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Abstract: The thesis describes the implementation of the fully-relativistic Kor-
ringa-Kohn-Rostoker Green function method within the full-potential approx-
imation. In contrast to previous implementations the single-site scattering problem
is obtained by a direct solution of a system of ordinary differential equations. The
choice of this approach is motivated from an extensive numerical investigation of the
problem. Furthermore, the relativistic KKR method is used to investigate the tuning
of band inversion in PbxSn1´xTe alloys. Additionally, a scalar relativistic approxi-
mation was applied to study the low temperature magnetostructure of PrMnO3 and
CaMnO3. With the help of the Mathematica group theory package GTPack single
Ho atoms on a Pt(111) surface are investigated within the framework of crystal field
theory.

Zusammenfassung: Diese Arbeit beschreibt die Implementierung einer vollrela-
tivistischen Korringa-Kohn-Rostoker-Green-Funktionsmethode in der Näher-
ung des vollen Zellpotentials. Im Unterschied zu vorhergehenden Implementierun-
gen wird die Lösung des Einzelstreuproblems auf direktem Wege, durch Lösen eines
Systems gewöhnlicher Differentialgleichungen gewonnen. Die Wahl dieses Ansatzes
wird durch intensive numerische Untersuchungen motiviert. Des weiteren wird die
relativistische KKR methode verwendet, um das Anpassen der Bandinversion in
PbxSn1´xTe-Legierungen zu untersuchen. Zusätzlich wird eine skalarrelativistische
Variante verwendet um die magnetische Struktur von PrMnO3 und CaMnO3 bei
niedrigen Temperaturen zu erforschen. Mit Hilfe des Mathematica Gruppentheorie-
Pakets GTPack werden einzelne Ho Atome auf einer Pt (111) Oberfläche im Rahmen
der Kristallfeldtheorie untersucht.
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Symbols

The following mathematical symbols are used throughout the text.

Ã, B̃, . . . matrices

Â, B̂, . . . operators
a,b, . . . vectors
A,B, . . . sets
i imaginary unit, i2 “ ´1
r̂ represents the azimuthal angle ϑ and the polar angle ϕ of the vector

r “ pr, ϑ, ϕq
<A real part of A
=A imaginary part of A

Tr Ã “ ř

iAii denotes the trace of the matrix Ã

V





1. Introduction

The Korringa-Kohn-Rostoker Green function method which is applied to cal-
culate material properties in the solid state has had a long tradition going back to the
early work of Korringa [1] as well as Kohn and Rostoker [2] in 1947 and 1954,
respectively. The technological demand for functional materials as well as the de-
scription of new physical effects during the past decades offered challenging problems
and lead to still ongoing extensions of the original band structure method [3]. Two
very prominent extensions are: first, the inclusion of spin-orbit coupling, achieved by
solving the Dirac equation instead of the Schrödinger equation [4, 5, 6] and, sec-
ond, the consideration of the non-spherical part of the crystal field and the shape of
the Wigner-Seitz cell at each atomic position, which is denoted as the full-potential
approach within the literature [7, 8].

The discussion of spin-orbit coupling in semiconductor physics has a long tradi-
tion [9, 10]. However, especially on surfaces spin-orbit coupling driven effects gave
new perspectives to solid-state physics during the past 20 years. Examples are the
investigation of the Rashba-splitting on metallic surfaces [11, 12] and the descrip-
tion of topological insulators [13, 14, 15, 16]. Spin-orbit coupling is proportional to
the gradient of the electrostatic potential. Therefore, it becomes prominent if heavy
elements are taken into account.

The full-potential approach is necessary for the study of elastic properties [17], for
the relaxation of crystal structures [18], and especially for the study of systems with
large crystallographic anisotropy, as it occurs again on surfaces and interfaces. The
investigation of surfaces and interfaces of oxides has become very important in Halle,
due to the collaborative research centre SFB 762: Functionality of Oxide Interfaces.
Oxides represent a large class of materials, which can be tuned to offer certain
electric and magnetic properties with high technological relevance. One example is
provided by zinc oxide which can be forced to become a semiconducting ferromagnet
by introducing impurities or vacancies [19, 20].

The computer code Hutsepot [21, 22], which is based on the KKR method, has
been used successfully for the investigation of oxides and their magnetic properties
[23, 24], the treatment of strongly correlated electrons [25, 26] and magnetic excita-
tions [27, 28, 29] during the past years. Up to now, a fully-relativistic full-potential
implementation of the KKR method like used in other codes [30, 31] was still missing,
but has been developed during the work of this thesis.

However, before one can start the discussion of relativistic extensions, results ob-

1



2 1. Introduction

tained by the non-relativistic KKR method are presented in Part I. Following a
short introduction of the non-relativistic KKR method in Chapter 2, a theoretical
investigation of the electronic and magnetic structure of PrMnO3 and CaMnO3 is
presented in Chapter 3. Due to their complex structure and their sensitive response
to structural or magnetic perturbations, the study of manganites is very challeng-
ing and has attracted the attention of the research community during the past two
decades [32, pp. 2-4]. In addition to the relativistic KKR method, a Mathematica
[33] group theory package GTPack has been developed, which will be published in a
book in the near future [Ge1]. According to an experimental observation, where it
was found that magnetic moments of single holmium atoms on a highly conductive
metallic substrate can reach lifetimes of the order of minutes [Ge6], the application
of group theoretical methods in terms of crystal field theory to such problems is
presented in Chapter 4.

In Part II of the thesis an implementation of the fully-relativistic full-potential
KKR method for the code Hutsepot will be discussed. The central point of the im-
plementation is the solution of the single-site scattering problem. After the successful
implementation of a non-relativistic full-potential method of Drittler [7], where
this part was solved using the Lippmann-Schwinger equation, it was shown by
Huhne et al. [30] that the same approach can also be used to solve the Dirac equa-
tion for a non-spherical scattering potential. For the non-relativistic full-potential
problem, Zabloudil et al. [34, p. 76] compared the solution by means of the
Lippmann-Schwinger equation with the direct solution of the differential equations
and illustrated that large deviations between both solutions were found. However,
a multitude of efficient and highly accurate numerical methods for the solution of
coupled ordinary differential equations with various underlying properties has been
developed during the past century [35]. Therefore, in contrast to previous imple-
mentations [7, 30], a solver based on the direct solution of the underlying differential
equations was developed.

After the theory has been explained in Part II, tests of the implementation [Ge2]
are discussed in Part III. For spherically symmetric screened atomic potentials, it
was found that the asymptotic behaviour of the irregular scattering solutions in the
non-relativistic limit cÑ8 does not fit to the expected asymptotic behavior of the
non-relativistic irregular scattering solutions close to the origin r ! 1. To under-
stand this phenomenon a complete discussion of the Coulomb problem for irregular
scattering solutions in Chapter 7 and a proof of the correctness of this behavior by
using an elegant transformation of the Dirac equation for spherically symmetric
potentials, as suggested by Swainson and Drake [36], will be given. Afterwards
the numerical solution of the fully-relativistic single-site scattering problem for the
non-spherical Mathieu-potential will be discussed in Chapter 8 by means of inte-
gral and differential equations. Since the spherically symmetric component of the
Mathieu-potential is in the same order of magnitude as the non-spherical compo-
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nents it can be seen, first, as a test of the implementation for highly anisotropic
potentials and, second, as a good approximation for empty spheres as they are re-
quired in the application of the KKR method to oxides. It will be shown that the
underlying differential equations are non-stiff and can be solved by applying the
Adams-Bashforth-Moulton predictor-corrector method [34, pp. 60-61].

Finally, in Chapter 9 fully-relativistic band structure calculations for the investi-
gation of tin and lead telluride alloys SnxPb1´xTe will be presented. Such materials
played a significant role during the 1960s and 1970s [37] as infrared sensors. However,
tellurides attracted attention a second time, since they are prominent candidates for
the realization of topological insulators [38, 39]. For instance for SnTe, the reason for
that is an inversion of the band characteristic at the L-point in the Brillouin zone.
It is shown that besides the size of the band gap, also the band inversion can be
tuned by alloying, by applying hydrostatic pressure or by applying uniaxial strain.
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Part I.

Application of non-relativistic
methods to complex materials
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2. The non-relativistic
Korringa-Kohn-Rostoker Green
function method

2.1. The main formalism in a nutshell

Within this section a basic overview about the non-relativistic Korringa-Kohn-
Rostoker Green function method is given. The description is shortened as much
as possible since a lot of principles are similar to the relativistic version which will
be explained in detail in Part II. More detailed descriptions of the non-relativistic
KKR method can be found within the literature [7, 40, 41, 42].

The reformulation of the original KKR band structure method [1] in terms of
a Green function method [2] has a lot of advantages. For example, the Green
function allows the analytical treatment of perturbations (see Section 5.4). Further-
more, physical quantities like the charge density and the magnetization density can
be calculated if the Green function of a system is known. The formalism can be
embedded into the framework of density functional theory (see Appendix A), where
the ground state properties of the many particle system can be calculated from the
electron density. The electron density is not calculated by solving a many particle
Schrödinger equation (or Dirac equation) but self-consistently by the solution of
an effective one particle Kohn-Sham equation.

The approach via multiple-scattering theory is based on the decomposition of a
perfect crystal into distinct scattering centres [3]. Considering a perfect crystal,
concentrating on one single atom and substituting all other atoms with vacuum at
each lattice site, it is possible to think about a single-site scattering problem, where
an initial plane wave excites a spherical wave at the atomic site (see Figure 2.1).
Imagine that it is possible to construct the Wigner-Seitz cell Ω around the atom
and to define the effective potential V prq such that it is non-zero in the inside and
zero in the outside of the cell. Due to the influence of the neighbouring atoms and
the non-spherical shape, the effective potential at each atomic site is non-spherical
in general. By using atomic Rydberg units, the Kohn-Sham equation at each site
can be formulated as follows

`´∇2 ` V prq ´ E˘ψlmprq “ 0. (2.1)

7



8 2. The non-relativistic Korringa-Kohn-Rostoker Green function method

Figure 2.1.: Illustration of a single-site scattering event.

According to Drittler [7, p. 17], by transforming to spherical polar coordinates
and by expanding the effective potential V prq and the wave function ψlmprq into
spherical harmonics,

ψlmprq “
ÿ

l1m1

1

r
φl1m1,lmprqY m

l pr̂q, (2.2)

equation (2.1) can be reformulated in the following way,

ÿ

l2

l2
ÿ

m“´l2

„ˆ

´ d

dr2
` lpl ` 1q

r2
´ E

˙

δll2δmm2 ` Vlm,l2m2prq


φl2m2,l1m1 “ 0. (2.3)

Here, the orthogonality relation of the spherical harmonics was used and Vlm,l2m2prq
denotes the matrix element

Vlm,l2m2prq “
ż

dr̂Y m
l pr̂q˚Y m2

l2 pr̂qV prq. (2.4)

Whereas equation (2.1) is a partial differential equation in three coordinates, equa-
tion (2.3) is an infinitely large system of coupled ordinary differential equations. From
equation (2.1) it is possible to obtain two linear independent solutions ψ1

lmprq and
ψ2
lmprq, which are called regular and irregular scattering solution, respectively. In

the following ψ1
lmprq and ψ2

lmprq will be denoted by Rlmprq and Hlmprq.
Since the potential is zero outside of the Wigner-Seitz cell, the solution of

(2.3) in this region is given by a linear combination of the spherical Bessel func-
tion Jlmprq “ jlp

?
ErqY m

l pr̂q and the spherical Hankel function of the first kind
Hlmprq “ hlp

?
ErqY m

l pr̂q. In general, inside of the Wigner-Seitz cell the regular
and irregular solutions have to be found numerically, where the boundary conditions
are given by matching conditions with the free regular and irregular solutions at the
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boundary of the Wigner-Seitz cell Ω [7, pp. 18-23],

RlmprBq “ JlmprBq ´ i
?
E

ÿ

l1m1

Hl1m1prBqtl1m1,lm. (2.5)

and
HlmprBq “ HlmprBq, rB P Ω. (2.6)

In the above equation, tl1m1,lm denote a matrix element of the single-site t-matrix.
For a spherically symmetric potential, the single-site scattering t-matrix is a diagonal
matrix tlm,l1m1 “ δll1δmm1tlm and can be related to the phase shift ηlm [43, p. 36] via

tlm “ ´ 1?
E

sin pηlmq exp piηlmq . (2.7)

The phase shift ηlm quantifies the shift between a free solution and a scattering
solution for a spatially bounded scattering potential (see Figure 2.2).

In contrast to the single-site scattering event, which was discussed so far, Figure 2.3
illustrates a multiple scattering event, where an initial wave excites several spherical
waves at distinct scattering centres along all possible paths. With the help of the
single-site solutions Rilmprq and H i

lmprq at certain scattering sites i it is possible to
construct the retarded multiple-scattering Green function [44] according to

Gpr`Ri, r
1 `Rj , zq “

ÿ

lm

ÿ

l1m1

Rilmpr, zqGijlml1m1pzqRjlmpr1, zq`

` δij
ÿ

lm

Rilmpră, zqHj
lmprą, zq, r P Ωi, r

1 P Ωj . (2.8)

phase shift η
k

Free solution
Scattering solution
Potential

Radius r

|Ψ
(r

))
|2
,V

(r
)

RBS

Figure 2.2.: Illustration of the phase shift η, describing the shift between a scattering
solution outside of a spatially bounded scattering potential and a free
solution.
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Figure 2.3.: Illustration of a multiple scattering event along a certain path.

Here, z denotes the complex energy z “ E` iδ and ră and rą are an abbreviation for
the one vector of r and r1 with the smaller and the larger absolute value, respectively.
Whereas the second term on the right hand side of equation (2.8) represents the
single-site scattering contribution of a certain site i, the first one combines regular
scattering solutions of the sites i and j and hence represents the multiple-scattering

contribution. G̃ “
!

Gijlml1m1
)

is called structural Green function matrix. Combining

all single-site t-matrices of N scattering sites to a matrix T̃ ,

T̃ “

¨

˚

˝

t̃1 . . . 0̃
...

. . . 0̃

0̃ 0̃ t̃N

˛

‹

‚

, (2.9)

the structural Green function matrix can be obtained self-consistently by means of
T̃ and the structure constants G̃0 via the algebraic Dyson equation

G̃ “ G̃0 ` G̃0T̃ G̃0 ` G̃0T̃ G̃0T̃ G̃0 ` ¨ ¨ ¨ “ G̃0
”

Ĩ ´ T̃ G̃0
ı´1

. (2.10)

The analytic form of the structure constants can be found i.e. in the book of
Zabloudil et al. [34, pp. 24-25]. The convergence of the KKR method can be
improved by using so-called screened structure constants, which are discussed in the
work of Zeller et al. [44] and Szunyogh et al. [45].

If the Green function is known, it is possible to calculate the density of states as
well as the charge density from the imaginary part of the retarded Green function,

npEq “ ´ 1

π
=
ż

drGpr, r, E ` iδq and ρprq “ ´ 1

π
=
ż

"

dz Gpr, r, zq. (2.11)
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Instead of calculating the band structure directly, which might be very cumbersome,
it is possible to obtain the so called Bloch spectral function via Fourier transfor-
mation of the Green function for periodic systems. The imaginary part of the k
resolved Green function gives a band structure like result [46, p. 128],

ABpk,W q “ ´ 1

π
Im Tr

»

–

ÿ

RjPL
eik¨Rj

ż

d3rj Gprj , rj `Rj ,W q
fi

fl . (2.12)

The summation in the last expression extends over all vectors Rj of the lattice
denoted by L. In the framework of density functional theory the charge density can
be used to construct a new effective potential and, furthermore, to calculate the total
energy of the electron gas [47, p. 61] via

Erρprqs “ Tsrρprqs `
ż

drV prqρprq ` VHrρprqs ` Excrρprqs. (2.13)

Here, Ts denotes the functional for the kinetic energy, VH denotes the Hartree
functional, which takes into account the electron-electron interaction, and last but
not least Exc denotes the exchange-correlation functional.

Kohn-Sham equation (2.3)

Scattering solutions and
t-matrix for each site

Structural Green function (2.10)

Green function (2.8)

charge density (2.11)

total energy and
new effective potential (2.13)

Figure 2.4.: Illustration of the self-consistency cycle of the KKR method.
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Whereas in the many particle Schrödinger equation the potential is known
explicitly, the effective potential of the one-particle Kohn-Sham equation is not.
In practice, this effective potential is obtained self-consistently by starting with a
trial potential. For the trial potential, it is possible to solve the differential equation
(2.3) and to construct the Green function according to (2.8). Afterwards the charge
density can be calculated from equation (2.11). In turn, the charge density can be
used to calculate the total energy and a new trial potential. This scheme is repeated,
until the change of the total energy between two cycles becomes reasonably small.
An illustration of the self-consitency cycle of the KKR method can be found in Figure
2.4.

2.2. The treatment of disorder using the coherent potential
approximation

The possibility of alloying materials allows to design technologically relevant prop-
erties. For example, the alloy GaAsxP1´x is widely used in optoelectronics for the
fabrication of light emitting diodes (LEDs). The colour of the emitted light varies
with increasing amount x of arsenic from red to yellow [48, 49]. The colour of the
LED, which is determined by the size of the band gap can be tuned even more by
adding a fourth component, as it is possible in GayIn1´yAsxP1´x [50]. Here, a second
concentration y occurs.

For the computation of such materials it is necessary to apply techniques which
allow a proper treatment of chemical disorder. A straightforward way is given by
constructing large super cells, substituting certain atoms and averaging the possible
configurations. Even though this procedure was already applied successfully [51] it
has the disadvantage that it is restricted to concentrations that can be represented by
stoichiometric compounds. The development of mean field theories opened a second
approach to the problem. Regarding a binary alloy AxB1´x, the simplest approxi-
mation for an electronic structure calculation is the introduction of an hypothetical
element with the average potential V prq “ xVAprq ` p1´ xqVBprq, which is denoted
as the virtual crystal approximation [52, 53].

A more reliable Green function method was suggested by Soven in 1967 [54],
which is called the single-site coherent potential approximation (CPA). A somehow
similar approach was communicated by Velický, Kirkpatrick and Ehrenreich
in 1968 [55]. In both approaches an effective mean field medium is introduced. Later,
the method was simplified by Gyorffy [56]. Considering an alloy with N components,
where each component has the concentration xi and the sum over all concentrations
is restricted by

ř

i xi “ 1. It is hypothesised that the total scattering of electrons
at different atomic sites in the effective medium should be equal to the electron
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scattering at averaged atoms within the effective medium,

N
ÿ

i“1

xiτ̃
i,nn1pEq “ τ̃nn

1

CPApEq. (2.14)

Here, the scattering path operator τ̃ is introduced, which is given by

τ̃nn
1pEq “ δnn1 t̃

npEq `
ÿ

m‰n

t̃npEqG0,npEqτ̃mn1pEq. (2.15)

The single site scattering t-matrix t̃nCPA of the CPA medium at a certain site n is
defined implicitly from the scattering path operator τ̃nn

1

CPA via equation (2.15) and

has to be found self-consistently by starting with a reasonable trial matrix t̃n,0CPA [3].
Solving the single-site scattering problem for each component and using the com-

ponent projected scattering matrix τ̃ i,nn
1

to construct the multiple scattering Green
function Gipr, r1, Eq, the averaged Green function of the effective medium can be
approximated by summation [57, 3],

Gpr, r1, Eq “
N
ÿ

i“1

xiG
ipr, r1, Eq. (2.16)

The coherent potential approximation is implemented within Hutsepot and will be
used later on during this thesis, e.g. in Chapter 9.

2.3. The Heisenberg Hamiltonian and the magnetic force
theorem

In collinear magnetic systems (ferromagnetic, antiferromagnetic or ferrimagnetic) the
magnetic moments of the atoms within a crystal are either parallel or anti-parallel
to the global magnetization axis. Presuming the existence of permanent, localized
moments interacting with each other via a direct or an indirect exchange mechanism,
it is possible to formulate a semi-classical effective many particle Hamiltonian, called
the Heisenberg Hamiltonian [58],

Ĥeff “ ´
ÿ

i,j

Jijei ¨ ej . (2.17)

Here, the vectors ei denote the unit vectors pointing into the direction of the spins Si.
The name refers to the early work about the theory of ferromagnetism by Heisen-
berg in 1928 [59]. Since the equilibrium magnetic ordering can be found by minimiz-
ing the energy of the Heisenberg Hamiltonian, the magnetic moments of the atoms
tend towards a parallel alignment (ferromagnetism) for exchange parameters Jij ą 0
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and towards an anti-parallel alignment (antiferromagnetism) for exchange parame-
ters Jij ă 0. Especially for the description of magnetic insulators the Heisenberg
model can be applied successfully [60]. For the relativistic case, the Heisenberg
model can be extended and additional terms like the Dzyaloshinskii-Moriya in-
teraction [61, 62, 63] occur.

The Heisenberg exchange parameters Jij can be calculated via the magnetic
force theorem and the approach of Liechtenstein et al. [64], where the exchange
parameters are determined from the rotation energy of two spin moments at sites i
and j on opposite angles ˘θ{2,

δEij “ p1´ cos θq « 1

2
Jijθ

2. (2.18)

With the help of the Lloyds formula (see Section 6.10) the energy difference is
expressed using the single-site scattering t-matrices t̃iσ at site i for the spin direction
σ as well as the scattering path operator τ̃ ij (see equation (2.15)). Then the exchange
parameters Jij are calculated by means of the following equation [64, 3],

Jij “ ´ 1

4π
=
ż EF

´8

dE Tr
”´

t̃´1
iÒ ´ t̃´1

iÓ

¯

τ̃ ij
Ò

´

t̃´1
jÒ ´ t̃´1

jÓ

¯

τ̃ ji
Ó

ı

. (2.19)

The above presented concepts of this chapter are applied to the investigation of
PrMnO3 and CaMnO3 within the next chapter.



3. Ab-initio investigation of PrMnO3 and
CaMnO3

3.1. Why study manganites?

During the past two decades the study of manganites has become more and more
prominent within the condensed matter community. For the increasing interest at
least three reasons can be emphasized [32, pp. 2-4]. First, manganites tend to
show “colossal magnetoresistance”, where the resistivity increases by many orders
of magnitude upon the application of small magnetic fields. Materials with notable
magnetotransport properties are technologically relevant for instance in the develop-
ment of hard disk drives with large storage capacity [65]. Second, some manganites
are intrinsically inhomogeneous with coexisting clusters of different phases, mostly
ferromagnetic and antiferromagnetic clusters. As an example, Svedberg et al. [66]
found coexisting spin-glass and ferromagnetic phases for Pr0.9Ca0.1MnO3 thin films
at low temperatures. Third, manganites show rich phase diagrams with unusual
spin, charge, lattice, and orbital order. Phase diagrams of manganites were dis-
cussed by Tokura and Tomioka [67]. An illustration for Pr1´xCaxMnO3 alloys
with a calcium content between 0% and 50% can be found in Figure 3.1. Whereas
Pr1´xCaxMnO3 remains insulating within the whole range, the magnetic ordering
changes a lot. Starting from an A-type antiferromagnetic structure for x “ 0, where
a ferromagnetic inter-plane and an antiferromagnetic intra-plane coupling of man-
ganese atoms is present, manganese moments are slightly canted for low concen-
trations x ă 0.15, which is denoted as the spin-canted insulating phase (CI). Then,
between x “ 0.15 and x “ 0.3 a ferromagnetic phase (FI) is observed for low tempera-
tures. In the range of x “ 0.3, . . . , 0.5 the material becomes antiferromagnetic again,
with successive magnetic transitions between an antiferromagnetic phase (AFI) and
a canted antiferromagnetic phase (CAFI).

A theoretical study of manganites is challenging as can be verified within the
literature [68, 69]. Again three main reasons can be pointed out. First, driven by
the fact that manganites are intrinsically inhomogeneous one needs a microscopic
description to understand the mechanisms behind a certain phase combined with
a mesoscopic method to understand their interplay. Second, by focusing on the
microscopic description, density functional theory based methods are facing problems
caused by highly localized d and f electrons leading to strong correlations [70, 71]. To

15
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achieve reasonable results one can either improve the exchange correlation functional
by climbing up the “Jacob’s ladder of density functional approximations” [72] to
generalized gradient approximations or higher or by applying explicit correlation
corrections like the self-interaction correction [73, 25] or the so-called Hubbard-U
method [74]. Third, if one is interested in the description of phase diagrams one needs
to take into account temperature. On the one hand ground state calculations can be
extended by smoothening the occupation of states by means of the Fermi-Dirac
distribution function [75] or by mean-field methods like the disordered local moment
method [76, 77]. On the other hand dynamical excitations like lattice vibrations
have to be taken into account where the resulting electron-phonon coupling has to
be included [78].
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Figure 3.1.: Phase diagram of Pr1´xCaxMnO3 (illustration adopted from [67]). The
abbreviations denote paramagnetic insulator (PI), ferromagnetic insu-
lator (FI), antiferromagnetic insulator (AI), spin-canted insulator (CI),
charge-ordered insulator (COI), and canted-antiferromagnetic insulator
(CAFI).
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(a) Real space elementary cell
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(b) Brillouin zone

Figure 3.2.: Real space orthorhombic crystal structure and Brillouin zone with
high symmetry points of PrMnO3 and CaMnO3. In the picture of the
real space elementary cell oxygen atoms are illustrated in red and man-
ganese atoms in purple. Yellow atoms are representing praseodymium
and calcium, respectively [80].

3.2. Structure of PrMnO3 and CaMnO3

The manganites PrMnO3 and CaMnO3 are crystalizing in an orthorhombic crystal
structure with the space groups pbnm and pnma. Both space groups share the same
space group index 62. The real-space structure of both materials is illustrated in
Figure 3.2a. The Brillouin zone of the orthorhombic unit cell is shown in Figure
3.2b. A summary of the lattice constants and atomic positions that where used
during the calculations can be found in Table 3.1.

As can be verified in Figure 3.2a, the manganese atoms are surrounded by six
oxygen atoms forming a slightly distorted octahedron. Each praseodymium and
calcium atom is surrounded by eight of such octahedra, which are canted into the
crystallographic a and b direction. For a perfect octahedron the manganese d states
would split into a threefold degenerate state T2g and a twofold degenerate state Eg,
as can be verified with the help of the Mathematica group theory package GTPack
[Ge4]. However, for PrMnO3 and CaMnO3 it is favoured to decrease the symmetry
furthermore leading to a splitting of the T2g and Eg states into states with lower
degeneracy [32, pp. 57-69]. As a result the occupied levels are lower in energy and
hence also the total energy of the system is decreased. This phenomenon, which is
known as Jahn-Teller distortion, was initially described by Jahn and Teller in
1937 [79].
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Cell (PrMnO3)

Space group PBNM (62)
Lattice constants [Å] 5.5326(2) 5.6176(2) 7.8513(3)
Angles 90.00000 90.00000 90.00000

Wyckoff positions
Pr (4c) 0.992(1) 0.0350(8) 0.250
Mn (4b) 0.5 0 0
O (4c) 0.0762(7) 0.4825(7) 0.250
O (8d) 0.7126(5) 0.2970(4) 0.0416(3)

Cell (CaMnO3)

Space group PNMA (62)
Lattice constants [Å] 5.28930 7.45644 5.27074
Angles 90.00000 90.00000 90.00000

Wyckoff positions
Ca (4c) 0.0198(17) 0.25000 -0.004(4)
Mn (4b) 0.00000 0.00000 0.50000
O (4c) 0.493(2) 0.25000 0.0658(20)
O (8d) 0.2882(10) 0.0362(9) -0.2917(10)

Table 3.1.: Experimental structure data of PrMnO3 [81] and CaMnO3 [82]. The data
was used for the construction of the unit cell for the calculations.

3.3. Computational methods

The following results were obtained from calculations using a screened scalar-rela-
tivistic Korringa-Kohn-Rostocker Green function method [83, 84], as imple-
mented in Hutsepot [21]. The electron density was calculated by means of a multipole
expansion, taking into account the shape of the Voronoi polyhedra around each
atom within the unit cell [85, 86]. For the integration of the imaginary part of
the Green function over the energy to calculate the electron density (see equation
(2.11)), a semi-circular energy contour was chosen, consisting of 24 points. The ex-
pansion of the Green function into spherical harmonics was restricted to a maximal
angular momentum of 3.

The unit cell was constructed according to the data of Table 3.1, where four
manganese atoms, four praseodymium or calcium atoms and 12 oxygen atoms are
present. To achieve better convergence for the self-consistent calculations, ten ad-
ditional empty spheres were added at non-occupied crystallographic sites using the
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Stuttgart TB-LMTO program [87]. Due to the large unit cell a mesh of 8ˆ8ˆ4 points
was sufficient for integration in k-space. As an approximation for the exchange-
correlation functional the revised generalized gradient approximation PBE-SOL was
used [88], as it is implemented within the LibXC database [89]. To treat the strongly
correlated electrons the Hubbard-U method (or GGA+U method) was applied to
manganese d states and praseodymium f states with values of Ud “ 1´ 1.25 eV and
Uf “ 5 eV, respectively. The Heisenberg exchange parameters Jij were calculated
by means of the magnetic force theorem, according to equation (2.19). The obtained
exchange parameters were used to calculate the critical temperature by means of a
Monte-Carlo method implemented by Fischer [40].

Furthermore, results for PrMnO3 with and without relaxation of the unit cell, were
compared to each other. The relaxation of the unit cell was obtained by using the Vi-
enna ab initio simulation package (VASP) [90]. Analogously to Sathyanarayana,
a Γ centred 6ˆ6ˆ6 k-point mesh was applied [91]. Calculations were done using the
high performance mode and a plane wave energy cut-off of 400 eV. The relaxation
was restricted to that of the lattice parameters whereas the positions of the atoms
and the cell shape were fixed. The minimum was found by using a conjugate-gradient
algorithm [92, pp 413-417]. In accordance with the KKR calculations the general-
ized gradient approximation was used and a Hubbard-U was applied to manganese
d states (1 eV) and praseodymium f states (5 eV). It was found that the unit cell
volume decreases slightly, but the general results, such as the density of states or the
Heisenberg exchange parameters, are not affected.

3.4. Electronic structure

Both materials, PrMnO3 as well as CaMnO3, are semiconductors with experimental
band gap energies of «0.83 eV [93] and «1.55 eV [94], respectively. Due to correla-
tion effects, this property is not reproduced within a calculation using the generalized
gradient approximation only. Therefore, the Hubbard-U method was applied. The
choice of an appropriate value of U is crucial, since physical quantities like the size of
the band gap, the magnetic moment of manganese and praseodymium, the Heisen-
berg exchange parameters Jij , the magnetic ordering and the critical temperature
are sensitive to the magnitude of U . For PrMnO3 the Hubbard-U was applied to
praseodymium f -states (Uf ) and manganese d-states (Ud). Calculations were per-
formed for Uf = 3, 4, 5, 6 eV and Ud = 0, 1, . . . , 4 eV. The best agreement with
experimental values for the band gap and the critical temperature [95] was achieved
for Uf = 5 eV and Ud “ 1 eV.

According to the Bloch spectral function (see Figure 3.3a) it can be verified that
PrMnO3 is an indirect semiconductor, where the valence band maximum can be
found at U and the conduction band minimum at the Γ point in the Brillouin
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(a) Bloch spectral function
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Figure 3.3.: Electronic structure of PrMnO3.

zone. The band gap is slightly underestimated and shows a value of « 0.5 eV which
is also reflected in the density of states in Figure 3.3b. From the density of states it
can be verified that the valence band maximum as well as the valence band minimum
is dominated by manganese d-states. Beyond the Fermi energy two sharp peaks can
be seen, which belong to non-occupied praseodymium f -states. The range between
-7 eV and -2 eV is dominated by oxygen p-states.

For CaMnO3 the best agreement with experimental values (such as magnetic mo-
ment, band gap, etc.) was obtained for a slightly increased value of Ud “ 1.25 eV.
Analogously to PrMnO3, CaMnO3 is an indirect semiconductor as well, as can be
verified from Figure 3.4a where the valence band maximum is located along the path
Y Γ and the conduction band minimum at Γ and Y . Again, the size of the band
gap is about 0.5 eV. In contrast to PrMnO3, the manganese d-states are hybridizing
with oxygen p-states for CaMnO3 in the whole range of the valence band between
-6 eV and 0 eV, as can be seen in the density of states illustrated in Figure 3.4b. The
conduction band is dominated mainly by manganese d-states.

For PrMnO3 and CaMnO3 a change of the oxidation state of manganese can be
observed. The electron configuration of manganese is given by [Ar] 3d5 4s2. Due to
the two s- and five f -electrons, possible oxidation states for manganese in compounds
are between `2 and `7. Since calcium belongs to the group of alkaline earth metals
it carries two s-electrons in the outermost shell leading to an oxidation number of
`2 in CaMnO3. Together with the oxidation state of ´2 for oxygen, manganese is
forced to have an oxidation state of `4. According to Hund’s rule the remaining
d-electrons are occupying different d-orbitals with a parallel spin alignment leading
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Figure 3.4.: Electronic structure of CaMnO3.

to a magnetic moment of 3µB. Corresponding to Jirák et al. [96], a slightly lower
magnetic moment of 2.66µB was measured in neutron diffraction experiments.
Nevertheless, this value is in very good agreement to the present calculations, where
a magnetic moment of 2.7µB was observed on each manganese atom. For PrMnO3

the calculated magnetic moment is given by 3.6µB leading to the conclusion that the
oxidation state of manganese has decreased. Again, the experimental value of 3.54µB
is in very good agreement [96] with the calculation. Anyway, since the experimental
as well as the calculated manganese magnetic moments are non-integer values it is
very likely that mixed configurations of manganese `4 and `3 as well as manganese
`3 and`2 are present in PrMnO3 and CaMnO3, respectively. Regarding the electron
configuration of praseodymium, which is given by [Xe] 4f3 6s2 an oxidation state of
`3 will give a magnetic moment of 2µB which results from the occupation of two
distinct f -orbitals of the remaining two 4f electrons with parallel spin alignment. In
accordance, the computational value for the magnetic moment of praseodymium in
PrMnO3 was found to be exactly 2µB. However, this value stays in contrast to the
experimental value of Jirák et al. who suggested a magnetic moment of 0.5µB [96].
Nevertheless, in recent neutron diffraction experiments [97], the present theoretical
prediction of the praseodymium high-spin state 2µB was used to fit the experimental
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results and was found to be more likely than the previous result of Jirák et al. [96].

3.5. Magnetic structure

To obtain information about the magnetic structure the magnon spectrum of PrMnO3

and CaMnO3 was calculated. Assuming collinear magnets and the adiabatic approxi-
mation, the magnon spectrum can be found from the eigenvalues of the torque matrix
[41, pp. 31-34]. According to Figure 3.5a, the minimum of the magnon spectra for
PrMnO3 is located at the Z point in the Brillouin zone. Furthermore the spectrum
is symmetric, regarding positive and negative energies. Hence, the magnon spectrum
does not show a ferromagnetic behaviour, which is in agreement with the literature
[96]. It was suggested by Jirak et al. that PrMnO3 is an A-type antiferromagnet
[96, 69], meaning that the intra-plane coupling is ferromagnetic while the inter-plane
coupling is antiferromagnetic. The antiferromagnetic ordering can be verified by re-
garding the Heisenberg exchange parameters Jij (see Figure 3.6a). The results of
the calculations show large and positive Heisenberg exchange parameters between
manganese atoms within the a-b-plane (J=9.4 meV), which cause the in-plane ferro-
magnetic ordering. The coupling between praseodymium and manganese tends to
be ferromagnetic (J«1-2 meV). For the magnetic coupling between two manganese
planes, positive exchange parameters can be found for the coupling between Mn1 and
Mn3 (J=3.8 meV), whereas negative exchange parameters can be observed for the
interaction between Mn1 and Mn4 (J=-1.2 meV). Even though the absolute value
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Figure 3.5.: Magnon spectra of PrMnO3 and CaMnO3 calculated using the torque
matrix formalism in the framework of adiabatic spin-dynamics [98].
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(a) PrMnO3

(b) CaMnO3

Figure 3.6.: Calculated Heisenberg exchange parameters Jij for PrMnO3 and
CaMnO3. 8 ˆ ´1.2 meV for instance denotes that 8 equivalent atoms
and hence 8 equivalent exchange parameters are present.

of -1.2 meV is smaller than 3.8 meV, Mn4 occurs eight times in the neighbourhood
of Mn1 whereas Mn3 only occurs 2 times. Furthermore, the calculated Heisen-
berg exchange parameters were used to confirm the magnetic ordering by means
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of a Monte Carlo method (for details of the method see [40, pp. 34-35]), where
the antiferromagnetic structure was clearly revealed and a transition temperature of
« 120 K could be found. However, the system seems to be at the border between
antiferromagnetism and ferromagnetism and therefore it reacts very sensitive with
respect to small perturbations.

For CaMnO3, Wollan and Koehler [99] found a G-type antiferromagnetic
ordering using neutron diffraction experiments, where both intra-plane and inter-
plane coupling are antiferromagnetic. This type of antiferromagnetic coupling agrees
well with the calculated values for the Heisenberg exchange parameters in Figure
3.6b. Since calcium is non-magnetic, the Heisenberg exchange parameters Jij for
CaMnO3 only describe coupling between manganese atoms. According to the results,
all parameters are negative and hence both inter- and intra-plane coupling tends to
be antiferromagnetic. The calculated critical temperature of 91 K is slightly lower
than the experimental critical temperature of 110 K.



4. Application of group theoretical
methods to magnetic states of Ho on
Pt(111)

4.1. Introduction

Within the past decades, the data storage capacity of memory devices has increased
rapidly [100]. In magnetic data storage, where ferromagnetic materials are used, this
trend has led to a decrease of the size of magnetic islands, in which each bit is stored.
To keep their magnetization in a specific direction against thermal fluctuations mate-
rials with high magnetic anisotropy are needed. In recent years, magnetic anisotropy

(a) Trigonal neighbourhood of a single Ho atom
on Pt (111).

(b) Three-dimensional topographic STM image
of single Ho atoms adsorbed on Pt(111) at
4.4 K.

(c) Spin-polarized dI/dV map of Ho atoms and
Co islands on Pt(111) (V = 300 mV, I = 1.5
nA). Positions of Pt atomic steps are indi-
cated by dashed lines.

Figure 4.1.: Illustration of Ho on a Pt(111) surface. The pictures in (b) and (c) were
obtained by Miyamachi et al. using scanning tunneling microscopy
[Ge6].
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measurements were performed using scanning tunnelling microscopy for a wide range
of substrates and atoms [101, 102, 103]. A first breakthrough was achieved by the
work of Hirjibehedin et al. [104] who discovered a large anisotropy for iron and
manganese atoms on a thin layer of copper nitride.

A major reason for unstable magnetic moments on surfaces is seen by the inter-
action with scattering electrons. Since f electrons are strongly localized the inter-
action of f -electrons and surface electrons is weaker in comparison to systems were
the valency electrons are d-electrons. Since f -electrons are causing large magnetic
moments in single-atoms, promising candidates for single-bit data storage devises are
rare earth atoms. In cooperation with the experimental group of Wulfhekel (at
KIT Karlsruhe), magnetic excitations of gadolinium atoms on platinum (111) and
copper (111) surfaces [Ge7] as well as holmium atoms on a platinum (111) surface
[Ge6] were investigated (see Figure 4.1). Surprisingly it could be observed that the
magnetic excitations in single holmium atoms on high conducting surfaces can reach
lifetimes of the order of minutes.

Besides a description via ab initio methods, group theoretical methods in the
framework of crystal field theory were developed [Ge4] and implemented within the
Mathematica group theory package GTPack [Ge1]. During this chapter it will be ex-
plained, how such methods can be applied to describe the large magnetic anisotropy
as well as the long lifetimes of magnetic excitations in single holmium atoms on a
platinum (111) surface.

4.2. Qualitative discussion

At first, a qualitative discussion of the level splitting for a single holmium atom on
a platinum (111) surface will be given. For the electronic structure of holmium it is
assumed that 10 electrons occupy the 4f state [105]. Due to spin orbit coupling the
14-fold degenerate 4f state (spin is taken into account) splits into a 6-fold degenerate
state 4f5{2 and an 8-fold degenerate state 4f7{2. Since 4f5{2 is lower in energy [106]
four electrons occupy 4f7{2 which leads to a total angular momentum of J “ 8.

For J “ 8 it is possible to construct 17 basis vectors |8m〉 (m “ ´8, . . . , 8) belong-
ing to the irreducible representation D8. Representation matrices of proper rotations
of D8 are given by the Wigner-D-matrices of each group element of the group SOp3q
and can be calculated using Mathematica. For improper rotations a factor p´1qJ has
to be multiplied. From the matrix element theorem [107, pp. 130-134] it is known
that each irreducible representation leads to an energy level of which the degeneracy
is equal to the dimension of the irreducible representation.

For a single holmium atom on a platinum (111) surface the local symmetry is
decreased by the crystal field of the surface and the associated point group is given by
C3v (see Figure 4.1a). For the point group C3v the representation given by matrices
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of D8 is reducible. The number of times an irreducible representation occurs within
a reducible representation can be calculated from

np “ 1

g

ÿ

T

rχppT qs˚ χpT q, (4.1)

which can be derived from the orthogonality theorem for characters [Ge1]. Here,
g is the order of the group and the characters χpT q are given by the trace of the
representation matrix of the element T . To calculate the characters of the irreducible
representations the Burnside algorithm [108] was implemented in the Mathematica
group theory package GTPack. From equation (4.1) it is possible to verify that D8

is reducible according to
D8 „ 3A1 ‘ 6E ‘ 2A2. (4.2)

In the equation above, the Mulliken notation is used [109, 110], where A1 and A2

are the symmetric and the antisymmetric one-dimensional irreducible representations
and E the two-dimensional irreducible representation of C3v. The character table of
C3v can be found in Table 4.1.

C1 C2 C3

A1 1 1 1
A2 1 1 -1
E 2 -1 0

C1 “ tEu
C2 “

 

C3z, C
´1
3z

(

C3 “ tIC2y, IC2C , IC2Du
Table 4.1.: Character table and classes of the point group C3v, calculated with GT-

Pack [Ge1]. Symmetry elements are denoted in Schönflies notation.

4.3. Quantitative discussion

In connection to the qualitative analysis of the splitting of holmium energy levels
in a trigonal crystal field, it will be described in this section how the strength of
the splitting can be approximated in the framework of linear perturbation theory.
First, it will be explained how the crystal field Hamiltonian can be achieved if the
point group is known and second it will be shown how the eigenvalue equation can
be solved in an efficient way.

4.3.1. Crystal field Hamiltonian

In the following, it is assumed that the solution of a reference Hamiltonian Ĥ0 is
known and the influence of the crystal field is small enough to treat it as a pertur-
bation. The Hamiltonian of the perturbed system is given by Ĥ “ Ĥ0 ` Vcr. The
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crystal field can be expanded into tesseral harmonics (real spherical harmonics) Sqk,

Vcrpθ, φq “
8
ÿ

k“0

k
ÿ

q“´k

Bq
kS

q
kpθ, φq, (4.3)

where the radial part of the crystal field is included in the coefficients Bq
k. The crystal

field has a certain symmetry reflected in the point group G. Since the Hamiltonian
is an irreducible tensor operator belonging to the identity representation Γ1 of G, it
has to be invariant under the application of the character projection operator P̂Γ1 ,

P̂Γ1Vcrpθ, φq “ 1

g

ÿ

TPG
P̂ pT qVcrpθ, φq “ Vcrpθ, φq. (4.4)

The tesseral harmonics Sqk are a real space representation of the p2k`1q-dimensional
basis belonging to the irreducible representation Dk. Hence, every transformation

can be expressed via P̂ pT qSqk “
řk
q1“´kD

k
q1qpT qSq

1

k . Using the expansion of the
crystal field (4.3) together with (4.4) it is possible to obtain a system of equations
for Bq

k by comparison of coefficients,

Bq
k “

1

g

ÿ

TPG

ÿ

q1

Bq1

k D
k
q1qpT q. (4.5)

Of course, (4.5) can not be solved for all Bq
k but it can be verified which coefficients

depend on each other and which coefficients vanish. For the point group C3v, which
is the point group of the crystal field of a single holmium atom on a platinum (111)
surface, the crystal field expansion is given by

Vcrpθ, φq “ B0
0S

0
0pθ, φq `B0

2S
0
2pθ, φq `B0

4S
0
4pθ, φq`

`B3
4S

3
4pθ, φq `B0

6S
0
6pθ, φq `B3

6S
3
6pθ, φq `B6

6S
6
6pθ, φq ` . . . . (4.6)

In the following it will be shown, how the crystal field expansion can be used to
calculate the level splitting explicitly.

4.3.2. Solution of the eigenvalue equation

In the linear perturbation theory [111, pp. 203-207], the energy difference of the
perturbed and the unperturbed system can be calculated from the eigenvalues of the
matrix Ã with elements

Amm1 “ 〈Jm|Vcr

ˇ

ˇJm1
〉
. (4.7)

It was the idea of Stevens [112] to generalize the crystal field expansion (4.3) and
to replace the tesseral harmonics Sqk by associated operators Ôqk acting on the vectors
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|Jm〉. The operators Ôqk can be expressed in terms of Ĵz and the ladder operators

Ĵ` and Ĵ´, where the well known equations

Ĵz |Jm〉 “ m |Jm〉 , and Ĵ˘ |Jm〉 “apJ ¯mqpJ ˘m` 1q |Jm˘ 1〉 (4.8)

hold. Tables of the operators Ôqk can be found in the literature, e.g. [113]. Instead

of applying the operators Ôqk, it was proposed by Ryabov [114] to directly calculate

the matrix elements 〈Jm| Ôqk |Jm1〉 using the equation

〈Jm| Ôqk
ˇ

ˇJm1
〉 “ α

2Fk,q

k´q
ÿ

n“0

˜

δm1,m`q

„pJ ´mq!pJ `m` qq!
pJ `mq!pJ ´m´ qq!

1{2

`

`δm1,m´qp´1qk´q´n
„pJ `mq!pJ ´m` qq!
pJ ´mq!pJ `m´ qq!

1{2
¸

mnapk, q, nq. (4.9)

Here, Fk,q is given by the greatest common divisor of the coefficients apk, q, 0q, . . . ,
apk, q, qq. Furthermore, α “ 1 for all q if k is an odd integer. If k is even, then α “ 1
or α “ 1{2 for even and odd q, respectively. In case that q ` n ą k all coefficients
apk, q, nq are equal to zero. For q “ k they are apk, k, 0q “ 1. The values of apk, q, nq
have to be calculated recursively by

apk, q ´ 1, nq “ p2q ` n´ 1qapk, q, n´ 1q `
„

qpq ´ 1q ´ mpm` 1q
2



apk, q, nq`

`
k´q´n
ÿ

ν“1

p´1qν
„ˆ

n` ν
n

˙

JpJ ` 1q ´
ˆ

n` ν
n´ 1

˙

´
ˆ

n` ν
n´ 2

˙

apk, q, n` νq.
(4.10)

For the application of Ryabovs method three major advances can be pointed out.
First, an exact representation of |Jm〉 is used and hence, the method can be applied
easily for many electron systems. Second, in comparison to the classical method,
no integration of wave functions is needed and hence, the method is much faster for
large J . Third, the equations are exact and can be evaluated algebraically. Using
(4.9) the p2J ` 1q dimensional matrix of the Hamiltonian can be calculated via

Hmm1 “
2J
ÿ

k“0

k
ÿ

q“´k

Bq
k 〈Jm| Ôqk

ˇ

ˇJm1
〉
. (4.11)

For a single holmium atom on platinum (111), the values of Bq
k were calculated

from first principles by means of Hutsepot and can be found in Table 4.2. Details
of the method are explained within the thesis of Hoffmann [115]. Since J “ 8 the
Hamiltonian is represented by a 17ˆ17 matrix. The eigenvalues and eigenvectors can



304. Application of group theoretical methods to magnetic states of Ho on Pt(111)

coefficients value

B0
2 -239 µeV

B0
4 86 neV

B3
4 293 neV

B0
6 0.187 neV

B3
6 -1.968 neV

B6
6 0.630 neV

Table 4.2.: Crystal field parameters for a single holmium atom on a platinum (111)
surface [Ge6, suppl. inf.].

be found using Mathematica. From the eigenvectors ai (i “ 1, . . . , 17) it is possible
calculate the expectation value 〈Jz〉 via

〈Jz〉 “
2J`1
ÿ

m“1

ˇ

ˇaim
ˇ

ˇ

2 〈Jm| Ĵz |Jm〉 . (4.12)

According to Figure 4.2, a large level splitting of « 44.76 meV can be observed. By
assigning the energy eigenvalues as well as the basis functions to a certain irreducible
representation of C3v, the prediction (4.1) can be confirmed. The ground state
belongs to the irreducible representation E offering two states with 〈Jz〉 « `8 and
〈Jz〉 « ´8, respectively.

To discuss the transition probability, the time-reversal operator T̂ can be taken
into account, which commutes with the Hamiltonian Ĥ, since no external magnetic
field is applied. Moreover, it anti-commutes with the components of the angular
momentum operator

ĤT̂ ´ T̂ Ĥ “ 0 and ĴiT̂ ` T̂ Ĵi “ 0. (4.13)

The time-reversal operator is an anti-unitary operator, i.e.

〈φ|ψ〉 “
〈
T̂ψ|T̂ φ

〉
“
〈
T̂ φ|T̂ψ

〉˚
. (4.14)

Furthermore, an even number of electrons is discussed and it follows that T̂ 2 “ 1̂.
Denoting the two degenerate ground-states by |Ψ8〉 and |Ψ´8〉, it can be verified that

〈Ψ8| Ĵi |Ψ´8〉 “ ´
〈
T̂Ψ8

ˇ

ˇ

ˇ
ĴiT̂ |Ψ´8〉˚ “ ´ 〈Ψ8| Ĵi |Ψ´8〉˚ “ ´ 〈Ψ´8| Ĵi |Ψ8〉 . (4.15)

Hence, 〈Ψ8| Ĵi |Ψ´8〉 “ 0 and a direct transition between the two ground states is
forbidden. Since a direct transition is forbidden, it follows that under real conditions,
where T ą 0 K, a long lifetime for staying in one of the two states |Ψ´8〉 or |Ψ8〉
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E (meV) 〈Jz〉 Γ

0. 7.9999 E1

0. -7.9999
7.7066 7.0000 E2

7.7066 -7.0000
16.3256 0. A1
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24.5807 -4.9988
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Figure 4.2.: Splitting of the 4f7{2 four particle state (J “ 8) of a single holmium atom
on a platinum (111) surface according to the crystal field. The colours
identify the different irreducible representations of C3v (blue ” A1, red
” A2, green ” E).

can be expected. This idea was proved within the experiment, where a lifetime of
τ “ p729 ˘ 12q s was measured [Ge6]. Thus, it is possible to magnetize a single-
holmium atom e.g. with a magnetic moment out of plane, which is related to the
storage of one bit. Due to the long lifetime, this information will last for some
minutes. Therefore, a single holmium atom on a platinum (111) surface can be seen
as a single-bit data storage device.
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5. Dirac equation and Green function

5.1. Dirac equation

With the formulation of the Schrödinger equation in 1926 [116, 117, 118, 119],
a basic equation for the description of non-relativistic quantum systems was found.
Nevertheless, the Schrödinger equation is not suitable for the description of elec-
trons in heavy elements and furthermore for the description of spin and spin-orbit
coupling. A differential equation for the investigation of electrons in relativistic
quantum systems (including spin-orbit coupling) was proposed by Dirac in 1928
[120],

i~
B
BtΨ pr, tq “

´

c α̃ ¨ π̂ ` β̃mc2 ` v pr, tq
¯

Ψ pr, tq . (5.1)

The vector operator π̂ “ p̂ ´ eA pr, tq is the commonly used combination of the
momentum operator p̂ “ ´i~∇ and the vector potential A pr, tq. The operator

Ĥ “
´

c α̃ ¨ π̂ ` β̃mc2 ` v pr, tq
¯

is called Hamilton operator, the potential v pr, tq is

the scalar potential and the abbreviations c and ~ denote the speed of light as well as
the Planck constant. Furthermore, the pseudo-vector α̃ consists of the matrices α̃i,
which will be explained later within this section. For stationary problems, A pr, tq “
A prq and v pr, tq “ v prq, the solution of the Dirac equation can be written as

Ψ pr, tq “ e´
i
~Wtφ prq. The four component spinor function φ prq can be found by

solving the stationary Dirac equation

Wφ prq “
´

c α̃ ¨ π̂ ` β̃mc2 ` v prq
¯

φ prq . (5.2)

The problems investigated within this thesis are stationary, and hence the term
Dirac equation will be used for equation (5.2) in the following. For a classical free
particle (A prq “ 0 and v prq “ 0), the relativistic energy-momentum relation holds,
which is given by

W 2 “ c2p2 `m2c4. (5.3)

In analogy to classical relativistic mechanics, equation (5.3) can be taken into account
to postulate a similar relation for the free Hamilton operator,

´

c α̃ ¨ p̂` β̃mc2
¯´

c α̃ ¨ p̂` β̃mc2
¯

φ prq “W 2φ prq “ `

c2p̂2 `m2c4
˘

φ prq . (5.4)
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Hence, to ensure that equation (5.4) holds, the matrices α̃ and β̃ have to fulfil the
following properties,

α̃2
x “ α̃2

y “α̃2
z “ β̃2 “ Ĩ , (5.5)

β̃α̃` α̃β̃ “ 0, (5.6)

and
α̃iα̃j ` α̃jα̃i “ 0 i ‰ j. (5.7)

These relations are satisfied by the commonly used representation [106, p. 15]

α̃i “
ˆ

0 σ̃i
σ̃i 0

˙

and β̃ “
ˆ

Ĩ2 0

0 ´Ĩ2

˙

, (5.8)

where σ̃i are the well known Pauli matrices

σ̃x “
ˆ

0 1
1 0

˙

, σ̃y “
ˆ

0 ´i
i 0

˙

, σ̃z “
ˆ

1 0
0 ´1

˙

, (5.9)

and Ĩ2 the 2-dimensional identity matrix. In general, the representation of the matri-
ces α̃i and β̃ is not unique. Famous alternatives are given by the approach of Weyl
for massless particles [121], which is important for the description of the weak inter-
action, or by the approach of Majorana, for particles without charge [122, 123].
The approach of Majorana has gained a lot of attention in recent years due to
investigations of Majorana fermions in superconductors [124, 125, 126].

The solution φ prq is a complex 4 ˆ 1 column matrix. Since the absolute square
of the solution can be identified as the probability density of the Dirac particle, φ
has to satisfy the condition

〈φ|φ〉 “
ż

R3

d3r rφ prqs:φ prq “
ż

R3

d3r
4
ÿ

i“1

rφi prqs˚ φi prq !“ 1. (5.10)

The scalar product 〈φ|φ〉 of equation (5.10) induces a norm of the solution φ prq,
|φ prq| “ a

〈φ|φ〉. To satisfy (5.10), each component of φ prq has to be a square
integrable function. Hence, each φi prq can be seen as a vector of the space L2pR3q,
the space of the equivalence classes of the Lebesque space L2pR3q (see [127, p. 17]
or [128, pp. 25-26]). The Hilbert space H of the solution φ prq can be constructed
from the direct sum of spaces L2pR3q [129, p. 6],

H “ L2pR3q ‘ L2pR3q ‘ L2pR3q ‘ L2pR3q. (5.11)

The Hamilton operator Ĥ “
´

c α̃ ¨ π̂ ` β̃mc2 ` v pr, tq
¯

of equation (5.1) is a linear

operator Ĥ : DpĤq Ñ H, acting on a suitable domain DpĤq Ă H. The inverse of the

operator ´
´

Ĥ ´W
¯

is called the Green operator or the Green function, which

will be introduced in the next section.
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5.2. Green function

The introduction of the Green function is of practical importance for the KKR
method. In the sense of operator algebra within a Hilbert space, the Green

function ĜpW q can be defined as the inverse of the operator
´

Ĥ ´W
¯

with negative

sign,
´

Ĥ ´W
¯

ĜpW q “ ´Î . (5.12)

Suppose the Hamilton operator has a countable set of eigenfunctions |n〉 which
form an orthonormal basis within the Hilbert space and fulfil the completeness
relation

ř

n |n〉 〈n| “ Î. It follows from the eigenvalue equation Ĥ |n〉 “Wn |n〉 that

the Hamilton operator can be written as Ĥ “ ř

nWn |n〉 〈n|. Rewriting equation
(5.12) in the form

˜

ÿ

n

Wn |n〉 〈n| ´WÎ

¸

Ĝ “
ÿ

n

pWn ´W q |n〉 〈n| ĜpW q “ ´Î , (5.13)

it can be verified that the Green function in operator form can be represented by

ĜpW q “
ÿ

n

|n〉 〈n|
W ´Wn

. (5.14)

Equation (5.14) is called Lehmann representation. In real space, the relativistic
Green function is a 4 ˆ 4-matrix-valued function of the variables r, r1 and W and
equation (5.12) can be written as follows,

´

Ĥ prq ´WĨ4

¯

G̃
`

r, r1,W
˘ “ ´δ `r´ r1

˘

Ĩ4, (5.15)

where Ĩ4 denotes the 4-dimensional identity matrix. The Green function has the
advantage that perturbations of the Hamilton operator can be treated in an exact
manner, as will be explained in 5.4. For this approach the Green function of
a reference system has to be known. Therefore, the Green function of the free
electron is very important and will be derived in the next section.

5.3. Relativistic free space Green function

During this section, it will be shown, that the relativistic free electron Green func-
tion (v prq “ 0, A prq “ 0) can be derived from the non-relativistic Green function
G0

NR [130, pp. 413], which is given by the following equation [43, p. 192],

G0
NRpr, r1, Eq “ ´

1

4π

2m

~2

eik|r´r1|

|r´ r1| , k “ 1

~
?

2mE. (5.16)
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From the definition of the matrices α̃i and β̃ according to equation (5.8), the square
of the relativistic Hamilton operator is given by

Ĥ2
0 “

´

cα̃ ¨ p̂` β̃mc2
¯´

cα̃ ¨ p̂` β̃mc2
¯

“ `

c2p̂2 `m2c4
˘

Ĩ4. (5.17)

From the operator product
´

Ĥ0 ´WĨ4

¯´

Ĥ0 `WĨ4

¯

“ `´~2∇2c2 `m2c4 ´W 2
˘

Ĩ4

it can be verified that an equation similar to the non-relativistic Schrödinger
equation can be obtained. Hence, the following equation can be derived for the
non-relativistic Green function,

1

2mc2

´

Ĥ0 ´WĨ4

¯´

Ĥ0 `WĨ4

¯

G0
NRpr, r1, Eq

“
ˆ

´ ~2

2m
∇2 ´ E

˙

Ĩ4G
0
NRpr, r1, Eq “ ´δpr´ r1qĨ4. (5.18)

In the above equation, the energy E is an abbreviation for

E “ W 2 ´m2c4

2mc2
. (5.19)

From equation (5.18) it can be seen (in comparison to (5.15)) that the relativistic
Green function for a free electron is given by

G̃0

`

r, r1,W
˘ “ 1

2mc2

´

Ĥ0 `WĨ4

¯

G0
NRpr, r1, Eq. (5.20)

5.4. The Dyson and Lippmann-Schwinger equation

A great advantage of Green function methods is given by the fact that perturbations
can be treated using the Dyson and the Lippmann-Schwinger equation [43, pp.
31-38]. A short derivation of both equations will be given within this section. The
approach is valid for the non-relativistic case as well as for the relativistic case. For
brevity, all equations during this section are written in operator form.

Suppose the Green function of a reference system with Hamilton operator Ĥ0

is known,
´

Ĥ0 ´W
¯

Ĝ0 “ ´Î . (5.21)

Let ∆V be a small perturbation then the perturbed Hamiltonian is given by Ĥ “
Ĥ0 ` ∆V . By taking the definition of the Green function Ĝ in equation (5.12)
together with (5.21), the following relation can be derived,

´ Î “
´

Ĥ0 ´W `∆V
¯

Ĝ “ ´Ĝ´1
0 Ĝ`∆V Ĝ. (5.22)
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Rearranging equation (5.22) gives the so-called Dyson equation,

Ĝ “ Ĝ0 ` Ĝ0∆V Ĝ. (5.23)

The Dyson equation is an implicit equation for the operator Ĝ that can be solved
self-consistently via Ĝ “ Ĝ0 ` Ĝ0∆V Ĝ0 ` Ĝ0∆V Ĝ0∆V Ĝ0 ` . . . . By introducing
the scattering path operator T̂ “ ∆V ` ∆V Ĝ0∆V ` . . . , equation (5.23) can be
rewritten as an explicit operator equation,

Ĝ “ Ĝ0 ` Ĝ0T̂ Ĝ0. (5.24)

In the next step it will be shown, how an approximation for the perturbed wave
function can be found. It is assumed, that a solution φ0 for the unperturbed system

is known, which fulfils the equation
´

Ĥ0 ´W
¯

φ0 “ 0. The solution of the perturbed

system φ can be constructed from the unperturbed solution via,

φ “ φ0 ` δφ. (5.25)

Using the definition Ĝ0 “ ´
´

Ĥ0 ´W
¯´1

and the eigenvalue equation

´

Ĥ0 ´W `∆V
¯

φ “ 0, (5.26)

the following relation can be found,

´

Ĥ0 ´W `∆V
¯

pφ0 ` δφq “ ∆V φ´ Ĝ´1
0 δφ “ 0. (5.27)

With the help of equation (5.27) the so-called Lippmann-Schwinger equation can
be formulated,

φ “ φ0 ` Ĝ0∆V φ. (5.28)

The Lippmann-Schwinger equation is often used to solve the full-potential single-
site scattering problem by taking into account the solution of the spherically sym-
metric problem as φ0 and treating the non-spherical parts of the potential as a
perturbation ∆V [7, 30]. From this approach it is possible to construct a set of
integral equations, which can be solved iteratively, via

φ “ φ0 ` Ĝ0∆V φ0 ` Ĝ0∆V Ĝ0∆V φ0 ` Ĝ0∆V Ĝ0∆V Ĝ0∆V φ0 ` . . . . (5.29)

The iterative solution of the Lippmann-Schwinger equation is also known as
Born-series.
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6. Relativistic scattering theory

6.1. Introduction

Within this chapter, basics of the relativistic multiple-scattering theory will be ex-
plained, which are needed for the implementation of a relativistic KKR method.
The main formalism of the relativistic KKR method is similar to the non-relativistic
KKR method, which was introduced shortly within Section 2. It was shown that
the electron density, which is the main quantity within methods based on density
functional theory, can be obtained from the trace of the multiple-scattering Green
function. After decomposing the space into distinct scattering centres, the multiple-
scattering Green function itself can be constructed from the regular and the ir-
regular single-site scattering solutions at each scattering centre within the unit cell.
Therefore, the main focus of the next sections will be the accurate solution of the
single-site scattering problem. First of all, it will be shown how the Kohn-Sham-
Dirac equation, which is a partial differential equation can be transferred into a set
of coupled first-order ordinary differential equations by expanding the solution into
spin-angular functions. To treat non-spherical potentials within this approach it is
necessary to expand the potential term within the Kohn-Sham-Dirac equation into
spherical harmonics, which will be explained afterwards. For each scattering centre
it is assumed that the potential is non-zero within a finite distance and zero outside.
Therefore, the solution of the Dirac equation for free electrons is important for the
normalization of the regular and the irregular single-site scattering solution, by defin-
ing two linearly independent solutions outside of the scattering centre. In connection
to the general theory of the single-site scattering problem, the numerical solution of
the underlying differential equations will be illustrated. Finally, it will be explained
how the relativistic multiple-scattering Green function can be constructed. In con-
trast to the non-relativistic theory a so-called left-hand side solution of the single-site
scattering problem is necessary for this construction. It will be explained how such
a solution can be obtained. Last but not least, a relativistic formulation of Lloyds
equation will be derived which can be used for an accurate integration over the den-
sity of states to estimate the Fermi energy. If the Fermi energy is known, the
charge density can be calculated analogously to equation (2.11).
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6.2. The radial Dirac equation for an arbitrary single-site
scattering potential

The origins of the formulation of a relativistic density functional theory go back to
the work of MacDonald and Vosko [131] and Ramana and Rajagopal [132] in
1979. Using atomic Rydberg units (~ “ 1, m “ 1

2 , c “ 2
α « 274) the corresponding

Dirac or Kohn-Sham-Dirac equation for a magnetic system [3, 133] is given by

„

´ic α̃ ¨∇` 1

2
β̃c2 ` Ĩ4Veffprq ` β̃σ̃ ¨Bprq ` α̃ ¨Aprq



φqprq “Wφqprq. (6.1)

Here, the quantum number q is an abbreviation for pκ, µq. Instead of using the
vector operator π̂ “ p̂ ´ eA pr, tq it is assumed in the following that the magnetic
field Bprq “∇ˆAprq is only coupling to the electron spin and orbital magnetism is
neglected [131, 134]. Using this approximation the Dirac equation for an arbitrary
potential Ṽ prq “ Ĩ4Veffprq ` β̃σ̃ ¨B is given by

„

´ic α̃ ¨∇` 1

2
β̃c2 ` Ṽ prq



φqprq “Wφqprq. (6.2)

By introducing the spin-orbit operator K̃, the kinetic energy term ´ic α̃ ¨∇ can be
transferred to spherical polar coordinates [130, pp. 228] and the Dirac equation
can be written as

„

´ic α̃ ¨ er
ˆ B
Br `

1

r
´ 1

r
β̃K̃

˙

` 1

2
β̃c2 ` Ṽ prq



φqprq “Wφqprq. (6.3)

A solution for (6.3) can be found by expanding φqprq by means of the spin angular
functions χqpr̂q,

φqprq “
ÿ

q1

ˆ

gq1qprqχq1pr̂q
ifq1qprqχq1pr̂q

˙

, (6.4)

with
χqpr̂q “

ÿ

ms

Cmsq Y µ´ms
l pr̂qξms . (6.5)

In the above equation, Cmsq is an abbreviation for the Clebsch-Gordan-coefficients,
Cmsq “ C pl, 1{2, j; pµ´msq, msq, which can be found in Table 6.1. Furthermore, ξms
are the Pauli spinors with components ξαms “ δαms , q “ p´κ, µq and Y m

l pr̂q denote
the complex spherical harmonics [Ge1, Appendix].

For compactness, the matrix σ̃r is introduced as follows,

α̃ ¨ er “
ˆ

0 σ̃r
σ̃r 0

˙

, σ̃r “ σ̃ ¨ er. (6.6)
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j κ ms “ ´1
2 ms “ 1

2

l ´ 1
2 l

b

l`µ` 1
2

2l`1 ´
b

l´µ` 1
2

2l`1

l ` 1
2 ´l ´ 1

b

l´µ` 1
2

2l`1

b

l`µ` 1
2

2l`1

Table 6.1.: Clebsch-Gordan-coefficients according to Strange [130, p. 57].

Using the approach (6.4) for the Dirac equation (6.2) two coupled differential equa-
tions arise,

I: cσ̃r

˜

B
Br `

1

r
` K̃

r

¸

ÿ

q1

fq1qχq1 `
ˆ

Ṽ ` ` c2

2

˙

ÿ

q1

gq1qχq1 “W
ÿ

q1

gq1qχq1 ,

(6.7)

II: ´cσ̃r
˜

B
Br `

1

r
´ K̃

r

¸

ÿ

q1

gq1qχq1 `
ˆ

Ṽ ´ ´ c2

2

˙

ÿ

q1

fq1qχq1 “W
ÿ

q1

fq1qχq1 .

(6.8)

For the potential, the abbreviation Ṽ ˘ “ Ĩ2Veffprq ˘ σ̃ ¨ Bprq is used. The spin
angular functions χq are eigenfunctions of the spin-orbit operator K̃ with eigenvalues

´κ (K̃χq “ ´κχq) and the operator σ̃r has the property σ̃rχqpr̂q “ ´χqpr̂q [130, p.
48, p. 59]. To get rid of the spin angular functions, the orthogonality

〈
χq|χ1q

〉 “ δq1q

can be taken into account. By multiplication of χ:q2 from the left to equation (6.7)

and of χ:
q2

to equation (6.8) and integration over angles one finally ends up with

I: ´c
ˆ B
Br `

1

r
´ κ1

r

˙

fq1q ` c2

2
gq1q `

ÿ

q2

V `q1q2 gq2q “Wgq1q, (6.9)

II: c

ˆ B
Br `

1

r
` κ1

r

˙

gq1q ´ c2

2
fq1q `

ÿ

q2

V ´
q1 q2

fq2q “Wfq1q. (6.10)

The equations (6.9) and (6.10) define an infinitely large coupled system of first-order
ordinary differential equations. The components of the wave functions fq1q and gq1q
are coupled via the potential matrices Ṽ ˘. The calculation of the matrix elements
V ˘q1q2 “

〈
χq

ˇ

ˇ Ṽ ˘
ˇ

ˇχ1q
〉

will be illustrated in the next section. A numerical approach
to the solution of (6.9) and (6.10) will be discussed afterwards in Section 6.5.
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6.3. Treatment of the non-spherical potential

6.3.1. Shape-truncation function

To simplify the explanations within this section, it is assumed that the unit cell
of the crystal under consideration consists of one single atom. A similar approach
can be formulated for larger unit cells, where instead of the Wigner-Seitz cell the
Voronoi cell around each atom has to be taken into account. The basic idea of the
KKR method is based on a decomposition of a crystal into distinct atomic regions
[3]. Originally, this was done by means of the so-called muffin-tin approximation,
where a non-overlapping spherical potential was assumed at each atomic site and
the interstitial region was chosen to be constant [43, pp. 24-26]. Another spherical
approach is given by the atomic sphere approximation [135, 136], where the volume of
the atomic spheres is chosen such that it is equal to the volume of the Wigner-Seitz
cell. Within a full-potential approximation, the real shape of the Wigner-Seitz cell
is taken into account, as it is illustrated in Figure 6.1.

In the first step of the KKR method it is necessary to solve the differential equa-
tions (6.9) and (6.10) of the previous section at each atomic site of the unit cell,

a

b

RMT

RBS

Figure 6.1.: Illustration of a hexagonal two-dimensional lattice with lattice vectors
a and b, the hexagonal Wigner-Seitz cell at each site (blue), the
muffin-tin spheres with the muffin-tin radius RMT and the circumscrib-
ing sphere about the Wigner-Seitz cell (orange) with the radius RBS.
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which is called the solution of the single-site scattering problem. Since the atomic
regions are chosen to be disjoint, the potential Ṽ prq in the Dirac equation is cho-
sen to be non-zero within the Wigner-Seitz cell and to be zero outside. To sat-
isfy that the potential is equal to zero outside of the cell, the scattering-potential
Ṽ prq “ Ũ prqΘ prq is constructed as the product of the non-spherical effective poten-
tial Ũ prq “ Ueff prq Ĩ2 ˘ σ̃ ¨B1eff prq which can be calculated from the charge density
at each iteration of the self-consistency cycle and the so called shape-truncation
function Θ prq [137, pp. 55], which is given by

Θ prq “
"

1 for r inside of the cell
0 for r outside of the cell

. (6.11)

Both, the non-spherical effective potential Ũ prq as well as the shape-truncation func-
tion Θ prq can be evaluated into spherical harmonics [85, 86, 30], via

Θ prq “
ÿ

l,m

θlmprqY m
l pϑ, ϕq, and Ũ prq “

ÿ

l,m

ŨlmprqY m
l pϑ, ϕq. (6.12)

Of course, the same can be done with the scattering-potential Ṽ prq, which gives the
equation

Ṽ prq “
ÿ

l,m

ṼlmprqY m
l pϑ, ϕq. (6.13)

From (6.13) it can be verified that the expansion coefficients Ṽlm can be calculated
via Ṽlmprq “

ş

dΩ rY m
l pϑ, ϕqs˚ Ũ prqΘ prq and hence, it is possible to obtain the

following construction of the potential Ṽlmprq from the expansion coefficients Ũlmprq
and θlmprq of the non-spherical effective potential and the shape-truncation function,
respectively,

Ṽlmprq “
ÿ

l1,m1

ÿ

l2,m2

ż

dΩ rY m
l pϑ, ϕqs˚ Y m1

l1 pϑ, ϕqY m2

l2 pϑ, ϕqθl1m1prqŨl2m2prq (6.14)

“
ÿ

l1,m1

ÿ

l2,m2

Gmm
1m2

l l1 l2 θl1m1prqŨl2m2prq. (6.15)

Here, Gm,m
2,m1

l,l2,l1 denote the Gaunt coefficients Gm,m
1,m2

l,l1,l2 “ ş

dΩ pY m
l q˚ Y m1

l1 Y m2

l2 ,
which can be obtained either algebraically by using Wigner-3J-symbols [138, equa-
tion (17)] or numerically by means of the Lebedev quadrature formula [139].

In general, the expansion coefficients θlmprq of the shape-truncation function have
to be calculated from the integral,

θlmprq “
ż π

0
dϑ sin θ

ż 2π

0
dϕ rY m

l pϑ, ϕqs˚Θ prq . (6.16)
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Since the shape function takes on values either 1 or 0, depending if the vector r “
pr, ϑ, ϕq lies inside the Wigner-Seitz cell or not, the value of the integral can be
obtained by specifying the range of integration over ϑ and ϕ for each value of r. By
continuously increasing r it can be verified that the coefficients θlmprq will show a
kink if the sphere with radius r reaches a plane or an edge of the Wigner-Seitz cell.
Those particular values of r are called critical radii. An illustration of the critical
radii for a 2-dimensional rectangular lattice can be found in Figure 6.2. It was shown
by Zaharioudakis [140, 141] that it is possible to obtain analytic expressions for
the expansion coefficients of the shape truncation function for cubic and hexagonal
cells. The numerical evaluation of the coefficients was discussed e.g. by Stefanou,
Akai and Zeller [85] and by Stefanou and Zeller [86].

x

y

0 RMTRcr1 Rcr2RBS

Figure 6.2.: Illustration of the critical radii Rcri for the construction of the shape-
truncation function. RMT denotes the muffin tin radius and RBS is the
radius of the circumscribing sphere of the cell.

6.3.2. The potential matrix

In Section 6.2 the elements of the potential matrix V ˘q1q2 “
〈
χq

ˇ

ˇ Ṽ ˘
ˇ

ˇχ1q
〉

were defined
within the formulation of the differential equations (6.9) and (6.10) for the relativistic
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single-site scattering problem. In the following, an exact equation for V ˘q1q2 will
be derived. For a general effective magnetic field, the potential within the Dirac
equation can be written as a linear-combination of the effective electrostatic potential
Veff and the effective magnetic field Beffprq,

Ṽ ˘prq “ VeffprqĨ2 ˘ σ̃ ¨Beffprq. (6.17)

As explained in the previous section, after taking into account the shape-truncation
function, the potential can be expanded into spherical harmonics,

Ṽ ˘prq “
ÿ

l,m

”

VLprqĨ2 ˘ σ̃xBx,Lprq ˘ σ̃yBy,Lprq ˘ σ̃zBz,Lprq
ı

Ylmpr̂q. (6.18)

According to equation (6.5) the spin-angular functions are defined as a linear com-
bination of the spherical harmonics Y m

l pr̂q and the Pauli spinors ξms . Using this

definition, the matrix element
〈
χq

ˇ

ˇ Ṽ ˘
ˇ

ˇχq1
〉

is given by

V ˘qq1prq “
ÿ

l2m2

ÿ

ms

ÿ

m1s

Cmsq C
m1s
q1 pξmsqTˆ

ˆ
”

Vl2m2prqĨ2 ˘ σ̃xBx,L2prq ˘ σ̃yBy,L2prq ˘ σ̃zBz,L2prq
ı

ξm
1
sˆ

ˆ
ż

dΩ
´

Y µ´ms
l pr̂q

¯˚

Y m2

l2 pr̂q Y µ1´m1s
l1 pr̂q . (6.19)

Within the above equation, expressions like σ̃iξ
ms occur, where a Pauli matrix σ̃i

acts on a Pauli spinor ξms . Hence, it is necessary to verify the following relations,

σ̃x ξ
ms “ ξ´ms , σ̃y ξ

ms “ 2ims ξ
´ms , and σ̃z ξ

ms “ 2ms ξ
ms . (6.20)

By using the orthogonality of the Pauli spinors ξms ¨ ξm1s “ δmsm1s , the Gaunt

coefficients Gm,m
1,m2

l,l1,l2 “ ş

dΩ pY m
l q˚ Y m1

l1 Y m2

l2 and the above equations, it is possible
to obtain

V ˘qq1prq “
ÿ

L2

ÿ

ms

ÿ

m1s

Cmsq C
m1s
q1

“`

VL2prq ˘ 2m1sBz,L2prq
˘

δms,m1s

˘ `

Bx,L2prq ` 2im1sBy,L2prq
˘

δms,´m1s
‰

G
µ´msm2 µ1´m1s
l l2 l1 . (6.21)

Equation (6.21) was implemented within the computer program Hutsepot to calcu-
late the matrix elements V ˘qq1 of the potential matrix. For an effective electrostatic

potential Veffprq and an effective magnetic field Beffprq “ p0, 0, BeffprqqT pointing into
the z-direction, equation (6.21) can be simplified to the following form,

V ˘qq1prq “
ÿ

L2

ÿ

ms

Cmsq Cmsq1 rVL2prq ˘ 2msBL2prqsGpµ´msqm
2 pµ1´msq

l l2 l1 . (6.22)
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In many cases it is sufficient to assume that the effective magnetic field is collinear
within each atomic region. In this case, it is possible to define the local coordinate
system in such a way that the magnetic filed runs parallel to the z-axis of the
Cartesian coordinate system. Hence, equation (6.22) can be applied to calculate the
potential matrix. It was shown by Sandratskii [142, 143] and later by Yavorsky
et al. [144] and Lounis et al. [145] that this approach can even be used for non-
collinear magnetic systems, by introducing different local coordinate systems at each
atomic site.

6.4. Solution of the free Dirac equation and matching
conditions

According to the previous sections, the single-site scattering potential was defined
to be non-zero inside of the Wigner-Seitz cell and zero outside. Therefore, it is
important to know the solution of the radial Dirac equation for a free electron, in
order to have a correct description for the exterior of the cell.

Starting from the differential equations (6.9) and (6.10) and setting Ṽ ` “ Ṽ ´ “ 0,
it is possible to formulate a second order differential equation for gq1q, which can be
denoted by gκ in the following, since it is diagonal in q and q1 and independent of µ,

g2κprq “ ´
2

r
g1κprq `

κpκ` 1q
r2

gκprq ` 1

c2~2

`

W 2 ´m2c4
˘

gκprq. (6.23)

According to Morse and Feshbach [146, p. 622, p. 1465], the solution of the
differential equation (6.23) is given by the spherical Bessel and Neumann functions,

gκprq “ C1jκpkrq ` C2nκpkrq. (6.24)

Analogously, a solution of the small component fκprq can be obtained,

fκprq “ c~k
W `mc2

pC1jκ´1pkrq ` C2nκ´1pkrqq . (6.25)

The spherical Bessel and Neumann functions can be defined via the Bessel func-
tion of the first kind [146, p. 622],

jlprq “
c

2π

r
Jl`1{2 and nlprq “ p´1ql`1

c

2π

r
J´l´1{2 (6.26)

Therefore, the common relations

j´l´1 “ p´1ql`1nl and n´l´1 “ p´1qljl (6.27)

can be evaluated. Since the quantum number κ can take on values either κ “ l or
κ “ ´l ´ 1 it is necessary to distinguish between both cases to formulate a general
l-dependent solution.
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Case 1: κ “ l
Since κ ‰ 0, it is possible to assume l ě 1 for the case κ “ l. The l-dependent result
is similar to (6.24) and (6.25),

gκprq “ glprq “ C1jlpkrq ` C2nlpkrq, (6.28)

fκprq “ flprq “ c~k
W `mc2

pC1jl´1pkrq ` C2nl´1pkrqq . (6.29)

Case 2: κ “ ´l ´ 1

For the case κ “ ´l ´ 1 the relations (6.27) can be applied to obtain

gκprq “ g´l´1prq “ p´1ql pC2jlpkrq ´ C1nlpkrqq , (6.30)

fκprq “ f´l´1prq “ c~k
W `mc2

p´1ql p´C2jl`1pkrq ` C1nl`1pkrqq . (6.31)

The general solution

To summarize the results, it is common to introduce the quantities Sκ “ κ
|κ| and

l “ l ´ Sκ [34, p.105]. Doing so, the general form of the free solutions of the radial
Dirac equation is written as follows,

gκprq “ pAjlpkrq ` SκBnlpkrqq , (6.32)

fκprq “ c~kSκ
W `mc2

`

Ajlpkrq ` SκBnlpkrq
˘

. (6.33)

During the development of the KKR method, at least two different choices for the
constants A and B in the above equations have been established for the construction
of the regular and irregular single-site scattering solutions. They are referred to
as Oak Ridge-Bristol convention, and Jülich convention [3]. To distinguish both
conventions, the single-site scattering solutions are denoted differently. For the Oak
Ridge-Bristol convention the notations Zqprq and Jqprq are commonly used for the
regular and the irregular scattering solution, respectively, whereas Rqprq and Hqprq
are taken within the Jülich convention.

Matching I: Oak Ridge-Bristol convention

The first matching condition was used successfully i.e. by Faulkner and Stocks
[147] and contains the inverse of the single-site t-matrix. According to Huhne et al.
[30], the fully-relativistic regular scattering solution Zoutside

q prq at the outside of the
Wigner-Seitz cell is given by

Zoutside
q prq “

ÿ

q1

„ˆ

jl1pkrqχq1pr̂q
eq1jl1pkrqχq1pr̂q

˙

t´1
q1q ´ ik

ˆ

hl1pkrqχq1pr̂q
eq1hl1pkrqχq1pr̂q

˙

δq1q



. (6.34)
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Here, hlprq denotes the spherical Hankel function of the first kind hlprq “ jlprq `
inlprq. The corresponding irregular scattering solution Joutside

q prq can be constructed
from the spherical Bessel function [30],

Joutside
q prq “

ˆ

jlpkrqχqpr̂q
eqjlpkrqχqpr̂q

˙

. (6.35)

In both equations (6.34) and (6.35), the abbreviation

eq “ ick

E ` c2
Sκ (6.36)

is used.

Matching II: Jülich convention

Since the entries of the single-site scattering t-matrix become very small for large
values of l or |κ|, respectively, it may be more convenient to use a formulation where
the t-matrix itself and not the inverse is taken into account [43, 148]. The relativistic
version was discussed by Huhne et al. [30], where the regular scattering solution is
given by

Routside
q prq “

ÿ

q1

„ˆ

jl1pkrqχq1pr̂q
eq1jl1pkrqχq1pr̂q

˙

δq1q ´ ik

ˆ

hl1pkrqχq1pr̂q
eq1hl1pkrqχq1pr̂q

˙

tq1q



, (6.37)

The associated irregular scattering solution is given by

Houtside
q prq “

ˆ

hlpkrqχqpr̂q
eqhlpkrqχqpr̂q

˙

. (6.38)

Independent of the choice of the matching condition, the single-site t-matrix is an
unknown quantity in general and has to be obtained numerically. Details on this
will be explained in Section 6.5.3.

6.5. Numerical solution of the single-site scattering problem

Within this section, the numerical solution of the differential equations (6.9) and
(6.10) for a non-spherical potential will be discussed. Within the non-relativistic full-
potential KKR method, it was suggested by Drittler [7], to solve the underlying
single-site scattering problem by means of the Lippmann-Schwinger equation, i.e.
in terms of integral equations. In general, these integral equations can be solved
iteratively via a Born series. Under sufficient conditions, it was stated that this
series converges after a few iterations (« 4) [7, p.44, pp. 93-99]. Convergence
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properties of integral equations can be investigated by using the fix-point theorem
of Banach, [149, pp. 69-71] and [150, pp. 24-28]. In the original implementation of
Drittler et al. [8] the integral equations were integral equations of the Fredholm
type [146, pp. 904-905],

ypxq “ y0pxq ` λ
ż b

a
Kpx, sqypsqds. (6.39)

An iterative solution of such an integral equation, converges for

max |Kpx, sq| |λ| pb´ aq ă 1, (6.40)

(see [151, pp,186-188] or [150, pp. 25-26]). Regarding the Lippmann-Schwinger
equation this means that the Born series converges for sufficiently small perturba-
tions ∆V prq and for a sufficiently small absolute value of the energy |E|. However,
it is possible to reformulate the underlying equations in terms of integral equations
of the Volterra type [152, 153]. The iterative solution of integral equations of the
Volterra type,

ypxq “ y0pxq ` λ
ż x

a
Kpx, sqypsqds, (6.41)

already converge for a bounded kernel max |Kpx, sq| ă 8 [150, pp. 26-28], which is
a much weaker condition compared to the iterative solution of the integral equations
of the Fredholm type.

A similar approach like the one of Drittler [7] can also be applied for the rel-
ativistic single-site scattering problem, as could be shown by Huhne et al. [30].
Within the method, it is necessary to introduce a certain cut-off radius close to
the origin in order to avoid problems arising from the treatment of the irregular
single-site scattering solutions. Recently, it was shown by Zeller [154] that this ap-
proximation might become inconvenient for materials like NiTi and that the cut-off
radius can be chosen arbitrarily small by using an analytical decoupling scheme and
a subinterval procedure with Chebyshev interpolations in each subinterval.

Alternatively to the solution via integral equations, it is possible to directly solve
the differential equations (6.9) and (6.10), e.g. by using an Adams-Bashforth-
Moulton predictor corrector scheme [35, pp. 136-141]. The implementation of
such a method will be explained in the following. In contrast to the illustrations
of Zabloudil et al. [34, p. 76], it will be demonstrated in Chapter 8 that both,
the regular as well as the irregular scattering solutions, can be achieved with high
accuracy.
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6.5.1. Transformation of the differential equations

For the numerical solution of the single-site scattering solution it is convenient to
transform the large and the small component of the Dirac equation [34, p. 85] via

fq1qprq “ Qq1qprq
cr

, and gq1qprq “ Pq1qprq
r

. (6.42)

Introducing the energy ε “ W ´ c2 and rearranging the equations (6.9) and (6.10),
the following system of differential equations can be obtained,

I:
d

dr
Qq1qprq “ κ1

r
Qq1qprq ´ εPq1qprq `

ÿ

q2

Ṽ `q1q2prqPq2qprq, (6.43)

II:
d

dr
Pq1qprq “ ´κ

1

r
Pq1qprq `

´ ε

c2
` 1

¯

Qq1qprq ´ 1

c2

ÿ

q2

Ṽ ´
q1 q2
prqQq2qprq. (6.44)

To further simplify the formalism, it can be verified that equations (6.43) and (6.44)
can be reformulated in terms of matrix equations. Therefore, the matrix K̃ is intro-
duced via

K̃ “

¨

˚

˚

˚

˝

κ11 0 0 0
0 κ12 0 0
...

...
. . .

...
0 0 0 κ1qmax

˛

‹

‹

‹

‚

. (6.45)

Furthermore, by defining the matrices

Ũ`prq “ Ṽ `prq ´ ε Ĩ, and, Ũ´prq “
´ ε

c2
` 1

¯

Ĩ ´ 1

c2
Ṽ ´prq, (6.46)

the following compact form of the radial differential equations can be derived,

I:
d

dr
Q̃prq “ 1

r
K̃ ¨ Q̃prq ` Ũ`prq ¨ P̃ prq, (6.47)

II:
d

dr
P̃ prq “ ´1

r
K̃ ¨ P̃ prq ` Ũ´prq ¨ Q̃prq. (6.48)

Since the potential has a Coulomb like behaviour close to the origin, some com-
ponents of the radial wave functions are heavily oscillating for r Ñ 0, especially
for heavy ions. As an example, the large component of the regular scattering wave
function of gold (Au) is illustrated in Figure 6.3. By transferring the radial mesh to
a logarithmic mesh [34, pp. 85] within the muffin-tin sphere it is possible to decrease
the step size near r “ 0 to achieve a higher numerical accuracy. By choosing r “ ex,
the differential equations (6.47) and (6.48) can be transformed to

I:
d

dx
Q̃pxq “ K̃ ¨ Q̃pxq ` ex Ũ`pxq ¨ P̃ pxq, (6.49)

II:
d

dx
P̃ pxq “ ´K̃ ¨ P̃ pxq ` ex Ũ´pxq ¨ Q̃pxq. (6.50)
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In Section 6.3.1, the partition of the radial mesh into distinct regions, bounded by
the critical radii, was introduced. Reffering to Figure 6.2, another radius RMT, called
muffin-tin radius is illustrated. For the numerical solution, the logarithmic mesh is
chosen within the interval rR0, RMTs, where R0 « 10´5 a.u. is the smallest value of
r. Hence, the equations (6.49) and (6.50) have to be solved. For r ą RMT, several
distinct intervals rRMT, RC1s, . . . , rRCi , RCi`1s, . . . , rRCN , RBSs are introduced and
(6.47) and (6.48) have to be solved within each interval. The procedure is constructed
such that the initial values for the solution in the next interval are given by the
solution at the last point of the previous interval.

0 0.5 1 1.5 2 2.5 3 3.5 4

−0.4

−0.2

0

0.2

0.4

0.6

Radius r

r
·g

κ

κ = −1
κ = 1

Figure 6.3.: Large component of the regular scattering solution for gold (Au) for the
quantum numbers κ “ ˘1.

6.5.2. Initial conditions for the regular scattering solution

Previously it was shown, how the radial Dirac equation for an arbitrary potential
can be transformed into a set of ordinary differential equations of first order. To
obtain reasonable initial values for the regular scattering solution, the approach of
Zabloudil et al. [34, pp. 85-86, p. 123] can be used, which will be explained
within this section. Since the non-spherical terms in the potential are present due
to the crystal field of the neighbouring atoms, the potential becomes more and more
Coulomb-like close to the origin. Hence, for |r| Ñ 0, a suitable physical approxi-
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mation is given by

V prq « ´2Z

r
, and Bprq « 0. (6.51)

As explained in the previous section, a logarithmic mesh r “ ex is chosen close to
the origin. Using the approximation (6.51) for the differential equations (6.49) and
(6.50) and taking the limit x Ñ ´8 the following set of differential equations can
be obtained,

I:
d

dx
Qq1qpxq “ κ1Qq1qpxq ´ 2ZPq1qpxq, (6.52)

II:
d

dx
Pq1qpxq “ ´κ1Pq1qpxq ` 2Z

c2
Qq1qpxq. (6.53)

Forming the second derivative of Pq1qpxq and replacing d
dxQq1qpxq by means of (6.52),

a decoupled second order differential equation can be found,

d2

dx2
Pq1qpxq “

ˆ

κ12 ´ 4Z2

c2

˙

Pq1qpxq. (6.54)

According to the theory of ordinary differential equations, (6.54) has two solutions,
which are given by

P 1
q1qpxq “ c1 e

b

κ12´ 4Z2

c2
x

and P 2
q1qpxq “ c2 e

´

b

κ12´ 4Z2

c2
x
. (6.55)

Since
b

κ12 ´ 4Z2

c2
ą 0, it follows that P 1

q1qpxq Ñ 0 for x Ñ ´8 (r Ñ 0) and thus

P 1
q1qpxq can be identified as a solution, which is regular at the origin. Using equation

(6.53), it is possible to derive an equation for the initial values of Qreg
q1q pxq,

Qreg
q1q px0q “ κ1c2

2Z

˜

1`
c

1´ 4Z2

κ12c2

¸

P reg
q1q px0q. (6.56)

Hence, it can be seen that Qreg
q1q px0q is calculated from P reg

q1q px0q. Since the nor-
malization of the scattering solution is done by matching the solution inside of the
Wigner-Seitz cell to the free scattering solutions at the outside of the cell, P reg

q1q px0q
can be chosen arbitrarily, e.g.

P reg
q1q px0q “ r

b

κ12´ 4Z2

c2

0 δq1q. (6.57)
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6.5.3. Normalization of regular scattering solutions and single-site
t-matrix

After solving (6.43) and (6.44) numerically, the regular scattering solution has to be
normalized properly. By construction, the numerical solution within the scattering
potential has to be equal to the free solution at the outside of the scattering potential
at r “ rBS,

Rinside
q pRBSq “ Routside

q pRBSq. (6.58)

According to section 6.4, two kinds of matching conditions are implemented, as will
be explained in the following.

Normalization according to matching I

The numerical solution of the radial Dirac equation (6.47) and (6.48) or (6.49)
and (6.50) are given in terms of matrix valued functions P̃ prq and Q̃prq with entries
Pq1qprq and Qq1qprq, respectively. It is possible to construct normalized solutions
P inside
q1q prq and Qinside

q1q prq by linear combinations of the numerical solutions via

P inside
q1q prq “

ÿ

q2

Pq1q2prq aq2q, and Qinside
q1q prq “

ÿ

q2

Qq1q2prq aq2q (6.59)

Using the above equations and the convention for the regular scattering solution
according to matching I (6.34), it is possible to obtain the following algebraic system
of linear equations at r “ RBS for each pair of q and q1,

ÿ

q2

”

Pq1q2pRBSq aq2q ´RBSjl1pkRBSqδq1q2t´1
q2q

ı

“ ´ikRBShl1pkRBSqδq1q, (6.60)

ÿ

q2

”

Qq1q2pRBSq aq2q ´RBSceq1 jl1pkRBSqδq1q2t´1
q2q

ı

“ ´ikRBSceq1 hl1pkRBSqδq1q.

(6.61)

By introducing the matrices

ã “  

aqq1
(

, (6.62)

J̃pRBSq “
 

RBSjlpkRBSqδqq1
(

, (6.63)

j̃pRBSq “
 

RBSceqjlpkRBSqδqq1
(

, (6.64)

H̃pRBSq “
 

RBShlpkRBSqδqq1
(

, (6.65)

h̃pRBSq “
 

RBSceqhlpkRBSqδqq1
(

, (6.66)

one can simplify the equations (6.60) and (6.61) by means of a matrix valued equation
of the form

ˆ

P̃ pRBSq ´J̃pRBSq
Q̃pRBSq ´j̃pRBSq

˙ˆ

ã
t̃´1

˙

“
ˆ ´ikH̃pRBSq
´ikh̃pRBSq

˙

. (6.67)
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Figure 6.4.: Logarithm of the single-site scattering t-matrix for the cubic Mathieu
potential (details will be explained in Chapter 8). Used parameters are
U “ 0.5, a “ 2π, E “ 1.5 Ryd.

From the solution of (6.67), the inverse of the single-site scattering t-matrix t̃ as
well as the normalization coefficients aq2q of equation (6.59) can be calculated. As
an example, the single-site scattering t-matrix for the cubic Mathieu potential (see
Chapter 8) is shown in Figure 6.4. Along the diagonal the absolute values of the
entries are decreasing rapidly for increasing value of l. The same holds true for
entries far away from the main diagonal. A similar behaviour can also be found
for the regular single-site scattering solutions P̃ and Q̃. Thus, solving (6.67) is
numerically challenging. To obtain a numerical solution with high accuracy, the
driver routine zgesvxx of the Intel math kernel library (MKL) was used. The method
applies an equilibration of the coefficient matrix [155, pp. 64-71] as well as an
iterative refinement of the solution [156, pp. 121-122].

Normalization according to matching II

Analogously to the derivation of the linear equation system (6.67) for matching I,
a linear equation system for matching II can be derived by means of the Jülich
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convention (6.37), which is given by

ˆ

P̃ pRBSq ikH̃pRBSq
Q̃pRBSq ikh̃pRBSq

˙ˆ

ã
t̃

˙

“
ˆ

J̃pRBSq
j̃pRBSq

˙

. (6.68)

In contrast to matching I the single-site scattering t-matrix t̃ can be obtained directly.
Hence, the inversion of an ill-conditioned matrix can be omitted.

6.6. Initial conditions for the irregular scattering solution

Contrary to the regular scattering solution, where the numerical solution is achieved
by starting at the origin, the irregular scattering solution is obtained by starting at
the boundary sphere and integrating inwards. Therefore, in contrast to the regular
scattering solution, which depends on the single-site scattering t-matrix, the irregular
scattering solution outside of the Wigner-Seitz cell is independent of any unknown
quantities. Thus, the initial values are given analytically.

For matching I, the irregular solution at the outside of the Wigner-Seitz cell
is given by spherical Bessel functions. According to equation (6.35) the initial
conditions for the large and small component are

P ir, I
q1q pRBSq “ δq1q r jlpk RBSq and Qir, I

q1q pRBSq “ δq1q
r c2 k

E ` c2
jlpk RBSq. (6.69)

The irregular scattering solution for matching II is given by spherical Hankel func-
tions at the outside of the Wigner-Seitz cell. Hence, the initial conditions can be
formulated as follows,

P ir, II
q1q pRBSq “ δq1q r hlpk RBSq and Qir, II

q1q pRBSq “ δq1q
r c2 k

E ` c2
hlpk RBSq. (6.70)

6.7. Implementation

In the previous sections, the basics for the numerical solution of the relativistic full-
potential single-site scattering problem were presented. Since it is important for
the tests, which will be explained in Chapter 7 and Chapter 8, an overview about
different implemented solvers will be given during this section. The most important
to mention is the one, which was finally implemented in Hutsepot. The solver is pro-
grammed using Fortran and is based on an Adams-Bashforth-Moulton predictor
corrector scheme with fixed and equidistant step size [157, pp. 74-77]. The order of
the predictor step sp and the corrector step sc is fixed as well but it can be chosen to
be sp “ 1, . . . , 6 and sc “ sp`1, . . . , 12, respectively. To assure that the obtained so-
lution of the Fortran program is reasonable, a second program was developed, which
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ode113 Adams-Bashforth-Moulton predictor-corrector method, variable
step size and variable order 1, . . . , 13, suitable for non-stiff differential
equations [158, 159]

ode15s implicit numerical differentiation formulas, variable step size and vari-
able order 1, . . . , 5, suitable for stiff differential equations [158, 159]

ode45 Dormand-Prince method, explicit Runge-Kutta pair, variable
step size and fixed order 5 [160, 158, 159]

ode23 Bogacki-Shampine method, explicit Runge-Kutta pair, variable
step size and fixed order 3 [161, 158, 159]

GBS Gragg-Bulirsch-Stoer extrapolation method [162, 163]
AB5 Adams-Bashforth-Moulton predictor-corrector method, fixed step

size, order 5 [34, pp. 60-61]
RK4 Runge-Kutta method, fixed step size, order 4 [34, pp. 59-60]

Table 6.2.: Numerical methods for the solution of ordinary differential equations,
used within the Matlab implementation of the fully relativistic single-site
scattering problem.

was implemented in Matlab. The big advantage is that the numerical methods to
solve ordinary differential equations can be switched easily, which allows an efficient
comparison of different techniques. Especially to discuss if a differential equation is
stiff or non-stiff, the performance of methods suitable for stiff and non-stiff equations
can be compared. A list of all used numerical methods including a short description
can be found in Table 6.2. To compare the solution of the differential equations (6.9)
and (6.10) with the solution via integral equations, a third solver was implemented,
which is based on the solution via the relativistic Lippmann-Schwinger equation
[30],

ΦqpE, rq “ Φ̊qpE, rq `
ż

ΩWS

d3r1 ˚̃GpE; r, r1q∆V pr1qΦqpE, r1q. (6.71)

Here, ΦqpE, rq denotes either the regular or the irregular single-site scattering solu-

tion. Φ̊qpE, rq is the solution of the reference system and ˚̃GpE; r, r1q the single-site
Green function of the reference system.

6.8. Left-hand side solution

In the next section, the fully relativistic multiple scattering Green function will
be introduced. It will be shown that besides the ordinary solution or right-hand
side solution of the Dirac equation a so called left-hand side solution of the Dirac
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equation is needed. This issue was initially described by Tamura [133]. Formally,
the left-hand side solution of the Dirac equation can be defined via〈

φL
Q

ˇ

ˇ

´

W ´ H̃
¯

“ 0. (6.72)

Hence, by taking the adjoint of (6.72) the adjoint of the left hand side solution can
be calculated in real space representation by solving the following Dirac equation,

´

W ˚ ´ H̃:
¯

φL
q prq “ 0. (6.73)

Since the matrices σ̃i and α̃i are self-adjoint, the operator H̃: is given by

H̃: “ ic α̃ ¨∇` 1

2
β̃c2 ` Veffprq˚ ` β̃σ̃ ¨B˚. (6.74)

Following the derivation of Tamura [133], the time-reversal operator T̃ can be in-
troduced by

T̃ “ ´i

ˆ

σ̃y 0
0 σ̃y

˙

T̃0, (6.75)

where T̃0 is the complex-conjugation operator. The time reversal operator satisfies
the property T̃ 2 “ ´1̃. Therefore, the inverse is given by T̃´1 “ ´T̃ . Furthermore,
it can be shown that the transformation of the Hamiltonian by means of the time
reversal operator fulfils the relation T̃ H̃p´BqT̃´1 “ H̃:pBq. From this behaviour,
the eigenfunctions of Ĥ: can be estimated via

0 “ pW ´ H̃:qφL
q prq

“ T̃
´

W ´ H̃pVeff,´Bq
¯

T̃´1φL
q prq

“ T̃
´

W ´ H̃pVeff,´Bq
¯

φR̃
q prq. (6.76)

Hence, φR̃
q prq “ T̃´1φL

q prq are eigenfunctions of
´

W ´ H̃p´Bq
¯

. It follows that the

left-hand-side solution can be calculated from the right-hand-side solution of H̃p´Bq
by 〈

φL
Q|r
〉 “ ”

T̃φR̃
q prq

ı:

. (6.77)

Since φR̃
q prq is a right-hand side solution of the Dirac equation with inverted mag-

netic field, the formalism which was introduced in the previous sections can be ap-

plied without restrictions. According to equation (6.4), φR̃
q prq can be written as an

expansion into spin-angular functions. To understand how the time reversal oper-

ator acts on φR̃
q prq, the application of σ̃y to χκ,µpr̂q needs to be investigated. By
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using complex spherical harmonics and the Condon-Shortley phase [164, p. 52]
Y ´ml “ p´1qm pY m

l q˚ and by verifying the relation Cmsκ,µ “ ´SκC´msκ,´µ from table 6.1,
the following equation can be obtained,

σ̃yχκ,µpr̂q “ iSκ p´1qµ`1{2χκ,´µpr̂q˚. (6.78)

Thus, the adjoint left-hand-side solution is given by

φL
Qprq “

ÿ

κ1,µ1

Sκ1 p´1qµ1`1{2

˜

gR̃
κ1,µ1;κ,µprq˚χκ1,´µ1pr̂q

´if R̃
κ1,µ1;κ,µprq˚χ´κ1,´µ1pr̂q

¸

. (6.79)

Finally, to obtain an expression for the left hand side solution, the adjoint of equation
(6.79) has to be derived,

〈
φL
Q|r
〉 “ ÿ

κ1,µ1

Sκ1 p´1qµ1`1{2

˜

gR̃
κ1,µ1;κ,µprqχκ1,´µ1pr̂q:

if R̃
κ1,µ1;κ,µprqχ´κ1,´µ1pr̂q:

¸

. (6.80)

In general it is always possible to obtain the left-hand side solution from the right-
hand side solution of the Dirac equation if no magnetic field is present. For an
arbitrary magnetic field, one needs to solve the single-site scattering problem twice,
for Ĥ pBq and Ĥ p´Bq, respectively.

6.9. Multiple scattering Green Function

In Section 2.1 the non-relativistic KKR method was introduced and the multiple
scattering Green function was given in equation (2.8). A similar form can be found
for the multiple scattering Green function in the fully relativistic KKR method,
[130, pp. 437-440, pp. 443-450] or [165, 30]. According to matching II, where the
regular single-site scattering solutions at the site Rm are denoted by Rm

q pW, rmq and
the irregular single-site scattering solutions are denoted by Hm

q pW, rmq, respectively,
the multiple scattering Green function can be written as

G̃pW ; rn `Rn, rm `Rmq “
ÿ

q,q1

Rn
q pW, rnqG̃nmqq1 pW qRm

q1 pW, rmqˆ

´ δnm
ÿ

q

`

Hn
q pW, rnqRm

q pW, rmqˆθprn ´ rmq

` Rn
q pW, rnqHm

q pW, rmqˆθprm ´ rnq
˘

. (6.81)

In the above equation Rm
q pW, rmqˆ denotes the left-hand side solution, which is a

1ˆ 4 row matrix, whereas Rm
q pW, rmq is a 4ˆ 1 column matrix. The product of two

such matrices, i.e. Hn
q pW, rnqRm

q pW, rmqˆ is a 4 ˆ 4 matrix and hence in contrast
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to the non-relativistic case, where the Green function is a scalar valued function,
the Green function is a 4 ˆ 4 matrix in the relativistic case. In the first part of
the above equation, regular single-site scattering solutions at two different sites Rm

and Rn are combined, which represents the multiple scattering contribution within
the multiple-scattering Green function. Products of the regular and the irregular
single-site scattering solution at the same site, like in the second term of equation
(6.81), represent the single-site scattering contribution.

By introducing the scattering path operator [130, pp. 437-440],

τ̃ ijpW q “ δij t̃
ipW q `

ÿ

k‰i

t̃ipW qG̃0pW qτ̃kjpW q, (6.82)

it is possible to express the multiple scattering Green function in terms of the
scattering solutions Zmq pW, rmq and Jmq pW, rmq according to matching I,

G̃pW ; rn `Rn, rm `Rmq “
ÿ

q,q1

Znq pW, rnqτ̃nmqq1 pW qZmq1 pW, rmqˆ´

´ δnm
ÿ

q

`

Jnq pW, rnqZmq pW, rmqˆθprn ´ rmq

` Znq pW, rnqJmq pW, rmqˆθprm ´ rnq
˘

. (6.83)

6.10. The Lloyd equation

Lloyd’s equation [166, 167] provides a powerful tool for the calculation of the in-
tegrated density of states. It allows an accurate estimation of the Fermi energy,
which is needed for the calculation of the charge density. In the non-relativistic real
space representation, the Green function GpE, r, r1q is a scalar function of the coor-
dinates r and r1. Hence, it commutes with the potential V prq and the general form
of the Lloyd equation can be found in a few steps using elementary mathematics
[168, 152]. Regarding the relativistic case, the Green function and the potential
are matrix valued functions which do not commute in general. Nevertheless, fully
relativistic implementations of the Lloyd equation exist [169, 170]. The goal of
this chapter is to give a general but concise derivation of the Lloyd equation for
non-commuting operators.

Suppose the solution of a reference system is known and the associated Green
function is denoted by Ĝ0pEq. Since the density of states is defined as npEq “
´ 1
π=Tr ĜpEq, the difference of the density of states of the reference system and the

perturbed system can be calculated via

∆npEq “ ´ 1

π
=Tr

”

ĜpEq ´ Ĝ0pEq
ı

“ ´ 1

π
=Tr

”

Ĝ0pEqV̂ ĜpEq
ı

. (6.84)
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The second identity in the above equation can be verified using the Dyson equa-
tion Ĝ “ Ĝ0 ` Ĝ0V̂ Ĝ. Furthermore, from the Dyson equation it follows that

Ĝ “
´

1´ Ĝ0V̂
¯´1

Ĝ0. Using the property that the trace of the product of several

operators is invariant under cyclic permutation (Tr ÂB̂Ĉ “ Tr ĈÂB̂ “ Tr B̂ĈÂ),
one derives

∆npEq “ ´ 1

π
=Tr

„

Ĝ0pEqĜ0pEqV̂
´

1´ Ĝ0pEqV̂
¯´1



. (6.85)

Assuming that the condition
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
Ĝ0V̂

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ă 1 is fulfilled, Von-Neumann’s theorem [149,

pp. 59-60] can be applied, which gives a series expansion for the inverse operator

in terms of
´

1´ Ĝ0pEqV̂
¯´1 “ ř8

n“0

´

Ĝ0V̂
¯n

. In other words, Von-Neumann’s

theorem represents the analogue of the geometric series for linear operators. Using
the Von-Neumann series together with the identity d

dE Ĝ0pEq “ ´Ĝ0pEqĜ0pEq, the
difference of the density of states can be written as follows,

∆npEq “ ´ 1

π
=Tr

«

´
ˆ

d

dE
Ĝ0pEqV̂

˙ 8
ÿ

n“0

´

Ĝ0pEqV̂
¯n

ff

. (6.86)

For the next step, one needs the derivative of Ĝ0V̂ . Due to the trace operation it is
not necessary to discuss if d

dE Ĝ0pEqV̂ and Ĝ0V̂ commute, since cyclic permutation
is allowed anyway. Hence, the trace of the derivative is given by

Tr

„

d

dE

´

Ĝ0pEqV̂
¯n



“ Tr

„

n

ˆ

d

dE
Ĝ0pEqV̂

˙

´

Ĝ0pEqV̂
¯n´1



. (6.87)

Putting together equation (6.86) and (6.87), one ends up with the equation

∆npEq “ ´ 1

π
=Tr

»

–

d

dE

8
ÿ

n“1

´

Ĝ0pEqV̂
¯n

n

fi

fl “ ´ 1

π
=Tr

„

d

dE
ln
´

1̂´ Ĝ0pEqV̂
¯



.

(6.88)
In the second part, the definition of the logarithm for linear operators ln p1´ x̂q “
´x̂´ x̂2

2 ´ . . . is used. By applying the definition of the integrated density of states

∆NpEq “ şE
´8

dε∆npεq, one finally obtains the Lloyd’s equation

∆NpEq “ ´ 1

π
=Tr

”

ln
´

1̂´ Ĝ0pEqV̂
¯ı

. (6.89)
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7. The relativistic Coulomb problem

7.1. Introduction

The solution of the Dirac equation for a Coulomb potential is a standard example
in many books about relativistic quantum mechanics [130, 171, 172]. A compre-
hensive mathematical discussion of the Coulomb-Dirac problem was published by
Swainson and Drake [36, 173, 174]. Unfortunately, all works mentioned here con-
centrate on eigenstates of the Coulomb-Dirac Hamiltonian, i.e. on the regular
solutions. A motivation for studying the Coulomb potential within this thesis can
be verified from Figure 7.1, where the relativistic and the non-relativistic irregular
single-site scattering wave function for a screened Coulomb potential for copper,
obtained from a self-consistent calculation for κ “ ´1 or l “ 0 is shown. Since
relativistic effects are small for copper, both wave-functions appear to be similar far
away from the origin. However, for small values of r the relativistic solution shows a
sudden deviation from the non-relativistic behaviour. Since the screened Coulomb
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Figure 7.1.: Comparison of a relativistic and a non-relativistic irregular single-site
scattering solution (l “ 0, κ “ ´1) for a screened Coulomb potential
of copper.
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potential is approximately similar to a pure Coulomb potential for very small val-
ues of r, and the pure Coulomb potential problem can be solved analytically, the
unexpected asymptotic behaviour of the irregular scattering solution close to the
origin can be explained. Furthermore, using Matlab, different numerical methods for
the solution of the Dirac equation for the Coulomb potential will be discussed and
the choice of an exponential mesh within the muffin-tin sphere will be motivated.

7.2. Asymptotic behaviour

The asymptotic behaviour of the regular and, especially, the irregular single-site
scattering wave functions for r ! 1 can be analysed from the underlying differential
equations, which will be derived in the following. Since the Coulomb potential
„ 1{r is a spherical potential, the expansion into spherical harmonics contains the
spherical component only,

Vlmprq “ ´ 1?
π

Z

r
δl,0δm,0. (7.1)

For spherical potentials, the approach of equation (6.4) decouples with respect to
κ and µ. Furthermore, if no magnetic field is present, the large and the small
component of the relativistic solution of the Dirac equation (6.2) are independent
of the magnetic quantum number µ and can be written as follows,

φκ,µprq “
ˆ

gκprqχκ,µpr̂q
ifκprqχ´κ,µpr̂q

˙

. (7.2)

The associated differential equations for fκ and gκ are given by

„

c2

2
´ 2Z

r
´W



gκprq `
„

κc

r
´ c

r

d

dr
r



fκprq “ 0, (7.3)

„

κc

r
` c

r

d

dr
r



gκprq ´
„

c2

2
` 2Z

r
`W



fκprq “ 0. (7.4)

It remains to solve a linear system of two coupled differential equations, which can be
decoupled corresponding to [36] by a transformation of the wave function according
to

ˆ

g̃κprq
f̃κprq

˙

“
ˆ

1 X
X 1

˙

¨
ˆ

gκprq
fκprq

˙

. (7.5)
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The newly introduced quantities are given by

X “ 2pγ ´ κq
cZ

, (7.6)

γ “
c

κ2 ´ 4Z2

c2
, (7.7)

ε “ W

c
, (7.8)

ω2 “ p c
2
´ W

c
q2. (7.9)

By using (7.5) together with (7.3) and (7.4), two differential equations of second
order can be found,

„

d2

dr2
` 2

r

d

dr
´ γpγ ` 1q

r2
` 2αZε

r
´ ω2



g̃κprq “ 0, (7.10)

„

d2

dr2
` 2

r

d

dr
´ γpγ ´ 1q

r2
` 2αZε

r
´ ω2



f̃κprq “ 0. (7.11)

The differential equations presented above are of the same form as the radial Schrödinger
equation [175, pp. 168]. Approaching the origin r Ñ 0, the angular momentum bar-
riers γpγ` 1q{r2 and γpγ´ 1q{r2 in (7.10) and (7.11), respectively, are the dominant
terms and the contribution of 2αZε{r and ω2 can be neglected. Introducing the
quantities P̃κ “ r g̃κ and Q̃κ “ r f̃κ, the first derivative cancels and the following
differential equations can be obtained,

„

d2

dr2
´ γpγ ` 1q

r2



P̃κprq “ 0, (7.12)

„

d2

dr2
´ γpγ ´ 1q

r2



Q̃κprq “ 0. (7.13)

The solution of both equations can be calculated by assuming rational functions
P̃κprq „ rα1 and Q̃κprq „ rα2 . Forming the derivative

d2

dr2
rα “ αpα´ 1qrα´2, (7.14)

the following two algebraic equations for the coefficients α1 and α2 can be found
from (7.12) and (7.13),

α1pα1 ´ 1q “ γpγ ` 1q and α2pα2 ´ 1q “ γpγ ´ 1q. (7.15)

After solving equation (7.15), it is possible to verify the asymptotic behaviour of the
transformed functions P̃κ and Q̃κ close to the origin, which is given by

P̃κ “ c1r
γ`1 ` c2r

´γ , (7.16)

Q̃κ “ c3r
γ ` c4r

´γ`1. (7.17)
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Since both solutions, the large component gκ and the small component fκ of equation
(7.3) and (7.4) are given as a linear combination of P̃κ{r and Q̃κ{r, the leading term
of the irregular single-site scattering solution, which is singular at the origin, is given
by r´γ´1 in both cases. To confirm the solution behaviour for r ! 1, a double
logarithmic plot of the numerical solution for Z “ 79, c “ 2

α , and various values for
κ is illustrated in Figure 7.2. The predicted asymptotic behaviour is clearly revealed.

Referring to Figure 7.1 and regarding the special case of an s state (l “ 0 and
κ “ ´1) for a small atomic number 4Z2{c2 « 0, the relativistic irregular solution has
an asymptotic behaviour „ r´2 which is in contrast to the non-relativistic solution
„ r´1. A double-logarithmic plot of the solution, illustrated in Figure 7.1a can be
found in Figure 7.3a. For the s wave function of copper (Z “ 29, κ “ ´1) the

analytical value of γ “
b

κ2 ´ 4Z2

c2
is given by γ « 0.977. To verify, if a similar value

can be observed for the numerical solution of the screened Coulomb potential, the
slope of the linear graph in Figure 7.3a can be calculated and a numerical value of
γ “ 0.951 can be achieved for the minimal radius, which is given by r “ 10´5 for
the present example. To improve the numerical value by extrapolating to r Ñ 0,
the derivative of the solution can be taken into account (see Figure 7.3b). For the
derivative, an exponential behaviour can be observed, which can be fitted by using
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107
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g κ
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κ = −2
κ = 2
κ = −3

Figure 7.2.: Double-logarithmic plot of the real part of a relativistic irregular single-
site scattering solutions for a Coulomb potential (Z “ 79) close to the
origin.
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a function of the form
γprq “ be

logprq
c . (7.18)

By calculating the limit r Ñ 0 a better approximation γ « 0.98 can be found, which
is in very good agreement with the analytical value of γ « 0.977. Hence, from the
considerations of this section, the sudden change of the irregular single-site scattering
wave function for r ! 1 can be explained.
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Figure 7.3.: Asymptotic behaviour of the relativistic irregular scattering solution (l “
0, κ “ ´1) for a screened Coulomb potential of Cu.

7.3. Exact solution

As already mentioned in the previous section, the first derivative in (7.10) and (7.11)
cancels by introducing the quantities P̃κ “ r g̃κ and Q̃κ “ r f̃κ and the following
differential equations remain,

„

d2

dr2
´ γpγ ` 1q

r2
` 2αZε

r
´ ω2



P̃κprq “ 0, (7.19)

„

d2

dr2
´ γpγ ´ 1q

r2
` 2αZε

r
´ ω2



Q̃κprq “ 0. (7.20)

Both equations can be solved in terms of the Whittaker functions Mk,mprq and
Wk,mprq [176, 177], where the solution is given by

P̃κprq “ c1MZαε{ω,g`1{2p2rωq ` c2WZαε{ω,g`1{2p2rωq, (7.21)
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Figure 7.4.: Comparison of the analytical and the numerical solution for a uranium
Coulomb potential.

and

Q̃κprq “ c1MZαε{ω,g´1{2p2rωq ` c2WZαε{ω,g´1{2p2rωq. (7.22)

The analytical solution can be used to test the numerical implementation of the
solver for the single-site scattering problem. Using the transformation matrix of
(7.5), the initial conditions of the regular solution (6.57) and (6.56) as well as the
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initial conditions of the irregular solution (6.69) or (6.70) can be used to determine
the initial conditions of (7.21) and (7.22) for the functions P̃ prq and Q̃prq. Out of it,
the unknown coefficients in (7.21) and (7.22) can be calculated. As an example, the
scattering solutions for κ “ ´1 (l “ 0) for an uranium Coulomb potential (Z “ 92)
are considered. Even though uranium is radioactive, it is the heaviest atom within the
periodic table, which is still occurring naturally in low concentrations on the planet
earth. Due to the large atomic number, relativistic effects are significant. To obtain
scattering solutions an energy of 1 Ry is used. The numerical solution was obtained
using an Adams-Bashforth-Moulton predictor-corrector method of order 5 and
1001 mesh points. According to Figure 7.4, the numerical solution reflects the general
behaviour of the analytical solution. To confirm the investigations of the previous
section, the asymptotic behaviour of the analytic irregular scattering solution can be
discussed. The double logarithmic plot of the large and small component is illustrated
in Figure 7.5. Again, a linear behaviour can be seen and the slope can be calculated
via the derivation of the double logarithmic plot. For r Ñ 0 a value of ´0.741 can
be found for both, the large and the small component. This value matches exactly

to the value of ´γ “ ´
b

κ2 ´ 4Z2

c2
using κ “ ´1, Z “ 92 and c “ 274. The result is

in perfect agreement with (7.16) and (7.17).
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Figure 7.5.: Asymptotic behaviour of the analytic relativistic irregular single-site
scattering solution (l “ 0, κ “ ´1) for a uranium Coulomb poten-
tial (Z=92).
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7.4. Numerical accuracy

Besides the asymptotic behaviour of the relativistic single-site scattering solution
of the Coulomb-Dirac problem, the accuracy for the numerical solution was in-
vestigated. The results in the first part of this section were obtained using Matlab
and different methods for the solution of the differential equation [Ge2], whereas in
the second part the results are achieved using the Fortran implementation within
Hutsepot.

For the test using Matlab, a Coulomb potential with an atomic number of Z “ 79
was used since it represents the element gold (Au). Due to the large atomic mass
and non-negligible spin-orbit coupling, which causes the typical golden colour, it is a
prominent example for relativistic effects. Usually, for KKR calculations, a maximal
angular momentum quantum number lmax “ 3 or lmax “ 4 is used in practice. For
the test which is discussed in the following, this value was slightly increased up to
lmax “ 5, to ensure that the discussion is still valid for a higher value. To obtain a
scattering solution, the energy was chosen to be ε “ 1. For the construction of the
spherical cell, a minimal radius of r0 “ 10´4 and a maximal radius of rBS “ 3 was
used, which is a valid approximation for the usual muffin-tin radius of gold. The
differential equations (6.47) and (6.48) for the Coulomb potential (7.1) were solved
by using the methods illustrated in Table 6.2.

The numerical solutions obtained by using different solvers were compared with a
reference solution, which was obtained by using ode113 and very high accuracy goals.
For the solvers taken from the Matlab ode-suite absolute and relative tolerances were
chosen to be equal and values between 10´1 and 10´10 were used. The maximal
relative error of the numerical solution in comparison to the reference solution was
plotted as a function of the evaluations of the right-hand side of the differential
equation (see Figure 7.6). First of all, it can be verified that the numerical accuracy
for obtaining the regular single-site scattering solution is similar to the results of
the irregular single-site scattering solution. Hence, the following statements can be
given for both solutions. The Matlab solvers ode113 and ode15s are well established
implementations using multi-step methods with variable step size and variable order
[158, 159]. By comparing the performance of ode113, which is a method capable
for non-stiff equations, with the performance of the implicit method ode15s which is
reasonable for stiff equations it is possible to conclude if the underlying differential
equations are stiff. As soon as one deals with coupled first order equations, stiffness
occurs if there are two or more very different scales of the independent variable on
which the dependent variables are changing [92, pp. 727-731]. However, following
Söderlind et al. [178], a precise mathematical definition of stiffness is not present
yet, but the historical and intuitive meaning can be summarized by:

Stiff equations are equations where certain implicit methods, in par-
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Figure 7.6.: Maximal relative error versus number of right-hand side (RHS) evalu-
ations of the Dirac equation for a Coulomb potential using different
methods for the solution (see Table 6.2). The method AB5 was imple-
mented within Hutsepot.

ticular BDF1, perform better, usually tremendously better, than explicit
ones.

According to Figure 7.6, the opposite behaviour for the numerical solution of the
Dirac equation for a Coulomb potential is observed, since the method ode15s
needs to evaluate the right hand-side of the differential equation at least five times
as many as the method ode113. Therefore, the underlying differential equations can
be characterized as non-stiff. The performance of the Dormand-Prince method
(ode45) is very good for crude tolerances and becomes comparable to ode15s for
fine tolerances. The Adams-Bashforth-Moulton predictor-corrector method of
order 5 with a fixed step size (AB5) is rather expensive for high tolerances. But,
due to the higher order, the performance is better in comparison to the methods
of the Runge-Kutta type ode23 and RK4, if high accuracy goals are demanded.
Also, in comparison to ode45, which has the same order, less evaluations of the
right-hand side of the differential equation for high accuracy goals are necessary;
it is therefore more efficient. The implemented Gragg-Bulirsch-Stoer method
with both adaptive order and step-size (GBS) [163] is able to solve the differential
equations with very high orders. But, for the accuracy goals in practice (« 10´8) it
needs about five times as many evaluations of the right hand side of the differential
equation in comparison to ode113.

1BDF is an abbreviation for backward differentiation formulas [35, pp. 323-333].
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Figure 7.7.: Step size for the solution of the Coulomb-Dirac problem using adaptive
methods.

In many implementations of the KKR method, solvers with fixed step size are
used for spherically symmetric atomic potentials, whereas a logarithmic mesh of type
x “ logprq or similar is employed [34]. The reason for this is that the wave functions
are highly oscillating close to the nucleus, and are smooth for larger values of r.
To verify that a logarithmic mesh is a reasonable choice, the step size for adaptive
methods close the origin was investigated (see Figures 7.7a and 7.7b). The step size
during the numerical solution of the Coulomb-Dirac problem using ode113, ode15s,
and ode45 is shown in Figure 7.7a and compared with the step size of a logarithmic
mesh. It can be verified that the step size used by ode45 is similar to the characteristic
of a logarithmic mesh. However, the stair-case-like behaviour of ode113 and ode15s
occurs due to the step-size strategy of the method itself, i.e. the change of the step-
size is avoided as much as possible [158]. Analogously, it is possible to transform
the differential equations (7.10) and (7.11) to a logarithmic scale x “ logprq and to
investigate the varying step size of the methods ode113, ode15s and ode45 for the
numerical solution of the transformed equations. As shown in Figure 7.7b, all three
solvers adopt a constant step size close to the origin (x ă ´5), which again reassures
the choice of a logarithmic scale for methods with a fixed step size.

With the help of the Fortran solver based on the Adams-Bashforth-Moulton
method the accuracy of the single-site scattering t-matrix was investigated, which can
be calculated after obtaining the regular single-site scattering solution numerically.
The differential equations were solved for an energy of ε “ 1, a maximal angular
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Figure 7.8.: Relative deviation of the s-electron contribution (κ “ ´1) of the single-
site scattering t-matrix |∆t´1,´1| calculated with an explicit Adams-
Bashforth method and an implicit Adams-Bashforth-Moulton
method.

momentum quantum number of l “ 3 and an uranium potential with an atomic
number of Z “ 92. In Figure 7.8a the relative deviation of the s-electron contribution
(κ “ ´1) of the single-site scattering t-matrix |∆t´1,´1| for an increasing number
of radial mesh points is illustrated for the explicit Adams-Bashforth method of
various orders without an application of an implicit corrector. Within this example,
the accuracy saturates for an value of « 10´6 which can be achieved using « 1500
mesh points and order 5. The deviation of the t-matrix for lower orders can be
decreased by applying an implicit Adams-Moulton corrector step, as can be seen in
Figure 7.8b. The corrector step can be applied m times, until the solution converges.
In the present example, the solution converges after three iterations.
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8. The relativistic Mathieu problem

8.1. Introduction

A reasonable test for a full-potential KKR method is given by the solution of the
Schrödinger equation or the Dirac equation for the periodic Mathieu potential,

V prq “ ´U0 pcospaxq ` cospayq ` cospazqq . (8.1)

For the non-relativistic full-potential KKR method, band structure calculations for
the Mathieu potential were communicated by Yeh et al. [179]. A test of the im-
plemented relativistic full-potential method within the computer program Hutsepot
will be discussed in the following. After the expansion of the Mathieu potential
into spherical harmonics is derived in the first section, a discussion for the numerical
accuracy follows. It will be seen that the Adams-Bashforth-Moulton predictor-
corrector method is a reasonable choice for the solution of the differential equations.
Therefore, the method is used within Hutsepot where the calculation of the band
structure is possible in terms of the Bloch spectral function. A comparison of the
analytical and the numerical band structure follows in the last part.

1V prq

Figure 8.1.: The Mathieu potential in two dimensions.
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8.2. Expansion of the Mathieu potential into spherical
harmonics

For the solution of the differential equations of the single-site scattering problem
(6.9) and (6.10) it is necessary to transform the Mathieu potential from Cartesian
coordinates (8.1) to spherical polar coordinates and to expand the Mathieu poten-
tial into spherical harmonics to calculate the potential matrices Ṽ `prq and Ṽ ´prq
according to Section 6.3.2. Both can be achieved by the following idea [180]. By
rewriting equation (8.1) in exponential form,

V prq “ ´U0

2

`

eiax ` e´iax ` eiay ` e´iay ` eiaz ` e´iaz
˘

(8.2)

it is possible to apply Bauer’s identity,

eik¨r “ 4π
8
ÿ

l“0

l
ÿ

m“´l

iljlpkrqY m
l pr̂qY m

l pk̂q˚, (8.3)

which already gives an expansion by means of spherical harmonics. Introducing the
vectors kx “ pa, 0, 0q, ky “ p0, a, 0q and kz “ p0, 0, aq it is possible to replace the
exponential functions of equation (8.2) according to (8.3). Using the behaviour of
spherical harmonics under the application of the inversion operation,

P̂ pIqY m
l “ p´1qlY m

l , (8.4)

each pair of ki and ´ki can be replaced by

eiki¨r ` e´iki¨r “ 8π
8
ÿ

l“0

l
ÿ

m“´l

cos
´

l
π

2

¯

jlparqY m
l pr̂qY m

l pk̂iq˚. (8.5)

To calculate exact values of Y m
l pk̂iq the associated angles ϑ and ϕ for kx, ky, kz

are tabulated in Table 8.1, where a ą 0 is assumed. For the given angles, values of
Y ´ml pk̂q can be calculated by taking analytic expressions for the spherical harmonics,
which can be found in the book of Varshalovich et al. [181, p. 158],

Y m
l p0, φq “ δm,0

c

2l ` 1

4π
, (8.6)

Y m
l p

π

2
, φq “

#

p´1q l`m2 eimφ
b

2l`1
4π

pl`m´1q!!
pl`mq!!

pl´m´1q!!
pl´mq!! m is even

0 m is odd
. (8.7)

Finally, the expansion of the Mathieu potential into spherical harmonics can be
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k ϑ ϕ

pa, 0, 0q π
2 0

p0, a, 0q π
2

π
2

p0, 0, aq 0 0

Table 8.1.: The associated values of ϑ and ϕ for the different k-vectors.

written in the following compact form,

V prq “ ´?4πU0

8
ÿ

l“0

l
ÿ

m“´l

cos
´

l
π

2

¯?
2l ` 1 rδm,0 ` flms jlpkrqY m

l pr̂q. (8.8)

In the above equation, the algebraic coefficients flm are given by

flm “
# ´

p´1qm2 ` 1
¯

p´1q l2
b

pl`m´1q!!
pl`mq!!

pl´m´1q!!
pl´mq!! m is even

0 m is odd
. (8.9)

The expansion coefficients of equation (8.8) are given in terms of the spherical Bessel
functions jlparq.

8.3. Numerical accuracy

Analogously to Section 7.4, where the numerical accuracy was discussed for the
Coulomb potential, the Matlab implementation of the single-site scattering solver
is used to discuss the numerical solution of the differential equations (6.47) and
(6.48) for the Mathieu potential [Ge2]. Analogously to Yeh et al. [179], the lattice
constant was chosen to be a “ 2π and the pre-factor U0 was set to U0 “ ´0.5. The
expansion of the solution in terms of spin-angular functions was evaluated up to an
maximal angular momentum quantum number of lmax “ 5. Due to the high value
of lmax the matrices P̃ and Q̃ in (6.9) and (6.10) are of dimension 72ˆ 72. For the
investigation of the numerical accuracy the methods illustrated in Table 6.2 were
taken into account.

Analogously to Section 7.4, the numerical solutions obtained by using different
solvers were compared with a reference solution, which was obtained by applying
ode113 and very high accuracy goals. The results by means of maximal relative
error versus number of evaluations of the right-hand side of the differential equation
are shown in Figure 8.2. Whereas the general behaviour of the different methods
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Figure 8.2.: Maximal relative error versus evaluations of the right-hand side of the
Dirac equation for a Mathieu potential using different methods for
the solution (see Table 6.2). The method AB5 was implemented within
Hutsepot.

compared to each other is similar for regular and irregular single-site scattering so-
lutions, it can be verified that for a particular method and the same number of
evaluations of the right-hand side of the differential equation the maximal relative
error for the regular solution is smaller in comparison to the irregular solution by
approximately 2 orders of magnitude, which is due to the very high absolute values
of the irregular single-site scattering solutions close to the origin. Analogously to
the discussion of the Coulomb potential in Section 7.4, the underlying differential
equations for the Mathieu potential can be regarded as non-stiff, since the perfor-
mance of the method ode113 is much better than the performance of the implicit
method ode15s [178]. Furthermore, the performance of the Adams-Bashforth-
Moulton predictor-corrector method of order 5 (AB5) is worse than the explicit
Runge-Kutta methods RK4 and ode45 for crude tolerances but becomes more ef-
ficient if high accuracy goals are required, which is in agreement with the results
of Section 7.4 as well. Especially for the irregular solutions ode23 fails to give a
reasonable solution for an appropriate amount of evaluations of the right-hand side
of the differential equation.

The differential equations (6.47) and (6.48) are characterized by the effective po-
tential. Since the Mathieu potential is known analytically, methods with adaptive
step-size like ode113 are a reasonable choice. In general, the effective potential within
each iteration of the KKR method is given on a discrete mesh. Thus, a method with
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a fixed step size is appropriate, since interpolations of the potential between mesh
points are avoided. For the Mathieu potential, it can be verified (see Figure 8.2)
that the numerical solution of the full-potential single-site scattering problem can be
obtained by linear multi-step methods for non-stiff equations, e.g. by applying an
Adams-Bashforth-Moulton predictor-corrector method. Therefore, the method
AB5 was implemented within the computer code Hutsepot.

Next to the solution via differential equations, the solution of the Dirac equation
for a Mathieu potential was investigated by means of integral equations. The
implementation was done analogously to the publication of Huhne et al. [30] (for
details see [Ge2]). For the integration, the trapezoidal rule as well as the Simpson
rule [182, pp. 309] was used. In Figure 8.3 the maximal relative error of the solution
is plotted versus the number of iterations within the Born series for the solution
of the Lippmann-Schwinger equation. It can be seen that the maximal relative
error saturates quickly and the Born series converges after three iterations. This is in
perfect agreement with the observation of Drittler [7] for the non-relativistic method.
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Figure 8.3.: Maximal relative error versus number of iterations within the Born
series for the solution of the Dirac equation for a Mathieu potential
by means of integral equations.
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Since the deviation from the exact solution is dominated by the error of the numerical
quadrature, the accuracy of the solution can be improved by either increasing the
number of mesh points for the quadrature or by improving the integration scheme,
e.g. using the Simpson rule instead of the trapezoidal rule. In this way the maximal
relative error can be decreased by about one order of magnitude for the same number
of points, where the integrand is evaluated.

8.4. Band structure

In Section 8.3 it was shown that the Adams-Bashforth-Moulton predictor cor-
rector method can be used to solve the Dirac equation for a Mathieu potential.
Therefore, this method was implemented within the computer code Hutsepot. To
test the full-potential implementation the band structure for the Mathieu problem
was calculated by means of the relativistic version of the Bloch spectral function
(compare equation (2.12)),

ABpk,W q “ ´ 1

π
Im Tr

»

–

ÿ

RjPL

eik¨Rj

ż

d3rj G̃prj , rj `Rj ,W q
fi

fl . (8.10)

The results for different values of lmax are presented in Figure 8.4. Again, the values
a “ 2π for the lattice constant as well as U0 “ ´0.5 for the strength of the potential
were taken. To achieve sharp bands within the plot of the Bloch spectral function
a small imaginary part of the complex energy δ “ 10´3 was used as well as a large
number of energy points, NE “ 800. Furthermore, to compare the Bloch spectral
function, a second band structure was calculated using a plane-wave approach [180].
Since the Mathieu potential itself is given as a linear combination of plane waves
(8.2), this approach converges rapidly and gives accurate results. It can be seen that
high values of lmax are needed for the calculation of the Bloch spectral function, to
obtain a result, comparable to the plane-wave band structure. However, high values
of lmax are critical within a full potential method, since the evaluation of the potential
into spherical harmonics has to be performed up to lpot “ 2 lmax and according to
equation (6.15) the shape-truncation functions has to be evaluated up to an maximal
angular momentum quantum number of lshape “ 2 lpot “ 4 lmax. Nevertheless, the
Bloch spectral function for lmax “ 4 reflects the general behaviour of the plane-wave
band structure. Problems occur especially for high energy values, where undesired
splitting of energy bands can be found.

Still, it has to be pointed out that the reasonable calculation of the energy bands by
means of the newly developed code within Hutsepot does not only verify the successful
implementation of a solver for the relativistic single-site scattering problem for non-
spherical potentials, but also the proper implementation of the multiple-scattering



8.4. Band structure 83

(a) lmax “ 2 (b) lmax “ 3

(c) lmax “ 4

ky

kz

kx
X

M

Γ

R

(d) Brillouin zone

Figure 8.4.: Comparison of the relativistic Bloch spectral function calculated with
Hutsepot (black) and a band structure calculated by means of a plane-
wave approach (blue) for the Mathieu potential.

formalism of the KKR method. Furthermore, it ensures the correct calculation of
the shape truncation function, which is needed for the computation of the Bloch
spectral function.
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9. The electronic structure of PbTe and
SnTe

9.1. Introduction

Investigations of tellurides, especially lead telluride (PbTe) and tin telluride (SnTe)
have been performed for decades. Alloys of both materials (PbxSn1´xTe) were widely
used as infrared detectors during the late 1960s and early 1970s [37]. Although,
PbxSn1´xTe detectors are easy to prepare and very stable, they were replaced by
HgxCd1´xTe devices later on. During the 1990s, PbxSn1´xTe on Silicon (Si) was in-
vestigated for the usage as a photovoltaic infrared sensor [183]. Furthermore, PbTe
and SnTe play an important role in the fabrication of thermoelectric materials. Es-
pecially by alloying, e.g. with bismuth (Bi) or antimony (Sb) a high figure of merit
can be reached [184, 185]. Recently, SnTe attracted great attention due to its elec-
tronic structure. In comparison to other semiconducting materials, band inversion
at the L-point can be seen. This particular property lead to the experimental re-
alization of a topological crystalline insulator in 2012 [38, 39]. The band inversion
at the L-point for SnTe is a relativistic effect and is caused by spin-orbit coupling.
Within this chapter, the electronic structure of SnTe and PbTe is discussed as it was
calculated by means of the relativistic extension of Hutsepot. Furthermore it will be
shown that band inversion can be controlled by alloying of SnTe and PbTe as well
as by applying hydrostatic pressure or uniaxial strain.

9.2. Crystal structure

At room temperature, both materials PbTe and SnTe occur in rock salt structure
with the space group Fm3m (225). An illustration of the crystal structure can be
found in Figure 9.1a, where the blue atoms represent the cation (Pb, Sn) and the red
atoms the anion (Te). The primitive cell of the structure is shown in Figure 9.1b.
To obtain better convergence properties within the KKR method two additional
empty spheres were added. For the rock salt crystal structure, only one independent
lattice constant a has to be determined. The equilibrium lattice constants were
calculated using the VASP code together with the PBEsol-GGA exchange correlation
functional [88]. In comparison to the experiment, larger values are achieved, meaning
6.560Å for PbTe and 6.408Å for SnTe [186]. Taking into account spin-orbit coupling,
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(a) Cubic arrangement of atoms in the rock salt
crystal structure.

(b) Primitive cell of the rock salt crystal struc-
ture with two additional empty spheres
(green).

Figure 9.1.: The rock salt crystal structure of PbxSn1´xTe [80].

the values of the lattice constants slightly increase to 6.562Å for PbTe and 6.410Å for
SnTe. The estimated lattice constants are in good agreement with the experimental
values [187], which are given by 6.461Å and 6.318 Å, for PbTe and SnTe, respectively.

9.3. Computational methods

The electronic structure calculations were performed using Hutsepot. The atomic
potentials of the scattering centres were obtained self-consistently by applying the
scalar relativistic approximation [83, 84] together with the atomic sphere approxi-
mation [135]. The evaluation of the Green function in terms of spherical harmonics
was expanded up to a maximal angular momentum of l “ 3. The energy con-
tour along the complex energy plane consisted of 24 points. As an approximation
for the exchange-correlation functional the LibXC[89] implementation of PBE [188]
was used, which is a generalized gradient approximation. To properly simulate the
Pb1´xSnxTe alloy the coherent-potential approximation (see Section 2.2) was ap-
plied. Band structures were calculated in terms of the Bloch spectral function (see
equation (8.10)) by using a fully-relativistic KKR method based on the solution of
the Dirac equation [Ge2].

9.4. Electronic structure

Both materials SnTe and PbTe are narrow band gap semiconductors. Experimental
values for the band gap are between 0.19 eV and 0.32 eV for PbTe and between 0.2
eV and 0.3 eV for SnTe [189, 190, 191]. Illustrations of the Bloch spectral function
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of PbTe and SnTe, calculated using the fully-relativistic KKR method can be seen
in Figure 9.2. Regarding PbTe, the states directly below the Fermi energy can
be allocated to the p-states of tellurium (Te) whereas the states directly above the
Fermi energy are p-states of lead (Pb). The band gap occurs at the L-point, as it can
be seen in Figure 9.2a and Figure 9.2b. The band structure of SnTe is illustrated
in Figure 9.2c. Again, the band gap is located at the L-point, but resolving the
contribution of Sn and Te to the band structure according to Figure 9.2d it can
be verified that an inverted behaviour in comparison to PbTe is observed. That
means, close to the L-point p-states of Sn and p-states of Te are interchanged in a
small region about the Fermi energy. Since the band inversion property of SnTe is

(a) PbTe (b) PbTe

(c) SnTe (d) SnTe

Figure 9.2.: Band structure of PbTe and SnTe calculated using a fully-relativistic
KKR method. The Figures (b) and (d) show the site resolved Bloch
spectral function. Yellow denotes the anion contribution (Te) and black
the cation contribution (Pb, Sn).
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very important for the realization of crystalline topological insulators [39], it will be
illustrated during the next section, how this property can be tuned by alloying and
by applying hydrostatic pressure.

9.5. Influence of alloying and hydrostatic pressure on band
inversion

To better understand the band inversion property of SnTe, the band gap energy for
the alloy PbxSn1´xTe was investigated for different concentrations x and different
lattice parameters between 6.3Å and 6.7Å. The band gap energy was estimated by
calculating the Bloch spectral function at the L-point within a small energy region
rEF ´∆, EF `∆s (∆ « 0.2eV) about the Fermi energy EF using NE “ 700 energy
points and a small imaginary part for the energy (δ « 10´4) to get sharp peaks.
Since the Green function in Lehmann representation has the form

GpEq “
ÿ

m

|m〉 〈m|
E ´ Em ` iδ

, (9.1)

and the Bloch spectral function is defined as the k resolved imaginary part of the
Green function, it is reasonable to fit the peaks of the Bloch spectral function
using a Lorentzian function [192]

LpEq “ 1

π

C

pE ´ E0q2 ` C2
. (9.2)

Afterwards, the band gap energy can be calculated easily by taking the difference
of the peak positions (E0) of the two peaks next to the Fermi energy. Results of
the band gap energies for different concentrations and different lattice parameters
are illustrated in Figure 9.3. Negative values represent the results for an inverted
band structure. All together the calculations were performed for 11 different concen-
trations and 20 different lattice parameters each, to produce a reasonable dataset.
Since the described procedure fails in the region where the band gap changes sign,
this array was interpolated using Mathematica to obtain a well defined curve with
Eg “ 0.

The equilibrium lattice constants of SnTe and PbTe are sketched via dashed ver-
tical lines. Furthermore, they are connected via a third line which describes the
change of the lattice constants according to the change of the concentration of Pb
with respect to Vegard’s law [193], which is a reasonable approximation for binary
systems, where alloying does not influence the space group of the crystal. Following
the line of Vegard’s law from PbTe to SnTe, it can be seen that with increasing
amount of Sn the band gap energy decreases until the band gap vanishes for a Pb
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Figure 9.3.: The band gap energy as a function of the lattice constant and the con-
centration x of a PbxSn1´xTe alloy.

concentration of x « 60 %. Lowering the lead concentration furthermore will in-
crease the band gap again, but with an inverted band characteristic at the L-point.
Hence, the size of the band gap as well as the band characteristic of PbxSn1´xTe can
be tuned with changing the concentration of Pb. Comparable results can be found
in the literature e.g. in the work of Dimmock et al. [194] or Dixon et al. [195]. The
experimental results published in both works show a strong temperature dependence
of the zero band gap concentration, which can not be modelled in a proper manner
with the used methods.

Starting again with pure PbTe and leaving the concentration constant, a similar
behaviour can be seen for compressing the crystal. Again, compression leads to a
decrease of the band gap until the band gap vanishes at a lattice constant of about
6.42Å. This value corresponds to a lowering of the lattice constant of about 2%, which
can be obtained by applying a pressure of « 4 GPa1. Further compression will open
the band gap again but with inverted band characteristic. In general, compression
of the PbxSn1´xTe will lead to a stronger interaction between the electrons in the

1The pressure was calculated from the Murnaghan equation of states, which is given by

ppV q “
B0

B1

«

ˆ

V

V0

˙´B1

´ 1

ff

. (9.3)

The used values for the bulk modulus B0 and for the derivation of the bulk modulus with respect
to the pressure B1 were obtained from calculating the total energy of PbTe and SnTe as a function
of the volume and by fitting the data by means of the Birch-Murnaghan equation of states
[196]. Results are given by B0 “ 51.67 GPa and B1 “ 4.5 for PbTe and by B0 “ 52.38 GPa and
B1 “ 4.44 for SnTe.
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valence band. This interaction leads to a shift of the energy levels and influences the
size of the band gap.

9.6. Influence of uniaxial strain on band inversion

A similar approach like for the investigation of the influence of hydrostatic pressure
on the band inversion property can be used to study the effect of applying uniaxial
strain. According to Figure 9.3, the transition between inverted and non-inverted
band gap occurs at a Pb concentration of 60 %. Therefore the concentrations 100
%, 90 %, 78 % and 60 % were chosen to investigate how uniaxial strain influences
the band gap. For the calculations a cubic cell was chosen, where four Pb or Sn
atoms and four Te atoms are present. The lattice vectors of the cell are given by
a “ pa, 0, 0q, b “ p0, b, 0q and c “ p0, 0, cq, whereas the relation a0 “ b0 “ c0 holds
for the equilibrium lattice constants. The cell was compressed or strained along the
crystallographic c-direction. To obtain the lattice constants a and b it was assumed
that the volume of the unit cell is constant.

The band gap as a function of c for the above mentioned concentrations is shown
in Figure 9.4. It can be verified that both, compression as well as strain leads to a
lowering of the band gap. In both cases, band inversion can be triggered if the change
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Figure 9.4.: Band gap energy of PbxSn1´xTe versus change of the lattice constant c
in units of the equilibrium lattice constant c0 for various concentrations
x of Sn.
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of the lattice constant c is reasonably large. For pure PbTe the band gap vanishes
for the values c{c0 « 0.96 and c{c0 « 1.045. By alloying, the band gap for the
equilibrium lattice constants c0 change and therefore the transition between inverted
and non-inverted band characteristic already occurs for smaller deformations. For a
Pb concentration of 60%, PbxSn1´xTe is metallic at the equilibrium. By applying
uniaxial strain an inverted band gap appears.
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10. Summary

The main focus of the thesis was the implementation of a relativistic full-potential
Korringa-Kohn-Rostoker Green function method within the computer pro-
gram Hutsepot. The central part of the method is the solution of the single-site
scattering problem, where the regular and the irregular scattering solutions are cal-
culated, which are needed for the construction of the multiple-scattering Green
function. In contrast to previous approaches [7, 30] these solutions were obtained by
the direct solution of the underlying differential equations via using a linear multi-
step method, which is possible without the definition of a certain cut-off radius close
to the origin. To ensure that the solution can be obtained with reasonable accuracy,
a comprehensive discussion of the numerics was conducted [Ge2], first, for a spherical
Coulomb potential and, second, for a non-spherical Mathieu potential. Further-
more, the asymptotic behaviour of the irregular single-site scattering solutions close
to the origin was investigated and it could be shown that the non-relativistic limit
of solutions with the quantum number κ “ ´l ´ 1 differs from the non-relativistic
solutions with the associated quantum number l for r ! 1.

Up to now, the relativistic implementation was used, i.e. for the study of elec-
tronic and magnetic properties of ultra-thin Co films on BaTiO3 [Ge3], the investi-
gation of magnetic properties in binary chalcogenides [Ge5] or the study of magnetic
anisotropy of single rare-earth atoms on highly conducting surfaces [Ge6, Ge7]. As
an example for the application of the relativistic method within this thesis, the band
inversion property of SnTe at the L-point was discussed. By using the coherent po-
tential approximation it could be shown that in addition to the size of the band gap
the band inversion can be tuned by changing the concentration x within the alloy
PbxSn1´xTe or by the application of hydrostatic pressure or uniaxial strain.

By using a scalar relativistic KKR method, the electronic and the magnetic struc-
ture of PrMnO3 and CaMnO3 was investigated. It could be verified that both mate-
rials are semiconductors with indirect band gap. For the magnetic structure, it could
be shown that the manganese moments couple antiferromagnetically. The magnetic
ordering is of the A-type for PrMnO3 and of G-Type for CaMnO3. In contrast to the
reference work of Jirak [96] who suggested low praseodymium moments « 0.5µB,
the illustrated calculations predict the high-spin state of praseodymium with a mag-
netic moment of 2µB and a ferromagnetic coupling of praseodymium and manganese
moments. This new approach to the magnetic structure has been measured in recent
neutron-diffraction experiments [97].
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94 10. Summary

In addition to the implementation of the fully-relativistic KKR method, a Mathe-
matica group theory package GTPack was developed [Ge1]. Along with the different
possibilities GTPack can be used for, it can be applied in the area of crystal field
theory [Ge4]. Within this thesis, some of the developments related to crystal field
theory were illustrated and the method was applied to single holmium atoms on a
platinum (111) surface [Ge6]. By assuming that the valence electrons of holmium
form a many particle state with the total angular momentum of 8, it has been shown
that this state splits within the trigonal crystal field induced by the platinum surface
and shows a two-fold degenerate ground state offering an expectation value of the
magnetic moment of ˘8µB perpendicular to the surface. It has been shown analyti-
cally that the transition between both states is forbidden. Hence, high lifetimes can
be expected.



Part IV.

Appendix
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A. Density functional theory

For a non-relativistic quantum many-particle system withNe electrons andNc atomic
cores, the associated Schrödinger equation is given by

Ĥ Ψν pR1, . . . ,RNc , r1, . . . , rNeq “ Eν Ψν pR1, . . . ,RNc , r1, . . . , rNeq . (A.1)

The Hamilton operator Ĥ includes the kinetic energy of the cores T̂c and electrons
T̂e as well as the core-core interaction Vcc, the core-electron interaction Vce, and the
electron-electron interaction Vee,

Ĥ “ T̂c ` T̂e ` V̂cc ` V̂ce ` V̂ee. (A.2)

Assuming that a core with the index i has the mass Mi, the atomic number Zi, and
is located at Ri, and that an electron with the index j and mass m is located at rj ,
the terms of Equation (A.2) can be written as

T̂c “ ´~2

2

Nc
ÿ

i“1

1

Mi
∇2

Ri
, (A.3)

T̂e “ ´ ~2

2m

Ne
ÿ

i“1

∇2
ri , (A.4)

V̂cc “ 1

8πε0

Nc
ÿ

i“1

Nc
ÿ

j“1
j‰i

Zi Zj e
2

|Ri ´Rj | , (A.5)

V̂ce “ ´ 1

4πε0

Nc
ÿ

i“1

Ne
ÿ

j“1

Zi e
2

|ri ´Rj | , and (A.6)

V̂ee “ 1

8πε0

Ne
ÿ

i“1

Ne
ÿ

j“1
j‰i

e2

|ri ´ rj | . (A.7)

Since the mass of the proton is about 1800 times larger then the mass of the electron
it was pointed out by Born and Oppenheimer [197] that the so-called adiabatic
approximation can be applied, which separates the core and the electron solution,

Ψν pR1, . . . ,RNn , r1, . . . , rNeq “ φν pr1, . . . , rNe ; R1, . . . ,RNnq ην pR1, . . . ,RNnq .
(A.8)
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98 A. Density functional theory

In the above equation, Φν is a Ne-electron wave functions which depends on the
variables ri and contains the core coordinates Rj as parameters. Φν can be calculated
by solving the associated electron Schrödinger equation,

´

T̂e ` V̂ce ` V̂ee ` Ec
¯

Φνpr1, . . . , rNeq “ EνΦνpr1, . . . , rNeq. (A.9)

Here, Ec denotes the core-core interaction for a fixed set of vectors Ri. Due to
the electron-electron interaction Vee, a coupling between all independent variables
r1, . . . , rNe in equation (A.9) occurs, and therefore it is not possible to solve it an-
alytically. However, imagining it is possible to solve equation (A.9) numerically for
an oxygen atom on a crude Cartesian grid with 10 points in each direction. Since
oxygen has 8 electrons the wave function is stored on p103q8 “ 1024 points. The
wave function is complex-valued and a complex single-precision variable needs 8 B
of memory. Hence, the crude solution would need « 1025 B “ 1013 TB of memory,
which is impossible on nowadays computers.

An elegant way to overcome this circumstance is given by the approach of density
functional theory. Instead of concentrating on the wave function which depends on
Ne position vectors, it is the goal to concentrate on the ground state density of a
system which depends on one position vector and which is a real valued quantity. The
mathematical background of the theory is given by the two theorems of Hohenberg
and Kohn [198], which can be formulated in the following way:

1. For an interacting electron system, the external potential Vextprq is uniquely
defined up to a constant by the ground state density n0prq.

2. The total energy Erns has a global minimum for the ground state density n0,
meaning

Erns ě Ern0s “ E0 (A.10)

Furthermore, for every chosen density nprq, it is essential that nprq ě 0 and
ş

d3rnprq “ N .

The original proof of the theorems relies on a non-degenerate ground state. However,
it can be shown that the theorems are also valid for a degenerate ground state [47,
pp. 18]. Important extensions are the time-dependent density functional theory
[199], the current density functional theory [200] as well as the relativistic density
functional theory [201, 202].

To obtain the ground state density n0prq the approach of Kohn and Sham [203]
can be used, where the interacting N particle system with a known potential is
mapped to a non-interacting N particle system with an effective unknown potential
Veffprq, but with the same ground-state density. In general, the effective potential
Veffprq can be constructed from the external potential Vextprq the Hartree potential
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I: Many particle system

potential V1 is known

one N -electron function

~Ψ(~r1, . . . , ~rN )

n0(~r)

II: eff. one particle system

N one-electron functions

~ψ1(~r), . . . , ψN (~r)

potential V2 is unknown

Figure A.1.: Illustration of the Kohn-Sham approach, where a interacting N parti-
cle system is related to an effective one-particle system with the same
ground-state density.

VHprq and the exchange-correlation potential Vxcprq, which leads to the effective one-
particle Kohn-Sham equation for the Kohn-Sham wave-function ψiσprq with the
spin quantum number σ,

„

´ ~2

2m
∇2 ` Vextprq ` VHprns; rq ` VxcprnÒ, nÓs; rq



ψiσprq “ εiσψiσprq. (A.11)

An illustration of the idea can be found in Figure A.1. The external potential
Vextprq includes the electron-core interaction as well as the external magnetic field.
The Hartree potential represents the electron-electron interaction and is given by

VHprns; rq “ ´ 1

4πε0

ż

d3r1
npr1q
|r´ r1| . (A.12)

Whereas equations for calculating the external potential and the Hartree potential
can be derived analytically, an exact expression for the exchange-correlation func-
tional is not known. However, two famous approximations will be mentioned at the
end of this section.

The electron density for each spin state σ can be estimated by summation over
Kohn-Sham-orbitals ψiσ, according to

nσprq “
occ.
ÿ

i

|ψiσprq|2 . (A.13)

From the spin polarized electron densities nÒ and nÓ, the total electron density can
be calculated according to

nprq “ nÒprq ` nÓprq. (A.14)
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In the same manner, the magnetisation density can be derived via

mprq “ nÒprq ´ nÓprq. (A.15)

The Kohn-Sham Equation (A.11) is exact if the exchange-correlation potential
VxcprnÒ, nÓs; rq is known. Unfortunately this is not the case and therefore reason-
able approximation for the exchange-correlation potential have to be found. Such
approximations can be obtained, e.g. by finding functionals which reflect the results
obtained by means of quantum Monte Carlo calculations [204]. If the electron density
is slowly varying it can be described locally by the electron density of the uniform
electron gas [205]. This leads to the motivation of the local density approximation
(LDA) with the exchange correlation potential

V LDA
xc prnσs; rq “ εunif.

xc prnσs; rq ` nprqB ε
unif.
xc prnσs; rq
Bnσ . (A.16)

The exchange energy of the uniform electron gas can be found analytically and is
proportional to n1{3. This approach can be improved by including the gradient of the
electron density leading to the so-called generalized gradient approximation (GGA)
[188],

V GGA
xc,σ prnσs; rq “ εunif.

xc prnσs; rq ` nprqB ε
unif.
xc prnσs; rq
Bnσ ´∇

ˆ

nprqB ε
unif.
xc prnσs; rq
B∇nσ

˙

.

(A.17)
According to the problem under consideration, higher approximations can be applied
[72], e.g. meta-GGA [206] or hybrid-functionals [207].



B. The Mathematica package GTPack

The Mathematica group theory package GTPack has been developed for applications
in solid state physics and photonics [Ge1]. It offers more than 150 new commands
which are denoted with GT at the beginning, like GTInstallGroup for the installation
of point groups. The functionality can be characterized by the following areas.

1. Basic group theory and representation theory: The package covers the
installation of the 32 point groups or the installation of arbitrary finite groups
from generators. It is possible to calculate i.e. left and right cossets, normal
divisors, classes or the centre of a group. It covers basic representation the-
ory like the calculation of character tables [108], the generation of matrices
of irreducible representations [208] or direct product representations, or the
computation of Clebsch-Gordan coefficients [209].

2. Electronic structure theory: GTPack automatise the construction and so-
lution of real space and k-space tight binding Hamiltonians in 2- and 3-centre
form [210, 211, 212] and the construction of plane wave Hamiltonians [213, 214].
It allows the group theoretical investigation of calculated band structures and
allocates the states to the related irreducible representations. Furthermore
GTPack includes modules for calculations in the framework of crystal field
theory, like the construction of a crystal field Hamiltonian or the generation of
Stevens operator equivalents [112].

3. Photonics: With the help of the plane-wave approach, it is possible to calcu-
late 2-dimensional photonic band structures. By applying the character projec-
tion operator, it is possible to analyse the symmetry of the electric or magnetic
field and to estimate the related irreducible representation.

4. Crystal structure, lattice and k-space: GTPack offers the possibility to
load, save and to plot crystal structures. The stored information can be used
for electronic structure calculations. GTPack can be applied to estimate the
small groups in k-space, which represent the symmetry operations at certain
high-symmetry points within the Brillouin zone.

5. Auxiliary: Within GTPack quaternions are introduced and the quaternion
algebra is implemented. Furthermore tesseral harmonics and Cartesian spher-
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ical harmonics are added. Furthermore, rotation matrices in spin space can be
constructed.

Within GTPack symmetry elements can be represented by symbols, matrices,
quaternions or Euler angles. Next to ordinary point groups, double groups can be
installed for the investigation of systems with spin-orbit coupling [215].

As an example for GTPackMathematica notebooks related to Section 4.2 and Sec-
tion 4.3 are illustrated in Figure B.1 and Figure B.2. It can be seen that all important
results can be obtained after a few steps using GTPack commands. Starting with
the qualitative discussion, it was explained in Section 4.2 that the decomposition
of the 17-dimensional unperturbed ground-state belonging to the irreducible repre-
sentation D8 of the group Op3q into irreducible representations of the group C3v

has to be investigated for the case that the symmetry is lowered from Op3q to C3v

In[1]:= Needs@"GroupTheory`"D

Installation of the point group C3 v and calculation of the character table.

In[1]:= c3v = GTInstallGroup@"C3v"D

The standard representation has changed to OH3L

Out[1]= :Ee, C
3z

-1
, C

3z
, IC

2D
, IC

2C
, IC

2y
>

In[2]:= ct = 8classes, chars, names< = GTCharacterTable@c3v, GOIrepNotation ® "Mulliken"D

Ee 2 C
3z

-1
3 IC

2D

A1 1 1 1

A2 1 1 -1

E 2 -1 0

C1 = 8Ee<

C2 = :C
3z

-1
, C

3z
>

C3 = :IC
2D
, IC

2C
, IC

2y
>

Out[2]= ::8Ee<, :C
3z

-1
, C

3z
>, :IC

2D
, IC

2C
, IC

2y
>>, 881, 1, 1<, 81, 1, -1<, 82, -1, 0<<, 8A1, A2, E<>

Characters of the angular momentum representation with j=8.

In[3]:= ac = GTAngularMomentumChars@classes, 8D

Out[3]= 817, -1, 1<

Which irreducible representations occur?

In[4]:= GTIrep@ac, ctD

3 A1Å2 A2Å6 E

Out[4]= 83, 2, 6<

Figure B.1.: Example of GTPack illustrating the qualitative discussion of the crystal
field splitting of the 4f7{2 four particle state (J “ 8) of a single holmium
atom on a platinum (111) surface
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due to the crystal field of the platinum (111) surface. After loading GTPack, the
point group C3v can be installed by means of GTInstallGroup, as shown in Figure
B.1. Afterwards, the character table is calculated using GTCharacterTable, where
the irreducible representations are denoted in Mulliken notation [109, 110]. The
characters of the elements in each of the three classes of C3v for the representation
D8 can be estimated with the help of GTAngularMomentumChars. To calculate the
decomposition of D8 into irreducible representations of C3v equation (4.1) can be
used, which is implemented with the module GTIrep.

The quantitative discussion according to Section 4.3 can be found in Figure B.2.
After loading the package and installing C3v by means of GTInstallGroup, the crystal
field Hamiltonian can be constructed with the help of GTCrystalField. To calculate
the matrix Ã of equation (4.7), the functions S[l,m] of the crystal field expansion
can be replaced by matrix elements of the Stevens operator equivalents [112], which
can be calculated using GTStevensOperator. Using crystal field parameters B[l,m]

according to Miyamachi et al. [Ge6] the eigenvalues and eigenvectors of Ã can be
calculated with the Mathematica command Eigensystem. Finally, from the eigenvec-
tors ai, the expected value of the magnetization in z-direction 〈Jz〉 can be calculated
by

〈Jz〉 “
2J`1
ÿ

m“1

ˇ

ˇaim
ˇ

ˇ

2 〈Jm| Ĵz |Jm〉 “
2J`1
ÿ

m“1

ˇ

ˇaim
ˇ

ˇ

2
m, (B.1)

which gives the result illustrated in Figure 4.2.
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In[0]:= Needs@"GroupTheory`"D

Installation of the point group C3 v.

In[1]:= c3v = GTInstallGroup@"C3v"D

The standard representation has changed to OH3L

Out[1]= :Ee, C
3z

-1
, C

3z
, IC

2D
, IC

2C
, IC

2y
>

The total angular momentum of the system is 8.

In[2]:= j = 8;

Calculation of the crystal field hamiltonian.

In[3]:= vcrtmp = GTCrystalField@c3v, 6, GOHarmonics ® "Real"D �. A@l_, m_D ® B@l, mD � r^l

Out[3]= B@0, 0D S@0, 0D + B@2, 0D S@2, 0D + B@4, -3D S@4, -3D +

B@4, 0D S@4, 0D + B@6, -3D S@6, -3D + B@6, 0D S@6, 0D + B@6, 6D S@6, 6D

The tesseral harmonics can be replaced by the matrix elements of Stevens operator equivalents, calculated according to Ryabov, Applied

Magnetic Resonance, Springer Vienna, 2009, 35, 481-494.

In[4]:= vcr = vcrtmp �. S@l_, m_D :> GTStevensOperator@l, m, jD;

The angular part of the matrix A
l

= IΨm
l

, Vcr Ψm'
l M is allready calculated by GTStevensOperators. The radial part is included within the

coefficients B
l

m
. Those can be taken from Miyamachi et al.,  Nature Publishing Group, 2013, 503, 242-246. 

In[5]:= Amat =

SetAccuracy@
vcr �. 8B@0, 0D ® 0, B@2, 0D ® -239.068 * 10^-6, B@4, 0D ® 85.9023 * 10^-9,

B@4, -3D ® 293.446 * 10^-9, B@6, 0D ® 0.186782 * 10^-9,

B@6, -3D ® -1.96786 * 10^-9, B@6, 6D ® 0.630483 * 10^-9<, 20D;

Now, the eigenvalues and eigenvectors of the matrix A can be calculated.

In[6]:= 8ev, evec< = Eigensystem@AmatD �� Chop;

If a
i
 is an eigenvector of the matrix A, then the expectation value < Jz > can be calculated by < Jz >= Ú

m=-l

l
am

i 2
(S

l

m
, Jz S

l

m
). 

In[7]:= Svec@j_D := Table@S@j, mD, 8m, -j, j<D;
Jz@j_D := DiagonalMatrix@Table@m, 8m, -j, j<DD;
eval = TableAvec = Abs@evec@@iDDD^2 * Svec@jD; 9

Expand@vec.Jz@jD.vecD �. S@l_, m_D2
® 1, Hev@@iDD - Min@evDL * 1000=,

8i, 1, Length@evecD<E �� Chop;
In[10]:= TableForm@Sort@eval, ð1@@2DD < ð2@@2DD &D �� Chop,

TableHeadings ® 8None, 8"<Jz> HÑL", "E HmeVL"<<D

Out[10]//TableForm=

<Jz> HÑL E HmeVL
-7.9997095054350 0

7.9997095054350 0

-6.9999662944931 7.7065623650411

6.9999662944931 7.7065623650411

0 16.3255289929368

0 16.3258394803538

-4.99565857723855 24.5806183377632

4.99565857723855 24.5806183377632

-3.99213710896990 31.7345753785788

3.99213710896990 31.7345753785788

0 37.3309658650636

0 37.5195682145235

1.99073857297212 41.5090799788041

-1.99073857297212 41.5090799788041

0.99451156791772 43.9531146737451

-0.99451156791772 43.9531146737451

0 44.7657848927659

2   Temporary Clipboard 0

Figure B.2.: Example of GTPack illustrating the quantitative discussion of the crys-
tal field splitting of the 4f7{2 four particle state (J “ 8) of a single
holmium atom on a platinum (111) surface
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[44] R. Zeller, P. H. Dederichs, B. Újfalussy, L. Szunyogh, and P. Weinberger, The-
ory and convergence properties of the screened Korringa-Kohn-Rostoker method,
Physical Review B, 52, 8807 (1995).
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Experimentelle und theoretische Grundlagen mit Aufgaben, Lösungen und
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[182] H.-R. Schwarz and N. Köckler, Numerische Mathematik, Springer-Verlag
(2011).

[183] H. Zogg, C. Maissen, J. Masek, T. Hoshino, S. Blunier, and A. N. Tiwari,
Photovoltaic infrared sensor arrays in monolithic lead chalcogenides on silicon,
Semiconductor Science and Technology, 6, 12C, C36 (1991).

[184] A. V. Dmitriev and I. P. Zvyagin, Current trends in the physics of thermoelec-
tric materials, Physics-Uspekhi, 53, 8, 789 (2010).

[185] G. J. Snyder and E. S. Toberer, Complex thermoelectric materials, Nature
Materials, 7, 2, 105 (2008).

[186] S. K. Nayak, private communication (2014).

[187] P. Bauer Pereira, I. Sergueev, S. Gorsse, J. Dadda, E. Müller, and R. P. Her-
mann, Lattice dynamics and structure of GeTe, SnTe and PbTe, Physica Status
Solidi (b), 250, 7, 1300 (2013).

[188] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approxima-
tion Made Simple, Physical Review Letters, 77, 3865 (1996).

[189] G. M. T. Foley and D. N. Langenberg, Electronic structure of PbTe near the
band gap, Physical Review B, 15, 4850 (1977).

[190] W. Scanlon, Recent advances in the optical and electronic properties of PbS,
PbSe, PbTe and their alloys, Journal of Physics and Chemistry of Solids, 8, 0,
423 (1959).

[191] R. Tsu, W. E. Howard, and L. Esaki, Optical and Electrical Properties and
Band Structure of GeTe and SnTe, Physical Review, 172, 779 (1968).

[192] E. W. Weisstein, Lorentzian function, From MathWorld - A Wolfram Web Re-
source. http://mathworld.wolfram.com/LorentzianFunction.html (2014).

[193] L. Vegard, Die Konstitution der Mischkristalle und die Raumfüllung der
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