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„Very often such a simplified model throws more light on the real workings of nature than
any number of “ab initio” calculations of individual situations, which even where correct

often contain so much detail as to conceal rather than reveal reality. It can be a
disadvantage rather than an advantage to be able to compute or to measure too accurately,
since often what one measures or computes is irrelevant in terms of mechanism. After all,

the perfect computation simply reproduces Nature, does not explain her.“

P.W. Anderson, Nobel Lecture, 1977
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Chapter 1

Introduction

Since the beginning of the twentieth century computers become more powerful. Inevitably
this calls for higher data storage densities and faster storage velocities (figure 1.0.1). Starting
from the oldest (1725) known form of a data storage device, punch cards, magnetic tapes
up to floppy disks, efforts pursuing better information storage and retrieval performances
enhanced continuously. But this enhancement reached a dead-end during the beginning of
the 1980’s.

Figure 1.0.1.: Storage density developments in the last 50 years1. Since the GMR effect system-
atically adopt into magnetic storage applications, the density increases exponen-
tially. Nevertheless, the density is restricted by a thermal limit in ferromagnetic
nanosystems (superparamagnetic limit). Temperature destabilizes the ordered mag-
netic structure in such a way, that the magnetic order stays in time, whereas simul-
taneously the collinear state responds coherently to the thermal fluctuations. The
limit is affected by the anisotropy of the magnetic material that reduces the cou-
pling to the thermal bath. An increase of the anisotropy in attempts to overcome
the superparamagnetic limit was successfully pursued over the last decade, e.g. via
developments of antiferromagnetically coupled (AFC) media.

The giant magnetoresistance (GMR) effect, discovered by Peter Grünberg and Albert Fert
(Nobel Prize in Physics 2007), increased the data storage density per year dramatically
[131, 269] (figure 1.0.1, marked with ‘1st GMR Head’). Devices based on this mechanism

1Taken from http://www.hs-weingarten.de/ modet/referate/Datenspeicher.htm
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CHAPTER 1. INTRODUCTION

utilize the enhanced electric resistivity from an antiferromagnetic alignment of two magnetic
layers to store information, as opposed to a ferromagnetic orientation lowers the resistivity.
Both the macroscopic dimensions of the magnetic layers (micrometer length scale) and the
large relaxation time of switching the magnetic moment (nanoseconds up to microseconds,
figure 1.0.2 a) limit in practice the application of GMR-based technologies. This has been one
of the reasons behind stagnation in hard-disk developments; so the industry switched towards
solid state-based alternatives. In the latter, the elementary logic elements is a transistor,
offers a faster writing and reading (by a factor of 10).

xy

z

a) b)

M

B

M

B

Figure 1.0.2.: Magnetic reversal trajectories under influence of an external magnetic field B, as
relevant to magnetic storage applications. a) An nearly anti-parallel alignment of
the field B to the magnetization M lets the magnetic moment slowly precess in the
direction of the field. This type of switching is slow and in the range of nanoseconds
up to microseconds. b) A perpendicular alignment of the field B and the magneti-
zation M twists the magnetic moment much faster than in a). The switched state
is achievable on a picosecond time scale.

In order to reflate ‘magnetic’ devices towards smaller time- and length-scales for instance,
new ways were discovered in the last decade [124]. Khajetoorians et al. [151], e.g., showed a
way to write information on nanoislands, that are connected by magnetic chains. Skyrmion
lattices with nanometer length scale [227] or bistabilized magnetic atom arrays [180] were
also proposed for storage applications. These arrays are predicted to push the data capability
up to 400 TB. From a very fundamental viewpoint and for all these potential applications,
the question about how to achieve efficient magnetic reversal (magnetic ‘writing’) arises.
Therefore, an external magnetic field B can be applied antiparallel (figure 1.0.2 a) or per-
pendicular (figure 1.0.2 b) to the average magnetizationM . More precisely, in the first case
the magnetic damping dominates the relaxation time (ns up to µs), where in the second case
the precession around the field forces the switching to ≈ 100 ps (Larmor frequency). Apart
from that, rapid switching can be also achieved by applying an external electric field to ma-
terials with strongly coupled multiferroic properties [251].

Reduction of time and length scale is accompanied also with so far neglected couplings
between nanoscopic degrees of freedom (figure 1.0.3). Magnetism is affected by various
properties of the crystal, such as the electron ground state, spin-orbit coupling or the crystal

2Referred to http://www.psi.ch/swissfel/time-and-length-scales-in-magnetism.htm
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Figure 1.0.3.: Magnetic effects on different time- and length-scales2. This thesis focuses on a
nanometer and (sub-)picosecond time scale, where retardation effects due to dif-
ferent time scales of reservoirs that act on magnetism become important (electron
correlation and spin-orbit coupling). The retardation is determined by the adiabatic
limit. This limit, where the magnetic moment is considered as constant in the elec-
tronic system, is the limiting factor in diverse theoretical modeling and exists on a
femtosecond up to picosecond time scale.

dimension. Hence, developing new data storage devices relying on magnetism on atomistic
length scales requires a detailed characterization of i) the magnetic ground state and ii) the
atomistic dynamics.

Various models exist to describe magnetism on a mesoscopic level [108, 212, 292]. One of the
most applied models is the Stoner-Wohlfarth macrospin (SW) theory [16, 215, 238, 259, 263].
In this approach the atomic magnetic moments are regarded without interaction and merged
into a so-called macrospin. Since the SW model accounts for magnetic anisotropy and the
influence of an external magnetic field, it is able to simulate magnetic hysteresis. But due
to the macrospin assumption, this theory will be not applicable to magnetic phenomena on
small length scales, such as magnetic nanodomains, Skyrmions [14, 25], or in the superpara-
magnetic limit [33] (figure 1.0.1). Furthermore, it does not include any dynamics, switching
times or reversal mechanisms. Hence, a more fundamental theory is required, going beyond
the Stoner-Wohlfarth ansatz.

Heisenberg’s model from 1928 [127] predicts for instance an exchange coupling mecha-
nism with strength J between two atomic magnetic moments. This quantum-mechanical
coupling improves the above picture, which provides access to an atomistic modeling of
magnetism, and dictates, among other things, the dynamics of atomic magnetic moments,
shown by Landau, Lifshitz and Gilbert [109, 166]. Here, the evolution of the magnetic

3



CHAPTER 1. INTRODUCTION

moment is the superposition of a precession around and a damping in the direction of
the Heisenberg exchange field. This model has been successfully deployed on magnetic
multilayers [245], nanometer domain walls [56], and magnetically doped semiconductors
[128].

The electronic structure is fundamental for magnetic properties of a material, since mag-
netism stems from the spin and orbital angular momentum of the quantum-mechanically
treated electrons. This corroborates, in a naive picture of separated reservoirs for various
atomic degrees of freedom (electron, spin, and lattice reservoir), strong correlations between
the reservoirs. The latter is neglected in all earlier listed studies on nm-magnetism and,
thus, it leads in general to discrepancy between theory and experiment, especially in postu-
lating the phase transition temperature, the magnetic ground state or magnetic switching.
This calls for an extended methodology on simulating magnetism on short time- and length-
scales. Hence, one aim of this thesis will be to consider the exchange between the reservoirs
in the magnetic ground state and the magnetization dynamics, especially on a ps-time and
nm-length scale. Therefore, first, the role of the magnetic moment on the electronic struc-
ture is examined in detail. Second, the contribution coming from the lattice reservoir is
then studied, looking in particular at the lack of inversion symmetry in the crystal. Both
ingredients have a bearing on the thermal equilibrium of the magnetic material.
Since each of these reservoirs acts in principle on different time scales, retardation in time
and space can appear. The first originates in the delay that the electrons need to become
correlated and ‘form’ magnetism, which regards the mass of magnetic moments. Non-local
anisotropic energy dissipation, however, provokes additionally some retardation in space.
Hence, a second aim is to consider retardation in time and in space near the adiabatic
limit.

This thesis is composed of the following parts. The reader is first introduced to the con-
ventional concepts of magnetism and the dynamics of magnetic materials (section 2.1 and
2.2). Thereby, magnetism on an ultrashort time scale will be discussed, examining model
extensions far from the Heisenberg and the Landau-Lifshitz-Gilbert ansatz (section 2.3).
Since the electronic structure is fundamental for magnetism, the second part contains the
basic principle for electronic structure calculations. Thus, the thesis introduces the con-
cept of density functional theory (DFT) (section 3.1) and focuses on band-structure meth-
ods of choice, the Korringa-Kohn-Rostoker Green function method (section 3.2) and the
tight-binding method (section 3.4). Based on this foundations, magnetic properties can be
calculated. In particular, the connection between magnetic order and crystal symmetry,
especially at surfaces, gives rise to an extended Heisenberg model, motivated by Dzyaloshin-
skii and Moriya (section 3.5). The disordered local moment theory (DLM) is then used to
discuss the impact of the magnetic ‘noise’ on the electron ground state (section 3.6). In
section 3.7 the mechanism of damping in magnetic materials will then be described within
two approaches: i) linear response theory and ii) the Kamberský breathing Fermi surface
model.

In the last part (chapter 4), four publications have been chosen to present the results on
an extended model, that accounts for the connection between spin-, electron and lattice-
reservoir on ultrashort scales. Meanwhile, the application takes place on various magnetic
materials including ‘basic’ Stoner magnets. The first paper discusses the temperature-
dependent magnetic properties at elevated temperatures, based on the disordered local
moment theory. The second publication considers non-collinear spin structures on ultra-
thin magnetic films grown on substrates with strong spin-orbit coupling. The third pa-

4



per deals with the magnetic damping effects in bulk and low-dimensional systems. The
last publication proceeds with the dynamics on ultrashort times scales; more precisely,
with nutation in magnetic systems. A summary and an outlook will conclude this the-
sis.
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Chapter 2

Atomistic magnetization
dynamics

An equation of motion is required in order to simulate atomistic magnetization on ultrashort
time scales and connect magnetism with other atomic degrees of freedom. On the one hand,
the quantum-mechanical equation of motion for the spin operator Ŝ can be solved, whereas,
on the other hand, the semi-classical ansatz of the Landau-Lifshitz-Gilbert equation for a
continuous macroscopic magnetic moment M provides an approximation that reproduces
experimental measurements quit well on the micrometer length scale [8, 130, 176].
The simplest continuation, creating an atomistic equation of motion, is to transform the
mesoscopic dynamic equation of the continuous quantityM(r) into a discrete set of atomic
moments mi. Various nanoscale exchange mechanisms will dictate the magnetic ground
state. However, the transformation from a mesoscopic to a nanoscopic length scale holds
only when the electron-spin exchange mechanism is assumed as adiabatic, which is always
valid in the mesoscopic scale, as well if the Ehrenfest theorem holds [283]. More precisely,
quantum mechanical and classical equations of motion agree if the Hamiltonian is linear
in mi. Hence, the question arises of how the nanoscopic classical Landau-Lifshitz-Gilbert
equation extends near the adiabatic and quantum mechanical limit.
This chapter is arranged as follows: first, a brief overview of magnetism and the concept of
magnetic exchange will be given (section 2.1). Section 2.2 focuses on the derivation of the
classical equation of motion for mi from the quantum mechanical one. Following Gilbert
idea, the dissipation loss reflected by a damping term in the dynamic equation will be
discussed. Section 2.3 proceeds with various models going beyond Gilbert’s assumption and
approaching the adiabatic and quantum mechanic limit.

2.1 Magnetism and magnetic interaction

There exist various ways in the literature to introduce the topic of magnetism. Start-
ing from the classical point of view using Maxwell’s equation [212], a magnetic contribu-
tion jm to the current at an atom appears, which is the result of the motion of electrons
in their stationary orbitals. This defines the magnetic moment mi at the local position
Ri:

mi = 1
2

∫
(r −Ri)× j(i)

m dr. (2.1.1)

7



2.1 Magnetism and magnetic interaction

Supposing the electrons affect only the magnetic moment, one obtains the relation between
the magnetic moment and the total angular momentum L of the electron: m = −e/2mL =
−γL, where the absolute value of γ is the gyromagnetic ratio. According to Maxwell’s laws,
the magnetic moment responds to an external magnetic field B within ‘linear’ materials
[108] via

m = χB. (2.1.2)

Thereby, the response function or susceptibility χ contains all necessary information. Simul-
taneously, the external magnetic field couples to the moment: m = −∂Emag/∂B [60], giving
a magnetic energy Emag:

Emag = −
∫ B

0
m dB′ = −1

2m ·B. (2.1.3)

The magnetizationM is defined as the macroscopic average of all magnetic moments (M =
〈m〉) [108], which is eventually measured in experiment.

From a quantum-mechanical point of view [212], the Schrödinger equation has to be solved(
Ĥ − Emag

)
|ψ〉 = 0 , (2.1.4)

where Ĥ is a hermitian many-body Hamiltonian, related to the magnetic-moment operator
m̂ = −∂Ĥ/∂B, in accordance to the classical theory (2.1.3). The total magnetic moment,
however, is composed of a magnetic momentmind, induced by an external magnetic field, and
−γ (L+ 2S), where L is the total orbital angular momentum and S is the spin momentum.
So, magnetism stems from the orbital momentum and the spin of the electron. This is
valid only, if one considers localized electrons in a homogeneous external magnetic field and
neglects the spin-orbit coupling (SOC) [212].

One of the main problem in modern theories of magnetism is to extract the magnetic current
in a correlated many-body system, which will be introduced later in this thesis using density
functional and multiple-scattering theory. Here, one distinguishes between two limits i)
strongly localized moments and ii) itinerant magnetism [212]. Magnetism in metals (band
magnetism), e.g. in Fe, Co, Ni, is of delocalized nature and comes from a preferred spin
orientation of the electrons due to the exchange splitting between the spin-up and the spin-
down channels. This can be described within the Hubbard model [135, 201]. Localized
magnetism exists in materials doped with magnetic impurities (Kondo effect), and is a
feature that emerges from different ‘groups’ of electrons within an effective interaction model
(e.g. s-d or s-f model [137]).

Concerning the susceptibility χ, one classifies the magnetic phenomena in three classes:

Paramagnetism Paramagnetic materials carry a permanent magnetic moment, which tends
to reorient itself parallel to an external magnetic field; it is featured with positive suscep-
tibility χpara. Sensitivity to thermal excitations, however, prevent complete reorientation
along the external field. Since the atomic magnets are randomly orientated at elevated tem-
peratures, the magnetization disappears (figure 2.1.1 a).

8



Diamagnetism Almost all organic substances, superconductors below their critical temper-
ature, and some metals like Bi, Zn or Hg, exhibit an induced magnetic dipole due to an exter-
nal field. According to Lenz’s law, this orients itself antiparallel to the field and is, thus, asso-
ciated with a negative response: χdia < 0. All materials show diamagnetic properties, but of-
ten these are too small compared to other magnetic effects.

Collective Magnetism Quantum-mechanical effects, such as the exchange field and the
crystal field [273], force permanent magnetic moments into collective magnetism. Below a
certain temperature Tc, this type of magnetism appears as a spontaneous macroscopic mag-
netization even without external stimuli. The exchange field provides short range order and
allows domain wall formations or spin waves. Under collective magnetism one can distinguish
four sub-classes of ground state ordering: i) ferromagnetism (FM), ii) antiferromagnetism
(AFM), iii) ferrimagnetism (FiM), and iv) non-collinear magnetism (NCM) (figure 2.1.1).
Non-collinear magnetism is featured by non-parallel, disordered magnetic moments and oc-
curs beside the paramagnetic limit. There exist three mechanisms forcing non-collinearity:
competing exchange mechanisms, geometric frustration, and direct anisotropic exchange
from spin-orbit coupling. Spin vortices, a special example of non-collinearity, also known as
Skyrmions, can e.g. appear at surfaces. Such structures are alike in terms of their topol-
ogy and are, due to topological protection mechanisms, stable and robust. In contrast to
magnetically ordered structures, such as ferromagnets, a local order parameter cannot be
defined.

a) b) c)

Figure 2.1.1.: Different types of magnetic order: a) paramagnetic state, b) ferromagnetic state
and c) antiferromagnetic state. Atomic magnetic moments are marked by the black
arrows, crystal sites are illustrated by the blue spheres.

Since this thesis discusses in particular collective magnetism effects, an in-depth focus on
magnetic formation mechanisms is required. Collective magnetism emerges via a second-
order phase transition: below the critical temperature Tc there exists a spontaneous ordering
towards reduced symmetry, since the magnetic moments break the symmetry of the crystal
lattice. Above Tc this ordering vanishes, the symmetry increases and the system behaves as
a paramagnet. The dipole-dipole interaction could predict a Tc of around 1.16 K [212], for
too small in comparison to the typical experimental value of ∝ 1000 K [48] in Fe, Co and Ni.
Hence, the dipole-dipole interaction cannot be the driving mechanism of magnetism. The
actual mechanism was discovered in 1926 by Dirac and Heisenberg [71, 126]: the exchange
interaction, resulting in an effective operator

Ĥex = −
∑
ij

Jijmi ·mj , (2.1.5)

9



2.1 Magnetism and magnetic interaction

where the Jij are the exchange integrals. The spin-spin coupling mi ·mj between site i
and j simulates the exchange matrix elements of the Coulomb interaction. In this thesis
the magnetic moments mi are considered as classical localized magnetic moments (|mi| =
ms).

The Weiss model [108], developed by the French physicist Pierre-Ernest Weiss in 1906 [280],
was the first phenomenological theory of ferromagnetism, devised to account for magnetic
phase transitions. It assumes an exchange field Bex based on the Heisenberg model and pro-
portional to the magnetization (M = λBex). The proportionality factor λ puts the action
of the Weiss field on par with the external magnetic field. It expresses the phase-transition
temperature according to the Curie law λc/Tc = 1. However, this model makes no statement
about the source of the exchange field, which is of pure quantum-mechanical origin and a
direct consequence of the Pauli’s exclusion-principle [189].

In band magnetism, many electrons can flip without gaining too much single-particle ki-
netic energy, if there is a distinct peak in the density of states n(εF ) at the Fermi en-
ergy (Stoner-criterion) U n(εF ) > 1 [7, 108, 257, 258], where U is the exchange splitting
in the density of states. Heitler and London show in their model [108, 292] the charac-
ter of the magnetic exchange: if the wavefunctions of the participating electrons overlap,
then ferromagnetism should occur. Contrary to this, insulators or transition metal ox-
ides, e.g. MnO [6, 169], show a magnetic order, inspite of a direct overlap between the
manganese orbitals due to the large spacing. This type of magnetism is driven by a num-
ber of indirect exchange mechanisms, like Rudermann-Kittel-Kasuya-Yosida (RKKY) in-
teraction [148, 236, 291], super exchange (Goodenough-Kanamori-Anderson (GKA)-rules)
[3, 115, 147] and double exchange [107, 298], and leads to an effective Heisenberg-type
Hamiltonian (2.1.5).

The Heisenberg Hamiltonian is to this day, the most intensely investigated and also best un-
derstood model of magnetism. In contrast to experimental predictions [4, 132, 256, 287, 288],
Heisenberg magnetism is isotropic in space (Jij = Jji, Jii = 0) and does not account for any
‘crystal anisotropy’. Physical properties in crystals are, however, typically anisotropic due
to the crystal field. This splits degenerate electronic levels and fixes the orbital momentum
L in space relative to the solid orientation. Consequently, the crystal field and the spin-orbit
coupling reorient the magnetic moment direction. The magnetization will favor alignment
with the largest component in the orbital momentum L minimizing spin-orbit energy as
given by the crystal symmetry. This type of anisotropy is known as magnetocrystalline
anisotropy Ĥmca.

Similar to the Heisenberg exchange energy and due to the broken time reversal symmetry,
the energy has to be invariant under inversion of the magnetic moments direction [212].
Thus,

Ĥmca = K0 +mK1m+mmK2mm+ . . . , (2.1.6)

where K0, K1 and K2 are the anisotropy tensors of zero, first and second order, respectively.
Considering only diagonal elements, one obtains the uniaxial form of the anisotropy. The
anisotropic properties of magnetic system, which are treated in this thesis, are in general of
uniaxial nature up to the first order aligned in z direction.

In addition to the magnetocrystalline anisotropy, there exist also i) shape anisotropy, ii)
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induced magnetic anisotropy (e.g. by an external magnetic field) and iii) stress anisotropy.
The first is reflected by the dipole-dipole interaction. Magnetic moments are dipoles that
are not dividable into monopoles (although magnetic monopoles separated by a Dirac string
[72, 139] can exist). As such, they interact with each other via the dipole-dipole interac-
tion

Ĥdd = −
∑
ij

miQijmj , with Qµνij = µ0
8π

3rµijrνij − r2
ijδµν

r5
ij

, (2.1.7)

where rij = ri − rj is the distance between two dipoles, δµν is the Kronecker delta (µ, ν =
x, y, z), µ0 is the vacuum permeability. As distinct from the exchange interaction, this is a
weak, but long-range coupling mechanism and takes into account shape effects of low dimen-
sional clusters, such as nanoislands, nanotubes, or in spin ice.

The isotropic character of the Heisenberg model can also be broken by an external magnetic
field Bext, leading to the Zeeman term

Ĥext = −γBext

∑
i

mi, (2.1.8)

that couples the average magnetic momentM = ∑
imi to the external magnetic field.

In this thesis the stress anisotropy will be neglected, but it can be considered by the distance-
dependence of the exchange parameters. Finally, the total Hamilton operator, which forms
the basis for all simulations in this thesis, reads

Ĥ = Ĥex + Ĥmca + Ĥdd + Ĥext. (2.1.9)

As already mention, the dipole-dipole interaction Ĥdd account only for the shape of magnetic
nanostructures, such as in 2ML Co islands on Cu(111) [32]. Since the magnetic coupling
constants Jij are in the range of meV, the magnetic exchange energy Ĥex is the dominant
term in equation (2.1.9). Compared to this, energies in the range of ≈ 10 − 100µeV are
attributed to the magnetocrystalline anisotropy, which is in the same order as the external
magnetic field energy Ĥext.

The effective field B = −∂Ĥ/∂m of the energy contributions (2.1.9) drives the dynamics
of magnetic moments (precession and damping), since it defines e.g. spin-wave modes or
controls, for instance, the magnetic relaxation times. A detailed derivation of this field can
be found in Ref. [32, 245].

2.2 Landau-Lifshitz-Gilbert equation

Let us focus now on excitations of non-equilibrium magnetic states. Considering initially a
ferromagnetic spin chain, reversal of one atomic moment or a single spin flip enhance the
energy above the ground state energy. This costs ∆E = 4JS2, where J is the coupling
strength between neighboring moments. Excitations lower in energy, which are spatially ex-
tended over the entire chain, correspond to spin waves (magnons). These waves propagate
through the spin lattice with a certain lifetime τ and k · r � 1, where k is the propa-
gation vector. More precisely, τ and the propagation are adjusted by various nanoscopic
degrees of freedom, which can be accounted for in an appropriate magnetization dynamics
model.

11



2.2 Landau-Lifshitz-Gilbert equation

Such an equation of motion, e.g. for magnons in magnetic chains, was first formulated by
Landau and Lifshitz [41, 166]. In general, the quantum-mechanical equation of motion for
the spin operator Ŝ [128, 245] reads

∂Ŝ

∂t
= − i
~

[
Ŝ, ĤKS

]
, (2.2.1)

where ĤKS is the Kohn-Sham Hamilton operator. Having the separation ansatz (shown in
section 3.1, equation (3.1.11)) at hand, the Kohn-Sham Hamiltonian is expressed as

ĤKS = Ĥ + µBσ̂ · B̂. (2.2.2)
With this Hamiltonian, equation (2.2.1) can be simplified by the commutation rules of the
Pauli matrices σ̂ [32, 245]

∂

∂t
Ŝ = −γŜ × B̂ −∇ · ̂, (2.2.3)

which has the form of a continuity equation. Without spin-orbit coupling, Ŝ commutes
with Ĥ, with the exception of the kinetic energy. Hence, the current operator ̂ has to be
taken into account. However, ∇ · ̂ vanishes in the atomic moment approximation [245],
which postulates negligible instabilities of the atomic moment length. This holds only, when
the Kohn-Sham system is equilibrated, measured in terms of the electron relaxation time
τe. The latter is typically smaller than the magnetic relaxation τs (adiabatic approach)
(figure 2.2.1) and can be estimated by τe < 1 ps and τs ≈ 1 ps, respectively [256]. The
interaction Jes ≈ h/τes between both reservoirs, however, exhibits τes ≈ 10 − 100 fs [245].
Magnetization dynamics on time scales close to τes, which will be focused on in this thesis,
requires methodological extensions, since it has to consider the coupling between different
microscopic degrees of freedom (figure 2.2.1).

τe τl

τs

τel

τslτes

Figure 2.2.1.: Thermodynamic reservoirs (electrons, spin, lattice) [155]. All three degrees of free-
dom interact with each other with the strength J ≈ hτ−1

µν and relax into the ground
state within a typical relaxation time (τe, τl, τs). Hence, the electronic and the lat-
tice reservoirs can in principle affect the dynamics of a magnetic material, especially
on ultrashort time scales.

Considering the Ehrenfest theorem, one can transform the continuity equation for the spin
operator Ŝ (2.2.3) into the spin density representationmi [32, 245]. This holds

∂

∂t
mi = −γmi ×B. (2.2.4)
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Here, i is the atomic index, labeling the dynamics of an atomistic magnetic moment as an
adiabatic, non-dissipative precession around the effective field B.
A quantum-mechanical derivation of the equation of motion is also given by Wieser [282, 283]
who considers the quantum-mechanical time evolution Û(t+ δt, t) of the state |ψ(t)〉:

|ψ(t+ ∆t)〉 = Û(t+ ∆t, t) |ψ(t)〉 . (2.2.5)

Assuming that the time steps ∆t are small, Wieser derived the quantum-mechanical coun-
terpart of the Landau-Lifshitz-Gilbert equation

i~ d
dt |ψ(t)〉 =

(
Ĥ − iα

[
Γ̂− 〈Γ̂〉

])
|ψ(t)〉 . (2.2.6)

Here, the term iα
[
Γ̂− 〈Γ̂〉

]
correlates to energy dissipation, if Γ̂ = Ĥ. He concludes that a

discrepancy between classical and quantum-mechanical model exists, if the magnetic Hamil-
tonian is not linear with respect to the magnetic moment.

The precession of the magnetic moment (2.2.4) is dynamically reversible. However, in out-
of-equilibrium magnetic systems [154, 155] remagnetization was observed, where the rate
is determined by damping mechanisms; the dynamics becomes irreversible. This is, so far,
not included in equation (2.2.4). “Damping involved loss of energy from the macroscopic
motion of the local magnetization field by transfer of energy to microscopic thermal motion.”
(Gilbert [109]), such as spin waves, phonons, eddy currents, and lattice defects. In 1935
Landau and Lifshitz introduced a phenomenological damping term [166] and extended the
effective precession-causing fieldB by a dissipation partBdiss = αLLm×B. This dissipation
field is, however, only valid for small damping parameters, since no physical solution can be
achieved for αLL → ∞. To account for the limit of high damping [186], Gilbert redefines
the phenomenological damping term [109] in terms of a viscose damping mechanism that is
proportional to the velocity of the magnetic moment Bdiss = α∂m/∂t. In addition, this type
of damping conserves the length of the magnetic moment. The Gilbert damping constant
α comprises all damping mechanisms, extrinsic and intrinsic, as well as direct (induced by
the spin-orbit coupling) and indirect processes, and introduces an effective energy transfer.
The intrinsic damping is experimentally the smallest observable magnetic damping that
do not depend for instance on the stacking number of the crystal, whereas the extrinsic
damping is mediated by e.g. structural changes, defects or the size of the system. However,
both contributions—intrinsic and extrinsic—are controversially discussed in literature [10,
149, 249]. Different other proposals concerning the nature of the dissipation field Bdiss

exist, e.g. the Bloch-Bloembergen equation [23, 24] or the Landau-Lifshitz-Bloch equation
[50, 104, 105, 278], both not conserving the moment length.
The Gilbert damping for equation (2.2.4) is derived using the Euler-Lagrange formalism,
where the Lagrangian L is a functional of the magnetic moments m and the magnetic
velocity u = ṁ = ∂

∂tm. It comprises a kinetic energy T [m, ṁ] as well as a potential
energy U [m] part, whereas B = − ∂U

∂m , and an additional Rayleigh dissipation functional R
[191, 268]. Thus,

d
dt
∂L(m, ṁ)

∂ṁ
− ∂L(m, ṁ)

∂m
+ ∂R(ṁ)

∂ṁ
= 0, (2.2.7)

where

R = 1
2
∑
i

∑
j

ṁiηijṁj . (2.2.8)
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2.2 Landau-Lifshitz-Gilbert equation

Here, the tensor η quantifies the non-local damping throughout the sample. This form
considers non-uniform damping mechanisms like rapid spin reorientation, defects and impu-
rities. Since most experiments predict a uniform, isotropic dissipation transfer [103, 217],
the rate η simplifies to

ηij = − α

γms
Eδij , (2.2.9)

where E is the unit matrix andms = |m| is the moment length. With ∂U[m]
∂ṁ = 0 and ∂R[ṁ]

∂ṁ =
−Bdiss = − α

γms
ṁ, one notices a reduction of the effective fieldB by the ‘damping field’Bdiss

and thus, a modification of the torque in field direction:

d
dt
∂T (m, ṁ)

∂ṁ
− ∂T (m, ṁ)

∂m
+
(
B − α

γms
ṁ

)
= 0. (2.2.10)

Consequently, the equation of motion for an atomistic magnetic moment (Landau-Lifshitz-
Gilbert equation) ends up with

∂

∂t
mi = mi ×

(
−γB + α

ms

∂mi

∂t

)
. (2.2.11)

As will be shown later in this thesis (chapter 3.7), the energy transfer rate α is strongly in-
fluenced by the spin-orbit coupling. This spin-orbit contribution, however, differs from those
pointed out by Skubic et al. [245] in the continuity equation (2.2.3).

The magnetic damping can be experimentally observed by means of (spin-torque) ferromag-
netic resonance measurements ((ST)-FMR) [103, 217]. Magnetic properties, such as g-factor,
magnetic anisotropy and interlayer magnetic coupling [125] are obtained by estimating the
resonance field HR of the FMR spectra. The width of the resonance peak ∆HR is depicted
as the superposition of three contributions: the line width due to intrinsic damping, the
distribution of the signal magnitude and the direction of the effective demagnetization field.
The first contribution correlates linearly to the damping constant α [198]. The resonance
field is used to analyze also magnetic inhomogeneities in thin films [198, 217]. A second ex-
perimental method is the heterodyne magneto-optical microwave microscope (H-MOMM)1
[55]. Here, beat-frequency microwaves are generated, which produce spin waves in the mag-
netic system. Using the magneto-optical Kerr effect (MOKE) in the experimental set-up, the
excited magnetic order (magnon) and its dissipative behavior are observable, in particular
the inhomogeneous damping in nanomagnets.

Equation (2.2.11) contains energy and angular momentum dissipation, mimicked by the
damping contribution and the magnetic Hamiltonian, respectively. However, the coupling
to the thermal bath is so far neglected. Three reservoirs [2, 154] characterized by the
spin temperature Ts, the electron temperature Te as well as the lattice temperature Tl,
affect in principle the dynamics of atomistic magnetic moments (figure 2.2.1). In the fol-
lowing, only the spin temperature will be considered. The role of the spin temperature
on the electronic ground state will be illustrated in section 3.6. Nevertheless, the cou-
pling between all three temperatures can be depicted with the three temperature model
[54, 67, 211].

In the presence of thermal spin agitation at finite temperature, introduced by Brown [40],
each atomic moment is impacted by a small field h(t), where its statistical average is zero.

1http://www.nist.gov/pml/electromagnetics/magnetics/nanomagnet-spin-damping.cfm
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precession cone

m× γ (B + h)

m× α∂m
∂t

Bh

m

Figure 2.2.2.: Scheme of the evolution ∂m/∂t. The magnetic moment precesses (blue cone and
lines) around the field B (black arrow) and dissipates in the direction of the field.
The temperature, caused by an additional white noise field h (green cone and arrow),
deflects the effective field from its present equilibrium position.

Hence, the temperature in equation (2.2.11) is approximated by a Brownian motion [39, 81]
and obeys Langevin dynamics [32]. The random field h(t) complies with the following
properties [40]:

i) the process h(t) is stationary;

ii) h(t) is Gauss-distributed;

iii) hi(t) and hj(t+ τ) are correlated in shorter time interval τ than the changes of m
according to (2.2.11): 〈hi(t)hj(t+ τ)〉av = Dij δ(τ), where Dij is the distribution
width;

iv) h is independent of m and isotropic: Dij = D δij .

These properties mimic white noise, simulated as Gauss-distributed random numbers [37].
The distribution width D of the Gauss peak is obtained by solving the Fokker-Planck
equation [100], deduced from the corresponding Langevin equation [32] and based on the
Stratonovich analysis [216]. Since the equilibrium distribution in the Fokker-Planck equation
follows a Boltzmann distribution, the fluctuation strengthD reads [32, 245]

D = α
kBTs
γms

. (2.2.12)

kB is the Boltzmann factor and γ the gyromagnetic ratio. The thermal fluctuation strength
and the dissipation are correlated to each other. This is the main statement of the fluctuation-
dissipation theorem [52, 214]: The macroscopic quantity α is coupled with the microscopic
value D.

For this thesis, the atomistic assumption of the Landau-Lifshitz-Gilbert equation was first
utilized to study the superparamagnetic effect and the validity of the Stoner-Wohlfarth
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2.3 Extended Landau-Lifshitz-Gilbert equation—nutation and retardation

model in 2ML Co islands on Cu(111), published in [32] (not shown in this thesis). The main
emphasis was to reproduce the experiment, predicting ferromagnetic behavior only above a
critical island size. Below this critical size the islands are superparamagnetic. Magnetization
dynamics of various other surfaces, for instance Fe/Pt(111) or Fe/Cu(001), were also studied
in terms of long-range magnetic excitations (not shown in this thesis). Based on these
works, the completeness of the simulation model became arguable: For instance anisotropic
exchange effects or the dissipation-fluctuation theorem at surfaces were not or not exactly
accounted for. Due to the adiabatic and the quantum-mechanical limit, the LLG equation
exhibited also a restricted validity at short time scales. These mismatches required an
methodological extension of the atomistic magnetization dynamics on nm-length- and fs-
time scale.

2.3 Extended Landau-Lifshitz-Gilbert equation—nutation and re-
tardation

In the previous section 2.2, two crucial assumptions were made that are only valid at longer
time scales (typical ns-time scale):

i) A uniform, uniaxial distribution of energy loss and angular momentum transfer due
to damping;

ii) Validity of a macroscopic ansatz on ultra-short time scales (t < τ , where τ is the
response time of the system).

Let us assume, that the magnetization m has a mass m, which was already predicted
by Döring et al. [73] for domain walls and experimentally verified in Josephsion junction
[101, 102]. This mass is not related to the inertia of the matter, but to the inertia of the
magnetic moment [57] due to ‘formation’ of magnetism. The existence of a mass has two
consequences:

• The magnetization dynamics follow Newton’s second axiom: B = m∂u/∂t;

• The kinetic energy of the magnetic moment is proportional to mu2/2, where u = ∂m/∂t
is the velocity of the magnetic moment.

Both hypotheses implicate inertia of magnetic moment. If there is no magnetic center of
mass, a complex magnetic inertia tensor ι exists instead. The kinetic energy is then given
by L2/2ι, where L is the angular momentum of the magnetic cluster. Hence, the dynamics of
atomistic magnetic moments becomes equivalent to the dynamics of a gyroscope. Perturbing
a gyroscope results in a precession around the gravity field. Such a displacement occurs
always perpendicular to the force. Due to the mass and the resulting inertia, the precession
axis does not coincide with the angular momentum axis. The superposition of the precession
around the gravity field and around the angular momentum axis causes a cycloidal trajectory
(illustrated in figure 2.3.2). This effect is called nutation and it is small compared to the
precession.

Cornei et al. [57, 58] used mesoscopic non-equilibrium thermodynamics [69, 161] to study the
inertia in magnetization dynamics of macroscopic magnetic moments, that will be shortly
illustrated in the following. Let’s assume a set of magnetic moments {m, dm} = ms {e,de}
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with the velocity {u, du}. In the Boltzmann formalism [53, 285, 299], one can establish the
conservation law for the distribution function f(e,u, t) (see figure 2.3.1)

e
u

f
=

f
(e
,u

,t
)

Figure 2.3.1.: Out-of-equilibrium magnetic system treated by the Boltzmann probability distribution
function. The distribution function f considers a many-body magnetic diluted ‘gas’,
where each individual carries a normalized magnetic moment e (black arrows) and
the magnetic velocity u (red arrow).

∂f

∂t
+ u

ms

∂f

∂e
+ B

m
∂f

∂u
=
(
∂f

∂t

)
c

=
(
∂I

∂u

)
. (2.3.1)

The Boltzmann equation deals with the dynamics of the distribution function in time. The
second term on the left-hand side is due to the precession and damping of the magnetic
moment, whereas the third addendum illustrates the mass of the magnetic moment according
to Newton’s second axiom. The term on the right-hand side is the collision term and
describes the variation of the distribution function due to exchange of the angular momentum
as a function of the thermal bath, that leads to an additional flux I in the Boltzmann
equation (2.3.1). The evolution of the particle density n(e) and the conservation law of the
average magnetic moment nṀ is expressed as

∂n(e)
∂t

=
∫
∂f

∂t
du = 1

ms

∂
(
nṀ

)
∂e

,
∂
(
nṀ

)
∂t

=
∫
∂f

∂t
u du. (2.3.2)

The derivative of the distribution function in equation (2.3.2) can be replaced by the Boltz-
mann equation (2.3.1). This gives the dynamics of the average velocity [57, 58]

n
∂Ṁ

∂t
= − 1

mms

∂P
∂e
− n 1

mB +
∫

I du. (2.3.3)

P =
∫

mf
(
u− Ṁ

)2
du relates to the pressure of the diluted magnetic particle ‘gas’ [57,

58]. The second term illustrates the proportionality between the average velocity and field
B, where the third and the first one mimic the interaction with the thermal bath via a
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2.3 Extended Landau-Lifshitz-Gilbert equation—nutation and retardation

dissipation field and the magnetic pressure. Since the thermal flux is equal to the Gilbert
damping [109], I is replaced by I = α/γmsm fu. Thus, the viscose damping nṀ =

∫
fudu

appears in equation (2.3.3). Hence, the Boltzmann equation relates to the effective field in
the Landau-Lifshitz-Gilbert equation (2.2.11)

m∂Ṁ

∂t
= −B + α

γms
Ṁ − 1

nms

∂P
∂e

. (2.3.4)

Without pressure gradient, equation (2.3.4) is the same as equation (2.2.10) in Gilbert’s La-
grange formalism, assuming the kinetic energy T is mṀ2

/2.

The angular momentum is always transfered perpendicular to the average magnetic moment
M and the velocity ∂M/∂t. In his assumption (2.2.9) Gilbert accounts only for the magnetic
inertia tensor components that move in the direction of the magnetization vector. How-
ever, having the full inertia tensor at hand, the ensemble from the spatial inertial system
transforms to the body-fixed inertial system1. This acts as an additional contribution to
the equation (2.3.4) that balances the effective and interaction field: the centrifugal field
−mΩ× ∂M

∂t and the Euler field −m∂Ω
∂t ×M , where Ω is the angular velocity of the rotating

average magnetic moment M . With the tensor representation of the double cross product
[57] and ∂M/∂t = Ω×M , equation (2.3.4) holds

ι
∂Ω
∂t

+ Ω× ιΩ = M ×
(
−B + α

γms
Ṁ − 1

nms

∂P
∂e

)
. (2.3.5)

Regarding the classical relation between the angular velocity and the angular momentum
L = ιΩ = mM × (Ω×M), where ι = mm2

s (E− e⊗ e) and E is the unit tensor, the
angular momentum conservation law obeys

∂L

∂t
+ Ω×L = M ×

(
−B + α

γms
Ṁ − 1

nms

∂P
∂e

)
. (2.3.6)

The moment of inertia tensor with a ‘body-like’ magnetic mass, where the symmetry axis and
the center of mass is given by the magnetization orientation e,

ι =

ι1 0 0
0 ι1 0
0 0 ι3

 , (2.3.7)

simplifies equation (2.3.6) to

Ω̇1 + Ω2Ω3

(
ι3
ι1
− 1

)
= ms

ι1
B2 + τ−1

1 Ω1 −
[ 1
nι1

∂P
∂e

]
1
,

Ω̇2 + Ω1Ω3

(
1− ι3

ι1

)
= −ms

ι1
B1 + τ−1

1 Ω2 −
[ 1
nι1

∂P
∂e

]
2
, (2.3.8)

ι3Ω̇3 = τ−1
3 Ω3 = 0.

The third equation is zero, since the applied torque is perpendicular to the magnetization.
Therefore, the relaxation times τi = ιiγ/msα are proportional to the ratio of the moment of
inertia and the Gilbert damping. The relaxation time τ1 indicates two limiting cases: t� τ1
and t ≈ τ1. In the first case, Ω̇ is negligible with respect to τ−1

1 Ω and equation (2.3.6)
represents the Landau-Lifshitz-Gilbert equation (2.2.9). In the second case, the inertia term

1www.mathpages.com/home/kmath633/kmath633.htm
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Ω̇ is significant. Expressing the left-hand side of equation (2.3.6) in terms of M via the
gyromagnetic ratio L = M/γ and ∂M/∂t = Ω×M

Ω×L = 1
γ

∂M

∂t
, (2.3.9)

ι
∂Ω
∂t

= ι
∂

∂t

(
M × ∂M

∂t

)
= ιM × ∂2M

∂t2
, (2.3.10)

yields the generalized Landau-Lifshitz-Gilbert equation for the atomic moment:

∂mi

∂t
= mi ×

(
−γB + α

ms

∂mi

∂t
+ γ

ι

ms

∂2mi

∂t2

)
. (2.3.11)

Due to the inertia, a previous magnetic state at time t′ operates on the current state at time
t, creating a retardation in time. More precisely, in non-coherent states, where the magnetic
velocity varies significantly, the third term on the right-hand side contributes to the dynam-
ics. This is due to the angular momentum transfer caused by the Heisenberg model. Since
M = ∑

imi, nutation should also become visible in the total magnetization M if all mo-
ments nutate coherently by applying large external fields.

nutation coneprecession cone

B

m

Figure 2.3.2.: Magnetic moment evolution ∂m/∂t influenced by its mass. The inert reaction of the
magnetic moment due to small perturbations, e.g. from an external magnetic field,
consequences an additional precession around the angular-momentum axis (green
cone). The superposition of the precession around the effective field B (black ar-
row) and the precession caused by the inertia results in a cycloidal trajectory (black
oscillating lines).

The extended equation of motion (2.3.11) neglects the exchange with the thermal bath.
Brown’s ansatz (white noise), where D ∝ δ(t− t′), states that an event at time t simultane-
ouslly entails a response at t′ = t. Retardation due to the formation of magnetism originating
from electron-electron interaction and response in nutation are neglected. If a discretiza-
tion of time intervals is adopted, the probability distribution density P in the Fokker-Planck
equation depends only on the very previous time step; the process has no memory and follows
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2.3 Extended Landau-Lifshitz-Gilbert equation—nutation and retardation

the Markov theory [213]. However, according to the quantum-mechanical Nyquist formula
[111, 152], the noise is regarded as white up to a frequency of kBT/h, which is about 1013 s−1

(τc = 1 ps) at room temperature. The resonant Lamor frequency ω = γB is equivalent to a
field of 100 T.

Thermally excited magnetization evolution, where the relaxation times are smaller than the
aforementioned Nyquist correlation time, such as in demagnetization [154, 155] or nutation,
is not feasible within the Brownian ansatz; the magnetization has memory. Hence, the third
property of the noise field h (t) (see section 2.2) is lost and an exponentially correlated noise
should be assumed (colored noise: the power depends on the frequency)

〈hi(t)hj
(
t′
)
〉av = D

τc
exp

(
−|t− t

′|
τc

)
, (2.3.12)

where 〈. . .〉av denotes ensemble average.

a) b)

T = 0K T = 0.1K
τc = 0.3 fs

Figure 2.3.3.: Nutation occurs at the edge atom in 2ML thick Co nanoislands on Cu(111) [33].
a) At zero temperature a cycloidal trajectory appears, damped on a time scale of
500 fs. b) Temperature, simulated by a colored noise field h, maintains the nutation
(T = 0.1 K), when the correlation time τc is smaller then the magnetic exchange
parameter (τJ ≈ 100 fs).

Let us assume a separation of the thermal bath and the evolution of the magnetic mo-
ments. In the first step, the thermal field h acts as random fluctuations of the effective
field B (figure 2.2.2), where the magnetic moments are constant at that precise time.
Thereby, the fluctuation magnitude D of the thermal field is related to the relaxation
time τc, indicating the retardation induced by other atomic degrees of freedom. Thus,
the evolution of the thermal bath can be expressed in terms of Langevin equation [61,
167]:

d
dth = − 1

τc
h+R. (2.3.13)

R exhibits white-noise properties with the fluctuation strength D = 2χkBT/τc and χ =
〈h2〉av/kBT . χ is the response of the local thermal field to the current orientation of the
magnetic moments. The fluctuation-dissipation theorem for h can be deployed, assum-
ing a Boltzmann-distribution P [245] in the thermally equilibrated Fokker-Planck equation
[32].
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In the second step, the magnetic moment fluctuation has to be taken into account, using the
exchange energy between the magnetic moment and the total effective field. The magnetic
energy (2.1.3) is extended by the contribution, which is required to produce the thermal
field 1/2kBT

U(m,h) = 1
2χh

2 − (B + h) ·m. (2.3.14)

Miyazaki and Seki [197] claim equal contributions of the moment m and the thermal field
h. Finally, the Fokker-Planck equation with and without connection between the thermal
bath and the magnetic moment gives

d
dth = − 1

τc
(h− χm) +R, (2.3.15)

∂

∂t
m = −γm× (B + h) . (2.3.16)

In case of the correlation time being smaller than the system response (τc → 0), Miyazaki and
Seki [197] proved that equation (2.3.16) is identical to the Landau-Lifshitz equation. Further-
more, the Landau-Lifshitz-Miyazaki-Seki equation accounts for time retardation, especially
for nutation, in the thermal field via τc. This manifests that the time scale of the different
reservoirs has to be regarded in atomic magnetization dynamics.

The role of colored noise was also analytically investigated by T. Bose et al. [31]. They
postulated physical solutions in selected areas of the phase space, controlled by the Gilbert
damping parameter α, the dissipation strengthD as well as the dephasing time τc in equation
(2.3.13). Thus, the stability of the solution as well as the range in the phase space can be
enhanced using an applied external magnetic field. They motivate an additional damping
mechanism, which is only due to the stochastic nature of the equation of motion. More
precisely, this stochastic damping annihilates the pure deterministic damping α for a critical
correlation time τ∗c . The second derivative of the magnetic moment in equation (2.3.11)
can be considered in general terms to give retardation in magnetization dynamics. LLG
dynamics is accompanied by a simultaneous variation due to the cause: a perturbation at t
entails instantaneously a response at t′ = t. But in principle a certain amount of time must
pass, before the action follows from the cause. For this reason, Bose et al. introduces the
retarded dynamics equation

∂mi

∂t
=
∫ t

0
dt′
∑
j

Υij
(
t− t′

) {
mj
(
t′
)
×
[
−γBj

(
t′
)

+ α
∂mj(t′)
∂t′

]}
, (2.3.17)

with the retardation function Υ. Both retardation in time and in space were accounted
for and result in microscopic dephasing of the magnetic moments that is macroscopically
detectable as an additional damping mechanism. In particular, the Heisenberg coupling and
the coupling coming from the retardation are opposed operations. Later on in this thesis
a non-local damping will be introduced, producing also retardation effects and reduced
relaxation times.

Time correlation in magnetic relaxation, especially nutation, is hard to observe experi-
mentally. A local, ultrashort measuring method will be required. The scanning-tunneling
microscope (STM) offers spatial resolutions on a nm-length scale [19, 20] and the possibility
of applying strong external magnetic field up to 10 T [98, 209]. However, due to the scan-
ning process a femto-second resolution is not achievable. Pump-probe techniques [153], in
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2.3 Extended Landau-Lifshitz-Gilbert equation—nutation and retardation

contrast, provide a femtosecond time-resolution [162]. Combining both could be in principle
used to measure such phenomena. Even so, observing magnetic correlation in time will
remain an experimental challenge.

Magnetic nanodomains e.g. in Co islands on Cu(111) indicate the existence of non-coherent
magnetic states, that are significant for nutation. Hence, I analyzed the role of time retarda-
tion and nutation in low-dimensional magnetic systems at zero and finite temperatures. The
results were published in [35]. Here, the non-equilibrium thermodynamics and the Landau-
Lifshitz-Miyazaki-Seki equation were applied to the microscopic magnetization dynamic, in
contrast to the mesoscopic ansatz in literature [57]. I summarized with the importance of
nutation on a fs-time scale and for rim atoms in nanostructures. Thus, magnetic retardation
must be account for near the adiabatic limit.
Since nutation correlates to the angular momentum transfer, the question to the isotropy
of this transfer and, in addition, the energy dissipation occur. Moreover, the non-statistical
impact of other microscopic degrees of freedom are neglected so far. Hence, an extended
methodological model will be required.
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Chapter 3

Electronic structure and magnetic
properties

Magnetism is a correlation effect of electrons in solid state matter. Hence, the characteriza-
tion of magnetic materials are accompanied by investigations of the ground state of the many-
body electron system. The Holy Grail of condensed matter physics is the solution of the
eigenvalue problem of the Hamiltonian Ĥ for the electrons-ions system

Ĥ = T̂n + T̂e + V̂nn + V̂ee + V̂ne + V̂ext. (3.0.1)

T̂n and T̂e represent the kinetic energy of the nuclei and the electrons, respectively. V̂nn, V̂ee
and V̂ne are the repulsive nuclei interaction, the electron interaction (Coulomb interaction)
and the attractive nucleus-electron interaction, respectively [233]; so one has to deal with
the coupled Schrödinger (or Dirac) equations about 1026 particles.
The complexity of the many-body problem is reduced, when the electron-nucleus coupling
is weak, so that the electrons are decoupled from the nuclei and move in an effective nuclei
potential (Born and Oppenheimer 1927 [29]). In 1965 Hohenberg, Kohn and Sham pro-
posed a way to describe the many-body problem in which the total energy is considered as
a functional of the charge density. The physical problem loses intricacy and reduces to an
effective one-electron problem [133, 160]. This quantum-mechanical approach, called density
functional theory (DFT) [158], solves the many-body electron system exactly in the limit of
a completely known exchange-correlation functional.
The first section 3.1 introduces the basic concepts of density functional theory. The nu-
merical implementation of the density functional theory relies on different methods such as
pseudopotential plane wave or multiple-scattering methods. The latter, known as Korringa-
Kohn-Rostoker (KKR) method (section 3.2), is used in this thesis to obtain the electronic
structure for systems of interest. Information about spin and orbital momentum of the elec-
tron, electron correlations and, consequently, magnetism are expressed in a Green function
formalism, which will be discussed in sections 3.2 and 3.3. Within the limit of strongly
localized electrons with a small orbital overlap, the tight-binding method (section 3.4) can
also be used to extract magnetic properties.
The role of nanoscopic degrees of freedom on magnetism and the electronic structure will
be also discussed further: the lack of inversion symmetry in the crystal lattice entails spin-
dependent electronic scattering, induced by spin-orbit coupling, which manifests itself non-
collinear magnetism (section 3.5). The magnetic exchange can also be sensitive to the cou-
pling with a thermal bath. Hence, magnetic disorder within the coherent potential approxi-
mation (CPA), introduced in section 3.6, reflects the magnetic thermal noise in the electron
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3.1 Density functional theory

system. Another distinctive property of the magnetization dynamics is the relaxation rate α.
The intrinsic magnetic damping is determined by perturbation of the electronic ground state
due to rotation of the magnetic moment, as it will be discussed in the torque-torque correla-
tion and the breathing Fermi-surface model (section 3.7).

3.1 Density functional theory

Density functional theory is one of the most successful applied theories for the study of
electronic structure1, in particular for atoms, molecules or crystals. It has its conceptional
roots in the Thomas-Fermi model [90, 265]. 1998 Walter Kohn was awarded the Nobel prize
in chemistry for predicting a great variety of molecular properties with DFT: molecular
structures, vibrational frequencies, ionization energies, electric and magnetic properties,
etc.

Density functional theory deals with the many-body Hamiltonian of an electronic system
in the Born-Oppenheimer approximation [29], which is composed of the kinetic energy T̂ ,
the electron-electron interaction Ŵ , determined by the Coulomb energy and the effective
‘underlying’ potential V̂ , which originates from the interaction with the nuclei and dictates
how the electrons propagate:

Ĥ = T̂ + V̂ + Ŵ . (3.1.1)

In a system of N coupled electronic wavefunctions ψσ = ψσ(r1, r2, . . . , rN ) with spin σ, the
spin-resolved electron density

nσ(r) =
∫
|ψσ(r, r2, . . . , rN )|2 dr2dr3 . . . drN (3.1.2)

contributes to the total electron density n and the magnetization densitym

n (r) = n↑(r) + n↓(r)

m(r) = n↑(r)− n↓(r) or m(r) = e~

2mψ+(r) β̂σψ(r) . (3.1.3)

Here, β̂ comes from the Dirac equation and is traceless. The variation principle [207] yields
the ground state energy as expectation value of the Hamiltonian Ĥ for the ground state
wavefunction |ψ〉 of the total system,

E[ψ] = 〈ψ| Ĥ |ψ〉
〈ψ|ψ〉

, (3.1.4)

and implicates the ground state energy E0 = limψ→N E[ψ] as a functional of the number of
electrons and the nuclear ‘external’ potential V̂ .

Hohenberg and Kohn showed in 1965 [133] that the expectation value of any ground state
observables depends only on the electronic density. In particular, the density functional
theory is based on the two Hohenberg-Kohn theorems:

1From the Nobel prize lecture of Walter Kohn “Electronic structure of matter - wave functions and density
functionals”, 1999
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The first H–K theorem states the ground state properties of a many-electron system are
uniquely determined by the ground state electronic density. The ground state energy E0
can be expressed in terms of the electron density as

E[nσ] = T [nσ] + U [nσ] +W [nσ] . (3.1.5)

The second H–K theorem states that the exact ground state density n0
σ(r) minimizes the

energy functional E[nσ], such that for any given nσ, E
[
n0
σ

]
≤ E[nσ].

These theorems give no explicit form for the functionals in (3.1.1), which was, however,
first realized by Kohn and Sham [160]. They made the following assumption: the energy
can be expressed in a non-interacting electron system by an effective one-particle potential
corresponding to the same electron density

E[nσ] = T [nσ] + V [nσ] + EH [nσ] + Exc[nσ] , (3.1.6)

with the Hartree energy EH [nσ] = 1/2
∫
nσ(r)nσ(r′)/|r−r′| drdr′ [7, 66] and the exchange-

correlation energy Exc[nσ]. According to the second Hohenberg-Kohn theorem, the variation
of equation (3.1.6) leads to the Kohn-Sham equation(

− ~
2

2m∇
2 + v(r) + uH(r) + uxc(r)

)
︸                                                  ︷︷                                                  ︸

ĤKS

φi,σ(r) = εi,σφi,σ(r) , (3.1.7)

with the Hartree potential

uH(r) =
∫

nσ(r′)
|r − r′|

dr′ , (3.1.8)

and the exchange-correlation potential

uxc(r) = δExc[nσ]
δnσ

. (3.1.9)

Here, φi,σ(r) is the non-interacting one-electron wave function with spin σ. This simplifies
the initial many-body electron problem with 1026 degrees of freedom to a single inhomoge-
neous differential equation.

In order to include spin-orbit effects, a relativistic generalization of the density functional
theory will be required. N interacting electrons propagate in a external four-potential
V µ = (V,A), where A is the vector potential implicated by the presence of a magnetic field.
Thus, the ground state energy is a functional of the four-component current Jµ = (n, )
[235]

E[Jµ(r)] = T [Jµ(r)] +W [Jµ(r)] +
∫

[n(r)V (r)−m(r)B(r)] dr , (3.1.10)

with the magnetization densitym(r) (equation (3.1.3)). One can find a similar expression as
in the non-relativistic case, namely the Dirac-Kohn-Sham equation [235](

cα̂p̂+ β̂mc2 + veff (r)−m(r) ·Beff (r)
)
ψi = εiψi. (3.1.11)
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3.1 Density functional theory

The effective potential constitutes the external potential, the Hartree contribution, as well
as the exchange-correlation term,

veff (r) = V (r) +
∫

nσ(r′)
|r − r′|

dr + δExc[nσ(r) ,m(r)]
δnσ(r) . (3.1.12)

In addition, the effective field is composed of the external field and the variation of the
exchange-correlation field with respect to the magnetization density:

Beff (r) = Bext(r) + δExc[nσ(r) ,m(r)]
δm(r) . (3.1.13)

Since the exact form of the exchange-correlation potential is not known, approximations are
necessary. But in principle, if the exchange-correlation functional is known, the solution of
the Kohn-Sham equation would be exact within the Born-Oppenheimer approximation. Let
εunifxc (nσ(r)) be the exchange-correlation energy density of the homogeneous electron gas
for the charge density nσ(r). The local (spin) density approximation (L(S)DA)[160] states
that, if the charge density nσ(r) is slowly varying in space, the exchange correlation energy
is the same as

ELDA
xc [n↑, n↓] =

∫
εunifxc (n↑(r) , n↓(r))n(r) dr, (3.1.14)

as first suggested by Kohn and Sham [160]. However, this approach tends to underesti-
mate atomic ground state and ionization energies, while overestimating binding energies.
The exchange and the correlation part are linearly decomposed, where analytical forms
of correlation energy Ec are given by e.g. Vosko-Wilk-Nusair [277], Perdew-Zunger [226],
Cole-Perdew [64] or Perdew-Wang [223–225].

If the criterium of a homogeneous charge density is not guaranteed, the gradient of the
density has to be accounted for. Thus, the integrand f in the generalized gradient approxi-
mation (GGA), that replaces nεxc in the LSDA, is a functional of the first derivative of the
density and the density itself:

EGGA
xc [n↑, n↓] =

∫
f [n↑, n↓,∇n↑,∇n↓] dr. (3.1.15)

When comparing both exchange-correlation functionals, the GGA tends to improve energies,
ionization energies, geometrical energy differences, expands and softens chemical bonds. It
is remarkably successful for small molecules, but fails for delocalized electrons in the uni-
form gas when f(n↑, n↓, 0, 0) , nεunifxc and, thus, in metals. An analytical form for this
exchange-correlation function is expressed e.g. by Perdew-Burke-Ernzerhof [222]. Meta-
GGA methods contain the derivative of the local density up to the second order [264].
Further advanced approaches for calculating the self-energy of the many-body electron sys-
tem, such as L(S)DA+U [5], self-interaction correction (SIC) [182, 226] and the self-energy
correction (GW) [11, 106, 119–121], have also been applied to first-principles calculations.
These functionals improve the band gaps in insulators [221] or rare earth metals [68], in
better accordance with experiments.

The Kohn-Sham problem focuses mainly on the equilibrium (or stationary) state of the
electronic system. Non-equilibrium considerations as well as external excitations, such as
femtosecond laser pulses, are not included in DFT. The dynamics of a many-body problem,
caused by a time-dependent potential, is instead described within the time-dependent density
functional theory (TDDFT) [187], founded on the Runge-Gross theorem [237]. This is
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the equivalent of the Hohnberg-Kohn theorem of DFT and postulates a unique mapping
between the time-dependent external potential and the time-dependent electronic density
of the system. The energy minimization principle does not apply, since it does not exist for
excited states [117]. The time-dependent density n(r, t) can be obtained by fictitious systems
of non-interacting electrons in the Kohn-Sham system, where the electrons ‘feel’ an effective
time-dependent Kohn-Sham potential [117]. If the external perturbation is small, then the
time dependence will be regarded within a linear-response perturbation theory [117], which
can be applied for magnon-lifetime and complex magnetization-dynamics studies [44–46].
Accounting for TDDFT in magnetization dynamics simulation provides a more fundamental
approximation of nano-reservoirs (electron, spin, phonon) and their connection. But this
will be studied in the future.

Within the density functional theory, magnetic information can only be extracted by ana-
lyzing the total energy. Here, the magnetic exchange parameter J can be gained from the
total energy variation with respect to rotation of atomic spins. Especially in metal oxides,
this procedure underestimates the induced moment in the oxygen [239, 240]. This misfit
calls for methods giving direct access to the magnetic moment and the exchange interaction
but still base on DFT, e.g. the Green function technique.

3.2 Multiple-scattering theory

The band structure of a material offers valuable clues to its electric and magnetic properties.
In the framework of a single-electron picture, different theories have been developed to
calculate the dispersion relation εk,n, characterized by the band index n and the wave vector
k. The gradient of the dispersion is mainly determined from the crystal potential and the
electron-electron interaction. There exist two different limiting cases: the potential of the
cores is negligibly small compared to the kinetic energy of the electrons (nearly-free electron
model) [7, 156] and are, thus, simulated as a perturbation in the free-electron motion. This
model holds for valence states, but not for core states. In contrast, the potentials can
be considered as strong (tight-binding model; see section 3.4). This ansatz is valid for
core states and fails for partially filled d- or f -shells. Electron-electron interaction is not
considered in the tight-binding as well as in the nearly-free electron model. This calls for
a method that acts between these two limits, giving furthermore direct access to magnetic
properties.

The periodicity of a crystal ‘boils down’ the single-electronic problem for the whole bulk
to just one reduced region: the Schrödinger (or Dirac) equation (3.2.1) has to be solved
only within the Wigner-Seitz cell, around the site Rn (figure 3.2.1). Using subsequently
the translation symmetry based on Bloch’s theorem, [7, 22, 156] one obtains the solution
for the entire crystal. More precisely, the Bloch theorem states that the eigenstates of a
periodic system may be written as product of a phase factor and a lattice periodic Bloch
function. Assuming a spherically symmetric potential within the Wigner-Seitz cell (atomic
sphere approximation [ASA]; figure 3.2.1 red spheres), the solution of the Schrödinger
equation for the many-body electron Hamiltonian in the Born-Oppenheimer approxima-
tion

Ĥψk,n = εk,nψk,n (3.2.1)
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3.2 Multiple-scattering theory

a) b)

Figure 3.2.1.: Wigner-Seitz construction of the lattice (gray honeycomb structure) and muffin-tin
approximation. The potential of the crystal will be approximated as non-overlapping
spherical potentials (red circles in a). The radius of the spheres is the muffin-tin
radius r0, where the potential will be approximated as constant at the interstitial
region between the spheres. If the radius is larger than the Wigner Seitz radius, the
spheres overlap (blue spheres in b). The nucleation center is labeled by n and m.

yields in spherical harmonics basis Ylm(ř) for fixed n,k,

ψ(r) =
∑
lm

AlmRl(r) Ylm(ř) . (3.2.2)

Here, Alm are constants and Rl(r) is a radial-only wave function; l and m are the orbital
and magnetic quantum numbers. In order to avoid unsolvable boundary condition [108]
between the Wigner-Seitz cells, the crystal potential is represented as a muffin-tin potential
[246, 275], where the radius riMT of the potential is determined through non-overlapping
spheres (figure 3.2.1 a). Within this approximation, the effective potential of the whole
lattice is then a superposition of radial potentials, each measured from a particular ionic
position Ri,

V eff(r) =
∑
i

Vi(r −Ri) with Vi(r) =
{
V (r) r ≤ riMT

0 r > riMT

. (3.2.3)

However, spheres with the Wigner-Seitz radius riWS , where typically riMT < riWS , are needed
to account for the full cell volume and lead to some overlap in the interstitial region (fig-
ure 3.2.1 b), tending to give a better representation of the full potential. Hence, ab initio
methods are set out to obtain the expansion coefficientsAlm.

Korringa [163] and independently Kohn and Rostoker [159] have introduced a method
[141, 199, 242] that extracts the coefficients Alm and the dispersion relation εk,n by rewrit-
ing the Schrödinger equation (3.2.1) as an integral equation based on the Green function
technique and as a functional of the state (3.2.2). The concept of the Greenian is a use-
ful and general technique, named after the British mathematical physicist George Green
[66, 244]. Green function is the pulse response of an inhomogeneous differential equa-
tion

L(r)u(r) = f(r) . (3.2.4)

where L is a linear differential operator. Via the superposition principle, the convolu-
tion of the Green function with an arbitrary function f(r) is the solution of the inho-
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mogeneous differential equation for u(r). The Greenian refers to various types of cor-
relation functions, indicating that Green functions are always symmetric in space argu-
ments.

By definition, the Greenian Ĝ of equation (3.2.1) is specified as(
zÊ − Ĥ

)
Ĝ(z) = Ê or Ĝ(z) =

(
zÊ − Ĥ

)−1
. (3.2.5)

z = ε+iΓ is a complex energy, Ê is the unit operator, and Ĥ is the Kohn-Sham Hamiltonian
ĤKS defined in equation (3.1.7). The Green function contains essentially all of the physical
information [79, 112, 113, 293], e.g. the trace of the imaginary part of Ĝ is related to
the density of states. Furthermore, the Green function is linked to the wave propagation
according to the Lippmann-Schwinger equation [293]

ψk(r) =
∫
G
(
r, r′, z

)
V
(
r′
)
ψk
(
r′
)

dr′. (3.2.6)

V (r) is the potential in the Hamilton operator Ĥ. One has in principle to distinguish
between retarded (Γ → 0+; Ĝ+) and advanced (Γ → 0−; Ĝ−) propagation [293]. The
propagator Ĝ is also conveyed by the Lehmann spectral representation that gives a general
expression for the two-point function [143, 170]

Ĝ(z) =
∑
ν

|ψν〉 〈ψν |
z − εν

. (3.2.7)

Here, the poles are the eigenvalues εν of the Hamilton operator Ĥ in equation (3.2.5). This
representation is based on some quantum field axioms i) invariance under inhomogeneous
Lorentz group, ii) local commutativity, iii) positive definiteness of the norm in the Hilbert
space [181].

Suppose the solution of equation (3.2.5) for a reference system Ĥ0 is Ĝ0, the Green function
Ĝ of the perturbed system Ĥ = Ĥ0 + ∆V can be deduced by the solution of the Dyson
equation

Ĝ(z) = Ĝ0(z) + Ĝ0(z) ∆V Ĝ(z) (3.2.8)
= Ĝ0(z) + Ĝ0(z) T̂ Ĝ0(z) , (3.2.9)

where the transition operator or t-matrix T̂ = ∆V + ∆V Ĝ0T̂ is motivated. This en-
ables to solve the Dyson equation exactly. T̂ accounts for scattering properties of the
entire system, which is composed of single-site scatterers represented by the single-site
t-matrix tn and multiple scattering coming from the scattering-path operator τ̂nm [112,
293]:

T̂ =
∑
nm

τ̂nm where τ̂nm = t̂nδnm +
∑
k

t̂nĜ0 (1− δnk) τ̂km. (3.2.10)

The multiple-scattering contribution τ̂nm transfers a wave at site n to a wave at site m and
takes into account all possible paths. This allows to express the density of states in terms of
the scattering-path operator (Lloyd’s formula [177, 295, 296]),

N(ε) = − 1
π
Im Tr ln (τ̂) (3.2.11)
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3.2 Multiple-scattering theory

Due to the spherical representation of the wave function (3.2.2), the particle propagator Ĝ as
well as the scattering-path operator τ̂ can be written into angular momentum representation
(structural Green function matrix)1 [190, 293]

Gnm
(
r, r′, ε

)
=
∑
L

RLn(r<; ε)
(
ILn (r>; ε)

)†
δnm +

∑
LL′

RLn(rn; ε) τLL′
nm

(
RL′
m

(
r′m; ε

))†
, (3.2.12)

where r< = min (rn, r′n), r> = max (rn, r′n) and rn = r − Rn. This transition allows the
reduction of the original integral equation into a convenient matrix equation. L = (l,m) is
a combined quantum number: the angular momentum l and magnetic quantum number m
(in the relativistic case: L = (κ, µ), where κ is the spin-orbit and µ the magnetic quantum
number [293]). R and I are the regular and irregular solution of the radial Schrödinger
(or Dirac) equation. gLL

′
nm , related to the structural form τLL

′
nm via the Dyson equation

[293]

τLL
′

nm = δnmt
LL′
n +

∑
k,n,L′′,L′′′

tLL
′′

n gL
′′L′′′

nk τL
′′′L′

km , (3.2.13)

is the structure constant established by Korringa and Rostoker. At the end, equation (3.2.12)
reflects the fundamentals of multiple-scattering theory.

Via Fourier transformation, which transforms periodic systems into the reciprocal space, and
in terms of the matrices in L-space, equation (3.2.13) turns into the fundamental equation
of multiple-scattering theory

τ (ε,k) =
(

t−1(ε,k)− g(ε,k)
)−1

. (3.2.14)

The structural form g(ε,k) depends only on the geometry of the lattice [293] and not
on the scattering properties. More precisely, t−1 is only a function of the cell potential,
whereas g accounts for the structure of the lattice. This admits to solve equation (3.2.13)
instantaneously [88]. To obtain the potential V for the system of choice, a self-consistent
loop for the potential is established in DFT, calculating the electron density from the known
Green function. The spherical symmetry of V truncates L at some relatively small numbers
L = 2, 3, 4, . . ..

In equation (3.2.13) the reference system G0 for the free-space solution [74] can be applied.
Its structural constant, however, decays weakly in space, which implies that a huge number
of atoms has to be considered and numerical instabilities appear. Szunyogh, Zeller and
Zahn [262, 284, 294, 297] developed the screened Korringa-Kohn-Rostoker method that
starts, first, from the free electron gas G0 and transfers, by using the Dyson equation, the
solution to a reference system G′. In a second G′ will be used to achieve the Green function
G for the system of interest. Here, good results are obtainable only when the screened
structure constants are calculated with ≥ 5 nearest-neighbor shells of repulsive scatterers
[200]. This provides a faster decrease of the wave function in the realspace and improves
convergence.

So far, neither spin nor coupling between the spin and the orbital degrees of freedom were
tackled. The spin polarization in the Dirac equation and, therefore, in the fully relativistic
KKR Green function method is considered in the potential via the Zeeman term, which
accounts for the coupling between the magnetization density (3.1.3) and the magnetic field

1The abbreviation Gnm(r, r′) = G(r +Rn, r
′ +Rm) is used here.
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B [116, 136, 293] (
cα̂p̂+ β̂mc2 + veff (r)− β̂σ ·B

)
ψi(r) = εiψi(r) . (3.2.15)

In the non-relativistic case, two decoupled quantization axes of the spin (B = ±Bez) im-
plying for the structure constant form

gnm =
(

g↑↑nm 0
0 g↓↓nm

)
. (3.2.16)

In general, this is also manifested within the spinor representation of the single-site scatterer
t−1
n for an arbitrary quantization axis en (here en = ez) [293]

t−1
n = 1

2
(

t−1
n;↑ + t−1

n;↓

)
I + 1

2
(

t−1
n;↑ − t−1

n;↓

)
(en · σ) . (3.2.17)

↑ and ↓ indicate the spin-up and the spin-down states, respectively. The coupling between
the electron spin and the magnetic moment within a s−d model illustrates a preferred align-
ment of the spin in the magnetic moment direction (figure 3.2.2).

n

m
en

em

τmn

τnm

Figure 3.2.2.: Scattering process between two sites n and m (gray shaded spheres) with local mag-
netization density represented by en and em (white filled arrows). The scattering
path operator τnm refers to the direction e0, shown by the small arrows. In the
non-relativistic case only two directions in en occur, parallel and antiparallel to e0.
In the relativistic case, however, the magnetization en is a continuous quantity on
the unit sphere and a spin-flip in back-scattering becomes probable.

In the relativistic case, the magnetization direction is a continuous quantity, projected on a
unit sphere. A spin flip in the scattering process becomes probable, which consequences in
non-zero off-diagonal elements in the structure constant

gnm =
(

g↑↑nm g↑↓nm
g↓↑nm g↓↓nm

)
. (3.2.18)

and t−1
n;σ becomes itself a function of the magnetic moment orientation,

t−1
n (e) = R†(e, e0) t−1

n (e0) R(e, e0) . (3.2.19)
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3.3 Magnetic properties within multiple-scattering theory

This expression defines the scattering probability of a single-site scattering matrix with the
magnetic moment direction e referred to the ground state orientation e0 and considers the
coupling between the spin and the electron reservoir via relativistic rotation matrices R
[293]. R is a unitary representation of that O (3) transformation which rotates the e0 axis
along e.

For a deeper discussion of improvements in the Korringa-Kohn-Rostoker method, one should
refer to [77, 82, 194, 219]

3.3 Magnetic properties within multiple-scattering theory

The magnetic exchange as well as the anisotropy in the Heisenberg model are derived from
energy variation (energy variation principle). Therefore, the energy change ∆E in the in-
teracting many-body electron system (3.1.3) is assumed to be the same energy variation
δE0 for the non-interacting electron system via the magnetic force theorem. Correlations,
however, are always included through the correlation functional in the Kohn-Sham equa-
tion.

Magnetic force theorem Having the solution of the Kohn-Sham equation (3.1.7) at hand,
the energy is expressed in terms of an kinetic and potential energy T and V of the non-
interacting electrons E0 = T + V = ∑

i εiNi, as well as the Hartree and the exchange-
correlation energy E1 = EH + Exc. Ni is the occupation number of state i with the energy
εi. The self-consistent iteration of the energy can be mapped in two steps [123, 174, 184, 195,
218, 279]: i) variation of the non-interacting electron problem with constant Hartree- and
exchange-correlation energy E1; ii) the potential relaxes into a new energy state by changing
E1 (change of the electron density n → n + δn). If the effective potential is changed, also
the energy E0 will be perturbed

∆E = δE0 + δpotE0 − δE1. (3.3.1)

If the occupation numbers are constant, the last two terms cancel each others, except for
a volume contribution, where S is the surface element and δS is the change of the surface
[43, 218]

∆E = δE0 −
∫
n2 δεxc

δn
δS · dS (3.3.2)

This is the so called magnetic force theorem that predicts, in case of a constant volume,
the relation between the energy change of the non-interacting and the interacting electron
systems. This fundamental theorem can be used to determine, for example, the exchange
integrals Jij .

Lichtenstein formula The Heisenberg energy reads E = −∑ij Jijmi ·mj . If a single
magnetic moment is tilted out of the ferromagnetic order, given by the case Jij > 0 ∀i, j,
then the magnetic energy will increase by:

δEi = −2
∑
j

Jijmj · δmi. (3.3.3)
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The same logic holds also for two magnetic moments, when the interaction between the
moments among themselves as well as the exchange between the moments and the ferro-
magnetic host is considered. The energy grows in this case by about δE = −Jijθ2/2, where θ
is the small tilting angle out of the ferromagnetic equilibrium1. Under conservation of the
number of electrons, this variation is proportional to the energy perturbation determined in
the magnetic force theorem (3.3.2)

δE = −
∫ EF

δN(ε) dε. (3.3.4)

The integration runs up to the Fermi energy EF . N is the integrated density of states, which
can be substituted with Lloyd’s formula [174]

δE = − 1
π

∫
Im Tr ln τ̂

(
I + δt̂−1τ̂

)
dε. (3.3.5)

The Fourier transform of the free energy and, thus, of the perturbed single-site scattering
δt−1 allows to use the spinor representation (3.2.17). Finally, the Lichtenstein formula
[173, 174] is expressed from comparison of the two energy variations from the Heisenberg
model and from (3.3.5):

Jij = − 1
π

∫ EF
Im Tr ∆tiτ ij∆tjτ ji dε, (3.3.6)

with ∆ti =
(

t−1
i,↑ − t−1

i,↓

)
. This features the magnetic exchange as the difference of the spin-

up and spin-down potential on site i and j and its orbital overlap due to τij that is essential
for occurrence of magnetism (see section 2.1).

Magnetic anisotropy The free energy of the system, deduced from the magnetic-force
theorem, is independent of the direction of the magnetization. Magnetization, however,
favors some direction with respect to the crystal symmetry (see section 2.1): the realignment
of the magnetic moment in a not symmetry-preferred direction costs the magnetic anisotropy
energy

EMCA = E(M1)− E(M0) . (3.3.7)

Since spin-orbit coupling in the Dirac equation breaks the symmetry with respect to the
magnetization direction, the energy for magnetizationM0 (quantization axis in the magnetic
“soft” direction) differs from the energy forM1 (quantization axis in the “hard” direction).
So, the magnetocrystalline anisotropy is obtainable within the fully relativistic multiple-
scattering theory.
In a quasi-relativistic model, where the Pauli equation is used [220], Bruno [42] developed a
simplified theory to observe the anisotropy

EMCA ≈ 〈L · S〉M1 − 〈L · S〉M0 . (3.3.8)

Here, L and S are the orbital and the spin momenta of the electron. Selected systems, such
as multiple-phase multiferroica Fe/BTO [27], proved good agreement between the anisotropy
calculated with the Dirac and the Pauli equation.

1The energy variation regards to a ferromagnetic host with the magnetization in z-direction. Thus, δmi =
(0, sin (θ) , cos (θ)), which can be Taylor-expanded to reach such results.
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3.4 Tight-binding model
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Figure 3.3.1.: Calculated magnetic exchange parameter versus distance r for bcc-Fe (red circles),
fcc-Co (blue triangles) and fcc-Ni (green squares) bulk. In three-dimensional crystal
structures the Jij drop off proportional to 1/r3, which is the case for all three materi-
als. Typical for Fe are equal nearest- and next-nearest-neighbor interactions. In first
order for all three Stoner magnets, a simple mean field method predicts a smaller
phase transition temperature compared to the experiment .

Having both characteristics — magnetic exchange and anisotropy — at hand, various mag-
netic properties are accessible and were studied during my PhD. For instance, the super-
paramagnetic state as well as the switching behavior of 2 ML thick triangular Co islands on
Cu(111) can be studied, exhibiting nanodomain formations due to the shape anisotropy be-
yond the Stoner-Wohlfarth model [33]. Magnetic oxides, such as SrRuO3 [84] or SrTcO3 [28],
are promising materials for multiferroic and exchange-bias applications only, if the magnetic
order is stable up to room temperature. The Jahn-Teller distortion [138] indicates the sen-
sitivity of the d-orbitals (‘magnetic orbitals’) to lattice distortions, strain and phonons. The
minority spin-channel located just above the Fermi surface in the half-metallic perovskite
La 2

3
Sr 1

3
MnO3, e.g., gets occupied due to tetragonal distortion, leading to a strong decrease

of the effective exchange coupling and, thus, a lowering of the Curie temperature [36]. Beside
the manipulation of the magnetism via strain, an electrical manipulation of the magnetic or-
der is offered by topological insulators, where magnetism can be varied by the Dirac cone of
the surface state [210]. This state survives, e.g, in Sb2Te3 under weak doping with magnetic
atoms, where the impurities form magnetic clusters [183].

3.4 Tight-binding model

The tight-binding (TB) model is an empirical scheme for construction of Hamiltonians by
placing ‘atomic-like orbitals’ at atomic sites and allowing electrons to hop between these
through the orbital overlap [66, 243].

Strong lattice periodic potentials with bound, localized electron states depict the tight-
binding model as one of the two bounding cases: i) weak potentials and nearly free electrons
(electron gas) and ii) strong and localized potentials. The second model acts between the
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limits that the overlap is strong to manipulate the effective velocity in the dispersion rela-
tion, but still, weak enough to hold the description of an isolated atom at positionR. Conse-
quently, the Schrödinger equation for the isolated atom reads:

ĤR(r)φn(r) = εnφn(r) , (3.4.1)

where εn and φn are the eigenvalues and the eigenstates of the isolated-atom Hamilto-
nian. Bringing together N such isolated atoms splits the N -times degenerated states
due to the Coulomb interaction (figure 3.4.1) and one has to solve a many-body prob-
lem:

Ĥ(r)ψk,n(r) = εk,nψk,n(r) . (3.4.2)

n characterizes the state with the energy εk,n. The wave function ψk,n is composed those
of correlated isolated atoms. The Hamilton operator with the attractive crystal potentials
V (r −R)

Ĥ = −∇
2

2m +
∑
R′

V
(
r −R′

)
= ĤR +

∑
R′,R

V
(
r −R′

)
︸                  ︷︷                  ︸

∆V(r)

(3.4.3)

can be separated into on-site energy contributions (atom at R) and potentials ∆V coming
from the other lattice sitesR′. The latter contribution is considered as weak in this treatment
[7].

h

h

r

ε0

Free atom


r


E


~h

N degenerated states

Figure 3.4.1.: Band splitting of N degenerate states, coming from N localized atoms, with respect
to the atomic separation r. Due to the large number of atoms N and the resulting
dense-graded energy levels, the splitting results in a continuous region (marked by
the shaded area). The width is proportional to the transition probability h between
the nearest neighboring atoms.

Hence, the arrangement of homogeneous atoms in the crystal is treated as a perturbation
in the atomic (isolated) problem and the states ψn of the Hamilton operator Ĥ can be
constructed from the wave function φn of the ‘isolated’ atomic Hamiltonian ĤR. In process,
the atomic states φn are also eigenstates of Ĥ. The weak potential perturbation implies no
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3.4 Tight-binding model

sp-states


d-states


Overlap
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V


Figure 3.4.2.: Periodic crystal potential and the resulting overlap of the atomic wave-functions.
Due to merged single atoms and the interaction of the nuclei, the potential landscape
alters (dotted lines - potential of single atoms, gray area - potential landscape as
closeness of single atom arrangement). Core states, e.g. d-states, are localized and
lie lower in energy. sp-electrons (located above the shaded area) are long-ranged,
delocalized states with high energy, moving almost free through the crystal. Orbital
overlap appears, which has to be accounted as weak. Otherwise, the tight binding
method becomes arguable for this state.

chemical bond, whereupon φn(r −R) vanishes in the region of ∆V (r). Consequently, the
eigenstates of Ĥ are constructible as Bloch states

ψk,n(r) = 1√
N

∑
R

eik·Rφn(r −R) (3.4.4)

that obey the periodicity of the crystal lattice. The Bloch theorem [22] predicts equal
probability of finding an electron in each Brillouin cell. Since in crystals or molecules
a chemical bond must exist, the condition ∆V φn = 0 can be only valid for inner core
states, but not for outer atomic levels. The Bloch states (3.4.4) are not anymore the exact
eigenstates of the Hamiltonian Ĥ; they are not orthogonal [7]. In particular, the overlap
integrals are smaller than 1. The non-orthonormal basis can be maintained using Wan-
nier states wn (r −R) [7]. These fulfill the orthonormal condition and are not necessarily
extended in the atomic basis. In general, the Wannier functions are unknown and not
unique.

Let the Bloch states (3.4.4) be the eigenstates of Ĥ, then the eigenvalues can be obtained
using the Ritz variational principle [234]

εk,n = 〈ψk,n| Ĥ |ψk,n〉
〈ψk,n|ψk,n〉

. (3.4.5)

If one neglects the three-center integrals (due to the small overlap between the wave func-
tions) [243], the eigenstates εk,n in the tight-binding approximation read

εk,n = εn + β(R) +∑
R′,R e−ik·R′

h(R′)
1 +∑

R′,R e−ik·R′
α(R′)

, (3.4.6)
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where only the site at R (central atom) is considered. The atomic energy shifts due to the
potential of the neighboring atoms

β(R) =
∫
φ∗n(r)

∑
R′,R

V
(
r −R′

)
φn(r) dr, (3.4.7)

is, in most cases, small. α is the overlap integral resulting from the non-orthonormal basis
(Bloch states)

α(R) =
∫
φ∗n(r −R)φn(r) dr. (3.4.8)

h’s are the transfer integrals (“hopping” integrals)

h(R) =
∫
φ∗n(r −R)V (r −R)φn(r) dr, (3.4.9)

which indicate the transfer probability from one atom to the next one and represent also the
bandwidth (figure 3.4.1); the inverse effective mass of the bottom tight-binding bands is di-
rect proportional to the transfer integrals [66]. One way to determine the transition integrals
is the interpolation scheme maintained by Slater and Koster parametrization [247], whereas
the direction cosines can be taken from the Slater-Koster table.

If the wave function φn(r) is assumed to be a linear combination of atomic orbitals (LCAO)∑
ν cn,ν(k)φν(r −Rn), then the solution of the TB model will become equivalent to an

eigenvalue problem

H(k) cn(k) = εk,ncn(k) . (3.4.10)

The weights in the LCAO ansatz are eigenvectors cn(k) = {cn,ν(k) : ν = 1, . . . , Nb} of the
tight-binding Hamilton matrix H(k) =

{
Hν,µ(k) = 〈k, ν| Ĥ |k, µ〉 : ν, µ = 1, . . . , Nb

}
, where

Nb are the numbers of bands and |k, µ〉 is the Hilbert space representation of ψk,n.

The tight-binding method describes very well partially filled d-states of transition-metals as
well as insulators [51, 62, 171]. In addition, the ability of considering spin-orbit coupling
[140] and exchange interaction [12] make the tight-binding method even more attractive.
The tight-binding Hamiltonian, present in this thesis, consists of three parts: the on-site
energies and the hopping elements Ĥ0, the spin-orbit coupling ĤSOC and the Zeeman term
Ĥmag. Equation (3.2.5) transfers the TB-Hamilton into Green function, to consider disorder
and alloys [21, 70, 87, 168] as well as layer-resolved properties based on renormalization
techniques [26, 129].

For some energy levels and their corresponding wave function with a larger spacial expan-
sion than the lattice constant, however, the validity of the TB model becomes arguable
due to the larger overlap (figure 3.4.3, E − EF > 5 eV). Apart of that, the tight-binding
model accounts for the electron-electron interaction only by an effective potential that be-
comes important for magnetic systems or conduction effects. Hence, it is indispensable to
prove the validity of the tight-binding model with aforementioned ab-initio methods (fig-
ure 3.4.3).

But still, I used the tight-binding model with a sp3d5f7-orbital basis to characterize magnetic
properties, especially the intrinsic dissipation α in the magnetization dynamics (section 3.7
and results in section 4.2) and the exchange splitting as a function of the spin temperature.
A genetic algorithm fit on band structures coming from first principles was performed to
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3.5 Anisotropic magnetic exchange within crystals with low symmetry
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Figure 3.4.3.: Non-spinpolarized bandstructure for Fe-Bulk calculated with the tight-binding (blue
symbols) and the KKR (red symbols) method. Up to the Fermi level EF both methods
agree well. For energies higher than EF + 5 eV (valence and conducting states), the
tight-binding method deviates, since the assumption of strong bonds fails for nearly
free electrons. More precisely, the variance is an artifact of the finite orbital basis.

obtain the Slater-Koster parameter. Beside the magnetic properties, the tight-binding model
was also used to characterize the surface state in topological insulators (not shown in this
thesis).

3.5 Anisotropic magnetic exchange within crystals with low sym-
metry

Coherent and ordered magnetic materials are well understood within the Heisenberg model
[60, 95, 96, 175, 261, 289], introduced in section 2.1. However, recent studies on thin
films [14, 25], complex ferroelectric structures [290] and low-dimensional systems [192]
reveal non-collinearity in spin textures. Such spin formations are discoverable on a nm-
length scale using scanning tunneling microscopy (STM) [19, 20], magneto-optical Kerr
effect measurements (MOKE) [231], X-ray magnetic circular dichroism (XMCD) [188] or
spin-polarized electron-energy loss spectroscopy (SPEELS) [85, 229, 276]. The Heisenberg
Hamiltonian (2.1.5) does not comprise non-collinearity, since it makes no statement about
lattice symmetries. In contrast to the experimentally postulated spin spiral structures it
couples two magnetic moments parallel to each other, if J > 0. Nevertheless, due to uni-
axial anisotropy, domain wall formation—a special kind of non-collinearity—appears on a
typical length w =

√
A/K ∼ 10 nm, where A and K are the magnetic exchange density

and the magnetocrystalline anisotropy, respectively [47]. The domain length of the non-
collinear structures discussed in the earlier listed publications and in this thesis, however,
are smaller than the typical magnetic domain wall length w, indicating a mechanism driven
by non-uniaxial anisotropy. Hence, second-order anisotropy energy contributions have to
prefer a canting between two sites i and j, forced by strong spin-orbit coupling and the
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reduction of the spatial symmetry; the Heisenberg model must be generalized, passing the
ansatz

Ĥ =
∑
ij

Eij = −
∑
ij

miIijmj . (3.5.1)

The generalized Heisenberg exchange tensor Iij is not necessarily rotational invariant, but,
due to energy conservation (Eij = −miIijmj

!= Eji = −mjIjimi), satisfies Iij = (Iji)T. It
is convenient to decompose the interaction matrix in order to obtain a relation between Iij
and the scalar Heisenberg parameters Jij

Iij ≡
1
3Tr (Iij)︸       ︷︷       ︸

Jij

E + 1
2
(

Iij + (Iij)T
)
− 1

3Tr (Iij) E︸                                     ︷︷                                     ︸
Sij

+ 1
2
(

Iij − (Iij)T
)

︸                 ︷︷                 ︸
Aij

. (3.5.2)

The homogeneous first part is related to the scalar exchange integrals Jij of the Heisen-
berg model [47, 293]. The symmetric Sij and the antisymmetric anisotropic exchange Aij

are trace-less. Sij enters as an additional uniaxial anisotropy, preferring selected orientation
of the magnetic moments due to the crystal. The non-diagonal elements of Sij are in practice
negligible and the symmetric anisotropic exchange reduces to S̃i = ∑

j Sij .

The vector

Dγ
ij ≡

1
2
∑
αβ

εγαβI
αβ
ij , (3.5.3)

relates the Dzyaloshinskii-Moriya (DM) interaction with the antisymmetric part Aij [293]

EDM
ij = Dij · (mi ×mj). (3.5.4)

This type of antisymmetric anisotropic exchange was first predicted by Dzyaloshinskii in
1958 [75, 76] due to symmetry arguments and describes instead of the uniaxial anisotropy
(see section 2.1) a unidirectional anisotropy: the energy conservation related to equation
3.5.4 maintains that the DM vectors are antisymmetric in the site indices (Dij = −Dji).
The antisymmetric exchange energy Aij favors parallel alignment of Dij in high-symmetry
directions and magnetic order, where the magnetic moments are perpendicular to Dij . This
kind of interaction characterizes the polar nature of the magnetization with respect to the
crystal structure. Moreover, Moriya postulates symmetry rules [75, 76, 203] for theD-vector
between two coupled moments mi and mj located at ri and rj , respectively (R fixes the
point bisecting the line rirj):

i) If the inversion center is located in R, then D will be zero (figure 3.5.1 a).

ii) If the mirror plain is perpendicular to rirj and passes through R, then D will be
parallel to the mirror plane (figure 3.5.1 b).

iii) If the mirror plane includes the points ri and rj , then D will be perpendicular to this
mirror plane (figure 3.5.1 c).

iv) If a two-fold rotation axis is perpendicular to rirj and passes through R, then D will
be perpendicular to this two-fold axis (figure 3.5.1 d).

v) If there is an n-fold axis (n > 2) along rirj , D will be parallel to rirj .
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3.5 Anisotropic magnetic exchange within crystals with low symmetry
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Figure 3.5.1.: Diagram of lattice symmetries that contribute to the Dzyaloshinskii-Moriya inter-
action: a) with inversion center (antiferromagnetic state), b) and c) if inversion
symmetry is broken and mirror plane symmetry exists (blue plane), d) if inversion
symmetry is broken and rotational symmetry exists (black line). The resulting DM-
vector is illustrated by the red arrow. The dotted line denotes the vector connecting
two sites i and j, added to guide the eye.

Moriya showed in addition, how to calculate the antisymmetric exchange interaction for
localized magnetic systems (insulators) [203–205]. He postulates the dependence of Dij on
the spin-orbit coupling, since it breaks both time reversal and space inversion symmetries,
which is also important for superexchange and the RKKY interaction. In metals, however,
the exchange mechanism is forced by band magnetism or double exchange [134] and even
more factors affect unidirectional magnetic coupling, such as the character of the occupied
orbitals, the crystal field and the number of d-electrons [65].

The antisymmetric exchange interaction dominates the coupling, e.g., in spin glasses, where
a disordered magnet contains non-magnetic impurities with strong spin-orbit coupling [92,
248]. Since Moriya’s two-center approach applies only to systems with localized magnetic
moments, Fert and Levy (1980) [97, 172] developed a three-center model, which is based
on the s-d Heisenberg-Hamiltonian for itinerant systems, considering that local exchange
exists between a conduction electron at r with spin S and two localized spins, mi and mj

at sites Ri and Rj , as well as spin-orbit scattering with a non-magnetic impurity at site
Rn. In second-order perturbation theory, the RKKY model comprises correlations, where
an electron is polarized by mi, scattered at the orbital momentum L and finally polarizes
mj . The effective exchange

V = −Jsd δ(r −Ri)S ·mi − Jsd δ(r −Rj)S ·mj + λ (r)S ·L (3.5.5)
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generates the Dzyaloshinskii-Moriya interaction

Dij = D0
∑
n

sin(kF (Rij +Rin +Rjn) + φ)
1 + Jsd (Rij +Rin +Rjn)

(ein · ejn) ein × ejn
RijRinRjn

. (3.5.6)

Here, Rin is the distance vector between the magnetic site i and the non-magnetic site n and
ein = Rin/Rin. D0, kF and φ are the strength of the Dzyaloshinskii-Moriya interaction, the
Fermi momentum and a phase shift, respectively. More precisely, D0 ∝ λJ2

sd/EF k3
F . Equation

(3.5.6) reminds of a RKKY-type interaction, which is not invariant under rotation of the spin
system. Furthermore, this type of antisymmetric exchange suggests significant DM contribu-
tions in materials with broken spatial inversion symmetry, where the magnetism originates
from super- or direct exchange, e.g. in perovskites [80, 241] (inverse Dzyaloshinskii-Moriya
effect, figure 3.5.2). Fert and Levy conclude that the s-d type coupling is only valid [172], if
the local density of states at the Fermi edge weighted by the SOC constant is λn(EF )� 1
(Stoner-like criteria).

i j

n

Dij

Figure 3.5.2.: Dzyaloshinskii-Moriya interaction in perovskites and spin glasses. Due to the dis-
placed atom at site n, the symmetry is reduced and anisotropic exchange becomes
important (red arrow). The direction of the Dzyaloshinskii-Moriya vector Dij is
from equation (3.5.6).

An inversion center is not present at surfaces. Moriya’s rules, however, regard only to DM
vectors between a surface and a bulk site; but no predictions of DM contributions between
two surface sites can be made [65]. In most cases, the antisymmetric anisotropic exchange
is located in-plane and relate to the surface normal (figure 3.5.3) as well as to the invariant
rotation operation of particular surfaces. On surfaces with a two-fold real- and spin-space
rotation symmetry around the surface normal n it becomes clear thatD·n = 0. Suppose q is
the propagation vector of a non-collinear structure, a mirror plane perpendicular to q implies
D · q = 0, whereas a mirror plane parallel to q prefers perpendicular arrangement of D to
the mirror plane [122]. The Dzyaloshinskii-Moriya torque is also not solvable analytically,
but under some restrictions an analytical energy minimization can be studied [122]. For
instance, when the DM vector is localized in the direction of the hard axis, a non-collinear
periodic spin-configuration will be the ground state if and only if |D| > 4/π

√
AK, where A

and K = Ky −Kx are again the exchange stiffness and the anisotropy, respectively. This
shows that the effect of the DM interaction depends strongly on the relations between the
anisotropy constants and the direction of the D vector.

The interaction matrix I in equation (3.5.1) is also observable using the KKR Green function
method (section 3.2). More precisely, the derivation of I from the total energy is similar
to Lichtenstein’s exchange integrals, accounting explicitly the orientation of the normalized
magnetic moment e(θ, φ). Thus, the matrix elements Iµνij correspond to the second-order
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3.5 Anisotropic magnetic exchange within crystals with low symmetry

a) b)

c)

Figure 3.5.3.: Set of calculated Dzyaloshinskii-Moriya vectors for a) 1ML Mn/W(001), b) 1ML
Mn/W(110) and c) 1ML Fe/Ir(111). The spheres indicate the atom positions in the
xy plane. Different colors characterize the surface (gray spheres) and the subsurface
layer (yellow spheres). The DM vectors (green arrows), regarded from the center
atom, correlates to the symmetry of the surface and are located in the xy plane:
Both Mn/W(001) and Mn/W(110) have a four-fold rotation axis in z direction,
where Fe/Ir(111) offers a three-fold character. The DM-interaction is short-ranged
(typically first and second nearest neighbors) and owns also contributions to the
sub-surface layer (induced magnetic moment). The DM-vectors agreed with those
observed experimentally [14, 25, 91, 270].

derivative of the free energy with respect to spherical coordinates θ, φ at sites i and j, as
shown by Zabloudil et al. [293]. The free energy within the magnetic force theorem and
Lloyd’s formula (3.2.11) yield

F = − 1
π
Im

∫ EF
Tr ln τ (ε) dε. (3.5.7)

The scattering path operator τ = τ (e) and the scattering matrix t = t(e) are functions
of the normalized magnetic moment e, represented by a rotation (3.2.19) out of the spin
quantization axis e0. Thus, the scattering path τ ′ for a slightly tilted magnetic moment at
site i,

ln τ ′ = ln(m + ∆mi − g0)−1 = ln τ − ln(1 + τ∆mi), (3.5.8)

is expressible in terms of the old reference state τ , where m = t−1. Taking into account
terms up to second order in ∆mi and using the Taylor expansion of the logarithmic function,
the variation of the free energy with respect to the tilted magnetic moment
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∆F = F ′−F = − 1
πIm

∫ EF Tr (ln τ ′(ε)−ln τ (ε)) dε gives [271]

∂2F

∂ϕiϕi
= − 1

π
Im

∫ EF
Tr
[
−τ ii

∂2mi

∂ϕiϕi
+ τ ii

∂mi

∂ϕi
τ ii

∂mi

∂ϕi

]
dε, (3.5.9)

∂2F

∂ϕiϑi
= − 1

π
Im

∫ EF
Tr
[
−τ ii

∂2mi

∂ϕiϑi
+ τ ii

∂mi

∂ϕi
τ ii

∂mi

∂ϑi

]
dε, (3.5.10)

∂2F

∂ϑiϑi
= − 1

π
Im

∫ EF
Tr
[
−τ ii

∂2mi

∂ϑiϑi
+ τ ii

∂mi

∂ϑi
τ ii

∂mi

∂ϑi

]
dε. (3.5.11)

This derivations link to the on-site exchange matrix Iii and account for the magnetocrys-
talline anisotropy in the generalized Heisenberg model.

The site-off-diagonal terms (i , j) rely on the rotation of two magnetic moments at site
i and j, simultaneously. Consequently, the scattering matrix for the perturbed magnetic
system τ ′ is put as

ln τ ′ = ln(m + ∆mi + ∆mj − g0)−1 = ln τ − ln
[
1 + τ (∆mi + ∆mj)

]
. (3.5.12)

Udvardi et al. [271] showed that this expression can be reduced to ln τ ′−ln τ ≈ τ∆miτ∆mj ,
that agrees with the Lichtenstein formula. Thus,

∂2F

∂ϕiϕj
= − 1

π
Im

∫ EF
Tr
[
τ ji

∂mi

∂ϕi
τ ij

∂mj

∂ϕj

]
dε, (3.5.13)

∂2F

∂ϕiϑj
= − 1

π
Im

∫ EF
Tr
[
τ ji

∂mi

∂ϕi
τ ij

∂mj

∂ϑj

]
dε, (3.5.14)

∂2F

∂ϑiϑj
= − 1

π
Im

∫ EF
Tr
[
τ ji

∂mi

∂ϑi
τ ij

∂mj

∂ϑj

]
dε. (3.5.15)

These formulas replace the Lichtenstein formula, which has been derived for systems without
spin-orbit coupling (section 3.3). It considers the modification of scattering properties not
only from flipping the magnetic moment between two states ⇑,⇓ (∆t, discrete spin states,
Ising-type), but also from rotation of the moment (∂t−1, continuous spin states, Heisenberg-
type). The correspondence between the derivations in the free energy and the exchange
matrix elements Iνµij is listed in Appendix B.

Various applications of this multiple-scattering approach show good agreement with ex-
periments: e.g Mn/W(001) and Mn/W(110) [91, 270], Cr trimer on Au(111) [255] or
Fe/Pt(111) [34]. However, spin vortex formation, known as Skyrmion structures, observed in
Fe/Ir(111)[14, 25] requires additional biquadratic terms in the exchange mechanism, which
will not be discussed in this thesis. The latter example shows the major role of symmetry
lack in nanoscopic magnetic structures.

In view of the surface bearing, especially in systems with strong spin-orbit coupling, I
also account the anisotropic exchange of the above mentioned magnetic systems. There-
fore, I extended an existing fully relativistic multiple-scattering Green function code (omni
from PD Dr. rer. nat. habil. Jürgen Henk). This add-on reproduces the already
found Dzyaloshinskii-Moriya vectors quite well (figure 3.5.3). Since the (111)-surfaces are
known for special growing conditions, visible e.g. in Co on Cu(111), and predict high
anisotropic exchange e.g. in case of Ir(111), my central research point relates to this sur-
faces covered with 1 ML Fe or Co (Fe on Pt(111) published in [34]). Here, calculations
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3.6 Disordered local moment theory

show (not listed in this thesis) that the ratio between the nearest-neighbor anisotropic
and isotropic exchange D/J in systems with strong spin-orbit coupling, such as Rh(111),
Pd(111) or Pt(111), appears typically one or two orders smaller then in Ir(111), where
D/J ≈ 1.

3.6 Disordered local moment theory

In the previous section 3.5, the Heisenberg model was improved by using the interaction ma-
trix Iij instead of a scalar Jij . This accounts for orbital symmetry via anisotropic exchange
interaction. However, these exchange integrals are defined for zero temperature, where a
magnetic ordered state exists, but are used for finite temperature and magnetic disordered
states, e.g. in Monte Carlo methods or in dynamic simulations. The resulting phase tran-
sition temperature is often underestimated with respect to the experiment (for Fe bulk the
theory gives TC ≈ 700 K [260]; experiment TC = 1033 K [108]). The mismatch between
theory and experiment is attributed to the temperature independence of exchange para-
meter. In terms of the three temperature reservoir model, motivated in the introductory
chapter, the electron temperature enhances formation of electron-hole pairs, the electron
equilibrium population (Fermi-Dirac distribution, Sommerfeld approximation) changes and
thus, it affects the exchange interaction. In magnetic materials, however, the influence of
the spin temperature on the electron states gets more important, which is so far completely
disregarded. Hence, there is need for a method that includes the spin temperature in the
magnetic exchange constants Jij(Ts). The phonon temperature, however, is neglected but
is important for magnetic exchange as well.

Coherent potential approximation Alloys offer a broad range of applications1 and are
featured by a host system with impurities, where the substitutional defects can either be
ordered or disordered. Especially in the latter case, it is computationally demanding to
calculate large clusters with randomly distributed dopants. When using the Green function
techniques (see section 3.2) it is computationally effortless to obtain the scattering path
operator for an impurity system. In this context, the model should go beyond the virtual
crystal approximation (VCA), where only an effective potential was build by summing up
the individual potentials weighted by their concentrations. In fact, the charge density of the
dopant must be considered [89]. Additional scattering processes appear from the embedded
impurities, which are represented by the on-site scattering matrix X [293]. Within the
coherent potential approximation (CPA) [250, 274] this defect will be treated by a mean-
field theory for the electron structure of a substitutional binary alloy and is often used in
the context of a tight-binding approach. The model assumes an impurity atom embedded
in a periodic effective medium that behaves on the average like an alloy (figure 3.6.1). This
medium should be calculated self-consistently.

An impurity of type ν injects an additional scattering event tν at site i in the coherent
effective medium. This effective medium has different scattering properties, represented
by the tc-matrix and the scattering path operator τ c as the primary host system; thus

1From www.globalspec.com/reference/46879/203279/industrial-application-of-alloys
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Figure 3.6.1.: Coherent potential approximation for a binary alloy A1−xBx. In a host system, rep-
resented by A (red spheres), impurities are embedded (B; blue spheres), which leads
to an effective (CPA) medium (green spheres). This medium comprises additional
scattering events in the host and the impurity system. Hence, loosely speaking, the
resulting system is the average over both systems weighted by their concentrations.

[112]

Xi,ν =
[(

t−1
i,c − t−1

i,ν

)−1
− τ ii,c

]−1
. (3.6.1)

The condition to obtain a coherent medium is that, on average, the additional impurity
scattering, which replace tc, vanishes [112] (figure 3.6.1): ∑ν cνXi,ν = 0. In terms of a
defect matrix

Di,ν = 1 + Xi,ντ ii,c, (3.6.2)

this criteria reads ∑ν cνDi,ν = 1. Consequently, the scattering event on site i occupied with
an impurity atom of type ν can be obtained using a Dyson-like equation [112]

τ ii,ν = τ ii,c + τ ii,cXi,ντ ii,c. (3.6.3)

τii,c has to be found self-consistently using a fix-point iteration scheme and the CPA condi-
tion. In spite of its wide application, the CPA is limited because it is a single-site mean-field
theory. However, whenever there is either strong disordered fluctuation scattering or when
local environment effects like short-range ordering, clustering and segregation, or local lat-
tice distortion become important, the single-site CPA becomes inadequate. Especially for
high concentrations of the dopant impurity clusters can be created and, thus, the single-site
CPA approximation fails. Hence, other models like the cluster CPA [202], the embedded
cluster [114] or the non-local CPA [157] were developed.

The misfit between experimentally measured and theoretically predicted phase transition
temperatures TC indicates a strong coupling between the electron system and the magnetic
moments. To substantiate this, the density functional theory (see section 3.1), e.g., can
be extended, which was first done by Mermin [193, 230]: the single-particle entropy Ωxc

was regarded in the effective one-electron field vxc, expressed in terms of spin-dependent
pair correlation functions. Thermal fluctuations create excitations of particle-hole pairs
(Stoner excitation), that underestimate the thermally induced spin excitations and do
not satisfy the fluctuation-dissipation theorem [52, 214]. Apart from Mermin’s model,
Györffy et al. postulate a method, involving thermal perturbation as fluctuating ‘local
moments’ ei at site i. This is the disordered local moment theory. [118, 178, 228, 252,
253].

Conduction electrons in metals move ‘quasi-free’ through the crystal [7]. The Heisenberg
model fails due the non-local electron correlation on a very short time scale. But each lattice
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3.6 Disordered local moment theory

site will be occupied by electrons with a certain spin direction. Incoming electrons change
there orientation due to the interaction with the predominant spin on site i. Angular mo-
mentum conservation and the additional charges affect the local field at site i and, therefore,
the local magnetic moment mi. In particular, the timescale of the spin fluctuation is large
compared to the hopping time of the quasi-free electrons. This is the timescale separation
ansatz (adiabatic limit), where, on the one hand, the magnetic moments in the electronic
structure are used as constant and well-defined, as well as, on the other hand, the mag-
netic moment couples only to the thermal bath determined by the three-reservoir model.
Consequently, the disordered local moment picture acts as a statistical model, where the
temperature is mimiced by a probability distribution P (n), affecting the average magnetic
moment n = M/M,

n = 〈ei〉 =
∫
. . .

∫
eiP

(n)({e}) de1 . . . deN . (3.6.4)

The magnetic configuration is represented by a set of unit vectors ei, {e} = {e1, e2, . . . , eN}.
This set of classical unit vectors qualifies the degrees of freedom and, thus, the phase space
for the thermodynamic distribution reads

P (n)({ei}) = 1
Z

e−βΩ(n)({ei}). (3.6.5)

Z is the partition function and Ω(n)({e}) is the grand canonical potential, which is equivalent
to those of Mermin. Expressing measurable physical quantities in terms of an average
requires ergodicity. In principle, a phase transition of second order, such as the magnetic
phase transition, is not ergodic. However, due to the time separation ansatz, where now
snapshots of the system with the resolution time τ will be taken, the quantities are ergodic
and the long-time average can be replaced by the averages over the ensemble of the local
moment configurations {ei}. As a result in the paramagnetic phase (T ≥ TC), where the set
of magnetic moments {ei} at site i is randomly distributed, P (n) will be equal in each space
direction. In the ferromagnetic limit (T = 0 K), however, P is a δ-function; all moments are
aligned parallel to the average magnetic moment n.

The variation of a local magnetic moment ei is related to the modulation of the Kohn-Sham
potential. Similar to alloys in the CPA, this variation is immersed like a magnetic impurity
in an effective magnetic medium with the average direction n. The defect matrix Di as well
as the local scattering contribution ti of this impurity become functions of ei. Thus, the
CPA criterium [47] ∫

S
P (n)({ei}) Di,n(ei) dei = 1 (3.6.6)

holds. The integration runs over the spherical surface S. The spin degrees of freedom d
scores in two different models: i) a binary Ising-type alloy, where the spin degree of freedom
is d = 1 (binary model) and the magnetic moments switch between two spin configurations
ei ∈ {⇑,⇓} or ii) a Heisenberg-type model, where the spin degree of freedom is d = 3 and
the magnetic states is ‘continuous’ on a unit sphere.

In the first Ising-type model, the CPA condition (3.6.6) is replaced by the sum over discrete
spin sets {e} = {⇑,⇓} weighted by the particular concentration c⇑ and c⇓ = 1− c⇑. Thus,
thermally caused fluctuations are included by different concentration ratios and enter not
directly into the model. A mapping c⇑ (T ) could be achieved by comparing the average
magnetic momentM(c⇑) coming from first-principles calculations with the average magnetic
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moment of, e.g., a Monte Carlo methodMMC(c⇑, T ) [17, 18, 32, 35, 196]. Within the Monte
Carlo method the classical Heisenberg model (2.1.5) can be solved with a set of exchange
parameters

{
J
c⇑
ij

}
for a given concentration [35]. For details of the Monte Carlo method,

one should refer to [17, 18, 32, 144, 208].

In the second model, the set {e} is continuous and the two thermal limits—paramagnetic
and ferromagnetic state—end up in a Gaussian on a unit sphere (see appendix A), the von
Mises-Fisher distribution [99]:

P (d)(e;n, κ) = κ
d
2−1

(2π)
d
2 I d

2−1(κ)
exp

(
κnTe

)
. (3.6.7)

Figure 3.6.2.: Von Mises-Fisher distribution for different width κ: a) κ = 10.0, b) κ = 5.0, c)
κ = 1.0, and d) κ = 0.1. The distribution demonstrates the average orientation of a
set {e} of magnetic moments. The smaller κ, the broader is the distribution and the
larger is the disorder in the magnetic system: a) mirrors an ordered ferromagnetic
state in the direction n (blue spot), where d) mimics the paramagnetic state.

The inverse distribution width κ correlates to the temperature: the larger the temperature,
the smaller is κ (figure 3.6.2); d is the dimension of the problem (for the continuous spin
system d = 3). I d

2−1(κ) are the modified Bessel functions [1]; κ and its mapping κ (T )
derive from the grand canonical potential Ω(n). In a mean-field approximation [142, 281],
the distribution width is directly proportional to the Weiss field h and, thus, the distribution
function (3.6.5) becomes equivalent to the Boltzmann distribution P (n) ∼ exp (−h/kBT). To
construct the grand canonical potential as a function of the Weiss field, Ω(n) is expressed in
terms of the magnetic force theorem (section 3.3),

Ω(n)(e) = −
∫
f(ε, µ)N(ε, e) dε, (3.6.8)

where f is the Fermi-Dirac distribution with the chemical potential µ and N is the integrated
density of states. Buruzs et al. [47] establish the average grand canonical potential in second
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3.6 Disordered local moment theory

order Taylor expansion and in terms of the CPA defect matrix D,

〈Ω(n)〉ei = Ω0

+ 1
π
Im

∫
f(ε, µ)

ln det τ (n)
c (ε)− ln det D(n)

i (ε, ei)− 〈
∑
j,i

ln det D(n)
j (ε, ej)〉

 dε.

(3.6.9)

Here, Ω0 and τ c are the grand canonical potential of the trial system G0 and the CPA
multiple scattering matrix, respectively. From the Peierls-Feynman inequality [93] it follows
that the grand canonical potential in the distribution function (3.6.5) is approximated by an
arbitrary trial grand canonical potential. This can be expanded as a sum of terms containing
different orders of local-moment interaction. The first-order term is written as h(n)

i · ei [47],
where h(n)

i is the Weiss field

h
(n)
i = 3

4π

∫
S
ei〈H(n)〉ei dei. (3.6.10)

〈. . .〉ei notes the restricted statistical average with ei. The Weiss field at site i reads by
comparing (3.6.10) with (3.6.9)

hi(κ) = − 3
4π2Im

∫
S

∫
ei · n ln det D(ei, κ, ε) dε dei. (3.6.11)

D is the aforementioned CPA defect matrix and ei the magnetization direction at site i in
the effective medium. Since the defect matrix and, thus, the Weiss field are functions of κ
(T (κ) = h(κ)/kB κ), the distribution width is governed by a fix-point method for the given
temperature T̃ .

The introduced magnetic temperature (in the Ising-type case by concentration mapping and
in the Heisenberg case by a Gauss distribution on a unit sphere) affects various quantities
Q (T ) of interests, e.g. the exchange splitting and the density of states (figure 3.6.3). To
point out the qualitatively different interpretations of both methods, one can focus on the
local and total density of states (DOS). Due to the exchange interaction in magnets, the DOS
of different spin channels split up and electronic states near the Fermi energy become spin
polarized (typically d-states; figure 3.6.3 a). However, a random set of magnetic moments
{e} (paramagnetic state) populates the spin polarization uniformly, since both spin channels
are scattered with equal probability in the consolidated s-d model. As a result, the exchange
splitting vanishes (figure 3.6.3 b). In the Ising-type disordered local moment theory both
moment orientations appear in an effective medium on each lattice site (figure 3.6.3 c ) and
result in equivalent scattering probabilities for spin-up and spin-down channels. The total
as well as the local density of states will be the same. Moreover, the magnetization at site
i is also zero, however, the moments of each orientation ⇑,⇓ ‘survive’ with reduced length.
In the Heisenberg-type case, each site is ferromagnetically ordered, since reduction of the
magnetic moment length due to longitudinal relaxations predicted in the Bloch equations
[23] are not included. The net magnetization follows from a site average. Hence, the
local density remains spin-polarized, but, in the total averaged DOS, the exchange splitting
vanishes.

Not only the single electron behavior, but also the correlation between the electrons and,
therefore, the exchange integral J will be influenced by the ‘local moment’ fluctuations. In
the Ising-type binary alloy, the magnetic moment of an ⇑-atom is along the z direction (e⇑)
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Figure 3.6.3.: Scheme of the local density of states in the disordered local moment theory a) in the
ferromagnetic state and b) in the paramagnetic state (only for Ising type). Although
the total density is equal to the local density of states due to the effective medium
in the Ising-binary DLM, the total DOS in the Heisenberg-type DLM consists of an
ensemble average of polarized local density of states; the exchange splitting in the
total density vanishes. c) and d) illustrate the difference between both models: the
electrons in the Ising model scatter on an effective potential containing opposite spin
direction, whereas in the Heisenberg model the potential at site i is dominated only
by one spin direction, but on site-average the magnetization is zero.

and that of an ⇓-atom along the −z direction (e⇓ = −e⇑). This defines an effective exchange
constant Jeff

Jeff
ij =

∑
µ,ν=⇑,⇓

cνcµJiν,jµeµ · eν . (3.6.12)

The spin-dependent scattering processes τ̃ iν,jµ = Diντ ij,cDj,µ in the Ising-binary alloy end
up with

Jiν,jµ = − 1
π

∫ EF
ImTr ∆tiν τ̃ iν,jµ∆tjµτ̃ jµ,iν dε, (3.6.13)

in analogy to the Lichtenstein formula (section 3.3). In contrast to the scalar magnetic ex-
change in the one-dimensional spin case, the (relativistic) Heisenberg-type DLM calls for the
matrix representation of the magnetic coupling (introduced in section 3.5),

Ieff
ij =

∫
S

∫
S
eiI(ei, ej) ej dei dej . (3.6.14)
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3.6 Disordered local moment theory

Here,

∂2E

∂ϕi∂ϕj
(ei, ej , e0) = − 1

π
Im

∫
Tr
[
τ̃ ji ∆ϕ

i (ei, e0) τ̃ ij∆ϕ
j (ej , e0)

]
dε, (3.6.15)

∂2E

∂ϕi∂ϑj
(ei, ej , e0) = − 1

π
Im

∫
Tr
[
τ̃ ji ∆ϕ

i (ei, e0) τ̃ ij∆ϑ
j (ej , e0)

]
dε, (3.6.16)

∂2E

∂ϑi∂ϑj
(ei, ej , e0) = − 1

π
Im

∫
Tr
[
τ̃ ji ∆ϑ

i (ei, e0) τ̃ ij∆ϑ
j (ej , e0)

]
dε, (3.6.17)

where τ̃i,j = Di(ej) τ ij,cDj(ej) is the scattering path of the perturbed system and

∆̂ν
i (ei, e0) =

(
dR
dνi

∣∣∣∣
e0

)
t̂−1
i

(
e0
)

R†
(
ei, e

0
)

+ R
(
ei, e

0
)
t̂−1
i

(
e0
)( dR

dνi

∣∣∣∣
e0

)†
(3.6.18)

is the angle derivative of equation (3.2.19) with the reference magnetization e0.

Both disordered local moment models can be applied to calculate the spin temperature
dependence of other quantities of interest. For instance Buruzs et al. [47] deal with the
layer-resolved uniaxial anisotropy K in Co thin films on Cu(001) and found a reduction of
|K| with the temperature. In particular, some layers exhibit a rotation of the easy axis from
an in-plane to an out-of-plane direction. Moreover, he looked at the spin-disorder in electric
resistivity by means of disordered local moment theory and discovered an increase of the
resistivity with temperature, which becomes significant for magnetic nanocontacts [9], espe-
cially for a domain wall in such contacts. Applications of the DLM model in magnetization
dynamics, e.g, can improve theoretical predictions of the magnon lifetimes. Hence, it has
been argued that this model should be suitable for every ground state study of magnetic
materials at finite temperatures.

In contrast to Buruzs et al. [47], my studies related to the question on the spin-temperature
dependence of the density of states, the exchange splitting and the magnetic exchange
parameters J , especially near the magnetic phase transition. Hereby, this model should
clarified the influence of the spin to the electron reservoir. In a first step, an Ising-type
disordered local moment picture was applied to bulk Stoner magnets [35]. In accordance to
the dissipation-fluctuation theorem, I observed an increase of the exchange coupling with
the temperature and, thus, an improvement of the critical exponents in the Monte Carlo
simulation. However, the disadvantage in the Ising-type DLM model is the mapping to
the Monte Carlo method. Since the MC method did not reproduce the magnetization
behavior at surfaces quite well, a layer and surface resolved phase transition behavior was
not obtainable. Hence, I developed the Heisenberg-type disordered local moment model
for exchange parameters Iij in the fully-relativistic KKR code omni. Due to the mean-
field picture, however, this model allowed only simulating spin temperature around Ts =
0 K. For instance several monolayer (1-6 ML) Fe on Cu(001) exhibits antiferromagnetic or
ferromagnetic coupling between the layers, depending on the film thickness. I found (not
shown in this thesis) that in the critical case of 3 ML Fe on Cu(001) a transition between
different layer-resolved spin configurations can appear at a certain temperature. In according
to the reduced lattice degrees of freedom at the surface, the top-most layer couples stronger
to the thermal bath than the other layers.
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3.7 Gilbert damping tensor

Designing magnetic devices requires a detailed characterization of dynamical magnetic prop-
erties. One distinct property is the magnetic relaxation time, that is mostly affected by the
magnetic damping in the equation of motion (2.2.11). So far, in almost all dynamic sim-
ulations the Gilbert damping α is assumed as a phenomenological parameter [13, 15, 83].
Observing damping from first principles appears still to be an unresolved puzzle in mag-
netization dynamics simulations. Experimentally, α is measurable from the width of the
ferromagnetic-resonance peak (FMR) (section 2.2). The width of the resonance peak is usu-
ally caused by intrinsic and extrinsic relaxation effects. The sample defects or impurities
cause spatially fluctuating magnetic properties and control the extrinsic damping mecha-
nism. The intrinsic damping, however, is the damping of the system itself and is focused
on the following. In metallic ferromagnets, highlighted in this thesis, the damping is often
caused by electron-magnon and electron-phonon scattering and can be influenced by eddy
currents1 [63], interface/surface relaxations or spin-flip scattering processes (Elliot-Yafet
type) [94, 286]. The latter is used e.g. to tune spin-pumping mechanisms. There exist
two approaches — the torque-torque correlation model [77] and the Fermi-surface breath-
ing model — to study Gilbert damping α [145, 165]; these will be introduced in the following.

Torque-Torque correlation model The classical equation of motion for normalized atomic
magnetic moments e = m/ms (LLG) can be generalized by Gilbert’s ansatz of a damping
tensor [109]:

de
dt = e×

(
−γB +αde

dt

)
. (3.7.1)

The precession around and the damping towards the effective field B implicate a perturba-
tion of the magnetic energy Emag = B · e [245]:

dEmag
dt = −

[
α

de
dt

]
· e×B = 1

γ

de
dt ·

[
α

de
dt

]
, (3.7.2)

where the field B is assumed constant in time (adiabatic limit). The loss of angular
momentum and energy (dissipation) is determined by [78, 185] dEdis/dt =

〈
dĤ/dt

〉
. Due

to the spin-orbit coupling, the many-body Hamilton operator Ĥ does not commute with
the spin operator, since Ĥ depends on the magnetic moment Ĥ(t) = Ĥ(e(t)). Lets as-
sume an equilibrium state with the magnetization e0. The evolution out of equilibrium
is represented by e(t) = e0 + u(t). Supposing u(t) is small, the many-body Hamilto-
nian

Ĥ(t) = Ĥ(e0) + u(t) · ∂Ĥ
∂u

∣∣∣∣∣
e0

+O
(
u2
)

(3.7.3)

within the linear response formalism [46, 164] yields

dEdis
dt = −π~

∑
µν

∑
ij

duµ
dt

duν
dt

〈
ψi

∂Ĥ

∂uµ
ψj

〉〈
ψj

∂Ĥ

∂uν
ψi

〉
δ(εF − εi) δ(εF − εj) . (3.7.4)

1http://www.physlink.com/education/askexperts/ae527.cfm
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3.7 Gilbert damping tensor

If the dissipation is solely within the magnetic subsystem, then Emag = Edis. Contrasting the
linear-response formula (3.7.4) with magnetic energy modulation (3.7.2) yields the Gilbert
damping tensor

αµν = − ~γ
πms

Tr
(
∂Ĥ

∂uµ
Im G

(
ε+F

) ∂Ĥ
∂uν
Im G

(
ε+F

))
. (3.7.5)

µ, ν = x, y, z are the tensor components. α is thus given by a torque-torque correlation
function if

Tµ ≡ ∂Ĥ

∂uµ
(3.7.6)

is identified as the magnetic torque. Here, the Kubo-Greenwood equation for the damping
is similar to that for the electrical conductivity σµν [49]:

σµν = − ~γ
πV

Tr
(
̂µIm G

(
ε+F

)
̂νIm G

(
ε+F

))
, (3.7.7)

where ̂ is the current operator [30]. The Kubo-Greenwood formalism, however, gives no as-
sumptions to the time scale on which the magnetic moments fluctuate. Thus, it fails dealing
with ultrafast magnetization dynamics (adiabatic theory).

The side limit of the KKR Green function maybe expressed in matrix notation (3.2.12).
Since the single-site part is real in this choice of boundary conditions, it does not contribute
to the damping. Inserting the Green function expression (3.2.12) into (3.7.5), the damping
tensor reads

αµνnm = − ~γ
πms

Tr [Tµ
n(Im τnm)Tν

m(Im τmn)] , (3.7.8)

evaluated at E+
F . The torque matrices are then given by

TLL
′µ

n =
∫ (
RLn
)†
TµRLn dr. =

∫ (
RLn
)†

[βσµB(r)]RL′
n dr. (3.7.9)

R is the regular solution of the Dirac-Kohn-Sham equation (see section 3.2). Here, only
the Zeeman term depends on the change of the magnetic moment. The Gilbert equation is
related to the action of the magnetization on the electronic system and, thus, driven by the
spin-orbit coupling included in the Dirac equation (3.2.15). In the rigid-spin approximation
[150] (no longitudinal magnetization fluctuations), a modification of the potential at site n
is given by rotating the magnetization with respect to the equilibrium direction e0. The
single-site scattering matrix tLL′

n (e), which depends on the new magnetic orientation e via
the unitary transformation (3.2.19) and which is associated to the potential V (e), can be
finally derived as

∆tn = tn(e)− tn(e0) =
∑
µ

Tµ
n uµ and dtn

dµ = Tµ
n. (3.7.10)

Definition (3.7.8) illustrates the non-local and anisotropic character of the energy trans-
fer.

Ebert et al. [77] determine furthermore the phonon temperature by displacing an atom
n about the value snν and applying a transformation matrix UnLL′(sν , ε) to the equilibrium
KKR single-site t-matrix t0. The thermal root mean square displacement is approximated
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by the Drude model. This lattice vibrations are discussed as the major contribution on the
damping α and without calculating the electron-phonon self-energy. In principle, the spin
and electron temperatures can also be added using the disordered local moment theory and
Fermi-Dirac statistics, respectively.

To obtain a fully ab-initio magnetization dynamics study, I develop an add-on for the fully-
relativistic KKR code omni. Here, the calculated damping constants (not shown in this
thesis) are in accordance with the extrapolated one from Ebert et al. [78] for bulk Stoner
magnets. Since Ebert et al. study bulk damping, my analysis related rather on magnetic sur-
faces and nanostructures (not shown in this thesis) without the effect of phonon-temperature.
Applications on surfaces, especially for those with high spin-orbit coupling, predicts high
damping e.g. in the size of α ≈ 0.5 for 1ML Fe on Pt(111). Applications on nanoparticles
will be future work.

Breathing Fermi-surface model Beside the Kubo-Greenwood ansatz for itinerant damping
α [78], there exists a another model introduced by Kamberský et al. [145, 146, 165], which
takes into account the shape of the Fermi surface. Most of the properties in metals (electrical,
optical or magnetic) are influenced by the form of the Fermi surface: e.g. the electric
current depends on the occupation number variation of states near the Fermi edge [7]. The
Kamberský model is based on an effective single-electron theory. It models the transfer
of energy and angular momentum from the electrons to the nuclei via electron scattering
processes due to spin-orbit coupling. Consequently, the energies of the Bloch states εk,n,
characterized by the band index n and the wave vector k, depend also on the direction of
the magnetic moment e = m/ms. Small variations in e → e′ = e + δe affect the shape of
the Fermi surface (the surface ‘breathing’, figure 3.7.1) as well as the population number of
states near the Fermi level.

e

e′

Γ

M
X

Figure 3.7.1.: Principle scheme of the breathing Fermi-surface model: Due to the spin-orbit cou-
pling, the rotation of the magnetic moment e → e′ (green and red arrow) manip-
ulates the occupation statistics in the Brillouin zone (light blue plane), which runs
out-of-equilibrium. The Fermi-surface shape changes (green and red plane).

The equilibration back into the ground state is influenced by the relaxation time τk,n (re-
laxation time approximation) [7], indicating how fast the electron population relaxes into
the ground state. The model holds only if the magnetization dynamics is slow enough, so
that the electron system is at any instant in its ground state with respect to the momentary
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3.7 Gilbert damping tensor

magnetic configuration (adiabatic approximation). Within this ‘sliding window’, there exists
only precession without damping in the equation of motion. Moreover, the relaxation time
approach is phenomenologically introduced, since there is no model to identify the detailed
microscopic mechanisms of energy and angular momentum transfer. This back-transitions
appear typically close to the Fermi level EF and depend strongly on the scattering of the
electrons at impurities or lattice vibrations. The damping of the magnetic precession then
results from the phase lag between the change of e and the electron population response,
known as Clogston valence-exchange mechanism [59].

Damping contributes as an additional field in the Landau-Lifshitz-Gilbert equation, charac-
terized by the derivation of the total energy E with respect to the variation of the magne-
tization δe

Bdiss = −m−1
s

∂E

∂δe
= − 1

ms Ω
∑
k,n

∂εk,n
∂δe

ηk,n, (3.7.11)

where ηk,n is the population number. The evolution dηk,n/dt = −1/τk,n (ηk,n − fk,n) [165]—
from the out-of-equilibrium population back into the ground state—simplifies using Taylor
expansion to: ηk,n = fk,n − τk,ndfk,n/dt. Here, fk,n = f(εk,n) is the Fermi function. τk,n is
the lifetime of the state |k, n〉 and includes the whole scattering processes information of the
states |k, n〉, where different n will result in different relaxation times. This ansatz, however,
is valid only for intraband but not for interband scattering processes. When comparing the
dissipation field Bdiss with the LLG equation (see section 2.2) in the adiabatic limit, the
Gilbert damping tensor reads [145, 165]

ανµ = gπ

ms

1
(2π)3

∑
n

∫
∂fk,n
∂εk,n

∂εk,n
∂δeν

∂εk,n
∂δeµ

τk,n
~

dk , (3.7.12)

where a uniform relaxation time τk,n → τ is used. Towards Gilbert’s general assumption
[109] (see section 2.2), the damping parameter is a tensor [86, 254], where ν, µ = x, y, z,
and increases with decreasing scattering frequency τ−1. The latter can be approximated
by the Drude model for itinerant electrons and claims a T 2 temperature behavior for the
electron-electron interaction and a T temperature behavior for the electron-phonon inter-
action. The relaxation time τ depends on the mean free path of the electrons in the
electromagnetic skin depth. So the model does not consider anomalous skin effect con-
ditions.

Here, the spin-orbit coupling is the only contribution that forces the ‘breathing’ of the Fermi
surface. Thus, Gilmore et al. [110] show

αµν = gπ

ms

1
(2π)3

∑
n,m

∫
Γµnm(k) Γνnm(k)Wnm(k) dk, (3.7.13)

which corresponds to Fermi’s golden rule. The matrix element Γnm(l) = 〈n, k| T̂ |m, k〉
of the torque operator T̂ =

[
σ, Ĥso

]
quantifies transitions between states in band n and

m induced by the spin-orbit torque, where σ are the Pauli matrices and |k, n〉 are eigen-
states of the many-body electron Hamiltonian Ĥ. The transitions can have an intra- and
inter-band character (figure 3.7.2), where, however, the first account for the major contri-
bution. These ‘hoppings’ of the electrons are weighted by the spectral overlap Wnm(k) =∫
η(ε)Ak,n(ε,Γ)Ak,m(ε,Γ) dε. The spectral functions Ak,n are Lorentzians centered around

the band energy εk,n and broadened by the scattering rate with lattice defects (electron-
phonon coupling; width of the spectral function Γ = h/τ , where h is the Planck constant):
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larger scattering rates increase the transition rate. η(ε) is the derivative of the Fermi-Dirac
distribution with respect to the energy. In Gilmore’s work [110], however, expression (3.7.13)
regards only to an ordered magnetic state in reference direction ez. Since δe is always per-
pendicular to e, the magnetization change has only x- and y-components and, thus, the
tensor elements αxx and αyy are non-zero. Furthermore, Gilmore addresses the damping
constant as the sum over the diagonal elements, since the off-diagonal ones are e.g. zero in
cubic bulk systems. The full tensor, however, can be extracted by using different reference
directions.

E
E
E
 j
i


Interband transitions 


Γ
 Γ


E

E
i


Intraband transitions 


Γ


E
j
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Figure 3.7.2.: Inter- and intra-band transition driven by the band broadening. The larger the over-
lap (gray shaded area) between the two Lorentzians, the larger is the transition prob-
ability. The width of the distribution is driven by the electron-phonon interaction.

The band broadening, represented by the Lorentzians, can be better approached by the
Green function ImG(k, ε± iΓ) = ∓∑n |n〉 〈n|AΓ(ε− εk,n), since it broadens and shifts
maxima in the spectral function, especially electronic states at energies close to the Fermi
level. In the Green function approach, Γ is taken as the imaginary part of the energy, at
which the Green function is evaluated. This offset from the real energy axis provides a
more accurate description with respect to the ab initio results [110] than the Lorentzian
approach. In addition, the Green function technique allows observing disorder based on the
CPA (section 3.6). Consequently, the Kamberský formula is directly proportional to the
torque-torque correlation model of Ebert et al. [78]

αµν = g

πms

1
(2π)3

∫ ∫
η(ε) T̂µImG(ε± iΓ, k) T̂ ν†ImG(ε± iΓ, k) dε dk. (3.7.14)

In contrast to the computational heavy KKRGreen function method by Ebert et al. [78], this
can be numerically evaluate by a tight-binding method, where the Slater-Koster parameter
can be obtained by fitting DFT band structures. This allows a simplified modeling of the
damping tensor at the surface. Here, a layer-resolved real-space representation is achievable
via renormalization techniques in the tight-binding model, introduced by Henk et al. [26,
129, 179], and the Fourier transformed Green function, that accounts for the Bloch phase
factor. Defining a double index I = (i, n) for a atom in layer n at site i represents the
Gilbert damping in real-space

αµνI,J = g

πms

∫
η(ε) T̂µnImGIJ(ε+ iΓ) T̂ ν†m ImGJI(ε+ iΓ) dε where I , J. (3.7.15)

Similar to the correlation equation for the magnetic exchange (Lichtenstein formula), only
off-site terms occur in the equation (3.7.15), motivating the energy dissipation α as a non-
local quantity. In contrast to the Kubo-Greenwood equation, the Kamberský model consid-
ers also the electron temperature via the Fermi statistics. However Fähnle et al. [86, 254]
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3.7 Gilbert damping tensor

show the incompleteness of this model: they predict a strong dependence due to non-collinear
spin structure, which comes from an additional exchange interaction term in the Hamilto-
nian and results in a site-resolved, magnetic moment dependent character αr,r′({e}). The
Kamberský model, however, implies the dependence of α on magnetic moment through the
torque operator T̂ (e). “This means that at least for systems, for which the degree of relative
canting of magnetic moments is different for different parts of the system (e.g., very high
in the core of a magnetic vortex and much smaller outside), it does not make sense to use
just one damping matrix” (Fähnle [86]). They also point out that for nanostructures like
atomic monolayers or islands, the damping is zero for some orientations of magnetic moment
e.

Kamberský’s non-local damping model [38, 272] transfers the equation of motion into space
retarded dynamics as it was proposed by Bose [31]

dm
dt = m×

−γB + 1
ms

∑
ij

αij [m, Ts, Te, Tl]
dmj

dt

 , (3.7.16)

where the damping part is, in addition, a function of the electron, spin and phonon temper-
ature, clarifying once more the strong correlation between the reservoirs on ultra short scale.
The retardation in space still occurs, when the magnetic system is in a non-coherent state,
like in nutation or in systems with strong spin-orbit coupling, that forces also anisotropic an-
gular momentum transfer (Dzyaloshinskii-Moriya interaction).

A second access to obtain the Gilbert damping constant is provided by the Kamberský
model, which I implemented in the framework of tight-binding model. Compared to the
KKR method, this has the advantage of computational efficient calculations with simplified
model extensions. Here, the main focus lay on the correlation of the Gilbert damping
to the various microscopic reservoirs as well as on the layer-resolved non-locality of the
damping, predicting energy transfer to neighboring sites [266]. I applied this model to
the Stoner magnets, just to compare with already existing theoretical and experimental
values.
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Chapter 4

Selected Results

As the present work is a cumulative thesis, selected results will be covered below. A common
aspect of the present work is to extend the atomistic magnetization dynamic simulations
so that, first, the model is fully ab initio, second, it includes a deeper understanding of the
correlation between the electron, the magnetic and the phonon system as well as the role
of symmetry and, third, it covers physical effects on a femtosecond time- and nanometer
lengthscale. Therefore, each hereinafter publications focus on selected parts of the extended
model of dynamics and ground state properties.

In particular, they highlight a better description of the Curie temperature, when the tem-
perature dependence of the exchange coupling constants is taken into account (I 1, in
section 4.1). For this purpose, the model of disordered local moment is applied to bulk
Stoner magnets.

The next publication (I 2, in section 4.2) deals with ultrathin magnetic films with strong
spin-orbit coupling. It examines the non-collinear structure in Fe/Pt(111), which resolves a
discrepancy between experiment and theory.

The role of Gilbert damping in bulk and various surface states of Stoner magnets is present
in the next publication (I 3, in section 4.3). The applied model reveals strong dependences
on the three thermal reservoirs, the surface normal and the electron-phonon coupling. More
precisely, spatial retardation originates from a non-local character of the damping. The re-
sults support Fähnle’s claims of anisotropic and non-local damping and give good agreement
with experiment.

The question about magnetic mass and its impact in the dynamics, will be answered in
the last publication (I 4, in section 4.4) about magnetic nutation. The extended Landau-
Lifshitz-Gilbert equation predicts nutation on the timescale of the magnetic interaction
formation (femtosecond timescale).
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CHAPTER 4. SELECTED RESULTS

I 1 Böttcher, D. and Henk, J.: Temperature-dependent Heisenberg exchange cou-
pling constants from linking electronic-structure calculations and Monte Carlo
simulations, Journal of Magnetism and Magnetic Materials 324, (4),pp 610-
615 (2012)

I 2 Böttcher, D., Ernst, A. and Henk, J.: Non-collinear magnetism in ultrathin
films with strong spin-orbit coupling from ab initio first principles, Journal of
Nanoscience and Nanotechnology 12, (9),pp 7516-7519 (2012)

I 3 Thonig, D. and Henk, J.: Gilbert damping tensor within the breathing Fermi
surface model: anisotropy and non-locality, New Journal of Physics 16, (1),pp
013032/1-14 (2014)

I 4 Böttcher, D. and Henk, J.: Significance of nutation in magnetization dynamics
of nanostructures, Physical Review B 86, (2),pp 020404(R)/1-4 (2012)

In front of each article a short introduction to the topic and a brief summary of the main
results are presented.

Nevertheless, a brief overview over the other important publications should also be covered.
In a first study, the magnetization dynamics of Co nanoislands on Cu(111) is investigated
on the atomic scale by means of the Landau-Lifshitz-Gilbert equation. The exchange and
anisotropy constants of the spin Hamiltonian are computed from first principles. I fo-
cused on hysteresis loops and magnetic switching in dependence on temperature, island
size, and strength of an external magnetic field. The magnetic switching of nanoislands
whose magnetization is reversed on the sub-nanosecond time scale is found consistent with
the Stoner-Wohlfarth theory. I separate the superparamagnetic from the ferromagnetic
regime and provide evidence that nanodomains can exist at least on a sub-picosecond time
scale. Since the results of this paper are mostly from my dipolma thesis, I would refer to
[32, 33].

Next, I was interested in the control of the critical temperature TC of ferromagnetic
LaxSr1−xMnO3 (LSMO) by distorting the crystal structure, as was reported by Thiele et al
(2007 Phys. Rev. B 75 054408). To confirm these findings theoretically, I investigate the
electronic as well as the magnetic ground state properties of La2/3Sr1/3MnO3 as a function
of tetragonal lattice distortions, using a multiple-scattering Green function method. Within
this approach, I calculate exchange coupling constants as well as the phase transition temper-
ature from first principles. Comparing my findings with those for La2/3Sr1/3CoO3 (LSCO),
I find that the decrease of TC is much stronger in LSMO than in LSCO. My findings can be
explained by the electronic structures and are also in accordance with the experiment. The
computed decrease of TC with distortion is smaller than observed experimentally, a result
that corroborates the importance of phonon contributions.
However, due to the extensive subject of oxidic material and its required theoretical basics,
I did not attached the related publication to this thesis. For more details I recommend my
publication [36].

In another numerical study [267], I reported on a theoretical investigation of artificial spin-
ice dipolar arrays, using a geometry adopted from recent experiments [A. Farhan et al.,
Nature Phys. 9 (2013) 375]. The number of thermal magnetic string excitations in the
square lattice is drastically increased by a vertical displacement of rows and columns. I
find large increments especially for low temperatures and for string excitations with quasi-
monopoles of charges ±4. By kinetic Monte Carlo simulations I address the thermal stability
of such excitations, thereby providing time scales for their experimental observation. For
more details I would like to refer to [267].
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Even more magnetic materials and magnetic effects were investigated, which are presented
in a concept map (appendix C). The different topics were studied using my own developed
computer code, called CaHmd (classical atomistic Heisenberg magnetization dynamics)1.
Here, e.g. the atomistic Landau-Lifshitz-Gilbert equation, the Landau-Lifshitz-Miyazaki-
Seki equation, the Landau-Lifshitz-Bloch equation, as well as a Monte Carlo method and a
kinetic Monte-Carlo method were implemented. The code is able to consider the spin-
transfer torque as well as to solve the three-temperature model. An extension with a
tight-binding method allows a computational efficient calculation of important magnetic
parameters, such as the Gilbert damping tensor. Here, the tight-binding parameters were
fitted using a genetic algorithm. Thus, my simulation package opens a broad ‘window’ into
simulating nanomagnets.

1The computer code CaHmd is available via writing a mail to danny.thonig@gmail.com
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4.1 Magnetic systems at elevated temperatures by non-relativistic disordered local moment
theory

4.1 Magnetic systems at elevated temperatures by non-relativistic
disordered local moment theory

The phase transition is determined by the interaction strength J between two magnetic
moments. With the Lichtenstein formula at hand, a theoretical prediction of exchange pa-
rameter sets {Jij} is available. In particular, this multiple-scattering expression is derived
assuming an ordered magnetic state. However, the magnetic order will transfer into a high-
symmetry state (paramagnetic state), if the temperature is increased. The sharp transition
at TC dedicated by exchange sets for the ordered magnetic state, however, often underesti-
mates TC as compared to the experiment. In order to overcome this problem, the disordered
local moment theory provides a method for describing the paramagnetic state and offering
enhanced effective Heisenberg exchange parameters in the disordered configuration. This
indicates a strong correlation between the magnetism and the electron ground state as well
as the temperature dependence of J .

The paper proposes a new method based on the disordered local moment theory that re-
veals the temperature-dependent coupling constants Jij(T ) for the range T ∈ [0, TC ]. First-
principles calculations for Ising-type binary alloy were performed, where in a magnetically
ordered host, e.g. in z direction, impurities of concentration c⇓ = 1 − c⇑ with the oppo-
site moment direction, say in −z, were embedded. More precise, c⇓ = 0 relates to the
ferromagnetic and c⇓ = 0.5 to the paramagnetic state. Let us assume the first-principles
average magnetization M(c) for a given concentration is equal to the average magnetization
MMC(c, T ) for a given c and T in Monte Carlo calculations, a mapping of concentration ver-
sus temperature c(T ) was obtained, and thus, temperature-dependent Heisenberg exchange
parameters Jij(T ).

The method was applied to typical Stoner magnets like Fe and Co, where a zero average mag-
netization was observed in the paramagnetic state, but the individual magnetic momentsm⇓
and m⇑ stay finite. Furthermore, the exchange interactions for the subsystem Jiµ,jν , where
µ, ν ∈ {⇑,⇓}, decrease for the ordered states ⇑⇑ and ⇓⇓, but increases for the disordered
states ⇑⇓ and ⇓⇑. Thus, the effective Jeff , defined by the weighted sum over all subsystems,
increases with temperature. Considering both magnetic moment and exchange coupling in
Monte Carlo simulations improves critical exponents by about 10% and pushes the phase
transition temperature towards the experimental value.

The refined exchange parameters Jij should be considered in many applications, e.g. de-
scribing demagnetization effects within the Landau-Lifshitz-Gilbert equation. The c(T )
mapping is also adaptive for characterizing the temperature dependence of other quantities
of interest, such as the magnetocrystalline anisotropy, the Dzyaloshinskii-Moriya interaction,
the magnetic Gilbert damping or the density of states. Both the reduced spin dimension
and the mapping to statistical methods like Monte Carlo are limiting factors of the Ising-
type model. Using Heisenberg-type DLM, these limitations are eliminated, which allows
the determination of temperature- and layer-resolved magnetic properties, which was stud-
ied for Stoner magnets and 1-6 ML Fe on Cu(001) (not shown in this thesis). But, the
Weiss field (mean field) approach permits studies only in the temperature range around
T = 0 K.
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a b s t r a c t

We propose a method to calculate the temperature dependence of Heisenberg exchange coupling

constants Jij. Within the formalism of disordered local moments (DLM), the magnetization and the Jij are

computed from first principles for any concentration c of the magnetic constituents. The exchange

coupling constants are then used in Monte Carlo (MC) simulations to compute the temperature

dependence of the magnetization for the given c. By comparing the magnetization from DLM

calculations and from MC simulations we obtain a mapping of temperature versus concentration and

eventually temperature-dependent Jij. The approach which is applied to bulk Fe and Co can for example

improve critical exponents.

& 2011 Elsevier B.V. All rights reserved.

1. Motivation

The classical Heisenberg model is widely used to describe
ground-state properties and phase transitions in magnetic sys-
tems. In particular critical temperatures Tc, critical exponents, and
magnetization curves /mSðTÞ can be calculated. It is also part of
atomistic magnetization dynamics simulations within the frame-
work of the Landau–Lifshitz–Gilbert equation (e.g. Refs. [1,2]).

An exchange coupling constant Jij in the classical Heisenberg
model, whose Hamiltonian reads

H¼�
X

ij

Jijm̂i � m̂j, ð1Þ

quantifies the energy change upon rotating the local magnetic
moments (unit vectors) m̂i at site i and m̂j at site j. The Jij are
taken either as adjustable parameters or are computed from first
principles.

First-principles electronic-structure calculations are usually per-
formed for zero temperature. The set fJijg of exchange coupling
constants is obtained from the energy change of tilting local
magnetic moments or from a Kubo-Greenwood-type expression
of Green functions [3]. From these Jij, critical temperatures can be
calculated within the mean-field approximation or the random-
phase approximation; or they are used in simulations, for example
in Monte Carlo simulations. In any case, the Jij are computed for
T ¼ 0 K but are taken to describe systems at finite temperatures.

In contrast to the preceding, the disordered local moment
(DLM) picture [4–6] describes paramagnetic systems, that is at
temperatures TZTc. Within the DLM approach, nonzero local
magnetic moments are maintained but the directions of these
fluctuate so strongly that the average magnetization vanishes. In
their simplest form, the thermal fluctuations are modeled by a
substitutional Ising-type alloy whose constituents * and + are
oppositely magnetized atoms (local moment orientations m̂* ¼

�m̂+). At alloy concentration c* ¼ 1�c+ ¼ 0:5, that is at Tc, the two
local moments cancel although m* and m+ are nonzero; this in
contrast to the Stoner model in which the magnetization vanishes
everywhere in space at Tc (i.e. m* ¼m+ ¼ 0). In first-principles
calculations, the DLM approach can be treated within the coher-
ent potential approximation (CPA) [7] from which the set fJijg can
be computed as well.

With respect to the preceding, we are concerned with two
different sets of exchange constants: fJijð0Þg and fJijðTcÞg. This
suggests the problem whether one can obtain sets fJijðTÞg for
every temperature between 0 K and Tc. Since in the CPA modeling
of the DLM approach c* ¼ 1 would be equivalent to T ¼ 0 K
and c* ¼ 0:5 to T ¼ Tc, the task is to map the entire concentration
range [0.5, 1.0] onto the temperature range ½0 K,Tc�. However,
there is no direct relation c*2T within the DLM approach
itself; consequently the mapping Tðc*Þ requires an additional
ingredient which in this work is the classical Heisenberg model.

In this paper, we propose a simple way to obtain sets fJijðTÞg as
follows. The exchange parameters are computed from first prin-
ciples within the DLM approach at a concentration c*. This set
fJijðc*Þg is then used in Monte Carlo (MC) simulations of the
classical Heisenberg model at a temperature T. The requirement
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that the average magnetization /mSðc*Þ in the DLM calculations
and /mSðT; c*Þ in the MC simulations are equal yields the
mapping Tðc*Þ. We apply this approach to bulk Fe and Co.
Problems and improvements are discussed as well.

Before introducing the approach a few notes on other first-
principles approaches to the temperature dependence of magnetism
are in order. Pindor et al. [7] used the DLM formalism as well but the
temperature dependence was restricted to the self-consistent elec-
tronic-structure calculation, in the spirit of the finite-temperature
version of spin-density functional theory. The magnetic fluctuations
were modeled by a paramagnetic Ising-type alloy (with concentration
50%, treated within the CPA). A two-step approach to the temperature
dependence was introduced by Ruban et al. [8]. There, the exchange
interaction constants were determined from constrained local spin-
density approximation calculations and subsequently used in a model
Hamiltonian to investigate finite-temperature magnetic properties.
Drchal et al. investigated the joint effect of temperature and disorder
on the interlayer exchange coupling [9]. There, the temperature
entered the exchange coupling energy via the Fermi–Dirac distribu-
tion; magnetic fluctuations were not considered.

Using a relativistic DLM approach, Buruzs [10] studied tem-
perature-dependent properties of thin films. This approach is
computationally demanding because it involves both rotational
averaging over the magnetic-moment directions and the compu-
tation of Weiss fields. Since each local Weiss field is aligned along
the average magnetization, the magnetization curve is given by a
Langevin function. Although not done in Ref. [10], this formalism
allows to calculate the temperature dependencies of both Heisen-
berg exchange-coupling constants and Dzyaloshinskii–Moriya
vectors. In the present approach which uses the computationally
less demanding Ising-type averaging, the temperature-concentra-
tion mapping is lost but is reintroduced by comparison with
Heisenberg Monte Carlo simulations. In the latter, the local Weiss
fields are determined by the local magnetic moments within the
finite range of exchange interactions. As a consequence, the
magnetization curve is no longer a Langevin function and critical
exponents can be improved.

The paper is organized as follows. Computational aspects of
the proposed approach are given in Section 2. Its applications to
Fe (3.1) and Co (3.2) are presented and discussed in Section 3.
Conclusions and a brief outlook are given in Section 4.

2. Computational aspects

The Heisenberg exchange coupling constants Jij of bulk bcc Fe
and hcp Co are calculated from first principles using a scalar-
relativistic multiple-scattering approach (KKR, Korringa–Kohn–
Rostoker method [11]), with the exchange-correlation functional
taken from Ref. [12].

For sites ia j, the exchange coupling constants are given by [3]

Jij ¼
1

4p tr

Z EF

DtitmijDtjt
k
ji dE, ð2Þ

with Dti � t
m
i �t

k
i . tsi and tsij are the spin-resolved KKR single-site

scattering matrices and the scattering-path matrices in spin-
angular-momentum representation (s¼m,k) [11]. tij describes
the propagation of an electron from site j to site i. The energy
integral runs up to the Fermi energy EF.

The ferromagnet at temperature T is described as a substitu-
tional binary alloy within the coherent potential approximation
(CPA) [13–16]. Each site is occupied by an atom magnetized along
the z direction (*) with concentration c* and an atom magnetized
along the �z direction (+) with concentration c+ ¼ 1�c*; local
moment orientations are denoted by * and + while spin orienta-
tions are denoted by m and k. At c* ¼ 1 the sample is perfectly

magnetically ordered, which corresponds to T ¼ 0 K. At c* ¼ 0:5 it
is paramagnetic, which corresponds to T ¼ Tc. Within the KKR-
CPA approach used in this paper, short-range order is neglected.

The * and + atoms are created at site i in the effective CPA
medium by defect matrices Dim (m¼*, +) [11]. The effective CPA
medium is described by scattering-path matrices tcpa

ij . More
precisely, a defect of type m at site i and a defect of type n at
site j are introduced by replacing tij by ~tim,jn �Dimtcpa

ij Djn. Without
vertex corrections, that is by approximating the configurational
average of the product of scattering-path matrices in Eq. (2) by a
product of the individual configurational averages, we have

Jim,jn ¼
cmcn
4p tr

Z EF

Dtim ~tmim,jnDtjn ~t
k
jn,im dE, m,n¼*, + : ð3Þ

Since the CPA equations are solved self-consistently at each
energy E, this approach is beyond a rigid-band model.

We define effective exchange coupling constants

Jeff
ij � Ji*,j*�Ji*,j+�Ji+,j*þ Ji+,j+: ð4Þ

A positive (negative) Jim,jn favors parallel (antiparallel) alignment
of the local moments (Ji*,j+ ¼ Ji+,j*). As a result, Ji*,j+ and Ji+,j*

appear with a minus sign in Eq. (4). The set of fJeff
ij g enters the

classical Heisenberg model, Eq. (1), which is solved by Monte
Carlo simulations [17,18].

The mapping Tðc*Þ of the concentration c* on the temperature T

is obtained via the average magnetization /mS which can be
computed from the Heisenberg MC simulations and the first-
principles DLM calculations. First, we choose a concentration
c* ¼ 1�c+ and compute within the DLM picture /mSðc*Þ and the
set fJijðc*Þg. This set is then used in the Heisenberg MC simulations
in which the temperature T is scanned, yielding the magnetization
curve /mSðT; c*Þ. The requirement /mSðT; c*Þ ¼/mSðc*Þ fixes T

for the chosen c*, which yields eventually the mapping Tðc*Þ.

3. Results and discussion

3.1. Fe

3.1.1. Electronic structure and magnetization

The concentration dependence of the exchange coupling con-
stants is completely determined by those of the scattering-path
matrices ~tsjn,im and of the single-site scattering matrices Dtim in
Eq. (3). Hence, we first address the electronic structure by means
of the density of states (DOS; Fig. 1).

The d-majority states for ferromagnetic Fe are almost com-
pletely occupied [cf. the shoulder at EF for c* ¼ 1 in Fig. 1(a)].
These states become depopulated with decreasing c* so that at
c* ¼ 0:5 the sample is nonmagnetic. For c* ¼ 1 the DOS is strongly
textured, which indicates an ordered configuration; for smaller
concentrations, the DOS is smeared out, as is typical for a
disordered configuration. Similar densities of states were found
by averaging over random local-moment configurations with
mean-field distribution [19].

The trends in the total DOS show also up in the impurity DOS
[Fig. 1(b) and (c)]. Note that for c* ¼ 1 the *-DOS is identical to
the total DOS in (a). Further for c* ¼ 0:5 the host is nonmagnetic
and consequently the spin-m DOS of an * impurity is the same as
spin-k DOS of a + impurity. An analogous relation holds for the
opposite spin projection.

In the Stoner picture, the magnetization vanishes for a para-
magnetic sample everywhere in space. In the DLM picture,
however, the host magnetization /mS¼ c*m*þc+m+ vanishes
but the impurity magnetizations m* and m+ themselves remain
finite [Fig. 2(a)]. More precisely, m* ¼�m+ for c* ¼ 0:5; they are,
in absolute value, as large as the magnetization of ferromagnetic
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bcc-Fe (2:26 mB at T ¼ 0 K) so that the concentration-weighted
moments c*m* and c+m+ depend almost linearly on their con-
centration. Consequently, /mS depends to a very good approx-
imation linearly on c* as well.

3.1.2. Heisenberg exchange coupling constants

As an example, we address the concentration dependence of
the nearest-neighbor exchange coupling constants [Fig. 2(b)]. For
c* ¼ 0:5 the host is nonmagnetic, that is ðtcpa

ij Þ
m
¼ ðtcpa

ij Þ
k in Eq. (3);

therefore J** ¼ J++ ¼�J*+ ¼�J+*. As a consequence of the
decreasing (in absolute value) J++, J*+, and J+* with c*, the
effective exchange coupling constant Jeff decreases monotonously,
which implies a smaller critical temperature Tc for c* ¼ 1 than
for 0.5.

Jeff shows a rapid drop close to c* ¼ 1 which is due to the
contribution of J**. This decay may be related to the spin-resolved
DOS of an * impurity in the energy range close to EF [Fig. 1(b)].
The energies around EF are important because the electronic
structure at these energies determine essentially the electron

propagation. The densities of states of both spin projections are
almost constant for small c*. But both show ‘jumps’ from c* ¼ 0:9
to 1.0. These ‘jumps’ may be the reason for the fast decrease of J**
in that concentration range. Please be aware that this argument is
by no means strict but handwaving.

The nearest-neighbor exchange constant for c* ¼ 1 compares
well with data from the literature; cf. for example Refs. [20–22].
While the Ji*,j* oscillate with distance dij � 9~r i�~r j9 [Fig. 3(a)], in
particular for c* ¼ 1 (asterisks), the exchange constants Ji*,j+

(b) and Ji+,j+ (c) are sizable only for nearest neighbors
(dij ¼ 4:69 Bohr). This implies that at small c*, or close to Tc, the
local Weiss fields in the Heisenberg model are given mainly by
the average magnetization of the nearest-neighbor shells. At c*
close to 1, or at low temperatures, the Weiss fields are determined
in a larger interaction range. As a consequence, the magnetization
curves /mSðT; c*Þ show different critical exponents, as we will
discuss in Section 3.1.3.

3.1.3. Critical temperature and temperature-concentration mapping

As motivated in the preceding subsection, the critical tem-
perature Tc decreases with concentration, as is fully confirmed by
the Monte Carlo simulations (Fig. 4). The nonzero magnetizations
/mSðT; c*Þ for T4Tc that are typical for finite systems do not
allow a precise determination of Tc. Hence, the Tc’s were obtained
from MC simulations with various system sizes using Binder’s
fourth cummulant U4 (Refs. [18,23]; 3180 sites were used for
Fig. 4).

For concentrations c* up to 0.7, Tc is almost constant and then
decays smoothly [filled circles in Fig. 5(a)]. This finding is in line
with the concentration dependence of the nearest-neighbor
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exchange coupling constants [Fig. 2(b)]. For c* ¼ 1, the Tc of 844 K
is smaller than the experimental value (1045 K) while for c* ¼ 0:5
it is larger (1255 K; a similar mismatch was found by Buruzs
[10]). The same holds for Tc from the mean-field approximation
(1002 K and 1731 K, respectively) but the covered temperature
range is much larger than that in the MC calculations.

The mismatch of the Tc obtained from the MC simulations and
the experimental values may be explained as follows. While the
DLM calculation for c* ¼ 0:5 mimics a random configuration and
the calculation for c* ¼ 1 mimics the perfectly ordered configura-
tion, it is conceivable that the best description is obtained by a
disordered configuration with short-range order [24,25]. Short-
range order can be accounted for within the non-local CPA, the
embedded-cluster CPA [26] or the locally self-consistent Green
function method [27]. Other reasons might be that the present
DLM calculations use an Ising-type alloy [5,7] instead of a
rotationally averaged alloy. In the latter case, the configuration
average has to be performed over all directions of the local
magnetic moments rather than by averaging over the two

orientations * and +.
Eventually, we obtain the mapping Tðc*Þ by equating /mSðc*Þ

from the DLM calculations [Fig. 2(a)] and /mSðT; c*Þ from the MC
simulations (Fig. 4), which is shown as filled triangles in Fig. 5 and
also displayed as top axis in Fig. 2. The mapping is monotonous
but nonlinear.

As an application we show the /mSðTÞ curve for the ‘optimal’
(temperature-dependent) set of fJijðTÞg in Fig. 4 (‘opt’, large filled
circles). It interpolates smoothly between the curve for c* ¼ 1:0 at
low temperatures and the curve for c* ¼ 0:5 close to Tc. As a
consequence, the critical exponent b is about 10% larger than that
for c* ¼ 0:5. The ‘optimal’ MC value of 0.349 is closer to the
literature value of 0.365 [28] than those for c* ¼ 0:5 (0.314) and
c* ¼ 1:0 (0.315). b was obtained by approximating /mSðTÞ by
ðTc�TÞb (dotted lines in Fig. 4), in which Tc has been fixed by the
U4 analysis [18,23].

3.2. Co

While the DLM approach works well for Fe, it fails for Ni. For
example, the local magnetic moments vanish for paramagnetic Ni.
Co has with one d electron more than Fe and one d electron less
than Ni. Hence, it falls in-between Fe and Ni, which shows up as
significantly reduced local moment for paramagnetic Co (about
0:80 mB) as compared to that of ferromagnetic Co (1:60 mB). These
findings call for an improved DLM approach that, for example,
takes into account short-range order.

Regardless of these shortcomings we present in Fig. 6 the
major outcomes of our computations for hcp Co. In contrast to Fe
(Fig. 5), Tc increases with c* [filled circles in Fig. 6(b)] which is in
line with the reduced local magnetic moments and the slightly
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increasing effective exchange coupling constant [Fig. 6(a)]. Con-
sequently, Tc is closest to the experimental value of 1388 K for
c* ¼ 1 (1255 K).

The general shape of the temperature-concentration mapping
for Co [filled triangles in Fig. 6(b)] agrees with that for Fe (Fig. 5).
But while the curve for Fe is almost linear for c*40:7, the Co
mapping is bent downward. We attribute this observation to the
almost constant Jeff of Co [filled circles in Fig. 6(a)] in contrast to
the decreasing ones of Fe [filled circles in Fig. 2(b)].

4. Concluding remarks

In this paper, we propose a procedure to improve on the first-
principles basis of Heisenberg exchange coupling constants. Since
(i) the computation of Heisenberg exchange coupling constants
within the DLM formalism is straightforward in any electronic-
structure computer code that is based on Green functions and (ii)
Monte Carlo simulations of the classical Heisenberg model can be
regarded as standard as well, we see many applications for
refined Jij, in particular in magnetization dynamics calculations
based on the Landau–Lifshitz–Gilbert equation. There, the Gilbert
damping constant depends on temperature [29]; further, thermal
fluctuations are modeled as random magnetic fields [1,2]. Hence,
it is obvious to use temperature-dependent exchange coupling
constants in the spin Hamiltonian as well. To complement the
Heisenberg model, one could also include the temperature
dependence of the magnetocrystalline anisotropy [30].

The purpose of the present study is to introduce the basic idea
of the approach and to present a few applications. It also suggests
paths for improvement: we expect that taking into account short-
range order in the DLM calculations could result in better critical

temperatures, which would also amend the temperature-concen-
tration mapping. Rotational averaging rather than Ising-type
averaging could improve the results as well; note that rotational
averaging is a necessary ingredient if spin–orbit coupling should
be accounted for, e.g. the Dzyaloshinskii–Moriya interaction
[10,31–33].

The Dzyaloshinskii–Moriya interaction can lead to noncol-
linear magnetism in non-centrosymmetric systems, for example
in ultrathin films on a substrate (e.g. Fe/Ir(111) [34]). The noncol-
linear magnetic structure gives rise to a ‘magnetic lattice’ con-
stant which is determined by the ratios of Heisenberg exchange,
magnetocrystalline anisotropy, and strength of the Dzyaloshins-
kii–Moriya interaction. Both may differ in their distance depen-
dence and in their temperature dependence. Thus, one might
speculate that a noncollinear structure, and hence its magnetic
lattice constant, can vary significantly with temperature.
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4.2 Non-collinear spin structures in ultrathin (111)-films

Ultrathin (1ML-thick) Fe films on Ir(111) reveal a complex non-collinear Skyrmion-type spin
structure. The mechanism is incited by strong spin-orbit coupling effects appearing also in
other (111) substrates like Pt, Rh, and Pd. Skyrmion formation shows a net magnetiza-
tion, an evidence that was also found by Moulas et. al [206] in ultrathin Fe on Pt(111).
The hybridization between Fe and Pt as well as the strong spin-orbit coupling hints to
a non-collinear magnetic structure. The paper considers the Heisenberg model that con-
sists of the full magnetic interaction matrix Iij , which was computed from first principles.
A domain wall-like structure was found, originating the in-plane-oriented three-fold sym-
metric Dzyaloshinskii-Moriya interaction. This formation is similar to these observed in
Mn/W(110) as well as Fe/W(110). The wave length and the direction of the occurring
spin-spiral results from the competition between the isotropic and the anisotropic exchange,
where in the Fe/Pt(111) the fraction of both coupling mechanisms is by an order of magni-
tude smaller than in Fe/Ir(111). Hence, no low-temperature Skyrmions without a magnetic
field do not exist in Fe/Pt(111).

To mimic the experimental findings, an external magnetic field perpendicular to the surface
was applied, lifting the non-collinear structure into a parallel orientation of the magnetic
moments to the external magnetic field.

Figure 4.2.1.: Magnetization curve for 1 ML Fe on Pt(111), taken from Ref. [206]. The hysteresis
is measured at T = 10 K for the external field in z-direction (solid circles) and 70◦

(open circles) out of the direction perpendicular to the surface.

Theoretically a net magnetization of 0.813MS at 5 T was obtained. At 10 T, the local
magnetic moments are still not completely rotated out-of-plane and towards the mag-
netic field, indicating incomplete saturation. This agrees with the experiment (figure 4.2.1,
M (5 T) = 0.85MS) and concludes that the non-collinear spin structure explains and removes
the disagreement between experiment and theory in [206]. Beside the experimental results,
theory predicts a decrease of the phase transition temperature due to spin-orbit coupling:
without DM interaction TC = 670 K, with DM-interaction TC = 590 K. This confirms the
phase transition temperature postulations by Rausch and Nolting [232] for low-dimensional
magnets. Hence, the findings indicate also a strong impact of the spin-orbit interaction on
the time-dependent phenomena based on the Landau-Lifshitz-Gilbert equation. Magnetic
excitations by a external magnetic field pulse can show long-term magnons, which is a task
for a future studies.
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Fe and Pt are paradigms for ferromagnetism and strong spin-orbit coupling, respectively. Their
combination—in an ultrathin Fe film on a Pt(111) substrate—is thus expected to modify the mag-
netic structures. We report on a theoretical investigation of a monolayer of Fe on Pt(111), using
a generalized Heisenberg model that includes the complete spin interaction matrices Iij computed
from first principles. We find a noncollinear periodic configuration that is strongly determined by the
Dzyaloshinskii-Moriya interaction. Taking into account a magnetic field to mimic recent experiments,
this noncollinear structure solves the disagreement between the experimental magnetization and
the average magnetization for a ferromagnetic system. The critical temperature decreases from
670 K to 590 K due to spin-orbit coupling.

Keywords: Dzyaloshinskii-Moryia Interaction, Ultrathin Films, Magnetic Ground State
Properties.

1. MOTIVATION

The properties of ultrathin magnetic films depend strongly
on the substrate,1 as has been shown experimentally
by spin-polarized scanning tunneling microscopy and
magneto-optical Kerr spectroscopy. In particular spin-orbit
coupling (SOC) induces a symmetry breaking in mag-
netic systems, which e.g., shows up as magnetocrys-
talline anisotropy. Together with the exchange interaction,
the magnetic anisotropy manifests itself in the forma-
tion of domain walls. In non-centrosymmetric systems, the
Dzyaloshinskii-Moriya (DM) interaction results in non-
collinear magnetic structures, preferably at surfaces and
in ultrathin films.2 The magnetic properties of a mono-
layer Fe on Pt(111) are still not understood completely.
On one hand, Moulas et al.3 showed that by applying an
external magnetic field of 5 T the magnetization is barely
1.2 �B; the saturation field is roughly estimated to 10 T.
On the other hand, first-principles electronic-structure cal-
culations using a Korringa–Kohn–Rostoker Green’s func-
tion method3 or the Vienna Ab-Initio Simulation Package4

support ferromagnetic order, an Fe magnetic moment of
about 3.0 �B and an induced Pt moment of 0.25 �B. We
regard these contradictory results as an indication for a
noncollinear magnetic structure in Fe/Pt(111) which may
be driven by the strong SOC in Pt. Noncollinear mag-
netism due to SOC has been shown for FePt-alloy clusters

∗Author to whom correspondence should be addressed.

deposited on Pt(111).5,6 In this paper we report on a first-
principles investigation of a monolayer Fe on Pt(111) that
includes SOC. Using a generalized Heisenberg model, we
focus on the question on how spin-orbit coupling mani-
fests itself in the magnetic ground-state properties and the
magnetic structure of Fe/Pt(111).

2. OUTLINE OF THE
THEORETICAL APPROACH

2.1. First-Principles Calculations

To investigate the magnetic properties of a monolayer
Fe on Pt(111), we performed first-principles electronic-
structure calculations using a relativistic Korringa–Kohn–
Rostoker Green’s function method.7,8 Solving the Dirac
equation for a spin-polarized system, spin-orbit coupling
and magnetism are treated on equal footing. Wavefunc-
tions and scattering matrices have been calculated up to an
orbital momentum of lmax = 3. The site-dependent poten-
tials are described in the atomic sphere approximation. The
film-substrate system is taken as translationally invariant
parallel to the layers but semi-infinite perpendicular to the
layers. We adopt the interlayer spacing derived by Hardrat
et al.1 who found an inward relaxation of the monolayer
fcc Fe by 12.7% of the Pt bulk interlayer distance (lattice
constant a= 2�81 Å; Fig. 1).
From the ab initio calculations, we derived the com-

plete spin interaction matrix of a generalized Heisenberg

7516 J. Nanosci. Nanotechnol. 2012, Vol. 12, No. 9 1533-4880/2012/12/7516/004 doi:10.1166/jnn.2012.6555
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Fig. 1. Schematic view of a monolayer Fe on Pt(111). Only the first
two layers of Pt (gray spheres) are important for the spin structure in the
Fe film (red spheres).

model,7 within the framework of the magnetic force
theorem.9–14

2.2. Spin Hamiltonian and Interaction Matrix

The Heisenberg model

H =−∑
i �=j

Jijmi ·mj (1)

where mi and mj are classical normalized magnetic
moments and Jij is their exchange constant, is a standard
model for magnetic materials. Since the Jij are isotropic
and symmetric, it does not account for spin-orbit coupling
effects. A straightforward generalization is given by

H =−∑
ij

miIijmj (2)

where Iij is the full 3× 3 interaction matrix (Iij = ITij ).
Decomposing Iij as

Iij ≡ Jij1+Sij +Aij (3)

one recovers the Heisenberg exchange Jij = �1/3�trIij . The
anisotropic and traceless parts Sij and Aij split into a sym-
metric and an antisymmetric contribution, Sij = �1/2� ·
�Iij + ITij �− Jij1 and Aij = �1/2��Iij − ITij �. This implies
that only the Jij force the system into a collinear state.
The anisotropic antisymmetric components include the
Dzyaloshinskii-Moriya vectors

D�
ij ≡

1
2

∑
��

	���I
��
ij 
 �
�
� = x
 y
 z (4)

that describe the noncollinearity between two magnetic
moments;15 they are closely linked to the symmetry of the
system.
The complete Hamiltonian then reads

H = −∑
i �=j

�Jijmi ·mj + �Dij · �mi×mj �+miSijmj �

− ∑
i

miIiimi−
∑
ij

miQijmj +Hext (5)

The fourth term correlates to the uniaxial anisotropy
of the system, whereas the fifth term accounts for the

dipole–dipole interaction (shape anisotropy). The dipolar
matrix Qij is given by

Q
�
ij = �0

8�

3r�ij r

ij−r2ij�

�

r5ij

 rij =ri−rj� �
=x
y
z (6)

where ri is the location of the atom i. Eventually, an exter-
nal magnetic field is described by the Zeeman term in Hext.
The magnetic properties of the systems in thermal equilib-
rium are obtained by a standard Monte-Carlo method16,17

using the Metropolis algorithm.

3. RESULTS AND DISCUSSION

3.1. Spin-Resolved Electronic Properties

The electronic-structure calculations yield that the major-
ity bands in the Fe layer are almost completely filled,
unlike the minority bands that show a sharp maximum at
the Fermi level (Fig. 2). As a consequence of the reduced
dimensionality of the film, the Fe magnetic moment
(3.03 �B) is increased with respect to Fe bulk (2.26 �B)
and agrees with that given by Hardrat et al.1 (3.10 �B).
Hybridization of Fe and Pt electronic states results in
induced Pt magnetic moments that decrease rapidly toward
the bulk (first Pt-layer 0.26 �B; second Pt-layer 0.01 �B;
Fig. 2). This is a first hint on that the Pt substrate,
with its large spin-orbit coupling, can indeed have a
profound influence on the magnetic structure in the Fe
adlayer.

Fig. 2. Spin-resolved electronic structure of a monolayer Fe on Pt(111).
The density of states (DOS) is given for the Fe layer (top) and the first
Pt layer (bottom). The strong exchange splitting in Fe (3.03 �B) and the
hybridization of Fe with Pt electronic states leads to a sizable induced
moment in the first Pt layer (0.26 �B).

J. Nanosci. Nanotechnol. 12, 7516–7519, 2012 7517
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3.2. Magnetic Configuration of a
Monolayer Fe on Pt(111)

In the Monte Carlo simulations for the magnetic ground
state we consider the first three layers (Fe layer and the
two subsequent Pt layers) because only these show relevant
magnetic moments and spin interactions.
First, we discuss the effects of the individual contribu-

tions in the spin Hamiltonian on the magnetic configura-
tions. The nearest-neighbor Heisenberg exchange constant
exhibits ferromagnetic behavior (J1NN > 0); the magne-
tocrystalline anisotropy is in-plane (parallel to the surface).
Hence, without the DM contribution, we obtain an in-plane
collinear ground state with an average atomic moment of
1.59 �B, in clear contrast to experiment (1.0 �B from
Ref. [3]).
Inclusion of the symmetric anisotropic part Sij in the

Hamiltonian maintains this spin configuration in general.
In contrast to the DM part, this term tends to tilt pairs of
magnetic moments in the same direction. Hence it can be
interpreted as an additional contribution to the magneto-
crystalline anisotropy that slightly changes the easy axis
for each pair of moments. As a consequence, the local
magnetic moments deviate more strongly from the general
easy axis than without Sij , even at very low temperatures.
These fluctuations of the easy axes can be viewed as a
broadening of the global energy minimum that also gives
rise to fluctuations of the transition region width w.
The Dzyaloshinskii-Moriya contribution turns out to be

significant only for nearest neighbor sites, as was deduced
by successively reducing the interaction range in the MC
calculations; it tends to tilt magnetic moments mutually
and is strongly linked to the symmetry of the system
(Fig. 3). It produces as an outcome of our calculations
a periodic noncollinear configuration which shows up in
both the Fe layer and the subsurface Pt layers (Fig. 4; not
shown for Pt); this corroborates the significant coupling of
Fe and Pt found in the density of states (Fig. 2). Since
the magnetic structure contains in-plane and perpendicular
components, it reminds at a combination of (very narrow)
Bloch and Néel walls.

Fig. 3. Dzyaloshinskii-Moriya interaction in a monolayer Fe on
Pt(111). Arrows depict the DM vectors Dij between two magnetic
moments i (central site, fixed) and j in the Fe adlayer. Because of the
three-fold symmetry, DM contributions from an in-plane ring structure,
with antisymmetric interactions with respect to site i.

Fig. 4. Noncollinear magnetism in a monolayer Fe on Pt(111). Because
of strong spin-orbit coupling effects, the local magnetic moments
(arrows) form a periodic noncollinear magnetic structure. The moment
averaged over one magnetic unit cell vanishes, but the moment averaged
over the length w of the transition range is about 1.0 �B.

An impression of the interplay of the individual contribu-
tions to the Hamiltonian is provided by ratios J :K:S:D. We
obtain for the Fe–Fe interaction 75:1:9:16, in contrast to the
Fe–Pt interaction 8:1:1:2. While in both cases the Heisen-
berg exchange dominates, the ratio J :D is almost identical
for Fe–Fe and Fe–Pt (about 8:1), giving further support to
the importance of the SOC and hybridization. The mag-
netic lattice constant can be estimated from domain-wall
theory within a continuum model. Without DM interaction,
the width w of the transition region is given by

w =
√

A

K
(7)

where A and K are the exchange density and the average
anisotropy, respectively. With DM contribution, an ana-
lytical solution for w has been achieved only for DM
vectors aligned along the z-direction, enlarging the transi-
tion region w. From the calculated parameters we obtain
w = 3�8 nm, which is slightly smaller than half of the mag-
netic lattice constant (Fig. 4). Taking into account the DM
contribution, w is increased to 6.7 nm. A closer analysis
of the MC simulations yields that this increase can indeed
be attributed to the DM contributions.
Averaging over the magnetic unit cell gives a vanishing

net magnetization. Restricting the average to the transi-
tion region, as indicated by the double arrow in Figure 4,
produces a net moment of about 1.0 �B.

The perpendicular components of the local moments are
very well described by an arithmetic function. Further, the
symmetric anisotropic interaction leads to tiny fluctuations
of the magnetic lattice constant; these are attributed to
the anisotropic symmetric contributions to the exchange
matrices.
We now focus on the magnetic phase transition. Since a

noncollinear configuration is not well characterized by its
average magnetization, we deduce the critical temperature
from the nearest-neighbor spin correlation function

S = 1
N

∑
i

1
Ni

∑
j

�mi ·mj � (8)

Here, N is the number of sites in the sample and Ni the
number of nearest neighbor atoms of site i. An alternative

7518 J. Nanosci. Nanotechnol. 12, 7516–7519, 2012
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measure is the spin–spin correlation function (SSCF)

s�dr�= �mr ·mr+dr�r (9)

of magnetic moments at a distance dr . The SSCF of
Fe/Pt(111) behaves like cos��dr/w� at very low temper-
atures. For increasing thermal fluctuations, its amplitude
decreases and eventually vanishes at the Curie tempera-
ture TC. From this general behavior we derive Curie tem-
peratures of 670 K without DM interaction. With DM
interaction, the Curie temperature is reduced to 590 K
which is in good agreement with 0.6 of TC for bulk Fe
(1043 K), as found by Rausch and Nolting.18

Eventually, we consider the dependency of the aver-
age magnetization on an external magnetic field perpen-
dicular to the surface. We recall that a magnetization of
1.2 �B has been found experimentally at 5 T; even at
10 T the sample was not driven into saturation.3 To mimic
these experiments we performed MC simulations with the
magnetic-field term (up to 10 T). As consequence of the
strong SOC, the local magnetic moments maintain sizable
in-plane components (cf. Fig. 4 for zero field) but are tilted
out-of-plane with increasing field strength. For a field of
5 T we obtain a net magnetization of 1.3 �B. Also at 10 T,
the local magnetic moments are not completely rotated
out-of-plane, indicating incomplete saturation. Since these
findings agree nicely with experiment,3 we conclude that
the theoretically predicted noncollinear structure solves the
aforementioned puzzle.

4. CONCLUSION

Ultrathin films with strong spin-orbit coupling show non-
collinear spin structures, as is demonstrated for a mono-
layer Fe on Pt(111). Using Monte-Carlo calculations for
a generalized Heisenberg model, in which spin-orbit con-
tributions are taken into account and whose parameters
are obtained from first-principles calculations, we find
a periodic arrangement of toroidal structures. This non-
collinear structure solves the discrepancy of the exper-
imental magnetization and the theoretical magnetization
for a ferromagnetic configuration. Our findings call for
new experiments in order to verify the predicted magnetic
structure.

We expect a strong impact of the spin-orbit interaction
on time-dependent phenomena, as is currently investi-
gated within an atomistic approach based on the stochas-
tic Landau–Lifshitz–Gilbert equation. First calculations for
systems perturbed by a magnetic field pulse show long-
term excitations which may excite magnons.
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national Max Planck School for Science and Technology
of Nanostructures. This work is supported by the Sonder-
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4.3 Gilbert damping tensor within the breathing Fermi surface model: anisotropy and
non-locality

4.3 Gilbert damping tensor within the breathing Fermi surface
model: anisotropy and non-locality

Developing and optimizing new magnetic devices for spintronic applications calls for detailed
studies on magnetization dynamics. A distinctive property is the relaxation rate, which
in nanoscopic magnetic simulations is introduced as Gilbert’s phenomenological damping
parameter α. The larger α, the faster is the magnetic equilibration. This parameter is
often assumed local and isotropic, in agreement with ferromagnetic resonance spectroscopy.
But experiments and theoretical observations on the atomic scale [83], in particular in low-
dimensional systems, suggest an anisotropic spin-orbit contribution and, thus, an anisotropic
damping.

In the framework of the Kamberský model and based on first-principles calculations, the
Gilbert damping was detected as a non-local quantity. Using tight-binding Green function
techniques, both magnetic disorder as well as layer-resolution, based on renormalization
methods, were obtained. The Slater-Koster parametrization was fitted via a genetic algo-
rithm to band structures obtained with a multiple-scattering KKR code.

The role of different contributions is analyzed in detail: the damping is guided from the
equilibration of the excited population state back into the ground state. If there is no
equilibrating-force (coupling to other reservoirs), the relaxation time is enlarged and transi-
tions within degenerate electronic states (intraband transition) become important. Contrary,
if the electron reservoir correlates to other reservoirs, this equilibration will be accelerated
by occupying bands of different energy (interband transition) and thus, the damping be-
comes larger. This indicates e.g. strong electron-phonon coupling Γ: for small Γ, the
dissipation was found large and decreasing with stronger coupling up to a minimum, where
the interband transitions become important. This trend was observed in both Fe and Co
and verified by other first-principles methods [110], ensuring a correct modeling by the
tight-binding theory. Using disordered local moment theory, a significant electron-spin cou-
pling was also revealed that increases the damping with temperature. This agrees with the
fluctuation-dissipation theorem: the stronger the fluctuations, the higher is the dissipation.
The electron temperature, however, determines a large spectral overlap and, therefore, also
faster relaxation.

Anisotropies occur always at surfaces and depend on the surface orientation. Renormal-
ization allows to study layer-resolved dissipation, e.g. on various Co surfaces. Only small
changes in the coordination number of the (100), (110) and (111)-surface indicate low energy
dissipation variations. The anisotropy in dissipation accounts for an oscillating increase of
the damping towards the surface. The highest damping on the topmost layer agrees again
with the dissipation-fluctuation theorem and is due to a higher electron density at the Fermi
surface than in the other layers. Moreover, a monotonic decrease of the damping parame-
ter α0J with the distance rJ was found, demonstrating a strong spatial retardation in the
magnetization dynamics. More precisely, nutation will appear as a complex superposition
of inertia and non-local energy dissipation.
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1. Introduction

Magnetic devices and magnetic reversal effects are strongly affected by their rate

of energy transfer (dissipation): the larger this transfer, the faster is the magnetic

equilibration. Regarding spintronics applications, there is an ongoing search for

materials with preferably small damping [1]. The magnetization dynamics on a

nanometer length scale and on a femtosecond time scale can be described by the

Landau-Lifshitz-Gilbert equation [2]. Here, the dissipation is introduced by Gilbert’s

phenomenological parameter α [3] that includes all possible damping mechanisms. The

damping parameter is taken as local and isotropic, in agreement with ferromagnetic

resonance spectroscopy [4, 5].

The coupling of the magnetization to the electronic degrees of freedom is mediated

by the spin-orbit coupling. Detailed measurements on the atomic scale as well as

theoretical models for nanostructures reveal a non-uniform spin-orbit coupling [6] which

is responsible for local magnetic anisotropies. Hence, the Gilbert damping should also

by anisotropic and site-dependent, in particular in low-dimensional systems.

To calculate the damping constant from first principles Ebert et al. [7] suggest a

model that shows good agreement with experiments. Based on linear response theory,

their torque-torque correlation model was applied to an Fe1−xCox alloy and to various 5d

transition metals. Thermal effects are included by phonon scattering in an alloy-analogy

model.

Besides linear response theory, there exists also the breathing Fermi surface model

of Kamberský [8, 9]. This model considers the non-equilibrium population of electronic

states that is forced by the change of the magnetic moments. The coupling of the

electronic spin to the electronic eigenstates is of spin-orbit nature. The model predicts

a significant damping in metals with strong spin-orbit coupling, e. g. 4f metals. Also

ultrathin films are predicted to exhibit strong damping [10].

The energy change near the Fermi surface of the Stoner magnets Fe and Co has been

investigated by Gilmore et al. [11], using the Kamberský model in a projector augmented

wave method. Although in good agreement with experimental findings, their results do

not comply with those by Fähnle et al.: in [12] a dependence of the damping α on the

magnetic moment’s direction [13] as well as on temperature is established. The latter has

been observed experimentally [14, 15] and confirmed theoretically [7, 10]. Furthermore,

the damping can become anisotropic and non-local [16–18], leading to a damping tensor

αij. The anisotropic and non-local character of the magnetic damping is also achievable

within the Kamberský model.

In this paper we report on a theoretical investigation of the anisotropic and non-

local Gilbert damping in the framework of the Kamberský model. To calculate the

damping tensor, we use a tight-binding (TB) model. The tight-binding parameters

have been obtained by fitting the electronic structures to those of a first-principles fully

relativistic multiple scattering Korringa-Kohn-Rostoker (KKR) method using a genetic

algorithm. Semi-infinite systems are treated by a renormalization scheme for the Green



Gilbert damping tensor within the breathing Fermi surface model 3

function. These together with the generalized Kamberský equation allow to calculate

the damping tensor layer- as well as temperature-resolved. We compare our results to

published data for Fe and Co. The role of various contributions are analyzed in detail:

electronic intra- and interband transitions, electron and magnetic temperature as well

as surface orientation. Our results reveal a complicated non-local, anisotropic damping

that depends on all three thermal reservoirs.

The paper is organized as follows. Computational details and theoretical basics are

given in section 2. The damping properties of bulk magnets are discussed in section 3.1,

for surfaces in section 3.2.

2. Theoretical and computational aspects

We consider a ferromagnetic system whose Bloch states, characterized by the band index

n at wavevector k, have energies εk,n. Due to the spin-orbit coupling, the magnetization

m with direction e affects the eigenstates: Tilting m by a small change δe generates

a non-equilibrium population state which can viewed as a deviation — or breathing —

of the Fermi surface. The non-equilibrium distribution relaxes toward the equilibrium

distribution within a time τk,n (relaxation time approximation). This relaxation is

driven by the coupling Λ of the electron reservoir to the lattice reservoir, that is via

electron-phonon coupling. Following Gilmore et al. [11], this breathing Fermi surface

model of Kamberský [8,9] in a generalized form and within the isotropic relaxation time

approximation (τk,n → τ) results in the damping tensor α with elements

ανµ =
gπ

m

∑

n,m

∫
η(εk,n)

(
∂εk,n
∂δe

)

ν

(
∂εk,m
∂δe

)

µ

τ

~
dk

(2π)3
ν, µ = x, y, z. (1)

η(εk,n) = ∂f(ε)/∂ε|εk,n is the derivative of the Fermi-Dirac distribution f(ε) with respect

to the energy; n and m are band indices.

The spin-orbit coupling Ĥso correlates the magnetization with the electronic ground

state, giving rise to the magnetocrystalline anisotropy. Hence, the torque matrix

elements
(
∂εk,n
∂δe

)
ν

can be obtained from ε(δe) = 〈n,k|eiσ·δeĤso(e)e−iσ·δe|m,k〉, where

|n,k〉 are the eigenstates of the Hamiltonian Ĥ and σ is the vector of Pauli matrices.

With Γnm ≡ 〈n,k|
[
σ, Ĥso

]
|m,k〉, which accounts for the transitions between the states

in band n and m, the damping tensor αµν reads

ανµ =
gπ

m

∑

n,m

∫
Γνnm ΓµnmWnm(k)

dk

(2π)3
. (2)

The scattering events depend on the overlap Wnm(k) ≡
∫

dε η(ε)Ak,nΛ (ε)Ak,mΛ (ε) of the

spectral function Ak,nΛ , which is a Lorentzian centered at εk,n. Its width is determined by

the coupling strength Λ to the lattice. Replacing the Bloch states by the Green function,

the spectral function can be written as ImĜ(k, ε±iΛ) = ∓∑n |n〉〈n|AΛ(ε−εk,n). Hence,

we end up with a result similar to the torque-torque-correlation model [7],

ανµ =
g

mπ

∫ ∫
η(ε) Tr

(
T̂ ν ImĜ T̂ µ ImĜ

) dk

(2π)3
dε, (3)
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Fe Co

εs 6.006 5.322

εp 12.658 14.000

εt2g −0.853 −1.389

εeg −0.955 −1.402

λp 0.200 0.100

λd 0.080 0.070

Bs 0.436 −0.329

Bp 0.793 −1.237

Bt2g 2.069 1.572

Beg 2.034 1.526

Fe Co

(ssσ) −1.494 −1.144

(spσ) −2.035 −1.708

(sdσ) 0.769 0.435

(ppσ) 2.901 3.113

(ppπ) −0.112 −0.204

(pdσ) −0.903 −0.233

(pdπ) 0.303 0.510

(ddσ) −0.623 −0.515

(ddπ) 0.412 0.387

(ddδ) −0.066 0.093

Table 1. Tight-binding parameters for bulk bcc Fe and fcc Co, obtained from a genetic

algorithm. The notation follows that of Slater and Koster [20] for the on-site energies ε

(left) and hopping parameters (right). λ and B stand for orbital-dependent spin-orbit

coupling strength and exchange splitting, respectively.

where T̂ ≡
[
σ, Ĥso

]
.

To obtain the Green function, we use a tight-binding model [19] based on the Slater-

Koster parameterization [20,21]. The tight-binding parameters, including the spin-orbit

coupling strength, are obtained by fitting the tight-binding band structures to ab initio

band structures, using a genetic algorithm [22] (table 1). The fitness function is taken

from [23], with an accuracy better than 10−4 eV. The parameters are in good agreement

with those reported in Refs. [24–26]. The first-principles band structures were calculated

within a fully relativistic multiple-scattering Green function approach (Korringa-Kohn-

Rostoker method [KKR]) [27].

Having a reliable tight-binding description of the bulk electronic structure at hand,

we proceed by computing the electronic structure of a semi-infinite system, using a

renormalization scheme [28,29]. The result is the layer- and site-resolved Green function,

with site i in layer n indexed as I ≡ (n, i). This allows to define the layer- and site-

resolved damping tensor by:

ανµIJ =
g

mπ

∫
η(ε) Tr

(
T̂ νn ImĜIJ T̂

µ
m ImĜJI

)
dε, I 6= J. (4)

We perform a fifth-order Keast quadrature method in the first Brillouin zone

k integration with up to 105 mesh points for bulk and 106 mesh points for surface

calculations. For small Λ (less than about 5 ·10−3 eV), these dense meshes are necessary

to suppress spurious non-zero off-diagonal elements of the damping tensor which in

principle should vanish to the cubic symmetry in bulk systems. The energy integration

is approximated by a Gauss-Legendre quadrature with 32 supporting points in a small

energy range around the Fermi level.

Various components of the entire system contribute to α due to different relaxation

processes. This is qualitatively described by three separate but coupled reservoirs:
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the magnetic moments, the lattice, and the electrons [30, 31], assuming the adiabatic

limit. The electron temperature Te is modeled by the width of the Fermi distribution,

whereas the temperature of the magnetic system, the spin temperature Ts, is mimicked

within the disordered local moment theory which is based on the coherent potential

approximation (CPA) [32, 33]. For the time being, the electron-phonon coupling is set

constant. The above tensorial representation yields furthermore the dependence of the

Gilbert damping on the magnetization direction, αIJ = αIJ (e), which is mediated by

the spin-orbit coupling.

The calculated Gilbert damping is used in an atomistic formulation of the Landau-

Lifshitz-Gilbert equation [2,3,34]. The temporal evolution of the magnetic moment mi

at site i reads [16,17]

∂mi

∂t
= mi ×

(
−γBi +

∑

j

1

|mj|
αi,j

∂mj

∂t

)
(5)

The effective field Bi = ∂Ĥmag/∂mi is fixed by the Hamiltonian Ĥmag which comprises

the Heisenberg exchange interaction, the dipole-dipole energy, the magnetocrystalline

anisotropy and a Zeemann term. Explicitly,

Ĥmag = −
∑

ij

miIijmj +
∑

i

Bext ·mi. (6)

Iij = JijE + Qij for i 6= j contains the Heisenberg exchange parameter Jij and the

dipolar interaction matrix Qνµ
ij = 1

2
µ0
4π

3rνijr
µ
ij−r2ijδνµ
r5ij

between to sites i and j with distance

rij = ri−rj. E is the unit matrix. Iii determines the magnetocrystalline anisotropy. The

Heisenberg exchange interactions Jij as well as the anisotropies Iii have been calculated

from first principles within the KKR framework, using the Lichtenstein formula [35] and

the magnetic force theorem [27]; for details see [36].

3. Results and discussion

3.1. Damping constant of bulk materials

In this section, we first address the two approaches to α, (1) and (3), and compare

our tight-binding data to the ab initio results reported in [11]. We assume a

ferromagnetically ordered system with magnetic moments in ez direction. Tilting a

magnetic moment toward ex or ey yields an effective torque matrix element T− ≡
〈n,k|

[
σ−, Ĥso

]
|m,k〉, where σ− ≡ σx − iσy. The cubic symmetry in bulk bcc Fe and

fcc Co dictates that the damping tensor is diagonal, in agreement with our calculations.

The damping constant α is given then by the trace of the damping tensor α for the

reference magnetization direction ez (α = αxx + αyy) [11].

The reliability of our tight-binding parameterization is proven by the agreement of

the damping constant α with those reported in [11] (figure 1). For comparison, the tight-

binding damping constants have to be scaled by a factor of 1/4π2, which we attribute

to a different definition of the Lorentzian in [11].
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Figure 1. Calculated bulk Gilbert damping constant α versus phonon coupling

strength Λ for Co (a, top) and Fe (b, bottom), in logarithmic scale. The results

obtained by our tight-binding method base on Lorentz broadening (black circles) or on

Green functions (black triangles). The curvature close to the minima is a superposition

of inter- (green line) and intraband (blue line) transitions; the latter vanish for large

Λ. Data reproduced from [11] (‘Gilmore et al.’) are presented as red triangles. The

dotted lines are guides to the eye.

For large electron-phonon coupling Λ, α decreases, which is interpreted as follows.

α comprises both intraband transitions (n = m in (2); blue line in figure 1) and

interband transitions (n 6= m; green line in figure 1) [11]. For small Λ, the intraband

transitions play a major role and αintra(Λ) can be approximated linear. For large Λ, the

broad Lorentzians lead to an increase of the interband contribution which eventually

dominates the intraband contribution. For even larger Λ, the Gilbert damping drops

again, resulting in the maximum at Λ ≈ 1. However, this is an artifact of the finite

orbital basis in the tight-binding approach which does not describe well electronic states

far off the Fermi level (at ≈ 10 eV). Nevertheless, the approach reproduces the ab initio

results of [11] in the range Λ ∈ [0.001, 1] well.
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In the ‘Lorentz’ approach (2), the coupling Λ defines the width of the energy

window in which transitions Γnm are accounted for; the electronic structure itself is

unaffected. In the Green function approach, Λ is taken as the imaginary part of the

energy at which the Green functions is evaluated. This offset from the real energy axis

provides a more accurate description with respect to the ab initio results [11] than the

Lorentzian approach, in particular for Fe. This may be understood from the fact that

a finite Λ broadens and shifts maxima in the spectral function; hence, electronic states

at energies around the Fermi level that are weakly weighted by η(ε) contribute to the

damping. Furthermore, their contribution depends on their orbital composition and on

the strength of the spin-orbit coupling.

We now discuss the dependence of α on the reservoir temperatures and focus first

on the spin temperature Ts. The dependence of α on the magnetic moment direction

e, on the electron-phonon coupling Λ as well as on transitions involving energetically

lower states suggests a correlation between the spin-, the lattice-, and the electron

temperature [37]. The spin temperature Ts is modeled within the disordered local

moment (DLM) theory [38, 39]. This approach is based on a substitutional binary

alloy that is described within the coherent potential approximation (CPA) [32, 33, 40];

the host material comprises sites with magnetization along the reference direction e,

with concentration c⇑, and sites with magnetization along −e, with concentration

c⇓ = 1−c⇑ [41] (figure 2). Zero spin temperature is obtained for c⇑ = 1.0 (ferromagnetic

case), whereas the critical temperature is given for c⇑ = 0.5 (paramagnetic case). The

mapping of the impurity concentration on the spin temperature can be obtained by

comparing magnetizations derived from DLM electronic-structure calculations and from

temperature-dependent Monte Carlo calculations [41,42].

The dependence of α on the spin temperature (figure 2) is in agreement with the

dissipation-fluctuation theorem which states, roughly speaking, that the dissipative

reaction of the system is proportional to the fluctuation. Here, the electron system

tries to stabilize the magnetic order with increasing Ts (that is increasing magnetic

fluctuations or decreasing concentration) by increasing the Gilbert damping which

models the dissipation. The sizable change of α with concentration suggests that

a constant α may be inappropriate for modeling magnetic systems at elevated

temperatures, for example using the Landau-Lifshitz-Gilbert equation.

We now turn to the dependence of α on the electron temperature Te. The electron

temperature is included via η in (1) and accounts for transitions between states in a

narrow energy window above the Fermi level. An electron-hole pair relaxes faster from

the non-equilibrium population (which is induced by the spin-orbit coupling) towards

the equilibrium than in the zero temperature case; thus, α decreases with decreasing

relaxation time τ . This mechanism is contrasted by the fact that more electronic states

around the Fermi level are involved in the relaxation process, leading to an increase of α.

Hence, the Kamberský model postulates a competition between these two mechanisms

(figure 3).

We limit the dependence of α on the electron temperature by the energy window
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Figure 2. Damping constant α versus spin temperature Ts for bulk Co (triangles)

and Fe (circles), as modeled by the concentration c⇑ in the disordered local moment

theory (see text). The concentration is inversely proportional to the temperature [41].

Data for electron-phonon coupling Λ = 0.1 eV (0.01 eV) are displayed in blue (red).

The electron temperature Te is zero. Lines serve as guides to the eye.

around the Fermi level εF to εcut = 0.01 eV, 0.1 eV, and 1.0 eV (figure 3). For a large

energy window of εcut = 1 eV, α (Te) increases non-linearly with electron temperature; a

similar trend is found for the magnetic temperature Ts. This finding is explained by the

large spectral overlap Wnm (figure 3a): Wnm is constrained by the derivative η of the

Fermi-Dirac distribution. The higher the temperature, the larger is the spectral overlap

(color shaded areas in figure 3a) and therefore, α increases. If εcut is smaller than the

underlying range of the Fermi-Dirac distribution, α decreases with temperature.

The electron-phonon coupling is, at present, roughly modeled by a constant Λ.

Phonons can be included via the spatial dependence of the tight-binding parameters,

for example using Harrison’s law [21] or by a polynomial representation [43]. In

particular the latter reproduces well phonon dispersions. The atomic displacements

change the electronic structure around the Fermi level and remove degeneracies in

the band structure; thus, the accompanying decrease of contributions from intraband

transitions will reduce α [7]. In addition, electron-magnon scattering or the Eliott-Yafet-

type spin scattering mechanism could be included [44].

The damping tensor (1) motivated in [12,13] accounts for transitions between states

with different reference spin direction and, thus, also for spin-flip transitions. For cubic

symmetry, the damping tensor is diagonal. In contrast to bulk system, off-diagonal

elements could be nonzero in systems with reduced symmetry, for example at surfaces.
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Figure 3. a) Illustration of the spectral overlap contribution between electronic state

i and j for temperatures T1 < T2 < T3. With increasing temperature the relevant

energy window around the Fermi energy EF becomes larger, leading to an increased

Gilbert damping α. b) α versus electron temperature Te for a fixed electron-phonon

coupling Λ = 0.1 for Co (triangles) and Fe (circles). Energy cut-offs are distinguished

by colors: εcut = 0.01 eV green, 0.1 eV blue, and 1.0 eV red. The spin temperature Ts
is zero. Lines serve as guides to the eye.

3.2. Damping tensor at surfaces

In the following, we address the electronic contribution to the damping tensor α at

surfaces. As examples, we focus on (001), (110) and (111) surfaces of fcc-Co with Cu

lattice constant 3.54 Å, addressing thus thick Co films on Cu surfaces.

The Rayleigh dissipation functional predicts energy transfer between neighboring

sites I 6= J [45,46]. Hence, the energy transfer rate has to be to considered as a non-local,

rather than as a local (on-site) quantity [3]. In contrast, on-site contributions account

for a local coupling to the lattice reservoir (phonons). To simplify the discussion, we

define a shell-averaged damping tensor α(r) by considering a reference site i0 in layer

n0 (I0 = (n0, i0)) and summing up contributions from all sites j in layer m (m 6= n0 and

j 6= i0) that are located on a sphere with radius r (figure 4).

For all three surfaces, the energy transfer is short-ranged, as is evident from the
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Figure 4. a) Schematic view of the summation method in a cubic lattice to obtain

α(r). For a given r all atoms are account for that are located on the circle. b)

— d) Layer-resolved non-local damping constant for different Co surfaces: b) (001),

c) (110) and d) (111). The electron-phonon coupling Λ is 0.01 eV. The non-local

character of the damping within the layers disappears within few nanometer distance;

in contrast, a non-monotonic decrease of the damping constant with respect to the

layer index is observed (layers are distinguished by colors). The damping does not

depend significantly on the surface orientation.

decrease of α with distance r (figure 4). The damping depends also on the surface

orientation: the nearest-neighbor α’s differ slightly (α
(001)
NN,I0

= 0.023, α
(110)
NN,I0

= 0.025,

and α
(111)
NN,I0) = 0.022), as can be explained qualitatively by the coordination numbers of

site I0 (8, 7, and 9 for (001), (110), and (111), respectively). If only nearest-neighbor

hopping would be considered, a reduced coordination yields a small electron hopping

probability (small band width), resulting in both a minute energy transfer and damping

constant.

α decreases with layer index (inset in figure 4). The topmost layer shows the largest

dissipation for all three surfaces, which is in accordance with the fluctuation-dissipation

theorem. NB: in the Landau-Lifshitz-Gilbert equation, the fluctuation amplitude (that

is the width of the Gaussian distribution of the random magnetic field [2]) reads α·kBT/γm;

hence, the response at a temperature T is stronger at the surface than in the bulk. The

dependence of α on the layer index is non-monotonous and exhibits oscillations; this

finding is at variance with results reported in [47] but agrees with those in [16,17]. The

oscillations can be explained by the density of states of the d states which ‘carry’ the

magnetic moment of Co.

The density of states of d orbitals at the Fermi level is largest for the surface

layer (figure 5). It oscillates similarly to α; this coincidence has been already noticed
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layer n = 0).

in [7] and [48]. The oscillations are explained by the behavior of t2g and eg states: the

DOS nt2g(εF) decreases monotonically with layer index but neg(εF) shows an oscillatory

behavior.

Eventually, we address how the non-locality of the Gilbert damping αij affects

the magnetization dynamics in different layers, using (5). The non-locality is relevant

in an incoherent magnetic configuration, e. g. in demagnetization processes [48] or in

nutation [49]; in case of a coherent precession of the magnetic moments, the sum in (5)

can be replaced by an effective constant αeff
i =

∑
j αij [10]. We discuss its effect for the

nutation in a 2-layer thick Co film on Cu(111) [49]. Here, we include α(r) from Co(111)

up to third-nearest neighbors (figure 6).

An initial incoherent state is prepared by perturbing randomly the coherent

precession around the anisotropy field at time t = 0. Then, an external magnetic field

with a strength of B = 5 T is abruptly switched on. We study three cases: accounting

for (i) the non-local αij, (ii) an effective α by summing over the distances r, and (iii) an

effective α by summing over distance r but weighted with the respective coordination

numbers.

Both the nutation lifetime and the amplitude are reduced with higher damping,

which supports the proportionality of the moment of inertia and the damping [50].

Case (ii) exhibits the smallest damping and, thus, a larger duration of the nutation.

For case (i) the energy transfer to the neighboring sites accelerates the relaxation process

compared to the other two cases.

A coherent precession of all magnetic moments (figure 6a) gives a small phase

shift (up to 10 fs), which is due the direct coupling to the inert motion of site j. In

an incoherent state, the evolution of j appears as a superimposed ‘noisy signal’ (red
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Figure 6. Nutation of a surface magnetic moment in a two layer thick Co film on

Cu(111) of a) a coherent and b) a non-coherent spin state. mz is shown versus time for

different damping scenarios: considering the non-local αij (red); effective α integrated

over the distance r (green, 0.083 for the surface and 0.021 for the subsurface layer),

and effective α integrated over r and weighted by the coordination number (blue, 0.12

for the surface and 0.028 for the subsurface layer).

in figure 6b). According to the angular-momentum transfer present in the Heisenberg

model, the energy transfer depends to the coordination: the higher the coordination

number, the faster is the relaxation. We conclude that anisotropic dissipation is

advantageous in relaxation and switching processes in magnetic nanostructures.

4. Conclusion

We present a calculational method to obtain the Gilbert damping tensor based on the

breathing Fermi-surface model. Within a tight-binding approach the layer-dependence

of the damping has been obtained. The non-local dissipation rate depends mildly on the

surface orientation but strongly on the layer and on the distance to neighboring sites.

In the tensor representation, the correlation to the reference magnetization results in a

non-homogeneous dissipation, which suggests to consider the dependence of the Gilbert

damping on the direction of the magnetic moments in future magnetization dynamics

simulations.

We also studied the dependence of the Gilbert damping constant on the electron

and spin temperatures. The damping increases with temperatures, in contrast to

experimental observations; this finding supports that the phonon temperature is the

major thermal contribution. The present comparably simple approximation of the

electron-phonon coupling has to be improved in a future implementation. Nevertheless,

also the spin- as well as the electron temperature should be considered in incoherent

magnetization effects.
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4.4 Nutation in magnetic nanostructures

4.4 Nutation in magnetic nanostructures

Below the adiabatic limit, where the timescale of magnetic precession is of the same order
as the electron equilibration, the magnetization reacts inert to perturbations. The time
scale, where this phenomenon appears, is of the order of the magnetic exchange (from
E = h/τ follows 10 eV ≈ 65 fs). The dynamics of the magnetic moment becomes similar
to that of a gyroscope that introduces the moment of inertia in its equation of motion.
The resulting nutation, however, has not been proved experimentally. Hence, the question
about the conditions of appearing magnetic nutation arises. In this paper, the extended
Landau-Lifshitz-Gilbert equation is applied. The extension results from the mesoscopic
non-equilibrium thermodynamics and postulates the inertia as the second time-derivative of
the magnetic moment.

The significance of nutation in magnetization dynamics of nanostructures was studied for a
single magnetic moment, an Fe chain, and 2ML thick Co islands on Cu(111). In process,
a single magnetic moment still shows nutation under unphysical conditions, such as strong
external magnetic fields. The main impact of nutation is the emergence of angular momen-
tum transfer, described by the Heisenberg model, as it is demonstrated for Fe chains and
nanoislands. Due to the reduced coordination, the cycloid (nutation) amplitude at rim sites
is larger than in the center of the nanostructures, but due to angular moment conservation
law the inertia signal does not have any influence to the average magnetic moment. Gilbert
damping α, in addition, reduces the magnitude and, thus, the nutation life time, which is
estimated to be 100− 500 fs. Nutation owed to temperature is describable as a time retar-
dation effect, replacing the commonly used white noise by a colored thermal noise modeled
with the Landau-Lifshitz-Miyazaki-Seki equation (studied in a post processing - figure 2.3.3;
not shown in the following paper). This postulates the existence of nutation still present at
small finite temperatures (T ≤ 1 K).
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The dynamics of magnetic moments in nanostructures is closely linked to that of gyroscopes. The Landau-
Lifshitz-Gilbert equation describes precession and relaxation but does not include nutation. Both precession and
relaxation have been observed in experiments, in contrast to nutation. The extension of the atomistic Landau-
Lifshitz-Gilbert equation by a nutation term allows us to study the significance of nutation in magnetization
dynamics of nanostructures: for a single magnetic moment, a chain of Fe atoms, and Co islands on Cu(111). We
find that nutation is significant at low-coordination sites and on the time scale of about 100 fs; its observation
challenges strongly today’s experimental techniques.

DOI: 10.1103/PhysRevB.86.020404 PACS number(s): 75.70.Ak, 75.78.Jp, 75.10.Hk

Investigations of the magnetization dynamics in nanoscale
systems have become very important in the recent past.
Hot topics comprise, for example, current-induced domain-
wall motion1 and demagnetization effects upon femtosecond
laser pulses.2,3 On time scales from microseconds down to
femtoseconds, the dynamics of magnetic systems is well
characterized by the Landau-Lifshitz-Gilbert (LLG) equation

∂ M
∂t

= M ×
(

−γ Beff + α

Ms

∂ M
∂t

)
(1)

for the average magnetic moment M (Ref. 4). It describes the
precession of M around and its relaxation towards the effective
field Beff (Ref. 5).

Precession is well known from the classical mechanics of
a gyroscope. If an external force tilts the rotation axis of
the gyroscope off the direction of the gravity field, then the
gyroscope starts to precess around the gravitational field with
a tilt angle ψ (Fig. 1, large circle). Because of the inertia,
the rotation axis shifts to larger angles than ψ . Thus, the
rotation axis does not coincide with the angular-momentum
direction, which results in an additional precession of the
gyroscope around the angular-momentum axis (Fig. 1, small
circle), called nutation. The trajectory is a cycloid with the
tilt angle φ(t) = φ̄[1 − cos(ωnt)] and the azimuthal angle
θ (t) = φ̄[ωnt − sin(ωnt)]. In most cases, nutation is small
compared to precession (φ̄ < ψ).

Given the similarity of gyroscope dynamics and magneti-
zation dynamics, Döring introduced the concepts of mass and
inertia in macrospin systems,6 especially for domain walls. De
Leeuw and Robertson proved the existence of a domain-wall
mass experimentally.7 Spin nutation was first predicted in
Josephson junctions.8–12 It was shown that in a magnetic
tunnel junction, a local spin inserted into the junction can be
electrically controlled, using short bias voltage pulses. Ciornei
et al.13,14 studied the role of inertia in damped dynamics
using a macrospin approach, thereby neglecting the magnetic
exchange interaction within the sample, and concluded that
nutation will have a lifetime of picoseconds.

Up to now, nutation has not been observed in magnetization
dynamics, possibly because the effect is too small and appears
on the time scale of the magnetic exchange interaction. How-
ever, with respect to the recent enormous progress in ultrafast

spectroscopies (e. g., Ref. 15), experimental techniques will
access the femtosecond time scale soon. This raises the
question under what circumstances nutation can be observed
in magnetic nanostructures.

In this paper, we give an answer to the above question
for selected nanostructures by means of the atomistic Landau-
Lifshitz-Gilbert equation. The spin Hamiltonian comprises the
exchange interactions, the magnetocrystalline anisotropy, as
well as an external magnetic field. The Heisenberg exchange
and the anisotropy constants are calculated from first prin-
ciples. Starting from an almost collinear magnetic state, an
external magnetic field B is switched on abruptly, resulting in
nutation of the local magnetic moments. We consider model
systems such as a single moment (atom), Fe chains of various
lengths, and Co islands on Cu(111).

The magnetization dynamics is described by an atomistic
Landau-Lifshitz-Gilbert equation16,17

∂mi

∂t
= mi ×

(
−γ Beff

i + α

mi

∂mi

∂t
+ γ ι

mi

∂2mi

∂t2

)
, (2)

which is extended by a nutation term. mi is the local
atomic moment (|mi | = mi) at site i. γ and α � 1 are the
gyromagnetic ratio and the Gilbert damping, respectively.
The magnetic moment of inertia ι is expressed as ι = ατ

γ

(taken from Ref. 13), with the relaxation time τ that enlarges
or reduces the period of the nutation cycloid. The nutation
part (usually not considered in magnetization dynamics) is
treated as in Refs. 13 and 18, following Döring’s concept of
magnetic-moment mass.6 Temperature effects are neglected.

The first term in Eq. (2) accounts for the precession of mi

around the local effective field Beff
i , whereas the second term

describes the relaxation of mi toward Beff
i due to inelastic

processes. The third term models the nutation due to a change
in Beff

i . The local effective field Beff
i = −∂Ĥ/∂mi is obtained

from the Hamiltonian

Ĥ = Ĥex + Ĥmca + Ĥdd + Ĥext. (3)

Ĥex is the Heisenberg exchange interaction

Ĥex = −
∑
ij

Jij mi · mj , (4)
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nutation coneprecession cone

FIG. 1. (Color online) Precession and nutation of a gyroscope or
a magnetization vector. The large circle sketches the precession cone
around the effective magnetic field (marked as blue (dark gray) line).
The inertia leads to the nutation, i. e., an additional precession [green
(gray) small circle]. The trajectory is thus a cycloid (black wavy line).

where Jij are the Heisenberg exchange constants. The magne-
tocrystalline anisotropy

Ĥmca =
∑

i

Ki(mi · emca)2 (5)

is assumed uniaxial, with “easy axis” emca and anisotropy
constants Ki . The demagnetization field yields the shape
anisotropy

Ĥdd = −1

2

μ0

4π

∑
ij

3(mi · r ij )(mj · r ij ) − (mi · mj )r2
ij

r5
ij

.

(6)

r ij ≡ r i − rj is the distance between sites i and j (μ0 vacuum
permeability). Eventually, the Zeeman term

Ĥext = −μB B ·
∑

i

mi (7)

accounts for an external field B.
Prior to the magnetization-dynamics calculations, we

computed the electronic and magnetic structures of bulk
Fe and a 2-monolayer-thick Co film on Cu(111) from
first principles, using a multiple-scattering approach.19 Our
relativistic Korringa-Kohn-Rostoker method20 relies on the
local spin-density approximation to density-functional theory,
with Perdew-Wang exchange-correlation potential.21 Based
on the ab initio calculations, both the exchange constants
Jij and the anisotropy constants Ki were computed from the
magnetic-force theorem (e. g., Ref. 22).

The nutation term in the LLG equation (2) can be interpreted
as follows: The Heisenberg model describes the transfer of
angular momentum L between two atomic moments, where
the total angular momentum is conserved within the entire
system. This results in precession because ∂ L

∂t
= M. An

external field B can also transfer angular momentum and tilts
the moment off the angular-momentum axis, analogous to the
classical gyroscope. However, the moments respond inert and
start to nutate on a femtosecond time scale because they are
coupled by the Heisenberg exchange interaction. The cycloid
period of the nutation is affected by the relaxation time τ . An
increased Gilbert damping leads on one hand to a decrease of

FIG. 2. (Color online) Nutation of a single magnetic moment.
The external magnetic field B along z is abruptly increased from 1
to 51 T. Blue (green) line: trajectory without (with) the nutation term
in the LLG equation (2). The panels on the left-hand side show the
vector components [dark gray (gray): without (with) nutation term];
note the different scales of the Cartesian axes. Relaxation time τ = 1
ps, Gilbert damping α = 0.005, total duration 600 fs.

the nutation effect and on the other hand increases the inertia.
Nutation becomes important if the time scale of the change
of B is smaller than the angular-momentum relaxation time.
The latter can be estimated from the Heisenberg exchange
parameters (J ≈ 12 meV for nearest neighbors in bulk Fe) and
the relaxation time to be in the order of tens of femtoseconds.

Application 1: Single magnetic moment. It suggests itself
that a single moment should have the strongest nutation.13 If
an external magnetic field B is applied, e. g., in z direction, the
magnetic moment precesses around the external field with the
Larmor frequency ω = γB. An abrupt increase of B changes
the angular velocity of the precession: Without the nutation
term in Eq. (2), the precession becomes only faster (blue line
in Fig. 2). However, with the nutation term in Eq. (2), nutation
shows up as a cycloid with a small lifetime (green line): the
abrupt increase of the z component of the magnetic moment
is due to the huge external magnetic field which is, admittedly
unphysically, suddenly increased.

Despite the unphysical parameters (given in Fig. 2), the
nutation amplitude is very weak. We attribute this finding to
a change of the strength of B, rather than a change of its
direction (cf. Ref. 13 in which a pronounced nutation is found
for the latter case).

Our finding supports that nutation is hard to observe in
a macrospin system under realistic physical conditions. It
suggests that nutation is more significant when changing the
external-field direction or by taking into account the effective
field coming from nearby magnetic moments [Eq. (4); the
single magnetic moment of this model system is apparently
not affected by other magnetic moments]. This supposition is
proved in the next examples.

Application 2: Chain of Fe atoms. The role of angular-
momentum transfer due to Heisenberg exchange is inves-
tigated by means of Fe chains of finite lengths. The ex-
change constants Jij are deliberately taken from bulk Fe
(J = 12.6 meV for nearest neighbors and J = 11.3 meV
for next-nearest neighbors); since the exchange parameters

020404-2
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depend on the dimensionality (≈ 1
rdim ), this is an approximation,

the anisotropies Ki are set to zero. The system is initially
prepared in a slightly noncollinear state to which the external
field is applied after 1 ps; because of the typical relaxation
time of about 5 ps, this intermediate state is still not perfectly

(a)

(b)

(c)

FIG. 3. (Color online) Nutation in an Fe chain with five atoms.
A magnetic field of 10 T in the z direction is applied abruptly to the
collinear ground state. (a)–(c) Trajectories of the average magnetiza-
tion (a), the central moment (b), and an edge moment (c). The panels
on the left-hand side show the vector components; note the different
scales of the Cartesian axes. Relaxation time τ = 1 fs, Gilbert
damping α = 0.004, atomic distance 2.863 Å, total duration 2 ps.

collinear. As in the first example, we apply a sudden increase
of the external field.

We exemplify our findings for a chain of five atoms. The
nutation is small compared to the precession: the typical
amplitude is about 0.2 μB–0.4 μB for a single moment.
The average magnetization M shows no considerable effect
[Fig. 3(a)], similar to the single magnetic moment in the first
application. In the present case, however, the reason is a phase
shift between single magnetic moments due to the noncollinear
initial state, the magnetic coupling, and the inertia that leads
to cancellation [Figs. 3(b) and 3(c)].

The amplitude of the nutation depends also on the number
of interacting neighbors in the ensemble: smaller for the central
moment [Fig. 3(b)], larger for an edge moment [Fig. 3(c)]. The
correlation between the magnetic moments increases with the
coordination number, which results on one hand in a larger
effective field and on the other hand in a reduced nutation
lifetime and amplitude.

With increasing damping α, both magnitude and lifetime of
the nutation decrease. A high damping speeds up the relaxation
towards the collinear configuration. Depending on the ratio of
exchange field and magnetic field, different forms of cycloids
occur (not shown here): an elongated or an abbreviated cycloid.

(a)

(b)

(c)

FIG. 4. (Color online) Nutation in 2-monolayer-thick Co island
on Cu(111) with 36 atoms. (a) Schematic illustration of the triangular-
shaped Co island. The Cu substrate is not shown. (b) and (c) Trajectory
of a corner atom (b) and a center atom (c), respectively. The panels
on the left-hand side show the vector components; note the different
scales of the Cartesian axes. τ = 1 fs, α = 0.02, total duration 2 ps.
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Especially, the first form is due to collective excitations (e. g.,
from excitations of magnons perpendicular to the magnetic
field).

Application 3: Co nanoislands on Cu(111). As seen before,
the nutation strength of a local moment depends on the
coordination number of the respective atom. This effect
becomes even stronger in a nanoisland as compared to a
chain. To support this observation further, we address a
2-monolayer-thick Co island on Cu(111) with 36 atoms in
total. Here, the effective field incorporates the magnetocrys-
talline anisotropy, calculated from ab initio (for details see
Ref. 23). The chosen Gilbert damping α of 0.02 is typical for
nanostructures (Refs. 16 and 23). The abrupt magnetic-field
increase of 5 T perpendicular to the island results in a
stronger nutation at a corner atom [Fig. 4(b)] as compared
to that for a center atom [Fig. 4(c)]. For even larger islands
(not shown here), the nutation at a center atom can vanish
completely, but that at a corner atom remains. Because of
the angular-momentum conservation, the average magnetic
moment exhibits no nutation (not shown here).

We estimate the range of nutation lifetimes to about 100 fs
up to 500 fs (a lifetime of a few ps was found in Ref. 13).
This rather short time scale corroborates why nutation has not
been measured so far. The dependence on the coordination
number suggests that nutation is negligible in bulk materials.
An increase of the relaxation time τ enlarges the cycloid period
because the system reacts more inert; increasing the damping
constant reduces the cycloid amplitude and the nutation decays
much faster.

Temperature effects are usually incorporated in the LLG
equation by a white-noise ansatz, i. e., Beff

i is replaced by

Beff
i + bi(t) where bi(t) is an uncorrelated random field.16

However, this approach does not hold in the presence of the
nutation term: the process is no longer a Markov process
due to the second derivative in the LLG equation. The
occurring temporal correlations can be included by a color-
noise approach.24 Using nevertheless white noise, the random
fields result in a broadening of the trajectories because both the
nutation as well as the precession axes are varied randomly.
Hence, the nutation effects reported are significantly reduced
(not shown here).

Concluding remarks. Nutation is significant on the fem-
tosecond time scale since a typical damping constant of
0.01 . . . 0.1 reduces the nutation lifetime to about 100 fs. It
shows up preferably in low-dimensional systems, e. g., at
edges and corners but with a small amplitude with respect
to the precession. These findings lead to the conclusion that
the observation of nutation effects is a strong challenge for
experimental investigations.

Since the inertia of moment and the dissipation depend
on the environments of the local magnetic moments, one
could improve the theory by replacing the damping constant
and the moment-of-inertia constant by respective tensors,
both of which could be computed from first principles.18,25,26

Further, there is, to our knowledge, no theoretical founda-
tion for a Langevin dynamics including nutation at finite
temperatures.
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Chapter 5

Conclusion and
Outlook

The main scope of this thesis was to go beyond the obvious transition of a mesoscopic contin-
uous picture into an atomistic discrete description, to account for the non-statistical impact
of microscopic degrees of freedom, and to characterize magnetic properties on a nm-length-
and a fs-time-scale, which is a fundamental question for applications in technology and basic
research. Contrary to past dynamics and ground-state studies, the thesis considers strong
correlations between the spin, electron and lattice reservoirs in the magnetic equilibration.
As an important new aspect, the temperature dependence of the magnetic exchange cou-
pling as well as the magnetic damping was pointed out. Especially for the latter, a link to
all three reservoirs was found, but neglected in previous microscopic magnetic simulations.
Both quantities were revealed as anisotropic, especially in materials with reduced symmetry
or at surfaces. Furthermore, my results address the fundamental question of retardation
in nanostructures close to the adiabatic and quantum-mechanical limit, which is known
from the mechanics as nutation and which calls for experimental proofs. To treat all this
requests, existing theoretical models were extended and applied to basic magnetic mate-
rials. In process, the thesis deals with applications on layered magnetic systems, systems
with reduced symmetry as well as nanostructures. Ab initio calculations using the full-
relativistic multiple-scattering Green function method (Korringa-Kohn-Rostoker method)
and the tight-binding model were carried out to obtain the electronic ground state and
the resulting magnetic properties. The magnetic ground state and magnetic evolution were
studied with Monte Carlo methods and the Landau-Lifshitz-Gilbert equation, respectively.
Both methods were developed further by the kinetic Monte Carlo method and the Landau-
Lifshitz-Miyazaki-Seki equation. This allows a wide analysis of various static or dynamic
magnetic properties.

In particular, the thesis treats various topics of atomistic magnetic properties, especially
those exhibiting misfits with experimental predictions. For example, the theoretical cor-
roboration of experimentally measured phase transition temperature TC predicts often too
small values. Taking into account the local magnetic fluctuations via the disorder local mo-
ment theory, however, solves the obstacle. It expedites the fundamental understanding of
the correlation between electron and spin reservoir as well as the physics of magnetic phase
transition.
The discrepancy between experiment and theory in ultra-thin magnetic films states for im-
perfection of the magnetic exchange model. Introducing the exchange tensor accounts for
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additional mechanism preferring spiraled magnetic structures. This is especially important
in case of inversion symmetry breaking and materials with strong spin-orbit coupling, which
makes the orbital degree of freedom important for magnetic properties. Zero average mag-
netic moment in 1 ML Fe on Pt(111) is the consequence of the anisotropic exchange, whereas
applying an external magnetic field induces an additional symmetry breaking that annihi-
lates the spiral structure. The same is also observable by using other ‘heavy’ substrates such
as Ir(111), Pd(111) and Rh(111).
The spin-orbit coupling manifests itself also in the energy dissipation, regarding magnetic
damping. Hence, the aforementioned surfaces are also promising for spintronic application
due to their high damping. The breathing Fermi-surface model accounts for the electronic
part of the magnetic damping. Beyond Gilbert’s assumption a non-local energy transfer was
depicted in the Landau-Lifshitz-Gilbert equation, calling for retardation on the atomistic
length scale. Various dependences are pointed out: tensor character, the coupling to the spin
and phonon reservoir, weak dependence on the surface normal, as well as energy transfer to
neighboring sites (non-locality).
The non-local damping, however, plays a crucial role only in non-coherent states. Such
states appear on the timescale of magnetism formation estimated from the Nyquist theo-
rem, which lets the magnetic moments react inert and calls for retardation in time. The
moment precession around the angular momentum axis, in addition to the motion coming
from the effective magnetic field, is due to the occurred moment of inertia. This results in a
cycloidal trajectory. Studies on single magnetic moment, magnetic chains and nanoislands
conclude the relevance of nutation on a time scale of 100 − 500 fs and on low-coordinated
sites in the magnetic lattice.

The Landau-Lifshitz-Gilbert equation together with Monte Carlo methods offers a fun-
damental possibility for simulating magnetism on the atomistic scale without considering
quantum mechanics. It has the potential for large conceptual as well as methodological
developments. With the importance of complex magnetic structures due to shrinking length
scale in technology, such as magnetic sensors or magnetic storage devices, the question
about magnetic reversal or control of magnetism becomes important; it can be addressed
by atomic magnetization dynamics. On time and length scales, where quantum mechanical
effects appear, strong correlations and couplings to other nanoscopic degrees of freedom
occur, approximated in the first order via an additional random field. However, in order
to improve the methodology and getting the correct physics, this assumption of a random
field is no longer valid. The correlation between the three reservoirs (electron, spin and
phonon) must be ‘weaved’ within the magnetization dynamics: the exchange coupling as
well as the anisotropy field become explicitly temperature-dependent; the lack in orbital
symmetry leads to anisotropic exchange, and strain weakens magnets. Vise versa, the mag-
netic noise reduces the exchange splitting in the density of states, affects the relaxation
of an excited electron system or reduces the bonding length. In particular, the degrees of
freedoms, ‘living’ on a shorter time scale than magnetism (ultrashort time scale physics),
demonstrate retardation in time and space. Both will result in dephasing of the magnetic
moments and, thus, lead to an increase of damping and faster magnetic reversal. Conse-
quently, the presented theory offers a way to design and simulate magnetic materials for
fundamental technology applications, such as MRAM or racetrack memory devices. It may
pave access for novel technological applications like magnetic diodes, magnetic transistors
or other magnetic logical elements, which can have significant impact to computer technolo-
gies.

On the methodological side, much can be done in terms of improving accuracy of the sim-
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ulations: the Heisenberg-type disorder local moment theory, e.g, can be used to study the
layer-resolved phase transitions, which is impossible in the Ising-type case. The formation
of spin spirals and Skyrmions in low-dimensional systems requires a magnetic model that
includes the biquadratic exchange term. Furthermore, a study of the inverse Dzyaloshinskii-
Moriya effect in type I multiferroics gives a closer look inside the role of crystal symmetry.
Such atomistic displacements arise also as phonons that dominate the thermal dependency of
magnetic damping. Apart from damping, inertia of magnetic moments becomes important
on fs-second timescale and requires an ab initio theory as well as experimental verification.
Although calculations of spin-electron correlation within the model presented in this the-
sis give a good agreement with experiment, calculating this correlation with self-consistent
methods based on time-dependent density functional theory still presents a serious challenge
for theory.
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Appendix A

Heisenberg-type disordered local
moment theory: Distribution
function

In section 3.6 the von Mises-Fisher distribution was motivated as the statistical distribution
function, describing an ensemble of magnetic moments {e}. In the paramagnetic state
(temperature T ≥ TC), the moments fluctuate so that each orientation is equally probable.
The distribution of orientations P (e) is thus constant,

P (e) = 1
4π . (A.1)

In the ferromagnetic state (temperature T = 0), however, the magnetization does not fluc-
tuate at all, giving

P (e) = δ(e− n). (A.2)

It is strictly aligned along n. With the two limits—ferromagnetic and paramagnetic state—
in mind, one can construct a state at an intermediate temperature T , 0 ≤ T ≤ TC. For this,
one needs to find an intermediate distribution function. The distribution function has to
fulfill the normalization condition

1 =
∫ 2π

0

∫ π

0
P (θ, φ) sin θ dφ dθ =

∫ 2π

0
Pφdφ

∫ π

0
Pθ sin θ dθ. (A.3)

In the paramagnetic state, both Pθ and Pφ are constant. Hence, it follows∫ π

0
Pθ(θ) sin θ dθ = 2cθ ≡ 1 and

∫ 2π

0
Pφdφ = 2πcφ ≡ 1. (A.4)

cθ and cφ are some constants. Thus, P (θ, φ) = 1
4π .

In the ferromagnetic state, the magnetization is oriented along n = (θn, φn). Hence, one
uses the ansatz

P (θ, φ) = c δ(θ − θn) δ(φ− φn). (A.5)

The normalization then gives 1
c = sin θn. Both limits are fulfilled by considering a multi-

dimensional Gauss function Pd = 1√
(2π)d|Σ|

exp
(
−1/2 (e− n)T Σ (e− n)

)
, where d is the
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DISTRIBUTION FUNCTION

dimension (here d = 3) and Σ is a symmetric covariant matrix. Von Mises and Fisher
consider Σ so that P reads

P3(e;n, κ) = C3(κ) exp
(
κnTe

)
, (A.6)

and
C3(κ) = κ

4π sinh κ = κ

2π(eκ − e−κ) .

C3 is mainly the modified Bessel function of order 1/2, (sinh z)/z; cf. Ref. [1, 10.2.13]).
Hence, for intermediate temperatures, the δ-distributions of the ferromagnetic order are rep-
resented by the von Mises-Fisher distribution P3(e;n, κ). This accounts for any (transversal)
fluctuation1 expressed as a finite offset from this direction with a weight P3(e;n, κ).

1Longitudinal fluctuations of the magnetization are neglected in this theory. This is why the von Mises-
Fisher distribution is used: it gives a distribution on the unit sphere.
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Appendix B

Anisotropic exchange and
free-energy derivatives

In section 3.5 the Lichtenstein formula for the generalized interaction model was presented.
Due to the continuous change of the magnetic moments, various derivatives of the free energy
with respect to the spherical representation of the magnetic moment were introduced. This
appendix chapter will show how this second order derivatives correlate to the tensor elements
Iµνij of the Heisenberg model.

The energy variation with respect to polar and azimuthal angles of the spins is determined
from Ĥ = −∑ijmiIijmj :

∂2Ĥ

∂µi∂νj
= 1

2

∑
s,j

∂2mj

∂µs∂νj
Ijsmsδij + ∂mj

∂νj
Iji
∂mi

∂µi
(1− δij) (B.1)

+ ∂mi

∂µi
Iij
∂mj

∂νj
(1− δij) +

∑
r,j

mrIrj
∂2mj

∂µj∂νj
δij

 . (B.2)

µ and ν denote the polar and the azimuthal angles, respectively. Since ∂2Ĥ/∂µi∂νj =
∂2F̂/∂µi∂νj, a direct link between both derivatives can be made [293]. Thus, the site-diagonal
terms for the x reference orientation are given by

∂2Ĥ

∂ϕi∂ϕi
= −

∑
s,i

Ixxis , (B.3)

∂2Ĥ

∂ϑi∂ϑi
= −2Ki −

∑
s,i

Ixxis , (B.4)

∂2Ĥ

∂ϕi∂ϑi
= 0, (B.5)

∂2Ĥ

∂ϑi∂ϕi
= 0, (B.6)

while the off-diagonal terms read

∂2Ĥ

∂ϕi∂ϕj
= Iyyij , (B.7)

∂2Ĥ

∂ϑi∂ϑj
= Izzij , (B.8)

∂2Ĥ

∂ϕi∂ϑj
= −Iyzij , (B.9)

∂2Ĥ

∂ϑi∂ϕj
= −Izyij . (B.10)
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The site-diagonal terms for the y reference orientation are given by

∂2Ĥ

∂ϕi∂ϕi
= −

∑
s,i

Iyyis (B.11)

∂2Ĥ

∂ϑi∂ϑi
= −2Ki −

∑
s,i

Iyyis (B.12)

∂2Ĥ

∂ϕi∂ϑi
= 0, (B.13)

∂2Ĥ

∂ϑi∂ϕi
= 0, (B.14)

while the off-diagonal terms read

∂2Ĥ

∂ϕi∂ϕj
= Ixxij . (B.15)

∂2Ĥ

∂ϑi∂ϑj
= Izzij . (B.16)

∂2Ĥ

∂ϕi∂ϑj
= Ixzij . (B.17)

∂2Ĥ

∂ϑi∂ϕj
= Izxij . (B.18)

The site-diagonal terms for the z reference orientation are given by

∂2Ĥ

∂ϕi∂ϕi
= −

∑
s,i

Izzis , (B.19)

∂2Ĥ

∂ϑi∂ϑi
= −2Ki −

∑
s,i

Izzis , (B.20)

∂2Ĥ

∂ϕi∂ϑi
= 0, (B.21)

∂2Ĥ

∂ϑi∂ϕi
= 0, (B.22)

while the off-diagonal terms read
∂2Ĥ

∂ϕi∂ϕj
= Iyyij , (B.23)

∂2Ĥ

∂ϑi∂ϑj
= Ixxij , (B.24)

∂2Ĥ

∂ϕi∂ϑj
= −Iyxij , (B.25)

∂2Ĥ

∂ϑi∂ϕj
= −Ixyij . (B.26)
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Appendix C

Overview of treated
models

Since this dissertation gives only a small insight into the research topics of my gradu-
ation, an overview of all considered topics and applied methods is shown in figure C.1.

Figure C.1.: Overview of all considered topics (bottom dotted box) and applied methods (green and
gray boxes). The concept map shows also the strong correlation between the method
that simulates the electron properties and those that consider magnetic states.
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