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Introduction

When modeling real world phenomena mathematically one usually starts by building a deter-
ministic model ignoring all random occurrences. However, in many situations a deterministic
view of the problem in question is not satisfactory. Just think of the financial sector, where
from simple observations one finds that stock prices, interest rates, and other financial prod-
ucts have a significant random component. But the same remains true for technical and
natural phenomena. An electronic signal is corrupted by noise, the water level of a river and
the growth of a population change over time with some random effects. Even the expansion
of heat does not follow the deterministic heat equation. Therefore, the need to add a sto-

chastic component in order to make the models more realistic and applicable seems promising.

If a system is modeled by differential equations, the extension to include random effects was
done very successfully by It6 [It644), Tt651], Stratonovi¢ [Str64] and Shorohod [Sko75], who
each developed a stochastic integration calculus based on the Wiener process. Those works
build the foundations of the research area of stochastic differential equations. For the theory
of stochastic differential equations with Wiener noise we refer to the monographs of @ksendal
[@ks03] and Gihman & Skorohod [GWMS14| and references therein.

FIGURE 1. A random path of a Wiener process.

However, since the basic process to all these calculi is the Wiener process which is a pathwise
continuous Markov process, it becomes inadequate as soon as chronological dependencies
or jumps appear. In order to capture long-range or short-range dependence the concept of
fractional Brownian motion was introduced by Mandelbrot & van Ness [MVING8]|. Following

this fundamental work a rich integration theory for fractional Brownian motion was developed
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INTRODUCTION 2

by many authors over the years. A detailed introduction into the theory of stochastic calculus

for fractional Brownian motion can be found in the monograph of Mishura [Mis08].
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FIGURE 2. Sample paths of fractional Brownian motions with short-range de-
pendence (left) and long-range dependence (right).

Another way to extend the original stochastic calculus by It6 is to allow the basic stochastic
process to jump. This can be achieved, for example, by requesting the stochastic process
to be only stochastically continuous. Then, a natural class of processes which fulfills this
assumption and additionally has some nice properties are Lévy processes. The Wiener process
is one example of a Lévy process. But also pure jump processes like the Poisson process or
the compound Poisson process are Lévy processes. Compared to the continuous noise of
the Wiener process or the fractional Brownian motion, jump noise has some fundamentally
different properties. That is why, in some situations one has to separate continuous noise from
jump noise in order to be able to deal with it mathematically. We will see this for example
in Chapter [3| of this thesis. The extension of stochastic calculus to Lévy noise, to be more

precise to square integrable martingales, is due to Kunita & Watanabe [KWG6T7].
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FIGURE 3. Sample paths of a Poisson process (left) and a compound Poisson
process (right).

A recent example where Lévy processes are needed in order to build sound mathematical
models are electricity prices. Veraart & Veraart [VV14] showed using data from the Euro-

pean Energy Exchange that the day-ahead prices indeed jump. For the theory of stochastic
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calculus and differential equations with Lévy noise we refer to the monograph of Applebaum
[App09] and references therein.

Note that the theory can be extended even further in this direction, if one considers a semi-
martingale as the basic process to build a stochastic calculus, as was first done by Meyer
[Mey76]. An introduction into this more general theory can be found in the monographs of
Métivier [Mét82] and Protter [Pro05].

Now we return to the idea from the beginning of building sound mathematical models with the
help of deterministic differential equations. The standard mathematical curriculum consists
of equations that are local in time. This means the dynamic depends only on the current
state of the system. The path the system took to reach this state has no influence on its
future development at all. Quite often those models can only be seen as a first approximation
and have to be improved by allowing terms to depend on past states, in order to make
them more accurate. Just think of population models in biology, delayed reaction models
in chemistry, implementations of control theory models, where a feedback control is always
delayed, and the incubation period, when modeling the spread of a disease. Intuitively it
seems reasonable that those systems have a dependences on past states which are relevant
for their future development. Allowing the evolution of a quantity to depend on its past
states leads to the mathematical concept of differential delay equations or more generally to
functional differential equations. We briefly discuss a simple example here to demonstrate the
effect a delay can have on a system compared to the undelayed model. Therefore, consider

the following logistic growth model

It is well-known that the solution of this nonlinear ordinary differential equation has an

exponentially damped stable equilibrium which is in our case u(t) = 1.
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FIGURE 4. Solution of logistic growth model (blue) and stable state (green).
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Let us now consider a delayed version of the logistic growth model which is discussed in Wu
[Wu96] and reads as follows

v'(t) = vt —o(t 7)),
v(s) =0.1,

where s € [—7,0]. Here, 7 > 0 is the delay which for example could be the duration of
gestation. Depending on the size of the delay 7 the system has either an exponentially
damped stable equilibrium as in Figure [4 an oscillatorily damped stable equilibrium or a
stable limit cycle as shown in Figure
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FIGURE 5. Solution of logistic growth model (blue) and stable state (green).
In red the solution of the delayed logistic growth model: oscillatorily damped
stable equilibrium (left) and stable limit cycle (right).

Hence, we see that a delay can have a dramatic influence onto the dynamics of a system.
Historically the first general differential equations with dependence on past states of the sys-
tem were investigated by Volterra [Vol28, [Vol90]. Later on Krasovskii [Kra63| pointed out
that it may be convenient to investigate delay problems in functional spaces even though the
state variable is a finite-dimensional vector. This turned out to be a very fruitful approach
in developing a strong theory, that has since found application in many feels, see for example
Roussel [Rou96] and Epstein [Eps90| in chemistry, Szydlowski & Krawiec [SKO01] in eco-
nomics, Alexander & Moghadas & Rost & Wu [AMRWOS] in biology, and Makroglou & Li
& Kuang [MLKO6] in medicine. For an introduction into the general theory of functional
differential equations with a finite delay and more examples we refer to Hale & Verduyn Lunel
[HVL93| and Diekmann & van Gils & Verduyn Lunel & Walther [DvGVLW95] and the
references therein. For differential equation with an infinite delay see Hino & Murakami &
Naito [HMNO91].

In this thesis we are interested in dynamics modeled by partial differential equations (PDE),
to be more precise in PDEs which can be rewritten as evolution equations. The basic idea
of evolution equations is to consider a PDE as an ordinary differential equation (ODE) in
an infinite dimensional functional space. From this point of view the differential operators
become linear unbounded operators in the functional space. Hence, this is one of the main
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differences to ODE theory, where the linear operators are all bounded. However, one can still
build a rich theory which is capable of covering many important examples, where the matrix
exponential from ODE theory is replaced by a one-parameter semigroup of bounded linear
operators and therefore this theory is called semigroup theory. For an introduction we re-
fer to the monographs of Engel & Nagel [EN0O] and Pazy [Paz83| and the references therein.

As mentioned above, it is a suitable approach to consider delay differential equations as an
evolution in a functional space. This idea also works well, if a delay appears in a PDE. There
are different approaches to realize this idea. Two of them rely on semigroup theory. The
first one is to consider the evolution in the history space. In this approach the history space
is most often chosen to be the space of continuous functions from the delay interval to the
state space of the PDE. Then, the delay problem can be rewritten as an undelayed evolution
equation. We refer to Wu [Wu96| and the references therein for a detailed introduction into
this approach. However, it turns out that this approach is not the most natural one, espe-
cially for the stochastic case we want to consider. That is why we favor a different semigroup
approach, where the evolution of the delay equation is considered in the product space of
the state space and the history space. Then again, the delay problem can be rewritten as an
undelayed evolution equation, but this time with the following advantages: first, the structure
of the equation remains intact and second, the problem can be formulated in a Hilbert space
setting. For an introduction into this theory we refer to the monograph of Batkai & Piazzera
[BPO5] and the references therein. Examples of PDEs with delay can be found in the two
monographs we already mentioned. For population models with diffusion and delay we refer
to Fragnelli & Tonetto [FT04] and Fragnelli & Idrissi & Maniar [FIMOT].

Similar to the finite dimensional case we can extend the theory from PDEs to stochastic par-
tial differential equations (SPDE). If one applies the same idea as in the deterministic setting,
that is lifting the SPDE to a stochastic evolution equation and this way treat the SPDE as a
stochastic differential equation in an infinite dimensional functional space, a rich theory was
developed with the help of semigroup theory which is still an active field of research today.
The first results were obtained for the Wiener noise case. Those results are summarized in the
monographs of Da Prato & Zabczyk [DPZ92] and Gawarecki & Mandrekar [GM11a), where
one can also find several examples of SPDEs driven by Wiener noise. However, for the same
reasons as in the finite dimensional case the need of more freedom in the choice of the noise
term is apparent. For example Benth & Krithner [BK14] recently modeled forward prices
in commodity markets with the help of an infinite dimensional stochastic evolution equation
driven by Lévy noise. In order to be able to treat those kind of models, an extension of the
existing Wiener theory to Lévy noise is needed. One can find those results in the monograph
of Peszat & Zabczyk [PZ07] and in the references therein. The book is also an excellent
starting point for the young theory of SPDEs driven by Lévy noise which is an active field
of research today, as can be seen for example in the works of Mandrekar & Wang [MW11],
Barth & Lang [BL12], Albeverio & Mastrogiacomo & Smii [AMS13], and Hausenblas & Giri
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[HG13|. However, the theory is not yet that far developed as it is for the Wiener noise case.
For example there is no integration theory for cylindrical Lévy processes yet. First steps have
been undertaken recently by Riedle [Riel4), Riel5| to develop this theory.

In this thesis we investigate stochastic evolution equations with Lévy noise and in this con-
text treat stochastic partial differential delay equations driven by Lévy noise with the help of
semigroup theory. As mentioned above, the deterministic approach presented by Wu [Wu96]
is not the natural choice for a stochastic setting, especially if one considers Lévy noise, where
the paths of the solution can be discontinuous. However, in the case of Wiener noise there
are some results in the finite dimensional setting, see for example van Neerven & Riedle
[vINROT]. But since the approach presented by Bétkai & Piazzera [BP05| has the advantage
that the problem can be formulated in Hilbert spaces, it is a natural starting point for a
stochastic theory. Yet, not much work has been done so far in a stochastic setting using this
approach for delay equations. In the finite dimensional case with Wiener noise Chojnowska-
Michalik [CMT8] showed that a stochastic differential delay equation can be transformed
into a stochastic evolution equation. For SPDEs with delay Cox & Gérajski [CG11] proved
the same equivalence for Wiener noise in a Banach space setting. Bierkens & van Gaans &
Lunel [BvGLO09| investigate the existence of an invariant measure for solutions of stochastic
evolution equations with Wiener noise and mention SPDEs with delays as one example. To
date, applications of stochastic differential equations with a delay are mostly found in the
finite dimensional setting, for example Lu & Ding [LD14] in biology and Appleby & Riedle
& Swords [ARS13] in finance. However, there is a large interest in an applicable theory of
SPDEs with a delay, especially in diabetes research, where one wants to extend the ODE
models with a delay, see for example Makroglou & Li & Kuang [MLKO06], to SPDE models
with a delay. Hence, mathematical research in stochastic delay equations is ongoing until to-
day, see for example in the monographs of Mao [Mao94], Liu [Liu06], Mao & Yuan [MYO06],
Kushner [Kus08] and for more recent results the works of Scheutzow [Sch13], Xu & Pei &
Li [XPL14]|, Gérajski [Gérld], Zang & Li [ZL14], and Zhang & Ye & Li [ZYL14].

Our objective in this thesis is to provide more mathematical results for delayed and unde-
layed SPDEs driven by Lévy noise. Therefore, we build on the results from Batkai & Piazzera
[BPO5|, Chojnowska-Michalik [CMT78]|, and Cox & Goérajski [CG11] and show for the first
time that a delayed stochastic evolution equation can be transformed into an undelayed sto-
chastic evolution equation, if the driving noise is an infinite dimensional square integrable
Lévy martingale. Thus, the semigroup approach also works well, if we consider jump noise.
However, due to the stochastic term involved in the problem only weaker solution concepts
work. That is why, we consider mild solutions. Yet, there is no natural definition of a mild
solution, if we consider a delayed stochastic evolution equation. We resolve this problem
by providing an equivalent solution concept which we call integrated solution. This way we
are able to provide a natural and stochastic meaningful definition of a solution for a delayed
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stochastic evolution equation and link it to the mild solution of the undelayed stochastic evo-
lution equation. Additionally, we extend the setting to include infinite delays. We achieve
this by showing that an infinite delay can be naturally included in the Hilbert space setting.
Therefore, we can treat delayed stochastic evolution equations with finite or infinite delay
driven by Lévy noise as a special case of an undelayed stochastic evolution equation driven by
Lévy noise. Hence, by well-known results from Peszat & Zabczyk [PZ07] the existence and
uniqueness of the solution is guaranteed.

Since we are forced to work with mild solutions, we encounter the problem that they have
no stochastic differentials and may not have a cadlag modification. In other words, the mild
solution of a stochastic differential equation may be a well-defined stochastic process, but it is
not regular enough to apply standard tools from stochastic analysis. To overcome this prob-
lem we provide approximations of the mild solution, where each member of the approximating
sequence has the desired properties and hence, is regular enough to apply stochastic tools like
Ito’s formula. We present two different ideas for an approximation which are both based on
Yosida approximation. The general idea for the first one is to smooth all terms such that they
lie in the domain of the driving linear operator, whereas in the second approximation one
takes the opposite approach and approximates the mild solution with elements from the state
space. While the first approximation scheme has been considered in the literature before, the
proofs are incomplete. We fill this gap by giving a rigoros proof. To the best of our knowledge,

the second approximation represents a new result.

In stochastic analysis the It6 formula which is called transformation formula, if one considers
Lévy noise, is one of the most important tools. As mentioned above, mild solutions are not
regular enough to apply classical results like the transformation formula to them. Therefore,
one is in need of a generalized version which can still be applied to mild solutions. This
generalized version is the main result of this thesis. That is, we prove a rigorous transfor-
mation formula for mild solutions of stochastic evolution equations driven by Lévy noise. In
order to achieve this, we pick up an idea from Ahmed & Fuhrman & Zabczyk [AFZ97], who
compensate the missing regularity of the mild solution by requesting more regularity of the
transformation function. Ahmed & Fuhrman & Zabczyk mention that this idea works for the
Wiener noise case, but do not give a proof. We generalize their idea to the Lévy noise case
and provide all proofs, where the main tool is one of the approximation schemes we showed
before. Doing so, we apply a classical transformation formula to each member of the approxi-
mating sequence. Taking the limit yields the desired transformation formula for mild solutions.

As mentioned above, the transformation formula is one of the most important tools in sto-
chastic analysis. Hence, with the new generalized version for mild solutions at hand we can
apply it to solutions of stochastic evolution equations driven by Lévy noise, too. One classi-
cal application in stochastic analysis, where the transformation formula is needed, is filtering

theory. There have been numerous works on several different settings in filtering theory. The
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field of filtering problems with Lévy noise remains an active field of research until today, as
one can see for example in Ahn & Feldman [AF00], Sornette & Ide [SIO1], Meyer-Brandis &
Proske [MBPO04], Popa & Sritharan [PS09], Grigelionis & Mikulevicius [GM11b], and Frey
& Schmidt & Xu [FSX13]. We consider a linear filtering problem with additive Lévy noise.
For the finite dimensional Wiener noise case Astrém [Ast70] showed that the Ito formula
can be used to transform the filtering problem into a deterministic optimal control problem.
This idea has been applied to several other situations, for example Grecksch & Tudor [GTO0§]
showed an analog result in infinite dimensions with fractional Brownian motion as the noise
term. We apply the idea from Astrém to the case of Lévy noise in infinite dimensions. With
the help of the transformation formula for mild solutions we are able to adjust the argument
to our setting and hence, we show that the filtering problem in the Lévy noise case is also

equivalent to a deterministic optimal control problem.

This thesis is structured as follows. In Chapter 1 we first generalize the result that a deter-
ministic linear evolution equation with a finite delay can be transformed into an undelayed
evolution equation from Batkai & Piazzera [BP05] to the case of an infinite delay. Next, we
show that the analog result remains true in the stochastic case with Lévy noise, where we
consider a semilinear delayed stochastic evolution equation. Since stochastic strong solutions
are impossible for delay equations, we consider mild solutions and equivalent formulations.
From Chapter 1 we conclude that we can treat delayed stochastic evolution equations in the
setting of undelayed stochastic evolution equations. That is why, in the subsequent chapters
we prove results for undelayed stochastic evolution equations and then apply them to our case
of interest.

In Chapter 2 we provide the two different approximations for the mild solution of a stochastic
evolution equation driven by Lévy noise, we mentioned above. The first approximation covers
the case, when the semigroup is a generalized contraction. In this situation the solution has a
cadlag modification. Since this continuity property is desirable when dealing with jump noise,
we treat this case separately. It is well-known that generalized contraction semigroups are
characterized by the Lumer-Phillips theorem to have a ~-dissipative generator. Therefore, we
show for different delay types, if they are ~-dissipative or not. We end Chapter 2 with the
proof of the approximation theorem for the general case. It is noteworthy as explained above,
that the approximation idea as well as the proof differ considerably from the special case of a

generalized contraction semigroup.

In Chapter 3 we prove the main theorem of this thesis. That is a transformation formula for
mild solutions of stochastic evolution equations with Lévy noise. We proceed in three steps.
At first we deduce a transformation formula for well-defined Lévy processes. As mentioned
above, the mild solution is not sufficiently regular to be a well-defined Lévy process and
therefore, we need to ask for more regularity of the transformation function to compensate for

this lacking. That is, if A is the driving linear operator of the stochastic evolution equation we
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request from the transformation function ¢ : H — R, that ¢'(h) € Z(A*) for all h € H, where
H is a separable Hilbert space, A* is the adjoint operator of A, and ¢’ denotes the Fréchet
derivative of ¢. We provide a sufficient criterion for that. In the final step, we prove the
transformation formula for mild solutions of stochastic evolution equations with Lévy noise

using the first approximations from Chapter 2. Doing so we show, if Y is the mild solution of
dY(t) = AY(t)dt + F(t,Y(t))dt + Go(t,Y (t))dWe,(t)
+§,G1(t, Y (t))xN(t,dz), t=>0,
Y(0) = v,
then the following formula holds by Theorem P-a.s.

BV (1) = Bly) + j ARG (Y (52)), Y (5 + | (Y (5)), F(s, Y (5=)reds
f (6/(Y (5-)), Gols, Y (s=))dWay ()
i1 j tr [ (Y (5-)) (Gols, Y (s-))Qb2) (Go(s, Y (s-))Qy %) s
f J, 90 (=) + G5, Y (s)a) = 0¥ (s N (ats. o
f [, 90762+ G5,V (5)a) = 0¥ (5) = Y (52)). Gr (5. (=) vl s

Since the adjoint operator A* of the driving linear operator A appears in the transformation
formula, we close Chapter 3 by calculating the adjoint operators for the most important delay

cases.

In the final Chapter 4 we apply the results from Chapter 3 to solve a linear filtering problem
with additive Lévy noise. Therefore, we first prove a product formula with the help of the
transformation formula for mild solutions. Then, we use this product formula to show that
the filtering problem is equivalent to a deterministic optimal control problem and therefore,

by classical results, has a unique solution.

Finally we decided to collect the most important results from semigroup theory and stochastic
calculus we use throughout the thesis in an appendix. Therefore, a fluent reading of the thesis

should be possible, without constantly consulting further literature.



CHAPTER 1

Abstract Delay Equation

In this chapter we introduce the problem which motivates the theory developed later. We start
by posting a deterministic linear abstract delay equation with infinite delay. We show that, if
we consider classical solutions, it can be equivalently written as an abstract Cauchy problem
in a suitable product space. For the case of a finite delay this was already shown in [BP05].
We build on those results and use very similar arguments. The question of well-posedness is
then reduced to the question of whether the driving linear operator of the abstract Cauchy
problem generates a Cp-semigroup.

After that we consider a stochastic semilinear delay equation with Lévy noise. Again, we will
show that it is equivalent to a stochastic abstract Cauchy problem. But this time the solution
concept is that of mild solutions, which is a much weaker solution concept. This is necessary
due to the stochastic term, since a strong solution of the stochastic Cauchy problem would
already be deterministic. At the end of the chapter we discuss the question of well-posedness

for the stochastic case.

1.1. Deterministic linear case

In [BPO05] the authors treat an abstract linear delay equation with a finite delay. We will
extend those results to the case of an infinite delay in this section. For more flexibility in
the choice of history functions we introduce a time weighted history space. In particular,
we will reformulate the delay problem as an abstract Cauchy problem. For the questions
of well-posedness we will only cite results from [BP05], because the proofs are identical to
the finite delay case. Since the generalization from the finite delay case to the infinite delay
is not that major, we mainly repeat the argumentation of [BP05] and only adjust it when
necessary. We also make heavy use of their notation. Our intention of this detailed review is

that it provides a solid analytical foundation for the stochastic theory presented later.
1.1.1. Setting
In order to formulate the delay problem we introduce some notation and the standing hy-

potheses.

DEFINITION 1.1. With I we denote the time interval where the delay is affecting the dynamics
of the delay equation. It can be either finite, that is I = [—71,0] for some fized T > 0, or
infinite, that is I = R_ := (—0,0].

REMARK 1.2. In case of a finite delay we can assume without lost of generality that I = [—1,0],
by simply scaling the time.

10



1.1. DETERMINISTIC LINEAR CASE 11

DEFINITION 1.3. Let X be a Banach space and consider a function u : I v Ry — X, where
Ry := (0,00). For each t =0, we call the function

u:Isoc—ult+o)eX
history segment with respect to t = 0.
DEFINITION 1.4 (history function). The history function of u is then the function
Ry 2t — uy
on R,.

In order to obtain more freedom in the choice for the decay of the history function we introduce

the following measure.

DEFINITION 1.5 (measure ). Let o € CY(I) with ¢ > €, > 0 and for some T >0

o(r — s)
Vrel Vse|0,T]: ———= < C, < . 1.1
[ ] Q(T) 4 ( )
We define the measure u by
dp = odt,

where dt is the standard Lebesgue measure.

EXAMPLE 1.6. If we set o = 1, then u is the standard Lebesgue measure. Further examples

m

are exponentials like o(t) = e=t and polynomials like o(t) = 1 + (—t)™, where m > 1.

REMARK 1.7. Condition (1.1) guaranties that the weight function doesn’t oscillate too much.
This is natural, since normally the impact of the delay becomes smaller the further it lies in

the past.

Now we introduce the standing hypotheses which build the foundations for the theory pre-
sented here. Assume that

(Hy) X is a Banach space;

(Hy) B: 2(B) € X — X is a closed, densely defined, linear operator;

(H3) Z is a Banach space, such that Z(B) dzdx (where <, means densely, continu-

ously embedded);

(Hy) 1<p<ow, feLy(I;Z;dp) and z € X;

(Hs) @ Wp1 (I; Z;du) — X is a bounded linear operator, called the delay operator; and

(Hg) &, := X x Lp(I; Z;dp).
Under these hypotheses, and for given elements x € X and f € L,(I; Z;du), the following
initial value problem will be called an (abstract) delay equation (with history parameter
1<p<m)

u'(t) = Bu(t)+ Pus, t =0,
(DEP) ’LL(O) = T
U = f.
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Note, that the main difference of (DE),) to a common abstract Cauchy problem is that there
are two driving linear operators. In addition to the usual operator B which acts on the state
space X, there is the linear operator ® which acts on the history space Wpl(I s Z5dp).

Here is the natural notation of a classical solution to (DE)).

DEFINITION 1.8 (classical solution of (DE,)). We say that a function u:I VR, — X is a
classical solution of (DEy) if

(i) ue CHURL;X) n CHRy; X),
(it) u(t) € 2(B) and uy € Wy (I; Z;dp) for all t =0,
(111) u satisfies (DEy) for all t = 0.

REMARK 1.9. Due to the properties of the weight function, o, it is clear that only in the case
of an infinite delay the choice of ¢ matters. For the case of a finite delay the history space
s 1nwariant of o, since the norms are equivalent. This is why we always set o = 1, when the
delay is finite.

REMARK 1.10. The abstract setting allows us to include the two most important kinds of
delays. On the one hand, the discrete delay ®uy := > u(t — h;) and on the other hand, the
average over the delay: §;u(t + 7)dg(7), where g is of bounded variation. We will cover this
in more detail in Section [I.1.3.

1.1.2. Reformulation of the problem

We start by proving a lemma which follows from well-known facts about shift semigroups. It
is going to be the essential tool to rewrite the delay equation (DE,) as an abstract Cauchy
problem. For the case of a finite delay one can find the results in [BP05) Section 3.1]. Here

we prove all the results for the case of an infinite delay.

LEMMA 1.11. In the case of an infinite delay, that is I = R_, let u : R — Z be a function such
that for all a € R u belongs to Wpl((—oo, a); Z;duw). Then, the history function hy : t — ug of
u is continuously differentiable from Ry into L,(I; Z;dp) with derivative

d d
%hu(t) = %Ut.

PROOF.

Let (A, Z(A)) be the generator of the left shift semigroup (7'(t))=0 on the space L, (R; Z; dp),
that is Z(A) = Wpl(R; Z;dp) and A = %. Let t € Ry and fix T' > 1.We extend u)(_c 147] t0
a function v € Wy (R; Z;du) = Z(A), such that

d

Note that for 0 € I = R_ the identity

(T(s)v)(o) =v(s+0) =u(s+0) = us(o) = hy(s)(o)
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holds if and only if s + 0 € (—o0,t + T]. Therefore the identity holds for all s € R with
—0 < s —t < T, in particular it holds for |s — t| < T. This way we find

T+ hv—T(t P
0 = tim | LEFRO=TOV gy,
h=0 h Ly (R; Zsdp)
_ P
 lim Tt+hv-Ttv iT(t)v
h=0 h do Ly (R; Z;dp)
T -T p
> lim (t+hjo My _ iT(t)v
h=0 h do Lyp(I;Zsdp)
_ p
_ lim hu(t +h) = ha(t) im ’
h=0 h do Lp(I;Z;dp)
which implies
i (t) i
at " " e

Moreover, the map t +— %ut = %hu(t) is continuous from Ry into L,([; Z;dp), since the
map ¢t — AT (t)v = T(t)Av is continuous from Ry into L,(R; Z;dp).

O

As a direct consequence of Lemma we can transform classical solutions of (DE,) into

classical solutions of an abstract Cauchy problem.
COROLLARY 1.12. Letu: I URy — X be a classical solution of (DE,). Then the function

%:ﬂ»(ﬁﬂ>e@

from R into &, is continuously differentiable with derivative

Ut) = AUL),

B &
0 &

where % denotes the distributional derivative with domain

where

D(A) = {( ; ) € 9(B) XWI}(I;Z;du):f(O) Zx}.

Thus every classical solution w of (DE,) yields a classical solution of the abstract Cauchy
problem

on &.
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REMARK 1.13. In the definition of the domain of </ we find the expression f(0) = x. This
means that we must be able to evaluate f at zero. This is possible since Wp1 (R_; Z) is embedded
in Co(R_; Z). With the properties of the measure p (continuity and strict positivity of o) one
easily finds that I/Vp1 (R_; Z;dp) is also embedded in Co(R_; Z).

REMARK 1.14. In the first line of the operator matriz &/ we find the delay equation (DE),.
Since the history function is a shift in time the derivative in the second line is natural and we
have shown this in Lemma|1.11. But if one thinks in terms of partial differential equations,

the second line could be interpreted as a transport equation in time.

Corollary shows that every solution of (DE,) gives us a solution of (ACP,). Next,
we show that (DE), and (ACP,) are equivalent in the sense that conversely every classical
solution t — % (t) of (ACP,) is of the form

7 () - ( o ) 7

where the function u is a classical solution of (DE,). We fix the Banach space setting for
(ACP,) by adding the following to our standing hypotheses:

(H7) (o/,2(</)) is the operator on &, defined as
B ¢
0 %
with domain

D(A) = {( ji ) € 7(B) XWI}(I;Z;d,u):f(O) Zx}.

Since we want to apply standard arguments from semigroup theory concerning the connection
of well-posedness of abstract Cauchy problems and generators of Cp-semigroups (see Appendix
in particular Theorem [A.9)), we need to show the closeness of the operator (o, Z(<7)).

LEMMA 1.15. Under Hypotheses (Hy) — (Hy), the operator (o, 2(<)) is closed and densely
defined on &).

PROOF.

Tn Tn

First we prove the closedness. Let ( fn) c 9(4) be a sequence such that ( fn) converges to
(?) € &, and o <”Ji:> = (Bmdffff") converges to <g) € &,

In particular, the sequence (f,) converges to f in the norm topology of the Sobolev space
W]}(I; Z;du). Hence, we have that f € Wp1 (I; Z;du) and %f = g¢. Since the operator
D WI}(I : Z;du) — X is bounded, we have that ®f,, — ®f.

Moreover, by the closedness of B, we have x € Z(B) and Bx = y—® f. Finally, since the space
W, (I; Z,dp) is embedded into C(I,Z) (see Remark [1.13), the sequence x, = f,,(0) converges

to f(0). Hence, f(0) = x and <?) eEP(A), o (?) z) and the operator & is closed.
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Now, we prove the density of (7). Let (Z) € &, and € > 0. First note that Z(B) is dense
in X, thus we can find a 2 € Z(B) such that

|z —ylx <e.
Next, we show that Wpl’O(I; Z;dp) is dense in L,(I; Z; dp), where Wpl,O(I; Z;du) is the closure
of CP(I; Z) in Wy (I; Z; dp). Now let u € Ly(I; Z; dp). This is equivalent to uo'/? € Ly(I; Z).
Since CF(1; Z) is dense in L,(I; Z) we find a sequence u,, € CF(I; Z) such that

Up — up"? in L,(I;Z).

This implies that the sequence @, = upo /P converges to w in Ly(I; Z;du). Since ¢ € Ct
and is always positive we find that @, € C1(I;Z). All that is left to show now is that each
Uy € W;O(I; Z;du). But this is easy to see since

1

(@n(t)) = (un(t)o P (1)) = up(t)e™"/7(t) - Z;un(t)@’l/p(t)@’l(t)@’(t)

and all u,’s and their derivatives have compact support. Thus, we can find g € Wpl,o(f s Z5du),
such that

19— glp <e

Let now h € W, (I; Z; dp) such that h(0) = z and let k € W;},O(L Z;dp) such that |k —hl, < e.
Finally, let f := g+ h — k. We obtain f € W, (I; Z;dp), f(0) =z, and

G- G110 G2 G <

Therefore, the domain Z(</) is dense.
O

In view of Lemma [L.15] we can formulate the following corollary that is a straightforward
consequence of semigroup theory (see Theorem |A.9)).

COROLLARY 1.16. The abstract Cauchy problem (AC'P,) associated to the operator (o, P (<))

on the space &, is well-posed if and only if (/' , 2 (7)) is the generator of a Cy-semigroup
(T (t))t=0 on &,.
In this case, the classical and mild solutions of (AC'P,) are given by the functions

fort =0.
Now, we introduce the following notation.

DEFINITION 1.17. If % is an element of &, we denote its first component by % € X. There-
fore, one can interpret %1 as the canonical projection from &, onto X.

Similarly, by % € Ly(I; Z;dp) we denote the second component of % . Again, this could be
interpreted as the canonical projection from &, onto Ly(I; Z;dpu).
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With this notation in place we can write an element % of &, in the following way
U
U = < 1> :
U
PROPOSITION 1.18. For every classical solution % of (ACP,), the function

) () if t=0
u(t) := { f) i tel (1.2)

is a classical solution of (DE,) and % (t) = us for allt = 0.
PROOF.

Since % is a classical solution of (ACP,), i.e. Z € C1(R;&,) nC(Ry; (7)), it follows that
U, is in CY(Ry; L,(I; Z;dp)) and is a classical solution of the problem

Lu(t) = L), t=0,
U (t)(0) = 24(t), t=0, (1.3)
U0) = f

in the space L,(I; Z;dp). In particular, since Ly(I; Z;dp) 4, Ly(I; X;dp), the function %
is in C*(Ry; Ly(I; X;dp)) and is a classical solution of the problem in Equation (1.3) in the
space Ly(I; X;dp). Note that since

Ut)e Do) = {( ;

for all t > 0 it follows that %(t)(0) = 2 (t).
Now we observe that by definition

) € P(B) x Wy (I; Zydp) : £(0) = x}

U (t+o) fort+o =0,
ft+o0) fort+o <0,

ut(o) =u(t+o0) = {

where f € W)(I; Z; dp) 4, W) (I; X;dp), and f(0) = 2 = 21(0) by assumption. Hence, in the
case of an infinite delay u € W} ((—0,a); X;dpu) for all a € R. We can extend u to a function
in WI},loc(R; X;dp) and by Lemma we have

d d
%hu(t) = %

in the space Ly(I; X;du). Moreover, by definition of u; we have

Up forallt >0

ut(0) = u(t) = 24(t) for all t > 0,
and
ug = f

Hence, the map t — w; is also a classical solution of the problem (1.3)) in the space L,(I; X; dpu).
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Now we define w(t) := uy — %(t) for t = 0. Then w is a classical solution of the problem

%w(t) = %w(t), t>=0,
w(t)(0) = 0, t=0, (1.4)
w(0) =0

in the space L,(I; X;du). Since Equation (1.4) is the abstract Cauchy problem associated to
the generator of the (nilpotent) left shift semigroup on L,(I; X;dp) with initial value zero,
we have that w(t) = 0 for all ¢ > 0. Therefore, uy = %(t) € W, (I; Z; dp) and % (t) = (“é?)
for all t > 0, and wu is a classical solution of (DE,).

U

The equivalence of (DE,) and (ACP,) established above enables us to use methods and results
of semigroup theory in order to deal with the delay problem (DE,).

At present, we transfer the notions of well-posedness and of mild solution, known from abstract
Cauchy problems and semigroups, to (DE),) (see Definition and Definition [A.12).

DEFINITION 1.19 (well-posedness and mild solution of (DE,)).
(i) The problem (DE,) is called well-posed if (ACPy) is well-posed, that is if (<7, D (<))

generates a Co-semigroup on &,.

(it) Suppose (DEy) is well-posed and let (T (t))i=0 be the semigroup generated by the
operator (o, 2(a/)) on &,. Then for every x € X and every f € Ly(I;Z;dp) the
function u defined by Equation is called a mild solution of (DE)).

The following proposition is the equivalent for (DE,) to Proposition for (ACP).

PROPOSITION 1.20. Let u be a mild solution of (DE,). Then u satisfies Sé u(s)ds € Z(B),
Sé usds € I/Vp1 (I; Z;du), and the integral equation

(1.5)

() = x4+ B Sé u(s)ds + @Sé usds for t =0,
IR0 for a.e. tel.

PROOF.
(1) First, we show that

wp = <y(t) <;>>2 (1.6)

for every <?) € &, and every t > 0.
For (?) € 2(4/) the Identity 1) holds by Proposition [1.18, Now, take (;) € &, and

a sequence (?Z) € 9(4) converging to (?) Since the semigroup (7 (t))i=0 is strongly

continuous, the sequence 7 (t) <9}:> converges to 7 (t) (;) in &, uniformly for ¢ in compact
subsets of [0, o).
Now, let
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Since <§ZZ> € 9(4), by Proposition |1.18 we have (u,); = <§(t) (?:))2

For fixed t > 0 and o € [—t,0], we have that

(tn)e(0) = un(t + o) = <9<t+o) <§:>>1 (1.7)

converges to (ﬂ(t +0) (;’i))l = u¢(o) uniformly for o € [—t,0]. Hence, (u,); converges to

u in Ly([—t,0]; X;dp) and we have

-t (20 (1)) - (0 3),

In particular, u; € Ly([—t,0]; Z;dp). From Equation (1.2)) we find that for any ¢t > 0

(9(t + o) (;@:))1 for o e[—t,0],

fn(t+0) for o€ (-0, —t).

(un)i(0) = {
This formula in conjunction with the calculation given in Equation (1.7)) implies that (uy,):(o)
converges to (9 (t+0) (?))1 uniformly for o € [—¢,0]. Moreover, by assumption, (u,)¢
converges to f(t+-) in Ly((—00, —t); Z;dp). Hence, (uy,); converges to u; in LP(I; X; dp) and,

T

by the same argument as above, u; = (9(1&) (f>>2'

(2) Take the first component of the identity

70;)- () [ 70 ) oo

to obtain Equation (|L.5).

THEOREM 1.21. The following assertions are equivalent:

1 15 well-posed.
(i) (DE) is well-posed
(ii) For every (;) € D),
(a) there is a unique (classical) solution u(z, f,-) of (DE,) and
(b) the solutions depend continuously on the initial values, that is, if a sequence
(”Jﬁ:) in 9(4) converges to (i) € 9() in the space &, = X x Ly(I; Z;dp),
then w(zy, fn,t) converges to u(z, f,t) in X uniformly for t in compact intervals.

PROOF.

First we show (ii) = (i). Assume that for every (fc:) € 9(4), Equation (DE,) has a

unique solution u. Then, Corollary [1.12 guarantees that for every <§:> € 9(4) the abstract

Cauchy problem (ACP,) has a classical solution which is unique. It is easy to see that the
solution depends continuously on the initial values. Finally, by Lemma (o7, 2(4)) is
closed and densely defined. Therefore, it generates a Cgp-semigroup on &, by Theorem
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Conversely, if &7 is a generator, we have by Corollary and Proposition that for every

initial value (”}Z) € (/) there is a unique solution u of (DE,) that is given by Equation
(1.2). This implies that the solution depends continuously on the initial values.

O

1.1.3. Well-posedness for the linear deterministic delay problem

We know from the previous section that the question of well-posedness is equivalent to the

question:
When does the operator (&7, Z(4/)) generates a Cp-semigroup on &7

Criteria that answer this question are given in [BPO5| Section 3.3 and Section 3.4] for the
case of a finite delay. Since the proofs don’t change for the case of an infinite delay we will

only state the results here and provide citations for the proofs.

First, we consider the case where the operator B is bounded or, in particular, the space X
is finite-dimensional. Furthermore, we assume that Z = X and therefore have a bounded

operator in the delay term. Which leads us to the following theorem.

THEOREM 1.22. If B e L(X) and ® : WY'P(I; X;du) — X is a bounded operator, then the

operator matrix
B @
o = ( d )
0 %

D) = {( ; ) € X x Wy(I; X;dp) : £(0) —x}

generates a Co-semigroup on the space &, for all 1 < p < c0.

with domain

PROOF.
See [BP05, Throrem 3.23.].

Now, we consider the case where the operator B is unbounded and generates the Cp-semigroup
(S(t))t=0 on X. In the delay term we keep a bounded operator for now, that is Z = X. We
need some more notation before we can formulate the theorem. We denote by (Tp(t))t=0 the
nilpotent left shift semigroup on L, (I; X;du) and Sy : X — L,(I; X;dp) is defined by

S(t+ )z if —t<71<0,
0 it <t

(Sea)(T) = {

Now, we are able to formulate the following theorem.
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THEOREM 1.23. Suppose the operator (B, Z(B)) generates the Cy-semigroup (S(t))i=0 on X
and let @ : I/Vpl (I; X;dp)) — X be a delay operator, where 1 < p < c0. Furthermore, assume
that there exist constants tg > 0 and 0 < q¢ < 1 such that

FO |@(Srx + To(r) f)| xdr < qH < ch >

0

ép

for all ; € 9(). Then, the operator (o7, 2(/)) is the generator of a Cy-semigroup
on &, and (DEy) is well-posed.

PROOF.
See [BP05, Throrem 3.26.].

A large class of delay operators is cover in the following important application of Theorem
Therefore, let n : I — L(X) be of bounded variation and let ® : C(I; X) — X be the

bounded linear operator given by the Riemann-Stieltjes Integral,
®(f) == Ldnf- (1.8)

Since WZ}(I ; X;dp) is continuously embedded in C(I,X), we may note that ® defines a
bounded operator from WI} (I; X;du) to X.

THEOREM 1.24. Let (B, Z(B)) be the generator of a Cy-semigroup (S(t))t=0 on X and let
O be given by (1.8), where 1 < p < . Then, the operator (o, 2()) is the generator of a
Co-semigroup on &, and (DE)) is well-posed.

PROOF.
See [BP05, Throrem 3.29.].

REMARK 1.25. From Theorem and Theorem we see that if we introduce a delay
into a well-posed linear nondelayed Cauchy problem it remains well-posed as long as the delay

operator has a mice structure.

From Theorem [1.23] and Theorem we deduce, like mentioned in the beginning of the

section, that the most important delay operators are included in the setting.

EXAMPLE 1.26. Let By € L(X) and hy € [—1,0] for each k = 1,...,n. When the discrete
delay operator defined by

O(f) == ), Brf(—hx), € W,([~1,0];X),

k=1

is of the form (1.8]). Thus, Theorem can be applied.
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If he LY(I; L(X)), 1 < ¢ < o, the averaging delay operator ® (also called distributed delay)

s given by
B(f) = | hio)f(e)do
Then ® is a bounded operator from LP(I; X) — X and Theorem can be applied.

Finally, we consider the case of an unbounded delay operator. That is ® is an bounded
operator from Wz} (I; Z;dp) to X with Z < X. We have to strengthen the assumption on the
operator B in this case. In particular, we assume that

(B, 2(B)) generates an analytic semigroup (S())i=0 on X (1.9)
and that for some § > wy(B) (the growth bound of B), there exists 9 < %, such that
2((-B+6)") % 74 X (1.10)
Then, we can formulate the counterpart to Theorem

THEOREM 1.27. Suppose the operator (B, 2(B)) fulfills conditions (1.9) and (1.10) and let
D . Wpl(l; Z;dp)) — X be a delay operator, where 1 < p < . Assume that there exist
constants tg > 0 and 0 < g < 1 such that

0

[ 19502+ T < q ( : )

&p

for all ; € 9(4). Then the operator (of, P(</)) is the generator of a Cy-semigroup on
&y and (DE,) is well-posed.

PROOF.
See [BP05, Throrem 3.34.].

Similar to the case of a bounded delay operator we can show an important special case, which
is the counter part to Theorem

THEOREM 1.28. Let 1 < p < o ad let n : I — L(Z,X) be of bounded variation. Let
®:C(I,Z) — X be the bounded linear operator given by the Rieman-Stieltjes Integral

B(f) = | dnf.

Suppose the operator (B, 2(B)) fulfills conditions (1.9)) and (1.10). Then the operator (<7, 2())
is the generator of a Co-semigroup on &, and (DEy) is well-posed.

PROOF.
See [BP05, Throrem 3.35.].
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We close this section by providing some examples of delayed differential equations from [BP05]
Section 3.1 and Section 3.3] that fit into the setting.

ExXAaMPLE 1.29. First we consider an example in finite space dimensions. Let X = C and

consider the initial value problem

u'(t) = §,h(o)d/(t+o)do fort =0,
u(0) = =,
Uuo = f7

where

u:l Ry — C is a function,

1<p<ooand1<q<ooaresuchthat%—k%:l,
h e LY(I)
e zeC and fe LP(I).

This equation is well-posed by Theorem [1.23,

Next, we consider a heat equation on an open and bounded domain G < R™ with smooth

boundary and Neumann boundary conditions.
dru(t,s) = Ault,s) + X" ciou(t — hiys), t=
N(t,s) = 0, t>0,s€dG, (1.11)
U(t,S) = f(tas)a le
for some constants ¢; € R and h; € [0,1]. Moreover, assume that f € Lo(I x G). In order to
write (1.11)) as an abstract delay problem, we introduce

o X :=Ls(G),
e the operator B is defined by 2(B) := {g € W4 (G) : Ag € Lo(G) and % =0 on 0G}
and Bf := Af,

o the space Z := WH(G),
e the delay operator ® : W3 ([—1,0]; Z) — X defined as
Of = > ci0if(—ha),
i=1n
and

. 2= f(0,).
Then equation (L.11|) is well-posed by Theorem .

The next example is a linear diffusion equation with delayed reaction term in an open and
bounded domain G < R™ with smooth boundary.

dwu(t,s) = Ault,s)+c§ut+o0,s)dg(o), t=>0, seq,
ut,s) = 0, t>0,s€dq, (1.12)
u(t, s) = f(t,s), tel,se@,
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where ¢ is a constant and g : I — [0,1], is a function of bounded variation. Moreover, assume
that f € La(I x G). In order to write (1.12)) as an abstract delay problem, we introduce
o X :=1yG) =2,
e the operator (B, Z(B)) as the variational Laplacian with Dirichlet boundary condi-
tions,
e the delay operator ® : Wi(I; X) — X defined as

Of i CL F(0)dg (o).

Then, equation (1.12)) is well-posed by Theorem m

Finally, we present a second-order equation with delay. We consider the following one-

dimensional wave equation on (0,1). For simplicity we write Hg(0,1) instead of Wy (0,1).

?u(t,s) = Ault,s) + c10su(t — h1,8) + cadpu(t — ha,s), t =0, se(0,1),
u(t, s) = f(t,s), dwu(t,s) = g(t,s), te0,—1],s€(0,1), (1.13)
u(t,0) =u(t,1) =0, tel,sed,
where we assume the following for the initial data
e £(0,-) € H}(0,1) and g(0,-) € La(0,1)
e the map t — f(t,-) is in La([—1,0]; H}(0,1)), and
e the map t — g(t,-) is in La([—1,0]; L2(0,1))
In order to write as an abstract delay problem, we introduce
o X :=H}0,1) x Ly(0,1) =: Z,
0 Id
A0
with domain D(B) := (H}(0,1) n H%(0,1)) x H(0,1)
e the function Ry 3t — u(t) = u(t,-) € L2(0,1), and
e the delay operator ® : Wi (I; X) — X defined as

o x|\ 0 0 x| 0 0
£ )\ c10udn, cadp, f )\ e10u9(=h1) cah(~ha) )’

where d_p, and 0_p, are the point evaluations in —hy and —ha, respectively.

Then, equation (1.13)) is well-posed by Theorem m

e the operator B :=
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1.2. Stochastic semilinear case with Lévy noise

In this section, we introduce the main problem of this work. We build on the model presented
in the previous section and extend it to a semilinear stochastic delay problem. The driving
stochastic process will be a Hilbert space valued square-integrable Lévy-martingale. Our goal
is to show that also in the stochastic case the transformation of the stochastic delay problem
into a stochastic Cauchy problem is possible. Due to the stochastic nature of the problem
we will have to use weaker solution concepts, since our setting doesn’t allow for a meaningful
strong solution. That is why we work with mild solutions. We start by introducing the
complete setting for the stochastic case and then give definitions for the solutions of the two
problems. After that we will show that they are equivalent. At the end of the section, we
discuss the question of well-posedness.

1.2.1. Setting

In the stochastic case we consider the evolution on the finite time interval [0, 7] with 7" > 0
and we define the entire time interval of the past and the evolution time to be Z := I u [0, T].
Furthermore, we have to reformulate the problem in a Hilbert space setting. Therefore, we

restate the standing hypotheses for the stochastic case. Assume, that

(SHy) H is a separable Hilber space;

(SH2) B: 9(B) € H— H is a closed, densely defined, linear operator;

(SHs3) Z is a Hilbert space such that 2(B) 4 7% H,

(SHy) f e Lo(I; Z;dp) and h e H;

(SHs) ® : WH(I; Z;du) —> H is a bounded linear operator, called the delay operator;
(SHg) & := H x Lo(I; Z;dp);

(SH7) (o7,2(47)) is the operator on & defined as

B @
o = ( d ) ,
0 4
with domain

D) = {( ;L ) € 2(B) x Wi(I; Z;du) : f(0) = h};

(SHg) (2, F, Fi=0,P) is a filtered complete probability space;

(SHy) U is a separable Hilbert space and (M(t));>0 is a U-valued square-integrable Lévy
martingale equipped with its natural filtration (F;):>¢ and with the covariance op-
erator Q);

(SHyp) F : Q x [0,T] x & — H is a Pr ® B(&)/PB(H )-measurable function satisfying
Lipschitz and growth conditions, that is for all ¢t € [0,7"] and u,v € & there exists a
constant C'r > 0, such that for a.e. w e Q2

||F(w,t, u) - F(w>t7v)|‘H < CFHU - UH&?
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and there exists a constant kp such that for a.e. w € Q and all t € [0,T], u € & it
holds
|F(w,t,u)|g < kp(l+|u

&)-
(SH11) G is amap from  x [0,T] x &, which takes values in the set of all linear operators
from U into H, such that

QA x[0,T] x & 3 (w, t,v) — G(w, t,v)u

is a Pr ® #(&2)/PB(H)-measurable function for all v € U and GQ% takes values
in Ligg) (U, H), where the space Lg)(U, H) is the space of all Hilbert-Schmidt
operators from U to H. Furthermore, we assume G to be Lipschitz and linear

bounded, that is there exists a constant C'¢ > 0 such that for a.e. w € Q2

H(G(w7t7 u) - G(wvtvv>)Q§HL(H5)(U,H) < CG'HU — V&

for all t € [0,T] and u,v € &, and there exists a constant kg such that for a.e. w €
and all t € [0,T], u e & it holds

1
HG(w,t,u)Q2 HL(HS)(U,H) < kG(l + HuHéDQ)

REMARK 1.30. For the definition of Pr and of the stochastic integral with respect to a square-
integrable Lévy process see Appendiz B in particular Section [B.3,

Under these hypotheses, and for given elements h € H and f € Lo(I; Z;du), the following
initial value problem will be called a stochastic (abstract) delay equation

dX(t) = BX(t)dt+ ®X.dt + F(t, X (t), X,)dt + G(t, X (t), X,)dM(t), t > 0,
(S—DE){ X(0) = h,
X, = f

Our goal is to show that, just like in the deterministic case, a solution of problem (S — DE)

is equivalent to a solution of the following stochastic abstract Cauchy problem

aY (t) = Y ()dt +.Z(t,Y(t)dt +G(t,Y(t)dM(t), t=0,

(Sp — ACP) Yo - (h)
i

M(t) = ( Mo(t) ) Pl i ( F(t,z(a)l,ug) )Jnd Gt u) im ( G(t,qél,ug) 8 )

1.2.2. Equivalence of (S — DFE) and (Sp — ACP)

Before we can go ahead and show the claimed equivalents we have to give suitable definitions
of the solution for each problem. But here we encounter the first problem. It turns out that,
even for the Wiener noise case, the well-know definition of a stochastic strong solution for a
stochastic abstract Cauchy problem like (Sp — AC'P) of Da Prato and Zabczyk [DPZ92] can
already imply that the solution is almost surely deterministic. To illustrate this we provide
an example here which is discussed in [CG11].
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Suppose we can show, just like we already did for the deterministic case, that if we have a
strong solution Y of (Sp — ACP) (see [DPZ92| Chapter 5, 6, and 7] for more detail), that
the first component of Y solves (S — DE) and the second component is the history function,
that is

Yi(t) = X (t) and Ya(t) = X; P-a.s.,

then the following proposition shows that a strong solution in the sense of Da Prato and
Zabczyk of (Sp — ACP) is already deterministic.

PROPOSITION 1.31. Let H =R (= Z), o =1, % =0, G(w,t,y) = G(y) for all w € Q,
€ [0,T], y € &, and let Y be a strong solution of (Sp — ACP). In particular, we have
Y(s) € 2() for all s € [0,T] P-a.s., then T (t) (?) € N(G) (the null space of G) and

Y(s) = T(s) (?) P-a.s. for almost all s € [0,T], that is (Sp — ACP) is deterministic.

PROOF.
See [CG11l, Proposition 4.13].

Proposition shows that we have to ask for less regularity in the definition of a solution,
in order to have meaningful stochastic objects to investigate. That is why we work with mild
solutions. Thus, we define for problem (Sp — ACP)

dY (t) = &Y (@t)dt+.F(t,Y(t))dt+G(t, Y (t)dM(t), t=0,
(Sp — ACP) v - ( h )

the mild solution as follows.

DEFINITION 1.32 (mild solution for (Sp — ACP)). A stochastic process Y : Q x [0,T] — &

is called a mild solution of (Sp — ACP), if Y is a predictable &-valued process satisfying
sup E[[Y (1)]2, < o, (1.14)
te[0,T]

such that for every t € [0,T] we have P-a.s.
Y(t) = ( ) f T(t—s)F(s,Y(s) ds+f T(t—1s5)G(s,Y(s)dM(s). (1.15)

REMARK 1.33. Note that a mild solution of (Sp — ACP) doesn’t need to have a cadlag mod-

ification.

In order to work out a suitable definition for the solution of (S—DFE), we recall the equivalence
of mild solutions in the deterministic setting, that is in particular Proposition This
motivates the next definition, the so call integrated solution for (Sp — ACP). It is our goal to
show the equivalence of mild and integrated for the Lévy noise case (Theorem , which is
the stochastic analog to Proposition Note that similar results for the Wiener case can
be found in [CG11].
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DEFINITION 1.34 (integrated solution of (Sp—ACP)). A stochastic process Y : Qx[0,T] — &
is called an integrated solution of (Sp — ACP), if Y is a predictable &-valued process which

18 P-a.s. locally Bochner integrable, satisfying

sup E[Y(1)[%, < o,
t€[0,T

and for all t € [0,T] we have

So (s)ds € 2() P-a.s.,
( i) G(-,Y) is stochastically integrable on [0,T], and P-a.s.

Y(t) - ( ) Mf ds+f (s,Y(s))ds+Ltg(S,Y(s))dM(s).

THEOREM 1.35 (equivalence of mild and integrated solution of (Sp—ACP)). Consider problem
(Sp — ACP). Then'Y is a mild solution if and only if Y is an integrated solution.

PROOF.

Before we can go ahead and prove the equivalents of the two solution we show two helpful
equalities. We start by applying the stochastic Fubini theorem (see Theorem [B.43)) and receive
P-a.s.

Lﬂ(t—s)fo G(r Y (7))dM(7) ds:fofo Tt — $)G(r, Y (r)dM(7) ds
t ot
= L f T(t—8)G(1,Y(1))ds dM(T). (1.16)

Note, that for all ¢ > 0 the operator Sé T (8)G(7,Y(7))ds € L(E2) is defined by

U Z(3)0(r, Y ( ))ds>e —J F(5)G(r, Y (F))e ds, e € &,

Observe that S: T(t—38)G(r,Y(7))e dse () P-as. for all ee H and 0 < 7 < ¢t by Lemma
(¢i7). Then, Proposition shows that the stochastic integral in (|1.16)) is in Z(7) and
by Lemma (iv) we have P-a.s.

stfy(t—s)g(T,Y(T))ds dM(7) — Ltﬂf Ut ﬂ(t—s)Q(T,Y(T))ds} dM(7)
_ f [7(t— ) — 11G(r, Y (7)) dM(7).

0

Looking back at ((1.16|), we obtain P-a.s.
t

szf y(t—s)fg(T,Y(T))dM(r) ds=f (T(t— 1) — 11G(r, Y (7))dM(r).  (1.17)
0 0

0
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With a similar calculation we derive the second equality, that is P-a.s.

o [ [ 76-nomyenam) as=o [ [ 76-66 s amen
_ Ltd Ut T(s - T)g(T,Y(T))ds} dM(7)
—f (7t — 1)~ I|G(r Y (r)dM(r).  (1.18)

0
Note that we can perform similar calculations for the terms involving the nonlinearity .%.
Now suppose that Y is a mild solution of (Sp — ACP), then So s)ds exists by (1.14 -
Furthermore, by Lemma (7i7), (1 and its analog for the term involving .% show that

So s)ds is in (/). By applying , its analog for the .#-term, and Lemma (iv)

we find P-a.s.

sz%fotY(s)ds - dﬂ T (s) ( }; ) ds + dﬂ L T (s —1)F(r,Y (r))dr ds

+ @/L L F(s — 7)G(r, Y (7)) AM(r) ds

()-0)

+ j [7(t—1)—1I]G(T,Y(7))dM(T)

0

h
‘Y@‘(f>

which shows that Y is also an integrated solution of (Sp — ACP). On the other hand, if Y
is an integrated solution we apply (1.17)) and its analog for the term involving .# and receive

P-a.s.
Y(t)— < h ) —,szfjtY s)ds

fgzsy ds+fng $))AM(s)

—i—J [Tt —71)—1I]F(1,Y(7))dr
0

_J y(T,Y(T))dT—Lg(T,Y(T))dM(T),

0

Jyt—T ¥ (r) d¢+f Tt —1)G(r, Y (r))dM(7)
_Q{Jyt—sjﬁ ))dr ds
—,Q%Lﬁ(t—s)LQ(T,Y(T))dM(T) ds. (1.19)

Let us look at the last term in the equality above without the /. Applying the definition
of the integrated solution, the closeness of o7, properties (i7) and (iv) of Lemma and
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Fubinis theorem we find P-a.s.
t S

. T(t—s) . G(r,Y(7))dM(T) ds
h S S o~
Y(s) — ( ; ) - djo Y(7)dr —L J(T,Y(T))dT] ds

fgts @%fgasw;)@

—wﬁfj‘ﬂt—s dT@—J~9t—@£i9ﬁJKﬂMT®

- [ 7a-sve ﬁ_jgbﬂ(;)@

—w%JJ‘ﬂt—s %dT—JJ?t—SJQ%T}W)MT%

=J(J9(t—s) ds—fﬁt—s)(?)ds

f%y@s) ny dsf:7t8J<?T}T)MT%

J‘yt—@ < >d3+f}’(k—ft7t—sj F (7Y (r))dr ds.

Returning to , using the just shown identity and property (iv) of Lemma once more

we obtain P-a.s.

—<h>—de@®

Jﬂt—r F(r,Y(r ClT-i-Jyt—T)g(TY( ))dM(T)

—df T (t—s) J F(1,Y(7))dr ds
0 0

-h%[fi?@—s)(;)ck—JﬁY@Ms+fi7@—st9WﬂYU»ka]

Jﬂt—T (r,Y dT+J§t—7‘)Q(TY( ))dM(T)

ol3)-(3) <D

Hence, Y is also a mild solution of (Sp — ACP).
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With the just shown equivalence of mild and integrated solution for (Sp — ACP) and Propo-
sition in mind, we can motivate for the stochastic delay problem (S — DE)

AX(1) = BX(8)dt + X,dt + F(t, X (1), X)dt + G(t, X (), Xp)dM(t), t > 0,
(s-DE)! X(0) = b,
Xo = fa

the following solution definition.

DEFINITION 1.36 (integrated solution for (S — DE)). A stochastic process X : Q@ x T — H is
called an integrated solution to (S — DE), if X is a predictable H-valued process and one has
(i) supgepo,r EIX ()| < o0,
(i) By |1X(t)]%dt < oo,
(7i1) Xo = f,
(iv) SéX(s)ds € 9(B) for allt e [0,T] P-a.s. and P-a.s.

X(t) - h =BJO X (s)ds + @L X,ds + L F(s, X(s), X)ds + L Gls, X (s), Xo)AM (s).

In order to see that all terms appearing in the definition given above are well-defined we prove
the following Lemma.

LEMMA 1.37. Lett >0, J :=1 U |[0,t] and x € Lo(J; Z;du), where we set o(1) =1 if 7 > 0,
then the history function hy : [0,t] — Lo(I; Z;du), hy(s) := xs is (Bochner) integrable with

f hm<s>ds) — ha(t) = ha(0)

t d
f he(s)ds € Wy (I; Z; dy), and o <
0

0 o
PROOF.

First, we show the integrability. Hence, for some s € [0,T] we look at

e ()12 iy = L ha(s)(0) |3 du(o) = L (s + )% 0(0)do

Now we substitute 7 = s + o and apply the properties of the function ¢. This way we receive
in the case of infinite/finite delay

thlﬁ(s) ”%Q(I;Z;du)
_ j () [ o(r — s)dr
—0/s—1

0 s
- le(r et = s)ir + [ (7)ol — e
—o0/ min{0,s—1} 0/ max{0,s—1}

<f0 2132 = y(r)dr + ( ma <>)f l2(r)3d
< (1) ————=0(7)dT max o(s (T T
—00/ min{0,s—1} d Q(T) se[—t,0] 0/ max{0,s—1} 7

0 t
< C@j la(r)|Zdp(r) + ( max 9(5))j () dr
—00/ min{0,s—1} se[—,0] 0/ max{0,s—1}

2 2
< €yt s ofo)) | 1) ) = (Cy+ mase o)l .0
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This shows the integrability of h,. Now we turn our attention to the derivative of the integral.
First, note that by the definition of the integral and the history function we have

<Lth(5)ds> (o) = (Lt de5> (o) = th(s +0)ds.

Thus, for the derivative we find
d J t )
= hy(s)ds | (o
L ([ etoras) @)

' % Jot fo(s)ds Lo(I;Z:dp) VA
% (fx(s + o)ds ) " dulo) = f % (LHU m(T)dT> duto)
j falt + ) = (@) du(e) = | [2(0(0) = RO du(e)

= e (t) = ha(O)1 2, (1:2:dp0-

The last term in this equality is bounded by 4(C, + maxe[—¢ o] 9(3))||5U||%2(j-z-du)- This yields

2 2

du(o)

2

t
f he(s)ds € Wy (I; Z; dy).
0

O

REMARK 1.38. By condition (ii) in the definition of a solution for (S — DE), hypothesis
(SHy), and Lemma we see that P-a.s. Sé Xsds € Wi(I; Z;dp), such that all terms in the
definition in Deﬁm’tion are well-defined. Note also that for infinite/finite delay we have

T
sup E|X, Cp+ max p 2 +f X(1)||%dr) < .
te[OI;“] 1 X617, (.22 < ( 22 () (IF 170 2.2:dp0) . | X ()] Zdr)

REMARK 1.39. Condition (ii) in Definition looks like we require for a lot of regularity
from the solution, since we take the norm in Z here and not in the state space H. But recall
that the space Z is only needed if the delay operator is unbounded (with respect to the space
H). In this case the operator B has to fulfill stronger assumptions in order for < to generate
a Cy-semigroup. In particular, we require that B is a generator of an analytic semigroup. In

the case of a bounded delay operator we always have Z = H and condition (i) implies (ii).

REMARK 1.40. A more straight forward definition for the solution of (S — DE) would have
been using the Cy-semigroup generated by the operator B and convolve the delay term as well
as the nonlinear terms. But this kind of definition for a solution is not useful for the approach

we want to develop here.

Before we can show the equivalence of the solution of the two problems (Sp — ACP) and
(S—DFE) we need one auxiliary result. Therefore, recall Definition for the index notation.

COROLLARY 1.41. IfY is a mild solution of (Sp — ACP), we have for alloc € I andt > —o
P-a.s.
Yalt) o) = Yi(t + o).



1.2. STOCHASTIC SEMILINEAR CASE WITH LéVY NOISE 32

PROOF.

Recall Proposition there we showed

(3o (e (2),

for all (h, f)T € &, 0 e I, and t + 0 > 0. For t + o < 0 the expression above is equal to

f(t+ o), that is
(%) ( ? )) (0) = f(t +0),
2

for all (h, f)T € &, 0 € I, and t+0 < 0. Applying those equalities to the convolution involving
Z in (1.15)) we find for o € I P-a.s.

<Ltﬂ(t—f)ﬁ(r,Y(T))dT>2(g) _ L”U (ﬂ(t_ ., ( F(r,Yl(g),YQ(T)) ) >2(U)dT
! f; (‘7 (t=7) ( FrnE ) ) >2<a>dT
[ (zem < Fr () ))Qw)dT
—LHU (t+o—7) (FT’Yl )>>1d7
F

=< HU?(HU—T) (r, ())d7>.

0

For the stochastic convolution in ([1.15]) we apply the approximation of the stochastic integral
from Proposition This way we find for o € I P-a.s.

f T (t —7)G(1,Y (1))dM(7 (ZJ Tt —1)G(1,Y(r ))( . )dmj(7)>2(0)

<.
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The next theorem shows that the solutions of (Sp — ACP) and (S — DE) are equivalent in
the following sense.

THEOREM 1.42 (equivalence of solutions of (Sp — ACP) and (S — DE)).

(i) Let X be an integrated solution of (S — DE), then the stochastic process Y defined
by Y(t) := (X (t), X¢)T is an integrated solution of (Sp — ACP) and hence it is also
a mild solution of (Sp — ACP).

(1) On the other hand, if Y is an integrated solution of (Sp — ACP) (hence also a mild
solution), then the stochastic process defined by Xo := f, X(t) := Y1(t) fort =0 is
an integrated solution of (S — DE).

PROOF.
(i) Let X be an integrated solution to (S — DE) and we define Y (¢) := (X (t), X;)T. Thus,

sup E[Y(8)]Z, < sup E|X(s)|E + sup E|X|7,774ds < 0,
te[0,T7] te[0,T7] te[0,T]

by Remark Therefore, it follows that Y is integrable and P-a.s.

t S\ds — %X(s)ds
[REL <SéXsds ,

where SS ) s € @( ) P-a.s. and by Lemma E Sé Xeds € Wi(I;Z;dp) P-a.s. with

SOX ds)(0) = So ds. Hence, SO s)ds € P(&/) P-a.s. and again by Lemma we
find P-a.s.
MJY s = BSO d8+(1)S0XdS
Xe—f
[ X —h=§F(s, X — §5,G( Xs)dM (s)
Xt f

_ ( X(¢) ) - ( h ) - ( § F(s, X (s), X,)ds > - ( L G(s, X (5), Xs)dM(s) ) |
X f 0 0

Combining this equality with the following identities

f F(s,Y(s))ds :J ( F(s,Y1(s),Ya(s)) )ds _ ( SOF(S,YI(S),}@(S))CZS )

0 0 0

: [t G(s,Yi(s),Ya(s)) 0\ [ dM(s)
LQ(S,Y(S))dM(S) —fo ( 0 o) ( 0 )

(So (s,Yi(s z<s>>dM<s>>
0

and

we see that Y satisfies Definition [[.34]
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(77) On the other hand, let Y be an integrated solution of (Sp — ACP) and define Xy := f,
X(t) := Y1(t) for t = 0. From Corollary [L.41]we find Y(t)(c) = Yi(t+0) = X,(0) for t > —0.
First, we show condition (i) and (ii) of Definition [[.36] This follows easily for infinite/finite
delay, since g is continuous and strictly positive. Hence, we can estimate

o> sup E|Y(t)|g, > sup E[Vi(t)|3 = sup E|X(t)[3,
te[0,T] te[0,T] te[0,T]

o> sup E|Y(#)[E, = sup E[Ya(t)|7,(r.204) = Sup EJ |Ya(t)(o)|Ze(0)do
t€[0,T] te[0,T] JI

te[0,T]
0 t
- sup E( [ mos-oges—nas+ | |s@<t)<s—t>|%g<s—t>ds)
tel0.7] —o0/ min{0,t—1} 0/ max{0,t—1}
t t
> sup E f IX(s)[30(s — t)ds > ¢ sup E f X (s)| 2 ds.
te[0,T] 0/ max{0,t—1} te[0,T] 0/ max{0,t—1}

This implies E Sg 1X (s)|%ds < oo. Furthermore, it is clear that S(t) X(s)dse 2(B) forallt > 0
P-a.s., and we find P-a.s. by writing down the equation of the first component of Y

X(t)—h= BLtX(s)ds + @Lthds + JotF(s?X(s),Xs)ds + Lt G(t, X(s), Xs)dM(s).

O

1.2.3. Well-posedness for the semilinear stochastic delay problem

Just like in the deterministic case, Theorem shows that also for the stochastic case the
problem of well-posedness of (S — DFE) is reduced to the question if the stochastic abstract
Cauchy problem (Sp — ACP) is well-posed. Stochastic abstract Cauchy problems with Lévy
noise have been studied extensively in the literature. Therefore, we are able to apply The-

orem which is a classical existence and uniqueness result for stochastic Cauchy problems.

First, note that since the nonlinearities ', G and .7, G respectively, fulfill (SHyp) and (SHi1),
which are classical linear growth and Lipschitz conditions, they satisfy, by Remark
conditions (F) and (G) from Theorem [B.53] Actually, condition (GI) holds, which is stronger
than (G). This means the existence of a mild solution to (Sp — ACP) and hence a solution of
(S — DE) is guaranteed, if &7 generates a Cp-semigroup. But we have already given criteria
for this in Section [1.1.3] That is why we can formulate the following Theorem.

THEOREM 1.43 (well-posedness of (Sp — ACP) and (S — DFE)). Under the standing hypothe-
ses (SHy) — (SH11) problem (Sp — ACP) and hence (S-DE) is well-posed if the operator
(o, 2()) generates a Cy-semigroup. In particular, this is the case if the assumptions of
Theorem [1.23, Theorem[I.23, Theorem[1.2{, Theorem[1.27, or Theorem[1.28 are fulfilled.

REMARK 1.44. Theorem shows that we can extend the deterministic delay models by

stochastic terms and remain well-posedness. However, note that the solution from Theorem

may not have a cadlag modification.
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1.3. Notation: (Sp — ACP) and (S — ACP)

Since we were able to transform the stochastic abstract delay equation (S — DFE) into the
abstract stochastic Cauchy problem (Sp — ACP) in the sense of Theorem we can reduce
the study of stochastic delay equations to the study of stochastic abstract Cauchy problems.
This is an advantage, since for abstract Cauchy problem there is a rich deterministic and
stochastic theory available. In the stochastic case the theory for the Winer noise case is far
more advanced than for the Lévy noise case. Despite that our general approach to stochastic
delay equation will be via the stochastic abstract Cauchy problem (Sp — ACP). This means
in particular that our procedure from here on will be to address all further questions in the
setting of a general stochastic abstract Cauchy problem and then apply those results via The-
orem to stochastic delay equation.

In order to be able to separate the general theory for stochastic abstract Cauchy problems

from stochastic delay equations we introduce the following notation.

e If we are using regular math notion, that is A, T, F, G, and M, we are dealing with a general
stochastic abstract Cauchy problem in the Hilbert space H which we call (S — ACP). It
reads as follows

dY (t) = AY(t)dt+ F(t,Y(t))dt + G(t,Y(t))dM(t), t =0,

(S_ACP){Y<0> el

where A generates a Cp-semigroup. However, we hold on to our standing hypotheses for
M and the nonlinearities F' and G, with the obvious adjustments, that is & is replaced by
H in (SHyo) and (SHi1). Then (S — ACP) is well-posed by Theorem [B.53]

e If we use math script respectively math calligraphic notation, that is &/, .7, %, G, and
M, we investigate the delay problem (S — DFE) via its transformed version (Sp — ACP)
in &. That is

AY (t) = Y (O)dt+ F(t,Y(t))dt + G(t, Y (£)dM(t), =0,
(Sp — ACP) Y@ - < h )
i

where, for example, the operator (<7, (7)) has the special form

0 %%

with domain



CHAPTER 2

Approximation of the Mild Solution of (S — ACP)

In the previous chapter, we have seen in Theorem that the mild solution Y of (S — ACP)
has no stochastic differentials and from Remark we know that it might not have a cadlag
modification. This means the classical assumption for the transformation formula (that is
Ito’s formula) are not fulfilled for the process Y. Since the transformation formula is an
essential tool in stochastic analysis, our goal is to find a generalized version, which we can
still apply to the mild solution Y. In order to achieve this, we introduce two approximations
of Y in this chapter, which are both based on the Yosida approximation. We will see that
each member of the approximating sequences has stochastic differentials. To insure that
each has a cadlag modification we look at two different situations. First, we assume that
the driving linear operator generates a generalized contraction semigroup. Then, Theorem
B.53| guarantees that Y itself has a cadlag modification and the same holds true for the
approximating sequence. In the second case, we consider a general Cy-semigroup, where we
approximate the driving linear operator A. Then, each member of the approximating sequence
has the desired property, but the solution Y itself might only be predictable. After we proved
the first approximation theorem, we apply those results to our case of interest, which is the
delay problem and provide criteria, when the approximation can be applied. At the end of
the chapter, we prove the general approximation theorem.

2.1. Yosida approximation, the generalized contraction case

We want to use the well-known Yosida approximation to construct a sequence of cadlag pro-
cesses, which converges to the mild solution Y of (S—ACP) in the space X g of all predictable
processes with values in H. For the definition of X7 see Appendix We distinguish be-
tween two situations. The first one is the case, where the operator A generates a generalized
contractions Co-semigroup (T'(t))i=0, that is | T(t)| 1) < €, for some A € R. In the second
case, we consider a general Co-semigroup (T'(t))s=0, that is |T(t)| 1) < Me, where M > 1
and A e R.

In this section, we deal with the first case and therefore assume that A generates a Cj-
semigroup of generalized contractions (T(t))=0 with [|T(¢)| 1) < € for some A € R. In this
case, the idea is to smooth all the nonlinear terms and the initial condition, such that they
are elements of the domain Z(A) of the driving linear operator A. This procedure guarantees

that the approximating processes have stochastic differentials. In order to see this, let Y be

36
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the mild solution of

dY (1) = AY()dt + F(t,Y (£)dt + G, Y (£)dM(t), =0,

. _ACP){Ym) ~ wed,

where M, F', and G fulfill the assumption from Section[1.3] Then, we define the approximating

sequence {Y;, }nen for n > X as the mild solution of

dY,(t) = AY,(t)dt + R(n)F(t,Yy(t))dt + R(n)G(t, Yy (t))dM(t), t =0,
Ya(0) = R(n)yo,

where R(n) = n(n— A)~! for all n € N with n > X is the Yosida approximation. Note, that we
always write the short form (n — A)~! instead of (n/ — A)~'. By the properties of the Yosida
approximation from Corollary (#4i) it follows that R(n) is a bounded linear operator for
each n > \. Therefore, we see that each Y,, is well-defined by Theorem Furthermore,
we find from Corollary (7) and (iv) that for each n > A the operator R(n) commutes
with T'(¢) for all ¢ € [0,T] and that R(n)h € Z(A) for all h € H. Thus, we see by writing
down the mild solution

Y, (t) = T(t)R(n)yo + L

t t

T(t— s)R(n)F(s,Y,(s))ds + fo T(t — s)R(n)G(s,Yn(s))dM/(s)

t t

— R(n)T(t)yo + R(n) fo T(t — $)F(s, Yy (s))ds + R(n) L T(t — 5)G(s, Va(s))dM (s),

that Y,,(t) € 2(A) P-a.s. for all t € [0,T]. Considering the integrated solution we find that

each Y}, has stochastic differentials, since P-a.s.

Y, (t) = R(n)yo + AJO Y, (s)ds + L R(n)F(s,Yy(s))ds + Jo R(n)G(s,Yn(s))dM (s)

t t t
= R(n)yo + J AY,(s)ds + f R(n)F(s,Yy(s))ds + J R(n)G(s, Yn(s))dM(s).
0 0 0
Finally, Theorem [B.53|guarantees that Y as well as Y,, for all n > A have a cadlag modification,
since A is the generator of a generalized contraction Cy-semigroup. Therefore, the sequence
{Y..}n=x has all the desired properties.

REMARK 2.1. It might look odd, that the solution process Y should have a cadlag modification,
since we defined the mild solution to be a predictable process. In this case, the process of left
limits Y, defined by Y (t) := Y (t—) fort e [0, T, is predictable. However, the processes Y and
Y are stochastically equivalent (see [PZOT, Proposition 9.10]). Since by Theorem the
mild solution is only unique up to modification the processes Y and Y are the same process
1 our setting.

Before we show that {Y},}nen converges to Y in the space Xp g we prove an auxiliary result.
We extract this statement from the proof of the main theorem of this section to emphasize
the technique we need to apply due to the stochastic integral. It is going to be the key step
in the proof of the approximation theorem later and we will use it again in the proof of the
transformation formula for mild solutions in Chapter Therefore, recall that the norm in
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the Banach space X7 p is given by

| X1 0 = SHI;]EIIX(t)II?q-

te[0

PROPOSITION 2.2. Let T(t) € L(H) for each t € [0,T], with |T(t)| ) < c(t), where c is a

positive, continuous function. Then,
— 0 forn — oo,

‘ T,H
where Y is the mild solution of (S — ACP) and R(n) is the Yosida approximation.

L T(t — $)(I — R(n))G(s, Y (s))dM(s)

PROOF.

First, note that the Yosida approximation doesn’t converge in the operator norm. This means
a straight forward argument like applying the isometry of the stochastic integral and estimates
using the operator norm won’t work. That is why our argument has to be more complex. We
start by applying the isometry of the stochastic integral and estimate

¢ 2
E‘ L T(t—s)(I — R(n))G(s,Y(s))dM(s)

H

t
— B | 170 =) = RG(s. Y (DQ1} s
t
<E | 170 =) I = RDG(.Y (DQ1E 01

T
< max A | I~ RO)G(s, Y (DQL s

TE[O,T] 0
T 2
= max (7)E J (I —R(n))G(s,Y (s))dM(s) (2.1)
T7€[0,T7] 0 H
From Corollary (ii) we know that for every h e H

[(I — R(n))h|g — 0 for n — .

Since for fixed w € Q we have Sg G(w,s,Y(s)dM(s)(w) € H, we find that the following

convergence

holds P-a.s. for n — co. From Corollary [A.21] (iii) we know that |R(n)|) < Cg for all

2
L0 (22)

T
f (I — R(n))G(s,Y (s))dM(s) )

0 : = H (I — R(n)) L ! G(s,Y (s))dM (s)

n > )\, thus we can estimate using the isometry of the stochastic integral

2 2

T
J (I — R(n))G(s,Y(s))dM(s)

IE‘ 0 - ]EH (I - R(n)) JOT G(s,Y (s))dM(s)

H

Jo G(s,Y (s))dM(s)

H
2

t
< (1+Cp)’E = (14 Cr)? L E|G(s, Y ())Q"?I7, o w11y

H

t T
<(+ CR)%%;J E(1+ |V (s)|u)2ds < 2(1 + CR)%?;J |+ BV (s)Bds < o,
0 0



2.1. YOSIDA APPROXIMATION, THE GENERALIZED CONTRACTION CASE 39

where we applied the linear growth condition of G and the Fubini—Tonelli theorem. The
expression on the right-hand side is finite, since Y is the mild solution of (S— ACP). Applying
Lebesgue’s dominated convergence theorem yields for ¢t € [0, T]

2

IE’ L T(t — $)(I — R(n))G(s, Y (s))dM(s)| — 0 for n — oo,

H
From estimate (2.1]) it follows that this convergence is uniform for ¢ € [0, 7], hence

2

— 0 for n — 0.

J T(t—s)({ — R(n))G(s,Y(s))dM{(s) .

0

sup ]E’
t€[0,T7]

With Proposition in place we can proceed to the approximation theorem.

THEOREM 2.3 (approximation of mild solution of (S-ACP); generalized contraction case).

Assume that A generates a Cy-semigroup of generalized contractions and let Y be the mild
solution of (S — ACP). Then

|Y = Yalrr = (sup EJY(8) = Ya()[3)"* — 0 for n — .
te[0,T]

PROOF.

We start by splitting the difference of the mild solutions in its three parts, that is

Y(t) = Yu(t) = T)(I — R(n))yo + L T(t = s)(F(s,Y(s)) = R(n)F (s, Yn(s)))ds

" fo T(t - 5)(G(s, Y (5)) — R(n)G(s, Yu(s)))dM(s)

=: Il(t) + Iz(t) + Ig(t).
A straight forward estimate yields

sup E[Y () = Yo ()% < 3( sup E|L(t)|7 + sup E|L(#)|E + sup E[I3()[F). (2.3)
te[0,T7] te[0,T7] te[0,T7] te[0,T7]

We are going to look at each summand of (2.3]) individually. We start with I; and estimate
IT()(I = R(n))yolFr < (I = R(n))yolF-

Since yo € H we apply Corollary (ii) and find (I — R(n))yo —> 0 for n — oo in H.

Summing up, we have shown

sup E|L(t)[[7 < e |(I — R(n))yolF — 0 for n — o0
te[0,T7]

In order to deal with the second summand I5 in (2.3)) we start by rewriting it as follows

F(s,Y(s)) = R(n)F(s,Yn(s)) = (I = R(n))F(s,Y (s)) + R(n)(F(s,Y (5)) = F(s, Ya(s)))-
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Since |R(n)| < Cg by Corollary (iii), we estimate P-a.s. for all t € [0,7] and 0 < s < ¢

IT(t — 8)(F(s,Y(s)) — R(n)F(s, Yo ()%
< ePT|(I = R(n))F(s,Y(s)) + R(n)(F(s,Y(s)) — F(s, Yo (s)|%4
< 22T (|(I - R(n))F(s,Y (8)) |} + CHIF(s,Y () — F(s, Yn(s))%)-

By Holder’s inequality, we find

sup E|L(t)[7 < T sup EJ IT(t = 5)(F(s,Y (5) = R(n)F (s, Yn(5))) [ 7rds
te[0,T] te[0,T]

< 2Te2’\T sup j I(I — R(n))F(s,Y(s))|3ds
te [0,T]

+C sup IEJ [F (s, (5)) — F(s, Yo(s)|ds)
te[0,T]
=: 2T€2>\T(I21(t) + 122( ))
For the term I5;, we have for every fixed w €  and s € [0,7'] that F(w,s,Y(s)) € H and
hence by Corollary (ii) the pointwise convergence (I — R(n))F(w,s,Y (w,s))|3 — 0
for n — 0. Furthermore we estimate P-a.s. and for every s € [0,7] using the linear growth

condition of F' and Corollary (iii)

|(1 = R(n))F(s,Y (s))[7r < (1 + Cr)*| F(s,Y (s))7r < (1 + Cr)*kE(1 + [V (s) )
2(1+ Cr)*ki (1 + Y (s)|)-
Since Y is the mild solution of (S — ACP) it follows that SSEHY(S)H%, < oo for all t € [0,T7].

Hence, by Fubini—Tonelli theorem and Lebesgue’s dominated convergence theorem we receive
¢ T
|, I = R PG Y (6D < | BN = R (s, Y () s

T
_ EJ 11— R(n))F(s, Y (s))|%ds —> 0 for n — oo,
0

Obviously this convergence is uniform for ¢ € [0, 7], that is
I (t) = sup EJ I(I — R(n))F(s,Y(s))||3ds — 0 for n — oo.
te[0,T]

For the term Iso we apply the Lipschitz continuity of F' and find

T T
@@<%@fEW®n@&@s%%fs?FW@m@%w
0 0 sel0,7

For I3 in ([2.3) we start again by rewriting the relevant expression as follows

G(5,Y(s)) = R(n)G(s,Yn(s)) = (I = R(n))G(s, Y (s)) + R(n)(G(s,Y (5)) — G(s, Yn(s)))-
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Thus, we estimate

t 2
sup EL5(t)3 < 2 sup E' | 791 = REGs. Y (s
te[0,T] te[0,T] 0 H
t 2
+2 sup E‘ f T(t—s)R(n)(G(s,Y(s)) — G(s,Yn(s)))dM(s)
te[0,T] 0 H

=: 2(Is1 (t) + Isa(2)).

The term I3; converges to zero for n — oo by Proposition For the term I32 we apply the
isometry, the Fubini-Tonelli theorem, Corollary (iii), and the Lipschitz continuity of G

I3o(t) = sup j E|T(t — 5)R(n)(G(s,Y(s)) = G(s, Ya(s))Z, s 0.2y
te[0,7] Jo (HS)

T
< ewo%fo E[G(s, Y (s) = Gls Ya()IL iy wrryds

T T
< T2 f E|Y (s) — Yo (s)|%ds < e2TCLC2, f sup E[Y(s) — Ya(s)|%dr.
0 0 s€[0,7]

Now, we collect all terms and from ([2.3)) follows

T
sup E[Y (t) = Yu(t)[|3 < 3&(n) + 6Te*" (2(n) + C%C%f sup E[Y (s) — Yy (s)|7d7)
te[0,T] 0 se[0,7]
T
+6(2(n) + eQATC%CéJ sup E|[Y (s) — Yi(s)|%dr)

0 sel0,7]

T
<e(n)+C(T,\, Cr,Cp, Cg)f sup E|Y (s) — Yu(s) ||§{d7',

0 se[0,7]

where {&(n)}nen is a suitable null sequence, € := (9 + 6Te?*7)&, and C stands for a constant
depending only on the values stated in the parentheses. Using Gronwall’s inequality, we obtain
sup E|Y () — Yu(t)|F < e(n)(1+ C(T, A, Cr, Cp, Cq)Te“TACRCrC)T),
te[0,T]
Hence, for n — oo we find

IY = Yalfn = sup E[Y(t) - Ya()|E — 0.
te[0,T]

O

REMARK 2.4. Like we said before the most difficult convergence in the proof of Theorem|[2.3 is
the one of term I31. That is why we treated it separately in Proposition 2.4 The crucial step
in the proof of Proposition is in line . It shows the importance of the approximation
being time independent, such that it can be pulled out of the stochastic integral. If we would
approximate the operator A using Yosida approximation, we would end up with a sequence of
uniformly continuous semigroups approximating the Cy-semigroup generated by A. However,
those are time dependent and therefore our argument would no longer work. We just showed

that in the case of a generalized contraction semigroup we are able to avoid the approrimation
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of A. In the general case this is no longer possible and therefore a different idea is needed.
We will treat this situation in Section [2.3.

2.2. Dissipativity of the operator .o

The essential assumption for the approximation scheme from Theorem to work is that
the driving linear operator A generates a Cy-semigroup of generalized contractions. If that
is the case, not only does the approximation holds true, but we know by Theorem that
the solution Y itself has a cadlag modification. We want to apply those results to stochastic
delay equation in this section. Thus, we identify cases, when the operator <7 of (Sp — ACP)
generate a Cy-semigroup of generalized contractions. Therefore, we assume that o7 generates
a Cop-semigroup (7 (t))i=0, with [T ()| 1(e,) < MeM, where M > 1 and X € R. To guarantee

that o7 is a generator one can apply the results from Section [1.2.3

The operators which generate a Cy-semigroup of generalized contractions are characterized
by the Lumer-Phillips theorem (see Theorem and Remark . Since &/ generates
a Cp-semigroup, we know by the general Hille-Yosida theorem (see [ENO0OQ, Theorem 3.8 in
Section II.3.a]) that rg(Ag — A) = & for any A\g > A. Hence, all what is left to do is to identify
cases when the operator &7 is or is not y-dissipative for some v € R.

Recalling the definition of y-dissipative operators (see Definition [A.14]), we must show that

<,5qu, u>52 < 7”““?)2

for all w € Z(4/). Breaking down the expression on the left-hand side into its individual

ul
u2

<,52fu,u>52=<<§ C(I;) <u1 >7<u1 >>52:<< B’U,ld‘f'q)'UQ)’(Ul >>€2
do u2 u2 do U2 u2

d
= <B’U,1, U1>H + <(I)UQ, U1>H + <%UQ, u2>L2(I;Z;du)' (2.4)

components yields for u =

immediately, we see from ([2.4]) that it is natural to assume B to be ~p-dissipative for some
0 € R. We will always assume this until the end of this section. Thus (2.4)) simplifies to
d
(A u,uye, < ’)’oHulH%{ + (Dug,u1yp + <%u2, u2>L2(I;Z;du)‘ (2.5)

Now, we will look at important examples for the delay operator ® and check if & is -

dissipative for some v € R.

2.2.1. Single delay - bounded delay operator

We start with the simplest case. Therefore, we consider a single delay, that is
du = Cu(—1), ue Wi([~1,0]; H),

where C' € L(H). Thus, we have a bounded delay operator. This implies for our setting that
Z = H and & = H x Ly([—1,0]; H). Recall that in the case of a finite delay we set o = 1
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without loss of generality and thus u becomes the Lebesgue measure. Looking back at ([2.5),
we have to treat the last two terms on the right-hand side. We start with the last one and
integrating by parts yields

d O d
(U2 U2) Lo ([-1,0]:H) = f1<dam(0),w(0)>ﬂd0

0
- || (o) (o) e+ ua0) — (=)

Since u € Z(/), we have uy(0) = u; and we conclude

d 1
(o2 ) Ly-1opm) = 5 (lualir = lua(=1)[7)- (2.6)

For the term involving the delay operator we apply elementary estimates and receive

(Qug,uyg = (Cuz(—1),uryn = {uz(=1),C*uryp < |lug(=1)|#|C*ur|n

1
< S (lua(=D)1F + [CI7 iyl 7). (2.7)

where C* is the adjoint operator of C. Summing up, we find

270 + HCH%(H) +1
2

1
(et u,wye, < yollur | + §(HC||%(H) + Dl < Jul,

Hence, we can formulate the following proposition.

PROPOSITION 2.5. If B is a 7yp-dissipative operator and ®ug = Cug(—1), where C € L(H),

C 2%+ICIE g+,
then <f is %-dzsswatwe operator.

2.2.2. Multiple delay - bounded delay operator

The natural next step is to consider a delay operator ® with multiple delays. It turns out that
this simple change in the structure of the delay operator is already enough for the operator

o7 to lose its dissipativity, like the following example demonstrates.

EXAMPLE 2.6. We choose
du = u(—12) + u(-1), ue Wy ([-1,0]; H),

to be the delay operator. Just like in the previous case, we see that ® is a bounded operator
and therefore we set Z = H and & = H x Ly([—1,0], H). Now, we choose an 0 % a € 2(B)
and a sequence uy, € P(), such that
Un2(0) = up1 = a, una(—12) = na, una(—1) =0,
and
1
HunQHLQ([ﬂ,o],H) =

where we use the notation of Definition . By (2.4) and (2.6) we find

1
(& tn, un)e, = (Ba, ayr +nllalfy + 5 lalf — o0 for n — oo.
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On the other hand, we have
1
lunlz, = lalf + —5 = lalz for n — .
This shows, that there can’t be a constant v € R, such that
(u,wye, <|ul,
for allue ().

REMARK 2.7. In order to reinstate the dissipativity of the operator &/ for a delay operator
with multiple delays it was suggested in [Kap85| to adjust the geometry of the history space
Lo([—1,0]; H), by introducing an equivalent norm in the following way. If the delay operator
® depends on p € N delays at times h; € [—1,0), j =1,...,p, define the wight function

g(s):=p—j+1 forse|hj,hji1)

and the new norm of £ as

0
glule, == \/qu% + f 1 Ju(r)[39(r)dr.

Then, we find that the operator &/ is dissipative with respect to the new norm.

2.2.3. Singel delay - unbounded delay operator

We return to the case of a single delay, but this time we consider an unbounded operator.
Recall that for an unbounded delay operator ® the operator B has to fulfill condition
and such that <7 generates a Cp-semigroup (see Theorem . Thus, it is natural
that for the dissipativity of &/ we need to impose stronger assumption on the operator B than
~o-dissipativity. Typically B has to fulfill a generalized Garding’s inequality of the form
(Bu,uyr < —milulZ + yolul%, (2.8)

where u € 2(B), v1 > 0 and 9 € R. We will demonstrate this in the next example.

EXAMPLE 2.8. Consider the following delayed heat equation

dru(t,s) = Ault,s) +27_ Cjout—1,s), t=0, seG,
N(t,s) = 0, t>0, sedq,
ultys) = f(ts), te[-1,0], e G,

where G = R™ is a bounded domain with smooth boundary, H := Lo(G), Z := WH(G),
Bu := Au, 9(B) := {g € Wi(G) : Ag € Ly(G) and 32 = 0 on 8G}, C; € L(H) for
je{l,....n}, and for u € W([~1,0];Z) we set ®u := pI C'j%u(—l). Like in (12.7))
we find for u = (Z;) € 9()

1, 0
(Puz,u1)pg < 5 Z(H%jw(—l)\\?{ + “Cj|‘%(H) Jut]F)-
j=1
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Furthermore, we calculate using ([2.6)

@}mmxmqmm=1wm@—wm—m@
IU1HH + Z I=— U1HH \U2 D3 + Z |2 ua(~)%).
As for the operator B we have
(Buy,u1)g :f Aug(z)ug(x J Vui(z) - Vuy (z)dx —|—f %(y)u(y)dS(y)
a X
=0

—Z< U1, 5 u1>H— ZH UlHH

Thus, condition (2.8|) is fulfilled with o = 1 = 1. Inserting all terms into (2.4) yields

n

(Fu,upe, < — ZHiulHH"’ Z H*uz D3 + 1G5 ¢y e |72

—

5wl + Z I=— U1HH HU2 D7 + Z H*M D)

5 131 iy + ZijhH
< 0 < 7l

l\D

Therefore the operator < is %(22:1 1C; H%(H) + 1)-dissipative.

2.2.4. Averaging over a finite delay

If the delay operator ® is some kind of average, the delay is often called distributed delay. In
this case we can apply the following corollary.

COROLLARY 2.9. If B is a ~y-dissipative operator and the delay operator ® is a bounded linear
operator from Lo([—1,0]; H) to H, that is for uw e La([—1,0]; H)

[Puller < Callul Ly (1,010,

for some constant Cg = 1, then the operator </ is a > (270 + Cq) + 1)-dissipative operator.

PROOF.

We consider the dissipativity estimate (2.5) and for v = (Z;) € 9(4) we start the estimate
with the delay term
CQ

1 2
(Puz, u)m < §(H<I>U2H§q + Jua]7) < %(\IMH% + lu2l 7y 05y = q’ Jullz,-

Form (2.6) follows (<L ug, ug)r,(—1,011) = 3 (luila — Juz(=1)[%) < $[w]%- Collecting terms
yields

C2 1 2y +C2 +1
(u,upe, < Yolw | + T‘I’leé + §HU1H?{ < %HUHQ
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EXAMPLE 2.10. Assume, the delay operator ® is of the following form

0
Py = fl h(7)u(r)dr,

forue La([—1,0]; H) and h € Lao([—1,0]; L(H)). Then, ® is a bounded linear operator from
Lo([—1,0]; H) to H. This is easy to see, since

0
|Pulr < f ) IR | |l adr < (Al y(-1.0000m) [l Lo - 1,008)-
Thus, Corollary[2.9 can be applied.

2.2.5. Averaging over a infinite delay - constant weight function

If the delay operator ® is an average over an infinite delay and the weight function g is
constant (without loss of generality assume ¢ = 1), we can transfer the results of the finite
delay case. This is due to the embedding Wi (R_; H) — Co(R_; H), thus we have

d 1
<%u2;u2>L2(R_;H) =35 HUIH%%

for u = (Z;) € 9(&). Therefore, we rewrite Corollary for an infinite delay as follows.

COROLLARY 2.11. If B is a ~yy-dissipative operator and the delay operator ® is a bounded
linear operator from Lo(R_; H) to H, that is for u € Lo(R_; H)

|Pullr < CollufLy®;m),
for some constant Cg = 1, then the operator <7 is a %(270 + C’% + 1)-dissipative operator.

The examples can be transferred in just the same way. That is, if h € Ly(R_; L(H)), then the
operator defined by

0
by = f h(T)u(T)dr
—00
is bounded from Lo(R_; H) to H and Corollary applies.

2.2.6. Averaging over an infinite delay - nonconstant weight function

Now we turn to the general setup for averaging over an infinite delay. Recall that the measure
p from Definition is defined by the weight function p, which fulfills o € C*(R_) with
0 > €, > 0. If the weight function o is not constant, we have to look at the last term of the
dissipativity estimate again, since this is there the measure p effects our calculation.

Hence, we compute

0 0
Gy = | Grualo)ueDuololdo = | (un(o),olo)unlo)do

0 0
= (eI, ~ | (o) TualeDue@do - | (o) () ndl)ds
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Thus, we have

d 1 10 :
i man = 5Ol =5 | Jua()é()do (29
—00
since
i o(o)]ua(o) I = 0.

—-1/2

This is easy to see, if we write ug = v, where 1 is a real function with |¢| < p and

|w| < 0 '/2. Then, by writing down the norm for uy, we immediately find v € W (R_; H).
Thus, the limit follows from the embedding W (R_; H) < Co(R_; H).

From we see that the weight function g effects the dissipativity of the operator ..
Therefore, we generalize Corollary by formulating criteria for g, such that the operator
& is dissipative.

COROLLARY 2.12. Assume B to be a vyg-dissipative operator and the delay operator ® to be a
bounded linear operator from Lo(R_; H;du) to H, that is for ue Lo(R_; H;dpu)

|Pulr < CollulLy@mdp);

for some constant Cg = 1. Furthermore, let one of the following condition be fulfilled

for some K = 0. Then the operator </ is a %(270 +0(0) + K + C3)-dissipative operator, where

K is equal to K in case a) and K /e, in case b).

PROOF.

Consider the dissipativity estimate (2.5)) and for u = <Z;) € 9(4/) we start the estimate with
the last term. For the case a) we find from ([2.9)

d 1 , K [ )
(g, ug)p, - map) < 500)|ualz + 5| luz(o)ze(o)do
do 2 2 J_

1 K
= 50O ullfr + S luali, @ pran

For the case b) we argue in the following way

d 1 s K [ 5
(mu2, u2)py®_ i) < 500)[ulE + |lua (o) |z do
do 2 J_n

2
1 K (° o(o)

< —o(0 2+ —= 222d
5ol + 5 [ (@) 5o
1 K (°

< SeOlulh + 5 [ lus(o)eto)do
2 2€¢0 J_oo

1 K
= 59(0)”“1“%{ + TEQHWH%Z(R,,H,@)'
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For the delay term we proceed similarly to the previous cases

1 C2 C2
(Pug,u1yg < §<HU1H% + [ PuaF) < %’(HMH% +uall?, @ ) = fHuHé-

Collecting terms yields

(oF: 1 K
(u,wye, < yolm|F + TCDHUH%Q + §Q(O)HU1H%I + ?HUQH%Q(R,,H,UI;L)

<2yo+g(0)+f(+0§>
b 2

where K is equal to K in case a) and K /e, in case b).

Jullz,.

2.3. Yosida approximation, the general case

Now, we consider the general situation, where A generates a Cp-semigroup (T'(t))i=0 with
1T |y < Me* where M > 1 and A € R. In this case we have to consider a fundamentally
different approximation scheme compared to Section|2.1] There, the basic idea was to smooth
all terms into the domain Z(A) of the driving linear operator A. In the general case, we do
the opposite and bring all terms of the equation down to H. This is due to the mild solution
Y not necessarily having a cadlag modification. Thus, we have to approximate the operator
A using Yosida approximation. Therefore, it becomes unnecessary to smooth out all other

terms of the equation. Recall that Y is the mild solution of

dy (t) AY (8)dt + F(t,Y (£))dt + G(t, Y (£))dM(t), t =0,

s _ACP){ Y(0) = well

where M, F, and G fulfill the assumption from Section then we define the approximating

sequence {Z,}nen for n > A as the mild solution of

AZ0(t) = AnZo(t)dt + F(t, Zo(t))dt + G(t, Zn(t))AM (L), ¢ >0,
Zn(o) = Yo,

for n > A, where A, is the Yosida approximation of the operator A. Note that by the properties
of the Yosida approximation from Corollary it follows that A, is a bounded linear
operator for each n > A. Furthermore, each A, generates the uniformly continuous semigroup
T,,(t) := et4n. Hence, by Theorem m Z, is well-defined for each n > \.Writing down the

integrated solution we immediately see that each Z,, has stochastic differentials, since P-a.s.

Zn(t) = yo + Anjo Zn(s)ds + Jo F(s,Zy(s))ds + L G(s,Zn(s))dM(s)

t ¢ ¢

=10+ f AnZy(s)ds + f F(s, Zy(s))ds + f G(s, Zn(s))dM (s).
0 0 0

Remark states that A, is trivially a generator of a generalized contraction Cy-semigroup

for n > X. Therefore, Theorem guarantees that each Z,, has as a cadlag modification.

Thus, the sequence {Z,},~, has all the desired properties. Note that in the proof of the
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following theorem we will write Z(t) again instead of Z(t—) or Z(t) for the same reasons as
explained in Remark

THEOREM 2.13 (approximation of mild solution of (S-ACP); general case). Assume that A
generates a Co-semigroup and let Y be the mild solution of (S — ACP). Then,

IY = Zallrr = ( sup E[Y(t) = Zu(8)7)"? — 0 forn — co.
te[0,T]

PROOF.

We start by splitting the difference of the mild solutions in its three parts, that is

Y(t) = Zn(t) = (T(t) = Tn(t))yo + L T(t—s)F(s,Y(s)) = Tu(t — s)F (s, Zn(s))ds

+ L T(t—s)G(s,Y(s)) — Tn(t — s)G(s, Zn(s))dM(s)

= Jl(t) + JQ(t) + J3(t).
A straight forward estimate yields

sup E|Y (1) — Zn(t)[7 < 3( sup E|(t)|5 + sup E|Ja(t)|F + sup E|J5(t)|%). (2.10)
te[0,T7] te[0,T7] te[0,T] te[0,T]

We are going to look at each summand of (2.10)) individually. We start with J; and since yq
is a fixed element in H, we find

sup E|Jy(1)[3 = sup [(T(t) — T(t))yol3 —> 0 for n — o,
te[0,T7] te[0,T7]

by Corollary (111).

In order to deal with the second summand J3 in (2.10)), we start by rewriting it as follows
T(t—s)F(s,Y(s)) = Tn(t — s)F(s, Zn(s))
= (T(t = s) = Tu(t — 5))F(s,Y(s)) + Tn(t — 5)(F(s,Y(s)) — F(s, Zn(s))).

By Hélder’s inequality and Fubini—Tonelli theorem, we find

t
sup EHJQ(t)H%{ < T sup EJ |T(t—s)F(s,Y(s)) — Tn(t — s)F(s,Zn(s))H%Ids
te[0,T] te[0,T] 0

< 2T( sup f EI(T(t —s) — T, (t — s))F(s,Y (s))||%ds
te[0,7 Jo

+ sup f E[Tu(t — 5)(F(s,Y (s)) = F(s, Zn(s))) | }ds)
tef0,7] Jo

=: 2T(J21 + ng).
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For the term Js; we estimate

t
< sup j sup E|(T(r — s) — Ta(r — 8))F(s, Y (s))|%ds
te[0,7] JO T€[s,T]

T
< f sup E(T(t - ) — To(t — ))F(s, Y (s)) s
0 te[s,T]

T
< J E sup |[(T(t—s) —Tp(t —s))F(s,Y(s))||%ds. (2.11)
0 te[s,T]

Our aim is to show with the help of Lebesgue’s dominated convergence theorem that ([2.11))
converges to zero. Therefore, we look at the pointwise convergence for fixed s and w. Then,
F(s,Y(s)) is a fixed element in H. Hence, by Corollary (III)

sup |(T'(t — s) — Tp(t — 5))F(s,Y(s))|% — 0 for n — 0.
te[s, T

We gain the majorant from the following estimate

S I(T(t = 5) = Tult = $))F(s,Y () [F < 4M*e* | F(5,Y (5)) 13-

In order to see that the right-hand side is integrable, we calculate

T T
f E 4M2eXT | F(s, Y (s))|%ds < 4M2emk%f E(1 + Y (s)[#)?ds
0 0

< 8MZ%e 2AT1<;FJ 1+ E|Y (s)[7ds < 8M?**TkpT(1+ sup B[V ()[3) < o,
te[0,T]

where we used the linear growth condition of F'. The right-hand side is finite, since Y is the
mild solution of (S — ACP). Thus, by Lebesgue’s dominated convergence theorem we find
Jor = sup ]Ef [(T(t — ) — Tu(t — 8))F(s, Y (s))|%yds —> 0 for n — co.
te[0,T]
For the term J2s we apply the Lipschitz continuity of F' and find
T T
Jog < MQeQ’\TCIQ:f E||Y (s) — Z,(s)|%ds < M?ePTC% f sup E|Y (s) — Z,(s)|%dr.
0 0 se[0,7]
For J3 in (2.10]) we start again by rewriting the relevant expression as follows
¢
f T(t—s)G(s,Y(s)) — Tn(t — s)G(s, Zn(s))dM/(s)

0
t

- f (Tt — ) = To(t — ))G(s, Y (s))dM(s) + j Ty (t — 8)(G(s, Y (s)) — G(s, Za(s)))dM(s).

0 0
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Thus, we estimate

t
sup E[J3(t)|7 <2 sup E| | (T(t—s) — Tn(t — ))G(s, Y (s))dM (s) 3
te[0,T] te[0,T] 0
¢
+2 sup E|| | Th(t—9)(G(s,Y(s)) — G(s, Zn(s)))dM(s)H%{
te[0,T7] 0

=: 2(J31 + Jgg).
To show that the term J3; converges to zero is the crucial step of the proof. We start by

estimating using the isometry of the stochastic integral and the definition of the Hilbert-

Schmidt norm

t
Ja = sup fo E|(T(t — ) — Tu(t — ))C(s. Y ()Q* ., s
telo,

t
< sup [ sup BIT( —5) = Talr — )60, Y ()@ s
te[0,7] JO 7€[s,T]

T
<[ s BT - Tt = )G Y 6DV, s
0 te[s,T]

T 0
= f sup E Y [(T(t = 5) = Tult — 5))G(s,Y () Q" fi| Frds
0 te[s,T]

T o0
< f EY sup |(T(t—s) — Tu(t — 5))G(s, Y () Q"2 i %,
0 L—1 t€[s,T]

where {f}ren is an orthonormal basis of U. In order to apply Lebesgue’s dominated conver-
gence theorem, we interpret the series as an integral with respect to the counting measure.
First, we look at the pointwise convergence for fixed s, w, and k. Then, G(s,Y(s))Q1/2fk is
a fixed element in H. Hence, by Corollary (I11)

sup [(T'(t —s) — Tn(t — s))G(s, Y(s))Ql/kaH%{ — 0 for n — o0.
tels, T

We gain the majorant from the following estimate

sup |(T(t — ) = Tt — 5)G(s, Y ()QV2 fullly < AM*eT |G (s, Y ())Q"2 fil -
te[s, T

In order to see that the right-hand side is integrable we calculate

T 0 T
| B 3L AMPETG(,Y ()Q elfs = 4T | BIGEY )RR e s

T
< 4M2€2)\Tk‘éf E(1+ |Y(s)|m)%ds < 8M2PTEZT(1 + sup E|Y (1)]%) < oo,
0 t€[0,77]
where we used the linear growth condition of GG. The right-hand side is finite, since Y is the

mild solution of (S — ACP). Thus, by Lebesgue’s dominated convergence theorem we find

t
Js1 = sup | E|(T(t—s)—Tn(t—s))G(s, Y(s))QI/QH% v mds — 0 for n — oo.
te[0,7] Jo (1) (0H)
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For the term Js2 we apply the isometry of the stochastic integral and the Lipschitz continuity
of GG, that is
¢

Ja2 = S H . E|Tu(t = $)(G(5,Y (5)) = G(5, Zn($))7 1, w1105
€Y,

T
< MQezATC%L E||Y (s) — Zn(s)|%ds

T
< M2€2)\Tcéf sup EHY(S) - Zn(S)H%IdT
0 5€[07T]

Now, we collect all terms and from ([2.10) follows

T
sup E[Y(t) — Zu()|% < 32(n) + 6T((n) + M?ATC2 j sup E|Y (s) — Zn(s)|3dr)
te[0,T] 0 s€[0,7]

T
+6(é(n) + M?e2TCY f sup E|Y(s) — Zn(s)|%dr)

0 s€[0,7]
T
<e(n)+C(T,M,\,Cp, CG)J sup E|Y(s) — Zn(s)|%dr,
0 sel0,7]
where {£(n)}nen 18 a suitable null sequence, ¢ := (9 + 67)&, and C stands for a constant

depending only on the values stated in the parentheses. Using Gronwall’s inequality, we
obtain
sup E|Y (1) — Zn(t)[7; < e(n)(1 + O(T, M, A, Cp, Cg)TeMACHCRT),
te[0,T]
Hence, for n — oo we find
|Y = Zn|75 = sup E|Y (1) = Zn(t)[[7r — O
te[0,T]

O

REMARK 2.14. If we compare the two approximation theorems of this Chapter, we see that
the main difficulty in both proofs was to show that the term I31 and Js1 respectively converges
to zero. If we compare the two arguments we used to obtain the convergence, we see that the
one made in Proposition [2.9 is simpler, than the one of Theorem[2.13. Another advantage
of the approrimation scheme from Section is that the operator A is not affected by the
approzimation. This will make the proof of the transformation formula for mild solution in
Chapter[3 easier. On the other hand, we are restricted to the case of a generalized contraction
Co-semigroup if we want to apply Theorem [2.5. This is the main diffence to Theorem [2.1
which can always be applied.

Theorem also shows that any approximation {Ap}nen of the operator A will work, as long
as the semigroups (T (t))i=0 generated by Ay, fulfill the stability condition | T (t)| )y < Me
for all n € N and we have T, (t)h — T(t)h for n — © for allt = 0 and all h € H, where the
convergence is even uniform on each interval [0,to]. This holds in particular if one wants to

prove a finite dimensional approximation like the Galerkin method.



CHAPTER 3

Transformation Formula

The aim of this chapter is to prove a rigorous transformation formula, that is, It6's formula,
for the mild solution Y of the stochastic Cauchy problem (S — ACP) with Lévy noise. There-
fore, we first provide a transformation formula for square integrable Lévy processes with drift.
Since the mild solution is not regular enough (see Theorem , we cannot apply this trans-
formation formula directly. Another problem we face is that Y is only taking values in the
state space H and not in the domain of the generator Z(A). To overcome those problems we
apply the approximation of the mild solution from Theorem and request more regularity
of the transformation function. Through this procedure, we obtain a transformation formula
for the mild solution Y. Since the adjoint operator A* of the generator A appears in this

formula, we calculate the adjoint operator o7 * of the delay equation for important examples.

3.1. Transformation formula for Lévy processes

In this section, we prove the transformation formula for a well-defined square integrable Lévy
process with drift taking values in a separable Hilbert space H. Therefore, we have to change
our notation to the Poisson integral for the jumps of the Lévy process. For more details on the
notation we refer to Secton and Section in the Appendix. There is a rich literature
for the finite dimensional case. One finds the transformation formula for example in [GS71],
Section I1.2 §6.], [Pro05,, Section I1.7], or in [App09 Section 4.4]. In the case of Wiener noise
in infinite dimension one can turn to [DPZ92] Section 4.4.5] or with weaker assumptions to
[GM11al Section 2.3]. For the pure jump noise case in infinite dimension a transformation
formula with weak conditions was proven in [MRT13|. An older result for Lévy processes in
infinite dimension with strong assumptions on the transformation function can be found in
[Mét82], Theorem 27.2]. Since the transformation formula is known for the Wiener noise and
the pure jump noise case our goal in this section is to combine those two results to receive
the transformation formula for the Lévy noise case. We mainly use results from [App09],
[GM11a], and [MRT13] to accomplish this.

The first step is to generalize 1t6's formula from Theorem for the Wiener noise case. We
want to replace the deterministic times by stopping times. Thus, we have to consider stochastic
integrals with random limits as introduced in Lemma For notation of derivatives we
refer to Section in the Appendix.

COROLLARY 3.1. Let Q be a symmetric nonnegative trace-class operator on a separable Hilbert
space U. Furthermore, let {W (t)}o<t<r be a Q-Wiener process on a filtered probability space

53
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(Q, F,{Filo<i<r,P). Assume that the stochastic process X (t), 0 <t < T, is given by

X(t) = X(0) + f U(s)ds + f O(s)dW (s),

0 0
where X (0) is an Fy-measurable H-valued random variable, ¥ is an H-valued Fg-adapted

P-a.s. Bochner-integrable process on [0,T],
T
[ 16 s < o0 P,
0

and ® € P2(U, H).
Assume that the function ¢ : H — R is such that ¢ is continuous and its Fréchet derivatives
¢, @" are continuous and bounded on bounded subsets of H. Then, the following It6 formula

holds for all stopping times 11 and o withP(0< 71 <o <T) =1

T2

P(X(2) = d(X (1)) + | (' (X(5)), D(s)dAW (s))m

+ {<¢’(X(8)),‘1’(8)>H+%tr[¢”(X(8))(‘D(S)Qm)(@(S)QI/Q)*]}dsa (3.1)

T1

P-a.s. and for all t € [0,T].

PROOF.

We define the processes Z;(t), 0 <t < T, for i = 1,2 by

t t

Z;i(t) = X(0) + Jo Lo, (s)¥(s)ds + Jo Lo, (s)®(s)dW (s).

Note that Z;(t) = X (t) P-a.s. for all ¢ € [0, 7;] and by Lemma we find P-a.s.

T T

]l[ovn](s)\lf(s)ds + f ]1[0771.](5)@(8)(1”/(3)

0

Z;(T) = X(0) + J

0

= X(0) + J U(s)ds + J O(s)dW (s) = X (7).
0 0
Now, using the It formula for deterministic times from Theorem and Lemma [B.11] again

we calculate P-a.s.

o(Z:(T)) = f (S (Zi(5)) Lo (5)B()AW ()1t + f (D (Z:(5)), Lo (8) V(50
£ 00 (Z0()) (L0, (9)2(5)Q") (o g () B(5)Q") s
f (8 (Zi(s)), B(s)AW ()1

+ f (€0 (Z(s) <>>H+§ ] (Z4(5)) (@ (5)Q") (B(5)Q*) s
=[x e )
. 0
| X WD + (X (BQ(()Q) s
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We obtain by subtraction and identity
(X (72)) — (X (1)) =(Z2(T)) — ¢(Z:1(T))
- [ @), o)

[ O s + 5 1 (X)) (@R (B(5)Q) .
(]

Now, we turn to a square integrable Lévy process taking values in the separable Hilbert space
U. First, we consider the case of big jumps.

PROPOSITION 3.2. Let A e B(U\{0}), such that v(A) < co. We consider the process

Y(t) =Y(0) + Jot U(s)ds + Jot (s)dWq, (s J f s)xN(ds,dx) J f s)zv(dz)d

where W, @ T and A are progressively measurable processes with
t t
f |\Il(s)|Hds+J f |A(s)x|gv(dx)ds < oo  P-a.s.,
0 0JA

for all t € [0,T], and ® € PA(U,H). Then, for a function ¢ € C*(H;R), with ¢', ¢" bounded
on bounded subset of H, we have P-a.s.

oY (1) = j (6 (Y (5-)), ®()dWgy (s)n
+ f (€O (Y (5=)), W()ar + 5 0" (¥ (5-)) (B(5) Q8 ) (2(5) Q4 )" s
# [ 1607 + T = 000 (5N (s,
+ [ [ @ At

for all t € [0, T] and all integrals appearing above are well-defined.

PROOF.

The existence of the integrals is guaranteed by Theorem and [MRT13| Proposition 3.3.].
We introduce the following notation

Ye(t) = y(0)+£x1u(s)ds+fq> (s)dWa, (s JJA w(dz)d

0
¢
Nty = J j Y (s)zN(ds,dx),
0JA
where the ¢ indicates the continuous part of the process Y. Obviously, we have P-a.s.
Y (t) = Y(t) + YN (1).

We consider the stochastic process Z(t) := 4N (t,dz). The jump times of Z will play a
crucial role for the proof. Recall that the jump times are defined recursively as T64 := 0 and,
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for each n e N, T4 := inf{t > T4 | : AZ(t) € A}. Using those stopping times we find P-a.s.

o(Y(t)) — ¢(Y(0)) = Z S(Y (t A Ti)) — oY (t A TH)

7=0
= NT6(Y(t AT 2) = GV (E A T)) (3.2)
j=0
+ DY (EATH)) = oY (E AT -)). (3-3)
j=0

We look at (3.2)) first. Observe that for all ¢ with TA <t < T#,, this means t lies between

Jj+b
two consecutive jumps, we have P-a.s. Y (t) = Y(TJA) +Y°(t) — Y"’(TJA). Thus, each summend
in (3.2)) behaves P-a.s. like a continuous stochastic process, that is for ¢ € (TA,TJ“_‘H) the
process Y does not jump and we have Y () = Y (t—). Applying Lemma [B.11] leads P-a.s. to

the following identity

1E/\TJJrl
L (B (Y (5)), B(s)dWay (5))

A
/\Tj

t/\TJA+1 t/\T]f“
j Y (5)), (5)dWa, ()0 — fo (B (Y (5)), B(s)dWay (3))

0

T
[} R0 19) = B (D@ (). @MW, (5D

0 j+1

= [ S OO O, 2, (o
= [ B O ). 261 (5D

tATJ+1
- Jt (' (Y (5-)), B(s)dWey (s))n-

A
/\Tj

Obviously, the same procedure works for ds-integrals. Thus, we are able to apply Corollary

to (3.2]) and receive P-a.s.
e}
D00 A TA) = 600 (A TS

0 t/\TH_1
; “ (B (Y (5)), B(s)dWoy (3))

/\TA

t/\Tj+17
" f (& (Y (), W()om + (& (Y j A(s)zv(de)

A
/\Tj

Ll )@ @) 3/2)*]”8]
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0 t/\Tf}H
; [L (S_))v(p(s)dWQo(S»H

/\TA

t/\TJ+1
" f (O (Y (), W (s))m + (& (Y jA rv(dz))

/\Tj

+%tr[¢”(y(5—))(‘?(5) 5 (@(s) é/2>*]}ds]

- [, 0w, 6
j (o >H+§m~[¢ (7 () (@()2y ) (@()2y ) s
f J @ (s)a) v (de)ds.

Now we turn to . Recall that the integral with respect to a Poisson random measure is a
random finite sum, that is Sé §4 f(s,2)N(ds,dx) = Z;Ozl f(TJA, AZ(TJA))]I{TJAQ}. Using this
fact we calculate P-a.s.

TA o
Ny = f f s)aN(ds,dx) = > Y(T{AZ(T, n{TA<TA}
7=0
a0
= Z Y(THAZ(T; )n{TA<TA |+ T(THAZ(TH)

JT f s)xN (ds,dz) + Y (TAAZ(TA) = YN(TA-) + Y(TAAZ(TH).

Note that for all jump times TJA > t the corresponding summands in (3.3)) are zero. Applying
those preliminary thoughts to . 3.3)) yields P-a.s.

2¢ (t A TH1)) — (Y (E AT ) 2 Y(t AT{) = oY (t AT ) iacy

I
18

[o(V(T}) + YN(T}) = (Y (T )L iracy

<.
Il
—_

I
18

[o(V (T} =) + YN (T =) + YT AZ(T]) = oV (T )L yracy

<.
Il
—_

[6(Y (T} ) + T(THAZ(T}) — oY (T} D] racy

<
Il
—

I
.MS

(Y(s=) + Y(s)x) — o(Y(s—))}N(ds,dz).

I

S

:L,-A—\
©-
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With the help of Proposition [3.2] we are able to prove the transformation formula for the Lévy
noise case. In the formulation of the following theorem quasi-sublinear functions appear and
are defined in Definition in the Appendix.

THEOREM 3.3. Let ¢ € C*(H;R) such that

[6' ()|l < ha([R]m),
16" (W) Lcry < ha(lR] ),

where h € H and hi,hs : Ry — Ry are quasi-sublinear functions. We consider the following
stochastic process

Y(t):y(0)+qu(s)ds+f (s)dWo, (s JJ $)zN (ds, dz) J  A(s)eN(ds,do)

0 0
where t € [0,T], A e Z(U\{0}) with v(A€) < o0, where A° is the complement of A. Further-

more, let ¥, &, T and A be progressively measurable processes, such that P-a.s.

fo [9(s) s + fo Lr<s>x%{u<dx>ds+ fo thu’r(s)xwT(s)x%{uwx)ds

¥ jo fA ha (|7 (8)ee] 1) |7 ()| 3w (da)ds < oo, (3.4)

and ® € P2(U,H). Then, we have P-a.s.
o(Y(t)) =o(Y (0)) + L<¢'(Y(8—))7 D(s)dWeq, (s))n

" L{<¢/<Y<s—>>, W(s)om + = a8 (Y (5-) (@(5)QY ) ()@Y ) * ) ds

2

t -

n j f (B(Y(5-) + T(s)x) — S(Y(s—))} N (ds, dx) (3.5)
0JA

" j f (B (5=) + T(s)) — SV (5—)) — (& (Y (5-)). T(s)ad o (de)ds
0JA

" fo mes—) + A(s)2) — SV (5—))}N(ds, dz),

for all t € [0, T] and all integrals are well-defined.

PROOF.

For the existence of the integrals see Theorem and Theorem Let {Bp}nen be a
sequence with B,, € Z(U\{0}), such that B,, 1 U, where v(B,) < o for each n € N. For

example we could choose B, = BY n (0). We define the following stochastic process

Y(t) = Y(0) + f W(s)ds + f B(5)dWog, (5)

f J s)zN(ds,dzx) J J s)zN(ds,dx).
AﬁBn cf-\Bn
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In order to see that we can apply Proposition [3.2] we rewrite the process Y;, as follows
¢

Yo (t) =Y(O)+f (s )ds+f B(s)dWoy (5)

0
J J : La(@)Y(s)a + Lac(x)A(s)zN (ds, dz) — Lt LmBn Y (s)zv(dz)ds.

Note that the stochastic process Y;, fulfills all assumptions of Proposition for each n € N.
In particular, we find by using assumption (3.4) and Hoélder’s inequality, that P-a.s. and for

1/2
all £ € [0,7] 5354, IT(s)elv(da)ds < (tw(A 0 Ba)V2 (55540, IT(s)elPu(da)ds) < oo,
Applying Proposition [3.2] to the process Y,, yields P-a.s.

oLy, f<¢ (5)dWay ()1
f (' () + ;trw (Ya(57)) (2(5)Q0*) ((5)Q0 )1y

+ f ., {o(Yn(s—) + Y(s)zla(x) + A(s)xlgc(z)) — ¢(Yn(s—))} N (ds,dx)

f JAmBn Y(s)zynv(dr)ds,

for all t € [0,T]. We rewrite the Poisson integral in the following way and receive P-a.s.

o j<¢ (s)dWq, (s))m
J o it itf[qﬁ (a(s=)(@(5)Q ") (@(5)Q4 ") Thds
+L ngn ¢(Yn(s—) + Y(s)z) — ¢(Yn(s—))}N(ds, dx)

+f L - d(Yn(s—) + A(s)x) — ¢(Yn(s—))}N(ds, dx)

f ngn Y(s)z)pv(de)ds,

and for all ¢t € [0,T]. Before we pass to the limit we add the compensator. This leads to

oY, j @, (5)dWay ())n (3.6)
j {0/ (Ya(5), W(s)o + ;trw (YVals-)(@(5)Q4 ) (@()Q5 ) s
+J f 1p, (2){o(Yn(s—) + Y(s)z) — gZ)(Yn(s—))}N(ds,d:L“) (3.7)
0JA

F [ t0ls) + Als)a) = oY (=)} N ds.da)
0 JAcnB,

+j f 1, (D){B(Vo(5—) + T(8)2) — d(Ya(5—)) — (& (Va(5-)), T(s)m }v(da)ds, (3.8)
0JA
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P-a.s. and for all ¢t € [0,T"]. To show that the integrals converge we apply Lebesgue’s dominated
convergence theorem and its stochastic versions, see Theorem and Theorem In
oder to find the majorants, first note that for all h € H and any R > 0 with ||h|| < R, there
exists a constant Cr > 0, such that |¢'(h)|x + |¢"(h)| L) < Cr. Since Y, converges to Y’
P-a.s. there exists a Cr(w) > 0 for a.e. w € Q, such that for all s € [0,T] and a.e. w €

|6/ (Ya(w, s) + 00 (w, 5)z) |1 + 6" (Yn(w, 5) + 0T (w, 8)2) |11y < Cr(w),

for all 0 < 0 < 1. From the mean value theorem we deduce that for all z,y € H

0(x) — d(y)| < Sup. 16y + 0(x —y)|rle—yla

and

[p(x) — o(y) — &' (y)(x —y)| < sup [|¢'(y +0(z =) — ¢ W)|ulz —ylu

0<0<1
holds. Thus, for the compensated Poisson integral (3.7} ﬂ we find for all ¢ € [0,7] and a.e. w € Q

f j]an Np(V(w, s—) + Y(w, 8)z) — ¢(Yn(w, s—))|*v(dz)ds

< f f C2 ()| (w, 8)2| %0 (dz)ds < co.
0JA
Hence, we obtain a P-a.s. convergent subsequence from Theorem For (3.8)), we find for
all t € [0,7] and a.e. w € Q

fo fAan (@) $(Ya(w, ) + T(w, 8)2) — $(Ya(w, 5-)) — (& (Ya(w, 5-)), T, 8)ada|v(dr)ds

t
< J J Cr(w)| Y (w, s)z|}v(dr)ds < 0.
0JA
Finally, recall the definition of the inner product appearing in (3.6)), that is for ue U

(©*(w, 5)¢' (Yn(w, s—)))(u) = (' (Va(w, s)), ®(w, s)(u))m,
for all s € [0,7] and a.e. w € Q. Then, is defined for all ¢ € [0, 7] and a.e. w € Q by

t
[} €0/ a5, 0 )W 5) o = [[ )0 (a5 (5) ),
for more detail see [GM11al Section 2.3.1]. Thus, we find

[9*(w, 8)¢' (Ya(w, s=DIZ 0,y < 16/ Valw, sIENPW)IE, g .0
< CHIOWIE, s ) < -
for all s € [0,T] and a.e. w € Q and Theorem applies.
0]

Since the transformation formula in Theorem 3.3]is composed of the It6 formula from Theorem
[B:12| and the transformation formula for pure jump noise from Theorem [B-50] all functions ¢,
which fulfill the assumption of those two theorem, can also be use as transformation function
for the transformation formula in Theorem We provide three examples here.
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EXAMPLE 3.4. Let ¢ € BC?(H;R), that means ¢ and its first and second derivative are con-
tinuous and bounded. Furthermore, assume that ¥, ®, T and A are progressively measurable
processes, such that P-a.s.

L |W(s)|rds +f0 L T (s)z|3v(dx)ds < oo

fort € [0,T] and ® € P%(U,H). Then, Theorem can be applied and yields the transfor-
mation formula ({3.5)).

EXAMPLE 3.5. Assume that ¥, ®, T and A are progressively measurable processes, such that
P-a.s.

t t
J [U(s)|mds +J J 1T (s)z|%v(dz)ds < oo
0 0Ja
fort € [0,T] and ® € PE(U, H). If ¢ € L(H;R) the transformation formula (3.5) simplefies
to

BV (1)) = f (6, 0(5)dWog, ()0 + f o(v ds+f | o0etomas.az)

Jf(ﬁ N(ds,dz).

EXAMPLE 3.6. One of the most important examples for the transformation function is the
norm-square, that is ¢(h) = |h|%. In this case we have ¢ € C*(H;R) with the following

derivates
& ()0 = 2(h, vy and ¢ (k) (v, w) = 20, Wy,

where v,w € H.Thus, we find the following estimates

|¢' (M) | < 2|hla and |¢" (R)| Ly < 2.

Additionally, if we assume that ¥, ®, T and A are progressively measurable processes, such
that

t t t
f [ (s) | s + f f 1T (s)2| 20 (de)ds + f J 1Y (s)a v (da)ds < oo
0 0JA 0JA
forte [0,T] and ® € PA(U, H), then Theorem yields the following transformation formula

1Y ()l =[Y ()] + Jtms_), ()W, (s))ir
f (Y (), W(s)m + trl(2(5)Q0*)(@()Qy ) T}
' fo JA{HY(S_> + Y(s)a|f — [V (s=)|H} N (ds, dx)
" fo | 4y Tl = 1Y (=) = O (5. X ()i o) s
! fot L{”Y(s‘) + A()z|F — [V (s—) |3} N (ds, dx).

REMARK 3.7. Note that if the transformation function ¢ also depends on time t € Ry, that
isd: Ry x H— TR, (t,h) — ¢(t, h), then we can still formulate the transformation formula.
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In this case we have to assume in Theorem that ¢ € CY2(R, x H;R), qS is bounded on

bounded subsets, and

16/t ) < P (IRl ), 19" (& ) [y < ha(lR]a),

where h € H, t € Ry and hy,he : Ry — Ry are quasi-sublinear functions. Then we receive

the following transformation formula

o(Y(t) = ¢(Y(0)) + L<¢>’(Y(S—)), O(s)dWa,(s))m +L (s, Y (s—))ds

+ 0«¢%Y«yﬁ»ﬂws»H-+;tﬂ¢%yxs—»o@@> 0 ) (@(5)Q0*) s

+ J {8(Y (s—) + T(s)z) — $(Y (s—))} N (ds, du)

+ J {(Y(s=) + T(s)x) — (Y (s—)) = {¢'(Y(s—)), X(s)x)m }v(dax)ds

0JA
¢
| ] 100+ Ms)e) = oY (5 N s, ),

P-a.s. and for all t € [0,T]. For the sake of clarity and brevity of the thesis, we decided to
omit the time dependency. To prove the transformation formula given above we could proceed
i two ways. The first would be to include the time dependence from the beginning. This is
possible since the Ito formula in Theorem and the transformation formula in Theorem
[B-50 both include the direct time dependency of the transformation function ¢. Since the
proofs of Theorem [3.3 and the preliminarily results are deduced from those two theorems, we
could carry the time dependence through each step of the proofs. The second way to prove the
transformation formula above is to apply Krylovs trick [Kry80, Appendix 1]. Thus, we could
define a new stochastic process Z in the Hilbert space R x H as Z(t) := (SS ds,Y (t)) and apply
Theorem [3.3.

3.2. The space of transformation function

In this section, we provide a solution for the second problem described in the introduction of
the chapter. As we have seen, we can overcome the lack of stochastic differentials of the mild
solution Y by applying the Yosida approximation from Theorem Since each member of
the approximating sequence is a well-defined Lévy process, we can apply the transformation
formula from Theorem However, if we do so, we still encounter one problem when passing
to the limit. This is due to the term

<AYn(t_>v ¢/(Yn(t_))>Ha

which appears if we apply the transformation formula to Y. Since the process Y in not taking
values in domain of A, we cannot take the limit. The only way to overcome this problem is
to find condition for ¢ such that ¢'(h) € D(A*) for all h € H. Then, we can remove the
operator A from the solution process Y;, and apply A* to ¢'(Y (t—)) instead. In the following
we provide a sufficient criterion for that.
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Such as, always let H be a separable Hilbert space and M < H. By BUC*(M,R), k=0,1,...
we denote all mappings ¢ from M to R, which are bounded and uniformly continuous for all
Fréchet derivatives ¢, ¢’,¢”,... up to order k. Let the operator A generate a Cp-semigroup
(T(t))¢=0 with |T(t)||g < Me*, where M > 1 and A € R. If A > 0, we can choose a \g > A,
such that the resolvent operator (Ao — A)~! is well-defined. If A < 0 we set \g = 0. For
¢ € C(H;R), with ¢ € BUC(M;R) for each bounded subset M of H we define the function
¢4 analoge to [AFZ97|. That is, if ¢ is such that the mapping

x> d((Ao— A)x), ze P(A)
has a continuous extension to all of H, then the extension, which is unique, will be denoted
by ¢a.

LEMMA 3.8. Let ¢, ¢4 € BUC(M;R) and ¢, ¢’y € BUC(M; L(H,R)) for each bounded subset
M of H. Then, ¢'(h) € 2(A*) for all h € H (after the identification of ¢'(h) as an element
of H via the Riesz representation theorem). Furthermore A*¢'(h) = ¢'4(z) + Ao¢'(h) holds,
where x = (A\g — A)"'h. Therefore, the map h — A*¢'(h) is in BUC(M; H) for all bounded
subsets M of H.

PROOF.
First, we consider the function ¢’y
¢y : H — L(H,R)
h @ly(h)e = (o, zp)m,

where z;, € H is the unique element representing the linear functional ¢/, (h) from the Riesz

representation theorem. Since the operator (Ao — A) is invertible, we find
Vhe HIze 2(A):x= (N — A) h.
Thus, we have
¢(h) = ¢((Ao — A) (Ao — A)71h) = $((Ao — A)z) = da(x).

Taking the derivative of ¢4 with respect to z (€ Z(A)) we obtain the following identity for
all we D(A)

Pa(@)w = ¢'((Ao — A)z) (Ao — A)w = ¢'(h) (Ao — A)w = (Ao — A)w, v)m,

where v, € H. Again the (unique) existence of vy, follows from the Riesz representation
theorem, but this time applied to the linear functional ¢/(h). Summing up, we found that for
all he H and all w e Z(A)

(Ao = A)w,vpyr = Py(x)w = (w, 205

Hence, we find that v, € Z((Ao — A)*) = Z(A*). Since vy, is the element representing ¢'(h)
we have ¢/(h) € Z(A*). Furthermore, we have A*vy, = z, + Aov, and by substituting we find

A% (h) = @ly(x) + Xo¢/ (h).
U
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3.3. Transformation formula for mild solutions

In this section, we prove the main theorem of the chapter. However, before we do so, we
provide some auxiliary results which will provide the key tools to prove the transformation
formula for mild solutions. As before, we will use the a.e. w-notation at the points we want
to emphasize that these properties hold only P-a.s. and not uniformly. Recall that the space
Xt p of all predictable process with values in a Banach space B is equipped with the norm
2 2
IX|7.5 = sup E|X(t)]5-
te[0,T]
PROPOSITION 3.9. Let ¢ be a mapping from a Hilbert space H into a Banach space B. Fur-
thermore, let the stochastic processes X, X,, € X1 g be continuous in probability for eachn € N,

such that | X — X, |7, — 0 for n — 0. If ¢ € BUC(H, B), then we have
[¢(Xn) — ¢(X)

PROOF.

Before we show the claimed convergence, we prove the following auxiliary result. For an
arbitrary fixed § > 0 we define the set

ni={we Qe [0,T]: | Xn(t,w) — X (t,w)[F < ).
Obviously, the complement of €2, is the set
={weQFtel0,T]:|Xn(t,w) — X(t,w)|% > 6}.

We want to show that P(§2$) — 0 as n — o0. Thus, for an arbitrary ¢ > 0 we choose an
No € N, such that | X,, — X |7 g < de for all n > Ny and estimate
> sup J 1X, () — X(t)|3dP = sup J 1Xn(t) — X () |[HdP =6 | dP =6 P(Q5).
te[0,7T] te[0,T] JQE, Qg
Since 0 > 0, we found that P(£2) < € for all n > Np.

Now we turn to the claimed statement and choose an arbitrary € > 0. Since ¢ is uniformly

continuous on H, there exists an § > 0, such that

VXY e H: X = Y[H <8 = [6(X) — (V)3 < ;.
Therefore, we estimate
(X (t)) — S(X ()35 = sup j 16(Xa (1)) — (X (1)) [P
te 0 T

< sup | 00X (1) ~ G(X(@) [+ sup f B(Xa(®) — SXO)FP < 5 +C B2,

t€[0,T] t€[0,T7]

where C' > 0 is a constant due to the boundedness of ¢. Since P(25) converges to 0, we choose
an No € N, such that P(€2) < /¢ for all n > Ny and receive

|6(Xn(t) — H(X(1)|F5 < & for all n > No.
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The next result shows that from the norm convergence follows the P-a.s. convergence of a
subsequence uniformly in ¢t € [0, T]. This will be of great importance later in the proof of the
transformation formula for mild solutions.

COROLLARY 3.10. Let H be a Hilbert space. Furthermore, assume that the stochastic processes
X, X, € Xp g are continuous in probability for each n € N and | X — X, |7 g — 0 for n — co.
Then, there exists a subsequence (Xp, )ren of (Xpn)nen, such that (X, (t))ken converges P-a.s.
and uniformly in t to X (t).

PROOF.

From the norm convergence in X7 i we find that for all ¢ € [0, T
E|Xn(t) = X (1|7 — 0.

Thus, for all ¢ € [0,T] the sequence (X,,(t))nen converges to X (¢) in mean square. Therefore,
there exists a subsequence (X, (t))ren that converges for all ¢ € [0,7] P-a.s. to X(¢). For
the sake of readability we denote this subsequence again by (X, (t))nen. In the proof of
Proposition [3.9| it was show that for arbitary § > 0 the probability of the set

Qf = {weQFtel0,T]:|X,(t,w) — X(t,w)||5 > 6}
converges to zero for n — co. We will show that the set Q2 is equal to the set

Ay i= {we Q] sup |Xa(t,w) = X(t,w)|3 > 6},
te[0,T]

for all n € N. In order to show the equality recall the formal definition of the supremum for
an nonempty set S < R
supS =M < (a) VseS:s< M
(b) Ve>03dseS:s> M —e.

Since we only have to consider the t-dependence in the argument, we introduce the function
f(t) = | Xp(t,w) — X (t,w)|%. First we show QF < A,,, which is straightforward

- ~ (@) -
e 0, T]: fi(t) >0 = sup fI(t) = fI(t) > 0.
te[0,T]
For the reversed inclusion it follows from (b) that
Ve >0 3" e[0,T]: f(t") > sup fI(t) —e.
te[0,T]
Since supyefo,ry fo (1) > 6 3el; > 0@ supyeqo ) f3(t) — €, > 0. Thus, we find
fo(E5) > sup fO(t) — el > 6.
te[0,T7]
This shows that also A4,, = Q¢ holds. As a final step we introduce the real nonnegative random

variables Z,, n € N by

Zy = sup || X,(t) — X(t)H%{
te[0,T]



3.3. TRANSFORMATION FORMULA FOR MILD SOLUTIONS 66

Therefore, we can rewrite A,, as
Ay = {w e Q|| Z,(w)| > 6}
Since A,, = ), it follow that
Jim P({w e Q|| Zn(w)| > 6}) = 0.

Thus, (Zy,)nen converges in probability to zero. Hence, we can extract a subsequence (Zy, )ken,
which converges P-a.s. to zero. By the definition of Z we have shown that (X, (t))ren con-
verges P-a.s. and uniformly in ¢ to X (¢).

O

For the sequence (X, )xen from Corollary we deduce that for all t € [0,7] and a.e. w € Q
there exists a random constant C'x (w) < o0, such that

[ X, (8, w)|| 1, | X (£, w) | < Cx (w) for all ke N.

One can formulate equivalently, that there exists a P-a.s. bounded random subset M in H,
such that for all ¢ € [0,7'] and a.e. we Q: X, (t,w), X(t,w) € M(w) for all k € N. This fact
will help to prove the next convergence result, which will be used several times in the proof

of the main theorem.

PROPOSITION 3.11. Let ¢ be a mapping from a Hilbert space H into a Banach space B, which
18 uniformly continuous on bounded subset of H. Furthermore, let the stochastic processes
X, X, € Xp g be continuous in probability for each n € N, such that | X — Xp|7.50 — 0 for
n — . Then, there exists a subsequence (Xp, )ken of (Xn)nen, such that

d(Xn, (1)) = &(X(t)) P-a.s. and uniformly in t for k — oo.

PROOF.

We apply Corollary in order to receive a subsequence (X, (t))ken that converges P-a.s.
and uniformly in ¢ to X (¢), this means

Vt e [0,T] P({w e QY5 > 0 INy(w, ) € N Vk > Ny : [ Xy, (t,w) — X(t,w)| g < 8}) = 1.

In particular there exists a rondom subset M c H with P({w € Q| M(w) is bounded}) = 1,
such that for all t € [0, 7] and a.e. w e X X, (t,w), X (t,w) € M(w) for all ke N.

Now let € > 0. Since ¢ is uniformly continuous on bounded subset of H, there
3o(e, M(w)) > 0 VX, Y e M(w) : [X =Yg < d(e, M(w)) = [¢(X) — (Y )]s <e.

Since the sequence (X, (t))keny converges P-a.s. and uniformly in ¢, it follows that for every
0(e, M(w)) > 0 there exists a Ny(w,d(e, M(w))) € N, such that for all ¢ € [0,T]

P({w e Qe > 0 INg € N Vk = No : [¢(Xn, (t,w)) — $(X (£, )| < e}) = 1.
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REMARK 3.12. In our case of interest the stochastic process is the mild solution Y of the
stochastic abstract Cauchy problem (S — ACP). If Y has a cadlag modification, we already
pointed out in Remark that the process of the left limits Y, that is Y (t) := Y (t—) for
t € [0,T], is a modification of Y. Therefore, if the process Y has a cadlag modification,
Corollary and Proposition hold also for the process of the left limits Y .

The last result we require to prove the transformation formula for mild solutions, is a direct
consequence of Proposition

COROLLARY 3.13. Let Y be the mild solution of (S—ACP) and R(n) the Yosida approzimation
from Definition . If G fulfills (SHy1), then there exists a subsequence (ng)gen Of (n)neN,
such that

|(I = R(ni))G(t, Y (1)QY?| 1 sy w,rry — O dt @ P-as. for k — 0.

PROOF.

In Proposition [2.2| we set T'(t) = I for all ¢ € [0,T] and receive

2

— 0 for n — oo.
H

f (I — R(n))G(s, Y (s))dM(s)

0

sup E
te[0,T]

Applying the isometry of the stochastic integral yields
¢
_ 1/2)2 N N
o E 1T = RO Y (D@, rmys — 0 fox m = .

Thus, the sequence converges in Lo. This means, we can extract a subsequence with converges
dt ® P-a.s. to zero.

O

REMARK 3.14. Note that by the same argument as in Remark|[3.13, Corollary[3.13 holds also
for the process of the left limits Y, if Y has a cadlag modification.

Now we move on to the main result of this Chapter. Recall that we consider the stochastic
abstract Cauchy Problem (S — ACP) in a separable Hilbert space H given by

AY () = AY(D)dt + F(t,Y (£))dt + G(t, Y (£))dM (1), >0,
Y(0) =y,

where A generates a Cyp-semigroup, y € H, M fulfills (SHy), and F' fulfills (SHyp). In order to

prove a transformation formula including stochastic jumps we switch the notation to Poisson

(S — ACP) {

integrals for the jumps of the Lévy process M. Therefore the stochastic term in (S — ACP)
takes the following form

G(t,Y(t)dM(t) = Go(t,Y (t))dWq,(t) + JU G1(t,Y (t))zN(t,dzx),

where G fulfills (SHyp) with @ replaced by (o, which is the covariance operator of the
continuous part of the Lévy process M. G fulfills (SH;;) with covariance operator of the
jump part @1 instead of Q. Note that by Remark it is justified to write U instead of
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U\{0} in the compensated Poisson integral. Hence, the stochastic abstract Cauchy Problem
(S — ACP) takes the following form

dY(t) = AY(t)dt+ F(t,Y(t ))dt + Go(t, Y (t))dWq,(t)
(S —ACP) +§, G1(t, Y (t)xN(t,dx), t=>0,
Y(0) = y.

We will use this to prove the following theorem, where we consider the cadlag modification of
the mild solution.

THEOREM 3.15 (transformation formula for mild solution of (S — ACP)). Let Y be the mild
solution of (S — ACP), where the operator A is y-dissipative and Gy fulfills P-a.s.

1G1(t, 1) wmy < ke, (1 + ||h]#)

for a deterministic constant kg, > 0 and for all t € [0,T] and all h € H. Furthermore,
let p € C*(H; R), where ¢,da,d, ¢y, 8" are bounded and uniformly continuous on bounded
subsets of H. Additionally, let

16/ (W) < ha(lR]), 16" (B ey < ha(lR]).

where h € H and hi,hs : Ry — Ry are quasi-sublinear functions and we have

f ()2 e v () < o, f o)) 2w () < o0
U U

Then, the following transformation formula holds for all t € [0, T] P-a.s.
SV (1) = oly) + j A6 (5D + [ 60 -),Fi, Vs
j (@Y (5-)), Gols, Y (=) AWy ()
f tr [¢" (¥ (s=)) (Gols. ¥ (s=)QY) (Gols. Y (s=)QY) *]ds
f J, #0762+ Guls. Y (5=a) = o0y (s N(ats. o
f [, #0762+ G, Y (5)2) = 601 (5) = Y (52)). Gr (5. Y (=)l s

PROOF.
Since the generator A is vy-dissipative, it follows by the Lumer—Phillips theorem that it gen-

erates a generalized contraction semigroup. Therefore, the mild solution Y of (S — ACP)
has a cadlag modification and Theorem [2.3] shows, that Y can be approximated in X7 g by a
sequence of smoother processes (Yy,)n>y € Z(A) of the form

Yo(t) = R(n)y+ fo AY, (5—)ds + fo R(n)F(s, Yy (s—))ds +L R(n)G(s, Yo (s—))dM(s).

From Corollary follows, that there exists a subsequence (Y}, (t))ren of (Yn(t))n>, which
converges P-a.s. and uniformly in ¢ to Y (¢). By Remark the same holds true for the
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process of the left limits. Like before, we denote this subsequence by (Y;,())n~~. For each
n € N with n > « we can apply the transformation formula from Theorem [3.3] and receive for
all t € [0,T] P-a.s.

B(Yalt) = S(R(n)y) (3.9
[ @0, Aol (310)
[0, R, Yol (3.11)

f (6! (Ya(s=)), B(m)Go(s, Ya(s=))dWa ()1 (3.12)
‘s j tr [ (¥ () (R(n) G, Ya(s—))QH) (R(n) Go(s. Ya(s—)Q4*) Jds (3.13)
f |, #0ilm) + RG (5.5 (5))2) = 0(¥als) ¥ s, ) (3.14)
j |, #tam) + RG (5. Ya5)) = 00 (5-) (3.15)

—{(¢'(Ya(s-)), R(n)G1(s, Yn(s—))x)mv(dz)ds.
The goal now is to show, that the left and the right-hand side converge P-a.s. to their coun-
terparts as claimed in the statement of the Theorem. Recall from Corollary [3.10} that for
all t € [0,T] : Yo(t), Yn(t—),Y(t),Y(t—) € M, where M is a P-a.s. bounded subset of H
independent of t. Note that the two terms in (3.9)) converge by Proposition Therefore,
we have, possibly for a subsequence, for all ¢t € [0, 7] and P-a.s.
¢(Yn(t)) = (Y (t)) and ¢(R(n)y) — ¢(y).
From Lemma it follows that ¢'(h) € 2(A*) for all h € H. Hence, we can move the
unbounded operator A in (3.10) away from Y,, and onto ¢’, that is P-a.s.
(@ (Ya(s—)), AYn(s=)pm = (A*¢' (Ya(s5-)), Ya(s—)n,

for all n >« and s € [0,7]. Thus we can estimate P-a.s.

L<A*¢’(Yn(8)), Yo(s=)m — (A*¢'(Y(s—)), Y (s=)mds

= L<A* (¢ (Ya(s—)) = ¢'(Y(5))), Y (s=)yu + (A" (Ya(s—)), Ya(s—) — Y (s—))uds

< fo | A% (¢'(YVa(s=)) = ¢' (Y (s=) | [Y (s=) =

+ AT (Va(s Dl Ya(s—) = Y(s—)lm ds

(UA)
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First we consider (I4). Note that for every fixed s € [0,T] we have P-a.s.
[ A% (¢ (Ya(5=)) = &' (Y (s=)) [V (s=) | r — 0 for n — o0,

due to Lemma 3.8 and Proposition Lemma [3.8| also states that A*¢/(-) € BUC(M; H)
for all bounded subsets M of H. Hence, we estimate

| A% (¢ (Ya(s—)) = ¢/ (Y (s—))) |l < Cax P-as,,

for some positive P-a.s. finite constant Cy«. Since Y is the mild solution of (S — ACP), it
fulfills

t
J Y (s—)||3ds < oo P-a.s. for all t > 0,
0

from which we deduce

¢ ¢ 1/2
J 1Y (s—)|mds < (TJ ]Y(s—)”%ds) < w P-as.,
0 0

where we used Holder’s inequality. Thus, we find by applying Lebesgue’s dominated conver-

gence theorem

Jo | A* (qﬁ’(Yn(s—)) — qS’(Y(s—))) |ez||Y (s=)|m#ds — 0 P-a.s. for n — oo.

For the term (/14) we argue similarly and estimate the first term by a P-a.s. positive, finite

constant C, that is P-a.s.

L | A% (Ya(s— )i Yals—) — ¥ (s—) s < Cas fo [Y(s—) — Y (s mds.

Since (Y, (t—))n>~ converges P-a.s. and uniformly in ¢ to Y (t—), it follows that also the term

(I14) converges P-a.s. to zero.

In order to show that (3.11]) converges P-a.s., we argue like we did for the pervious term. We
start by estimating P-a.s.

L<¢/(Yn(8—)), R(n)F(s,Yn(s=))m — <" (Y (s=)), F(s,Y (s—)))rds

t
< JO |6/ (Ya(s—)) = &' (Y (s=) || F(s,Y (s=))|

::(VIF)
+ ¢/ (YVa(s=) || R(n)F (s, Yn(s—)) = F(s,Y (s-)) | u ds.
=:(IIF)

For (Ir) we find that for fixed s € [0,T] P-a.s.

|6/ (Yn(s=)) = ¢/ (Y (s=))| | F(s,Y (s=)) |z — 0 for n — o,
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due to Proposition Since ¢’ is bounded on bounded subsets and F is linear bounded,

we can estimate P-a.s.
t

L |6/ (Va(s=)) = &' (Y (s=)a|F (s, Y (s=)) |1 < Cqs'/fFfO L+ [[Y(s—)lads < oo

Thus, by Lebesgue’s dominated convergence theorem it follows that (Ir) converges P-a.s. to
zero. For (I1p) we argue as we did in the proof of Theorem The first term in (I1p) we
estimate by a P-a.s. positive, finite constant Cy/, that is P-a.s.

JO |6/ (Yn(s=)a | R(n)F (s, Yn(s—))=F(s,Y (s—)) | ds

< Cor | IR)F(.¥al52)) = F(s.¥ (5] s

Therefore, it is sufficient to show that the integral on the right-hand side converges P-a.s. to

zero. In order to achieve this, we estimate P-a.s.
L I1R(n)F (s, Yn(s—)) = F(s,Y (s—))|u
< L (I = R(n))F(s,Y (s=))|a + [R(n)(F(s,Y (s=)) = F(s,Yn(s—))) | mds

< f (I = R(n)F(s, Y (s—)) a1 +Cr | F(s, Y (s—)) — F(s, Ya(s—)) |1 ds.

v~

=:(I11p) ::(;VF)

For the term (I1lr) we apply Lebesgue’s dominated convergence theorem, since

L (I = R(n))F(s,Y (s=))|mds < (1 + CR)J;) | F(s,Y (s=))] zds

<(1+ CR)]CFJ 1+ [|Y(s—)|uds < w0 P-as.,
0

where we used the linear boundedness of F. Furthermore, for fixed s € [0,7'] we have
|(I = R(n))F(s,Y (s=))|m — 0 for n — o0 P-ass.,

by Corollary (7). Finally, for (IVr) we use the Lipschitz continuity of F', that is P-a.s.

f IF(s, Y (5—)) — F(s, Y(s—)) |ds < Cr f ¥ (s—) — Yo(s—)la-
0 0

Since (Y;,(t—))n>~ converges P-a.s. and uniformly in ¢ to Y (¢t—), it follows that (IVy) con-
verges P-a.s. to zero. Summing up, we have show that (I1p) converges P-a.s. to zero.
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We continue with the term (3.12). Due to the stochastic integral the argument is different

than the previous term. We start as usual by separating the two null sequences, that is P-a.s.
t t
[ 6 s RO Gals, Y ls=)aWa (91 = [ (¥ (5=)). Gols. ¥ (s=) W ()

t
= L<¢'(Yn(8)) = ¢'(Y(s)), Go(s, Y (s=))dWe, (s))m

_/

"

=:(Iw)
T j (& (Ya(s-)), (R(n)Go(s, Ya(s—)) — Go(s, Y (5-)))dWay ()1

J

=I1Iw)
In order to show that (Iy) converges P-a.s. to zero, we want to apply Theorem which
is a stochastic version of Lebesgue’s dominated convergence theorem. First, note that we can

rewrite (Iyy) as

t
(Iw) = JO Go(s,Y (57)) (¢ (Ya(s—)) — ¢ (Y (s=)))dWq (s),

where Go(s,Y (s—))! is the dual mapping of Go(s,Y (s—)) (see [GM11al, Section 2.3.1] for
more detail). In order to show the dt ® P-a.s. convergence, we use the linear boundedness of
G and Proposition that is for all s € [0,7] and a.e. w e Q

Golw, 5. Y (5=, w))H (& (Yuls—w)) — (Y (5, )) Q8| ey 00

< 16/ (Yals—)) — &/ (Y (5=, ) |11 |Golw, 5, Y (5=, ) QY 1 ey 0
< ko |¢' (Ya(s—w)) — ¢ (Y (s— w)|a(1 + Y (s—,w)||g) — 0 for n — co.

Furthermore, we estimate the following integral for a.e. w € Q)
T
1/2
[, 16005, (s ) (5=, 00) = Y (5=, 00) @4 e 0, (3.16)

T
< fo |6 (Ya(s5—,w)) = &' (V (5—,w)) 1| Golw, 5, Y (5=, ) Q5 * |1,y w15

T
1/2
< Co) | 1G0(wr Y (5=)Q4 L1y 10
T
< Cyl@ha, [ 1+ ¥ (s=0)lds < o .17
0

Applying Lebesgue’s dominated convergence theorem yields the P-a.s. convergence to zero of

the integral (3.16). With (3.17) we also found a majorant to (3.16|) with enables us to invoke
Theorem from which we find

(Iw) = L<¢'(Yn(5—)) — ¢'(Y(s—)), Go(s, Y (s=))dWq, (s)yu — 0 for n — oo,

where the limit is in probability. Thus, we can extract a subsequence which converges P-a.s. to
zero. For (IIy) we want to show the P-a.s. convergence again via Theorem Therefore,
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we estimate for all s € [0,T] and a.e. w €
[(R(m)Go(w, 5, Ya(s—,w)) — Go(w, 5, Y (5=, )’/ (Ya(s—, ) Q0 *| L.y )
<[ (Va(s— )| (R(0)Go(w, 5, Yal(s—,w)) = Go(w, 5, Y (5=, ) Qg | s w11
< Cy (@) (I = R(n)Golw, 5,Y (5=, ) Q4| s, w1
+ |[R(n)(Go(w, 5, Y (s—,w)) = Go(w, 5, Ya(s—,0))) Q0| s rrr))
< Cy () (|(I = R(n))Golw, 5, (5=, w)) Q0 | ysy w.t1) + CrCa,|Y (5—,w) = Ya(s—w) ).

where we used the Lipschitz continuity of Gg. For the first term Corollary [3.13]shows, possibly
for a subsequence, that it converges dt ® P-a.s. to zero. The same holds for the second term,
since (Y, (t))n>~ converges P-a.s. and uniformly in ¢ to Y'(t). For the convergence in Ly we
use the estimate we just performed in order to find for a.e. w € )

T
fo [(R(n)Go(w, 5, Yn(5—,w)) — Golw, 5, (5—,w)))*¢' (Yo (5=, ) Q0 * | s, (v:2) 5

T
< Cy(w)(1 + Cr)ka, f 1+ Y (s—,w)|mds + 2Cy (w)CrCq,Cy (w)T < o0, (3.18)
0

where we use the linear growth condition of Gy. Together with the pointwise convergence

Lebesgue’s dominated convergence theorem guarantees the P-a.s. convergence of

T
fo [(R(n)Go(w, 5, Yu(s5—,w)) — Golw, 5,Y (5—,w))) ¢ (Yu(s—, ) Qq* | £ s, wmyds — O,

for n — oo. With (3.18]) we also found the necessary P-a.s. majorant. Therefore, Theorem
implies for all ¢ € [0, 7]

(Iw) = L<¢’(Yn(s—)), (R(n)Go(s, Yn(s—)) — Go(s,Y (s—)))dWq, (s))g — 0 for n — oo

in probability. Again, we can extract a subsequence which converges P-a.s. to zero.

For the It6 correction term (3.13]) we start by separating the two null sequences, that is P-a.s.

f e [¢" (Vi (s—)) (R(n) Gols, Yo (s—))QY2) (R(n)Go (s, Yi(s—)) Q4 %) *]ds

0

‘f tr [6"(Y (s=)) (Go(s, Y (s—))Q0"*) (Go(s, Y (s-))Qp*) *]ds

0

= f tr (0" (Yau(s=)) — ¢"(Y (s=))) (Go(s, Y (s=))Q4*) (Go(s, Y (s—))Qq/*) *]ds

0

J

"

=Ty )
+ J tr [¢" (Ya(s—){ (R()Go (s, Ya(s—))Qy ) (R(n)Go(s, Ya (s—))Qy*)

0
—(Go(s, Y (5=)Q5*) (Go(s, Y (s=))Qy*) ] ds.

:=(Iltr)
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In order to treat (Ii;), we estimate for fixed s € [0,T] and P-a.s.

[ [(" (Va(s5—)) = &"(Y (5-))) (Go(s, Y (s=)Q5%) (Go(s, Y (s-))Qy*) |
< 6" (Yal(s=)) = &"(Y (=)o | (Go(s, Y (s=)Q*) (Go (5, Y (5-)) Q) lma
< 16" (Ya(s=)) = ¢" (Y (5= |y |1 Go(s. Y (=) Q012 s v
< k|0 (Ya(s=)) = (Y (s= )iy (1 + [V (5=) | r)?

(Ya(s=)) = &"(Y (s=) ooy

where we used the linear growth condition of Gy. Applying Proposition yields

< kGo C’Y H¢H

HQS”(Yn(S_)) - Qﬁ”(Y(S—))HL(H) — 0 for n —» @ ]P’—a.s.,

and Corollary shows that it is bounded by some P-a.s. finite constant. Thus, from
Lebesgue’s dominated convergence theorem flows that P-a.s.

(Iw) = jo e [(6(Va(s—) — 6"(V(5))) (Gols, ¥ (5-)@L) (Gols, Y (s—))QY%) " lds — 0,
for n — oo. In order to show that (II;;) converges to zero as well, we rewrite it as follows
tr [ (Y (=) { (R(n) Go(s, Yu(5-))Qq *) (R(n)Go (s, Ya(s—))Qy *)*
— (Gols, Y (s=)Q0*) (Gols, Y (s—))Qg %) *}]
= 1 [¢" (Ya(s){ (R(n)(Go (s, Yu(s—)) — Go(s,Y (s)))Q5) (R(n)Go (s, Yu(s—)Q5*)*
— ((I = R(n))Go(s,Y (s —>>Q0/2)(Go<s,Y<s—>>@3/2)*
— (R(m)Go(s,Y (s=))Q4*) (R(n)(Go(s, Yu(s—)) — Go(s,Y (s-)))Q )"
— (RM)Go(s,Y (s-)Qy”) (I - R(n))Go(s, Y (s—)Qy*)*}].
Hence, we are able to estimate P-a.s.
[ tr [0 (Ya(s=) { (B(n)Gol(s, Ya(s—)Q0"?) (R(n)Go(s, Yu(s—) Q5 )"
— (Gols,Y (s=)Qq*) (Go(s, Y (s=))Qy*) "]

< Oy [C3[(Go(s, Ya(s—)) — Go(s, Y (s-)))Qy* Yo(s—) Qg

HL(HS UH)HGO HL(HS> (U,H)

+ (2 = R)Gols. Y ()R, 0rm) |Gols: Y (=DQE 1,

+ C|Go(s, Y (s—))Qy” Gols, Yn(s—)) — Go(s, Y (s—))) Q4

HL(HS)(UH)H HL(HS)(UH)

+ Cr|[Go(5. Y (5@ 1 g w0y | (= Bm)Go(5. Y (s-))Qy
< Cyr [CRkey Can (1 + [Ya(s=) 1) [ Ya(s—) = Y (s=)|u

+ kG (L+ Y (s=)| )| (I = R(n))Go(s,Y (s—))Qq
+ ChkGyCao(1+ Y (s=) )Y (s—) = Y (s=) |

+ Crkcy(1+ Y (s=) )| (I — R(n))Go(s, Y (s-)Qy >

P

1/2
i P———

-
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< C [203 k6 Cy Oy |[Yals=) = ¥ (s a1 + ko Oy (I = R Gols, Y ()@ 1y
+ CRkGOCyH(I — R(n))Go(s, Y (s—)) (1)/2HL(HS)(U,H)]

< Cyr|4CkkG, C3-Cay + ko, O (1 + Cr) + Crky, O3 (1 + Cr)| < .

From Corollary |3.13| we know that the term |(I — R(n))Go(s,Y(s—))Q(l)/ZHL(HS)(U,H) con-

verges, possibly for a subsequence, to zero and since {Y;,(s—)}n>~ converges to Y (s—) P-a.s.

and uniformly in s, it follows from the penultimate line in the estimate that the integrand
of (I1Ii;) coverages pointwise in s and P-a.s. to zero. The last line provides an P-a.s. finite

majorant. Hence, Lebesgue’s dominated convergence theorem yields the claimed convergence.

For the term (3.14) we want to show the convergence via Theorem which is a stochas-
tic version of Lebesgue’s dominated convergence theorem for compensated Poisson integrals.
Therefore, we start by showing the pointwise convergence to zero of the following expression

¢(Yn(s—) + R(n)G1(s, Yn(s—))z) = ¢(Yn(s—)) — o(Y(s—) + Gi(s, Y (s—))z) + ¢(Y (s—)),

for fixed w e Q, s € [0,T], and x € U. From Proposition it follows that a subsequence of
d(Y(s—)) — &(Yn(s—)) converges to zero. Next, we look at the following expression

E f G (5, Ya(s—)) — Ga (5, Y (s-))al 2 (dz)
U

= B[ (G1(s, Ya(s—)) = Gi(s, Y (s2))Q2IF 5 oy < C&,EIYals—) = Y (s—) [,

which converges for all s € [0,T] to zero, since Y;, converges to Y in Xt u. Hence, we can
extract a subsequence, which converges for all s € [0, 7] v®P-a.s. to zero. Since ¢ is uniformly

continuous on bounded subsets of H, we look at the difference of the arguments
[Yn(s=) + R(n)G1(s, Yn(s—))x = Y (s—) = Gi(s, Y (s=))z|u
< [Ya(s=) = Y(s=)m + [R(n)G1(s, Yn(s—))z — Gi(s, Y (s—))z|m
< [Ya(s=) = Y(s=)|m + [(R(n) — D)G1(s, Y (s—)) x|
+ Cr|Gi(s, Ya(s—))x — Gi(s, Y (s—)) x| ar-

(
(

We already know that the first and third term converge, possibly for a subsequence, to zero.
The second term also converges to zero, since G1(s,Y (s—))x € H for fixed s € [0,T], w €
and x € U, thus Corollary (ii) applies. Summing up, we found that

¢(Yn(s=) + R(n)Gi(s, Ya(s—))z) = ¢(Yn(s—)) = o(Y(s—) + G1(s, Y (s—))x) + o(Y (s—))

converges pointwise to zero.
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In [MRT13]| the following P-a.s. estimate was shown in the proof of Theorem 3.6.
f j 6(Ya(s—) + R(n)Gi(s, Ya(s—))) — $(Ya(s—)) Pu(dr)ds
<20, j j (Y (5 10)2 | R(n) G (5, Y5 — ) 3y (de)ds

+2C;, hi(1) L fU h(|R(n)G1(s, Ya(s=))a|m)*|R(n)G1(s, Ya(s—))a|Fv(dz)ds.

Note that we already applied this to our situation. We proceed with the estimate P-a.s.
f |, 1005=) + B (5. Yus))z) = 6V (=) o)

T
< 207 I (Cy Ok, L [, 0+ Wt Pt vaa)as

T
+2C8 hi(1)*CRkE, L L hi(Crlc, 1+ Yo (s=) )2 b1 (|2 0)2 A+ Vi (s=) | 1)z v () ds
< 2C} hi(Cy)*CRkg, C3 T tr(Q1)
+2Cp hi(1)2CRkg, hi(Crka, Cy)*C3T L hi(||zv)? | |Ev(d) < .

Using the same procedure we find P-a.s.
[ [ 160671+ GG, Yatsp2) = 001 (5 Pt

< 203, h(0)?kg, CY T tr(Q1) + 2021h1(1)2h1(CY)2C%TJ hi(lzv)? v (dz) < .
U

Applying Lebesgue’s dominated convergence theorem yields P-a.s.

f f 6(Yals—) + RM)Ga (s, Ya(s—))2) — $(Ya(s-))
p(Y(s—)+Gi(s,Y(s—))z) + (Y (s—))|v(dz)ds — 0 for n — co.

The two estimates above also provide the necessary majorant. Hence, Theorem yields

the desired convergence in probability. Thus, we can extract a subsequence which converges
P-a.s. to zero.

For the last term (3.15) we start by showing the pointwise convergence to zero. When we
dealt with the term (3.14) above, we already showed that

¢(Ya(s—) + R(n)G1(s, Yn(s—))x) = ¢(Yn(s—)) — oY (s—) + G1(s, Y (s—))z) + ¢(Y (s—)) = 0,

for n — 0.



3.3. TRANSFORMATION FORMULA FOR MILD SOLUTIONS 7

Therefore, all what is left to show is that the term involving the first derivative converges to

zero as well. In order to show this, we estimate as follows

(@' (Yn(s5-)), R(n)G1(s, Ya(s=))xyg — (&' (Y (s—)), G1(s,Y (s=))2)m
< [¢'(Yal(s=)) = ¢ (Y (s=)ulGi(s, Y (s=))z]u
+ ¢ (Va(s=)u[R(n)Gi(s, Ya(s=))z = Gi(s, Y (s=))z| m-

For the first term note that Gi(s,Y (s—))x is a fixed element in H. Hence, the first term
converges to zero by Proposition For the second term we estimate ||¢/(Y,,(s—))|z by a
P-a.s. finite constant, since ¢’ is bounded on bounded subsets of H. Finally, in the proof of the
convergence of above we already showned that |R(n)G1(s, Yn(s—))x—G1(s, Y (s—))z|a
converges to zero. This yields the pointwise convergence. In order to find a majorant, we
apply an estimate from the proof of Theorem 3.6. in [MRT13]. This way we find P-a.s.

f f (6(Ya(s—) + R(n)G (s, Ya(5—))x) — 6(Ya(s—)
— (¢ (Ya(5-)), R(n)G (5, Ya(5—))ylu(d)ds
<Ch, f f ho([Yo (s =) 1) | R(n)G1 (5, Yo (5— )| 3 (dr)ds

O, h(1) fo jU B (| R(1)G1 (5, Ya(s—))e] 1) | R(1)G1 (5, Ya(5—)) | 3w (dc)ds.

We proceed with the estimate P-a.s.

[ [ 1663a(6-) + R (5 Yoo ) — 60335-)
—{¢'(Ya(s—)), R(n)G1(s, Yn(s—))2)u|v(dx)ds
T
< Chha(Cy)CRkE, fo L(l + [Ya(s=) 1) |2 Bv(de)ds
T

+ Ol (O, || ma(Crkia, (1 + Yalsm )l (1 + 1Y, () Plalfoda)ds

< Choha(Cy ) ChkE, CFT tr(Q1)

+ 022h2(1)0123k%1h2(01%/€01CY)C§TJ ha(|lzv) ]z [Fv(de) < oo.

U

Using the same procedure we find P-a.s.

[ [ 16061+ G, (50) = 60 (59) = (@ (5, G,V (s s

< Chha(Cy )%, CET 12(Qu) + O ho (k% ha(ke, Cy ) C3T fU ho(z]or) 2 v (da) < co.
By Lebesgue’s dominated convergence theorem we find that converges P-a.s. to

f f H(Y (5) + G (5, Y (5-))2) — 6(Y (5-)) — (& (Y(5—)), Gi (5, Y (5—))adgrv(da)ds.
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In conclusion we have show that, possibly for a subsequence, the left- and right-hand sides of
(3-9)-(3.15) converge P-a.s. to the left- and right-hand sides of the transformation formula as
claimed in the statement of the theorem.

O

REMARK 3.16. If a function ¢ : H — R fulfills the assumptions of the transformation formula
from Theorem we can always construct a new function ¢ : H — R given by

z— ¢((v0— A) '),

for a fixed vo > v, such that qg fulfills the assumptions of Theorem . For example the

function ¢ given by o(z) = |(vo — A)"'z|?% fulfills the assumption of Theorem . We
discuss a similar example in full detail in Section [4.1]

3.4. The adjoint operator of &

From Theorem it is apparent, that we need to know the adjoint operator (A*, Z(A*))
of the driving linear operator from (S — SCP) in order to apply the transformation formula.
Our case of interest is the delay equation (S — DE) in its transformed version (Sp — ACP).
Hence, the driving linear operator is given by

B @
0 &

D(A) = {( }; ) € 9(B) XW%(I;Z;dlu):f(O)zh}.

In this section we calculate the operator (&*, Z(«7*)) for the most important examples.

with domain

Therefore, we assume that we know the adjoint operator of (B, Z(B)) and we set o = 1.

Furthermore, we consider the following delay operator in the finite delay case
®y: Wy([-1,01H) > H
[ CF(- f Di(o (3.19)
where C' € L(H) and Dy € Lo([—1,0]; L(H)). In the infinite delay case we look at
Oy Wa(R_;H) - H
- J Ds(o (3.20)
where Dy € Lo(R_; L(H)).

REMARK 3.17. From Section we know that, if we consider the delay operator ®1, the
operator o is \-dissipative if and only if ®1 has a single delay (and not a multiple delay) in
the discrete part. Hence, only in this case we can apply Theorem[3.15. However, one can still
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calculate the adjoint operator (A*, Z(A*)) for the multiple delay case. For example one can
adopt the method used in [Kap85].

ProPOsSITION 3.18. Consider the case of a finite delay. Assume the delay operator is given
by (3.19). Then, the adjoint operator of (&/*, P(/*)) is given by

% B*zq + 1‘2(0)
A *x = )
( Di (w1 — ghwa() )

zeD(A*) = { ( . ) e D(B*) x WH([~1,0]; H) : 2o(—1) = C*xl}.

Z2

PROOF.

Assume the operator (o, (7)) is given. Then we know from functional analysis that the
operator (&/*, P(o/*)) exists. Therefore, it follows for every x € Z(«7*) that («/*x); € H and
(o/*x)s € Ly([—1,0]; H), where we use the notation introduced in Definition [[.17 Finally,
the adjoint operator of 2/ has to fulfill

(A%, [e =2, 9 )&, (3.21)
for all v € Z(o/*) and all f € Z(2). We look at the right-hand side of (3.21)) first

0 .
(x,d [e, = {x1,Bfiyg + {1, P1fo)u + j_1<x2(a)’ fa(o))ndo
= (Bf2(0),z1pn + {21, Cfa(-1))m
0 0 .
+ <3317J D1(o) f2(0)doyy +J (x2(0), f2(0))yndo
1 1
= (Bf2(0), 21y + {fo(—1),C* 1)1
0 0o
+ | o). D@ mda + [ (folo)aalo)yudo,
1 1

where we applied f1 = f2(0), since f € (), and f denotes the (weak) derivative of f. For
the right-hand side of (3.21]) we find

0
"0,y = (A 0 fom + | (" 00). Pl o

= O @D + [ Galo), @2l
Plugging the calculated terms into (3.21]), we receive
(f2(0), (") 1)i — (Bf2(0),21)n — {fo(=1), C*x1)n
= f_01<f2(0)7D’f(0)$1 — (F*2)2(0))pdo + f1<f2(0),962(0)>1{d0. (3.22)

First we will calculate (&7*z)o. Therefore, we are argue similar as in [BHT6|. Thus, if we
choose fi =0 and fo € CFP((—1,0); H) we have f € 2(&) with fi = f2(0) = f(—1) = 0. This



3.4. THE ADJOINT OPERATOR OF & 80

way we find

J01<f2(0),DT(0)$1 — (" x)2(0))ndo = — J01<f2(0)7352(0)>Hd07
for all fo € C*((—1,0); H). Hence, z2 € Wi ([—1,0]; H) with
t9(0) = D (0)x1 — (*x)2(0).
Therefore, we found the representation for (27*x)9, that is
(@*x)2(0) = Di(0)x1 — @2(0).
Furthermore, we calculate for f € (/) and z € Z(/™)

0 d
20) 20D = ol=T)za(1 s = [ [ falo)ma(o) o

0 0 .
~ | R0 Di(@)es ~ (S D)o + | <alo). sl udo
~1 -1
Thus, we can rewrite (3.22)) as follows
(f2(0), (&*2)1 — 22(0)yr — (Bf2(0), z1)m = {fo(—1),C*z1 — z2(—=1))n. (3.23)

Note that, if we now choose f € Z(</) with f1 = f2(0) = 0, fa(—1) can take any value in H.
Hence, we find

<h, C*xl — wg(—1)>H = 0,
for all h € H. Therefore, we conclude

1‘2(—1) = C*{L‘l.
Thus, (3.23) reduces to
(f2(0), (@*2)1 — 22(0))1 = (Bf2(0),z1)m.

Since we can choose f1 = f2(0) € Z(B) arbitrary, it follows that z; € Z(B*) and

(%*l’)l = B*l‘l + ZL'Q(O).

Now let us assume the operator (&7*, Z(o/*)) is given. Then again, we know from functional
analysis that the operator (&7, Z(</)) exists. Therefore, it follows for every f € Z(<f) that
(o7 f)1€ H and (o f)2 € Lo([—1,0]; H). Finally, the operator ./ has to fulfill

(A%, [e = (2. 9 )&, (3.24)
for all z € Z(o/*) and all f € Z(/). We look at the left-hand side of (3.24]) first

0
"0, ey = (B + 2200, fion + | (Di()or = o), falo)ido

0 0
= (B f + a0, fou + o, [ Dr(0) ooy ~ [ Cia(o). flo)yudo.
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For the left-hand side of (3.24) we find

0
(&, e = (or, (7 fm + f_1<$2(0)> (7 f)a(0))ndo.

Plugging the calculated terms into (3.24)), we receive

(B*z1, fiyn + (@2(0), fidu + o, j Dy(0) falo)do — (7 F)ion

f (alo (0)yrdo + f (ia(o), folo)do.  (3.25)

We will calculate (Af)y first. Therefore, if we choose z; = 0 and zy € CP((—1,0); H), we
have z € Z(o/*) with x9(—1) = 0 = 22(0). This way we find

[ o). @ sntoymdo = - [ ax(o). soto)mac
for all x5 € CX((—1,0); H). Hence, fo € W ([—1,0]; H) with

(Af)2(0) = f(0).
Using this equality, we calculate for z € Z(&7*) and f € 9(</)

0
(x2(0), f2(0))1 = Cxa(=1), fo(=1))m = i<932() fa(0))udo

0

= J_O1<902(0)a (o f)2(0))pdo + LI@Q(U), (o) ado.
Thus, we can rewrite as follows
(@2(0), f1 = f2(0)n
= (o1, (F )1 - f_ol Dy(0) faolo)doyy — (wa(—1), fo(=1))g — (B*z1, fiou

= (1, (A f)1 — f Di(0)fa(o)doyy — (C*x1, f2(=1))r — {(B*x1, fi)n

— (ay, ()1 — Cha(~ f Dy(0) folo)dods — (B*z1, fidu, (3.26)

where we used xo(—1) = C*zq, since z € Z(«/*). Note that, if we now choose x € Z(*)

with 21 = 0, £2(0) can take any value in H. Hence, we find

by f1 = f2(0))r = 0,

for all h € H. Therefore, we conclude
f2(0) = fr.
Thus, (3.26) reduces to

(B*21, iy = (o, (o F)1 — Cha(— j Dy(0) fa(o)dodn.
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Since we can choose z1 € Z(B*) arbitrary, it follows that f; € 2(B*) and

0
()1 = Bf + Cha(~1) + L Dy(0) fo(0)do

L]
If we consider an infinite delay and the delay operator is given by (3.20), we can formulate
the analog result to Proposition Since the proof is exactly the same as in the finite delay

case, we omit it.

PrOPOSITION 3.19. Consider the case of an infinite delay. Assume the delay operator is given
by (3.20). Then, the adjoint operator of (/*, P(/*)) is given by

oS — B*zq + $2<0)
Di()a1 — ghaa() )7
for
re D(A*) = D(B*) x Wy (R_; H).
REMARK 3.20. It might seem a bit odd, that there is no extra condition for the domain of the
operator </*. However, it is implicitly there, since the Sobolev space W21 (R_; H) is embedded
in Co(R-H) = {f e CR.H) : limy_,_o f(x) = 0}. For the same reason is the proof of the

infinite delay case a bit simpler, since one term in the fundamental theorem of calculus is

ZETO0.



CHAPTER 4

A Filtering Problem

In this final chapter we provide an application of the transformation formula from Theorem
First, we show a product formula for mild solutions. Then, we apply this formula in
order to solve a filtering problem. Since we want to be able to calculate all the expressions in
a closed analytic form, we have to choose our examples quite specifically. The advantage of

this procedure is that we can see exactly how the developed tools get used.

4.1. A product formula

In this section we apply Theorem to give an explicit example. Therefore, let H be
a separable Hilbert space with inner product denoted by {:,-)g. Furthermore, we assume
the operators (A, %(A)) and (B, %(B)) to be generators of Cy-semigroups of generalized
contractions. Hence, there exists Aa, Ap € R, such that A is a A 4-dissipative operator and B

is a Ap-dissipative operator. Then, we consider the operator (C, Z(C')) defined by

A 0

C:= and 2(C) := 2(A) x 2(B),
0 B

on the Hilbert space H x H. A straight forward estimate shows that the operator C is

max{A4, Ap}-dissipative. Therefore, we fix a A € R, such that A > max{\4, Ap}. Furthermore,

let X and Y be the mild solutions in H of the following two (S — ACP)

(S_ACPX){ dX(t) = AX(t)dt+ FA(t X (1)dt + GA(t, X (8))dM (1), te[0,T],
X(0) = =xzeH,
and
(S_Acpy){ dY(t) = BY(t)dt+ FP(t,Y(t))dt + GP(t,Y(t))dM(t), te[0,T],
Y(0) = yeH,

where F4, FB .GA GB, and M fulfill the assumptions of Section for (S — ACP). Hence,
both equations are well-posed. We can rewrite the two equations above equivalently as one

in H x H in the following way
[ ([ x® ) X(#) FA(t, X (1))
d( v (1) ) - C( v (1 )d” ( PR Y (1) )dt

(S — ACP) | + < G4 X (1) 0 o) >d< M“; ) Xl

N
<
==

~—

Il

7
< 8

~__—

83
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It will be this equation we use to show the product formula. We choose the following bilinear

form ¢ as transformation function

¢:HxH-—R

(m) = (A= A) "z, (A= B) lew

x2
The first thing we need to check, if we want to apply Theorem [3.15] is if ¢. exists. Recalling
the definition from Section [3.2] we need to find an extension of

(o)

for 1 € Z(A) and x5 € Z(B) to all of H x H. Therefore, we calculate

s(0-0(2) =e((Zpm)) === Den, 0= B0 = By
Hence, &, is given by
Pe (2) = (21, 22)H-

Furthermore, we need the Fréchet derivatives of ¢ and ¢.. They can be calculated easily using
the definition of the Fréchet derivative. Hence, we find

o (2 (21) = <= A = By tanvm + (= B A) e

i) V2
By the Riesz representation theorem we can identify ¢’ with
¢, xr1 _ ()\—A*)fl()\—B)fle
xTo (A—B*)_l()\—A)—lxl '

For the second derivative follows

g\ 0 (A—A*)"'(A=B)!
¢ <m2> a ( (A= B*)7t(A— A)~! 0 )

For (Z)C we have
’ <x1> (.Z‘Q) ” <x1> 0 1
€ xI9 I € i) I 0 ’

Obviously, ¢, ¢¢, @', L, ¢" are bounded and uniformly continuous on bounded subsets of H x H.
Furthermore, we have

l6(W) | rxm < Kbl gxm and [¢"(B)| s < K,

for some constant K > 0. Hence, we can choose hi(z) = Kz and ha(z) = K in Theorem
Now we are able to write down the product formula

PROPOSITION 4.1 (product formula). Let F4, FB, G, GE, G{‘, and GP fulfill the assumptions
of Theorem|[3.15. Furthermore, let X be the mild solution of (S — ACPx) and Y be the mild
solution of (S — ACPy). Finally, assume that

f 2" v(dz) < .
U
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Then, the following product formula holds
(A=A X(1), (A= B)"'Y(t)u
=A='z, (A= B) 'y

+ Lt<A*<A — AT A= B) Y (s=), X (s—)m

+(B*(A\=B*) '\ = A) "X (s-),Y(s—))puds

" fo (A= A%)YA = B) Y (s—), FA(s, X(s—)))n
+{AN=B" T A=A X (s—), FB(s,Y (s—)))nds

" j (A= A%)YA = B) Y (5-), Gid (s, X (5—))dWou (s))n
T L«A — B YA - A) X (5-), GB(s, Y (s—))dWay (s))n

‘s L tr[(A =A%) '\ = B) 'GP (s, Y (5-)) QoG (s, X (s-))*]

+tr[(A = B*) Y\ — A)7EGE (s, X (s—))QoGE (5, Y (s—))*]ds

" f j (A= A%)HA = B) 1Y (s-), Gl (s, X (s—)))m
0 JU
FUA = B A = A) X (5, GB (s, Y (s—)adm
+{((A— A)_lG’f‘(s, X(s=))z, (A — B)_leg(s, Y(s—))x>HN(d8, dx)

+ f f (A= A)1GM s, X (s=))z, (A — B) 'GP (s, Y (s—))z)gv(dz)ds.
0 Ju

PROOF.

The product formula follows by applying the transformation formula from Theorem to
equation (S — ACP¢) and the function ¢. Observe, that we are considering the noise process

M _
M = € U x U which has the covariance operator () = @ Q .
M R Q

Note, for the Poisson integral in the transformation formula the following equalities hold
N(t, A x B)(w) =#{0<s<t:AM(s)(w) € A x B}
=#{0<s<t:AM(s)(w)e AAAM(s)(w) € B}
=#{0<s<t:AM(s)(w) e An B}
= N(t,An B)(w), (4.1)

and
M(s)(w)

Laxp(M(s)(w)) = Laxp ( M(5)(w)

) = Tanp(M(s)(w)),
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for all A, B e (U\{0}) bounded below. Hence, we find

j f(r, 22) N (t, di)(w) = f £ )N (L, dy) (),
AxB AnB

for all A, B € (U\{0}) bounded below. For the compensation integral we use in order
to find
(A x B) =E[N(1,A x B)]=E[N(1,An B)] = v(A n B),
for all A, B € Z(U). Therefore, we conclude
| ranantin = | swowia),
AxB AnB
for all A, Be B(U).

4.2. Filtering problem

We consider the linear filtering problem for the infinite dimensional signal process X and the

finite dimensional observation process Y defined by

dX(t) = AX(t—)dt+ GX(t)dM(t), tel0,T],
X(0) = o,

in H, and

dY (t) = B(t)(\— A)2X(t—)dt + GY ()dW (t), te [0,T],
Y(0) = o

in R", where (A — A)72:= (A — A)"}(\ — A)~!, and we assume the following

e H is a separable Hilbert space;

e A generates a Cp-semigroup of generalized contraction in H, with (Ah, hyg < vol|h|%
for some fixed 9 € R and for all h € Z(A);

e M is a U-valued square integrable Lévy martingale, where U is a separable Hilbert
space, with decomposition M = Wg, + Mg, in the continuous part Wg, and the
pure jump part Mg, , with covariance operators Qo and @1 respectively;

o GX(t)dM(t) = G (t)dWg, (t) + G (t)dMg, (t) for all t € [0,T], where
G :[0,T] — L(U, H), such that t — G (t)u is £([0,T])/%(H)-measurable for all
uwe U and

HG()){(t)HL(Uﬁ) < C < owforallte[0,T];

G¥ :[0,T] — L(U, H), such that t — G5 (t)u is B([0,T])/%(H)-measurable for all
ue U and
HGf((t)HL(Uﬂ) < C < oo forall te[0,T];
e B:[0,7] — L(H,R"™), such that t — B(t)h is ZA([0,T])/#(R"™)-measurable for all
he H and

|B@) |z rny < C <0 for all t € [0,T] and B € Wy ([0,T]; L(H,R™));
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e IV is an m-dimensional Brownian motion independent of Wg, and Mg, ;
e GV :[0,T] — L(R™,R"), such that t — GY (t)x is ([0, T])/%(R")-measurable for
all x e R™ and

IGY ()| m gy < C < 0 and (G (£)GY (t)*z, 2)rn = C|z|En for all t € [0, T];
o \ > g is fixed.

REMARK 4.2. From Theorem [B.53 follows that the equation of the signal process X is well-
posed and has a cadlag solution. Hence, the process of left limits is well-defined and is the
predictable version of the solution process. Furthermore, the linear operator (A— A)~! is well-

defined, since A > ~g. Thus, also the equation for the observation process Y is well-posed.

Following [GT08|] we consider the following filtering problem: For fixed a € Z(A*) determine

a linear unbiased estimation of the type

T
X,(T) = L Cu(s), Y (5))an.
for (A — A)71X(T), (A — A*)~la)y. That is, find a ug € Lo([0, T]; R™) =: H, such that

EKA = A) T X(T), (A = A%) " apn — X (1))

= min B\ — A)7 X (1), (A= 4%) oo — XD, (42)

and
E((A — A) ' X(T), (A — A*) tayy = EX,, (T).
Then, we can formulate the following Theorem.

THEOREM 4.3. The solution of filtering problem (4.2)) is equivalent to the solution of the
deterministic control problem

min F'(u),
ueH

where the functional F' is given by
T
Fu) = j 1Q2Go(s)* (A — A) 22, (s)| 3 ds
SR
n fo 1QY2G(5)* (A — A) 22, (s)|3 ds

T
n f IGY () u(s) [ ds,
0

with z, defined by
T

2y =TT —t)a — f T*(s — t)B*(s)u(s)ds.
t
Hence, the filtering problem (4.2)) has a unique solution.

PROOF.

The proof for the equivalents of the filtering problem to the deterministic control problem is

split into four parts. First, we perform an approximation of the control u. Then, we introduce
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some auxiliary problems and estimates. In the third step we deduce the equivalence for the

approximation of u. In the final step we take the limit.

Step 1: Approximation of u
Our goal is to approximate each u € H = Lo([0,T]; R™) by a sequence of smoother functions.
Therefore, consider the linear operator (C, Z(C)) defined by
d
Cv = ol for v € 2(C) := {ve Wy ([0,T];R") : v(T) = 0}.
It is well-known that the operator (C, Z(C)) generates the Cp-semigroup {S(¢)}:>0 of con-

traction in H, given by

v(s+t) s+t<T,
0 s+t>1T,

(S(t)v)(s) := {
for v e H. Hence, by the Hille-Yosida Theorem, it follows that
(7 =€)y < 1 for all y > 0.
Thus, we define for u e H = Ly([0,T];R") and n € N
Uy, :=n(n — C) u.
Therefore, the sequence (uy,)nen has the following properties

o u, € 2(C) c Wi ([0, T];R™),
o lunlg < In(n = C) Mg lula < Jul g for all n e N,
e by Corollary (1) follows u, — uw in H = Lo([0,T]; R™) for n — co.

Step 2: Auxiliary problems and estimates
In order to show the equivalence of the filtering problem and the deterministic control problem,

we have to introduce some auxiliary problems. Therefore, let Z,, be the mild solution of

dz,
W(t) = A*Z,(t) — B(T —t)*u,(T —t), te[0,T],
Z,(0) = a,
for all n € N. Z is defined to be the mild solution of
dzZ
E(t) = A*Z(t)— B(T —t)*uw(T —t), te][0,T],
Z(0) = a.

Since H is a Hilbert space, it follows from [ENOO| Proposition in I.5.b and Subsection II.2.a.
2.5] that A* is the generator of the Cy-semigroup {T'(t)*};>0. Hence, we have

Zn(t) =T(t)*a — L T(t—s)*B(T — s)*u, (T — s)ds,

and

Z(t)=T({t)*a — fo T(t—s)*B(T — s)*u(T — s)ds.
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Recall that u, € W([0,T];R") for each n € N and that B € W3 ([0,7]; L(H,R")). In
particular, it follows that B(T — t)*u, (T — t) is differentiable a.e. on [0,T] and its derivative
isin Li([0,T]; H). Thus, by [Paz83, Chapter 4 Corollary 2.10] we find that Z, has a strong
solution, with Z,,(t) € Z(A*) a.e. on [0,T] for all n € N. Next, we show that Z,, approximates

Z pointwise in H

120 - 201 = | [ Tt — 5 BT — )*(un — u)(T — s)ds

H
T

< TN Bl 1, qorrarrey) | (e — w)(s)|rnds
0

< Bl L qoayrir e VT Tun = l (o1 20)

)

—0,
for n — o0 and all ¢ € [0,T]. Now we perform a time reflection. Therefore, we define
zn(t) == Zp(T —t) and 2(t) := Z(T —t).

Hence, we have the following representations

T
2, () =T(T —t)*a — J; T(s —t)*B(s)*un(s)ds,

for all n € N and

T
2(t) =T(T —t)*a — L T(s —t)*B(s)*u(s)ds = z,(t).

Obviously, the properties from Z,, and Z carry over to z, and z,. In particular, we have
zn € P(A*) for all n e N and |z, (t) — 2, (t) |z — 0 for n — oo for all t € [0,T]. Note that z,
fulfills the following equation

dzn ® *
() = —ATz(t) = B(t)*un(t), te[0,T],

Zn(T) = a.

Before we move on to the next step, we show that z,,z, € La([0,T]; H) and z, — 2, in
Ly([0,T]; H) for n — co. Therefore, we estimate
2

T
lzn I < 21T(T — t)*al + 2 ft T(s —)*B(s) un(s)ds

H
T

2
<2 alfy 2 [ 170607 By i) s

T 2
<2 alfy + 250 |BE snaon ([ T
< 2e27 a3 + QGMOTHBH%OO([O,T];L(H,Rn))(T - t)HunH%Q([t,T];R")
< 2¢2°Talf + 2627 BIZ_ o rpsniamny Tl 2, o r7mm)-

Note, that the same estimate works for z, instead of z,. Thus, we find

|zl Lo ((0,77:8) s 20l Lo 0,17, 8) < €z < 0.
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Finally, we look at the convergence of z, in La([0,T]; H). We already know that z,, converges
pointwise to z,. Hence, we are looking for a majorant
2

T
L T(s — £)* B(s)* (un — u)(s)ds

ent) — 2a(t)] 3 =
H

2v0T 2 2
< e Bl o nearenT lun = ulz, o, r1:mm)

2voT 2 2
< 2e77° HB”Lw([O,T];L(H,R"))THuHLz([U,T];R”)'

Obviously, the expression on the right-hand side in integrable over [0,7]. By Lebesgue’s
dominated convergence Theorem it follows

|zn — 2ul Ly(j0,77:m) — O for n — co.

Step 3: Equivalence for the approximation of u
In order to show the equivalence we apply the product formula from Proposition 4.1 to X and
zn. Note that the product formula is proven for forward equations. That is why, we apply it

to
(A =A)7IX(@#), (A= Az

However, we have to plug in the coefficients of z, in the formula. Hence, we receive
(= A)IX W), (=A%) a0
= (€A% 4% 2209 X (5D = A= )X (52,205
[0 72X 6 B wn(smds + [ €O 4%) 7 (6), G Wi, (D
f J (A= A)LGE(s)x, (A — A*) 2, (s) g N(ds, dz). (4.3)
Since z,(s) € D(A*) for ae. s [0,T], we find for all ¢ € [0, T]
L<A()\ — A)72X (5—), zp(5))ds = f (X (s=),(A—=A)"2A%2,(s))pds

f<x ) A (A — A) 25, (s))mrds.

The second equality holds, since the generator commutes with its resolvent. Therefore, (4.3))

reduces to

(A= A)IX (1), (A~ A% ()
_ L<<A — A)2X(5—), B(s) un(s)y s + L (N — A% 22 (s5), GX (5) AWy (3))

+ J f (A= A)TTGE (8)z, (N — A*) L2, (s)) i N (ds, dz).
0 JU
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In particular, we receive for t = T

(A= A X(T), (A — A7)y
T T
_ f (A= A)2X (5-), B(s)*un(s)nrds + j (A= A% 22,(s), GX (5)dWay (3))

T
+ J f (A= A)TTGE (8)z, (N — A*) L2, (s)) N (ds, dz).
0 JU
Hence, by subtracting X, (7') we find

(A= A1 X(T), (A — A%y — X, (T)
T T
_ L (G (5)* (A — A%) 22 (5), dWogy (3))0r — L (GY () tun(5), AW (5) g

T
X % )\ —2 \
+ fo L<G1 (5)* (A — A")22,,(s), )0 N (ds, dz).

The unbiased property is fulfilled, since the expectations of the stochastic integrals are zero.
From the isometries of the stochastic integrals we receive

EKA = AT X(T), (A= A")ayr — X, (T

T ©
B fo 3 MG () (A — A%) 220 (s), ))ds
j=1

T T
X * *\—2 2 Y * 2
" fo fU<Gl (5)* (A — A%)"22,(s), 2¥Bv(da)ds + fo IGY (8)*tn(5) |2mds
T
_ jo 1QY2GX (5)* (A — A%) 22, (s) |2.ds

r 1/2 ~X ¢\ #*\—2 2 g Y ()% 2
" fo QUG ()" (A — A) 22, (s) |2 ds + jo 1GY (5)*tn (5) | Bondls, (4.4)

where \g; and e; are the eigenvalues and eigenvectors of QQg. The equality for the second
integral follows from Theorem

Step 4: Taking the limit n — o0

In order to show that equality also holds for u € Ly([0,T]; R™) we take the limit n — oo
on both sides. We start with right-hand side. For the last term we assume without loss of
generality that

T T
j IGY (5)*tun(5)|Bmdls > j IGY (s)*u(s)|Zmds. (4.5)
0 0

In order to see that this assumption is indeed without loos of generality we first perform the
estimate. After this step it will be almost obvious. Thus, we estimate

T
L |GY (5) un(s)[fem — IGY (5)*u(s) [fmds
T
= L |G (5)* (un = w)(s) + G () u(s) [jm — |G (8)*u(s)|fmds
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T T
< f IGY ()" (tn — w)(3)|Bmds + 2 f IGY (5" (tm — ) (3) | |G (5)*u(5) [
0 0

< NGV I3 o.17:L@n mroyy 1n — Wl 0,273
+ QHGY*(Un - U)HLQ([O,T];R”‘) HGY*UHL2([O,T];R’")
< HGY”%OO([O,T];L(W,Rm))(||Un - UH%Q([O,T];RW) + 2HUHL2([O,T];R")HUTL - UHLQ([O,T];Rn))

0, (4.6)

for n — oo0. Note, that if we had assumed

T T
| 167 (6 (o) s < [ 167 (6 u() s
0 0
instead of (4.5)), the last line of the estimate above would be

HGYH%OO([O,T];L(W,RWL))(||Un - U”QLQ([O,T];Rn) + 2HunHL2([O,T];R”)Hun - uHLQ([O,T];R”))

Since [un| L, (o,rrm) < [l Ly([0,7);m7), We end up with the same estimate. Hence, is
indeed without loss of generality.
The first two terms of the right-hand side of have the same structure. That is why we
omit the indices and this way treat them both at the same time. Furthermore, we introduce
V :[0,T] - L(H,U) defined by

V(t) =QPGY (M (A - A7
It is easy to see that V € Ly ([0,T]; L(H,U)), since

VOl < 1O =7 2@ 1G¥ b oy w1 1@y < o

With this notation in place we assume without loos of generality (for the same reasons as
above) that

T T
j [V (3)2n(s)|Bds > f IV (3)2uls) |2 ds.
0 0

Then, we estimate

T
fo V() 2n()F — [V (5)2u(s) |2 )ds
T

T
< f [V (5)(zn = 2) () [Erds + QJ [V ($)(zn = 2u) ()] V (8)2u(s) [0 ds
0 0

< VIR, qomnzemoy 1z = 2l Ty o1y + 2C= 120 = Zull Loo.17:))

— 0,

for n — oo. For the proof of the convergence of the term on left-hand side of (4.4)) we introduce
the real valued random variable J, by

J:=(\=A)"X(T), N— A" o).
For the estimate we assume without loos of generality (for the same reasons as above) that

E|J_Xun(T)|2 = E|J_Xu(T)|2'
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Then, we estimate
E(|J—X.,, (1) = | = X,(D)])
< E|Xy, (T) = Xu(T)? + 2E(| X, (T) = Xu(T)||J = Xu(T))
< E[Xy, (T) = Xu(T) | + 2V/E[X,, (T) — Xu(T)PVE[T — Xou(T)[?.

If we can show that E|X,, (T) — X,(T)|? converges to zero and E|J — X, (T)|? is bounded,
then the desired convergence follows. First, we look at the convergence of E| X, (T)— X, (T)|?

and estimate

E| X, (T) - Xu(T)I2

T 2

_E —u)(s), B(s)(A — A)2X(s—)peds + L ((ttn — 1)(5), G (5)AWV (5))n
2
(un —u)(s), B(s)(A — A)2X (5—))rnds (4.7)
T 2
+2E (un, — u)(s), GY (s)dW (5))rn (4.8)

For the term ) the convergence follows form the following estimate
2

n—u)(5), B(s)(A — A) X (s—))mnds

2
2
<E< fo = 06 B = A) X (6 o

< E(llun — UH%Q([O,T];R”)HB()‘ - A)szH%Q([o,T];JRn))
< IBIL, qorpsncrp |0 = A7 TIX I, lwn = ull o ey

_>07

for n — co. Furthermore, note that is equal to 2 S(:]F IGY (s)* (un, — u)(s)|3mds. We have
already shown in , that this term converges to zero. Hence, all what is left to show is the
boundedness of E|J — X, (T)|?>. Note that we consider X, here instead of X, as stated in
the estimate above. We are doing this to guarantee the generality claimed at the beginning.
It will turn out that the same estimate also holds for E|J — X,,(T)|2. We begin by estimating

E|J — X, (T)|* < 2E[J|* + 2E| X, (T)|*.
For the first term a straightforward estimate yields
E[J]* = EK(A = A) 7' X(T), (A = A*) " lapu]? < E(|(A = AT X (D) HI(A =A%) a?)
<O =AY lal HEIX (D)7 < 1= D7 lalF | X 7 < oo
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For the second term we find

2
B, (17 = B [ n(o) B~ A7 2 (5o + [ ua(s), 67 () (6
2 T
< 28] [ un(s), B~ A7 2 (5| +2 [ 167 () (0 s
0
We consider both terms individually and start with the first one

2

f Cn(s), B(s)(\ — A)"2X (s—)ypnds

2
—92
< E(fo Jin(8) ]| B(s) A — A) X(s—)lwd8>

< ]EHUTLH%Z([O,T];R") |B(A - A)_2X||%2([07T];R")

T
< 1B, (orpsncamny |0 — A)1|AIL,(H)|UH|%2([0,T];R")EJ;) | X (s—)3ds
< IBI%, qorpmmey |l = A" L 1wl oz TIX 7,8 < 0.

Finally, the second term can be bounded by

T
fo IGY () tun(5) mds < GV 12, 10.27,1.aem oy N 2 f0. 170

< IGYIZ, o cm moyy |4l 250 1pmmy < 0

Hence, we have shown the convergence of the right and left-hand side of (4.4)). Therefore, the

filtering problem is equivalent to the deterministic control problem.

The existence and uniqueness follow from classical results for optimal control problems. Since

the functional F' is strictly convex, continuous, and

T T
Flu) > fo IGY ()" u(s) |Zmds > C fo Ju(s) [Ends = Cllull o218

Hence, we have F'(u) — o0 for |lul|z,(jo,7];rr) — 0. Then, the existence of a solution follows
from [Zei85, Proposition 38.15 (a) in Section 38.5] and the uniqueness by [Zei85, Theorem
38.C in Section 38.4].

O



APPENDIX A

Basics of Semigroup Theory

Here, we provide a brief overview of semigroup theory and its applications to abstract Cauchy
problems. A detailed introduction can be found, for example, in [ENO0Q] or [Paz83|.

DEFINITION A.1 (bounded linear operator). If X and Y are Banach spaces, we denote by
L(X,Y) the Banach space of all bounded linear operators from X to Y. If X =Y we set
L(X):=L(X, X).

DEFINITION A.2 (semigroup and infinitesimal generator). Let X be a Banach space. A one
parameter family T(t), 0 < t < 00, of bounded linear operators from X into X is called a
semigroup of bounded linear operators on X if

(i) T(0) = I, where I is the identity operator on X,

(i1) T(t+ s) = T(t)T(s) for evert,s =0 (the semigroup property).
The linear operator defined by

t—0+t

D(A) = {x € X : lim T(t)f—x e:m'sts}

and
T(t)f_x for x e 2(A)

Az = lim
t—0t

is called the (infinitesimal) generator of the semigroup (T(t))i=0, Z(A) is the domain of A.

DEFINITION A.3 (Cp-semigroup). A semigroup T(t), 0 < t < 00, of bounded linear operators
on X is called a Cy-semigroup (or strongly continuous semigroup) on X of bounded linear

operators if

THEOREM A.4 (properties of the generator of a Cy-semigroup). The generator of a Cpy-
semigroup is a closed and densely defined linear operator that determines the semigroup
uniquely.

PROOF.
See [ENO0O, Theorem 1.4 in Section II.1].

95
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PRrROPOSITION A.5 (bound of Cy-semigroup). For every Co-semigroup T'(t), 0 <t < oo, there
exist constants w € R and M = 1, such that

IT() | px) < Me™*

for all0 <t < 0.

PROOF.
See [ENO0O, Proposition 5.5 in Section I.5.a].

LEMMA A.6 (relations of a Cy-semigroup and its generator). For the generator (A, Z2(A)) of
a Cy-semigroup (T (t))i=0, the following properties hold.

(i) A: 2(A) € X — X is a linear opeator.
(i1) If € D(A), then T(t)x € Z(A) and

d
%T(t)aj =T(t)Ax = AT (t)x for allt = 0.

(111) For everyt >0 and x € X, one has

JtT(s)azds e 7(A).
0

(iv) For every t = 0, one has

t
T(t)x—az—AJ T(s)x ds if x € X,
0
¢

- J T(s)Az ds if z € D(A).
0

PROOF.
See [EN0O, Lemma 1.3 in Section II.1].

DEFINITION A.7 (Cp-semigroup of contractions). A Co-semigroup T'(t), where 0 <t < o0, is

called a Cy-semigroup of contractions if

IT(#)|rx) <1

holds for all 0 <t < c0.

DEFINITION A.8 (Cpy-semigroup of generalized contractions). A Cy-semigroup T'(t), where

0 <t < o0, is called a Cy-semigroup of generalized contractions if for some w € R
7)) < e

holds for all 0 < t < c0.
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THEOREM A.9 (solution of abstract Cauchy problem). Let A : Z(A) < X — X be a closed

operator. For the associated abstract Cauchy problem
oitu—Au = 0, fort=0,
(ACP)
u(0) = wuo,
we consider the following existence and uniqueness condition
(EU) For every ug € 2(A), there ezists
a unique solution u(-,ug) of (ACP).
Then the following properties are equivalent

(1) A generates a Cy-semigroup on X.

(2) A satisfies (EU), has dense domain, and for every sequence (zp)neny < Z(A) satis-
fying lim,, oo x,, = 0, one has lim, o u(t,x,) = 0 uniformly in compact intervals
[OvtO]‘

PROOF.
See [ENO0O, Theorem 6.7 in Section II.6].

DEFINITION A.10 (well-posedness). The abstract Cauchy problem (ACP) associated to a
closed operator A : Z(A) ¢ X — X is called well-posed if condition (2) in Theorem[A.d holds.

COROLLARY A.11 (well-posedness of closed operator). For a closed operator (A, Z(A)) with
A: 9(A) ¢ X - X, the associated abstract Cauchy problem is well-posed if and only if A

generates a Cy-semigroup on X.

DEFINITION A.12 (mild solution of (ACP)). If the linear operator (A, Z(A)) in (ACP) gen-

erates a Cy-semigroup and ug € X, then the function
w:t— u(t) = T(t)uo,
is called the mild solution of (ACP).

PROPOSITION A.13. Let the operator (A, Z(A)) in (ACP) generate a Cy-semigroup. The
function u : Ry — X is a mild solution of (ACP) if and only if

. Sé u(s)ds € 2(A) for allt =0, and
o u(t)=A Sé u(s)ds + ug.

PROOF.

See [ENO0O, Proposition 6.4 in Section II.6].
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DEFINITION A.14 (dissipative operator). A linear operator (A, Z(A)) on a Banach space X
15 called

(1) dissipative if |(A — A)x|x = AN|z|x for all A >0 and v € Z(A),
(2) w-dissipative if A — w is dissipative,
where we write A — A instead of \I — A. In a Hilbert space H one can define equivalently
(1) dissipative if (Az,zyg <0 for all x € 2(A),
(2) w-dissipative if {Az, 2y < w|z|? for all z € Z(A).
PROOF OF THE EQUIVALENCE.
See [Paz83|, Theorem 4.2 in Section 1.4]

PROPOSITION A.15 (properties of dissipative operator). For a dissipative operator (A, Z(A))
the following properties hold.

(1) X — A is injective for all X\ > 0 and
_ 1
[ = A) " elx < Slelx

for all z in the range rg(A — A) := (A — A)Z(A).

(2) X — A is surjective for some A > 0 if and only if it is surjective for each X > 0. In
that case, one has (0,0) < p(A). Here p(A) denotes the resolvent set of A.

(3) A is closed if and only if the range rg(A — A) is closed for some (hence all) A > 0.

(4) If rg(A) < 2(A), e.g. if A is densely defined, then A is closeable. Its closure A is
again dissipative and satisfies rg(A — A) = rg(A — A) for all A > 0.

PROOF.
See [ENO0O, Proposition 3.14 in Section I1.3.b].

THEOREM A.16 (Lumer-Phillips). Let A be a linear operator with dense domain Z(A) in X.
(1) If A is dissipative and there is a Ao > 0 such that the range, rg(Ag — A), of \g — A
is X, then A is the infinitesimal generator of a Cy-semigroup of contractions on X.

(2) If A is the infinitesimal generator of a Cy-semigroup of contraction on X, then
rg(A—A) = X for all A > 0 and A is dissipative.

PROOF.
See [Paz83| Theorem 4.3 in Section 1.4].

REMARK A.17. If the linear operator (A, Z(A)) generates a Cy-semigroup of generalized con-
tractions T with |T(t)|r(x) < et for some w € R it follows by rescaling that the semigroup
S(t) := e 'T(t) is a Co-semigroup of contractions and is generated by A — w with domain
2(A) (see [ENOO, Section I1.2.a. 2.2] for more detail). This means Theorem[A.16| also applies
for generalized contractions semigroups respecting the parameter shift.
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Finally we consider an approximation technique. We are interested in the Yosida approxima-
tion. Therefore, we need the following result.

LEMMA A.18. Let (A, 2(A)) be a closed, densely defined operator. Suppose there exist w € R
and M > 0, such that [w,0) < p(A) (the resolvent set of A) and |A(A — A)~| < M for all
A = w. Then the following convergence statements hold for A — 0.

(1) \A—A) 'z -z forallze X.

(2) MAA—A)Le = A\ — A)~ 1Az — Az for all x € D(A).

PROOF.
See [EN0O, Lemma 3.4 in Section II.3.a].

REMARK A.19. Note that if (A, 2(A)) generates a Cy-semigroup we can always apply Lemma
A.18. This follows from the general Hille-Yosida generation theorem (see [EN0O, Theorem
3.8 in I1.3.a]).

We apply the Yosida approximation to elements of the Hilbert space H and to generators of

Cp-semigroups. Therefore, we gather those results here.

DEFINITION A.20 (Yosida approximation of an element in H). For the generator A of a Cy-
semigroup (T(t))e=0 with |T(t)|| Ly < MeM for all t =0, where M =1 and X € R, we define
the Yosida approximation R(n)h of an element h € H for all n € N with n > X\ by

R(n)h :=n(n — A)"1h.

COROLLARY A.21 (properties of the Yosida approximation of an element in H). Let R(n)h
be the Yosida approximation of h € H, then

(i) R(n)h e Z(A) for alln> X and all h € H,

(ii)) R(n)h — h for n — 0 and all h € H,

(i) R(n) € L(H) for n > X\ and |R(n)| gy < Cr < o0, where Cr is independent of n,
(iv) T(t)R(n) = R(n)T(t) for alln > X and t =0

PROOF.

Property (i) follows from the definition of the resolvent operator. Property (%) was shown
in Lemma (1). The first part of property (iii) follows directly from the definition of
the resolvent operator and the second by the uniform boundedness principle. Property (iv)
follows from the integral representation of the resolvent operator (see [EN0OQ, Theorem 1.10
in I1.1]), that is for he H

(n—A)"'h = LOO e T (s)hds.
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DEFINITION A.22 (Yosida approximation of the generator of a contraction semigroup). For
a generator A of a Co-semigroup (T'(t))i=0 with |T(t)|gy < 1 for allt = 0 we define the
Yosida approximation A, of A by

forn e N.

COROLLARY A.23 (Yosida approximation for generator; contraction case). Let A, be the
Yosida approzimation of the generator A of a contraction semigroup, then

(i) A =n%*(n—A)"t —n and A, € L(H) for alln €N,

(ii)) Aph — Ah for n — o0 and all h € P(A),

(iii) A, generates the uniformly continuous semigroup Ty, (t) := e, such that
1T ()| Ly < 1 for allt =0,

(i) T,,(t)h — T(t)h for n — oo for allt =0, all h € H, and uniformly on each interval
[0, 20].

PROOF.

Property (i) follows from [Paz83, Theorem 3.1 identity (3.4)]. Property (i) was shown in
LemmalA.18[ (2). Properties (iii) and (iv) are shown in [ENOQO, Proof of Theorem 3.5 in I1.3.a].

Since Corollary only holds for generators of contraction semigroups, our goal is to gen-
eralize those results to an arbitrary Cp-semigroup. As it turns out one can reduce the general
case, where A generates the Co-semigroup (T'(t))e=0 with ||T(t)| ) < MeM, to the case
of a contraction semigroup by the same techniques applied in the generalization of the Hille-
Yosida generation theorem (see the proofs of Corollary 3.6 and Theorem 3.8 in [ENO0O, Section
I1.3.al).

Our goal is to find a sequence of bounded linear operators { A, },en € L(H), such that
(I) A,h — Ah for n — o0 and all h e Z(A),

(IT) A, generates the uniformly continuous semigroup 7, (t) := e*4», such that
| T ()| ey < MeM for all t >0,

(ITI) T,,(t)h — T(t)h for n — oo for all t > 0, all h € H, and uniformly on each interval
[0, to].

COROLLARY A.24 (Yosida approximation for generator; general case). Let A be the generator
of a Co-semigroup with |T(t)|rm) < MeM, where M = 1 and A € R. Then there exists a
sequence {Antneny € L(H) for n > A, such that properties (I)-(III) are fulfilled. We call this
sequence the Yosida approximation of the operator A.
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PROOF.

First, we consider the case, where the Cy-semigroup is a generalized contractions, that is
T |y < eM. In this case we define the Cyp-semigroup (S(t))i=0 by S(t) := e MT(¢t).
It follows that (S(t))i>0 is generated by B := A — X\ with domain Z(B) = Z(A) and
IS#)| ey < 1 for all ¢ > 0. By Corollary exists a sequence {Bp}neny € L(H), such
that properties (1)-(1II) hold. Note that |[S, ()| < 1. Now, we define the approximation
sequence {Ay,}nen € L(H) by

Ay = Bp + A

A straight forward calculation yields A,h = B,h + Ah — Bh + Ah = Ah for n — o0 and
all h € 2(A), T,,(t)h = S, (t)h — e MS(t)h = T(t)h for n — oo and for all ¢t > 0, and
| T () Ly = €M 1Sn (@) 1oy < €M for all ¢ = 0.
Now, consider an arbitrary Co-semigroup, that is | T'(t)| gy < M e, where M > 1 and \ € R.
First, note that we can simplify this case using the same trick as before. Therefore, let the
Co-semigroup (S(t))¢=0 be defined by S(t) := e MT(t). If follows that (S(t));>0 is generated
by B := A — A with domain Z(B) = Z(A) and |[S(t)| ) < M for all £ > 0. Now we define
a new norm on I in two steps

(1) |[hlly == sup,>q | (1t — B)"h| g for h e H and all 1 > 0,

(2) Al = supo Il for B e H.
Then it follows that ||hl|g < ||h||g < M]|h|z. This means the norms are equivalent and
we have [[A(A = B) ||y < 1 for all A > 0. From the Hille-Yosida Theorem (see [ENOO,
Theorem 3.5 in I1.3.a]) follows that |[S(?)|| () < 1 for all £ > 0. Corollary implies the
existence of a sequence {By,}nen € L(H), such that the properties (I)-(1II) hold with respect
to the norm || || . But since this norm is equivalent to the original norm | - |z, all properties
also hold for the |- | z-norm, where Sy, (t)| () < M for all £ > 0. Now, we can argue exactly
like we do in the case of a generalized contraction to obtain the claimed statement.

OJ

REMARK A.25. Note that for the semigroup (T,,(t))i=0 the trivial bound || T, ()| L ) < etlAnlzim
holds for fized n € N. Hence, for every n € N the uniformly continuous semigroup (T, (t))i=0

s a generalized contraction.



APPENDIX B

Stochastic Calculus

In this appendix, we give an overview of the stochastic calculus we use in our models. We
start with the case of a QQ-Wiener process as the noise term. Then, we turn our attention
to Lévy processes and their integration theory in greater detail. This overview is included as
these theories are not commonplace at present. Therefore, let (Q, F, {F;}i>0,P) be a filtered
complete probability space and U a real separable Hilbert space. We will always assume that

the filtration {F;};>0 satisfies the usual conditions
(1) Fo contains all N € F such that P(N) = 0,
(2) Fi = Nest Fs-
In the following definitions let H be a Hilbert space and T > 0.

DEFINITION B.1 (adapted process). An H-valued stochastic process X is adapted to the filtra-
tion {Fi}iefo,r) if, for every t € [0,T], X(t) is Fy-measurable.

DEFINITION B.2 (progressively measurable process). An H-valued stochastic process X is
progressively measurable, if for each t € [0,T] it is a measurable mapping from [0,t] x Q,
where the product o-algebra HB([0,t]) ® F; is considered on [0,t] x Q.

Let Pr denote the o-algebra of predictable sets, that is, the smallest o-algebra of subsets of
[0, T] x ©2 containing all sets of the form {0} x Ap and (s,t] x A, where 0 < s <t < T, Ag € Fo,
and A € Fs.

DEFINITION B.3 (predictable process). A stochastic process X taking values in a measurable
space (E, &) is called predictable, if it is a measurable mapping from [0,T] x Q to E, where
the o-algebra Pr is considered on [0,T] x €.

Next, we provide the definition of a martingale in a Hilbert space. Therefore, let E denote

the expectation.

DEFINITION B.4. Let U be a separable Hilbert space considered as a measurable space with its
Borel o-algebra Z(U). We fix T > 0 and let (2, F, {Fi} i<, P) be a filtered complete probability
space and {M;}i<r be an U-valued process adapted to the filtration {Fi}i<r. Assume that M
is integrable, that is E| M|y < oo for allt € [0,T]. Then M is called a martingale if P-a.s.

(M| Fs) = My for any 0 < s <t <T.

B.1. It6 integral with respect to a )-Wiener process

In this section, we give the most important definitions and results for the stochastic integration

with respect to a (-Wiener process. In the next section we will see that this process is a special

102
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example of a square integrable Lévy process. For a detailed introduction to the topic we refer
the reader to [GM11al.

DEFINITION B.5 (Q-Wiener process). Let QQ be a nonnegative definite symmetric trace-class
operator on a separable Hilbert space U, { f; };‘Ozl be an orthonormal basis in U diagonalizing @,
and let the corresponding eigenvalues be {\;}72,. Let {w;(t)}i=0, j = 1,2,..., be a sequence
of independent, scalar valued, standardized Brownian motions defined on (0, F, Fi=0,P). The
process

W(t) = 3 N w0 (B.1)
j=1

is called a Q-Wiener process in U. We can assume that the Brownian motions w;(t) are
continuous. Then, the series (B.1)) converges in La(Q; C([0,T];U)) for every interval [0,T].
Therefore, the U-valued Q-Wiener process can be assumed to be continuous. We denote

o0
1/2
Wi(u) == Y A 2w (0 f, wu
j=1
for any uw e U, with the series converging in La2(Q; C([0,T];R)) on every interval [0,T].

THEOREM B.6 (properties of a Q-Wiener process). A U-valued Q-Wiener process {W(t)}=0
has the following properties

(1) W(0) = 0;
(2) W has continuous trajectories in U;
(8) W has independent increments;
(4) W is a Gaussian process with the covariance operator @, that is for any u,u € U
and s, t = 0,
(Wi ()W, (1) = (¢ A 5)Qu,yur
(5) For any arbitrary u € U, the law L (W (t) — W(s))(u)) ~ N(0, (t — s){Qu, uyy).

Next, we present the most important steps in the construction of the stochastic integral. We
start with the following definition.

DEFINITION B.7 (the space £%(U, H)). Let H be a separable Hilbert space. By (U, H) we
denote the space of all linear operators from U into H, which are finite with respect to the
following norm

IL| .22, ey = HLQI/2HL<HS)(U,H)7
where L) (U, H) is the space of all Hilbert-Schmidt operators from U to H. If { f; }(j’-oz1 s an
orthonormal basis in U diagonalizing QQ and {e; ?’;1 in an orthonormal basis in H, then we
have the following identities

|Ll 2w = 2 O fi) et = ) (LQY f ey = tr((LQYA)(LQY)).

j,i=1 j,i=1
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Note that in particular all bounded, linear operators are elements of #?(U, H), that is
L(U,H) c £?(U, H). For more detail on the space Z?(U, H) see [GMT11al, Section2.2].

In the following definition we consider the natural filtration of W.

DEFINITION B.8 (the class of elementary processes & (U, H)). Let &(U, H) denote the class of
L(U, H)-valued elementary processes adapted to the filtration {F;}i<r that are of the form

CD(("))t) ]1{0} 2 ¢] t] tiv1] ( )

where0 =tg <t1 <---<t, =T, and ¢,¢j, 7 =0,1,...,n—1, are respectively Fo-measurable
and Fy,-measurable £*(U, H)-valued random variables such that ¢(w),dj(w) € L(U,H) for
j=0,1,...,n—1.

DEFINITION B.9 (Itd integral for elementary processes). For ® € &(U, H), we define the Ité

stochastic integral with respect to a QQ-Wiener process W by

0

t n—1
f O(s)dW (s) = Z i (W (tjr1 A t) = W(t; At)),
5=0
forte[0,T].

PROPOSITION B.10 (It6 isometry for elementary processes). For a bounded elementary process
be&(UH)

t 2 t
E‘ J B () = E L 9()QY2I2, . .10ys < .

0

forte[0,T].

PROOQOF.
See [GM11a, Proposition 2.1].

With the help of the Itd isometry it is possible to extend the definition of the It6 integral
to a larger class of stochastic processes. Therefore, we define [ZQT(U, H) to be the class of
all £%(U, H)-valued processes measurable as mappings from ([0, 7] x Q, %([0,T]) ® Fr) to
(ZL2(U,H),B(L?(U, H))), adapted to the filtration {F;};<7, and satisfying the condition

T
B[ 190021 iyt < (B.2)

If we equip /j2T(U7 H) with the norm

T
1/2
#1300 = & | 10OQVE, g 00"

it becomes a Hilbert space. Since (U, H) is dense in £2.(U, H) (see [GMT11al, Proposition
2.2]), one can extend the definition of the Ito integral to £2.(U, H). Note that the space
ﬁ%(U , H) includes the space of all predictable processes fulfilling condition (B.2)). For more
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detail see [GM11a, Section 2.2.2 and Section 2.2.3].

In the case of a (Q-Wiener process it is possible to extend the definition of the the It6 in-
tegral even further. Therefore, let P2(U, H) denote the class of £%(U, H)-valued stochastic
processes adapted to the filtration {F;};<7, measurable from ([0,T] x Q, 2([0,T]) ® Fr) to
(ZL%(U,H), B(ZL*(U, H))) satisfying the condition

T
P [ 19O 0 < 0} = 1

Obviously, £2(U, H) ¢ P2(U,H). Again one can show that £(U, H) is dense in PZ(U, H)
(see [GM11a, Lemma 2.3]), which allows the extension of the Ito integral to PA(U, H). For
more detail see [GM11al Section 2.2.3].

Next, we introduce the It0 integral with respect to a (-Wiener process with a random limit.

LEMMA B.11. Let ® € P2(U, H), and T be a stopping time relative to {Fit}teo,m), such that
P(r <T) = 1. Define

fT O(t)dW (t) := fs O(t)dW (t) on the set {w: T(w) = s}.
0 0

Then, .
JT O(t)dW (t) = f O(t) Ly dW ().

0
PROOF.
See [GM11a, Lemma 2.7].

Following [GWMS14| Section I.1 §4.], we define the stochastic integral with respect to a
@-Wiener process W with random limits, by

T1

JTQ D(s)dW (s) = JTQ D(s)dW(s) — J O (s)dW (s), (B.3)

T1 0 0

where 71 and 79 are two stopping times with P(0< 71 <2 <T) = 1.

The next result is the 1t6 formula for the It6 integral with respect to a (-Wiener process.
Therefore, we denote by C*(H,R), k = 0,1,... all mappings ¢ from H to R, which are
continuous with all the Fréchet derivatives ¢, ¢, ¢”,... up to order k. If the function ¢ also

depends on time, its time derivative is denoted by ¢

THEOREM B.12 (It6 formula). Let Q be a symmetric nonnegative trace-class operator on a
separable Hilbert space U, and let W be a QQ-Wiener process on a filtered complete probability
space (2, F, { Ft}iefo,r], P). Assume that a stochastic process X (t), 0 <t < T, is given by

t t

U(s)ds + L O(s)dW (s),

X(t) =X(O)+J

0



B.1. IT6 INTEGRAL WITH RESPECT TO A Q-WIENER PROCESS 106

where X (0) is an Fo-measurable H-valued random variable, ® € P2(U,H), and V¥ is an

H-valued {Fi}ej0,1)-adapted P-a.s. Bochner-integrable process on [0,T], that is P-a.s.

T
f [0 (s)|ds < .
0

Assume that a function ¢ : [0, T]x H — R is, such that ¢ is continuous and it’s Fréchet partial
derivatives gz.b, @', @" are continuous and bounded on bounded subsets of [0,T] x H. Then, the

following Ité’s formula holds
o(t, X (1)) =¢(0,X(0)) + L<¢’(3,X(s)), O(s)dW (s))u
# | {605, X(5) + 05, X(9). ¥ (B.4)

+ %tr[¢”(X(8))(‘P(S)Qm)(‘13(8)691/2)*]}618,
P-a.s. for all t € [0,T].

PROOF.

See [GM11a, Theorem 2.9].

The last result of this section is a stochastic version of Lebegues dominated convergence

theorem.

THEOREM B.13. Let ® € P2(U, H) and let (P)nen be a sequence such that ®,, € PA(U, H)
for all n € N. Suppose that ®,, converges dt @ P-a.s. to ® on Q x [0,T] for n — oo, and P-a.s.

T
lim | (@n(s) ~ B()QVZ o wrmds = 0. (B5)

n—a0 0

Assume there is a W € P2(U, H) such that P-a.s.

T T

Then, we have for all t € [0,T]
t t
f B(s)dW (s) = Tim | Do(s)dW(s),
0 = Jo

where the limit is in probability.

PROOF.

Let € > 0 be arbitrary. For t € [0,T"] we define the random variables

ht,N ':]l t
U MR IY©Q U o wmds<NY

t,N .
hy™ o= Ligt sz 2

L(HS)(U,H)d8>N}7



B.1. IT6 INTEGRAL WITH RESPECT TO A Q-WIENER PROCESS 107

where N € N. Note that P-a.s. hi’N + h;’N = 1. Now let ¢t € [0,7] and we consider P-a.s.
2

0 H
< 4” L W (@, — ()t (s)| (B.6)
H
+4‘ fo thg’N<I>n(s)dW(s) 2 +4‘ f thg%(s)dW(s) 2 (B.7)
H 0 H

Note that all integrals appearing in and (B.7) are well-defined (see [GM11al, Lemma
2.3 to Definition 2.12] for more detail). We start with the first term in (B.7) and find

IP’(' ﬂ haN®,, (s)dW (s) 1 > 0)
2

t
= P(‘ j ]1{53 1 (s)Q1/2|2 ds> N }‘Dn(s)dW(s) ; > 0)

0 L s)(U.H)
T
< P(L ’|\II(S)Q1/2H%(HS)(U7H)dS >N > — 0 for N — w0,

since ¥ € P(U, H). The second term in can be treated in exactly the same way. Hence,
we choose an NV € N large enough such that

2
(1

Since N is fix now, we find that hﬁ’N<I>n, hi’Nq) € ENQT(U, H) for all n € N. Therefore, we can
apply the It6 isometry (see [GM11a, Theorem 2.3]) to (B.6)

2
el |
H
! 1/22
= E[]l{sa WEIQV o ds<N ) L [(®n — @)(s)@Q |L<Hs><U,H>d8]

— 0 forn— .

2

t
f RN, (s)dW (s) 5

f t hoN & (s)dW (s)
0

0

) 2
>0) < —e.
H

+4

H

L hoN (@, — ®)(s)dW (s)

The convergence follows, since

t
B 1/2)2
Lo hw1@121 o yds< ) L [(@n = @)($)Q7IL g, ds < 4N,

such that Lebesgues dominated convergence theorem and (B.5) can be applied. Thus, we

choose an n € N large enough, such that
2

1
> 0> < —-e.
H 3

IP’<4‘ fot W (@, — ®)(s)dW (s)
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B.2. Hilbert space-valued Lévy processes

Before we introduce the integration theory with respect to a Lévy process, we present some
basic results on Lévy process. A detailed introduction can be found in [PZ07]. We start with

the formal definition.

DEFINITION B.14 (Hilbert space-valued Lévy process). A stochastic process L = {L(t)}=0
taking values in a separable Hilbert space U is called a Lévy process if

e L(0) =0 P-a.s.,

e L has independent and homogeneous increments, and

e L ist stochastically continuous, that is for all t € Ry and & > 0

lim B(|L(s) ~ (O]l > &) = 0.
S—>
ExAMPLE B.15. A Q-Wiener process is a Lévy process.

Since Lévy processes need only be stochastically continuous, they allow jumps. Thus, the
paths don’t have to be continuous like they are for a ()-Wiener process. Therefore, we intro-
duce the concept of cadlag paths.

DEFINITION B.16. A stochastic process L is called cadlag (continu a droite et limites a gauche)
if
o [ is P-a.s. right-continuous, that is
P(ligl |L(s) — L(t)|v = 0, Vt = 0) = 1, and
S
o L has left limits L(t—), that is

P(ligl IL(s) = L(t—)|v = 0, Vt = 0) = 1.

THEOREM B.17. Every Lévy process L has a cadlag modification, that is for every L there
exists a cadlag Lévy process L, such that P(L(t) = L(t)) = 1 for all t > 0.

DEFINITION B.18 (jump process). Let L be a cadlag process. The process of jumps of L is
then defined by AL(t) := L(t) — L(t—), t = 0.

DEFINITION B.19 (compound Poisson process). Let v be a finite measure on a Hilbert space
U, such that v({0}) = 0. A compound Poisson process with the Lévy measure (also called the
Jump intensity measure) U is a cadlag Lévy process L satisfying
_ L.tk
P(L(t) € A) = ¢ 7)1 k Hﬂ*k
=0

(A)7

for allt = 0 and A € B(U). In the formula above, we use the convention that v° is equal
to the unit measure concentrated at {0}, that is, 7° = 8y and the % indicates that we take the
convolution of the measures .



B.2. HILBERT SPACE-VALUED LéVY PROCESSES 109

ProposiTiON B.20. Let L be a compound Poisson process with Lévy measure .

(1) The process L is integrable if and only if
f 2|y (dz) < . (B.8)
U
Moreover, if (B.8|) holds, then

EL(t) = tf xv(dx).

U

(2) The process L, and hence the compensated process L = L(t) — EL(t), is square
integrable if and only if

L |z(%0(dz) < 0. (B.9)

Moreover, if holds, then

2

E|L<wn%»=:tj‘|x|%ﬂ<dx>+—t2  and
U

L 25(dz)

E@@>%=tﬁgﬂ%mwﬁ

PROOF.
See [PZ07, Proposition 4.18].

DEFINITION B.21 (Poisson random measure of a Lévy process). The Poisson random measure
corresponding to a cadlag Lévy process L is defined for every A € B(U\{0}) by

N, A)(w) =#{0<s<t:AL(s)(w) e A} = Z TA(AL(s)(w)),

0<s<t

which counts the jumps of L, which are in the set A.

DEFINITION B.22 (Lévy measure of a Lévy process). The Lévy measure or jump intensity
measure on U\{0} of a cadlag Lévy process is defined by v(A) = E[N(1, A)] for A e Z(U\{0}).

Note that the Lévy measure doesn’t need to be finite on U\{0}, but it is always o-finite.

REMARK B.23. We can always extend the measure v to the entire space U by v({0}) = 0.
This allows us to remain a cleaner notion later on, when we use the Poisson integral notation.

DEFINITION B.24 (bounded below). A € Z(U\{0}) is called bounded below if 0 is not an
element of the closure of A, that is 0 ¢ A.

LEMMA B.25. If A is bounded below, then N(t,A) < oo P-a.s. for all t = 0.

PROOF.
See [AROS5) Proposition 2.8].
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DEFINITION B.26 (compensated Poisson random measure of a Lévy process). For each t = 0
and A bounded below the compensated Poisson random measure of a Lévy process is defined
by

N(t,A) = N(t,A) — tv(A).

Now, we are able to give the definition of the Poisson integral which will be important later

on for the transformation formula for jump processes.

DEFINITION B.27 (Poisson integral). Let f : U\{0} — U be a #(U\{0})/%(U)-measurable
function and A bounded below. Then for each t = 0, w € Q the following random finite sum

1s called the Poisson integral of f
| 1oV @) = T f@NE e,
zeA

REMARK B.28. Note, since N(t,{x}) & 0 holds if and only if AL(s) = = for at least one
0 < s <t, we have

f F@)N(t,dz)(w) = > f(AL(s)1a(AL(s)(w)).
0<s<t
DEFINITION B.29 (compensated Poisson integral). Let v denote the restriction to A of the
measure v and let f € L1(A,v4). Fort >0 the compensated Poisson integral is defined by

Jf tdx ff tda:—tff

THEOREM B.30 (Lévy-Khinchin decomposition). Let (rx)ken be an arbitrary sequence de-
creasing to 0, Ag := {z € U : ||zl = 7o}, and Ay, := {x € U : 1 < |z|v < -1} for
k € N. Furthermore, let v be the Lévy measure of a Lévy process L. Then, the following

representation holds
[ee}
L(t) = at + W(t) + Z (La,(t) — tf av(dz)) + La,(t), t =0, (B.10)
k=1 Ap

where a € U, W is a Q- Wiener process, Ly, is a compound Poisson process for k € N with
Lévy measure 1(perry <)y <rp_1}Vs @nd L4, is a compound Poisson process with Lévy measure
Lisev:|a|y=ro}V- Additionally, all members of the representation are independent processes and
the series converges P-a.s. uniformly on each bounded subinterval [0,t] of [0,00).

PROOF.
See [PZO07, Theorem 4.23].
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REMARK B.31. Using the notation of the Poisson integral and compensated Poisson integral

we can rewrite the Lévy-Khinchin decomposition as follows

L(t) =ta+W(t) + J

{zeU:||z|y<ro}

N (t,dz) + f xN(t,dx), t =0,
Ag

where S{ZfEU:H-'EHU<7'O}xN(t’dx) = limy, o0 S{er:Tn<HxHU<TO}xN(t,d:n). For more detail see

[App06].

For the next theorem, we assume that L is an {F}},c[o,7)-adapted and square integrable cadlag
Lévy process. Furthermore we assume that for ¢,h > 0 the increments L(t + h) — L(t) are
independent of {F}c[0,77-

THEOREM B.32. There exists an m € U and a nonnegative definite symmetric trace-class

operator @ such that, for allt,s =0 and z,y € U,

E(L(t), )y = {m, z)ut,
ECL(t) — m(t), z)uCL(s) — m(s), yyu =t n KQz,y)u,
EIL(t) — mt]} = tt(Q).

The vector m is called the mean and the operator Q) is the covariance operator of the process

L.

PROOF.
See [PZO07, Theorem 4.44].

COROLLARY B.33. Let L be a Lévy process taking values in U. Furthermore, let v be the Lévy
measure of L. Then, L is square integrable if and only if

f 2 |Pv(dz) < .
U

PROOF.

The statement follows easily by applying Proposition to the Lévy-Khinchin decomposi-
tion (Theorem [B.30]). See also [PZ07), Theorem 4.47] for more detail.

O

REMARK B.34. Note that we are taking the integral over the entire space U instead of U\{0},
which 1is justified by Remark [B.23.

COROLLARY B.35. Let L be a square integrable Lévy process taking values in U. Then L can

be decomposed as follows
L(t) =tb+ W(t) + My(t), (B.11)

where be U, W is a Q-Wiener process and My is a {E}te[O,T] martingale, which contains all

jumps of L. Furthermore W and Mj are independent square integrable Lévy processes and
EL(t) = tb fort = 0.
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PROOF.

The decomposition follows directly from the Lévy-Khinchin decomposition (Theorem [B.30)),
since we are able to compensate also the compound Poisson process L4, by Proposition [B.20}

O

THEOREM B.36. Let L be a square integrable Lévy process, Qo be the covariance operator of
the Wiener part of L, and let Q1 be the covariance operator of the jump part. Then,

(Qur, 2y = fU<:c,y>U<z, yyuw(dy), (B.12)

forx,ze U, and

Q = Qo+ Q1.

PROOF.
See [PZ07, Theorem 4.47].

REMARK B.37. Just like we did for the Lévy-Khinchin decomposition we can rewrite (B.11))
using the notation of compensated Poisson integral. But this time, since all members of the
representation can be compensated, we only need one compensated Poisson integral. This way

we can rewrite (B.11)) as
Lu):w+4vuy5[xN@@@, (B.13)
U

where §; N (t,dz) = lim,_q S{:vGU:rn<H:vHU} N (t,dz), for a null sequence (ry)pen from the
Lévy-Khinchin decomposition (Theorem .

Another important representation of a Lévy process is the expansion with respect to an
orthonormal basis. Therefore, let us assume that L is a square integrable cadlag Lévy process
with mean zero and covariance operator ). We choose the sequence of eigenvectors {ep}
of @ as the orthogonal basis of U. In particular, we have Qe, = Ape, for all n € N,
where )\, > 0 and tr(Q) = >, ; A, < 0. Furthermore, we can represent the operator @ by
Q =27 | Anen @ e,. We define the stochastic process Ly, (t) := (L(t), e,yu for n € N. Then,
the stochastic processes L,, are real-valued uncorrelated cadlag Lévy processes (see [PZ07,
Section 4.8]).

THEOREM B.38 (series representation of L). The series

zm:imwn (B.14)
n=1

converges in probability, uniformly in t on any compact interval [0,T].

PROOF.
See [PZ07, Theorem 4.39].



B.3. STOCHASTIC INTEGRAL WITH RESPECT TO A SQUARE INTEGRABLE LéVY MARTINGALE 113

COROLLARY B.39. If L is a square integrable cadlag Lévy process with mean zero, the series
(B.14)) converges P-a.s. and in mean square.

PROOF.

First note that the process L, is square integrable for all n € N, since

ELn(t)2 = E<L(t)7 en>2U = t<Qen; en>U = t)\n<€na 6n>U = tAn < O,

where we use the second property of Theorem [B:32] Then, it follows that

N N
BI S Lo®eald = E 3 Lult)Ly(t)en e530 = ZEL ~t 3,
n=k n==k

n,j=k

Since > ; A\, < 0, it follows that the series (B.14) converges in mean square. The P-a.s.
convergence follows by results from [PZ07, Section 4.8].

(]
If we define Ly (t) := 25:1 Ln(t)en and LN (t) := 3. .1 Ly(t)ey for N € N it is obvious that
both processes are square integrable cadlag Lévy processes and P-a.s. L = Ly + LY. Further-
more, the covariance operator of Ly and LY respectively are given by Qn = ZTJLI Anen Qe
and QN =237 vy Anen @ en.

B.3. Stochastic integral with respect to a square integrable Lévy martingale

In this section, we introduce the stochastic integral with respect to a square integrable Lévy
martingale. The construction is very similar to the construction of the It6 integral with respect
to a @-Wiener process, since the processes have many properties in common like Theorem
B.32| shows. A detailed introduction of the here presented approach can be found in [PZ07,
Chapter 8|.

We start again with the definition of the stochastic integral for elementary processes (see

Definition |B.8)).

DEFINITION B.40 (stochastic integral for elementary processes). For ® € &(U, H), we define
the stochastic integral with respect to a square integrable Lévy martingale M(t) for t € [0,T]

by

0

t n—1
| @10 (s) = 3 6,0 (t10 1 8) = M(t; 1)
j=0

PROPOSITION B.41 (isometry for elementary processes). For a bounded elementary process
®e &U,H) and for t € [0,T] holds

t 2 t
@f¢@Mﬂ$H=EL@®QW&mwm®<®'

0

PROOF.
See [PZ07, Proposition 8.6].
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With the help of the isometry we can extend the definition of the stochastic integral to a larger
class of stochastic processes. Therefore, we define £2T(U, H) to be the class of all predictable
mappings ® from [0, 7] x Q taking values in set of linear operators from U to H such that

T
B[ 10OQ g 0 mit < (B.15)

If we equip £ (U, H) with the norm

T
1/2
1y = B 19OQV1E , 0mt)”

it becomes a Hilbert space. For more detail on the extension of the stochastic integral see
[PZ07, Theorem 8.7].

The next result is a useful tool, when dealing with the stochastic integral.

PROPOSITION B.42. Assume that @(t)Q% is an Lps) (U, H)-predictable stochastic process for
all t € [0,T]. Furthermore, let A : P(A) € H — H be a closed linear operator with domain
P(A) being a Borel subset of H. If for allu e U and t € [0,T] one has ®(t)u € Z(A) P—a.s.
and ®, A® € L2(U, H), then ® € LA(U, 2(A)) and P-a.s.

T T
Af D(s)dM (s) = f AD(s)dM (s). (B.16)
0 0

PROOF.

Before we prove the statement let us note that for a linear operator .S : U — H the following
equivalence holds

SGL(HS)(U,.@<A))<:>S€L(HS)(U,H) and ASEL(HS)(U,H)

This is easy to see, since

ee} [ee} a0
IS1Z sy W, 2ay) = DS Fil ey = D IS FillF + D 1AS fill3
i=1

i=1 i=1
2 2
= HSHL<HS)(U,H) + HAS”L(HS)(U,H)v

for any normalized orthonormal basis {f;}2; of U. Applying this identity and the isometry
of the stochastic integral (see [PZ07, Theorem 8.7 (i)]) yields

2

T
1
E —E [ [85)QHE 050005

0

f Tcp(s)dM(s)

0

2(A)
T 1, T 1,
=E . |2(8)Q2 L 5 .y ds + E . [A®($)Q> L ;g ) d5-

2
Since ®, A® € £2.(U, H) we have E HS(J; (I)(S)dM(S)Hg(A) < 0.
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We proceed to the identity (B.16)). Let ® be a simple process at first. Through a straight
forward calculation we find P-a.s.

AJT (s)d AZ D; (M (tiv1) EA(I) (tiv1) — M(t;))

0

T
- J AD(s)dM (s).

0
Since ® € LZ(U, 2(A)), there exists a sequence {®,,} of simple Z(A)-valued processes, which
converges to ® in L2(U, Z(A)). Hence, we have

LT D,,(s)dM (s) — J;)TQ s)dM (s

T T
J Ad,,(s)dM(s) — J Ad(s)dM(s).
0 0

and

This convergence is in Lo(Q2, F,P; H). But we have already shown that P-a.s.

f A, (5)dM (5 Aj M(s)

Since the operator A is closed, the claim follows.

O

The following result is a stochastic version of Fubinis theorem. Therefore let A be a finite
positive measure on a measurable space (F, £). Then we can formulate the following stochastic
Fubini theorem.

THEOREM B.43. Assume that ® € L1(E,E,\; L2(U, H)). Then, P-a.s.
T T
f f B(t, 2)d M (1) (dz) —f J B(t, 2)\(dz)dM (1),
FE JO 0 E
PROOF.

See [PZ07, Throrem 8.14].

For some calculations it is useful to use an approximation of the stochastic integral, which
is based on the series (B.14). Therefore, we define the Banach space X1 p of all predictable

process with values in a Banach space B equipped with the norm

| = ¢ sup E|X(1)[3%.
te[0,T]

ProPOSITION B.44. Let M be a square integrable Lévy martingale and ® € EQT(U7 H). Then,

JZ; Jt s)epdmy(s) — J s)dM (s),

for N — oo in X7 g, where (en)nen are the eigenvectors of Q and my, 1= (M, ep)y.
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PROOF.

If ® is an elementary process, then the stochastic integrals have the following representation

[RENE S by (Maltyar A 0) = Mty A1),
7=0

and

| eanrs) 2@ (o1 A 6) = MY(t A 1),

0

An easy calculation yields P-a.s.

J@(s)dM(s) :J q)(s)dMN(s)+f ®(s)dM™ (s), (B.17)

0 0 0

for all ¢ € [0,T]. By the same procedure as in the construction of the integral we find that
identity (B.17) holds for all ® € £2.(U, H). Note that P-a.s.

f s)dMy (s Zf s)endmn(s).

0

In order to show the claimed approximation we calculate for a ® € £2(U, H), using the
isometry of the stochastic integral (see [PZ07], Theorem 8.7 (i)])

E{f O(s)dM(s) —L ®(s)dMn(s)| 5, _E|f s)dM™N (s) |3,

1
—EJ |®(s) QN) HL(HS) v,mds =E J Z |1D(s)(QN )2 ey |2 ds

_Ef Z Ml ®(s)en|2ds < J Z Anl|®(s)en % ds, (B.18)

n=N+1 n=N+1

which converges pointwise (for every s) to zero N — oo. Since ® € L4(U, H), we have

T 1 T 0 1 T O
> B | 19000 o wmds —E | 3 1960 elds =B | 3 A1 (s)en s,
n=1

which dominates (B.18). Therefore, by Lebesgue’s dominated convergence theorem we receive

]E||L<I>(s)dM(s)—L ®(s)dMn (s \H_Ef Z M| ®(s)en|4ds — 0,

n=N+1
for N — o0. The convergence in X7 g follows from (B.18)).

U

REMARK B.45. If one desires the convergence in the space of martingales equipped with the

stronger norm | X| := \/E(supte[oj] IX()|%) one needs to apply a generalization of Doob’s
inequality. Such an inequality can be found for example in [MP80, Theorem 2.
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B.4. Stochastic integral w.r.t. a compensated Poisson random measure

Another way to introduce a stochastic integral for Lévy processes is motivated by the decom-
position (B.13)). Since for the Q-Wiener process the It6 integral is already defined, one only
needs to define an integral for the stochastic process

JU N (t,dx)

in order to find an stochastic integral with respect to a square integrable Lévy processes. This
was done in [R1id04] (it is called the strong integral of type 2). Since the idea is fundamentally
the same as in the two cases above, we will only repeat the main ideas here.

First, let us define the o-algebra F; := Z(R; x U\{0}) ® F;. For T' > 0, we denote

MT(U,H) := {f Ry x U\{0} x Q — H, such that f is Fr/%(H) measurable
and f(t,zr,w) is Fi-adapted Yz € U\{0}, Vt € [0,T]}

Now, we are able to introduce the so called natural integral as follows.

DEFINITION B.46. Let t € (0,T], A bounded below, f € MT (U, H). Assume that f(-,-,w) is
Bochner integrable on (0,T] x A with respect to v, for allw € Q fized. The natural integral of

f on (0,t] x A with respect to the compensated Poisson random measure N(dw dt) is

Jffsa:w (dz, ds)

ST f(s, (AM(5)) (), w)Ta(AM(s) f f F(5 2, w0)(dn)ds, we Q,

0<s<t

where the last term is understood as a Bochner integral (for w € Q fized) of f(s,x,w) with
respect to the measure v Q dt.

Then, it is shown that the integral has the familiar form for the class of elementary pro-
cesses (see [Riid04] Proposition 3.5]) and is well-defined. Consequently the definition of the
stochastic integral is extended to functions belonging to the following space

T
MU, H) = {f e MT(U,H) : L L E| f(t,2)|4v(dz)dt < oo}.

This is due, since the class of elementary processes is dense in M, 2(U, H) (see [Riid04]
Theorem 4.2]).

REMARK B.47. An easy calculation using (B.12)) shows

1/2
QY e i) = | 19alfrvtie),
for ® € E(U, H). Therefore, it follows that in the pure jump case
deL2(U,H)«— de MU, H)



B.4. STOCHASTIC INTEGRAL W.R.T. A COMPENSATED POISSON RANDOM MEASURE 118

f: f f $)2 N (dzds),

forallte [0,T] and ® € L2(U, H). For more detail see [App06].

and

The final step is to weaken the condition for the function similar to the Wiener case. Hence,
the stochastic integral is extended to function from the following class

T
N 2(UH) = {f e MT(U,H) : L L | £(t,2)|2v(dz)dt < oo P—a,s.}.

The complete construction can be found in [Riid04} Section 7]. The extension to Ny (U, H)
is especially important later for the transformation formula, if we want to be able to use the
norm square as a transformation function. But before we introduce the transformation formula
we state the stochastic version of Lebesgues dominated convergence theorem for integrals with

respect to a compensated Poisson random measure.

THEOREM B.48 (stochastic Lebesgues theorem for integral with respect to compensated Pois-
son random measure). Let f € Ny > (U, H) be arbitrary and let (f,)nen be a sequence such that

fn € NI2(U, H) for allm € N. Suppose (fn)nen converges dt ® v @ P-a.s. on [0,T] x U x €,
when n — o, and P-a.s.

T
. . 2 _
ggIgoL fU [ fr = fIPv(dz)dt

Assume, there is a g € N 2(U, H), such that

[ [ wevtanar < [ [ opviana
Jffsx dsdacnh_r)rolofffnsx (ds,dx),

where the limit is in probability.

Then, we have

PROOF.
See [R1id04], Theorem 7.7 and Remark 7.8].

Before we can state the transformation formula we need the following definition.

DEFINITION B.49 (quasi-sublinear function). A continuous, nondecreasing function on R,
that is h : Ry — Ry, is called quasi-sublinear if there is a constant C' > 0, such that

h(z +y) < C(h(z) + M(y)), =,y € Ry,
h(zy) < Ch(z)h(y), =,y € Ry.
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THEOREM B.50 (transformation formula for jump processes). Suppose that
e pc CY2(Ry x H;R) is a function, such that

[6(s; )| < Palllyllm),
16" (s, )y < ha(lylln),

for (s,y) € Ry x H and hy, hy being quasi-sublinear function;
o Ae B(U\{0}) is a set with v(A°) < oo, where A® denotes the compliment of A;
o f:Q xRy xU — H is progressively measurable process, such that for allt € Ry we

have P-a.s.

j f £ (s, ) Zr(de)ds + f j B (1 (s, 2)10)2 ) (5 2) 2o () ds
0JA 0JA

# || ) o) s < o

e g: O xRy xU — H is a progressively measurable process;

e Y is a stochastic process of the from

0 +Lt L f(s,z)N(dz,ds) + Ltf _g(s,2)N(dw,ds), t > 0.

Then the following statements hold:

e For allt e R, we have P-a.s.
f 905, Y (5=)lds < o,
j | 100 ¥ (5) + 7(5020) = 66 Y (5)) Putdoyis < o
j [ 1ot (5 + s.0) = 665, (57) = (.Y (5)) f 5,2)) oo < o,

J JC $,Y(s—) +g(s,x)) — ¢(s,Y (s—))|N(dx,ds) < o
o We have P-a.s.

B4, Y (1) = 60, Y (0)) + j (s, Y (s—

PROOF.

See IMRT13|, Theorem 3.6].
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B.5. Stochastic abstract Cauchy problem with Lévy noise

Let us consider the following abstract Cauchy problem in a separable Hilbert space H

dX(t) (AX(t) + F(X(t)))dt + G(X(t))dM(t), fort =0,
(S — ACP)
X(0) = Xo,
where A, with domain Z(A), is the generator of a Cp-semigroup (S(¢))i=0 on H, M is a
square integrable Lévy martingale taking values in a separable Hilbert space U, and Xy is an

Fo-measurable random variable in H. For the nonlininearities we assume the following

(F) F: 92(F) - H, Z(F) is dense in H and there is a function a : (0,00) — (0,00)

satisfying SOT a(t)dt < oo for all T < oo, such that for all t > 0 and z,y € Z(F),
IS@F@)|a < a®) @ + [z]m),
IS F ) = Fy)la < alt)lz - yla-

(G) We set H := QY2(U). G : 2(G) — L(H, H), where L ist the class of all linear (not
necessarily bounded) operators, Z(G) is dense in H and assume there is a function
b:(0,00) — (0,00) satisfying Sg b(t)dt < oo for all T' < oo, such that for all ¢ > 0 and
z,y € 2(G),

ISOCE@) |1 s .11 < O + [,
|SE(G(x) = G L5y 3,1 < 0(E) |z —yla-
In order to receive a cadlag solution of (S — ACP) it will be necessary to strengthen condition
(G).
(GI) Condition (G) holds, if S(t) =1, ¢t = 0.
REMARK B.51. The function t — |S(t)|rm) is bounded on any finite interval [0,T]. Thus,

if F: H— H and G : H — Lgg)(H, H) are Lipschitz continuous, then (F) and (G) are
satisfied.

DEFINITION B.52 (mild solution of (S — ACP)). Let Xq be a square integrable Fo-measurable
random variable in H. A predictable process X : [0,00) x Q — H s called a mild solution to
(S — ACP) starting at time zero from Xg if

sup E|X(t)|% < oo for all T € (0,0),
te[0,T]

and P-a.s.

X(t)=5S(t)Xo+ fot S(t—s)F(X(s))ds + Jot S(t—s)G(X(s))dM(s) for all t = to.
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THEOREM B.53 (existence and uniqueness of solution of (S — ACP)). Assume that condition
(F) und (G) are satisfied, then the following hold:

(1) for every Fo-measurable square integrable random wvariable Xy in H there exists a
unique (up to modification) mild solution X (-, Xo) of (S — ACP).
(2) for all T < oo there exists a L < oo, such that for all x1,x9 € H,

sup E|X(t,21) — X (t,22) [} < L1 — 2.
te[0,T]

If (F) and (GI) hold and S is a generalized contraction, then the solution has a cadlag version.

PROOF.
See [PZ07, Theorem 9.15 and Theorem 9.29].

REMARK B.54. In the finite dimensional theory presented for instance in [App09] or [Pro05]
one looks for cadlag solutions instead of predictable solutions. However, in infinite dimensions
the solution my not have a cadlag modification in H. An example of this can be found in
[PZ07,, Section 9.4.4]. That is why the condition on the solution process is weakened to be

only predictable. For more detail on the concept of solution in infinite dimensions see [PZ07,
Section 9.2.1].
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