gesamt	219	100,0

^{*} Referenzkategorie im MLR-Modell

4.2 Induktive Statistik

4.2.1 Fehlende Werte und Imputation

Fehlende Werte: Von den in das Modell eingebrachten Variablen waren drei (Geschlecht, Alter und Dynamik) ohne fehlende Daten. Die fünf übrigen Variablen (Schmerzen im Ulkusbereich, BMI, Anzahl der Wunden und Lokalisation und Wundgrundbeschaffenheit) wiesen fehlende Werte auf.

Schmerzen waren bei 48 (21,3%) Fällen nicht dokumentiert, der BMI bei 9 (4,0%), die Anzahl der Wunden bei 6 (2,7%), Lokalisation und Wundgrund bei jeweils 2 (0,9%) Fällen.

Von 225 Fällen waren 167 (74,2%) Fälle ohne Fehlwerte, während 58 (25,8%) der Fälle ein oder mehrere fehlende Datenpunkte aufwiesen. Von diesen 58 Fällen zeigten 51 nur einen Fehlwert, während 5 Fälle und lediglich 2 Fälle drei fehlende Datenpunkte zeigten. *Insgesamt fehlten 67 (3,72%) der 1.797 Datenpunkte* (Abb. 11).

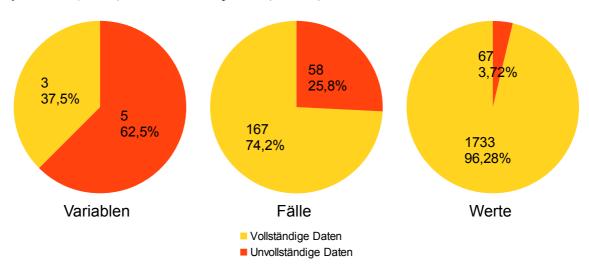


Abbildung 11: Zusammenfassung fehlender Werte

Multiple Imputation: Pro Datensatz wurden 67 Datenpunkte imputiert, 48 davon in der Variable Schmerzen. Aus Gründen der Übersichtlichkeit sind die Imputationsergebnisse im Anhang zu finden (Tab.12 - 16, S.55ff).

Die prozentualen Verteilungen der Imputationsergebnisse waren vergleichbar mit den Originaldaten. Maximale Abweichungen lagen unter 5% für die Variable "Schmerzen" (vgl. Abb.12 auf S.27, sowie Tab.13 auf S.56). In den Variablen BMI, Anzahl der Wunden, Lokalisation und Wundgrund wurden fehlende Datenpunkte entsprechend ersetzt. Die maximalen Abweichungen lagen jeweils unter 2%.

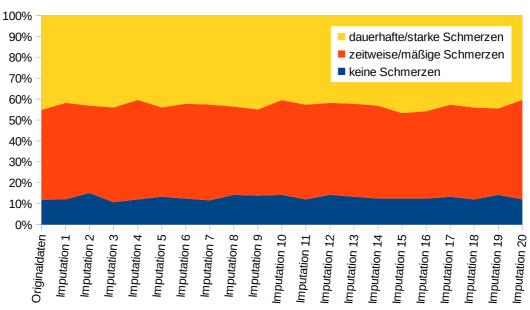


Abbildung 12: prozentuale Verteilung der Kategorien der Variable Schmerzen in den Originaldaten und den Imputationen 1 - 20

4.2.2 Multinominale logistische Regression

Die Ätiologie wurde mit zehn Ausprägungen als abhängige Variable für das MLR-Modell definiert. Die unabhängigen Variablen Geschlecht, Alter, BMI, Dynamik, Schmerzen, Wundgrund, Lokalisation und Anzahl der Wunden wurden als Faktoren in das Modell eingeschlossen und gleich gewichtet. Wechselwirkungseffekte wurden nicht berechnet. Für die abhängige Variable wurde die Kategorie "Calciphylaxie" als Referenzkategorie definiert; für die unabhängigen Variablen sind die Referenzkategorien in Tabelle 6 auf S.25 gezeigt.

Als Modellstatistiken wurden Pseudo-R-Quadrate nach Cox & Snell und Nagelkerke als Ausdruck erklärter Varianz sowie Likelihood-Quotienten-Tests zur Modellanpassung berechnet (Cox und Snell, 1989; Nagelkerke, 1991). Für die Regressionskoeffizienten wurde ein 95%-Konfidenzintervall angenommen.

Zusätzlich wurde ein Modell ohne imputierte Daten gerechnet. Hier wurden 58 der 225 Patienten aufgrund fehlender Werte ausgeschlossen.

Tabellarische Darstellungen der MLR-Ausgabe finden sich aus Gründen der Übersichtlichkeit im Anhang.

Allgemeines Modell: Die Likelihood-Quotienten-Tests waren alle hoch signifikant (p < 0,001). Die Pseudo-R-Quadrate für die Originaldaten waren 0,865 (Cox & Snell) und 0,890

(Nagelkerke), sowie im Mittel bei 0,858 (Cox & Snell) und 0,883 (Nagelkerke) für die Imputationsdatensätze.

Parameterschätzer: Weder im Originaldatensatz noch im zusammengefassten Modell traten signifikante β-Werte auf (vgl. dazu S.36). 165 (76,4%) β-Werte zeigten das gleiche Vorzeichen, wie die korrespondierenden Werte im Modell aus den Originaldaten.

Modellgüte: Im Originaldatensatz wurden 71,9% der 167 Fälle ohne fehlende Daten richtig klassifiziert, während in den Imputationsdatensätzen zwischen 56,4% und 72,9% der 225 Fälle richtig klassifiziert wurden. Im Gegensatz dazu lag die proportionale Ratewahrscheinlichkeit mit 25,5% für die Originaldaten und 26,0% für die Imputationen deutlich niedriger (White, 2013).

Das zusammengefasste MLR-Modell klassifizierte 68,9% der 167 Fälle aus dem Originaldatensatz korrekt. MLR-Modelle sollten wenigstens 25% besser als der Zufall sein, daher mussten von unserem Modell mehr als 31,9% der Fälle richtig klassifiziert werden (White, 2013). Sowohl das Modell mit Originaldaten als auch das Modell mit imputierten Daten erfüllen diese Bedingung.

Die Genauigkeit der Klassifikation hängt stark von den Ätiologien ab. Diese sind in Tabelle 7 für das Modell aus Originaldaten und in Tabelle 8 für das zusammengefasste Modell aus imputierten Daten dargestellt. Dabei zeigt die letzte Spalte, welcher Anteil der tatsächlich beobachteten Grunderkrankungen vom Modell korrekt vorhergesagt wurde.

Tabelle 7: Klassifikationsmatrix des MLR-Modells ohne Imputationsdaten

	vorhergesagt											
										_	_	%
beobachtet	CVI	UCM	pAVK	LV	Ne	VA	IG	PG	Tr	Ca	Summe	richtig
CVI	64	5		2		4			1		76	84,2
UC mixtum (UCM)	15	11	1			1					28	39,3
pAVK	2		4			1	1		1		9	44,4
Livedovaskulitis (LV)	1		1	9					1		12	75,0
Neoplasie (Ne)					5						5	100,0
Vaskulitis allergica (VA)	3					6	1				10	60,0
infektiöse Genese (IG)							6				6	100,0
PG					1			7			8	87,5
Traumatisch (Tr)	2			2					3		7	42,9
Calciphylaxie (Ca)	1									5	6	83,3
Summe	88	16	6	13	6	12	8	7	6	5	167	71,9

CVI: chronisch venöse Insuffizienz; pAVK: periphere arterielle Verschlusskrankheit; PG: Pyoderma gangraenosum; grau hinterlegt: absolute Anzahl richtig vorhergesagter Ätiologien

Tabelle 8: Klassifikationsmatrix des MLR-Modells mit Imputationsdaten

	vorhergesagt											
									_		_	%
beobachtet	CVI	UCM	pAVK	LV	Ne	VA	IG	PG	Tr	Ca	Summe	richtig
CVI	65	7	1	2		1					76	85,5
UC mixtum (UCM)	17	10	1								28	35,7
pAVK	2		5	1			1				9	55,6
Livedovaskulitis (LV)	4			6		1			1		12	50,0
Neoplasie (Ne)					5						5	100,0
Vaskulitis allergica (VA)		1				6	3				10	60,0
infektiöse Genese (IG)	1			1			4				6	66,7
PG					1			7			8	87,5
Traumatisch (Tr)	2	1	1	1					2		7	28,6
Calciphylaxie (Ca)							1			5	6	83,3
Summe	91	19	8	11	6	8	9	7	3	5	167	68,9

CVI: chronisch venöse Insuffizienz; pAVK: periphere arterielle Verschlusskrankheit; PG: Pyoderma gangraenosum; grau hinterlegt: absolute Anzahl richtig vorhergesagter Ätiologien

CVI-Fälle werden ebenso wie Neoplasie-, Pyoderma gangraenosum- und Calciphyalxie-Fälle mit hoher Präzision von beiden Modellen erkannt. UC mixtum-Fälle und traumatische Ulzerationen werden von den Modellen mit geringer Präzision erkannt. Die Ätiologien pAVK, Livedo-Vaskulopathie, Vasculitis allergica und infektiöse Ulzera werden von beiden Modellen mit Wahrscheinlichkeiten über 50% richtig erkannt, jedoch unterscheidet sich die Trefferquote deutlich.

4.2.3 Formulierung von Risikoprofilen

Da MLR-Modelle in der praktischen Anwendung umständlich sind, wurden Risikoprofile formuliert. Diese bestanden aus zwei oder drei Merkmalen und waren durch ihre Einprägsamkeit für die Anwendung im klinischen Alltag geeigneter.

Risikoprofile: In Tabelle 9 sind die Risikoprofile nach Ätiologien dargestellt. Sie wurden aus den Wahrscheinlichkeiten (vgl. Kapitel 3.5.2 und 3.5.3) des gepoolten MLR-Modells gewonnen und repräsentieren die typischen Merkmalsausprägungen für die jeweiligen Ätiologien, adjustiert nach allen anderen Modellvariablen. Als Basis dienten Wahrscheinlichkeitstabellen (vgl. Tab. 19 - 26, S.73ff) die Häufungen von Merkmalsausprägungen in klar zugeordneten Fällen verdeutlichten.

Tabelle 9: Risikoprofile aus dem MLR-Modell

Ätiologie	Geschlecht	Alter	BMI	Verlauf	Schmerzen	Wundgrund	Lokalisation	Anzahl
CVI	weiblich				(keine/gering)*		Mall. Med.	
UCmixtum	männlich	>80			(zeitweise/mäßig)			
pAVK	männlich		<18,5		(keine/gering)			
Livedovaskulitis		<60	<18,5		(dauerhaft/stark)			
Neoplasie	männlich				(keine/gering)	hämorr.		
Vaskulitis allergica				(subakut))	hämorr.	regübersp.	
infektiöse Genese					keine/gering	(hämorr.)	Mall. Lat.	
PG			<18,5	(akut)		hämorr.		
Traumatisch	männlich				(dauerhaft/stark)	sauber		
Calciphylaxie					(keine/gering)	nekrotisch	(dorso)lateral	

^{*} Merkmale in Klammern traten bei der jeweiligen Ätiologie am dritthäufigsten nach den beiden anderen angegebenen Merkmalen auf. CVI: chronisch venöse Insuffizienz; pAVK: periphere arterielle Verschlusskrankheit; PG: Pyoderma gangraenosum; Mall. med.: Malleolus medialis; Mall. lat: Malleolus lateralis; reg.-übersp.: regionenüberspannend; hämorr.: hämorrhagisch

Während die Anzahl der Wunden in keinem Risikoprofil zu finden ist, waren Lokalisation und Geschlecht bei jeweils 5 Ätiologien mit einer Kategorie am häufigsten oder zweithäufigsten vertreten. Schmerzen im Ulkusbereich spielten in 9 von 10 Ätiologien eine Rolle, jedoch sechs Mal nur als dritthäufigste Kategorie. Die Lokalisation war bei 4 Ätiologien besonders prominent (CVI, Vasculitis allergica, infektiöse Genese und Calciphylaxie). Der BMI war hingegen bei 3 Ätiologien (pAVK, Livedo-Vaskulopathie und Pyoderma gangraenosum) und das Alter bei Ulcus cruris mixtum (>80) und LV (<60) vertreten.

Validierung: Es wurden je zwei Risikoprofile getestet, ein Profil mit zwei Merkmalen und ein Profil mit drei Merkmalen, wobei in letzterem auch die dritthäufigste Kategorie mit einbezogen wurde (Tab. 9 und 10). Die interne Validierung der gefundenen Risikoprofile zeigte ein heterogenes Bild. Generell wurden weniger Fälle durch die Profile mit drei Merkmalen klassifiziert als durch die Profile mit zwei Merkmalen. Profile mit drei Merkmalen klassifizierten nur 12 Fälle (5,3%). Sie eignen sich nicht für die Anwendung im klinischen Alltag, da sie kaum Fälle erkennen und sollen daher nicht weiter betrachtet werden. Profile mit zwei Merkmalen klassifizierten mit 71 Fällen etwa ein Drittel aller Fälle im Datensatz. Die Anzahl der klassifizierten Fälle reichte von 29 (CVI) bis 1 (Pyoderma gangraenosum und infektiöse Genese). Während einige Risikoprofile sehr gut Patienten im Originaldatensatz identifizieren konnten (CVI, Vasculitis allergica, Calciphylaxie), waren andere Risikoprofile nicht wesentlich besser als die proportionale Ratewahrscheinlichkeit (Ulcus cruris mixtum und

pAVK) oder sogar schlechter (Livedo-Vaskulopathie und Neoplasie). Aufgrund der wenigen klassifizierten Fälle lies sich für andere Profile keine eindeutige Aussage ableiten (infektiöse Genese, Pyoderma gangraenosum und traumatische Genese).

Tabelle 10: Interne Validierung der Risikoprofile

				davon richtig		Trefferquote	Ratewahr-
Ätiologie	n	*	klassifiziert	absolut	%	[%]	scheinlichkeit
CVI	104	2	29	26	89,7	25,0	46,2%
CVI	104	3	1	1	100,0	1,0	40,2 /0
UCmixtum	38	2	15	4	26,7	10,5	16,9%
OCHIXUITI	30	3	4	2	50,0	5,3	10,970
pAVK	15	2	3	1	33,3	6,7	6,7%
pAvr	15	3	0	0			0,7 70
Livedo-	12	2	2	0	0,0	0,0	5,3%
Vaskulopathie	12	3	2	0	0,0	0,0	5,570
Neoplasie	12	2	4	0	0,0	0,0	5,3%
	12	3	1	0	0,0	0,0	J,5 70
Vasculitis allergica	11	2	2	2	100,0	18,2	4,9%
vascullus allergica	11	3	2	2	100,0	18,2	4,970
infektiöse Genese	10	2	1	1	100,0	10,0	4,4%
IIIIEKIIOSE GEIIESE	10	3	0	0			4,4 /0
Pyoderma	8	2	1	1	100,0	12,5	3,6%
gangraenosum	0	3	0	0			3,070
Traumatisch	8	2	11	1	9,1	12,5	2 60/
Haumausun	0	3	1	1	100,0	12,5	3,6%
Calainhylavia	7	2	2	2	100,0	28,6	2 10/
Calciphylaxie	,	3	1	1	100,0	14,3	3,1%

^{*} Anzahl Merkmale im Risikoprofil

Im CVI Profil mit zwei Merkmalen wurden 29 Fälle klassifiziert, davon 26 richtig. Das Profil erkannte somit 25% aller CVI-Fälle richtig und klassifizierte bei einer Genauigkeit von 90% präzise. Das Vasculitis allergica-Profil klassifizierte 2 Fälle, beide korrekt (18% der Vasculitis allergica-Fälle). Das Calciphylaxie-Profil klassifizierte 2 Fälle, beide korrekt (29% der Calciphylaxie-Fälle).

Die Livedo-Vaskulopathie- und Neoplasie-Profile klassifizierten 2 bzw. 4 Fälle, keinen richtig. Das Profil für Ulzera traumatischer Genese klassifizierte 11 Fälle, davon einen richtig (Genauigkeit 9%; Trefferquote 13%).

Das UC mixtum-Profil klassifizierte 15 Fälle, davon 4 korrekt (11% der UC mixtum-Fälle). Die Genauigkeit lag mit 27% nur unwesentlich höher als die Ratewahrscheinlichkeit von 16,9%. Ähnlich zeigte sich das pAVK-Profil, welches 3 Fälle klassifizierte, davon einen richtig (7% der pAVK-Fälle). Die Trefferquote lag bei nur 6,7%.

Tabelle 11: Klassifikation: MLR-Modelle vs. Risikoprofile

		% richtig				
Ätiologie	Original	Imputiert	Risikoprofil*			
CVI	84,2	85,5	89,7			
UCmixtum	39,3	35,7	26,7			
pAVK	44,4	55,6	33,3			
Livedovaskulitis	75,0	50,0	0,0			
Neoplasie	100,0	100,0	0,0			
Vaskulitis allergica	60,0	60,0	100,0			
infektiöse Genese	100,0	66,7	100,0			
Pyoderma gangraenosum	87,5	87,5	100,0			
Traumatisch	42,9	28,6	9,1			
Calciphylaxie	83,3	83,3	100,0			

^{*} basierend auf 2 Merkmalen

In der Gegenüberstellung von MLR-Modellen und Risikoprofilen verhielten sich die Profile zumeist analog den MLR-Modellen (Tab. 11). Während die Profile für CVI (90% vs. 86%), UC mixtum (27% vs. 36%) und Calciphylaxie (100% vs. 83%) ähnlich genau klassifizierten, wie die MLR-Modelle, schätzten die Profile für pAVK (33% vs. 56%), Livedo-Vaskulopathie (0% vs. 50%), traumatische Genese (9% vs. 29%) und Neoplasien (0% vs. 100%) deutlich schlechter, sowie das Profil Vasculitis allergica (100% vs. 60%) deutlich besser. Bei insgesamt wenig klassifizierten Fällen muss der Vergleich jedoch kritisch betrachtet werden. Dies gilt insbesondere die Profile infektiöse Genese (100% vs. 67%) und Pyoderma gangraenosum (100% vs. 88%) mit jeweils nur einem Fall. Mehr dazu findet sich in der Diskussion auf Seite 38.

5 Diskussion

Die aktuelle Neubewertung der Ulkustopographie von Hafner et al. (2010) führte zu Überlegungen zur differentialdiagnostisch-prädiktiven Wertigkeit klinischer Parameter bei chronischen Unterschenkelgeschwüren und mündeten in den zentralen Fragen der Arbeit:

"Kann die Ätiologie des Ulcus cruris anhand klinischer Basisparameter über ein prognostisches Modell bereits am Aufnahmetag abgeschätzt werden?" und "Kann dieses Modell soweit vereinfacht werden, dass einfache einprägsame Regeln für den klinisch tätigen Arzt entstehen, die ihm helfen, die Differentialdiagnostik rasch zu strukturieren?"

Die Ergebnisse sollen hier im Bezug auf die eingangs gestellten Fragen im Spiegel der Literatur diskutiert werden. *Methodisch* erfährt dabei das MLR-Modell besondere Aufmerksamkeit, da Besonderheiten und Limitation der komplexen Statistik beachtet werden müssen. Die *Risikoprofile* werden insbesondere im Hinblick auf klinische Aspekte und aktuelle Publikationen kritisch bewertet. Die Diskussion folgt sinnigerweise der Abfolge der vorherigen Kapitel. Zuletzt werden *Stärken und Limitation der Arbeit* zusammenfassend betrachtet.

Die **methodischen Betrachtungen** betreffen vorrangig statistische Limitierungen des gewählten Modells aber auch epidemiologische und klinische Aspekte von Ätiologien und Merkmalen und sollen in dieser Reihenfolge abgehandelt werden.

Auswahlmethode: Durch das Screening des Patientenguts der Universitäts-Hautklinik nach bestimmten ICD-Codes wurde akzeptiert, dass ggf. Ulkus-Patienten nicht erfasst wurden. Dies könnte entweder zufällig, falls der allgemeine Ulkus-Schlüssel vergessen wurde, oder systematisch, falls dieser bei bestimmten Ätiologien nicht koverschlüsselt wurde, geschehen sein. Nach Aussage der für die Verschlüsselung zuständigen Ärztin an der Universitäts-Hautklinik konnte ein systematischer Fehler in der Erfassung durch das Screening weitgehend ausgeschlossen werden.

Alternativ hätte die Möglichkeit bestanden, Patienten in einer Volltextsuche aus einem eigenen Register der Universitäts-Hautklinik zu ziehen. Diese Möglichkeit wurde verworfen, da eine Vollständigkeit des Registers nicht als gegeben angesehen wurde und somit eine Präselektion des Patientenguts nicht ausgeschlossen werden konnte.

Studienpopulation: In der Rekrutierung wurden alle Ulcus cruris-Patienten des definierten Zeitraums eingeschlossen. Ebenso hätte stattdessen pro Ätiologie eine bestimmte Anzahl Patienten rekrutiert werden können. Als Nachteil der gewählten Methode muss die geringe Anzahl von Fällen für seltenere Ätiologien angesehen werden. Bei über 500 vom Screening

erfassten Patienten wurden für 3 der 10 Ätiologien unter 10 Fälle beobachtet. Jedoch sollte die Nähe zur realen klinischen Situation, eine Stärke des retrospektiven Studiendesigns, nicht artifiziell durch Stratifizierung geschmälert werden.

Polyätiologische Ulzera: Fälle, in denen zwei Ätiologien diagnostiziert wurden, wurden in zwei Fälle mit gleichen Merkmalen aufgeteilt. Dieses Vorgehen stellt formal eine Verletzung des Anspruchs auf Unabhängigkeit der Beobachtungen dar. Die künstliche Vergrößerung der Stichprobe führt in der Konsequenz zu einer Verkleinerung der Konfidenzintervalle und p-Werte, welche ihrerseits Signifikanz vortäuschen können, ohne dass diese tatsächlich gegeben wäre. Bei einer geringen Anzahl betroffener Fälle kann allerdings angenommen werden, dass diese Verzerrung vernachlässigbar ist. Ergebnisse, die nur knapp die Signifikanzschwelle überschreiten, sollten dennoch mit Vorsicht gelesen werden.

Da das Modell keine signifikanten Werte erzeugte, kann diese Problematik außer Acht gelassen werden. Dies gilt in der Konsequenz auch für die Formulierung der Risikoprofile.

Kategorisierung der Merkmale "Alter", "BMI" und "Anzahl der Wunden": Grundsätzlich sollten Variablen mit dem höchsten verfügbaren Niveau verwendet werden. Eine Reduzierung intervall- oder verhältnisskalierter Merkmale auf Ordinal- oder Nominalniveau stellt eine Verzerrung durch Vereinfachung dar (Babyak, 2004). Praktische Erwägungen in der Auswertung führten jedoch dazu, dass wir die Merkmale "Alter", "BMI" und "Anzahl der Wunden" kategorisierten. Eine Formulierung von Risikoprofilen wäre sonst für diese Variablen nicht möglich gewesen.

Lokalisation: Die Auswertung über ein MLR-Modell erforderte eine klare Definition von Variablen, sodass pro Fall nur eine Ausprägung für die Variable "Lokalisation" gewählt werden konnte. Da sich Wunden naturgemäß nicht an die von uns gewählte Einteilung der Topografie des Unterschenkels halten, wurde für Wunden, die sich gleichmäßig auf zwei Lokalisationen beschränken, eine von beiden zufällig ausgewählt. Der damit verbundene Informationsverlust wurde aus praktischen Gründen in Kauf genommen. Wäre für jede Kombination von Regionen eine Unterkategorie entstanden, so wäre eine sinnvolle Auswertung nicht möglich gewesen.

Abhängige Variable: Zehn Ätiologien des Ulcus cruris wurden in dieser Studie systematisch verglichen. Da seltene Ätiologien mit einer Frequenz unter 3% im Patientengut im spezialisierten stationären Bereich dennoch regelhaft vorkommen, wäre es wünschenswert, diese in zukünftige Modelle mit einzuschließen. Dazu sind allerdings wesentlich größere Patientenkollektive im Bereich von etwa 6.000 – 15.000 Fällen, abhängig von der Frequenz der Ätiologien im Patientengut, dem gewünschten Signifikanzniveau und anderen Faktoren, notwendig.

Die Ätiologie "Ulcus cruris mixtum" ist erkanntermaßen häufig und basierend auf den Gemeinsamkeiten von CVI und pAVK. In dieser Arbeit wurde diese Entität als eigene Ätiologie verwendet, um dem häufigen gemeinsamen Auftreten beider Ätiologien methodisch zu begegnen. Zwar klassifizierten sowohl das MLR-Modell (ohne imputierte Daten: 39,3% richtig; zusammengefasst mit imputierten Daten: 35,7% richtig) und das Risikoprofil (26,7% richtig) die Ätiologie ausreichend genau, um besser zu sein als der Zufall, jedoch muss für die Praktikabilität in der Praxis eine höhere Präzision gefordert werden.

Vollständigkeit des Datensatzes: Insgesamt fehlten in dem verarbeiteten Datensatz 3,72% der Datenpunkte. Dieser geringe Anteil fehlender Werte konnte nur durch die simultane Nutzung des Fotoarchivs der Universitäts-Hautklinik und des Patientenaktenarchivs erreicht werden. Die Dokumentation in den Akten war nicht standardisiert. Studien zur Qualität der Wundversorgung venöser Ulcera cruris fordern eine genaue Dokumentation in der Anamnese und der Dokumentation des Wundstatus (Kjaer et al., 2005; Augustin et al., 2011). Dennoch ist bisher kein Standard zur Dokumentation des Wundbehandlungsprozesses in Sicht, wenngleich die Dokumentation Teil des Qualitätsmanagements und ein Nachweis für erbrachte Leistung ist, Rechtssicherheit bringt und in der ärztlichen Kommunikation von Bedeutung ist (Dt. Gesellschaft für Wundheilung, 2012, S.32 & 63). Es wäre daher wünschenswert einen Dokumentationsstandard zu etablieren.

Die Variable "Schmerzen" war entgegen den anderen Variablen häufig nicht dokumentiert. 21,3% der Datenpunkte fehlten (vgl. Kapitel 4.2.1). Wir entschieden uns dennoch, diese Variable einzuschließen, da dieses Symptom für die Differentialdiagnostik von erheblicher Relevanz ist (Meyer et al., 2011; Dissemond, 2012). Das multiple Imputationsverfahren gehört zu den stärksten Verfahren im Umgang mit fehlenden Werten, Verzerrungen der Ergebnisse lassen sich dennoch nicht ausschließen. Daher sollten die Ergebnisse im Bezug auf Schmerzen mit Vorsicht gedeutet werden.

Andere klinisch bedeutsame Parameter, wie Wundbegrenzung, -rand und -umgebung wurden aufgrund der Menge fehlender Werte nicht in das Modell aufgenommen. Im Hinblick auf einige untersuchte Ätiologien wären diese Merkmale allerdings von deutlichem Interesse gewesen (vgl. Diskussion zum Risikoprofil *Livedo-Vaskulopathie* auf S. 43).

Multiple Imputation: Multiple Imputationen zeigen gegenüber anderen Imputationsverfahren Vorteile (vgl. Kapitel 3.5.1). Weiterhin wären Eliminationsverfahren möglich gewesen, die Fälle mit fehlenden Daten ausschließen. Aufgrund fehlender Daten wären dann 167 statt 225 Fälle in dem Modell verarbeitet worden. Der Informationsgewinn durch Einschluss von Fällen mit

fehlenden Daten wurde höher bewertet als die Verzerrung aufgrund der MI, da in 51 der 58 Fälle mit fehlenden Werten nur ein Datenpunkt fehlte.

Bisher existieren *keine einheitlichen Standards* für die Publikation von Ergebnissen aus multiplen Imputationen. Erste Bestrebungen, einheitliche Richtlinien zu formulieren wurden aber bereits unternommen (Sterne et al., 2009; Mackinnon, 2010). Wir orientierten uns an den von Sterne et al. postulierten Standards. Daher wurden sämtliche Berechnungen auch mit dem Originaldatensatz mit 167 eingeschlossenen Fällen durchgeführt, um die Ergebnisse mit denen des Modells mit imputierten Daten zu vergleichen und die Verzerrung durch die MI abschätzen zu können. Die Ergebnistabellen der MI finden sich im Anhang (Tab. 12 – 16, S.55ff).

Missing at Random: Die Annahme des Missing at Random (MAR) stellt eine wesentliche Voraussetzung für die Anwendung der multiplen Imputation dar. MAR geht davon aus, dass fehlende Werte nicht systematischer Natur sind (z.B. Schmerzen wurden absichtlich nicht dokumentiert bei Vorliegen einer bestimmten Ätiologie des UC), sondern zufällig zustande kommen (vgl. Baltes-Götz, 2013, SS. 7ff und 53). Es gab keine Anhaltspunkte, die gegen MAR sprachen.

Multinominal logistische Regression: Bei einer Signifikanzschranke von 5% lieferten weder das Modell mit Originaldaten, noch das Modell mit imputierten Daten signifikante Ergebnisse. Vor dem Hintergrund der Mehrdimensionalität des Modells bei "kleinem" Datensatz überrascht dieser Fakt nicht. Da auf Basis des Modells allerdings keine Therapieentscheidungen getroffen, sondern als Hilfestellung in der Diagnostik "lediglich" neue Aspekte aufgezeigt werden sollen, muss nicht zwingend die Forderung nach Signifikanzen gestellt werden. Vielmehr sollte der Blick auf die Tendenz der Effektstärke (β-Werte) gerichtet werden, die den Einfluss der Merkmale auf die abhängige Variable ausdrücken. Auf Basis der Effektschätzer wurden die Wahrscheinlichkeiten für die Ätiologien berechnet, die wiederum Basis für die Risikoprofile waren (vgl. S.18ff und S.38).

Anpassungsgüte: Für den Originaldatensatz wurden zwischen 86,5% und 89,0% der Varianz der Zielgröße durch die Modellvariablen erklärt. In den Imputationsdatensätzen sind diese Werte ähnlich, mindestens jedoch 79,3% bzw. 81,6%. Pseudo-R-Quadrate als Ausdruck erklärter Varianz im MLR-Modell schätzen im Vergleich zu dem bekannten Bestimmtheitsmaß R² konservativ (Petrucci, 2009). Der Anteil erklärter Varianz könnte folglich noch höher liegen.

Die ausgewählten Merkmale sind demnach wichtige Prädiktoren für die Ätiologie des Ulcus curis. Die Hinzunahme weiterer Merkmale in differentialdiagnostischen Überlegungen kann das MLR-Schätzergebnis nicht mehr erheblich verbessern. Dennoch könnten andere klinische

Merkmale, wie beispielsweise die nicht eingeschlossenen Wundparameter (s.o.), zu besseren Modellen führen und sich als aussagekräftiger erweisen als die derzeitigen Modellvariablen.

Modelle mit und ohne imputierte Daten: Beide Modelle zeigten ähnliche Charakteristika (vgl. Kapitel 4.2.2). Von einer wesentlichen Verzerrung durch die multiple Imputation kann daher nicht ausgegangen werden. Während das Modell ohne imputierte Daten den Originaldatensatz besser klassifizierte als das Modell mit imputierten Daten, muss nicht davon ausgegangen werden, dass sich dieses Verhalten auch bei externen Daten widerspiegelt. Das Modell mit imputierten Daten nutzt Informationen aus 58 zusätzlichen Fällen, die in der Praxis zu besseren Schätzergebnissen führen dürften.

Fallzahlbetrachtung: Die Größe der Studienpopulation war nach der "10 Fälle pro unabhängiger Kategorie"-Regel ausreichend, das Verhältnis lag bei 1:9,8 (Hosmer und Lemeshow, 2000). Dennoch lagen zwei Merkmalsausprägungen unter 10 Beobachtungen (vgl. Tab.6, S.25). Unsicherheiten in den Ergebnissen des MLR-Modells und der Risikoprofile sind daher im Bezug auf die Variablen "BMI: Untergewicht" und "Wundrand: hämorrhagisch" nicht auszuschließen (vgl. Babyak, 2004, S.415).

Es wurden 8 unabhängige Variablen mit jeweils 2 bis 7 Ausprägungen für das MLR-Modell ausgewählt (vgl. Tab.6, S.25). Eingeschlossene unabhängige Variablen wurden a-priori aufgrund klinischer Erfahrungen, Expertenbefragungen und der Studienlage ausgewählt. Auf vorangestellte Korrelationsanalysen wurde ebenso wie auf eine schrittweise Regression verzichtet (vgl. Babyak, 2004, S.416f).

Eine Überanpassung des Modells auf den Datensatz wurde so auf theoretischer Ebene vermieden. Einzelne Kategorien in den unabhängigen Variablen BMI und Wundrand könnten jedoch aufgrund ihres seltenen Vorkommens überproportional bewertet worden sein.

Modellpräzision: Sowohl das Modell mit Originaldaten als auch das zusammengefasste Modell mit imputierten Daten wiesen eine hohe Präzision in der Klassifikation der Ätiologien auf (71,9% bzw. 68,9% richtig klassifiziert). Insbesondere die selteneren Ätiologien Neoplasie, Pyoderma gangraensoum und Calciphylaxie wurden mit hoher Wahrscheinlichkeit richtig erkannt (Tab.7 & 8, S.28).

Der hohe Anteil erklärter Varianz (0,865 (Cox & Snell) und 0,890 (Nagelkerke)) für das MLR-Model mit Originaldaten sowie die hohe Treffsicherheit in der Klassifikation lassen vermuten, dass die Auswahl der Merkmale und der gewählten Kategorien wichtige klinische Parameter umfasste.

Um Sicherheit über die Klassifikationspräzision der Modelle zu erlangen, muss eine *externe Validierung* an einem zweiten, unabhängigen Patientenkollektiv durchgeführt werden. Diese konnte im Rahmen dieser Arbeit nicht stattfinden.

Formulierung von Risikoprofilen: Für die Extraktion von Risikoprofilen aus MLR-Modellen als klinisch im differentialdiagnostischen Prozess leicht anwendbare Heuristiken existiert *kein Standard*.

Der *Cut-off* für die Wahrscheinlichkeit, mit der Ätiologien einem theoretischen Fall (Kombination von Merkmalsausprägungen) zugeordnet wurden musste dabei von Ätiologie zu Ätiologie unterschiedlich gewählt werden. Beispielsweise wurde dem UC mixtum kein Fall mit einer Wahrscheinlichkeit von 100% zugeordnet, der Ätiologie Neoplasie hingegen bereits 2906 Fälle (vgl. Tab.19 - 26, S.73ff). Da bei vielen Fällen die typischen Merkmale "verwaschen" werden, erfolgte die Wahl des Cut-offs mit dem Ziel möglichst wenige, jedoch mindestens 30 Fälle zu untersuchen. Andere Methoden den Cut-off zu bestimmen sind denkbar, es mangelt aber an Beispielen und Empfehlungen, da MLR-Modelle noch relativ jung sind und selten angewendet werden.

Das Vorgehen erschien unumgänglich, um eine Anwendung der Daten des MLR-Modells im klinischen Alltag zu ermöglichen. Die Reduzierung des Modells auf einfach zu merkende Kombinationen weniger Merkmale geht mit einem beträchtlichen Informationsverlust einher. Methodisch gelten hier die gleichen Einschränkungen wie für das MLR-Modell, aus dem die Profile gewonnen wurden.

Validierung: Die Validierung gestaltete sich problematisch, da das Datenset für die Ätiologien pAVK, Livedo-Vaskulopathie, Neoplasie, Vasculitis allergica, infektiöse oder traumatische Genese, PG und Calciphylaxie nur wenige Fälle enthielt. Die statistische Unsicherheit steigt bei nur wenigen klassifizierten Fällen. Dennoch kann bei parallelem Verhalten zum MLR-Modell eine gewisse Vorhersagekraft angenommen werden. Um präzisere Aussagen über die Trefferquote der Profile treffen zu können, sollten diese anhand größerer Kollektive extern validiert werden.

Die **fachlich-klinische Diskussion** beinhaltet den Vergleich der Verteilung der Ätiologien der Stichprobe mit Referenzstudien, die Beurteilung der Zusammenhänge zwischen Merkmalen und Ätiologien, sowie die Bewertung der Risikoprofile.

Verteilung der Ätiologien: Abbildung 10 (S.23) zeigt die Verteilung der Ätiologien im Vergleich zu anderen Studien zur Ätiologie des Ulcus cruris (Körber et al., 2011; Jockenhöfer et

al., 2014). Die größten Abweichungen zeigten sich in den infektiösen Genesen, die Jockenhöfer et al. (2014) nicht als eigene Klasse aufführt, und den Neoplasien, welche in unserem Datensatz deutlich gehäuft auftraten (5,3% gegenüber 1% bei Jockenhöfer et al. und 1,2% bei Körber et al.). Zudem waren im Datensatz von Jockenhöfer et al. 11% der Ulzera unklarer Genese. Vor diesem Hintergrund bewerteten wir unseren Datensatz als repräsentativ für das allgemeine Ulkus-Patientengut.

Ulcus cruris hypertonicum: Im Zuge der Erhebung fiel auch ein Ulcus cruris hypertonicum (auch Ulcus cruris Martorell) auf. Hafner et al. (2010) gehen von einer Frequenz des Ulcus cruris hypertonicum (UCH) im Ulkus-Patientengut von etwa 10% aus. Bei den hier gesichteten Akten wurde mit einem Fall ein Anteil von unter 0,4% festgestellt. In die Auswertung konnte die Ätiologie nicht mit einbezogen werden, da sie zu selten vorkam.

Hafner et al. benennen als sowohl histopathologisch als auch morphologisch leicht zu verwechselnde Ätiologie die Calciphylaxie. Sie verweisen weiterhin auf das völlig konträre, potentiell letale Therapieregime von UCH und Pyoderma gangraenosum, wobei sich ein Großteil der unter der Verdachtsdiagnose PG eingewiesenen Patienten als UCH herausstellten (Hafner et al., 2010). Als typische klinische Merkmale beschreiben sie starke Schmerzen (71% der Calciphylaxie- und 63% der PG-Fälle in unserem Datensatz), einen nekrotischen Wundgrund (71% der Calciphylaxie- und 0% der PG-Fälle), einen lividen Wundrand (71% der Calciphylaxie- und 38% der PG-Fälle) und eine dorsolaterale Lokalisation (57% der Calciphylaxie- und 25% der PG-Fälle), sowie Hypertonie als Komorbidität (100% der Calciphylaxie- und 38% der PG-Fälle). Vor diesem Hintergrund sollte nicht ausgeschlossen werden, dass UCH-Fälle fehldiagnostiziert wurden. Jedoch gibt es keine Vergleichsarbeiten, die die These Hafners stützen könnten. So wurden von 1966 – 1995 laut Hafner et al. lediglich 3 Fallserien publiziert, die größte von Schnier et al. (1966) mit 40 Fällen. In aktuellen Studien zur Ätiologie des Ulcus cruris findet das UCH keine Beachtung (Körber et al., 2011; Jockenhöfer et al., 2014). In Meyer et al. (2011) wird das UCH differentialdiagnostisch besprochen und eine Frequenz von < 1% in der Ulcus-Population benannt. Weitere Untersuchungen zur Frequenz des UCH im Patientengut mit Ulcus cruris sollten daher durchgeführt werden.

Zusammenhänge von Merkmalen und Ätiologien: Einige Beziehungen zwischen bestimmten Merkmalen und Ätiologien sollen hier gesondert betrachtet werden, da die Ergebnisse im Widerspruch zu den Ergebnissen anderer Studien stehen bzw. diese in einem neuen Licht erscheinen lassen.

BMI und Pyoderma gangraenosum: Der mittlere BMI der PG-Fälle war mit 21,3 kg/m² im Gegensatz zur Studienpopulation (30,3 kg/m²) auffällig gering. Tatsächlich waren zwei der acht

Patienten untergewichtig (17,1 kg/m² und 17,6 kg/m²), während nur einer übergewichtig war (28,3 kg/m²) und keiner adipös.

In ihrer Studie "Untersuchung neuer Kofaktoren bei 49 Patienten mit Pyoderma gangraenosum" finden Al Ghazal et al. (2012) eine Adipositas bei 32,7% der Patienten im Vergleich zu einem Anteil von 42,1% in der altersadjustierten Normalbevölkerung. Wenig verständlich folgern sie: "Mit insgesamt 32,65% der Patienten (n=16), die eine Adipositas mit einem BMI > 30 kg/m² hatten, findet sich ein weiterer bislang klinisch nicht untersuchter Aspekt als möglicher Kofaktor der Pathogenese eines Pyoderma gangraenosum." (Al Ghazal et al., 2012, S. 256)

Unsere Ergebnisse sprechen analog zu den Daten von Al Ghazal et al. dafür, dass die Adipositas nicht überhäufig vorliegt, sondern es stattdessen eine Tendenz zum Untergewicht gibt. Andererseits fanden Jockenhöfer et al. (2014) bei n=13 PG-Fällen einen Anteil von 53,8% Adipositas als Komorbidität, gleichwohl ohne Angaben zu altersadjustierter Normalbevölkerung und Hypothesentestung.

Der Zusammenhang von BMI und Pyoderma gangraenosum sollte daher vor dem Hintergrund dieses Patientenkollektivs weiter untersucht werden.

Neoplasien: Neoplasie-Fälle zeigten sich homogen. Alle Wunden bestanden chronisch (>8 Wochen), jedoch nicht rezidivierend. Zudem wiesen 11 (92%) Neoplasie-Fälle nur eine einzelne Wunde auf und jeweils 7 (58%) Fälle hatten eine prätibiale Wundlokalisation bzw. einen sauberen/granulierten Wundgrund. Derweil in fünf Fällen Angaben zum Symptom Schmerzen vorlagen wurden in dreien keine bis geringe Schmerzen angegeben.

Das MLR-Modell zeichnet dieses Phänomen nur teilweise nach. Während die Effekte für prätibiale Lokalisation (Originaldaten: β =5,61; zusammengefasster Datensatz: β =26,83; beide p > 0,05), keine bis geringe Schmerzen (Originaldaten: β =3,42; zusammengefasst: β =10,69; beide p > 0,05) und einen sauberen Wundgrund (Originaldaten: β =4,05; zusammengefasst: β =30,16; beide p > 0,05) in beiden Modellen positiv sind, zeigt sich für eine singuläre Ulzeration (Originaldaten: β =-1,67; zusammengefasst: β =4,84; beide p > 0,05) ein gemischtes Bild. Eine chronische Wunde sehen allerdings beide Modelle als schwachen negativen Prädiktor (Originaldaten: β =-3,66; zusammengefasst: β =-6,93; beide p > 0,05).

Die Diskrepanz zwischen beobachteten Häufigkeiten und den errechneten Effektstärken erklärt sich aus dem Ziel des MLR-Modells nach Unterschieden zu suchen; allerdings treten beispielsweise chronische Ulzera auch bei anderen Ätiologien auf.

Die S3-LL "Lokaltherapie chronischer Wunden bei Patienten mit den Risiken periphere arterielle Verschlusskrankheit, Diabetes mellitus, chronisch venöse Insuffizienz" der DGfW

empfiehlt eine Biopsie bei morphologisch ungewöhnlichen Ulzerationen, jedoch spätestens nach 6 Wochen leitliniengerechter Therapie ohne Heilungstendenz (Dt. Gesellschaft für Wundheilung, 2012, S. 60f).

Die Studiendaten legen nahe, dass der klinisch tätige Arzt bei einem sauberen, prätibialen Ulkus ohne Schmerzen und Heilungstendenz differentialdiagnostisch an eine Neoplasie denken und diese durch Biopsie umgehend sichern sollte.

Bewertung der Risikoprofile: Die Profile für CVI, UC mixtum, Vasculitis allergica, Trauma und Calciphylaxie verhielten sich analog den Ergebnissen beider MLR-Modelle (Tab. 11). Die Neoplasie-, pAVK- und Livedo-Vaskulopathie-Profile klassifizierten dagegen deutlich schlechter. Für die Profile von infektiöser Genese und Pyoderma gangraenosum kann bei nur einem klassifizierten Fall keine Aussage getroffen werden.

Chronisch venöse Insuffizienz: Wenngleich die CVI als Verdachtsdiagnose aufgrund ihrer relativen Häufigkeit immer differentialdiagnostisch in Betracht gezogen wird, so sollte das Profil dennoch beachtet werden. Es ist bemerkenswert, dass von 29 der 225 Patienten im Datensatz mit weiblichem Geschlecht und einem Ulkus über dem Innenknöchel 26 CVI-Patienten (89,7%) sind. Zwar sind die Frauenwendigkeit (Sick und Ruzicka, 2010; Abbade et al., 2011; Dissemond, 2012, S.21) und typische Lokalisation des Ulcus cruris venosum (Miller und Ruzicka, 2001; Sick und Ruzicka, 2010; Abbade et al., 2011; Meyer et al., 2011; Dissemond, 2012, S.28) hinreichend belegt. Jedoch wird die relative Einzigartigkeit des gemeinsamen Auftretens beider Merkmale im Bezug auf das restliche Ulkus-Patientengut in der Literatur bisher nicht betont.

Calciphylaxie: Dissemond beschreibt als klinische Befunde bei Calciphylaxie-Patienten "ausgedehnte Nekrosen" und als Prädilektionsstelle "die proximale untere Extremität" (Dissemond, 2012, S.234). Der nekrotische Wundgrund wird auch von Meyer et al. (2011) benannt. In diesen Übersichtsarbeiten wird eine laterale und dorsolaterale Lokalisation des Ulkus bzw. der Ulzera nicht herausgehoben. Einige Falldarstellungen zeigen indes die auch in unserer Studie typische Lokalisation am dorsolateralen Aspekt des Unterschenkels (Schwarz et al., 2000; Körber et al., 2005; Wollina, 2010). Als besonderes Charakteristikum wird die Topographie allerdings nicht erkannt und benannt. Allenfalls erfolgt die übliche Unterscheidung in proximalen und distalen Typ. Es sollte an größeren Kollektiven untersucht werden, ob die dorsolaterale Lokalisation wegweisend für die Diagnose Calciphylaxie ist.

Die Calciphylaxie ist vergesellschaftet mit terminalem Nierenversagen und Langzeitdialyse. So entwickeln ca. 1% der Langzeitdialysierten eine Calciphylaxie pro Jahr mit dem Leitsymptom der Livedo racemosa (Marsch, 2001). Wenngleich häufig, muss nicht immer ein terminales

Nierenversagen imponieren (Meyer et al., 2011). Insbesondere in diesen Fällen könnte das Profil "nekrotischer Wundgrund" und "(dorso)laterale Lokalisation" (Abb. 13, S. 52) frühzeitig einen wichtigen differentialdiagnostischen Hinweis geben, zumal komplizierte und fatale Verläufe mit Sepsis nicht selten sind (Wollina, 2010). Die tiefe spindelförmige Inzisionsbiopsie sichert die Diagnose durch den Nachweis von Verkalkungen an Blutgefäßwänden und Bindegewebssepten, insbesondere an der Korium-Subkutis-Region (Marsch, 2001).

Vasculitis allergica: Das Vasculitis allergica-Profil klassifiziert mit hämorrhagischem Wundgrund und regionenüberspannendem Befall zwei Fälle, beide richtig. Während der Initialbefund das Leitsymptom der palpablen Purpura zeigt (Dissemond, 2012, S. 80), könnte sich das Profil besonders bei protrahierten und ulzerierten Verläufen als nützlich erweisen, in denen die palpable Purpura abblasst oder konfluiert und so schwerer zu erkennen ist (Abb. 14, S.52). Auch die Histologie verliert ihre spezifischen Merkmale: Die Leukozytoklasie (Kernstaub) wird zügig von Makrophagen abgeräumt. Über dies gibt es lymphozytär geprägte Fälle.

Ulcus cruris mixtum und traumatische Ulzera: Wie auch die MLR-Modelle schätzten die Risikoprofile für das Ulcus cruris mixtum und traumatische Ulzera unzuverlässig auf das Patientenkollektiv. Zwar lag die Trefferquote über der Ratewahrscheinlichkeit, allerdings darf für den Einsatz in der Praxis eine geringere Genauigkeit angenommen werden, sodass der Einsatz dieser Profile wenig aussichtsreich erscheint.

Das Ergebnis überrascht für die Ätiologie UC mixtum kaum: Als Mischform der vaskulären Ätiologien CVI und pAVK zeigt es typische Merkmale beider, besitzt jedoch keine Alleinstellungsmerkmale.

In fünf von acht Fällen traten traumatische Ulzera mit anderen Ätiologien gemeinsam auf. Typische Lokalisationen lassen sich vermutlich aufgrund des stochastischen Auftretens der Traumata nicht ableiten. Insgesamt präsentieren sich traumatische Ulzera zu vielgestaltig, als dass sich Aussagen für die Klinik treffen ließen.

Neoplasie: MLR-Modelle klassifizierten Neoplasie-Fälle mit hoher Präzision (Tab.11), das Profil konnte diese Treffergenauigkeit allerdings nicht erreichen. Wie bereits im Abschnitt weiter oben dargestellt präsentierten sich Neoplasien dennoch homogen. Wenngleich vom Risikoprofil kaum Nutzen zu erwarten ist, so sollte bei sauberen prätibialen singulären Ulzerationen (Abb.15, S.53) ohne Schmerzen ein neoplastisches Geschehen vermutet und bioptisch gesichert werden.

periphere Arterielle Verschlusskrankheit: Das pAVK-Risikoprofil zeigt Untergewicht und männliches Geschlecht als wegweisende Konstellation. Männer sind von der pAVK in der Altersgruppe der 60-69-jährigen mehr als doppelt so häufig von der pAVK betroffen, während sich das Verhältnis über dem 70. Lebensjahr angleicht (Selvin, 2004; Jockenhöfer et al., 2014). Ebenso konnte ein geringerer mittlerer BMI nachgewiesen werden (Selvin, 2004, vgl. auch hier Jockenhöfer et al., 2014). Dennoch bleibt fraglich, ob eine Anwendung des Profils in der Praxis sinnvoll ist, da bereits die MLR-Modelle nur etwa zu 50% richtig klassifizieren und das Profil nur in einem von drei klassifizierten Fällen richtig lag.

Livedo-Vaskulopathie: Die Diagnose der Livedo-Vaskulopathie wird über die typischen klinischen Merkmale (rankenförmige Livedozeichnung, rasche Ulkusentwicklung, starke Schmerzen) und die typische Histopathologie (segmental hyalinisierende Vaskulitis) gestellt (Goerge 2011; Müller 2015).

LV-Patienten werden von dem Profil bei einem Alter unter 60 Jahren und Untergewicht klassifiziert. Von den 12 LV-Patienten waren zwei Drittel jünger als der Altersdurchschnitt des Patientenguts (70,5 Jahre); kein Patient war über 80 Jahre alt. Das eher junge oder mittlere Alter der Patienten wird auch im LV-Konsensuspapier von Alavi et al. (2013) als besonderes Merkmal herausgestellt. Weiterhin schreiben die Autoren, die typische Lokalisation liege malleolär oder dorsal (Alavi et al., 2013). Diese Feststellung kann bei den untersuchten Patienten nur teilweise nachvollzogen werden: Malleolus medialis (0 Beobachtungen), Malleolus lateralis (3), dorsal (3), (dorso)medial (2), (dorso)lateral (2) und andere (2).

Das Untergewicht hingegen könnte als Artefakt bei zu wenigen Beobachtungen gewertet werden (vgl. Abschnitt "Fallzahlbetrachtung" auf S. 37), da nur einer der 12 LV-Patienten untergewichtig und 9 adipös waren. Daher scheint die Anwendung des Profils für die Ätiologie Livedo-Vaskulopathie nicht vielversprechend.

Livedo racemosa und Atrophie blanche als wichtige prädiktive klinische Merkmale der Livedo-Vaskulopathie (vgl. George, 2011; Alavi et al., 2013) konnten nicht in das MLR-Modell aufgenommen werden, da Wundrand und -umgebung als Parameter unzureichend dokumentiert worden waren. Es ist bemerkenswert, dass eine klinisch homogene und eindrückliche Diagnose von dem Modell nicht erkannt wird, weil Informationen aus einem wesentlichen Wundparameter nicht einflossen. Die geringe Trefferquote unterstreicht den hohen Stellenwert sorgfältiger Parameterauswahl für zukünftige Modelle.

infektiöse Genese: Während die Modelle infektiöse Ulzera unterschiedlich gut erkannten (100% bzw. 66,7%), klassifizierte das Risikoprofil aus Lokalisation über dem Außenknöchel und

keinen bis geringen Schmerzen nur einen Fall, sodass Aussagen schwerlich abgeleitet werden können.

Pyoderma gangraenosum: Das Pyoderma gangraenosum ist eine klinische Diagnose und stützt sich auf folgende Charakteristika: die Primärläsion einer Pustel, die rasche zentrifugale Ausbreitung, der matschige Wundgrund und unterminierte Wundränder (Dissemond, 2012, S.133). Die Histologie ist zwar unspezifisch, kann aber andere Ätiologien ausschließen (Dissemond, 2012, S.132).

Die Vergesellschaftung mit anderen Erkrankungen, darunter chronisch-entzündliche Darmerkrankungen, hämatologische Erkrankungen (z.B. Gammopathien) und Rheumatoide Arthritis, kann ein wichtiger diagnostischer Hinweis sein (Dissemond, 2012, S.131f). Ein Drittel aller PG-Fälle sind dennoch mittelfristig als idiopathisch anzusehen.

Eine eilfertige Diagnose bei längerer Persistenz und geringer diagnostischer Evaluierung sollte jedoch vermieden werden. So wiesen Weenig et al. (2002) auf eine hohe Fehldiagnoserate mit konsekutiver falscher Behandlung von 67% hin. Die fälschliche Diagnose Pyoderma gangraenosum mit ihrer konsekutiven immunsuppriven Therapienotwendigkeit kann dabei nicht nur zu unbefriedigendem Heilungsfortschritt führen, sondern sogar gravierende, gar letale Folgen haben (Hafner et al., 2010; Schilling et al., 2010).

Der Zusammenhang von BMI und PG wurde bereits weiter oben beleuchtet. Die Entstehung aus hämorrhagischen Blasen stützt die These des (initial) hämorrhagischen Wundgrunds bei PG-Patienten (Miller und Ruzicka, 2001; Dissemond, 2012, S. 133). Ein typischer Befund hämorrhagisch belegter Ulzera bei PG findet sich in der Bildbeilage (Abb. 16, S.53). Da nur ein Fall durch das Profil "Untergewicht und hämorrhagischer Wundgrund" klassifiziert wurde, kann keine Aussage über die Qualität getroffen werden. Die hohe Treffsicherheit der MLR-Modelle im Bezug auf PG legen nahe, dass sich das Profil in größeren PG-Kollektiven als nützlich erweisen könnte.

Stärken und Limitationen der Arbeit sollen an dieser Stelle besprochen werden. Prognostische Modelle zur Vorhersage der Ätiologie bei chronischen Wunden wurden bisher nicht untersucht, wenngleich die Methodik in der Dermatologie durchaus Anwendung findet (exemplarisch: Margolis et al., 2004). Bereits mit wenigen klinischen Parametern erkannten die Risikoprofile einige Ätiologien präzise, bei einem hohen Anteil erklärter Varianz. Das repräsentative Patientengut und die sorgfältige Auswahl der Merkmale trug vermutlich wesentlich zu den guten Ergebnissen bei verhältnismäßig wenigen Fällen bei. Einfache Heuristiken auf Basis

prognostischer Modelle sind ein völlig neuer Ansatz in der Differentialdiagnostik des Ulcus cruris und unterstreichen die Bedeutung klinischer Basisparameter. Sie erkennen bestimmte Ätiologien überraschend genau und sind bereits am Aufnahmetag als Planungshilfe in der Differentialdiagnostik anwendbar.

Besondere Limitationen sind das im Verhältnis zur gewählten Methode kleine Patientenkollektiv, das Fehlen eines Prüfkollektivs für eine externe Validierung und der retrospektive Ansatz, welche gemeinsam die Anwendbarkeit der Ergebnisse auf die Allgemeinheit einschränken. Während durch größere Patientenkollektive mehr Ätiologien betrachtet werden und die Effektstärken exakter bestimmt werden könnten, würde eine externe Validierung die Tauglichkeit für den Alltag beweisen. Ein prospektiver Ansatz würde schließlich eine noch sorgfältigere Auswahl der klinischen Parameter erlauben und so ggf. noch bessere Ergebnisse erzielen. Fehlende Standards in der Dokumentation von Wunden und Behandlungsverläufen erschwerten die Datenerhebung und limitierten die verfügbaren Wundparameter. Gleichzeitig wird der hohe diagnostische Stellenwert klinischer Merkmale verdeutlicht: Fehlen wichtige Basisparameter verliert das Modell seine Trennschärfe (vgl. dazu Abschnitt Livedo-Vaskulopathie auf S.43f).

6 Zusammenfassung und Ausblick

Mit dieser Studie wurden erstmals über ein multinominales logistisches Regressionsmodell für die zehn häufigsten Ätiologien des Ulcus cruris Unterschiede in der klinischen Präsentation systematisch erkennbar gemacht. Über Risikoprofile aus wenigen Merkmalen sollten die wesentlichen Alleinstellungsmerkmale der Ätiologien derart formuliert werden, dass der Einsatz in der klinisch-praktischen Tätigkeit ohne zusätzlichen Aufwand von Ressourcen ermöglicht wird.

Das Studienkollektiv mit 225 Patienten erachten wir als repräsentativ für das allgemeine Ulkus-Patientengut, da es eine Verteilung der Ätiologien analog anderer Studien zur Ätiologie des Ulcus cruris zeigt.

Abseits des prognostischen Modells boten die Studiendaten Hinweise auf typische Befundkonstellationen bei Neoplasien (im wesentlichen Plattenepithelkarzinome): eine saubere prätibiale singuläre Ulzeration ohne Schmerzen sollte histologisch abgeklärt werden.

Weiterhin zeigten Calciphylaxie-Patienten eine typische Lokalisation am dorsolateralen Aspekt des Unterschenkels.

Pyoderma gangraenosum-Patienten hatten mit einem geringen mittleren Body Mass Index ein bislang nicht geprüftes, möglicherweise typisches klinisches Merkmal.

Aufgrund fehlender Daten wurde eine multiple Imputation durchgeführt und ein Vergleichsmodell ohne imputierte Daten erstellt, um Verzerrungstendenzen der imputierten Daten ersichtlich zu machen. Eine Verzerrung durch die Imputation konnte jedoch nicht festgestellt werden.

Das MLR-Modell klassifizierte 68,9% aller Fälle korrekt und war damit deutlich präziser als der Zufall. Somit konnte gezeigt werden, dass die Ätiologie des Ulcus cruris anhand klinischer Basisparameter bereits am Aufnahmetag abgeschätzt werden kann.

Die Risikoprofile zeigten für die meisten Ätiologien ein paralleles Verhalten. Die Profile für chronisch-venöse Insuffizienz und Calciphylaxie boten die höchste Trefferquote und könnten im klinischen Alltag angewendet werden.

Das gemeinsame Auftreten von Wundlokalisation über dem Innenknöchel und weiblichem Geschlecht hebt Patienten mit chronisch-venöser Insuffizienz vom restlichen Patientengut ab. Das Profil erkannte 25% der Patienten korrekt. Calciphylaxie-Patienten präsentieren überproportional häufig nekrotische Wunden am dorsolateralen Unterschenkel. Hier erkannte das Profil 29% der Patienten im Datensatz richtig.

Das Risikoprofil für Vasculitis allergica aus hämorrhagischem Wundgrund bei regionenüberspannendem Befall könnte bei fehlendem Leitsymptom der palpablen Purpura und schon längerer klinischer Verlaufsdauer hinweisend sein.

Wenngleich das Risikoprofil nur einen von acht PG-Patienten klassifizierte, könnte die Kombination aus hämorrhagischem Wundgrund und Untergewicht sich als hilfreich in der differentialdiagnostischen Erfassung des Pyoderma gangraenosum erweisen.

Der erfolgreiche Einsatz der Risikoprofile für Ulcus cruris mixtum, periphere arterielle Verschlusskrankheit, Livedo-Vaskulopathie, infektiöse Ulzera und solche traumatischer Genese ist bei geringer Klassifikationspräzision dagegen wenig wahrscheinlich.

Um Sicherheit über die Schätzkraft der Risikoprofile zu erlangen, muss eine externe Validierungsstudie durchgeführt werden. Jedoch verbietet sich eine Anwendung auch ohne externe Validierung aufgrund fehlender negativer Konsequenz nicht. Um zukünftig bessere Risikoprofile zu erstellen, die insbesondere Klinikern außerhalb spezialisierter Zentren hilfreich sein können, sollten Modelle in einem prospektiven Ansatz an einem deutlich größeren multizentrischen Patientenkollektiv erstellt und validiert werden.

Die vorliegende Studie zeigt, dass sich schon mit relativ wenigen Patienten typische Befundkonstellationen für einzelne Ätiologien ableiten lassen. Die Profile sollten in der Praxis erprobt werden, um ihre Vorhersagekraft unter realen Bedingungen zu testen. Replizieren sich die Ergebnisse in der externen Validierung, so könnte sich die Diagnostikphase insbesondere für weniger häufige Ätiologien (z.B. Calciphylaxie, Pyoderma gangraenosum, Livedo-Vaskulopathie und Ulcus cruris hypertonicum) deutlich verkürzen, da der wegweisende Hinweis schon am Aufnahmetag vorliegt. Somit könnten wichtige Therapieentscheidungen rascher getroffen und das Behandlungsergebnis verbessert werden. Eine prospektive multizentrische Folgestudie mit größerem Kollektiv könnte noch bessere Ergebnisse, besonders für seltene Ätiologien, erzielen.

Die unterschiedliche Genauigkeit und Trefferquote des MLR-Modells und der Risikoprofile für die einzelnen Diagnosen illustriert, wie schwer differentialdiagnostische Überlegungen selbst in einem komplexen mathematischen Modell abgebildet werden können. Eine Automatisierung der diagnostischen Überlegungen des klinisch tätigen Arztes kann damit ausgeschlossen werden. Dennoch zeigt das Modell, wieviel diagnostisch wertvolle Information in klinischen Merkmalen, wie die Ulkuslokalisation, verborgen liegt. Die Risikoprofile sollten als weiteres Werkzeug zur ätiologischen Erfassung beim Unterschenkelulkus verstanden werden, zusätzlich zur ärztlichen Abwägung von Leitsymptomen und klinischer Erfahrung. Als Hilfsmittel in der Diagnostik des Ulcus cruris könnten die Profile eine wertvolle Ergänzung darstellen.

7 Literaturverzeichnis

Abbade LPF, Lastoria S, Rollo HdA (2011) Venous ulcer: clinical characteristics and risk factors. Int J Dermatol 50:405–411.

Al Ghazal P, Körber A, Klode J, Dissemond J (2012) Untersuchung neuer Kofaktoren bei 49 Patienten mit Pvoderma gangraenosum. J Dtsch Dermatol Ges 10:251–256.

Alavi A, Hanfer J, Dutz JP, Mayer D, Sibbald GR, Criado PR et al. (2013) Livedoid vasculopathy: An in-depth analysis using a modified Delphi approach. J Am Acad Dermatol 69:1033–1042.

Altmeyer P, Paech V: Therapielexikon Dermatologie und Allergologie. Therapie kompakt von A bis Z. 2. Aufl. Springer, Berlin, 2005, S.920.

Augustin M, Rustenbach SJ, Debus S, Grams L, Münter K, Tigges W et al. (2011) Quality of care in chronic leg ulcer in the community: introduction of quality indicators and a scoring system. Dermatology 222:321–329.

Augustin M, Brocatti LK, Rustenbach SJ, Schäfer I, Herberger K (2014) Cost-of-illness of leg ulcers in the community. Int Wound J 3:283–293.

Babyak MA (2004) What you see may not be what you get: a brief, nontechnical introduction to overfitting in regression-type models. Psychosom Med 66:411–421.

Balschun U (2004) Aktuelle ökonomische Aspekte der Therapie des Ulcus cruris - eine Übersicht. Vasomed 16:61–64.

Baltes-Götz B (2013) Behandlung fehlender Werte in SPSS und Amos. Universität Trier, Zentrum für Informations-, Medien und Kommunikationstechnologie. Online verfügbar unter http://www.uni-trier.de/fileadmin/urt/doku/bfw/bfw.pdf, zuletzt geprüft am 18.12.14.

Carlsson AM (1983) Assessment of chronic pain. Aspects of the reliability and validity of the visual analogue scale. Pain 16:87–101.

Cox DR, Snell EJ: Analysis of binary data. 2nd ed Chapman and Hall, London, New York, 1989.

Deutsches Institut für Medizinische Dokumentation und Information (Hg.) (2012) ICD-10-GM Version 2013. Systematisches Verzeichnis. Internationale statistische Klassifikation der Krankheiten und verwandter Gesundheitsprobleme, 10. Revision; German Modification. Online verfügbar unter http://www.dimdi.de/dynamic/de/klassi/downloadcenter/icd-10-gm/vorgaenger/version2013/systematik/, zuletzt geprüft am 11.10.14.

Diepgen TL, Sauerbrei W, Fartasch M (1996) Development and validation of diagnostic scores for atopic dermatitis incorporating criteria of data quality and practical usefulness. J Clin Epidemiol 49:1031–1038.

Dissemond J: Blickdiagnose chronischer Wunden. Über die klinische Inspektion zur Diagnose. 2. Aufl. Viavital Verlag, Köln, 2012.

Dissemond J, Körber A, Grabbe S (2006) Differentialdiagnosen des Ulcus cruris. J Dtsch Dermatol Ges 4:627–634.

Dt. Gesellschaft für Phlebologie (2008) S3 Leitlinie: Diagnostik und Therapie des Ulcus cruris venosum (in Überarbeitung). Hg. v. Dt. Gesellschaft für Phlebologie, AWMF (037 - 009). Online verfügbar unter http://www.awmf.org/leitlinien/detail/ll/037-009.html, gültig bis 01.08.2013.

Dt. Gesellschaft für Wundheilung und Wundbehandlung (2012) S3 Leitlinie: Lokaltherapie chronischer Wunden bei Patienten mit den Risiken periphere arterielle Verschlusskrankheit, Diabetes mellitus, chronisch venöse Insuffizienz. Hg. v. Dt. Gesellschaft für Wundheilung, AWMF (091 - 001). Online verfügbar unter http://www.awmf.org/leitlinien/detail/ll/091-001.html, gültig bis 30.04.2016.

Enders CK: Applied missing data analysis. Guilford Press, New York, 2010.

Federative international programme on anatomical terminology (FIPAT) (Hg): International anatomical terminology. 2nd edition, Thieme, Stuttgart, New York, 2011.

Franks PJ, Moffatt CJ, Doherty DC, Smithdale R, Martin R (2006) Longer-term changes in quality of life in chronic leg ulceration. Wound Repair Regen 14:536–541.

Gallasch G, Gloor M, Schröder J (1978) Klinik des pelvinen Stenosesyndroms (Schneider-Fischer). Hautarzt 29:430–434.

George T (2011) Livedovaskulopathie. Pathogenese, Diagnostik und Therapie des Hautinfarkts. Hautarzt 62:627–635.

Graham ID, Harrison MB, Nelson EA, Lorimer K, Fisher A (2003) Prevalence of lower-limb ulceration: a systematic review of prevalence studies. Adv Skin Wound Care 16:305–316.

Hach W (2003) Das arthrogene Stauungssyndrom. Gefässchirurgie 8:227–233.

Hach W, Hach-Wunderle V, Präve F (2000) Die Graduierung der chronischen venösen Insuffizienz. Gefässchirurgie 5:255–261.

Hafner J, Nobbe S, Partsch H, Läuchli S, Mayer, D, Amann-Vesti, B et al. (2010) Martorell hypertensive ischemic leg ulcer. A model of ischemic subcutaneous arteriolosclerosis. Arch Dermatol 146:961–968.

Hosmer DW, Lemeshow S: Applied logistic regression. 2nd ed., Wiley, New York, 2000.

Jockenhöfer F, Gollnick H, Herberger K, Isbary G, Renner R, Stücker M et al. (2014) Aetiology, comorbidities and cofactors of chronic leg ulcers: retrospective evaluation of 1 000 patients from 10 specialised dermatological wound care centers in Germany. Int Wound J, elektronische Veröffentlichung vor dem Druck, online verfügbar unter http://onlinelibrary.wiley.com/doi/10.1111/iwj.12387/abstract.

Kjaer ML, Sorensen LT, Karlsmark T, Mainz J, Gottrup F (2005) Evaluation of the quality of venous leg ulcer care given in a multidisciplinary specialist centre. J Wound Care 14:145–150.

Körber A, Klode D, Grabbe S, Dissemond J (2005) Dolente Ulzerationen beider Unterschenkel. J Dtsch Dermatol Ges 3:383–384.

Körber A, Klode J, Al-Benna S, Wax C, Schadendorf D, Steinstraesser L, Dissemond J (2011) Etiology of chronic leg ulcers in 31,619 patients in Germany analyzed by an expert survey. J Dtsch Dermatol Ges 9:116–121.

Mackinnon A (2010) The use and reporting of multiple imputation in medical research - a review. J Intern Med 268:586–593.

Margolis DJ, Allen-Taylor L, Hoffstad O, Berlin JA (2004) The accuracy of venous leg ulcer prognostic models in a wound care system. Wound Repair Regen 12:163-168.

Marsch WC (2001): Dialyse-Dermatosen. In: Fortschritte der praktischen Dermatologie und Venerologie, Band 17 (Hrsg. Plewig G, Degitz K), Springer, Berlin, Heidelberg, New York, 2001. S.350–356.

Meyer V, Kerk N, Meyer S, Goerge T (2011) Differential diagnosis and therapy of leg ulcers. J Dtsch Dermatol Ges 9:1035-52.

Miller A, Ruzicka T (2001) Differentialdiagnose des Ulcus cruris. Hautarzt 52:593-603.

Müller A (2015) Livedo-Vaskulopathie. Spielt eine Hyperhomocysteinämie eine ätiopathogenetische Rolle?, Halle (Saale), Univ., Med. Fak., Diss., Diss., 50 Seiten.

Nagelkerke N (1991) A note on a general definition of the coefficient of determination. Biometrika 78:691–692.

Nelzèn O (2000) Leg ulcers: economic aspects. Phlebology 15:110–114.

Panfil E, Linde E (2006) Kriterien zur Wunddokumentation. Literaturanalyse. Hg. v. Deutsche Gesellschaft für Wundheilung und Wundbehandlung. Hessisches Institut für Pflegeforschung, HessIP. Online verfügbar unter http://dgfw-ev.de/pdfdata/wd_review_hessip.pdf, zuletzt geprüft am 05.01.2015.

Pannier F, Rabe E (2013) Differential diagnosis of leg ulcers. Phlebology 28 (suppl 1):55–60.

Petrucci CJ (2009) A primer for social worker researchers on how to conduct a multinomial logistic regression. J Soc Serv Res 35:193–205.

Phillips T, Stanton B, Provan A, Lew R (1994) A study of the impact of leg ulcers on quality of life: financial, social, and psychologic implications. J Am Acad Dermatol 31:49–53.

Purwins S, Herberger K, Debus ES, Rustenbach SJ, Pelzer P, Rabe E et al. (2010) Cost-of-illness of chronic leg ulcers in Germany. Int Wound J 7:97–102.

Rabe E, Pannier F, Bromen K, Schuldt K, Stang A (2003) Bonner Venenstudie der Deutschen Gesellschaft für Phlebologie. Epidemiologische Untersuchung zur Frage der Häufigkeit und Ausprägung von chronischen Venenkrankheiten in der städtischen und ländlichen Wohnbevölkerung. Phlebologie 32:1–14.

Ramelet AA, Blazek C: Erkrankungen der Venen. In: Braun-Falco's Dermatologie, Venerologie und Allergologie. 6. Aufl., Band 2 (Hrsg. Plewig G, Landthaler M, Burgdorf WHC, Hertl M, Ruzicka T). Springer, 2012, S.1096–1119.

Renner R, Gebhardt C, Simon JC, Seikowski K (2009) Changes in quality of life for patients with chronic venous insufficiency, present or healed leg ulcers. J Dtsch Dermatol Ges 7:953–961.

Richert L, Weber R, Doelfs P, Tscheulin D, Augustin M (2004) Stationäre Behandlungskosten von Hautkrankheiten. Hautarzt 55:1047–1051.

Rubin DB: Multiple imputation for nonresponse in surveys. Wiley, New York, 1987.

Schilling ML, Federman DG, Kirsner RS (2010) Clinical approach to atypical wounds with a new model for understanding hypertensive ulcers. Arch Dermatol 146:1026–1029.

Schnier BR, Sheps SG, Juergens JL (1966) Hypertensive ischemic ulcer: a review of 40 cases. Am J Cardiol 17:560–565.

Schönfeld W: Allgemeine klinische Dermatologie. In: Dermatologie und Venerologie, Band I, Teil 2 (Hrsg. Gottron HA, Schönfeld W). Thieme, Stuttgart, 1962. S.758-762.

Schünke M, Schulte E, Schumacher U, Voll M, Wesker K: Prometheus - Lernatlas der Anatomie. Allgemeine Anatomie und Bewegungssystem. 1. Aufl., Georg Thieme, Stuttgart, 2005, S.484–486.

Schwarz G, Laukhuf F, Bittinger F, Knop J, Saloga J (2000) Kalziphylaxie: Ischämische Hautnekrosen bei terminaler Niereninsuffizienz. Hautarzt 51:36–40.

Selvin E (2004) Prevalence of and risk factors for peripheral arterial disease in the United States: results from the National Health and Nutrition Examination Survey, 1999-2000. Circulation 110:738–743.

Sick I, Ruzicka T (2010) Die vielen Gesichter des Ulcus cruris. Dtsch Med Wochenschr 135:1440–1445.

Sterne JAC, White IR, Carlin JB, Spratt M, Royston P, Kenward MG et al. (2009) Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ 338:b2393.

van den Bosch JE, Kalkman CJ, Vergouwe Y, van Klei WA, Bonsel GJ, Grobbee DE, Moons KGM (2005) Assessing the applicability of scoring systems for predicting postoperative nausea and vomiting. Anaesthesia 60:323–331.

van Buuren S (2012) Multiple imputation. Online verfügbar unter http://www.stefvanbuuren.nl/mi/MI.html, zuletzt geprüft am 04.03.2015

Weenig RH, Davis MDP, Dahl PR, Su WPD (2002) Skin ulcers misdiagnosed as pyoderma gangrenosum. N Engl J Med 347:1412–1418.

White JL (2013) Logistic regression model effectiveness: proportional chance criteria and proportional reduction in error. Hg. v. University of Mississippi. School of Education. Online verfügbar unter http://education.olemiss.edu/jcre/issues/JCRE2-1_August-2013.pdf, zuletzt geprüft am 04.01.2015.

WHO expert consultation (2004) Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 363:157–163.

Wissing U, Ek A, Unosson M (2002) Life situation and function in elderly people with and without leg ulcers. Scand J Caring Sci 16:59–65.

Wollina U (2010) Kutane Kalziphylaxie. Hautarzt 61:1063–1072.

8 Bildnachweis und Bildbeilage

Abbildung 1, S. 3 übersetzt und angepasst nach Meyer et al. (2011).

Abbildung 3, S. 11 verändert nach Schünke et al. (2005, S. 484 & 486).

Abbildung 5, S. 17 verändert nach van Buuren (2012).

Alle Abbildungen von Wunden (Abb. 2 auf S. 10, Abb. 13 & 14 auf S. 52, sowie Abb. 15 & 16 auf S. 53) mit freundlicher Genehmigung des Fotoarchivs der Universitäts-Hautklinik Halle.

Alle Abbildungen von Wunden wurden von Frau Anette Weyershäuser aus dem Fotoarchiv der Universitäts-Hautklinik Halle erstellt.

Abbildung 13: Aufnahmebefund einer 88jährigen Patientin mit Calciphylaxie und dorsolateralen Ulzera am linken Bein.

Abbildung 14: Aufnahmebefund eines 61jährigens Mannes mit Vasculitis allergica und multiplen hämorrhagisch verkrusteten Ulzera an beiden Beinen. Die palpable Purpura ist bereits verblasst.

Abbildung 15: Aufnahmebefund eines 67jährigen Patienten mit Marjolin-Ulkus.

Abbildung 16: Aufnahmebefund einer 88-jährigen Patientin mit Pyoderma gangraenosum und zwei hämorrhagisch belegten Ulzera.

9 Anhang

Inhalt:

Imputationsergebnisse für "Body Mass Index" (Tab. 12, S. 55)

Imputationsergebnisse für "Schmerzen" (Tab. 13, S. 56)

Imputationsergebnisse für "Wundgrund" (Tab. 14, S. 57)

Imputationsergebnisse für "Lokalisation" (Tab. 15, S. 58)

Imputationsergebnisse für "Anzahl der Wunden" (Tab. 16, S. 60)

Ausgabe der multinominalen logistischen Regression mit Originaldaten (Tab. 17, S. 61ff)

Ausgabe der multinominalen logistischen Regression mit imputierten Daten (Tab. 18, S. 67ff)

Wahrscheinlichkeitstabelle für "Geschlecht" (Tab. 19, S. 73)

Wahrscheinlichkeitstabelle für "Alter" (Tab. 20, S. 73)

Wahrscheinlichkeitstabelle für "BMI" (Tab. 21, S. 73)

Wahrscheinlichkeitstabelle für "Dynamik" (Tab. 22, S. 74)

Wahrscheinlichkeitstabelle für "Schmerzen" (Tab. 23, S. 74)

Wahrscheinlichkeitstabelle für "Wundgrund" (Tab. 24, S. 74)

Wahrscheinlichkeitstabelle für "Lokalisation" (Tab. 25, S. 75)

Wahrscheinlichkeitstabelle für "Anzahl der Wunden" (Tab. 26, S. 75)

Tabelle 12: Imputationsergebnisse für "Body Mass Index"

Daten	Imputation	Kategorie	n	%	Daten	Imputation	Kategorie	n	%
Originaldaten		1	7	3,2					
		2	44	20,4					
		3	59	27,3					
		4	106	49,1					
vollständige	1	1	7	3,1 vo	ollständige	11	1	7	3,1
Daten nach Imputation		2	46		aten nach putation		2	47	20,9
imputation		3	63	20,0	ipulation		3	61	27,1
		4	109	48,4			4	110	48,9
	2	1	7	3,1		12	1	8	3,6
		2	46	20,4			2	47	20,9
		3	61	27,1			3	62	27,6
		4	111	49,3			4	108	48,0
	3	1	8	3,6		13	1	7	3,1
		2	49	21,8			2	46	20,4
		3	60	26,7			3	62	27,6
		4	108	48,0			4	110	48,9
	4	1	8	3,6		14	1	9	4,0
		2	45	20,0			2	45	20,0
		3	63	28,0			3	63	28,0
		4	109	48,4			4	108	48,0
	5	1	7	3,1		15	1	7	3,1
		2	48	21,3			2	46	20,4
		3	61	27,1			3	63	28,0
		4	109	48,4			4	109	48,4
	6	1	7	3,1		16	1	7	3,1
		2	47	20,9			2	45	20,0
		3	64	28,4			3	65	28,9
		4	107	47,6			4	108	48,0
	7	1	8	3,6		17	1	8	3,6
		2	46	20,4			2	45	20,0
		3	61	27,1			3	61	27,1
		4	110	48,9		40	4	111	49,3
	8	1	7	3,1		18	1	7	3,1
		2	46	20,4			2	47	20,9
		3	62	27,6			3	61	27,1
		4	110	48,9			4	110	48,9
	9	1	7	3,1		19	1	7	3,1
		2	47	20,9			2	44	19,6
		3	60	26,7			3	62	27,6
	10	4	111	49,3			4	112	49,8
	10	1	10	4,4		20	1	8	3,6
		2	44	19,6			2	45	20,0
		3	61	27,1			3	60	26,7
		4	110	48,9			4	112	49,8

Kategorie 1: Untergewicht; 2: Normalgewicht; 3: Übergewicht; 4: Adipositas

Tabelle 13: Imputationsergebnisse für "Schmerzen"

Daten	Imputation	Kategorie	<u>n</u>		Daten	Imputa	ation Kategorie	n	%
Originaldaten		1	21	11,9					
		2	76 80	42,9 45,2					
mputierte	1	1	6		vollständige	1	1	27	12
Verte	•	2	28	58.3	Daten nach	•	2	104	46
		3	14		Imputation		3	94	41
	2	1	13	27,1		2	1	34	15
		2	18	37,5			2	94	41
		3	17	35,4			3	97	43
	3	1	3	6,3		3	1	24	10
		2	26	54,2			2	102	45
		3	19	39,6			3	99	44
	4	1	6	12,5		4	1	27	12
		2 3	31 11	64,6 22,9			2	107 91	47 40
	5	1	9	18,8		5	<u>3</u>	30	13
	5	2	20	41,7		5	2	96	42
		3	19	39,6			3	99	44
	6	1	7	14,6		6	1	28	12
	· ·	2	26	54,2		Ü	2	102	45
		3	15	31,3			3	95	42
	7	1	5	10,4		7	1	26	1′
		2	27	56,3			2	103	45
		3	16	33,3			3	96	42
	8	1	11	22,9		8	1	32	14
		2	19	39,6			2	95	42
		3	18	37,5			3	98	43
	9	1	10	20,8		9	1	31	13
		2	17	35,4			2	93	4
	40	3	21	43,8		40	3	101	44
	10	1	11	22,9		10	1	32 102	14
		2	26 11	54,2 22,9			2 3	91	4: 4(
	11	<u> </u>	6	12,5		11	<u>3</u> 1	27	12
	11	2	26	54,2		11	2	102	4
		3	16	33,3			3	96	4:
	12	1	11	22,9		12	1	32	14
	· -	2	23	47,9			2	99	44
		3	14	29,2			3	94	4
	13	1	9	18,8		13	1	30	13
		2	24	50,0			2	100	44
		3	15	31,3			3	95	42
	14	1	7	14,6		14	1	28	1:
		2	24	50,0			2	100	4
		3	17	35,4			3	97	4;
	15	1	7	14,6		15	1	28	1:
		2	16	33,3			2	92 105	40
	16	3	25 7	52,1		10	3	105	40
	16	1	7 18	14,6 37,5		16	1	28 94	12 4
		2 3	23	37,5 47,9			2 3	103	4
	17	1	9	18,8		17	<u>3</u> 1	30	1
	17	2	23	47,9		17	2	99	4
		3	16	33,3			3	96	4:
	18	1	6	12,5		18	1	27	12
	.0	2	23	47,9			2	99	4
		3	19	39,6			3	99	4
	19	1	11	22,9		19	1	32	14
	-	2	17	35,4		-	2	93	4
		3	20	41,7			3	100	44
	20	1	6	12,5		20	1	27	1:
		2	31	64,6			2	107	47
		3	11	22,9			3	91	40

Tabelle 14: Imputationsergebnisse für "Wundgrund"

Daten		on Kategorie	n	% Daten	Imputa	tion Kategorie	n	%
Originaldaten		1	26	11,7				
		2	158	70,9				
		3	8 31	3,6 13,9				
Imputierte	1	<u>4</u> 1	1	50,0 vollständige	8	1	26	11,6
Werte	1	2	1	50 o Daten nach	O	2	158	70,2
	2	3	2	100,0 Imputation		3	10	4,4
	3	3	2	100,0		4	31	13,8
	4	3	2	100,0	9	 1	26	11,6
	5	3	2	100,0		2	158	70,2
	6	1	1	50,0		3	10	4,4
		2	1	50,0		4	31	13,8
	7	2	1	50,0	10	1	26	11,6
		4	1	50,0		2	158	70,2
	8	3	2	100,0		3	10	4,4
	9	3	2	100,0		4	31	13,8
	10	3	2	100,0	11	1	26	11,6
	11	3	2	100,0		2	158	70,2
	12	3	2	100,0		3	10	4,4
	13	3	2	100,0		4	31	13,8
	14	3	2	100,0	12	1	26	11,6
	15	1	1	50,0		2	158	70,2
		2	1	50,0		3	10	4,4
	16	1	1	50,0		4	31	13,8
		2	1	50,0	13	1	26	11,6
	17	3	2	100,0		2	158	70,2
	18	3	2	100,0		3	10	4,4
	19	2	2	100,0	14	4	31	13,8
	20	1	1	50,0		1	26	11,6
volletändige	1	<u>2</u> 1	1 27	50,0		2 3	158 10	70,2
vollständige Daten nach	1	2	159	12,0 70,7				4,4
Imputation		3	8	3,6	15	<u>4</u> 1	31 27	13,8 12,0
		4	31	13,8	13	2	159	70,7
	2	1	26	11,6		3	8	3,6
	_	2	158	70,2		4	31	13,8
		3	10	4,4	16	1	27	12,0
		4	31	13,8	.0	2	159	70,7
	3	1	26	11,6		3	8	3,6
	-	2	158	70,2		4	31	13,8
		3	10	4,4	17	1	26	11,6
		4	31	13,8		2	158	70,2
	4	1	26	11,6		3	10	4,4
		2	158	70,2		4	31	13,8
		3	10	4,4	18	1	26	11,6
		4	31	13,8		2	158	70,2
	5	1	26	11,6		3	10	4,4
		2	158	70,2		4	31	13,8
		3	10	4,4	19	1	26	11,6
		4	31	13,8		2	160	71,1
	6	1	27	12,0		3	8	3,6
		2	159	70,7		4	31	13,8
		3	8	3,6	20	1	27	12,0
		4	31	13,8		2	159	70,7
	7	1	26	11,6		3	8	3,6
		2	159	70,7		4	31	13,8
		3	8	3,6				
		4	32	14,2				

Tabelle 15: Imputationsergebnisse für "Lokalisation"

Daten		ion Kategorie	n n	% Daten		Imputation Kategorie	n	%
Originaldaten		1	38	17,0		imputation Nategorie	11	/0
- I gilliana and i		2	52	23,3				
		3	33	14,8				
		4	18	8,1				
		5	25	11,2				
		6	24	10,8				
		7	33	14,8				
Imputierte	1	4	1	50,0 vollständi	iae	3 1	38	16,9
Werte	•	7	1	50 0 Daten na	ch	2	52	23,1
	2		1	50,0 Imputation	n	3	34	15,1
	_	6	1	50,0		4	18	8,0
	3	3	1	50,0		5	26	11,6
		5	1	50,0		6	24	10,7
	4	1	1	50,0		7	33	14,7
	•	5	1	50,0	-	4 1	39	17,3
	5	2	1	50,0		2	52	23,1
		5	1	50,0		3	33	14,7
	6	3	1	50,0		4	18	8,0
		6	1	50,0		5	26	11,6
	7	1	1	50,0		6	24	10,7
	•	2	1	50,0		7	33	14,7
	8	4	2	100,0	-	5 1	38	16,9
	9	 1	1	50,0		2	53	23,6
	Ū	6	1	50,0		3	33	14,7
	10	2	2	100,0		4	18	8,0
	11	5	2	100,0		5	26	11,6
	12	3	2	100,0		6	24	10,7
	13	1	1	50,0		7	33	14,7
	.0	7	1	50,0	-	6 1	38	16,9
	14	1	1	50,0		2	52	23,1
	• •	2	1	50,0		3	34	15,1
	15	2	1	50,0		4	18	8,0
	.0	6	1	50,0		5	25	11,1
	16	1	1	50,0		6	25	11,1
	.0	2	1	50,0		7	33	14,7
	17	 1	1	50,0	-	7 1	39	17,3
		6	1	50,0		2	53	23,6
	18	4	1	50,0		3	33	14,7
	.0	6	1	50,0		4	18	8,0
	19	2	1	50,0		5	25	11,1
		6	1	50,0		6	24	10,7
	20	1	1	50,0		7	33	14,7
		2	1	50,0	-	8 1	38	16,9
vollständige	1	1	38	16,9		2	52	23,1
Daten nach	•	2	52	23,1		3	33	14,7
Imputation		3	33	14,7		4	20	8,9
		4	19	8,4		5	25	11,1
		5	25	11,1		6	24	10,7
		6	24	10,7		7	33	14,7
		7	34	15,1	-	9 1	39	17,3
	2	1	39	17,3		2	52	23,1
	_	2	52	23,1		3	33	14,7
		3	33	14,7		4	18	8,0
		4	18	8,0		5	25	11,1
		5	25	11,1		6	25	11,1
		6	25 25	11,1		7	33	14,7
		7	33	14,7		ı	- 33	17,7
		ı	55	17,1				

Tabelle 15 (Fortsetzung): Imputationsergebnisse für "Lokalisation"

Daten		Kategorie	n		Daten	Imputation		n	%
vollständige	10	1	38	16,9 <u>v</u>	ollständige	16	1	39	17,3
Daten nach		2	54	24,0 L	Daten nach		2	53	23,6
Imputation		3	33		mputation		3	33	14,7
		4	18	8,0			4	18	8,0
		5	25	11,1			5	25	11,1
		6	24	10,7			6	24	10,7
		7	33	14,7			7	33	14,7
	11	1	38	16,9		17	1	39	17,3
		2	52	23,1			2	52	23,1
		3	33	14,7			3	33	14,7
		4	18	8,0			4	18	8,0
		5	27	12,0			5	25	11,1
		6	24	10,7			6	25	11,1
		7	33	14,7			7	33	14,7
	12	1	38	16,9		18	1	38	16,9
		2	52	23,1			2	52	23,1
		3	35	15,6			3	33	14,7
		4	18	8,0			4	19	8,4
		5	25	11,1			5	25	11,1
		6	24	10,7			6	25	11,1
		7	33	14,7			7	33	14,7
	13	1	39	17,3		19	1	38	16,9
		2	52	23,1			2	53	23,6
		3	33	14,7			3	33	14,7
		4	18	8,0			4	18	8,0
		5	25	11,1			5	25	11,1
		6	24	10,7			6	25	11,1
		7	34	15,1			7	33	14,7
	14	1	39	17,3		20	1	39	17,3
		2	53	23,6			2	53	23,6
		3	33	14,7			3	33	14,7
		4	18	8,0			4	18	8,0
		5	25	11,1			5	25	11,1
		6	24	10,7			6	24	10,7
		7	33	14,7			7	33	14,7
	15	1	38	16,9					
		2	53	23,6					
		3	33	14,7					
		4	18	8,0					
		5	25	11,1					
		6	25	11,1					
		7	33	14,7					

Kategorie 1: prätibial; 2: Malleolus medials; 3: Malleolus lateralis; 4: dorsal; 5: (dorso)medial; 6: (dorso)lateral; 7: regionenüberspannend

Tabelle 16: Imputationsergebnisse für "Anzahl der Wunden"

Daten Originaldaton		n Kategorie	<u>105</u>	% 47.0	Daten	imputa	tion Kategorie	n	%
Originaldaten		1 2	105 89	47,9 40,6					
		3	o9 25	40,6 11,4					
Imputierte	1	1	4		vollständige	4	1	109	48,4
Werte	1	2	2	33.3	Daten nach	7	2	91	40,4
	2	1	4	66,7	Imputation		3	25	11,
	_	2	2	33,3		5	1	109	48,4
	3	1	5	83,3		Ü	2	90	40,0
	Ū	3	1	16,7			3	26	11,0
	4	1	4	66,7		6	1	110	48,9
		2	2	33,3			2	90	40,0
	5	1	4	66,7			3	25	11,
		2	1	16,7		7	1	108	48,
		3	1	16,7			2	92	40,
	6	1	5	83,3			3	25	11,
		2	1	16,7		8	1	108	48,0
	7	1	3	50,0			2	90	40,0
		2	3	50,0			3	27	12,
	8	1	3	50,0		9	1	106	47,
		2	1	16,7			2	93	41,
		3	2	33,3			3	26	11,6
	9	1	1	16,7		10	1	108	48,0
		2	4	66,7			2	90	40,0
		3	1	16,7			3	27	12,
	10	1	3	50,0		11	1	108	48,
		2	1	16,7			2	92	40,
		3	2	33,3			3	25	11,
	11	1	3	50,0	7	12	1	109	48,4
	40	2	3	50,0			2	91	40,4
	12	1	4	66,7			3	25	11,
	40	2	2	33,3		13	1	110	48,
	13	1	5	83,3			2	89	39,
	44	3	1 5	16,7		14	3 1	26	11,0
	14	1		83,3		14	2	110	48,
	15	3 1	1 1	16,7 16,7			3	89 26	39,
	15	2	3	50,0		15	<u>3</u> 1	106	11,0 47,
		3	2	33,3		15	2	92	40,9
	16	 1	6	100,0			3	27	12,0
	17	1	6	100,0		16	1	111	49,
	18	1	3	50,0		.5	2	89	39,0
	.0	2	3	50,0			3	25	11,
	19	1	4	66,7		17	1	111	49,
	.0	2	1	16,7		••	2	89	39,0
		3	1	16,7			3	25	11,
	20	1	4	66,7		18	1	108	48,0
		2	2	33,3			2	92	40,
vollständige	1	 1	109	48,4			3	25	11,
Daten nach		2	91	40,4		19	1	109	48,4
Imputation		3	25	11,1			2	90	40,0
	2	1	109	48,4			3	26	11,
		2	91	40,4		20	1	109	48,
		3	25	11,1			2	91	40,
	3	1	110	48,9			3	25	11,
		2	89	39,6					
		3	26	11,6					

Tabelle 17: Ausgabe der multinominal logstischen Regression ohne imputierte Daten

								l für OR
Ätiologie		chätzer	β	SD	р	OR	Untergrenze	Obergrenze
CVI	Konstanter		8,096	6,872	,239			
	Geschlecht		-,283	2,411	,907	0,75	,007	84,940
		weiblich	0.					
	Alter	< 60	1,634	3,048	,592	5,13	,013	2015,736
		60-69	-,639	2,663	,810	0,53	,003	97,559
		70-79	3,334	2,978	,263	28,04	,082	9605,461
		>80	0∘					
	BMI	Untergewicht	,999	5,190	,847	2,72	,000	71020,581
		Normalgewicht	-2,592	2,566	,313	0,07	,000	11,451
		Übergewicht	1,503	2,506	,549	4,50	,033	610,721
		Adipositas	0∘					
	Dynamik	akut	-5,408	3,660	,140	0,00	,000	5,846
		subakut	-5,296	3,334	,112	0,01	,000	3,451
		chronisch	-4,384	3,244	,177	0,01	,000	7,202
		chronisch rez.	0₀					
	Schmerzen	keine/gering	,110	2,703	,968	1,12	,006	223,013
		zeitw./mäßig	4,157	2,725	,127	63,87	,306	13317,016
		dauerhaft/stark	0₀					
	Wundgr.	sauber	6,175	6,071	,309	480,55		70648143,770
		fibrinbelegt	2,967	2,164	,170	19,43	,279	1350,327
		hämorrhagisch	24,358	13,594	,073	>999,99	,102	>1000000000
		nekrotisch	0⊳					
	Lok.	prätibial	1,810	6,332	,775	6,11	,000	1500135,163
		Mall. medialis	-,579	5,849	,921	0,56	,000	53324,409
		Mall. lateralis	-2,130	6,912	,758	0,12	,000	90836,029
		dorsal	-3,804	5,969	,524	0,02	,000	2681,666
		(dorso)medial	-3,876	5,303	,465	0,02	,000	676,879
		(dorso)lateral	-5,864	5,669	,301	0,00	,000	190,037
		regübersp.	0₀					
	Anzahl	1	-1,909	6,248	,760	0,15	,000	30831,032
		2 bis 5	-3,350	6,767	,621	0,04	,000	20179,671
		>5	0⊳					
UC mixtum	Konstanter [*]	Term	7,173	6,981	,304			
	Geschlecht	männlich	1,337	2,465	,588	3,81	,030	476,833
		weiblich	0⊳					
	Alter	< 60	-1,451	3,245	,655	0,23	,000	135,615
		60-69	-2,970	2,741	,279	0,05	,000	11,055
		70-79	1,580	3,004	,599	4,85	,013	1750,072
		>80	0⊳					
	BMI	Untergewicht	2,429	5,178	,639	11,35	,000	289938,757
		Normalgewicht	-3,629	2,659	,172	0,03	,000	4,873
		Übergewicht	1,458	2,553	,568	4,30	,029	640,843
		Adipositas	0₀					
	Dynamik	akut	-5,491	3,872	,156	0,00	,000	8,149
	-	subakut	-6,678	3,555	,060	0,00	,000	1,336
		chronisch	-3,764	3,279	,251	0,02	,000	14,332
		chronisch rez.	0₀	•	•	•	•	
	Schmerzen	keine/gering	-2,520	3,012	,403	0,08	,000	29,483
	_	zeitw./mäßig	4,214	2,751	,126	67,60	,308	14845,107
		dauerhaft/stark	, 0⊳	-		, -	,	,

Ätiologic	0.	ahät-ar	0	CD	-	OD .		I für OR
Ätiologie		chätzer	β	SD	<u>р</u>	OR	Untergrenze	Obergrenze
UC mixtum	Wundgr.	sauber	4,672	6,254	,455	106,91		22492320,54
		fibrinbelegt	2,389	2,370	,314	10,90	,105	1134,88
		hämorrhagisch	4,685	0,000		108,34	108,340	108,340
	 	nekrotisch	0 _b			0.40		1700107.55
	Lok.	prätibial	1,814	6,395	,777	6,13	,000	1703497,55
		Mall. medialis	-1,372	5,895	,816	0,25	,000	26417,518
		Mall. lateralis	-1,467	6,943	,833	0,23	,000	187245,839
		dorsal	-2,706	6,050	,655	0,07	,000	9434,692
		(dorso)medial	-6,025	5,455	,269	0,00	,000	106,224
		(dorso)lateral	-5,780	5,703	,311	0,00	,000	220,600
		regübersp.	0 _b					
	Anzahl	1	-,470	6,382	,941	0,63	,000	169156,50
		2 bis 5	-1,007	6,877	,884	0,37	,000	260781,90
		>5	0₀					
pAVK	Konstanter		1,621	7,888	,837			
	Geschlecht		,601	2,703	,824	1,82	,009	364,55
		weiblich	0₅					
	Alter	< 60	2,531	3,726	,497	12,57	,008	18660,92
		60-69	2,557	3,315	,440	12,90	,019	8561,560
		70-79	4,290	3,513	,222	72,94	,075	71377,540
		>80	0⊳					
	BMI	Untergewicht	5,434	5,788	,348	228,99	,003	19353205,684
		Normalgewicht	1,549	2,985	,604	4,71	,014	1634,858
		Übergewicht	2,602	3,144	,408	13,49	,028	6400,950
		Adipositas	0⊳					
	Dynamik	akut	-2,698	5,187	,603	0,07	,000	1751,736
		subakut	,076	4,772	,987	1,08	,000	12448,497
		chronisch	-,094	4,740	,984	0,91	,000	9852,63
		chronisch rez.	0⊳					
	Schmerzen	keine/gering	-1,618	3,364	,630	0,20	,000	144,616
		zeitw./mäßig	4,576	2,966	,123	97,15	,290	32549,690
		dauerhaft/stark	0 _p					
	Wundgr.	sauber	-,075	9,704	,994	0,93	,000	168726771,980
		fibrinbelegt	1,882	2,487	,449	6,57	,050	859,439
		hämorrhagisch	-3,450	,c		_c	_c	
		nekrotisch	0₀					
	Lok.	prätibial	,211	6,451	,974	1,23	,000	382126,887
		Mall. medialis	-6,966	6,626	,293	0,00	,000	411,886
		Mall. lateralis	-7,397	7,303	,311	0,00	,000	1008,976
		dorsal	-9,669	35,314	,784	0,00	,000	>1000000000
		(dorso)medial	-6,768	5,830	,246	0,00	,000	105,376
		(dorso)lateral	-6,958	5,854	,235	0,00	,000	91,442
		regübersp.	, O _P	,	,	,	,	•
	Anzahl	1	-3,452	6,586	,600	0,03	,000	12785,689
	-	2 bis 5	-1,614	6,945	,816	0,20	,000	162420,61
		>5	0∘	0,0.0	,0.0	0,20	,,,,,	
LV	Konstanter		3,942	7,988	,622			
_•	Geschlecht		-,611	2,555	,811	0,54	,004	81,213
	Scotilicont	weiblich	-,011 0⁵	2,000	,011	0,04	,004	01,210
	Alter	< 60	7,209	5,240	160	1351,96	047	39035795,554
	/ utol	60-69	2,919	4,620	,109	18,53	,047	158578,02
		70-79						12358526,532
		10-18	6,673	4,927	,176	790,49	,031	12000020,002

Tabelle 17 (Fortsetzung)

								für OR
Ätiologie	S	chätzer	β	SD	р	OR	Untergrenze	Obergrenze
LV	BMI	Untergewicht	4,180	5,841	,474	65,37	,001	6121904,261
		Normalgewicht	-2,221	2,820	,431	0,11	,000	27,297
		Übergewicht	2,132	2,910	,464	8,44	,028	2531,773
		Adipositas	Оь					
	Dynamik	akut	-6,681	3,993	,094	0,00	,000	3,142
		subakut	-2,753	3,317	,406	0,06	,000	42,396
		chronisch	-3,829	3,402	,260	0,02	,000	17,076
		chronisch rez.	Оь					
	Schmerzen	keine/gering	-10,821	24,433	,658	0,00	,000	,c
		zeitw./mäßig	1,283	3,057	,675	3,61	,009	1443,433
		dauerhaft/stark	O ^b					
	Wundgr.	sauber	4,722	6,506	,468	112,34	,000	38781236,449
		fibrinbelegt	,521	2,412	,829	1,68	,015	190,459
		hämorrhagisch	-4,950	_c		_c	c	_c
		nekrotisch	O b					
	Lok.	prätibial	2,768	6,704	,680	15,92	,000	8105578,497
		Mall. medialis	-4,731	7,167	,509	0,01	,000	11104,441
		Mall. lateralis	-1,228	7,264	,866	0,29	,000	446735,366
		dorsal	1,172	6,116	,848	3,23	,000	518499,501
		(dorso)medial	-3,172	5,682	,577	0,04	,000	2879,906
		(dorso)lateral	-2,521	6,014	,675	0,08	,000	10580,107
		regübersp.	_,s 0∘	3,5	,0.0	0,00	,,,,,	
	Anzahl	1	-1,578	6,525	,809	0,21	,000	73881,974
	, 1120111	2 bis 5	-3,861	6,969	,580	0,02	,000	18007,070
		>5	0,001 0 _°	0,000	,000	0,02	,000	10001,010
Neoplasie	Konstanter		1,720	11,872	,885			
	Geschlecht		-,814	3,349	,808,	0,44	,001	313,730
		weiblich	,≎∵.	0,0.0	,000	σ,	,	0.0,.00
	Alter	< 60	-,351	4,963	,944	0,70	,000	11812,520
	7 4101	60-69	-2,185	3,797	,565	0,11	,000	191,963
		70-79	3,528	3,656	,335	34,04	,026	44036,602
		>80	0,020 0 _°	3,030	,000	54,04	,020	44000,002
	BMI	Untergewicht	,467	7,962	,953	1,59	,000	9541393,843
	DIVII	Normalgewicht	,392	4,090	,933	1,48	,000	4486,499
		-			,313	32,34	,000,	27742,571
		Übergewicht Adipositas	3,476 0⊳	3,446	,313	32,34	,036	27742,371
	Dynamik	<u> </u>	-6,876	5,417	,204	0,00	,000	42,162
	Dynamik	akut						
		subakut	-8,580	9,111	,346	0,00	,000	10686,723
		chronisch	-3,664	3,984	,358	0,03	,000	63,079
	Cabara	chronisch rez.	0 ^b	4.500	4.40	20.50	004	200000 070
	Schmerzen	keine/gering	3,419	4,508	,448	30,53	,004	209869,272
		zeitw./mäßig	4,673	3,313	,158	107,05	,162	70727,002
		dauerhaft/stark	0 _b					000000000000000000000000000000000000000
	Wundgr.	sauber	4,051	6,819	,552	57,45		36629092,197
		fibrinbelegt	,721	3,032	,812	2,06	,005	783,342
		hämorrhagisch	27,707	11,233	,014	>999,99	296,053	· c
		nekrotisch	O ^p					

Tabelle 17 (Fortsetzung)

Ä4:مام:'-	_	ahät= a=	0	CD		OB.		I für OR
Ätiologie		chätzer	β	SD	<u>p</u>	OR	Untergrenze	Obergrenze
Neoplasie	Lok.	prätibial	5,608	10,405	,590	272,67	,000	
		Mall. medialis	1,125	10,257	,913	3,08	,000,	
		Mall. lateralis	-1,405	11,704	,904	0,25	,000	.'
		dorsal	1,786	10,317	,863	5,97	,000	-
		(dorso)medial	-,827	9,852	,933	0,44	,000	
		(dorso)lateral	-5,048	10,731	,638	0,01	,000	8742697,422
		regübersp.	Оь					
	Anzahl	1	-1,667	10,371	,872	0,19	,000	
		2 bis 5	-2,480	10,624	,815	0,08	,000	92501509,019
		>5	Оь					
Vasculitis	Konstanter	Term	4,995	7,309	,494			
allergica	Geschlecht	männlich	,623	2,577	,809	1,87	,012	291,301
		weiblich	0₀					
	Alter	< 60	2,555	3,640	,483	12,87	,010	16123,126
	, 110.	60-69	1,608	3,161	,611	4,99	,010	2450,038
		70-79	5,235	3,476	,132	187,77	,206	170891,391
		>80	0,200 0⁵	J, T 10	, 132	107,77	,200	170091,091
	BMI	Untergewicht		5,816	211	363,04	004	32394625,429
	DIVII	-	5,895		,311			
		Normalgewicht	,407	2,758	,883	1,50	,007	334,604
		Übergewicht	3,568	2,857	,212	35,45	,131	9576,622
		Adipositas	O _P					
	Dynamik	akut	-2,025	4,107	,622	0,13	,000	413,506
		subakut	-2,144	3,757	,568	0,12	,000	184,941
		chronisch	-3,939	3,706	,288	0,02	,000	27,763
		chronisch rez.	Оь					
	Schmerzen	keine/gering	-,674	3,164	,831	0,51	,001	251,479
		zeitw./mäßig	2,796	2,975	,347	16,38	,048	5577,569
		dauerhaft/stark	0ь					
	Wundgr.	sauber	1,633	6,706	,808,	5,12	,000	2611843,969
		fibrinbelegt	2,008	2,300	,383	7,45	,082	675,647
		hämorrhagisch	11,599			>999,99	,000	
		nekrotisch	0 _b	10 1,010	,011	000,00	,000	•
	Lok.	prätibial	,103	6,348	,987	1,11	,000	280757,262
	LUK.	Mall. medialis		7,063			,000,	
			-8,035		,255	0,00		333,173
		Mall. lateralis	-6,376	7,352	,386	0,00	,000	3080,330
		dorsal	-5,664	6,188	,360	0,00	,000	641,591
		(dorso)medial	-5,811	5,536	,294	0,00	,000	154,329
		(dorso)lateral	-9,998	7,500	,182	0,00	,000	110,088
		regübersp.	0₀					
	Anzahl	1	-,867	6,393	,892	0,42	,000	116189,065
		2 bis 5	-3,623	6,871	,598	0,03	,000	18827,914
		>5	0ь					
infektiöse	Konstanter	Term	-9,004	19,040	,636			
Genese	Geschlecht	männlich	-6,995	4,834	,148	0,00	,000	11,941
		weiblich	, O _P	,	•	,	,	•
	Alter	< 60	5,604	4,946	,257	271,59	,017	4404145,632
		60-69	6,889	6,473	,287	981,44	,003	
		70-79	7,521	4,915		>999,99		28159873,178
				4,910	, 120	~ 555,55	, 121	20108013,170
	DA#	>80	0 _b	20.700	010	44.54	202	
	BMI	Untergewicht	3,796	36,799	,918	44,54	,000,	
		Normalgewicht	-,543	2,889	,851	0,58	,002	167,057
		Übergewicht	,017	4,864	,997	1,02	,000	14038,011
		Adipositas	0⊳					

Tabelle 17 (Fortsetzung)

Ätiologia	0.	shätzor	0	en.	n	OD.		für OR
Ätiologie		chätzer	β	SD 5 200	<i>p</i>	OR 0.01	Untergrenze	Obergrenze
infektiöse Genese	Dynamik	akut	-4,533	5,299 5,706	,392	0,01 12,61	,000, ,000	348,58
Concoc		subakut chronisch	2,534 ,060	5,706 4,588	,657 ,990	1,06	,000,	906538,81
			,000 0 _°	4,300	,990	1,00	,000	8540,52
	Cohmorzon	chronisch rez.	-,194	5,140	,970	0,82	,000	19567,56
	Schinerzen	keine/gering						
		zeitw./mäßig dauerhaft/stark	3,261 0∘	3,928	,406	26,08	,012	57479,36
	Wundgr.	sauber	4,080	19,394	,833	59,15	,000	
	· · · anagn	fibrinbelegt	13,603	17,038		>999,99	,000	
		hämorrhagisch	9,455	٠٠,٥٥٥	,0	с	,°	
		nekrotisch	0, .oo	•		•	·	•
	Lok.	prätibial	-,169	8,249	,984	0,84	,000	8877575,68
	2010.	Mall. medialis	-2,482	8,440	,769	0,08	,000	1276631,55
		Mall. lateralis	-1,928	9,305	,836	0,15	,000	12119937,44
		dorsal	1,246	8,859	,888,	3,48	,000	120702933,44
		(dorso)medial	3,025	7,207	,675	20,60	,000	28107889,98
		(dorso)lateral	-8,922	11,110	,422	0,00	,000	381828,79
		regübersp.	-0,322 0 _b	11,110	, 722	0,00	,000	301020,73
	Anzahl	1	-6,637	8,238	,420	0,00	,000	13482,42
	7 1120111	2 bis 5	-9,969	8,190	,224	0,00	,000	438,62
		>5	0,000	0,100	, '	0,00	,000	100,02
PG	Konstanter ⁻		-13,409	19,218	,485			
. •	Geschlecht		,128	5,632	,982	1,14	,000	70703,93
	Cocomocne	weiblich	, .25	0,002	,002	.,	,000	7 07 00,00
	Alter	< 60	-4,807	7,079	,497	0,01	,000	8669,22
		60-69	-2,039	6,690	,761	0,13	,000	64460,48
		70-79	-,524	5,327	,922	0,59	,000	20262,53
		>80	, O _P	,	,	,	,	•
	BMI	Untergewicht	7,080	7,079	,317	1188,20	,001	
		Normalgewicht	1,145	5,061	,821	3,14	,000	63853,13
		Übergewicht	1,403	4,792	,770	4,07	,000	48745,30
		Adipositas	, O _P	,	,	,	,	•
	Dynamik	akut	-,936	5,245	,858,	0,39	,000	11417,23
	•	subakut	-7,124	19,864	,720	0,00	,000	
		chronisch	-4,130	5,615	,462	0,02	,000	968,05
		chronisch rez.	0₀					
	Schmerzen	keine/gering	-3,583	11,995	,765	0,03	,000	451209272,12
		zeitw./mäßig	,330	3,816	,931	1,39	,001	2463,29
		dauerhaft/stark	, O _P	,	,	,	,	•
	Wundgr.	sauber	9,257	16,544	,576	>999,99	,000	
	J	fibrinbelegt	10,445	8,147	•	>999,99	,004	
		hämorrhagisch	38,868	c	,	, c	c	
		nekrotisch	0 ⁵					
	Lok.	prätibial	7,404	12,236	,545	1643,11	,000	
		Mall. medialis	2,603	12,610	,836	13,50	,000	
		Mall. lateralis	3,174	14,199	,823	23,91	,000	
		dorsal	-4,135	21,550	,848	0,02	,000	
		(dorso)medial	4,824	12,206	,693	124,44	,000	
		(dorso)lateral	3,420	12,596	,786	30,57	,000	•
		(aoi oo jiata ai	J,720	,000	,,,,,,,,	50,07	,000	

Tabelle 17 (Fortsetzung)

	,	3)					95% CI	für OR
Ätiologie	Sc	chätzer	β	SD	р	OR	Untergrenze	Obergrenze
PG	Anzahl	1	4,826	12,829	,707	124,67	,000	,c
		2 bis 5	,088	12,956	,995	1,09	,000	_c
		>5	0 _p					
Traumatisch	Konstanter	Term	,486	7,696	,950			
	Geschlecht	männlich	1,860	2,782	,504	6,42	,028	1498,30
		weiblich	O b					
	Alter	< 60	-1,020	7,654	,894	0,36	,000	1180548,20
		60-69	1,756	3,071	,567	5,79	,014	2382,57
		70-79	5,128	3,662	,161	168,72	,129	220963,48
		>80	O ^b					
	BMI	Untergewicht	,328	15,954	,984	1,39	,000	.c
		Normalgewicht	-,916	3,020	,762	0,40	,001	148,87
		Übergewicht	3,650	2,897	,208	38,49	,132	11262,99
		Adipositas	0 _p					
	Dynamik	akut	-4,015	4,446	,367	0,02	,000	109,84
		subakut	,452	3,835	,906	1,57	,001	2889,53
		chronisch	-2,544	3,679	,489	0,08	,000	106,37
		chronisch rez.	O b					
	Schmerzen	keine/gering	-11,947	26,393	,651	0,00	,000	,c
		zeitw./mäßig	1,248	3,172	,694	3,48	,007	1746,83
		dauerhaft/stark	O b					
	Wundgr.	sauber	9,245	6,638	,164	>999,99	,023	c
		fibrinbelegt	3,038	2,814	,280	20,86	,084	5181,80
		hämorrhagisch	4,055	_c		_c	_c	,c
		nekrotisch	O b					
	Lok.	prätibial	3,103	6,865	,651	22,26	,000	15530764,94
		Mall. medialis	-2,929	6,894	,671	0,05	,000	39460,58
		Mall. lateralis	-,045	7,588	,995	0,96	,000	2748691,80
		dorsal	,087	6,608	,989	1,09	,000	460133,69
		(dorso)medial	-3,522	5,878	,549	0,03	,000	2977,50
		(dorso)lateral	-2,577	6,151	,675	0,08	,000	13091,43
		regübersp.	Оь					
	Anzahl	1	-1,649	6,712	,806	0,19	,000	99291,09
		2 bis 5	-4,291	7,220	,552	0,01	,000	19155,38
		>5	0 _p					

a. Die Referenzkategorie für die Originaldaten lautet: Calciphylaxie.

b. Dieser Parameter wird auf Null gesetzt, weil er redundant ist.

c. Beim Berechnen dieser Statistik ist ein Gleitkommaüberlauf aufgetreten. Der Wert wird auf den systemdefinierten fehlenden Wert gesetzt.

SD: Standardabweichung; OR: Odds-Ratio; CI: Konfidenzintervall; LV: Livedo-Vaskulopathie; PG: Pyoderma gangraenosum

Tabelle 18: Ausgabe der multinominal logistischen Regression mit imputierten Daten (zusammengefasst)

								für OR
Ätiologie		chätzer	β	SD	р	OR	Untergrenze	Obergrenze
CVI	Konstanter '		26,732	1335,771	,984			
	Geschlecht		-,378	86,243	,997	0,69	,000	•
	Altor	weiblich < 60	0.247	138,924	000	0.70	000	
	Alter	60-69	-0,247 -2,279	•	,999 ,979	0,78 0,10		•
		70-79	-2,279	86,478 86,475				٠
		>80	-0,516 0 _b	00,473	,995	0,60	,000	•
	BMI	Untergewicht	3,228	1050,257	,998	25,24	.c	.0
		Normalgewicht	-6,833	85,414	,936	_, _c		٠
		Übergewicht	-1,515	66,916	,982	0,22		٠
		Adipositas	0 ⁵	,	,	-,	,	
	Dynamik	akut	-14,018	348,524	,968	<0,001	,000	
	_ ,	subakut	-13,321	332,830	,968		,000	٠
		chronisch	-9,791	332,797	,977	<0,001	,000	٠
		chronisch rez.	0,1 0 1 0b	002,. 0.	,	0,00.	,,,,,	•
	Schmerzen	keine/gering	-,937	43,819	,983	0,39	,000	
	0011111012011	zeitw./mäßig	7,989	111,470		>999,99		
		dauerhaft/stark	0 _b	111,170	,010	000,00	,000	•
	Wundgr.	sauber	15,582	886,826	,986	>999,99	.c	•
	•	fibrinbelegt	5,487	43,430	,899	241,49	,000	
		hämorrhagisch	13,402	3985,240	,997	>999,99		
		nekrotisch	Оь					
	Lok.	prätibial	1,773	1228,682	,999	5,89	_c	
		Mall. medialis	-3,114	1191,467	,998	0,04		_0
		Mall. lateralis	-2,127	1219,356	,999	0,12		٠
		dorsal		1114,233	,993	, c		
		(dorso)medial		1112,753	,992	_c	_c	
		(dorso)lateral		1115,268	,989	_c	_c	٠
		regübersp.	Оь					
	Anzahl	1	-1,906	1178,875	,999	0,15	,c	
		2 bis 5	-6,513	1179,524	,996	_c	_c	.0
		>5	Оь					
JC mixtum	Konstanter :	Term	26,192	1335,771	,984			
	Geschlecht	männlich	1,075	86,243	,990	2,93	,000	.0
		weiblich	Оь					
	Alter	< 60	-3,170	138,926	,982	0,04	,000	.0
		60-69	-3,713	86,479	,966	0,02	,000	
		70-79	-1,394	86,475	,987	0,25		•
		>80	O _p					
	BMI	Untergewicht	4,741	1050,257	,996	114,51	_c	•
		Normalgewicht	-8,014	85,415	,925	_c		•
		Übergewicht	-1,292	66,913	,985	0,27	,000	_0
		Adipositas	0 _b	•	·	·	,	
	Dynamik	akut	-13,736	348,523	,969	_c	_c	_0
	,	subakut	-13,223	332,828	,968	_c		٠
		chronisch	-8,993	332,797	,978	.c		•
		chronisch rez.	0°	,, •.	,	•	·	•
	Schmerzen	keine/gering	-2,324	43,822	,958	0,10	,000	.0
		zeitw./mäßig	8,229	111,465		>999,99		
		dauerhaft/stark	, O _P	•		•		

Ä#=1= · · ·	^	- lo #4 o	•	CD.		0.5		l für OR
Ätiologie		chätzer	β	SD	р	OR		Obergrenze
UC mixtum	Wundgr.	sauber	13,592	886,826		>999,99	,000	
		fibrinbelegt	5,004	43,417	,908	148,99		
		hämorrhagisch		5545,309	1	4,81	· c	•
		nekrotisch	O _b					
	Lok.	prätibial		1228,682	,999	9,28		•
		Mall. medialis		1191,468	,998	0,03		•
		Mall. lateralis		1219,356	,999	0,27	.c	•
		dorsal		1114,234	,994	·°	·°	•
		(dorso)medial		1112,754	,991	.c	.c	•
		(dorso)lateral		1115,267	,990	·°	·°	•
		regübersp.	Оь					
	Anzahl	1		1178,875	,998	0,09	·°	•
		2 bis 5		1179,524	,996	.c	.c	•
		>5	O b					
pAVK	Konstanter		24,928		,985			
	Geschlecht		1,970	86,249	,982	7,17	,000	•
		weiblich	O b					
	Alter	< 60	-2,970	138,930	,983	0,05		•
		60-69	-2,197	86,481	,980	0,11	,000	•
		70-79	-1,959	86,477	,982	0,14	,000	•
		>80	0ь					
	BMI	Untergewicht	•	1056,256	,992	.c		
		Normalgewicht	-4,192	85,394	,961	0,02		•
		Übergewicht	-1,090	66,919	,987	0,34	,000	
		Adipositas	Оь					
	Dynamik	akut	-12,311	348,522	,972	<0,01	,000	
		subakut	-11,310	332,824	,973	<0,01	,000	•
		chronisch	-8,395	332,795	,980	<0,01	,000	•
		chronisch rez.	Оь					
	Schmerzen	keine/gering	-0,642	43,830	,988	0,53	,000	•
		zeitw./mäßig	7,493	111,446	,946	>999,99	,000	•
		dauerhaft/stark	Оь					
	Wundgr.	sauber	3,477	1259,505	,998	32,37	_c	•
		fibrinbelegt	4,002	43,459	,927	54,70	,000	•
		hämorrhagisch	-0,522	5203,662	1	0,59	,c	•
		nekrotisch	Оь					
	Lok.	prätibial	1,026	1228,682	,999	2,79	_c	•
		Mall. medialis	-16,519	1222,748	,989	.c	.c	
		Mall. lateralis	-6,089	1219,356	,996	_c	_c	•
		dorsal	-10,549	1114,233	,992	_c	_c	•
		(dorso)medial	-14,575	1112,756	,990	.c	.c	•
		(dorso)lateral	-16,112	1115,268	,988	.c	,c	
		regübersp.	O _p					
	Anzahl	1	-2,804	1178,875	,998	0,06	.c	.0
		2 bis 5	-4,219	1179,526	,997	0,01	.c	•
		>5	O _p	•	,	,		
LV	Konstanter		18,666	1401,705	,989			
	Geschlecht		-1,709	86,246	,984	0,18	,000	
		weiblich	0 ^b	, -	,	-, -	, - 2 -	
	Alter	< 60	10,334	447,203	,982	>999,99	_c	• 0
		60-69	6,511	433,778	,988	672,57	_c	•
			- ,		,	-,	•	•
		70-79	7,346	433,778	.986	>999,99	_c	

Tabelle 18 (Fortsetzung)

BMI Dynamik	Untergewicht Normalgewicht Ubergewicht Adipositas akut subakut chronisch chronisch rez. keine/gering zeitw./mäßig dauerhaft/stark	β 9,372 -6,800 -3,262 0° -13,861 -10,510 -9,053 0° -13,089 5,248	SD 1056,252 85,409 66,924 348,516 332,812 332,797 592,230	,993 ,937 ,961 ,968 ,975 ,978	OR >999,99 .° 0,04	Untergrenze .º .0 .000	Obergrenze
Dynamik Schmerzen	Normalgewicht Übergewicht Adipositas akut subakut chronisch chronisch rez. keine/gering zeitw./mäßig dauerhaft/stark	-6,800 -3,262 0° -13,861 -10,510 -9,053 0° -13,089 5,248	85,409 66,924 348,516 332,812 332,797 592,230	,937 ,961 ,968 ,975	.° 0,04	°, 000, °.	
Schmerzen	Übergewicht Adipositas akut subakut chronisch chronisch rez. keine/gering zeitw./mäßig dauerhaft/stark	-3,262 0° -13,861 -10,510 -9,053 0° -13,089 5,248	66,924 348,516 332,812 332,797 592,230	,961 ,968 ,975	0,04 .°	,000, °.	
Schmerzen	Adipositas akut subakut chronisch chronisch rez. keine/gering zeitw./mäßig dauerhaft/stark	0b -13,861 -10,510 -9,053 0b -13,089 5,248	348,516 332,812 332,797 592,230	,968 ,975	.c	.c	
Schmerzen	akut subakut chronisch chronisch rez. keine/gering zeitw./mäßig dauerhaft/stark	-13,861 -10,510 -9,053 0 ^b -13,089 5,248	332,812 332,797 592,230	,975	.c	_c	
Schmerzen	subakut chronisch chronisch rez. keine/gering zeitw./mäßig dauerhaft/stark	-10,510 -9,053 0 ^b -13,089 5,248	332,812 332,797 592,230	,975	.c	_c	
	chronisch chronisch rez. keine/gering zeitw./mäßig dauerhaft/stark	-9,053 0 ^b -13,089 5,248	332,797 592,230				•
	chronisch rez. keine/gering zeitw./mäßig dauerhaft/stark	0 ⁵ -13,089 5,248	592,230	,978	.c	.c	
	keine/gering zeitw./mäßig dauerhaft/stark	-13,089 5,248					
	zeitw./mäßig dauerhaft/stark	5,248					
Wundgr.	dauerhaft/stark			,982	٠ ، -	.c	•
Wundgr.			111,475	,962	190,18	,000	•
Wundgr.	cauhor	O _p					
	sauber	12,416	886,831	,989	.c	.c	.0
	fibrinbelegt	2,306	43,491	,958	10,04	,000	•
	hämorrhagisch		5137,850	1	0,06	·c	•
Lok.	prätibial				14,55	•c	•
	Mall. medialis	-14,560	1237,633	,991	.c	·c	•
	Mall. lateralis	-0,698	1219,358	1,000		.c	
	dorsal	-5,204	1114,235	,996	0,01	.c	•
	(dorso)medial	-9,714	1112,755	,993	.c	·c	•
	(dorso)lateral	-11,094	1115,271	,992	.c	.c	•
	regübersp.	Оь					
Anzahl	1	-3,164	1178,876	,998	0,04	.c	•
	2 bis 5	-7,363	1179,526	,995	.c	_c	•
	>5	Оь					
Konstanter Term		-24,476	1538,901	,987			
Geschlecht	männlich	11,867	180,708	,948	>999,99	,000	•
	weiblich	Оь					
Alter	< 60	-6,111	457,862	,989	.c	.c	•
	60-69	-41,546	522,152	,937	.c	.c	•
	70-79	-6,494	484,913	,989	.c	,c	
	>80	Оь					
BMI	Untergewicht	23,636	2877,691	,993	>999,99	,c	
	Normalgewicht	20,730	219,198	,925	>999,99	,000	
	Übergewicht	20,188	313,906	,949	>999,99	,000	
	Adipositas	O _p					
Dynamik	akut	-46,653	923,102	,960	.c	,c	٠
	subakut	-47,306	875,002	,957	.c	.c	.0
	chronisch	-6,931	695,088	,992	.c	,c	
	chronisch rez.	Оь					
Schmerzen		10,688	157,684	,946	>999,99	,000	٠
		6,374	196,046	,974	586,32		
		0 ♭	,	•	•	,	
Wundar.			901.771	,973	_c	_c	_ (
						.c	•
	_		•				•
	-			, , , , , ,	-	·	•
F	Constanter Geschlecht Alter BMI	nekrotisch Lok. prätibial Mall. medialis Mall. lateralis dorsal (dorso)medial (dorso)lateral regübersp. Anzahl 1 2 bis 5 >5 Konstanter Term Geschlecht männlich weiblich Alter < 60 60-69 70-79 >80 BMI Untergewicht Normalgewicht Übergewicht Adipositas Dynamik akut subakut chronisch chronisch rez. Schmerzen keine/gering zeitw./mäßig dauerhaft/stark	nekrotisch 0° Lok. prätibial 2,678 Mall. medialis -14,560 Mall. lateralis -0,698 dorsal -5,204 (dorso)medial -9,714 (dorso)lateral -11,094 regübersp. 0° Anzahl 1 -3,164 2 bis 5 -7,363 >5 Seschlecht männlich 11,867 weiblich 0° -6,111 60-69 -41,546 70-79 -6,494 >80 0° BMI Untergewicht 20,730 Übergewicht 20,188 Adipositas 0° Oynamik akut -46,653 subakut -47,306 -6,931 chronisch -6,931 -6,931 chronisch rez. 0° Schmerzen keine/gering 10,688 zeitw./mäßig 6,374 dauerhaft/stark 0° Wundgr. sauber -16,051	nekrotisch Deck. prätibial All. medialis Mall. medialis -0,698 1219,358 dorsal dorsol (dorso)medial -9,714 1112,755 (dorso)lateral regübersp. Anzahl 1 -3,164 2 bis 5 -7,363 2 bis 5 -7,363 2 bis 5 -7,363 1179,526 >5 Constanter Term Deschlecht Mainnlich Weiblich Melter -60 -6,111 -3,164 -457,862 60-69 -41,546 -522,152 70-79 -6,494 -484,913 -80 BMI Untergewicht Normalgewicht Obergewicht Adipositas Obynamik Akut -46,653 -47,306 -47,30	nekrotisch 0° Lok. prätibial 2,678 1228,683 ,998 Mall. medialis -14,560 1237,633 ,991 Mall. lateralis -0,698 1219,358 1,000 dorsal -5,204 1114,235 ,996 (dorso)medial -9,714 1112,755 ,993 (dorso)lateral -11,094 1115,271 ,992 regübersp. 0° - Anzahl 1 -3,164 1178,876 ,998 2 bis 5 -7,363 1179,526 ,995 >5 0° - - Konstanter Term -24,476 1538,901 ,987 Geschlecht männlich 11,867 180,708 ,948 Geschlecht männlich 11,867 180,708 ,948 Alter < 60	nekrotisch	nekrotisch

Ätiologis	,	obätzor	c	CD.		OB		I für OR
Ätiologie		Schätzer	β	SD 4454 C44	<u>р</u>	OR		Obergrenze
Neoplasie	Lok.	prätibial		4451,614	,995	°. ۵۰۰۰		
		Mall. medialis		4461,209	1,000	0,96		
		Mall. lateralis		4475,769	,996	.c	·c	
		dorsal		4441,603	,996	.c	·c	
		(dorso)medial		4418,395	,997	· c	.c	
		(dorso)lateral		4421,138	,997	.c	·c	
		regübersp.	<u>0</u> b	4440.045		100.01		
	Anzahl	1	•	4418,615	,999	126,94		
		2 bis 5		4423,255	,996	·c	·c	-
	14 ()	>5	<u>0</u> b	1010 105				
Vasculitis	Konstanter		14,255	-	,992			
llergica C	Geschlech	t männlich	-,415	86,259	,996	0,66	,000	
		weiblich	O _P					
	Alter	< 60	-0,598	138,949	,997	0,55		
		60-69	1,224		,989	3,40		
		70-79 >80	0,665 0⊳	86,521	,994	1,94	,000	
	BMI	Untergewicht		2574,113	,999	6,31	_c	
		Normalgewicht	-4,836	85,375	,955	0,01	,000	
		Übergewicht	-2,046	66,946	,976	0,13		
		Adipositas	_,0 .0 0b	00,0.0	,0.0	٥, . ٥	,000	
	Dynamik	akut	2,977	387,609	,994	19,64	c	
	Dynam.	subakut	1,002	373,607	,998	2,72		
		chronisch	1,690	373,586	,996	5,42		
		chronisch rez.	0°	070,000	,000	0, 12	•	•
	Schmerze	n keine/gering	-,894	43,880	,984	0,41	,000	
	OCHITICIZO	zeitw./mäßig	4,907	111,396	,965	135,25		
		dauerhaft/stark	1,007 O⊳	111,000	,000	100,20	,000	•
	Wundgr.	sauber		1010,991	,998	10,88	·c	
	vvariagi.	fibrinbelegt	2,515	43,446	,954	12,37		
		hämorrhagisch		3985,245	,997	.°	,000 .º	
		nekrotisch	10,510 0°	0000,240	,557	•	•	•
	Lok.	prätibial		1228,682	,999	0,31	,c	
	LOIL.	Mall. medialis		1218,795	,991	۰.		
		Mall. lateralis		1282,890	,990	· · · · · · · · · · · · · · · · · · ·	_	
		dorsal		1114,247	,991	.c	.c	
		(dorso)medial		1112,750	,991	.c	.°	
		(dorso)lateral		1197,094	,985	.c	.°	
		regübersp.	-22,249 0°	1137,034	,900	•		•
	Anzahl	1		1178,876	,998	0,04	_c	
	Alizalli	2 bis 5		1179,525	,996			
		>5	-5,007 0°	1179,525	,990	.c	•	•
infektiöse	Konstanter			2034,587	,998			
Genese		t männlich	-2,171	86,263	,980	0,11	,000	
	OCSCINCCI	weiblich	- <u>2,171</u> 0∘	00,200	,300	0,11	,000	•
	Alter	< 60	-0,150	138,927	,999	0,86	,000	
		60-69	-1,359	86,481	,987	0,26		
		70-79	-1,605	86,485	,985	0,20		
		>80	Оь		-	, -	•	
	BMI	Untergewicht		3541,985	1,000	0,17	c	
		Normalgewicht	-6,011	85,374	,944	.c	·c	
		Übergewicht	-3,085		,963	0,05		
		3	-,	,	,	-,	,,,,,	•

X41	_	- la #4 a u	•	CD		0.0		für OR
Ätiologie		chätzer	β	SD 400,405	<u>р</u>	OR	Untergrenze	
infektiöse Genese	Dynamik	akut	-1,240	498,465	,998	0,29		
Genese		subakut	-2,367	487,648	,996			
		chronisch	,078	487,641	1,000	1,08	·c	
	Cabraarras	chronisch rez.		42.027	000	4.00	000	
	Schmerzen	keine/gering	,632	43,927	,989	1,88		
		zeitw./mäßig dauerhaft/stark	7,477 0⁵	111,506	,947	·c	.c	
	Wundgr.	sauber	24,303	1736,399	,989	.c	,c	
	•	fibrinbelegt	17,046	1493,465	,991	>999,99	,000	
		hämorrhagisch	27,932	3765,621	0,994	c	_c	
		nekrotisch	O _p					
	Lok.	prätibial		1228,683	,999	2,30	_c	
		Mall. medialis	-11,677	1257,359	,993	,c	_c	_
		Mall. lateralis		1219,357	,999			_
		dorsal	-9,491	1114,235	,993	, c	,c	_
		(dorso)medial		1112,751	,993	.c	c	
		(dorso)lateral		1115,264	,990	.c	.c	
		regübersp.	0 _b	,	,000	•		
	Anzahl	1		1178,876	,997	0,02	_c	
	7 1120111	2 bis 5		1179,526	,994	٥,٥٤	.c	
		>5	0,001 0b	1170,020	,001	•	•	•
PG	Konstanter ⁻			2548,948	,986			
	Geschlecht			1179,719	,997	0,01	_c	
	CCCOTICCTIC	weiblich	0 _°	1170,710	,007	0,01	•	•
	Alter	< 60		1947,074	,990	c	_c	
	7 4101	60-69		1294,358	,995		.c	
		70-79		1040,360	,989	.c	.c	•
		>80	1 4,730	10-10,000	,505	•	•	
	BMI	Untergewicht		2093,524	,987	c	c	
	DIVII	Normalgewicht		1110,387	,992	.c	.c	
		Übergewicht	-0,397	910,258		0,67		•
		Adipositas	-0,5 <i>91</i> 0⊳	310,230	1,000	0,07		•
	Dynamik	akut		1114,033	,995	_c	_c	
	Dynamik	subakut	•	1297,613	,997	0,01	.c	
		chronisch		1189,327	,999	0,01		
			-1,70 4 0	1109,321	,999	0,17	. •	
	Sohmorzon	chronisch rez.		1770 065	000			
	Schinerzen	keine/gering		1778,865	,988	°. O O2		
		zeitw./mäßig dauerhaft/stark	-3,703 0∘	420,987	,993	0,02	·c	
	Mundar			2512 020	002			
	Wundgr.	sauber		2512,938	,993			
		fibrinbelegt	34,263	869,136	,969		.c	
		hämorrhagisch	-	4330,437	0,987	.c	·c	
		nekrotisch	0 _b	1001 100				
	Lok.	prätibial		1304,186	,989	.c		
		Mall. medialis		1343,669	,995	.c	.c	
		Mall. lateralis		2185,591	,995		.c	-
		dorsal		1770,760	,994	.c	·c	
		(dorso)medial		1231,262	,989	.c	.c	-
		(dorso)lateral		1317,617	,991	.c	·c	
		regübersp.	0ь					

							95% C	für OR
Ätiologie	Sc	chätzer	β	SD	р	OR	Untergrenze	Obergrenze
PG	Anzahl	1	9,358	1897,906	,996	_c	.c	
		2 bis 5	-10,394	1898,162	,996	,c	.c	
		>5	Оь					
Traumatisch	Konstanter ⁻	Term	19,785	1335,759	,988			
	Geschlecht	männlich	1,709	86,251	,984	5,52	,000	
		weiblich	Оь					
	Alter	< 60	-8,898	529,505	,987	,c	.c	.•
		60-69	0,925	86,491	,991	2,52	,000	
		70-79	0,925	86,491	,991	2,52	,000	
		>80	Оь					
	BMI	Untergewicht	-1,171	3869,780	1,000	0,31	,c	.•
		Normalgewicht	-4,837	85,409	,955	0,01	,000	
		Übergewicht	-0,090	66,924	,999	0,91	,000	
		Adipositas	O _p					
	Dynamik	akut	-9,885	348,498	,977	.c	,c	
		subakut	-8,281	332,802	,980	.c	,c	٠.
		chronisch	-7,540	332,785	,982	.c	,c	
		chronisch rez.	O b					
	Schmerzen	keine/gering	-12,087	717,791	,987	.c	,c	.•
		zeitw./mäßig	6,092	111,459	,956	442,42	,000	2
		dauerhaft/stark	O _p					
	Wundgr.	sauber	16,692	886,838	,985	,c	,c	.•
		fibrinbelegt	5,413	43,483	,901	224,23	,000	2
		hämorrhagisch	0,719	1674,737	1	2,05	_c	
		nekrotisch	O b					
	Lok.	prätibial	1,940	1228,684	,999	6,96	,c	
		Mall. medialis	-11,403	1262,462	,993	_c	_c	
		Mall. lateralis	-2,380	1219,359	,998	0,09	_c	
		dorsal	-8,937	1114,236	,994	_c	.c	
		(dorso)medial	-11,418	1112,756	,992	_c	_c	
		(dorso)lateral	-12,019	1115,265	,991	_c	.c	
		regübersp.	Оь					
	Anzahl	1	-3,019	1178,876	,998	0,05	.c	
		2 bis 5	-7,077	1179,528	,995	c		
		>5	0₀					

b. Dieser Parameter wird auf Null gesetzt, weil er redundant ist.

c. Beim Berechnen dieser Statistik ist ein Gleitkommaüberlauf aufgetreten. Der Wert wird auf den

systemdefinierten fehlenden Wert gesetzt. SD: Standardabweichung; OR: Odds-Ratio; CI: Konfidenzintervall; LV: Livedo-Vaskulopathie; PG: Pyoderma gangraenosum

Tabelle 19: Wahrscheinlichkeitstabelle für "Geschlecht"

			Kategorien von "Geschlecht"			
	Schätzlevel	Fälle	männlich	weiblich		
CVI	99,00%	658	23,4%	76,6%		
UCmixtum	80,00%	241	93,4%	6,6%		
pAVK	99,00%	805	68,7%	31,3%		
LV	99,99%	37	16,2%	83,8%		
Neoplasie	100,00%	2906	61,8%	38,2%		
Vasculitis allergica	99,00%	159	52,8%	47,2%		
infektiöse Genese	99,00%	88	21,6%	78,4%		
PG	100,00%	116	31,0%	69,0%		
Traumatisch	99,00%	81	98,8%	1,2%		
Calciphylaxie	99,99%	61	39,3%	60,7%		

CVI: chronisch venöse Insuffizienz; UCmixtum: Ulcus cruris mixtum; pAVK: periphere arterielle Verschluss-krankheit; LV: Livedo-Vaskulopathie; PG:

Pyoderma gangraenosum; fett: Merkmale in Risikoprofilen

Tabelle 20: Wahrscheinlichkeitstabelle für "Alter"

				Kategorien "	Alter"	
	Schätzlevel	Fälle	<60	60-69	70-79	>80
CVI	99,00%	658	50,5%	33,6%	12,2%	3,8%
UCmixtum	80,00%	241	0,0%	2,1%	17,4%	80,5%
pAVK	99,00%	805	10,4%	30,7%	18,0%	40,9%
LV	99,99%	37	97,3%	2,7%	0,0%	0,0%
Neoplasie	100,00%	2906	32,0%	6,0%	29,9%	32,1%
Vasculitis allergica	99,00%	159	5,0%	65,4%	26,4%	3,1%
infektiöse Genese	99,00%	88	29,5%	45,5%	12,5%	12,5%
PG	100,00%	116	0,9%	63,8%	6,9%	28,4%
Traumatisch	99,00%	81	0,0%	79,0%	17,3%	3,7%
Calciphylaxie	99,99%	61	27,9%	31,1%	26,2%	14,8%

CVI: chronisch venöse Insuffizienz; UCmixtum: Ulcus cruris mixtum; pAVK: periphere arterielle Verschluss-krankheit; LV: Livedo-Vaskulopathie; PG: Pyoderma gangraenosum; fett: Merkmale in Risikoprofilen

Tabelle 21: Wahrscheinlichkeitstabelle für "BMI"

			Kategorien "BMI"							
	Schätzlevel	Fälle	Untergewicht	Normalgewicht	Übergewicht	Adipositas				
CVI	99,00%	658	5,3%	31,8%	22,5%	40,4%				
UCmixtum	80,00%	241	40,2%	0,0%	29,0%	30,7%				
pAVK	99,00%	805	98,4%	1,6%	0,0%	0,0%				
LV	99,99%	37	100,0%	0,0%	0,0%	0,0%				
Neoplasie	100,00%	2906	21,9%	33,3%	31,0%	13,8%				
Vasculitis allergica	99,00%	159	8,8%	30,8%	28,9%	31,4%				
infektiöse Genese	99,00%	88	0,0%	29,5%	14,8%	55,7%				
PG	100,00%	116	87,1%	12,1%	0,9%	0,0%				
Traumatisch	99,00%	81	0,0%	49,4%	45,7%	4,9%				
Calciphylaxie	99,99%	61	0,0%	78,7%	16,4%	4,9%				

CVI: chronisch venöse Insuffizienz; UCmixtum: Ulcus cruris mixtum; pAVK: periphere arterielle Verschluss-krankheit; LV: Livedo-Vaskulopathie; PG: Pyoderma gangraenosum; fett: Merkmale in Risikoprofilen

Tabelle 22: Wahrscheinlichkeitstabelle für "Dynamik"

			Ka	tegorien von "D	auer/Verlauf"	
	Schätzlevel	Fälle	akut	subakut	chronisch	chronrez.
CVI	99,00%	658	13,8%	23,4%	8,1%	54,7%
UCmixtum	80,00%	241	17,4%	12,0%	48,1%	22,4%
pAVK	99,00%	805	25,1%	31,9%	24,3%	18,6%
LV	99,99%	37	5,4%	73,0%	8,1%	13,5%
Neoplasie	100,00%	2906	6,2%	8,6%	42,7%	42,6%
Vasculitis allergica	99,00%	159	66,7%	30,2%	3,1%	0,0%
infektiöse Genese	99,00%	88	64,8%	30,7%	4,5%	0,0%
PG	100,00%	116	79,3%	19,0%	1,7%	0,0%
Traumatisch	99,00%	81	35,8%	59,3%	4,9%	0,0%
Calciphylaxie	99,99%	61	52,5%	42,6%	8,2%	0,0%

CVI: chronisch venöse Insuffizienz; UCmixtum: Ulcus cruris mixtum; pAVK: periphere arterielle Verschluss-krankheit; LV: Livedo-Vaskulopathie; PG: Pyoderma gangraenosum; chron.-rez.: chronisch-rezidivierend

Tabelle 23: Wahrscheinlichkeitstabelle für "Schmerzen"

			Kate	egorien von "Alte	r"
	Schätzlevel	Fälle	keine	zeitw./mäßig	dauerhaft/stark
CVI	99,00%	658	57,9%	25,4%	16,7%
UCmixtum	80,00%	241	0,4%	67,6%	32,0%
pAVK	99,00%	805	64,6%	20,6%	14,8%
LV	99,99%	37	0,0%	5,4%	94,6%
Neoplasie	100,00%	2906	47,7%	27,7%	24,6%
Vasculitis allergica	99,00%	159	44,7%	9,4%	45,9%
infektiöse Genese	99,00%	88	85,2%	9,1%	5,7%
PG	100,00%	116	0,0%	25,0%	75,0%
Traumatisch	99,00%	81	0,0%	19,8%	80,2%
Calciphylaxie	99,99%	61	78,7%	0,0%	21,3%

CVI: chronisch venöse Insuffizienz; UCmixtum: Ulcus cruris mixtum; pAVK: periphere arterielle Verschluss-krankheit; LV: Livedo-Vaskulopathie; PG: Pyoderma gangraenosum; fett: Merkmale in Risikoprofilen

Tabelle 24: Wahrscheinlichkeitstabelle für "Wundgrund"

				Kategorien von	"Wundgrund"	
	Schätzlevel	Fälle	sauber/granuliert	fibrinbelegt	hämorrhagisch	nekrotisch
CVI	99,00%	658	53,8%	14,4%	26,3%	5,5%
UCmixtum	80,00%	241	11,2%	34,9%	0,0%	53,9%
pAVK	99,00%	805	0,0%	44,0%	0,0%	56,0%
LV	99,99%	37	51,4%	5,4%	0,0%	43,2%
Neoplasie	100,00%	2906	7,0%	0,0%	92,6%	0,3%
Vasculitis allergica	99,00%	159	0,0%	0,0%	76,7%	23,3%
infektiöse Genese	99,00%	88	1,1%	14,8%	84,1%	0,0%
PG	100,00%	116	0,0%	6,0%	94,0%	0,0%
Traumatisch	99,00%	81	98,8%	1,2%	0,0%	0,0%
Calciphylaxie	99,99%	61	0,0%	0,0%	0,0%	100,0%

CVI: chronisch venöse Insuffizienz; UCmixtum: Ulcus cruris mixtum; pAVK: periphere arterielle Verschluss-krankheit; LV: Livedo-Vaskulopathie; PG: Pyoderma gangraenosum; fett: Merkmale in Risikoprofilen

Tabelle 25: Wahrscheinlichkeitstabelle für "Lokalisation"

	Kategorien von "Lokalisation"								
	Schätzlevel	Fälle	prätibial	Mall. med.	Mall. lat.	dorsal	(dorso)medial	(dorso)lateral	regübersp.
CVI	99,00%	658	2,9%	63,5%	13,1%	0,6%	9,0%	1,4%	9,6%
UCmixtum	80,00%	241	1,2%	36,1%	37,3%	22,8%	0,0%	2,5%	0,0%
pAVK	99,00%	805	24,5%	0,0%	4,3%	14,4%	7,0%	12,2%	37,6%
LV	99,99%	37	0,0%	0,0%	13,5%	37,8%	10,8%	37,8%	0,0%
Neoplasie	100,00%	2906	18,4%	8,8%	2,0%	25,9%	19,0%	18,0%	7,8%
VA	99,00%	159	6,3%	0,0%	0,0%	3,8%	3,1%	0,0%	86,8%
Infektiös	99,00%	88	0,0%	0,0%	87,5%	0,0%	1,1%	11,4%	0,0%
PG	100,00%	116	6,0%	12,9%	31,0%	0,0%	21,6%	27,6%	0,9%
Traumatisch	99,00%	81	12,3%	0,0%	6,2%	3,7%	4,9%	61,7%	11,1%
Calciphylaxie	99,99%	61	0,0%	0,0%	0,0%	0,0%	0,0%	100,0%	0,0%

CVI: chronisch venöse Insuffizienz; UCmixtum: Ulcus cruris mixtum; pAVK: periphere arterielle Verschluss-krankheit; LV: Livedo-Vaskulopathie; VA: Vasculitis allergica; PG: Pyoderma gangraenosum; Mall med.: Malleolus medialis; Mal. lat.: Malleolus lateralis; reg.-übersp.: regionenüberspannend; fett: Merkmale in Risikoprofilen

Tabelle 26: Wahrscheinlichkeitstabelle für "Anzahl der Wunden"

			Kategorien v	Kategorien von "Anzahl der Wunden"				
	Schätzlevel	Fälle	1	2 bis 5	> 5			
CVI	99,00%	658	33,7%	37,7%	28,6%			
UCmixtum	80,00%	241	17,0%	46,5%	36,5%			
pAVK	99,00%	805	17,1%	58,0%	24,8%			
LV	99,99%	37	24,3%	10,8%	64,9%			
Neoplasie	100,00%	2906	42,8%	19,4%	37,7%			
Vasculitis allergica	99,00%	159	11,9%	68,6%	19,5%			
infektiöse Genese	99,00%	88	9,1%	19,3%	71,6%			
PG	100,00%	116	59,5%	20,7%	19,8%			
Traumatisch	99,00%	81	19,8%	37,0%	43,2%			
Calciphylaxie	99,99%	61	23,0%	73,8%	3,3%			

CVI: chronisch venöse Insuffizienz; UCmixtum: Ulcus cruris mixtum; pAVK: periphere arterielle Verschluss-krankheit; LV: Livedo-Vaskulopathie; PG: Pyoderma gangraenosum

10 Thesen

- Ausgewählte Ätiologien des Ulcus cruris lassen sich anhand weniger klinischer Basisparameter bereits am Aufnahmetag abschätzen. Daraus abgeleitete Risikoprofile könnten sich zudem als nützliches Hilfsmittel in der komplexen Differentialdiagnostik des Ulcus cruris erweisen.
- 2. Weibliche Patienten mit Wundlokalisation über dem Innenknöchel haben überzufällig häufig eine chronisch venöse Insuffizienz.
- 3. Patienten mit nekrotischen Wunden am dorsolateralen Unterschenkel sollten im Hinblick auf eine Calciphylaxie untersucht werden.
- 4. Ist bei Vasculitis allergica-Patienten kann das Risikoprofil aus regionenüberspannenden hämorrhagischen Wunden einen wichtigen differentialdiagnostischen Hinweis geben.
- Pyoderma gangraenosum-Patienten scheinen sich nach dieser Untersuchung regelhaft durch das gemeinsame Auftreten von hämorrhagischen Wunden und Untergewicht auszuzeichnen.
- 6. Traumtische Ulzerationen sowie Ulzera aufgrund einer peripheren Arteriellen Verschlusskrankheit und Livedo-Vaskulopathie stellen sich inhomogen dar und sollten in größeren multizentrischen Kollektiven erneut auf typische Merkmalskonstellationen untersucht werden.
- 7. Bei sauberen prätibialen singulären Ulzeration ohne Schmerzen sollte ein neoplastisches Geschehen in Betracht gezogen werden.
- 8. Es sollte an größeren Kollektiven untersucht werden, ob die laterale bis dorsolaterale Lokalisation der Ulzera typisch für die Diagnose Calciphylaxie ist.
- 9. Der Zusammenhang zwischen niedrigem BMI und Pyoderma gangraenosum sollte weiter untersucht werden.
- 10. Standardisierte Wunddokumentation sollte eingeführt werden, um die Ausgangslage für zukünftige Studien zur Differentialdiagnose des Ulcus cruris zu verbessern und überregionale Vergleichbarkeit sicherzustellen.

Lebenslauf

Jakob Garbe

geboren am 08.02.1990 in Hameln, ledig

Schulbildung & Studium

08.2002 - 06.2009	Schiller Gymnasium Hameln
seit 10.2009	Studium der Humanmedizin (Staatsexamen) an der Martin-Luther- Universität Halle-Wittenberg
09.2011	Physikum
seit 10.2012	Zweitstudium "Business Economics" (B.Sc.)
10.2013 - 4.2014	Urlaubssemester mit Famulaturen in München und Bahrain
04.2015	2. Abschnitt der ärztlichen Prüfung, schriftlicher Teil
seit 05.2015	Praktisches Jahr mit erstem Tertial in der Psychosomatik an der Universitätsklinik Halle

Praktika & Engagement

10.2011 – 06.2013	regelmäßige Aufklärungsarbeit an Schulen durch eine Lokalgruppe des bvmd-Projekts "Mit Sicherheit verliebt"
02.2012 - 04.2012	Famulaturen in einer pädiatrischen Praxis in Hameln und einem dermatologischen MVZ in Aue
10.2013 – 12.2013	Praktikum in der Arbeitsmedizin und dem Betrieblichen Gesundheitsmanagement der MTU Aero Engines AG in München
01.2014 - 03.2014	Famulatur in der Chirurgischen Abteilung des Salmanyia Medical Complex, Manama, Bahrain; gefördert durch die bvmd e.V.

Besondere Kenntnisse & Zertifikate

Sprachkenntnisse	12 Ja	ire Eng	glisch,	6 Jal	hre Lateii	ı, 1 Jah	r Itali	ienisch
------------------	-------	---------	---------	-------	------------	----------	---------	---------

(TOEFL: 112/120 Punkten)

professioneller Umgang mit Officeprogrammen und umfangreiche Fertigkeiten in Adobe Photoshop, Illustrator & InDesign EDV-Kenntnisse

Selbstständigkeitserklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus anderen Quellen direkt oder indirekt übernommenen Daten und Konzepte sind unter Angabe der Quelle gekennzeichnet.

Ich versichere, dass ich für die inhaltliche Erstellung der vorliegenden Arbeit nicht die entgeltliche Hilfe von Vermittlungs- und Beratungsdiensten (Promotionsberater oder andere Personen) in Anspruch genommen habe. Niemand hat von mir unmittelbar oder mittelbar geldwerte Leistungen für Arbeiten erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt.

(Jakob Garbe)

Erklärung über frühere Promotionsversuche

Gemäß § 7 (2) der Promotionsordnung der Medizinischen Fakultät der Martin-Luther-Universität Halle-Wittenberg vom 09.12.2008 erkläre ich hiermit, keine früheren Promotionsversuche unternommen zu haben.

(Jakob Garbe)

Danksagung

Diese Dissertation entstand im Rahmen der "Promotionsschule 2012" der Universitätsklinik und Poliklinik für Dermatologie und Venerologie Halle (Saale) unter der Leitung von *Prof. Dr. Wolfgang Christian Marsch* und *Prof. Dr. Johannes Wohlrab*.

Besonderer Dank gebührt meinem *Doktorvater Prof. Dr. Klaus-Michael Taube*, der diese Arbeit betreut hat und mir bei Fragen stets mit wertvollem Rat zur Seite stand. *Prof. Dr. Oliver Kuß*, Direktor des Insituts für Biometrie und Epidemiologie am Deutschen Diabetes-Zentrum Düsseldorf, danke ich für entscheidende Hinweise zur methodischen Umsetzung der Studienfrage. Ebenso danke ich *Dr. Christine Lautenschläger* vom Institut für Medizinische Epidemiologie, Biometrie und Informatik, die den statistischen Teil der Arbeit intensiv begleitet hat.

Dr. Volker Stadie und Dr. Danica Lange von der Universitäts-Hautklinik Halle (Saale) danke ich für Ihre geschätzte Auskunft zu Detailfragen. Für ihre hilfreichen Hinweise in Stilfragen und Aufbau der Arbeit bin ich meiner guten Freundin Clara Grabitz sehr dankbar.

Ich danke *Frau Annette Weyershäuser* vom Fotoarchiv der Universitäts-Hautklinik für die unermüdliche Bereitstellung hunderter Wundfotografien und *Frau Obst* vom Archiv des Uniklinikums für die das Heraussuchen mindestens ebenso vieler Patientenakten.

Schließlich gebührt mein Dank meinen *liebevollen Eltern Dres. Elisabeth* und *Christoph Garbe* und meinem *engen familiären Umfeld*, die meine Ausbildung und akademischen Werdegang überhaupt erst ermöglicht haben.