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0 Introduction

In his booklet [18] George Glauberman asks whether it is possible to generalise his
Z∗-Theorem [17] to odd primes. The so called “Odd Z∗p-Theorem” might be stated as:

Let G be a finite group and p an odd prime. Suppose that P is a Sylow p-subgroup with an
element x ∈ P such that, whenever xg ∈ P for some g ∈ G, then g ∈ CG(x).

Then x is an element of Z∗p(G).

Here Z∗p(G) denotes the full pre-image of Z(G/Op′(G)) and Op′(G) is the largest normal
subgroup of G of order prime to p.

Glauberman’s question was answered positively (see for example 7.8.3 of [24]). In order to
prove the theorem, a minimal counterexample is investigated. The first step is a reduction
to the case where the counterexample is almost simple. Then the Classification of Finite
Simple Groups is applied. By running through the list of the 26 sporadic groups and 17
infinite families of finite simple non-abelian groups it is possible to check that none of these
groups occur as a counterexample.
But there is still neither a Classification-free proof of the Odd Z∗p-Theorem nor a proof
which provides some structure theoretical insight in terms of the subgroup structure.

Glauberman proved the Z∗-Theorem with modular representation theory. Recently Rebecca
Waldecker [37] gave local arguments for a new proof of the Z∗-Theorem under the addi-
tional hypothesis that the simple groups involved in the centraliser of an isolated involution
are known simple groups.
In 1981 Peter Rowley [32] weakened the hypothesis of the Odd Z∗p-Theorem by introducing
the following concept:

In a finite group G an element x of a Sylow p-subgroup P is called p-locally central in G
with respect to G if and only if NG(R) ≤ CG(x) for all 1 , R ≤ P.

He proved the following theorem using group theoretical arguments.

Let P be a Sylow 3-subgroup of a finite group G. Suppose that x ∈ P is a 3-locally central
element in G with respect to P. Then x is an element of Z∗3(G).

Rowley’s and Waldecker’s results raise hopes of finding a new proof of the Odd Z∗p-Theorem
for the prime 3 that is independent of the Classification of Finite Simple Groups and pro-
vides a better knowledge of the structure of finite groups in general.

In his proof Rowley analyses a minimal counterexample G to his theorem. He reduces G to
an almost simple group. The main part of Rowley’s proof is to investigate the components
of CG(a)/O(CG(a)) for all involutions a of G. He shows that they all belong to a list of finite
quasisimple groups. Finally he proves that G′ is a known simple group.
Altogether he cites many results from the contents of the Classification of Finite Simple
Groups which reduce his problem to the case that G′ belongs to a list of known simple
groups. This list includes six sporadic groups and five infinite families of groups of Lie
type, and in the end Rowley says that G′ cannot be any simple group of this list, but without
explicitly proving this.

A first step to the desired proof of the Odd Z∗p-Theorem for the prime 3 is a new proof of
Rowley’s theorem that avoids arguments in certain finite simple groups and instead gives
more structural insight.
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The main result of this thesis is such a new proof of Rowley’s theorem.

Except for Helmut Bender’s classification of finite groups with a strongly embedded sub-
group [6], we try to avoid theorems that yield lists of finite simple groups. We use more
heavily the property of an element to be 3-locally central and give structural arguments.
Moreover we do not need any special knowledge about finite simple groups except for the
Suzuki groups, PS U(3, 2n) for some natural number n ≥ 2 and PS L(2, q) for some prime
power q.

In Part 1 of this thesis we state results that are independent of the concept of 3-locally cen-
tral elements. Therefore the first chapter includes well-known statements and elementary
results. Moreover we collect properties of the above stated simple groups. The results pre-
sented here will be used in the subsequent chapters.
The next chapter is an introduction to the important concepts for the proof of the main the-
orem. We define a notion of balance and get acquainted with the concept of strongly closed
elementary abelian subgroups of a finite group. This plays an important role in the follow-
ing investigation of the structure of finite simple groups with a strongly closed elementary
abelian subgroup where the centralisers of many involutions are 3-soluble. For this we use
arguments and ideas of Daniel Goldschmidt [20], but not the classification of finite groups
with a strongly closed 2-subgroup in its full strength.
Finally we introduce the Bender method. We adopt this and other ideas of Bender [4]
to give an alternative proof of the well-known statement that finite simple groups with a
Sylow 2-subgroup of order 4 are isomorphic to PS L(2, q), where q is a prime power such
that q ≡ 3 or 5 (mod 8).

Part 2 consists of the proof of Rowley’s theorem. Analogously to Rowley, we investigate
a minimal counterexample G to the theorem with a 3-locally central element x. The main
idea of our proof is to conclude that the minimal counterexample has a strongly embedded
subgroup. Then we apply Bender’s classification of these groups [6] to deduce that G′ is
isomorphic to PS U(3, 2n), PS L(2, 2n) or S z(2n) for some suitable natural number n ≥ 2. In
the beginning of the third chapter we exclude these cases.
Then the real work starts. Similarly to Rowley, we reduce to the case where a minimal
counterexample G is almost simple, more precisely G = G′ · 〈x〉 where G′ is non-abelian
simple and has order divisible by 3 and an index equal to 1 or 3 in G. Moreover we describe
properties of the important objects CG(x) and σ := {q ∈ π(G) | q - |G : CG(x)|}.
The most relevant result of the third chapter is that every non-cyclic elementary abelian
2-subgroup has an involution whose centraliser is not contained in CG(x). This implies that
the centraliser of every non-cyclic elementary abelian 2-subgroup is S 4-free. Moreover we
show that our minimal counterexample itself is S 4-free or that we can already see its whole
{2, 3}-structure in CG(x).
This illustrates that the connection between the 2-structure and the 3-structure of our mini-
mal counterexample is either deep or non-existent. This dichotomy intensively influences
the structure of our proof.

Concerning the 2-structure of G we divide our investigation into two cases. The first where
G has an elementary abelian 2-subgroup of order at least 8 and the other.

The first case is excluded in the fourth chapter. Using signalizer functors and further argu-
ments of balance, we show that 〈[x,Oσ′(CG(a))] | a ∈ A#〉 is trivial, if we have 2 ∈ σ. On the
other hand for every involution of CG(x) we have CG(a) = (CG(a)∩CG(x)) · [x,Oσ′(CG(a))]
in this case. It follows that CG(x) is strongly embedded.
If there is almost no connection between the 2- and the 3-structure, then G is S 4-free and
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possesses a strongly closed elementary abelian 2-subgroup. We use our results about finite
simple groups with a strongly closed elementary abelian 2-subgroup, where the centralisers
of many involutions are 3-soluble, to obtain a contradiction.

In the second case with small 2-rank we first determine the structure of the Sylow 2-
subgroups of G.
With arguments about fusion from Jonathan Alperin [1] we show that a Sylow 2-subgroup
T of G is either homocyclic abelian, dihedral or isomorphic to a Sylow 2-subgroup of U3(4).
If T is abelian, then a result of Richard Brauer [10] forces T to be elementary abelian of
order 4. Since we classified these groups before, we find a contradiction.
In the case where T is dihedral we follow Bender’s investigation of finite simple groups with
dihedral subgroups [4] and we intensively use the Bender method. In our situation many
arguments become simplified. Quoting a result of Bender and Glauberman from [7] and a
variation [5] of the Brauer-Suzuki-Wall-Theorem due to Bender, the group G′ is forced to
be isomorphic to PS L(2, q) for some prime power q, which leads to a contradiction.
The case remains where T is isomorphic to a Sylow 2-subgroup of the group U3(4). From a
result of Richard Lyons [31] we could immediately conclude that G′ is isomorphic to U3(4).
But this would not deliver the desired structural insights.
We first prove that CG(x) contains a Sylow 2-subgroup of G and is not soluble. With the
additional hypothesis that the theorem of Lyons holds in sections of CG(x) we adopt ideas
of Graham Higman [28] to obtain a final contradiction.

Throughout the proof we often use the “Odd Order Theorem” of Walter Feit and John
Thompson [13], and the Z∗-Theorem of Glauberman [17].

Our notation is standard as in [30] or explicitly defined except that we write U max G if U
is a maximal subgroup of G and cyclic groups of order n are denoted by Zn.
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General Results
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1 Preliminaries

1.1 Background Results
This section is a congeries of notation and required results that we often use in this thesis.
Most results stated are well-known and we just give a reference.
Throughout this section let p be a prime and G be a finite group.
Furthermore let S be a Sylow p-subgroup of G.

1.1.1 Definition
(a) The rank of an elementary abelian finite p-group A is a natural number n such that
|A| = pn holds.

(b) The rank of a finite p-group P is equal to the rank of the largest elementary abelian
subgroup of P. We denote the rank of P by r(P).

(c) The p-rank of G is the rank of a Sylow p-subgroup of G and denoted by rp(G).

1.1.2 Lemma
Let G be a p-group.
If we have r(G) = 1, then G is cyclic or we have p = 2 and G is a quaternion group.

Proof
This is Proposition 1.3 of [8]. �

1.1.3 Lemma
If G is a cyclic 2-group, a dihedral group of order at least 8, a quaternion group of order at
least 16 or semidihedral, then Aut(G) is a 2-group.
Furthermore we have Aut(Q8) � S 4.

Proof
These are I 4.6 of [29], Theorem 34.8 of [8] and 5.3.3 of [30]. �

1.1.4 Lemma
Let G be a p-group. If H is a subgroup of G such that G = H · φ(G), then G = H.
Moreover G/φ(G) is elementary abelian.

Proof
These are 5.2.3 and 5.2.7 (a) of [30]. �

1.1.5 Lemma (Dedekind Identity)
Let G = U · V , where U and V are subgroups of G. Then every subgroup H satisfying
U ≤ H ≤ G admits the factorisation: H = U · (V ∩ H).

Proof
This is 1.1.11 of [30]. �
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1.1.6 Definition
If G and H are finite groups, then G is called H-free if and only if G contains no section
isomorphic to H.

1.1.7 Lemma
Let G be a finite group and suppose that G is not S 4-free. Then there exists a non-trivial
2-subgroup T of G such that NG(T ) is not S 4-free.

Proof
This is Lemma 2.3 of [32]. �

1.1.8 Theorem (Hall)
If G is soluble, then there exist Hall π-subgroups for every set π of primes.
Moreover all Hall π-subgroups are conjugate in G and every π-subgroup is contained in
some Hall π-subgroup.

Proof
This is VI 1.8 of [29]. �

1.1.9 Focal Subgroup Theorem
We have S ∩G′ = 〈a−1ag | a, ag ∈ S and g ∈ G〉.

Proof
This is Theorem 7.3.4 of [22]. �

1.1.10 p-Complement Theorem of Burnside
Suppose that NG(S ) = CG(S ). Then G has a normal p-complement.

Proof
This is Theorem 7.4.3 of [22]. �

1.1.11 p-Complement Theorem of Frobenius
The finite group G possesses a normal p-complement if and only if one of the following
conditions holds:

(a) For every non-identity p-subgroup P of G we have that NG(P)/CG(P) is a p-group.

(b) For every non-identity p-subgroup P of G the group NG(P) has a normal p-comple-
ment.

Proof
This is Theorem 7.4.5 of [22]. �

1.1.12 Odd Order Theorem of Feit and Thompson
All finite groups of odd order are soluble.

Proof
This is [13]. �

1.1.13 Z∗-Theorem of Glauberman
Let p = 2 and suppose that c ∈ S . A necessary and sufficient condition for c < Z∗(G) is that
there exists an element a ∈ CS (c) such that a is conjugate to c in G and a , c.

Proof
This is Corollary 1 of [17]. �
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1.1.14 Lemma (Coprime action)
Let π be a set of primes. Suppose that G is a π′-group and let A be a finite π-group acting
on G and let ρ ⊆ π′. Then the following hold:

(a) If G is normal in H and A also acts on H, then CH/G(A) = CH(A) ·G/G.

(b) There exists an A-invariant Sylow q-subgroup of G for every prime q.

(c) If G is soluble, then there exists an A-invariant Hall ρ-subgroup of G.

(d) We have G = [G, A] ·CG(A) and [G, A] = [G, A, A].

(e) If A is elementary abelian and non-cyclic, then we have

G = 〈CG(B) | B max A〉 = 〈CG(a) | a ∈ A#〉.

(f) If G is abelian, then G = CG(A) × [G, A] holds.

(g) If A centralises some normal (or subnormal) subgroup H of G satisfying CG(H) ≤ H,
then A centralises G.

Proof
From the Odd Order Theorem 1.1.12 we see that either G or A is soluble. Thus we may
apply Chapter 8 of [30]. Parts (a) to (f) are 8.2.2 (a), 8.2.3 (a), 8.2.6 (a), 8.2.7, 8.3.4 (a) and
8.4.2 of [30]. Part (g) is a variation of Thompson P × Q-Lemma 8.2.8 of [30]. To see this
we remark that H × A acts on G. �

1.1.15 Definition
Let p be odd and G be a p-group. A characteristic subgroup R of G of class at most 2
and of exponent p such that every non-trivial p′-automorphism of G induces a non-trivial
automorphism of R is called critical.

1.1.16 Lemma
If p is odd and G is a p-group, then G possesses a critical subgroup.

Proof
This is Corollary 14.4 of [8]. �

1.1.17 Lemma
Let a be an involution acting on an elementary abelian 2-group A.
Then we have |CA(a)|2 ≥ |A|.

Proof
This is 9.1.1 (b) of [30]. �

1.1.18 Lemma
Let K be a component of G. Then the following hold:

(a) The group E(G) is the central product of the components of G.

(b) If N is a subnormal subgroup of G, then we have K ≤ N or [N,K] = 1.

(c) If L is a component of G with K , L, then we have K ∩ L ≤ Z(K) and,
if F is a subgroup of F(G), then F ∩ K ≤ Z(K) holds.

(d) If g is an element of G such that g normalises some subgroup U of K with U � Z(K),
then g normalises K.
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(e) Let n ∈ N and let G1, ...,Gn be non-abelian simple groups. If N is a normal subgroup
of G1 × ... ×Gn, then there is a subset J ⊆ {1, ..., n} such that N =

�
j∈J G j.

(f) If N is a subnormal subgroup of G, then E(N) is a subset of E(G).

(g) If U is a subgroup of G and K is contained in U, then K is a component of U.

(h) We have CG(F∗(G)) = Z(F∗(G)).

Proof
Part (a) is 6.5.6 (a) of [30] and Part (b) is 6.5.2 of [30].
Part (c) follows from (b), since components of G and subgroups of F(G) are subnormal in
G and none of these contains a proper subnormal non-abelian quasisimple subgroup.
For Part (d) we observe that Kg is a component of G and we see that U ≤ K ∩ Kg. Hence
we apply (c) to K and Kg to obtain Kg = K from U � Z(K).
Part (e) is 1.6.3 (b) of [30].
If K is a component of N, then K is a quasi simple subnormal subgroup of N and therefore
a quasi simple subnormal subgroup of G. Thus Part (f) holds.
If K is contained in U ≤ G, then K = K ∩ U is subnormal in U. As K is quasisimple, the
assertion of (g) follows.
Finally Part (h) is 6.5.8 of [30]. �

1.2 Specific Non-Soluble Groups
In this section we collect knowledge about certain non-abelian simple groups that occur
specificly in our investigation. We give an explicit proof of every result or refer to the
literature.

1.2.1 Definition
A finite group G is almost simple if and only if F∗(G) is simple and G/F∗(G) is soluble.

1.2.2 Theorem of Dickson
Let p be a prime and let f be a natural number. The group PSL(2, p f ) contains exactly the
following subgroups:

(a) elementary abelian p-groups of order pm with m ≤ f ,

(b) cyclic groups of order k where k divides either p f +1
d or p f−1

d and d = (p f − 1, 2),

(c) dihedral groups of order 2 · k with k as in (b),

(d) alternating groups A4, if p >2 or p = 2 and f is even,

(e) symmetric groups S 4, if p2· f − 1 ≡ 0 (mod 16),

(f) alternating groups A5, if p = 5 or p2· f − 1 ≡ 0 (mod 5),

(g) semidirect products of elementary abelian groups of order pm and cyclic groups of
order k where k is as in (b) with the additionally condition k

∣∣∣ pm − 1 and k
∣∣∣ p f − 1,

(h) groups PSL(2, pm) with m
∣∣∣ f and PGL(2, pm) with 2 · m

∣∣∣ f .

Proof
This is II 8.27 of [29]. �
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1.2.3 Proposition
Let G be a finite group with O(G) = 1. Suppose further that F(G) contains exactly one
involution and E(G) � PSL(2, 5) or E(G) � S L(2, 5).
Then O{2,3}′(CG(b)) = 1 for all involutions b ∈ G.

Proof
Let c be the involution of F(G).
Then we have c ∈ Z(G) and hence O{2,3}′(CG(c)) ≤ O(CG(c)) = O(G) = 1. The outer
automorphism group of E(G) has order 2 by Theorem 3.2. (ii) of [39]. Moreover from
Lemma 1.1.2 and Lemma 1.1.3 we deduce that F(G) admits only automorphisms that are
{2, 3}-elements. Therefore we see with Lemma 1.1.18 (h) that G/F∗(G) is a {2, 3}-group. It
follows for all involutions b ∈ G that the group O{2,3}′(CG(b)) is a subgroup of CE(G)(b).
Let − : G → G/Z(E(G)) be the natural epimorphism and let first b be an involution of
F∗(G) \ {c}. Then there are elements e ∈ E(G) and f ∈ F(G) such that b = e · f . From
f ∈ F(G) ≤ CG(E(G)) we obtain that CE(G)(b) = CE(G)(e · f ) = CE(G)(e). Moreover we see
1 = b2 = (e · f )2 = e2 · f 2. This shows that e2 = ( f −1)2 ∈ E(G) ∩ F(G) ≤ 〈c〉. We conclude
that e is a 2-element of E(G). From E(G) � PSL(2, 5) � A5 it follows that CE(G)(ē) is
elementary abelian of order 4. Thus we have that O{2,3}′(CG(b)) = 1, if E(G) is simple. In
the other case, if E(G) is not simple, then c is the unique involution of E(G) and E(G) has
quaternion Sylow 2-subgroups of order 8.
Suppose for a contradiction that e = c. Then we obtain 1 = b2 = f 2 and hence f is trivial
or an involution of F(G). Since c is the unique involution of F(G), it follows that b ∈ {1, c}.
This is a contradiction. Therefore e has order 4 and ē has order 2. Consequently the group

NE(G)(〈e〉 · Z(E(G))) = NE(G)(〈ē〉) = CE(G)(〈ē〉) = CE(G)(ē)
is of order 4. Thus its full pre-image NE(G)(〈e〉 · Z(E(G))) has order 8. Moreover CE(G)(e) is
a subgroup of NE(G)(〈e〉 · Z(E(G))). This implies that CE(G)(b) = CE(G)(e) is a 2-group. In
particular O{2,3}′(CG(b)) ≤ O{2,3}′(CE(G)(b)) = O{2,3}′(CE(G)(e)) = 1.
Let now b be an involution of G not contained in F∗(G). If we have b ∈ CG(E(G)), then
O{2,3}′(CG(b)) is a normal subgroup of E(G) of odd order. Thus O{2,3}′(CG(b)) is trivial.
We finally suppose that b induces a non trivial automorphism on E(G). Then we have that
E(G) · 〈b〉 � S 5. Since b is an involution, b̄ is a transposition in E(G) · 〈b〉 � S 5. In S 5 it we
obtain that CS 5((4, 5)) = 〈(1, 2), (4, 5), (1, 2, 3)〉 � 〈(4, 5)〉 · S 3. Since all transpositions in S 5
are conjugate CE(G)·〈b〉.(b̄) is a {2, 3}-group. Consequently |CE(G)(b)| = |CE(G)(b)| · |Z(E(G))|
is a divisor of the {2, 3}-number |CE(G)(b̄)| · |Z(E(G))|. In particular CE(G)(b) is a {2, 3}-group
and so O{2,3}′(CG(b)) = 1. �

1.2.4 Lemma
Suppose that G = PSL(2, pn) for some prime p.
Then the outer automorphism group of G is isomorphic to 〈α〉 × 〈β〉, where α has order n
and induces a field automorphism in G and β is of order 2, if p is odd, or trivial for p = 2.
Moreover G · 〈β〉 � PGL(2, pn) and, if β is non trivial, then CG(β) is dihedral order pn − 1.
If γ ∈ 〈α〉 has order i, then CG(γ) � PSL(2, p

n
i ).

Proof
By Theorem 3.2. (ii) of [39] we obtain that Out(PSL(2, pn)) � Zn × Z(2,pn−1) = 〈α〉 × 〈β〉,
where α has order n and β is of order 2 for odd p or trivial for p = 2.
The analysis in section 3.3.4 in [39] yields that α induces a field automorphism in G and
that G · 〈β〉 � PGL(2, pn). If k is an algebraically closed field such that GF(pn) ≤ k, then
PGL(2, pn) ≤ PGL(2, k) and all involutions of PGL(2, pn) \ PSL(2, pn) are conjugate in
PGL(2, k). In particular we may choose β = Z(GL(2, pn)) ·

(
−1 0
0 1

)
to obtain the structure of

its centraliser.
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Let p , 2 and L =

{(
a 0
0 a−1

)
| a ∈ GF(pn)#

}
. Then L has pn − 1 elements.

We suppose that H = S L(2, pn) and
(

a c
b d

)
∈ H. Then we observe that Z(H) ·

(
a c
b d

)
∈ CG(β) if

and only if

Z(H) ·
(
−a b
−c d

)
= Z(H) ·

(
a b
c d

)
· Z(H) ·

(
−1 0
0 1

)
= Z(H) ·

(
−1 0
0 1

)
· Z(H) ·

(
a b
c d

)
= Z(H) ·

(
−a −b
c d

)
.

Equivalently we either have b = c = 0 or a = d = 0. As we moreover have a · d − b · c = 1,
this is the case if and only if either(

a b
c d

)
=

(
a 0
0 d

)
=

(
a 0
0 a−1

)
∈ L or(

a b
c d

)
=

(
0 b
c 0

)
=

(
0 b
−b−1 0

)
∈ L ·

(
0 1
−1 0

)
.

Combined we have Z(H) ·
(

a b
c d

)
∈ CG(β) if and only if

(
a b
c d

)
∈ L ∪ L ·

(
0 1
−1 0

)
.

We set γ :=
(

0 1
−1 0

)
. Then we observe |L ∪ L · γ| = 2 · |L| = 2 · (pn − 1). Since for all

z ∈ L ∪ L · γ we have z ·
(
−1 0
0 −1

)
∈ L ∪ L · γ, it follows that CG(β) has order 2·(pn−1)

2 = pn − 1.
From Dickson’s Theorem 1.2.2 we conclude that CG(β) is dihedral.

Since α induces field automorphisms in G, the assertion of the lemma follows from Propo-
sition 4.9.1 (a) of [24]. �

1.2.5 Lemma
Let n be a natural number and let T be a Sylow 2-subgroup of PSL(3, 2n).
Then there are exactly two elementary abelian subgroups of order 22n in T and every ele-
mentary abelian subgroup of T is contained in one of them.

Proof
By Sylow’s Theorem and II 7.1 of [29] we may choose T such that T consists of all 3 × 3
lower triangular matrices where every diagonal entry is 1. For such an element we have 1 0 0

a 1 0
b c 1


2

=

 1 0 0
a + a 1 0

b + a · c + b c + c 1

 =

 1 0 0
0 1 0

a · c 0 1

 .
Thus the set of elements of T of order at most 2 is

Ĩ(T ) := I(T ) ∪ {id} =


 1 0 0

a 1 0
b c 1

 | a = 0 or c = 0

 .
In particular every elementary abelian subgroup of T is a subset of Ĩ(T ).
Furthermore for all a, b, x, y ∈ GF(2n) such that a , 0 , y, the following holds: 1 0 0

a 1 0
b 0 1

 ·
 1 0 0

0 1 0
x y 1

 =

 1 0 0
a 1 0

b + x y 1

 < Ĩ(T ).

For this reason every elementary abelian subgroup of T is a subset of one of the following
sets. 

 1 0 0
a 1 0
b 0 1

 | a, b ∈ GF(2n)

 ,

 1 0 0

0 1 0
b a 1

 | a, b ∈ GF(2n)

 .
As every of this sets is an elementary abelian subgroup of T , the assertion follows. �
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1.2.6 Lemma
Let A be an elementary abelian group of order 16 and G = Aut(A).
If H is subgroup of G that acts irreducibly on A and its order is divisible by 7, then H has a
section isomorphic to S 4.

Proof
Let H be subgroup of G that acts irreducibly on A and such that H is no 7′-group.
In [11] all maximal subgroups of G are listed. Since H is neither contained in a point or
plane stabiliser, we conclude that H is a subgroup of A7. We check again in [11], that all
maximal subgroups of A7 of order divisible by 7 are isomorphic to PSL(2, 7). Finally [11]
yields that all maximal subgroups of order divisible by 7 of PSL(2, 7) are Frobenius groups
of order 21.
Moreover 16− 1 is not divisible by 7. Hence a cyclic group C of order 7 that acts on A does
not act irreducible on A. If C is normalised by some group D of order 3 that also acts on A,
then CA(C) is normalised by D. We conclude that a Frobenius group of order 21 does not
act irreducible on an elementary abelian group of order 16. Since G, A7 and PSL(2, 7) are
not S 4-free, the assertion follows. �

1.2.7 Theorem
Let G be the outer automorphism group of an extra-special 2-group T of order 22n+1 for an
n ∈ {1, 2, 3, 4}. Then G is isomorphic to the orthogonal group Oε(2 · n, 2) with ε ∈ {−,+}.
Moreover G has no non-soluble section that does not involve a S 3.

Proof
The first part follows from Theorem 1 (c) of [40]. Moreover the same theorem provides an
order formula of Oε(2 · n, 2). If we have n = 1 or n = 2 and ε = +, then we compute that
G is a 2-group or a {2, 3}-group and therefore soluble by Burnside’s pαqβ-Theorem 10.2.1
of [30]. If G is not soluble, then we know from [11] that O2(G) is isomorphic to one of
O−4 (2) � A5, O+

6 (2) � A8, O−6 (2) � PSU(4, 2), O+
8 (2) or O−8 (2). For all this groups we again

obtain the assertion from [11].
More precisely the simple section that occur are O−8 (2), O+

8 (2), Sp(6, 2), A9, PSU(4, 2), A8,
A7, PSL(2, 16), A6, PSL(2, 8), PSL(2, 7), A5. The minimal non-soluble section are PSL(2, 8)
that has a maximal subgroup isomorphic to D18, which contains a S 3, PSL(2, 7) that has a
maximal subgroup isomorphic to S 4, that contains a S 3, and A5 that has a maximal subgroup
isomorphic to S 3. �

1.2.8 Theorem
Let G be a finite quasisimple non-abelian group of order prime to 3 and let − : G → G/Z(G)
denote the natural epimorphism.
Then there exists a natural number n ≥ 1 such that Ḡ � S z(22n+1). Moreover if T is a Sylow
2-subgroup of G, then the following hold:

(a) The centre of G is trivial except for the case n = 1, then it is a subgroup of an
elementary abelian group of order 4.

(b) If G is not simple, then G admits no outer automorphism.

(c) If G is simple, then the outer automorphism group of G is cyclic of order 2n + 1 and
induces Galois automorphisms on Ω1(T ).

(d) The group T̄ has order (22n+1)2 and we have that Ω1(T̄ ) = Z(T̄ ) = φ(T̄ ) is elementary
abelian of order 22n+1 ≥ 8. Furthermore Ω1(T ) is the full pre-image of Ω1(T̄ ).
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(e) The group NḠ(T̄ ) = NḠ(Ω1(T̄ )) is a Frobenius group of order (22n+1)2 · (22n+1 − 1)
with kernel T̄ and cyclic complement.

(f) All involutions of Ḡ are conjugate.

(g) If t is an involution of G, then CḠ(t̄) ∈ Syl2(Ḡ) or t ∈ Z(G).

(h) Whenever we have t̄g ∈ T̄ for an element g ∈ G and an involution t̄ ∈ Z(T̄ ), then
t̄g ∈ Z(T̄ ). Moreover Z(T̄ ) is the only elementary abelian 2-subgroup of T̄ with that
property.

(i) If U is subgroup of G containing Ω1(T ), then O(U) is trivial.

(j) If L be a non-soluble subgroup of G, then we have NG(L) = L and Z(L) = Z(G).

Proof
The first statement of the Theorem is proven in [36].

(a) This follows from Theorem 1 and 2 of [2].

(b) This is Theorem 2 of [2].

(c) This is Theorem 11 of [35] and its proof.

(d) The statement about T̄ follows from Theorem 9 of [35] together with Lemma 1 of the
same article. We have that Ω1(T ) is contained in the full pre-image of Ω1(T̄ ). More-
over in [11] we check that the pre-images of the elements in Ω1(T̄ ) are involutions.
Thus Ω1(T̄ ) = Ω1(T ).

(e) This follows from Theorem 9 of [35] together with Lemma 7 of the same article.

(f) The assertion follows by Lemma 1 and Lemma 7 of [35].

(g) This again is a combination of Theorem 9 and Lemma 1 of of [35].

(h) Since Z(T̄ ) = Ω1(T̄ ) is the set of all elements of T̄ of order 2 or 1 by (d), the group
Z(T̄ ) has the described property. From (f) it follows that Z(T̄ ) is the unique elementary
abelian subgroup of T̄ with that property.

(i)(j) Both of the last statements follow again from Theorem 9 of [35]. �

1.2.9 Definition
If G is one of the groups in Theorem 1.2.8, then we call G a Suzuki group.

1.2.10 Lemma
Let K be a component of the finite group G such that K/Z(K) is a Suzuki group.
Suppose that y ∈ G is an element of order 3. Then y normalises K or there is a section of
CG(y) isomorphic to K/Z(K). In both cases CG(y) is of even order.

Proof
We suppose first that Z(K) = 1. If y centralises K, then the assertion follows immediately
from the fact that K is of even order by Theorem 1.2.8 (d).
If y normalises but does not centralise K, then y induces an automorphism of order 3 on K.
Thus we obtain from Theorem 1.2.8 (c) an element x ∈ G and a Sylow 2-subgroup T of K
such that x induces a Galois automorphism on Ω1(T ) and moreover, such that there is an
element k ∈ K such that x · k and y induce the same automorphism on K. From Proposition
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4.9.1 (d) of [24] we see that x · k is conjugate to x in a K-invariant group. In particular
CK(y) � CK(x · k) � CK(x). As x induces a Galois automorphism on Ω1(T ), the group
CK(x) is of even order. It follows that CG(y) is of even order.
In the other case, if K is not normalised by y, then Ky is a component of G different from
K. Consequently Lemma 1.1.18 (b) implies that [K,Ky] = 1. We further consider the map
ψ : K → G, a 7→ a·ay ·ay2

. From [K,Ky] = 1 we deduce that the map ψ is a homomorphism.
From the Homomorphism Theorem we observe that {a·ay ·ay2

| a ∈ K} = im(ψ) � K/ker(ψ).
For all a ∈ K we have (a · ay · ay2

)y = ay · ay2
· a = a · ay · ay2

. Thus im(ψ) ⊆ CG(y). Since
K is simple and ker(ψ) E K, we have im(ψ) � K or im(ψ) = 1. In the first case the assertion
follows immediately. We assume for a contradiction that im(ψ) = 1. Then for all a ∈ K we
obtain that ay2

= (a · ay)−1 = a−1 · (a−1)y. This shows that the component Ky2
is a subgroup

of K × Ky. From Lemma 1.1.18 (e) it follows that Ky2
∈ {K,Ky}. This implies that K = Ky

which is a contradiction.
Let now Z(K) , 1. Then we have 3 - |Z(K)| by Theorem 1.2.8 (a). Denote Z(〈KG〉) with
Z. Then we observe that Z is normal in 〈KG〉 and y-invariant. In the factor group 〈y,KG〉/Z
all assumptions of our lemma are fulfiled. As we showed above C〈y,KG〉/Z(Zy) has a section
isomorphic to KZ/Z or Zy normalises KZ/Z and C〈y,KG〉/Z(Zy) is of even order. In the first
case the assertion follows from KZ/Z � K/(Z ∩ K) = K/Z(K) and from Lemma 1.1.14 (a),
in particular C〈y,KG〉/Z(Zy) = C〈y,KG〉/Z(y) = C〈y,KG〉(y)Z/Z is a section of CG(y).
In the second case y normalises K ·Z and hence it normalises E(K ·Z) = K. Moreover from
Lemma 1.1.14 (a) we see that |C〈y,KG〉/Z(Zy)| is a divisor of |CG(y)|. Thus CG(y) is of even
order too. �

1.2.11 Definition
Let G be a finite group. A subgroup H of G of even order is called strongly embedded in
G if and only if O2′(G) � H and for all involutions c ∈ H we have CG(c) ≤ H.

1.2.12 Theorem
Let G be a quasi simple group. Suppose that G possesses a strongly embedded subgroup.
Then there is a power q of 2 such that G/Z(G) is isomorphic PSL(2, q), S z(q) or PSU(3, q).
Moreover the following hold:

(a) If we have G/Z(G) � PSL(2, q), then Z(G) is trivial or q = 4. In the case q = 4 the
group Z(G) has order at most 2.

(b) If we have G/Z(G) � PSU(3, q), then Z(G) is cyclic of order 1 or 3.

(c) If G has a section isomorphic to a Suzuki group, then G is a Suzuki group.

(d) If G no 3′-group and G/Z(G) � PSL(2, 4) and if moreover H ≤ Aut(G) such that
Inn(G) ≤ H and s ∈ H is an involution, then we have O(CH(s)) = 1.

(e) The group G has an elementary abelian Sylow 2-subgroup of order 4 if and only if
G � PSL(2, 4).

(f) If G is isomorphic to PSU(3, 24) � U3(4), then a Sylow 2-subgroup of G does not
involve a Sylow 2-subgroup of a Suzuki group.

(g) Suppose that G � PSU(3, 24) and T be a Sylow 2-subgroup of G. If T is isomorphic
Sylow 2-subgroup for a finite simple group H, then NG(T )/O(NG(T )) � T · 〈β〉 where
β is a fixed-point-free automorphism of T of order 15.
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Proof
The first statement of the theorem is proven in [6].
Parts (a) and (b) are consequences of Lemma 4.2.8 of [25].

(c) This follows by the Theorem of Dickson 1.2.2 together with Theorem 6.5.3 of [24].

(d) In [27] the authors remark this statement directly under Definition 1. We want to
convince ourselves.
Let G be of order divisible by 3 and G/Z(G) � PSL(2, 4). Suppose further that there is
a subgroup H ≤ Aut(G) such that Inn(G) ≤ H and let s be an involution of H. As |G|
is no 3′-group G is no Suzuki group. We remark at first that for a Sylow 2-subgroup
T of G we have CH(T ) = Z(T ) (*) by Lemma 4.3.6 (a) of [25].

Assume that G � PSL(2, 2n) for some natural number n ≥ 3. Then the group Out(G)
is an isomorphic image of the cyclic group of field automorphism of PSL(2, 2n) of
order n by Lemma 4.3.1 (a) of [25].
If we have s ∈ G, then Lemma 4.3.4 (b) of [25] yields that CG(s) is a Sylow 2-
subgroup T . Because of (*) and T = O2(CG(s)) ≤ O2(CH(s)), we conclude that
O(CH(s)) = 1.
Suppose that s < G. Then Lemma 4.3.4 (c) of [25] yields that CG(s) � PSL(2, 2n/2).
Since every field automorphism of odd order centralising s normalises CG(s) and
induces a field automorphism in CG(s), we conclude that O(CH(s)) = 1.

Assume now that G � PSU(3, 2n) for some natural number n ≥ 2. Then we obtain
from Lemma 4.3.1 (c) of [25] that Out(G) is an extension of a cyclic group 〈β〉 of order
(3, 2n + 1) by the isomorphic image of the cyclic group 〈α〉 of field automorphism of
PSU(3, 2n) of order 2n.
If we have s ∈ G, then Lemma 4.3.4 (b) of [25] yields that CG(s) is an extension of
Sylow 2-subgroup T by a cyclic group of order 2n+1

(3,2n+1) . As above we conclude that
O(CH(s)) is trivial, because of T = O2(CG(s)) ≤ O2(CH(s)) and (*).
Let s be no element of G. Then we have CG(s) � PSL(2, 2n) by Lemma 4.3.4 (c) of
[25]. Moreover because of Lemma 4.3.4 (a) of [25] we may suppose that s ∈ 〈α〉.
Since s does not centralise β and every field automorphism of odd order centralising
s normalises CG(s) and induces a field automorphism in CG(s), we conclude again
O(CH(s)) = 1.

(e) This follows by the Theorem of Dickson 1.2.2, Theorem 1.2.8 (d) and the fact that
the Sylow 2-subgroups of PSU(3, q) for q a power of 2 have at least order 8, as in
stated Section 3.6 of [39].

(f) If G is isomorphic to U3(4) � PSU(3, 24), then we know from [11] a Sylow 2-
subgroup T of G has order 64 = 26 and exactly 3 involutions. By Theorem 1.2.8 (d) a
Sylow 2-subgroup S of a simple factor of a Suzuki group has order

(
22·n+1

)2
for some

n ∈ N \ {0}. Suppose for a contradiction that T involves S . Then we observe n = 1
and T = S . By Theorem 1.2.8 (d) the group S contains seven involutions. This is a
contradiction.

(g) This is Lemma 1 of [31]. �

1.2.13 Definition
If G is one of the groups in Theorem 1.2.12, then we call G a Bender group.

16



1.3 Miscellaneous
Here we conglomerate result that do not fit in any of the previous sections.
All the results stated here are quite elementary.

1.3.1 Lemma
Let G be a finite group and suppose that x ∈ G acts coprimely on H ≤ G.

(a) Suppose that H is a p-subgroup of G. If there exists a subgroup K ≤ [H, x] such that
[H, x] ≤ 〈C[H,x](x),K〉, then we have [H, x] = K.

(b) If there is an elementary abelian subgroup A ≤ CG(x) acting also coprimely on H,
then we have [H, x] = 〈C[H,x](B) | B max A, CG(B) * CG(x)〉.

Proof
We set H0 = [H, x].
Since x acts coprimely on H, Lemma 1.1.14 (d) yields [H0, x] = [H, x, x] = [H, x] = H0.

(a) The element x acts on H0/φ(H0). This group is elementary abelian by Lemma 1.1.4.
From Lemma 1.1.14 (a) we observe that CH0/φ(H0)(x) = CH0(x) · φ(H0)/φ(H0).
Since the natural epimorphism H0 → H0/φ(H0) is a homomorphism it follows that
[H0/φ(H0), x] = [H0, x] · φ(H0)/φ(H0) = H0 · φ(H0)/φ(H0) = H0/φ(H0).

Applying Lemma 1.1.14 (f) we get

H0/φ(H0) = [H0/φ(H0), x] ×CH0/φ(H0)(x) = H0/φ(H0) ×CH0(x) · φ(H0)/φ(H0).

We deduce that CH0(x) ≤ φ(H0) and so H0 ≤ 〈C[H,x](x),K〉 = 〈φ(H0),K〉 = φ(H0) ·K.
Finally Lemma 1.1.4 implies the assertion.

(b) As A centralises x and normalises H, the group H0 = [H, x] is 〈A, x〉-invariant. From
Lemma 1.1.14 (b) we obtain an 〈A, x〉-invariant Sylow q-subgroup Q of H, for all
primes q dividing |H|. Part (e) of the same lemma shows that

[Q, x] =
〈
C[Q,x](B) | B max A

〉
⊆

〈
C[Q,x](x), 〈C[Q,x](B) | B max A, CG(B) * CG(x)〉

〉
.

From Part (a) of our lemma we deduce

[Q, x] =
〈
C[Q,x](B) | B max A, CG(B) * CG(x)

〉
≤

〈
C[H0,x](B) | B max A, CG(B) * CG(x)

〉
.

Finally Lemma 2.8 of [19] yields that
H0 = 〈[Q, x] | Q is 〈x, A〉-inv. Sylow subgr. of H0〉

⊆ 〈C[H0,x](B) | B max A, CG(B) * CG(x)〉

= 〈C[H,x](B) | B max A, CG(B) * CG(x)〉, as [H0, x] = H0 = [H, x]. �

1.3.2 Lemma
Let V be a finite vector space over GF(2) and B be a basis of V . Then W = 〈{b+a | a, b ∈ B}〉
is the unique hyperplane of V with W ∩ B = ∅.

Proof
Let M = {b + a | a, b ∈ B}. We define a map α : V → GF(2) such that v =

∑
b∈B λb · b is

mapped to
∑

b∈B λb with {λb | b ∈ B} ⊆ GF(2) suitable. Then α is linear and therefore ker(α)
is a hyperplane of V . Since GF(2) has characteristic 2, we conclude that 〈M〉 = ker(α).
From bα = 1 , 0 for all b ∈ B we deduce that 〈M〉 ∩ B = ker(α) ∩ B = ∅.

If W is a hyperplane W of V with W ∩ B = ∅, then we see that |V/W | = 2. This implies that
W + a = W + b , W for every b ∈ B. Hence 〈B0〉 ≤ 〈a + b | b ∈ B〉 ≤ W yields W = 〈B0〉. �
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1.3.3 Lemma
Let G be a finite group and suppose that V is a 2-subgroup of G such that NG(V) is not
S 3-free. Then there exist an element y of order 3 and there is a 2-element b of NG(V) such
that 〈y, b〉/〈b2〉 � S 3.
If further V is abelian and the element y does not centralise the 2-group V , then there is an
involution a of V such that 〈a, y, b〉/〈b2〉 � S 4. Moreover 〈a, y〉 � A4.

Proof
Let A be a subgroup of NG(V) and B E A such that A/B � S 3. Furthermore let R ∈ Syl3(A).
Then we observe that NA(R) , CA(R) and 2 divides |NA(R) : CA(R)|. Let T ∈ Syl2(NA(R))
and let b ∈ T be of minimal order such that [b,R] , 1. Then there is an element y0 ∈ R with
1 , [y0, b] ∈ R. The element b2 centralises R and so y0. Consequently we have

[y0, b]b = (y−1
0 · y

b
0)b = (y−1

0 )b · yb2

0 = (y−1
0 )b · y0 = [b, y0] = [y0, b]−1.

Hence b inverts 〈[y0, b]〉 , 1. Let y ∈ 〈[y0, b]〉 be of order 3. Then we have 〈y, b〉/〈b2〉 � S 3,
as asserted.
In addition we suppose now that y does not centralise the abelian group V . Then we observe
that 1 , [V, 〈y〉] ≤ V . Moreover [V, 〈y〉] is normalised by b, because V and 〈y〉 are b-
invariant. Since V is abelian, Lemma 1.1.14 (f) shows that [V, 〈y〉]∩CV (〈y〉) = 1. Moreover
the 2-element b acts on the 2-group [V, 〈y〉]. This provides an involution a0 ∈ C[V,〈y〉](b).

The group 〈a0, a
y
0, a

y2

0 〉 is a y-invariant subgroup of [V, 〈y〉] and hence elementary abelian.

Therefore 〈a0 · a
y
0, a0 · a

y2

0 〉 = {1, a0 · a
y
0, a0 · a

y2

0 , a
y
0 · a

y2

0 } is a y-invariant elementary abelian
group of order 4 that is not centralised by y. This implies that for a := a0 · a

y
0 the group

〈a, y〉 is isomorphic to A4. Furthermore we notice that

(ay)b = ((a0 · a
y
0)y)b = (ay

0 · a
y2

0 )b = ayb
0 · a

y2b
0 = abyb

0 · ab(y2)b

0 = ay2

0 · a
y
0 = ay

0 · a
y2

0 = ay

ab = (a0 · a
y
0)b = ab

0 · a
yb
0 = a0 · a

byb

0 = a0 · (ab
0)y2

= a0 · a
y2

0 = ay2

0 · a0 = ay2
,

and (ay2
)b = (a0 · a

y2

0 )b = ab
0 · a

y2b
0 = a0 · a

b(y2)b

0 = a0 · a
y
0 = a.

In particular b2 ∈ CG(〈a, ay〉) and 〈a, ay〉 is normalised by 〈y, b〉.
Altogether we see that 〈a, y, b〉/〈b2〉 � S 4. �

1.3.4 Lemma
Let T be a finite 2-group and S be a self-centralising subgroup of T .

(a) If S � V4, then T is dihedral or semidihedral.

(b) If S � Q8, then T is semidihedral or a quaternion group.

Proof
(a) As S is self-centralising it, contains the non-trivial group Z(T ). Let c ∈ Z(T )# and

a ∈ S \ 〈c〉. Then we have that S ≤ CT (a) = CT (〈a, c〉) = CT (S ) ≤ S , since S is
elementary abelian of order 4. This shows that CT (a) = S . Now the assertion follows
from 5.3.10 of [30].

(b) Again we have Z(T ) ≤ CG(S ) ≤ S . It follows from 1 , Z(T ) ≤ Z(S ), that Z(T ) is of
order 2. Let − : T → T/Z(T ) be the natural epimorphism. We consider CT̄ (S̄ ). Let
t ∈ T such that t̄ ∈ CT̄ (S̄ ). Then we see that t ∈ NT (S · Z(T )) = NT (S ).
Suppose for a contradiction that t < S . Then t induces a non-trivial outer auto-
morphism on S . Every non-trivial element of the outer automorphism group of S
permutes the three maximal subgroups of S non-trivially by 5.3.3 of [30]. Thus t̄
permutes the involutions of S̄ non-trivially. This is a contradiction.
Thus t ∈ S and hence S̄ is self-centralising in T̄ . Applying (a) we conclude that T̄ is
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dihedral or semidihedral.
For this reason T̄ has exactly one central involution c̄ and c̄ is contained in S̄ . Thus
its pre-images are elements of order 4. Moreover there is an element ḡ ∈ T̄ such
that 〈ḡ〉 is a maximal subgroup of T̄ and there is some natural number n such that
ḡn = c̄. Hence gn is a pre-image of c̄ and has therefore order 4. It follows that g
has order 2 · o(ḡ). This implies that T has a maximal cyclic subgroup. The fact that
T̄ is semidihedral or dihedral together with Theorem 1.2 of [8] finally leads to the
assertion. �

1.3.5 Lemma
Let A be an extra-special group of order 27 and of exponent 3 and let Z denote Z(A).
Then we have CAut(A)(Z)/Inn(A) � SL(2, 3). If ϕ ∈ Aut(A) is of order 3 and normalises
every subgroup of order 9 of A, then ϕ centralises a subgroup of order 9 of A.

Proof
From [40] and II 9.12 of [29] we deduce that CAut(A)(Z)/Inn(A) � Sp(2, 3) � SL(2, 3).
Let ϕ ∈ Aut(A) have order 3 and normalise every subgroup of order 9 of A. Then ϕ nor-
malises the characteristic subgroup Z of A. Hence the 3-automorphism ϕ centralises the
cyclic group Z of order 3. Suppose further that a and b are elements of A such that A = 〈a, b〉
and neither 〈a,Z〉 nor 〈b,Z〉 is centralised by ϕ. As ϕ has order 3 and normalises 〈b,Z〉 and
centralises Z, we may choose a and b such that bϕ = ba = b · z for an element z ∈ Z#. In
addition we have aϕ = a · zi for a suitable i ∈ {1, 2}. It follows that

(a · b3−i)ϕ = a · zi · (b · z)3−i z∈Z(A)
= a · zi · b3−i · z3−i = a · b3−i · zi+3−i = a · b3−i.

This implies that 〈a · b3−i,Z〉 is a subgroup of order 9 of A centralised by ϕ. �

1.3.6 Lemma
Let P be a 3-group of rank 2.
Then P has a characteristic non-cyclic subgroup of exponent 3 containing Ω1(Z(P)).
If R is a subgroup of exponent 3 of P, then R is cyclic, elementary abelian of order 9 or
extra-special of order 27.

Proof
Suppose first that r(Z(P)) ≥ 2. Then we conclude that 2 ≤ r(Z(P)) ≤ r(P) = 2. There-
fore Ω1(Z(P)) fulfils the first part of the conclusion of our lemma. Since r(P) = 2, we
further have Ω1(Z(P)) = Ω1(P). Hence every subgroup of exponent 3 is a subgroup of the
elementary abelian group Ω1(Z(P)). Thus the lemma holds in this case.
Suppose now that Z(P) is cyclic. Then P is non-abelian because of r(P) = 2. Consequently
P contains an elementary abelian normal subgroup Y of order 9 by Lemma 1.4 of [8].
If Y is the unique elementary abelian normal subgroup of order 9 of P, then Y is char-
acteristic in P and fulfils the first part of the assertion. From Y � Z(P) we obtain that
|P : CP(Y)| = |NP(Y) : CP(Y)| = 3. Moreover we have Y = Ω1(CP(Y)), since P has rank
2. If R is a non-cyclic subgroup of exponent 3 of P and different from Y , then R � CP(Y)
and so R · CP(Y) = P. Further we have CR(Y) = CP(Y) ∩ R ≤ Ω1(CP(Y)) = Y . Together
this implies that R/CR(Y) = R/(CP(Y) ∩ R) � (R ·CP(Y))/CP(Y) = P/CP(Y) � C3. For this
reason we conclude that |R| = 3 · |CR(Y)| ≤ 3 · |Y | = 27. We deduce from the fact that R is of
exponent 3 and rank 2 that R is elementary abelian of order 9 or non-abelian. In the second
case Theorem 5.5.1 of [22] forces R to be extraspecial of order 27.
Suppose that there is another elementary abelian normal subgroup X of order 9 of P. Then
R := X ·Y is a normal subgroup of P and we have |R| = |X ·Y | = |X|·|Y |

|X∩Y | = 9·9
3 = 27. Moreover

R contains the 8 elements of order 3 of Y and as X is elementary abelian and different from
Y there is at least one element of order 3 in X \ Y ⊆ R \ Y . The hypothesis on P having rank
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2 forces the group R to be non-abelian. There exist exactly two non-abelian groups of order
27, the extra-special ones, by Theorem 5.5.1 of [22]. The group of order 27 of exponent 9
possesses exactly eight elements of order 3. Hence R is of exponent 3.
Suppose for a contradiction that there exists an element y ∈ P\R of order 3. Then 〈R, y〉 is a
subgroup of P of order 81. Since P and hence 〈R, y〉 = R · 〈y〉 have rank 2, the element y in-
duces a non-trivial automorphism on R and y normalises X and Y . Since R has exactly four
maximal subgroups and y has order 3, the element y normalises every elementary abelian
subgroup of order 9 of R and centralises 〈x〉 = Z(R). Now Lemma 1.3.5 provides an ele-
mentary abelian subgroup Q of P of order 9 that is centralised by y. Therefore 〈y,Q〉 is ele-
mentary abelian of order 27. This is contradicts r(P) = 2. Thus we have R = Ω1(P) char P.
Furthermore every subgroup of exponent 3 is a subgroup of the extra-special group Ω1(P)
of order 27 and hence it is cyclic elementary abelian of order 9 or Ω1(P). �

1.3.7 Lemma
Let p ∈ {2, 3} and H be a finite group with a normal p-complement.
Suppose that P ∈ Sylp(H) and let X ≤ Z(P) act faithfully on Op′(H). Furthermore let σ
denote the set of primes q such that |H : CH(X)| is not divisible by q. If we have 2 ∈ σ, then
the following hold:

(a) [H, X, X] = [H, X] = [Op′(H), X],

(b) H = CH(X) · O(H) = CH(X) · [X,O(H)] and [X,H] = [X,O(H)] and

(c) H = CH(X) · Oπ′(H) = CH(X) · [X,Oπ′(H)] for all π ⊆ σ with p ∈ π.

Proof
(a) Since H has a normal p-complement, we conclude that H = Op′(H) · P. The as-

sumption that X ≤ Z(P) implies [H, X] = [Op′(H) · P, X] = [Op′(H), X]. Finally
Lemma 1.1.14 (d) yields

[H, X, X] = [[H, X], X] = [[Op′(H), X], X] = [Op′(H), X, X] = [Op′(H), X] = [H, X].

Thus Part (a) holds.

(b) Let first p be 2. Then H = P · O(H), since H has a normal 2-complement.
Consequently Lemma 1.1.14 (d) and the fact that P ≤ CH(X) imply that

H = P · O(H) ≤ CH(X) · O(H) ≤ CH(X) ·CO(H)(X) · [O(H), X] = CH(X) · [O(H), X].

Furthermore [X,H] = [X,O(H)] holds by (a).

Suppose now that p = 3. Then we obtain from Lemma 2.7 of [32] that

O3′(H) = CO3′ (H)(X) · O(O3′(H)) ≤ CH(X) · O(H).

From P ≤ CH(X) we deduce that H = P·O3′(H) ≤ CH(X)·O(H) and Lemma 1.1.14(d)
shows that

O3′(H) = CO3′ (H)(X)·[O3′(H), X] ≤ CO3′ (H)(X)·[CH(X)·O(H), X] ≤ CH(X)·[O(H), X].

Consequently we also obtain H = P · O3′(H) ≤ CH(X) · [O(H), X]. In particular we
have [H, X] = [CH(X) · [O(H), X], X] = [[O(H), X], X] ≤ [O(H), X] ≤ [H, X].

(c) For Part (c) we suppose that π is a subset of σ with p ∈ π. Moreover suppose that H
is a minimal counterexample to H = CH(X) · Oπ′(H).
From Lemma 1.1.14 (d) an the fact that H has a normal p-complement we obtain that
H = CH(X) · Op′(H) = CH(X) · [X,Op′(H)]. Thus the minimal choice of H implies
that H = [Op′(H), X] ·X. In particular we observe that X is a Sylow p-subgroup of H.
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From [Op′(H), X] ≤ [H, X] = [O(H), X] ≤ O(H) by (b) we deduce that [Op′(H), X]
is a normal subgroup of odd order of H with a p-factor group. Hence H is soluble by
the Odd Order Theorem 1.1.12.
Suppose for a contradiction that Oπ′(H) , 1. Then the minimality of H implies that
the assertion is true for H/Oπ′(H) and H/Oπ′(H) = CH/Oπ′ (H)(X) · Oπ′(H/Oπ′(H)).
Since p is an element of π, Lemma 1.1.14 (a) implies that

H/Oπ′(H) = CH/Oπ′ (H)(X) ·Oπ′(H/Oπ′(H)) = CH/Oπ′ (H)(X) = CH(X) ·Oπ′(H)/Oπ′(H).

Altogether H = CH(X) · Oπ′(H) contradicting the choice of H as a counterexample.
Therefore the group Oπ′(H) is trivial and we conclude that Oπ(H) ≥ F(H) , 1.
Suppose for a contradiction that the order F(H) is divisible by p. Then we have
[Op(H),Op′(H)] ≤ Op(H) ∩ Op′(H) = 1 and 1 , Op(H) ≤ X. This contradicts the
assumption that X acts faithfully on Op′(H).
This shows that X acts coprimely on Oπ(H) and we conclude from the minimal choice
of H and Lemma 1.1.14 (a), that

H/Oπ(H) = CH/Oπ(H)(X)·Oπ′(H/Oπ(H)) = (CH(X) · Oπ(H)) /Oπ(H)·(Oπ′(H/Oπ(H)))

= (CH(X) · Oπ(H)) /Oπ(H) · Oπ,π′(H)/Oπ(H) =
(
CH(X) · Oπ,π′(H)

)
/Oπ(H).

Consequently we have H = CH(X) · Oπ,π′(H). Since X acts coprimely on Oπ(H),
it acts coprimely on Oπ,π′(H). Therefore Lemma 1.1.14 (c) yields that Oπ,π′(H) has
a X-invariant Hall π′-subgroup K. This implies that Oπ,π′(H) = Oπ(H) · K. The
assumption that π ⊆ σ forces Oπ(H) ≤ CH(X).
We finally conclude that [X,H] = [X,CH(X)·Oπ,π′(H)] = [X,CH(X)·K] = [X,K] ≤ K.
As we have [X,H] E H and Oπ′(H) = 1, it follows that [X,H] = 1.
This is a contradiction. In conclusion Lemma 1.1.14 (d) yields that
H = CH(X) · Oπ′(H) = CH(X) ·C[X,Oπ′ (H)](X) · [X,Oπ′(H)] = CH(X) · [X,Oπ′(H)]. �

Remark
The proof of Lemma 2.7 of [32] uses heavily the fact that O3′(H) is a 3’-group and that
all its components are Suzuki groups (compare Theorem 1.2.8). This implies that the
Lemma 1.3.7 is dependent on the primes 2 and 3.

1.3.8 Lemma
Let G be a finite S 4-free group with O(G) = 1 that has no normal 3-complement.
Suppose for every involution t ∈ G that CG(t) is a 3′-group. Then F∗(G) is simple and no
3′-group. Further G = F∗(G)·NG(R) for a Sylow 3-subgroup R of F∗(G) and r2(NG(R)) ≤ 1.
Moreover if t is an involution of G, then CG(t)/CF∗(G)(t) is soluble.

Proof
It follows from the assumption that the centraliser of every 3-group is of odd order. (*)
Assume for a contradiction that O2(G) , 1. Then Lemma 1.1.14 (e) forces the Sylow 3-
subgroups of G to be cyclic. Since G is not 3-nilpotent, Burnside’s p-Complement Theorem
1.1.10 provides a section of G = NG(O2(G)) isomorphic to S 3. But the elements of order 3
act non trivial on Z(O2(G)), so Lemma 1.3.3 forces a contradiction to the assumption on G
to be S 4-free.
From O(G) = 1 = O2(G) we deduce that F∗(G) = E(G) is semi-simple. Moreover the group
G contains a 3-element. Therefore Lemma 1.2.10 and (*) show that no component of G is a
Suzuki group. In particular F∗(G) is no 3′-group. Since components have even order by the
Odd Order Theorem 1.1.12 and since different components commute by Lemma 1.1.18 (b),
the Statement (*) forces F∗(G) to be simple.
Let R be a Sylow 3-subgroup of F∗(G). Then we obtain from a Frattini argument that
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G = F∗(G) · NG(R). If NG(R) had a non-cyclic elementary abelian 2-subgroup, then
Lemma 1.1.14 (e) and (*) would contradict each other. Thus we have r2(NG(R)) ≤ 1.
More precisely NG(R) has cyclic or quaternion Sylow 2-subgroups by Lemma 1.1.2. Con-
sequently Theorem 1.2.8 (d) implies that NG(R) does not involve a Suzuki group. If t is an
involution of G, then we have that

CG(t)/CF∗(G)(t) = CG(t)/(CG(t) ∩ F∗(G)) � CG(t) · F∗(G)/F∗(G) ≤ G/F∗(G)
= NG(R) · F∗(G)/F∗(G) � NG(R)/NF∗(G)(R)

Since CG(t) is a 3′-group and NG(R) does not involve a Suzuki group, CG(t)/CF∗(G)(t) is
soluble. �

1.3.9 Lemma
Let G be a finite group and t be an involution of G such that CF(G)(t) is Hall subgroup of
F(G). Then {g ∈ G | gt = g−1 and 2 - o(g)} is a subset of CG(F(G)).
If in addition F∗(G) = F(G), then {g ∈ G | gt = g−1 and 2 - o(g)} = [F(G), t].

Proof
As CF(G)(t) is a Hall subgroup of the nilpotent group F(G), it is a characteristic subgroup of
F(G). Moreover CF(G)(t) has a unique complement K in F(G), which is also characteristic
in F(G). Since K ∩ CG(t) = 1, the group K is inverted by t. Furthermore we observe that
K = [K, t] ≤ [F(G), t] = [CF(G)(t) · K, t] = [K, t] = K.
We fix elements h ∈ {g ∈ G | gt = g−1 and 2 - o(g)}, c ∈ CF(G)(t) and k ∈ K. Then we have
ch ∈ CF(G)(t) and kh ∈ K, since CF(G)(t) and K are characteristic subgroups of the normal
subgroup F(G) of G. It follows that

ch = (ch)t = cht = cth−1
= ch−1

and kh = ((kh)t)−1 = (kth−1
)−1 = ((k−1)h−1

)−1 = kh−1
.

Altogether we conclude that h2 ∈ CG(F(G)). Thus we have h ∈ CG(F(G)), because h has
odd order. In addition we assume now that F∗(G) = F(G).
Then we have that h ∈ CG(F(G)) ≤ F(G) by Lemma 1.1.18 (h) and hence

h ∈ 〈h2〉 = 〈h · (h−1)−1〉 = 〈h · (h−1)t〉 = 〈[h−1, t]〉 ≤ [F(G), t].
From [F(G), t] = K ⊆ {g ∈ G | gt = g−1 and 2 - o(g)} the assertion follows. �
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2 Specific Preparatory Results

2.1 Balance
The notion of balance and signalizer functors was developed in the last century. In the litera-
ture there are several concepts of balance. The definition of a balanced group of Gorenstein
and Walter in [27] differs for example with the concept given in Section F of [23].
To avoid any possible misunderstanding, we explicitly define a notion of balance in this
section. Moreover we introduce signalizer functors as in [3].

2.1.1 Definition
Let G be a finite group and p be a prime.
For some elements a ∈ G of order p let θ(a) be a p′-subgroup of CG(a).

(a) Suppose that a ∈ G is an element of order p.

Then a is called θ-balanced in G if and only if for all b ∈ CG(a) of order p the group
θ(b) is defined and normal in CG(b) and we have

θ(b) ∩CG(a) ≤ θ(a).

(b) The group G is called θ-balanced if and only if all elements of order p are θ-balanced
in G.

(c) An elementary abelian non-cyclic p-subgroup A of G is said to be θ-balanced in G if
and only if for all elements a ∈ A# the group θ(a) is defined and A-invariant and such
that for all a, b ∈ A# the following holds:

θ(b) ∩CG(a) ≤ θ(a).

2.1.2 Remark
If p = 2 and for all involutions a in G we have θ(a) = O(CG(a)), then we omit the θ and say
that a is balanced in G instead of a is θ-balanced. Respectively we say that G is balanced
and A is balanced in G in this case.

2.1.3 Lemma
Let G be a finite group and p be a prime.
For all elements b of order p in G we set θ(b) := Op′(CG(b)). If b ∈ G is an element of order
p such that CG(b) is p-constrained, then b is θ-balanced in G.

Proof
We set H := CG(b) and assume that a ∈ H is an element of order p. We suppose further that
D := Op′(CG(a)) ∩ H and let − : H → H/Op′(H) denote the natural epimorphism.
Then D̄ acts on Op(H̄) and Lemma 1.1.14 (a) yields

[COp(H̄)(ā), D̄] = [COp′ ,p(H)(a), D̄] = [COp′ ,p(H)(a),D] ≤ Op′,p(H) ∩ D = 1.

We remark that D̄ moreover centralises ā to obtain that D̄ centralises the subnormal sub-
group C〈ā〉·Op(H̄)(ā) of the D̄-invariant group 〈ā〉 · Op(H̄). Hence Lemma 1.1.14 (g) implies
that D̄ acts trivially on Op(H̄). Since H is p-constrained and D has p′-order, this leads to
D ≤ Op′(CG(b)). �
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2.1.4 Lemma
Let G be a finite group and suppose that b is an involution in G such that the only non-
abelian composition factors of CG(b) are Suzuki groups. Then b is balanced in G.

Proof
This is Lemma 1.6. of [36]. �

2.1.5 Definition
Let G be a finite group, let p be a prime and suppose that A is an elementary abelian p-
subgroup of G.

(a) An A-signalizer functor on G is a map θ from A# into the set of all A-invariant
p′-subgroups of G such that A is θ-balanced in G.

(b) An A-signalizer functor on G is complete if and only if there exists an A-invariant
p′-subgroup θ(G) of G such that θ(a) = Cθ(G)(a) for all a ∈ A#.

(c) An A-signalizer functor on G is soluble if and only if θ(a) is soluble for all a ∈ A#.

(d) A soluble A-signalizer functor on G is solubly complete if and only if θ is complete
and θ(G) is soluble.

2.1.6 Theorem (Soluble Signalizer Functor Theorem)
Let G be a finite group, p be a prime and suppose that A is an elementary abelian p-subgroup
of G of order at least p3.
Then each soluble A-signalizer functor θ on G is solubly complete.
In particular 〈θ(a) | a ∈ A#〉 is a soluble p′-group.

Proof
This can be found in Chapter 15 of [3]. �

2.1.7 Lemma
Let G be a finite group such that E(G) is quasisimple and F(G) = O2(G) has at most one
involution. Suppose that B1 and B2 are non-cyclic elementary abelian 2-subgroups of G
such that B1 ∩ Z(G) = 1 = B2 ∩ Z(G) and [B1, B2] ≤ Z(G).
Furthermore assume that for every involution b of B1 and B2 the group CG(b) is 3-soluble.
Then we have 〈O(CG/Z(G)(Z(G)b)) | b ∈ B#

1〉 = 〈O(CG/Z(G)(Z(G)b)) | b ∈ B#
2〉.

Proof
Let − : G → G/Z(G) denote the natural epimorphism and set 〈z〉 := Ω1(Z(G)).
For all b ∈ B#

1 we observe B̄2 ≤ CḠ(b̄) from [B1, B2] ≤ Z(G). Thus B̄2 acts coprimely
on O(CḠ(b̄)). From B2 ∩ Z(G) = 1 we obtain that B̄2 is non-cyclic and as B2 is elemen-
tary abelian, we see that also B̄2 is elementary abelian. Thus Lemma 1.1.14 (e) yields
O(CḠ(b̄)) = 〈CO(CḠ(b̄))(c̄) | c̄ ∈ B̄#

2〉 = 〈CO(CḠ(b̄))(c̄) | c ∈ B#
2〉.

Moreover for all a ∈ B#
1 ∪ B#

2 the group NG(〈a,Z(G)〉) = NG(Ω1(〈a,Z(G)〉)) = NG(〈a, z〉) is
the full pre-image of CḠ(ā) in G. Since 〈a, z〉 is elementary abelian of order 4 and z ∈ Z(G),
it follows that CḠ(ā)/CG(a) � NG(〈a, z〉)/CG(a) = NG(〈a, z〉)/CG(〈a, z〉) . Z2. In particular
the assumption that CG(a) is 3-soluble implies that CḠ(ā) is 3-soluble.
Consequently Lemma 2.1.4 forces the involutions of B̄1 and B̄2 to be balanced in Ḡ. More
precisely, for all b ∈ B#

1 and c ∈ B#
2 we have CO(CḠ(b̄))(c̄) = CḠ(c̄) ∩ O(CḠ(b̄)) ≤ O(CḠ(c̄)).

This shows that
〈O(CḠ(b̄)) | b ∈ B#

1〉 = 〈〈CO(CḠ(b̄))(c̄) | c ∈ B#
2〉 | b ∈ B#

1〉

≤ 〈〈O(CḠ(c̄)) | c ∈ B#
2〉 | b ∈ B#

1〉 = 〈O(CḠ(c̄)) | c ∈ B#
2〉

As all conditions on B1 and B2 are symmetric, we also obtain the other inclusion. �
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2.2 Strongly Closed Abelian Subgroups
In this section we want to become acquainted with the concept of strongly closed subgroups.
The strength of this concept will arise in the following section.
Our definition of a strongly closed subgroup differs slightly from the general literature but
the concept is the same.

2.2.1 Definition
Let G be a finite group, let p be a prime and suppose that S ∈ S ylp(G).
A subgroup A of S is strongly closed in G with respect to S if and only if, whenever we
have g ∈ G, then Ag ∩ S ≤ A holds.

2.2.2 Lemma
Let G be a finite group, let p be a prime and suppose that S ∈ S ylp(G).
Furthermore assume that A ≤ S is elementary abelian and strongly closed in G with respect
to S . Then the following hold:

(a) For all subgroups S 0 of S with A ≤ S 0 we have NG(S 0) ≤ NG(A).

(b) For all S 0 ∈ S ylp(G) such that A ≤ S 0 the group A is strongly closed in G with respect
to S 0.

(c) For all U ≤ G such that S ∩ U ∈ S ylp(U) the group A ∩ U is strongly closed in U
with respect to S ∩ U.

(d) If we have A ≤ U ≤ G, then there exists a Sylow p-subgroup S 0 of U such that A is
strongly closed in U with respect to S 0.

(e) The group NG(A) controls the fusion of its p-elements.

(f) For all N EG the group A · N/N is strongly closed in G/N with respect to S · N/N.

(g) We have that G = NG(A) · 〈AG〉 holds.

(h) If we have N ≤ Op(G), then A ∩ N is normal in G.

(i) Let N be a normal p′-subgroup of G and suppose that G/N has a subgroup B/N that
is strongly closed in G/N with respect to S N/N. If B is the full pre-image of B/N,
then B ∩ S is strongly closed in G with respect to S .

(j) For all B ≤ A with NG(B) ≥ NG(A) the group B is strongly closed in G with respect
to S .

(k) For all B ≤ A the group 〈BNG(A)〉 is strongly closed in G with respect to S .

(l) If Z ≤ Z(G) is a p-subgroup of G, then A · Z is strongly closed in G with respect to S .

Proof
(a) Suppose that S 0 ≤ S with A ≤ S 0 and let g be an element of NG(S 0).

Then we have Ag ≤ S 0 ≤ S . Since A is strongly closed in G with respect to S , it
follows that Ag = Ag ∩ S ≤ A. Thus we have that g ∈ NG(A).

(b) Let S 0 ∈ S ylp(G). Then Sylow’s Theorem provides an element h ∈ S 0 such that
S h

0 = S and we have Ah ≤ S h
0 ≤ S . Since A is strongly closed in G with respect to S ,

we see that Ah = Ah ∩ S ≤ A and consequently h is an element of NG(A). Let g ∈ G
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and a ∈ A such that ag ∈ S 0. Then we have ag·h ∈ S h
0 = S . The assumption that A is

strongly closed in G with respect to S forces ag·h ∈ A. As h ∈ NG(A), we finally see
that ag = (ag·h)h−1

∈ A.

(c) Suppose that U ≤ G with A ≤ U. Let u ∈ U and a ∈ A ∩ U such that au ∈ S ∩ U.
Then we observe that au ∈ S and, as A is strongly closed in G with respect to S , we
conclude that au ∈ A. Altogether au ∈ A ∩ S ∩ U ≤ A ∩ U.

(d) Let S 0 be a Sylow p-subgroup of U ≤ G containing A. Suppose that S 1 ∈ S ylp(G)
such that S 0 ≤ S 1. By (b) the group A is strongly closed in G with respect to S 1.
Finally U ∩ S 1 = S 0 ∈ S ylp(U) implies together with (c) the assertion.

(e) By Theorem 6.1 of [16] the group A controls strong fusion in S with respect to G.
Moreover every p-element of NG(A) is contained in a Sylow p-subgroup of NG(A) by
Sylow’s Theorem. Thus the assertion follows from (b).

(f) Let N be a normal subgroup of G. Suppose that g ∈ G and a ∈ A are elements of G
such that (Na)g ∈ S · N/N. Then we have ag ∈ S · N. Since S is a Sylow p-subgroup
of S · N and ag is a p-element, Sylow’s Theorem provides an element h ∈ N with
ag·h ∈ S . From the assumption that A is strongly closed in G with respect to S we
deduce that ag·h ∈ A. Hence we have ag·h ∈ A · N and consequently we obtain that
(Na)g = (Na)g·h ∈ A · N/N.

(g) Let S 0 ∈ S ylp(〈AG〉) such that A ≤ S 0. From (d) and (b) we conclude that A is
strongly closed in 〈AG〉 with respect to S 0. Thus (a) implies that NG(S 0) ≤ NG(A).
Finally a Frattini arguments shows that G = 〈AG〉 · NG(S 0) ≤ 〈AG〉 · NG(A).

(h) Let N ≤ Op(G). Then we observe that N ≤ S . This implies for all g ∈ G and
a ∈ A ∩ N that ag ∈ N ≤ S . Again the assumption that A is strongly closed in G with
respect to S implies ag ∈ A. Altogether we have that ag ∈ A ∩ N.

(i) Let B be the full pre-image of B/N. Since B/N is a subgroup of S N/N, Lemma 1.1.5
yields B = B ∩ S N = (B ∩ S )N. Let g ∈ G and b ∈ B ∩ S such that bg ∈ S . Then we
see that Nb ∈ B/N and Nbg ∈ S N/N. As B/N is strongly closed in G/N with respect
to S · N/N, it follows that bg ∈ BN = B. This shows that bg ∈ B ∩ S .

(j) Suppose that B ≤ A with NG(B) ≥ NG(A). Let g ∈ G and b ∈ B such that bg ∈ S .
Since NG(A) controls by (e) the fusion of S , there is an element h ∈ NG(A) ≤ NG(B)
such that bg = bh. Thus bg = bh ∈ B holds.

(k) We have 〈BNG(A)〉 ≤ A and NG(A) ≤ NG(〈BNG(A)〉). The assertion follows from (j).

(l) Let Z ≤ Z(G) be a p-subgroup of G. Then Z is a subgroup of S . Suppose that there are
elements g ∈ G and c ∈ A · Z such that cg ∈ S . Then there is an element a ∈ A and an
element z ∈ Z such that c = a·z and we obtain ag = ag ·z−1 ·z = ag ·(z−1)g ·z = cg ·z ∈ S .
Since A is strongly closed in G with respect to S , it follows that ag ∈ A. This shows
that cg = ag · zg = ag · z ∈ A · Z. �

2.2.3 Remark
Part (b) of Lemma 2.2.2 shows that the property of being a strongly closed elementary
abelian p-subgroup of a finite group with respect to a Sylow subgroup does not depend on
the choice of the Sylow subgroup. For this reason in the remainder of this thesis we omit
the “respect”-part and say that an elementary abelian p-subgroup A of a finite group G is
strongly closed in G, if it is strongly closed in G with respect to one and therefore all Sylow
p-subgroups of G containing A.
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2.2.4 Proposition (Glauberman)
Let G be S 4-free and suppose that every composition factor of every 2-constrained section
of G is a 3′-group or abelian. Let further T be a Sylow 2-subgroup of G.
Then 〈Ω1(Z(T ))NG(J(T ))〉 is a strongly closed elementary abelian 2-subgroup of G.

Proof
This is a consequence of Proposition II 6.1 of [18]. �

2.2.5 Proposition (Goldschmidt)
Let A be an elementary abelian 2-subgroup of a 3-soluble group G. Suppose that A is
strongly closed in G.
Furthermore let T be a Sylow 2-subgroup of O2(〈AG〉) containing A ∩ O2(〈AG〉).
Then 〈AG〉 := 〈AG〉/O(〈AG〉) is a central product of an elementary abelian 2-subgroup and
Suzuki groups with possibly trivial factors. Moreover we have A = O2(〈AG〉) ·Ω1(T ).

Proof Compare with (4.2) of [20].
Let G be a minimal counterexample and let A be an elementary abelian strongly closed
2-subgroup of G and T be a Sylow 2-subgroup of O2(〈AG〉) containing A ∩ O2(〈AG〉). We
choose A of minimal order such that our proposition false for A and G. Then A is non-trivial.

(1) We have O(G) = 1, G = 〈AG〉 and Z(G) = 1.

Proof. By Lemma 2.2.2 (f) the group A · O(G)/O(G) is strongly closed in G/O(G). From
O(〈AG〉) ≤ O(G) and the minimal choice of G we deduce that O(G) is trivial.
Moreover we see that 〈AG〉 = 〈ANG(A)·〈AG〉〉 = 〈A〈A

G〉〉 by Lemma 2.2.2 (g). The strong
closure of A in 〈AG〉 by Lemma 2.2.2 (d) and the minimal choice of G imply that 〈AG〉 = G.
Let now − : G → G/Z(G) be the natural epimorphism and let U denote the full pre-image
of O(Ḡ). Then U has a central Sylow 2-subgroup and Burnside’s p-Complement Theorem
1.1.10 implies that U has a normal 2-complement. We observe that O(U) char U E G to
conclude that O(U) = 1 by O(G) = 1. This shows that U = Z(G) ≤ O2(G). Suppose for a
contradiction that Z(G) , 1. Then the minimal choice of G and the fact that Ā is strongly
closed in Ḡ by Lemma 2.2.2 (f) imply that our proposition holds for Ḡ and Ā.
From O(Ḡ) = 1 it follows that O(〈ĀḠ〉) = 1. In particular 〈ĀḠ〉 = 〈AG〉 is a central product
of an elementary abelian 2-subgroup and Suzuki groups. This implies that 〈AG〉 · Z(G) is a
central product of an abelian 2-subgroup and Suzuki groups. But A is elementary abelian
and Z(G) centralises G. Consequently 〈AG〉 is a central product of an elementary abelian
2-subgroup and Suzuki groups. Moreover A intersects each of this factors non-trivially and
the intersection is strongly closed in the factor by Lemma 2.2.2 (c). From Theorem 1.2.8 (h)
it follows that A = O2(〈AG〉) ·Ω1(T ). This is a contradiction, as G is a counterexample. We
conclude that Z(G) = 1. �

(2) We have F(G) = 1 and E(G) , 1. In particular every component of G is simple.

Proof. Suppose for a contradiction that O2(G) , 1. Then the 2-group O2(G) normalises the
2-group A by Lemma 2.2.2 (a) and hence C := CO2(G)(A) , 1. Let g ∈ G and c ∈ C. Then we
have cg ∈ O2(G) ≤ NG(A). Consequently Lemma 2.2.2 (e) provides an element h ∈ NG(A)
such that cg = ch. Since NG(A) normalises C, we conclude that cg = ch ∈ C. This shows
that C is a normal subgroup of G. Moreover for every g ∈ G we have [Ag,C] = [A,C]g = 1.
Altogether we have G = 〈AG〉 ≤ CG(C) and hence 1 , C ≤ Z(G) = 1 by (1). This is a
contradiction.
From O2(G) = 1 = O(G) by (1) we deduce that F(G) = 1 and therefore we have E(G) , 1
and every component of G is simple. �
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(3) All components of G are normal in G.

Proof. Let E := E(G) and set E1 := 〈(A∩E)E〉. Suppose that K is a component of E1. Then
we have A ∩ K , 1 = Z(K) and Lemma 1.1.18 (d) shows that A normalises K.
Let E0 be the product of all components of G which are not contained in E1. Then E0 is
A-invariant. Let T0 be a Sylow 2-subgroup of E0 that is normalised by A. Then 〈A,T0〉 is a
2-subgroup of G. From Lemma 2.2.2 (a) we deduce that [A,T0] ≤ T0 ∩ A ≤ E0 ∩ A = 1.
We apply again Lemma 1.1.18 (d) to observe that A normalises every component of E0.
Altogether A normalises every component of G. Because of G = 〈AG〉, it follows that every
component of G is normal G. �

(4) We have A ≤ E(G).

Proof. Let K be a component of G. Then A normalises K by (3). From the fact that G
is 3-soluble, Theorem 1.2.8 and Part (c) of the same theorem we conclude that A induces
inner automorphisms in K. It follows that A ≤ K · CG(K) for every component K of G.
This implies that A ≤ E(G) · CG(E(G)). From (2) we deduce that E(G) = F∗(G) and
Lemma 1.1.18 (h) yields that A ≤ E(G) ·CG(E(G)) ≤ F∗(G) ·CG(F∗(G)) ≤ F∗(G) = E(G).

�

Finally from Theorem 1.2.8 we deduce that the 3-soluble group G = 〈AG〉 = E(G) is
a central product of Suzuki groups. Moreover A intersects each of the components non-
trivially and the intersection is strongly closed in the component by Lemma 2.2.2 (c). From
Theorem 1.2.8 (h) it follows that A = Ω1(T ). This contradiction, as G is a counterexample.�

2.2.6 Lemma (Goldschmidt)
Let G be a finite simple group and T ∈ S yl2(G). If A ≤ T is a strongly closed elementary
abelian subgroup of G, then we have G = 〈CG(a) | a ∈ A#〉 or G is a Bender group.

Proof
This is (4.4) of [20]. �

2.3 Finite Groups with many Involutions having a 3-
Soluble Centraliser

In [20] Goldschmidt showed that the appearance of a strongly closed abelian 2-subgroup has
a strong influence on the structure of finite groups. In this section we capture and develop
his ideas in finite groups where the centralisers of almost all involutions are 3-soluble.

2.3.1 Definition
Let G be a finite group and p be a prime.
A p-subgroup A of G is minimal strongly closed in G if and only if A is strongly closed in
G and A has no proper non-trivial subgroup which is strongly closed in G.

2.3.2 Lemma
Let G be a finite group with a non-cyclic elementary abelian subgroup A that is minimal
strongly closed in G. For |A| = 16 let NG(A) be S 4-free. Suppose that W is a subgroup of G
of odd order and normalised by Γ∗ := 〈NG(B) | B ≤ A and r(B) ≥ 2〉.
Furthermore assume that a ∈ A# is such that CG(a) is 3-soluble and O(〈ACG(a)〉) ≤ W.
Then CG(a) is contained in W · Γ∗.
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Proof
For all b ∈ A# we set Cb := CG(b).
By Lemma 2.2.2 (d) the group A is strongly closed in the 3-soluble group Ca. (*)
Suppose for a contradiction that Ca * W · Γ∗.

(1) There is a n ∈ N such that 〈ACa〉/O(〈ACa〉) � C ∗ S z(22n+1) and C is cyclic of order 2.

Proof. Since A is not cyclic, it follows that NG(A) ≤ Γ∗. The Statement (*), Proposition 2.2.5
and Lemma 2.2.2 (g) imply that Ca = NCa(A) ·〈ACa〉 and 〈ACa〉/O(〈ACa〉) is a central product
of an elementary abelian 2-subgroup and Suzuki groups.
Let − : Ca → Ca/O(〈ACa〉) be the natural epimorphism and let S denote a Sylow 2-subgroup
of a pre-image of O2(〈ACa〉) in Ca. By Proposition 2.2.5 we may choose S such that S ≤ A.
Suppose for a contradiction that S has an elementary abelian subgroup of order 4. Then we
observe NG(S ) ≤ Γ∗. Further a Frattini argument leads to
Ca = NCa(A) · 〈ACa〉 = NCa(A) ·N〈ACa 〉(S ) ·O2′,2(〈ACa〉) ⊆ NG(A) ·NG(S ) ·O(〈ACa〉) ⊆ Γ∗ ·W.

This is a contradiction. From a ∈ S we conclude that S = 〈a〉. It follows that 〈ACa〉 is a
central product of 〈ā〉 and Suzuki groups.
From NCa(A)·O(〈ACa〉) ≤ W ·Γ∗ we obtain a component of 〈ACa〉, which we denote by L̄. Let
S 1 be a Sylow 2-subgroup of a pre-image of L̄. Again by Proposition 2.2.5 we may choose
S 1 such that Ω1(S 1) ≤ A. Then S 1 is not of rank 1. Thus NG(S 1) ≤ NG(Ω1(S 1)) ≤ Γ∗. In
addition a Frattini argument yields:

Ca = NCa(A) · 〈ACa〉 = NCa(A) · NCa(S 1) · L · O(〈ACa〉) ⊆ Γ∗ ·W · L.
Suppose for a contradiction that 〈ACa〉 has a second component K̄. Then we similarly con-
clude that Ca ⊆ Γ∗ · W · K holds. Furthermore Lemma 1.1.14 (a) and Lemma 1.1.18 (b)
lead to K̄ ≤ CC̄a

(L̄) ≤ CC̄a
(S̄ 1) = CCa(S 1). This implies K ≤ CCa(S 1) · O(〈ACa〉) ⊆ Γ∗ ·W.

Altogether Ca ⊆ Γ∗ ·W · K ⊆ Γ∗ · Q is a contradiction. �

Let K be the full pre-image of E(〈ACa〉/O(〈ACa〉)).

(2) E(〈ACa〉/O(〈ACa〉)) is simple and K ∩ A is the centre of a Sylow 2-subgroup of K.

Proof. Suppose for a contradiction that E(〈ACa〉/O(〈ACa〉)) is not simple then (1) and Theo-
rem 1.2.8 (a), (d) and (c) imply that A has order 16 and NG(A) is divisible by 7. Since A is
minimal strongly closed in G, Lemma 2.2.2 (j) yields that NG(A) acts irreducibly on A. From
the assumption NG(A) is S 4-free in this case we obtain a contradiction with Lemma 1.2.6.
Consequently E(〈ACa〉/O(〈ACa〉)) is simple.
Moreover K ∩ A is strongly closed in K by Lemma 2.2.2 (d). Finally Theorem 1.2.8 (h)
forces K ∩ A to be the centre of some Sylow 2-subgroup of K. �

(3) The group NG(A) acts transitively on A#.

Proof. Since 〈a〉 < A is not strongly closed in G, Lemma 2.2.2 (j) provides an element
g ∈ NG(A) ≤ W · Γ∗ such that a , ag ∈ A. Hence we have Ca � (Ca)g = Cag and
Cag � W · Γ∗. Moreover (1) and (2) yield that a < K. We set B := K ∩ B. By (2) and
Theorem 1.2.8 (f) all involution of B are conjugate. Thus {a}, B# and a · B \ {a} are exactly
the conjugacy classes of A in NCa(A). Consequently ag ∈ B# or ag ∈ a · B \ {a}.
Suppose for a contradiction (3) is false and let C := aG. If we have ag ∈ B#, then {a} ∪ B#

is contained in C. More precisely we obtain that (a · B \ {a}) ∩ C = ∅. The groups B and
Bg are maximal subgroups of A. Moreover, as A has order at least 16, we conclude that
B∩Bg , 1. Further we obtain that all involutions of Bg are conjugate in G from the fact that
all involutions of B are conjugate in G. This implies that (Bg)# ⊆ C. Since ag ∈ B ⊆ C, it
follows that {a}∪B# = C∩A = {ag}∪(Bg)#. Thus we conclude a·B\{a} = A#\C = ag·Bg\{ag}.
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Let finally 1 , c ∈ B∩ Bg. Then we have ag · c ∈ B∩ (ag · Bg \ {ag}) = B∩ (a · B \ {a}). This
implies the contradiction (a · B \ {a}) ∩ C , ∅.
Consequently we obtain that ag < B# and hence {a} ∪ (a · B \ {a}) is contained in C and
B# ∩ C = ∅. Thus we obtain that NG(B) ≥ NG(A). Finally Lemma 2.2.2 (j) yields that B is
strongly closed in G this is a contradiction. �

(4) The group NG(A)/CG(A) is of odd order.

Proof. Let t be a 2-element such that t ∈ NG(A). Since A is a 2-group, there exists an element
b ∈ A# such that t ∈ Cb. By (3) we may assume that b = a. Then t normalises K by (1). The
outer automorphism group of Suzuki groups is of odd order by Theorem 1.2.8 (c). Moreover
(2) yields that the elementary abelian group K ∩ A is contained in the centre of a Sylow 2-
subgroup of K. Thus we conclude that O(K)t ∈ CCa/O(K)(K ∩A) = CCa(K ∩A) ·O(K)/O(K)
from Lemma 1.1.14 (a). Since t is a 2-element that normalises A ∩ K, we deduce that t
centralises A ∩ K. Altogether t ∈ CG(A ∩ K) ∩Ca ≤ CG(A). �

Let H := NG(A). Let − : H → H/CG(A) be the natural Epimorphism and let N̄ be a minimal
normal subgroup of NG(A) such that N is the full pre-image of N̄ in H.

(5) The group N̄ is cyclic of prime order and acts fixed-point-freely on A#.

Proof. By (4) and the Odd Order Theorem 1.1.12 we see that NG(A)/CG(A) is soluble and
of odd order. This implies that N̄ is an elementary abelian group of odd order.
Since all elements of A# are conjugate by (3), Lemma 2.2.2 (e) implies that they are conju-
gate by H = NG(A). As the kernel of − is CG(A), there is a natural action from H̄ on A# that
is also transitive.
Suppose for a contradiction that N̄ does not act elementwise fixed point freely on A#. Then
there is an element b ∈ A# such that CN̄(b) , 1. Since H̄ is transitive on A# we may
suppose that b = a. Suppose for a contradiction that CN̄(a) = N̄. Then it follows from
the fact H̄ normalises N̄ and acts transitively on A# that CN̄(b) = N̄ for all b ∈ A#. But
this is a contradiction. Thus N̄ , CN̄(a) and there is an element h̄ ∈ N̄ such that ah̄ , a.
Consequently we have CN̄(a) =

(
CN̄(a)

)h̄
= CN̄ h̄(ah̄) = CN̄(ah̄). In particular CN̄(a) has

more than one fixed point in A#. Altogether we observe that CG(A) < CN(a) < N and
CA(CN(a))> 〈a〉. Moreover we deduce from (1) we deduce that A = 〈a〉× (A∩K) and hence
we have CA(CN(a)) ∩ K , 1.
Let b be an involution of CA(CN(a)) ∩ K. Then we have CN(a) ≤ CG(b) ∩ Ca = CCa(b).
Let further ∧ denote the natural epimorphism from Ca onto Ca/O(K). Since N is a normal
subgroup of H, the group CN(a) is normal in CH(a). Thus K̂ ∩ H normalises ĈN(a). This
implies together with the fact that K is normal in Ca by (1) and Lemma 1.1.14 (a) that

[ĈN(a), K̂ ∩ H] ≤ ĈN(a) ∩ K̂ ≤ ĈCa(b) ∩ K̂ = CĈa
(b̂) ∩ K̂ = CK̂(b̂).

Theorem 1.2.8 (g) forces CK̂(b̂) to be a 2-group. Since ĈN(a) is of odd order, it follows that
[ĈN(a), Ĥ ∩ K] = Ĥ ∩ K ∩ ĈN(a) ≤ ĈN(a) ∩CK̂(b̂) = 1.
By (1) and Theorem 1.2.8 (c) there is a cyclic subgroup Q̂ of K̂ that acts transitively on
K̂ ∩ A. Then Q̂ acts like the "Singer-cycle" on K̂ ∩ A. By II 7.3 (a) of [29] we see that

ĈN(a) ≤ CĈH(a)(K̂ ∩ H) ≤ CĈH(a)(Q̂) ≤ Q̂ ≤ Ĥ ∩ K.

But Ĥ ∩ K intersects ĈN(a) trivially. Hence we conclude that CN(a) is a subgroup of O(K).
Finally [CN(a), A] ≤ O(K) ∩ A = 1 leads to a contradiction.
For this reason N̄ acts elementwise fixed point freely on A#. Since N̄ is elementary abelian
Lemma 1.1.14 (e) forces N̄ to be cyclic. In particular N̄ has prime order, because N̄ is a
minimal normal subgroup of H̄. �

By (2) and Theorem 1.2.8 (d) there is a n ∈ N such that n ≥ 1 and |A ∩ K| = 22n+1, hence
|A| = 22(n+1) by (1).
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(6) 22n+1 − 1 divides |N | − 1

Proof. Theorem 1.2.8 (e) and (1) imply that (H ∩ K) · O(K)/O(K) is soluble. Thus H ∩ K
is soluble by the Odd Order Theorem 1.1.12.
Let Q be a Hall 2′-subgroup of H ∩ K ≤ CH(a). Then [O(K) ∩ Q, A] ≤ O(K) ∩ A = 1.
This shows that O(K) ∩ Q ≤ CG(A) ∩ Q = CQ(A). Theorem 1.2.8 (e) yields together with
Lemma 1.1.14 (a) that 1 = CQ·O(K)/O(K)(A) = CQ(A) · O(K)/O(K). Altogether we have
O(K) ∩ Q = CQ(A) = Q ∩CG(A) and so

Q̄ = Q ·CG(A)/CG(A) � Q/(Q ∩CG(A)) = Q/(Q ∩ O(K)) � Q · O(K)/O(K).

Consequently we have |Q̄| = |Q · O(K)/O(K)| = 22n+1 − 1 by Theorem 1.2.8 (e).
Moreover the same statement yields that Q ·O(K)/O(K) acts elementwise fixed-point freely
on ((K ∩ A) · O(K)/O(K))#. This implies for every element g ∈ Q \ O(K) that we have
CA(g) = 〈a〉.
Let now g ∈ Q ≤ CG(a) such that ḡ ∈ CH̄(N̄) and let h ∈ N#. Then (5) yields that ah , a
and there is an element c ∈ CG(A) such that gh = g · c. We have gh ∈ CG(ah) and hence
g = gh · c ∈ CG(ah). This implies that g centralises the two different involutions a and ah

and therefore we conclude that g ∈ O(K). From Q ∩ O(K) = Q ∩ CG(A) we deduce that
Q̄ ∩CH̄(N̄) = 1. For that reason we see that

Q̄ � Q̄/Q̄ ∩CH̄(N̄) � Q̄ ·CH̄(N̄)/CH̄(N̄) ≤ NH̄(N̄)/CH̄(N̄) . Aut(N̄).

In particular 22n+1 − 1 = |Q| divides |Aut(N)| = |N | − 1, since |N | is a prime by (5). �

We further have N̄ E H̄ = NG(A)/CG(A) . GL(22n+2, 2).
Thus |N̄ | is an odd prime divisor of |GL(22n+2, 2)| =

∏2n+1
i=0 (22n+2 − 2i). Consequently there

is an i ∈ {0, ..., 2n + 1} such that |N̄| is an odd prime divisor of 22n+2 − 2i = 2i(22n+2−i − 1).
By (6) we have 22n+1 − 1 divides |N̄| − 1. This yields that 22n+1 ≤ |N̄ | ≤ 22n+2−i − 1. This
implies that i = 0.
Altogether |N̄ | is a prime divisor of 22n+2−1 = (2n+1−1)(2n+1+1). In particular we conclude
that 22n+1 ≤ |N̄ | ≤ 2n+1 + 1. This forces n ≤ 0 contradicting n ≥ 1. �

2.3.3 Theorem
Let G be a finite group with O(G) = 1. Suppose that r(O2(G)) ≤ 1 and E(G) is quasi-
simple. For a Sylow 2-subgroup T let Ω1(Z(T )) > Ω1(Z(G)) and let the possibly trivial
group Ω1(Z(G)) be generated by c.
Furthermore assume that E(G) has an elementary abelian subgroup A0 such that A0 is
strongly closed in G and 〈A0, c〉/〈c〉 is not cyclic. Finally suppose that for all involutions
b ∈ G \ 〈c〉 the group CG(b) is 3-soluble. Then one of the following holds:

(a) We have E(G) � 2.S z(8).

(b) There is an elementary abelian subgroup of order 4 of A0 that is strongly closed in G.

(c) We have that Z(E(G)) , 1 and there is an elementary abelian subgroup of order 8 of
A0 that is strongly closed in G and contains c.

(d) The group E(G) is a simple Bender group but not isomorphic to PSL(2, 4).

(e) There is an element x0 ∈ G with x3
0 = 1 such that for all involutions b ∈ T we have

O(CG(b)) ≤ 〈x0〉 and O(CE(G)(b)) = 1.

(f) The group G/Z(G) has a strongly closed elementary abelian subgroup A/Z(G) order
16 such that NG/Z(G)(A/Z(G))/CG/Z(G)(A/Z(G)) is not S 4-free.
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Proof
We set K := E(G) and Z := Z(G). Then Z is an abelian 2-group of rank 1 and Lemma 1.1.2
force Z to be cyclic.
Let G be a minimal counterexample and let A ≤ A0 be an elementary abelian subgroup of
K that is strongly closed in G and such that A � Z. Moreover we choose A such that |A| is
minimal with this properties.
Then by Lemma 2.2.2 (d) the group A is strongly closed in K. Since K is quasi-simple and
O2(G) has at most one involution, we observe that Ω1(Z(K)) ≤ Z. Thus the fact that A � Z
together with the Z∗-Theorem 1.1.13 shows that A is not cyclic. Moreover we have |A| ≥ 8,
since (b) is false, as G is a counterexample. We further obtain from the fact (c) is false that
|〈A, c〉| ≥ 16 in the case that Z , 1.
Furthermore let − : G → G/Z be the natural epimorphism.

(1) We have O(Ḡ) = 1, K̄ = E(Ḡ) and O2(Ḡ) = O2(G) is either cyclic or dihedral.

Proof. Let U denote the full pre-image of O(Ḡ). Then U is normal in G. Since O(Ḡ)
is of odd order and Z = Z(G) is 2-group, Z is a central Sylow 2-subgroup of U. We
conclude that U has a normal 2-complement U1 and observe that U1 = O(U)charU E G.
Therefore U1 is a normal subgroup of odd order of G. This implies that U1 ≤ O(G) = 1 and
O(Ḡ) = Ū = Z̄ = 1.
Let F be the full pre-image of O2(Ḡ). Then F is normal in G. Moreover, as Z is a 2-group,
F is a 2-group. For this reason we conclude that F ≤ O2(G). It follows from O2(G) ≤ F
that F = O2(G). Consequently we have r2(F) = r(O2(G)) ≤ 1 and Lemma 1.1.2 forces F to
be either cyclic or a quaternion group. If we have F , 1, then Ω1(F) is a normal subgroup
of order 2 of G. Thus Ω1(F) ≤ Z(G) = Z. This shows that O2(Ḡ) is a proper factor group
of F in this case. Since cyclic groups and generalised quaternion groups have only cyclic
or dihedral proper factors, the assertion about O2(Ḡ) follows.
Let finally L̄ be a component of Ḡ with full pre-image L. Then L is, as a full pre-image of
a subnormal group of Ḡ, subnormal in G. In particular L′ is subnormal in G. The facts that
Z is cyclic and L̄ is perfect, force L′ to be perfect and L = L′ · Z. Thus L′ is a component of
G. Since E(G) is quasi-simple, we observe L′ = K and K̄ = L̄′ = L′ · Z = L̄.
Altogether Ḡ has exactly one component and hence we conclude K̄ = L̄ = E(Ḡ). �

(2) We have K̄ ≤ 〈CḠ(ā) | ā ∈ Ā#〉.

Proof. Suppose for a contradiction that K̄ , 〈CK̄(ā) | ā ∈ Ā#〉 ≤ 〈CḠ(ā) | ā ∈ Ā#〉.
Then Lemma 2.2.6 forces K̄ to be a Bender group. Since G is a counterexample the failure
of (d) yields that either K � PSL(2, 4) or Z ≥ Z(K) , 1 holds. In the first case K has
elementary abelian Sylow 2-subgroups of order 4. This contradicts |A| ≥ 8. We conclude
that Z ≥ Z(K) , 1. But Z(K) is a cyclic 2-group. This implies that K̄ is not isomorphic
to PS U(3, q) by Theorem 1.2.12 (b). Part (a) of the same theorem yields that K̄ is a non-
simple Suzuki group or K � S L(2, 4). By Theorem 1.2.8 (a) the first case yields (a). This
contradiction shows that K � S L(2, 4). But then again a Sylow 2-subgroup of K̄ has order
4 and Ā has order at least 8, since Z , 1. This is a final contradiction. �

For all involutions t̄ ∈ Ḡ we set θ(t) := O(CḠ(t̄)) and for every elementary abelian subgroup
B of T we set WB̄ := 〈θ(b̄) | b̄ ∈ B̄#〉.

(3) For every involution b ∈ G \ Z we have that b̄ = b · c is balanced in Ḡ. Moreover CḠ(b̄)
is 3-soluble and has the full pre-image NG(〈b, c〉) and O(CG(b)) = O(NG(〈b, c〉)) holds.

Proof. Let b ∈ G \ Z be an involution. Then we observe from c ∈ Z that b̄ = b · c.
Moreover we have NG(〈b, c〉) ≥ Z. Since NG(〈b, c〉) is a pre-image of CḠ(b̄) that contains
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Z, the group NG(〈b, c〉) is the full pre-image of CḠ(b̄).
Furthermore we obtain |NG(〈b, c〉) : CG(b)| ≤ 2 from c ∈ Ω1(Z) ≤ Z(G). This implies that
O(CG(b)) = O(NG(〈b, c〉)) and, as CG(b) is 3-soluble, NG(〈b, c〉) is 3-soluble. In particular
b̄ is balanced in Ḡ by Lemma 2.1.4. �

(4) The group WĀ has odd order and for all non-cyclic elementary abelian subgroups B of
T with B ∩ Z = 1 we have WĀ = WB̄.

Proof. From (3) and the Odd Order Theorem 1.1.12 we deduce that θ is a soluble Ā-
signalizer functor in Ḡ. Therefore the Soluble Signalizer Functor Theorem 2.1.6 yields
that 〈θ(a) | a ∈ Ā#〉 = WĀ has odd order. We further observe together with (3) that
WB̄ = 〈θ(b̄) | b̄ ∈ B̄#〉 = 〈θ(b̄) | b ∈ B \ 〈c〉〉 for every elementary abelian subgroup B
of T .
Let B be a non-cyclic elementary abelian subgroups B of T with B ∩ Z = 1. From the
hypothesis of our theorem, we have Ω1(Z(T )) � Z. Thus we observe that 1 , Ω1(Z(T )).
This provides, together with |B| ≥ 4 and B∩Z = 1, an element b ∈ B# such that 〈Ω1(Z(T )), b〉
is an elementary abelian group of order at least 4. In addition the pre-image 〈Ω1(Z(T )), b〉
is also elementary abelian. Thus there is a subgroup C of order 4 of 〈Ω1(Z(T )), b〉 such that
C∩Z = 1. From B ⊆ CG(〈Ω1(Z(T )), b〉) we obtain that [B,C] = 1 and Lemma 2.1.7 implies
that WB̄ = WC̄ .
From Lemma 1.1.17 we deduce that |CĀ(b̄)|2 ≥ |Ā| ≥ 8 and hence |CĀ(b̄)| ≥ 4. Let A1 ≤ A be
a subgroup of the full pre-image of CĀ(b̄) such that c < A1 and Ā1 = CĀ(b̄). Then A1 is not
cyclic and A1 ∩ Z = 1. Moreover we have that [A1,C] ≤ [A1, 〈Ω1(Z(T )), b〉] = [A1, b] ≤ Z.
Again Lemma 2.1.7 yields WĀ1

= WC̄ = WB̄.
Let finally A2 be a complement of 〈c〉 ∩ A in A. Then we have [A1, A2] = 1, since A is
abelian. Thus Lemma 2.1.7 yields WĀ1

= WĀ2
.

Since we have Ā2 = Ā, we finally conclude that WĀ = WĀ2
= WĀ1

= WB̄. �

We set Γ∗ := 〈NḠ(B̄) | B̄ ≤ Ā und r(B̄) ≥ 2〉. Furthermore we denote by T the set all 2-
subgroups of G that contain an elementary abelian subgroup of order at least 4 and intersect
Z trivially and we set Γ := 〈NḠ(Ū) | U ≤ T and U ∈ T〉.

(5) We have Γ∗ ≤ Γ ≤ NḠ(WĀ)

Proof. Let B ≤ A such that r(B̄) ≥ 2. Then B is elementary abelian and has a subgroup B1
of order 4 that intersects Z trivially. This shows that Γ∗ ≤ Γ.
Let U ∈ T be a subgroup of T . Then U has an elementary abelian subgroup B of order 4
such that B ∩ Z = 1. Hence (4) yields WB̄ = WĀ.
Let g ∈ G such that ḡ ∈ NḠ(Ū). Then g ∈ NG(U · Z) and so Bg is an elementary abelian
subgroup of order 4 of T . Moreover we see that Bg ∩ Z = Bg ∩ Zg = (B ∩ Z)g = 1. Thus
WĀ = WBg by (4). Altogether we conclude

W ḡ
Ā

= W ḡ
B̄

=
(
〈θ(b̄) | b̄ ∈ B̄#〉

)ḡ
= 〈θ(b̄)ḡ | b̄ ∈ B̄#〉 = 〈θ(b̄ḡ) | b̄ ∈ B̄#〉 = 〈θ(bg) | b̄ ∈ B̄#〉

= 〈θ(d̄) | d̄ ∈ (Bg)#〉 = WBg = WĀ. �

(6) We have [K̄,WĀ] ≤ K̄ ∩WĀ = 1 .

Proof. By the minimal choice of A, we see that Ā is minimal strongly closed in Ḡ. As (f) is
false, the group NḠ(Ā)/CḠ(Ā) is S 4-free in the case that |Ā| = 16. Moreover we deduce from
(4) and (5) that WĀ has odd order and is normalised by Γ∗. So we may apply Lemma 2.3.2
to Ḡ. Let ā ∈ Ā#. Then CḠ(ā) is 3-soluble by (3) and O(〈ĀCḠ(ā)〉) ≤ O(CḠ(ā)) = θ(ā) ≤ WĀ.
Thus Lemma 2.3.2 yields CḠ(ā) ≤ WĀ · Γ

∗.
Further (2) shows that K̄ ≤ 〈CḠ(ā) | ā ∈ Ā#〉 ≤ WĀ · Γ

∗. In particular (5) implies that K̄
normalises WĀ. Consequently we obtain that [K̄,WĀ] ≤ K̄ ∩ WĀ E K̄. Since WĀ ∩ K̄ is a
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normal subgroup of odd order of the simple group K̄, the Odd Order Theorem 1.1.12 yields
that WĀ ∩ K̄ is trivial. �

By (1) we have that O(Ḡ) = 1 and K̄ = E(Ḡ). This implies with Lemma 1.1.18 (h) that

CWĀ
(O2(Ḡ)) = CWĀ

(F∗(WĀ)) ≤ WĀ ∩ F∗(Ḡ) = 1.

Thus WĀ acts faithfully on O2(Ḡ). The group O2(Ḡ) is by (1) either cyclic or dihedral. Thus
O2(Ḡ) admits no automorphism of odd order except for the case where O2(Ḡ) is elementary
abelian of order 4 by Lemma 1.1.3. In this case it admits an automorphism of order 3. In
every case we have WĀ . O2(Aut(O2(Ḡ))) . Z3. Let W denote the full pre-image of WĀ in
G. Then W is a {2, 3}-subgroup of G and there is an possibly trivial element x0 ∈ G such
that 〈x0〉 × Z = W and x3

0 = 1.
For all involutions b ∈ T \ Z, we observe that 〈b〉 ·Ω1(Z(T )) has order at least 4 or we
have that b ∈ Ω1(Z(T )) and 〈b〉 · A has at least order 4. In every case b is contained in
a non-cyclic elementary abelian subgroup Bb of G with Bb ∩ Z = 1. Hence (3) and (4)
imply that O(CG(b)) = O(NG(〈b, c〉)) ≤ O(NG(〈b, c〉)) = O(CḠ(b̄)) ≤ WĀ = W̄. This
shows that O(CG(b)) ≤ O2(W) = 〈x0〉. Since CK(b) is normal in CG(b), we conclude that
O(CK(b)) ≤ O(CG(b)) ∩ K ≤ 〈x0〉 ∩ K = 1. Finally (e) holds. This is a contradiction. �

2.3.4 Lemma
Let H be a finite group 3-soluble group such that O(H) = 1 and let A be an elementary
abelian 2-subgroup that is strongly closed in H. Suppose further that U = A · E(U) is a
CH(a)-invariant subgroup of H for an element a ∈ A#.
If L is a component of 〈AU〉, then L is a component of 〈AH〉.

Proof Compare with 3.7(2) of [20].
Let L be a component of 〈AU〉. By assumption the group U is 3-soluble and Lemma 2.2.2 (d)
implies that A is strongly closed in 〈AU〉. We set E := E(〈AU〉) and apply Proposition 2.2.5
to conclude that E is a central product of Suzuki groups. Furthermore the same proposition
implies that A ∩ E = Ω1(S ) for a Sylow 2-subgroup S of E and hence 〈(E ∩ A)E〉 = E. We
notice from Theorem 1.2.8 (d) that (L ∩ A)/Z(L) determines the size of L/Z(L).
Moreover we deduce from Proposition 2.2.5 and O(H) = 1 that

E = 〈(E ∩ A)E〉 ≤ 〈AH〉 = A · E(〈AH〉).
Since E = E′ is perfect, we conclude that E ≤ E(〈AH〉). The fact that Z(E(〈AH〉)) is abelian
and L is not abelian provides a component K of 〈AH〉, such that [K, L] , 1. We see that E
normalises K E E(〈AH〉). This implies that CL(K) E L. Hence, as L is simple, we deduce
from [K, L] , 1 that CL(K) ≤ Z(L). This implies that L induces inner automorphism on K,
since the outer automorphism group of K is soluble by Theorem 1.2.8 (b) and (c).
In addition we observe that CK(a) ≥ A∩K � Z(K) from Proposition 2.2.5. Furthermore we
notice from Theorem 1.2.8 (d) that (K ∩ A)/Z(K) determines the size of K/Z(K).
Since E is CH(a)-invariant, we see that [E,CK(a)] ≤ K ∩ E. If we had E ∩ K = 1, then
L would centralise CK(a) ≥ A ∩ K. Consequently we would have a contradiction, because
CK(A ∩ K) is a 2-group by Theorem 1.2.8 (g) and L induces inner automorphism in K.
We conclude that 1 , E∩KEE and from Lemma 1.1.18 (e) we deduce that (E∩K)·(E)/Z(E)
is a direct product of components of E/Z(E). Since different components of E commute by
Part (b) of the same lemma, we conclude that L ≤ K. Moreover Theorem 1.2.8 (j) yields
that Z(K) = Z(L) and NK(L) = L.
In addition we have K∩A ≤ K∩((A∩L) ·CA(L)) ≤ K∩NA(L) ≤ NK(L)∩A = L∩A ≤ K∩A.
The fact that the sizes of L/Z(K) and K/Z(K) are determined by (L∩A)/Z(K) = (K∩A)/Z(K)
implies L = K. �
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2.3.5 Theorem
Let G be a finite simple group and let A be an elementary abelian 2-subgroup of G of order at
least 8 that is minimal strongly closed in G. Suppose that the centralisers of the involutions
of A are 3-soluble. If A has order 16, then assume further that NG(A) is S 4-free.
Moreover, for all a ∈ A#, suppose that 〈ACG(a)〉 is soluble or that CG(a) is contained in a
3-soluble maximal subgroup of G.
Then G is a Bender group.

Proof Compare with 4.3 and paragraph 7 of [20].
Let G be minimal counterexample. Then the assumption that the centralisers of the involu-
tions in A are 3-soluble and Lemma 2.1.4 force involutions of A to be balanced in G.

(1) We have G = 〈CG(a) | a ∈ A#〉. Moreover O(CG(a)) is trivial for all a ∈ A#.
If further H is a 3-soluble subgroup of G containing A with O(H) = 1, then we have

H = NH(A) · E(〈AH〉) and 〈AH〉 = A · E(〈AH〉) ⊆ F∗(H).

Proof. We first obtain G = 〈CG(a) | a ∈ A#〉 from Lemma 2.2.6, as G is not a Bender group.
For all involutions a ∈ A# the group O(CG(a)) is soluble by the Odd Order Theorem 1.1.12.
Moreover |A| ≥ 8 and A is balanced in G. Altogether we may apply the Soluble Signalizer
Functor Theorem 2.1.6 to conclude that W = 〈O(CG(a)) | a ∈ A#〉 has odd order. Let B be a
non-cyclic subgroup of A. Then B acts coprimely on O(CG(a)) for every a ∈ A#. Since A is
balanced in G, Lemma 1.1.14 (e) yields that

O(CG(a)) = 〈O(CG(a)) ∩CG(b) | b ∈ B#〉 ≤ 〈O(CG(b)) | b ∈ B#〉.

It follows that W ≤ 〈O(CG(b)) | b ∈ B#〉 ≤ 〈O(CG(a)) | a ∈ A#〉 = W and consequently
we have W = 〈O(CG(b)) | b ∈ B#〉. This implies that W is normalised by the group
Γ∗ = 〈NG(B) | B ≤ A, r(B) ≥ 2〉. Moreover we have O(ACG(a)) ≤ O(CG(a)) ≤ W for
all a ∈ A#. Applying Lemma 2.3.2 we deduce that G = 〈CG(a) | a ∈ A#〉 ≤ NG(W).
Consequently W is trivial, as G is simple. In particular we have O(CG(a)) = 1 for all
a ∈ A#.
Additionally let H be a 3-soluble subgroup of G containing A with O(H) = 1. Then A is
strongly closed in H by Lemma 2.2.2 (d). Moreover we have O(〈AH〉) ≤ O(H) = 1. Hence
we deduce from Lemma 2.2.2 (g) and Proposition 2.2.5 that

H = NH(A) · 〈AH〉 = NH(A) · E(〈AH〉) and that 〈AH〉 = A · E(〈AH〉). �

(2) The group NG(A) = O2(NG(A)) acts irreducibly on A and there exists an element a ∈ A#

such that CG(a) is not soluble.

Proof. By Lemma 2.2.2 (e) the group NG(A) controls the fusion of its 2-elements. Thus
for all Sylow 2-subgroups T of the simple group G such that A ≤ T , the Focal Subgroup
Theorem 1.1.9 leads to
T = G ∩ T = G′ ∩ T = 〈t−1tg | t ∈ T, g ∈ G and tg ∈ T 〉

= 〈t−1tg | t ∈ T, g ∈ NG(A) and tg ∈ T 〉 = T ∩ (NG(A))′.

It follows that NG(A) = O2(NG(A)). As A is minimal strongly closed in G, the group NG(A)
acts irreducibly on A by Lemma 2.2.2 (j). Finally suppose for a contradiction that CG(a) is
soluble for all a ∈ A#. Then (1) implies that CG(a) ⊆ NG(A) for all a ∈ A#. Thus again (1)
leads to G = 〈CG(a) | a ∈ A#〉 ⊆ NG(A). This is a contradiction. �

(3) If b ∈ A# and CG(b) ≤ H ≤ G, then O(H) = 1.

Proof. Let b ∈ A# and suppose that H is a subgroup of G containing CG(b). Then (1) yields
that O(H) ∩ CG(b) ≤ O(CG(b)) = 1. In particular b acts fixed-point-freely on O(H) and
hence b inverts O(H). Let d ∈ A#. Then we have:
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O(H) ∩CG(d) = [O(H) ∩CG(d), b] ≤ O(H) ∩ 〈ACO(H)(d)〉

≤ O(H) ∩ A · E(〈ACG(d)〉) = O(H) ∩ E(〈ACG(d)〉).

The group E(〈ACG(d)〉) is 3-soluble and A is a strongly closed subgroup of E(〈ACG(d)〉) by
Lemma 2.2.2 (d). Consequently Proposition 2.2.5 yields that E(〈ACG(d)〉) is a central product
Suzuki groups such that E(〈ACG(d)〉)∩ A = Ω1(S ) for a Sylow 2-subgroup S of E(〈ACG(d)〉).
From Theorem 1.2.8 (i) we obtain that O(H ∩ E(〈ACG(d)〉)) = 1.
Altogether it follows that O(H) ∩CG(d) ≤ O(H) ∩ E(〈ACG(d)〉) ≤ O(H ∩ E(〈ACG(d)〉)) = 1.
Finally Lemma 1.1.14 (e) implies O(H) = 〈O(H) ∩CH(d) | d ∈ A#〉 = 1. �

Let a ∈ A# such that G has a 3-soluble maximal subgroup H containing CG(a). Such an
element exists by the assumption and (2). Moreover let K denote a component of 〈AH〉.

(4) We have E(H) = E(K ·CG(K)).

Proof. We obtain from (3) that O(H) = 1 and so (1) implies that H = NH(A) · E(〈AH〉)
and A ≤ F∗(H). This shows that A · K is a subgroup of the 3-soluble group H. Moreover
from our choice of K and Proposition 2.2.5 we obtain an element b ∈ A ∩ K# and we ob-
serve that CG(K) ≤ CG(b). Additionally we remark that O(CG(b)) = 1 by (1). From the
fact that 〈KH〉 is normalised by CG(a) ≤ H we deduce that E(〈KH〉 ∩ CG(b)) is CCG(b)(a)-
invariant. Moreover every component L of A · 〈KH〉 that is different from K is a component
from E(〈KH〉 ∩ CG(b)) by Lemma 1.1.18 (g). We apply Lemma 2.3.4 to observe that L is
a component of CG(b). From L ≤ CG(K) and Lemma 1.1.18 (f) we conclude that L is a
component of CG(K).
Altogether 〈KH〉 is a product of components of K · CG(K) and so 〈KH〉 is normalised by
E(K · CG(K)). Since H is a maximal subgroup of the simple group G, we conclude that
E(K · CG(K)) ≤ NG(〈KH〉) = H. Thus we see from Lemma 1.1.18 (g) that we have
E(CG(K)) E E(CH(K)) is a subnormal subgroup of H and Lemma 1.1.18 (f) implies that
E(CG(K)) ≤ E(H).
On the other hand from the fact that K is a component of 〈AH〉 and hence of H we deduce
that E(H) ≤ K ·CG(K).
Finally Lemma 1.1.18 (g) yields that E(H) ≤ E(K ·CG(K)) = K · E(CG(K)) ≤ E(H). �

(5) For all b ∈ CA(K)# the unique maximal 3-soluble subgroup of G containing CG(b) is H.

Proof. Let b ∈ CA(K)# and let H1 be a maximal 3-soluble subgroup of G containing CG(b).
Then we have K ≤ H1 and O(H1) = 1 by (3). Moreover K s a component of the CH1(a)-
invariant group E(H1∩E(H)). Thus K is a component of H1 by Lemma 2.3.4. Furthermore
(4) yields that E(H1) = E(K ·CG(K)) = E(H) is normalised by H1 and by H. As G is simple
and H and H1 are maximal subgroups of G, it follows that H1 = H. �

We further choose a, H and K such that |CA(K)| is minimal.

(6) NG(A) is not contained in H.

Proof. Suppose for a contradiction that NG(A) ≤ H.
We know from (2) that O2(NG(A)) = NG(A) and that NG(A) acts irreducibly on A.
Assume first that A ≤ K. Then we may apply Proposition 2.2.5, since H is 3-soluble and
A is strongly closed in H by Lemma 2.2.2 (d), to observe that K E H. Since K is a Suzuki
group either 1 , A ∩ Z(K) ≤ Z(K) ≤ Z(H) and A ∩ Z(K) , 1 or all elements of A# are
conjugate in K ≤ H by Theorem 1.2.8 (f). The first case is not possible, as NG(A) = NH(A)
acts irreducibly on A. In the second case we have CG(b) ≤ H for all b ∈ A# and hence (1)
yields that G = 〈CG(b) | b ∈ A#〉 ≤ H. This is a contradiction.
Thus 1 , A ∩ K , A. The irreducible action of NG(A) on A implies that NG(A) does
not normalise K. From O2(NG(A)) = NG(A) it follows that 〈AH〉 has at least three distinct
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components that are isomorphic to K. This implies |CA(K)| >
√
|A|. We fix an element

b ∈ A#. If we have E(〈ACG(b)〉) = 1, then we obtain from (1) that CG(b) ≤ NG(A) ≤ H.
If we have E(〈ACG(b)〉) , 1, then 〈ACG(b)〉 is not soluble. Thus by the assumption of our
theorem CG(b) is contained in a 3-soluble maximal subgroup of G. Let H1 be a 3-soluble
maximal subgroup of G containing CG(b) and let E be a component of 〈AH1〉. From the
choice of K it follows that |CA(E)| ≥ |CA(K)| >

√
|A| and so CA(K) ∩ CA(E) , 1. Let

c ∈ CA(K) ∩ CA(E)#. Then we have c ∈ CA(K) and so (5) yields that CG(c) ≤ H. Thus
E ≤ CG(c) ≤ H. Altogether we conclude that E(〈AH1〉) ≤ H. Moreover, as O(H1) = 1 by
(3), Part (1) implies that CG(b) ≤ H1 = NH1(A) · E(〈AH1〉) ≤ H.
Finally we have shown that 〈CG(b) | b ∈ A#〉 ≤ H. This contradicts (1). �

(7) CA(K) ∩CA(K)g = 1 for all g ∈ NG(A)\NH(K).

Proof. Let g ∈ NG(A) be such that CA(K)∩CA(K)g , 1 and let b ∈ CA(K)# ∩CA(K)g. From
bg−1

, b ∈ CA(K) and (5) we deduce that H is the unique maximal subgroup of G containing
CG(b) and CG(b)g−1

. Hence we have Hg−1
= H and so g ∈ H.

Applying (6) we choose an element h ∈ NG(A)\H. Then we have CA(K)∩CA(K)h = 1. This
forces (|CA(K)|)2 = |CA(K)| · |CA(K)h| = |CA(K) ·CA(K)h| ≤ |A|. Since A = CA(K) · (A ∩ K)
it follows that |K ∩ A| ≥

√
|A|.

We suppose for a contradiction that g < NH(K). Then [K,Kg] = 1 by Lemma 1.1.18 (b) and
so we have

√
|A| ≤ |K ∩ A| ≤ |CA(Kg)| = |CA(K)| ≤

√
|A|. This implies that K ∩ A = CA(Kg)

and similar we conclude Kg ∩ A = CA(K).
From all this we deduce

|K ∩ A| · |Kg ∩ A| = |K ∩ A| · |(K ∩ A)g| = |K ∩ A|2 = (
√
|A|)2 = |A| = |CA(K) · (A ∩ K)|

= |(A ∩ Kg) · (A ∩ K)| = |A∩K|·|A∩Kg |
|A∩K∩Kg |

.

It follow that 1 = K ∩ A ∩ Kg = K ∩ A ∩ A ∩ Kg = CA(Kg) ∩CA(K)
= (CA(K))g ∩CA(K) , 1.

But this is a contradiction. �

Let X := NG(A)/CG(A), let Y0 be a complement of the Sylow 2-subgroup of NK(A) (the
group NK(A) is a Frobenius group by Theorem 1.2.8 (e)) and Y = Y0 ·CG(A)/CG(A).

(8) The groups X and Y satisfy hypothesis (2.9) of [20] in their action on A, and Z(K) , 1.

Proof. We recall that NG(A) acts irreducibly on A and O2(NG(A)) = NG(A) by (2). Hence
X acts faithfully and irreducibly on A and O2(X) = X. By Theorem 1.2.8 (e) the group
Y is cyclic of odd order and acts transitively on [A,Y]#. By (7) the distinct elements of
{CA(Y)h̃ | h̃ ∈ X} intersect pair-wise trivially. Thus hypothesis (2.9) of [20] is fulfiled.
Assume that Z(K) = 1. Let h̃ ∈ NX(CA(K)) and let g ∈ NG(A) be a pre-image of h̃ in G.
Then CA(K) ∩ CA(K)g , 1, so (7) implies that g ∈ NH(K) ∩ NG(A) ≤ NH(NK(A)). By the
definition of Y0 it follows that g ∈ NH(Y0 · CK(A)) and so h̃ ∈ NX(Y). Applying (2.11) of
[20], we conclude that |A| = 8 and |CA(K)| = 2. This is a contradiction to Theorem 1.2.8 (d).

�

(9) We have |CA(K)| = 2.

Proof. We want to apply (2.10) of [20]. Thus, it remains to show that Y acts semi-regularly
on the set {CA(Y)h | h ∈ X}\{CA(K)}.
Suppose for a contradiction that Y does not act semi-regularly on {CA(Y)h | h ∈ X}\{CA(K)}.
Then there exists an element g ∈ NG(A)\CG(A) and there is an element y ∈ Y# such that
CA(K)g , CA(K) and CA(K)g is fixed by y. Since Z(K) , 1 we conclude K/Z(K) � S z(8)
from Theorem 1.2.8 (a). This forces y to have order 7 and hence CA(K)g is Y- and so Y0-
invariant. Since CA(K)g ∩ CA(K) = 1 by (7) and since Y0 acts transitively on [A,Y0]#, we
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conclude that CA(K)g = [A,Y0].
Now we have |CA(K)|2 = |CA(K)| · |[A,Y0]| = |A| and K is not simple by (8), so K E H and
CA(K) = O2(〈AH〉)EH. The fact that H is a maximal subgroup of the simple group G yields
that Yg−1

0 ≤ NG(CA(K)) = H and that 1 , CA(K) ∩ K is a proper H-invariant subgroup of

CA(K). But Yg−1

0 acts transitively on [A,Y0]g−1
= CA(K). This is a contradiction.

Now (2.10) of [20] forces |CA(K)| = 2 and thus CA(K) = Z(K). �

Finally A = 2 · 8 = 16 and 8 · 7 divides |NG(A)/CG(A)|. Bearing in mind that NG(A) acts
irreducibly on A, Lemma 1.2.6 contradicts the assumption that in this case NG(A) is S 4-free.

�

2.3.6 Lemma
Let G be a finite S 4-free group such that Z∗(G) = 1.
Suppose that A is an elementary abelian 2-subgroup of G of order at least 8 that is strongly
closed in G. For every involution t ∈ G suppose that CG(t) is a 3′-group. Moreover let
a ∈ A# such that 〈ACG(a)〉 is not soluble.
Then every subgroup of A that is minimal strongly closed in G has order at least 8.

Additionally if N is a normal subgroup of G such that Z∗(N) = 1 and 〈ACG(a)〉 ∩ N is not
soluble, then all subgroups of A ∩ N that are minimal strongly closed in N and of order at
least 8. Moreover there exists at least one.

Proof
Let B be a non-trivial subgroup of A that is minimal strongly closed in G.
Suppose for a contradiction that B has order 4. From Lemma 2.2.2 (a) we observe that
NG(A) ≤ NG(B). Moreover the assumptions that Z∗(G) = 1 and that G is S 4-free force
NG(B)/CG(B) to be cyclic of order 3. We further know that CG(B) is a 3′-group. It follows
that NG(B) is 3-soluble and possesses cyclic Sylow 3-subgroups of order 3. Let x ∈ NG(B)
be an element of order 3. Then B = [B, x] and hence x < O(NG(B)). Moreover CG(x)
is of odd order, since the centralisers of involutions are 3′-groups by assumption. We set
H := NG(B) and let − : H → H/O(〈AH〉) denote the natural epimorphism. Then we deduce
from Lemma 1.1.14 (a) that CC̄(x̄) is of odd order.
In addition we observe that the group A is strongly closed in the 3-soluble group NG(B) by
Lemma 2.2.2 (d). Hence we may apply Proposition 2.2.5 to obtain that 〈AH〉 is a central
product of an abelian 2-group and quasi-simple Suzuki groups. Since CC̄(x̄) is of odd order,
Lemma 1.2.10 yields that 〈AH〉 is a 2-group. In particular 〈ACG(B)〉 is soluble.

Now we set C := 〈ACG(a)〉 and let ∧ : C → C/O(C) be the natural epimorphism. More-
over we observe from Lemma 2.2.2 (d) that B ≤ C is strongly closed in C. From the
assumption that C is a 3′-group and from NG(B)/CG(B) � Z3 we deduce together with
the Z∗-Theorem 1.1.13 that B ∈ Z∗(C). We further obtain from our above investigation
and Lemma 1.1.14 (a) that Ĉ = CĈ(B̂) = CC(B) · O(C)/O(C) is soluble. The Odd Order
Theorem 1.1.12 finally forces C = 〈ACG(a)〉 to be soluble. This is a contradiction.

Let additionally N be a normal subgroup of G such that Z∗(N) = 1 and such that 〈ACG(a)〉∩N
is not soluble. We set X := 〈a〉 · N. Since X is a subgroup of G, it is S 4-free and for every
involution t ∈ X we have that CX(t) is a 3′-group. Moreover we observe that A∩X is strongly
closed in X and A is strongly closed in the 3-soluble group 〈ACG(a)〉 from Lemma 2.2.2 (d).
Applying Proposition 2.2.5 we deduce that (〈ACG(a)〉∩N) ·O(〈ACG(a)〉)/O(〈ACG(a)〉) contains
a Suzuki group. Let L1 be its full pre-image and L = L1 ∩ N. Then L ∩ A has at least 8
elements by Theorem 1.2.8 (d). Moreover 〈(L ∩ A)L〉 ≤ 〈(A ∩ L)CX(a)〉 is not soluble.
Finally we apply our Lemma to X and deduce that every elementary abelian subgroup B of
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A ∩ X that is minimal strongly closed in X has order at least 8 or that Z∗(X) , 1. In the
first case such a B is centralised by 〈a〉 and hence B ∩ N is strongly closed in N〈a〉. The
minimality of B implies that B ≤ N. Moreover the fact that 〈a〉 centralises every subgroup
of B yields that B is also minimal strongly closed in N. This is the assertion.
In the second case we deduce from Z∗(N) = 1 that there is an element n ∈ N such that
a · n ∈ Z∗(X) = Z(X) and (a · n)2 = 1. The assumption forces N to be a 3′-group. Let B be a
subgroup of A ∩ N that is minimal strongly closed in N. Then the fact that N is a 3′-group
with Z∗(N) = 1 implies together with the Z∗-Theorem 1.1.13 that B has order at least 8. �

2.3.7 Proposition
Let G be a finite S 4-free group such that O(G) = 1 and G has no normal 3-complement.
Let further A be an elementary abelian 2-subgroup of G of order at least 8 that is minimal
strongly closed in G. For every involution t ∈ G let CG(t) be a 3′-group.
Then 〈ACG(a)〉 is soluble for all a ∈ A#.

Proof
Let G be a minimal counterexample. Since the centralisers of involutions are 3′-groups, the
centraliser of every 3-group is of odd order. (*)
By assumption we have O(G) = 1 and G is S 4-free and has no normal 3-complement.
Hence Lemma 1.3.8 implies that F∗(G) = E(G) is simple and no 3′-group. In particular we
have Z∗(G) = 1 and Z∗(E(G)) = 1.
Moreover there is an element a ∈ A# such that 〈ACG(a)〉 is not soluble. Lemma 1.3.8 implies
that CG(a)/CE(G)(a) is soluble. Consequently 〈ACG(a)〉 ∩ E(G) is not soluble. We apply
Lemma 2.3.6 to observe that all subgroups of A which is minimal strongly closed in E(G)
are of order at least 8.
Now the simple group E(G) fulfils the hypothesis of our proposition. From our choice of
G as a minimal counterexample we conclude that 〈BCE(G)(b)〉 is soluble for all b ∈ B# or
G = E(G) is simple. In the first case Theorem 2.3.5 forces E(G) to be a Bender group.
The centraliser of the involutory automorphism of E(G) that is induced by a involves a
Suzuki group. Therefore Theorem 1.2.12 (c) forces E(G) to be a Suzuki group. This is a
contradiction, as E(G) is not a 3′-group.
Consequently G is no Bender group and hence G = E(G) is simple. Again by Theorem 2.3.5
there exists an involution b ∈ A such that neither 〈ACG(b)〉 is soluble nor CG(b) is contained
in a 3-soluble maximal subgroup of G.
Let H be a maximal subgroup containing CG(b) and let − : H → H/O(H) be the natural
epimorphism. From Lemma 1.3.8 we obtain that F∗(H̄) = E(H̄) is simple and no 3′-group
and we see that Z∗(H̄) = Z∗(E(H̄)) = 1.
Further we get A ≤ H and Ā is strongly closed in H̄ by Lemma 2.2.2 (d) and (f). Since we
have CG(b) ≤ H, we conclude that CG(b) = CH(b). The fact that 〈ACH(b)〉 is not soluble
yields together with Lemma 1.1.14 (a) that 〈ACH(b)〉 = 〈ĀCH(b)〉 = 〈ĀCH̄(b̄)〉 is not soluble.
But CH̄(b̄)/CE(H̄)(b̄) is soluble by Lemma 1.3.8. Thus the group 〈ĀCH̄(b̄)〉 ∩ E(H̄) is not
soluble. We apply Lemma 2.3.6 to observe that Ā has a subgroup B̄ of order at least 8 that
is minimal strongly closed in E(H̄).
Altogether E(H̄) fulfils the assumption of our proposition and hence 〈B̄CE(H̄)(b̄)〉 is soluble for
every b̄ ∈ B̄. For that reason E(H̄) fulfils the hypothesis of Theorem 2.3.5 and so E(H̄) is a
Bender group. Since b induces an involutory automorphism on E(H) such that its centraliser
involves a Suzuki group, again Theorem 1.2.12 (c) and the fact that E(H̄) = F∗(H̄) is no
3′-group lead to a contradiction. �
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2.4 The BenderMethod
With the Bender method we analyse maximal subgroups of almost simple groups, where
the generalised Fitting subgroup has at most prime index. Bender elaborated this method
for finite simple groups. In [38] Waldecker showed that it can be adopted to almost simple
groups with a simple normal maximal subgroup of index 2. We need the results for almost
simple groups with a simple normal maximal subgroup of index 3. Therefore we need to
prove some of the standard results with our additional assumption again. The ideas are due
to Bender.

2.4.1 Definition
Let G be a group then G is called m-simple if and only if G is a finite almost simple and 1,
E(G) and G are all normal subgroups of G.

Remark
Every simple group is m-simple.

2.4.2 Lemma
Let G be a m-simple group. Then |G : E(G)| is 1 or a prime.
Suppose further that H is a maximal subgroup of G and N is a normal subgroup of H. Then
we have H = NG(N) or N = 1 or E(G) = N = H.

Proof
Assume first that G , E(G). Then G/E(G) is soluble and simple, since G is m-simple.
As all simple soluble groups are cyclic of prime order, there exists a prime p such that
|G : E(G)| = p.
Assume now that G is arbitrary. If we have H = E(G), then H is simple and we have
H = E(G) = N. Otherwise 1 is the unique normal subgroup of G contained in H. If we
have H , NG(N), then we observe that H<NG(N), since N is a normal subgroup of H. The
maximality in G of H implies that NG(N) = G. This forces N to be trivial. �

2.4.3 Definition
Let G be a finite group. Suppose that H is a maximal subgroup of G and let U be a proper
subgroup of G.
The group H infects the group U if and only if there is a subgroup A ≤ F(H) such that
NF∗(H)(A) ≤ U. If H infects U, then we write H { U.

2.4.4 Lemma
Let G be a m-simple group. Suppose further that H , E(G) is a maximal subgroup of G
that infects the proper subgroup U , E(G) of G. Moreover we set π := π(F(H)).
Then the following hold:

(a) Oπ(F(U)) ≤ H or F∗(H) is a p-group.

(b) Oπ′(F(U)) ∩ H = 1.

(c) If U { H, then H = U or F∗(H) and F∗(U) are p-groups for the same prime p.

Proof Compare with 6.1 and 6.2 of [38].
Let A be a subgroup of F(H) such that NF∗(H)(A) ≤ U. Then we have

(*) E(H) ≤ CF∗(H)(A) ≤ U and Z(F(H)) ≤ CF∗(H)(A) ≤ U.
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We further observe that CF(H)(U ∩ F(H)) ≤ CF(H)(A) ≤ U and Lemma 2.4.2 yields that
NU(X) ≤ H for every non-trivial characteristic subgroup X of H. Now Part (a) follows from
Lemma X 15.6 (b) of [9].
If we additionally have U { H, then we similarly observe that E(U) is a subgroup of H and
CF(U)(H ∩ F(U)) ≤ H and Lemma 2.4.2 yields also that NH(X) ≤ U for every non-trivial
characteristic subgroup X of U. So we may apply Theorem X 15.7 of [9] to obtain (c).
It remains to prove Part (b). Suppose that p ∈ π′. Then we observe

[Op(U) ∩ H, A ·CF(H)(A)] ≤ Op(U) ∩ F(H) = 1.
Moreover Op(U) ∩ H acts coprimely on F(H). We apply Lemma 1.1.14 (g) to the group
Op(U) ∩ H that acts on F(H) and the self-centralising subnormal subgroup A · CF(H)(A).
Then we conclude that Op(U) ∩ H centralises F(H). Moreover we obtain from (*) that
E(H) ≤ U normalises Op(U) and so H ∩ Op(U). Since H ∩ Op(U) normalises E(H), we
deduce from Lemma 1.1.18 (b) that [Op(U) ∩ H, E(H)] = 1.
Finally Part (h) of the same lemma implies together with Lemma 2.4.2 that

H ∩ Op(H) ≤ CG(F∗(H)) = CH(F∗(H)) = Z(F∗(H)) ≤ F(H).
Now the fact that F(H) has p′-order leads to the assertion. �

2.4.5 Lemma
Let G be a m-simple group and let H and U be distinct maximal subgroups of G both
different from E(G).
Suppose that both F∗(H) and F∗(U) are p-subgroups of G for an odd prime p.
If we have H { U, then H or U is not S L(2, p)-free.

Proof Compare with 2.4 of [4].
Suppose for a contradiction that H and U are S L(2, p)-free groups and fix a Sylow p-
subgroup S of H and a Sylow p-subgroup Q of U.
Since H is S L(2, p)-free, 1.4 of [15] yields Z(J(S )) E H. Hence Lemma 2.4.2 implies that
H = NG(Z(J(S ))). Moreover NG(S ) is a subgroup of NG(Z(J(S ))) = H. As U is S L(2, p)-
free, we also observe NG(Q) ≤ NG(Z(J(Q))) = U. Thus S and Q are Sylow p-subgroups of
G and therefore conjugate in G. This implies that H = NG(Z(J(S ))) and U = NG(Z(J(Q)))
are conjugate in G. Let g ∈ G with H = Ug.
From the assumption H { U we deduce that Z(Op(H))g is a subgroup of H. Because of
Sylow’s Theorem we may choose g such that Z(Op(H))g ≤ S . Now 1.5 of [15] yields that
g = c · n with c ∈ NG(Z(Op(H))) = H and n ∈ NG(Z(J(S ))) = H. This means g ∈ H and
hence we have H = U. This is a contradiction. �

2.4.6 Lemma
Let G be a m-simple group and suppose that H , E(G) is a maximal subgroup of G such that
either F∗(H) is no p-group or F∗(H) is a p-group for an odd prime p and H is S L(2, q)-free.
If we have F(H) = F∗(H) and if there is a g ∈ G with H { Hg, then g is an element of H
or O(H) is trivial.

Proof Compare with 2.5 of [4].
Assume that O(H) , 1. Because of Lemma 2.4.5 we may assume that F∗(H) is not a p-
group. Then we have F(Hg) = Oπ(F(H)(Hg) ≤ H by Lemma 2.4.4 (a). As F(Hg) = F∗(Hg)
it follows that Hg { H. Now Lemma 2.4.4 (c) yields H = Hg and so g ∈ NG(H) = H. �

2.4.7 Definition
Let G be a finite group, q be a prime and t be an involution. We say that t commutes q
down in G if and only if [t,Q] ≤ F(G) for every CG(t)-invariant q-subgroup Q of G.
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2.4.8 Lemma
Let G be a m-group and suppose that A is an elementary abelian subgroup of order 4 of G
such that there exists an element y acting transitively on A#. Assume further that there is an
involution c of A and a CG(c)-invariant q-subgroup Q of G for an odd prime q such that Q
is not centralised by c but every proper CG(c)-invariant subgroup of Q lies in CG(c).
Moreover let H , E(G) be a maximal subgroup of G such that CG(c) ≤ NG(Q) ≤ H and
every element of A# commutes q down in H. Then one of the following holds:

(a) The element y normalises H.

(b) There is an element a ∈ A \ 〈c〉, such that [c,CQ(a)] , 1 and there is no S L(2, q)-free,
maximal subgroup M , E(G) of G containing NG([c,CQ(a)]) such that a commutes
q down in M.

(c) There is a maximal subgroup of G containing CG(c) that is not S L(2, q)-free and
different from E(G).

Proof
Suppose that (b) and (c) are false and set C := CG(c).
The group Q does not centralise c. This implies that the C-invariant group [Q, c] is non-
trivial. From the assumption on Q we deduce that Q = [Q, c]. The further assumption that
c ∈ A# commutes q down in H immediately forces Q to be a contained in F(H).
Moreover Oq(C) · Q is a c-invariant q-group. We see that NQ(Oq(C)) , 1. Suppose for
a contradiction that c centralises K0 := NQ(Oq(C)). Then Lemma 1.1.14 (g) implies that
[Oq(C) · Q, c] = 1. This contradicts 1 , [Q, c]. Hence c does not centralises NQ(Oq(C)).
That leads to Q = NQ(Oq(C)).
Suppose for a contradiction that c centralises the C-invariant group CQ(Oq(C)). Then we
have CQ(Oq(C)) ≤ C and hence we conclude that

[CQ(Oq(C)),Oq′(F(C))] ⊆ Q ∩ Oq′(F(C)) = 1.
Therefore CQ(Oq(C)) is a subgroup of Oq(C). Again Lemma 1.1.14 (g) yields a contradic-
tion to [c,Q] = 1. Thus we have [CQ(Oq(C)), c] , 1 and conclude Q = CQ(Oq(C)).

We further observe from c ∈ A that the abelian group A is a subgroup of C. Hence
Lemma 1.1.14 (e) implies that Q = 〈CQ(t) | t ∈ A#〉 and we obtain an involution a ∈ A
such that [c,CQ(a)] , 1. Moreover there exists an element i ∈ {1, 2} such that a = cyi

. We
want to show that y ∈ H. We notice from y3 ∈ CG(c) ≤ H that it suffices to show that yi ∈ H.
Hence we may assume that yi = y.
We set Q0 := [c,CQ(a)] ⊆ CG(a) = Cy ⊆ Hy. From Q ≤ F(H) it follows that Q0 is a
subgroup of [F(H), c] ≤ F(H). The group Hy ∩ Q is CHy(c)-invariant. Since every invo-
lution of A commutes q down in H, every involution of A = Ay commutes q down in Hy.
Consequently we observe Q0 = [c,CQ(a)] ≤ [c,Hy ∩ Q] ≤ F(Hy).
Altogether we have Q0 ≤ Oq(Hy) ∩ Cy ≤ Oq(Cy) = Oq(C)y ≤ CG(Q)y. This implies that
Qy ≤ CG(Q0) ≤ NG(Q0) ≤ M for every maximal subgroup M of G, containing NG(Q0).
Since Q is normalised by C, the group Qy is CH(cy)-invariant. As (b) is false there is a
maximal subgroup M , E(G) containing NG(Q0) such that a commutes q down in M and
furthermore M is S L(2, q)-free. We see that Qy is CM(a)-invariant and hence we deduce
that Qy = [Q, c]y = [Qy, a] ≤ F(M).

Finally we have M { Hy via Qy, Hy { M via Q0 and H { M via Q0.
Thus Lemma 2.4.4 implies that M = Hy or F∗(M) and F∗(Hy) are both q-subgroups of G.
In the second case Lemma 2.4.5 implies that M = Hy since M and Hy are S L(2, q)-free by
the failure of (c). For this reason H { M = Hy holds. Now Lemma 2.4.6 yields H = Hy.
Finally Part (a) follows, because H is a maximal non-normal subgroup of G. �
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2.5 Simple Groups with Small Sylow 2-subgroups
In this section we will prove the following well-known theorem.

2.5.1 Theorem
Let G be a finite simple group such that a Sylow 2-subgroup of G is elementary abelian of
order 4. Then G � PS L(2, q) for some q ≡ 3 or 5 mod 8.

In [4] Bender gave a new proof for the classification of finite simple groups with dihedral
Sylow 2-subgroups that is due to Gorenstein and Walter. The ideas of the second section in
Bender’s article are sufficient to verify Theorem 2.5.1

For the remainder of this section let G be a minimal counterexample to Theorem 2.5.1.
Moreover suppose that T is a Sylow 2-group of G and c is an involution of T . Let further C
be a maximal subgroup of G containing CG(c).

2.5.2 Lemma
All involution of G are conjugate in G.
Moreover if U is a proper subgroup of G containing CG(c), then U has exactly three
conjugation-classes of involutions. Moreover U has a normal 2-complement and every
involution of T commutes every odd prime down in H.

Proof
If H is a of G such that CG(c) ≤ H, then the index |NH(T ) : CH(T )| is odd, since T is an
abelian Sylow 2-subgroup of G contained in CG(c) ≤ H.
Suppose first that H = G. The group G has no normal 2-complement and hence Burnside’s
p-Complement Theorem 1.1.10 implies that NG(T ) , CG(T ). As T is elementary abelian of
order 4, we conclude that NG(T )/CG(T ) � Z3. Thus T has exactly one class of involutions
in G.
Assume now that H = U is a proper subgroup of G and suppose for a contradiction that all
involutions of T are conjugate in U. Then all involutions of U are conjugate in U by Sylow’s
Theorem. It follows that U contains all G-centralisers of its involutions. This means that U
is strongly embedded in G. Finally Theorem 1.2.12 (e) yields a contradiction.
It follows that NU(T ) = CU(T ) and the p-Complement Theorem of Burnside 1.1.10 together
with Lemma 3.6 of [38] imply the assertion. �

2.5.3 Lemma
We have C = CG(c) and F∗(C) = F(C) > O2(C) = 〈c〉.

Proof Compare with Theorem 2.6 of [4]
We first observe that the group G and hence every maximal subgroup of G is S L(2, q)-free
for every odd prime q, because 8 divides |S L(2, q)| for every odd prime q but not the order
of G. From Lemma 2.5.2 we deduce that C has a normal 2-complement. The Odd Order
Theorem 1.1.12 forces C to be soluble. In particular we have F∗(C) = F(C).
Suppose for a contradiction that there is a prime q and a CG(c)-invariant q-subgroup of G
which is not centralised by c. Let Q be a q-group of minimal order such that Q is normalised
by CG(c) but not centralised by c. We may choose C such that CG(c) ≤ NG(Q) ≤ C. Then
Lemma 2.5.2 shows that every involution of C commutes q down in C. Thus Lemma 2.4.8 is
applicable. The involutions of T are not conjugate in C by Lemma 2.5.2 and every maximal
subgroup of G is S L(2, q)-free. So Lemma 2.4.8 provides an element a ∈ T \ 〈c〉, such that
[c,CQ(a)] , 1 and there is no maximal subgroup H of G containing NG([c,CQ(a)]) such
that a commutes q down. As G is a minimal counterexample, Lemma 1.10 (i) of [4] leads
to a contradiction.
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It follows that c ∈ CG(T · O(F(H))) ≤ C(F(H)) ≤ F(H) from Lemma 1.1.18 (h). Suppose
for a contradiction that T = O2(C). Then we obtain T ≤ Z(C), because C has a normal
2-complement. Consequently we have C = CG(a) for every involution a ∈ C. This means
that C is a strongly embedded subgroup of G contradicting Theorem 1.2.12 (e). Finally we
conclude O2(C) = 〈c〉 and observe that C = NG(O2(C)) = NG(〈c〉) = CG(c). Altogether we
deduce from Lemma 1.1.18 (h) that F(C) ≥ 〈c〉. �

2.5.4 Lemma
Suppose that H , C is a subgroup of G containing T and such that NG(Q) ≤ H for some
subgroup Q of F(C) and such that c < E(H).
Then we have that [H, c] ≤ Oπ(F(C))′(F(H)) and [T,O(C)] � F(O(C)).

Proof Compare with Lemma 2.7 of [4]
We set π := π(F(C)) and F := F(H). Then Lemma 2.5.3 implies that |π| ≥ 2. We observe
that NF∗(C)(Q) ≤ H and hence C infects H.
Since c < E(H), the group E(H) has cyclic Sylow 2-subgroups and is therefore trivial by
Burnside’s p-Complement Theorem 1.1.10 and the Odd Order Theorem 1.1.12.
Suppose for a contradiction that [F, c] = 1. Then we have F∗(H) ≤ F ≤ C and hence
H { C. From Lemma 2.4.4 (c) and |π| ≥ 2 we deduce the contradiction H = C. From
Lemma 2.4.4 (a) we see that Oπ(F) is centralised by c. We conclude that 1 , Oπ′(F(H)).
Moreover (b) of the same lemma implies that Oπ′(F(H)) is inverted by c.
Thus Lemma 1.3.9 is applicable. Since [h, c]c = (h−1 · hc)c = [c, h] = [h, c]−1 for all h ∈ H,
Lemma 1.3.9 yields [O2(H), c] ≤ 〈[F, c]O2(H)〉 ≤ 〈Oπ′(F)O2(H)〉 = Oπ′(F). We conclude that
[H, c] = [O2(C) · T, c] = [O2(H), c] ≤ Oπ′(F).
Furthermore Lemma 1.1.14 (e) implies that Oπ′(F) = 〈COπ′ (F)(t) | t ∈ T #〉. Therefore there
is an element a ∈ T # such that 1 , COπ′ (F)(a) = [COπ′ (F)(a), c] ≤ [O(CG(a)),T ]. We obtain
that F(O(CG(a))) is a π-group, since F(O(C)) is a π-group since a and c are conjugate in G.
We finally conclude that [T,O(CG(a))] � F(O(CG(a))). As a and c are conjugate in NG(T ),
the assertion follows. �

2.5.5 Lemma
Let a ∈ T \ 〈c〉 and set N := {g ∈ O(C) | ga = g−1}.
Then N is a normal subgroup of F(O(C)) and NG(X) ≤ C for all 1 , X ≤ N.

Proof Compare with Theorem 2.10 of [4]
Suppose for a contradiction that there is a subgroup H of G with T ≤ H and c ∈ E(H) and a
T -invariant q-subgroup Q for some odd prime q that is not centralised by T . Then we deduce
from Burnside’s p-Complement Theorem 1.1.10 and the Odd Order Theorem 1.1.12 that
T ≤ E(H). We conclude that E(H) is isomorphic to PS L(2, r) for some prime power r from
our choice that G is a minimal counterexample. We further see that CE(H)(T ) , NE(H)(T )
and, since NG(T )/CG(T ) is cyclic of order 3, we obtain that NH(T ) · E(H) = CH(T ) · E(H).
Moreover Frattini argument yields that H = E(H) · NH(T ) = E(H) ·CH(T ). It follows from
[T,Q] , 1 that [T,Q] ∩ E(H) , 1. But now [T,Q] ∩ E(H) is an T -invariant q-subgroup of
E(H), which is impossible by Dickson’s Theorem 1.2.2.
Suppose for a contradiction that there is a prime q such that 1 , X := COq(C)(a) , Oq(C).
From O2(C) = 〈c〉 ≤ CG(a) we obtain that q is odd.
The group CG(a) has a normal 2-complement by Lemma 2.5.2. Hence Lemma 1.1.14 (b)
provides a T -invariant Sylow q-subgroup Q of CG(a) containing X. Since a and c are
conjugate in G, we have Q � C. In particular from Lemma 1.1.14 (g) we deduce that
1 , [c,CQ(X)] ≤ [c,NQ(X)].
Let H <G be such that NG(X) ≤ H. Then we observe that [c,NQ(X)] ≤ [c,H] ∩ Q. This
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forces [c,H] to be no q′-groups. Now Lemma 2.5.4 implies that c ∈ E(H). But [c,NQ(X)] is
a non-trivial T -invariant q-subgroup of H, which is impossible by the above investigation.
Consequently we have that COq(C)(a) = Oq(C) or COq(C)(a) = 1 for all primes q. In particu-
lar CF(H)(a) is a Hall subgroup of F(H). We apply Lemma 1.3.9 to observe that we have
N = [F(C), a] ≤ F(O(C)).
Suppose for a contradiction that there is a subgroup X , 1 of N such that NG(X) � C. Then
X is T -invariant, as it is centralised by c and inverted by a. Let H be a proper subgroup
of G that contains NG(X). Then the above investigation shows that c < E(H). Finally
Lemma 2.5.4 implies that F(O(C)) + [T,O(C)] = [a,O(C)] = N. This is a contradiction. �

Proof of Theorem 2.5.1
Lemma 2.5.5 yields exactly the configuration from Lemma 2.2 of [4]. Thus Theorem 3 of
[7] yields that C = T · N = 〈a〉 · N with N = {g ∈ O(C) | ga = g−1} for an involution
a ∈ T \ 〈a〉. Now we can apply [5] to conclude that G is considered as permutation group a
Zassenhaus group of degree q for some odd natural number q, that has order (q+1)·q·(q−1).
Moreover there is a subgroup Q of order q such that NG(Q) is a stabiliser of a point and has
the form Q · D, where D is an abelian group of order q−1

2 . Theorem 13.1.1 of [22] yields
that NG(Q) is a Frobenius group with abelian Frobenius complement D. Finally 10.3.1 (iv)
of [22] implies that D is cyclic. Thus 13.3.5 of [22] forces G to be isomorphic to S L(2, q).
Since the order of G is (q + 1) · q · (q − 1) and divisible by 4 but not by 8, we conclude that
q ≡ 3 or 5 mod 8. This is a contradiction. �
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Part II

Finite Groups with 3-Locally Central
Elements
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3 A First Approach

3.1 TheMain Theorem
In this section we present the main theorem and its minimal counterexample.
We examine some first cases and introduce the most important objects.

3.1.1 Definition
Let G be a finite group, p be a prime and suppose that P is a Sylow p-subgroup of G.

(a) The group Z∗p(G) is the full pre-image of Z(G/Op′(G)) in G.

(b) An element x ∈ P is p-locally central in G with respect to P if and only if for all
non-trivial subgroups R of P we have x ∈ Z(NG(R)).

3.1.2 Lemma
Let G be a finite group and p be a prime and suppose that P is a Sylow p-subgroup of G.
Then x ∈ P is p-locally central with respect to P if an only if for all non-trivial subgroups R
of P we have NG(R) ≤ CG(x).
In particular, if x ∈ P is p-locally central, then P ≤ CG(x) and further the following hold:

(a) The element x is strongly closed in G with respect to P. This means, if g ∈ G such
that xg ∈ P, then g ∈ CG(x).

(b) If x ∈ H and H is a subgroup of G, then x is p-locally central in H with respect to
H ∩ Pg for some g ∈ CG(x).

(c) If N EG, then Nx is p-locally central in G/N with respect to PN/N.

(d) If x ∈ S and S ∈ Sylp(G), then x is p-locally central in G with respect to S .

Proof
Let 1 , R ≤ P and x be an element of P. If we have NG(R) ≤ CG(x), then x centralises R
and NG(R). Thus we conclude x ∈ CG(R) ∩CG(NG(R)) ≤ NG(R) ∩CG(NG(R)) = Z(NG(R)).
On the other hand x ∈ Z(NG(R)) implies that NG(R) ≤ CG(x).

Part (a), (b) and (c) are Lemma 3.1 and Lemma 3.2 of [32].
For Part (d) let x ∈ S and S ∈ Sylp(G). Then we apply Part (b) to conclude that x is p-
locally central in S with respect to S ∩ Pg for some g ∈ CG(x). In particular we observe
that S , S ∩ Pg ∈ Sylp(S ). It follows that S = Pg. Let 1 , R ≤ S . Then Rg−1

is a non-trivial
subgroup of P. Consequently we obtain NG(R)g−1

= NG(Rg−1
) ≤ CG(x), since x is p-locally

central in G with respect to P. From g ∈ CG(x) we conclude that NG(R) ≤ CG(x). �

3.1.3 Remark
From Lemma 3.1.2 (d) we obtain that the property of being p-locally central in a finite group
with respect to a Sylow subgroup does not depend on the choice of the Sylow subgroup.
Therefore we omit the “respect”-part and say that an element x of a finite group G is p-
locally central in G, if it is p-locally central in G with respect to one and therefore all Sylow
p-subgroups of G containing x.
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Now we state the main theorem.

3.1.4 Main Theorem
Let G be a finite group and P be a Sylow 3-subgroup of G. Suppose that x ∈ P is a 3-locally
central element in G with respect to P. Then x is an element of Z∗3(G).

For the remainder of this part let G be a minimal counterexample to the main theorem. Then
G is a finite group and there exists a 3-locally central element x ∈ G such that x < Z∗(G).
We choose first |G| minimal and then x of minimal order.

We set M := CG(x) and let P be a Sylow 3-subgroup of G contained in M.
We further define

M := {H | H max G, x ∈ H and H , M},
σ := {q ∈ π(G) | q - |G : M|},

D∗(M) := {y ∈ M | y3 = 1 and y < 〈x〉} and I∗(M) := {a ∈ M# | a2 = 1 and CG(a) ≤ M}.

3.1.5 Lemma
If we have G = G′ · 〈x〉 such that |G : G′| ∈ {1, 3}, then G′ is not isomorphic to PSL(2, q) for
any prime power q.

Proof
Suppose for a contradiction that we have G′ � PSL(2, q) for some prime power q and that
G = G′ · 〈x〉 with |G : G′| ∈ {1, 3}.
If x is not contained in G′, then there is an element g ∈ G′ such that x · g induces field
automorphisms in G′ by Lemma 1.2.4. Thus x · g is a conjugate of x by Proposition 4.9.1
of [24]. Moreover q = r3 for some prime power r and CG′(x) � PSL(2, r) by Lemma 1.2.4.
Thus we obtain

|G′ : CG′(x)| = |PSL(2,r3)|
|PSL(2,r)| =

(r3)2·(r3+1)·(r3−1)
r2·(r+1)·(r−1) r4 · (r2 − r + 1) · (r2 + r + 1).

If we have r ≡ 0 (mod 3), then 3 divides r4. If we have r ≡ 1 (mod 3), then we conclude
r2 + r + 1 ≡ 12 + 1 + 1 ≡ 0 (mod 3). Finally, if we have r ≡ 2 (mod 3), then we observe
r2−r+1 ≡ 4−2+1 ≡ 0 (mod 3). In all cases 3 divides |G′ : CG′(x)|. This is a contradiction,
because x is 3-locally central in G and therefore centralises a Sylow 3-subgroup of G′ by
Lemma 3.1.2.
We conclude that G = G′. If G had cyclic Sylow 3-subgroups, then the property of x
to be 3-locally central would force NG(P) to be CG(P). This would contradict the p-
Complement Theorem of Burnside. Now Dickson’s Theorem 1.2.2 implies that q is a
power of 3. By the same theorem G has elementary abelian Sylow 3-subgroups of order
q and NG(P)/CG(P) is cyclic of order q − 1. In particular NG(P) is transitive on P#. This
contradicts Lemma 3.1.2 (a). �

3.1.6 Proposition
If we have G = G′ · 〈x〉 such that |G : G′| ∈ {1, 3} and CG(x) is a maximal subgroup of G,
then G′ is not a simple Bender group.
Proof
Suppose for a contradiction that the Lemma is false.
If G′ is a Suzuki group, then G′ = O3′(G) and G′x ∈ G/G′ = 〈x〉 · G′/G′ = Z(G/O3′(G)).
In particular G is not a counterexample. This is a contradiction.
Thus G′ is not a Suzuki group. Moreover G′ is not isomorphic to PSL(2, q) for any prime
power q by Lemma 3.1.5. Hence Theorem 1.2.12 forces G′ to be isomorphic to PSU(3, 2n)
for some natural number n ≥ 2.
Suppose for a contradiction that x < G′, then by 3.6.3 of [39] either x ∈ Inndiag(G) or we
obtain from Proposition 4.9.1 (d) of [24] an element z ∈ G that is conjugate to x and induces
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a field automorphism of G′.
In the first case x ∈ PGU(3, 2n). In particular 2n+1 is divisible by 3. Moreover Lemma 4.3.6
of [25] yields that CG′(x) is isomorphic to the direct product PSL(2, 2n) with a cyclic group
of order 2n+1

3 . We use order formulas of the sections 3.3.1 and 3.6 of [39] to conclude that:

|G′ : CG′(x)| = (2n)3·((2n)3+1)·((2n)2−1)·3
3·2n·((2n)2−1)·(2n+1) = 22n · 23n+1

2n+1 = 22n · (22n − 2n + 1).

In addition we observe that 22n − 2n + 1 ≡ 1 − (−1) + 1 ≡ 0 (mod 3).
This contradicts the fact that P ≤ M, as x is 3-locally central.
In the second case Lemma 4.3.10 of [25] yields that CG′(x) � PGU(3, 2n/3), if n is odd.
For even n Proposition 4.9.1 (a) of [24] implies that O2′(CG′(x)) � PSU(3, 2n/3). From
Theorem 6.5.3 of [24] we obtain that CG′(x) � PSU(3, 2n/3) � PGU(3, 2n/3) in this case
too. We observe that:

|G′ : CG′(x)| = (2n)3·((2n)3+1)·((2n)2−1)
(3,2n+1)·(2n/3)3·(2n+1)·((2n/3)2−1) = 22n · 23n+1

(3,2n+1)·2n+1 ·
22n−1

22n/3−1

= 22n · 22n−2n+1
(3,2n+1) · (2

4n/3 + 22n/3 + 1).

As above 22n − 2n + 1 is divisible by 3 if n is odd. Therefore 22n−2n+1
(3,2n+1) is a natural number.

Moreover we observe 24n/3 + 22n/3 + 1 ≡ 1 + 1 + 1 ≡ 0 (mod 3). This again contradicts the
fact that P ≤ CG(x).
This contradiction shows that G = G′ is isomorphic to PSU(3, 2n). We apply Theorem
6.5.3 of [24] to obtain from x ∈ Z(CG(x)) and CG(x) max G that CG(x) is the image of the
stabiliser in SU(3, 2n) of a non-degenerate subspace of the natural module of SU(3, 2n) in
its natural action.
By section 3.6.2 of [39] the stabiliser in GU(3, 2n) of a non-degenerate subspace of the
natural module of GU(3, 2n) in its natural action is isomorphic to GU(1, q) × GU(2, q).
Moreover x ∈ Z(CG(x)) is a 3-element. It follows that 3 divides 2n + 1. Additionally
GU(1, q) × GU(2, q) has order (2n + 1)2 · (22n − 1) · 2n. Thus its image in PGU(3, 2n) has
order (2n +1) ·(22n−1) ·2n. In particular CG(x) has order (2n+1)·(22n−1)·2n

(3,2n+1) . Finally we calculate

|G : CG(x)| = (2n)3·((2n)3+1)·((2n)2−1)·(3,2n+1)
(3,2n+1)·(2n+1)·(22n−1)·2n = 22n · 23n+1

2n+1 = 22n · (22n − 2n + 1).

As 3 divides 2n + 1, we conclude that 3 divides |G : CG(x)|.
This finally and again contradicts P ≤ CG′(x). �

3.2 The Reduction and First Results of Rowley
In this section we start to investigate our minimal counterexample.
We go along Rowley’s reduction in Section 3 of [32].

3.2.1 Lemma
We have:

(a) We have O3′(G) = F(G) = Z∗(G) = Z∗3(G) = 1.

(b) The group G has no non-trivial normal soluble subgroup.

(c) The element x is of order 3.

(d) The Sylow 3-subgroups of G are not cyclic.
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(e) The group G′ is non-abelian simple and G = 〈x〉 ·G′ holds.
In particular |G : G′| ∈ {1, 3}.

Proof
This is Lemma 3.3 of [32]. As the first part of Rowley’s lemma is here divided into four
statements, we prove part (a).

By Lemma 3.1.2 (c) the element O3′(G)x is 3-locally central in G/O3′(G). Suppose for a
contradiction that O3′(G) , 1. Then the minimal choice of |G| together with the fact that
O3′(G/O3′(G)) is trivial, imply that

O3′(G)x ∈ Z∗3(G/O3′(G)) = Z(G/O3′(G)).
Therefore x is an element of Z∗3(G) contradicting the choice of G as a counterexample.
Thus O3′(G) is trivial and for all primes p ∈ P \ {3} we obtain that Op(G) ≤ O3′(G) = 1.
Suppose for a contradiction that O3(G) , 1. Then we have x ∈ Z(NG(O3(G))), because x
is 3-locally central in G with respect to P and O3(G) ≤ P. Hence NG(O3(G)) = G leads to
x ∈ Z(G) ≤ Z∗3(G). This contradicts again the fact that G is a counterexample. Therefore we
have F(G) = 1. It follows that O(G) = 1 and hence we obtain Z∗(G) = Z(G) ≤ F(G) = 1.
From O3′(G) = 1 we similarly observe that Z∗3(G) = Z(G) ≤ F(G) = 1. �

3.2.2 Lemma
The following hold:

(a) If H is a maximal subgroup of G containing x, then H contains no non-trivial normal
subgroup of G.

(b) Suppose that g ∈ G is such that ∅ , Y ⊆ M ∩ Mg.
Then g = m · c for an element c ∈ CG(Y) and an element m ∈ M.

(c) If L is a non-trivial subgroup of M, then NG(L) = NM(L) ·CG(L) holds.

(d) Let H be a maximal subgroup of G containing x. Then we have one of

(1) H = CG(x) = M or

(2) H = R · O3′(H), where R is a cyclic 3-group with Ω1(R) = 〈x〉.

(e) We haveM , ∅.

(f) Suppose that x ∈ U < G. If U has non-cyclic Sylow 3-subgroups or no normal
3-complement, then U is a subgroup of M.

(g) If we have a ∈ I∗(M), then aG ∩ M is a subset of I∗(M).

Proof
Part (a) to (e) are Lemmas 3.4. to 3.7. of [32].
Part (f) follows directly from Part (d), since every proper subgroup of G is contained in at
least one maximal subgroup of G.
Part (g) is Lemma 3.9 (ii) of [32]. �

3.2.3 Corollary
The group G′ is neither a Bender group nor isomorphic to PSL(2, q) for any prime power 2.
Proof
By Lemma 3.2.1 (e) we have that G = G′ · 〈x〉 such that |G : G′| ∈ {1, 3}. Moreover
G′ is non-abelian simple and CG(x) is a maximal subgroup of G by Lemma 3.2.1 (d) and
Lemma 3.2.2 (d). Hence Lemma 3.1.5 and Proposition 3.1.6 yield the assertion. �
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3.3 The Set σ
In this section we consider Sylow subgroups of M. Moreover we show that we either obtain
the whole {2, 3}-structure of G in M or that G is S 4-free.

3.3.1 Lemma
Let q ∈ π(G) and suppose there is a non-trivial x-invariant q-subgroup of G.
Then there exists a x-invariant Sylow q-subgroup of G. In addition all those x-invariant
Sylow q-subgroups of G are conjugate in M.

Proof
Let Q be a x-invariant q-subgroup of G with maximal order. Then we have x ∈ NG(Q) and
Lemma 3.2.2 (f) yields that NG(U) ≤ M or NG(U) has a normal 3-complement. In both
cases NG(Q) has a x-invariant Sylow q-subgroup, in the second case by Lemma 1.1.14 (b).
From the maximal choice of Q it follows that Q is a Sylow q-subgroup of NG(Q). Therefore
Q is a Sylow q-subgroup of G.

Let now Q1 and Q2 be x-invariant Sylow q-subgroups of G. By Sylow’s Theorem there
exists an element g ∈ G such that Qg

1 = Q2. This leads to x, xg ∈ NG(Q2).
If we have NG(Q2) � M, then NG(Q) has cyclic Sylow 3-subgroups by Lemma 3.2.2 (f).
Hence Sylow’s Theorem provides an element h ∈ NG(Q2) such that 〈x〉 = 〈xg〉h = 〈x〉gh. In
particular, as x is 3-locally central in G, we see that g·h ∈ NG(〈x〉) ≤ M and Qgh

1 = Qh
2 = Q2.

If we have NG(Q2) ≤ M, then we conclude that x ∈ NG(Q2) ∩ NG(Q2)g−1
≤ M ∩ Mg−1

and
Lemma 3.2.2 (b) forces g−1 to be an element of M ·CG(x) = M. �

3.3.2 Lemma
Let q ∈ π(M) \ {3} and y ∈ D∗(M). Then all of the following conditions lead to q ∈ σ.

(a) There is a non-trivial q-subgroup Q of M such that CG(Q) ≤ M.

(b) There is a q-element g ∈ M such that CG(g) ≤ M.

(c) There is a non-trivial 〈x, y〉-invariant q-subgroup Q of G.

(d) We have q ∈ π(CG(y)).

(e) There is a 〈x, y〉-invariant subgroup H of G such that H has a normal 3-complement
and q ∈ π(H).

Proof
(a) Suppose condition (a) holds and let S be a Sylow q-subgroup of M such that Q ≤ S .

Then Lemma 3.2.2 (c) shows that NG(S ) = NM(S ) · CG(S ) ⊆ NM(S ) · CG(Q) ⊆ M.
Therefore S is a Sylow q-subgroup of G.

(b) (Compare with 3.10 of [32]).
This follows immediately from (a) since CG(g) = CG(〈g〉) for every element g ∈ G.

(c) Suppose condition (c) holds. Then we have 〈x, y〉 ≤ NG(Q). Therefore NG(Q) has
non-cyclic Sylow 3-subgroups and contains x. By Lemma 3.2.2 (a) the group NG(Q)
is a proper subgroup of G. Thus Part (f) of the same lemma yields that we have
CG(Q) ≤ NG(Q) ≤ M. Now the assertion follows by Part (a).

(d) Suppose condition (d) holds. If we have q = 3, then we obtain q ∈ σ from the fact
that x is 3-locally central. Suppose that q , 3 and let 1 , Q be a q-subgroup of
CG(y). Then Q is 〈x, y〉-invariant, since CG(y) ≤ NG(〈y〉) ≤ M. Therefore Part (c)
forces q ∈ σ.
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(e) Suppose condition (e) holds. If we have q = 3, then we observe again q ∈ σ. Suppose
that q , 3. Then, as H has a normal 3-complement, we have q ∈ π(O3′(H)). Since
H is 〈x, y〉-invariant, 〈x, y〉 acts coprimely on O3′(H). Consequently we obtain from
Lemma 1.1.14 (b) a 〈x, y〉-invariant Sylow q-subgroup of O3′(H). Now Part (c) yields
that we have q ∈ σ. �

3.3.3 Proposition (Rowley)
Suppose that I∗(M) , ∅. If V = 〈a, b〉 is an elementary abelian subgroup of G of order 4
for some involutions a and b of G, then (Vh)# * I∗(M) for all h ∈ G.
Moreover, if g ∈ G and H is a maximal subgroup of G that contains CG(ab) and 〈a, b〉g,
then we have g ∈ H. In particular we observe that NG(T ) ≤ H for some Sylow 2-subgroup
T of H and thereby of G.

Proof
This result is basically Lemma 4.2, Lemma 4.7 and Lemma 4.8 of [32].

As G′ is no Bender group by Corollary 3.2.3 and since I∗(M) , ∅, Lemma 4.2 of [32]
provides some elements c, d ∈ I∗(M) such that [c, d] = 1 and c · d < I∗(M).
Let H be a maximal subgroup of G that contains CG(cd).
Since x ∈ CG(c) ∩ CG(d) ≤ CG(cd) and CG(cd) is not a subgroup of M, Lemma 3.2.2 (f)
forces H to be an element of M. We obtain 2 ∈ σ from Lemma 3.3.2 (b). From this and
Lemma 1.3.7 (b) we deduce that H = CH(x) · O(H). Applying Lemma 1.3.1 (b) we get

[H, x] = [O(H), x] ≤ 〈C[O(H),x](B) | B max 〈c, d〉, CG(B) * CG(x)〉 = C[O(H),x](cd).

Consequently (*): H = CH(x) · [O(H), x] = CH(x) ·CO(H)(cd) holds.

Let T be a x-invariant Sylow 2-subgroup of H containing 〈c, d〉. Then x centralises T by
Lemma 3.3.1. Let further g be an element of NG(T ). Then cg ∈ 〈c, d〉g ≤ T ∩Mg ≤ M∩Mg.
According to this Lemma 3.2.2 (b) yields that g ∈ M·CG(c) = M and we have cg, dg ∈ I∗(M)
by Lemma 3.2.2 (g). Analogously to (*) we get

H = CH(x) ·CO(H)((cd)g) and [H, x] ≤ CO(H)((cd)g) ≤ CG(cd)g ≤ Hg.

Applying Lemma 1.3.7 (a) we observe that

[H, x] = [O3′(H), x] = [[O3′(H), x], x] = [[H, x], x] ≤ [Hg, x].

From g ∈ M we deduce [H, x] ≤ [Hg, x] = [H, x]g and so [H, x] = [H, x]g = [Hg, x]. Since
[Hg, x] is normal in Hg, it follows that Hg ≤ NG([H, x]) = H. Now the fact that H is a
maximal subgroup of G together with Lemma 3.2.2 (a) implies g ∈ H. Therefore T is a
Sylow subgroup of G and we have NG(T ) ≤ H.

Let now a, b ∈ I∗(M) such that 〈a, b〉 is elementary abelian of order 4. By Sylow’s Theorem
there is some g ∈ M such that 〈a, b〉g ≤ T ≤ H = CH(x) · O(H). Since 〈a, b〉 is elementary
abelian Lemma 1.1.14 (e) leads to O(H) = 〈CO(H)(v) | v ∈ {ag, bg, (ab)g}〉. As we have
O(H) � M and ag, bg ∈ I∗(M) by Lemma 3.2.2 (g), it follows that (ab)g < I∗(M). Finally
the same lemma implies a · b < I∗(M). �

3.3.4 Corollary
The following hold:

(a) For all elementary abelian non-cyclic 2-subgroups V of G the centraliser CG(V) has
cyclic Sylow 3-subgroups R such that Ω1(R) is conjugate to a possibly trivial sub-
group of 〈x〉.

(b) For all y ∈ D∗(M) we have r2(CG(y)) ≤ 1.
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(c) For all elementary abelian non-cyclic 2-subgroups V of G such that all involutions of
V are conjugate in G, we have V ∩ I∗(M) = ∅.

Proof
(a) If CG(V) is a 3′-subgroup of G, then the assertion is true.

Suppose that 1 , R ∈ Syl3(CG(V)). By Sylow’s Theorem there is an element g ∈ G
such that R ≤ Pg. As xg is 3-locally central in G with respect to Pg, it follows that
V ≤ CG(R) ≤ NG(R) ≤ Mg. In particular we observe that xg ∈ CG(V). Since V
is non-cyclic, Proposition 3.3.3 provides an element v ∈ V# such that v < (I∗(M))g.
From v < Z(G) we deduce with Lemma 3.2.2 (f) that CG(vg−1

) has cyclic Sylow
3-subgroups. Due to CG(V) ≤ CG(v) = CG(vg−1

)g also CG(V) has cyclic Sylow 3-
subgroups and contains xg. This is the assertion.

(b) Suppose for a contradiction that r2(CG(y)) ≥ 2. Then there is an elementary abelian
non-cyclic 2-subgroup V of CG(y). We obtain that V ≤ CG(y) ≤ NG(〈y〉) ≤ M, as x is
3-locally central in G. Now 〈x, y〉 ≤ CG(V) contradicts (a).

(c) If we have V ∩ I∗(M) , ∅, then we conclude V# ⊆ I∗(M) from Lemma 3.2.2 (g).
As V is non-cyclic, this is a contradiction to Proposition 3.3.3. �

3.3.5 Lemma
(a) Suppose that H is a {2, 3}-subgroup of G. If we have r2(H) ≥ 3, then O3(H) is cyclic

and Ω1(O3(H)) is conjugate to a subgroup of 〈x〉.

(b) Suppose that H is a subgroup of G with cyclic Sylow 3-subgroups and x ∈ H. Then
H has a normal 3-complement.

Proof
(a) If we have O3(H) = 1, then the assertion holds.

Let O3(H) be non-trivial. By Sylow’s Theorem we may suppose that H∩P ∈ Syl3(H).
Then we have O3(H) ≤ H∩P = P and so we obtain xG ∩O3(H) ⊆ xG ∩P ⊆ {x} from
Part (a) of Lemma 3.1.2. Suppose that r2(H) ≥ 3. Then there is an elementary abelian
subgroup A of order 8 of H. Corollary 3.3.4 (a) implies for every Sylow 3-subgroup
R of the centraliser of every non-cyclic subgroup V of A that Ω1(R) is conjugate to a
subgroup of 〈x〉.
By Lemma 1.1.16 there exists a critical subgroup K of O3(H). The exponent of K
is 3. Altogether Lemma 1.1.14 (e) implies K = 〈CK(V) | V max A〉 ≤ 〈x〉. From
x ∈ Z(NG(〈x〉)) we obtain that A acts trivially on K. As K is critical in O3(H), the
group A acts trivially on O3(H). According to Corollary 3.3.4 (a) the group CG(A)
has cyclic Sylow 3-subgroup containing x.

(b) Let R be a Sylow 3-subgroup of H containing x. Then every non-trivial 3′-automor-
phism of R acts non-trivially on Ω1(R) = 〈x〉. Since x is 3-locally central, x is not
inverted in G. Thus G does not induce any non-trivial automorphisms on R. Hence
we observe that CH(R) = NH(R), as R is a Sylow 3-subgroup of H. For the same
reason Burnside’s p-Complement Theorem 1.1.10 finishes the proof of Part (b). �

3.3.6 Lemma
Let S be a non-trivial 2-subgroup of G such that NG(S ) involves a S 4.
Then we have 2 ∈ σ or NG(S ) contains a subgroup that is isomorphic to S 4.
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Proof
Since NG(S ) is not S 4-free, NG(Z(S )) ≥ NG(S ) involves a S 3. Therefore Lemma 1.3.3
provides elements y and b of NG(Z(S )) such that y has order 3 and b is a 2-element and
〈y, b〉/〈b2〉 � S 3. In particular b inverts y. As x is 3-locally central, x is not inverted in G
and so we see y , x. Via conjugation in G we may choose S and y such that y ∈ P. Then
y ∈ D∗(M). If b is not an involution or if y acts trivially on Z(S ), then CG(y) is of even
order and Lemma 3.3.2 (d) leads to 2 ∈ σ. Otherwise Lemma 1.3.3 provides an involution
a ∈ Z(S ) such that S 4 � 〈a, y, b〉/〈b2〉 � 〈a, y, b〉 ≤ NG(S ). �

3.3.7 Theorem (Stellmacher and Rowley)
If we have 2 < σ, then G is S 4-free.

Proof This is almost Lemma 5.2. of [32]. But we do not need the full strength of [34].
Suppose for a contradiction that 2 < σ and that G is not S 4-free.
Then there is a non-trivial 2-subgroup S of G such that its normaliser NG(S ) is not S 4-free
by Lemma 1.1.7.
Let S be of maximal order with that property and such that NP(S ) ∈ Syl3(NG(S )). Then
NG(S ) has a subgroup U isomorphic to S 4 by Lemma 3.3.6. We set H := O2′(NG(S )).
Then U is a subgroup of H. By Sylow’s Theorem we may choose U such that U∩NP(S ) , 1.
Let finally T ∈ Syl2(H) = Syl2(NG(S )) be such that U ∩ T ∈ Syl2(U).

(1) We have S = O2(H) and O2′,2(H) = S · O(H).

Proof. The maximal choice of S implies that S = O2(NG(S )) = O2(H).
If we have S 0 ∈ Syl2(O2′,2(H)), then S = O2(H) is contained in S 0. A Frattini argument
yields that H = NH(S 0) ·O2′,2(H) = NH(S 0) ·O(H). From O(H)∩U ≤ O(U) = 1 we deduce
that S 4 � U � U/(O(H) ∩ U) � U · O(H)/O(H) ≤ H/O(H)

= NH(S 0) · O(H)/O(H) � NH(S 0)/NO(H)(S 0).
In particular NG(S 0) is not S 4-free and the maximal choice of S forces S to be S 0. �

(2) No conjugate of x is contained in NG(S ) but x normalises a Sylow 2-subgroup of G.
Moreover S is not characteristic in T .

Proof. Suppose for a contradiction that xg−1
∈ NG(S ) for some g ∈ G. Then we have

that x ∈ NG(S )g and NG(S )g has no normal 3-complement, as it is not S 4-free. Hence
Lemma 3.2.2 (f) implies that NG(S g) = NG(S )g ≤ M. Now Lemma 3.3.2 (a) leads to the
contradiction 2 ∈ σ.
From S 4 � U ≤ NG(S ) we obtain that the Sylow 3-subgroup NP(S ) has a non-trivial
subgroup R such that NG(R) ≤ CG(x) = M is of even order. This and Lemma 3.3.1 yield
that x normalises some Sylow 2-subgroup of G.
Assume for a contradiction that S char T . Then we see that NG(S ) ≥ NG(T ) and conclude
that T is a Sylow 2-subgroup of G. Thus T is normalised by some conjugate of x. But now
NG(T ) ≤ NG(S ) leads to a contradiction. �

(3) The group H has no element of order 6 and NP(S ) is cyclic and acts fixed-point-freely
on S . In particular O(H) is a 3′-group.

Proof. By (2) we have xG ∩ NG(S ) = ∅. It follows that every element of order 3 in H is
conjugate to an element of D∗(M). Since every element of D∗(M) has a centraliser of odd
order by Lemma 3.3.2 (d), the group H has no element of order 6. This also shows that
NP(S ) acts elementwise fixed-point-freely on S . Consequently Lemma 1.1.14 (e) forces
NP(S ) to be cyclic. From [O(H), S ] ≤ S ∩O(H) = 1 we see that NP(S )∩O(H) ≤ CP(S ) = 1.
Hence O(H) is a 3′-group. �

Let R ≤ NP(S ) be a Sylow 3-subgroup of H ENG(S ) and y ∈ R be of order 3. Then we have
y ∈ U, as U ∩ P ∈ Syl3(U). Moreover (2) implies that y ∈ D∗(M).
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(4) The group S is abelian.

Proof. Since y acts fixed-point-freely on S , the group U · S fulfils "Voraussetzung A" of
[14]. Let t ∈ U be an involution that inverts y. Then we have for every maximal abelian
subgroup A of S that 〈y, t〉 ≤ 〈yU〉 ≤ 〈yU·S 〉 ≤ NU·S (A) by Lemma 1.1 (c) of [14]. So we
may apply Lemma 1.2 of [14] that forces S to be abelian. �

(5) If H is soluble, then we have 〈y〉 · T = U and O2(U) = S .

Proof. If H is soluble, then we may choose T such that R · T is a Hall {2, 3}-subgroup of H.
We observe that

〈y〉 · O2(R · T )/O2(R · T ) = Ω1(O3(R · T/O2(R · T ))) E R · T/O2(R · T ).

This shows that the product 〈y〉 · T is a subgroup of H. Since O(H) is a {2, 3}′-group by (3),
we may apply Lemma (3.2) of [34] to H/O(H). By (1) and (2) we have T , S = O2(H).
This implies together with (1) that T ·O(H)/O(H) , S ·O(H)/O(H) = O2(H/O(H)) holds.
Combined we get 〈y〉 · T/S � 〈y〉 · T/(〈y〉 · T ∩ S · O(H))

� 〈y〉 · T · O(H)/S · O(H)
� (〈y〉 · T · O(H)/O(H)) /O2(H/O(H)) � S 3.

It follows that S = O2(〈y〉T ). As S is not characteristic in T by (2), Statement 8.1(iii) of
[28] shows that |S | = 4. Now 24 = |U | ≤ |〈y〉 · T | = |〈y〉 · T/S | · |S | = 6 · 4 = 24 yields
U = 〈y〉 · T . �

(6) The group H is not soluble.

Proof. Assume for a contradiction that H is soluble.
Then S is an elementary abelian group of order 4 by (5). Let c ∈ Z(T )# and t ∈ S be such
that S = 〈t, c〉. Then (5) shows that c is a square in T . Furthermore let T0 ∈ Syl2(G) be such
that T ≤ T0 and take an involution a ∈ CT0(t).
Suppose for a contradiction that a < CG(c). Then D := 〈a, c〉 ≤ CT0(t) is a dihedral group of
order at least 8. Let b be the central involution of D. From a < CG(c) we conclude that b , c.
Moreover b ∈ CG(c) ∩ CT0(t) = CT0(S ) = CT0(S ) ∩ NT0(S ) = CT0(S ) ∩ T = CT (S ) = S .
Consequently we have S = 〈b, c〉 and S is a subgroup of D. From |D| ≥ 8 it follows that
S < ND(S ) and that T ≤ D holds. This implies that c is also a square in D. Being a
dihedral group D has only one involution that is a square. This is the central involution.
That contradicts c , b. Consequently we have Ω1(CT0(t)) ≤ CG(c) and

Ω1(CT0(t)) ≤ CG(c) ∩CT0(t) = CT0(S ) = CT (S ) = S ≤ Ω1(CT0(t)).

This yields that Ω1(CT0(t)) = S . Hence we obtain CT0(t) ≤ NT0(Ω1(CT0(t))) = NT0(S ) = T .
As t is not central in T , we see that CT0(t) = CT (t) = S is elementary abelian of order 4.
Lemma 1.3.4 (a) implies that T0 is dihedral or semi-dihedral. Thus having order at least 8
the group T0 admits no automorphism of order 3 by Lemma 1.1.3. From the existence of a
conjugate of x that normalises T0 by (2) we deduce that T0 is a subgroup of a conjugate of
M. This contradicts 2 < σ. �

(7) The group O2,2′(H) is of order prime to 3.

Proof. Suppose for a contradiction that 3 divides |O2,2′(H)|.
Then a Frattini argument shows for some Sylow 3-subgroup R0 of O2,2′(H) contained in
R, that T · O2,2′(H) = O2,2′(H) · NT ·O2,2′ (H)(R0). From (3) we know that R0 ≤ R ≤ NP(S )
is cyclic. We conclude that NH(R0)/CH(R0) is of order at most 2. As y is an element of
order 3 of R, it is contained in R0. Hence CT ·O2,2′ (H)(R0) ≤ CG(y) is of odd order by (3).
Consequently we have

2 ≥ |NH(R0)|2 ≥ |NT ·O2,2′ (H)(R0)|2 ≥ |O2,2′(H) · NT ·O2,2′ (H)(R0) : O2,2′(H)|2
= |T · O2,2′(H) : O2,2′(H)|.
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Therefore H/O2,2′(H) has cyclic Sylow 2-subgroups and Burnside’s p-Complement Theo-
rem and the Odd Order Theorem 1.1.12 force H/O2,2′(H) to be soluble. The conclusion that
H is soluble contradicts (6). �

Let − : H → H/O2,2′(G) be the natural epimorphism.

(8) The group H̄ is S 4-free.

Proof. Suppose for a contradiction that H̄ is not S 4-free. Then we obtain from Lemma 1.1.7
a non-trivial 2-subgroup S̄ 0 of H̄ such that NH̄(S̄ 0) has a section isomorphic to S 4. Let L be
the full pre-image of NH̄(S̄ 0) in H and S 1 be a Sylow 2-subgroup of the full pre-image S̄ 0.
Then S 0 := S 1 · O2,2′(H) is a normal subgroup of L and from a Frattini argument it follows
that L = S 0 · NL(S 1) = O2,2′(H) · NL(S 1). As L̄ = NL(S 1) has a section isomorphic to S 4,
the maximal choice of S forces S = S 1. This is a contradiction to S̄ 0 , 1. �

(9) For all t ∈ T \ S with t2 ∈ S we have |CΩ1(S )(t)|2 = |Ω1(S )|.

Proof. (Compare with 1.3 (d) of [14].)
Let t ∈ T \ S such that t2 ∈ S . From (4) we obtain that t induces an automorphism
of order at most 2 of Ω1(A). We apply Lemma 1.1.17 to see that |CΩ1(S )(t)|2 ≥ |Ω1(S )|.
Suppose for a contradiction that |CΩ1(S )(t)|2 > |Ω1(S )|. Then CΩ1(S )(t) ∩ CΩ1(S )(t)y , 1
and there is an element a ∈ Ω1(S ) such that a ∈ CΩ1(S )(t) and ay ∈ CΩ1(S )(t). From
(4) we observe that A = 〈a, ay, ay2

〉 is an elementary abelian y-invariant group. Moreover
CH(A) is a 3′-group by (3). Thus Lemma 1.1.14 (b) provides a 〈y〉-invariant Sylow 2-
subgroup T1 of CH(A). By Sylow’s Theorem there is an element h ∈ CH(A) ≤ NH(Ω1(S ))
such that th ∈ T1, as we have t ∈ CH(A). We may suppose that t ∈ T1, since we have
|CΩ1(S )(t)| = |(CΩ1(S )(t))h| = |CΩ1(S )(th)|.
Let d ∈ U ≤ H be an involution that inverts y. Then we have |CΩ1(S )(d)|2 ≥ |Ω1(S )|
by Lemma 1.1.17. From this, |CΩ1(S )(t)|2 > |Ω1(S )| and the fact that Ω1(S ) is elementary
abelian by (4) we obtain an element b ∈ CΩ1(S )(d) ∩ CΩ1(S )(t) ≤ Ω1(S ) ≤ T1. Applying
Theorem 8.1 (ii) of [28] on 〈y〉T1 we observe that 〈〈t, b〉, 〈t, b〉y〉 is abelian. In particular we
have t ∈ CH(〈b, by〉). We set B := 〈b, by, by2

〉. Then y normalises the by (4) abelian group
B. Since y does not centralise any involution of H by (3), we conclude that B has order 4.
Moreover d centralises b and normalises 〈y〉. Hence B is d-invariant. Moreover we obtain
that t ∈ CH(〈b, by〉) = CH(B). Altogether we have S 3 � 〈y, d〉 ≤ NH(B) and CH(B) is of
even order.
Let T2 ∈ Syl2(CH(B)). Then a Frattini argument yields that NH(B) = CH(B) · NNH(B)(T2).
The group CH(B) is of order prime to 3 by (3). Consequently NH(T2) ≤ NNH(B)(T2) is
not S 3-free. From 3 - |O2′,2(H)| by (7) we observe that NH(T2) ≤ NH̄(T2) is not S 3-
free and Lemma 1.1.14 (a) and (3) yield that every element of order 3 in NH̄(Z(T2)) acts
fixed-point-freely on the non-trivial abelian group Z(T2). Finally Lemma 1.3.3 implies that
NH̄(Z(T2)) ≥ NH̄(T2) is not S 4-free. This contradicts (8). �

(10) The group F∗(H̄) is simple and has an order divisible by 3.

Proof. Let O2,2′(G) ≤ N ≤ H be such that N̄ is a minimal normal subgroup of H̄.
Suppose for a contradiction that N̄ is soluble. Then N̄ is an elementary abelian 2-group. Let
T1 ∈ Syl2(N). Then a Frattini argument shows that H = N · NH(T1). As 3 does not divide
|N | and S 4 = U ≤ H, the group H/N = NH(T1) · N/N is not S 3-free. Consequently NH(T1)
is not S 3-free. Since every 3-element of NH(T1) acts fixed-point-freely on T1 by (3), it acts
non-trivially on Z(T1). We apply Lemma 1.3.3 to obtain that NH(T1) is not S 4-free. The
maximal choice of S forces T1 to be S . This contradicts N̄ , 1.
Suppose now for a contradiction N̄ is a 3′-group. Then N̄ is a direct product of simple
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Suzuki groups by Theorem 1.2.8. As 3 divides |H̄| = |NH̄(N̄)|, the group N̄ is normalised
by some element ȳ of order 3. Thus Lemma 1.2.10 implies that CH̄(ȳ) is of even order.
Since O2,2′(H) is of order prime to 3 by (7), Lemma 1.1.14 (a) yields CH̄(y) = CH(y). This
contradicts (3).
Finally suppose for a contradiction that F∗(H̄) is not simple. Then F∗(H̄) is the direct
product of at least two simple groups with order divisible by 3. Let K1 and K2 be the full
pre-images of two of those groups such that K1 , K2. And let z be an element of order
3 in K1. Then [z,K2] ≤ [K1,K2] ≤ O2,2′(H). In particular K̄2 ≤ CH̄(z) = CH(z), the last
equation holds by Lemma 1.1.14 (a). This implies that CG(z) is of even order which again
contradicts (3). �

(11) We have CH(Ω1(S )) ≤ O2,2′(H) and J(T ) � S .

Proof. From (3) we observe that CH(Ω1(S )) has order prime to 3. So CH(Ω1(S )) is a normal
3′-subgroup of H. Now (10) forces CH(Ω1(S )) ≤ O2,2′(H).
Suppose for a contradiction that J(T ) ≤ S . Then we see from (4) that Ω1(S ) = J(S ) = J(T ).
Furthermore we deduce that H ≤ NG(S ) ≤ NG(J(S )) = NG(J(T )). Let T1 be a Sylow 2-
subgroup of CG(J(T )) = CG(Ω1(S )) such that S ≤ T1. If S is properly contained in T1, then
we have S < NT1(S ) ≤ CH(J(T )) = CH(Ω1(S )) ≤ O2,2′(H). This is a contradiction since
S ∈ Syl2(O2′,2(H)) by (1). Thus S is a Sylow 2 subgroup of CG(J(T )).
Let now T2 ∈ Syl2(NG(J(T ))) such that S ≤ T2. Then we obtain from the fact that CG(J(T ))
is normal in NG(J(T )) that we have S = CG(J(T )) ∩ T2 E T2. Consequently we see that
T2 ≤ NG(S ) and T2 is a subgroup of H. From T ≤ NH(J(T )) we obtain that T = T2.
Therefore T is a Sylow 2-subgroup of NG(J(T )) ≥ NG(T ). This implies that T is a Sylow
2-subgroup of G. Part (2) provides an element g ∈ G such that xg ∈ NG(T ). In particular
we have xg ∈ NG(J(T )). From Lemma 3.3.2 (a) and our assumption 2 < σ we observe that
NG(J(T )) is no subgroup of Mg. So Lemma 3.2.2 (d) implies that NG(J(T )) has a normal
3-complement. This finally contradicts S 4 � U ≤ NG(S ) ≤ NG(J(T )). �

(12) We have H̄ � PSL(2, 2n) and S is elementary abelian of order 22n for some n ∈ N,
n ≥ 2. Furthermore T is isomorphic to some Sylow 2-subgroup of PSL(3, 2n).

Proof. We want to apply Lemma 1.4 of [14] to H. "Voraussetzung B" of [14] holds by (1),
(3), (11) and the choice of H. Furthermore (6) and (11) yield the remaining assumptions
of the lemma. Its proof uses Lemma 1.3 of the same article which is proven by using non-
elementary results. But the assertion of Lemma 1.3 in [14] holds in our case by (3), (4), (8),
(9) and (10). �

(13) The group T is a chracteristic subgroup of some Sylow 2-subgroup T0 of NG(T ).

Proof. We show that T = J(T0).
From (12) and Lemma 1.2.5 we conclude that T possesses exactly two elementary abelian
subgroups S and S 0 of order 22n. Moreover S is not normalised by any element of T0 \ T .
This shows that every element of T0 \ T interchanges S and S 0. For all s, t ∈ T0 \ T we
have S ts = S s

0 = S . This leads to t · s ∈ NT0(S ) = T . Therefore we see that |T0 : T | = 2. In
particular S is a maximal elementary abelian subgroup of T0.
Let A be an elementary abelian subgroup of order 22n of T0 and suppose for a contradiction
that A � T . Then A∩ T is elementary abelian of order 22n−1. By Lemma 1.2.5 we conclude
that A∩T is contained in S or S 0. Since T is normal in T0, we may suppose that A∩T ≤ S
(else we investigate As instead of A for some s ∈ T0 \ T ). For all t ∈ A \ (A ∩ T ) we have
shown that S t = S 0.
Therefore we have A ∩ S = A ∩ T = At ∩ T t = (A ∩ T )t = (A ∩ S )t = At ∩ S t = A ∩ S 0 for
all t ∈ A \ (A ∩ T ). This shows that A ∩ T ≤ A ∩ S ∩ S 0 = A ∩ Z(T ). Although we have
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|Z(T )| = 2n. Together we get 22n−1 = 2n. This implies n = 1 contradicting (12).
In total we have J(T0) ≤ T = J(T ). This leads to our assertion. �

The fact that NG(T0) ≤ NG(T ) forces T0 to be as Sylow 2-subgroup of G. Finally (2) pro-
vides an element g ∈ G such that xg ∈ NG(T0) ≤ NG(T ). As T has exactly two elementary
abelian subgroups of order 22n by Lemma 1.2.5, they are normalised by xg. This implies
xg ∈ NG(S ) contradicting (2). �
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4 The Big Rank Case

4.1 Subgroups ofM
In this section we investigate elementary abelian 2-subgroups of order 8 of G and their
appearance in M and other maximal subgroups.

4.1.1 Lemma
Suppose that c ∈ M is involution and that V is an elementary abelian subgroup of CG(c) of
order 4. Assume further that V is normalised by an element y ∈ D∗(M) ∩ CG(c). Then the
following hold:

(a) We have c ∈ I∗(M).

(b) The set π(CG(V)) is contained in σ.

(c) For all v ∈ V# the group Oσ′(CG(v)) is abelian and [x,Oσ′(CG(cv))] is non-abelian.

(d) We have 〈V, c〉 ∩ I∗(M) = {c}.

(e) The element c is not balanced in G.

(f) There is no elementary abelian subgroup of order 8 of G which contains V and is
contained in CG(z) \ {z}.

Proof
We set C := CG(c). From c ∈ M = CG(x) we deduce x ∈ C. Further C contains 〈x, y〉
and has therefore non-cyclic Sylow 3-subgroups. Altogether Lemma 3.2.2 (f) yields that
C ≤ M. This implies that c ∈ I∗(M). This is (a).
By Corollary 3.3.4 (a) the group V is not centralised by y. From V ≤ C ≤ M we observe
that the element x centralises V . Moreover we have CG(V) E NG(V). Therefore CG(V) is
〈x, y〉-invariant. By Corollary 3.3.4 (a) and Lemma 3.3.5 (b) the group CG(V) has a normal
3-complement. Finally Lemma 3.3.2 (e) forces π(CG(V)) ⊆ σ. This is(b).

(*) There is no elementary abelian subgroup A of G of order at least 8 such that
A contains V and admits a soluble A-signalizer functor θ in G

with Oσ′(CG(v0)) ∩ θ(v0) , 1 for some v0 ∈ V#.

Proof. Assume that Statement (*) is false. Then the Soluble Signalizer Functor Theo-
rem 2.1.6 implies that WA := 〈θ(a) | a ∈ A#〉 is a subgroup of G of odd order. This implies
that also WV := 〈θ(v) | v ∈ V#〉 ≤ WA is a subgroup of G of odd order. Moreover WA is
normalised by A and Theorem 1.1.8 provides a Hall {2, 3}-subgroup of the soluble group
A ·WA. From both parts of Lemma 3.3.5 we obtain that A ·WA has a normal 3-complement.
It follows that WA has a normal 3-complement and hence WV has a normal 3-complement
too. Since 〈x, y〉 normalises V , the group 〈x, y〉 normalises WV . Thus Lemma 3.3.2 (e)
yields π(WV ) ⊆ σ. But now the assumption 1 , Oσ′(CG(v0)) ∩ θ(v0) ⊆ WV leads to a
contradiction. �

We set A := 〈V, c〉. Then A is elementary abelian and has order 8.
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The Statements (c) and (d) are true.

Proof. Let v ∈ V# and w ∈ V \ 〈v〉. Then from CCG(v)(w) ⊆ CG(V) and (b) it follows that
π(CCG(v)(w)) ⊆ σ. Thus the involution w acts fixed point freely on Oσ′(CG(v)). This implies
that Oσ′(CG(v)) is abelian. For all involutions a ∈ A we set γ(a) := [Oσ′(CG(a)), x].
Assume for a contradiction that γ(a) is abelian for all a ∈ A#. We will show that γ is a
soluble A-signalizer functor. Since A ≤ M for all a ∈ A# the group γ(a) is A-invariant and
soluble by the Odd Order Theorem 1.1.12. We fix an element a ∈ A#. Since x ∈ CG(a) and
3 ∈ σ, the element x acts coprimely on γ(a). From Lemma 1.1.14 (f) and (d) we deduce

γ(a) = Cγ(a)(x) × [γ(a), x] = Cγ(a)(x) × [Oσ′(CG(a)), x, x]
= Cγ(a)(x) × [Oσ′(CG(a)), x] = Cγ(a)(x) × γ(a).

This implies Cγ(a)(x) = 1 and hence the element x acts fixed-point-freely on γ(a). In partic-
ular we have that γ(a) = {[g, x] | g ∈ γ(a)} by Lemma 10.1.1 of [22].
For all d ∈ A ∩ I∗(M) we have γ(d) = γ(d) ≤ [M, x] = 1. If additionally b ∈ A#, then
CG(b) ∩ γ(d) = 1 ≤ γ(b) and we observe that

CG(d) ∩ γ(b) ≤ M ∩ γ(b) ≤ Cγ(b)(x) = 1 = γ(d).

Let now d, b ∈ A# \ I∗(M) and suppose that h ∈ CG(b) ∩ γ(d).
Then h ∈ γ(d) = {[g, x] | g ∈ γ(d)}. This provides an element g ∈ γ(d) = [Oσ′(CG(d)), x]
such that h = [g, x]. In particular we obtain that [g, x] = h = hb = [g, x]b = [gb, x]. We
conclude that g−1gb ∈ CG(x). Since γ(d) is A-invariant, we moreover have g, gb ∈ γ(d) and
hence g−1gb ∈ Cγ(d)(x) = 1. Consequently we observe g = gb and so g ∈ CG(b). This shows
together with Lemma 1.3.7 (c) that h ∈ [CG(b), x] = [Oσ′(CG(b)), x] = γ(b).
Altogether γ is a soluble A-signalizer functor in G. Finally (*) yields a contradiction.

The contradiction provides an element a ∈ A# such that γ(a) is not abelian. For all v ∈ V#

the group γ(v) is abelian, because it is a subgroup of the abelian group Oσ′(CG(v)). From
1 = [Oσ′(C), x] = γ(c) and we obtain an element v0 ∈ V# such that a = v0 · c. As y
acts transitively on V# and centralises c, we conclude that γ(vc) = [Oσ′(CG(vc)), x] is non-
abelian for all v ∈ V#. This implies (c).
In particular we obtain that v · c < I ∗ (M) for all v ∈ V an thus (A \ V) ∩ I∗(M) = {c}.
Moreover, since all involutions of V are conjugate by y ∈ G, Corollary 3.3.4 (c) implies that
V ∩ I∗(M) = ∅. This leads to (d). �

For all involutions a ∈ G we set θ(a) := O(CG(a)).

The statement of (e) holds.

Proof. From (d) and Lemma 3.2.2 (d) we see that all involutions of A \ {c} have a 3-
soluble centraliser in G. This shows together with Lemma 2.1.4 and Theorem 1.2.8 that all
involutions of A \ {c} are balanced in G. Suppose for a contradiction that there is no element
a ∈ A \ 〈c〉 such that O(CG(a)) ∩ CG(c) � O(CG(c)). Then A is balanced in G and θ is a
soluble A-signalizer functor in G. But this contradicts (*). In particular (e) holds. �

(**) For all a ∈ A \ 〈c〉 we have π(O(CC(a))) * σ.

Proof. Let v ∈ V#. Then (c) yields that [x,Oσ′(CG(cv))] is not abelian. In particular the
group Oσ′(CG(cv)) is not abelian. This implies that c does not act fixed-point-freely on
Oσ′(CG(cv)). We conclude that 1 , Oσ′(CG(cv)) ∩ C ≤ O(CC(cv)). Consequently we have
π(O(CC(cv))) * σ.
Moreover we see that CC(v) = CG(v) ∩ C = CG(〈c, v〉) = CG(cv) ∩ C = CC(cv). This leads
to π(O(CC(v))) = π(O(CC(cv))) * σ.
Finally the assertion follows from A \ 〈c〉 = V# ∪ {cv | v ∈ V#}. �
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Suppose for a final contradiction that (f) is false. Then there is an elementary abelian sub-
group B of G of order at least 8 such that V ≤ B and such that B is a subset of C \ {c}. Corol-
lary 3.3.4 and Lemma 3.3.5 (b) imply that CG(〈b, c〉) = CC(b) has a normal 3-complement
for all involutions b of C \ {c}. Thus we conclude from Lemma 2.1.4 that all involutions of
C except for c are balanced in C. For all a ∈ B# let θ̃(a) := O(CC(a)). Then θ̃ is a soluble
B-signalizer functor in C by the Odd Order Theorem 1.1.12. The Soluble Signalizer Func-
tor Theorem 2.1.6 forces WB := 〈O(CC(b)) | b ∈ B#〉 to have odd order. As x ∈ θ̃(a) ≤ WB

for all a ∈ B# and WB is normalised by B, both parts of Lemma 3.3.5 imply that B ·WB has
a normal 3-complement. It follows that WV := 〈O(CC(v)) | v ∈ V#〉 ≤ WB · B has a normal
3-complement too. Since V is normalised by 〈x, y〉, the group WV is 〈x, y〉-invariant. Finally
Lemma 3.3.2 (e) yields π(WV ) ⊆ σ. In particular π(O(CC(v))) ⊆ σ for all v ∈ V#. This
contradicts (**). �

4.1.2 Lemma
Suppose that A is an elementary abelian subgroup of M of order 8. Assume that A has a
maximal subgroup V such that I∗(M)∩V = ∅ but |A∩ I∗(M)| ≥ 3. Then the following hold:

(a) For all H ∈ M such that A ≤ H, we have H = CH(x) ·CH(V) and [H, x] ≤ CH(V).

(b) The group CG(V) is contained in an unique element HV ofM.

(c) If U is a subgroup of HV ∩ M such that A ≤ U, then NG(U) ≤ HV holds.

(d) The group 〈O(CG(v)) | v ∈ V#〉 is of odd order and a subgroup of HV . Moreover for
every involution b ∈ CG(V) we have O(CG(b)) ≤ 〈O(CG(v)) | v ∈ V#〉.

Proof
(a) The assumptions imply for all v ∈ V# that we have CG(v) � M and 〈A, x〉 ≤ CG(v).

Thus we obtain from Lemma 3.2.2 (d) an element H ∈ M that contains A. Since
I∗(M) is non-empty, Lemma 3.3.2 (b) implies that 2 ∈ σ. By Lemma 1.3.7 (b) we
obtain that H = CH(x) · O(H) and hence that [H, x] = [CH(x) · O(H), x] = [O(H), x].
Moreover |I∗(M)∩A| ≥ 3 forces A to be equal to 〈I∗(M)∩A〉. Thus from Lemma 1.3.2
and I∗(M)∩V = ∅ we deduce that V is the unique maximal subgroup of A containing
no involution of I∗(M). If B , V is a maximal subgroup of A and b ∈ B ∩ I∗(M),
then CG(B) ⊆ CG(b) ⊆ CG(x). Furthermore 〈x〉 × A acts coprimely on O(H). Finally
Lemma 1.3.1 (b) yields

[H, x] = [O(H), x] ≤ 〈C[O(H),x](B) | B max A, CG(B) * CG(x)〉 ≤ CH(V).

Altogether we get H = CH(x) ·CH(V).

(b) The element x centralises V and for all v ∈ V# we observe CG(V) ≤ CG(v) and
v < I∗(M). Therefore there exists an element HV ∈ M such that CG(V) ≤ HV . We
apply (a) to obtain HV = CHV (x) ·CHV (V) = CHV (x) ·CG(V).
Suppose that H ∈ M such that A ≤ CG(V) ≤ H. Then (a) and Lemma 1.3.7 (a)
imply that [H, x] = [H, x, x] ≤ [CH(V), x] = [CG(V), x] ≤ [HV , x] and similarly
we conclude [HV , x] = [HV , x, x] ≤ [CG(V), x] ≤ [H, x]. Altogether we observe
that [HV , x] = [H, x] E 〈H,HV〉. Consequently, as H and HV are maximal in G,
Lemma 3.2.2 (a) leads to H = HV .

(c) From I∗(M) = ∅ and |A ∩ I∗(M)| ≥ 3 we obtain an involution v ∈ V# and elements
a, b ∈ I∗(M) such that v = a · b. Moreover we have CG(V) ≤ CG(v). This implies
together with (b) that CG(v) ≤ HV . Let U be a subgroup of M such that A ≤ U ≤ HV

and suppose that g ∈ NG(U). Then we have 〈a, b〉g ≤ Ug = U ≤ HV . Consequently
Proposition 3.3.3 yields that g ∈ HV .
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(d) For all a ∈ A# we set θ(a) := O(CHV (a)). Then θ(a) is soluble for all a ∈ A# be-
cause of the Odd Order Theorem 1.1.12. Since HV is 3-soluble by Lemma 3.2.2 (d),
Lemma 2.1.4 implies that θ is a soluble A-signalizer functor in HV . As r(A) = 3, the
Soluble Signalizer Functor Theorem 2.1.6 forces 〈O(CHV (a)) | a ∈ A#〉 to have odd or-
der. For all v ∈ V# we deduce from (b) and x ∈ CG(V) ≤ CG(v) that CG(v) = CHV (v).
Moreover Lemma 3.2.2 (d) yields that CHV (v) = CG(v) has a normal 3-complement
for all v ∈ V#. In particular the centralisers of the involutions of V are 3-soluble. Thus
the involutions of V are balanced in G by Lemma 2.1.4.
Altogether we conclude with Lemma 1.1.14 (e) that

O(CG(b)) = 〈O(CG(b)) ∩CG(v) | v ∈ V#〉 ≤ 〈O(CG(v)) | v ∈ V#〉

= 〈O(CHV (v)) | v ∈ V#〉 ≤ 〈O(CHV (a)) | a ∈ A#〉.

In particular 〈O(CG(v)) | v ∈ V#〉 has odd order. �

4.1.3 Proposition
Let c ∈ I∗(M) be an involution such that 〈c〉 = Ω1(Z(T )) for some T ∈ Syl2(G).
Then 〈[Oσ′(CG(b)), x] | b ∈ T #, b2 = 1〉 is of odd order.

Proof
By Lemma 3.2.1 (a) we have Z∗(G) = 1. Thus the Z∗-Theorem 1.1.13 provides an element
g ∈ G \ CG(c) such that d := zg ∈ CT (c) ≤ M. We conclude that d < Z(T ) = Z∗(T ) and by
the same theorem there is an element t ∈ T such that dt ∈ CT (d) ≤ M and dt , d.
We set A := 〈c, d, dt〉 and V := 〈c · d, c · dt〉. Then A is an elementary abelian subgroup of M
of order 8 and hence V is elementary abelian. From c, d, dt ∈ I∗(M) and Proposition 3.3.3
it follows that V ∩ I∗(M) = ∅. Since we have |A ∩ I∗(M)| ≥ |{c, d, dt}| = 3, we may
apply Lemma 4.1.2. By Lemma 4.1.2 (b) the group CG(V) is contained in a unique element
H ∈ M. For all v ∈ V# we have CG(v) ≥ CG(V). The uniqueness of H implies that
CG(v) ≤ H and hence CG(v) = CH(v) for all v ∈ V#.
Since A is contained in CG(d), there is a Sylow 2-subgroup T0 of CG(d) such that A ≤ T0. As
d and c are conjugate in G, we conclude that T0 ∈ Syl2(G). Moreover by Lemma 3.2.2 (g)
we have CG(d) ≤ M and hence T0 ∈ Syl2(M). From Lemma 4.1.2 (c) we observe that
H contains NG(H ∩ T0) and NG(H ∩ T ). This leads to T,T0 ≤ H, since T and T0 are
Sylow 2-subgroups. We further obtain from Sylow’s Theorem an element h ∈ H such that
T h = T0. In particular we have 〈d〉 = Ω1(Z(T0)) = Ω1(Z(T h)) = Ω1(Z(T ))h = 〈c〉h. For
that reason we conclude ch = d and so c < Z∗(H). Finally we deduce Z∗(H) = O(H) from
T ∩ Z∗(H) ≤ Z(T ) .

We set Z := 〈Ω1(Z(T ))NH(J(T ))〉 = 〈cNH(J(T ))〉 and WZ := 〈O(CH(a)) | a ∈ Z#〉.

(*) We have WZ = 〈O(CG(v)) | v ∈ V#〉 ≥ 〈O(CG(a)) | a ∈ Z#〉 and WZ has odd order.

Proof. As H has a normal 3-complement by Lemma 3.2.2 (d), the group Z is elementary
abelian and strongly closed in H by Theorem 2.2.4. Thus Lemma 2.2.2 (g) yields that
H = NH(Z) · 〈ZH〉. In particular we have d = ch ∈ Z and dt ∈ Z. This implies A ≤ Z.
For all a ∈ Z# we set θ(a) := O(CH(a)). Since H has a normal 3-complement, Lemma 2.1.4
yields that H is balanced. Furthermore the Odd Order Theorem forces θ(a) to be soluble
for all a ∈ A#. Therefore θ is a soluble A-signalizer functor in H. Consequently the Soluble
Signalizer Functor Theorem 2.1.6 forces WZ = 〈O(CH(a)) | a ∈ Z#〉 to have odd order.
Moreover for all non-trivial elements a of the abelian group Z the subgroup V of Z acts
coprimely on O(CH(a)). From Lemma 1.1.14 (e) we obtain

O(CH(a)) = 〈O(CH(a)) ∩CH(v) | v ∈ V#〉 ≤ 〈O(CH(v)) | v ∈ V#〉.
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This yields 〈O(CH(v)) | v ∈ V#〉 ≤ WZ ≤ 〈O(CH(v)) | v ∈ V#〉. Since we have CG(v) = CH(v)
for all v ∈ V#, we obtain that WZ = 〈O(CH(v)) | v ∈ V#〉 = 〈O(CG(v)) | v ∈ V#〉.
Moreover, as H and hence CG(v) = CH(v) is 3-soluble for all v ∈ V#, Lemma 2.1.4 yields
that all v ∈ V# are balanced in G. In addition V acts on O(CG(a)) coprimely for all a ∈ Z#.
From Lemma 1.1.14 (e) we conclude that

O(CG(a)) = 〈O(CG(a)) ∩CG(v) | v ∈ V#〉 ≤ 〈O(CG(v)) | v ∈ V#〉 = WZ . �

For all involutions b ∈ T we set γ(b) := [Oσ′(CG(b)), x].
If for every involution b ∈ T the group γ(b) is contained in WZ , then the proposition holds.
So it suffices to prove γ(b) ≤ WZ for all involutions b ∈ T . Let b ∈ T be an involution.

1. Case: Suppose that |CZ(b)| ≥ 8.
From T ≤ M, Lemma 3.2.2 (f) and Lemma 2.1.4 we deduce that the involutions of T \ I∗(M)
are balanced in G. If there are involutions a1, a2, a3 ∈ CZ(b) such that {a1, a2, a3} ⊆ I∗(M)
and |{a1, a2, a3}| = 3, then B := 〈a1 · a2, a1 · a3〉 is an elementary abelian subgroup of order 4
of CZ(b). Furthermore all involutions of B are not contained in I∗(M) by Proposition 3.3.3
and so balanced in G. In the other case, if |CZ(b) ∩ I∗(M)| ≤ 2, then there also exists an
elementary abelian subgroup B of order 4 of CZ(b) such that B ∩ I∗(M) = ∅.
In both cases Lemma 1.1.14 (e) and (*) imply that

O(CG(b)) = 〈O(CG(b)) ∩CG(a) | a ∈ B#〉 ≤ 〈O(CG(a)) | a ∈ B#〉 ≤ WZ .
We finally recall 2 ∈ σ to conclude that γ(b) = [Oσ′(CG(b)), x] ≤ O(CG(b)) ≤ WZ .

2. Case: Suppose that |CZ(b)| ≤ 4.
Then we have 8 = |A| ≤ |Z| ≤ |CZ(b)|2 by Lemma 1.1.17. It follows that |CZ(b)| = 4.
From Lemma 3.2.2 (g) and the fact that Z ≤ CG(c) ≤ M, we see that I∗(M) ∩ Z is an union
of G-conjugacy classes of elements in Z.
Since A is generated by {c, d, dt} ⊆ I∗(M) and V ∩ I∗(M) = ∅. Lemma 1.3.2 forces V
to be the unique maximal subgroup of A containing no element of I∗(M). Therefore V
is not conjugate to another subgroup of A. It follows that NG(A) ≤ NG(V). If Z = A
held, then we would have NG(V) ≥ NG(A) = NG(Z) ≥ T and from V ∩ Z(T ) = 1 would
follow a contradiction. Thus we have A< Z. Hence we conclude that |Z| = 16, because of
8 = |A|< |Z| ≤ |CG(b)|2 ≤ 16. If A = Z ∩ 〈cNG(Z)〉 held, then we would have NG(Z) ≤ NG(A)
and again T ≤ NG(Z) ≤ NG(A) ≤ NG(V) would imply together with V ∩ Z(T ) = 1 a
contradiction.
Consequently we have that A < Z ∩ 〈cNG(Z)〉 and as |Z| = 16 = 2 · |A|, we conclude that
Z = Z ∩ 〈cNG(Z)〉 ≤ 〈cNG(Z)〉 ≤ Z. For this reason Z = 〈cNG(Z)〉 is generated by a subset
{a1, a2, a3, a4} of I∗(M) with four elements. By Lemma 1.3.2 there is a unique maximal
subgroup B of Z such that B ∩ {a1, a2, a3, a4} = ∅.
Suppose for a contradiction that B ∩ I∗(M) = ∅. Then B is the unique maximal subgroup
of Z such that B ∩ I∗(M) = ∅. From the fact that I∗(M) ∩ Z is an union of G-conjugacy
classes of elements in Z we deduce that NG(Z) ≤ NG(B). In particular b normalises B. By
Lemma 1.1.17 we see |CB(b)|2 ≥ |B| = 8. Therefore we have that |CB(b)| ≥ 4 = |CZ(b)|
holds. It follows that c ∈ CZ(b) = CB(b) ≤ B, which is a contradiction. Consequently
B ∩ I∗(M) is not empty. From Lemma 1.3.2 we see that

B = 〈{aia j | i, j ∈ {1, 2, 3, 4}, i , j}〉 = {aia j | i, j ∈ {1, 2, 3, 4}, i , j} ∪ {a1a2a3a4, 1}.
Therefore Proposition 3.3.3 leads to a1a2a3a4 ∈ I∗(M). We set a5 := a1a2a3a4. Then
Proposition 3.3.3 finally implies that Z ∩ I∗(M) = {a1, a2, a3, a4, a5}.
The element b permutes the elements of I∗(M) ∩ Z and so b centralises an odd number of
elements of I∗(M) ∩ Z. Since the product of two elements in I∗(M) ∩ Z is not an element
of I∗(M) ∩ Z by Proposition 3.3.3 and since we have |CZ(b)| = 4, the element b fixes
exactly one element of Z ∩ I∗(M). This unique element is c, because of b ∈ T = CT (c).
Let v,w ∈ Z \ I∗(M) be such that CZ(b) = {1, c, v,w}. Then 〈v,w, x〉 acts coprimely on
Oσ′(CG(b)). By Lemma 1.3.1 we conclude that
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γ(b) = [Oσ′(CG(b)), x] ≤ 〈Cγ(b)(D) | D max 〈v,w〉, CG(D) * CG(x)〉
= 〈Cγ(b)(e) | e ∈ 〈v,w〉 \ I∗(M)〉 ⊆ 〈Cγ(b)(w),Cγ(b)(v)〉.

Assume that CG(v) and CG(w) are subgroups of H. Then γ(b) ≤ 〈Cγ(b)(w),Cγ(b)(v)〉 ≤ H.
According to this Lemma 1.1.14 (d) implies

γ(b) = [Oσ′(CG(b)), x] = [Oσ′(CG(b)), x, x] = [γ(b), x] ⊆ [H, x].
From 2 ∈ σ and Lemma 1.3.7 (c) we deuce that that [H, x] = [Oσ′(H), x]. Therefore we
obtain that γ(b) ≤ [Oσ′(H), x] E H.
Finally for all a ∈ Z# the group C[Oσ′ (H),x](a) = [Oσ′(H), x] ∩ CH(a) is a normal subgroup
of odd order of CH(a). Now Lemma 1.1.14 (e) yields

γ(b) ≤ [Oσ′(H), x] ≤ 〈C[Oσ′ (H),x](a) | a ∈ Z#〉 ≤ 〈O(CH(a)) | a ∈ Z#〉 = WZ .

Consequently it suffices to show that CG(v),CG(w) ≤ H.
For this let u ∈ {v,w}. Then we have u = aia j for some i, j ∈ {1, 2, 3, 4, 5} with i , j. We
further choose k ∈ {1, 2, 3, 4, 5} \ {i, j} and set U := 〈u, aiak〉 = {1, aia j, aiak, a jak}. Then we
have U∩I∗(M) = ∅ by Proposition 3.3.3. We set C := 〈ai, a j, ak〉 ≤ M. Then U ≤ C and we
may apply Lemma 4.1.2 for C and U. Part (b) provides a unique element K ∈ M such that
CG(U) ≤ K. It follows that A ≤ CG(U) ≤ K and from x ∈ CG(U) ≤ CG(u) � M we deduce
that CG(u) is a subgroup of K. We further obtain from Lemma 4.1.2 (a) that [H, x] ≤ CG(U).
Analogously Lemma 4.1.2 (a) applied to A and V with K yields that [K, x] ≤ CG(V). As H
and K have normal 3-complements by Lemma 3.2.2 (d), Lemma 1.3.7 (a) shows

[H, x] = [H, x, x] ≤ [CG(U), x] ≤ [K, x] = [K, x, x] ≤ [CG(V), x] ≤ [H, x].
This implies that [H, x] = [K, x] E 〈H,K〉. Since H and K are maximal subgroups of G,
Lemma 3.2.2 (a) yields H = K. This shows CG(u) ≤ K = H. �

4.1.4 Proposition
Let c ∈ I∗(M) and suppose that CG(c) is S 4-free. Then for every section Ẽ of CG(c) of
even order and TẼ ∈ Syl2(Ẽ) the group 〈Ω1(Z(TẼ))NẼ(J(TẼ))〉 is a strongly closed elementary
abelian 2-subgroup of Ẽ.

Proof
We set C := CG(c) and let further Ẽ be a 2-constrained section of C and TẼ ∈ Syl2(Ẽ).
If every non-abelian composition factor of Ẽ is a 3′-group, then Theorem 2.2.4 yields the
assertion of our proposition.
Suppose for a contradiction that this is not the case. Let H ≤ C be of minimal order such
that there is a normal subgroup N of H with O2(H/N) = F∗(H/N) and H/N has a non-
abelian composition factor of order divisible by 3. Moreover we choose N in H of maximal
order. Further let − : H → H/N be the natural epimorphism, U be the full pre-image of
O2(H̄) and choose T ∈ Syl2(U).

(1) The group H̄ is perfect and T̄ is elementary abelian of order at least 23.

Proof. By the minimal choice of H we immediately see that H̄ is perfect.
A Frattini argument shows that H = U · NH(T ) = N · NH(T ). Furthermore T̄ is non-
cyclic and hence T̄/φ(T̄ ) is non-cyclic by a result of Burnside III 3.15 of [29]. Additionally
φ(T̄ ) char T̄ E H̄ and so φ(T̄ ) is normal in H̄. As we have CH̄(T̄ ) ≤ T̄ , there is no element
of odd order in H̄ acting trivially on T̄ . From Lemma 1.1.14 (a) and Lemma 1.1.4 we
conclude that there is no element of odd order in H̄/φ(T̄ ) acting non-trivially on T̄/φ(T̄ ).
Therefore CH̄/φ(T̄ )(T̄/φ(T̄ )) is a 2-group. Since T̄/φ(T̄ ) ≤ O2(H̄/φ(T̄ )) holds, it follows that
F∗(H̄/φ(T̄ )) ≤ CH̄/φ(T̄ )(O2(H̄/φ(T̄ ))) · O2(H̄/φ(T̄ )) ≤ CH̄/φ(T̄ )(T̄/φ(T̄ )) · O2(H̄/φ(T̄ )) is a
2-group. By the maximal choice of N, we conclude that T̄ is elementary abelian.
As H̄ is non-soluble, T̄ has oder at least 23. �

Let R ∈ Syl3(NH(T )).
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(2) The group H̄ is S 3-free and R is non-cyclic.

Proof. Suppose for a contradiction that H̄ involves some S 3.
Then H̄ has an element ȳ of order 3 and a 2-element b̄ such that 〈ȳ, b̄〉/〈b̄2〉 � S 3 by
Lemma 1.3.3. Since ȳ has odd order, it acts non-trivially on T̄ . From the same lemma
we see that H̄ and hence C is not S 4-free. This is a contradiction.
Further R̄ ∈ Syl3(H̄). Suppose for a contradiction that R is cyclic. Then, as H̄ is perfect by
(1), the p-Complement Theorem of Burnside 1.1.10 implies that R̄ is inverted in H̄. This
provides some S 3 involved in H̄, which is a contradiction. �

(3) There is an elementary abelian subgroup Y of order 9 of R such that x < Y .

Proof. Suppose for a contradiction that (3) is false. Then R is of rank 2. From the fact that
H̄ has no normal 3-complement we obtain a subgroup R̄0 of R̄ such that NH̄(R̄0)/CH̄(R̄0) is
no 3-group by Frobenius’ p-Complement Theorem 1.1.11. Let R0 denote the full pre-image
of R̄0 in R.
Assume for a contradiction that t̄ ∈ NH̄(R̄0) \CH̄(R̄0) is a 2-element with t2 ∈ CH̄(R̄0). Then
t̄ acts non-trivially on R̄0/φ(R̄0). Thus there is an element ȳ ∈ R̄0 such that [ȳ, t̄] < φ(R̄0) and
ȳt2 = ȳ · z̄ for a suitable z̄ ∈ φ(R̄0). It follows that:

[ȳ, t̄]t̄ = (ȳ−1 · ȳt̄)t̄ = (ȳ−1)t̄ · ȳt2 = (ȳ−1)t̄ · ȳ · z̄ = [t̄, ȳ] · z̄ = [ȳ, t̄]−1 · z̄.
But this shows that H̄ involves 〈t̄, [ȳ, t̄]〉φ(R̄)/φ(R̄) � S 3 which contradicts (2).
Consequently NH̄(R̄0)/CH̄(R̄0) is of odd order and there exists a prime q ∈ π(H) with q ≥ 5
such that q divides the order of NH̄(R̄0)/CH̄(R̄0). Since we have NH̄(R̄0) = NH(R0 · N) and
CH̄(R̄0) ≥ CH(R0), it follows that q divides |NH(R0 · N) : CH(R0)| = |NH(R0·N) : CH(R0)·N |.
A Frattini argument yields that |NNH(R0·N)(R0) · N : CH(R0) · N | is divisible by q. Altogether
q divides the order of NH(R0)/CH(R0).
By Lemma 1.1.16 there exists a critical subgroup R1 of R0. Hence R1 admits a non-trivial q-
automorphism induced by an element of H. Therefore R1 is neither cyclic nor we have
that R1 contains x and is elementary abelian of order 9 or extraspecial of order 27 by
Lemma 1.3.5. From r(R1) ≤ r(R0) ≤ r(R) = 2 and Lemma 1.3.6 we obtain a contradiction.�

(4) For all y ∈ Y# we have c ∈ CT (y) � Q8 or CT (y) = 〈c〉 and we have that
CT (y), 〈c〉 and 1 are all Y-invariant subgroups of CT (y).

Proof. The group Y acts coprimely on T . Thus Lemma 1.1.14 (e) yields that we have
T = 〈CT (y) | y ∈ Y#〉. In particular CT (z) , 1 for an element z ∈ Y#. Let y ∈ Y . From
H ≤ C we deduce that y centralises the element c. From Corollary 3.3.4 (b) and (3) we see
that r2(CG(y)) ≤ 1. This implies that c is the unique involution of CC(y). From CT (z) , 1
we conclude that c ∈ T and we have c ∈ CT (y) for all y ∈ Y#.
Moreover CT (y) is either cyclic or a quaternion group by Lemma 1.1.2. Since Y is abelian,
CT (y) is Y-invariant.
Suppose for a contradiction that there is a z ∈ Y# such that CT (z) has a Y-invariant subgroup
Q which is neither a subgroup of 〈c〉 nor isomorphic to Q8. Choose z and Q among those
such that Q has the largest order. All subgroups of cyclic 2-groups and quaternion groups are
cyclic 2-groups or quaternion groups. Hence Q is one of those. Since Q is not isomorphic
to Q8, the group Q admits no automorphism of order 3 by Lemma 1.1.3. It follows that
Y ≤ CG(Q) and equivalently that Q ≤ CT (y) for all y ∈ Y . If the order of Q was at least
8, then the maximal choice of Q would imply that Q = CT (y) for all y ∈ Y and hence
T = 〈CT (y) | y ∈ Y#〉 = Q would contradict (1).
This contradiction shows that Q � Z4. Let y ∈ Y#. Then we observe from the maximal
choice of Q that CT (y) is isomorphic to some subgroup of Q8. Since the group Q is Y-
invariant and a subgroup of CT (y), we conclude that CT (y) is centralised by Y . Altogether
we have T = 〈CT (y) | y ∈ Y#〉 ≤ CT (Y). This contradicts the choice of H.
Consequently we have either CT (y) � Q8 or CT (y) = 〈c〉 for all y ∈ Y#. �
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(5) The group T is extraspecial of order 22·n+1 for some n ∈ {1, 2, 3, 4}.

Proof. From Theorem 5.3.16 of [22] we observe that T =
∏

y∈Y# CT (y).
Because of CT (y) = CT (〈y〉) = CT (y−1) for all y ∈ Y#, there exist elements y1, y2, y3, y4 ∈ Y
such that T =

∏
i∈{1,2,3,4}CT (yi) (the yi are just some representatives of the four cyclic sub-

group of order 3 of Y). For every i ∈ {1, 2, 3, 4} we set Ci := CT (yi). Since CT (y) is
Y-invariant for all y ∈ Y#, we see that for every subset I of {1, 2, 3, 4} the group

∏
i∈I Ci is

normalised by Y . Hence
(∏

i∈I Ci
)
∩C j is a Y-invariant subgroup of C j for all j ∈ {1, 2, 3, 4}.

Moreover for all j ∈ {1, 2, 3, 4} we have that c ∈
(∏

i∈I Ci
)
∩ C j and (4) implies that

|
(∏

i∈I Ci
)
∩C j| ∈ {2, 8}. Consequently we have

|T | = |
∏

i∈{1,2,3,4}

Ci| =
|C4| · |

∏
i∈{1,2,3}Ci|

|C4 ∩
∏

i∈{1,2,3}Ci|
=
|C4| ·

|C3 |·|
∏

i∈{1,2} Ci |

|C3∩
∏

i∈{1,2} Ci |

|C4 ∩
∏

i∈{1,2,3}Ci|

=
|C4| · |C3| · |

∏
i∈{1,2}Ci|

|C4 ∩
∏

i∈{1,2,3}Ci| · |C3 ∩
∏

i∈{1,2}Ci|

=
|C4| · |C3| ·

|C2 |·|C1 |
|C2∩C1 |

|C4 ∩
∏

i∈{1,2,3}Ci| · |C3 ∩
∏

i∈{1,2}Ci|

=
|C4| · |C3| · |C2| · |C1|

|C4 ∩
∏

i∈{1,2,3}Ci| · |C3 ∩
∏

i∈{1,2}Ci| · |C2 ∩C1|
.

Every factor of the numerator and every factor of the denominator in this fraction is either 2
or 8. As the numerator has four factors and the denominator has three factors, we conclude
that |T | = 22·n+1 for some suitable n ∈ {1, 2, 3, 4}.
Additionally Y normalises every abelian characteristic subgroup A of T . This implies
Ω1(A) = 〈CΩ1(A)(y) | y ∈ Y#〉 by Lemma 1.1.14 (e). Since we have 〈c〉 = Ω1(CT (y))
and since A is abelian, we obtain CΩ1(A)(y) ≤ Ω1(CT (y)) = 〈c〉 for all y ∈ Y#. Thus it
follows that Ω1(A) = 〈CΩ1(A)(y) | y ∈ Y#〉 ≤ 〈c〉. This forces A to be cyclic.
P. Hall’s Theorem III 13.10 of [29] yields that T is extra-special or a central product of an
extra-special group and a cyclic, dihedral, semi-dihedral or generalised quaternion group.
(As T has an elementary abelian section of order at least 23 by (1), the group T is not isomor-
phic to any dihedral, semi-dihedral or generalised quaternion group.) In particular φ(T ) is
non-trivial and cyclic. For all y ∈ Y# we have that Cφ(T )(y) is an abelian Y-invariant subgroup
of CT (y). Therefore (4) yields that Cφ(T )(y) ≤ 〈c〉 for all y ∈ Y#. From Lemma 1.1.14 (e) we
obtain that 1 , φ(T ) = 〈Cφ(T )(y) | y ∈ Y#〉 ≤ 〈c〉. In particular |T/φ(T )| = |T |

|〈c〉| = 22n.
This implies that T is not a central product of an extra-special group with a cyclic group of
order at least 4, because otherwise |T/φ(T )| would be a power of 2 with an odd exponent.
Suppose for a contradiction that T is the central product of an extra-special group and dihe-
dral, semi-dihedral or generalised quaternion group, such that the second factor has order at
least 16. Then φ(T ) = 〈c〉 is cyclic of order at least 4. This is a contradiction.
It remains that T is extraspecial. �

We recall that U is the full pre-image of O2(H).
The Frattini argument H = U · NH(T ) = N · NH(T ) shows that H̄ is isomorphic to a
section of NH(T ). But T̄ is self-centralising in H̄. Altogether we observe from (5) that H̄ is
isomorphic to a section of the automorphism group of an extra-special group of order 22·n+1.
Hence from Theorem 1.2.7 we deduce that H̄ is isomorphic to a section of an orthogonal
group over a vector space of order 22·n ≤ 28. Since H̄ is non-soluble, the same theorem
implies that H̄ involves a S 3. This contradicts (2). �
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4.2 Failure of Balance
In this section we obtain a subgroup of odd order generated by specific normal subgroups
of the centralisers of involutions in an elementary abelian 2-group of order 8. In order to do
this we consider several possible signalizer functors and especially analyse involutions that
are not balanced in G.
Throughout this section we fix T ∈ Syl2(M) and suppose that there is an involution c ∈ T
such that CG(c) is neither 3-soluble nor 2-constrained. Additionally we set C := CG(c) and
denote by − : C → C/O(C) the natural epimorphism.

4.2.1 Lemma
The following hold:

(a) There is an element d ∈ cG∩C and an element s ∈ C such that 〈c, d, ds〉 is elementary
abelian of order 8.

(b) We have c ∈ I∗(M). Moreover x ∈ O(C) and O(C) = O{2,3}′(C) · R for a cyclic Sylow
3-subgroup R of O(C).

(c) Every component of E(C/O(C)) is not 3-soluble. Furthermore there is a unique com-
ponent or the Sylow 2-subgroups of every component are quaternion groups.

(d) The element c is the unique involution of O2′,2(C).

Proof
From x ∈ C, the assumption that C is not 3-soluble and Lemma 3.2.2 (f) we deduce that
C ≤ M.

(a) From Z∗(G) = 1 by Lemma 3.2.1 (a) and the Z∗-Theorem 1.1.13 we obtain an element
d ∈ C \ {c} that is conjugate to c in G. Suppose for a contradiction that d ∈ Z∗(C).
Then we have 〈c, d〉 ≤ Z∗(C). By Corollary 3.3.4 (a) and Lemma 3.3.5 (b) the group
CG(〈z, d〉) has a normal 3-complement and is 3-soluble. Now the Odd Order Theo-
rem 1.1.12 yields that C = CC(〈c, d〉) · O(C) is 3-soluble. This is e a contradiction.
Thus we have d < Z∗(C) and the Z∗-Theorem 1.1.13 provides an element s ∈ C\CG(d)
such that d and ds commute. From s ∈ C we observe that ds , c. Moreover, by
Proposition 3.3.3 there is no elementary abelian subgroup of order 4 such that all its
involutions are contained in I∗(M). For that reason 〈z, d, dc〉 is elementary abelian of
order 8.

(b) Since C is a subgroup of M, we have c ∈ I∗(M) and x ∈ O(C). From (a) we obtain
that C has an elementary abelian subgroup of order 8. Hence Lemma 3.3.5 (a) implies
that O(C) has cyclic Sylow 3-subgroups containing x. By Part (b) of the same lemma
the group O(C) has a normal 3-complement.

(*) For all y ∈ D∗(M) ∩C we have r2(CC̄(ȳ)) = 1.

Proof. Let y ∈ D∗(M) ∩ C and let U be the full pre-image of CC̄(ȳ). Further let ā ∈ Ū
be an involution. Then, as O(C) has odd order, we may choose a pre-image a of ā in U
also as an involution. The group 〈y〉 · O(C) is normal subgroup of odd order of U. By
Lemma 1.1.14 (b) there is an a-invariant Sylow 3-subgroup R of 〈y〉 · O(C). From (b) we
obtain an element x0 ∈ R such that x ∈ 〈x0〉. So there exists an element g ∈ O(C) such that
R = 〈yg, x0〉. We remark that Ū = CC̄(ȳg). Moreover 〈x0〉 = R ∩ O(C) is a-invariant. Since
x ∈ 〈x0〉 and x is centralised by a, also xa

0 = x0 holds. We know that (yg)a ∈ (O(C) · yg)∩ R.
This provides a natural number i such that (yg)a = xi

0 · y
g. It follows that
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yg = (yg)a2
= (xi

0 · y
g)a = (xa

0)i · (yg)a = xi
0 · x

i
0 · y

g.

This forces x2i
0 to be trivial. We conclude that xi

0 = 1, since x0 is a 3-element, and hence we
have a ∈ CC(yg). From y ∈ D∗(M) we observe that yg ∈ D∗(M). By Corollary 3.3.4 (b) we
have r2(CC(yg)) = 1 and we know c ∈ Z(CC(yg)). This shows that a = c. Altogether c̄ is the
unique involution of Ū. �

(c) Since C is not 3-soluble and the 3-locally central element x is contained in Z(C), the
p-Complement Theorem of Burnside 1.1.10 implies that C has non-cyclic Sylow 3-
subgroups. In particular there is an element y ∈ D∗(M) ∩C.
Moreover there is a component in the non 2-constrained group C̄. Let K̄ be such a
component and let K denote its full pre-image. Suppose for a contradiction that K̄ is
of order prime to 3. Then K is a Suzuki group by Theorem 1.2.8. Thus Lemma 1.2.10
implies that CK̄(ȳ) is of even order. From r2(CC̄(y)) ≤ 1 by (*) and c̄ ∈ CC̄(ȳ) we
deduce that c̄ ∈ Z(K̄). Finally Theorem 1.2.8 (a) forces K̄ to be a central extension of
S z(8) and Part (c) of the same theorem yields that K̄ has an automorphism group of
order prime to 3. Hence CC̄(ȳ) has a section isomorphic to K̄/〈c̄〉 by Lemma 1.2.10.
In particular CC̄(ȳ) has an elementary abelian section of order 8 by Theorem 1.2.8 (d).
This contradicts (*) and Lemma 1.1.2.
Thus 3 divides |K̄| and K has no normal 3-complement. It follows that K has non-
cyclic Sylow 3-subgroups from Lemma 3.3.5 (b) and x ∈ K. For that reason there is
an element yK ∈ K ∩ D∗(M).
If we have K̄ = E(C̄), then the assertion of (c) is true. Suppose that L̄ be a component
of C̄ different from K̄. Then we get L̄ ≤ CC̄(K̄) ≤ CC̄(yK) by Lemma 1.1.18 (b).
As r2(CC̄(yK)) ≤ 1 by (*) and a Sylow 2-subgroup of 〈c̄, L̄〉 is contained in CC̄(yK),
we conclude that c ∈ L. The quasi-simple group L has non-cyclic Sylow 2-groups
by Burnside’s p-Complement Theorem 1.1.10 and the Odd Order Theorem 1.1.12.
Consequently Lemma 1.1.2 forces L̄ to have Sylow 2-subgroups that are quaternion
groups. Similarly this holds for K̄.

(d) Let K and yK be as in (c).
For T0 ∈ Syl2(O2′,2(C)) we have that T̄0 = O2(C̄) ≤ CC̄(K̄) ⊆ CC̄(ȳK). From
r2(CC̄(ȳK)) ≤ 1 by (*) we conclude that r(T0) = r(T̄0) ≤ 1. Finally the fact that
c ∈ T0 implies (d). �

4.2.2 Lemma
Suppose that C has a strongly closed elementary abelian subgroup A0 such that 〈c〉<A0.
Let E be a pre-image of a component of C̄. Then A0 ∩ E is not contained in 〈c〉.

Proof
We may suppose that A0 ≤ T . Since A0 is strongly closed in C, Lemma 2.2.2 (a) and (b)
imply that A0 is normal in every 2-subgroup of C containing A0.
Suppose for a contradiction that A0 ∩ E ≤ 〈c〉. Then for every Sylow 2-subgroup TE of E
such that A0 · TE ≤ T we observe that [A0,TE] ≤ A0 ∩ E ≤ 〈c〉. Thus A0 normalises TE〈c〉
and Lemma 1.1.18 (d) implies that Ā0 ≤ NC̄(Ē) and consequently Ā0/〈c̄〉 normalises Ē/〈c̄〉.
Additionally Lemma 2.2.2 (f) yields that Ā0/〈c̄〉 is strongly closed in C̄/〈c̄〉.
Moreover we observe that Ē/〈c̄〉 ∩ Ā0/〈c̄〉 = 1. Since we have O(Ē/〈c̄〉) = 1, we may apply
(2.4) of [21] to conclude that [Ē, Ā]/〈c̄〉 = [Ē/〈c̄〉, Ā0/〈c̄〉] = 1. Consequently we have
[Ē, Ā0] ≤ 〈c̄〉 and hence [E, A0] ≤ 〈c〉 · O(C). As E is not 3-soluble by Lemma 4.2.1 (c),
there exists an element y ∈ D∗(M)∩ E. We obtain that [y, A0] ≤ [E, A0] ≤ 〈c〉 ·O(C) and so
it follows that 〈y〉 · A0 · O(C) is soluble from the fact that O(C) is soluble by the Odd Order
Theorem 1.1.12.
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By Theorem 1.1.8 there exists a Hall {2, 3}-subgroup H of 〈y〉 · A0 · O(C) such that A0 is
a Sylow 2-subgroup of H. The group O(C) has cyclic Sylow 3-subgroups containing x by
Lemma 4.2.1 (b). This provides an element x0 ∈ O(C) with H ∩O(C) = 〈x0〉 ∈ Syl3(O(C)).
Let further y0 ∈ H be such that y0 is conjugate to y in 〈c〉 ·O(C). Then H = 〈x0, y0〉 · A0 and
y0 ∈ D∗(M). Since c centralises y0, Corollary 3.3.4 implies that r2(CH(y0)) = 1. Moreover
O2(H) ≤ A0 is elementary abelian. Hence Lemma 1.1.14 (f) and the Dedekind Identity
Lemma 1.1.5 imply that
O2(H) = CO2(H)(y0) × [O2(H), y0] = 〈c〉 × [O2(H), y0] ≤ 〈c〉 · [A0, y0]

≤ 〈c〉 · ((〈c〉 · O(C)) ∩ H) = 〈c〉 · (O(C) ∩ H) = 〈c, x0〉.
This shows that O2(H) = 〈c〉. From 〈x0〉 = O(C) ∩ H E H and Ω1(〈x0〉) = 〈x〉 ≤ Z(H)
we deduce that A0 ≤ CH(x0) and x0 ∈ O3(H). Suppose for a contradiction that y0 is not
contained in O3(H). Then we have O3(H) = 〈x0〉. Hence we conclude that

A0 ≤ CH(O2(H)) ∩CH(O3(H)) = CH(F∗(H)) ≤ F∗(H)
from Lemma 1.1.18 (h). This contradicts the assumption A0> 〈c〉 = O2(H).
Therefore we have y0 ∈ O3(H) and O3(H) = 〈x0, y0〉 ∈ Syl3(H). Since 〈x0, y0〉 is a 3-
group with a cyclic maximal subgroup, we obtain that Ω1(〈O3(H)〉) = 〈x, y0〉 is abelian
from Theorem 1.2 (a) of [8]. Again Lemma 1.1.14 (f) yields that

〈x, y0〉 = C〈x,y0〉(A0) × [〈x〉 · 〈y0〉, A0] = C〈x,y0〉(A0) × [y0, A0].
From [y0, A0] ≤ (〈c〉·O(C))∩O3(H) = 〈x0〉 ≤ C〈x,y0〉(A0) and Lemma 1.1.14 (a) we conclude
that [y0, A0] = [〈x〉 · 〈y0〉, A0] = [Ω1(O3(H)), A0] = [Ω1(O3(H)), A0, A0] = [y0, A0, A0] = 1.
This contradicts r2(CH(y0)) = 1, because we have r(A0) ≥ 2. �

4.2.3 Lemma
One of the following holds:

(a) The group 〈[Oσ′(CG(b)), x] | b ∈ T # and b2 = 1〉 is of odd order and
Ω1(Z(T ))# ⊆ I∗(M).

(b) The group C is S 4-free.

Proof
From c ∈ I∗(M) by Lemma 4.2.1 (b) we observe that 2 ∈ σ by Lemma 3.3.2 (b) and T ≤ M
by Lemma 3.3.1. If we have 〈c〉 = Ω1(Z(T0)) for a Sylow 2-subgroup T0 of G, then (a)
follows from Proposition 4.1.3.
Suppose for a contradiction that the assertion is false.
Then 〈c〉 , Ω1(Z(T0)) for all Sylow 2-subgroups T0 of G and C is not S 4-free. By
Lemma 1.1.7 there is a 2-subgroup of C such that its normaliser contains a section iso-
morphic to S 4. Let S be such a 2-subgroup of C of maximal order.
Moreover let T1 ∈ Syl2(CC(S )), T2 ∈ Syl2(C) and T3 ∈ Syl2(G) be such that T1 = CT2(S )
and T2 = CT3(c). Then we have

〈c,Z(T3)〉 ≤ CT3(c) ∩CC(CT3(c)) = Z(CT3(c)) = Z(T2)

≤ CT2(S ) ∩CT2(CT2(S )) = Z(CT2(S )) = Z(T1).

It follows that r(Z(T1)) ≥ r(Z(T2)) ≥ r(〈c,Z(T3)〉) ≥ 2.
A Frattini argument shows that NC(S ) = NNC(S )(T1) · CC(S ). As NC(S )/CC(S ) is not S 3-
free, we deduce that NC(T1) is also not S 3-free. Altogether the group NC(Z(T1)) is not
S 3-free.
By Lemma 1.3.3 there is a subgroup 〈y, b〉 of NC(Z(T1)) such that 〈y, b〉/〈b2〉 � S 3, the
element y has order 3 and b is a 2-element. Additionally we see that 〈y, b〉 has cyclic Sylow
3-subgroups and no normal 3-complement. For that reason y ∈ D∗(M). Moreover the ele-
ment y acts by Corollary 3.3.4 (a) non-trivially on Z(T1), since r(Z(T1)) ≥ 2. Consequently
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Lemma 1.3.3 provides an involution a ∈ Z(T0) such that 〈a, b, y〉/〈b2〉 � S 4. In particular
Lemma 1.3.3 yields that V := 〈a, ay, ay−1

〉 = 〈a, ay〉 is elementary abelian of order 4.

Let now T0 ∈ Syl2(C) be such that b ∈ NT0(V) ∈ Syl2(NC(V)). Then, as y permutes the
involutions of V transitively, Corollary 3.3.4 (c) yields V ∩ I∗(M) = ∅. Therefore we obtain
that c < V . Moreover by Lemma 4.1.1 (f) there is no elementary abelian subgroup of
order 8 of C contained in C \ {c} that contains V . For that reason we have Ω1(CT0(V)) =

〈V, c〉. This forces Ω1(Z(T0)) ≤ 〈V, c〉. Since T0 � T2 and r(Ω1(Z(T2))) ≥ 2 hold, the
group Ω1(Z(T0)) ∩ V is non-trivial. From the fact that b ∈ T0 acts non-trivially on V we
conclude that Ω1(Z(T0)) ∩ V is cyclic of order 2. More precisely, as CV (b) = 〈a〉, we
see that Ω1(Z(T0)) ∩ V = 〈a〉. Altogether we conclude that Ω1(Z(T0)) = 〈a, c〉 and that
〈V, c〉 = Ω1(CT0(V)) = Ω1(CT0(ay)) hold.
Furthermore Lemma 4.1.1 (d) leads to 〈V, c〉 ∩ I∗(M) = {c} and for all v ∈ V# Part (c) of the
same lemma implies that

(*) Oσ′(CG(v)) is abelian and [x,Oσ′(CG(c · v))] is not abelian.
From Lemma 4.2.1 (a) we obtain an element d ∈ cG ∩ C \ {c} and from Lemma 3.2.2 (g)
we see that d ∈ I∗(M). Hence d < 〈V, c〉 = Ω1(CT0(ay)). This implies that 〈d, ay〉 is a non-
abelian dihedral group. Let e denote the central involution of 〈d, ay〉. Then we observe that
e ∈ Ω1(CT0(ay)) = 〈V, c〉. Since d is conjugate to d · e in 〈d, ay〉, Lemma 3.2.2 (g) implies
that d · e ∈ I∗(M). Thus Proposition 3.3.3 shows that e = d · (d · e) < I∗(M). In particular we
have e , c and hence, from c ∈ CG(〈d, ay〉) it follows that 〈c〉 ∩ 〈d, ay〉 = 1. Since C〈d,ay〉(ay)
is elementary abelian of order 4, we conclude that 〈V, c〉 = Ω1(CT0(ay)) = 〈e, ay, c〉. This
shows that 〈c, d,V〉 = 〈c, 〈d, ay〉〉 = 〈c〉 × 〈d, ay〉 � Z2 × D2n for a suitable n ∈ N.
Consequently we have 〈a, c〉 = Ω1(Z(T0)) ≤ 〈c,V〉∩CT0(〈c, d,V〉) ≤ 〈c, d,V〉∩CT0(〈c, d,V〉)

= Z(〈c, d,V〉) = 〈e, c〉.
It follows that e ∈ 〈a, c〉. More precisely, we have that e ∈ {a, ac}.
In addition 〈x〉 · 〈d, e〉 acts coprimely on Oσ′(CG(ce)). From Lemma 1.3.1 we conclude that
[Oσ′(CG(ce)), x] ≤ 〈C[Oσ′ (CG(ce)),x](B) | B max 〈d, e〉, CG(B) * CG(x)〉

= 〈C[Oσ′ (CG(ce)),x](b) | b ∈ 〈d, e〉# \ I∗(M)〉
⊆ CG(e),

since d, d · e ∈ I∗(M).

Let g ∈ [Oσ′(CG(c · e)), x] ⊆ CG(e). From 2 ∈ σ and Lemma 1.3.7 we deduce that

[g, x] ∈ [CG(e), x] 1.3.7
= [CCG(e)(x) · Oσ′(CG(e)), x] = [Oσ′(CG(e)), x] ⊆ Oσ′(CG(e)).

This shows together with Lemma 1.1.14 (d) that
[Oσ′(CG(ce)), x] = [[Oσ′(CG(ce)), x], x] = 〈[g, x] | g ∈ [Oσ′(CG(ce)), x]〉 ⊆ Oσ′(CG(e)).

Suppose first that e = a. Then Oσ′(CG(e)) is abelian by (*) although it follows that also the
group [Oσ′(CG(ce)), x] = [Oσ′(CG(ca)), x] is abelian. But this contradicts (*).
Suppose now that e = c · a. Then ay is conjugate to e · ay = c · a · ay in 〈d, ay〉 ⊆ CG(x).
As [Oσ′(CG(ay)), x] is abelian by (∗) this shows that also [Oσ′(CG(c · a · ay)), x] is abelian
contradicting (*) as well. �

4.2.4 Proposition
Suppose that Ω1(Z(T ))# * I∗(M).
Then E(C̄) is quasi-simple and one of the following holds:

(a) The group E(C̄) is a simple Bender group or isomorphic to SL(2, 5).

(b) For every involution b ∈ C we have O{2,3}′(CG(b)) ∩C ≤ O{2,3}′(C).

(c) The group C is balanced.
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Proof
Let T0 ∈ Syl2(C) and let T1 ∈ Syl2(G) be such that T0 ≤ T1.
Then Z(T1) ≤ CT1(c) ∩ CT1(T0) = T0 ∩ CT1(T0) = Z(T0). By assumption we have
Ω1(Z(T ))# * I∗(M). This implies that Ω1(Z(T1))# , {c} ⊆ I∗(M). Hence Ω1(Z(T0)) is
non-cyclic.
Moreover we deduce from Lemma 4.2.3 that C is S 4-free. Thus Proposition 4.1.4 implies
that the group defined by A0 := 〈Ω1(Z(T0))NC(J(T0))〉 is a strongly closed elementary abelian
2-subgroup of C. As Ω1(Z(T0)) is non-cyclic, also A0 is non-cyclic and contains c.
Let E denote the full pre-image of a component of E(C̄) in C. Then Lemma 4.2.2 yields
A0 ∩E � 〈c〉. From 1 , E ∩T0 ET0 we obtain that 1 , Ω1(Z(T0))∩E ≤ A0 ∩E and further
A0 ∩ E is an elementary abelian strongly closed subgroup of Ē by Lemma 2.2.2 (c) and (f).
Moreover c is the unique involution of O2′,2(C) by Lemma 4.2.1 (d). Hence we conclude
from Z(C̄) ≤ O2(C̄) = O2′,2(C) that A0 ∩ E � Z(Ē). Applying the Z∗-Theorem 1.1.13 we
see that (A0 ∩ E) · 〈c̄〉/〈c̄〉 is non-cyclic. In particular the Sylow 2-subgroups of Ē are not
quaternion groups. Finally Part (c) of Lemma 4.2.1 yields that Ē = E(C̄) is the unique
component of C̄. It follows that E(C̄) is quasi-simple.

We need to verify one of (a), (b) or (c). Suppose for a contradiction that none of the state-
ments is true.

(1) There is no x0 ∈ C such that x3
0 ∈ O(C) and O(CC̄(b̄)) ≤ 〈x̄0〉 for all involutions b ∈ T0.

Proof. Assume for a contradiction that there is an element x0 ∈ C with x3
0 ∈ O(C) and

such that O(CC̄(b̄)) ≤ 〈x̄0〉 holds for all involutions b ∈ T0. Let further b ∈ T0 be an
involution. Then O{2,3}′(CG(b)) ∩ C is a normal subgroup of CC(b) of odd order and so
O{2,3}′(CG(b)) ∩ C ≤ O(CC(b)) ≤ 〈x0,O(C)〉. By Lemma 4.2.1 (b) the group O(C) has a
normal 3-complement. Thus we have:

O{2,3}′(CG(b)) ∩C ≤ O{2,3}′(CG(b)) ∩ 〈x0,O(C)〉 ≤ O{2,3}(〈x0〉 · O(C)) = O{2,3}′(C).
This is Part (c) and therefore a contradiction. �

We set F := E〈c〉 and let Z be the full pre-image of Z(F̄). Then Z̄ ≤ O2(C̄) and hence
by Lemma 4.2.1 (d) the abelian group Z̄ is cyclic. Furthermore let ∧ : C → C/〈c〉 be the
natural epimorphism.

(2) The group F has an elementary abelian subgroup A of order 8 with c ∈ A and such that
A is strongly closed in C.

Proof. We want to apply Theorem 2.3.3 to C̄.
We know that C̄ is a finite group with O(C̄) = 1. Moreover we have r2(O2(C̄)) = 1 by
Lemma 4.2.1 (d). The group E(C̄) is quasi-simple. Since Ω1(Z(T0)) is non-cyclic and O(C)
has odd order, we see that Ω1(Z(T̄0)) > 〈c̄〉 = Ω1(F(C̄)) = Ω1(Z(C̄)). The group E(C̄)
contains the elementary abelian subgroup A0 ∩ E. Furthermore we already observed that
(A0 ∩ E) · 〈c̄〉/〈c̄〉 is a non-cyclic group.
Moreover for all ḡ ∈ NC̄(Ā0) we see that A0 ∩ E

ḡ
= (A0 ∩ E)g = Ag

0 ∩ Eg = A0 ∩ E. This
shows that NC̄(Ā0) ≤ NC̄(A0 ∩ E). Hence Lemma 2.2.2 (j) implies that A0 ∩ E is strongly
closed in C̄.
In addition let b̄ , c̄ be an involution of C̄. Then, as O(C) has odd order, we may choose a
pre-image b as an involution in C. Then CC(b) = CG(〈b, c〉) has cyclic Sylow 3-subgroups
containing x by Corollary 3.3.4 (a). Thus Lemma 3.3.5 (b) implies that CC(b) has a normal
3-complement. In particular CC(b) is 3-soluble. Since O(C) is of odd order, we may apply
Lemma 1.1.14 (a) to conclude that also CC̄(b̄) = CC(b) is 3-soluble.
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Altogether the assumptions on Theorem 2.3.3 are satisfied. Thus one of (a)-(f) of Theo-
rem 2.3.3 is true.
Since Ē is not 3-soluble by Lemma 4.2.1 (c), Part (a) of Theorem 2.3.3 false. As we sup-
posed that the assertion (a) of our proposition is false, also Part (d) of Theorem 2.3.3 is not
true. Moreover Part (e) of the theorem is false by (1). Also Part (f) of the theorem is not
valid, because C is S 4-free. Consequently we are left with two cases:

Case 1: There is a strongly closed elementary abelian subgroup Ā1 of order 4 of C̄ contained
in Ē. Then, as O(C) has odd order, Lemma 2.2.2 (i) implies that C has a strongly
closed elementary abelian subgroup A1 of order 4 that is contained in E and a pre-
image of Ā1. Suppose for a contradiction that c ∈ A1. Then c ∈ E and the cyclic
group Ā1/〈c̄〉 is by Lemma 2.2.2 (c) and (f) strongly closed in Ē/〈c̄〉. This contradicts
the Z∗-Theorem 1.1.13, since Ē · 〈c̄〉/Z̄ is simple and Ω1(Z̄) = 〈c̄〉 is cyclic.
Thus c < A1 and as 〈c〉 is obviously strongly closed in C = CG(c), Lemma 2.2.2 (l)
yields that 〈c, A1〉 =: A is strongly closed in C. Moreover A is elementary abelian of
order 8 and c ∈ A.

Case 2: We have Z(Ē) , 1 and Ē has an elementary abelian subgroup Ā of order 8 that is
strongly closed in C̄ and such that Ω1(Z(Ē)) ≤ Ā.
Then Lemma 2.2.2 (i) provides a strongly closed elementary abelian subgroup A of
order 8 of C that is contained in E and a pre-image of Ā, since O(C) has odd order.
From Z(Ē) , 1 we see that 〈c̄〉 = Ω1(Z̄) ≤ Ω1(Z(Ē)). We conclude that c ∈ A, as Ā
contains Ω1(Z(Ē)). �

Let V be a complement of 〈c〉 in A.

(3) Let v ∈ V# and let b be an involution of T0. Then following hold:

(i) NC(〈b, c〉) is the full pre-image of CĈ(b̂),

(ii) NF(〈v, c〉) · O(C) is the full pre-image of CF/Z(Zv),

(iii) CC(〈b, c〉) = CC(b) = CC(bc),

(iv) O2(NC(〈v, c〉)) = O2(CC(〈v, c〉)) and

(v) NC(〈v, c〉) ⊆ NC(A) · O(CC(v)).

Proof. Since b is an involution, we observe that CĈ(b̂) = NĈ(〈b̂〉) = NĈ(〈̂b, c〉) = ̂NC(〈b, c〉).
Thus (i) holds, as 〈c〉 ⊆ NC(〈v, c〉).

For Part (ii) we first observe that

CF/Z(Zv) = NF/Z(〈Zv〉) = NF/Z(〈v〉 · Z/Z) = NF/Z(〈v, c〉 · Z/Z) = NF(〈v, c〉 · Z)/Z.

Hence NF(〈v, c〉 · Z) is the full pre-image of CF/Z(Zv) in C. Moreover we have

NF(〈v, c〉 · Z) = NF̄(〈v, c〉 · Z) ≤ NF̄(Ω1(〈v, c〉 · Z)) = NF̄(〈v, c〉) = NF(〈v, c〉 · O(C)).

This implies together with a Frattini argument that

NF(〈v, c〉 · Z) ≤ NF(〈v, c〉 · O(C)) = 〈v, c〉 · O(C) · NNF (〈v,c〉·O(C))(〈v, c〉) ≤ O(C) · NF(〈v, c〉).

In particular O(C) · NF(〈v, c〉) contains the full pre-image of CF/Z(Zv) in C. Finally the
assertion (ii) follows by O(C) ·NF(〈v, c〉)/Z = NF(〈v, c〉) ·Z/Z ≤ NF(〈v, c〉·Z)/Z = CF/Z(Zv).

From c ∈ Z(C) we obtain CC(b) = CC(〈b, c〉) = CC(bc). This implies (iii).

Moreover we observe that |NC(〈v, c〉)/CC(〈v, c〉)| ≤ 2 from c ∈ Z(C). Therefore we have
O2(CC(〈v, c〉)) = O2(NC(〈v, c〉)) and (iv) is valid.
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For (v) we first recall that A is strongly closed in C. This implies that T0 ∈ NC(A) and that A
is strongly closed in CC(〈v, c〉) by Lemma2.2.2 (a) and (d). We further deduce from (iv) that
NC(〈v, c〉) ⊆ CC(〈v, c〉) ·T ⊆ CC(〈v, c〉) ·NC(A) . By Corollary 3.3.4 (a) and Lemma 3.3.5 (b)
the group CC(〈v, c〉) has a normal 3-complement and is therefore 3-soluble. Consequently
we may apply Proposition 2.2.5 to obtain that 〈ACC(〈v,c〉)〉/O(〈ACC(〈v,c〉)〉) is a central product
of Suzuki groups with an elementary abelian 2-group such that Ω1(S ) ≤ A for a Sylow 2-
subgroup of 〈ACC(〈v,c〉)〉. From |A/〈c〉| = 4 and Theorem 1.2.8 (d) we deduce that 〈ACC(〈v,c〉)〉

is soluble. Finally Lemma 2.2.2 (g) yields that CC(〈v, c〉) = NCC(〈v,c〉)(A) · O(〈ACC(〈v,c〉)〉).
Moreover we observe from (iii) that O(〈ACC(〈v,c〉)〉) = O(〈ACC(〈v〉)〉) ≤ O(CG(v)). Altogether
we conclude NC(〈v, c〉) ⊆ NC(A) ·CC(〈v, c〉) ⊆ NC(A) ·O(〈ACC(〈v,c〉)〉) ⊆ NC(A) ·O(CC(v)). �

(4) We have F = 〈NF(〈c, v〉) | v ∈ V#〉 ·O(C). Moreover Â ≤ Z(T̂0) and NĈ(Â)/CĈ(Â) � Z3.

Proof. Since F/Z is a simple non-Bender group and A·Z/Z is an elementary abelian strongly
closed 2-subgroup of F/Z, Lemma 2.2.6 yields that F/Z = 〈CF/Z(Zv) | Zv ∈ (AZ/Z)#〉. We
conclude by Part (3)(ii) that

F/Z = 〈CF/Z(Zv) | Zv ∈ (A · Z/Z)#〉
(ii)
= 〈NF(〈v, c〉) · O(C)/Z | v ∈ A \ Z〉

= 〈NF(〈v, c〉) · O(C)/Z | v ∈ V#〉 = 〈NF(〈v, c〉) · O(C) | v ∈ V#〉/Z
As for all v ∈ V# we have Z ≤ NF(〈v, c〉) · O(C), we finally obtain that

F = 〈NF(〈v, c〉) · O(C) | v ∈ V#〉 = 〈NF(〈v, c〉) | v ∈ V#〉 · O(C).

Further we observe that |Â| = 4 and that NĈ(Â)/CĈ(Â) is S 3-free by Lemma 1.3.3 and the
fact that C is S 4-free. Moreover we obtain that Â ∩ Z∗(Ĉ) is trivial from A ∩ O2′,2(C) ≤ 〈c〉
and 〈c〉 ≤ Z(C). Altogether NĈ(Â)/CĈ(Â) is a cyclic group of order 3. �

(5) We have A , Ω1(T0).

Proof. Suppose for a contradiction that A = Ω1(T0). Then there are elements d ∈ cG ∩ C
and s ∈ C by Lemma 4.2.1 (a) such that A = 〈c, d, ds〉. Moreover Proposition 3.3.3 yields
that c · d, c · dc and d · dc are not elements of I∗(M), as d, dc, c ∈ I∗(M) by Lemma 3.2.2 (g).
From NĈ(Â)/CĈ(Â) � Z3 by (4), we see that there is an element y ∈ C such that ŷ permutes
the elements of {〈c〉d, 〈c〉ds, 〈c〉(d · ds)} transitively. As d is neither conjugated to c · d nor
c · ds nor d · ds by Lemma 3.2.2 (g), we conclude that no element of {c · d, c · ds, d · ds} is
conjugate to its product with c. Further we may choose V = 〈d · c, ds · c〉. Then we have
V = A \ I∗(M) and |A ∩ I∗(M)| ≥ |{c, d, ds}| = 3. Thus we can apply Lemma 4.1.2. Part (b)
of the lemma provides a subgroup H ∈ M such that H is the unique maximal subgroup of
G containing CG(V). In particular we conclude that CG(v) ≤ H for all v ∈ V#.
Altogether we observe that NC(〈v, c〉) = CC(v) for all v ∈ V#. By (4) we have

F = 〈NF(〈v, c〉) | v ∈ V#〉 · O(C) = 〈CF(v) | v ∈ V#〉 · O(C) ≤ CH(c) · O(C).
Since F/Z is not 3-soluble by Lemma 4.2.1 (c), there is a contradiction to the fact that H
has a normal 3-complement by Lemma 3.2.2 (d). �

(6) We have W := 〈O(CC(v)) | v ∈ V#〉 ≤ O(C) · 〈x0〉, for some x0 ∈ C with x3
0 ∈ O(C).

Proof. If we have A ≤ Z(T0), then we obtain from (5) an involution e ∈ T0 such that
c < 〈V, e〉. In this case we set D := 〈V, e〉.
If we have A � Z(T0), then we deduce from 3

∣∣∣ |NC(A)/CC(A)| and Â ≤ Z(T̂0) by (4) that
NC(A)/CC(A) � A4. This implies that A∩ Z(T0) = 〈c〉<Ω1(Z(T0)). In this case we let D be
a complement of 〈c〉 in the elementary abelian group A · Ω1(Z(T0)) containing V . Then D
has order at least 8, since Ω1(Z(T0)) is non-cyclic.
In both cases D is an elementary abelian group of order at least 8 such that c < D. This
implies that the involutions of D have a 3-soluble centraliser in C by Corollary 3.3.4 (a) and
Lemma 3.3.5 (b). In particular the involutions of D are balanced in C by Lemma 2.1.4.
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We set θ(a) := O(CC(a)) for all a ∈ D#. Then θ(a) is soluble for all a ∈ D# by the Odd
Order Theorem 1.1.12. Consequently θ is a soluble D-signalizer functor and the Soluble
Signalizer Functor Theorem 2.1.6 implies that 〈O(CC(a)) | a ∈ D#〉 has odd order As
〈O(CC(a)) | a ∈ D#〉 ≥ 〈O(CC(v)) | v ∈ V#〉 = W, we conclude that W has odd order.
By (3)(ii) we have for all v ∈ V# that CC(v) = CC(vc). Thus we see that

W = 〈O(CC(v)) | v ∈ V#〉 = 〈O(CC(v)) | v ∈ A \ 〈c〉〉.
This and the fact that c ∈ Z(C) is strongly closed in C show that W is normalised by NC(A).
Moreover (3)(v) yields for all v ∈ V# that NC(〈v, c〉) ⊆ NC(A) · O(CC(v)). Since we have
O(CC(v)) ≤ W for all elements v ∈ V#, the group W is also normalised by the group
NC(〈v, c〉) ⊆ NC(A) ·O(CC(v)). Altogether W E 〈NC(〈c, v〉) | v ∈ V#〉. Now (4) together with
the facts that F/Z is simple and Z̄ is a 2-group imply that [W̄, F̄] ≤ W̄ ∩ F̄ is trivial.
But we already showed that F∗(C̄) = O2(C̄) · Ē = O2(C̄) · F̄. From Lemma 1.1.18 (h) we
deduce that W̄ acts faithfully on O2(C̄). As r2(O2(C̄)) = 1 by Lemma 4.2.1 (d), the group
O2(C̄) only admits in the case O2(C̄) � Q8 an automorphism of odd order by Lemma 1.1.2
and Lemma 1.1.3. In this case there is an element x0 ∈ C with x3

0 ∈ O(C) and such that
W = 〈O(CC(v)) | v ∈ V#〉 ≤ O(C) · 〈x0〉. In the other case W ≤ O(C) and we set x0 = 1 to
verify (6). �

Let finally b ∈ T0 be an involution different from c.
By (4) the element b̂ acts trivially on Â. Thus V̂ is contained in CĈ(b̂) = ̂NC(〈b, c〉) by (3)(i).
Since O(ĈC(b)) char ĈC(b) = ̂CC(〈b, c〉) E ̂NC(〈b, c〉) by 3(iii), the group V̂ acts coprimely
on O(ĈC(b)).
Moreover O(CC(b)) · 〈c〉/〈c〉 is a normal subgroup of odd order of ̂CC(〈c〉) and so it is con-
tained in O(ĈC(b)). Since the full pre-image of O(ĈC(b)) has 〈c〉 as a Sylow 2-subgroup, it
has a central Sylow 2-subgroup and by Burnside’s p-Complement Theorem 1.1.10 a normal
2-complement. Consequently we have O(ĈC(b)) = O(CC(b)) · 〈c〉/〈c〉.
By Lemma 1.1.14 (e), Part (3) and Part (6) we get:

O(ĈC(b))
1.1.14 (e)

=
〈
O(ĈC(b)) ∩CĈ(v̂) | v ∈ V#〉

(i)
=

〈
O(CC(b)) · 〈c〉/〈c〉 ∩ NC(〈v, c〉)/〈c〉 | v ∈ V#〉

(+)
=

〈
(O(CC(b)) · 〈c〉 ∩ NC(〈v, c〉)) /〈c〉 | v ∈ V#〉

=
〈
O(CC(b)) · 〈c〉 ∩ NC(〈v, c〉) | v ∈ V#〉/〈c〉

Ded
=

〈
(O(CC(b)) ∩ NC(〈v, c〉)) · 〈c〉 | v ∈ V#〉/〈c〉

=
〈 (

O(CC(b)) ∩ O2(NC(〈v, c〉))
)
· 〈c〉 | v ∈ V#〉/〈c〉

(iv)
=

〈 (
O(CC(b)) ∩ O2(CC(〈v, c〉))

)
· 〈c〉 | v ∈ V#〉/〈c〉

(iii)
=

〈 (
O(CC(b)) ∩ O2(CC(v))

)
· 〈c〉 | v ∈ V#〉/〈c〉

≤
〈

(O(CC(b)) ∩CC(v)) · 〈c〉 | v ∈ V#〉/〈c〉
(++)
≤

〈
O(C(v)) · 〈c〉 | v ∈ V#〉/〈c〉

=
〈
O(CC(v)) | v ∈ V#〉 · 〈c〉/〈c〉

(6)
≤ Ô(C) · 〈x̂0〉.

The equation (+) holds as O(CC(b)) · 〈c〉 and NC(〈v, c〉) are full pre-images of O(ĈC(b)) re-
spectively ̂NC(〈v, c〉). The inclusion (++) is valid as b and the involutions of V are balanced
in C by Corollary 3.3.4 (a), Lemma 3.3.5 (b) and Lemma 2.1.4. Moreover Ded denotes the
Dedekind Identity Lemma 1.1.5.
Altogether O(CC(b)) · 〈c〉 ≤ O(C) · 〈x0〉 · 〈c〉.
But O(CC(b)) = O2(O(CC(b)) · 〈c〉) ≤ O2(O(C) · 〈x0〉 · 〈c〉) = O(C) · 〈x0〉 contradicts (1). �
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4.2.5 Lemma
The following hold:

(a) If E(C̄) is a simple Bender group but not isomorphic to PSL(2, 5), then C is balanced.

(b) If E(C̄) � PSL(2, 5) or E(C̄) � SL(2, 5),
then O{2,3}′(CG(b)) ∩C ≤ O{2,3}′(C) for every involution b ∈ C.

Proof
(a) By Lemma 4.2.1 (c) the group E(C̄) is not 3-soluble. Thus E(C̄) is no Suzuki group.

Theorem 1.2.12 (d) shows that for all Bender groups L with order divisible by 3 except
for PSL(2, 5), for all subgroups H of Aut(L) containing Inn(L) and for all involutions
s of H, the group O(CH(s)) is trivial. Finally Proposition 2 of [27] yields for every
two commuting involutions a, b ∈ C, that O(CC(a)) ∩ CC(b) ≤ O(CC(b)) holds. This
is, that C is balanced.

(b) Obviously we have that O(C̄) = 1. By Lemma 4.2.1 (d) it follows that O2(C̄) = F(C̄)
contains exactly one involution. Thus we may apply Proposition 1.2.3 to C̄. This
yields the assertion. �

4.2.6 Theorem
Let 2 ∈ σ and let A be an elementary abelian 2-subgroup of M of order at least 8.
Then 〈[Oσ′(CG(a)), x] | a ∈ A#〉 has odd order.

Additionally suppose that Ω1(Z(T ))# * I∗(M) for all x-invariant Sylow 2-subgroup T of G
and set θ(a) := O(CG(a)) and ρ(a) := O{2,3}′(CG(a)) for all a ∈ A#.
Then θ or ρ is a solubly complete A-signalizer functor in G.

Proof
If Ω1(Z(T ))# ⊆ I∗(M) for a x-invariant Sylow 2-subgroup T of G, then the assertion follows
by Lemma 4.1.3.

Suppose that Ω1(Z(T ))# * I∗(M) for all x-invariant Sylow 2-subgroups T of G.
We set θ(a) := O(CG(a)) and ρ(a) := O{2,3}′(CG(a)) for all a ∈ A#.
If ζ ∈ {θ, ρ} is a soluble A-signalizer functor in G, then we deduce for all a ∈ A# from
our assumption {2, 3} ⊆ σ that [Oσ′(CG(a)), x] ≤ ζ(a) holds. Thus the Soluble Signalizer
Functor Theorem 2.1.6 implies the assertion.

By Lemma 2.1.3 and Lemma 2.1.4 all involutions of G with 3-soluble or 2-constrained
centraliser are balanced in G. If all a ∈ A# are balanced in G, then θ is a soluble A-signalizer
functor in G.
Suppose that there exists an involution c1 ∈ A# such that c1 is not balanced in G. Then we
may apply Proposition 4.2.4 and Lemma 4.2.5 to observe that CG(c1) is balanced or c1 is
ρ-balanced in G. Let b ∈ CG(c1) be an involution. Since O(CG(b)) ∩ CG(c1) is a normal
subgroup of odd order of CCG(c1)(b), we conclude in the first case that

O(CG(b)) ∩CG(c1) ≤ O(CCG(c1)(b)) ∩CCG(c1)(c1) ≤ O(CG(c1)).

This is a contradiction because c1 is not balanced in G.
Thus c1 is ρ-balanced in G. For this reason every element a ∈ A# is θ-balanced or ρ-balanced
in G. Further for all a ∈ A# we have A ≤ CG(a), as A is abelian. Since A has order at least
8, Lemma 1.1.14 (b) and both parts of Lemma 3.3.5 imply that O(CG(a)) has a normal
3-complement for all a ∈ A#.
Let a ∈ A# be θ-balanced and b ∈ A# be an involution. Then the following holds:
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ρ(b) ∩CG(a) = O{2,3}′(CG(b)) ∩CG(a)
= O{2,3}′(CG(b)) ∩ O(CG(b)) ∩CG(a)
≤ O{2,3}′(CG(b)) ∩ O(CG(a))
≤ O{2,3}′(CG(b)) ∩ O3(O(CG(a)))
= O{2,3}′(CG(b)) ∩ O3′(O(CG(a)))
≤ O{2,3}′(CG(a)) = ρ(a)

This means that a is ρ-balanced. Finally ρ is a soluble A-signalizer functor in G. �

4.3 Excluding the Big Rank
In this section we show that G is S 4-free in the case of r2(G) ≥ 3. Moreover we apply the
results of Section 2.3 to force the rank of G to be 2.

4.3.1 Lemma
Suppose that there is a 2-subgroup T1 of M of rank at least 2, which is normalised by an
element y ∈ D∗(M). Then we have r2(G) ≤ 2.

Proof
Suppose for a contradiction that the lemma is false. Then we have r2(G) ≥ 3 and there is
a subgroup T1 of M such that NG(T ) ∩ D∗(M) , ∅ and r(T1) ≥ 2. We choose T1 ≤ M of
minimal order with these properties. Then we observe that T1 = Ω1(T1). Moreover T1 is
〈x, y〉-invariant and hence we deduce from Lemma 3.3.2 (c) that 2 ∈ σ.
Let T be a Sylow 2-subgroup of G in M such that CT (T1) ∈ Syl2(CG(T1)) and T1 ≤ T .
Then CG(T1) has a normal 3-complement by Corollary 3.3.4 (a) and Lemma 3.3.5 (b), since
T1 has rank at least 2. Consequently Lemma 1.1.14 (b) provides a y-invariant Sylow 2-
subgroup of CG(T1). As we have yM ⊆ D∗(M), we may choose y such that CT (T1) is
normalised by y.

We set S := CT (T1) · T1 and for all t ∈ T let γ(t) := [Oσ′(CG(t)), x].
Furthermore for all subgroups U of T we set WU := 〈γ(u) | u ∈ A#, u2 = 1〉.

(1) For U ≤ T with r(U) ≥ 2 and |WU | odd we have D∗(M) ∩ NG(WU) = ∅.

Proof. Let U ≤ T with r(U) ≥ 2 and such that WU has odd order. Then we obtain from
Proposition 3.3.3 an involution v ∈ U \ I∗(M) and we observe from Lemma 1.3.7 that
CG(v) = CM(v) · γ(v). It follows that γ(v) � M. Thus WU is not a subgroup of M. Since U
is centralised by x, the group WU is normalised by x. This implies that x ∈ NG(WU) � M.
Moreover Lemma 3.2.2 (a) forces NG(WU) to be a proper subgroup of G. Consequently
Part (d) of the same lemma yields that NG(WU) has a cyclic Sylow 3-subgroup containing x
and a normal 3-complement. Finally (1) follows from x, x−1 < D∗(M). �

(2) We have r(S ) = r(Z(S )) = 2, Ω1(S ) = Ω1(Z(S )) = T1 and r(Z(T )) = 1.

Proof. Suppose for a contradiction that Z(S ) is cyclic. Then, as Z(S ) is y-invariant, we
obtain from Lemma 1.1.3 that Z(S ) is centralised by y. Thus Lemma 3.2.2 (f) implies
that the involution of Z(S ) is contained in I∗(M). Moreover from Lemma 4.1.3 and from
Z(T ) ≤ CT (T1) ∩ CT (S ) ≤ S ∩ CT (S ) = Z(S ) we obtain that WT has odd order. For this
reason also WS ≤ WT has odd order. Since y normalises S , we have y ∈ NG(WS ). This
contradicts (1) and so r(S ) ≥ r(Z(S )) ≥ 2 holds.
Suppose now for a contradiction that r(S ) ≥ 3. Then there is an elementary abelian sub-
group B of order at least 8 of S . We choose B such that Ω1(Z(S )) ≤ B. Then we observe that
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WΩ1(Z(S )) ≤ WB. By Theorem 4.2.6 the group WB has odd order. Consequently WΩ1(Z(S ))
has odd order. From y ∈ NG(S ) ≤ NG(Ω1(Z(S ))) we deduce that y normalises WΩ1(Z(S )).
This contradicts (1). Therefore 2 ≤ r(Z(S )) ≤ r(S ) ≤ 2 is true.
We also conclude that Ω1(S ) = Ω1(Z(S )) is elementary abelian of order 4. In particular we
observe that T1 = Ω1(T1) ≤ Ω1(S ). The assumption r(T1) ≥ 2 implies that Ω1(S ) = T1.
From 3 ≤ r2(G) = r(T ) and S = CT (T1) · T1 it follows that Ω1(Z(T ))<Ω1(Z(S )) = T1. In
particular Z(T ) is cyclic. �

Let c be the involution of Z(T ) and let a ∈ T be an involution such that T1 = Ω1(S ) = 〈a, c〉.
As y normalises T1, we may choose a such that cy = a.

(3) The group T has no elementary abelian normal subgroup of order at least 8.

Proof. Suppose for a contradiction that there is a elementary abelian normal subgroup A of
T of order at least 8. Then we have CA(a) = CA(〈a, c〉) = CA(T1) ≤ S . Since A centralises
c and is elementary abelian, it follows that CA(a) = CA(T1) ≤ Ω1(CT (T1)) ≤ Ω1(S ) = T1
by (2). The result of (2) that r(S ) = r(CT (T1)) = 2 implies that T1 � A. Thus we have
CA(a) < T1 and it follows that |CA(a)| ≤ 2. Applying Lemma 1.1.17 we conclude that
4 = 22 ≥ |CA(a)|2 ≥ |A| ≥ 8, which is a contradiction. �

From (3) and r(T ) ≥ 3 and Lemma 1.4 of [8] it follows that T has an elementary abelian
normal subgroup N of order 4. Since Z(T ) is cyclic with c ∈ Z(T ), we conclude that
T , CT (N). This shows that |T : CT (N)| = 2 and c ∈ N hold.

(4) The involution c is no square in CT (a).

Proof. Suppose for a contradiction that there is an element t ∈ CT (a) such that t2 = c.
Let T0 ∈ Syl2(CM(a)) be such that t ∈ T0. Then we deduce from cy = a and c ∈ Z(T ) that
T0 ∈ Syl2(M) ⊆ Syl2(G) and 〈a〉 = Ω1(Z(T0)). By Sylow’s Theorem there exists an element
g ∈ M such that T g

0 = T . In particular we observe that 〈a〉g = Ω1(Z(T0))g = Ω1(Z(T )) = 〈c〉
and hence ag = c. Additionally we obtain T g

1 = 〈a, c〉g = 〈a, t2〉g ≤ T g
0 and T g

1 is normalised
by yg ∈ D∗(M). Moreover we have that tg ∈ CT g

0
(T g

1 ) = CT (T g
1 ) and (tg)2 = (t2)g = cg ∈ T g

1 .
Consequently cg and c = ag are both squares in T . From |T : CT (N)| = 2 we conclude that
ag and cg are elements of CT (N). This implies T g

1 = 〈ag, cg〉 ≤ CT (N). From ag = c we
obtain that N·T g

1 = N·〈cg〉 is elementary abelian. Furthermore Sylow’s Theorem provides an
element h ∈ CG(T g

1 ) with (Ω1(CT (T g
1 )))h ≤ (CT (T1))g ≤ S g, since CT (T1) ∈ Syl2(CG(T1)).

Altogether we get that
N · T g

1 ≤ Ω1(CT (T g
1 )) ≤ Ω1(S )gh−1

= T gh−1

1 = T g
1

From this we deduce that N = T g
1 = Ω1(CT (T g

1 )). By assumption there is an elementary
abelian subgroup A of T of order at least 8. We observe that A normalises the group N and
so |A : A∩CT (N)| = |(A·CT (N)) : CT (N)| ≤ |T : CT (N)| = 2. It follows that |A∩CT (N)| ≥ 4.
Moreover we have that A ∩ CT (N) = A ∩ CT (T g

1 ) ≤ Ω1(CT (T g
1 )) = N. From |N | = 4 we

conclude that A ≥ A ∩ CT (N) = N. Since A is elementary abelian we finally observe the
contradiction A ≤ Ω1(CT (N)) = Ω1(CT (T g

1 )) = N. �

(5) We have that T1 = S .

Proof. Assume for a contradiction that T1 < S . Then at least one of the involutions in T1
is a square in S ≤ CT (a). From (4) we see that a or ac is a square in S . Since we have
|T : CT (N)| = 2 and c ∈ Ω1(Z) ≤ N, we conclude that both, a and ca, are elements of
CT (N). In particular T1 ≤ CT (N). This implies that N · T1 = N · 〈a〉 is elementary abelian.
We deuce that N ≤ Ω1(CT (T1)) = T1 and hence that T1 = N. The choice of S and (2) imply
that N = T1 = Ω1(CT (T1)) = Ω1(CT (N)). Let A be an elementary abelian subgroup of T
order at least 8. Again we see that |A ∩ CT (N)| ≥ 4. From A ∩ CT (N) ≤ Ω1(CT (N)) = N
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it follows that N ≤ A. As A is elementary abelian, we conclude that A ≤ Ω1(CT (N)) = N.
This is a contradiction. �

Thus we have T1 = S and deduce that V4 � T1 = S = CT (T1) = CT (〈a, c〉) = CT (a) from
c ∈ Z(T ). Hence we may apply Lemma 1.3.4 (a) to T and conclude that T is dihedral or
semidihedral. This is a final contradiction to r(T ) ≥ 3. �

4.3.2 Lemma
If we have r2(G) , 2, then there is a minimal strongly closed elementary abelian subgroup
A of G of order at least 8 such that Ω1(Z(T )) ≤ A for a suitable Sylow 2-subgroup T of G
with A ≤ T . Moreover G is S 4-free.

Proof
Suppose that r2(G) , 2. By Lemma 3.2.1 (e) the group G′ is simple and contains a Sylow
2-subgroup of G. Since non-abelian simple groups have no Sylow 2-subgroups of rank at
most 1 by the Z∗-Theorem 1.1.13, we conclude that r2(G) ≥ r2(G′) > 1. Hence we obtain
r2(G) = r2(G′) ≥ 3. Let T ∈ Syl2(G) and if possible choose T such that T is x-invariant.

(1) The group G is S 4-free.

Proof. Suppose for a contradiction that G is not S 4-free. Then Theorem 3.3.7 yields 2 ∈ σ.
Thus we have T ∈ Syl2(M) by Lemma 3.3.1. For all subgroups S of T we observe that
x ∈ CG(S ) ≤ NG(S ). Moreover by Lemma 1.1.7 there is a non-trivial 2-subgroup S of G
such that NG(S ) is not S 4-free. We choose S of maximal order such that S ≤ T and NG(S )
has a section isomorphic to S 4. In particular NG(S ) has a section isomorphic to S 3.
Suppose for a contradiction that NG(S )/(S · CG(S )) is not S 4-free. Let A/B be a section of
NG(S ) isomorphic to S 4 with S · CG(S ) ≤ B. Then a Sylow 2-subgroup S 1 of the full pre-
image of O2(A/B) contains S properly. Moreover NG(S 1) is not S 4-free. This contradiction
shows that NG(S )/(S ·CG(S )) is S 4-free.
Thus Lemma 1.3.3 provides an element y of order 3 of NG(S ) that is inverted by a 2-element
of NG(S ) and acts non-trivially on S . This yields y ∈ D∗(M) ∩ NG(S ). Now Lemma 4.3.1
forces r(S ) to be 1. This shows that S , T , since we already observed r2(G) ≥ 3. As S
admits an automorphism of order 3 which is induced by y, we conclude that S � Q8 by
Lemma 1.1.2 and Lemma 1.1.3. For this reason we observe that NG(S )/CG(S ) � S 4. Let
T0 be a Sylow 2-subgroup of CG(S ). Then a Frattini argument shows that

NG(S ) = NNG(S )(T0) ·CG(S ) = (NG(S ) ∩ NG(T0)) ·CG(S ).
It follows that NG(S ·T0) ≥ NG(S )∩NG(T0) has a section isomorphic to NG(S )/CG(S ) � S 4.
The maximal choice of S leads to T0 · S = S . Now we apply Lemma 1.3.4 (b) to conclude
that T is either semidihedral or a quaternion group. This again contradicts r2(G) ≥ 3. �

(2) There is a strongly closed elementary abelian subgroup A of G of order at least 4 such
that A ≤ T and Ω1(Z(T )) ≤ A.

Proof. The Z∗-Theorem 1.1.13 implies that a strongly closed abelian subgroup of G is not
cyclic, since G is almost simple with |G : G′| ∈ {1, 3} by Lemma 3.2.1 (e).
If for all 2-constrained sections of G all non-abelian composition-factors are 3′-groups,
then Theorem 2.2.4 provides a strongly closed elementary abelian subgroup A of G such
that Ω1(Z(T )) ≤ A ≤ T .
Suppose for a contradiction that there is a 2-constrained section H∗ of G such that H∗ has
a non-abelian composition factor with order divisible by 3. Let T1 be a Sylow 2-subgroup
of the full pre-image of O2(H∗) in G. Then H∗ is isomorphic to a subgroup of the automor-
phism group of a factor group of T1. The automorphism groups of cyclic 2-groups, dihedral
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groups, and quaternion groups are soluble by Lemma 1.1.3 and every section of a 2-group
of rank 1 is of one of theses types. Consequently we see that r(T1) ≥ 2. Thus we may apply
Lemma 4.3.1 to obtain that NG(T1) ∩ D∗(M) = ∅.
Moreover NG(T1) does not have a normal 3-complement. Suppose for a contradiction that
the Sylow 3-subgroups of NG(T1) are cyclic. Then they are inverted in NG(T1) by Burnside’s
p-Complement Theorem. This implies that NG(T1) is not S 3-free. Since G is S 4-free by (1),
also NNG(T1)/φ(T1)(T1/φ(T1)) is S 4-free but involves a section isomorphic to S 3. Furthermore
T1/φ(T1) is abelian by Lemma 1.1.4. Consequently Lemma 1.3.3 provides an element of
order 3 acting trivially on T1/φ(T1). From Lemma 1.1.14 (a) and Lemma 1.1.4 we deduce
that the element of order 3 centralises T1. From the fact that x is 3-locally central and
Sylow’s Theorem we obtain an element g ∈ G such that x ∈ CG(T1)g ≤ NG(T1)g. The
Sylow 3-subgroups of NG(T1)g are cyclic. Therefore Lemma 3.3.5 (b) implies that NG(T1)g

has a normal 3-complement. This is a contradiction, since
NG(T1) � NG(T1)g. Hence there is an elementary abelian subgroup U of order 9 of NG(T1).
In particular we have D∗(M) ∩ NG(T1) , ∅. This is a contradiction. �

(3) The group G has no strongly closed elementary abelian subgroup of order 4.

Proof. Suppose for a contradiction that there is a strongly closed elementary abelian sub-
group A of order 4 of G. Then NG(A)/CG(A) has a cyclic subgroup of order 3 by the
Z∗-Theorem 1.1.13. It follows from (1) that NG(A)/CG(A) � Z3. Now Corollary 3.3.4 (c)
implies that A ∩ I∗(M) = ∅. As A is normal in T by Lemma 2.2.2 (a) and NG(A)/CG(A) is
a 2′-group, we observe that that A ≤ Z(T ). From r2(G) ≥ 3 we obtain an involution b ∈ T
such that A · 〈b〉 is elementary abelian of order 8.
For all a ∈ (A · 〈b〉)# we set θ(a) := O(CG(a)) and ρ(a) := O{2,3}′(CG(a)).
Let a ∈ A#. Since A is of order 4, the group A does not contain Ω1(S ) for a Sylow 2-
subgroup S of a Suzuki group by Theorem 1.2.8 (d). Therefore Lemma 2.2.5 implies that

CG(a) = NCG(a)(A) · O(〈ACG(a)〉) ⊆ NG(A) · O(CG(a)) = NG(A) · θ(a). (*)

Since we have A ∩ I∗(M) = ∅, either CG(a) is a 3′-group or Lemma 3.2.2 (f) yields that
CG(a) has a normal 3-complement. In both cases the group θ(a) has a normal 3-complement
and possibly trivial cyclic Sylow 3-subgroups. So there is a 3-element xa ∈ M with either
x ∈ 〈xa〉 or xa = 1 such that we have θ(a) = 〈xa〉 · ρ(a). By Lemma 1.1.14 (b) we may
choose xa such that 〈xa〉 is A-invariant. As Ω1(〈xa〉) ≤ 〈x〉 and x is 3-locally central and of
order 3, we see that A centralises 〈xa〉. We conclude that

CG(a) ⊆ NG(A) · θ(a) = NG(A) · 〈xa〉 · ρ(a) = NG(A) · ρ(a). (**)

We set VA := 〈θ(a) | a ∈ A#〉 and WA := 〈ρ(a) | a ∈ A#〉. Then both groups, VA and WA,
are normalised by the normaliser NG(A) and we have for all elements a ∈ A# that CG(a) ≤
〈NG(A),VA〉 = NG(A) · VA ≤ NG(VA) and CG(a) ≤ 〈NG(A),WA〉 = NG(A) ·WA ≤ NG(WA).
Consequently we obtain 〈CG(a) | a ∈ A#〉 ≤ NG(VA) and 〈CG(a) | a ∈ A#〉 ≤ NG(WA).
Furthermore G′ is simple and by Corollary 3.2.3 not a Bender group and we have G = G′〈x〉.
We apply Lemma 2.2.6 to observe that that

G′ = 〈CG′(a) | a ∈ A#〉 ≤ NG′(WA) ∩ NG′(VA). (***)

If we have 2 < σ, then the centraliser of an involution of G is not contained in M by
Lemma 3.3.2 (b). Hence it is a 3′-group or it is by Lemma 3.2.2 (f) a 3-nilpotent group.
In both cases the centraliser is 3-soluble. Applying Lemma 2.1.4 we conclude that G is
balanced in this case. Thus θ is a solubly complete (A · 〈b〉)-signalizer functor of G.
In the other case, if 2 ∈ σ, we deduce from A ≤ Ω1(Z(T )) * I∗(M) and Theorem 4.2.6 that
θ or ρ is a solubly complete (A · 〈b〉)-signalizer functor of G.
We further observe that VA ≤ 〈θ(a) | a ∈ (A · 〈b〉)#〉 and WA ≤ 〈ρ(a) | a ∈ (A · 〈b〉)#〉. Finally
the Soluble Signalizer Functor Theorem 2.1.6 yields that one of the groups WA or VA has
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odd order. Moreover (***) implies that it is normalised by G. The Odd Order Theorem
consequently forces one of the groups WA or VA to be trivial. But then (*) or (**) yields
that CG′(a) ≤ NG′(A) for all a ∈ A#. This implies that G′ = 〈CG′(a) | a ∈ A#〉 ≤ NG′(A) but
this is a contradiction, as G′ is simple and A , 1. � �

4.3.3 Theorem
The group G has 2-rank equal to 2.

Proof
Suppose for a contradiction that r(G) , 3.
Then we obtain from Lemma 4.3.2 that G is S 4-free and that there is a strongly closed
subgroup A of G. We choose A of minimal order. The same lemma forces A to have order
at least 8.
Moreover from Lemma 2.2.6 and Corollary 3.2.3 we conclude that G′ ≤ 〈CG(a) | a ∈ A#〉.

(1) We have A ∩ I∗(M) = ∅.

Proof. Suppose for a contradiction that there is an involution c ∈ A ∩ I∗(M).
By Lemma 2.2.2 (k) the group 〈cNG(A)〉 is strongly closed in G. Therefore the minimal choice
of A implies that A = 〈cNG(A)〉. Thus there is a minimal set of generators D ⊆ cNG(A) of A.
By Lemma 3.2.2 (g) in we see that D ⊆ I∗(M). As A is a 2-group Lemma 1.3.2 implies that
there is a unique maximal subgroup B0 of A with D∩B0 = ∅ and that B0 := 〈a·b | a, b ∈ D〉.
Suppose for a contradiction that B0 ∩ I∗(M) = ∅. Then B0 is the unique maximal subgroup
of A that contains no element of I∗(M). According to this Lemma 3.2.2 (g) implies that
NG(A) ≤ NG(B0). Now the minimal choice of A and Lemma 2.2.2 (j) lead to a contradiction.
Thus we have that B0 ∩ I∗(M) , ∅. Consequently for all maximal subgroups B of A we
observe from I∗(M) ∩ B , ∅ that CG(B) ≤ M.
In addition we obtain from c ∈ I∗(M) and Lemma 3.3.2 (b) that 2 ∈ σ. For all a ∈ A# we
set γ(a) := [Oσ′(CG(a0)), x]. Then we deduce from Theorem 4.2.6 that W = 〈γ(a) | a ∈ A#〉

has odd order. Moreover Lemma 1.1.14 (e) yields W = 〈CW(B) | B max A〉 ≤ M, since W
is normalised by A. By Lemma 1.3.7 we have for all a ∈ A# that CG(a) = CM(a) ·γ(a) ≤ M.
Finally we obtain G′ ≤ 〈CG(a) | a ∈ A#〉 ≤ M. This is a contradiction. �

(2) For all a ∈ A# we have O(CG(a)) = 1 and CG(a) = NCG(a)(A) · E(〈ACG(a)〉) and
〈ACG(a)〉 = A · E(〈ACG(a)〉).

Proof. By (1) and Lemma 3.2.2 (f) the centralisers of the involutions in A have a normal 3-
complement. Applying Lemma 2.1.4 we see that A is balanced in G. The Soluble Signalizer
Functor Theorem 2.1.6 yields that U := 〈O(CG(a)) | a ∈ A#〉 has odd order. Furthermore if
B is a non-cyclic subgroup of A, then for all a ∈ A# Lemma 1.1.14 (e) leads to

O(CG(a)) = 〈O(CG(a)) ∩CG(b) | b ∈ B#〉 ≤ 〈O(CG(b)) | b ∈ B#〉.

Thus we have U ≤ 〈O(CG(b)) | b ∈ B#〉 ≤ U. In particular U is normalised by NG(B). More-
over for all a ∈ A# the group O(〈ACG(a)〉) is contained in O(CG(a)) ≤ U. From Lemma 2.3.2
we deduce that G′ ≤ 〈CG(a) | a ∈ A#〉 ≤ NG(U). The fact that G′ is simple forces G′ ∩U to
be trivial. Since 〈x〉 is not normalised by G′, we conclude U = 1 and hence O(CG(a)) = 1
for all a ∈ A#.
Further we deduce from A ≤ CG(a) that A is strongly closed in CG(a) by Lemma 2.2.2 (d).
Finally Proposition 2.2.5 yields (2). �
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(3) We have 2 < σ but 2 ∈ π(M) and there exists an a ∈ A# such that 〈ACG(a)〉 is not soluble
and every maximal subgroup of G′ containing CG(a) is not 3-soluble.

Proof. If 2 was an element of σ, then Lemma 1.3.7 (b) and (2) would imply that CG(a) ≤ M
for all a ∈ A#, contradicting (1).
Suppose for a contradiction that for all a ∈ A# the group 〈ACG(a)〉 is soluble or that CG(a)
is contained in a 3-soluble maximal subgroup of G′. Then Theorem 2.3.5 forces G′ to be a
Bender group. This contradicts Corollary 3.2.3.
Finally Proposition 2.3.7 provides an involution t ∈ G such that CG(t) is not a 3′-group.
Since x is 3-locally central, we conclude that 2 ∈ π(M). �

Let a ∈ A# be such that 〈ACG(a)〉 is not soluble and CG(a) is not contained in a 3-soluble
maximal subgroup. Let further H max G contain CG(a).

(4) We have O(H) = 1 and CH(t) is a 3′-group for every involution t ∈ H.

Proof. From (2) we obtain that O(H) ∩ CG(a) ≤ O(CG(a)) = 1. Thus a acts fixed-point-
freely on O(H). This shows that O(H) is abelian.
Let b ∈ A#. Then (1) implies
O(H) ∩CG(b) = [O(H) ∩CG(b), a] ≤ O(H) ∩ 〈ACO(H)(b)〉

≤ O(H) ∩ A · E(〈ACG(b)〉) = O(H) ∩ E(〈ACG(b)〉).
From Proposition 2.2.5 we know that E(〈ACG(b)〉) is a central product of Suzuki groups and
that there is a Sylow 2-subgroup T1 of E(〈ACG(b)〉) such that the following hold:

Ω1(T1) = E(〈ACG(b)〉) ∩ A ≤ E(〈ACG(b)〉) ∩ H.

Part (i) of Theorem 1.2.8 yields that O(E(〈ACG(b)〉) ∩ H) = 1. Altogether it follows that
O(H) ∩ CG(b) ≤ O(H) ∩ E(〈ACG(b)〉) ≤ O(E(〈ACG(b)〉) ∩ H) = 1. Finally Lemma 1.1.14 (e)
leads to O(H) = 〈O(H) ∩CH(b) | b ∈ A#〉 = 1.
Since H is non-soluble and a < I∗(M), Lemma 3.2.2 (f) shows that there is no conjugate of
x in H. Now Lemma 3.3.2 (d) forces the orders of the centralisers in H of involutions of H
to be coprime to 3, because of 2 < σ. �

(5) The group E(H) is a simple Bender group and E(H) ∩ 〈ACG(a)〉 is not soluble.

Proof. Since G is S 4-free, also H is S 4-free. Moreover H is not 3-soluble and hence it has
no normal 3-complement. Applying Lemma 1.3.8 we observe that the group F∗(H) = E(H)
is simple and CH(a)/CE(H)(a) is soluble. In particular Z∗(H) = Z∗(E(H)) is trivial.
Furthermore we have CG(a) = CH(a), as CG(a) ≤ H, and 〈ACG(a)〉 is non-soluble. Hence we
conclude that E(H) ∩ 〈ACH(a)〉 is non-soluble. From A ≤ CG(a) ≤ H and Lemma 2.2.2 (d)
we obtain that A is strongly closed in H. Thus we may apply Lemma 2.3.6. The lemma
provides a minimal strongly closed subgroup B of E(H) such that B ≤ A and B has order at
least 8. By Proposition 2.3.7 the group 〈BCH(b)〉 is soluble for all b ∈ B#. These are exactly
the conditions of Theorem 2.3.5. Hence the theorem forces E(H) to be a Bender group. �

Finally E(H) ∩ 〈ACH(a)〉 is a non soluble 3′-group. By Theorem 1.2.8 the group E(H)
involves a Suzuki group. Now Theorem 1.2.12 (c) forces E(H) to be a Suzuki group. Since
Suzuki groups have order prime to 3, the group H is 3-soluble by (5). This contradicts the
choice of a. �
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5 The Small Rank Case

5.1 The Structure of a Sylow 2-Group
In this section we show that a Sylow 2-subgroup of G is either dihedral or isomorphic to a
Sylow 2-subgroup of the unitary group U3(4).
In order to do this we use arguments about the control of Fusion.

5.1.1 Proposition
Let T be a Sylow 2-subgroup of G. Then the following hold:

(a) The group T is dihedral, semidihedral, a wreathed product of a cyclic 2-group of
order at least 4 with a cyclic group of order 2, homocyclic abelian or isomorphic to a
Sylow 2-subgroup of U3(4).

(b) The group G has only one class of involutions.

(c) If A is an elementary abelian subgroup of order 4 of T , then we have
NG(A)/CG(A) � Z3 if A = Ω1(T ), and NG(A)/CG(A) � S 3 otherwise.

Proof
This is Proposition 2.1 of chapter 3 in [26].
The proof of this theorem uses the Z∗-Theorem 1.1.13, Lemma 2.2 and Lemma 2.3 of [26]
and Theorem 16.1 of [23] which is a theorem about the control of Fusion by Alperin and
Goldschmidt, its proof can be found in X 4.8 and X 4.12 of [9].
In particular the proof of the proposition uses local arguments and no K-hypothesis. �

5.1.2 Lemma
The set I∗(M) is empty and for every y ∈ D∗(M) the group CG(y) has odd order.
Moreover if Q is a 2-subgroup of G isomorphic to Q8 such that NG(Q)/(Q · CG(Q)) is of
even order, then NG(Q)/(Q ·CG(Q)) is cyclic of order 2.

Proof
By Proposition 5.1.1 (b) the group G has exactly one class of involutions. If I∗(M) , ∅

then Lemma 3.3.2 (b) implies that 2 ∈ σ. Therefore Lemma 3.2.2 (g) yields that either
I∗(M) = ∅ or I∗(M) = {a ∈ M# | a2 = 1}. In the second case we have for every involution
a ∈ M ∩ G′ that CG′(a) ≤ G′ ∩ CG(a) ≤ G′ ∩ M. It follows that M ∩ G′ is a strongly
embedded subgroup of G′. Hence Theorem 1.2.12 forces G′ to be a Bender group. This
contradicts Corollary 3.2.3.
Suppose for a contradiction that there is an element y ∈ D∗(M) such that CG(y) is of even
order. Then y centralises an involution a ∈ G. So we have a ∈ CG(y) ≤ CG(x), because
x is 3-locally central and y ∈ D∗(M). Thus CG(a) contains 〈x, y〉 and so CG(a) has non-
cyclic Sylow 3-subgroups. By Lemma 3.2.2 (f) we conclude that a ∈ I∗(M). This is a
contradiction.
Moreover let Q be a 2-subgroup of G isomorphic to Q8 such that NG(Q)/(Q · CG(Q)) has
even order. Then we observe that NG(Q)/CG(Q) . Aut(Q8) = S 4 from Lemma 1.1.3 and
hence we have NG(Q)/(Q ·CG(Q)) . S 3.

85



Suppose for a contradiction that NG(Q)/(Q · CG(Q)) � S 3. Then NG(Q) has no normal
3-complement. Thus Lemma 3.3.5 (b) provides an element y ∈ (D∗(M))g ∩ NG(Q) for a
suitable element g ∈ G. We obtain that y ∈ NG(Ω1(Q)) = CG(Ω1(Q)). As we have shown
above CG(y) � CG(yg−1

) is of odd order. This is a contradiction. �

5.1.3 Lemma
Let T be a Sylow 2-subgroup of G. Then T is not semidihedral.

Proof
Suppose for a contradiction that T is semidihedral.
Then all subgroups of T are cyclic, dihedral, semidihedral or generalised quaternion groups.
If S is a subgroup of T such that NG(S )/CG(S ) is no 2-group, then Lemma 1.1.3 implies
that S is elementary abelian of order 4 or S � Q8. Moreover we observe that NG(S )/CG(S )
is of even order. Thus Lemma 5.1.2 forces S to be not isomorphic to Q8. Altogether we
conclude that S is elementary abelian of order 4.
Furthermore G/G′ is of odd order by Lemma 3.2.1 (e). Consequently T is a subgroup of
G′. By Theorem 4.2. of [1] the group T ∩G′ = T is generated by [T,NG(T )] together with
all the subgroups [H, g] where H ranges over all the non-identity subgroups of T such that
NT (H) ∈ Syl2(NG(H)) and g runs over all 2-elements of NG(H).
In particular we have that T ≤ 〈[H,NG(H)] | 1 , H ≤ T and NT (H) ∈ Syl2(H)〉.
Let H be a non-trivial subgroup of T such that NT (H) ∈ Syl2(NG(H)) and let D denote the
maximal subgroup of T that is a dihedral group.
If H is elementary abelian of order 4, then we have H ≤ D and [H,NG(H)] ≤ H ≤ D.
Suppose now that H is not elementary abelian of order 4. Then the investigation above
implies that NG(H)/CG(H) is a 2-group. It follows that NG(H) = NT (H) · CG(H), because
of NT (H) ∈ Syl2(NG(H)). We conclude that [H,NG(H)] = [H,NT (H)] ≤ [T,T ] ≤ D.
Altogether we obtain T ≤ 〈[H,NG(H)] | 1 , H ≤ T and NT (H) ∈ Syl2(H)〉 ≤ D. This is a
contradiction. �

5.1.4 Lemma
Let T be a Sylow 2-subgroup of G. Then T is not a wreathed product of a cyclic 2-group of
order at least 4 with a cyclic group of order 2.

Proof
Suppose for a contradiction that T � Z2n o Z2 for a natural number n ≥ 2. Let N denote the
maximal subgroup of T that is normal and homocyclic.
If s ∈ T\N, then s2 ∈ CT (N) and there is an element t of order 2n of N such that N = 〈t〉×〈ts〉.
In particular if a ∈ CN(s), then there are some natural numbers i and j such that we have
ti(ts) j = a = (ti(ts) j)s = (ti)st j = t j(ts)i and so i = j. It follows that a ∈ 〈t · ts〉 ≤ CN(s).
Altogether CN(s) is cyclic of order n. (*)
If Q ≤ T is isomorphic to Q8, then Q∩N is a maximal abelian subgroup of Q. Moreover, if
we have s ∈ Q \ N, then we observe that Ω1(Q) ≤ CN(Q) ≤ CN(s). Since Q is not abelian,
we conclude that CT (Q) = CN(Q) is cyclic. (**)

As in the lemma before we are interested in the non-trivial subgroups S of T such that
NG(S )/CG(S ) is no 2-group.
Let S be such a subgroup of T . Then S � Q8 or r(S ) ≥ 2 and we apply Theorem 1.3 of
[12] to observe from r(S ) ≤ r(T ) ≤ 2 that and (**) that S is homocyclic abelian, a central
product of Q8 and a cyclic group of order 2m for some natural number m ≥ 2 or isomorphic
to a Sylow 2-subgroup of U3(4) from Section 1 and Lemma 1 of [31] we obtain that the last
case is not possible.
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(1) The group S is homocyclic abelian.

Proof. Suppose for a contradiction that S is non-abelian and choose S of maximal order.
Then NG(S ) contains an element y that induces an automorphism of order q in S for some
odd prime q.
If S is a quaternion group of order 8, then we have q = 3 and we set Q := S .
We investigate the case that S is a central product of Q8 and a cyclic group of order 2m for
some natural number m ≥ 2. If we have m = 2, then S contains exactly four subgroups
of order 4. One of those is contained in the centre of S . The other three cyclic subgroups
of order 4 generate a group Q isomorphic to Q8. In particular we see that Q char S . If we
have m ≥ 3, then S 0 := {s ∈ S | o(s) ≤ 4} � Q8 ∗ Z4 is a characteristic subgroup of S . We
conclude that S has characteristic subgroup Q � Q8. The element y ∈ NG(S ) normalises
every characteristic subgroup of S . In particular it normalises the cyclic group Z(S ). As
cyclic 2-groups admit no automorphism of odd order by Lemma 1.1.3, we conclude that y
centralises Z(S ). Moreover we observe that S = Z(S ) ∗ Q. Thus y acts non-trivially on Q
and q = 3.
In all cases S has a characteristic subgroup Q � Q8 such that y ∈ NG(Q) \ CG(Q) is
a 3-element. In particular y ∈ NG(Q) Lemma 5.1.2 forces NG(Q)/(Q · CG(Q)) to have
odd order. Let a denote the involution of Q. Then we have Q · CG(Q) ≤ CG(a). From
Lemma 3.2.2 (f) and Lemma 5.1.2 we observe that CG(a) and hence Q ·CG(Q) has a normal
3-complement. This is normalised by y and hence Lemma 1.1.14 (b) provides a y-invariant
Sylow 2-subgroup T0 of Q ·CG(Q).
The group T0 is not abelian and normalised but not centralised by y. The Theorem of Sylow
implies together with the maximal choice of S that S = T0. In addition we obtain that
S <NT (S ) ≤ NT (Q) = Q ·CT (Q) ≤ O3′(Q ·CT (Q)). This is a contradiction. �

Assume that NT (S ) ∈ Syl2(NG(S )).

(2) We have S ≤ N.

Proof. Since CG(S ) is normal in NG(T ), the group CT (S ) is a Sylow 2-subgroup of CG(S ).
Suppose for a contradiction that S � N and let s ∈ S \ N. Then CN(s) = CN(S ) is
cyclic of order 2n by (*) and so Ω1(S ) � N. It follows that S has order 4. Moreover
Proposition 5.1.1 (c) yields that NG(S )/CG(S ) � S 3.
Consequently NG(S ) has no normal 3-complement and Lemma 3.3.5 (b) provides an ele-
ment y ∈ (D∗(M))g∩NG(S ) for some suitable g ∈ G. In addition Corollary 3.3.4 (a) implies
together with Lemma 3.3.5 (b) that CG(S ) has a normal 3-complement and so there is a
y-invariant Sylow 2-subgroup of O3′(CG(T )) by Lemma 1.1.14 (a). This is isomorphic to
CT (S ) = CN(s) · S � Z2n × Z2. We observe that CT (S ) admits no non-trivial automorphism
of order 3. It follows that y centralises a Sylow 2-subgroup of O3′(CG(T )). This contradicts
Lemma 5.1.2. �

Like in the lemma before we want to apply Theorem 4.2. of [1].
Again we conclude that T = T ∩G′ ≤ 〈[H,NG(H)] | 1 , H ≤ T and NT (H) ∈ Syl2(H)〉.

Let H be a non-trivial subgroup of T such that NT (H) ∈ Syl2(NG(H)).
If we have NG(H) , NT (H) · CG(H), then NG(H)/CG(H) is no 2-group. Therefore we
conclude that H ≤ N by (1) and (2). This implies that [H,NG(H)] ≤ H ≤ N.
If NG(H) = NT (H) ·CG(H), then we have [H,NG(H)] = [H,NT (H)] ≤ [T,T ] ≤ N.
Altogether we obtain T ≤ 〈[H,NG(H)] | 1 , H ≤ T and NT (H) ∈ Syl2(H)〉 ≤ N. This is a
contradiction. �
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5.1.5 Lemma
Let T be a Sylow 2-subgroup of G. Then T is not abelian.

Proof
Suppose for a contradiction that T is abelian.
Then T is homocyclic by Proposition 5.1.1 (a). A result of Brauer, Theorem 1 of [10],
forces T to have order 4.
Finally we apply Theorem 2.5.1 to get G′ � PSL(2, q) for some prime power q. This
contradicts Corollary 3.2.3. �

Remark
The proof of Theorem 1 of [10] is based on modular representation theory in similar com-
plexity to Glauberman’s proof of the Z∗-Theorem.

5.1.6 Corollary
A Sylow 2-subgroup of G is either dihedral of order at least 8 or isomorphic to a Sylow
2-subgroup of U3(4).

Proof
By Proposition 5.1.1 (a) the Sylow 2-subgroups of G are dihedral, semidihedral, wreathed,
homocyclic abelian or isomorphic to a Sylow 2-subgroup of U3(4). By Lemma 5.1.3,
Lemma 5.1.4 and Lemma 5.1.5 only the asserted possibilities are left. �

5.1.7 Lemma
Either M has odd order and there is a Sylow 2-subgroup of G that is isomorphic to a Sylow
2-subgroup of U3(4) and normalised by x or we have 2 ∈ σ.

Proof
Let T be a Sylow 2-subgroup of G and let A ≤ T elementary abelian of order 4.
Suppose that we have 2 < σ. Then Theorem 3.3.7 forces G to be S 4-free. In particular we
observe that NG(A)/CG(A) is not isomorphic to S 3. Thus Proposition 5.1.1 (c) implies that
A = Ω1(T ) and so T is not dihedral of order at least 8. Now Corollary 5.1.6 yields that T is
isomorphic to a Sylow 2-subgroup of U3(4) and therefore we have Ω1(T ) = A = Z(T ).
Theorem 1.2.12 (g) yields that T is normalised by some 3-element. Suppose for a contra-
diction that y ∈ NG(A)∩(D∗(M))g , ∅ for some g ∈ G. Then we have CG(y) ≤ Mg, since xg

is 3-locally central. By Theorem 1.2.12 (g) there is an element u ∈ CNG(T )(y) ≤ CG(y) ≤ M
of order 5. It follows that xg, y ∈ CG(u) and so CG(u) is a proper subgroup of G containing
xg with non-cyclic Sylow 3-subgroups. Lemma 3.2.2 (f) implies that CG(u) ≤ Mg. From
NG(T ) ≤ NG(A) and NG(A)/CG(A) � Z3 we obtain that u ∈ CG(A). We conclude that
A ≤ Mg is 〈x, y〉-invariant and Lemma 3.3.2 (c) leads to a contradiction.
Therefore xh ∈ NG(T ) ≤ NG(A) for some h ∈ G. We observe that xh < CG(T ) by 2 < σ.
Again Theorem 1.2.12 (g) forces xh to act fixed-point-freely on T #. This implies together
with Lemma 3.3.1 that 2 < π(M) and the assertion holds. �

5.2 Centralisers of Involutions
In this section we analyse the case where M contains a Sylow 2-subgroup of G. We show
that the centraliser C of an involution is a maximal subgroup of G. Moreover C contains the
normaliser of all non-trivial subgroups of F(C) is contained.
In order to show this we intensively use the Bender method and Section 2.4.
Many of the ideas in arise from [4].
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Throughout this section we assume that 2 ∈ σ. Let T be a Sylow 2-subgroup of M and
c ∈ Z(T ) be an involution. In addition let C be a maximal subgroup of G containing CG(c).
For all in involutions a ∈ T # we further set Ka := {g ∈ C | ga = g−1 and 2 - o(g)}.

5.2.1 Lemma
The following hold:

(a) If T is dihedral and U is a 3′-subgroup of G, then U has a normal 2-complement.

(b) If U is a 3-soluble subgroup of G, then U is soluble.

(c) If U is a proper subgroup of G containing CG(c), then U is soluble.

(d) If U is a proper subgroup of G′ containing CG′(c), then we have c ∈ Z∗(U).
In particular c is not conjugate to any involution of T in U.

Proof
(a) Let T be a dihedral group. Then all subgroups of T are dihedral or cyclic. The fact that

the automorphism group of an elementary abelian group of order 4 is isomorphic to
S 3, together with Lemma 1.1.3 and the p-Complement Theorem of Frobenius 1.1.11,
implies that 3′-subgroups of G have a normal 2-complement.

(b) Suppose for a contradiction that U ≤ G is not soluble but 3-soluble. Then The-
orem 1.2.8 forces U to involve a Suzuki group. In particular T involves a Sylow
2-subgroup of a Suzuki group. Theorem 1.2.8 (d) implies that T has a section of rank
at least 3. In particular T is not dihedral. By Corollary 5.1.6 we observe that T is
isomorphic to a Sylow 2-subgroup of U3(4) but this contradicts Theorem 1.2.12 (f).

(c) Let U<G contain CG(c). Then Lemma 5.1.2 implies that x ∈ CG(c) ≤ U � M and so
U is 3-soluble by Lemma 3.2.2 (f). The assertion follows by Part (b).

(d) Let U<G′ contain CG′(c) and suppose for a contradiction that c < Z∗(U).
Then the Z∗-Theorem provides an element u ∈ U such that cu ∈ CT (c) \ 〈c〉 = T \ 〈c〉.
If T is dihedral, then cu is conjugate in T ≤ U to c · cu. Hence all involutions of
A := 〈c, cu〉 are contained in cU .
If T is not dihedral, then Corollary 5.1.6 forces T to be isomorphic to a Sylow 2-
subgroup of U3(4). Then A := Ω1(T ) is a strongly closed elementary abelian sub-
group of U and by Lemma 2.2.2 (e) we may assume that u ∈ NU(A) \ CU(A). More-
over Proposition 5.1.1 implies in this case that NG(A)/CG(A) is cyclic of order 3.
Hence we have 〈u〉 ·CG(A) = NG(A) and u acts transitively on A#. Altogether we have
A# ⊆ c〈u〉 ⊆ cU in this case. In both cases we deduce

H := 〈CG′(a) | a ∈ A#〉 ≤ 〈CG′(cg) | g ∈ U〉 = 〈CG′(c)g | g ∈ U〉 ≤ U.

Consequently Lemma 2.2.6 and Corollary 3.2.3 imply that A is not strongly closed in
G′. It follows that A , Ω1(T ) and Proposition 5.1.1 (c) leads to NG(A)/CG(A) � S 3.
This shows, that NG(A) has no normal 3-complement.
We remark that NG(A) normalises H to conclude that NG(H) has no normal 3-comple-
ment. As x ∈ CG(c) ≤ H ≤ NG(H) and c < I∗(M), the group NG(H) is no subgroup
of M. Altogether we conclude with Lemma 3.2.2 (d) that NG(H) is not contained in
any maximal subgroup of G. This implies that NG(H) = G. Since x normalises H,
Part (a) of the same lemma yields that H ·〈x〉 = G. Finally the Dedekind Identity 1.1.5
implies G′ = G ∩G′ = (〈x〉 · H) ∩G′ = H · (〈x〉 ∩G′) = H, because H is a subgroup
of G′. This is a contradiction as H ≤ U<G′. �
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5.2.2 Lemma
If U is a subgroup of T , then CG(U) has a normal 3-complement and cyclic Sylow 3-
subgroups.
Moreover suppose that R is a r-subgroup of G for some prime r such that CG(R) has cyclic
Sylow 3-subgroups. If NG(R) has no normal 3-complement, then NG(R)/CG(R) has no
normal 3-complement.

Proof
Let d ∈ U be an involution. Then d is a conjugate of c by Proposition 5.1.1 (b). Hence
there exists an element g ∈ G such that CG(U) ≤ CG(d) = CG(c)g. By the assumption
of this section we have 2 ∈ σ. In particular we see that x ∈ CG(c). Now Lemma 5.1.2
and Lemma 3.2.2 (d) imply that CG(c) has a normal 3-complement and cyclic Sylow 3-
subgroups. Thus also CG(U) has this property.
In addition we assume that R is a r-subgroup of G for some prime r such that CG(R) has
cyclic Sylow 3-subgroups and NG(R)/CG(R) possesses a normal 3-complements. Let K
be the full pre-image of O3′(NG(R)/CG(R)) in NG(R). If CG(R) is a 3′-group, then K is
a normal 3-complement of NG(R). Suppose that CG(R) is not a 3′-group. Then we have
R ≤ Mg for some element g ∈ G, because x is 3-locally central. By Sylow’s Theorem
we may suppose that R ≤ M. We observe that x ∈ CG(R) ≤ K. Moreover the Sylow 3-
subgroups of K are those of CG(R) and hence cyclic. Therefore Lemma 3.3.5 (b) implies
that K has a normal 3-complement. As O3′(K) is characteristic in the normal subgroup K
of NG(R) and |NG(R) : K| is a 3-number, NG(R) has a normal 3-complement. �

5.2.3 Lemma
Let A ≤ T be an elementary abelian subgroup of order 4.
If NG(A) contains an element of D∗(M), then we have π(CG(A)) ⊆ σ.

Proof
Let y ∈ NG(A) ∩ D∗(M). Then CG(A) is 〈x, y〉-invariant, because of A ≤ T ≤ M. If we have
a ∈ A#, then Lemma 5.1.2 yields that CG(a) is not a subgroup of M. Since x centralises
every a ∈ A#, Lemma 3.2.2 (f) implies that CG(a) has a normal 3-complement. In particular
CG(A) has a normal 3-complement. Finally Lemma 3.3.2 (e) leads to the assertion. �

We recall Definition 2.4.7 of Section 2.4.
5.2.4 Lemma
Let U be a subgroup of G such that U has a normal 3-complement and let S be a Sylow
2-subgroup of U.
Then we have Ω1(S ) ≤ O2′,2(U) and for all primes q ≥ 5 every involution a of U commutes
q down in U.

Proof
By Sylow’s Theorem we may suppose that S ≤ T .
Suppose first that Ω1(S ) is abelian. Then Ω1(S ) is elementary abelian of order at most 4.
This shows that Ω1(S ) = {s ∈ S | s2 = 1} and hence Ω1(S ) strongly closed in U. As U
has a normal 3-complement and quasi-simple 3′-groups have a 2-rank at least 3 by Theo-
rem 1.2.8 (d), Lemma 2.2.5 yields that Ω(S ) ≤ O2′,2(C).
If Ω1(S ) is non-abelian, then Ω1(T ) ≥ Ω1(S ) is also non-abelian. Thus Corollary 5.1.6
forces T to be dihedral of order at least 8. This implies that O3′(U) has a normal 2-
complement by Lemma 5.2.1 (a). The assumption that U has a normal 3-complement
implies that Ω1(S ) ≤ O2′,2(U).
In both cases Lemma 3.6 of [38] forces every involution of S to commute q down in U. �
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5.2.5 Proposition
We have C = CG(c) = CC(x) · Oσ′(C).
Moreover C has a normal 3-complement and cyclic Sylow 3-subgroups. Furthermore F(C)
is a 3′-group but no 2-group and we have r2(F(C)) = 1. The group Oσ′(C) is not contained
in M and if we additionally assume NG(A) ∩ D∗(M) , ∅, then Oσ′(C) is abelian.

Proof
Let A ≤ T be an elementary abelian subgroup of order 4 and set F := Oσ′(C). Then c ∈ A
because T is dihedral or isomorphic to a subgroup of U3(4) by Corollary 5.1.6.
(1) C = CC(x) · F has a normal 3-complement and cyclic Sylow 3-subgroups. Further F is

not contained in M and F(C) is a 3′-group but no 2-group.

Proof. From 2 ∈ σ and Lemma 1.3.7 we observe that C = CC(x) · F. Further Lemma 5.1.2
implies that c < I∗(M). It follows that F � M. Thus we conclude from Lemma 3.2.2 (d)
that C has cyclic Sylow 3-subgroups and a normal 3-complement. If O3(C) was non-trivial,
then x would be an element of O3(C) and [x, F] ≤ O3(C) ∩ F = 1. This would be a
contradiction. Finally F is a normal subgroup of C of odd order. Consequently the Odd
Order Theorem 1.1.12 implies that 1 , F∗(F) is a nilpotent characteristic subgroup of F.
We conclude that F∗(F) ≤ F(C) and that F(C) is no 2-group. �

(2) If Q is a q-subgroup of G for a prime q ≥ 5 such that Q is normalised by CG(c) but not
centralised by c and such that every proper CG(c)-invariant subgroup of Q lies in CG(c),

then there is an element a ∈ A \ 〈c〉 such that [c,CQ(a)] , 1 and NG([c,CQ(a)]) ≤ M.

Proof. We want to apply Lemma 2.4.8 to A. By Lemma 3.2.1 (e) the group G is almost
simple and the only non-trivial normal proper subgroup of G is G′ = E(G). Moreover
Proposition 5.1.1 implies that 3 divides |NG(A)/CG(A)|. Hence the assumptions on A of
Lemma 2.4.8 hold. Further we may choose C such that CG(c) ≤ NG(Q) ≤ C, since the
assertion of (2) does not depend on C. Finally Lemma 5.2.4 yields the remaining conditions
to apply Lemma 2.4.8, because A and x are contained in the proper subgroup C , G′ of G.
The involutions of A are not conjugate in C by Lemma 5.2.1 (d). Moreover Part (b) of the
same Lemma forces C to be soluble and hence S L(2, q)-free. Thus neither Part (a) nor Part
(c) of Lemma 2.4.8 holds. Consequently Part (b) applies and there is an element a ∈ A \ 〈c〉
such that [c,CQ(a)] , 1 and there is no S L(2, q)-free, maximal subgroup H1 , G′ of G
containing NG([c,CQ(a)]) such that a commutes q down in H1. We set Q0 := [c,CQ(a)].
As Q is CG(c)-invariant and x ∈ CG(c), the element x normalises Q and centralises c and
a. Therefore Qx

0 = [cx,CQx(ax)] = Q0 implies that x ∈ NG(Q0). Let H be a maximal
subgroup of G such that NG(Q0) ≤ H2. Then Lemma 3.2.2 (d) yields that either H has a
normal 3-complement or H = M. In the first case H is S L(2, q)-free and by Lemma 5.2.4
every involution of A commutes q down in H. This is a contradiction. Thus we have
NG([c,CQ(a)]) = NG(Q0) ≤ M. �

(3) Every non-trivial CG(c)-invariant σ′-subgroup of C is centralised by c.

Proof. Suppose for a contradiction that there is a prime q ∈ σ′ and a CG(c)-invariant q-
subgroup of C which is not centralised by c. Let Q be a q-subgroup of C of minimal order
such that Q is normalised by CG(c) but not centralised by c. Then we have q ≥ 5, because
of {2, 3} ⊆ σ. Additionally (2) provides an element a ∈ A \ 〈c〉 such that [c,CQ(a)] , 1 and
NG([c,CQ(a)]) ≤ M. Consequently Lemma 3.3.2 (a) leads to the contradiction q ∈ σ. �

(4) If we have NG(A) ∩ D∗(M) , ∅, then F is abelian and inverted by an involution of A.

Proof. If NG(A) ∩ D∗(M) , ∅, then π(CG(A)) ⊆ σ by Lemma 5.2.3. Since (3) implies that
F is centralised by c, it follows that every involution a ∈ A \ 〈c〉 acts fixed-point-freely on
F. Thus F is abelian in this case. �
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(5) We have C = CG(c).

Proof. From (3) we deduce that c ∈ CC(F)EC. By Lemma 5.2.1 (d) we moreover have that
c ∈ Z∗(C). Thus c ∈ Z∗(CC(F)).
Suppose for a contradiction that c < Z(CC(F)).
Then Lemma 1.1.14 (b) provides a prime q ∈ π(O(CC(F))) and a CC(c)-invariant Sylow
q-subgroup of O(CC(F)) which is not centralised by c. Moreover (1) implies that x does
not centralise F and that the Sylow 3-subgroups of C are cyclic. Altogether q , 3 and so
q ≥ 5. Let Q be a q-subgroup of O(CC(F)) of minimal order such that Q is normalised
by CC(c) = CG(c) but not centralised by c. Then (2) provides an element a ∈ A \ 〈c〉
such that Q0 := [c,CQ(a)] , 1 and NG(Q0) ≤ M. We observe that Q0 ≤ Q and so
M ≥ CG(Q0) ≥ CG(Q) ≥ F. This contradicts (1).
Thus we have c ∈ Z(CC(F)). Moreover 〈c〉 is strongly closed in C by Lemma 5.2.1 (d).
Hence we obtain NC(CT (F)) ≤ NC(〈c〉) = CC(c) by Lemma 2.2.2 (a). Finally a Frattini
argument leads to C = CG(F) · NC(CT (F)) ≤ CG(c). �

It remains to show that F(C) has 2-rank 1.
Suppose for a contradiction that Ω1(O2(C)) is not cyclic. Then O2(C) has an elementary
abelian subgroup B of order 4 containing c. It follows that [B, F] ≤ O2(C) ∩ F = 1.
Suppose for a contradiction that T is dihedral. Then Proposition 5.1.1 implies that NG(B)
has no normal 3-complement. Since B is centralised by x, Lemma 3.2.2 (f) forces NG(B) to
be a subgroup of M. We conclude that D∗(M) ∩ NG(B) , ∅. Thus Lemma 5.2.3 yields that
π(F) ⊆ π(CG(B)) ⊆ σ. This contradicts (1). Consequently we have that T is not dihedral.
Corollary 5.1.6 implies that B = A = Ω1(O2(C)). From Lemma 2.5.2 (c) we observe that the
involutions of A are not conjugate in C. This shows that A ≤ Z(C). In particular CG(a) = C
for all a ∈ A#. Moreover A = Ω1(T ) is a strongly closed elementary abelian subgroup of G.
Finally 〈CG(a) | a ∈ A#〉 = C and Lemma 2.2.6 yield that G′ is a Bender group. This is a
contradiction to Corollary 3.2.3. �

5.2.6 Lemma
For all involutions a ∈ T \ 〈c〉 we have C = T ·CC(a) · Ka and Ka is a normal Hall subgroup
of F(C). Moreover CC(T ) contains a Sylow 3-subgroup of C.
If further y ∈ D∗(M) ∩ NG(〈a, c〉), then Oσ′(C) is an abelian Hall subgroup of G.

Proof
Let a ∈ T \ 〈c〉 be an involution and let F be a the full pre-image of F(C/O2(C)).

(1) We have F = F(G).

Proof. We first observe that F(G) ≤ F and O2(C/O2(c)) = 1. Thus F is a normal subgroup
of C such that O2(C) ∈ Syl2(F). Moreover every Hall 2′-subgroup of F is nilpotent.
By Proposition 5.2.5 the group Oσ(C) is not centralised by x and the Sylow 3-subgroups
are cyclic. Suppose for a contradiction that F is no 3′-group. Then x is contained in F and
normalises Oσ′(C) ∩ F. It follows that x centralises Oσ′(C) ∩ F. By Lemma 1.1.14 (d) we
conclude that [Oσ′(C), x] = [Oσ′(C), x, x] ≤ [Oσ′(C) ∩ F, x] = 1. This is a contradiction.
Moreover Proposition 5.2.5 forces O2(C) to be of rank 1. In particular O2(C) contains no
subgroup that admits an automorphism of {2, 3}′-order by Lemma 1.1.2 and Lemma 1.1.3.
Applying the p-Complement Theorem of Frobenius 1.1.11 we obtain that F has a normal 2-
complement. This forces O(F) to be a Hall 2′-subgroup of F. Altogether we conclude that
O(F) is a nilpotent normal subgroup of C and hence F(G) ≤ F = O(F) · O2(F) ≤ F(G). �
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(2) For all odd primes q ∈ π(F(C)) we have Oq(C) ≤ CG(a) or COq(C)(a) = 1.

Proof. Suppose for a contradiction that (2) is false. Then there is a prime q ∈ π(F(C)) \ {2}
such that 1 , COq(C)(a) , Oq(C). Proposition 5.2.5 yields that q , 3.
Moreover from x ∈ C ∩CG(a) we deduce that Q0 := COq(C)(a) is x-invariant.
By Proposition 5.1.1 (c) there is an element y ∈ NG(A) such that a = cy. It follows that
Q0 ≤ CG(a) = CG(cy) = Cy. As Cy is soluble by Lemma 5.2.1 (c), Theorem 1.1.8 provides
a Hall {2, q}-subgroup H1 of Cy. If T is dihedral, then H1 has a normal 2-complement
by Lemma 5.2.1 (a). If T is not dihedral, then T is isomorphic to a Sylow 2-subgroup of
U3(4). This shows that A = Ω1(T ) = Z(T ). Together with Lemma 5.2.4 we conclude
that A · O(H)/O(H) = Ω1(O2(H/O(H))). The property of H1 to be a 3′-group implies that
A ≤ Z∗(T ) in this case.
Consequently Cy has a c-invariant Sylow q-subgroup Q containing Q0 in both cases.
If Q was a subgroup of C, then Q would be a Sylow q-subgroup of C and therefore we
would have Oq(C) ≤ Q ≤ Cy = CG(a) contradicting the choice of Q0. Moreover we see that
CQ(NQ(Q0)) ≤ CQ(Q0) ≤ NQ(Q0). Altogether Lemma 1.1.14 (g) yields [c,NQ(Q0)] , 1.
We set H := NG(Q0). Then we observe that C { H. We further set π := π(F(C)). Then
we have |π| ≥ 2 by Proposition 5.2.5. Furthermore Parts (a) and (b) of Lemma 2.4.4 force
Oπ(F(H)) ⊆ C = CG(c) and Oπ′(F(H)) ∩ C = 1. In particular c inverts Oπ′(F(H)) and
CF(H)(c) is a Hall subgroup of F(H).
Suppose for a contradiction that H is a subgroup of M. Then we have x ∈ O3(H). Therefore
Proposition 5.2.5 leads to the contradiction x ∈ Oπ′(F(H)) ∩ C = 1. This shows that H
is not contained in M. Hence, as x ∈ H, Lemma 3.2.2 implies that H has a normal 3-
complement. Moreover Lemma 5.2.1 (b) forces H to be soluble and in particular we have
F(H) = F∗(H). Altogether we may apply Lemma 1.3.9 to H and c. If h is an element of
H, then [h, c]c = (h−1 · hc)c = (h−1)c · h = [c, h] = [h, c]−1 holds. Thus the lemma shows
that 1 , [c,NQ(Q0)] ≤ 〈{g ∈ H | gc = g−1 and 2 - o(g)}〉 ≤ [F(H), c] = Oπ′(F(H)). This
contradicts the choice of q ∈ π. �

Let − : C → C/O2(C) be the natural epimorphism.

(3) The group CF(C̄)(ā) is a Hall subgroup of F(C̄).

Proof. By (2) we have that CO(F(C))(a) is a Hall subgroup of O(F(C)). Moreover (1) shows
that F̄ = F(C̄) = F(C) = O(F(C)). So we conclude that CO(F(C))(a) is a Hall subgroup of
F(C̄). Furthermore we observe that CO(F(C))(a) = CO(F(C))(a) ≤ CO(F(C))(ā) = CF̄(ā). Let
ḡ be an element of CF̄(ā). Then ḡ has odd order and so it has a pre-image g of odd order.
Moreover there is an element c0 ∈ O2(C) such that ga = g · c0. Let n be the order of c0,
then 〈g〉 = 〈gn〉, since g has odd order and c0 is a 2-element. In addition g ∈ O(F) and
c0 ∈ O2(F). Hence the fact that F is nilpotent by (1) forces c0 and g to commute. Finally
gn = gn · cn

0 = (g · c0)n = (ga)n = (gn)a implies that a ∈ CG(gn) = CG(g) and we conclude
ḡ ∈ CO(F(C))(a). Altogether CF̄(ā) = CO(F(C))(a) is a Hall subgroup of F(C̄). �

(4) The set Ka is a normal subgroup of F(C).

Proof. Statement (3) shows that we may apply Lemma 1.3.9 to ā and C̄. From the fact that C
is soluble by Lemma 5.2.1 (b) it follows that {ḡ ∈ C̄ | ḡā = ḡ−1 and 2 - (ḡ)} = Ka is equal to
[F(C̄), ā]. By (1) we conclude that Ka = [F(C̄), ā] = [F̄, ā] = [O(F(C)), ā] = [O(F(C)), a].
Taking pre-images we see that Ka · O2(C) = [O(F(C)), a] · O2(C). Since every element of
Ka has odd order, this implies Ka = O([O(F(C)), a] · O2(C)) = [O(F(C)), a]. Moreover (2)
implies that Ka = [O(F(C)), a] is a Hall subgroup of F(C). Since F(C) characteristic in C,
the group Ka is a normal subgroup of F(C). �
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(5) We have that C = T ·CC(a) · Ka and CC(T ) contains a Sylow 3-subgroup of C.

Proof. If T is dihedral, then Lemma 5.2.1 (a) implies that O3′(C) ≤ T · O(C).
If T is not dihedral, then T is by Corollary 5.1.6 isomorphic to a Sylow 2-subgroup of U3(4).
From Lemma 5.2.4 we deduce that 〈a, c〉 = Ω1(T ) ≤ O2′,2(C). In this case it follows that
O3′(C) ≤ T ·CC(〈a, c〉) · O(C) = T ·CC(c) · O(C).
Let g ∈ C be an element of odd order. Then [g, a]a = a · ag · a2 = [a, g] = [g, a]−1. This
shows that [O(C), a] ≤ Ka. We apply Lemma 1.1.14 (d) to conclude that

O3′(C) ≤ T ·CC(a) · O(C) = T ·CC(a) · [O(C), a] ≤ T ·CC(a) · Ka.

Proposition 5.2.5 provides an element x0 ∈ C such that 〈x0〉 is a Sylow 3-subgroup of C
that normalises T and centralises c. From Lemma 1.1.3 and Theorem 1.2.12 (g) we deduce
that x0 centralises T . In particular CC(T ) contains a Sylow 3-subgroup of C. Moreover it
follows that C = 〈x0〉 · O3′(c) ≤ T ·CC(a) · Ka ≤ C. �

Suppose finally that y ∈ D∗(M) ∩ NG(〈a, c〉). Then Oσ′(C) is abelian by Proposition 5.2.5
and Lemma 5.2.3 yields π(CG(〈a, c〉)) ⊆ σ. From the definition of Ka, (4) and (5) it follows
that Oσ′(C) ⊆ Ka ≤ F(C) and that |C : Ka| is a σ-number.
We see C = NG(Oq(C)) for all q ∈ π(Oσ′(C)), since C is a maximal subgroup of G. This
implies that every Sylow subgroup of Oσ′(C) is one of G. Finally Oσ′(C) is a Hall subgroup
of G and a normal Hall subgroup of C. �

5.2.7 Lemma
Suppose that K is a non-trivial subgroup of F(C). Then NG(K) ≤ C.

Proof
Suppose for a contradiction that N := NG(K) is not contained in C and set π := π(F(C)).
Then K is a nilpotent normal subgroup of N and hence we have K ≤ F(N). Moreover C
infects N and we have 3 < π but 2 ∈ π and |π| ≥ 2 by Proposition 5.2.5.
Suppose for a contradiction that E(N) , 1. Then E(N) is not 3-soluble by Lemma 5.2.1 (b).
In particular N has no normal 3-complement. Let R be a Sylow 3-subgroup of E(N). Then
R is non-trivial and so we have [R,K] ≤ [E(N), F(N)] = 1. This provides an element g ∈ G
such that K ≤ CG(R) ≤ Mg, since x is 3-locally central. Therefore we have xg ∈ N and
Lemma 3.2.2 (f) yields that c ∈ N ≤ Mg, as N is not 3-nilpotent. We observe that xg ∈ C
and xg ∈ O3(N) to conclude xg ∈ C ∩ Oπ′(F(C)), from 3 ∈ π′ with Proposition 5.2.5. This
contradicts Lemma 2.4.4 (b).
It follows that E(N) = 1 and that F(N) = F∗(N). Part (a) and (b) of Lemma 2.4.4 yield that
we may apply Lemma 1.3.9. For all n ∈ N we have [n, c]c = c · cn · c2 = [c, n] = [n, c]−1,
since c is an involution. According to Lemma 1.3.9 this implies

[O2(N), c] ≤ 〈[F(N), c]O2(N)〉 ≤ 〈Oπ′(F(N))O2(N)〉 = Oπ′(F(N)).

Moreover Lemma 2.4.4 (a) shows that O2(N) ≤ Oπ(F(N)) ≤ C. Consequently we see that
[O2(N),NO(F(C))(K)] ≤ O2(N) ∩ O(F(C)) = 1. Since K ≤ F(C) and F(C) is nilpotent, we
have π(O(F(C))) = π(NO(F(C))(K)).
Suppose for a contradiction that O2(N) contains an involution a different from c. Then
a inverts no Sylow q-subgroup of F(C) for any prime q ∈ π(NO(F(C))(K)) = π(O(F(C))).
Moreover Lemma 5.2.6 forces a ∈ CG(O(F(C))). This implies a ∈ F(C), since a is a 2-
element of C. But this contradicts Proposition 5.2.5. Consequently Ω1(O2(N)) ≤ 〈c〉 is
cyclic and hence N ≤ NG(Ω1(O2(N))) = CG(Ω1(O2(N))). We conclude that O2(N) = 1, as
we assumed N � C.
Altogether we have 1 , [O2(N), c] ≤ Oπ′(F(N)). Let A be an elementary abelian sub-
group of T . Then we have c ∈ A, because of r(T ) = 2. Moreover Lemma 1.1.14 (e)
yields Oπ′(F(N)) = 〈COπ′ (F(N))(a) | a ∈ A#〉. Hence there is an element a ∈ A# such
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that the group [COπ′ (F(N))(a), c] = COπ′ (F(N))(a) is non-trivial. As F(C) is a π-group and
a and c are conjugate by Proposition 5.1.6, also F(CG(a)) is a π-group. It follows that
[COπ′ (F(N))(a), c] � F(CG(a)). This leads to [O(CG(a)), A] = [O(CG(a)), c] � F(CG(a)).
This contradicts Lemma 5.2.6 and the fact that a and c are conjugate in G. �

5.2.8 Proposition
The group T is isomorphic to a Sylow 2-subgroup of the group U3(4).

Proof
Suppose for a contradiction that the proposition is false. Then T is dihedral by Corol-
lary 5.1.6 of order at least 8. Let S denote the maximal cyclic subgroup of T .
If we have O2(C) = S , then G fulfils the assumptions of Lemma 2.2 of [4]. Thus Theorem 3
of [7] implies that C = T ·Ka = 〈a〉 ·Ka for every involution a ∈ T \ {c}. Hence we can apply
[5] to conclude that G, considered as permutation group, is a Zassenhaus group of degree q
for some odd natural number q and that the order of G is (q + 1) · q · (q− 1). Moreover there
is a subgroup Q of order q such that NG(Q) is a stabiliser of a point and has the form Q · D,
where D is an abelian group of order q−1

2 . Theorem 13.1.1 (i) of [22] yields that NG(Q) is
a Frobenius group with Frobenius complement D. Theorem 10.3.1 (iv) of [22] implies that
D is cyclic, because D is abelian. Finally Theorem 13.3.5 of [22] forces G to be isomorphic
to PSL(2, q). This contradicts Corollary 3.2.3.

Thus it remains to show O2(C) = S . By Proposition 5.2.5 we have r2(O(C)) = 1. Therefore
it suffices to verify O2(C) ≥ S , as every normal subgroup of T of rank 1 is contained in S .
There are involutions a, b ∈ T with 〈a ·b〉 = S . We set A := 〈a, c〉 and B := 〈b, c〉. Since T is
dihedral, Proposition 5.1.1 yields that neither NG(A) nor NG(B) has a normal 3-complement.
Moreover x centralises T and so x centralises A and B. Applying Lemma 3.2.2 (f) we
observe that NG(A) and NG(B) are subgroups of M and hence we have

NG(A) ∩ D∗(M) , ∅ , NG(B) ∩ D∗(M).

Suppose for a contradiction that S >O2(C). Lemma 5.2.1 (b) implies that F(C) = F∗(C) and
hence Lemma 1.1.18 (h) provides a prime q ∈ π(F(C)) such that Oq(C) � CG(S ). We see
that q , 2, since S is cyclic and O2(C) ≤ S . Moreover Proposition 5.2.5 implies O3(C) = 1.
Altogether the prime q is at least 5. By Lemma 5.2.6 each element of a and b either inverts
or centralises Oq(C). Since Oq(C) is not centralised by a · b we may assume that a inverts
Oq(C) and b centralises Oq(C).

(1) The group Oq(C) is cyclic.

Proof. Suppose for a contradiction that Oq(C) ≤ CG(b) is not cyclic. Then Oq(C) does
not act elementwise fixed-point-freely on Oσ′(CG(b)) by Lemma 1.1.14 (e). So there is
an element g ∈ Oq(C) such that 1 , U := Oσ′(CG(b)) ∩ CG(g). We apply Lemma 5.2.7
to obtain that U ≤ Oσ′(CG(b)) ∩ NG(〈g〉) ≤ Oσ′(CG(b)) ∩ C. Since Oσ′(C) is a normal
Hall subgroup of C by Lemma 5.2.6, we conclude that U ≤ Oσ′(C). Moreover we have
NG(A) ∩ D∗(M) , ∅ and so Proposition 5.2.5 forces Oσ′(C) to be abelian.
Altogether Lemma 5.2.7 yields that Oσ′(C) ≤ NG(U) ≤ CG(b). Consequently the fact
that the involutions of G are conjugate implies Oσ′(C) = Oσ′(CG(b)). Again it follows from
Lemma 5.2.7 that C = NG(Oσ′(C)) = NG(Oσ′(CG(b))) = CG(b).Hence we have C = CG(B).
This contradicts Proposition 5.2.5 �

(2) We have C = F(C) ·CC(T ) · T .

Proof. Let − : C → C/O(F(C)) be the natural epimorphism.
According to Lemma 5.2.6 we obtain from the fact that C has a normal 3-complement by
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Proposition 5.2.5 that C = CC(T ) · O3′(C) = CC(T ) · T · CO3′ (C)(d) · F(C) for all d ∈
{a, b}. Moreover Lemma 5.2.1 (a) yields that for every d ∈ {a, b} that CO3′ (C)(d) has a
normal 2-complement. From Lemma 1.1.14 (a) we further observe that for all d ∈ {a, b}
we have CO3′ (C)(d) = CO3′ (C)(d̄). Altogether we obtain that O(CO3′ (C)(ā)) = O(CO3′ (C)(a)) =

O(CO3′ (C)(b)) = O(CO3′ (C)(b̄)).
Therefore it follows again from Lemma 1.1.14 (a) that

O(CO3′ (C)(a)) ≤ CC̄(〈ā, b̄〉) = CC̄(T̄ ) = CC(T ).

This implies C̄ = CC(T ) · T̄ ·CO3′ (C)(a) ≤ T̄ ·CC(T ) = T ·CC(T ). �

The group CG(T ) has a normal 3-complement by Lemma 5.2.2. From x ∈ CG(T ) we obtain
a x-invariant Sylow q-subgroup Q of CG(T ).
We conclude that Q ∈ Sylq(CG(A)) and Q · Oq(C) ∈ Sylq(CG(B)) ⊆ Sylq(C). Furthermore
the group Q1 := Q · Oq(C) is x-invariant.

(3) The groups NG(A) and NG(B) are soluble subgroups of M and have Sylow 3-subgroups
R such that Ω1(R) is elementary abelian of order 9.

Moreover there is an element y ∈ D∗(M) ∩ NG(A) that is inverted by an involution t ∈ T
and such that 〈NT (A), y〉 � S 4 and Q is 〈NT (A), y〉-invariant.

In addition there is an z ∈ D∗(M) ∩ NG(A) that is inverted by an involution s ∈ T and such
that 〈NT (B), z〉 � S 4 and Q1 is 〈NT (B), z〉-invariant.

Proof. Let D ∈ {A, B}.
Let T0 be a Sylow 2-subgroup of NG(D) that contains NT (D). Then T0 = NT (D) is dihedral
of order 8, because T is dihedral of order at least 8. Further Proposition 5.1.1 (c) yields that
NG(D)/CG(D) � S 3. Being a subgroup of C, the group CG(D) has a normal 3-complement
and is soluble by Proposition 5.2.5 and Lemma 5.2.1 (a). This also forces NG(D) to be
soluble. Moreover D is a Sylow 2-subgroups of CG(D). Altogether CG(D) has a normal
{2, 3}-complement.
By Theorem 1.1.8 there is a Hall {2, 3}-subgroup H of NG(D). Consequently group H is not
S 3-free. Thus Lemma 1.3.3 and Sylow’s Theorem provide an element v ∈ H of order 3 and
an element t ∈ NT (D) such that 〈v, t〉/〈t2〉 is isomorphic to S 3. We obtain that t inverts v
and so v < 〈x〉. In particular we have v ∈ (D∗(M))g ∩ NG(D) for a suitable element g ∈ G.
Lemma 5.1.2 yields that CG(v) is of odd order, so v acts non-trivially on D. Consequently
Lemma 1.3.3 shows that H has a subgroup U such that t, v ∈ U and U/〈t〉 � S 4. From
|H|2 = 8 we conclude that 〈NT (D), y〉 = U � S 4.
Furthermore Lemma 5.2.2 implies that CG(D) has cyclic Sylow 3-subgroups. We conclude
that a Sylow 3-subgroup R of NG(D) has a cyclic subgroup of index 3 and thus |Ω1(R)| = 9
by Theorem 1.2 of [8] or R is abelian. In the second case also |Ω1(R)| = 9 holds, as
x ∈ CG(D) and NG(D) ∩ D∗(M) , ∅. This implies that NG(D) has no cyclic Sylow 3-
subgroup and it follows from Lemma 3.2.2 (f) and x ∈ NG(D) that NG(D) ≤ M.
In addition H acts coprimely on O{2,3}′(CG(D)). From Lemma 1.1.14 (a) we deduce that
there is a H-invariant Sylow q-subgroup Q0 of O{2,3}′(CG(A)). Since CG(D) has a normal
{2, 3}-complement, we have Q0 ∈ Syl2(CG(D)). In particular Q0 · H is a Hall {2, 3, q}-
subgroup of NG(D). By Theorem 1.1.8 every {2, 3, q}-subgroup of NG(D) is contained in a
Hall {2, 3, q}-subgroup of NG(D) and all Hall {2, 3, q}-subgroups of NG(D) are conjugate in
NG(D). This shows that we may assume that 〈x〉 · NT (D) ≤ H. Since 2 and 3 are elements
of σ, we also choose H ≤ M. In particular we observe that v ∈ M and consequently
v ∈ D∗(M) ∩ NG(D) ∩ NG(Q0).
For D = A we may moreover choose Q0 = Q, since Q is 〈x〉 ·NT (A)-invariant and for D = B
we may choose Q0 = Q1, since Q1 is 〈x〉 · NT (B)-invariant. �
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(4) The group Q is cyclic.

Proof. By (3) we observe that
y = (y−1)2 = y−1 · yt = [y, t] ∈ [y,T ] ≤ [y,CG(Q)] ≤ CG(Q).

This implies that Q ≤ CG(y) ≤ M. For all g ∈ Q it follows that 〈x, y〉 is a non-cyclic
3-subgroup of CG(g). We deduce CG(g) ≤ M from Lemma 3.2.2 (f). In particular Q acts el-
ementwise fixed-point-freely on the abelian group [Oσ′(C), x] , 1. Now Lemma 1.1.14 (e)
yields the assertion. �

(5) T has order 8.

Proof. Since 〈z,T 〉 is contained in NG(Q1), the group NG(Q1) does not have a normal 3-
complement. Moreover we see by Lemma 5.2.7 that CG(Q1) ≤ CG(OQ(C)) ≤ C and so
CG(Q1) has cyclic Sylow 3-subgroups by Proposition 5.2.5. Thus we apply Lemma 5.2.2
to observe that NG(Q1)/CG(Q1) has no normal 3-complement. Let T0 ∈ Syl2(CG(Q1)) with
CT (Q1) ≤ T0. Then NG(Q1) = CG(Q1) · NNG(Q1)(T0) by a Frattini argument. Therefore
NG(T0) has no normal 3-complement and Lemma 5.2.2 yields that NG(T0)/CG(T0) has no
normal 3-complement. In particular T0 admits an automorphism of order 3. The assumption
that T is dihedral together with Lemma 1.1.3 force T0 to be elementary abelian of order 4.
Furthermore we have NT (Oq(C)) = T and so B ≤ 〈bT 〉 ≤ CT (Oq(C)) = CT (Q1) ≤ T0. This
implies 〈bT 〉 = T0 has order 4. Since T is a dihedral group, we finally conclude that T has
order 8. �

Let Q0 = Ω1(Q) and set F := F(NG(Q0)) and E := E(NG(Q0)). Then the cyclic group Q0
of order q is centralised by every q-subgroup of NG(Q0).

(6) We have Q1 ≤ NG(Q0) and E , 1.

Proof. By (1) and (4) we observe that Q1 = Oq(C) · Q is the product of two cyclic groups.
Further Q normalises Oq(C) and hence we have that r(Q1) = 2 and Ω1(Oq(C)) ≤ Z(Q1). The
element z normalises Q1 but, by Lemma 5.2.7, it does not normalise Oq(C). Therefore we
conclude that Ω1(Z((Q1))) = 〈Ω1(Oq(C)),Ω1(Oq(C))z〉 = Ω1(Q1) ≤ CG(Q) is elementary
abelian of order q2. In particular we observe that Q0 ≤ Z(Q1) and hence we have that
Q1 ≤ CG(Q0) ≤ NG(Q0).
From the choice of a we deduce that Oq(C) is inverted by a. This shows that the element a
is not contained in F. Part (3) and (4) show that

S 4 � 〈NT (A), y〉 = 〈T, y〉 ≤ NG(Q) ≤ NG(Q0) ≤ NG(O2(NG(Q0))).
We remark that A is the unique normal subgroup of T that is normalised by the element
y. Altogether this implies that F is of odd order. In addition Lemma 1.1.14 (e) yields that
F = 〈CF(a),CF(a · c),CF(c)〉 and, as all involutions of A are conjugate by y ∈ NG(F), we
obtain that |CF(a)| = |CF(ac)| = |CF(c)|.
Suppose for a contradiction that 1 , [a,CF(c)] ≤ [a, F].
Then [a,CF(c)] is contained in F(C) by Lemma 5.2.6 and hence Lemma 5.2.7 implies that
CG([a,CF(c)]) ≤ NG([a,CF(c)]) ≤ C. According to Lemma 1.1.14 (g) we conclude that the
nilpotent group F is centralised by c. This implies that |F| = |CF(c)| = |CF(a)| and so we
have F ≤ CG(A). This contradicts [a, F] , 1.
Altogether we deduce that CF(c) ≤ CF(a). From |CF(a)| = |CF(c)| we further conclude
that CF(c) = CF(a) ≤ CF(A) ≤ CF(ac) and again that CF(c) = CF(ac). Finally it follows
that F ≤ 〈CF(a),CF(a · c),CF(c)〉 = CF(A). In conclusion from O2(F) = 1 we obtain that
A ≤ CNG(Q0)(F) � F and so E , 1 by Lemma 1.1.18 (h). �
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(7) We have B � E.

Proof. Suppose for a contradiction that B ≤ E. Then Thompson’s Transfer Lemma 12.1.1
of [30] implies that NE(B)/CE(B) � S 3. By (3) we have NE(B) ≤ NG(B) ≤ M. Altogether
Lemma 3.3.5 (b) provides an element z0 ∈ NE(B) ∩ D∗(M). Since CG(z0) has odd order by
Lemma 5.1.2, the element z0 acts transitively on B#.
Thus 〈z0,Q0〉 and 〈z1,Q1〉 are {3, q}-subgroups of NG(B). The group NG(B) is soluble by
(3) and so Theorem 1.1.8 provides Hall {3, q}-subgroup H0 and H1 of NG(B) such that
〈z0,Q0〉 ≤ H0 and 〈z1,Q1〉 ≤ H1. If R0 is a critical subgroup of subgroup of a Sylow
3-subgroup of NG(B), then R has exponent 3 and (3) forces R to be cyclic or elementary
abelian of order 9. This implies that R admits no automorphism of order q. Finally Frobe-
nius’ p-Complement Theorem 1.1.11 implies that both groups H0 and H1 have a normal
3-complement.
Let R0 ∈ Syl3(H0) with z0 ∈ R0 and R1 ∈ Syl3(H1) with z1 ∈ R1. Then Ω1(Ri) normalises
Oq(Hi) for all i ∈ {0, 1}. From the choice of z0, we see that [Q0, z0] ≤ [F, E] = 1. In ad-
dition we have NG(B) ≤ M and (3) implies that Ω1(R0) = 〈z0, x〉. We conclude that Ω1(R)
centralises the cyclic subgroup Q0 of Z(Oq(H0)), because x is 3-locally central.
As all Hall {3, q}-subgroups of NG(B) are conjugate by Theorem 1.1.8, also z1 centralises a
non-trivial cyclic subgroup of Z(Oq(H1)). Let Q2 be a Sylow q-subgroup of NG(Q0) con-
taining Q1. Then we obtain that Z(Q2) ≤ CQ2(Oq(C)) ≤ Q2 ∩ C by Lemma 5.2.7. We
conclude that Ω1(Z(Q2)) ≤ Ω1(Q1), since Q1 is a Sylow q-subgroup of C. This shows
that z1 centralises a cyclic subgroup of Ω1(Q1). But z1 does not normalise Ω1(Oq(C)) by
Lemma 5.2.7 and Proposition 5.2.5. It follows that [Ω1(Q1), z1] , 1. By Lemma 1.1.14 (f)
we have CΩ1(Q1)(z1) ∩ [Ω1(Q1), z1] = 1.
Let g ∈ [Ω1(Q1), z1]#. Then we have Ω1(Oq(C)) , [Ω1(Q1), z1] = 〈g〉, because z1 does not
normalise the abelian group Ω1(Oq(C)) of order q2. Finally there is an involution s1 ∈ T
that inverts z1 and normalises Q1. Therefore 〈g〉 is s1-invariant. Since 〈g, z1〉 is not abelian
and s1 inverts z1, the element s1 does not invert g. Hence s1 centralises 〈g〉 and we see that

gz1 = (gz1)s1 = gz1·s1 = (gs1
−1

)z1·s1 = gs1
−1·z1·s1 = gz−1

1 .

This implies z1 = (z−1
1 )2 ∈ CG(g). That is a contradiction. �

The group T is dihedral of order 8 by (5). From (7) it follows that A is a Sylow 2-subgroup
of E, since simple groups do not have cyclic 2-subgroups by Burnside’s p-Complement
Theorem 1.1.10 and the Odd Order Theorem 1.1.12. According to Theorem 2.5.1 there is a
prime power such that E/Z(E) � PSL(2, rn).
Moreover we obtain Oq(C) = [Oq(C), a] ≤ [NG(Q0), E] ≤ E.
Then b induces an involutory automorphism on E centralising the cyclic group Oq(C) · 〈c〉
but no subgroup of order 4.
Suppose for a contradiction that E · 〈b〉 is not isomorphic to PGL(2, rn). Then Lemma 1.2.4
provides an element e ∈ E such that e · b induces a field automorphism of order 2 in E. We
apply Proposition 4.9.1 (d) of [24] to conclude that CE(b) � CE(e · b). Again Lemma 1.2.4
implies that CE(b) � PGL(2, rn/2). Since CE(b) is soluble by (3), it follows that n = 2 and
r ∈ {2, 3}. But this forces PGL(2, rn/2) to be a {2, 3}-group and hence of order prime to q.
This is a contradiction, because b centralises Oq(C) ≤ E.
Thus E · 〈b〉 is isomorphic to PGL(2, rn). Furthermore CE(b) is dihedral of order rn−1 and r
is odd by Lemma 1.2.4. Hence either rn−1 is divisible by 4 or rn−1

2 is odd. As b centralises
the cyclic group Oq(C) · 〈c〉 but no subgroup of order 4, this is a final contradiction. �
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5.3 The Last Group Standing
We could apply a theorem of Lyons [31] that implies in our situation that G′ isomorphic to
U3(4) and therefore a Bender group which contradicts Corollary 3.2.3.

Lyons shows that a finite simple group with a Sylow 2-subgroup isomorphic to a Sylow
2-subgroup of U3(4) has a rational representation of degree 12. Then he applies a theorem
of Schur [33] to bound the order of G by 26 · 38 · 53 · 72 · 11 · 13. Finally he shows that the
finite simple group has a strongly embedded subgroup and applies [6].
His proof does not provide a local insight. But the philosophy of this thesis is to reveal the
local structure of the minimal counterexample.

In his first Lemma in [31] Lyons shows with local arguments that NG(T )/T is of order 15.
The third prime 5 helps to connect more precisely the 2-structure of G with its 3-structure
to obtain the following Proposition.

5.3.1 Proposition
The group M is not soluble and we have 2 ∈ σ.

Proof
By Lemma 5.1.7 the group M has odd order if 2 < σ. Thus the Odd Order Theorem 1.1.12
implies that it suffices to show that M is not soluble. Moreover again by Lemma 5.1.7
respectively by Lemma 3.3.1 we may choose T such that T is x-invariant. Let further A
denote Ω1(T ). Then A = Z(T ) and so NG(A)/CG(A) � Z3 by Proposition 5.1.1 (c). This
further implies that A is strongly closed in G.

Suppose for a contradiction that M is soluble.

(1) For all a ∈ A# we have CG(a) = NCG(a)(A) · O(ACG(a)).

Proof. Let a be an involution of A#. Then CG(a) is either of order prime to 3 or as x is
3-locally central CG(a) contains a conjugate of x. We have I∗(M) = ∅ by Lemma 5.1.2.
Hence Lemma 3.2.2 (d) implies in the second case that CG(a) has a normal 3-complement.
In both cases CG(a) is 3-soluble. Moreover Theorem 1.2.12 (f) yields that G does not
involve a Suzuki group. It follows that CG(a) is soluble by Theorem 1.2.8. In addition from
Lemma 2.2.2 (d) we see that A is strongly closed in CG(a). Thus Proposition 2.2.5 yields
CG(a) = NCG(a)(A) · O(ACG(a)). �

(2) We have |NG(T )/(CG(T ) · T )| = 15 and 5 ∈ π(M).

Proof. By Theorem 1.2.12 (g) we obtain that |NG(T )/(CG(T ) ·T )| = 15. Moreover the group
NG(T )/(CG(T ) · T ) is cyclic. We conclude that there is some non-trivial 3-subgroup R of
NG(T ) such that NG(R) has order divisible by 5. Since x is 3-locally central, there is an
element u of order 5 in NM(T ). In particular we have 5 ∈ π(M). �

(3) If H is a Hall {3, q}-subgroup of M for some q ∈ π(M), then one of the following holds:

(i) There is an element g of order q such that CG(g) ≤ M and q ∈ σ.

(ii) We have Oq(H) , 1, q ∈ σ and r(P) = 2.

(iii) The Sylow q-subgroups of M are cyclic and, if q ≥ 5, then we have r(P) ≥ 3.

Proof. Suppose first that the Sylow q-subgroups of M are not cyclic and let Q ∈ S ylq(H). If
there is an element g of order q such that CG(g) ≤ M, then by Lemma 3.3.2 (b) we conclude
q ∈ σ. So if (i) is false, then Lemma 3.2.2 (f) implies that the centraliser of every element g
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of order q of H has cyclic Sylow 3-subgroups containing x. Moreover there is an elementary
abelian non-cyclic q-subgroup V of H such that g ∈ V , since Q is not cyclic. Lemma 1.1.16
provides a critical subgroup R of O3(H). Since R is of exponent 3 Lemma 1.1.14 (e) implies
that R = 〈CR(v) | v ∈ V#〉 ≤ 〈x〉. It follows that V ≤ CG(R) and, as R is a critical subgroup
of O3(H), we conclude that V ≤ CG(O3(H)). The group H has exactly two prime divisors.
Altogether we deduce Oq(H) , 1 from Lemma 1.1.18 (h) and Burnside’s pαqβ-Theorem
10.2.1 of [30]. Since the Sylow 3-subgroups of G are not cyclic, Lemma 3.3.2 (c) yields
that q ∈ σ. Moreover Lemma 1.1.14 (e) leads to r(P) = 2, since every element of order q
in Oq(H) is not centralised by any element of D∗(M) by our assumption that (i) is false and
Lemma 3.2.2 (f). This is (ii).
Assume now that the Sylow q-subgroups of M are cyclic. If we have q ≤ 3, then (iii)
holds. Suppose that q ≥ 5 and let further g be an element of order q in H. If g acts trivially
on O3(H), then (i) or (ii) holds. Otherwise we recall that an elementary abelian subgroup
of order 9 admits no automorphism of prime order at least 5 and an extraspecial group of
order 27 also admits no automorphism of prime order at least 5 that centralises the centre
by Lemma 1.3.5. This implies together with Lemma 1.3.6 that r(P) ≥ 3. Thus (iii) holds. �

(4) The group M has odd order. The element x acts transitively on A# and 〈x〉 is a Sylow
3-subgroup of NG(A). Moreover we have r3(G) ≥ 3.

Proof. Suppose for a contradiction that M is a Hall subgroup of G and let Q be a Sylow
subgroup of M. Then the Focal Subgroup Theorem 1.1.9 and Lemma 3.2.2 (b) imply that

Q ∩G′ = 〈h−1 · hg | h, hg ∈ Q and g ∈ G〉 = 〈h−1 · hm | h, hm ∈ Q and m ∈ M〉 = Q ∩ M′.
It follows that M = M′ · 〈x〉. Thus we have M/〈x〉 = M′ · 〈x〉/〈x〉 = (M/〈x〉)′. This means
that M/〈x〉 is perfect contradicting our assumption that M is soluble.
Suppose now for a contradiction that M has even order. Then from Lemma 5.1.7 it follows
that 2 ∈ σ. Thus, as M is soluble, there is a Hall {2, 3}-subgroup H of M by Theorem 1.1.8.
Since T is not cyclic, (3)(iii) does not apply. Moreover Lemma 5.1.2 exclude 3(i). Conse-
quently we have r(P) = 2. For q ∈ π(M) \ {2, 3} let Hq denote a Hall {3, q}-subgroup. Then
3(iii) does not apply and both parts (i) and (ii) forces q to be an element of σ. Altogether M
is a Hall subgroup of G, because of {2, 3} ⊆ σ. This is a contradiction.
We conclude that M has odd order. Since M is no Hall subgroup of G, there is a prime
q ∈ π(M) such that q < σ and consequently (3)(iii) applies for a Hall {3, q}-subgroup of M.
Then q ≥ 5, as P is not cyclic and it follows that r3(G) = r(P) ≥ 3.
Furthermore CG(A) is a 3′-group, because M has odd order and x is 3-locally central. More-
over Proposition 5.1.1 yields that NG(A)/CG(A) has order 3. Thus NG(A) has cyclic Sylow
3-subgroups of order 3. Since we have x ∈ NG(A), the element x permutes the involutions
of A transitively and the assertion is true. �

Let q ∈ π(G) \ {2, 3} be a prime and let Q be a q-subgroup of G.

(5) If Q is A-invariant, then NG(Q) is soluble.

Proof. Let Q be A-invariant and suppose for a contradiction that NG(Q) is not 3-soluble.
Then NG(Q) has a non-trivial Sylow 3-subgroup R. Since M is soluble, Lemma 3.2.2 (d)
yields that xg < NG(Q) for all g ∈ G. If R is cyclic, then Burnside’s p-complement Theo-
rem 1.1.10 implies that NG(R) has even order and Sylow’s Theorem leads to 2 ∈ π(M), as
x is 3-locally central. This contradicts (4). Thus R is non-cyclic and Lemma 1.1.14 (e) and
Sylow’s Theorem provide an element y ∈ D∗(M) and a q-element g such that y centralises
g. Then g is also centralised by x, because x is 3-locally central. Therefore Lemma 3.2.2 (f)
forces CG(g) to be a subgroup of M. In addition Lemma 3.3.2 (b) implies q ∈ σ. Again by
Sylow’s Theorem there is an element h ∈ G such that xh ∈ NG(Q). This is a contradiction.
Finally NG(Q) is 3-soluble. From Theorem 1.2.12 (f) we conclude that G does not involve
a Suzuki group. In particular Theorem 1.2.8 forces NG(Q) to be soluble. �
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(6) The maximal A-invariant q-subgroups of G are trivial or Sylow subgroups of G.
If Q is A- and xg-invariant for some element g ∈ G, then there is an element h ∈ NG(A)

such that 〈x, A〉 ≤ NG(Qh).

Proof. Suppose first that Q is a non-trivial maximal A-invariant q-subgroup of G. Then
NG(Q) is soluble by (5). Since A is strongly closed in G, Lemma 2.2.2 (d) implies that A
is strongly closed in NG(Q). So we may apply Proposition 2.2.5 to obtain the factorisation
NG(Q) = NNG(Q)(A) · O(〈ANG(Q)〉). Since we have |NG(A)/CG(A)| = 3 , q, there exists an
A-invariant Sylow q-subgroup of NG(Q). From the maximal choice of Q we deduce that
Q ∈ S ylq(G). We further assume that there is an element g ∈ G such that

xg ∈ NG(Q) = NNG(Q)(A) · O(〈ANG(Q)〉)

and suppose for a contradiction that O(〈ANG(Q)〉) is no 3′-group. Then Lemma 1.1.14 (b), (e)
applied to A and an A-invariant Sylow 3-subgroup of O(〈ANG(Q)〉) provide an involution
a ∈ A# such that CG(a) is no 3′-group. Hence we conclude that M has even order, since x
is 3-locally central. This contradicts (4). Thus NNG(Q)(A) contains a Sylow 3-subgroup of
NG(Q) and by Sylow’s Theorem there is an element h ∈ NG(Q) such that xg·h normalises
A. It follows that x, xg·h ∈ NG(A). From (4) and Sylow’s Theorem we obtain an element
c ∈ NG(A) such that xg·h ∈ 〈xc〉. Moreover Lemma 3.1.2 (a) yields that xg·h = xc. Thus Q is
normalised by xg = xc·h−1

and h. This implies that Q is xc-invariant and Qc−1
is normalised

by x and by Ac−1
= A. �

(7) If 〈x,T 〉 ≤ H<G, then H ≤ NG(A)

Proof. Let 〈x,T 〉 ≤ H<G. Then we obtain from T � M by (4) and Lemma 3.2.2 (d) that H
has a normal 3-complement. Moreover A is strongly closed in H by Lemma 2.2.2 (d). Thus
Theorem 1.2.12 (f) and Proposition 2.2.5 yield that H = NH(A) · O(〈AH〉). If N is a normal
subgroup of H of even order, then we have that 1 , A ∩ N. Since x normalises N and acts
transitively on A#, it follows that A ≤ N (*).
Suppose for a contradiction that O(〈AH〉) , 1. Then A , O2(〈AH〉) and hence (*) implies
O2(H) = 1. Lemma 1.1.18 (h) shows that A � CH(F(O(〈AH〉))). In particular there is
a prime q such that A � CH(Oq(〈AH〉)). We set Q1 := Oq(〈AH〉). Then we observe that
CH(Q1) and φ(Q1) are normal in H. Statement (*) implies that CA(Q1) = 1. Moreover A
acts coprimely on Q1. So Lemma 1.1.14 (a) yields CA(Q1/φ(Q1)) = 1.
Let − : H → H/φ(Q1) be the natural epimorphism. Then Q1 is abelian by Lemma 1.1.4
and Lemma 1.1.14 (f) yields that Q1 = CQ1

(Ā) × [Ā,Q1]. In particular we observe that
[Ā,Q1] , 1. We set Q̄ := [Ā,Q1]. Then Q̄ is NH̄(Ā)-invariant and CQ̄(Ā) = 1.
Suppose for a contradiction that also x̄ acts fixed-point freely on Q̄. Then (4) implies
that x̄ acts fixed-point freely on the semi-direct product Q̄ o Ā. Thus the product is di-
rect by Theorem 10.1.5 of [22]. This is a contradiction and implies CQ̄(x̄) , 1. Moreover
NG(Q1/CG(Q1)) is of even order. This shows together with Lemma 3.2.2 (c) and (4), that
we have q < σ and (3) implies that M has cyclic Sylow q-subgroups. In particular CQ1(x) is
cyclic and the non-trivial group CQ̄(x) is cyclic.
By Maschke’s Theorem 3.3.1 of [22] the group Q̄ is a direct product of subgroups Q̄i

such that Ā · 〈x̄〉 acts irreducibly on every Q̄i. In particular we observe Q̄i = [Q̄i, Ā] from
CQ̄(Ā) = 1. Further Lemma 1.1.14 (e) implies that Q̄i = 〈CQ̄i

(ā) | ā ∈ Ā#〉. Let ā ∈ Ā# such
that 1 , CQ̄i

(ā). Then CQ̄i
(ā) is Ā-invariant and from CĀ(Q̄i) = 1 we deduce that the two

involutions of Ā different from ā act fixed-point freely on CQ̄i
(ā). In particular they invert

the group CQ̄i
(ā). This shows that for all ḡ ∈ CQ̄i

(ā) the group Ā normalises 〈ḡ〉.

Let ḡ be an element of CQ̄i
(ā). Then we have ḡx̄ ∈ (CQ̄i

(ā))x̄ = CQ̄i
(ax) and ḡx̄2

∈ CQ̄i
(ax2).

Thus Ā normalises each of 〈ḡ〉, 〈ḡx̄〉 and 〈ḡx̄2
〉. In particular 〈ḡ, ḡx, ḡx2

〉 is 〈x̄〉 · Ā-invariant.
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Since 〈x̄〉 · Ā acts irreducible on Q̄i we conclude that 〈ḡ, ḡx, ḡx2
〉 = Q̄i. Suppose for a con-

tradiction that Q̄i has not order q3. Then we have Q̄i = 〈ḡ, ḡx̄〉 and [Q̄i, ax2] = Q̄i. This
contradicts Lemma 1.1.14 (f) together with ḡx̄2

∈ CQ̄i
(ax2).

Finally Q̄i is of order q3 and ḡ·ḡx ·ḡx2
, 1 and centralised by x̄. Since CQ̄(x̄) is cyclic, we de-

duce that Qi is the unique direct factor in the factorisation obtain from Maschke above. More
precisely we have Q̄ = Q̄i. But T̄ also normalises Q̄. This is a contradiction, since |Q̄| = q3

and CĀ(Q̄) = 1. This contradiction shows that O(〈AH〉) = 1 and H = NH(A) ≤ NG(A). �

(8) For all a ∈ A# we have (|O(〈ACG(a)〉)|, |CG(A)|) = 1.

Proof. Let a ∈ A#. By (1) we have that CG(a) = NCG(a)(A)·O(〈ACG(a)〉) = CG(A)·O(〈ACG(a)〉)
and T ≤ CG(A). Let Q be a non-trivial T -invariant Sylow q-subgroup of O(〈ACG(a)〉). Sup-
pose for a contradiction that Q ∩ CG(A) , 1. Then, as x acts coprimely on CG(A), we
obtain from Lemma 1.1.14 (b) a q-subgroup of G that is x-invariant. Since x is 3-locally
central and 2 < π(M) by (4), we obtain that q , 3. Moreover there is an x-invariant Sylow
q-subgroup of G by Lemma 3.3.1. Thus (6) provides an element c ∈ NG(A) such that Qc is
x-invariant. Moreover Qc is normalised by T c ·〈x〉 and so (7) yields Qc ≤ NG(Ac). Hence we
have Q ≤ NG(A). It follows from q , 3 and |NG(A)/CG(A)| = 3 (by Proposition 5.1.1 (c))
that Q ≤ CG(A).
Applying Lemma 1.3.7 (c), we conclude that CG(a) = CG(A) · O{2,q}′(CG(a)). Moreover we
have that A ·O{2,q}′(CG(a))ECG(A) ·O{2,q}′(CG(a)) = CG(a). For this reason we observe that
〈ACG(a)〉 ≤ A · O{2,q}′(CG(a)) is a q′-group. This is a contradiction.
Altogether we obtain (|O(〈ACG(a)〉)|, |CG(A)|) = 1. �

(9) The group CG(A) is a Hall subgroup of G.

Proof. Let q be a prime divisor of |CG(A)|. Then the fact that x is 3-locally central together
with (4) imply that q , 3. Further (6) provides an A-invariant Sylow q-subgroup Q of
G. Since A is elementary abelian, Lemma 1.1.14 (e) yields that Q = 〈CQ(a) | a ∈ A#〉.
From (8) we see that O(〈ACG(a)〉) has order prime to q for every a ∈ A#. Thus (1) forces
NG(A) to contain a Sylow q-subgroup of CG(a). Theorem 1.1.8 implies that every Hall
{2, q}-subgroup normalises a conjugate of A. It follows that the {q, 2}-subgroup CQ(a) · A of
CG(A) is contained in NCG(a)(A). Altogether we have Q = 〈CQ(a) | a ∈ A#〉 ≤ NG(A) and
conclude that Q ≤ CG(A), since r , 3 and |NG(A)/CG(A)| = 3 by Proposition 5.1.1 (c). �

(10) The group CG(A) contains no elementary abelian p-group of rank at least 3.

Proof. Suppose for a contradiction that there is a prime q and an elementary abelian q-
subgroup V ≤ CG(A) of order at least q3. For all v ∈ V# we set θ(v) := Oq′(CG(v)).
Let v ∈ V#. Then CG(v) ≤ NG(〈v〉) is soluble by (5). Thus Lemma 2.1.3 implies that
θ is a soluble V-signalizer functor. Consequently the Soluble Signalizer Functor Theo-
rem 2.1.6 yields that WV := 〈θ(v) | v ∈ V#〉 is a soluble q′-subgroup of G. Since A ≤ CG(v)
is strongly closed in CG(v) by Lemma 2.2.2 (d), we deduce from Proposition 2.2.5 that
CG(v) = NCG(v)(A) · O(〈ACG(v)〉).
From q ∈ π(CG(A)) and (9) we obtain that CG(A) contains a Sylow q-subgroup of G and
(8) implies for all a ∈ A# that O(〈ACG(a)〉) is a q′-subgroup of G. Moreover we apply
Lemma 1.3.7 (c) to see that O(〈ACG(v)〉) ≤ CCG(v)(A) · Oπ′(〈ACG(v)〉) for π := π(CG(A)). It
follows for every v ∈ V# that Oπ′(CG(v)) ≤ Oπ′(CCG(v)(A) · Oπ′(〈ACG(v)〉)) = Oπ′(〈ACG(v)〉).
From (8) we have O(〈ACG(a)〉) = Oπ′(〈ACG(a)〉) and so we conclude that
CO(〈ACG (a)〉)(v) = CG(v) ∩ O(〈ACG(a)〉) = Oπ′(CG(v)) ∩ Oπ′(〈ACG(a)〉) ≤ Oπ′(〈ACG(v)〉) ≤ θ(v).
This shows that O(〈ACG(a)〉) = 〈CO(〈ACG (a)〉)(v) | v ∈ V#〉 ≤ WV is of order prime to q. In
particular 〈O(ACG(a)) | a ∈ A〉 is a NG(A)-invariant q′-subgroup of G. We further deduce
that 〈x〉 · T ≤ NG(〈O(〈ACG(a)〉) | a ∈ A〉)<G.
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Therefore (7) leads to NG(〈O(〈ACG(a)〉) | a ∈ A〉) ≤ NG(A). We conclude that for all a ∈ A#

we have CG(a) = CG(A). More precisely CG(A) is strongly embedded in G. Since G′ is no
Bender group by Corollary 3.2.3, this contradicts Theorem 1.2.12. �

Let U ∈ S yl5(CG(A)). Then by (9) we have U ∈ S yl5(G). From (6), 5 ∈ π(M) by (2) and
Lemma 3.3.1 we observe that we may choose U such that U is normalised by x.

(11) We have U � E ∗ 〈w〉, where E is extra-special of order 125 and exponent 5 and
〈w〉 = U ∩ M. Moreover every x-invariant abelian subgroup of U is cyclic.

Proof. Suppose for a contradiction that U is cyclic. Then Ω1(U) ≤ M. Moreover Burnside’s
p-complement Theorem 1.1.10 provides an automorphism of order prime to 5 of U and
hence one of Ω1(U). We observe that |Aut(Ω1(U))| = 5 − 1 = 4. Altogether it follows that
2 divides the order of NG(Ω1(U))/CG(Ω1(U)). But now Lemma 3.2.2 (c) forces M to be of
even order. This contradicts (4). Thus we see that U is non-cyclic.
From U ≤ CG(A), (10) and the fact that U is non-cyclic we deduce that U has rank 2.
Suppose for a contradiction that U ∩ M is non-cyclic. Then we apply (3) to a Hall {3, 5}-
subgroup of M. From (4) we see that Statement 3(ii) is false and our assumption implies
that 3(iii) is also not true. It follows that 3(i) holds. Thus we have 5 ∈ σ and there exists
an element u ∈ U such that CG(u) ≤ M. Since U ≤ CG(A) it follows that A ≤ CG(u) ≤ M
contradicting 2 < π(M) by (4).
Suppose for a contradiction that Z(U) is non-cyclic. Then we deduce from r(U) = 2 that
Ω1(Z(U)) = Ω1(U). Since CU(x) , 1, we have CZ(U)(x) , 1. The group [Ω1(Z(U)), x] is not
cyclic, as 3 does not divide 4 = 5 − 1. From r(Ω1(U)) = 2 we deduce that Ω1(U) ≤ CU(x).
This is a contradiction.
Thus Z(U) is cyclic and x centralises Z(U), since 3 does not divide 4 · 5n for any n ∈ N.
Let V be an abelian x-invariant subgroup of U. Then we have V ∩ Z(U) , 1 and V is
of rank at most 2, since U has rank 2. From Z(U) ≤ CU(x), the fact that CU(x) is cyclic
and Lemma 1.1.14 (f) we deduce that [V, x] is cyclic and normalised by x. Since V is a
5-subgroup, it follows that [V, x] is trivial. Altogether V is cyclic.
We apply III 13.10 of [29] to conclude that U � E∗〈w〉, where E is extra-special of exponent
5 and 〈w〉 = Z(U), since every characteristic subgroup of U is x-invariant. It finally follows
from r(U) = 2 and Theorem 5.5.3 of [22] that |E| = 53 = 125. �

(12) We have U = Ω1(U).

Proof. We want to apply the Focal Subgroup Theorem 1.1.9.
Let g ∈ NG(A) and v ∈ U such that vg ∈ U. If we have v ∈ Ω1(U), then vg ∈ Ω1(U)
and hence v · (v−1)g ∈ Ω1(U). Assume now that o(v) ≥ 25. Then (11) provides elements
u1, u2 ∈ Ω1(U) and n,m ∈ N such that v = u1 · wn and (vg)−1 · v = u2 · wm. This shows
that vg = v · (u2 · wm)−1 = u1 · u−1

2 · w
n−m. In particular we deduce from exp(Ω1(U)) = 5

that 1 , (vg)5 = (u1 · u−1
2 )5 · w5(n−m) ∈ 〈w〉 and v5 = (u1 · wn)5 = w5n ∈ 〈w〉. Therefore g

normalises 〈v5〉 ≤ 〈w〉.
Statement (11) yields that 〈v5〉 ≤ 〈w〉 ≤ M. So we may apply Lemma 3.2.2 (c) to obtain
NG(〈v5〉) = NM(〈v5〉) · CG(v5). Since M has cyclic Sylow 5-subgroups we deduce that
|NM(〈v5〉)/CM(〈v5〉)| is not divisible by 5. Moreover (4) implies that NG(〈v5〉) = CG(v5).
Consequently we have g ∈ CG(v5) and so w5(n−m) = (vg)5 = v5 = w5n. This implies w5m = 1
and hence we have wm ∈ Ω1(U). Altogether we conclude that (v−1)g · v = u2 · wm ∈ Ω1(U)
and hence we observe that v−1 · vg = ((v−1)g · v)−1 ∈ Ω1(U).
Finally the Focal Subgroup Theorem 1.1.9 yields

U ∩ NG(A)′ = 〈v−1vg | v, vg ∈ U and g ∈ NG(A)〉 ≤ Ω1(U).
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On the other hand, for all g ∈ G and b ∈ CG(A) such that bg ∈ CG(A), the groups A and Ag−1

are subgroups of CG(b). Since A = Ω1(T ) and T ∈ S yl2(G), we observe that A = Ω1(T0)
for some Sylow 2-subgroup T0 of CG(b). Hence by Sylow’s Theorem there is an element
c ∈ CG(b) such that Ac = Ag−1

. It follows that c · g ∈ NG(A) and bg = bcg. In particular
NG(A) controls fusion of CG(A). Applying again the Focal Subgroup Theorem 1.1.9 we
deduce that U ∩G′ = 〈v−1vg | v, vg ∈ U and g ∈ G〉

= 〈v−1vg | v, vg ∈ U and g ∈ NG(A)〉 = U ∩ NG(A)′ = Ω1(U).
Finally Lemma 3.2.1 (e) implies that U = U ∩G′ = Ω1(U). �

Since O3′(NG(A)) = CG(A) is soluble, there is a Hall {2, 5}-subgroup H of CG(A) that is
x-invariant by Lemma 1.1.14 (c). We may choose notation such that H = U · T . By (2) we
have |NG(T )/CG(T ) · T | = 15. Thus there is an element u ∈ U \ CG(T ) that is centralised
by x. Statements (11) implies that u ∈ Z(U). Therefore 〈u〉 = Z(U) by (12). Moreover
125 - 15 = |NG(T )/CG(T ) · T | leads to 1 , O5(H). Since O5(H) E U, it follows that
u ∈ O5(H) contradicting [T, u] = T . �

5.3.2 Theorem
The group M has a simple section with a Sylow 2-subgroup isomorphic to T that is not
isomorphic to U3(4).
Proof
Suppose for a contradiction that the theorem is false.
By Proposition 5.3.1 the group M is not soluble and we have 2 ∈ σ. Hence we may choose
a Sylow 2-subgroup T of M and refer to section 5.2.
Moreover we set A = Ω1(T ) = Z(T ). Then we have A ≤ M and all involutions of A are
conjugate in M by Proposition 5.1.1 (c) and Lemma 3.2.2 (c). Additionally from Proposi-
tion 5.2.5 we deduce that CG(A) has cyclic Sylow 3-subgroups and a normal 3-complement.

(1) We have O2′,2(M) = O(M).

Proof. Suppose for a contradiction that O2′,2(M) , O(M) and let T0 ∈ S yl2(O2′,2(M)) with
T0 ≤ T . Then A ∩ T0 , 1 and as all involutions of A are conjugate in M, we obtain that
A = Ω1(T0). A Frattini argument yields that M = O2′,2(M) · NM(T0) = O(M) · NM(A).
In particular the Odd Order Theorem 1.1.12 forces M/O(M) to be a non-soluble section
of NG(A). Thus Lemma 5.2.1 (b) implies that NG(A) is not 3-soluble. This contradicts
Proposition 5.1.1 (c) together with the fact that CG(A) has a normal 3-complement. �

(2) The group O(M) has cyclic Sylow 3-subgroups containing x. Moreover π(O(M)) ⊆ σ.

Proof. Since A ≤ M, Lemma 1.1.14 (b) provides an A-invariant Sylow 3-subgroup R0 of
O(M). By Lemma 1.1.16 the group R0 has a critical subgroup R. Then R is of exponent
3. Moreover we have CG(a) ∩ D∗(M) = ∅ for every a ∈ A# by Lemma 5.1.2. Altogether
Lemma 1.1.14 (e) yields that R = 〈CR(a) | a ∈ A#〉 ≤ 〈x〉. It follows that R0 is centralised by
A, because R is a critical subgroup of R0. From the property of CG(A) to have cyclic Sylow
3-subgroups the first assertion follows, since we have x ∈ Z(M). Finally Lemma 3.3.2 (e)
yields the assertion, because O(M) is P-invariant and r(P) ≥ 2. �

Let − : M → M/O(M) be the natural epimorphism.

(3) If NG(A) ∩ D∗(M) is not empty, then M/〈x〉 is perfect.

Proof. Suppose that we have NG(A) ∩ D∗(M) , ∅. From (1) we conclude that E(M̄) , 1.
Let E be the full pre-image of E(M̄) in M. Then E is normal in M and has even order. Thus
A ∩ E , 1 and, as all involutions of A are conjugate in M = NM(E), it follows that A ≤ E.
Let T0 be a Sylow 2-subgroup of E such that A = Ω1(T0). Then a Frattini argument yields
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M̄ = E(M̄) · NM̄(T̄0) = E(M̄) · NM̄(Ā). Since A is a elementary abelian group of order 4, we
conclude that O3(NE(M̄)(Ā)) ≤ CE(M̄)(Ā). Therefore we obtain O3(M̄) ≤ E(M̄) · CE(M̄)(Ā).
From our assumption and Lemma 5.2.3 we observe that π(CG(A)) ⊆ σ. Finally, as 3 ∈ σ,
Lemma 1.1.14 (a) shows that π(M̄/E(M̄)) ⊆ σ.
Let q ∈ π(M) and let Q be a Sylow q-subgroup of M∩G′. If q ∈ σ, then the Focal Subgroup
Theorem 1.1.9 yields together with Lemma 3.2.2 (c) that
Q = G′ ∩Q = 〈g−1 · gh | g, gh ∈ Q and h ∈ G〉 = 〈g−1 · gh | g, gh ∈ Q and h ∈ M〉 = Q∩M′.
If we have q < σ, then we see Q � Q̄ ≤ E(M̄) by (2) and the above investigation. Hence we
have Q ≤ M′, as E(M̄) is perfect. Altogether it follows that M = M′ · 〈x〉. Thus we have
M/〈x〉 = M′ · 〈x〉/〈x〉 = (M/〈x〉)′. �

(4) The group E(M̄) is isomorphic to U3(4). Moreover D∗(M) ∩ NG(A) , ∅.

Proof. Together with (1) we conclude that F∗(M̄) = E(M̄). Since T is isomorphic to a
Sylow 2-subgroup of U3(4), it follows from the Odd Order Theorem 1.1.12 and Burnside’s
p-complement Theorem 1.1.10 that E(M̄) is simple. From Lemma 2.6 of [26] we obtain
that the Sylow 2-subgroup of E(M̄) is either isomorphic to T or to A. In the first case our
assumption that the theorem is false forces E(M̄) to be isomorphic to U3(4).
In the other case E(M̄) has Sylow 2-groups of order 4. Thus Theorem 2.5.1 yields that E(M̄)
is isomorphic to some PS L(2, q) for some prime power q. Moreover we observe with (1)
and Lemma 1.1.18 (c) that M̄/E(M̄) ≤ Out(E(M̄)) is soluble by Lemma 1.2.4. It follows
from T̄ � E(M̄) that M̄ is not perfect. Hence from (3) we deduce that D∗(M) ∩ NG(A) = ∅

in this case.
In both cases E(M̄) has cyclic Sylow 3-subgroups that are inverted in E(M̄). Let y ∈ M be
a 3-element such that 〈ȳ〉 is a Sylow 3-subgroup of E(M̄) and let d be an involution in M
such that d̄ inverts ȳ. Then d normalises 〈y〉 · O(M) and hence, by Lemma 1.1.14 (a), there
exists a d-invariant Sylow 3-subgroup R of 〈y〉 ·O(M). Then x ∈ R and d does not centralise
R. Thus Lemma 3.3.5 (b) forces R to be non-cyclic.
The full pre-image of NE(M̄)(Ā) is soluble, as O(M) and NE(M̄)(Ā) are soluble. Hence there
is a Hall {2, 3}-subgroup H of that full pre-image. Since Ā is normalised by a Sylow 3-
subgroup of E(M̄), we may choose notation such that H = A · R. By (2) the group O(M)
has cyclic Sylow 3-subgroups that contain x. Moreover we have x ∈ Z(M). Thus A acts
trivially on O(M) ∩ H.
Finally we conclude that R ∈ NG(O2(H)) = NG(A). It follows that NG(A) ∩ D∗(M) , ∅,
since R is non-cyclic. In particular E(M̄) is not isomorphic to PS L(2, q) and the above
investigation implies that E(M̄) � U3(4) holds. �

(5) The group E(M) is non trivial.

Proof. Let c be an involution of A and let y ∈ D∗(M) ∩ NG(A). It follows from Proposi-
tion 5.2.5 that Oσ′(CG(c)) is abelian. Moreover by (1) the group A acts coprimely on F(M).
Suppose for a contradiction that there is a prime q of π(F(M)) such that A � CG(Oq(M)).
Let R be an abelian characteristic subgroup of Oq(M). Then R is A-invariant and for all
a ∈ A# we have R = CR(a) × [R, a] by Lemma 1.1.14 (f). For all involutions a, b ∈ A
with a , b we apply Lemma 5.2.6 to see that [CR(a), b] ≤ F(CG(a)) and Lemma 5.2.7
to observe that R ≤ NG([CR(a), b]) ≤ CG(a). From the fact that the involutions of M are
conjugate in M = NG(Oq(M)) ≤ NG(R) it follows that A centralises R. In particular we have
Oq(M) , R and so Oq(M) is not abelian. Since R is characteristic in Oq(M), it is normal in
M. Therefore we observe that y ∈ 〈AM〉 ≤ CM(R). Thus, for all g ∈ R#, the group CG(g) has
non-cyclic Sylow 3-subgroups. Hence Lemma 3.2.2 (f) forces CG(g) to be a subgroup of M
for all g ∈ R#. This implies that R acts elementwise fixed-point-freely on the abelian group
[x,Oσ′(CG(c))]. Since [x,Oσ′(CG(c))] is non-trivial by Proposition 5.2.5, Lemma 1.1.14 (e)
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yields that R is cyclic. Altogether we may apply III 13.10 of [29] to deduce that Oq(M) is a
central product of an extra-special group of exponent q and the cyclic group Z(Oq(M)).
We set Q := Ω1(Oq(M)). Then Q is extra-special of exponent q. Since Q is not centralised
by A, there is an element g ∈ [CQ(b), a]# for involutions a, b ∈ A# with a , b. From
Lemma 5.2.7 we deduce that CQ(g) ≤ CG(b). In particular we see that g < Z(Q). From
[Q, g] = Z(Q) it follows that |Q : CG(g)| = q. Thus CQ(b) and hence CQ(a) are maximal
subgroups of Q. Therefore we conclude that |Q : CQ(A)| = |Q : CQ(a)∩CQ(b)| = q2. More-
over CQ(A)EQ, as Z(Q) ≤ CQ(A). But finally a · b inverts CQ(a)/CQ(A) and CQ(b)/CQ(A),
so a · b inverts Q/CQ(A). This is a contradiction as a is conjugate to a · b in M = NG(Q) and
so CQ(a · b) = CQ(am) = (CQ(a))m for some m ∈ M. We conclude that A ≤ CG(F(M)) and
Lemma 1.1.18 (h) and (1) force E(M) to be non-trivial. �

(6) We have M = E(M) × 〈x〉 and E(M) � U3(4).
Moreover the assumption of Theorem 11 and Statements of Lemmas 11.1 - 11.5 in [28]

hold with a suitable change of notation.

Proof. From (4) and (5) we have that M/E(M) is of odd order. Now (3) and the Odd
Order Theorem yield that M = E(M) · 〈x〉. From [11] we know that Z(E(M)) = 1. Thus
M = E(M) × 〈x〉 and M′ = E(M) � U3(4) by (3) and (4). As before the Focal Subgroup
Theorem 1.1.9 and Lemma 3.2.2 (b) imply G′ ∩ P = M′ ∩ P = E(M) ∩ P. This shows that
x is no element of G′.
From [11] the we know the structure of E(M) = M ∩ G′. We first observe that there is an
element y of order 3 and an element g of order 5 in E(M) that commute. The fact that x
is 3-locally central implies that NG′(〈y〉) = NM′(〈y〉) and hence NG′(〈y〉) � S 3 × Z5 is the
Statement of Lemma 11.1 of [28]. Furthermore CG(g) has non-cyclic Sylow 3-subgroup
and Lemma 3.2.2 (f) forces CG(g) to be a subgroup of M. Therefore we conclude that
the group CG′(g) = CM′(g) � Z5 × A5 is not soluble. Thus the assumptions of Theorem
11 and Statements of Lemma 11.2 and 11.5 in [28] are satisfied. As all involutions of T
are conjugate by y also Statement 11.3 of [28] is true. The group NG(T ) has non-cyclic
Sylow 3-subgroups. Hence Lemma 3.2.2 (f) implies that NG(T ) ≤ M. It follows that
NG′(T ) = NE(M)(T ) = 〈y, g〉 · T . In particular the statement of Lemma 11.4 in [28] holds. �

Finally we apply Lemmas 11.6, 11.7 and 11.8 of [28] to obtain that
|G′| = 62400 = |U3(4)| = |G′ ∩ M|.

Thus G′ = G′ ∩ M provides the final contradiction. �

5.3.3 Remark
Theorem 5.3.2 shows that wee need to prove Lyon’s theorem [31] for simple sections of M.
The 3-locally central element x centralises all these sections and does not influence their
structure. Moreover the 2-structure in M is very small. So we nearly observe no interaction
between the 2- and the 3-elements in M. It seems that a proof of Lyon’s theorem for sections
of M is similar to a new proof of his theorem. This should not be Part of this thesis.

5.3.4 Hypothesis (A weak L3-hypothesis )
Suppose that in every section of M the theorem of Lyons hold. More precisely that every
simple section of M with a Sylow 2-subgroup isomorphic to T is isomorphic to U3(4).

Proof of theMain Theorem
Assuming Hypothesis 5.3.4 we immediately get a contradiction to Theorem 5.3.2. �
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6 Conclusion and Outlook

The thesis describes the connection between the 2- and the 3-structure in finite simple
groups with a large 3-local subgroup.
From Section 2.3 and Proposition 2.2.4 we even know that the information that there is
almost no connection between the 2- and 3-structure determines the structure of a simple
group.

We recall the Z∗3-Theorem.

Theorem
Let G be a finite group and P be a Sylow 3-subgroup with an element x ∈ P such that,
whenever xg ∈ P for some g ∈ G, then g ∈ CG(x).
Then x is an element of Z∗3(G).

Let G be a minimal counterexample to the the theorem and let P be a Sylow 3-subgroup.
Suppose further that x is an element of P such that, whenever xg ∈ P for some g ∈ G, then
g ∈ CG(x) and such that x < Z∗3(G).
If we have no connection between 2- and 3-elements, then we can adopt our methods form
this thesis.
In addition every proper subgroup H that contains x has the form H = CH(x) · O3′(H).
Consequently the centraliser of the element x is also a large 3-local subgroup of G. This
illustrates that the methods used in this thesis will also provides some results in an investi-
gation of G.

Moreover we observe the following.

Lemma
Let G be a minimal counterexample to the the theorem and let P be a Sylow 3-subgroup.
Suppose further that x is an element of P such that, whenever xg ∈ P for some g ∈ G, then
g ∈ CG(x) and such that x < Z∗3(G).
Then O3′(G) = 1 = O3(G) and there is an element y ∈ P of order 3 such that O3′(CG(y)) is
not centralised by x.

Proof
First we observe that xz ∈ P for all z ∈ P and hence x ∈ Z(P).
If we have O3′(G) , 1, then the minimal choice of G and Lemma 2.2.2 (f) yield that
G/O3′(G) = CG/O3′ (G)(x) ·O3′(G/O3′(G)) = CG/O3′ (G)(x). From Lemma 1.1.14 (a) we there-
fore obtain that G = CG(x) · O3′(G). This is a contradiction.
Moreover the condition on x implies that CG/O3(G)(x) = CG(x)/O3(G). Consequently, if
O3(G) , 1, then we observe from the minimal choice of G and Lemma 2.2.2 (f) that
G/O3(G) = CG/O3(G)(x)·O3′(G/O3(G)) =

(
CG(x) · O3,3′(G)

)
/O3(G). Finally Theorem 6.3.2

of [22], O3′(G) = 1 and the fact that x centralises P implies that x ∈ O3(〈x〉 · O3,3′(G)) EG.
Thus for all g ∈ G we have xg ∈ O3(〈x〉 · O3,3′(G)) ≤ P and hence xg = x. This again is a
contradiction. For this reason the group G has no normal 3-subgroup.
We obtain further that x is not 3-locally central and hence there is a non-trivial subgroup R
of P ≤ CG(x) such that CG(R) � CG(x). Let y ∈ R be an element of order 3. The minimality
of G forces NG(R) ⊆ CG(x) · O3′(NG(R)). From [O3′(NG(R)),R] ≤ O3′(NG(R)) ∩ R = 1 we
deduce that O3′(NG(R)) ≤ CG(R) ≤ CG(y) ⊆ CG(x) · O3′(CG(y)). �

107



This result shows that we have to deal with O3′(CG(y)) for elements y ∈ P of order 3.
We recommend signalizer functors for the prime 3 for this. For all elements z of order 3
in G let θ(z) = O3′(CG(z)). If θ is a soluble signalizer functor in G and r(G) ≥ 3, then we
obtain from the Soluble Signalizer Functor Theorem 2.1.6 a non-trivial subgroup of G of
odd order that is normalised by many subgroups.
Furthermore, if it is possible to show that CG(x) contains a Sylow 2-subgroup of G, then
Lemma 1.3.7 provides the solubility of θ(y) for elements y ∈ P of order 3.

As we saw in Chapter 5, small 2-ranks require some extra work. Here also the small 3-rank
causes problems and needs extra ideas. In this special topic we hope to get help from the
representation theory.

Another challenge is that CG(x) might not be a maximal subgroup of G. Moreover, possibly
there are several maximal subgroups in G that contain x and have Sylow 3-subgroups that
are not cyclic.
Here we recommend the Bender method. It helps to obtain uniqueness results that could
replace Lemma 3.2.2 (f).

Altogether the author thinks that local methods, especially the methods presented in this
thesis, provides results towards the Z∗3-Theorem. But in their actual development stage they
won’t suffice to prove the Z∗3-Theorem.
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