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Abstract
Examining the efficacy of composite-based structural equation modeling (SEM)
features prominently in research. However, studies analyzing the efficacy of cor-
responding estimators usually rely on factor model data. Thereby, they assess and
analyze their performance on erroneous grounds (i.e., factor model data instead of
composite model data). A potential reason for this malpractice lies in the lack of
available composite model-based data generation procedures for prespecified model
parameters in the structural model and the measurements models. Addressing this gap
in research, we derive model formulations and present a composite model-based data
generation approach. The findings will assist researchers in their composite-based
SEM simulation studies.
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1 Introduction

Research in the social sciences often involves inference about concepts such as atti-
tudes, perceptions, and behavioral intentions. Since such concepts cannot bemeasured
directly, observed variables (also referred to as indicators) are used to represent them
as latent variables (or constructs) in statistical models. Structural equation model-
ing (SEM) has become the standard tool to validate the indirect measurement of
unobservable concepts and analyze complex interrelations between latent variables.
Researchers can choose from two conceptually different approaches to SEM: factor-
and composite-based SEM (Jöreskog and Wold 1982; Rigdon et al. 2017).

In factor-based SEM unobservable conceptual variables are approximated by
common factors under the assumption that each latent variable exists as an entity
independent of observed variables. This latent variable serves as the sole source of the
associations among the observed variables. That is, when controlling for the impact of
the latent variable, the indicator correlations are zero. One of the first and most promi-
nent formulations of factor-based SEM has been established by Jöreskog (1978). On
the contrary, composite-basedSEMrepresents latent variables byweighted composites
of observed variables, assuming each one to be an aggregation of observed variables
(Sarstedt et al. 2016). Although many methods fall into the domain of composite-
based SEM, partial least squares (PLS; Lohmöller 1989; Wold 1982) and generalized
structured component analysis (GSCA; Hwang and Takane 2004) constitute the most
advanced and frequently used approaches in the field (Hwang et al. 2020; Hwang and
Takane 2014).

As factor- and composite-based SEM both try to achieve the same aim – estimating
a series of structural equations that represent causal processes – researchers have rou-
tinely compared their relative efficacy on the grounds of simulated data (Rigdon et al.
2017). However, the studies usually have evaluated composite-based SEM methods
on the grounds of factor model data, where the indicator covariances define the nature
of the data (Sarstedt et al. 2016). These studies univocally show that composite-based
SEM methods produce biased results that typically manifest themselves in measure-
ment model parameters (i.e., indicator loadings and weights) being overestimated and
structural model parameters being underestimated (Goodhue et al. 2012; Lu et al.
2011; Reinartz et al. 2009). However, these results are not considering that the esti-
mated models were misspecified with regard to the data generation process in the
simulation studies—as noted by numerous authors (Marcoulides et al. 2012; Rigdon
2012; Rigdon et al. 2017).1

In fact, very few simulation studies have assessed composite-based SEM using data
that are consistent with the assumptions of the method. We believe that the reason for
the scarcity of research in this field lies in the lack of suitable date generation pro-
cedures. Specifically, while the data generation process for factor-based SEM is well
documented and frequently discussed in the literature (e.g., Reinartz et al. 2002), this is

1 The concepts of factor and composite model data need to be differentiated from reflective and formative
measurement, which refers to the theoretical specification of the constructs on the grounds of measurement
theory (Sarstedt et al. 2016). Regardless of whether researchers use reflective or indicators, composite-based
SEMmethods always compute weighted composites of observed variables to represent conceptual variables
in the statistical model (Hwang et al. 2020).
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not the case with composite-based SEM. Generating data for composite-based simula-
tion studies in an SEM context is challenging because the size of the path coefficients,
which define the strength of relationships between latent variables, are inextricably
tied to the target variable’s coefficient of determination. A composite model-based
data generating process must consider such dependencies. Even though needed for
simulation studies, corresponding procedures have remained nontransparent.

Our research seeks to fill this gap by discussing the specification of covariance
matrices in composite-based data generation, which can serve as input for simulation
studies. Our approach allows researchers to generate data for composite models with
pre-specified indicator weights and path coefficients or coefficients of determination
to assess themethod’s efficacy. The package cbsem (Schlittgen 2019) of the statistical
software R (R Core Team 2019) contains all functions described in the further course
of this article.

2 The composite-basedmodel

Consider two sets of indicator variables, x = (X1, . . . , X p1) and y = (Y1, . . . ,Yp2),
whereby all the variables should be standardized, E(Xi ) = 0 and Var(Xi ) = 1; the
same applies to Yi . The relationships between these two sets of variables are modelled
using composites in the structural model.2 The independent composites ξ use x as
indicators in their measurement models, whereas the dependent composites η employ
the indicators y. Independent composites do not depend on any other composite in the
structuralmodel. Each of the composites η, which result from the y indicator variables,
is dependent and, as such, is regressed on at least one other composite, regardless of
whether it is an independent composite ξ or another dependent composite η. The
number of independent composites is q1, while the number of dependent composites
is q2.

Themeasurement models allow to determine the composites of the structural model
(i.e., their scores) by using a specific set of observed variables as indicators for each
composite. Linear combinations of the x and y indicator variables generate the scores
of each composite. The indicators of ξg build a subvector xg of x, g = 1, . . . , q1.

The corresponding weights vectors are denoted by w(1)
g . ηh has indicators yh with

weights w(2)
h , h = 1, . . . , q2. The parameter vectors are column vectors whereas the

random vectors are row vectors. This formal representation is not very common but
has the advantage that the equations have the same appearance as the corresponding
data matrices’ relations. The weights relations are (Semadeni et al. 2014):

ξ = xW1, (1a)

η = yW2, (1b)

2 In the following, we refer to composites rather than latent variables to denote entities that are conceptual
variables in a statistical model.
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with

W1 =

⎛
⎜⎜⎜⎜⎝

w(1)
1 0 . . . 0

0 w(1)
2 0

...
...

0 0 . . . w(1)
q1

⎞
⎟⎟⎟⎟⎠

, W2 =

⎛
⎜⎜⎜⎜⎝

w(2)
1 0 . . . 0

0 w(2)
2 0

...
...

0 0 . . . w(2)
q2

⎞
⎟⎟⎟⎟⎠

. (1c)

The composites have unit variances, Var(ξg) = 1 and Var(ηh) = 1. This implies

that the weights are standardized, w(1)′
g �xgxgw

(1)
g = 1 where �xgxg is the population

indicators’ matrix of block g. The same applies to w(2)
h .

While themeasurementmodels determine the composites using theweightsW1 and
W2, the structural model provides the relationships between the two sets of indicators
by means of the resulting two sets of composites:

η = ξ�′ + ηB′ + ζ , (2)

The matrix B can be arranged as a lower triangular with zeros on the diagonal for
recursive models, which applies here; ζ is a vector of errors, whereby the errors are
presumed to be uncorrelated and also uncorrelated in respect of the other random
vectors. The formulation with row vectors implies that the transposes of � and B
appear in Eq. (2). The path coefficients in � and B are the parameters of primary
interest. They describe the composites’ interrelations. From the structural model’s
recursiveness, it follows that (I − B′) is regular and a reduced form of Equation (2)
exists:

η = ξ�′(I − B′)−1 + ζ (I − B′)−1 . (3)

3 The covariancematrix of the composites

Establishing the covariancematrix of a pathmodel with composites requires determin-
ing themain parameters. In the structural model, these include (a) the path coefficients,
(b) the independent composites’ correlations, and (c) the dependent composites’ coef-
ficients of determination; in the measurement model, the relevant parameters are (d)
the weights.

The specification of the path coefficients and the coefficients of determination are
interrelated. When path coefficients are of primary concern, the coefficients of deter-
mination result from the structural model requiring uncorrelated errors. Researchers
can establish the covariance matrix of the dependent composites, �ηη, as follows:

�ηη = (I − B)−1��ξξ�
′(I − B′)−1 + (I − B)−1�ζζ (I − B′)−1 (4)

The computationof�ηη employs a nonlinear optimization to determine the diagonal
matrix �ζζ such that the composites have unit variances (Fig. 1).
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Fig. 1 Nonlinear determination of the matrix �ζζ

When specifying the dependent composites’ coefficients of determination a priori,
researchers must determine the path coefficients accordingly. Consider the structural
regression equation for the dependent composite ηc given in Eq. (2):

ηc = ξγ c + η1:c−1β
′
c,1:c−1 + ζc, 1 ≤ c ≤ q2, (5)

Here βc,1:c−1 is the row vector consisting of the first c − 1 elements of row c of B.
η1:c−1 is the vector of the dependent composites related to rows 1 to c − 1 of B. The
coefficients of the composites that do not appear in the regression equation of ηc are
zero. These considerations, together with the covariance matrix�(q1+c−1),(q1+d−1) of
(ξ , η1:c−1) and (ξ , η1:d−1), results in the following equations:

Var(ηc) = (γ c,βc,1:c−1)�(q1+c−1),(q1+c−1)(γ c,βc,1:c−1)
′ + σ 2

ζc
, (6a)

Cov(ηc, ξ) = (γ c,βc,1:q1+c−1)�(q1+c−1),q1, (6b)

Cov(ηc, ηd) = (γ c,βc,1:c−1)�(q1+c−1),(q1+d−1), 1 ≤ d ≤ c. (6c)

These equations provide the relations required to compute the composites’ covariance
matrix.

For simulations that focus on the path coefficients in the structural model, no
further information is needed. Here, the R2 depends on the pre-specified structural
model relationships. In contrast, one determines B a priori to obtain a specific vector
r2 = (R2

1, . . . , R
2
q2) of the dependent composites’ coefficients of determination in the

structural model. More specifically, the coefficient of determination for the regres-
sion of ηc on (ξ , η1:c−1), which is based on Eq. (6c), follows with the assumption
Var(ηc) = 1:

R2
c = 1 − σ 2

ζc
= (γ c,βc,1:c−1)�(q1+c−1),(q1+c−1)(γ c,βc,1:c−1)

′ . (7)

One needs to work through matrixB from row q1+1 to the last one in order to modify
the path coefficients in a way that they arrive at the desired coefficients of determina-
tion. The first part of the covariance matrix is given by �ξξ . After the modification
of the path coefficients in row q1 + c of B, the covariance matrix of the composites
must be augmented by row and column c before the coefficients of row c + 1 can
be modified. Initially, choose the row vector βq1+c as preferred. Subsequently, this
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preliminary value is multiplied by a factor τ , which allows to fulfill Eq. (7):

τ =
√

R2
c

(γ c,βc,1:c−1)�(q1+c−1),(q1+c−1)(γ c,βc,1:c−1)
′ . (8)

4 The covariancematrix of themodels’ indicators

4.1 Computation

The covariance matrix of the indicators is used to simulate the model. With a choice of
�ξξ , the covariancematrix of the x-indicators and the weightsW1 must be determined
so that

�ξξ = W′
1�xxW1 (9)

is fulfilled. This formulation is en par with the general comprehension of composite-
based models as formative measurement (Rhemtulla et al. 2020). Several options
are available to choose �xx and the standardized weights, resulting in a given �ξξ .
For instance, researchers can first deal with each block of indicators of the different
exogenous composites separately, which only requires to ensure the standardization
of the composites. This means that ξg = xgwg ,w′

g�xgxgwg = 1 must be fulfilled.
One can meet this requirement, for example, by setting �xgxg as the identity matrix
and choosing the weights vectors such that w′

gwg = 1. In an alternative approach,
researchers can choose the covariance matrix arbitrarily and subsequently scale it to
fulfill Eq. (9). If the exogenous composites are uncorrelated, one uses �xgxh = 0
for g �= h. In contrast, if two composites are correlated, one must appropriately
select the correlations between the indicators in the two related blocks of indicators.
A straightforward solution uses �xgxh and scales it such that w′

g�xgxhwh = σξgξh .
Becker et al. (2013) used this approach in their study on latent class analysis in PLS.

In the next step, B is given, or must be determined according to the given vector
r2 of the coefficients of determination (Sect. 3). With this information, one can obtain
�ηη as described in Sect. 3. � y y and the weightsW2 are determined in the same way
as the covariance matrix of the X -indicators, using

�ηη = W′
2� y yW2 . (10)

The covariances of the exogenous and the endogenous composites can be used to
determine �x y. First, from Eq. (1) it follows that:

�ξη = W′
1�x yW2 (11)

whereas Eq. (3) leads to:

�ξη = �ξξ�
′(I − B′)−1 . (12)
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Fig. 2 Setting up the covariance matrices

The combination of these two equations provides a necessary condition that must be
fulfilled:

W′
1�x yW2 = �ξξ�

′(I − B′)−1 . (13)

Choosing the covariance matrix �x y as

�x y = �xxW1�
′(I − B′)−1�−1

ηη W
′
2� y y (14)

permits to meet the requirement of Eq. (13). To arrive at this result, it is necessary to
insert this expression into the left-hand side of Eq. (13) and to consider the relations
for the covariance matrices of the composites. Figure 2 offers a quasi-code for the
computation of the covariance matrices of the indicators. Equation (14) ensures that
Eq. (13) is fulfilled. In special constellations other solutions may exist for the given
matrices W1, W2 and �ξη. In any case, the resulting covariance matrices of the
composites are the same. Therefore, a possible non-uniqueness does not affect the
estimated results of the structural model.

4.2 Example

In the following, we present an example to illustrate how to establish the covariance
matrix of the indicators. We consider the following structural model, which includes
three independent and three dependent composites and their three partial regression
models with pre-specific coefficients for the data generation propose:

(η1, η2, η3) = (ξ1, ξ2, ξ3)

⎛
⎝

γ11 0 0
γ12 γ22 0
0 γ23 0

⎞
⎠ + (η1, η2, η3)

⎛
⎝
0 0 β31
0 0 β32
0 0 0

⎞
⎠ + (ζ1, ζ2, ζ3).

The covariance matrix of the independent composites and the coefficients of determi-
nation of the regressions for the independent composites are set to:

�ξξ =
⎛
⎝
1 0.4 0.1
0.4 1 0.3
0.1 0.3 1

⎞
⎠ , r2 = (

0.8 0.7 0.6
)
.
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The pre-specified path coefficients are γ11 = γ22 = 0.6, γ12 = γ23 = 0.5, β31 =
β32 = 0.4.

The next step in determining the covariance matrix of composites is to recalculate
the path coefficients. First, one needs to consider the regression model η1 = γ11ξ1 +
γ12ξ2 + ζ1. Based on Var(η1) = γ 2

11 + γ 2
12 + 2γ11γ12Cov(ξ1, ξ2) + Var(ζ1) = 1 it is

possible to obtain Var(ζ1) = 0.15. In order to achieve R2
1 = 1 − Var(ζ1) = 0.8 the

coefficients γ11, γ12 are multiplied by τ = √
0.8/0.85. The second regression model

η2 = γ22ξ2 + γ23ξ3 + ζ2 results in Var(ζ2) = 0.21. From this, one derives the factor
τ = √

0.7/0.79. Up to this point themodified path coefficients are: γ11 = 0.582,γ12 =
0.485, γ22 = 0.565, γ23 = 0.471.

Computing the factor of the third regression computation requires researchers to
establish the covariance matrix of (ξ , η1, η2). Equations (6a) to (6c) result in:

Cov(η1, ξ) = (
0.776 0.718 0.204

)

Cov(η2, ξ) = (
0.273 0.706 0.640

)

Cov(η1, η2) = (
0.565 0.471 0

)
⎛
⎝
1 0.4 0.1 0.776
0.4 1 0.3 0.718
0.1 0.3 1 0.204

⎞
⎠

⎛
⎜⎜⎝

0
0.565
0.471
0

⎞
⎟⎟⎠ = 0.501 .

Based on these covariances, one proceeds as with the first two regressions. This gives
the factor τ = √

0.6/0.346. Subsequently the matrices � and B are:

� =
⎛
⎝
0.582 0.485 0
0 0.565 0.471
0 0 0

⎞
⎠ , B =

⎛
⎝

0 0 0
0 0 0

0.447 0.447 0

⎞
⎠ .

Next, the computation of the complete covariance matrix of the composites, again,
uses Eqs. (6a) to (6c).

Finally, the indicators’ covariance matrix is determined on the basis of previously
established parameters. For this purpose, we build on the results already obtained in
Step 1 of Fig. 2. For the next Step 2, let

K =
⎛
⎝
1 0.3 0.2
0.3 1 0.2
0.2 0.2 1

⎞
⎠ , �xx =

⎛
⎝
K 1 1
1 K 1
1 1 K

⎞
⎠ and W1 =

⎛
⎝
w1 0 0
0 w2 0
0 0 w3

⎞
⎠

where 1 is a 3×3 matrix of ones, w1 = (0.4, 0.5, 0.6)′ and 0 a vector of zeros.
First, W1 has to be standardized. This is done by computing w1/

√
f with f =

w′
1Kw1 = 1.106, and by substituting the new vector for the old w1. w2 and w3 are

standardized analogously. Subsequently, blocks of ones in �xx have to be changed
such that the covariances in�ξξ are recovered. For example, to obtain σ13 = 0.469, the
ones in the first three rows and the last three columns are modified to 0.469/(w′

11w3).
Analogously, one obtains the matrixW2 by considering �ηη. Finally, �x y is com-

puted using Eq. (14). As a result, one receives the complete covariance for data
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generation. Based on this covariance matrix follows the data generation as explained
in the following section.

5 Data generation

The covariance matrix can be used to generate a dataset for composite model-based
simulation studies. This is particularly easy when the indicators are normally dis-
tributed. Then a (n, p1+ p2) matrix of independent standard normal random variables
is generated and multiplied from the right by the Cholesky factor of the covariance
matrix. On the other hand, several suggestions exist for generating data from non-
normal distributions with pre-specified parameters. For instance, Vale and Maurelli
(1983) extended the Fleishman (1978) method to generate multivariate random num-
bers with specified intercorrelations and univariate means, variances, skewness values,
and kurtoses. To begin with, they produce a suitably sized matrix of independent, nor-
mally distributed random numbers. Then, they subsequently compute the Fleishman’s
transformation coefficients and use them an intermediate correlation matrix from the
desired indicators’ correlation matrix. A principal components factorization allows to
obtain the intermediate correlation matrix. The resulting factor is multiplied with the
matrix of independent normally distributed random numbers. Finally, the component-
wise application of the Fleishman transformation follows to generate the indicator
data.

This method was used for a small simulation experiment to compare the estimates
of GSCA and PLS. The experiment changes the generated indicator data’s levels of
skewness

√
β1 and excess kurtosis β2. These levels correspond to normal, Laplace,

exponential and t5-distributions (although the empirical values of the kurtosis are
smaller than those of the target ones). We used the model of the example in Sect. 4
to generate 50 samples of size n = 100 for each distribution. Schlittgen’s (2018)
gscals (i.e., for GSCA) and plspath (i.e., for PLS) implementations have been

Fig. 3 Deviation of estimated coefficients frommodel coefficients for different distributions (left: gscals,
right: plspath)
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used to obtain the model estimation results. Figure 3 shows the differences between
the estimates and the path coefficients used for the simulation.

The results show that the normal data situation does not produce different results
compared to the other distributions.Overall, the differences between the twoestimation
methods’ results are marginal. However, the GSCA results are a bit closer to pre-
specified value (higher precision) while the PLS estimates are more closely grouped
around the pre-specified value (higher robustness).

6 Conclusion

The data generation of pre-specified models is an important issue in composite-based
SEM, especiallywhen conducting simulation studies. Reinartz et al. (2002) investigate
the simulation of common factor-basedmodels when the latent variables are generated
first. This is a sensible approach in these models, but not in composite-based ones
since they comprise linear combinations of indicators (Sarstedt et al. 2016). Their
distributions, therefore, depend on the distributions of the indicators and will be nearer
to the normal distribution if the weights do not deviate strongly from each other.

This article contributes to the literature on SEM by discussing properties of data
generation in composite-based models. The pre-specified model parameters allow to
obtain the indicators’ covariance matrices to be used as input for data generation.
Furthermore, we offer an example of nonnormally distributed indicators using Vale
and Maurellis’ (1983) approach.

Our findings are important for researchers who run simulation studies to compare
the efficacy of existing, expanded, and newly developed algorithms for the estimation
of composite-based SEM models. Also, researchers who like to analyze methodolog-
ical extensions for composite-based SEM—such as the efficiency of existing and new
segmentation algorithms (e.g., Schlittgen et al. 2016)—will take advantage of this
research. Future research should further evaluate our approach, for example, in terms
of more extreme forms of nonnormality or multimodal distributions. A promising
extension would be to adjust the approach to accommodate nonlinear relationships
whose use has gained momentum in applications of composite-based SEM (Sarstedt
et al. 2020).
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