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Abstract
The gamma model is a generalized linear model for gamma-distributed outcomes.
The model is widely applied in psychology, ecology or medicine. Recently, Gaffke
et al. (J Stat Plan Inference 203:199–214, 2019) established a complete class and
an essentially complete class of designs for gamma models to obtain locally optimal
designs in particular when the linear predictor includes an intercept term. In this paper
we extend this approach to gamma models having linear predictors without intercept.
For a specific scenario sets of locally D- and A-optimal designs are established. It
turns out that the optimality problem can be transformed to one under gamma models
with intercept leading to a reduction in the dimension of the experimental region. On
that basis optimality results can be transferred from one model to the other and vice
versa. Additionally by means of the general equivalence theorem optimality can be
characterized formultiple regression by a system of polynomial inequalities which can
be solved analytically or by computer algebra. Thus necessary and sufficient conditions
can be obtained on the parameter values for the local D-optimality of specific designs.
The robustness of the derived designs with respect to misspecification of the initial
parameter values is examined by means of their local D-efficiencies.
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1 Introduction

The gamma model is employed for outcomes that are non-negative, continuous,
skewed and heteroscedastic specifically when the variances are proportional to the
square of the means. The gamma model with its canonical link (reciprocal) is appro-
priate for many real life data. In ecology and forestry, Gea-Izquierdo and Cañellas
(2009)mentioned that gammamodels offer a great potential for many forestry applica-
tions and they used gamma models to analyze plant competition. In a medical context,
Grover et al. (2013) fitted a gamma model with duration of diabetes as a response
variable and predictors like the rate of rise in serum creatinine (SrCr) and number of
successes (number of times SryCr values exceed its normal range (1.4 mg/dl)). For
a study about air pollution, Kurtoğlu and Özkale (2016) employed a gamma model
to analyze nitrogen dioxide concentrations considering some weather factors (see
also Chatterjee 1988, Section 8.7). In psychological studies, recently, Ng and Cribbie
(2017) used a gammamodel for modeling the relationship between negative automatic
thoughts (NAT) and socially prescribed perfectionism (SPP).

Although the canonical link is frequently employed in the gamma model, there
is always a doubt about the suitable link function for outcomes. Therefore, a class
of link functions might be employed. The common alternative links mostly come
from the Box–Cox family and the power link family (see Atkinson and Woods 2015)
that includes the canonical link. In the theory of optimal designs, the information
matrix of a generalized linear model depends on the model parameters through the
intensity function. Locally optimal designs can be derived through maximizing a
specific optimality criterion at certain values of the parameters. Although the gamma
model is used in many applications, optimal designs in this model have not received
a wide attention. Geometric approaches were employed to derive locally D-optimal
designs for a gamma model with a single factor (Ford et al. 1992) and with multiple
factors (Burridge and Sebastiani 1994). For gamma models with two factors and
without intercept a geometric approach was also utilized in Burridge and Sebastiani
(1992). Recently, in Gaffke et al. (2019) we provided analytic solutions for optimal
designs under gammamodels and locally complete class and essentially complete class
of designs were established under certain assumptions. Therefore, the complexity of
deriving locally optimal designs is reduced and one can look for the optimal design in
these classes.

The intercept term in generalized linear models (gamma models) characterizes the
expected mean when all the explanatory variables are equal to zero. In this case, the
linear predictor represents an impact of all the unobserved fixed variables in themodel.
When the intercept is significantly zero the average impact of all the unobserved fixed
variables is also significantly zero and the model includes probably most variables
which explain the outcome. In this paper, we will focus on the gamma models when
the linear predictor does not significantly include the intercept. Our main goal is to
develop various approaches to obtain locally optimal designsw.r.t.D- andA-optimality
criteria.

This paper is organized as follows. In Sect. 2, the proposed model, the information
matrix and the locally optimal design are presented. InSect. 3, locallyD- andA-optimal
designs are derived. In Sect. 4, a two-factor model with interaction is considered for
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which locally D-optimal designs are derived. The performance of some derived D-
optimal designs is examined in Sect. 5. Finally, a brief discussion and conclusions are
given in Sect. 6.

2 Model, information and design

Let Y1, . . . ,Yn be independent gamma-distributed response variables for n experi-
mental units, where for each Yi the density is given by

p(yi ; κ, λi ) = λκ
i

� (κ)
yκ−1
i e−λi yi , κ, λi , yi > 0, i = 1, . . . , n. (2.1)

The shape parameter κ of the gamma distribution is assumed to be known and the
same for all Yi but the expectations μi = E(Yi ) depend on the values xi of a covariate
x. The canonical link for a gamma distribution (2.1) is the reciprocal (inverse) link,

ηi = κ/μi , where ηi = f T (xi )β, i = 1, . . . , n, is the linear predictor.

Here f = ( f1, . . . , f p)T is a given R
p-valued function on the experimental region

X ⊂ R
ν, ν ≥ 1, with linearly independent component functions f1, . . . , f p, and

β ∈ R
p is the parameter vector (see McCullagh and Nelder 1989, Section 2.2.4). In

this case, the mean-variance function is V (μ) = μ2 and the variance of a gamma
distribution is thus given by var(Y ) = κ−1μ2. Therefore, the intensity function at a
point x ∈ X (see Atkinson and Woods 2015) is given by

u0(x,β) =
(
var(Y )

( dη

dμ

)2)−1 = κ
(
f T (x)β

)−2
. (2.2)

Gamma-distributed responses are continuous and non-negative and therefore for
a given experimental region X we assume throughout that the parameter vector β

satisfies
f T (x)β > 0 for all x ∈ X . (2.3)

The Fisher information matrix for a single observation at a point x ∈ X under a
parameter vector β is given by u0(x,β) f (x) f T (x). Note that the positive factor κ

is the same for all x and β and will not affect any design optimization below. We will
ignore that factor and consider a normalized version of the Fisher information matrix
at x and β,

M(x,β) = u(x,β) f (x) f T (x) where u(x,β) = (
f T (x)β

)−2
. (2.4)

For a given parameter value β we denote by f β the local regression function

f β(x) = (
f T (x)β

)−1 f (x) for all x ∈ X . (2.5)
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4 O. Idais, R. Schwabe

Then the Fisher information matrix (2.4) can be written as M(x,β) = f β(x) f Tβ (x).
We will make use of approximate designs with finite support on the experimental

region X . An approximate design ξ on X is defined as

ξ =
(
x1 x2 · · · xm
ω1 ω2 · · · ωm

)
, (2.6)

wherem ∈ N, x1, x2, . . . , xm ∈ X are pairwise distinct points andω1, ω2, . . . , ωm >

0 denote the proportions of observations to be made at the settings x1, x2, . . . , xm ,
respectively, with

∑m
i=1 ωi = 1. The set supp(ξ) = {x1, x2, . . . , xm} is called the

support of ξ and ω1, . . . , ωm are called the weights of ξ (see Silvey 1980, p. 15). A
design ξ is minimally supported if the number of support points is equal to the number
of model parameters (i.e.,m = p). A minimally supported design which is also called
a saturated design will appear frequently in the current work. The information matrix
of a design ξ at a parameter vector β is defined by

M(ξ,β) =
m∑
i=1

ωiM(xi ,β). (2.7)

Another representation of the information matrix (2.7) can be considered by defining
the m × p design matrix F = [ f (x1), . . . , f (xm)]T and the m × m weight matrix
V = diag(ωi u(xi ,β))mi=1 and hence, M(ξ,β) = FT V F.

A locally optimal design minimizes a convex criterion function of the informa-
tion matrix at a given parameter vector β. Denote by ”det” and ”tr” the determinant
and the trace of a matrix, respectively. We will employ the popular D-criterion and
the A-criterion. More precisely, a design ξ∗ is said to be locally D-optimal (at β)
if its information matrix M(ξ∗,β) at β is nonsingular and det

(
M−1(ξ∗,β)

) =
minξ det

(
M−1(ξ,β)

)
where the minimum on the r.h.s. is taken over all designs

ξ whose information matrix at β is nonsingular. Similarly, a design ξ∗ is said
to be locally A-optimal (at β) if its information matrix at β is nonsingular and
tr
(
M−1(ξ∗,β)

) = minξ tr
(
M−1(ξ,β)

)
where, again, the minimum is taken over

all designs ξ whose information matrix at β is nonsingular.

Remark 2.1 The set of designs for which the information matrix is nonsingular does
not depend onβ (since u(x,β) is strictly positive onX ). In particular it is just the set of
designs for which the information matrix is nonsingular in the corresponding ordinary
regression model (ignoring the intensity u(x,β)). That is, the singularity depends on
the support points of a design ξ because its information matrix M(ξ,β) = FT V F
has full rank if and only if F has full rank.

Remark 2.2 If the experimental region is a compact set and the functions f (x) and
u(x,β) are continuous in x then the set of all nonnegative definite informationmatrices
is compact. Therefore, there exists a locally D- or A-optimal design for any given
parameter vector β.

In order to verify the local optimality of a design the general equivalence theorem is
commonly employed. It provides necessary and sufficient conditions for a design to be
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optimal with respect to the optimality criterion, in particular to the D- or A-criterion,
and thus the optimality of a suggested design can easily be verified or disproved. In the
following we present equivalent characterizations of locally D- and A-optimal designs
(see Silvey 1980, p. 40, p. 48 and p. 54).

Theorem 2.1 Let β be a given parameter point and let ξ∗ be a design with nonsingular
information matrix M(ξ∗,β).

(a) The design ξ∗ is locally D-optimal (at β) if and only if

u(x,β) f T (x)M−1(ξ∗,β) f (x) ≤ p for all x ∈ X .

(b) The design ξ∗ is locally A-optimal (at β) if and only if

u(x,β) f T (x)M−2(ξ∗,β) f (x) ≤ tr
(
M−1(ξ∗,β)

)
for all x ∈ X .

Remark 2.3 The inequalities given by part (a) or part (b) of Theorem 2.1 become
equations at support points of any D- or A-optimal design ξ∗, respectively.

Throughout, we consider gamma models that do not contain a constant (intercept)
term (neither implicitly nor explicitly). More precisely, we assume f (0) = 0. In
particular, we restrict to a first order model with

f (x) = x, where x = (x1, . . . , xν)
T , ν ≥ 1, (2.8)

and the two-factor model with interaction

f (x) = (x1, x2, x1x2)
T , where x = (x1, x2)

T . (2.9)

In this context, condition (2.3), i.e., f T (x)β > 0 for all x ∈ X implies that 0 /∈ X .
Therefore, as an experimental region X = [0,∞)ν \ {0} may be considered. Note
that this experimental region is no longer compact therefore the existence of optimal
designs is not assured automatically and has to be checked separately, e.g., by the
compactness of the induced experimental region f β(X ) = { f β(x) : x ∈ X }.

In contrast, in the paper we often consider a compact experimental region that is a
ν-dimensional hypercube

X = [
a, b

]ν
, ν ≥ 2 with a, b ∈ R and 0 < a < b, (2.10)

with vertices vk, k = 1, . . . , K = 2ν given by the points whose i-th coordinates are
either a or b for all i = 1, . . . , ν.

InGaffke et al. (2019), Theorem 3.1, we considered a gammamodel with regression
function f (x) as in (2.8) or (2.9) and experimental region (2.10), i.e.,X = [a, b]ν, ν ≥
2, 0 < a < b. In that theorem we showed that for any design ξ̃ which has at least
one support point not being a vertex from {v1, . . . , vK } there exists a design ξ that is
supported only on the vertices andwhich is at least as good as ξ̃ w.r.t. theLoewner semi-
ordering of nonnegative definite p × p matrices. That is if A and B are nonnegative
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definite p × p matrices we write A ≤ B if and only if B − A is nonnegative definite.
The set of all designs ξ such that supp(ξ) ⊆ {v1, . . . , vK } under the proposed models
(2.8) and (2.9) is, hence, an essentially complete class of designs. As a result, there
exists a design ξ∗ that is only supported by vertices of X which is locally optimal
(at β) w.r.t. D- or A-criterion. On that basis, throughout, we restrict to designs whose
support is a subset of the vertices of X given by the hypercube (2.10).

Remark 2.4 Let us denote by ψ(x) the left hand side of the equivalence theorems,
Theorem 2.1, part (a) or part (b). Often ψ(x) is called the sensitivity function. In
non-intercept gamma models ψ(x) is invariant with respect to simultaneous scale
transformation of x, i.e., ψ(λx) = ψ(x) for any λ > 0. This comes from the fact that
the function f β(x) given by (2.5) is invariant with respect to simultaneous rescaling of
all components of x, i.e., f β(λx) = f β(x). This property is transferred to the infor-

mation matrix (2.4) since it can be represented in the form M(x,β) = f β(x) f Tβ (x),
and hence M(λx,β) = M(x,β). We will use this property to derive optimal designs.

3 First order gammamodel

In this section we consider a gamma model with

f (x) = x where x = (x1, . . . , xν)
T ∈ X ⊂ R

ν, ν ≥ 2. (3.1)

Then

f β(x) = 1

β1x1 + · · · + βνxν

⎛
⎜⎝
x1
...

xν

⎞
⎟⎠ = ( ν∑

i=1

βi xi
)−1x. (3.2)

Remark 3.1 For a single-factor gamma model with a linear predictor η = βx where
x ∈ X ⊆ R \ {0} and a parameter β such that βx > 0 for all x ∈ X the Fisher
information is given by M(x, β) = 1/β2 and is constant in x . Hence every design is
optimal.

3.1 Optimal designs on an orthant

Firstly let the experimental region X = [0,∞)ν \ {0} be considered. For i = 1, . . . , ν
denote by ei the ν-dimensional unit vectors. The parameter space is determined by
condition (2.3) as xTβ > 0 for all x ∈ X which is equivalent to βi > 0 for all
i = 1, . . . , ν. The induced experimental region f β(X ) = { f β(x) : x ∈ X } is
compact since

f β(X ) = Conv{ f β(ei ) : ei ∈ X , i = 1, . . . , ν},

because of the invariance with respect to simultaneous scalingmentioned above. Here,
‘Conv’ denotes the convex hull. That means that for all x ∈ X each point f β(x) can
be written as a convex combination of f β(ei ), i = 1, . . . , ν, i.e., we obtain f β(x) =
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∑ν
i=1 αi f β(ei ) where αi = βi xi/

∑ν
j=1 β j x j . Obviously, αi ≥ 0, i = 1, . . . , ν

and
∑ν

i=1 αi = 1. As a consequence, the set of all nonnegative definite information
matrices is compact and the existence of a locally optimal design is assured (cp.
Remark 2.2).

Theorem 3.1 Consider model (3.1) on the experimental region X = [0,∞)ν \ {0}.
Let x∗

i = ei , i = 1, . . . , ν. Let a parameter vector β be given such that condition (2.3)
is satisfied, i.e., βi > 0 for all i = 1, . . . , ν. Then

(a) The minimally supported design ξ∗ that assigns equal weight ω∗
i = 1/ν to the

support points x∗
i for all i = 1, . . . , ν is locally D-optimal (at β).

(b) The minimally supported design ξ∗ that assigns the weights ω∗
i = βi/

∑ν
j=1 β j

for all i = 1, . . . , ν to the support points x∗
i for all i = 1, . . . , ν is locally

A-optimal (at β).

Proof Define the ν × ν design matrix F = [e1, . . . , eν] = Iν where Iν is the
ν × ν identity matrix and the ν × ν weight matrix V = diag(ω∗

i /β
2
i )

ν
i=1. Then we

have M
(
ξ∗,β

) = FT V F = diag(ω∗
i /β

2
i )

ν
i=1 and M−1

(
ξ∗,β

) = (
FT V F

)−1 =
diag(β2

i /ω
∗
i )

ν
i=1.

In part (a) for D-optimality ω∗
i = 1/ν ∀i, M−1

(
ξ∗,β

) = ν diag(β2
i )

ν
i=1 and

f T (x)diag(β2
i )

ν
i=1 f (x) = ∑ν

i=1 β2
i x

2
i . Hence, by the equivalence theorem

(Theorem 2.1, part (a)) ξ∗ is locally D-optimal (at β) if and only if
( ∑ν

i=1 βi xi
)−2

(∑ν
i=1 β2

i x
2
i

) ≤ 1 for all x ∈ X which is equivalent to
∑ν−1

i=1
∑ν

j=i+1 βiβ j xi x j ≥ 0
for all x ∈ X . The latter inequality holds true by the model assumptions βi > 0, xi ≥
0, i = 1, . . . , ν.
In part (b) for A-optimality ω∗

i = βi/
∑ν

j=1 β j ∀i , M−1
(
ξ∗,β

) = ( ∑ν
i=1 βi

)

diag(βi )νi=1, tr
(
M−1(ξ∗,β)

) = (∑ν
i=1 βi

)2,M−2
(
ξ∗,β

) = (∑ν
i=1 βi

)2diag(β2
i )

ν
i=1

and f T (x)
(∑ν

i=1 βi
)2diag(β2

i )
ν
i=1 f (x) = ( ∑ν

i=1 βi
)2 ∑ν

i=1 β2
i x

2
i . Hence, straight-

forward computations show that applying the equivalence theorem (Theorem 2.1, part
(b)) leads to a conclusion analogous to that in part (a). 
�
Remark 3.2 The locally D-optimal design provided by part (a) of Theorem 3.1 does
not depend onβ and is, hence, not affected bymisspecification of themodel parameter.

While the information matrix is invariant w.r.t. to simultaneous rescaling of the
components separately for each x as it is mentioned in Remark 2.4, the results of
Theorem 3.1 can be extended:

Corollary 3.1 Consider model (3.1) on the experimental region X = [0,∞)ν \ {0}.
Let a constant real vector a = (a1, . . . , aν)

T be given such that ai > 0, i = 1, . . . , ν.
Let x∗

i = ai ei , i = 1, . . . , ν. Let a parameter vector β be given such that condition
(2.3) is satisfied, i.e., βi > 0 for all i = 1, . . . , ν. Then

(i) The minimally supported design ξ∗
a that assigns equal weight ω∗

i = 1/ν to the
support points x∗

i for all i = 1, . . . , ν is locally D-optimal (at β).
(ii) The minimally supported design ξ∗

a that assigns the weights ω∗
i = βi/

∑ν
j=1 β j

for all i = 1, . . . , ν to the support points x∗
i for all i = 1, . . . , ν is locally

A-optimal (at β).
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8 O. Idais, R. Schwabe

The derived locally D- and A-optimal designs at a given β are not unique. We
observe that designs with larger support can be optimal which may be obtained as
convex combinations of locally optimal designs given in Corollary 3.1 w.r.t. D- or
A-criterion. In the following we characterize sets of locally D-optimal designs and
locally A-optimal designs.

Corollary 3.2 Consider the assumptions of Corollary 3.1 and let ξ∗
a be the locally D-

resp. A-optimal designs at β from Corollary 3.1. Let

�∗ = Conv{ξ∗
a : a = (a1, . . . , aν)

T , ai > 0 ∀i = 1, . . . , ν}.

Then �∗ is a set of locally D- resp. A-optimal designs (at β). Obviously, any ξ∗ ∈ �∗
can be written as ξ∗ = ∑s

t=1 αtξ
∗
at such that αt ≥ 0, t = 1, . . . , s and

∑s
t=1 αt = 1

where “s” is an arbitrary positive integer number such that the support may become
arbitrarily large.

3.2 Optimal designs on a hypercube

In what follows we consider hypercubes X = [a, b]ν, ν ≥ 2, 0 < a < b, as the
experimental regions. As mentioned in Remark 2.4, we have f β(λx) = f β(x) for
all λ > 0. In particular, as already used above the scaling λ = λx may be performed
for any value of x individually. By choosing λx = x−1

1 we can transform a gamma
model without intercept in ν variables x1, . . . , xν into a gammamodel with intercept in
ν − 1 variables t1 = x2/x1, . . . , tν−1 = xν/x1. This reduction in the dimension of the
covariate x = (x1, . . . , xν)

T is useful to determine the candidate support points of a
design. Another reduction can be obtained on the parameter space by using the scaling
equivariance f δβ(x) = δ−1 f β(x) on the parameter space for all δ > 0, where, in

particular, δ = δβ can be chosen as δβ = β−1
1 .

Let us begin with the simplest case ν = 2. A transformation of a two-factor model
without intercept to a single-factor model with intercept is employed. Based on that
D- and A-optimal designs are derived.

Theorem 3.2 Consider model (3.1) on the experimental regionX = [a, b]2, 0 < a <

b. Let x∗
1 = (a, b)T and x∗

2 = (b, a)T . Let β = (β1, β2)
T be given according to (2.3)

or equivalently βT x∗
i > 0 for i = 1, 2 . Then, the locally D-optimal design ξ∗

D and
the locally A-optimal design ξ∗

A are the following

ξ∗
D =

(
x∗
1 x∗

2
0.5 0.5

)
and ξ∗

A =
(

x∗
1 x∗

2
β1b+β2a

(β1+β2)(a+b)
β1a+β2b

(β1+β2)(a+b)

)
.

Proof Because of the invariance with respect to rescaling we can write

f β(x) = (
β1x1 + β2x2

)−1 (
x1 , x2

)T = (
β1 + β2t

)−1 (
1 , t

)T
,

where t = t(x) = x2/x1.
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So the information matrices coincide with those from a single-factor gamma model
with intercept. The range of t = t(x) is T = t(X ) = [

(a/b) , (b/a)
]
as x ranges

over X = [a, b]2. Note also that the end points t1 = a/b and t2 = b/a arise uniquely
from the vertices x∗

1 = (a, b)T and x∗
2 = (b, a)T , respectively. Following the proof

of Theorem 4.1 in Gaffke et al. (2019) yields the stated results on the locally D- and
A-optimal designs in the theorem, where in the case of A-optimality the weight at
t1 = t(x∗

1) = a/b is given by

(
β1 + β2t1

)√
1 + t22

(
β1 + β2t1

)√
1 + t22 + (

β1 + β2t2
)√

1 + t21

and it is straightforward to verify that this quantity is equal to the weight at x∗
1. 
�

Note that the optimal weights for the A-optimal design ξ∗
A given in Theorem 3.2

depend only on the ratios a/b and β2/β1. In particular, for β1 = 0 or β2 = 0 the
weights of ξ∗

A do not depend on the respective other parameter.

Remark 3.3 The transformation specified above can also be used for higher dimensions
ν ≥ 3 to show that the information matrix in a ν-dimensional model without intercept
is equivalent to that in a corresponding (ν − 1)-dimensional model with intercept. For
ν ≥ 3, an analogous transformation of the model as in the proof of Theorem 3.2 is
given by

f β(x) = (
β1 + β2t1 + β3t2 + · · · + βν tν−1

)−1(1, t1, . . . , tν−1
)T

,

where t j = t j (x) = x j+1/x1, j = 1, . . . , ν − 1 for x = (x1, x2, . . . , xν)
T

∈ [a, b]ν, 0 < a < b,

leading thus to a first order model with intercept employing a (ν − 1)-dimensional
factor t = (t1, . . . , tν−1)

T . The range
{
t(x) : x ∈ [a, b]ν} ⊆ R

ν−1 of t is not a
cube but a more complicated polytope. E.g., for ν = 3 and the experimental region
X = [a, b]3 denote the vertices by v1 = (

a, a, a
)T , v2 = (

b, a, a
)T , v3 = (

a, b, a
)T ,

v4 = (
a, a, b

)T , v5 = (
a, b, b

)T , v6 = (
b, a, b

)T , v7 = (
b, b, a

)T , v8 = (
b, b, b

)T .
Then we have t i = t(vi ), i = 1, . . . , 8, i.e., t1 = t8 = (1, 1)T , t2 = (a/b, a/b)T ,
t3 = (b/a, 1)T , t4 = (1, b/a)T , t5 = (b/a, b/a)T , t6 = (a/b, 1)T , t7 = (1, a/b)T .
It can be seen that the induced experimental region t(X ) is given by {t(x) : x ∈
[a, b]3} = Conv{t2, t3, t4, t5, t6, t7} is a hexagon which is depicted in the right
panel of Fig. 1 for the special case a = 1 and b = 2. In Gaffke et al. (2019) it is shown
that for the present model the support of a locally D- or A-optimal design is a subset
of the vertices of the ploytope. Note that for the vertices (a, a, a)T and (b, b, b)T of
the cube [a, b]3 we have t

(
(a, a, a)T

) = t
(
(b, b, b)T

) = (1, 1)T which lies in the
interior of the convex hull. Hence, the vertices (a, a, a)T and (b, b, b)T of the cube
cannot be support points of an optimal design for the model without intercept. For
illustration the original and the induced experimental region are depicted in Fig. 1 in
the case a = 1 and b = 2.
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10 O. Idais, R. Schwabe

Fig. 1 Left panel: original experimental region X = [1, 2]3. Right panel: induced experimental region
t(X )

In the followingwewill restrict to the standardized experimental regionX = [1, 2]3
for illustrative purposes. The linear predictor of a three-factor gamma model is given
by η(x,β) = β1x1 + β2x2 + β3x3. Assume that β2 = β3 = β. Then the set of all
parameter points of this type satisfying condition (2.3), i.e., β1x1 + β2x2 + β3x3 > 0
for all x = (x1, x2, x3)T ∈ X , is characterized by

(
β1 ≤ 0 and β > −β1

)
or

(
β1 > 0 and β > −β1/4

)

which is the region above the curve shown in Fig. 2.
The vertices of X = [1, 2]3 are given by v1 = (

1, 1, 1
)T , v2 = (

2, 1, 1
)T , v3 =(

1, 2, 1
)T , v4 = (

1, 1, 2
)T , v5 = (

1, 2, 2
)T , v6 = (

2, 1, 2
)T , v7 = (

2, 2, 1
)T ,

v8 = (
2, 2, 2

)T with intensities ui = u(vi ,β), i = 1, . . . , 8. Note that the region
shown in Fig. 2 is the parameter space of β = (β1, β2, β3)

T restricted to the case
β2 = β3 = β. We aim at finding locally D-optimal designs for each given parameter
point in that space. The expression “ optimality subregion” will be used to refer to a
subset of parameter points where a minimally supported design or, generally, designs
with similar support are locally D-optimal.

In the next theorem we present designs which are locally D-optimal on the corre-
sponding optimalty subregions.

Theorem 3.3 Let a gamma model be given by f (x) = x on the experimental region
X = [1, 2]3. Then the following designs are locally D-optimal for the specified values
of β = (β1, β, β)T .

(i) ξ∗
1 =

(
v2 v3 v4
1
3

1
3

1
3

)
for (β > 0, β1 = 0) or (β ≥ −3β1, β1 < 0) or

(β ≥ β1/5, β1 > 0).

(ii) ξ∗
2 =

(
v3 v4 v5
1
3

1
3

1
3

)
for −β1/4 < β ≤ −5β1/23, β > 0.
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Analytic solutions for locally optimal designs for gamma… 11

Table 1 Order of intensity values on the optimality subregions corresponding to the D-optimal designs of
Theorem 3.3

Optimality subregions Order of intensities D-optimal design

β1 = 0, β > 0 u2 > u3 = u4 = u6 = u7 > u5 ξ∗
1

β1 < 0, β ≥ −3β1 u2 > u6 = u7 ≈ u3 = u4 > u5 ξ∗
1

β1 > 0, β ≥ β1/5 u2 > u3 = u4 > u6 = u7 > u5 ξ∗
1

β1 > 0, −β1/4 < β ≤ −5β1/23 u5 > u3 = u4 > u6 = u7 > u2 ξ∗
2

β1 > 0, −5β1/23 < β < β1/5 u3 = u4 ≥ u5 > u2 ≥ u6 = u7 ξ∗
3

β1 < 0, −β1 < β ≤ −6β1/5 u2 > u6 = u7 > u3 = u4 > u5 ξ∗
4

β1 < 0, −3β1 < β < −6β1/5 u2 > u6 = u7 > u3 = u4 > u5 ξ∗
5

(iii) ξ∗
3 = ξ∗

3 (β) =
(

v2 v3 v4 v5
5+23 γ

16 (1+4 γ )
9 (1+3γ )2

32 (1+γ )(1+4 γ )
9 (1+3γ )2

32 (1+γ )(1+4 γ )
1−γ−20 γ 2

8 (1+γ )(1+4 γ )

)
where γ = β

β1

for −5β1/23 < β < β1/5, β1 > 0.

(iv) ξ∗
4 =

(
v2 v6 v7
1
3

1
3

1
3

)
for −β1 < β ≤ −6β1/5, β1 < 0.

(v) ξ∗
5 = ξ∗

5 (β) supported on v2, v3, v4, v5, v6, v7 for −3β1 < β < −6β1/5,
β1 < 0.

The proof of Theorem 3.3 is provided in the “Appendix”. Table 1 presents the order of
the intensities in all optimality subregions and the corresponding D-optimal designs
introduced in the theorem. The intensities for the vertices v1 and v8 are immaterial
because of the reduction in Remark 3.3. It can be noted that on each optimality sub-
region the vertices with highest intensities appear in most cases as a support of the
corresponding D-optimal design.

Remark 3.4 For the subregion −3β1 < β < −6β1/5, β1 < 0 in part (v) of Theo-
rem3.3 explicit analytic solutions cannot be obtained for the characterization of locally
D-optimal designs ξ∗

5 = ξ∗
5 (β). In that case optimal weights have to be derived numer-

ically (cp. Example 3.1).

Remark 3.5 (i) Theorem 3.3 constitutes a complete case-by-case analysis of all pos-
sible parameter values satisfying xTβ > 0 for all x ∈ X .

(ii) All conditions on β1 as well as the weights in case (i i i) (and in case (v)) can be
rephrased as conditions on γ = β/β1.

(iii) Note that in case (i i i) the weights of the vertices v3 and v4 are equal by symmetry
considerations w.r.t. to permutation of the second and third entry x2 and x3 in x
which is possible because of β2 = β3 (see also for similar arguments ξ∗

5 below).
Moreover, it can be seen that in case (i i i) the weights are continuous in β where,
in particular for γ → 1/5 the weight of v4 tends to 0 and for γ → −5/23 the
weight of v2 becomes 0.

In Fig. 2 the optimality subregions of ξ∗
1 , . . . , ξ∗

5 specified in Theorem 3.3 are
depicted. Note that each design of ξ∗

1 , ξ
∗
2 and ξ∗

4 denotes a single design whereas ξ∗
3

123



12 O. Idais, R. Schwabe

Fig. 2 Optimality subregions for
the locally D-optimal designs of
Theorem 3.3. The dashed lines
are; diagonal: β = β1, vertical:
β1 = 0, horizontal: β = 0

and ξ∗
5 determine certain types of designs with weights depending on the parameter

values. A particular form of ξ∗
3 is obtained at β = (−1/7)β1 (i.e., γ = −1/7). In

this case ξ∗
3 is the uniform design on the vertices v2, v3, v4, v5 with equal weights

1/4. Note that, in general, the optimal weights are constant along each ray β = γβ1
for fixed γ . In particular, along the horizontal dashed line, i.e., β = 0, ξ∗

3 assigns the
weights ω∗

2 = 5/16, ω∗
3 = ω∗

4 = 9/32, ω∗
5 = 1/8 to v2, v3, v4, v5, respectively. For

the particular case of equal size of the parameter values, i.e., β1 = β represented by
the diagonal dashed line in Fig. 2 the minimally suppported design ξ∗

1 is D-optimal
which is supported by those vertices for which all but one component is on the lower
setting a = 1.

Example 3.1 For a given parameter value in the subregion −3β1 < β < −6β1/5,
β1 < 0 specified by part (v) of Theorem 3.3 the weights for the locally D-optimal
design ξ∗

5 cannot be obtained analytically. Therefore, employing the multiplicative
algorithm (see Yu 2010; Harman and Trnovská 2009) in the software package R (see
R Core Team 2019) provides numerical solutions which show that the vertex v5 does
not perform as a support of the locally D-optimal design ξ∗

5 on that subregion and it
is only supported by the other five vertices with weights depending on β, where

ξ∗
5 =

(
v2 v3 v4 v6 v7
ω∗
2 ω∗

3 ω∗
3 ω∗

6 ω∗
6

)
.

Here the optimal weights of v3 and v4 resp. v6 and v7 coincide in view of symmetry
considerations w.r.t. to permutation of the second and third component x2 and x3 in x
which can be applied because of β2 = β3 = β. By the above mentioned reduction in
the parameter space by dividing the vector β by its first component it is obvious that
the weights only depend on γ = β/β1. Table 2 shows some numerical results for the
optimal weights at various values of γ ∈ (−3,−6/5). As a result, we can conjecture
that the weight of v5 equals 0 for all −3 < γ < −6/5.
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Analytic solutions for locally optimal designs for gamma… 13

Table 2 Weights for D-optimal designs on X = [1, 2]3 at γ ∈ (−3, −6/5) where γ = β/β1 and −3β1 <

β < −6β1/5, β1 < 0

γ v2 v3 v4 v6 v7

− 3.00 0.3333 0.3333 0.3333 0.0000 0.0000

− 2.90 0.3312 0.3285 0.3285 0.0059 0.0059

− 2.50 0.3225 0.3051 0.3051 0.0336 0.0336

− 2.00 0.3125 0.2604 0.2604 0.0833 0.0833

− 1.50 0.3125 0.1701 0.1701 0.1736 0.1736

− 1.23 0.3297 0.0325 0.0325 0.3027 0.3027

− 1.25 0.3333 0.0000 0.0000 0.3333 0.3333

Remark 3.6 The results of Theorem 3.3 and Example 3.1 can be directly transformed
to general cubes [a, b]3 when the ratio b/a equals 2. Because of the invariance of
f β with respect to rescaling by a the D-optimal designs will also be obtained by
rescaling the optimal designs in Theorem 3.3 and Example 3.1 by a, i.e., the support
points of the D-optimal design stay at the same relative position of the cube and the
corresponding weights are kept fixed. For general a and b D-optimal designs can be
obtained similarly to Theorem 3.3 and Example 3.1 which depend on the sign of β1
and the ratios γ = β/β1 and b/a only. The structure of the optimality subregions
apparently remains similar to that exhibited in Fig. 2.

In general, for gammamodelswithout intercept, finding optimal designs for amodel
with multiple factors, i.e., ν > 3 is not an easy task. The optimal design given by part
(i) of Theorem 3.3 can be generalized to an arbitrary number of factors under sufficient
and necessary conditions on the parameter points:

Theorem 3.4 Let a gamma model be given by f (x) = x on the experimental region
X = [

a, b
]ν

, ν ≥ 2, 0 < a < b. Let β be a parameter point such that f T (x)β > 0
for all x ∈ X . Then the design ξ∗ which assigns equal weightsωi = 1/ν, i = 1, . . . , ν
to the vertices x∗

1 = (
b, a, . . . , a

)T
, x∗

2 = (
a, b, . . . , a

)T
, . . . , x∗

ν = (
a, a, . . . , b

)T
is locally D-optimal (at β) if and only if

ν∑
j=1

(
x j − a

∑ν
i=1 xi

(ν − 1)a + b

)2(
(b − a)β j + a

ν∑
i=1

βi

)2 ≤ (b − a)2
( v∑
j=1

β j x j
)2

. (3.3)

for all x = (x1, . . . , xν)
T ∈ {a, b}ν .

Proof Let T (x) = ∑ν
i=1 xi , q = a

(ν−1)a+b and c j = (b − a)β j + a
∑ν

i=1 βi , j =
1, . . . , ν. Define the ν × ν design matrix F = [ f (x∗

1), . . . , f (x∗
ν)]T . Thus we have

F = (b − a)Iν + a11T and F−1 = 1
(b−a)

(
Iν − q11T

)
where 1 is a ν × 1 vector

of ones. The information matrix of ξ∗ is given by M
(
ξ∗,β

) = 1
ν
FT V F where

V = diag
(
u(x∗

j ,β)
)ν

j=1
is the ν×ν weight diagonalmatrix.Note thatu(x∗

j ,β) = c−2
j
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14 O. Idais, R. Schwabe

for all j = 1, . . . , ν. Hence, the l.h.s. of the condition of the equivalence theorem
(Theorem 2.1, part (a)) is equal to

( v∑
j=1

β j x j
)−2 f T (x)M−1(ξ∗,β

)
f (x) = ν

( v∑
j=1

β j x j
)−2 f T (x)F−1V−1F−1 f (x)

Since F−1 f (x) = (b − a)−1 f (x) − qT (x)1, the above is equal to

ν
(
(b − a)

( v∑
j=1

β j x j
)−2 ν∑

j=1

(
x j − qT (x)

)2
c2j

)
.

By the equivalence theorem the design ξ∗ is locally D-optimal if and only if the above
expression is less than or equal to ν for all x ∈ {a, b}ν which is equivalent to condition
(3.3). 
�

Note that the D-optimal design given in part (i) of Theorem 3.3 is a special case of
Theorem 3.4 when ν = 3. In this case condition (3.3) is equivalent to condition (6.4)
in the proof of part (i) of Theorem 3.3 (see the “Appendix”). It can be seen that in
Theorem 3.4 the optimality condition (3.3) depends only on the ratios β j/(

∑ν
i=1 βi )

for all j = 1, . . . , ν. Similarly note that already condition (3.3) depends on a and
b only through their ratio a/b. However, assuming the model parameters have equal
size implies that the D-optimality of a design is independent of the model parameters
whereas it depends on the ratio a/b as it is shown in the next corollary.

Corollary 3.3 Let a gamma model be given by f (x) = x on the experimental region
X = [

a, b
]ν

, ν ≥ 2, 0 < a < b. Let β be a parameter point such that all β j are
equal, i.e., β j = β > 0 say, for all j = 1, . . . , ν. Then the design ξ∗ which assigns

equal weights ωi = 1/ν, i = 1, . . . , ν to the support points x∗
1 = (

b, a, . . . , a
)T

,

x∗
2 = (

a, b, . . . , a
)T

, . . ., x∗
ν = (

a, a, . . . , b
)T

is locally D-optimal (at β) if and only
if

(b
a

)2 ≥
(
ν − 1

)(
ν − 2

)

2
. (3.4)

Proof For equal components β j = β > 0, j = 1, . . . , ν condition (3.3) of Theo-
rem 3.4 reduces to

(
(ν − 1)a2 + b2

) ⎛
⎝

ν∑
j=1

x j

⎞
⎠

2

− ((ν − 1)a + b)2
ν∑
j=1

x2j ≥ 0 ∀x ∈ {a, b}ν .

For x = (x1, . . . , xν) ∈ {a, b}ν , let r = r(x) ∈ {0, 1, . . . , ν} denote the number
of coordinates of x that are equal to b. Then

∑ν
j=1 x

2
j = (ν − r) a2 + r b2 and
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Analytic solutions for locally optimal designs for gamma… 15

(∑ν
j=1 x j

)2 = ((ν − r) a + r b)2. Hence, the condition above is equivalent to

(a − b)2 τ r2 + (a − b)((b+ a) − 2 a ν τ) r + ν a2(ν τ − 1) ≥ 0 ∀r ∈ {0, 1, . . . , ν},
(3.5)

where τ = (ν−1)a2+b2

((ν−1)a+b)2
. The l.h.s. of inequality (3.5) is a polynomial in r of degree

2 with positive leading term. The polynomial attains 0 at r = 1 which indicates the

support of ξ∗ and r = ν (ν−1) a2

(ν−1)a2+b2
. Hence the condition in (3.5) holds when for the

second root ν (ν−1) a2

(ν−1)a2+b2
≤ 2 which coincides with condition (3.4). 
�

Remark 3.7 For ν = 2 and ν = 3 the right hand side of condition (3.4) equals 0
and 1, respectively. Hence, in these cases the condition is obviously fulfilled for all
0 < a < b.

4 Gammamodel with interaction

In this section we consider a two-factor model without intercept but with an addi-
tional interaction term such that x = (x1, x2)T , f (x) = (

x1, x2, x1x2
)T and β =(

β1, β2, β3
)T . The experimental region is given by a square X = [a, b]2, 0 < a < b

and the vertices are denoted by v1 = (b, b)T , v2 = (b, a)T , v3 = (a, b)T ,
v4 = (a, a)T . We aim at deriving locally D-optimal designs. To this end we develop
a solution by removing the interaction term x1x2 by a transformation of the present
model to a two-factor model with intercept and without interaction. This transforma-
tion can be accomplished by using the structure of the underlying gamma models. As
it was pointed out in Remark 2.4 the function f β(x) is invariant w.r.t. simultaneous
scaling of x, i.e., f β(λx) = f β(x) for any λ > 0 where λ may be chosen for each x
individually. Let here λ = λx = 1/(x1x2) then we obtain

f β(x) = (
β1x1 + β2x2 + β3x1x2

)−1
(x1, x2, x1x2)

T (4.1)

= (
β1t2 + β2t1 + β3

)−1
(t2, t1, 1)

T (4.2)

where t = (
t1, t2

)T
, t j = 1/x j , j = 1, 2. The range T = t(X ) of t = t(x) is

a cube given by T = [
(1/b) , (1/a)

]2 as x ranges over X = [a, b]2. By simul-
taneous permutation of the components in the regression function corresponding
to t and the components in β we obtain a gamma model with regression function
f̃ (t) = (1, t1, t2)T and parameter vector β̃ = (β̃1, β̃2, β̃3)

T = (β3, β2, β1)
T with

corresponding intensity function ũ(t, β̃) = (β̃1 + β̃2t1 + β̃3t2)−2 as in the two-factor
model with intercept and without interaction. In the following the locally D-optimal
designs are given.

Theorem 4.1 Consider f (x) = (
x1, x2, x1x2

)T
on X = [a, b]2, 0 < a < b. Let

β = (β1, β2, β3)
T be a parameter point such that condition (2.3) is satisfied. Then

the unique locally D-optimal design ξ∗ (at β) is as follows.
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16 O. Idais, R. Schwabe

(i) If β2
3 + 1

b2
(β2

1 +β2
2 )+ ( 1

b2
− 1

a2
+ 2

a b )β1β2 + 2
bβ3(β1 +β2) ≤ 0 then ξ∗ assigns

equal weights 1/3 to (b, b)T , (b, a)T and (a, b)T .
(ii) If β2

3 + 1
b2

β2
1 + 1

a2
β2
2 + 2

bβ3β1 + 2
aβ3β2 + ( 1

b2
+ 1

a2
)β1β2 ≤ 0 then ξ∗ assigns

equal weights 1/3 to (b, b)T , (b, a)T and (a, a)T .
(iii) If β2

3 + 1
b2

β2
2 + 1

a2
β2
1 + 2

bβ3β2 + 2
aβ3β1 + ( 1

b2
+ 1

a2
)β1β2 ≤ 0 then ξ∗ assigns

equal weights 1/3 to (b, b)T , (a, b)T and (a, a)T .
(iv) If β2

3 + 1
a2

(β2
1 +β2

2 )+ ( 1
a2

− 1
b2

+ 2
ab )β1β2 + 2

aβ3(β1 +β2) ≤ 0 then ξ∗ assigns
equal weights 1/3 to (b, a)T , (a, b)T and (a, a)T .

(v) If none of the cases (i)–(iv) applies then ξ∗ is supported by the four vertices

ξ∗ =
(

(b, b)T (b, a)T (a, b)T (a, a)T

ω∗
1 ω∗

2 ω∗
3 ω∗

4

)
,

where ω∗
� > 0 (1 ≤ � ≤ 4),

∑4
�=1 ω∗

� = 1.

Proof The optimality problem can be transformed to that under the function f̃
β̃
(t)

with the intensity function ũ(t, β̃) = (β3 + β2t1 + β1t2)−2 on the experimental
region T = [

(1/b) , (1/a)
]2. The vertices are given by t1 = (1/b, 1/b)T , t2 =

(1/a, 1/b)T , t3 = (1/b, 1/a)T and t4 = (1/a, 1/a)T with corresponding intensities
ũ1 = (β3 + 1

b (β1 + β2))
−2, ũ2 = (β3 + β1

1
a + β2

1
b )−2, ũ3 = (β3 + β1

1
b + β2

1
a )−2

and ũ4 = (β3 + 1
a (β1 +β2))

−2. According to part (i) of the lemma in the “Appendix”,
straightforward computations can show that the condition in case (i) of the theorem
is equivalent to u−1

4 ≥ u−1
1 + u−1

2 + u−1
3 . Analogous verifying is obtained for other

cases (i i), (i i i), (iv). Case (v) follows from part (i i) of that lemma. 
�
It is noted that the optimality conditions (i)–(iv) provided by Theorem 4.1 depend

on the values of a and b. Changing these values might affect the D-optimality of a
design since its optimality condition will no longer be fulfilled. To see that, more
specifically, let a = 1 and b = 2, i.e., the experimental region is X = [1, 2]2 and
define γ1 = β1/β3 and γ2 = β2/β3, β3 �= 0. Here, the parameter space which is
depicted in the left panel of Fig. 3 is characterized by γ2 + γ1 > −1, 2 γ2 + γ1 > −2
and γ2 + 2 γ1 > −2. It is observed that from the left panel that the design given by
part (i) of Theorem 4.1 is not locally D-optimal because the corresponding optimality
condition 1

4 (γ
2
1 + γ 2

2 ) + 1
4γ1γ2 + γ1 + γ2 ≤ −1 cannot be satisfied.

Let us consider another experimental region as a square with a higher length by
fixing a = 1 and taking b = 4, i.e., X = [1, 4]2. The parameter space which is
depicted in the right panel of Fig. 3 is characterized by γ2 +γ1 > −1, 4 γ2 +γ1 > −4
and γ2 + 4 γ1 > −4. In this situation all cases of designs given by Theorem 4.1 are
locally D-optimal at particular values of γ2 and γ1 as it is observed from the figure.
It is obvious that along the diagonal dashed line (γ2 = γ1) there exist at most three
different types of locally D-optimal designs.

For arbitrary values of a and b, 0 < a < b let us restrict to case γ2 = γ1 = γ , i.e.,
β1 = β2 = β, β3 �= 0 and the next corollary is immediate.

Corollary 4.1 Consider f (x) = (x1, x2, x1x2)T on X = [a, b]2, 0 < a < b. Let
β = (β1, β2, β3)

T be a parameter point according to condition (2.3) such that β1 =
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Fig. 3 Optimality subregions for locally D-optimal designs of Theorem 4.1 with X = [1, 2]2 (left panel)
and X = [1, 4]2 (right panel) where γ1 = β1/β3 and γ2 = β2/β3. Note that supp(ξ

∗
i jk ) = {vi , v j , vk } ⊂

{v1, v2, v3, v4} and supp(ξ∗
1234) = {v1, v2, v3, v4}

β2 = β and β3 �= 0. Define γ = β
β3
. Then the following designs are locally D-optimal

for the specified values of γ .

(i) If b − 3a > 0 and γ ≥ ab
b−3a , then ξ∗

1 assigns equal weights 1/3 to (b, b)T ,

(b, a)T and (a, b)T .
(ii) If − a

2 < γ ≤ − ab
3b−a , then ξ∗

2 assigns equal weights 1/3 to (b, a)T , (a, b)T and

(a, a)T .
(iii) If b − 3a > 0 and − ab

3b−a < γ < ab
b−3a then

ξ∗
3 = ξ∗

3 (β) =
(

(b, b)T (b, a)T (a, b)T (a, a)T

ab−(a−3b)γ
4b(a+2γ )

(ab+(a+b)γ )2

4ab(b+2γ )(a+2γ )
(ab+(a+b)γ )2

4ab(b+2γ )(a+2γ )
ab−(b−3a)γ
4a(b+2γ )

)
.

Proof By assumption β1 = β2 = β, β3 �= 0 the range of γ = β
β3

is given by

(−a/2,∞). Assumption b − 3a > 0 implies that − a
2 < − ab

3b−a < ab
b−3a . According

to Theorem 4.1 we show the following under the assumptions of Corollary 4.1. Both
conditions provided in parts (ii) and (iii) of Theorem 4.1 are not fulfilled by any
parameter point thus the corresponding designs are not D-optimal. In contrast, the
design ξ∗

1 in (i) of Corollary 4.1 is locally D-optimal if the condition provided in part
(i) of Theorem 4.1 holds true. That condition is equivalent to

(3a2 + 2ab − b2)γ 2 + 4a2bγ + a2b2 ≤ 0.

The l.h.s. of above inequality is a polynomial in γ of degree 2 and thus the inequality
is fulfilled for γ ≥ ab

b−3a if b − 3a > 0. Similarly, the design ξ∗
2 given in (ii) of

Corollary 4.1 is locally D-optimal if the condition provided in part (iv) of Theorem 4.1
holds true. That condition is equivalent to

(3b2 + 2ab − a2)γ 2 + 4ab2γ + a2b2 ≤ 0.
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18 O. Idais, R. Schwabe

The l.h.s. of above inequality is a polynomial in γ of degree 2 and thus the inequality
is fulfilled for − a

2 < γ ≤ − ab
3b−a .

The four-point design ξ∗
3 given in (iii) has positive weights on − ab

3b−a < γ < ab
b−3a if

b − 3a > 0 and hence it is implicitly locally D-optimal in view of Remark 2.2. 
�
Remark 4.1 By Corollary 4.1 for β1 = β2 = 0, the uniform design on the vertices
(b, b)T , (b, a)T , (a, b)T and (a, a)T is locally D-optimal.

5 Design efficiency

The D-optimal design for gamma models depends on a given value of the parameter
β. Misspecified values may lead to a poor performance of the locally optimal design.
By the above results the designs are locally D-optimal in a specific subregion of
the parameter space. In this section we discuss the potential merits of the derived
designs, in particular, the D-optimal designs from Theorem 3.3 for a three-factor
gamma model without interactions and from Corollary 4.1 for a two-factor gamma
model with interaction. Our objective is to examine the overall performance of some
of the locally D-optimal designs. The overall performance of any design ξ is described
by its D-efficiencies, as a function of β,

Eff(ξ,β) =
(

det M(ξ,β)

det M(ξ∗
β ,β)

)1/p

where in both cases p = 3 and ξ∗
β denotes the locally D-optimal design at β.

Example 5.1 In the situation of Theorem 3.3 the experimental region is given by
X = [1, 2]3. We restrict to the case β1 > 0, β2 = β3 = β and use the ratio
γ = β/β1 with range (−1/4,∞). Our interest is in the minimally supported and
equally weighted designs ξ1 = ξ∗

1 and ξ2 = ξ∗
2 where supp(ξ1) = {v2, v3, v4}

with supp(ξ2) = {v3, v4, v5} which by Theorem 3.3 parts (i) and (i i) are locally
D-optimal for γ ≥ 1/5 and γ ∈ (−1/4,−5/23], respectively. In particular, ξ1 and ξ2
are robust against misspecification of the parameter values in their respective subre-
gions. Additionally, for γ ∈ (−5/23, 1/5) we consider the locally D-optimal designs
of type ξ3(γ ) = ξ∗

3 (γ ) given by Theorem 3.3 part (i i i). Note that supp(ξ3(γ )) =
{v2, v3, v4, v5} and the weights depend on γ .

For calculating the efficiency we use ξ∗
β = ξ1 if γ ≥ 1/5, ξ∗

β = ξ2 if
γ ∈ (−1/4,−5/23] and ξ∗

β = ξ3(γ ) if γ ∈ (−5/23, 1/5). For examination of the
efficiency we select the designs ξ1, ξ2, ξ3(−1/7) which are uniform on {v2, v3, v4},
{v3, v4, v5} and {v2, v3, v4, v5}, respectively.Moreover, as further natural competitors
we choose various uniform designs supported by specific subsets of the vertices. Those
are the full factorial ξ4 which is uniform on all eight vertices {1, 2}3 and the two cor-
responding half-fractions; ξ5 and ξ6 supported by {v1, v5, v6, v7} and {v2, v3, v4, v8},
respectively. Additionally, we consider the design ξ7 which is uniform on the equidis-
tant grid {1, 1.5, 2}3.

123



Analytic solutions for locally optimal designs for gamma… 19

In the left panel of Fig. 4, theD-efficiencies of the designs ξ1, ξ2, ξ3(−1/7), ξ4, ξ5, ξ6
and ξ7 are depicted. The efficiencies of ξ1 and ξ2 are as to be expected equal to 1 in their
optimality subregions γ ∈ [1/5,∞) and γ ∈ (−1/4,−5/23], respectively.Moreover,
for γ outside but fairly close to the respective optimality subregion both designs
perform quite well; the efficiencies of ξ1 and ξ2 are larger than 0.80 for −0.15 ≤
γ < 1/5 and −1/4 < γ ≤ −0.28, respectively. However, their efficiencies decrease
towards zero when γ moves far away from the respective optimality subregion. So, in
total, the overall performance of ξ1 and ξ2 cannot be regarded as satisfactory if no prior
knowledge is available for the parameter values. The design ξ3(−1/7), though locally
D-optimal only at γ = −1/7, does show a more satisfactory overall performance with
efficiency ranging between 0.8585 and 1. The efficiency of the half-fractional design
ξ6 exceeds 0.80 only for γ > −0.049, while for smaller values of γ the efficiency
decreases to zero. The full-factorial design ξ4 turns out to be uniformly worse than
ξ3(−1/7) and its efficiency ranges between 0.5768 and 0.7615. Theworst performance
is shown by the half-fraction ξ5 and the uniform design ξ7 on the grid.

Example 5.2 In the situation of Corollary 4.1 we consider the experimental region
X = [1, 4]2 where condition b−3a > 0 is satisfied in parts (i) and (i i i). The vertices
are denoted as before by v1 = (

4, 4
)T , v2 = (

4, 1
)T , v3 = (

1, 4
)T , v4 = (

1, 1
)T .

We restrict to β3 �= 0, β1 = β2 = β and the range of γ = β/β3 is (−1/2,∞). In
analogy to Example 5.1 denote by ξ1 = ξ∗

1 and ξ2 = ξ∗
2 the minimally supported

and equally weighted designs with support {v1, v2, v3} and {v2, v3, v4}, respectively.
By the corollary ξ1 and ξ2 are locally D-optimal at γ ≥ 4 and γ ∈ (−1/2,−4/11],
restrictively. Denote by ξ3(γ ) = ξ∗

3 (γ ) the design given in part (iii) of Corollary 4.1
which is locally D-optimal at γ ∈ (−4/11, 4). For the calculation of the efficiency the
optimal designs are given by ξ∗

β = ξ1 if γ ≥ 4, ξ∗
β = ξ2 if γ ∈ (−1/2,−4/11] and

ξ∗
β = ξ3(γ ) if γ ∈ (−4/11, 4). For examination we select ξ1, ξ2 and the design ξ3(0)
which is uniform on the set {v1, v2, v3, v4} of all four vertices. As a natural competitor
we choose the design ξ4 which is uniform on the equidistant grid {1, 2.5, 4}2. The
efficiencies are depicted in the right panel of Fig. 4. We observe that the performance
of ξ1 and ξ2 is similar to that of the corresponding designs in Example 5.1. Moreover,
the design ξ3(0) shows a more satisfactory overall performance. The efficiency of ξ4
varies between 0.77 and 0.83 for γ > −4/11. The worst performance is shown by
the design ξ4.

6 Discussion

In the present paper we considered gamma models without intercept for which locally
D- and A-optimal designs have been developed. The positivity of the expected means
entails a positive linear predictor and the absence of the intercept term requires addi-
tionally an experimental region which does not contain the origin 0. The information
matrix for the non-intercept gamma model is invariant w.r.t. simultaneous scaling of
the components of x and equivariant w.r.t. to simultaneous scaling of the components
of β. Various approaches were utilized to derive locally optimal designs. The opti-
mality problem under gamma models without intercept was transformed to that under
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Fig. 4 D-efficiency for Examples 5.1 (left panel) and 5.2 (right panel) in dependence on the ratio γ = β/β1
and γ = β/β3, respectively. Vertical dotted lines indicate the boundaries of the subregions

corresponding gammamodels which involve an intercept and defined on a transformed
experimental region. This approach simplified the optimality problem and thus known
results could be applied. In this context we considered in particular two-factor models
without and with interaction in Theorems 3.2 and 4.1, respectively.

In another context, as in Theorem 3.3 we made use of the equivalence theorem to
establish the local D-optimality under a non-intercept gammamodelwith three factors.
Due to the complexity of this approach the optimization problem was identified by
a system of inequalities which was solved analytically or by employing computer
algebra. In contrast to that, the optimality problem could be transformed for a two-
factor gamma model with intercept in view of Remark 3.3 where the experimental
region X = [1, 2]3 as considered in Theorem 3.3 can be reduced to the polytope
T = Conv

{
(1/2, 1)T , (1, 1/2)T , (1/2, 1/2)T , (2, 1)T , (1, 2)T , (2, 2)T

}
. Rescaling

and shifting T yieldsZ = Conv
{
(0, 1/3)T , (1/3, 0)T , (0, 0)T , (1, 1/3)T , (1/3, 1)T ,

(1, 1)T
}
. Consequently, the linear predictor is reparameterized as β̃0 + β̃1z1 + β̃2z2

where (z1, z2)T ∈ Z and β̃0 = β1 + (1/2)(β2 + β3), β̃1 = (3/2)β2, β̃2 = (3/2)β3,
where D-optimal designs are equivariant w.r.t. these transformations.

Practically, there are various link functions that can be considered to fit gamma-
distributed observations. The power link family which presents the class of link
functions (see Burridge and Sebastiani 1994; Atkinson and Woods 2015, Section 2.5)
can be employed. In this case f T (x)β = μρ for a given exponent ρ ∈ R and ρ �= 0.
The intensity function under this family reads as u0(x,β) = κρ−2

(
f T (x)β

)−2. Note
that κρ−2 is a positive constant and can be ignored. Therefore, the results obtained in
this paper still apply to the family of power links.

Additionally, the log-link function can be considered as a main alternative to the
canonical one (see Kilian et al. 2002; Wenig et al. 2009; Gregori et al. 2011; McCrone
et al. 2005; Montez-Rath et al. 2006). In that case the intensity function is constantly
equal to 1 and thus the information matrix under gamma models is equivalent to that
under ordinary linear models. For this reason, the optimal designs for a gamma model
are identical to those for an ordinary linear model with the same linear predictor. In
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Hardin and Hilbe (2018) gamma models were fitted considering the Box–Cox family
of link functions;

f T (x)β =
{(

μδ − 1
)
/δ (δ �= 0)

logμ (δ = 0)
(6.1)

which involves the log-link at δ = 0 (see Atkinson and Woods 2015). The intensity
function is thus defined as

u0(x, δβ) = (
δ f T (x)β + 1

)−2
, x ∈ X . (6.2)

Here, the positivity condition (2.3) of the expected mean μ = E(Y ) of a gamma
distribution is modified to δ f T (x)β > −1 for all x ∈ X . Therefore, the experimental
region is relaxed and might be considered as X = [0, 1]ν . As an example, consider
f (x) = x where x = (x1, x2)T ∈ X = [0, 1]2 with vertices v1 = (0, 0)T , v2 =
(1, 0)T , v3 = (0, 1)T , v4 = (1, 1)T . For a given value of δ let β = (β1, β2)

T satisfy
δ f T (x)β > −1 for all x ∈ X or equivalently δβ1 > −1, δβ2 > −1, δ(β1+β2) > −1.
Let ui = u(vi , δβ) for all i = 1, 2, 3, 4. The equivalence theorem (Theorem 2.1, part
(a)) proves the D-optimality of the design ξ∗ which assigns equal weights 1/2 to the
vertices v2 and v3 at δβ. This result may be extended for a multiple-factor model as
in Theorem 3.1. However, the expression δ f T (x)β + 1 could be viewed as a linear
predictor of a gamma model with known positive intercept. Adopting the Box–Cox
family as a class of link functions for gammamodels will be a topic of future research.

Acknowledgements The authors are thankful to Prof. Dr. Norbert Gaffke for many helpful discussions and
suggestions. The work of the first author was supported by a scholarship of the state of Saxony-Anhalt.

Appendix

Lemma Consider a two-factor gamma model with intercept such that f (x) =
(1, x1, x2)T on the experimental region X = [a, b]2, a, b ∈ R, a < b with
the intensity function u(x,β) = 1/(β0 + β1x1 + β2x2)2. The vertices of X are
given by (a, a)T , (b, a)T , (a, b)T and (b, b)T with the corresponding intensities
u1 = 1/(β0 +β1 a+β2 a)2, u2 = 1/(β0 +β1 b+β2 a)2, u3 = 1/(β0 +β1 a+β2 b)2

and u4 = 1/(β0+β1 b+β2 b)2. Let β = (β0, β1, β2)
T be a parameter point such that

f T (x)β > 0 for all x ∈ X , or equivalently,β0+β1 a+β2 a > 0,β0+β1 b+β2 a > 0,
β0 + β1 a + β2 b > 0 and β0 + β1 b + β2 b > 0. Then the unique locally D-optimal
design ξ∗ (at β) is as follows.

(i) If u−1
(1) ≥ u−1

(2) +u−1
(3) +u−1

(4) then ξ∗ is a three-point design supported by the three
vertices whose intensity values are given by u(2), u(3), u(4), with equal weights
1/3.

(ii) If u−1
(1) < u−1

(2) + u−1
(3) + u−1

(4) then ξ∗ is a four-point design supported by

the four vertices (a, a)T , (b, a)T , (a, b)T , (b, b)T with corresponding weights
ω∗
1, ω∗

2, ω∗
3, ω∗

4 > 0 and
∑4

k=1 ω∗
k = 1.

Proof The proof can be demonstrated by making use of the results of Gaffke et al.
(2019) who derived the D-optimal designs for a gamma model with intercept on
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the standardized experimental region Z = [0, 1]2. To this end, denote f β(x) =
( f T (x)β)−1 f (x) so we have M(x,β) = f β(x) f Tβ (x). Based on equivariance (see
Radloff and Schwabe 2016) a D-optimal design ξ∗ on X given in the lemma can be
derived by transformation of a respective D-optimal design ξ∗∗ on Z = [0, 1]2. Here,
x j → z j = x j

b−a − a
b−a , j = 1, 2. For the transformation matrix

B =
(

1 0 0
a b − a 0
a 0 b − a

)
with B−1 =

(
1 0 0

−a
b−a

1
b−a 0

−a
b−a 0 1

b−a

)

we have f (z) = B f (x) = (1, z1, z2)T with β̃ = (
BT

)−1
β = (β̃0, β̃1, β̃2)

T where
β̃0 = β0 + (−a/(b − a)) (β1 + β2) , β̃1 = β1(1/(b − a)) and β̃2 = β2(1/(b − a)).
It follows that f

β̃
(z) = (

f T (z)β̃
)−1 f (z) and the information matrix is given by

M̃(z, β̃) = f
β̃
(z) f T

β̃
(z). It is easily seen that M(x,β) = B−1M̃(z, β̃)B−1, thus the

derived D-optimal designs on X and Z , respectively are equivariant. Then the results
follow from Theorem 4.2 in Gaffke et al. (2019). 
�

Proof of Theorem 3.3 First we give an outline of the proof. The proof is obtained by
making use of the condition of the equivalence theorem (Theorem 2.1, part (a)). By
that we develop a system of feasible inequalities evaluated at the vertices vi for all
i = 1, . . . , 8. For simplification of presentation in the case β1 �= 0 we use the ratio
γ = β/β1 for which the range is given by (−∞,−1) ∪ (−1/4,∞). It turns out that
some of the inequalities are implied by some others and thus the resulting system is
reduced to an equivalent system of only a few inequalities. The intersection of the set of
solutions of the systemwith the range of γ leads to the optimality condition (subregion)
of the corresponding optimal design. For minimally supported designs given in cases
(i), (ii), (iv) we display the 3×3 design matrix F, its inverse F−1 and the 3×3 weight
matrix V . Note that for β1 �= 0 the intensities ui = u(vi ,β), i = 1, . . . , 8 are equal
to u1 = β−2

1

(
1 + 2 γ

)−2, u2 = β−2
1

(
2 + 2 γ

)−2, u3 = u4 = β−2
1

(
1 + 3 γ

)−2,

u5 = β−2
1

(
1 + 4 γ

)−2, u6 = u7 = β−2
1

(
2 + 3 γ

)−2, u8 = β−2
1

(
2 + 4 γ

)−2,
respectively.

Proof of part (i): The 3 × 3 design matrix F = [v2, v3, v4]T is given by

F =
⎛
⎝
2 1 1
1 2 1
1 1 2

⎞
⎠ with F−1 = 1

4

⎛
⎝

3 −1 −1
−1 3 −1
−1 −1 3

⎞
⎠ and weight matrix

V = diag
(
u2, u3, u4

)
.

Hence, the condition of the equivalence theorem is given by

f T (x)F−1V−1(FT )−1 f (x) ≤ (
β1x1 + β2x2 + β3x3

)2 ∀x ∈ {1, 2}3. (6.3)

For the case β > 0,β1 = 0, condition (6.3) is equivalent to
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4
(
3x1 − (x2 + x3)

)2 + 9
((
3x2 − (x1 + x3)

)2 + (
3x3 − (x1 + x2)

)2)

≤ 16
(
x2 + x3

)2 ∀x ∈ {1, 2}3,

which is independent of β and is satisfied for all vertices vi for all i = 1, . . . , 8
and equality holds for the support. For the other cases, i.e., β ≥ −3β1,β1 < 0 or
β > β1/5,β1 > 0 condition (6.3) is equivalent to

(
3x1 − (x2 + x3)

)2
(2 + 2 γ )2 + ((

3x2 − (x1 + x3)
)2 + (

3x3 − (x1 + x2)
)2)

(1 + 3 γ
)2

≤ 16
(
x1 + γ (x2 + x3)

)2 ∀x ∈ {1, 2}3. (6.4)

By some lengthy but straightforward calculations, the above inequalities can be
reduced to

15γ 2 + 2γ − 1 ≥ 0 and 3γ 2 + 10γ + 3 ≥ 0

where the first inequality comes from vertex v5 and the second inequality comes from
the vertices v6 and v7. The l.h.s. of each inequality is a polynomial in γ of degree 2 and
the sets of solutions are given by (−∞,−1/3]∪[1/5,∞) and (−∞,−3]∪[−1/3,∞),
respectively. Note that the bounds are the roots of the respective polynomials. Hence,
by considering the intersection of both sets with the range of γ , the design ξ∗

1 is
locally D-optimal if γ ∈ (−∞,−3] ∪ [1/5,∞) which is equivalent to the optimality
subregion β ≥ −3β1,β1 < 0 or β > β1/5,β1 > 0 given in part (i) of the theorem.
Proof of part (ii): The 3 × 3 design matrix F = [v3, v4, v5]T is given by

F =
⎛
⎝
1 2 1
1 1 2
1 2 2

⎞
⎠ with F−1 =

⎛
⎝

2 2 −3
0 −1 1

−1 0 1

⎞
⎠ and weight matrix V = diag

(
u3, u4, u5

)
.

Hence, the condition of the equivalence theorem is equivalent to

((
2 x1 − x2

)2 + (
2 x1 − x3

)2) (
1 + 3 γ

)2 + (
x3 + x2 − 3 x1

)2 (
1 + 4 γ

)2

≤ (
x1 + γ (x2 + x3)

)2 ∀x ∈ {1, 2}3,

and similar to part (i) the above inequalities reduce to

69γ 2 + 38γ + 5 ≤ 0

which arises from vertex v2. The set of solutions of the polynomial determined by the
l.h.s. is given by [−1/3,−5/23]. By considering the intersection with the range of γ ,
the design ξ∗

2 is locally D-optimal if γ ∈ (−1/4,−5/23].
Proof of part (iii): Consider design ξ∗

3 . Let the associated weights be denoted as
ω∗
2 = (5 + 23 γ )/(16 (1 + 4 γ )), ω∗

3 = ω∗
4 = 9 (1 + 3γ )2/(32 (1 + γ )(1 + 4 γ )),

ω∗
5 = (1 − γ − 20 γ 2)/(8 (1 + γ )(1 + 4 γ )) where γ = β/β1. Note that ω∗

2 > 0 for
all γ > −5/23, ω∗

3 = ω∗
4 > 0 for all γ ∈ R and ω∗

5 > 0 for all γ ∈ (−1/4, 1/5), and
it is obvious that ω∗

2, ω
∗
3, ω

∗
5 are positive over the interval (−5/23, 1/5) and satisfy

ω∗
2+ω∗

3+ω∗
4+ω∗

5 = 1. The 4×3 designmatrix is given by F = [v2, v3, v4, v5]T with
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weight matrix V = diag
(
s2, s3, s4, s5

)
where si = ω∗

i ui , i = 2, 3, 4, 5 and s3 = s4.
The information matrix is given by

M
(
ξ∗
3 ,β

) =
⎛
⎝
4 s2 + 2 s3 + s5 2 s2 + 3 s3 + 2 s5 2 s2 + 3 s3 + 2 s5
2 s2 + 3 s2 + 2 s5 s2 + 5 s3 + 4 s5 s2 + 4 s3 + 4 s5
2 s2 + 3 s3 + 2 s5 s2 + 4 s3 + 4 s4 s2 + 5 s3 + 4 s5

⎞
⎠

and hence det M
(
ξ∗
3 ,β

) = 16 s2 s23+18 s2 s3 s5+s23s5.Define the following quantities

c1 = s3(2 s2 + 9 s3 + 8 s5)

16 s2 s23 + 18 s2 s3 s5 + s23s5
, c2 = −s3(2 s2 + 3 s3 + 2 s5)

16 s2 s23 + 18 s2 s3 s5 + s23s5
,

c3 = 10 s2 s3 + 9 s2 s5 + s23 + s3 s5
16 s2 s23 + 18 s2 s3 s5 + s23s5

, c4 = −6 s2 s3 + 9 s2 s5 − s23
16 s2 s23 + 18 s2 s3 s5 + s23s5

.

Then the inverse of the information matrix is given by

M−1(ξ∗
3 ,β

) =
⎛
⎝
c1 c2 c2
c2 c3 c4
c2 c4 c3

⎞
⎠ .

Hence, the condition of the equivalence theorem can be rewritten as

c1 x
2
1 + c3 (x22 + x23 ) + 2 c2 (x1 x2 + x1 x3) + 2 c4 x2 x3 ≤ 3

(
x1 + γ (x2 + x3)

)2
∀ x ∈ {1, 2}3

which is equivalent to the following system of inequalities

c1 + 4c2 + 2c3 + 2c4 ≤ 3 (1 + 2γ )2 and 4c1 + 12c2 + 5c3 + 4c4 ≤ 3 (2 + 3γ )2

where the first inequality arises form the vertices v1 and v8 and the second inequality
comes from the vertices v6 and v7. Because of the complexity of the system above we
employed computer algebra usingWolframMathematica 11.3 (seeWolframResearch,
Inc. 2018) to obtain the set of solutions for γ as given in part (i i i).
Proof of part (iv): The 3 × 3 design matrix F = [v2, v6, v7]T is given by

F =
⎛
⎝
2 1 1
2 1 2
2 2 1

⎞
⎠ with F−1 = 1

2

⎛
⎝

3 −1 −1
−2 0 2
−2 2 0

⎞
⎠

and weight matrix V = diag
(
u2, u6, u7

)
.

The condition of the equivalence theorem is equivalent to
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((
x2 − x1

2

)2 +
(
x3 − x1

2

)2)
(2 + 3γ )2 +

(
3x1
2

− x2 − x3

)2

(2 + 2γ )2 ≤ (
x1 + γ (x2 + x3)

)2 ∀x ∈ {1, 2}3,

and the above inequalities reduce to

90 γ 2 + 168γ + 72 ≤ 0 and 6γ 2 + 16γ + 8 ≤ 0

where the first inequality arises form the vertices v3 and v4 and the second inequality
comes from vertex v8. In analogy to parts (i) and (ii) the sets of solutions are given
by [−1.2,−2/3] and [−2,−2/3], respectively where the bounds are the roots of the
respective polynomials. Hence, by considering the intersection of both sets with the
range of γ , the design ξ∗

4 is locally D-optimal if γ ∈ [−1.2,−1). 
�
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