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Abstract
Generalized structured component analysis (GSCA) is a technically well-established approach to component-based structural 
equation modeling that allows for specifying and examining the relationships between observed variables and components 
thereof. GSCA provides overall fit indexes for model evaluation, including the goodness-of-fit index (GFI) and the stand-
ardized root mean square residual (SRMR). While these indexes have a solid standing in factor-based structural equation 
modeling, nothing is known about their performance in GSCA. Addressing this limitation, we present a simulation study’s 
results, which confirm that both GFI and SRMR indexes distinguish effectively between correct and misspecified models. 
Based on our findings, we propose rules-of-thumb cutoff criteria for each index in different sample sizes, which researchers 
could use to assess model fit in practice.

Keywords  Component-based structural equation modeling · Generalized structured component analysis · Model fit · GFI · 
SRMR

Introduction

Component-based structural equation modeling (SEM) is 
a general multivariate framework for evaluating the rela-
tionships between observed variables and their weighted 
composites (i.e., components). This SEM domain differs 
from factor-based SEM used to investigate the relationships 
between observed variables and common factors rather than 
components (e.g., Jöreskog and Wold 1982; Rigdon 2012; 
Tenenhaus 2008).1 Covariance structure analysis (CSA; 

Jöreskog 1970) is a standard statistical approach to factor-
based SEM, whereas partial least squares path modeling 
(PLSPM; Lohmöller 1989; Wold 1982) and generalized 
structured component analysis (GSCA; Hwang and Takane 
2004) are full-fledged approaches to component-based SEM.

Although SEM has often been equated with factor-based 
SEM (Hair et al. 2011), our viewpoint coincides with that 
the two SEM domains are conceptually distinct, and their 
statistical methods should be used for estimating models 
with representations of constructs, which are consistent 
with what the methods assume (e.g., Hair and Sarstedt 2019; 
Hwang et al. 2020; Rigdon et al. 2017; Sarstedt et al. 2016). 
That is, CSA should be chosen for estimating models in 
which factors represent the unobservable concepts of inter-
est, whereas PLSPM and GSCA should be used for estimat-
ing models where composites serve as such representations.

While PLSPM and GSCA share the same aim, which is 
estimating relationships between observed variables and 
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components representing theoretical concepts of interest, 
they differ in several respects (Hwang et al. 2020).2 A fun-
damental difference relates to the model specification and 
estimation. In PLSPM, model specification involves meas-
urement and structural models. When estimating these mod-
els, PLSPM does not combine them into a single algebraic 
formulation (e.g., Tenenhaus et al. 2005), but divides the 
parameters into two sets, and estimates each set sequen-
tially through two estimation stages (e.g., Lohmöller 1989). 
This characteristic, however, complicates the assessment of 
model fit, as no unique criterion is optimized according to 
which the degree of optimization can be assessed. While 
several model fit indexes have been proposed in the PLSPM 
context, researchers have long complained that these indexes 
are based on parameters that are not explicitly optimized 
as part of the algorithm (e.g., Hair et al. 2019; Lohmöller 
1989; Sarstedt et al. 2017). Consequently, any statement 
about a model’s quality and decisions regarding potential 
model modifications based on existing model fit indexes are 
questionable when using PLSPM (Hair et al. 2019).

Conversely, model specification in GSCA involves three 
sub-models (i.e., measurement, structural, and weighted 
relation models), which are being combined into a single 
equation called the GSCA model. A single objective func-
tion is directly derived from the GSCA model, which is 
consistently minimized to estimate all the model parameters 
(Hwang and Takane 2004). GSCA is therefore regarded as a 
full information method utilizing all the information avail-
able in the entire system of equations (Tenenhaus 2008). 
The availability of a single objective function has the advan-
tage that the overall model quality can be readily assessed, 
because the function value arises from the GSCA-based 
model estimation.

Research has suggested overall model fit measures for 
GSCA, such as the goodness-of-fit index (GFI; Jöreskog 
and Sörbom 1986) and the standardized root mean square 
residual (SRMR), which quantify the discrepancies between 
the sample covariances and the implied ones derived from 
the parameters. The indexes are scaled such that the GFI 
values close to one and the SRMR values close to zero indi-
cate an acceptable fit level. Both indexes are well-known 
from the factor-based SEM context, where specific cutoff 
values have long been established. Specifically, researchers 
usually assume a cutoff value of .08 for the SRMR (e.g., 
Hu and Bentler 1999) and .90 for the GFI (e.g., McDonald 
and Ho 2002). However, it is unclear whether GSCA could 
adopt the same GFI and SRMR cutoff values (Hwang and 
Takane 2014, p. 29).

To our knowledge, no study has investigated the perfor-
mance of the two fit indexes in GSCA. Consequently, there 
are no cutoff criteria that researchers could employ to evalu-
ate their GSCA models’ fit. Addressing this concern, we 
conduct a simulation study to examine the indexes’ efficacy 
regarding differentiating between correct and misspecified 
models. Based on our results, we identify concrete cutoff 
values for each of the indexes, which minimize Type I and 
II error rates under different conditions.

The paper continues with this structure: After a brief 
description of GSCA, which addresses model specifica-
tion and parameter estimation, we explain how to derive 
the GSCA model’s implied covariance matrix. Building on 
this explanation, we explain the GFI and SRMR indexes. 
We subsequently describe our simulation study’s design and 
report the results. Finally, we discuss the indexes’ behav-
iors, derive cutoff values, and highlight potential issues that 
researchers need to consider when employing the indexes.

Generalized structured component analysis

Model specification and estimation

In model specification, GSCA involves three sub-models: 
measurement, structural, and weighted relation models 
(Hwang and Takane 2014, Sect. 2.1). Let z and γ denote 
J by 1 and P by 1 vectors of J observed variables and P 
components, respectively, both of which are assumed to be 
standardized (i.e., they have zero means and unit variances). 
The measurement model is employed to express the relation-
ships between observed variables and components, which 
can be generally written as

where C is a J by P matrix consisting of loadings relating 
observed variables to their components, and ε is a J by 1 
residual vector of z. The structural model is used to specify 
the relationships between the components and can generally 
be expressed as

where B is a P by P matrix of path coefficients relating 
the components, and ζ is a P by 1 residual vector of γ. In 
addition, GSCA explicitly defines γ as components (i.e., 
weighted composites of observed variables) as follows:

where W is a P by J matrix of weights assigned to observed 
variables. This weighted relation model constitutes another 
submodel.

(1)� = �� + �,

(2)� = �� + �,

(3)� = ��,

2  For a detailed contrasting of GSCA and PLSPM and implications 
for method choice, see Hwang and Takane (2004; Sects.  1.2.2 and 
2.5.3) and Hwang et al. (2010).
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In the measurement model (1), GSCA does not specify an 
observed variable’s random measurement error explicitly in 
that the ε term simply includes observed variables’ residuals 
unexplained by components, as in linear regression. This 
is different from factor-based SEM, which divides each 
observed variable’s variance into two parts: The common 
variance shared with other observed variables in the meas-
urement model of a construct, and the unique variance that 
consists of both specific variance and random measurement 
error variance (Mulaik 2010, pp. 132–133). Nonetheless, 
when creating a component in the weighted relation model 
(3), the unique variance of an observed variable, which 
includes the variance of its random measurement error, is 
much less counted than the shared variance (Mulaik 2010, 
p. 83). Consequently, forming a component plays a role 
in reducing random measurement error (Rigdon 2012). If 
researchers are interested in explicitly taking into account 
random measurement error in (3), they can apply Bayes-
ian GSCA (Choi and Hwang 2020), where a component is 
obtained after each observed variable’s random measure-
ment error is removed. It is also worth noting that factor-
based SEM specifies a unique variance only, which is the 
sum of specific and random measurement error variances, 
being unable to distinguish between the two variances.

GSCA can have several linear models comprising 
observed variables and components as special cases (Hwang 
and Takane 2014, Sect. 2.5). For example, the combination 
of Eqs. (1) and (3) is equivalent to the confirmatory (princi-
pal) component model in the sense that weighted compos-
ites or components of observed variables in (3) are obtained 
in such a way that the components explain the maximum 
variances of the observed variables, reflected by loadings 
in (1). Note that some of weights and loadings are typically 
constrained to be zero based on prior theories or hypotheses 
(e.g., ten Berge 1993; Hair et al. 2020; Kiers et al. 1996). 
This is comparable to the confirmatory factor analysis 
model in factor-based SEM, where common factors replace 
components.

GSCA combines the three sub-models into a single equa-
tion as follows:

where I is an identity matrix, V = 
[

�

�

]

 , A = 
[

�

�

]

 , and 

e = 
[

�

�

]
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Takane 2014, p. 19). Per default, GSCA does not make dis-
tributional assumptions on e or impose any further con-
straints on (4). However, in component-based SEM, 
observed variables per component are typically assumed to 
be correlated to each other, rendering the covariance matrix 
of ε to be block-diagonal (e.g., Bollen and Bauldry 2011; 
Cho and Choi 2020; Dijkstra 2017; Grace and Bollen 2008), 
although GSCA does not need to assume a specific covari-
ance structure of observed variables in advance, leaving 
them to be (un)correlated freely. PLSPM also includes meas-
urement and structural models, but does not involve the 
weighted relation model explicitly, although it estimates γ 
as weighted composites of observed variables during the 
parameter estimation procedure (e.g., McDonald 1996). That 
is, PLSPM does not integrate its sub-models into a single 
algebraic formulation (e.g., Tenenhaus et al. 2005).

As shown in Eq. (4), the GSCA model includes loadings 
(C), path coefficients (B), and weights (W) as parameters. Let 
ei denote the residual term in Eq. (4) for a single observation 
of a sample of N observations (i = 1, …, N). To estimate all 
the parameters, GSCA aims to minimize the following least 
squares objective function

subject to the standardization constraints on components 
(i.e., diag(���) = NI). This objective function is directly 
derived from the GSCA model. An iterative least squares 
algorithm, called alternating least squares (de Leeuw et al. 
1976), is utilized to minimize the objective function with-
out taking recourse to distributional assumptions, such as 
observed variables’ multivariate normality. This algorithm 
repeats two steps, each of which estimates a set of param-
eters in a least squares sense with the other sets fixed, until 
the difference in the values of (5) between two consecutive 
iterations becomes negligible (e.g., smaller than 10–5). Spe-
cifically, in one step, weights are updated while loadings 
and path coefficients are considered fixed temporarily. In the 
other step, loadings and path coefficients are updated while 
weights are considered fixed temporarily (see Hwang and 
Takane 2014, Sect. 2.2).

Model fit indexes

GSCA offers two overall fit indexes that reflect the discrepan-
cies between the sample covariances and the model-implied 
covariances. These discrepancies are based on the parameter 
estimates on convergence (also called the reproduced covari-
ances): GFI and SRMR (Hwang and Takane 2014, p. 28). We 
assume that cov(ε, ζ) = 0. The two indexes are directly derived 
from Eq. (4). Specifically, we can re-express (4) as follows:

(5)� =

N
∑

i=1

��
i
�i,
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where T = 
[

� �

� �

]

 . The implied covariance matrix of z, 

denoted by Σ, is then given as

where G = [I, 0], and E(���) is a block-diagonal covariance 
matrix of e.

Let S and �̂ denote the sample and the reproduced covari-
ance matrices. Let sij and 𝜎̂ij respectively denote an observed 
covariance in S and the corresponding reproduced covariance 
in �̂ . Thereafter, the GFI and SRMR are obtained as

(6)

[
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�

]

� =

[

� �

� �

][

�

�

]

� +

[

�

�

]
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(7)
� = [�, �]�E(���)��[�, �]�

=�(� − �)−1E(���)(� − �)−1
�

��,

(8)GFI = 1−
trace([� − �̂]2)

trace(�2)
, and

(9)

SRMR =

√

√

√

√

{

2

J
∑

j=1

j
∑

p=1

[

(sjp − 𝜎̂jp)∕(sjjspp)
]2

}

∕J(J + 1).

As shown in the above formulas, GFI values close to one 
and SRMR values close to zero denote a small degree of the 
covariance discrepancies, which allows them to be indicative 
of an acceptable fit (e.g., Hu and Bentler 1999; Hwang and 
Takane 2014; McDonald and Ho 2002). However, how the 
two indexes behave, and which values could be indicative of an 
acceptable fit in GSCA are not yet known. In the next section, 
we conduct a simulation study to address these issues.

Simulation study

Design

We considered a five-component model, with each com-
ponent associated with five observed variables, in order 
to represent a relatively complex measurement model set-
ting. Following Hu and Bentler’s (1999) study, we did not 
assume path analytic relationships between the five compo-
nents, indicating that our specified model was a confirmatory 
component model. We also considered a misspecification of 
the model, with each component incorrectly linked to one 
or two observed variables. A component is a linear deter-
ministic function of observed variables, which means that 
adding different observed variables to a component changes 
its meaning substantively (e.g., Jarvis et al. 2003). Figure 1 

Fig. 1   Models. a Correct model. b Misspecified model. Note: The figure shows two basic design component models considered in the simulation 
study. All the weights and residuals are omitted
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shows the correct and misspecified models. Weights were 
also assigned to all the observed variables in order to yield 
components; see Eq. (3). In the correct model, we fixed the 
weights of the observed variables per component to .24, .24, 
.28, .32, and .32, and the corresponding loadings to .6, .6, 
.7, .8, and .8. These weights and loadings were chosen to 
consider that each observed variable should contribute com-
parably to forming its component, reflected by a similarly 
sizeable weight, and the component should in turn explain 
the variance of its observed variable well, signified by a 
relatively large loading.

Furthermore, we considered three levels of component 
correlations (r = 0, .2, and .4) and five different sample sizes 
(N = 100, 200, 500, 1000, and 2000). To ensure the model’s 
discriminant validity (Franke and Sarstedt 2019), we kept the 
component correlation levels lower than each loading value. 
Note that not all the components were assumed to be cor-
related with one another in order to ensure that their covari-
ance matrix is positive definite. For each combination of the 
experimental conditions, we generated 1000 random sam-
ples from a multivariate normal distribution with zero means 
and the model-implied covariance matrix derived from Cho 
and Choi (2020). We explain the procedure of deriving the 
model-implied covariance matrix in the Appendix.

Results

Our analysis aims to assess whether the GFI and SRMR dif-
ferentiate between correct and misspecified models and to 
identify cutoff values that minimize Types I and II error rates 

under different conditions. As in Hu and Bentler (1999), we 
assessed a Type I error rate for a given cutoff value of the 
GFI by counting how frequently in the 1000 samples each 
fitted correct model’s GFI value was smaller than the cutoff 
value, thus resulting in the correct model being rejected. 
Similarly, we computed a Type II error rate for the same cut-
off value by counting how frequently each fitted misspecified 
model’s GFI value was greater than the cutoff, thus failing 
to reject the misspecified model. For the SRMR, we calcu-
lated the Types I and II error rates of a given cutoff value by 
counting how frequently over the samples each fitted correct 
model’s SRMR value was greater than the cutoff value and 
how frequently the fitted misspecified model’s SRMR was 
smaller than the cutoff.

Table 1 presents the averages and standard deviations of 
the GFI and SRMR values of the correct and misspecified 
models fitted to 1000 samples generated under each com-
bination of the experimental conditions. As expected, the 
correct model’s GFI value was large (e.g., > .90), approach-
ing one when the sample size became large (Table 1). This 
GFI pattern in the correct model remains the same across 
the different levels of component correlations (r). At the 
same time, the misspecified model’s GFI value was, on aver-
age, smaller than .90 when the component correlation was 
equal to or smaller than .2, although it tended to increase 
with the sample size. The same pattern was observed for 
r = .4, although the GFI value of the misspecified model was 
slightly greater than .90 in large samples (N ≥ 1000). Fur-
thermore, as expected, the correct model’s SRMR value was 
small overall (e.g., < .08) and approached zero as the sam-
ple size increased, regardless of the component correlation’s 

Table 1   Averages and standard 
deviations (SD) of the GFI and 
SRMR values of correct and 
misspecified models

GFI SRMR

Mean SD Mean SD

r N Correct Misspecified Correct Misspecified Correct Misspecified Correct Misspecified

0 100 .916 .772 .010 .016 .076 .126 .004 .006
200 .955 .800 .005 .012 .054 .114 .003 .004
500 .981 .817 .002 .007 .034 .107 .002 .003
1000 .991 .824 .001 .005 .024 .104 .001 .002
2000 .995 .827 .001 .004 .017 .103 .001 .001

.2 100 .923 .800 .010 .024 .075 .122 .005 .007
200 .959 .830 .005 .018 .053 .109 .003 .006
500 .983 .850 .002 .012 .034 .101 .002 .004
1000 .991 .857 .001 .008 .024 .098 .001 .003
2000 .996 .861 .001 .006 .017 .096 .001 .002

.4 100 .939 .855 .010 .026 .074 .113 .005 .009
200 .968 .882 .005 .018 .052 .100 .003 .007
500 .987 .899 .002 .011 .033 .092 .002 .005
1000 .993 .905 .001 .008 .023 .089 .001 .003
2000 .997 .908 .000 .006 .016 .087 .001 .002
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Table 2   Type I and Type II 
error rates and their averages for 
different cutoff values of GFI

r = 0 r = .2 r = .4

N cutoff Type I Type II Average Type I Type II Average Type I Type II Average

100 .85 0 0 0 0 .024 .012 0 .563 .282
.86 0 0 0 0 .010 .005 0 .437 .219
.87 0 0 0 0 .004 .002 0 .311 .156
.88 0 0 0 0 .001 .001 0 .189 .095
.89 .003 0 .002 .002 0 .001 0 .078 .039
.90 .061 0 .031 .020 0 .010 0 .028 .014
.91 .261 0 .131 .110 0 .055 .007 .005 .006
.92 .646 0 .323 .373 0 .187 .040 .003 .022
.93 .927 0 .464 .741 0 .371 .196 .000 .098
.94 .995 0 .498 .959 0 .480 .517 0 .259
.95 1000 0 .500 .999 0 .500 .876 0 .438

200 .85 0 0 0 0 .156 .078 0 .967 .484
.86 0 0 0 0 .049 .025 0 .886 .443
.87 0 0 0 0 .011 .006 0 .754 .377
.88 0 0 0 0 .002 .001 0 .557 .279
.89 0 0 0 0 0 0 0 .361 .181
.90 0 0 0 0 0 0 0 .162 .081
.91 0 0 0 0 0 0 0 .052 .026
.92 0 0 0 0 0 0 0 .007 .004
.93 0 0 0 0 0 0 0 .002 .001
.94 .007 0 0 0 0 0 0 .001 0
.95 .168 0 0 .048 0 0 0 0 0

500 .85 0 0 0 0 .508 .254 0 1 .500
.86 0 0 0 0 .186 .093 0 .999 .500
.87 0 0 0 0 .043 .022 0 .993 .497
.88 0 0 0 0 .002 0 0 .959 .480
.89 0 0 0 0 0 0 0 .8 .400
.90 0 0 0 0 0 0 0 .473 .237
.91 0 0 0 0 0 0 0 .164 .082
.92 0 0 0 0 0 0 0 .024 .012
.93 0 0 0 0 0 0 0 .001 0
.94 0 0 0 0 0 0 0 0 0
.95 0 0 0 0 0 0 0 0 0

1000 .85 0 0 0 0 .807 .404 0 1 .500
.86 0 0 0 0 .373 .187 0 1 .500
.87 0 0 0 0 .056 .028 0 1 .500
.88 0 0 0 0 .001 0 0 .998 .499
.89 0 0 0 0 0 0 0 .97 .485
.90 0 0 0 0 0 0 0 .743 .372
.91 0 0 0 0 0 0 0 .265 .133
.92 0 0 0 0 0 0 0 .024 .012
.93 0 0 0 0 0 0 0 0 0
.94 0 0 0 0 0 0 0 0 0
.95 0 0 0 0 0 0 0 0 0
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degree. In general, the misspecified model’s SRMR value 
was greater than .08 in all conditions, although it tended to 
be slightly smaller when the sample size increased.

Table 2 shows the Types I and II error rates for differ-
ent cutoff values of the GFI in the different conditions. As 
expected, a larger GFI cutoff value tended to produce a 
larger Type I error rate (i.e., more rejections of the correct 
model) in small sample sizes (N ≤ 200), regardless of the 
component correlation’s level. At the same time, when the 
sample size increased, all the cutoff values resulted in a zero 
Type I error rate. This result is consistent with our previous 
finding that the correct model’s average GFI values were 
rather large in moderate and large sample sizes (Table 1). 
Moreover, a larger GFI cutoff value tended to produce a 
smaller Type II error rate (i.e., more rejections of the mis-
specified model). When r = 0, Type II error rates for all the 
cutoff values were zero across the sample sizes, which was 
expected, because the misspecified model’s average GFI val-
ues were smaller than all the cutoff values in this condition 
(Table 1). Table 2 also presents the average of Types I and 
II error rates for each GFI cutoff value, which shows which 
cutoff value resulted in the minimum average of both error 
rates.

Table 3 shows the Types I and II error rates for different 
SRMR cutoff values in the same conditions. As expected, 
a smaller SRMR cutoff value resulted in a larger Type I 
error rate in small sample sizes (N ≤ 200), regardless of the 
component correlation’s level. When the sample size was 
moderate or large (N ≥ 500), all of the cutoff values led to 
zero Type I error rates. This is consistent with our previous 
finding that the correct model’s average SRMR values were 
quite small in these sample sizes (Table 1). As expected, 

a smaller SRMR cutoff value resulted in a smaller Type II 
error rate. Table 3 also shows the average of Types I and II 
error rates for each SRMR cutoff value.

Figure 2 presents the averages of Types I and II error 
rates for different GFI and SRMR cutoff values across the 
sample sizes, which we calculated by averaging each cutoff 
value’s mean Types I and II error rates over the compo-
nent correlation’s three levels. In respect of N = 100, a GFI 
cutoff value of .89 resulted in the minimum average of 
Types I and II error rates, whereas in respect of N > 100, 
using a GFI cutoff value of .93 produced the minimum 
average of Types I and II error rates. On the other hand, 
in respect of N = 100, using an SRMR cutoff value of .09 
led to the minimum average of Types I and II error rates, 
whereas in respect of N > 100, using an SRMR cutoff value 
of .08 resulted in the minimum average of Types I and II 
error rates. In addition, in respect of N = 100, the minimum 
average of Types I and II error rates—obtained by using 
SRMR = .09 (.001)—was smaller than that obtained by 
using GFI = .89 (.014). However, in respect of N > 100, 
both the SRMR = .08 and the GFI = .93 provided the same 
minimum average (i.e., zero).

We also examined how the average Types I and II error 
rates changed in different combinations of the GFI and 
SRMR cutoff values. As shown in Table 4, in respect of 
N = 100, using an SRMR cutoff value of .09 in combina-
tion with GFI cutoff values from .85 to .89 resulted in a 
smaller minimum average of Types I and II error rates than 
that obtained by employing a GFI (.014) cutoff value of 
.89, whereas it was virtually identical to that obtained by 
using an SRMR cutoff value of .09. Conversely, in respect of 
N > 100, using a combination of SRMR = .08 and GFI = .93 

Table 2   (continued) r = 0 r = .2 r = .4

N cutoff Type I Type II Average Type I Type II Average Type I Type II Average

2000 .85 0 0 0 0 .971 .486 0 1 .500

.86 0 0 0 0 .555 .278 0 1 .500

.87 0 0 0 0 .054 .027 0 1 .500

.88 0 0 0 0 0 0 0 1 .500

.89 0 0 0 0 0 0 0 .998 .499

.90 0 0 0 0 0 0 0 .923 .462

.91 0 0 0 0 0 0 0 .372 .186

.92 0 0 0 0 0 0 0 .011 .006

.93 0 0 0 0 0 0 0 0 0

.94 0 0 0 0 0 0 0 0 0

.95 0 0 0 0 0 0 0 0 0
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Table 3   Type I and Type II 
error rates and their averages for 
different cutoff values of SRMR

r = 0 r = .2 r = .4

N Cutoff Type I Type II Average Type I Type II Average Type I Type II Average

100 .15 0 1 .500 0 1 .500 0 1 .500
.14 0 .995 .498 0 .991 .496 0 1 .500
.13 0 .788 .394 0 .878 .439 0 .967 .484
.12 0 .159 .080 0 .410 .205 0 .751 .376
.11 0 .003 .002 0 .051 .026 0 .368 .184
.10 0 0 0 0 .003 .002 0 .067 .034
.09 .001 0 0 .001 .000 .001 .002 .003 .003
.08 .171 0 .086 .151 0 .076 .094 .000 .047
.07 .913 0 .457 .891 0 .446 .776 0 .388
.06 1000 0 .500 1000 0 .500 1000 0 .500
.05 1000 0 .500 1000 0 .500 1000 0 .500

200 .15 0 1 .500 0 1 .500 0 1 .500
.14 0 1 .500 0 1 .500 0 1 .500
.13 0 .999 .500 0 .999 .500 0 1 .500
.12 0 .927 .464 0 .97 .485 0 .999 .500
.11 0 .187 .094 0 .58 .290 0 .924 .462
.10 0 0 .000 0 .069 .035 0 .494 .247
.09 0 0 0 0 .001 .001 0 .069 .035
.08 0 0 0 0 0 0 0 .002 .001
.07 0 0 0 0 0 0 0 0 0
.06 .028 0 0 .021 0 0 .01 0 0
.05 .879 0 0 .852 0 0 .696 0 0

500 .15 0 1 .500 0 1 .500 0 1 .500
.14 0 1 .500 0 1 .500 0 1 .500
.13 0 1 .500 0 1 .500 0 1 .500
.12 0 1 .500 0 1 .500 0 1 .500
.11 0 .879 .440 0 .99 .495 0 1 .500
.10 0 .005 .003 0 .45 .225 0 1 .487
.09 0 0 0 0 .005 .003 0 .370 .185
.08 0 0 0 0 0 0 0 .006 .003
.07 0 0 0 0 0 0 0 0 0
.06 0 0 0 0 0 0 0 0 0
.05 0 0 0 0 0 0 0 0 0

1000 .15 0 1 1 0 1 .500 0 1 .500
.14 0 1 1 0 1 .500 0 1 .500
.13 0 1 1 0 1 .500 0 1 .500
.12 0 1 1 0 1 1 0 1 .500
.11 0 .998 0 0 1 1 0 1 .500
.10 0 .022 0 0 .812 0 0 .999 .500
.09 0 0 0 0 .002 0 0 .668 .334
.08 0 0 0 0 0 0 0 .003 .002
.07 0 0 0 0 0 0 0 0 0
.06 0 0 0 0 0 0 0 0 0
.05 0 0 0 0 0 0 0 0 0
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yielded the same average error rate (i.e., zero) as using them 
separately. In addition, in this case, using an SRMR cutoff 
value of .08 seemed to minimize the average value of Types 
I and II error rates, no matter which GFI cutoff value we 
chose. This also applies to the GFI. That is, using a GFI 
cutoff value of .93 resulted in the minimum average of Types 
I and II error rates, regardless of the SRMR cutoff values.

Conclusions

Our simulation study suggests that GFI and SRMR are 
effective in discriminating between correct and misspeci-
fied component models when estimating the models using 
GSCA. With an increase in sample size, the GFI and 
SRMR respectively and consistently converge to one and 
zero in the correct model, whereas they tended to differ 
from their optimal values in a misspecified model. In addi-
tion, our results suggest that the sample size is relevant for 
GFI’s and SRMR’s cutoff selection. Although it is difficult 
to provide a specific cutoff value per index for every pos-
sible sample size and research setting (Niemand and Mai 
2018), our results suggest the following:

•	 When N = 100, researchers may choose a GFI cutoff 
value of .89 and an SRMR cutoff value of .09. That is, 
a GFI ≥ .89 and an SRMR ≤ .09 indicate an acceptable 
level of model fit. Although both indexes can be used to 
assess model fit, using the SRMR with the above cutoff 
value (i.e., SRMR ≤ .09) may be better than using the 

GFI with the suggested cutoff value (i.e., GFI ≥ .89), 
because the former generally resulted in Type I and 
Type II error rates having a smaller average. In addi-
tion, if SRMR ≤ .09, then a GFI cutoff value of ≥ .85 
may still be indicative of an acceptable fit.

•	 When N > 100, researchers may choose a GFI cutoff 
value of .93 and an SRMR cutoff value of .08. In this 
case, there is no preference for one index over the other, 
or for using a combination of the indexes over using them 
separately. Each index’s suggested cutoff value may be 
used independently to assess the model fit. That is, a 
GFI ≥  .93 or an SRMR ≤ .08 indicates an acceptable fit.

By investigating the performance of the GFI and SRMR 
indexes systematically through the analyses of simulated 
data under different experimental conditions, our study 
contributes to establishing an empirical basis for using the 
indexes to evaluate component models in GSCA. Neverthe-
less, similar to all simulation studies, this study is limited 
in scope, as it only considers a few experimental conditions 
and a relatively simple model, which, however, has been 
well-established in prior research’s simulations to evaluate 
model fit indexes (e.g., Hu and Bentler 1999; Marsh et al. 
2004; Sivo et al. 2006). Researchers should not use the char-
acterized cutoff criteria for GFI and SRMR as golden rules 
for making decisions on model fit assessment in GSCA. 
Just like in applications of factor-based SEM, researchers 
should use these cutoff criteria cautiously as reference points 
across different sample sizes and model set-ups (Niemand 
and Mai 2018). It is also worth noting that examining overall 

Table 3   (continued) r = 0 r = .2 r = .4

N Cutoff Type I Type II Average Type I Type II Average Type I Type II Average

2000 .15 0 1 1 0 1 .500 0 1 .500

.14 0 1 1 0 1 .500 0 1 .500

.13 0 1 1 0 1 .500 0 1 .500

.12 0 1 1 0 1 1 0 1 .500

.11 0 1 1 0 1 1 0 1 .500

.10 0 .028 0 0 .977 0 0 1000 .500

.09 0 0 0 0 .002 0 0 .893 .447

.08 0 0 0 0 0 0 0 .001 .001

.07 0 0 0 0 0 0 0 0 0

.06 0 0 0 0 0 0 0 0 0

.05 0 0 0 0 0 0 0 0 0
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fit indexes, such as the GFI and the SRMR, is merely one 
aspect of model evaluation, which also needs to consider 
local fit measures such as FITM and FITS (Hwang et al. 
2020). An acceptable model fit does not necessarily guar-
antee the model’s plausibility and this judgement should be 

made based on substantive theory (Byrne 2001, p. 88). Fur-
thermore, a well-fitting model does not necessarily warrant 
enough predictive power, which is important to substantiate 
practical recommendations derived from any model (Hair 
et al. 2019; Liengaard et al. 2020).

Fig. 2   Average error rates of 
GFI and SRMR cutoff values 
in different sample sizes. Note: 
The figure shows the averages 
of Types I and II error rates for 
different GFI and SRMR cutoff 
values aggregated over three 
levels of component correlation 
in each sample size. Plus: 100, 
asterisk: 200, open circle 500, 
open square 1000, and open 
diamond 2000
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Table 4   Averages of Type I 
and Type II error rates across 
different combinations of cutoff 
values for GFI and SRMR

SRMR

N Cutoff .15 .14 .13 .12 .11 .1 .09 .08 .07 .06 .05

GFI 100 .85 .098 .098 .098 .097 .064 .012 .001 .069 .430 .500 .500
.86 .075 .075 .075 .074 .058 .012 .001 .069 .430 .500 .500

.87 .053 .053 .053 .053 .047 .011 .001 .069 .430 .500 .500

.88 .032 .032 .032 .032 .030 .011 .001 .069 .430 .500 .500

.89 .014 .014 .014 .014 .014 .008 .002 .069 .430 .500 .500

.90 .018 .018 .018 .018 .018 .017 .014 .070 .430 .500 .500

.91 .064 .064 .064 .064 .064 .064 .063 .089 .430 .500 .500

.92 .177 .177 .177 .177 .177 .177 .177 .187 .430 .500 .500

.93 .311 .311 .311 .311 .311 .311 .311 .313 .435 .500 .500

.94 .412 .412 .412 .412 .412 .412 .412 .412 .456 .500 .500

.95 .479 .479 .479 .479 .479 .479 .479 .479 .482 .500 .500

200 .85 .187 .187 .187 .187 .179 .093 .012 0 0 0 0

.86 .156 .156 .156 .156 .154 .089 .012 0 0 0 0

.87 .128 .128 .128 .128 .127 .084 .012 0 0 0 0

.88 .093 .093 .093 .093 .093 .076 .012 0 0 0 0

.89 .060 .060 .060 .060 .060 .057 .012 0 0 0 0

.90 .027 .027 .027 .027 .027 .027 .011 0 0 0 0

.91 .009 .009 .009 .009 .009 .009 .006 0 0 0 0

.92 .001 .001 .001 .001 .001 .001 .001 0 0 0 0

.93 0 0 0 0 0 0 0 0 0 0 0

.94 0 0 0 0 0 0 0 0 0 0 0

.95 .036 .036 .036 .036 .036 .036 .036 .036 .036 0 0

500 .85 .251 .251 .251 .251 .251 .233 .063 0 0 0 0

.86 .198 .198 .198 .198 .198 .193 .063 0 0 0 0

.87 .173 .173 .173 .173 .173 .170 .063 0 0 0 0

.88 .160 .160 .160 .160 .160 .159 .062 0 0 0 0

.89 .133 .133 .133 .133 .133 .133 .062 0 0 0 0

.90 .079 .079 .079 .079 .079 .079 .059 0 0 0 0

.91 .027 .027 .027 .027 .027 .027 .027 0 0 0 0

.92 .004 .004 .004 .004 .004 .004 .004 0 0 0 0

.93 0 0 0 0 0 0 0 0 0 0 0

.94 0 0 0 0 0 0 0 0 0 0 0

.95 0 0 0 0 0 0 0 0 0 0 0
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Appendix: The procedure of deriving 
the model‑implied covariance matrix 
of observed variables in the simulation 
study

Let zp denote a Jp by 1 vector of observed variables form-
ing the pth component and Σp denote a Jp by Jp covariance 
matrix of zp (p = 1, 2, ..., P). Let cp denote a Jp by 1 vector 
of loadings of the pth component. Let wp denote a 1 by 
Jp vector of weights for the pth component. Let εp denote 
a Jp by 1 vector of residuals for zp and Ψp denote a Jp by 
Jp covariance matrix of εp. Let Σ, Φ, and Ψ denote J by 
J, P by P, and J by J covariance matrices of z, γ, and ε, 
respectively.

Given the prescribed values of Σp and Φ, wp and cp are 
determined in such a way that components can maximize the 
explained variances of their observed variables, as follows.

Table 4   (continued) SRMR

N Cutoff .15 .14 .13 .12 .11 .1 .09 .08 .07 .06 .05

1000 .85 .301 .301 .301 .301 .301 .295 .112 0 0 0 0
.86 .229 .229 .229 .229 .229 .229 .112 0 0 0 0

.87 .176 .176 .176 .176 .176 .176 .112 0 0 0 0

.88 .167 .167 .167 .167 .167 .167 .111 0 0 0 0

.89 .162 .162 .162 .162 .162 .162 .111 0 0 0 0

.90 .124 .124 .124 .124 .124 .124 .108 0 0 0 0

.91 .044 .044 .044 .044 .044 .044 .044 0 0 0 0

.92 .004 .004 .004 .004 .004 .004 .004 0 0 0 0

.93 0 0 0 0 0 0 0 0 0 0 0

.94 0 0 0 0 0 0 0 0 0 0 0

.95 0 0 0 0 0 0 0 0 0 0 0

2000 .85 .329 .329 .329 .329 .329 .328 .149 0 0 0 0

.86 .259 .259 .259 .259 .259 .259 .149 0 0 0 0

.87 .176 .176 .176 .176 .176 .176 .149 0 0 0 0

.88 .167 .167 .167 .167 .167 .167 .149 0 0 0 0

.89 .166 .166 .166 .166 .166 .166 .149 0 0 0 0

.90 .154 .154 .154 .154 .154 .154 .147 0 0 0 0

.91 .062 .062 .062 .062 .062 .062 .062 0 0 0 0

.92 .002 .002 .002 .002 .002 .002 .002 0 0 0 0

.93 0 0 0 0 0 0 0 0 0 0 0

.94 0 0 0 0 0 0 0 0 0 0 0

.95 0 0 0 0 0 0 0 0 0 0 0

http://creativecommons.org/licenses/by/4.0/
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where u1 is the first eigenvector of Σp. Then, Ψp is deter-
mined by

Lastly, Σ is obtained by

where C = diag(c1, c2, ... , cP), and Ψ = diag(Ψ1, Ψ2, ... , ΨP).
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