
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:11480  | https://doi.org/10.1038/s41598-021-90294-4

www.nature.com/scientificreports

Domain adaptation 
for segmentation of critical 
structures for prostate cancer 
therapy
Anneke Meyer1*, Alireza Mehrtash2, Marko Rak1, Oleksii Bashkanov  1, Bjoern Langbein2, 
Alireza Ziaei2, Adam S. Kibel3, Clare M. Tempany2, Christian Hansen1 & Junichi Tokuda2

Preoperative assessment of the proximity of critical structures to the tumors is crucial in avoiding 
unnecessary damage during prostate cancer treatment. A patient-specific 3D anatomical model 
of those structures, namely the neurovascular bundles (NVB) and the external urethral sphincters 
(EUS), can enable physicians to perform such assessments intuitively. As a crucial step to generate a 
patient-specific anatomical model from preoperative MRI in a clinical routine, we propose a multi-class 
automatic segmentation based on an anisotropic convolutional network. Our specific challenge is to 
train the network model on a unique source dataset only available at a single clinical site and deploy it 
to another target site without sharing the original images or labels. As network models trained on data 
from a single source suffer from quality loss due to the domain shift, we propose a semi-supervised 
domain adaptation (DA) method to refine the model’s performance in the target domain. Our DA 
method combines transfer learning and uncertainty guided self-learning based on deep ensembles. 
Experiments on the segmentation of the prostate, NVB, and EUS, show significant performance gain 
with the combination of those techniques compared to pure TL and the combination of TL with simple 
self-learning ( p < 0.005 for all structures using a Wilcoxon’s signed-rank test). Results on a different 
task and data (Pancreas CT segmentation) demonstrate our method’s generic application capabilities. 
Our method has the advantage that it does not require any further data from the source domain, 
unlike the majority of recent domain adaptation strategies. This makes our method suitable for clinical 
applications, where the sharing of patient data is restricted.

Prostate cancer (PCa) is the most common cancer among men and one of the leading causes of cancer death in 
the United States and other developed countries1. Radical prostatectomy is commonly performed as a primary 
treatment option for PCa, which removes the entire prostate gland regardless of the location of the lesion. Despite 
their oncologic effectiveness, increasing use of radical treatments among low- and intermediate-risk patients 
has raised a concern about overtreatment and unnecessary risk of complications2,3. Studies have shown that 
preservation of the neurovascular bundles (NVB) and the external urethral sphincter (EUS) are associated with 
improved postoperative recovery from impotence and incontinence4,5.

With the widespread use of advanced MRI techniques and robot-assisted laparoscopic prostatectomy (RALP), 
it has become possible to evaluate the involvement of these critical structures in the tumor prior to surgery and 
spare them to reduce the risk of complications and recovery time5,6.

To facilitate decision-making based on preoperative MRI, researchers have been investigating the impact 
of patient-specific 3D models7. Those models typically include the prostate gland, tumor, NVB, and other sur-
rounding structures, and are presented on a computer display or as a 3D printed model (Fig. 1). Compared to 
reviewing raw MRI and text reports written by radiologists, the 3D model allows understanding the proximity 
of the tumor to the critical structures more intuitively. Therefore, they can serve as a tool for surgeons to decide 
whether to spare the critical structures, as well as for patient information. Despite the growing clinical interest 
and the availability of 3D visualization software and/or 3D printing technologies, patient-specific 3D models are 
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not routinely used in part due to the lack of robust automatic segmentation of the relevant anatomical structures 
on preoperative MRI.

There have been several efforts to automatically segment the prostate and tumor using deep learning (DL)8. 
However, these techniques have not fully addressed the clinical need due to several issues. First, the prior stud-
ies are focused primarily on either the prostate gland or the tumor and have not included structures relevant to 
surgical planning, such as the NVB and EUS, partly due to the limited availability of training data that contain 
expert segmentation of those structures. Second, DL models trained for a specific dataset (source data) often do 
not perform well on a second independent dataset (target data) due to the large domain shift (i.e., differences 
in types of coils, field strength, and MRI parameters). This second issue is particularly critical when the expert 
segmentation is only available for a small portion of the data. Third, even though it is possible to transfer a model 
from one dataset to another using domain adaptation (DA) techniques9, the majority of those techniques require 
that both source and target data are available. This requirement often becomes a burden, when the model is 
deployed among multiple institutions while the access to the source data is limited due to the privacy concern.

Therefore, methods that relax the requirement of source data need to be explored. A trained model is less 
restrictive and easier to share; compared to data from the source domain. Several deployment services exist, that 
allow sharing the model architecture and weights without the training data for further reuse10,11. The concept of 
federated learning12 also exploits the fact that DL models are easier to share than their training data.

This study aims to make automatic segmentation more clinically applicable as a tool to aid the surgical plan-
ning process. Specifically, we propose the combination of transfer learning and semi-supervised learning for DA. 
While both learning techniques have been successfully applied to reduce the amount of labeled data, to the best 
of our knowledge, they have not been combined for the DA in medical image segmentation yet. In this study, 
we demonstrated: (1) automatic segmentation of structures relevant to surgical planning, including total gland, 
NVB, and EUS; and (2) a new DA technique to adapt a convolutional neural network (CNN) model trained on 
our source dataset to another target dataset acquired at a different institution, with only the source model and 
no source data available.

Related work
Segmentation of prostate and substructures.  A variety of MRI prostate segmentation algorithms 
have been proposed13. The majority of recent publications involve CNNs based on the U-Net either in its 
2D14 or 3D variant15. In the context of prostate segmentation, the CNNs have been extended by adapting deep 
supervision16–18 and a multi-planar input19 and multi-stream architecture20. More recently, residual as well as 
long and short connections between the layers17,21–23 are used to improve performance. Dense connections that 
enhance feature reuse and propagation have also been shown to improve performance24–29. Furthermore, the 
segmentation can be formulated as a regression task30. The authors combined a 3D shape model with a con-
volutional regression network, where the network is used to obtain the distance from the surface mesh to the 
corresponding boundary point of the prostate in the image.

Figure 1.   An example application of 3D segmentation of the prostate and adjacent structures for surgical 
planning. The prostate gland, neurovascular bundle (NVB), external urethral sphincter (EUS), and tumor 
are manually segmented on the preoperative T2-weighted MRI (A, B) by a radiologist, and then converted 
to a 3D surface model (C). The model can also be 3D-printed (D) for surgical planning, and preoperative 
communication with the patient.



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:11480  | https://doi.org/10.1038/s41598-021-90294-4

www.nature.com/scientificreports/

In contrast to prostate gland segmentation, less research focused on its internal and adjacent structures. NVB 
has only been segmented manually on MRI for registration of MR and transrectal ultrasound (TRUS) images31. 
A recent study addresses the segmentation of the distal prostatic urethra in a multi-class segmentation with 
the zonal anatomy of the prostate32. Another study used radiomics features to segment the peripheral zone and 
the prostatic urethra33. No research has been carried out on the automatic segmentation of the EUS that we are 
aware of currently.

Domain adaptation and generalization.  Deep learning models often fail to achieve robust segmenta-
tion in a different domain, making it difficult to be deployed in a wide variety of clinical settings. This is particu-
larly true for studies that require highly-specialized labeled data that is only available in small portions. Several 
strategies have been used to overcome this challenge, including DA34 and domain generalization (DG). In the 
following, we will denote images from the source domain as XS and images from the target domain as XT . Simi-
larly, we denote labels from the source domain as Ys and from the target domain as YT.

DG is a strategy to improve the robustness of neural networks on unseen domains. In contrast to the DA 
techniques, DG does not require any data from the target domain. Instead, it trains a robust model on a large 
amount of source data. Intensive data augmentation of XS and YS has been shown to improve the generalization 
capacity of the network with stacked augmentation transforms35. For prostate segmentation, a performance close 
to the state-of-the-art fully-supervised methods on the target domain was achieved when data augmentation 
was applied to a large source set ( |(XS ,YS)| > 450 ). Another DG method applied shape-aware meta-learning 
to prostate segmentation with promising results compared to other DG techniques36—with the downside, data 
from multiple source domains need to be available.

Compared to DG, more recent works have been published in the field of DA. DA is the strategy to transfer the 
source model to the target domain with no (unsupervised) or little labeled data and a larger amount of unlabeled 
data (semi-supervised). For a detailed overview about deep domain adaptation research in medical images, we 
refer to the very recent survey by Guan et al.37. Unsupervised DA gained growing attention in recent years with 
the advance of generative adversarial networks (GANs)38. Adversarial DA applies one or multiple discriminator 
networks to align the distributions of either the input space at image level, e.g., with CycleGANs39–41, the fea-
ture space9,42, or the output space (segmentation)43,44. Furthermore, combinations of these concepts have been 
proposed, e.g. by Chen et al.45. Techniques, that have been originally introduced for semi-supervised learning 
(SSL), have also been investigated in the context of unsupervised DA. For example, teacher–student models have 
been used to apply a consistency loss on unlabeled data for spinal cord gray matter segmentation on MRI46 and 
vessel segmentation on retinal fundus images47. Another approach combines self-learning with adversarial learn-
ing that minimizes discrepancies between feature spaces of XS and XT for optical coherence tomography layer 
segmentation48. The segmentation loss and the self-learning curriculum are furthermore guided by uncertainty 
estimation with a conditional variational auto-encoder. Similarly, methods exist that exploit labeled source and 
limited labeled target data ( XT ,YT ), as well as unlabeled target data for semi-supervised DA with a combination 
of teacher–student models, CycleGANs and uncertainty guidance induced by Monte Carlo dropout49.

A common challenge for medical image segmentation is that the source data—either XS or YS—are not always 
available due to regulations and/or institutional policies on protected health information (PHI), despite all the 
DA techniques described above require them. Only few works exist, that target this limitation and do not require 
any images or labels from the source domain. Karani et al.50 proposed semi-supervised DA by fine-tuning only 
batch normalization layers for the adaptation to a new domain. Their method requires, however, that data from 
multiple source domains are available for training the source model. Bateson et al. propose unsupervised DA 
for segmentation through entropy-minimization and prior knowledge regularization51. A recent study by Xia 
et al. applied multi-view co-training to multi-organ segmentations in CT datasets52. Furthermore, an older but 
well-established (supervised) DA strategy that relaxes the need for source data, is transfer learning, also known 
as fine-tuning53. For brain lesion segmentation in MRI, the amount of labeled target data could be considerably 
reduced when the model was initialized with the weights from the source domain and only a limited number of 
layers was trained on target data54. The same effect has been utilized for multiple sclerosis lesion segmentation55 
and pathological structure segmentation56.

While transfer learning is easy to apply and proven effective, a gap between the actual and desired per-
formance remains, especially when only a few labeled target samples are available. To further optimize the 
performance of transfer learning, we propose to combine SSL with uncertainty-guided self-learning to exploit 
the information the additional unlabeled images offer. This is inspired by57, who found that self-learning is the 
preferred choice of SSL for transfer learning for classification tasks. However, to the best of our knowledge, no 
such strategy has been used to address a segmentation or a DA task.

Contributions.  We propose a semi-supervised DA pipeline and applied the method to segment the prostate 
and critical structures to aid surgical planning. Our main contributions are:

•	 We investigate the automatic segmentation of the prostate, the EUS and NVB for radical prostatectomy on 
preoperative MRI. To the best of our knowledge, the EUS and NVB have not been segmented automatically 
yet.

•	 We address the problem of domain shift for this task by proposing a semi-supervised DA pipeline. This allows 
us to perform robust segmentation of the prostate and the critical structures on MRIs acquired outside the 
institution in which source training data were acquired.
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•	 The proposed pipeline is simple yet effective, does not require the source images and labels, and can be easily 
adapted to other problems and data. We demonstrate its generic application in additional experiments on 
pancreas segmentation in CT scans.

Methods
We split our methods section into two parts. First, we describes our supervised training strategy in the source 
domain. Second, we outline the proposed semi-supervised domain adaptation method.

Supervised learning.  The supervised leaning uses a labeled dataset Dl = {xi , yi}
n
i=1 . For each image xi from 

X ∈ R
H×W×D , there exists a ground truth segmentation map yi from Y ∈ {0, 1}H×W×D×C , where W, H, D are 

the dimensions of the volume and C defines the number of class labels. In our case, C = 4 due to the classes 
prostate, EUS, NVB and background. The network f (·) proposed in this section makes a prediction pi for an 
input sample xi , given the learned parameters θ in training, such that

with pi ∈ [0, 1]H×W×D×C . Due to the strong anisotropy of the MR scans (high slice thickness), our supervised 
method uses an adapted 3D U-Net32, which deploys anisotropic MaxPooling in the encoder and anisotropic 
upsampling in the decoder (see “Appendix 1” for details). We use a network with 16 filters in the first layer and 
128 in the bottom-most layer. The last layer of the network uses the softmax activation function and produces a 
four-channel output for prostate, EUS, NVB and background.

Deep ensembles.  Network ensembles have been shown to create more robust results than single networks58,59. 
They leverage different minima that CNNs can obtain because networks are subject to randomness during train-
ing. In our setting, we employ random parameter initialization, random mini-batches generation during train-
ing and different random training/validation splits to increase the local minima variability. We use an ensemble 
of k models and obtain a mean prediction PE of them.

Post‑processing.  In the first post-processing step, the prediction of the network is thresholded to create a binary 
prediction. The output is further post-processed with connected components analysis for the EUS and the pros-
tate to ensure topological correctness. The connected component analysis is not applied to the NVB because 
NVB voxels are not always adjacent in neighboring slices due to the high slice thickness. A connected compo-
nent analysis would, therefore, risk discarding actual NVB segments.

Network training.  We trained our network with the negative Dice Similarity Coefficient (DSC) loss function for 
multi-class segmentations (see “Appendix 2” for details). The Adam optimizer60 with a learning rate of 1e−03 was 
employed. The network was trained for a maximum of 300 epochs with learning rate decay and with a batch size 
of 2 on an NVIDIA TitanX GPU. Early stopping was applied if the validation loss did not decrease for 40 epochs. 
The total number of trainable parameters for the proposed model was 3,197,028.

Domain adaptation.  Our goal is a source-relaxed DA technique composed of two learning concepts: (I) 
transfer learning as the first stage of DA, and (II) self-learning as a second stage to obtain more information 
about the distribution of the target domain. To reduce the confirmation bias of self-learning, we propose to use 
deep ensembles for better segmentation candidates and uncertainty-guidance. In the following, we will describe 
our proposed method in detail. A summary of the concept of our proposed semi-supervised DA pipeline is 
depicted in Fig. 2.

For our DA, we have only the source model f (θS) and our target dataset DT available. As we apply semi-
supervised DA, our target dataset consists of n labeled volumes DT ,L = {xi , yi}

n
i=1 and m unlabeled volumes 

DT ,U = {xi}
m
i=n+1.

Stage I: Transfer learning.  In our scenario, we find large differences in the shape and appearance of the struc-
tures between the source and target datasets due to using an endorectal coil in the source dataset. The shape, 
location, and appearance of the structures-to-segment, particularly the NVB, are changed substantially because 
of the pressure from the endorectal coil in the source dataset (Fig. 3a, b). For this reason, we propose to have a 
small amount of labeled pairs ( n ≤ 10 ) in the target domain available.

With the labeled pairs of (XL,YL) ∈ DT ,L , we fine-tune our source model f (θS) to a model adapted to the 
target domain f (θT ) . As we only have a minimal amount of labeled images, we fix the weights of the decoder 
and only fine-tune the encoder and the bottom layer weights of the source model. In preliminary experiments 
on the validation set, this has been working best for a small training dataset.

We fine-tune the models with a reduced learning rate (compared to the fully supervised method) of 1e−04 until 
convergence. We apply early stopping if the validation loss did not decrease for 30 epochs. The model weights 
which give the best validation performance during training is used for the subsequent self-learning.

Stage II: Uncertainty‑guided self‑learning.  The transfer learning can be considered as a warm-up phase for the 
self-learning routine. The fine-tuned model f (θT ) is used to make predictions for the unlabeled data XU ∈ DT ,L . 
We post-process these predictions (thresholding and connected components analysis) to improve the segmen-
tation quality. The obtained binary pseudo labels YU are then fed together with the n labeled images as initial 

pi = f (xi , θ)
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pseudo labels into the self-learning stage. Self-learning consists of the cycle of label propagation and retraining 
the model weights ( f (θ ′T ) ) with the newly generated pseudo labels until the performance on validation data does 
not improve any further. Typically, three to five iterations have to be carried out. In contrast to transfer learning, 
in the self-learning training procedure, all weights are trained.

For specific voxels of the unlabeled images, no label is given because either none of the classes is above the 
threshold applied during post-processing or the label has been removed through connected components analysis. 
Hence, we modify the loss function to account only for voxels that have any label given. We propose to use a 
partial Dice loss defined as:

where Y = YU ∪ YL and Mi being defined as:

The parameter wi is a coefficient that weighs the influence of samples on the training. The higher wi , the higher 
the influence of the samples is. Too high values of wi for pseudo label samples can lead to a confirmation bias, 
when too many pseudo label voxels are misclassified, resulting in declined performance on unseen test data. 
Too small wi for pseudo label samples may overemphasize the influence of the real ground truth samples, result-
ing in too little information from the unlabeled data for the gradient update. In this case, the model potentially 
overfits on the small amount of ground truth labels. In our experiments on the validation set, we found w = 0.5 
for pseudo labels and w = 1.0 for ground truth labels to be the best setting.

pLoss = −
1

|C|

∑

c∈C

wi2
∑N

i Pc,iYc,iMi
∑N

i Pc,iMi +
∑N

i Yc,iMi

M =

{

0,
∑

C Yc,i = 0
1,

∑

C Yc,i > 0

Figure 2.   Proposed pipeline for the DA. The ensemble of k models is trained in the source domain with the 
labeled source data. Subsequently, these models are domain adapted by transfer learning with the little labeled 
data from the target domain and furthermore refined with the self learning routine that includes ensemble-
based pseudo labels and entropy guidance.

Figure 3.   Example images of (a) intraoperative endorectal coil acquisition and (b) diagnostic pelvic coil 
acquisition. segmentation of the prostate (green), NVB (brown) and EUS (yellow) are overlayed. It can be 
seen that the shape, appearance and location of NVB varies as the endorectal coil compresses the tissue during 
acquisition.
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Deep ensembles.  We propose to use k models for better pseudo label generation. We take the mean of the 
ensemble predictions µU for final prediction outcomes:

Please note that θ can be either θT (for initial pseudo labels at the beginning of the self-learning stage), or 
θ ′T (for the pseudo labels during the self-learning cycle). The mean µU is post-processed to obtain the binary 
pseudo labels YU.

Uncertainty weighting.  Deep ensembling is not only used to improve segmentation accuracy but can also be 
considered as a mean to estimate the uncertainty measure for the segmentation maps61. Hence, we utilize the 
entropy of ensemble predictions for a sample-wise uncertainty weighting for our loss function to reduce the 
impact of low quality pseudo labels. The entropy is computed as:

The case-based entropy is then normalized as:

For our method with uncertainty-weighting, the sample weights for labeled data are wi = 1 and the weight 
for the pseudo-label samples is set to wi = 1−Hi . We used an ensemble of k = 5 models for the uncertainty 
generation.

Data.  For the evaluation of our method, we use multiple datasets that we will describe in the following. To 
evaluate our method for the critical structure segmentation for prostate cancer therapy, we used two datasets, 
that represent the source and target dataset for this task. For investigating the generalization capability of our DA 
framework, we used different abdominal CT datasets as source and target data.

Prostate MRI.  Source data:.  Sixty-two patients who were scheduled for robot-assisted laparoscopic prosta-
tectomy (RALP) underwent preoperative multiparametric MRI in a 3-T MR imager (Signa HDxt 3.0 T; GE 
Healthcare, Milwaukee, Wis) with both endorectal (Medrad, Warrendale, Pa) and pelvic phased-array coils. As 
part of the protocol, an axial multi-slice T2-weighted image was acquired using a 2D turbo spin sequence with 
an in-plane spacing of 0.27× 0.27 mm and a slice thickness of 3 mm. The retrospective analysis of preoperative 
multiparametric MRI data for this study was approved by the institutional review board of the hospital (Brigham 
and Women’s Hospital, Boston, MA, USA) and is in accordance with relevant guidelines and regulations (Health 
Insurance Portability and Accountability Act). All the subjects were given written informed consent prior to 
enrollment. In the following, we will refer to this dataset as the BWH dataset. The gland, NVB, and EUS were 
manually segmented by Reader 1, an expert radiologist (C.M.T.), using the Editor tool on 3D Slicer62. For evalu-
ating the inter-reader variability and the performance of the automatic segmentation, a second label dataset was 
created by Reader 2, a research fellow with a medical background and two years of experience in reading prostate 
MRI (A.Z.). For training, only the manual labels of Reader 1 were used as target labels YS.

Target data:.  For DA, we used the Prostate-3T dataset63. The dataset consists of 64 axial T2w scans that were 
acquired on a 3T Siemens TrioTim using only a pelvic phased-array coil. The slice thickness varied between 3.0 
and 5 mm and the spacing was between 0.5 and 0.625 mm. We selected 25 scans from this dataset for which 
either segmentations of NVB or peripheral and transition zone of the prostate are available through the NCI-
ISBI 2013 challenge64 and the Cancer Imaging Archive65. The prostate segmentation for the NCI-ISBI 2013 chal-
lenge is defined as the union of transition and peripheral zone segmentations. A medical student (B.L.) outlined 
the structures that were not provided by any of these two ground truth sources. In the end, for each of these 25 
volumes, a three-class segmentation existed.

Training, validation and test split:.  The data of the source domain was split into training (n = 46) and test data 
(n = 16). The test data has been held out from the experiments until the final evaluation of the methods. The 
source training data was split in a five-fold-cross-validation manner resulting in about 36 training images and 
10 validation images. The performance of the method for each fold was computed on the 16 hold-out test cases 
of the BWH dataset.

For the target dataset, the scans were split into labeled training ( n = 15 ) and held-out test data ( n = 10 ). 
We carried out three-fold cross-validation on the training data and evaluate the performance of the method 
for each fold on the test cases to obtain robust estimate of the method’s performance for different training data 
distributions. We use n = 5 and n = 10 labeled training and five validation images (as determined by the fold 
split) as well as the remaining unlabeled images of the dataset for our semi-supervised DA. We empirically set 
the lowest number of labeled training samples to n = 5 , because the method should see some variance in the 
provided labeled dataset (e.g., organ size, relationship of the organ-to-segment and surrounding organs, diseases, 

µU =
1

k

k
∑

i=1

f (x, θk)

Hi = −

c
∑

i=1

µc logµc

Hi =
Hi

maxi Hi
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imaging contrasts, noise, bias fields etc.). However, it should be possible to run the method with even less number 
of labeled training samples, but presumably the results’ quality will decrease in this scenario.

Pre‑processing and augmentation:.  All volumes were resampled to a spacing of 0.5 × 0.5 × 3.0  mm. A 
bounding box ROI of the prostate was extracted from the center of the volume by cropping the volume to a size 
of 184 × 184 × 32 . Prior to normalization of image intensity to an interval of [0,1], the intensities were cropped 
to the first and 99th percentile. The training data was augmented by left-right flipping of the volume.

Pancreas CT.  Source data:.  For the source domain, we used two abdominal datasets: the TCIA Pancreas-
CT dataset65–67 and the Beyond the Cranial Vault Abdomen dataset68,69 (BTCV). In the TCIA dataset, contrast 
enhanced 3D CT scans at the National Institutes of Health Clinical Center (Bethesda, MD, USA) from pre-
nephrectomy healthy kidney donors were acquired. The BTCV dataset was acquired during portal venous con-
trast phase at the Vanderbilt University Medical Center (Nashville, TN, USA) from metastatic liver patients 
or post-operative ventral hernia patients. We used the publicly available segmentations70 for the TCIA dataset 
(n = 47) and the BTCV abdomen dataset (n = 42) as our source training data.

Target data:.  The dataset for the target domain was derived from the Medical Segmentation Decathlon 
Challenge71 (MSD). The dataset consists of portal venous phase CT scans that were acquired from patients 
undergoing resection of pancreatic masses at Memorial Sloan Kettering Cancer Center (New York, USA). 281 
labeled cases are publicly available in this challenge dataset. For the pancreas segmentation, the domain shift is 
not only limited to differences in image appearance, but additionally covers the different distributions of healthy 
pancreas (source domain) and cancerous pancreas (target domain).

Training, validation and test split:.  We split the source domain into 14 test cases and 75 training cases. For the 
latter we perform 5-fold cross validation (60/15 training/validation split) to obtain five models in the source 
domain. For the target dataset we set the same 81 cases as hold-out test cases as in52, the remaining 200 cases 
were used as training cases for the target domain. For the fully supervised target domain model we used a train-
ing/ validation split of 80%/20%, which results in 160 training and 40 validation cases. For our semi-supervised 
domain adaptation, we randomly selected n = 10 and n = 5 labeled scans for training and 10 labeled scans for 
validation from the respective set. The remaining training images were used as unlabeled training input. We 
repeat the random selection of subsets three times, to reduce the bias that small subsets can have on the model 
performance.

Pre‑processing and augmentation:.  The scans are resampled to a common spacing of 1.0× 1.0× 3.0 mm and 
cropped to a ROI of [200, 128, 48] surrounding the GT pancreas segmentation. The intensities are first clipped 
to a range of [−300, 300] and subsequently normalized to zero mean and unit variance. We applied random 
geometric (translate, scale) and intensity (Gaussian noise, Gaussian blurring) transformations as online aug-
mentations.

Evaluation measures.  We evaluated our approaches with the DSC and the average boundary distances 
(ABD) between surface points of both volumes. DSC is defined as:

with X being the predicted and Y being the ground truth voxels. The ABD is defined as:

where XS and YS are the sets of surface points of the predicted and the ground truth segmentation and dist is the 
Euclidean distance operator.

Results
Supervised learning.  The results for the automatic segmentation of prostate, EUS and NVB are compared 
against Reader 1 in Table 1. We evaluated the average performance of the folds for a single network (sCNN), 
the performance of the ensembling of models (eCNN) as well as the manual performance of a second reader in 
comparison to the first reader who created the ground truth segmentations.

The average performance of sCNN across the folds are DSCs of 0.877, 0.648 and 0.558 for prostate, EUS, and 
NVB. The ensemble eCNN improved the results to DSCs of 0.893, 0.683, and 0.583. Both approaches obtain 
better results compared to the inter-reader evaluation, which only achieved DSCs of 0.863, 0.465, and 0.546 for 
the prostate, EUS and NVB, respectively. Although the DSC values for EUS and NVB may appear quite low, the 
results’ quality is better than expected from these values. As overlap-based metrics generally have lower values 
for smaller structures, we refer to the ABD values for interpretation. The ABD for the NVB was 1.27 mm and 
1.36 mm for the EUS for eCNN. Visual inspection supported these findings.

To quantify the effect of the domain shift of our source model’s performance in the target domain, we apply 
the single network (sCNN) to the Prostate-3T data. Average results for this experiment can be found in Table 2. 

DSC =
2|X ∩ Y |

|X| + |Y |
,

ABD(XS ,YS) =
1

|XS| + |YS|
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

�

x∈XS

min
y∈YS
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The DSC for the prostate decreases from 0.877 on BWH data to 0.638 on Prostate-3T data. Similarly, the DSC 
for EUS decreases from 0.648 to 0.291 and the DSC for NVB drops from 0.558 to 0.177.

Domain adaptation.  We assess the segmentation quality for training from scratch, transfer learning and 
our semi-supervised DA technique. Additionally, we performed an ablation study to evaluate the impact of the 
ensembling of models (ENS) and the uncertainty-weighting (H). Example outcomes are shown in Fig. 5. The 
quantitative results are summarized in Table 2 with box-plots of their DSC’s distribution in Fig. 4 with correp-
sonding p values (Wilcoxon signed-rank test).

For n = 5 , we found that the mean DSC increased with each step of our proposed pipeline for the data of our 
target domain. For the prostate, the mean DSC was 0.694 after training from scratch on the five labeled images. It 
increased to 0.814, 0.843, 0.849, and to 0.855 with transfer learning (TL), the additional self-learning (TL + SL), 
the ensemble-based self-learning without uncertainty (TL + ENS), and with uncertainty (TL + ENS + H), respec-
tively. When applying majority voting of the ensemble that resulted from TL + ENS + H, the results could further 
be improved to a DSC of 0.865 for the prostate. Similar to the prostate, we could also observe improvements for 
NVB and EUS with each step of our domain adaptation pipeline.

Also for n = 10 , improvements through the self-learning (SL) and ensembling (ENS) components are noted 
in the results. For this setting, though, the incorporation of entropy (H) as uncertainty guidance did not contrib-
ute to any improvement. We assume, that the model predictions together with their post-processing are already 
good enough for the self-learning.

Similar to transfer learning, variants of uncertainty-guided self-learning has been proposed as state-of-the-
art method, e.g. by Wang et al.48 for (unsupervised) domain adaptation. Because the works described in the 
literature need the data from the source domain to be available, we evaluated our variant of uncertainty-guided 
self-learning (ENS + H) without the TL component, to compare against another state-of-the-art method. As can 
be seen in Table 2, this technique works substantially better than pure TL, but our method that combines both 
techniques, works considerably better in particular for n = 5 labeled training cases.

The results for the NVB are low in general for all methods proposed in the DA section. This is likely because 
the NVB is a thin, tubular structure and is often obscured by the surrounding structures and image artifacts 
resulting in inconsistent labeling between the readers. Furthermore, the analysis of the connected components 
is not applicable such that some predictions far off the right location do not get filtered out for pseudo labels. 

Table 1.   Comparison of segmentation results on BWH test data of the automatic single (sCNN) and ensemble 
CNN (eCNN) prediction against manual segmentation by Reader 1. Manual segmentation by Reader 2 is also 
compared against Reader 1. ABD is given in millimeter (mm).

Prostate EUS NVB

Dice ABD Dice ABD Dice ABD

Reader 1 versus sCNN 0.877 1.17 0.648 1.54 0.558 1.46

Reader 1 versus eCNN 0.893 0.98 0.683 1.36 0.583 1.27

Reader 1 vs 2 0.863 1.61 0.465 2.10 0.546 1.68

Table 2.   Evaluation results for the source model, training from scratch and the proposed DA method with 
its ablation study on Prostate-3T test data. Results are given as Dice Coefficient (DSC) and average boundary 
distance (ABD in mm). Majority (TL + ENS + H) denotes the approach, where the ensemble of models from 
our TL + ENS + H is used to generate a majority vote as outcome. Best results are marked bold.

Method Labeled data

Prostate EUS NVB

DSC ABD DSC ABD DSC ABD

From scratch
n = 5 0.694 4.44 0.177 10.39 0.303 7.98

n = 10 0.760 2.55 0.320 3.51 0.280 6.25

TL
n = 5 0.814 1.98 0.480 2.88 0.337 4.98

n = 10 0.834 1.61 0.495 2.00 0.335 4.11

TL + SL
n = 5 0.843 1.57 0.546 1.73 0.350 4.21

n = 10 0.841 1.53 0.552 1.55 0.382 3.39

TL + ENS
n = 5 0.849 1.51 0.578 1.43 0.363 3.83

n = 10 0.860 1.36 0.596 1.33 0.382 3.39

ENS + H
n = 5 0.831 1.86 0.535 1.87 0.355 4.46

n = 10 0.850 1.54 0.598 1.51 0.379 3.61

Ours (TL + ENS + H)
n = 5 0.855 1.45 0.580 1.62 0.378 3.37

n = 10 0.855 1.42 0.593 1.40 0.374 3.63

Ours (Majority)
n = 5 0.865 1.33 0.592 1.21 0.387 3.48

n = 10 0.866 1.29 0.591 1.41 0.381 3.24



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:11480  | https://doi.org/10.1038/s41598-021-90294-4

www.nature.com/scientificreports/

The other two structures are in the range of inter-reader variability if we compare to the results from the two 
observers in the source domain.

Generalization capability.  To investigate the generalization capability, we investigated our DA method for pan-
creas segmentation in CT scans. The results are summarized in Table 3. We see that a considerable domain shift 
exists as the source model’s performance drops from a DSC of 0.694 (source test data) to a DSC of 0.638 on the 
target test data. The performance could be improved to a DSC of 0.726 with only five labeled target cases as 
(labeled) training data. This corresponds to a relative improvement of 13.8%. Applying the ensembling strategy 
to our method, the average performance on the test data can be improved to 0.732 for the n = 5 setting. If we 
increase our labeled training set size to n = 10 , we can observe an improvement in the transfer learning results. 
However, the complete DA pipeline does not lead to much better results than for the n = 5 setting. This indicates 
the high potential that the analysis of the unlabeled data in the target domain can have.

Because we used the same test dataset as the work by Xia et al.52, we can make a relative comparison for the 
performance gain to this state-of-the-art technique. The source model from Xia et al. had a performance DSC 
of 0.817 in the source domain which decreased to 0.702 in the target domain. Through their multi-view co-
training DA method, they could achieve a DSC of 0.749 with access to the labeled data in the source domain and 
a DSC of 0.744 in the source-relaxed DA setting. Thus, for the source-relaxed setting, they achieved a relative 
performance gain of 5.9%. Although there exist some differences in the implementation of their method which 
make a direct comparison impossible (other backbone architecture, additional segmentation of other organs in 
the source domain), these results (relative performance gain of 5.9% vs. 13.8%) indicate the effectiveness of our 
method and motivate using few labeled samples of the target domain.

Discussion
Our study demonstrated the feasibility of automatic CNN-based segmentation of the prostate, NVB, and EUS, 
relevant to treatment planning. We showed that the anisotropic variant of the 3D U-Net performs as well as an 
experienced human reader in segmenting those structures. To the best of our knowledge, this is the first study 
to address the automatic segmentation of the NVB and EUS.

The strongly decreased performance of the model on the unseen Prostate-3T dataset highlights the neces-
sity for a technique that adapts the model to the target data distribution. We proposed a simple yet effective DA 
technique that combines transfer learning and uncertainty-guided self-learning. DA is crucial for the widespread 
clinical use of 3D-model-based surgical planning, given that the characteristics of prostate MRI heavily depend 
on the types of the scanner and coils used, MR sequence, and imaging parameters. Without DA, one would need 
to create a model for each clinical site involving manual labeling of tens of volumes as the training dataset. In 
contrast, our study has demonstrated that we only need labeled images as few as n = 5 to transfer learning to 
the new clinical site, making the routine use of 3D-model-based surgical planning more feasible and practical.

Figure 4.   Boxplots for evaluation of the methods with n = 5 and n = 10 labeled images in target domain. 
P-values for the statistical significant differences between the methods are provided in the top of the plots. 
Due to the small test sample size, we utilized the results of the five models for the the 3-fold cross validation. 
This way, we obtain 5 ∗ 3 = 15 individual results for each sample case and each method, allowing for statistical 
evaluation despite the small test set size.
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The advantage of our DA method over many others is that it only requires the model that was trained on 
source data. This is particularly helpful when the entire source dataset cannot be shared with other clinical sites 
due to the size, or institutional and/or regulatory rules over the protection of PHI. Our DA method is simple 
to apply and does not require any network modification like adversarial training as in44 which induces more 
computational resources or patch-based approaches that do not capture the volume as a whole. Also, no prior 
knowledge about organ to segment as in51 is needed, making it easy to apply to other tasks.

Although our evaluation showed that domain adapted models performed well in the target domain for most 
structures, our study has limitations. First, the ensembling of source models, which aims to provide better pseudo 
label candidates and uncertainty measures, may not be applicable when only one source model is available. In 
this case, ensembling could alternatively be achieved for example by Monte-Carlo dropout72, different subsets 

Figure 5.   Example segmentation result of one case for the discussed approaches. The quality of segmentation 
improves over the added features of our method. The DC for TL + ENS + H approach is 0.817 and 0.726 for 
training from scratch. For the EUS the DC is 0.706 and 0.0, respectively. NVB obtains a DC of 0.392 for training 
from scratch and a DC of 0.488 for the proposed TL + ENS + H approach.The training for the CNNs applied to 
this case was run with n = 5 images.

Table 3.   Results (DSC) for the pancreas CT datasets.

From scratch Transfer learning Ours Ours (Majority)
Source model 
(source)

Source model 
(target)

Target model 
(target)

n = 5 0.449 0.678 0.726 0.732
0.694 0.638 0.773

n = 10 0.524 0.690 0.729 0.733
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of labeled/unlabeled data from the target domain, or different minima during training from only one network73. 
Furthermore, a combination of different training schemes as different regularizations, different loss functions, 
different learning rates could be employed to generate models with differentiating minima. Second, we used an 
ensemble size of k = 5 , which is relatively small but a compromise between computation time and performance. 
If enough computation resource is available, the number of models could be increased and performance may 
improve further.

The ability to segment substructures of the prostate will have a broader impact on PCa treatment. 3D geo-
metric models of the EUS and NVB based on the proposed segmentation technique will allow detailed treatment 
planning of PCa, for example with focal therapy. For this application, the segmentation technique would need 
to be extended to include other surrounding structures, such as the rectal and bladder walls, which must also 
be protected from accidental damage. However, the proposed method could be easily extended to include the 
structures around the prostate relevant to the therapy planning.

We observed a rather low performance of our method for the NVB structure in the target domain. While the 
endorectal coil especially affects the shape and appearance of this structure, the low performance is presumably 
caused to a large extent by disagreement of the different readers involved for the NVB segmentation. Therefore, 
future work should include a consensus segmentation of the NVB among multiple readers on publicly available 
datasets, to have a more consistent ground truth for our DA method evaluation.

Conclusion
This study demonstrated automatic segmentation of critical structures for PCa treatment, including the pros-
tate, EUS, and NVB based on an anisotropic CNN. Moreover, we proposed a new DA strategy that combines 
transfer learning and uncertainty-guided self-learning. The proposed strategy allows applying a trained network 
to another domain, e.g., another scanner or another acquisition protocol, with minimum quality loss, mak-
ing automatic segmentation suitable for clinical applications, where the sharing of patient data is often highly 
restricted. Our model achieves performance comparable to an experienced human reader in the source domain, 
and the DA gains performance similar to human readers for the prostate and the EUS. The high performance of 
CNNs allows for a more precise planning of PCa therapy and thus has the potential to reduce the complications 
in PCa interventions. Finally, we demonstrated the generic application of our DA framework by investigating 
its performance on another challenging task and data, namely pancreas CT segmentation.

Data availability
The target dataset is a publicly available challenge dataset (https://​wiki.​cance​rimag​ingar​chive.​net/​displ​ay/​Public/​
Prost​ate-​3T) and the segmentations created for this data during our study are provided as supplemental mate-
rial. The BWH (source) dataset is not publicly available due to restrictions in the IRB-approved protocol under 
which the data were obtained. The pancreas datasets are publicly available (see corresponding references). The 
trained models and our code can be shared upon request.

Figure 6.   Anisotropic network architecture with settings for the prostate structure segmentation. The 
numbers in the brackets in the convolutional layers correspond to the number of feature maps returned by the 
convolutional layer.

https://wiki.cancerimagingarchive.net/display/Public/Prostate-3T
https://wiki.cancerimagingarchive.net/display/Public/Prostate-3T
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Appendix 1: Network architecture
The anisotropic newtork architecture used in our experiments is depicted in Fig. 6.

Appendix 2: DSC loss function
The DSC loss function for varying number of classes is:

with N being the total number of voxels and pc,i the predicted voxels and gc,i the ground truth binary voxels of 
class c. ǫ is a small constant that guarantees numerical stability.
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