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Abstract

Dilute ensembles of granular matter (so-called granular gases) are nonlinear systems which exhibit fascinating dynamical
behavior far from equilibrium, including non-Gaussian distributions of velocities and rotational velocities, clustering, and
violation of energy equipartition. In order to understand their dynamic properties, microgravity experiments were performed
in suborbital flights and drop tower experiments. Up to now, the experimental images were evaluated mostly manually. Here,
we introduce an approach for automatic 3D tracking of positions and orientations of rod-like particles in a dilute ensemble,
based on two-view video data analysis. A two-dimensional (2D) localization of particles is performed using a Mask R-CNN
neural network trained on a custom data set. The problem of 3D matching of the particles is solved by minimization of the
total reprojection error, and finally, particle trajectories are tracked so that ensemble statistics are extracted. Depending on
the required accuracy, the software can work fully self-sustainingly or serve as a base for subsequent manual corrections.

The approach can be extended to other 3D and 2D particle tracking problems.

Keywords Machine learning - Granular gas - Particle tracking - Object detection - Mask-CNN

Introduction

Granular gases are dilute ensembles of macroscopic grains,
which in the simplest case interact only upon contact during
collisions, without any long-range interactions. Studies
of granular gases are relevant, for example, for gaining
deeper insights into fundamental physics of non-equilibrium
systems (Poschel and Luding 2001; Pdschel and Brilliantov
2003, 2004), as a basis for modeling collisional dynamics
in planetary rings or other astrophysical assemblies of solid
objects, even in some stages of planet formation (Hestroffer
et al. 2019). A quantitative macroscopic description of their
ensemble properties will also aid simulations of fluidized
granular materials.
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In contrast to molecular gases, all collisions among
particles or between particles and the container walls
are dissipative, i.e. part of the kinetic energy is lost.
Consequently, without external energy supply, the ensemble
will gradually lose its kinetic energy in a process called
granular cooling. This cooling process itself is non-
trivial, and most of its properties are insufficiently proven
experimentally. It manifests, e.g., in the formation and
kinetics of particle clusters (Hopkins and Louge 1991;
Goldhirsch and Zanetti 1993), and in the evolution of
velocity and energy distributions of the ensemble (Maal}
et al. 2008; Brilliantov et al. 2018). Steady energy
supply is required to maintain a granular gas in a
steady state. Even then, the dissipative character of the
collisions causes numerous distinct properties, such as non-
Gaussian velocity distributions in the individual degrees of
freedom (Yanpei et al. 2011; Harth et al. 2013a, b), or non-
equipartition of kinetic energies between different degrees
of freedom (Harth et al. 2013a, b). The literature contains
numerous analytical and numerical predictions of structural
and dynamical properties of granular gases, relying on more
or less realistic assumptions of the particle interactions.
However, experimental data, in particular regarding 3D
granular gases, are still scarce.

Experiments with two-dimensional systems usually
suffer from the influence of container walls (van Zon et al.
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2004) and of the energy input mechanisms. Levitation
by external electro-magnetic fields (Aranson and Olafsen
2002; Maal et al. 2008), gas layers (Nichol and Daniels
2012; Burton et al. 2013; Daniels et al. 2009) or reduction
of container wall friction in micro-gravity (Hou et al. 2008;
Yanpei et al. 2011; Grasselli et al. 2015) represent an
alternative. Even then, the out-of-plane contributions to the
collision dynamics, e. g. mediated by particle rotations, are
artificially constrained. Many of these experiments were
restricted to small particle numbers. Studies of granular
cooling are hardly possible in a 2D geometry: An early
experiment (Maal3 et al. 2008) dealt with approximately
30 magnetically levitated grains. The decay of the mean
absolute velocity followed Haff’s prediction (Haff 1983).
For more realistic experiments, it is desirable to study
particle dynamics in three-dimensional (3D) granular gases
in detail, with sufficiently large ensembles to obtain reliable
statistics. Both free cooling and externally excited states
are of interest. Complete 3D information on the particle
trajectories is desired. Realizations of 3D granular gases
require microgravity. One needs a sufficient understanding
of the particle properties and the interactions of grains with
container walls.

First microgravity experiments were performed by
Falcon et al. (1999, 2006) using spherical grains in
strongly vibrated containers. In these experiments, dynamic
clustering (Falcon et al. 1999) due to strong external
excitation was identified, a phenomenon studied in more
detail in subsequent works, e.g. Refs. Opsomer et al. (2011),
Sack et al. (2013), Noirhomme et al. (2018), and Aumaitre
et al. (2018). In the regime where particle-particle collisions
dominate over particle-wall collisions (beyond the Knudsen

Fig.1 a Sketch of the
experimental setup and (a)

definition of the coordinates. é
Two side walls can be vibrated \\\
mechanically; the top and front @

walls are transparent. b, ¢
Typical frames of the top and
front videos. Image reproduced
from Ref. (Harth et al. 2018),
copyright by the American
Physical Society
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regime), i. e. at sufficiently high particle number densities,
the projected images of spherical grains heavily overlap.
Consequently, tracking the particles is challenging. This
problem cannot be resolved with improved optical recording
techniques.

We study ensembles of rodlike grains with lengths of
about one centimeter in microgravity (Harth et al. 2011,
2013a, b, 2015, 2017, 2018). Regarding particle detection
and tracking, this is advantageous as the mean free path
scales primarily with the length of the rods (Harth et al.
2013a, 2015, 2018), while the optical mean free path (i. e.
the average depth a light ray penetrates the ensemble before
being blocked by a particle) can be optimized by using
small rod diameters. Thus, sufficiently frequent particle-
particle collisions can be achieved at lower filling fractions
than for spherical grains. This provides a better in-depth
visibility of the rods for their identification and tracking.
The sketch of the experimental geometry as well as two
typical snapshots of the granular ensemble are shown in
Fig. 1. In our previous study (Harth et al. 2018), Haff’s
cooling law and the equipartition of kinetic energy among
the individual degrees of freedom were checked in a 3D
ensemble.

Detailed studies of such statistical ensemble properties
require not only repeatable microgravity experiments but
also a reliable and accurate particle tracking in 3D. The
latter was previously done completely, or at least to a
large extent, manually. Although in the case of thin rod-
like particles, the visual tracking is possible, automatic
tracking is still complicated because of multiple technical
difficulties. The main problems are frequent particle
overlaps in the images as well as differing appearance,
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e.g., of particles of identical color in different positions
and orientations in the same video frame. The biggest
of those challenges is the accurate detection of positions
and orientations of particles given the numerous cases
of overlapping in each camera perspective (Fig. 1). In
particular, due to the overlaps, the particles frequently
appear as several segments. Due to frequent collisions,
predictions of the particle positions and orientations in
subsequent images, as they are often used in particle
tracking velocimetry at very low particle concentrations,
is of limited applicability. Another problem is the correct
assignment of the particles in the two different viewpoints,
in order to extract their 3D coordinates. This problem is
partially relieved by choosing subsets of particles with
different colors. Finally, 3D tracking of particles has to
be performed on the basis of a correct assignment of the
particles in subsequent frames of the video sequences.
We describe a machine learning (ML)-aided approach to
detect the rod positions and orientations, which allows a
fast acquisition of results with an accuracy comparable to
manual visual analysis performed by human evaluators.

Detection in 2D
General Approach

The general approach which we applied so far for the
extraction of statistical properties from experimental video
footage mainly relied on manual tracking, using custom
MATLAB code. The first step consisted of the detection
and tracking of rods in (one or two) 2D perspectives (Harth
et al. 2013a, b, 2015). This task was initially performed
by human operators. First attempts to automatize the
detection procedure involved simple Hough transforms
(Hough 1962). For single jumping rods (Trittel et al. 2017),
automatic reconstruction of 3D positions and orientation
was successful, yet for multiparticle ensembles, this method
proved to be insufficient by far. A few 3D trajectories could
be reconstructed (Harth et al. 2013b) with massive efforts.
In the subsequent experiments, the setup and choice
of particles were substantially adjusted to improve the
ability to detect and distinguish the representative rods in
3D ensembles. The semi-automatic tracking approach used
in Refs. Harth et al. (2017, 2018) was based on object
detection/ connection of partial objects in color segmented
individual video frames, in combination with subsequent
manual correction /addition of a large sub-set of identified
rods Harth et al. (2017, 2018). It led to some improvement
but was overall still unsatisfactory in terms of tracking
efficiency. In that algorithm, the automatically detected rod
projections required substantial manual correction, which
caused a still low efficiency of data evaluation. Particle

trajectories were composed by conventional minimization
of distances. The number of tracked particles was small.

In a second step, the projected images of the rods
were matched. These steps were performed by trained
individuals. In a third step, 3D positions of the rods’
endpoints were calculated using the camera calibration
toolbox for MATLAB, combined with proper calibration
data. In a last step, the quality of reconstructed rods was
assessed by comparing the detected lengths with the actual
lengths of the particles. For purely manual tracking, the
data were substantially more accurate than for the automatic
detection where a considerable percentage of data, up to
75%, had to be discarded or manually corrected. Purely
manual tracking was performed by initially choosing one
of the rods, and subsequent viewing of sequences of video
frames, where the evaluator had to manually click the
endpoints of the rods. Typically, the standard rate at which
these activities can be performed is around 2-3 full frames
per hour for experienced individuals. This is not only a
tedious task, but also leads to a significant demand of human
resources.

We have thereafter performed extensive research into the
applicability of traditional computer vision (CV) methods
for the 3D setup. Various methods of color separation
(by thresholds in color spaces or by clustering of colors)
were followed by application of probabilistic Hough
transform (Kiryati et al. 1991) and subsequent clustering
of line segments. Overall, the results were proven to be
inconsistent. First of all, the Hough transform contains
a number of parameters (i. e. minimum and maximum
length of line segment, size of possible obscured part,
statistical threshold, etc.), which can be adjusted to specific
configurations of rods on one frame, but are unstable on
a different frame and even more in a different experiment.
There are significant issues with color separation which
works with highly varying efficiency for different rod colors
in different color spaces.

The biggest challenge is clustering the line segments
detected by Hough transform into “real” elongated struc-
tures. We have applied various metrics for clustering of
lines based on their mutual position and orientation (see
Ref. Wirtz and Paulus (2016) for an overview of segment
distance functions). In all cases, significant problems of sep-
aration of line segments belonging to different rods of the
same color occur if they are nearby or overlapping. The inef-
ficient clustering of lines leads to the fact that the number
of reconstructed elongated objects usually varies between
70% and 130% of the real number of particles. This leads
to severe complications in the solution of the optimization
problem of 3D line segment matching (see ‘“Matching and
Tracking in 3D”).

We arrived at the conclusion that a more accurate and
adaptive object recognition method is required, which is
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capable to parse the visual information in the sense of
detection of particular objects (rods of different colors),
unlike the traditional CV algorithms which analyse the
color/geometrical information in the picture without a
notion of which objects of interest are being tracked.
Building a somewhat intelligent recognition system is
possible with the use of modern techniques of artificial
intelligence / machine learning (Russell and Norvig 2009;
Bishop 2006). Namely, solutions based on machine learning
usually require large amounts data for training, but provide
great advantages in efficiency in many tasks such as
classification and regression for various types of data.
One of the crucial challenges in the application of
machine learning is the choice of the fitting approach
(e.g. supervised, unsupervised or reinforcement learning)
and particular configuration of the system (most often the
architecture of an artificial neural network).

In recent years, the application of Convolutional Neural
Networks (CNNs) has led to significant breakthroughs
in the solution of computer vision problems. CNNs are
particularly effective in tasks which require the detection
of objects of varying shapes under complex background
and lighting conditions, including visual noise. Our task
requires high precision recognition along with the detection
of particular object shapes. This can be achieved with Mask
R-CNN (He et al. 2017). The main feature of Mask R-CNN
is the combination of layers of the network which detect the
raw position of the object (bounding box) with additional
layers providing the exact mask (region shape) for each
detected object. This is instrumental for our task, since we
need to detect the coordinates of rod endpoints. Moreover,
in comparison to other CNNs, a sufficient increase in the
accuracy of detection of small objects (which is particularly
important for elongated rod-like particles) is observed. The
trade-off is a relative slowness of Mask R-CNN: on modern
GPUs, detection can take several seconds for one frame,
depending on image resolution and network parameters.
Thus, Mask R-CNN is not suited for real time applications
(e.g., self-driving vehicles) with contemporary hardware.
However, our particular problem does not require real-time
data analysis.

After making the choice of the network architecture,
two essential steps in building the ML-aided detection and
tracking system follow: assembling a sufficient amount of
annotated data and training of the network.

Assembling the Data Set

From the previous data acquisition by manual detection,
around 600 images with particle data (endpoint coordinates)
were already available. These data correspond to experi-
ments with colored rods (6 colors, 12 rods of each color)
which required tracking. Detectable rods are mixed with
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several hundreds of background particles (gray metallic or
black, see Fig. 1). A substantially smaller amount of data
(50 frames) is available for experiments in a dilute regime
(Knudsen gas). Here, all particles (6 colors, 20 rods of each
color) need to be tracked to analyze the collision dynamics
(see Fig. 4).

Mask R-CNN is a network which performs semantic
segmentation of the image, i.e. for training it requires
information about the particular shapes of the regions
which the detected objects occupy in the image of interest
(masks). Generally, a single “isolated” rod (a rod that does
not overlap with another one) in the image occupies an
approximately rectangular region (neglecting the curvature
near the ends of the cylinders). This rectangular region can
be rotated in arbitrary direction and have different length
to width ratios. In our setup, the width of those rectangles
does not depend substantially on the depth, i. e. the distance
between the rod and the camera.

In case of overlap, the rod on the rear is seen with a more
complicated shape, consisting of several not necessarily
rectangular segments, see overlapping red and yellow rods
in Fig. 2. One question that is not sufficiently discussed
in the literature and the Mask R-CNN manuals is whether
one should include the obscured part of the object into
the corresponding object region if large numbers of partly
overlapping objects must be detected. In other words, should
one “see through” the closer rods to recognize the shapes of
the rods in the back?

We found that, since we are interested in the rods’
endpoint coordinates, including overlapping parts of the
rods into each rod’s region is the better choice in our
experiment. It simplifies the creation of the data set
dramatically, since one does not need to mark up all parts
of obscured rods and label them as individual objects.
Consequently, partially obscured rods are also represented
as a single object in the detection stage. One can suggest
that Mask R-CNN learns that the objects of interest look
like the rectangles of certain width and color possibly
obscured by other rectangles. Thus, the network generally
reconstructs the set of the adjacent similarly-colored regions
with certain shapes, mutual positions and orientations as
a single elongated object, thus providing correct endpoint
coordinates.

Finally, we use the fact that for the efficient training of
Mask R-CNN, the shapes of the objects in the annotated
data set do not require to be absolutely precise, allowing the
mask of an object to include some adjacent areas of object
background (He et al. 2017; Abdulla 2017). This gives
us the opportunity to reconstruct the approximate regions
for each rod from its endpoint coordinates into rectangles
of fixed width. Thus, we were able to create the data
set for Mask R-CNN automatically from available manual
detection data. We have followed the instruction for creation
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of a custom data set in Ref. Abdulla (2017) and constructed
the first set using the VGG Image Annotator (VIA) (Dutta
and Zisserman 2019). Each rod color was assigned a label
(region property in VIA). Figure 2 shows an example of
a zoomed part of an image with annotated regions for the
colored rods.

The second essential issue is data set merging. Suppose
one has data for different experiments (in our case this
means that the geometry of the system or the lighting
conditions may differ, or the box can be filled with
a combination of rods of different colors and lengths).
Suppose, for example, we have data for an experiment with
a larger amount of background rods, which provide a higher
filling fraction, as well as experiments with substantially
fewer rods. Should the detection system then be trained on
the combined data, or should one train several versions of
detection on more specialized data sets? The answer to this
question depends on the particular properties of the data set,
viz. the amount of data available and its balance with respect
to the different experiments.

For our experiments, the use of the combined data of all
experiments increases the accuracy of the detection system,
both formally by comparing the Mask R-CNN losses and in
the more meaningful metric of 3D reconstruction accuracy
(see “Matching and Tracking in 3D” for details). This boost
in accuracy is evident for each of the tasks, even if the data
set is unbalanced with respect to those tasks.

After training on the initial data set, we employed an
iterative procedure for the improvement of the data set.
Namely, the shapes of rods are detected in some relatively

Fig.2 Snapshot of annotated data set in VIA (zoomed in). One can see
partially overlapping rods of different colors together with background
gray metallic rods (not for detection). The network requires the mask
shape (region) and class for each object of interest. Each rod color
corresponds to a specific object class, denoted by region outline color
and class identifier value (in black squares). If two or more rods
overlap, the overlapping parts are included in each rod region

small number of images, and then they are manually
corrected. These corrected data are then used to extend the
original data set. Our current data set consists of around
1500 train and 150 validation images. Each image contains
between 72 and 120 detected rods. It combines data for
several experiments, where a total of eight different rod
colors were used.

We are currently performing work in the direction of
balancing and improving the accuracy of the data set and
plan to publish the data set for open access. Images with
corresponding masks and 2D endpoint data can be used
for training a similar detection network, which can be
adjusted to a modified experiment. Together with matched
3D endpoint coordinates, it will provide a useful database
for statistical models of granular gases as well as a tool to
calibrate numerical simulations. Additional investigations
into the possibility of augmenting the data set with synthetic
data (computer-generated images) are planned.

Training

In the current version of the software, the Mask R-CNN
implementation of Matterport (Abdulla 2017) is used as a
starting point. Migration to DETECTRON 2 is envisioned
in the near future, see “Conclusions”.

We followed the approach described in Ref. Abdulla
(2017) for training of Mask R-CNN on a custom data set.
Since we do not possess a really large amount of data for
training, we have used the technique of transfer learning
(Thrun and Pratt 2012). Namely, we have initialized our
network with the weights from the network trained on the
large MS-COCO dataset, which contains tens of thousands
of annotated images with millions of object instances (Lin
et al. 2014). The available data are separated into train and
validation partitions. The standard Mask R-CNN loss is
used for optimization. Since ultimately we are interested in
a custom 3D accuracy metric (see “Matching and Tracking
in 3D”) and take the built-in loss metric of MASK R-CNN
as an approximation, we use 10% of data for validation
instead of the standard 20 %. We also have a sufficient
amount of manually marked data in a separate test partition
to estimate the accuracy of 3D matching. During training,
we use the imgaug library (Jung et al. 2020), and apply
the data augmentation in the form of translations, flips and
rotations of images, occasionally with a small amount of
sharpening or Gaussian blur.

After numerous experiments and adjustments, the train-
ing protocol reads as follows: we first train the network for
200 epochs with only head layers unfreezed with standard
learning rate (r; = 0.001). The aim is to reach the first
plateau in Mask R-CNN losses. After seeing that the train-
ing and validation losses do not decrease for several epochs,
we train the network with all trainable layers for 100 epochs
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with the same learning rate. After that, we train the network
with smaller learning rates (50 epochs with r; = 0.0004 and
50 epochs with r; = 0.0001).

Note that we have not encountered substantial overfitting
problems during the training, with a training error being
only around 10% smaller than the validation error in the
worst case.

Matching and Tracking in 3D

Studying the dynamics of 3D granular gases naturally
requires the 3D information on particle positions and
velocities. After the 2D detection step is performed, the
next task is to transform the two-view 2D endpoint
coordinates into 3D coordinates. This is nontrivial since the
correspondence between the detected line segments in both
views is initially unclear.

We perform the matching of line segments in the
following way: we use the MATLAB triangulate
function which outputs the 3D coordinates from a pair
of 2D coordinates and (experiment-specific) stereo camera
calibration parameters. The output 3D coordinates minimize
the sum of reprojection errors (difference between the 3D
points projected back to the 2D camera coordinate systems
and their input 2D coordinates). One can perform this
procedure for any pair of coordinates in the 2D projections,
albeit for non-matching points, the resulting reprojection
error is exceptionally large. Thus, given two sets of endpoint
coordinates, one can choose the combination of endpoints
that minimizes the total reprojection error. This requires
solving the optimal assignment problem (Burkard et al.

—> i Manual 2D
detection / correction

T

Raw experimental

2009) for the number of rods (taking into account the rods’
endpoint detection errors as well). For the current number of
rods, any polynomial-time optimal assignment solver gives
sufficiently fast and accurate results. We found that the rod
matching procedure is indeed stable (we have not observed
any discrepancy with our 'manual’ matching procedure
where each assignment is made by a human operator).

Tracking in 3D is subsequently performed with the
trackpy package (Allan et al. 2019) for Python, which
implements the well known Crocker-Grier (Crocker and
Grier 1996) particle tracking algorithm.

After the tracking of particles, some additional post-
processing steps to further reduce the effects of detection
noise can be performed, before finally extracting the
ensembles’ statistical properties, such as the mean energy
for each degree of freedom, spatial particle distributions,
etc. For example, for the dilute case where all the rods are
detected and tracked, one can find all the collisions between
particles and particles and the walls. Between the collisions,
the particles’ center of mass moves with constant velocity
and rotational velocity, and the corresponding segments of
the trajectories can be fitted by an affine function. This
immensely increases the accuracy of the detected velocities
and rotational velocities, and thus also corresponding data in
a statistical evaluation. In case the ensemble is far from the
dilute regime, the collision detection is less straightforward.
At the current stage, the task of collision detection, based on
the displacement of the centers of mass and on the evolution
of the particles’ long axis orientations respective to the
coordinate axes, is performed manually. However, this last
manual post-processing step of evaluation is comparably
fast. The implementation of collision detection is one of

Annotated images:
train, val, test
partitions

2D data .
(two-view videos) Automatic 2D
» detection with trained (—|_ .
Mask R-CNN Mask R-CNN training

Triangulation

3D particle
matching +
tracking

Raw 3D
coordinates

Fig.3 Flowchart illustrating the steps performed by the detection sys-
tem to extract 3D particle trajectories and ensemble statistics from
the experiment. Currently, manual work of an operator (denoted by
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Fig.4 Automatic reconstruction
of a 3D scene for a dilute
ensemble of rods based on two
perpendicular camera views.
The animated video of the same
3D scene from an orbiting
viewpoint is included in
Supplementary Material
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the proposed steps for an improvement of the automated
analysis.

Figure 3 shows the flowchart which summarizes the
aforementioned steps in data analysis which lead from raw
experimental video data to extraction of 3D particle trajec-
tories and finally obtaining ensemble statistical properties.

Results

In the following, we demonstrate some results of the
current version of our detection and tracking algorithm.
Figure 4 shows frames from two cameras along with
the corresponding automatically reconstructed 3D scene
of the dilute ensemble of rods. The animated video of
a 3D scene from an orbiting viewpoint is provided as
Supplementary Material. From the inspection of the 3D
scenes, one can immediately assess the overall quality of
the 3D reconstructions and identify obvious artifacts. One
of the issues is that in our experiments described above, one
does not have direct access to the ground truth information
(i.e. to the exact positions and velocities of particles).
Therefore, one has to devise a suitable measure to assess
the detection accuracy both for the manual and automatic
methods. We chose the reprojection error from 3D to 2D as
the measure of accuracy: We assume that if the triangulated
rod endpoint coordinate has small reprojection error, it
must correspond to the “real” position of the rod endpoint
in 3D. Naturally, it can happen that both frames taken
from different camera positions have errors in the endpoint
direction which assemble in a wrong 3D coordinate with a
small reprojection error. However, those events happen to
occur sufficiently rarely.

800 1000 1200

Figure 5 shows the distributions of reprojection errors
for automatic and manual recognition. One can see, that
the majority of rods (80-90%) is recognized with similar
accuracy. There is a longer tail in the error distribution in
the automatic system. One can propose the following ways
to deal with this effect: a) First of all, based on reprojection
error, we can predict which rod coordinates are extracted
accurately. This part of the data can already be substantial
and sufficient to extract ensemble statistical measures like
the mean kinetic energy. However, we should be aware
of the possibility of some systematic error which appears
with neglecting some part of data. We are working on the

Distribution of reprojection errors
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Fig. 5 Distribution of reprojection errors for manual and automatic
particle recognition. A similar accuracy can be observed for the
majority of the rods. The long tail of the distribution corresponding to
large detection errors for few rods is a focus of ongoing optimization

@ Springer



Microgravity Sci. Technol. (2020) 32:897-906

904
1200 Distribution of detected particle lengths
[ IManual 2d rec.
| Auto 2d rec.
1000 -
5 800
o
ks
b 600
K] i
£
3 400
200 |
0 L . el I |
0 5 10 15

Rod length, mm

Fig. 6 Distribution of reprojection errors for manual and automatic
particle recognition. A similar accuracy can be observed for the
majority of the rods. The long tail of the distribution corresponding to
large automatic detection errors for certain rods is a focus of ongoing
optimization

investigation of this problem. b) The rods which belong to
the long tail with high reprojection error can be marked for
manual correction. This allows to obtain the most accurate
results available at the moment, still greatly improving the
overall analysis efficiency.

Another measure, which can be applied to assess the
accuracy of the reconstruction, is to compare how well
the detected particle lengths compare with the real rod
lengths in the experiment (10 mm in the presented data
set). Figure 6 shows the distribution of detected rod lengths
for manual and automatic detection. One can observe
comparable accuracy, however, automatic detection tends
to slightly underestimate the lengths of the particles. We
are investigating the source of this discrepancy and possible
improvement of results.

Other measures can be also considered to assess accuracy
quantitatively, for example, one can check how well the rods
maintain constant translational and rotational velocities in
the periods between the collisions with other rods and walls.
We plan to include more accuracy measures in the next
versions of the detection software.

Conclusions

We have investigated the potential of a ML-aided analysis of
structural and dynamical properties of highly mobile mul-
tiple object ensembles. Namely, the software for detection
and tracking of rod-like particles constituting a 3D granular
gas in microgravity was developed. We have described here
the data set creation and expansion procedure as well as the
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training protocol for the Mask R-CNN network.The recog-
nition accuracy is comparable to manual detection, while
the efficiency of the analysis has been improved dramat-
ically. These features are particularly desirable when one
needs a large throughput of experimental data to obtain a
reasonable basis for the statistical ensemble characteriza-
tion. While few random errors in the raw output data of
the automated approach will hardly influence the statisti-
cal results, it is important that the evaluation is not affected
by bias (for example, larger reprojection errors in regions
with higher particle number density). In that respect, the
automatic detection is practically coequal to the manual
approach.

In recent years, many improvements of machine learning
methods in visual analysis of experimental data have
been demonstrated. Most of those investigations focus
on the improvement of recognition results on several
generic data sets. However, there is a deficit of well
documented cases in successful applications of such
methods to study real physical model systems. In the present
work, we aimed at the demonstration and comprehensive
description of the efficient ML-aided statistical analysis,
applied to a cutting edge microgravity experiment. The
3D reconstruction of trajectories, and particularly the
identification and quantitative evaluation of collision events
will allow the experimenters to explore the relations
between microscopic individual particle properties and
particle-particle interaction events and the macroscopic
statistical properties of the ensembles such as loss of
kinetic energy by dissipation, the evolution of spatial
inhomogeneities and the formation of structures and
collective dynamic patterns.

The present software can be adjusted to various
applications in the statistical analysis of multi-particle
ensembles in 2D and 3D, especially when particles
have complex shapes and one is interested in their
spatial orientations. One can envision an application
to experimental studies of clogging problems (Zuriguel
et al. 2015; Ashour et al. 2017; Shi et al. 2019), the
collective behaviour of ellipsoidal colloids (Zheng et al.
2011; Crassous et al. 2012; Weeks 2011), granular matter
(Aranson et al. 2007; Kudrolli et al. 2008) including
active granular matter (Kumar et al. 2014), or bacteria
colonies (Copeland and Weibel 2008; Xu et al. 2019) and
other microswimmer organisms (Koch and Subramanian
2011). The investigation of multi-particle ensembles under
microgravity conditions might be a particularly fruitful area
of interest due to a high mobility of particles in three
dimensions in the absence of gravity. We plan to publish the
updated version of the detection software as well as the data
set for open access.

There are multiple potential directions in sight for
the improvement of the detection software. Significant
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advances in machine-learning aided computer vision which
can benefit our research are currently taking place on a
regular basis. Namely, we plan to use the newly published
DETECTRON 2 detection platform (Girshick et al. 2018;
Wu et al. 2019) which includes advanced versions of the
Mask R-CNN network. A promising advantage for our
application would be the inclusion of rotating bounding
boxes, as well as the use of object keypoints along with the
masks, which are both among the newly supported features
of DETECTRON 2.

The application of ML techniques in microgravity
research is not restricted to the detection of positions and
orientations of floating grains, it may be adapted to the
observation of other floating objects in 3D (Vega-Martinez
et al. 2017). ML-based techniques have also been proposed
to reconstruct shapes of free-falling liquid droplets (Zou
et al. 2018). There are also ongoing investigations into a
direct ML-aided reconstruction of 3D scenes from 2D data.
For example, additional layers which output 3D coordinates
can be added to the MASK R-CNN network (Danielczuk
et al. 2019; Lang et al. 2019). In this case, it might be
possible to make use of the 3D reprojection error as a
metric for network losses in a training stage, together with
2D losses. A promising direction is to include the spatio-
temporal dynamics directly into the recognition workflow
instead of analysing each slide separately. One can start with
the simultaneous analysis of several consecutive frames
by means of networks of a similar architecture as Mask
R-CNN, with an expanded output layer. Furthermore, it
might be possible to build a hybrid RNN (Recurrent Neural
Network)-CNN architecture for the analysis of longer video
sequences.

Finally, based on the investigations of detection and
tracking, the future improvements of the microgravity
experiment are envisioned. Those might include optimized
geometrical and lighting conditions, camera setup and
particle colors and materials.
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