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Introduction

In a wider sense, this thesis is concerned with the mathematical analysis of the
dynamics of fluids. To be more precise, the behavior of two fluids inside a bounded
container, separated by a sharp interface is investigated.

Let u = u(t,z) and p = p(t, ) denote the velocity field and the pressure field of a
single incompressible fluid in a domain §2. By saying that the fluid is incompressible,
we mean that its density p > 0 is constant. Then the dynamics of the fluid are
described by the Navier-Stokes equations

O(pu) — pAu+p(u-Viu+Vp=pf, t>0, z €,

. (0.1)
divu=0, t>0, z €,

where 1 > 0 represents the viscosity of the fluid and f is some external force (e.g.
gravity). The first equation reflects the balance of momentum, while the second
equation states the conservation of mass.

Let us consider a more comprehensive situation, where the domain 2 is occupied
by two incompressible and immiscible fluids, fluid I and fluid 2, which are separated
by a sharp interface I'(t) for each t > 0. We denote by 2;(¢) the subset of {2 which is
filled with fluid j, j € {1,2} with p;,u; being the density and viscosity, respectively,
of fluid j. If v/ and p’ are the velocity fields and the pressure fields of fluid j,
respectively, then, for £ > 0, one sets

u(t,m:z{l“’ h @€ hlb) <t,x>;:{pl<f’x>» v e ),

x

2(t,x), @€ Qt), pi(tx), @€ Qt).
Assuming that (u/,p’) satisfies the Navier-Stokes equations in each of the phases
Q;(t), then we may conclude that (u,p) satisfies (0.1) for all t > 0 and z € Q\I'(¢),
where p and p are defined by

,O(:E) — {,01, T € Ql(t), ;L(SU) — {ul, T € Ql(t),

g &

P2, I E Qg(t), M2, T E Qg(t).

Clearly one expects that the two fluids should affect each other in their dynamics.
Therefore, it is natural to ask for relations that describe the coupling of the two
fluids across the interface I'(¢). If one neglects effects of phase transitions between
the phases Q4(t) and Q2(¢) (e.g. the exchange of mass) then the motion of the
moving boundary I'(¢) should only be caused by the velocity fields of the both
fluids. Therefore it is natural to propose that u2|p(t) = ul\p(t). Then the normal
velocity Vr of T'(t) is given by

Vr=wu-vr, (0.2)

1



Introduction 2

where v denotes the unit normal field on I'(¢) pointing from ;(¢) to Qa(t). We
call the quantity [u] := u2\p(t) —ul\p(t) the jump of u across T'(t). Note that [u] =0
if and only if the velocity field u is continuous across the interface I'(¢). Another
condition on I'(t) reads

—[1(Vu + Vu)]vr + [plvr = o Hrur, (0.3)

where o > 0 denotes the (constant) surface tension of I'(t) and Hp := —divp vr is
the mean curvature of I'(t) with divr being the surface divergence on I'(¢). Condition
(0.3) describes the balance of forces on the interface. To be precise, there is no
contribution to the rate of change of the momentum coming from the interface I'(¢).

If the fixed boundary 9 of Q is not empty, then the system (0.1)-(0.3) with
[u] = 0 has to be equipped with appropriate boundary conditions on 9 as well
as some initial conditions on u(0) = ug and I'(0) = T'y. There is a vast literature
concerning the mathematical treatment of free boundary problems for the Navier-
Stokes equations with or without surface tension. To this end we can only give a
subjective selection and refer the reader to [4, 7, 8, 11, 12, 13, 14, 15, 16, 28, 30, 39,
40, 41, 42, 45, 47, 48, 44, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62]. For a
derivation of (0.1)-(0.3) we refer to [26].

To describe the effect of what is called Rayleigh-Taylor instability, let us consider
the case that 2 = R™ consists of two phases 1 (¢) and Q2(¢) which are separated by
an interface I'(¢), given by a graph of a height function h over R" 7! i.e.

D(t) :={z = (2, 2,) € Q: x, = h(t, '), 2’ € R"1}.
Assume furthermore, that Q9(t) is the upper phase, hence
Qo) ={z = (2',2,) €Q:xy > h(t,2), 2’ € R"}.

Both phases are filled with two fluids with possibly different densities which are
accelerated in the direction of —e,, by the gravitational force.

Taking a close look at the system (0.1)-(0.3) it turns out that the vanishing velocity
fields, constant pressure fields and the flat interfaces belong to the set of equilibria,
i.e. the set of all solutions, which are constant with respect to t. Henceforth we will
speak of the trivial equilibrium, when w = 0, p is constant and A = 0. Heuristically
one expects that the stability behavior of the trivial equilibrium is being influenced
by the densities p2 > 0 and p; > 0 of the fluids. Indeed, if [p] = p2 — p1 > 0,
i.e. if the heavier fluid is placed above the lighter fluid, then one expects that the
trivial equilibrium is unstable while in case that [p] < 0, the trivial equilibrium
should be stable. Indeed, if [p] > 0 then the upper phase, which is the heavier one,
should sack down into the lower phase, see Figure 1. This effect is called Rayleigh-
Taylor instability and it goes back to the pioneering works of RAYLEIGH [45] and
TAYLOR [62]. For more information concerning Rayleigh-Taylor instability we refer
the interested reader to CHANDRASEKHAR [9] & KULL [30] and the references cited
therein. A rigorous proof of Rayleigh-Taylor instability in the above setting has
been given by PRUSS & SIMONETT [42]. The basic strategy is to consider the full
linearization of the quasilinear problem (0.1)-(0.3) at the equilibrium and to compute
the spectrum of the linearization. Due to the lack of compactness, there is a portion
of approximate eigenvalues in the spectrum of the linearization. In addition, there
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Figure 1: Rayleigh-Taylor instability [32].

is no spectral gap which would allow to apply classical tools to carry over the linear
stability properties to the nonlinear case. To this end the authors in [42] apply
Henry’s instability theorem [25, Theorem 5.1.5] which does not require a spectral
gap.

In the periodic framework, i.e. if Q@ = T? x R, where T = R/Z is the 1-torus a
rigorous proof of Rayleigh-Taylor instability has been given by TICE & WANG in
[63]. Note that if [p] > 0, then the result in [42] states that the trivial equilibrium
is always unstable, no matter what the remaining parameters © > 0 and ¢ > 0
are. However, in the periodic setting considered in [63], the stability properties of
the trivial equilibrium do also depend on the surface tension. To be more precise,
there exists a critical surface tension o, > 0 such that if ¢ > o, then the trivial
equilibrium is stable, while if 0 < o < o, it is unstable. In other words, even if
[p] > 0, a sufficiently large surface tension o > 0 of I'(t) prevents the heavier phase
of sacking down into the lower phase.

An advantage of the approach via maximal regularity of type L, which has been
used in [42] is that one obtains a semi-flow for the free boundary problem in a
natural phase space. In particular, there is no loss of regularity. With the help of
functional calculus for sectorial operators and harmonic analysis it is then shown
that there exists Aoo > 0 such that the interval [0, \»] is the unstable part of the
spectrum of the linearization. The functional analytic setting used in [42] then allows
to apply Henry’s instability theorem [25, Theorem 5.1.5] to conclude instability for
the nonlinear problem. In contrast to the result in [42], the authors in [63] construct
so-called growing mode solutions (horizontal Fourier modes growing exponentially
in time) for the linearized problem and use several energy estimates to study the
spectrum of the full linearization. The passage from linear to nonlinear (in-)stability
follows from a Guo-Strauss bootstrap procedure, which has been introduced by Guo
& STRAUSS in [24]. Due to the higher order energy estimates, the regularity of the
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initial values is considerably high and therefore not optimal, when one compares
with the assumptions in [42]. However, the authors in [63] obtain a clear picture of
the stability properties of the trivial equilibrium in dependence of [p] and o > 0.

It is one purpose of this thesis to extend the results obtained in [42] & [63] to the
framework of cylindrical domains. To be precise, we assume that Q = G x (Hy, Ha),
where G C R"!, n € {2,3} is a bounded domain with smooth boundary and
H; < 0 < Hj. Suppose furthermore that there is a family of hypersurfaces {I'(¢) }+>0
given as a graph of some height function h over G, i.e.

I'(t)={(,z,) €Q:2, =h(t,2), 2 €G}, t>0,

such that for each ¢ > 0 the interface I'(t) divides  into two subdomains €24 (¢) and
Q9(t) which are filled with two fluids, respectively. Let us make the convention that
Q(t) is the upper phase. Assuming that the equations (0.1)-(0.3) together with
the condition [u] = 0 are satisfied, we are led in a natural way to the problem of
finding suitable boundary conditions on the vertical part S := G x (Hj, H2) and
the horizontal part Sy := (G x {H1}) U (G x {Hz}) of the boundary 992 of Q. This
turns out to be a delicate question, since within the above setting we are on the
one side concerned with two parts S; and Sy of the boundary such that 957 = 0.5,.
Therefore the boundary conditions on S; and Sz have to be chosen in such a way
that they are compatible to each other. On the other side we have to deal with a
contact angle problem, as OI'(t) is a moving contact line on S;. At this point we
want to emphasize that the choice of the periodic setting in [63] allows to circumvent
the formation of a contact angle.

The theory of contact angle problems, in particular with a dynamic contact angle
which depends on t, is yet not well understood. In fact, there exist different point
of views about how to model such a problem. One party supposes that the dynamic
contact angle is determined by an additional equation, while the other party assumes
that the contact angle will be determined by the dynamic equations for the interface
and the fluid, hence the equation for the contact angle should be redundant. We
refer to [5] & [49] and to the references given therein.

Therefore, in order to avoid this lack of clarity, we assume throughout this thesis,
that the contact angle is constant and equal to 90 degrees. One can interpret this
ansatz as a kind of idealization. It is possible to translate the condition on the
contact angle to a condition on the height function h from above. Indeed, if h is
sufficiently smooth, then the unit normal on I'(¢) with respect to €4 (¢) is given by

——C
1+|Vah2\ 1 )7

Since the outer unit normal on Sy is given by vg, = (vsg,0)T, the condition on
the contact angle reads vr - vg, = 0 or equivalently 0,,,h = 0 at the contact
line. Concerning S; it is not possible to propose Dirichlet boundary conditions,
the so-called mo-slip boundary conditions, since this leads to a paradoxon for the
moving contact line, see e.g. [44]. The next canonical choice are the so-called Navier

boundary conditions or partial-slip boundary conditions

u-vs, =0, Ps,(u(Vu+Vu)vs,)+au=0,
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where Pg, := I — vg, ® vg, denotes the projection to the tangent space on S;. The
parameter o > 0 has the physical meaning of a friction coefficient. However, it turns
out that this kind of boundary condition does not allow the interface to move along
S1 which is not very reasonable, as numerical simulations show. To see this, consider
for simplicity the case n = 2. The equation (0.2) in terms of h then reads

Oth = ug — u101 h, (0.4)
where u = (u1, uz). Observe that for n = 2 the partial slip conditions read as follows
up =0, ,u(aﬂLQ + azul) + aug = 0.

Therefore it holds that pudius + cus = 0, which is a Robin boundary condition for wue
on Sj. Differentiating (0.4) with respect to z1, and taking into account that d1h =0
at Sy (by the contact angle condition) we obtain dyus = 0, hence us = 0 if o > 0.
Consequently it holds that d;h = 0 at S and therefore h(t) is constant with respect
to t.

In order to circumvent this problem, we will consider the case a = 0, the so-
called pure-slip boundary conditions. From a physical point of view this means that
there is no friction on the boundary S;. Having fixed the boundary conditions on
S1 we may choose suitable boundary conditions on Ss, having in mind that these
conditions have to match those on S;. It turns out that homogeneous Dirichlet
boundary conditions are a good choice, since they are compatible with the pure-slip
boundary conditions on S; and furthermore they allow to apply Korn’s inequality
for Du := Vu+Vu', see Theorem 6.6.2. Note that the no-slip boundary conditions
on Sy do not cause any problems with the moving interface, since we will always
have I'(t) N Sq = () for all ¢ > 0. We are thus led to the problem

(pu) — pAu+ p(u-V)u+ Vp = —pyeen, in Q\I'(),
divu =0, in Q\I'(¢),
—[1(Vu+ Vu)]ur + [pJur = oHror,  on I(t),
[u] =0, onT(¢),
Ve =u-vp, onlI(?),
Ps, <M(Vu + VUT)Vgl) =0, on S\JI'(t),
u-vg, =0, on S1\I'(t),
u=0, on Sy,
vr-vs, =0, on 9I'(t),
u(0) = up, in Q\I'(0),
I'(0) = To,

(0.5)

where we denote by <, the acceleration constant due to gravity.

The structure of this thesis is as follows. In Chapter 1 we will first transform
(0.5) to a fixed domain which does not vary in time. This will be done by means
of a height function h, assuming that I'(f) is given as the graph of h over the
domain G. By means of local charts the transformed problem can be drawn back
to certain model problems. As the analysis of two types of these model problems,
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namely the Stokes equations in quarter-spaces and the two-phase Stokes equations in
half spaces is not known, we will provide a systematic treatment of these problems
subsequently. At this point we want to emphasize that the analysis of the latter
problems is more involved than the usual model problems in half spaces. This is
due to the fact that one has to deal with mixed boundary conditions meeting at
the contact line. However, our assumption on the contact angle enables us to use
reflection techniques in order to draw back the quarter space to a half space with
dirichlet boundary conditions and the two-phase half space to a two-phase full space
with a flat interface.

In Chapter 2 we use the results from Chapter 1 combined with a localization pro-
cedure to prove existence and uniqueness of a solution of the principal linearization
having maximal regularity of type L,. To be precise, if u and p denote the (trans-
formed) velocity field and pressure field, respectively, we will show that (u, p, [p], k)
enjoys the regularity

u € Hy(J; Ly()") N Ly(J; Hy (NE)"),  p € Ly(J; Hy (),

[p] € Wa/27Y2P(J; Ly(2)) N Ly(J; WP (R)).

and
h € W2Y2(J; Ly(D)) N HY(J; WEYP(2)) N Ly (J; WEHP(R)),

where J = [0, T] is some nonempty bounded interval. This optimal regularity result
in turn allows to apply the contraction mapping principle in Chapter 3 to obtain a
unique solution of the nonlinear problem having optimal regularity as well.

Chapter 4 is devoted to the investigation of the stability properties of the trivial
equilibrium, i.e. w = 0, h = 0 and p is constant. It turns out that if [p] > 0 then
there exists a critical surface tension o. := [p]v,/A1 > 0, where A\; > 0 denotes
the first nontrivial eigenvalue of the Neumann Laplacian in Ly(G). If ¢ > o, then
the trivial equilibrium is exponentially stable, while in case o € (0,0.) it will be
unstable. If [p] < 0, then the trivial equilibrium is always exponentially stable.
Specializing to the case G = Bp(0), we obtain as a corollary that for fixed surface
tension o > 0 and if [p] > 0 there exists a critical radius

R ( oA} )1/2
. [[p]]’)/a ’

such that if R < R, then the trivial equilibrium is exponentially stable, while for
R > R, it will be unstable. Here A7 > 0 denotes the first nontrivial eigenvalue of the
Neumann Laplacian in Ly(B1(0)), given by A} = (j1 1)?, where j] ; is the first zero of
the derivative J] of the Bessel function J; (see [1]). The proof of the stability result
requires some effort, since after the transformation to a fixed domain one has to pay
the price that in particular the (transformed) velocity field is no longer divergence
free. Therefore, one has to split the solution into two parts in a suitable way such
that one part is divergence free while the other part, whose divergence does not
vanish, satisfies a nonlinear problem, which can be handled by the implicit function
theorem.

The results in Chapter 4 suggest that if ¢ descreases from ¢ > o, to o < o,
then an eigenvalue of the full linearization will cross the imaginary axis. Therefore
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it is natural to ask for possible bifurcations from the trivial equilibrium. In Chapter
5 we will see that the eigenvalue which crosses the imaginary axis through zero
is, unfortunately, not simple if n = 3. Therefore it is not possible to apply the
bifurcation results of Crandall-Rabinowitz directly. By the choice of the boundary
conditions, the equilibria of the transformed problem are v = 0, p is constant and
the height function h satisfies the capillary equation

O'din/ (WL> + [p]h/ah = 07 CL‘, € BR(O)a

V14 |Vah|?

(0.6)
By, h=0, z'€dBg(0).

VBR(0)"" T

This equation for h exhibits certain symmetry properties, in particular we will show
that it is invariant under the group action of the orthogonal group O(2). This
fact enables us to reduce the bifurcation equation to a one dimensional equation
and to apply the implicit function theorem which yields the existence of subcritical
bifurcating branches from the trivial solution. The remaining part of Chapter 5
deals with the proof that the bifurcating equilibria are unstable. To this end we
compute the full linearization in these equilibria and show that there is at least one
eigenvalue in the unstable part of the spectrum of the linearization. The passage to
nonlinear instability follows the same lines as in Chapter 4.

Finally we decided to collect all technical results which are needed for the execu-
tion of the above program in an appendix. Several results concerning extension oper-
ators, auxiliary elliptic and parabolic problems in quarter spaces and two-phase half
spaces but also in bounded cylindrical domains are provided. In addition, we state
the divergence theorem for bounded Lipschitz domains as well as Korn’s inequality
for functions having a vanishing trace on some nontrivial part of the boundary of
the domain.
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to Gieri Simonett for the numerous stimulating discussions we had during my time
in Nashville. Furthermore I would like to thank Dieter Bothe for proposing this
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fellow colleagues in our working group in Halle.

Notation: The symbols Hy, W, s > 0 refer to the Bessel potential spaces and
Sobolev-Slobodeckii spaces, respectively (Sobolev spaces for s € N with H = W). If
J =10,T] is some interval and X a suitable Banach space, then oW, (J; X) denotes
the subspace of W;(J ; X) consisting of all functions having a vanishing trace at
t = 0, whenever it exists. Finally we denote by W}f Q) = H;f (©2) the homogeneous
Sobolev space of order k € N, where {2 C R" is some domain.



Chapter 1

Preliminaries and model
problems

For the sake of readability we will assume throughout this thesis that the space
dimension n is equal to 3. This is the most important case from a viewpoint of
applications. However, you will have no problems to verify that the results remain
true for the case n = 2.

Furthermore we will assume from now on that p > n + 2. In Chapter 3 about
the well-posedness of the nonlinear model, this condition on p is a result of some
Sobolev embeddings which are needed for the proof. Observe that in case n = 3 this
yields p > 5.

We consider the following problem.

O(pu) — pAu+ p(u - V)u+ V1 = —pyges, in Q\I'(2),
divu =0, in Q\I'(¢),
—[1(Vu 4+ Vu)]ur + [#]vr = oHror,  on I(t),
[u] =0, onT(¢),
Ve =w-vp, onI(t),
Pg, (M(Vu + VUT)I/51> =0, on S\oI'(¢), (1.1)
u-vg, =0, on S1\0I'(?),
u=0, on S,
vr-vs, =0, on 9I'(¢),
u(0) = ug, in Q\I'(0),
T'(0) = T.

(
(

Here Q = G x (Hy, Hs), Hy < 0 < Hy, is a cylindrical domain where G C R? is an
open bounded domain with a smooth boundary 0G. The compact free boundary
I'(t) divides € into two unbounded disjoint phases Q;(t), j = 1,2, so that Q =
Q1(t) UT(t) U Qa(t). The convention is that Qa(t) is the upper phase while §;(¢)
is the lower one with the unit normal vr at x € I'(t) pointing from Q(t) to Qa(t).
We denote by vg, the outer unit normal at the fixed boundary S;. The operator
Pg, :=1 — vg, ® vg, stands for the projection to the tangential space on Sj.
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It is convenient to introduce the modified pressure 7 := w4+ py,x3. Then we obtain
the following problem

O(pu) — pAu+ p(u-Viu+Va =0, in Q\I'(?),
divu =0, in Q\I'(¢),
—[(Vu + Vu)]or + [#]lvr = oHror + [p]yazsvr,  on T(t),
[ul =0, onT\(t),
Ve =u-vp, onI(t),
Ps, (,u(Vu + VUT)U51> =0, on S1\0I'(t), (1.2)
u-vg, =0, on S\oI'
u=0, on.Sy,
vr-vs, =0, on JI'(t),
u(0) = wup, in Q\I'(0),
'(0) =Ty.

1.1 Reduction to a flat interface
We assume that
['(t)={x € G x (Hy, Hs) : 23 = h(t, '), 2’ = (v1,22) € G, t > 0}.

Let ¢ € C*(RR;[0,1])) such that ¢(s) = 1if |s|] < §/2 and ¢(s) =0 if |s| > §, where
0 < min{—H;, H2}/2. Define a mapping

On(t, ) == 7 + p(Z3)h(t, 7)es =: T + O (t, 7),

where Z := (Z/, Z3) and for fixed ¢t > 0 set © = O (¢, ). An easy computation shows
that

0 0 61h<p
T =10 0 Ohe |,
0 0 h¢

It follows that if ||h]|ec,c0 < 1/(2]¢|sc) then ©) is invertible and

I\N=T my—1 1 b th/ ; _alhcp
(@h)i = (I+ eh )7 =T 5 0 1 + hQO, —82}%0
1+ he 0 0 1

In the sequel, let ||h]joc0o < 1 with 0 < 1 < 1/(2|¢'|) being sufficiently small.
Then the inverse @,:1 : 0 — Q is well defined and it transforms the free interface
['(t) to the flat and fixed interface ¥ := G x {0}. Now we define the transformed
quantities
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and compute v = (=Vh, 1)T/\/1+ [V h[2,

Vi =Vr — My(h)V7

divu = diva — (Mp(h)V]a)

Au = At — M (h) : V2@ — My(h)Va

Opu = Oyi — Oy h(1 4+ ¢'h) o1,
where M (h) := 0,7 (I 4+ 60;7)71,

M (h) : Vi = [2 sym(@ (I + 6,7 T) — [T +6,]716,0,T[I + eg]—T] - V24,
and
My (h)Va = ([AS; '] 0 ©4|V) 4.

Furthermore it holds that Vi = (0,0|vr) = ih(es|vr) = dih/\/1 + |[Vaurh|2. This

yields the following transformed problem for @ and 7 (for convenience we drop the
bars!!!).
O(pu) — pAu+ Vr = F(u,m, h), in Q\X,
divu = Fy(u,h), in Q\X,
—[1dsv] — [uVpw] = Gy(u,h), on X,
—oudsw] + [] — oAwh — [plrah = Gu(u,h), on S,
[ul =0, on X,
Oth — w = Hy(u,h), onX,
Pg, (M(Vu + VUT)Vsl) = Hs(u,h), on S1\0%,
u-vg, =0, on S1\0%,
u=0, on Sy,
Ovyeh =0, on 0%,
u(0) =ug, in Q\X
h(0) = ho, on X.

(1.3)

Here
F(u,p, h) := ppdh(1 4+ @' h) " 3u — u(My(h) : V2u + My (h)Vu) + My(h) V7
Fy(u, h) :== (My(h)V|u)
Go(u, h) == —[u(Vo + Vo )]Vh + |Vh|? [ud3v]
+ (1 + |VAP)[uosw] — (Vh|[pVw])) Vi
Guw(u, h) :== —(Vh|[uVw]) — (Vh|[udsv]) + |Vh|?[udsw] + oGy (h)

. Vh
Gr(h) = div (W) —A
Hl(u, h) = —(’U’Vh)
Hj(u, h) == Ps, (u(Mo(h)Vu + Vu' My(h)vs,),

where we have set v := (u1,u2), w := ug and Vw = Vyw, Vo = Vv, Vh = Vuh
for the sake of readability.
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1.2 Linearization, regularity and compatibility condi-
tions

We consider first the linear part, defined by the left side of (1.3), that is

Oh(pu) — pAu+ V= f, in Q\X,
divu = fg, in Q\X,
~[nosv] — [pVew] = gy, on X,
—2[pdsw] + 7] — cAyh = gy, on 3,
[u] = uy, onX,

Oph — m[w] =gn, onx,

14
Ps, (,u(Vu + VUT)I/51> = Ps, g1, on S1\0%, (1.4)
u-vs, = g2, on S1\0%,
U =g3, oOn 527
Ovoh = ga, on 0%,
u(0) =wup, in Q\X
h(O) = ho, on E,
where m[w] := (w4 + w_)/2 is the arithmetic mean of the directional traces wy of

w to X from Q9 and ;. Note that we neglected the term [p]7y,h in the jump of the
stress tensor, as it is of lower order compared to A h.

Let J =[0,7T] with T" € (0,00). We are looking for solutions (u,7) of the Stokes
equation with

u € Hy(J; Ly(Q)*) N Ly(J; Hy (N\E)?),  m € Ly(J; Hy (),

and
[7] € Wy/271 2P (J; Ly () N Ly(J; Wy P (S)).

Note that the latter regularity condition on [r] is determined by the regularity of
the Neumann trace of u on X. For the height function h this yields

Agh € W;/Q_l/QP(JQ Lp(2)) N Ly(J; Wl}_l/p<2))

and
Oth € Wy 2P (J; Ly()) N Ly(J; WP (S)),

hence the optimal regularity class for h is given by
h e Wp?—l/Qp(,]; L,(Z) N H;(J; WpQ—l/p(Z)) N Ly(J; Wg—l/p@».

In the sequel we will always assume that p > 2. Let us discuss the necessary regular-
ity and compatibility conditions on the data (f, f4, 9v, Gw, 9n, 91, 92, g3, g4, Us, Ug, ho).-
If (u,m, [r],h) is a solution of (1.4) in the regularity classes stated above, then it
holds that f € L,(J; Ly(Q)3), fa € Ly(J; H;(Q\E))

(9vs guw) € W 2712 (J; Ly (2)%) 0 Ly (J; Wy H/P(8)3),
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us, € WP (T; Ly(2)%) N Ly (J; W HP(2)?),
gn € W™V (J: Ly(2)) N Ly(J: WP (),
Ps,g1 € W27 (J5 Ly (1)) N Ly (J; W~ V/P(81\0%)?),
g2 € Wy PP (T3 Ly(S1)) N Ly(J; Wy~ VP (S1\0%)),
g3 € Wi V2P(T: Ly(5)%) O Ly(J: W2 /P(5)°),
g1 € WP7VP(J: Ly(S)) 0 HACT WE>/P(S)) 1 Ly(J: W27 (2),
up € W22P(Q\E)?,  ho € WS2/P(D).
Concerning compatibility conditions at ¢ = 0 we have divug = fg|¢=o,
Golt=0 = —[p03v0] — [V zrwo],
[uo] = usli=0, uo - Vs, = gali=0, vo = 93lt=0, Oy ho = gali=0 and
Ps, (1(Vug 4 Vug )vs,) = Ps, g1 i=o-

Since %X C S1 # () and 8S1 N DS, # B, there are additional compatibility conditions
which have to be satisfied.

If (u,m, [r],h) is a solution of (1.4) with the above regularity, then the following
compatibility conditions at 9> and 0S5 have necessarily to be satisfied.

o [g2] = us - vs,, [(91-e3)/n— O3g2] = Oug, (us - €3), at X,

o Poc[(D'vs)V'] = [Pocgy /1, Orga — m[(g1 - €3)/1 — 0392] = Oy g, at 0%,
* (golvac) = —[g1 - es] at 9%, (gslvs,) = g2 at 05,

o Pyclu(D'gy)V'] = (Pacyy), KOy, (g3 - e3) + udsge = g1 - €3 at 9Ss.

Here we use the notation v/ = vyg, Pog := I — vV @ v/, D'v := sym[Vv] and
g = Zizl(g - er)ex. These conditions follow easily by comparing the equations
(1.4)5 and (1.4);_,, with each other.

There is another compatibility and regularity condition hidden in the system,
which stems from the divergence equation. Multiply divu = fg by ¢ € H;/(Q),
p =p/(p— 1) and integrate by parts (see Proposition 6.6.1) to the result

/Qfd<f>dﬂ€—/s1 920|s,dS1 —/ (93-V51)¢152d52+/(UE'V2)¢!sz

So >

:—/u-Vqu:B, (1.5)
Q

where vg, (2/, Ha) = es, vs,(2', H1) = —e3 for 2’ € G and vy, = e3. It follows that
the functional [¢ — ((f4, 92, g3, ux), ¢)] defined by the left side of (1.5) is continuous
on H;,(Q) with respect to the semi-norm ||V - ||Lp,(Q). Since H;,(Q) is dense in
the homogeneous Sobolev space H;,(Q) (the constants are already factorized) with
respect to ||V - || L, (@) for all domains ©Q which are considered in this thesis, it



1.3. Model problems 13

follows that (fg, g2, g3, us) determines a functional on HI},(Q), ie. (fa,92,93,ux) €

ﬁ;l(Q) = (H;,(Q))* The norm of (fg, g2, 93, ux) in ﬁ;l(ﬂ) is then given by

1(fa, 92, 93, us) |l -1 = sup{{(fa, 92, g3, us), 0)/ |V olL,, - & € Hp(Q)}.

Moreover, if u € Hy(J; L,()"), then %(fd, 92, g3, uy) is well defined by the compu-
tation above, hence
(fd7 92, 93, UE) € H}%(‘]a Hp_l(Q)>

is another necessary compatibility and regularity condition on the data. In partic-
ular, if € is bounded, then we may choose ¢ =1 in (1.5) to obtain

/ fadx — / godS1 — / (g3 - vs,)dSa2 + / (uy - vy)d¥X = 0.
Q S1 Sa z

Remark 1.2.1. For the sake of completeness, let us state the compatibility conditions
at 0% and 0S5, for the case n = 2. On X we have the jump conditions

—[pd2ur] — [pO1us] = gv, [u] = us,

and dsh — m[ug] = gp. The boundary conditions on S1\0% and Sy are u - vg, = ga,
w(O1ug + Oaui)vpg = g1 and u = g3, respectively, where vg, = (vsg,0)" and vog =
+1. In addition we have (01h)vgg = g4 (note that h does only depend on the single
variable x1 if n = 2. This yields the following compatibility conditions:

o [g2] = us -vs,, govag = —[g1]; O1(us - e2)voc = [91/p — D2g2] at 0%,
® Oigs — m[g1/p — O292] = (Orgn)vec at O%,

® g3 VUs, = g2, (0193 + 2g2)vac = g1 at 0Ss.

o (f1,92,93 us) € HI(J;H7Y(Q)).

1.3 Model problems

The proof of existence and uniqueness of a solution (u,, [7], k) to (1.3) is based on
a localization procedure. We will obtain six different types of charts, which yield six
different types of model problems. These are

e the full space Stokes equations (without any boundary- or interface conditions)

e the two-phase Stokes equations with a flat interface and without any boundary
condition

e the Stokes equations with pure slip boundary conditions in a half-space and
no interface

e the Stokes equations with no-slip boundary conditions in a half-space and no
interface

e the Stokes equations in a quarter space with pure slip boundary conditions on
one part of the boundary and no-slip boundary conditions on the other part
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e the two-phase Stokes equations with pure slip boundary conditions in a half-
space, a flat interface and a contact angle of 90 degrees.

While the first four of these problems are well understood, there seem to be no
results on well-posedness of the last two problems.
1.3.1 The Stokes equations in quarter-spaces
Consider the problem
O(pu) — pAu+Vr=f, x1 €R, 23>0, z3 >0,

divu = fg, x1 €R, 2o >0, 23>0,

(1[Oouy + Orug, Osug + ous)’ = g1, w1 €R, 23 =0, 23 >0, (1.6)

U2 = g2, l’leR,xQ:O,x3>O,
u=g3, x1€R, x9 >0, x3=0,
u(0) =up, x1 €R, 93>0, 3> 0.

For convenience, let Q := R xRy xR;, S; := Rx {0} xR4 and Sz := Rx Ry x {0}.

In a first step we extend ug € W;? —/p (2)? with respect to xo via the reflection

UO(x17$27$3)7 if To > O,

Uo(z1, 22, 23) = {

—UO(IL‘l, —2x9, :L‘3) + QUO(Jil, —1’2/2, 1'3), if 9 < 0.

Then @ € WI,Q_%D(R x R x R, )3. Applying the same method to
g3 € Wi/ (J; Ly(5)%) 1 L (J: W3 /P(5,)°)
yields an extension
g3 € Wa V2 (J; Ly(R x R)*) N L, (J; W2 YP(R x R)®).

Furthermore it holds that §3|t=0 = @o|zs=0, since gs|t=0 = uo|s,. Then we solve the
half-space problem

Ot — A =0, (x1,x9,23) € RZ xR,
{lgs—0 = G3, (x1,22) ER?, 23 =0, (1.7)
ﬂ(O) = ug, (1’1,:]}2, :L’3) S R? x R+,
to obtain a unique solution
i€ Hy(J; Lp(R3)?) N Ly(J; Hp(RY)?).

If (u, ) is a solution of (1.6), then the (restricted) function (u — @, 7) solves (1.6)
with ug = g3 = 0 and some modified data (f, g1, g2) (not to be relabeled) in the
right regularity classes having a vanishing trace at ¢ = 0 whenever it exists.

In a next step we extend

g1 €0W, PP (T, Ly(S1)%) N Ly (J; W, P (S1)?),
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and
92 GOWI}_I/QP(J§ Lp(Sl)) N Lp(J§ WpQ_l/p(Sl))a

w.r.t. 3 to some functions
g €W, 2T, Ly(R?)?) 0 Ly (J; Wy P (R?)?),
and
G2 €oW, (I Ly(R?)) N Ly (J; Wy~ P (R?)),
and solve the half-space problem
ou—Au=0, xz1,2z3€R, 9 >0,
[0ty + Orlig, sl + Dotis]" = §1, a1,73 €R, 19 =0, (1.8)
Uz = g2, w1,73 €R, 22 =0,
’L_L(O) =0, zp,z3€R, 23>0,

to obtain a unique solution
U €0Hy(J; Ly(R x Ry x R)®) N Ly(J; HE(R x Ry x R)?).

If (u,7) is a solution of (1.6) it follows that the (restricted) function (v — @ — @, )
solves the problem
at(pu) _MAU_‘_V’]T:JC? (.Tl,l‘g,.fg) € Qa
divu = fd7 ($1,£L’2,:L'3) € Qa
(1[O2ur + Orug, Osug + daus)’ =0, (21,32,23) € S,
uz =0, (z1,22,73) € S,
u=gs, (21,72,73)€ Sy,
u(0) =0, (x1,z2,23) € Q,
with some modified data (f, f4, g3) in the right regularity classes having a vanishing
trace at t = 0 whenever it exists. Note that g3 := u|z,—0 and the compatibility
conditions (g3)2 = 02(g3)1,3 = 0 hold if 21 € R, z2 = 0 and z3 = 0. We will

now extend (f1, f3, fa, (93)1,3) by even reflection and (f2, (93)2) by odd reflection to
{z2 < 0}. Then we consider the (reflected) half-space problem

A(pl) — pAG+ Vi = f, 1,29 € R, x3 >0,
diVﬁ:fd, r1,x0 € R, x3 >0, (1.10)
a:§37 $1,$2€R, 113'3:(),
0

a(O): , x1,T3 € R, x3> 0,
which has a unique solution
(l eng(J; Lp(Ri)?)) N Lyp(J; sz(Ri)g)7

it € Ly(J; Hy(R})),

by [6, Theorem 6.1].
The (restricted) pair (u,7) := (@+u+u, 7) is the desired unique solution to (1.6).
We have thus proven the following
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Theorem 1.3.1. Letn =3, p> 5T >0, p,u > 0 and J = [0,T]. Then there
erists a unique solution

w € Hy(J; Ly(Q)%) 0 Ly(J; HA(Q)?)

€ Ly(J; H;(Q))

of (1.6) if and only if the data satisfy the following regularity and compatibility
conditions.

1. f € Lp(J; Lp()*);

2. fa € Ly(J; Hy(Q));

3. g1 € Wp PV (T Ly (80)%) 0 Lp(J3 Wy~ (81)2);

4o g0 € Wy (T Ly(S0) N Ly (T Wy P (81));

5. g3 € Wi V(T Ly(82)%) 1 Ly(T; W2 7(85)%);

6. up € W2~ 2/P(Q)3;

divug = fali—o, p[02(uo)1 + 01 (uo)2, 3(uo)2 + d2(uo)sl|1,—o = g1li=o0;
(u0)2|zo=0 = 92t=0, Uo|zs=0 = g3lt=0;

(93)2lea=0 = g2las—0, p[02(g3)1 + O1(9g3)2, D3g2|zs—0 + D2(g3)3]|2,—0 = 91lzs=0;

10. (fa,92,93) € Hy(J: H, ().

L ™ =

1.3.2 The Stokes equations in bent quarter-spaces

Let § € BC3(R) such that
Go:={(z1,22) ER?*: 29 > 0(x1)} and Qp =Gy x R,

We assume furthermore that 0’|, < 7 and |00)| < M, j € {2,3}, where we may
choose 77 > 0 as small as we wish. Let S1g := 0Gp x Ry and Sy := Gy x {0}.

Furthermore, let vg, , = (vg,,0)" with vg, = mw'(m), —1)T denote the
: .

outer unit normal to Sy at (21,0(z1),73), (z1,23) € R x Ry and let Ps, , be the
tangential projection to Sy 9. Consider the problem

O(pu) — pAu+Vr = f, x € Qy,
divu = fg, x € Qy,
Ps, o[n(Du)vs, ,] = Ps,g1, x € Stp,
(ulvs, o) = 92, =€ S,
u=g3, x€S5p
u(0) =ug, x € Q.

(1.11)
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Here p, n > 0 are given constants. Note that since vg, = (vsg, O)T it holds that

P, [(D'v)ve,] )

103(0]1ic,) + 1By, 0, (1.12)

P51,9 [N(Du)ysl,e] = <
where D' = D, 5,y and v = (v,w). Therefore, the given data (f, f4, 91,92, 93, o)
is subject to the compatibility conditions (g3|vs, ,) = g2ls,,,

Pag, [11(D'g3)vs, ] = Pag,dh,

and (i(9592 + Oy, (93 - €3)) = g1 - e3 at the contact line {(21,0(21),0) : 71 € R},

where
2

9= (95 ex)ex
k=1

for j € {1,3}. Furthermore, at t = 0 we have divuy = fali=0, uols,, = g3lt=0,
(uolvs,y) = golt=o and Ps, ,[u(Duo)vs, ,] = Ps,,q1lt=0. Lastly, (fa,92,93) €
HY(J; Hy N ().

For convenience we shall reduce (1.11) to the case ug = f = g3 = 0. To this end
we first extend ug and f to some 1y € ngQ/p(R?’)S and f € Ly(J; L,(R?)3) and
solve the full-space problem

to obtain a unique solution
i € H(J; Ly(R)®) 0 Ly(J; HA(RY)?).

Let now g3 := g3 — 1|s,. Then g3|;=¢o = 0 by construction and we may extend g to
some
g3 €oW, VPP (T; Ly(R?)?) N Ly(J3 W~ VP (R?)).

With g3 at hand we solve the half-space problem

O(pt) — pAa =0, inR3,
@ =gs, onR?

N . 3
w(0) =0, inR7,

to obtain a unique solution
U< H;(J§ Ly(R3)%) N Ly (T H;(Ri)3)~

If w is a solution of (1.11), it follows that the (restricted) function % := u—a—1 solves
(1.11) with f = ug = g3 = 0 and some modified functions fy, gj, j € {1,2} in the cor-
rect regularity classes satisfying the compatibility conditions gs| S0.0 = 0, Pag, g1 =0
and g1 - e3 = 0332 at the contact line. Moreover, (f4,g2,0) €oH,(J; E[p_l(Qg)).
Observe that by the identity (Ps, sw|vs,,) = 0, w € R3, the second component
of Ps, ,w is redundant (it can always be calculated from the first one). Therefore
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we may replace the term Ps, ,[u(Du)vg, ,| by its first and last component, i.e. we
consider the two equations

Ps, o[ (Du)vs, ,] - €j = Ps, 491 - €;

for j € {1,3}. Observe also that Ps, ,g1 - e3 = g1 - e3, since the last component of
Vs, , 1s identically zero..

In what follows we will transform the domain Gy to G := R x R, the boundaries
S1,0 and Sy 9 to S1 := 0G x Ry and S3 := G x {0}, respectively, and, hence, {2y to
Q=G x Ry. To this end we introduce the new variables Z; = x1, To = x92 — (1)
and T3 = z3 for © € Qp = Gy x Ry. Suppose that (u,7) is a solution of (1.11) and
define the new functions

a(Z) == u(Zy, Zo + 0(Z1), Z3)

and
(%) = 7m(Z1, T2 + 0(Z1), T3),

where Z := (Z1,72,73). In the same way we transform the data (f4,g1,92) to
(faG1,92). Tt holds that & u = Hu for k € {2,3}, j € {1,2},

Ou = o01a — 9,(51)62’11

and
Otu = 0% — 20/ (%1)0,020 — 0" (Z1) Dot + 0/ (T1)? 034

Therefore, the pair (u, 7) solves the following problem

O(pu) — pAu+ V1 = M

(0.,
(6, )
p(O1ug + Gotin) = M3(0,u) — \/m [Ps, 491 €1], ¥ €5,
(0, u) —
(0, u) —

w(Oatig + O3tiz) = My(6, V1+4072[g -e3], z€5, (1.13)
g = M;5(0, V14025, zes,
u=0, Z€.J9o,
u(0)=0, ze€Q,

where the functions M, are given by
My (0,0, 7) := 20 (21)01020 + 0" (%1)Dats — 0 (Z1)%030 + 0 (Z1)DoTwer,

M3 (0,w) := 6 (21)0au1,
Ms3(0,4) = pb' (71)[2004; + 0' (% )(81u2 — Oatiy) — (1 + 0'(21)%)Oia),
My(0,0) == pb' (1) (O1uis — 0 (z1)021i3 + O31),

Ms(0,u) := 0'(z1) ;.

Now we want to go back from (1.13) to (1.11). To this end we consider the functions
on the right hand side of (1.13) as given data in the right regularity classes. Our aim
is the to interpret (1.13) as a perturbation of (1.6), provided |#'|oc < n and n > 0
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is sufficiently small. It is therefore reasonable to solve (1.13) by a Neumann series
argument. To this end let

0Bu(T) := {u €oHy(J; Lp(2)*) N Ly(J; Hy(R)°) : uls, = 0},
Er(T) = Lp(J; H, (),
0E(T) :=oEy(T) x Er(T),
F(T) :=F1(T) x F2(T) x’_3 oF;(T),

e F1(T) := Lp(J; Ly(2)°),
Fo(T) = Ly(J; Hy(Q)),
0F3(T) :=oW, /> /2 (T Ly(S1)) N Ly(J; W, M2 (S1),
0F4(T) :=oF3(T), and

oF5(T) :=o W~ V/2P(J; Ly(S1)) N Ly(J; W2YP(S1)).

Finally, we set

oF(T) :={(f1,...,f5) € F(T) : (9) & (10) in Theorem 1.3.1 are satisfied}.
Define an operator L : ¢E(T) —oF(T) by

9, (pu) — pAu + V7
diva
L(ﬂ, 7_T) = ,u(@zl_u + 811]2)‘51
1(0suz + 02us)|s,
ﬂQ’Sl

and note that L : ¢E(T) —oF(T) is an isomorphism by Theorem 1.3.1. Define

M0, a,7) = (M(0,a,7), Ma(0, @), M3(0, @), My(0, @), Ms(0,a))"

and
F:= (0, fa, f3, fa, f5)7,
with f2 = fda
3
f3:=—=V1+0?% [Ps g1 -e1], fa:=—V1+02[g - e
and f5 := —v/1+ 602g5. By the smoothness of 6, it follows that F' € ]IN?(T) So it

remains to check that the compatibility conditions (9) & 10 in Theorem 1.3.1 are
satisfied. Since ga|s, = 0, Psg,01,0 = 0 and g1, = 03g2 at the contact line, the
compatibility conditions in Theorem 1.3.1 (9) are easily verified. To verify (10) in
Theorem 1.3.1 we have to show that (fa, f5,0) €oHp(J; ﬁp_l(Q)) Note that for the
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reduced data from above we have (fq, g2,0) €oH, (J; I;TP_I(Q(;)), hence for a.e. t € J
the functional W(¢) : H;,(Qg) — R defined by

W), 6) = | falt)d de — / g2(8)dls, , dSp
Qg S1,0

as well as its derivative with respect to ¢ are continuous with respect to the norm
|V - ||Lp/(f29)' Transforming Qg to the quarter space 2 and S ¢ to Sy via the above

diffeomorphism ®(x1, xe, x3) = (z1, 2 — 6(x1), x3) yields

falt) de — / 42(t)dls, , dSp =
Qg

S1,6

—1/m@dei/ T+ 0(2)29:()dls, dS,
Q S1

where ¢(Z1,Z2,%3) = ¢(w1,22 — 0(21),23). This shows that for a.e. t € J the
functional W (¢) : H;,(Q) — R given by

(B(t), &) == /Q Fa(t)d di — /S VIt @) 5(0)dls dS

and its derivative with respect to ¢ are continuous with respect to the norm [V -
|1, (@) hence (fa, f5,0) €0Hp(J; H, (). This implies F € F(T).

Concerning M (0, u, ), we observe that for @ € ¢E,(T) we have u = 0 as well as
0;u =0 at Sy for j € {1,2} and therefore also at the line

0S1 = 08y = 81 NSy =R x {0} x {0},

by continuity of @ and 9;u in Q. Therefore Ms(0,%) = M5(0,4) = 0 at S; N So.
Moreover,
M4(9, Z_L) = ,u@l(:fl)agﬂl

at S N Sy, hence udsMs(0,4) = My(6,@). It remains to verify the condition
(My(0, 1), —Ms(0,7),0) €oH, (J; H, ' ()

for w €9, (T). We compute
[ Ma(b.m)0 do- [ (-s0,0)0ls, d
Q S1

:Amm@MMﬂ+sﬁ@mm&w

= —/ 9’(921)71182¢ dz,
Q

for each ¢ € H;,(Q), where we integrated by parts with respect to the variable Z,.
This yields the claim.

It follows that M(0,u) € oF(T) for each (u,7) € oE(T) and therefore we may
rewrite (1.13) shortly as (u,7) = L~'M(0,4,7) + L~'F in oE(T). We intend to
show that for each € > 0 there exist Ty > 0 and ng > 0 such that

1M (6, @, @) [[pery < ell (@ T) e, (1.14)
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provided that T' € (0,7p) and n € (0,10).
The above computation for (Ms, Ms,0) readily yields that

|(Ma(8, 3), Ms (8, 8), 0) 1311y < 19 el )
Moreover, it holds that
HM2(9771)HLP(J;H;(Q)) < lccll@lle, 1y + HH”HooWHLp(J;H;(Q))
<16 loo 1l 2y + T2 110" oo N1l (223 20
< (10 oo + T C)6" | o) |5, (1),
where the constant C' > 0 stems from the embeddings
0H, (J; Lp(Q)) N Ly(J; Hy () <o Hy/* (T3 HY () < Lap(J; Hy (),

valid for each p > 1. Note that C' > 0 does not depend on T' > 0, since u|(—¢ = 0.
The estimate for M; is very easy. Indeed, by Holder’s inequality we obtain

M0, %, 7)1, (51, (0)) < C [H@’Hoo(l +116/llo0) + TV22116" lloo | 11(@, 7) lr)-

Again, C' > 0 does not depend on T > 0. The estimates for Ms, M, are nearly the
same. So we just concentrate on Mjy.

1My (0, @)y (1) < [1Ma(6, @) y T IMa(0, )]

|W£/ 2TV, (S1 (J; W, P (51)

< C (10 el @llzury + M0, 0,y pr-rimsi |-

To estimate last term, it suffices to consider a term of the form 6#'0;u in
Ly(J; Wplfl/p(Sl)) for some j € {1,2,3}. Making use of the embedding
Ly(J; Hy () = Lp(J; Wy~ /7(51))
we obtain
16°0;al

with C' > 0 being independent of T > 0. Finally, it remains to estimate Mj5 in
F5(T). We employ the embedding

Ly(J5 Hp () = Lp(J; W~ 1/7(51))
to the result
||9'ﬂ1||Lp(J;W§fl/p(Sl)) < C||0"a1 L, (5,202
< C[10'llo + T2 (16" loo + 16" o0)] Il )
Collecting everything together, we have shown that

1M, %7 lsry S 160 + T2 (16" low + 16 o0) | 1@ 7).
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Recall that ||#'||oc < 1. Therefore, choosing first > 0, then 7' > 0 small enough,
we obtain the desired estimate (1.14). A Neumann series argument in ¢E(7") finally
implies that there exists a unique solution (u,7) € oE(T) of the equation L(u,7) =
M(0,u,7) + F or equivalently a solution (u, ) of (1.11), provided that the data
satisfy all relevant compatibility conditions at the contact line S N Ss.

This in turn yields a solution operator Sgs : Fgs — Egg for (1.11), where Egg
and Fgg are the solution space and data space, respectively, for the bent quarter-
space and the data in Fgg satisfy all relevant compatibility conditions at the contact
line {(1‘1,9(.7}1),0) 1x € R}.

1.3.3 The two-phase Stokes equations in half-spaces

Consider the problem

O(pu) —pAu+Vr=f, x1 €R, 29 >0, z3 eR,
divu=fy, z1€R, 29>0, 23 €R,
—[pnosv] — [uVpus] = gu, x1 €R, z2 >0, x3 =0,
—2[pu0sus] + [7] — oAy h = gw, 1 €R, 29>0, z3=0,
[u] =ux, =1 €R, 9 >0, 23 =0,
Oth — mlus] = gn, x1 €R, 29 >0, 3 =0, (1.15)
p[Oauy + Orug, Osug + 82U3}T =g1, w1 €R, 29 =0, 23 € R,
U2 = g2, mleR,xgzO,xgeR,
Ooh=g¢g3, 11 €R, 29=0, x3=0,
u(0) =up, x1 €R, 9 >0, z3€ R,
h(0)=hy z1 €R, z9 >0, z3=0.
Here m[w] := (w4 + w_)/2, where w4 denote the traces of w at x3 = 0 from above
and below, respectively. Note that m[w] = w|g,—¢ if w is continuous at x3 = 0, that
is, if [w] = 0. Furthermore 2’ := (z1, x2).
For convenience we set 2 : =R xRy xR, S1:=R x {0} xR, ¥ :=R xR, x {0}

and 0¥ := R x {0} x {0}. We will prove the following existence and uniqueness
result.

Theorem 1.3.2. Letn =3, p >5,T >0, pj,u; >0, j=1,2,J=1[0,T]. The
problem (1.15) has a unique solution (u,m, h) with reqularity

u € Hy(J; Ly(2)*) N Ly(J; HY(A\E)?),  m € Ly(J: Hy(2\X)),
[7] € Wy 2712 (J; Ly (D)) 0 Ly (s W, 717 (3)),
h€ W2 (T Ly(D)) 0 Hy (F; WP (D)) 0 Ly (WP (),
if and only if the data satisfy the following regularity and compatibility conditions.
1. [ € Ly(J; Lp(Q)*),
2. fa € Ly(J; Hy(2\X)),
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3. 9= (9v0w) € W > PP (J Ly(D)%) 0 Ly(J; Wy~ P(2))3,
4o up € Wy (T Ly(3)) 0 Ly(J; Wy P (8)%);
5. gn € Wy V(I Ly(2)) N Ly(J; Wy P (R)),
6. g1 € W >V Ly(S1))2 1 Ly(J; Wy P (81\0%))2,
7 g2 € Wy V(T Ly(S1) N Ly(Js Wy /P (51\0%)),
8. g € Wy > VP(T; Ly(0%)) 0 HL(J: Wy~ */P(0%)) 0 Ly(J: Wy /7 (0%));
9. ug = (vo, wo) € W 2P(Q)3, hg € Wi 2P(%)
10. divug = fali—o, [uo] = us|i—o,
11. p[da(uo)1 + 91 (uo)2, O3(uo)2 + 02(uo)s]|T,—o = gili=o,
12. (u0)2|zo=0 = 92lt=0, O2ho|zy=0 = 93|t=0, —[103v0] — [tV (u0)3] = guli=0,
13. (gv)2 + [(91)2] = 0, [(91)1/p] = Oa2(us)1 + O1(ux)2 at O%;
14. [(g1)2/p — 93g2] = O2(usx)s, [g2] = (usg)2 at 0%,
15. Oig3 — m(g1)2/p — 03g2] = D291, at 0%,
16. (fa,us - e3,92) € HA(J; ]fIP_I(Q))

Proof. In a first step we will show that without loss of generality we may assume
ug = 0 and hg = 0. We start with hg. For that purpose we extend hg and g, with

respect to  to some functions hg € W;’ —2p (R?) and

Gn € Wy~ V2P(J; Ly(R?)) 0 Ly (J; W~ V/P(R?)),

respectively. Furthermore, we extend ug with respect to xo to some function g €
I/sz_z/p(R2 x R)?, where R := R\{0}. The extensions for ug and gj, can be achieved
by applying a higher order reflection method as in Section 1.3.1. In general, for the
extension of hg, one cannot apply the reflection technique from Section 1.3.1, since

for large p one has Wg 2P, o2, However, the extension for ho exists due to the
results in [64, 65]. Let now

iL(t) _ [26—(I—AI/)1/2t _ 6_2(I_AI/)1/2t]iL0+
[e"U=8a)t _ o= 20=20 (1 — A) " mlag - €3] + Gnli—o}, ¢ >0,

where A,/ denotes the Laplace operator with respect to the variables 2/ = (x1,x9) €
R2. Since hy € Wy 2P(R2) and mlig - €3], dnlemo € Wi /P(R?), it follows from
elementary semigroup theory that

hoe W22 (J; Ly(R?)) 0 Hy (J; WP (R?) N Ly (J; W3 —/P(R?))

with h(0) = hg and 8;h(0) = mlio - €3] + §ni—o-
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Let us turn to ug. Consider the extension g € Wg 2 (R? x R)? from above and
let agt i= Uo|zy20 € W§_2/p(R2 x Ry )3. Extend @j with respect to the variable z3
to ig € W,? —2/p (R3)3. Then we solve the full space problem

it —Aat =0, zeR?
a*(0)

&(J{, z € R3,
to obtain a unique solution
@t € Hy(J; Ly(R?)*) N Ly (J; HY(R?)?).

Extending @, with respect to z3 to some 4, € VV]D2 2 (R3)3 and solving the latter
full space problem with {LSF being replaced by 1, yields a unique solution

@t € Hy(J; Ly(R?)*) N Ly(J; HY(R?)).

Then we define
+‘Q7 T3 > 07

U:i=19
u_|q, w3<0.

Then @ € H}(J; Ly(€2)?) N Ly (J; HA(Q)?) and df—o = up in Q\X. If (u, , [7], h) is
a solution of (1.15), then (u — @, , [], h — h) solves (1.15) with up = 0, hg = 0 and
some modified data (not to be relabeled) (f, fa, gv, w, Us, gn, g1, 92, g3) in the right
regularity classes, having vanishing traces at ¢ = 0 and satisfying the compatibility
conditions at % stated in Theorem 1.3.2. Note also that by construction 0(h —
h)|i=o = 0.

By Proposition 6.1.2 we may also assume that g3 = 0. Indeed, there exists

>

hy €W (J5 Ly(8)) NoHY(J; W2TYP(2)) N Ly(J; WE—1P(3))

such that d2hy|z,—0 = g3. Replacing h by h — h, it follows that da(h — hy)|zy=0 =
0. The functions g; and ¢, have to be replaced by g, — Oihsx and g, + 0 Ay hy,
respectively.

Next we extend

g7 1= Qilags0 € W27 2P(T3 L(R2)?) 1 Ly (J; Wi /P (R2)?)
by even reflection and
G5 1= Galugsn € oW (T L(R2)) 0 Ly(: W P(RY)

by means of the reflection

Jr .
~ g t,l’l,l’g ; if xr3 > 07
g;(taxlvx?)) - 2 (+ ) + .
—g5 (t,x1, —2x3) + 295 (t, 21, —23/2), if x3 < 0.

to functions

g € oW, 2TV Ly(R:)?) N Ly (J; Wy~ VP(R?)?)
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and
g3 € oWy (J; Ly(R?)) N Ly (J; W2THP(R?)).

Let pt := p|z4>0 and solve the parabolic system

Osus — Au, = 0, (1‘1,953) S RQ, x2 > 0,
(02 (ue)1 + 01 (ui)a, O3(us)2 + Da(us)s]T = GF,  (z1,23) €R?, 29 =0,
(u*)g = g;, (Il,l’g) S RQ, x9 =0,
ux(0) = 0, (x1,73) €R2, 29 >0,
(1.16)
by [18], to obtain a solution

ux € oH)(J; Lp(RY x R))® N Ly(J; HA (R x R))®.
Then we repeat the same procedure for g; = Gjlzs<0 to obtain a function
e € 0Hy(J; Ly(RY x R))® N Ly(J; HY (R x R))?

as a solution of (1.16) with f];-“ being replaced by the extensions 95 of 95 and p™
being replaced by ™ := p|z5<0-

Define
{u*, xs > 0,
V=

Uss, T3 < 0.
It follows that the function @ := u — v satisfies @|=¢ = 0, [u] = ux — [v] := k and
M[@Qﬂl + O11s, O3t + 32@3] =0, u=0

at S1\X. In order to remove the jump of %, we note that by the compatibility
conditions it holds that ko = 0 and Oxk; = Ogks = 0 on at 9X. Therefore it is
possible to extend

k€ oW /2P (J; Ly(R3))® N Ly(J; W2 HP(RE))?
to a function
k€ oWyt (J; Ly(R?))® N Ly(J; W2Y/P(R?))?

by even reflection of ki, ks and odd reflection of k2. Then we solve the Dirichlet
problem

ow—Aw = 0, ($1,$2) S RQ, x3 > 0,
trps=ow = k? (xth) € RQ? x3 =0, (117)
w(0) = 0, (w1,22) € R?, 23 >0,

to obtain a unique solution
w € oHy(J; Lp(RY)) N Ly(J; HY(RY)).
Note that by symmetry the function

wl(t, X1, —T2, .’IJ3>,
w(t,x) = | —wa(t, x1, —x2, 73),
ws(t, x1, —T2, T3)
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is a solution of (1.17) too, hence w = w and therefore it holds that wy = 0 as well
as Oowy + Oywe = O3wz + Gows = 0 at S1\X. Let 44 := @;;>0 and define

. Uy — W, if z3 > 0,
ut =
U_, if x5 < 0.
Then [u*] = 0 and
p[Oau] + Orus, Osuy + dousl =0, uy =0
on S1\¥. We arrive at the problem
O(pu) — pAu+Vr = f, ze€Q\X,
divu = fg, x€Q\%,
—|LU/83’U]] - [[,LLVI/’U)]] =gv, TE 27
—2[pudsus] + [7] — cAph = gy, x€X,
[ul =0, zeX,
ath—U3 =0gh, TEC Zv (118)
u[aQU1 + O1ug, O3us + 82u3]T =0, x€ 51\82,
uy =0, x¢€ 51\82,
Ooh =0, xz€0%,
u(0) =0, zeQ\X,
h(0)=0 ze3,
with modified data f € L,(J; L,(Q))3,
fa € Ly(J; HY(O\S)),

(9us gw) € oW/27 V2P (T Ly(£)%) N Ly(J; Wy H/P(2)?),

and
gn € oWy V(T Ly()) N Ly(J; WEHP(R)),

satisfying the compatibility conditions (gy)2 = O2gn = 0 at 9% and (fy4,0,0) €
oH (T Hy ().

Therefore it is possible to extend (f1, f3, fa, (9v)1, 9w, gn) by even reflection to
{z2 < 0}. On the other side we may extend (f2,(gy)2) by odd reflection to {z2 < 0}.
In a next step we consider the (reflected) problem

Or(pil) — pAii + Vi = f,  (21,22) €R?, 23 € R,
divii = fg, (v1,72) €R?, 23 €R,
—[pd30] — [uVoiis] = Go, (21,72) € R?, 3 =0,
—2[[#83113]] + [[7?]] — UA;D/;L = Guw, ($1,$2) S Rz, x3 =0,
[[a]] =0, (xhx?) € R27 x3 =0,
Oh — i
(0)
(0)

(1.19)

gha ($17$2) S ]R27 T3 = 07
0, (1’1,1’2) S RZ, xr3 € R,
07 (x1,.%'2> € sz xr3 = 07

=41

=
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with given reflected data f € L,(J; L,(R? x R))?,
fa € Ly(J; Hy(R* x R)),

(Gvs Guw) € oW/ 27122 (J5 Ly(RA)®) N Ly (J; Wy~ HP(R?)?),

and
Gn € oW,y P (J; Ly(R%)) N Ly (J; Wi~ V/P(R?)),

where (fq,0) €oHL(J; Hy  (R? x R)).
By [40, Theorem 5.1] there exists a unique solution (@, 7, [#],h) of (1.19) with

regularity .
@ €M, (J; Lp(R))* N Ly(J; Hy (R%))?,

€ Lp(J; Hy(R?)),
[7] €oW, 2712 (J; Ly(R?)) N Ly (J; W, ~HP(R?)),
and
h €oW2Y2(J; Ly(R?) NoHL(J; W2TY/P(R?)) 0 Ly (J; WP (R?)).

Note that by symmetry the function (u, 7, h) with @;(z) = (w1, —w2,73), j €
{1,3}, ao(x) := —ta(x1, —29,23), 7T(x) := 7(x1, —22,23) and h(z') := h(x1, —x2) is
a solution of (1.19) too. Therefore, by uniqueness, it follows that

aj(xl’ —Z2, x3) = 22j(xla Z2, $3)7 .7 € {17 3}7
Ua(z1, T2, x3) = —lUo(1, —22, T3), T(T1,22,73) = 7(x1, —T2,T3)
and h(x1,x2) = h(z1, —x2). This necessarily yields
Uy = ((927]1 + 81112) = ((93?12 + 82113) =0,
as well as doh = 0 at S1\X. Hence the restriction (i, 7, [7], h)|q is the unique strong
solution of (1.18). O
1.3.4 The two-phase Stokes equations in bent half-spaces
Let § € BC3(R) such that
Go = {(z1,22) ER? : x5 > (1)} and Q= Gy x R.

We assume furthermore that |¢|oc < 7 and |020]c < M, j € {2,3}, where we
may choose 7 > 0 as small as we wish. Let S1¢ := 0Gy x R. Furthermore, let

Vs, 4 = (I/GG,O)T with vg, = mw’(xl), —l)T denote the outer unit normal

to S1¢ at (v1,0(x1),23), (v1,73) € R x R and let Pg, , be the tangential projection
to S1 9. Furthermore, let 3y := Gy x {0} and 0%y := 0Gy x {0}.
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Consider the problem
O(pu) — pAu+ Vo = f, x € Qp\Xo,
divu = fd, WS 99\29,
_ILU/83U]] - [[:U’vz’w]] =0v, TE 2y,
—2[udsw] + [7] — cAph = g, x € Xy,
[u] = ux, =€ Xy,
Oth — mlw] = gn, € Xy, (1.20)
PSl,o (M(Vu + VUT)V5179> = Pslyogl, T e 5179\829,
u-vs , =92, T S 51’9\829,
aI/Geh = 937 x 6 629
U(O) =Uug, xE QQ\EQ,
h(O) =hg, x € Xy,

where u = (v,w) and v = (uj,uz), w = uz. Without loss of generality we may
consider ug = 0 and ho = 0 in (1.20). Literally, this can be seen as in Section 1.3.3,
we will not go into the details. The remaining modified data (not to be relabeled)
belong to the right regularity classes and they have vanishing traces at ¢t = 0.

Next, we will show that we may assume uy = 0. For that purpose, extend uy
with respect to zs to some function

iy €oW, V(T3 Ly(R?)?) 0 Ly (J; W VP(R?)?),

and solve the half space problem

Oy — Auy = 0, xr € R? x Ry,
u, =y, = €R?x {0},
u,(0) =0, ze€R?2xRy,

by [18] to obtain a unique solution
u €0Hp(J; Ly(R* x Ry)?) N Ly(J; HE(R* x Ry)?).
If (u,m,[r], k) is a solution of (1.20) with ug = 0 and hg = 0, and

if z3 > 0,
if x3 < 0.

Uy — Uy,

U 1= {_

u*?

where u* := ulz,z0, then [u..] = 0. Again the remaining modified data have the

correct regularity and vanishing traces at ¢ = 0. Note that in this case m[w..] = Wi,
where Uy = (Viory Wik )

Let us show that we may reduce (1.20) with ugp = 0, hg = 0 and uy, = 0 to the

case g, = 0, g = 0 and g, = 0. To this end we extend the data (gy, gw, gn) With

respect to xo to some functions

(Gvs Gu) €0W,/ 272 (J; Ly(RY)®) N Ly (J; Wi~ VP (R?)?),
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and
gn €Wy 2P (J; Ly(R?)) N Ly (J; W2 /P(R)).

Then we consider the two-phase problem

[a] =0, z¢€R?*x {0}, (1.21)
Oh —w =gp, zeR?x{0},
#(0) =0, zeR?xR,
h(0) =0, zeR?x{0},

for the unknowns (@, }NL) Interestingly, the equations for ¥ and @ decouple. Therefore
we study for the moment the problem

W] =0, zeR?x{0},

NH ) {0} (1.22)
Oth —w = g, x€R?x {0},

w(0) =0, ze€R?xR,

h(0) =0, x€R?x{0},

for the unknowns (w, h). Assume that (@, k) are already known. Then, @ is explic-
itly given by

w(x3) =

1 “Lrs [ (gAph + Gu), if 0,
{e (o + Gw) if zg > (1.23)

2(py + p-) e_L(_xg)L_l(UAa:’il + Gw), if z3 <0,

where L := (9; — A,)Y/2. Therefore,

1 -
D|pse0 = =L Y0 Aph + Gu

and it follows that we may reduce (1.22) to a single equation for h which reads

~ o ~ 1
Oh— ——— L 'Apyh = —————— L Y54 + Gn, (1.24)
T 2(ug o) 2(pt + p-)

and which is subject to the initial condition h(0) = 0. Making use of the R-
boundedness of the operator A,/ in K (R?), K € {W, H}, the operator-valued H-
calculus for 0y in o H)(J; K, (R?)) and real interpolation one can show as in [40, Sec-

tion 5] that the operator 0; — WL_IAW is invertible in 0W;71/2p(<]; L,(R?))N
Ly(J; WpQ_l/p(RZ)) with domain

oW (J; Ly(R?)) Mo Hp (J; W2THP(R?)) N Ly (J; W3 1/P(R)).
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Hence there exists a unique solution
h €W2Y2(J; Ly(R?)) NoH L (J; W2TYP(R?)) N Ly (J; WP (R?))

of (1.24). Then w is given by (1.23) and, finally, © is the unique solution of the
two-phase problem

—[p037] = [uV @] + §o, = €R? x {0},
[0] =0, = €R?x{0},
#9(0)=0, ze€R?xR

In summary, we have shown that we may reduce (1.20) to the problem

O(pu) — pAu+Vr = f,  x € Qp\Xp,
divu = fg, =z € Qp\Xy,
—[pdsv] = [uVpw] =0, =z € Xy,
—2[udsw] + 7] —cAph =0, x € Xy,
[ul =0, =z ¢€ %y,
Oth—w =0, x€& Xy,
Ps, , (M(VU + VUT)VSLG) = Ps,,91, T € S1\0%y,
U Vs, = ga, T € S519\0%0,
Ovg,h =93, x € 0%
u(0) =0, xz € Qy\Xy,
h(0) =0, z€ S,

(1.25)

with given data (f, g1, g2, g3) having vanishing traces at t = 0 and which satisfy the
compatibility conditions

[[92]] =0, [[gl : 63]] =0, [[Psl,egl ' el/lu]] =0, [8392 — g1 e3/:“]] =0,

and
0¢g3 + 0392 — g1 - e3/pn =0

at the contact line {(z1,6(z1),0) : 21 € R}. To see this, one can apply the repre-
sentation (1.12) from Section 1.3.2. Note also that the second component of Ps, ,w
is redundant, as it can always be reproduced from the first component. Finally, it
holds that (f4,0, g2) €oH,(J; Hy ().

We will now transform Qg to © := R x Ry X R, S19 to 51 :=R x {0} xR, ¥y to
¥ =R xRy x {0} and 0%y to 9% := R4 x {0} x {0}. To this end we introduce
the new variables T; = x1, T2 = 22 — 0(z1) and T3 = x3 for x € Qy. Suppose that
(u,m, h) is a solution of (1.20) and define the new functions

u(jj) = u(:f:l, To + 9(«771); 5;3)

7(z) := (%1, To + 0(Z1), Z3)
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and
W) == h(z1, T2 + 0(21)),

where ' = (71, T )_ In the same way we transform all of the data. Then, as in
Section 1.3.2, (u,, h) satisfies the problem

0,7+ f, TEQ\T,
)+ fa, T €Q\X,

O(pu) — pAu+ VT = M,y

- x
[uds@] + [7] — oAwh = My(0,h), €S,
[u] =0, ze€X
Oh—w=0, TEY,
p(Ontig + Optiy) = M5(0,u) — V1 + 9’2 [Ps, 491 -e1], T € S1\9%,
11(Byiig + Dsiin) = Mg(60, 1) — /1 + 02[gy - e3], z € S1\0%,
iy = M7(0,u) — V1+02g, z€ S1\0%,
Osh = Mg(0,h) — /1 + 02g3, z € 0%,
u(0) =0, zTeO\X
h(0) =0, zc€X,

(1.26)

where @ = (,7). The functions M; are given by
My (0,0, 7) := 20 (21)01 02t + 0" (Z1)0ats — 0 (Z1)%050 + 0 (Z1)DaTer,
Ms(0,4) = 0'(21)0s11,
M3(97a) = [_9/(52'1)[[/‘62“_)]]70]1—’
M4(9, 71) =0 (—29/(531)818271 — 9”(%1)8271 + 9/(251)282271) ,
M5(9, Z_L) = M@l(fl)palﬂl + 9’(@1)(81@2 — 82121) — (1 + 0’(@1)%62’[12],
MG(H, 17,) = u@l(il)(alﬂ;; — 9’(5:1)827]3 -+ 83111),
M7(0,w) == 0'(Z1)u.

and

Mg(G, B) = 9,(i‘1) (BJL - 0’(951)82h) .
Let us define the function spaces
0Eu(T) = {u €HL(J; Ly()®) 1 Ly(J; HAQ\E)) : [ul = 0, on T},
Er(T) := Lp(J; Hy(2\%)),
0By (T) =W, /2712 (J; Ly()) N Ly(J; W, ~H2(5)),
oER(T) :=oW2™Y2P(J; Ly(2)) NoHL(J; W2TYP(£)) N Ly (J; WE—1/P(8))
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oE(T) = {(u, m,q,h) €Ey(T) X Ex(T) xoEq(T) xoEn(T) :
¢ =[], Bh—u-e5=0on %},
F(T) == F1(T) x F2(T) x5_3 oF;(T),
e F1(T) := Lp(J; Ly(2)°),
Fo(T) := Lyp(J; Hy(2\X)),
0F3(T) 1= oW,/ 2 V2 (J: Ly (8)%) 0 L(J; W~/ (8)?),
0F4(T) =W, /2 2P (5 Ly (8)) 0 Ly (J; Wy~ HP(2)),
0F5(T) :=oW, /27122 (J; Ly(S1)) N Ly(J; Wy H/P(51\0%),
oF6(T") :=oF5(T),
0F7(T) :=oW, /2P (J; Lp(S1)) N Ly (J; W2YP(S1)),
and
0Fs(T) := oWy /2 VP (J; Ly(2)) NoHy (J: Wy ~2/P(2)) 0 Ly(J; W2/ (52)).
Finally, we set
oF(T) := {(f1,..., fs) € F(T) : (13) & (16) in Theorem 1.3.2 are satisfied}.
Define an operator L : oE(T) —oF(T) by

[ Oi(pu) — pAu+ V7T ]
divu
[udst] — [V z]
—2[[#83711]] +q—oclAzh
p(O2y + O11iz)|s,
,u(agﬂg + 82713)’51
ﬂ2_|51
O2h|ox

and note that L : ¢E(T) —oF(7') is an isomorphism by Theorem 1.3.2. Define
M(0> u,m, B) = (Mb My, M3, My, Ms, Mg, Mz, MS)T(0> u,m, B)

and

F :(fl,f2,0a07f57f67f77f8)-r7
with fi := f, fo = fa,

3
5= =1+ 02 [Ps, g1 e1], for=—V1+02g; - es],

—V1+ 607G, and fg := —v/1+02g3. It can be readily checked that the
components of F' satisfy the compatibility conditions (13)-(16) in Theorem 1.3.2.

In fact, this can be seen as in Section 1.3.2. Since # € BC3(R) this implies that
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F €oF(T). In the same way one can show that the components of M (0,u,,h)
satisfy the compatibility conditions (14)-(16) as well as the second compatibility
condition in (13) in Theorem 1.3.2. Unfortunately the first condition in Theorem
1.3.2 (13) for Mg, which reads

[Ms(0,7)] =0 on %,

is in general not satisfied. To circumvent this problem, we modify M3(0, u) as follows

_ T
M3(0,4) = 0'(z1) [[[uam]], — exty ([[u(@lw —0'(z1)0w + 3361)\51\82]])}

Here exty; is a suitable bounded and linear extension operator from
oW, 2TV (T3 Ly(0) 0 L(: W,y 2/ (0%2))

to
oW (] Ly(8)) N Ly(J; WA~ /P(3)),

such that [exty z]lox = 2z for all z € oWp/* Y2(J; L(0%)) N Ly(J; W, 2/P(9%)),
which exists due to Proposition 6.1.1. Note that if we have a solution (u,m, q,h) €
oE(T) of (1.26) with M3(6,u) replaced by Ms(6, ), then, by the first component of
the third line in (1.26), we obtain that

[[,Lb(alu_) — 9’(%1)82’@ + 83@1)]] =0

on ¥, hence M3(0, 1) = M3(6,u) in this case.
Let us define

M(97 U, T, B) = (Mla M2a M?)a M4a M5a M6a M?a MS)T(97 U, T, B)

Since the modification in M3 does not affect the other compatibility conditions in
Theorem 1.3.2, it follows readily that M (6,4, 7, h) € oF(T) for each (u,7,q,h) €
oE(T). Therefore, we may rewrite (1.26), with Mjz replaced by Ms, in the more
condensed form

(@,7,q,h) = L~ M(0,a,7,h) + L~ F (1.27)

in the space ¢E(7"). As in Section 1.3.2 we will apply a Neumann series argument
to show that (1.27) has a unique solution (%, 7,7, h) € oE(T). For that purpose we
need to show the following property for M. For each € > 0 there exist Ty > 0 and
1o > 0 such that

||M(97 u,m, h)H]F(T) < EH(@, T, q, h)H]E(T)a

provided that T" € (0,Tp) and n € (0,70). Mimicking the estimates of Section 1.3.2

for the components of M and taking into account that the operator exts is linear
and bounded, one obtains an estimate of the form

1M (8, @, 7, h)[lecry < C |1 loo + T2 (16" oo + 16" lo0) | (2, 7, @ B) 1y,

with a uniform constant C' > 0. Since |||l < 71, we may first choose n > 0
sufficiently small and then T" > 0 sufficiently small, to obtain the desired estimate
for the function M.
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Then we may apply a Neumann series argument in ¢E(7") to conclude that there
exists a unique solution (u, h, ) €oE(T) of the equation

L(a,7,q,h) = M(0,a,7,h) + F

or equivalently a unique solution (u,, g, h) of (1.20) as explained above.

This in turn yields a solution operator Sgg : Fgs — Egg for (1.11), where Epg
and g are the solution space and data space, respectively, for the bent half-space
and the data in Fgg satisfy all relevant compatibility conditions at the contact line
0%g.



Chapter 2

General bounded cylindrical
domains

Let n = 3 and p > 5. In this section we will prove that system (1.4) admits
a unique solution. To this end we apply the method of localization. We want
to emphasize that this localization procedure cannot be simply carried over from
standard parabolic systems. This is due to the divergence equation and the presence
of the pressure in (1.4). Let

Eu(J) = Hy(J; Lp(Q)°) N Ly(J; HY (D)), Ex(J) = Ly(J; Hy(Q)),
Eq(J) i= W27V (J; Ly(£)) N Ly(J; W, 7P ().
En(J) = Wy~ V(3 Ly(2)) N Hy (J; W~ VP(2)) 0 Ly(J; Wy~ VP(E)),
and
E(J) == {(u,m,q,h) € Ey(J) x Ex(J) x Eg(J) x Ep(J) : ¢ =[] }.
2.1 Regularity of the pressure

Let (u)q := u — @1' Jo udz denote the part of u € Li(€) with mean value zero.
We start with an auxiliary lemma which provides some additional regularity for the
pressure.

Lemma 2.1.1. Let (u,n,[n],h) € E(J) be a solution of (1.4) with
fa=wuo="ho=g2=us vy =gs vag =0,

and f €W (J; L,(Q)3) for some o € (0,1/2—1/2p). Then the following assertions
hold.

1. If Q is bounded, then () €Wy (J; Lp(€2)) and the estimate

Imallwew, < € (lell, + M, + 1wy e,))

1s valid, where C > 0 does not depend on the length of the interval J.

35
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2. If Q is a full space, a (bent) quarter space or a (bent) half space, then
(M) x €oW(J; Ly(K)) for each bounded set K C Q. Furthermore there exists
a constant Cx > 0 which does not depend on the length of the interval J such
that the estimate

(™ & llwe (L, ) < Ck <||UHEu + 7] e, + ||f|!w;c(Lp))
1s valid.
Proof. 1. Let g € Ly (€2) be given and solve the problem

Ay =g—(g1) in D,

[pv] =0 on X,
[0vs¥] =0 on %, (2.1)
Byoth =0 on O\ = (51\9%) U Sy,

by Lemma 6.3.2 and define ¢ := pyp. Since ((m)q|l) = (u|V¢) = 0 we obtain by
integration by parts

((m)alg) = ((m)al(g)e)
()« [ (i)

_ _/E[[w]]a”;‘bdz - (‘;Aulveb) ~(fIV9)

= | Evu: vpdz - / MO0 G 45+ / (222 ) — (11222 as
QP o P by p p

— (fIV9).

Note that there exists a constant C' > 0 such that [|¢||y2 < C||g||z,,. Hence, taking
P

the supremum of the left hand side over all functions g € L,y (€2) with norm less or
equal to one, we obtain

I®a®)lz,@) < C(IVub)2,00) + 10a0ult)lz, 00

+ 1 @usu(®)) 1 L, ) + IO, 2) + Hf(t)lle(Q)),

for almost all ¢ € J. The same strategy yields the estimate

l(m)a(t) = (Mals)llL,@) < C(IIV(U(t) = u($)L,@) + [10vaq (u(t) = u(s))L, 00
+ 1 Qv (wlt) = uls)) 1 M,y + IO = [r (), + 1) = f(S)HLp(Q)>a

for almost all s,t € J.
By the mixed derivative theorem and trace theory it holds that Jpu; €
1/2
ol (J: Ly(9)),
(Our) 4 | €0W,/ >~ /2P(J5 L(5))
and

Oruiloq €oW, 272 (J; Ly(09)),
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for k,1 € {1,2,3}. Moreover, [r] € oW,/> V/*(J; Ly(%)). Since HS < Ws™= for
each s > 0, ¢ € (0, s), the claim follows.

2. The proof of the second assertion follows essentially the lines of the proof
of the first assertion. We fix a bounded set K C Q. Let g € L,(K) and define
(9K = g—|71(|(9|1)1(7 where (u|v)g := [ uvdz. Extend (g)x by zero to g € L,(Q).

Then g € ng(Q) N Ly(€2) and we may solve the elliptic problem (2.1) with g as
an inhomogeneity in the first equation by Lemma 6.3.2. This yields a solution
¢ € Hy(Q\X) N HZ(Q\X) satisfying the estimate

IV, @) + IVl < Cllll,@ < Ckllglin,x)-

We have ((1)klg)x = (Mxl(@)K)x = (Mxlda = fo(r)xide. We are now in
a position to imitate the steps in the proof of the first assertion. This yields the
validity of the second assertion. ]

2.2 Reduction of the data

It is convenient to reduce the data in (1.4) to the special case
f=Jfa=uw =ho=g2=us vy =gs voa=0.

Extend hg € W;’_Q/p(ﬂ) and gp|i=0, m[up - e3] € Wi_g/p(E) to some functions hg €
W;’_z/p(Rz) and g9, € W5_3/p(R2), respectively, and define

ho(t) = [2e~ 8%t _ o= 2=00Y20
[e_([_AI,)t _ e—Q(I—Az/)t](I o Aa:’)_l (mo + 92) , t>0.

Then
he € Wy =22 (J; Ly(R?)) 0 Hy (J; Wy~ VP (R?) N Ly(J; W~ H/P(R?)

and it holds that h,(0) = hg as well as 8;h.(0) = g + 9. Defining h. := h.|y it
follows that h.(0) = ho and 9;h.(0) = m[uo] + gnli=o. Setting hy := h — h, we have
hili=0 = Othili=o = 0.

Next, let ug = (vo,wo) and qo := 2[pdswo] + oAy ho + guwli=0 € W,}_g/p(E).
1_3/p(]R2) and define G,(t) := e®+'*§y. Then

Extend ¢o to some gop € W)
G € W27V (J; Ly(R?)) 0 Ly (J; W, ~ /P (R?)).
Setting gx := x|y it follows that
g € Wyl (J, L(8)) N Ly(J; Wy~ /P(8))

and ¢.|t—0 = qo. Given g, we solve the weak elliptic transmission problem

(VrVe) =0, 6 HY(9),
[7] = ¢+, on X
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to obtain a unique solution 7, € Ly (J; H;(Q\E)) by Lemma 6.3.3.
Next we solve the parabolic transmission problem

O(pus) — pAuy, = =V + pf, in Q\X,
~[udsvi] — [pVewi] = gy, on X,
—2[u0swi] = gw — ¢« + oAy hy, on X,
[ud =us, onX,

. (2.2)
Pg, (M(Vu* + Vu, )1/51> = Pg,g1, on S1\0%,

Uyg - Vg, = g2, on S1\0%,
Ux = g3, On SQa
ux(0) = up, in Q\X.

to obtain a solution u, € HI}(J; L,(9)%) N Ly (J; Hg(Q\E)3) by Lemma 6.3.6. Note
that all relevant compatibility conditions of the data are satisfied by assumption.
Setting u; = v — uy, and m; = 7™ — 7w, we see that w.l.o.g. we may assume that
ug = hg = f = 0. To remove f; we solve the transmission problem

A = fg—divu, in Q\X,

[oy] =0 on X,
[Oesv] = 0 on X, (2.3)
Oy, =0 on 9N\9X = (51\0%) U Sy,

by Lemma 6.3.4. We remark that [,(f¢ — divu.)dz = 0 by the compatibility con-
ditions on (fy, uy, g2, 93) and

fa— divu, €oHY(J; HyH(Q)) N Ly(J; HY(Q\X)).

Therefore we obtain a solution Vi € gE,(J). Setting ug := u; — Vi, g := m +
POy — uAvy and hg := hy we see that we may assume that f; = go = uy - eg =
g3 - e3 = 0. The time trace of all the remaining data at t = 0 vanishes.

2.3 Localization procedure

Before we can state the main result of this section, we introduce some function
spaces. Let

F1(J) = Lp(J; Lp(Q)?),  Fa(J) := Lyp(J; Hy (Q\X)).
F3(J) i= W/ 2712 (J5 Ly(£)%) 0 Ly (J; W, 7 VP(R)?),
Fu(J) = W, 27122 J5 Ly(R)) 0 Ly(T; W, VP (),
Fs5(J) i= W, =2 (5 Lp(5)°) 0 Ly (J; W~ HP(5)?),
Fo(J) = W~V (J; Ly(2)) N Ly(J; Wy ~P(2)),
F7(J) i= W22 (J5 Ly($1)%) N Ly(J; Wy~ P (51\0%)?),
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Fs(J) := W, ~/2P(J; Lp(S1)) N Ly (J; Wy~ /P(51\08)),
Fo(J) := W~ Y2 (J; Ly(Sa)) N Ly(J; W21/7(Sy)),
Fro(J) := W227VP(J; Ly(9%)) N Hy (J; WE—2/P(9%)) N Ly (J; W22/7(0%)),
and F(J) := x1% F;(J) as well as

F(J) == {(f1,.-., fr0) €F(J) : (fo, 5. fs, fo) € H(J; H ()}

Furthermore, we set X, := X, , x X, 5, where X, , := ngQ/p(Q\E)S and X, p :=
3-2

wEr ().
The main result of this section reads as follows.

Theorem 2.3.1. Let pj,pj,Hj,o0 >0, n=3,p>5 and let G € R™ 1 be open
and bounded with G € C*. Define Q := G x (Hy, Hy) and let ¥ := G x {0}. Let
Sy :=0Gx (Hy, Hs) and So := (Gx{H1})U(Gx{Hay}) be the vertical and horizontal
parts of the boundary of €, respectively. Then there exists a unique solution

u € Hy(J: Lp(Q)°) N Ly(J; Hy (Q\D)?), 7 € Lyp(J; H,(2\)),
[7] € W, /2712 (J; Ly(£)) N Lp(J3 W, /7 (E))

h & W (T Ly (8)) 0 BT W) 0 L7 W),

of (1.4) if and only if the data are subject to the following regularity and compatibility
conditions.

1. (fa fd»gvagwauzvghagl,g%93794) € ]F(J))
(UQ,hQ) S X,y,
divug = fale=0, —[Vawo] — [#d3v0] = goli=0, [uo] = us|i=o,

Ps, (u(Vug + Vul )vs,) = Ps, g1 =0, uo - vs, = gali=0, uo = g3li=o,

AR

81/9Gh0 = g4|t:07

S

[[92]] =Uux Vs,
[(91 - e3)/p — O392] = Ous, (us - €3),
Pycl(D'vs)V'] = [Pacgy /1,

9rgs — m[(g1 - e3)/ 1 — O392] = Oy gn,

L ™ =

10. (g”U‘VSI) = _[[gl : 63]]7 (93”/51) = 92,
11. Pyg[p(D'g3)v'] = (Pocgy),
12. pOyg (93 - €3) + pdsge = g1 - €3,

where V' = vyq.
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Proof. We will split the proof in two parts.

(I) Existence of a left inverse
Let (u,m, [7], h) be a solution of (1.4). By the results of the last subsection there
exists (u, 7, [7], h) such that (a,7,[7],h) = (u, 7, [7],h) — (a, 7, [7], h) solves the
problem
O(pt) — pAu+ V7T =0, in Q\X,
diva =0, in Q\X,
_[[Mafiv]] [[/J,V /’U)]] - gva on Ea
_2[[M83w]] + [[ﬁ—]] - O—Ax/ﬁ = Gw, On X,

3 B (2.4)
Ps, (,u(Vu + Vi s, ) = Ps,g1, on S1\9%,

u-vs, =0, on S1\0%,

a:g?)’ on 527

0y GiL: 4, on 0X,
w(0) =0, inQ\X
h(0) =0, on%,

and (gsles) = (ax|es) = 0. Choose open sets Uy = By(z)) with
o % C UM, Uy,

and choose r > 0 sufficiently small such that the corresponding solution operators
from Sections 1.3.2 & 1.3.4 are well-defined. According to Proposition 6.2.1 there
exist open and connected sets

e UgNX #0D, UgnN o = 0;

o Up CQ, k=1,2;

e UpNS1#0, UpyN(XUSy) =0, k=3, 4;
e UpyNSy#0,U,N(XUSy) =0, k=5,6,

and a family of functions {p}_, € C3(R?;[0,1]) such that Q C Uivzo Uk, supp @i C
U, Yoo @r = 1 and Ous, k() = Oegpr(z) = 0 for z € Up N (08U 0Ss), k > T.
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Multiplying each equation in (2.4) by ¢ we obtain the following local problems
Oy (piix) — pAiy + Vi = Fi(i,7), in QM\F,
div iy, = Fg(@), in QF\XF,
_[[:U'a?:'r)kﬂ - [[va’wk]] = gvk + Gvk(a)7 on Zk7
—2[uds] + [74] — o Aph = Guk + Gur(@i, h), on TF,
[[ﬂk]] = fLEk, on Ek,
Othy, — m[wg] = Gk, on ¥,
Pg (M(Vﬁk + Vﬂ;)’%) = Pgrguk + Gik(u), on SP\OLF,
iy v, =0, on SP\IXK,

(2.5)

ik = gsp, on Sy,
Ok = Ga, on OXF,
i, (0) =0, in QF\XF
hi(0) =0, on XF,
where
Fi (@, 7) := [Vor]T — p[A, or]t,
Fyp(u) :=u- Vg,
Gor(@) := (I — e3 ® e3)Gy (@, h),
Gk (i, h) := Gy (1, h)es,
Gr(i,h) = [~p(Ver ® i+ @ ® Vg )]es — o[Ax, ol hes,
and

le(ﬂ) = (I - X uk)(u(Vgok RU+uUR Vgok))uk.

Furthermore we have set PS{C =1 — v, Q@ ug.

For k = 0 we obtain a pure two-phase problem with a flat interface in R™. This case
has been treated in [40]. If k£ € {1,2} then we are lead to one-phase Stokes equations
in R™. An analysis of these problems can be found in [6]. If £ € {7,..., N1} and
k€ {Ni+1,...,N} then we rotate the coordinate system (with respect to the x3
axis) and translate it to obtain two-phase Stokes equations in bent half-spaces and
one-phase Stokes equations in bent quarter-spaces, respectively. These problems
have been treated in Sections 1.3.2 and 1.3.4. Hence, the solution operators for
the charts Uy, k > 7 are well defined by the results in 1.3.2 and 1.3.4. Finally, if
k € {3,4} then we obtain the Stokes equations in bent half-spaces with pure-slip
conditions, while for k£ € {5,6} we are lead to the Stokes equations in half-spaces
with no-slip boundary condition, see e.g. [6] for the theory of the last two type of
problems. We denote the corresponding solution operators for each chart Uy by S.

Note that all functions Fj, G; carry additional time regularity (take into account
Lemma 2.1.1) with exception of Fy;. To circumvent this problem we will reduce
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(2.5) to the case Fygr = 0. For this purpose we apply Lemma 6.3.4 and solve the
transmission problem

A(Z)k = de(ﬂ) in Q’“\E’“,

[odr] =0 on ¥F,
[[8€3¢k]] =0 on Eka
O, b =0 on O0QF\axk,

This yields a solution
Ve €oHy(J; HY QISR 0 L, (J; HY(QN\SF)?) =102 ()

satisfying the estimate
IVérllzy < Cnllallg, )- (2.6)

The constant Cy > 0 depends on N but not on the length of J. We define 1y :=
U — Vo, and 7y := T + pOypr. — pAgr. With h = h we obtain the system

Ay (piig) — pAiy, + Vit = Fy(i,7), in QF\2F,
diviy, =0, in QF\XF,
—[1056y] — [V k] = Gok + Guil(@), on XF,
—2[udstiog] + [ix] — o Aarhy = Gur + Gur(ii, h),  on XF,
[an] = asi — [Vor], on XF,
Bihi — m[wg] = Gnr +m[d3dy], on XF,

. T ~ A . L (2.7)
Py (M(wk + Vuk)yk> = Pggi, + Gix(@), on SH\OSF,
g -vp =0, on SP\OXF,
ir = gsk — Vor, on Sy,
(‘9,,kfzk = g4k, oON S{C N Ek,
4, (0) =0, in QF\X*
hu, 0) =0, on Xk
where X . .
Gr(@, h) == Gi(@, h) + 2[uV3¢r]es — [uAdi]es,
Gkv, ékw defined as above and
élk(ﬂ) = Gp(a) —2u(l — v ® Vk)VQQZ)kJ/k.
With the help of the solution operators S, we may rewrite (2.7) as
(tik, 5, ) = Sk (ﬁk + Hy(a, T, il)) ; (2.8)

where Hj stands for the set of given data and Hj(a, 7, iL) denotes the remaining
part on the right hand side of (2.7). Let {0 }1_, C C2°(Uy) such that O |supp o, = 1
and multiply (2.8) by 6. By Lemma 2.1.1 it holds that (7xV70y), (7xV76) €
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oW (J; Ly(QF)) for each j € {0,1,2} and k € {0,..., N}, since supp by C Uy is
bounded. In addition, the estimate

171V Okl we i ry) + 176V Okllwe (i1, (2%))
< C (Jalle, 7y + Il + 1))
is valid, where C' > 0 does not depend on T > 0. This implies
1(Y701) (pOepr — 1AG) lwe (i, = (V7 08) (e = T lweo (151, 0))
< C (Jlle, sy + 1B, () + 1 1))

and since A¢p = Fyr(a) €oEy(J), it follows that

1077 00)Oemllywig (i, 20y < C (lall, () + ey + I H Iz
P

for each j € {0,1,2} and k € {0,..., N}. Hence, by Holder’s inequality and Sobolev
embedding

(V7 01)0:0k ]| 1, 200y < TNV 00) 0l gwo (i, (00))-

Next, we apply Holder’s inequality, Sobolev embeddings and the mixed derivative
theorem to obtain

10x0c Pkl (7113, 02)) < T1/2p||9k3t¢kHLQP(J;H;(W))

S CTl/Qp"9k6t¢kHW;/Q—‘S(J;H;(QIQ-))

1/2p
<CT H6k8t¢kHHS/Q—E/Q(J;H})(Qk))
< CTY211060e0k ) g 11, @, (011300
< CT1/2p|\9k3t¢k||W;,x(J;Lp(Qk))mLp(J;Hg(Qk))
for some « € (0,1/2 — 1/2p) and a sufficiently small ¢ > 0. Note that
VO bk, (5.1, 00y + IV2Ok 1, (.1, k) < Cllilg, (),

by (2.6), hence
1062168 11, sty < CTY (il + Wlleacr) + 1)) -
In particular, this implies
100V Okl 1, (1.1, < 10k0: Pk 1, (.11 00)) + 1(VOR) 010k 1, (7.1, 020
< TV (Jfills, ) + Iblleue) + 1 v ) -
Moreover, by Sobolev embedding and the mixed derivative theorem, we obtain

10V Pkl L, (7, m2(08)) < CT1/2pHv¢kHOH;/Q(J;Hg(Qk)) < CTV?||il|[g, -
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Since all terms in Hy(a, 7, 71) carry additional time regularity, there exists some
~ > 0 such that ) .
[Hy (@, 7, h)lr) < CT7|(@, 7, h) |l ()-

We may now replace Oty by Ok (tar — Vi) and Ox7ty by Ok (7Tr + pOidr, — nlAey) in
(2.8) to obtain the estimate

164k, 7 Bl < € (106 Halleen + TP 7 Dllecn) . (29)

with a constant C' > 0 being independent of T' > 0. Here 4 := max{1/2p,~}. Since
O (g, T, hi) = (Uk, T, b)) we may take the sum over all charts to obtain

G 7 W)y < O (I ey + TG 7 1)) -
Therefore, choosing T' > 0 sufficiently small, we obtain the a priori estimate
(@, 7, ﬁ)H]E(J) < CNHﬁHIF(J)

for the solution of (2.4). A successive application of the above argument yields
the estimate on each finite interval J = [0,7]. It follows that the solution-to-data
operator L :gE(J) — oF(J), defined by the left hand side of (2.4) is injective with
closed range. In particular, there exists a left inverse S for L, that is SLz = z for
all z €gE(J).

(IT) Existence of a right inverse

It remains to prove the existence of a right inverse for L. To this end, let the
data F' := (f, fd, Gvs Gw> 91, 92, 93, 94, us, gn) € F(J), (uo, ho) € X, subject to the
conditions in Theorem 2.3.1 be given. By the results in Section 2.2, we may assume
without loss of generality that ug = hg = 0. In particular this means that the time
traces of all inhomogeneities at ¢ = 0 vanish if they exist.

Let u., Vi) €E,(J) denote the unique solutions of (2.2) and (2.3), respectively,
where now ¢, = T, = hy = 0. Set @ := uy, — V), T := puAt — pdprp and h = 0.
Defining

SF := (u,7,[7],h)

it holds that
f
fa
9o + Gy (1)
Guw + ngd)i
1T uy, + Gy (¢
A7l h) = Colun ) |
91+ G1(¥)
g2
g3 + G3(v)
0

N
=Y

LSF = L(

)

where

Go(¥) = 2[u(I — e3 @ e3)(V¢es)],
Guw(¥) = 2[u(V?pes) - es] + [nAY],
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Gz (V) == =[V¥], Ghlux, ) := —mluy - e3 — 03¢,
G1(¢> = *2/‘(1 — Vg ® VSl)(VZQzZ)VSH)v
and G3(¢) := =V|s,.

In a next step we consider the problems
O (piiy) — pAiy, + Vi =0, in QF\SF,
diviy, =0, in QF\XF,
—[udstr] — [uVorie] = Gi(v), on XF,
—2[u0s] + [7r] — 0Aphy = Gy (1), on EF,
(¥), onXF,

(2.10)

&,kﬁk = —gk  on oxF,
a(0) =0, in QM\X*
h(0) =0, on X,

where
G;C(’l/}) = GJ(w)QOkv .7 € {’U,'LU,E, 173}7 Gz(u*vw) = Gh(u*vw)@ka

and g¥ := gmer, m € {h,4}. Let us check whether the right hand side in (2.10)
satisfies all relevant compatibility conditions at 9%% and 0S5, k > 7. Consider first
the case z € 955, k € {7,..., N1 }.

We have to show that the relations G&(v)) - vy, = 0, u0d,, (GE () - e3) = GE(¥) - e3
and

Poce[u(D'GE (¥))vh] = —Pogn [u(D") v on

hold at 9S%, where
! — G5() - er
)= (Gg(%b) : €2> '

The first condition is equivalent to ¢ (V) - 1) = 0 at S%. Since vy, = vg, = (V/,0)
on supp gy, the claim follows from the fact that 9,,¢ = V¢ - v = Vyp -/ =0 at
x € 0S5 Nsupp g, by construction of 1. Next, we compute

Oy (GE(Y) - €3) = =0, (p1r030) = —030y, 01 — 10y, D3th = 0,

since 0,, ¢ = 0 and
0y, 03¢ = 0 93¢ = 030, = 0

at supp ¢x N 0Se, since v/ does not depend on z3 and J,¢(x3) = 0 for all zg €
[H1, H2)\{0} by construction of . Furthermore we have

G - e3 = 1101039 + 1202050 = 030, = 0
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at supp @ N 0S,. Therefore, the second compatibility condition holds. Concerning
the last compatibility condition, note that

D/Glgl(w) = —D,(SOkafw) = _Q@kVQw - V:):’Sok QVpt) =Vt ® Vx’@k-
From this identity we obtain

(D'GE ()}, = =20k V> — Varodyy & — Vb, o1
= —Pocu (D)1,

since v;, = v/ on supp ¢y, and therefore 0,,}; YE = 8,,;@11) = 0 at 95 Nsupp . It follows

that all compatibility conditions at 9.5} are satisfied.

The validity of the compatibility conditions at %%, k € {N; +1,..., N}, can be
checked in a very similar way, taking into account the properties of ¢ and the fact
that 0,/ ¢ = 0 at OX Nsupp ¢, k € {N1+1,...,N}.

Therefore, for each k& € {0,...,N}, there exists a unique solution (ﬂk,frk,ﬁk)
of (2.10). Let {6}1_, C C°(Uy) such that Og|suppy, = 1. Note that the function
(V- Ug)|q is mean value free, since uy is a divergence free vector field and [ug]-es =
0 on XNUg, G- v, = 0 at (S1\0%) NUy as well as 1y - e3 = 0 at So N Uy. Therefore,
we may solve the problems

A’(/Jk = (V@k : ak)’Q in Q\E,
[pv] =0 on X,

[Oestr] = 0 on X,
&/aﬂwk =0 on 89\82 = (51\82) U Sy,

(2.11)

by Lemma 6.3.4. This yields unique solutions
Vb €0H) (J; Hy(Q\X)%) N Ly (J; HY(Q\X)?).

Finally, we define

N

SF := Z(%ﬂk — Vb, Ok 7k + pOthy, — A, Oxhy),
k=0

and we observe that

—p[A, Ol + [V, Ok 7y
0
OuGE (1) + (I — e3 © e3)G (T, h) + Go(tr)
HkGﬁ](i/J) +kG(ka, hk)eg + Gw(’l/Jk)
S 0xG5 (V) + G (k)

LSF =3 O (G (ts, ) — gF) + m[Dyy] ’
0xGT (%) + Pgp[u(VOr ® g + iy, @ VOx)vg] + G (¢)
0
kG5 () + G3(v)
0y, O — Orgh
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where . 3

G(tg, hi) = [Vl @ uy, + g, @ VOi)]es — o[Ayr, O] hres.
Since Ox|supp p, = 1 it follows that Qng?(w) = G;?(i/)), Orgk, = g, and 0,G¥ (us,v) =
Gﬁ(u*,@b) for j € {v,w,%,1,3}, m € {h,4}. Therefore we have

N
> G () = Gi(v)
k=0

as well as Z]kvzqﬁkgﬁlf gm and Zszo HkGﬁ(u*,w) = G, (ux, ) since Z}]CV:O o = 1.
Setting SF := SF — SF, we obtain the identity

LSF=LSF - LSF=F — RF

where
—u[A, O]k + [V, Ok Ty
0
(I — e3 ® e3)G (i, hi) + Gy (Vr)
G(ﬂk, hk)(ig + Gw(l/lk)

RF Z ng/fk)

PS{c (VO @ g, + T @ VO)vi] + G1 ()
0

G3(¥r)
h Oy, Ok

If we can show that there exists a constant C' > 0 being independent of T' > 0 such
that the estimate
|RF||g(sy < CT7||F g

for some v > 0 holds, then, if 7' > 0 is sufficiently small, the operator (I — R) is
invertible and the right inverse S for L is given by S := § (I-R)™.

We remark that all terms which involve u; and izk are of lower order and therefore
these terms carry additional (time-) regularity. Furthermore the terms involving
carry additional (time-) regularity as well, since Vi is regular enough. The only
difficulty that arises is the estimate of Zé;vzo [V, 0]7k in Ly(J; Ly,(Q2)3). However, by
Lemma 2.1.1 we know that 7 €W, (0, T Lp10c(02F)) for some a € (0,1/2 — 1/2p).

Since 05 has compact support, this yields the estimate

119, 0l Fullwg (2,) < C (liwlls, + Ielle, + 9], )
for some constant C' > 0 which does not depend on 7' > 0. In particular this implies

N

I Y09 0kl st @) < ONT (el ) + 1Vl )
k=0

+ llgnlleois + loallewo() < CNTIF (),

for some v > 0, by Holder’s inequality. O
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We shall also prove a result on well-posedness for the linear system
O(pu) — pAu+Vr = f, in Q\X,
divu = fg, in Q\X,
_[[/"La?)vﬂ - [[valw]] = Gv, OI 27
_2[[N83w]] + [[7[']] — oAy h— 'Ya[[p]]h = gw, oOn 3,
[[U]] =uy, on 27
Oth — mw] = g, on X,
2.12
Pg, ([L(VU + VUT)I/51> = Pg,g1, on S1\0%, ( )

u-vs, = g2, on S1\0%,
u=gs, on Sy,
Ovpeh = ga, on 0%,
w(0) = wug, in Q\X
h(0) = ho, on X.

Corollary 2.3.2. Let vy, > 0. Under the assumptions of Theorem 2.3.1, there exists
a unique solution

we Hy(J; Ly(Q)%) N Ly(J; HA(Q\X)?), 7€ Ly(J; HY(Q\X)),
[7] € Wy/27122(J; Ly () N Ly(J; Wy P ()

h € W2V2(J; Ly(D)) 0 HY(J; WEYP(S)) N Ly (J; WP (R)),

of (2.12) if and only if the data are subject to the conditions (1)-(12) in Theorem
2.3.1.

Proof. Necessity of the conditions follows from trace theory. To prove the sufficiency
part, let

Ei(J) := Hy(J; Lp(Q)?) N Ly(J; Hy (N\E)?),  Ea(J) := Ly(J; Hy(2\)),
Es(J) := W,/ 272 (3 Ly(£)) N Ly(J; Wy~ VP(E))

Eq(J) = Wy~ 2 (J; Ly(S)) 0 Hy (J; W, VP(8) 0 Lp(J; Wy~ P(E)),

and E(J) := {(u,m,q,h) € x;*:lEj(J) : q = [r]}. We first solve (1.4) for the given

data, to obtain a unique solution (s, 7y, qs,hs) € E(J). Then we consider the
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problem

O(pu) — pAu+ Vr =0, in Q\X,
divu =0, in Q\3,
[udse] — [pVaw] =0, on,
—2[pdsw] + [7] — o Aph — valplh = vaplhs, on X,
[u] =0, on X,
Oth —mjw] =0, on X,
Ps, (,u(Vu + VUT)Ugl) =0, on S1\0%,
u-vg, =0, on S;\0X%,
u=20, on S,
Ovyseh =0, on 0%,
u(0) =0, in Q\X
h(0) =0, on X.

(2.13)

Define L :oE(J) —oF(J) by the left side of (2.13) and Ly :¢E(J) — oF(J) by the left
side of (1.4) without the initial conditions. We already know that Lo :oE(J) — oF(J)
is boundedly invertible, hence

L=1Lo+ (L —Lo) = Lo(I + Ly (L — Ly)).

This in turn yields that L : ¢E(J) — ¢F(J) is boundedly invertible, provided that
(I+ Ly (L — Lo)) :0E(J) —oE(J) has this property. To this end it suffices to show
that the norm of Ly'(L — Lg) in E(J) is less than one. For z €¢E(J) we obtain the
estimate

1Ly (L = Lo)zllgry < Myalplllklle, ) < T*MAalpllblley ) < T*“Myalplll 2z,

for some o > 0. Here M := ”LalHB(oF(Jo);oE(Jo)) and J = [O,T] C [O,TD] = J().
It follows that if T' > 0 is sufficiently small, then L :¢E(J) — ¢F(J) is boundedly
invertible. The result extends to all 7" > 0 by a successive application of this
argument. O



Chapter 3

Nonlinear well-posedness

It is the aim of this section to establish an existence and uniqueness result for the

nonlinear problem (1.3).

3.1 Function spaces and regularity

Before we go into the details, there is a remark concerning the nonlinearity
Hy(u, h) = Ps, (,u(MO(h)Vu + VuTMo(h)T)ugl)

in (1.3) in order. One readily computes

1 ©03u1 0y, h + ©O1hd3(u - vg, )
(Mo(R)Vu + VuT My(h)"vs, ,

=1t ho ©03u20y,,h + dahds(u - vs,)
14 9083u38u,9ch + go’hﬁg(u . 1/51)

where vg, = (v1,12,0)T. Therefore, if u-vs, = 0 on S1\9% and d,,.h = 0 on IG,
it follows that Ha(u,h) = 0 at S;\0% (note that the function h depends only on
x’ = (x1,x2), wherefore it is constant with respect to x3).

Define the solution spaces

Bu(T) i= {u € H)(J; L(Q)) 0 Ly(J; HAQ\S)?) :

[u] =0, u-vs, =0, Ps,(u(Vu+ Vu')vs,) =0, uls, = 0},
Er(T) := Lp(J; Hy(Q\X)),
Eq(T) 1= W,/ 720 (J; Ly(3) 0 Ly (J; Wy ~VP(3)),

En(T) = {h € W2™?(J; L(S)) N Hy(J; W™ /P(2)) N Ly (J; W3 1/P (%)) -
By h = 01,

Voc

and
E(T) := {(u, m,q,h) € E(T) x Ex(T) x E¢(T) x Ep(T) : ¢ = [x]}.

50
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Moreover, we define the data spaces as follows.
Fi(T) := Ly(J; Lp()°),
Fo(T) := Hy(J; Hy M () 0 Ly (J; Hy (2\5)),
Fs(T) := {fs € W/ /2 (5 Ly(2)*) 1 Ly(J; Wy~ HP(2)?) : Po(fs) - vs, = 0},
Fo(T) := {fa € Wy~ ?P(J; Ly(2)) N Lp(J; W= VP()) 1 Oy fa = 0},

and F(T) := x?lej(T).

Define an operator L = (L1, Lo, L3, Ly) on E(T) by

Li(u, ) := pOyu — pAu + Vr
Lo(u) :=divu
Ls(u,q, h) == [—p(Vu + Vu")]es + gez — (Aph)es — va[p]hes
Ly(u, h) := 0th — (ules)

and a nonlinear mapping N = (N1, N2, N3, Ny) on E(T') by
Ni(u,m, h) := F(u, 7, h)
1
No(u, h) = Falu, h) — — / Fy(u, h) da
€2 Jo

Na(u, h) := (Gy(u, h),0)" + Gy (u, h)es
Ny(u, h) :== Hy(u, h).

It follows from Corollary 2.3.2 that for each fixed 7' > 0 the mapping L :oE(T) —
oF(J) is an isomorphism, since all compatibility conditions at the contact line 9%
are satisfied by construction.

Let Ur := {z = (u,7,q,h) € E(T) : |h|lr (o) < n}, where n > 0 is sufficiently
small. Concerning the nonlinearity N(z) we have the following result

Proposition 3.1.1. Let p > n+ 2. Then
1. N € C*(Ur;F(T)) and N(0) =0 as well as DN(0) = 0.
2. DN(w) € B(Ur;F(T)) for each w € E(T).

Proof. We shall show that N(z) € F(T) for each z € Ur. Let z = (u,7,q,h) € Ur.
Then it is easily seen that Ny(z) = F(u,m, h) € F1(T). Concerning Na(z), we have

[No(2) )y < CURN Lo w2y lulln, cyy + NI Lo oway lull L, a2))s
P p p

since E,(T) — BUC([0,T]; C*(%)) for p > n + 2. Furthermore, for ¢ € H;(Q) we
obtain after integration by parts (h does not depend on z3)

(Val2)fo) = (Na(] D)2 =~ [ [(wndhh + w0} (6 - )

+

+ uzhds <(¢ g2 )} da,
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where ¢ := ﬁ Jq ¢dz. Since Ei(T) — BUCH([0,T]; C(X)) for p > n+2, it follows
from Poincaré’s inequality for functions with mean value zero that Na(z) € Fo(T).
The desired regularity property of N3(z) can be readily checked. It remains to
show that
PsN3(2) - vs, = (Gy(u, h),0)7 - vg, =0.

Inserting the expression for Gy (u, h) yields

PgN3(z) - vs, = — ([[N(Vx/v + Vx’UT)]]Vz'h|VaG)
+ |V h P [pds(ulvs))] + (1 + | Varh|*) [n0sw] — (Varh|[nVw])) Oy by

where vg, = (vpg,0)T. The last term in this equation vanishes, since Oysch = 0.
Moreover, since p(u - vg,)(x3) = 0 for each x3 € (H1,0) U (0, Hy), the second term

vanishes as well. Finally, since Ps, (u(Vu + VuT)vg,) = 0, it holds that
w(Vu + VuT g, = (M(Vu + Vau')vg, |1/51> vs,
on S7\0%, hence also
[0(Vu+ Vu")vs, = (In(Vu -+ Vu s, s, ) vs,

at the contact line, since g, does not depend on z3. Taking the inner product with
(Vorh,0)T yields

([(Vu + Vu s, |(Varh, 0)T) = (,u(Vu + VuT s, yysl) Bysh = 0,

since 0,,,h = 0. But by symmetry of the stress tensor we also have

([1(Vu + Vu")]us, [(Vh,0)T) = (voc|[u(Verv + VavT)]Vh),

where u = (v, w), hence N3(z) € F3(T).

Finally, concerning Ny(z), one has to observe that (u|lvg,) = 0 and Ps, ((Vu +
VuT)vg,) = 0on S1\0Y if u € E,(T). For vs, = (raq,0)T, this implies in particular
that (vjvag) = 0 and Pyg((Vev + Vv )vpg) = 0 on S1\0%. Since [v] = 0 on
3, by continuity of v, we clearly have [Vv] = 0 on X, since the jump acts into
the direction of x3 which is perpendicular to both e; and ey. In particular we have
(vlvag) = 0 and Pyc((Vyv + VevT)rge) = 0 at the contact line 9. Since in
addition we know that 0,,,h = 0 at 03, it follows from Proposition 6.6.3 that
Oy (V|Vrh) = 0 at 0.

The remaining assertions can be proven as in [40, Proposition 6.2]. O

3.2 Reduction to time trace zero
Let (uo, ho) € W5_2/p(Q\E)3 X W§_2/p(2) such that

divug = Fy(uo, ho), —[u03vo] — [V zwo] = Gy(vo, ho),

[uo] = 0 on B, ug - vs, = 0, Ps, (1(Vug + Vug )vs,) = 0 on $1\0%, ugls, = 0 and
Oy.~hg =0 on 0%.

VoG
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Let H := max{Hy, —Hs} < 0 and ug := ug|yye[0,m,]- Define

1~L+(£L‘) — ug(ml,xg,xg), if xr3 € [O,HQ),
0 —US—(.'L'I,.TQ, —2x3) + 2uar(x1, xo, —13/2), if x3 € (H/2,0)
as well as
ﬂa_(l‘l,xg,xy,), if xr3 € [O,Hg),
ﬂa“(:):) = ﬂg(xl,xg,xg)w(xg), if x3 € (H/2,0),
0, if z3 € (Hl,H/Z],

where ¢ € C°(R;[0,1]) such that i(s) = 1 if |s| < —H/6 and ¥(s) = 0 if |s| >
—H/3. Tt follows by construction that @] € Wg_z/p(ﬂ)3 — CL(Q)3, if p > n+2.
We then solve the parabolic problem

O(u™) — ptAut =0, inQ,

Ps, (/ﬁ(Viﬁ + V(qu)T)l/Sl) =0, on S,

+ (3.1)

u" -vg, =0, on S,
+ _
uT =0, on Sy,

ut(0) =ud, inQ,

by Lemma 6.3.5, where pu* := M’I3E(07H2) > (0 is constant.

Let us check whether ﬂa' satisfies the relevant compatibility conditions at S and
So. It is easy to see that ﬂg = 0 at Sy. Furthermore we have uar -vg, = 0 for all
z3 € (0, Hy) by the assumption on ug. From the definition of % we obtain that
iy - vg, = 0 for all z3 € (H/2,0), hence also @7 - vs, = 0 for x3 € (Hy,0) by the
definition of @7 . Since i € C1(0)? we also have 4 - vg, = 0 for 3 = 0. It remains
to prove that

Ps, (w* (Vag + V(@) s, ) =0 (3.2)

on Si. Again, this is true for z3 € (0, Hz), by the assumption on ugy. Since the
first two components of this tangential projection do only contain derivatives with
respect to the (z1,z9)-variables, it follows from the definition of %] that

Ps, (w7 (Vi + (i) s, ) e = 0
for j € {1,2} and x3 € (H1,0). The third component of the projection is given by
8,,51 (ﬂa_ -e3) + 63(113_ VS, ).

Evidently, it holds that 9y (aﬁ{ -e3) = 0 by the same reasons as above, since the
last component of vg, vanishes. Furthermore, we have

ot 1t e
Os(ad - vs,) = Vo3(tg - vs,) + Y (Ug - vs,), if z3 € (H/2,0),
0, it 23 € (Hy, H/2).

Since ug -vs, = 0 for all z3 € (0, Hz) it follows that 93(ug -vs,) = 0 for z3 € (0, Ha).
From the identity

83(&8_ . VSI) = —83[uaL(x1, T9, —2%3) . 1/51] + 283[uaL(x1, T9, —.%'3/2) . Vgl]
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for z3 € (H/2,0), we readily obtain that d3(ig - vs,) = 0 for 3 € (H1,0). Finally,
since u € C1(2)3, it follows that (3.2) holds on all of Sj.
Solving (3.1) by Lemma 6.3.5 yields a unique solution

ut € Hy(J; Ly()%) N Ly(J; HY (2)?)
satisfying the estimate

1w a3 p)n, z) < Ml!ﬂgllwgfz/p,

where M > 0 does not depend on ug .

Applying the same procedure to u, = ug| z3€[H1 0] (with a suitable cut-off function
1) yields a C'-extension Uy of ug . Therefore, we obtain a unique solution

u” € Hy(J; Ly()*) N Ly(J; HY (2)%)
of (3.1) with u™ and 4] replaced by u~ and @, , respectively, satisfying the estimate
lu™ g ey ) < Mg [lye-2rm,

where M > 0 does not depend on u, . We then define

u™, if x3 € (0, Ha),
u -, if z3 € (Hl,O).

Note that in general @ € H}(J; Ly(2)*) N L,(J; H2(Q\X)?), since [a] is not neces-
sarily zero.
In a next step we solve the two phase problem

O(pt) — pAu =0, in Q\X,
[1030] + [V @] = [p50] + [uVw],  on X,
[1030] = [pdsw], on X,
[a] =0, on X,
Pg, (,u(V& + VfLT)I/51> =0, on S\0%,
u-vg, =0, on S1\0%,

u=0, on Sy,
w(0) = ug, in Q\X,

(3.3)

by Lemma 6.3.6, where @ = (0,w) and 4 = (v, w). The compatibility conditions at
t = 0 are satisfied, since u(0) = ug. Let us check that the compatibility condition

[10s(ulvs, )] + [p0ys, w] = 0

holds at the contact line 9. Since by construction of u we have

Ps, (,u(Vﬂ + VﬂT)l/51> =0,
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at S1\0%, the third component yields p (31,51111 + 03(a - 1/51)> =0 at S1\0X. This

in turn implies that [p05(ulvs,)] + [10ss, w] = 0. Note that for the third equation
in (3.3) there has no compatibility condition at 0¥ to be satisfied. Therefore we
obtain a unique solution @ € E,(7") by Lemma 6.3.6.

Define f; := diva € Fao(T), g* = [-u(Va + ViT)es] € F3(T) and g; :=
e (vly - Vhg), with A := (I — Ay), where Ay is the Neumann-Laplacian
and e~4! denotes the Cp-semigroup, generated by —A in L,(X). Then, since
(volx - Vhg) € sz_g/p(z) with 0y, (vols: - Vhg) = 0 by Proposition 6.6.3 at 9%,
it follows that e=4*g), € F4(T). The fact that Px([—u(Vi+ Vi )es])-vs, = 0 holds
by construction of .

By Corollary 2.3.2 there exists a unique solution z, = (us, s, g, hy) € E(T)
of the initial value problem Lz, = (0, £}, 9%, 95), (us, hs)|t=0 = (uo, ho), since the
compatibility conditions at ¢ = 0 in the second and third component are satisfied
by construction. We remark that z, satisfies the estimate

1z« l[e(r) < Coll(uo, ho)llx,

and Cp > 0 does not depend on (ug, h).

3.3 Nonlinear well-posedness

Define the mapping K(z) := N(z + z.) — Lz, where z € ¢E(T'). By Proposition
3.1.1 it holds that K(z) €¢F(T) for each z €oE(T), wherefore, we may consider the
mapping K(z) := L™ K(z). We intend to show that this mapping has a fixed point
in OE(T)

The main result of this section reads as follows.

Theorem 3.3.1. Let n = 3, p > 5. For each given T > 0 there exists a number
n=n(T) > 0 such that for all initial values (ug, hy) € I/V;?_Q/Z)(Q\E)3 X W;’_Q/p(Z)
satisfying the compatibility conditions

divug = Fy(uo, ho), —[pdsve] — [uVywo] = Gy(vo, ho),

[uo] = 0, ug - vs, = 0, Ps, (u(Vuo + Vul)vs,) = 0, uols, = 0 and O,,.ho = 0 as
well as the smallness condition

ol gy + ol < 7
there exists a unique solution (u, 7, q,h) € E(T) of (1.3).
Proof. For a given Banach space Z, let
Bz :={z€Z:|z||z <1}.
Based on Proposition 3.1.1, for each ¢ € (0, 1) there exists d(¢) > 0 such that
IDN(z + 2:) || ) F) < €

whenever (z + 2.) € 6By C Up. Let M := ||[L7Y|g,rr)or(r)) > 0 and C :=
| Ll ge(ryw(r)) > 0. We assume that € > 0 from above is chosen sufficiently small,
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such that ¢ € (0,1/(2M)). Suppose furthermore that z € gBOE(T) and (ug, ho) €

) .
W(H—C)BXW- This yields

|2 + zullg(r) <0/246/(AM(1+C)) <6
and therefore

1K) ey < MK (2)|lgry < MIN(z + 24)llvery + |1 L2 |lrer))
< Mle(lIzllgcry + lz<llery) + Cllz«llecm)]
< M(e|lz|lgcr) + Co(1 + C)|l(uo, ho)ll x,)

0 9
< Me=+-<6/2
< Meg + 4 < /
hence K : gIB%OE(T) — %IB%OE(T) is a self-mapping. Furthermore we obtain

1
1K (1) = Klz2)ll(ry < Mellz1 = z2llger) < 5 llz1 = 22lleer),

valid for all 21,29 € %BOE(T) and all initial values (ug, ho) € W(H—C)BXW' The

contraction mapping principle yields a unique fixed point z € gIB%OE(T) of K(2), i.e.
Z = K(2). Equivalently this means LZ = N(Z + z.) — Lz, hence z := Z + 2z,
solves Lz = N(z). To show that z = (u,7,q,h) is a solution of (1.3), it remains
to prove that Fy(@,h) is mean value free. Indeed, let ¢t € [0,7] be fixed and set
u(t,x) == ﬁ(t,@gl(t,x)) it follows that @ € H}(Q) with (a|vg,) = 0 at S1\dI'(t),
o =0 at Sy and

diva = (diva — Fy(a, h)) 0 ©7 .

The divergence theorem and the transformation formula yield

0= / diva dx
Q\I(¢)

= /Q\Z (diva — Fy(a, h)) det ©F dz

1 _
=—— Fy(u, h) dm/ det ©F dz,
19 Joys o\n
where T := @gl(x). Since det ©7 > 0, the claim follows. O



Chapter 4

Rayleigh-Taylor instability

4.1 Equilibria and spectrum of the linearization

In this subsection we compute the equilibria of (1.2) as well as the spectrum of the
linearization of (1.2) around the trivial equilibrium.

Assume that we have a time independent solution of (1.2). Then multiplying
(1.2); by u and integrating by parts yields the identity

||M1/2DU||%2(Q) =0,

hence u = 0 on 9€) and therefore v = 0 in all of 2, by Korn’s inequality. If u = 0,
then 7 must be constant, with possibly different values in different phases. Hence,
(1.2)4 yields that

oHr + [p]vexs = const,

on I'. In particular, if Hr = 0 then z3 must be constant, hence flat interfaces belong
to the set of equilibria. Assume that I' is given by the graph of a height function h,
that is

I'={x€Q:23="nh(x1,22), (21,22) € G}.

Then the normal vr on I', pointing from € (z3 < h(z1,22)) into Qg (x3 > h(x1,x2))
is given by

1
vr(2', h(z")) = fvx/h:pl,lT, ' = (x1,22) € Bg(0).
P/ ha") = e [ Vrh(a'). 1 (@1,22) € Br(0)
Since Hr = — divr vp, we obtain the quasilinear elliptic problem

o divy (Wl) +plvah =¢, 2 €G,

V1+|Vahf?

(4.1)
B)

VoG

h=0, 2z €0G,

where ¢ := ﬁ Jo hdx’. All admissible height functions which solve (4.1) belong to
the set of equilibria,

We are interested in the stability properties of the flat interface ¥ = G x {0} in
Q= G x (Hyi, Hy). After transformation of (1.2) to the fixed domain Q2\3 and

o7
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linearization around the equilibrium (0, ), we obtain the linear problem
O(pu) — pAu+Vp =10, in Q\X,
divu =0, in Q\X,
—[1(Vu+ Vu)les + [ples = o(Awh)es + [plrahes, on 3,

[u] =0, on X,
Oth —us =0, on X,
Ps, (u(Vu+ VuT)us, ) =0, on $\0%, (4.2)

(ulvg,) =0, on S1\0%,
u=0, on Sy,
Ovyeh =0, on 0%,

u(0) = ug, in Q\X,
h(O) = ho, on X.

Define a linear operator L : X1 — X by
L(u, ) = [(1/p) A — (1/0)Vp,u - es],

where X := L, (Q) x {h € Wy P(S): [, h da’ =0, 8,,,h =0},

Lyo() i={u € C(@7 s diva =0} ™, X1 = HAQ\D) x W) /7(D)
and

X1 = D(L) = {(u,h) € Xo N X1 : Pe([u(Vu+ VuT)]es) = 0, [u] =0,
Ps, (,u(Vu n vuT)ysl) =0, (ulvs,) =0, dyyuh =0}. (4.3)

The function p € HI}(Q\Z) in the definition of L is determined as the solution of
the weak transmission problem

(1Vp|w>> - (“Auwcb)
P L»(Q) P La(9)
[p] = oAwh + [plvah + ([(Vu + Vu')]esles), on %,

where ¢ € H;,(Q) and p’ = p/(p — 1), which is well-defined thanks to Lemma 6.3.3.
We will sometimes make use of the notation via solution operators, i.e.

;VP = T[(p/p)Au] + Ta[oAurh + [plvah + ([(Vu + VuT)]es|es)], (4.4)

where 71 : L,(Q)? — L,(Q2)? and Ty : W,}_l/p(E) — Ly(Q)? are bounded linear
operators.

In what follows we will analyze the spectrum of the operator L. Note that L has
a compact resolvent. This implies that the spectrum of L is discrete and it con-
sists solely of eigenvalues with finite multiplicity. Consider the eigenvalue problem
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Awu, h) = L(u, h), that is
Apu — pAu+Vp =0, in Q\X,
divu =0, in Q\X,
—[p(Vu + Vu)]es + [ples = o(Ayh)es + [p]yahes, on X,
[u] =0, on X,
A —uz =0, onX, (4.5)
Ps, (M(Vu + VuT)uag) =0, on S1\0%,
(ulvg,) =0, on S1\0%,
u=0, on Sy,
Ovoeh =0, on 0%,

We test the first equation with u and integrate by parts to obtain
1 _
)\|Pl/2u|%2(g) + 5\/11/217”\%2(9) + A 0| Vbl @ — [oalbli )| =0, (4.6)

The above identity for A = 0 implies v = 0, by Korn’s inequality, hence p as well as
[p] are constant. Therefore h is a solution of the linear elliptic problem

[Plva, ,
Aph+=2h=0, 2'€G, @

dvouh =0, 2’ €0G,

since h is mean value free. Let o(—Ay) C (0, 00) denote the spectrum of the negative
Neumann-Laplacian in the space

X = {h e W, P(G) - / hdx' = o}
G

and let E(n) denote the eigenspace corresponding to the eigenvalue n € o(—Ap). It
follows that h = 0 is the unique solution of (4.7) if and only if

Phe 4 o(-an)

o

and there exists 0 # h € E(n) if and only if

n = [[p(]]j% € o(—An).

This shows that

0 €o(L) if and only if o) € o(—An).
o
Suppose that 0 # A € o(L) with Re A = 0. Taking real parts in (4.6) it follows that
u = 0 by Korn’s inequality, hence h must be nontrivial. By equation (4.5) it follows
that A = 0. This shows that A = 0 is the only eigenvalue of L on the imaginary axis.



4.1. Equilibria and spectrum of the linearization 60

In particular, if

[r]va <A
g

A1 > 0 being the first nontrivial eigenvalue of —Apx in X, then
o(L) C{ e C:Re < —w <0},

for some w > 0, since

PlVa
Vb6 — [[ 1 21256 = 0,

by the Poincaré inequality for functions h with mean value zero. Note that there
exists k > 0 such that K—L is a sectorial operator, since L has maximal L,-regularity.
In particular, it holds that o(L — k) C ¥ /945 or equivalently o(L) C ¥, /945 + for
some ¢ € (0,7/2). This concludes the proof of existence of the number w > 0 above.

We aim to show that o(L) N C; # () whenever w% > A1. To this end, for A > 0

and given g € T/Vp1 —/p (G), p > 2, we solve the elliptic two-phase Stokes problem

Apu — pAu+ Vp =0, in Q\3,
divu =0, in Q\3,
—[(Vu + Vu")]es + [ples = ges, on %,
[ul =0, on X%, (4.8)
Ps, (u(Vu + V’LLT)V51> =0, on S1\0%,
(ulvg,) =0, on S1\0%,
u=20, on Sy,

by Theorem 6.5.1 to obtain a unique solution u € H2(Q\X) N H}(Q). Define the

(reduced) Neumann-to-Dirichlet operator Ny : Wpl_l/p(G) — Wg_l/p(G) by Nyg :=
(uleg). With the compact operator Ny at hand we may rewrite the eigenvalue
problem (4.5) as follows

Ah + Ny(Ach) =0, (4.9)

where A.h := —0Anh — [p]yah is the shifted Neumann Laplacian with domain
D(A,) = {h e W P(G) / h dx' =0, dyy,h =0 on aG} :
G

We remark that for A > 0 problems (4.5) and (4.9) are equivalent. Therefore it
suffices to show that for w% > A1 there exists A > 0 such that equation (4.9) has
a nontrivial solution h € D(A,).

Concerning Ny we have the following result.

Proposition 4.1.1. The Neumann-to-Dirichlet operator Ny of the Stokes-problem
(4.8) admits a compact self-adjoint extension to Lo(G) which has the following prop-
erties.
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1. If u denotes the solution of (4.8), then
1
(Naglg)z = Mp'?ul? ) + 5lu'* Dulf, o)

forall g € W;_l/p(G) and A > 0.
2. For each o € (0,1/2) there is a constant C > 0 such that

(I+ N
(Nxglg)2 = T!Nwl%g(cy
for all g € La(G) and A > 0. In particular,

C
N <
INAlB(L2(c)) < NG

for all A > 0.

3. Nyg has mean value zero for all X\ > 0 and each g € La(G).

Proof. The first assertion follows from integration by parts, while for the proof of the
second assertion one uses trace theory, interpolation theory and Korn’s inequality.
To show the third assertion, observe that for each A > 0 we have

/ Nyg da’ = / (uleg) da’ :/ divu; dx =0,
G G 1951

by the divergence theorem, where uj := u|gq, . O

Proposition 4.1.1 combined with Korn’s inequality imply that whenever Nyg = 0,
then u = 0, hence g must be constant. Therefore, the restriction of V) to functions
with mean value zero is injective. Therefore we may rewrite equation (4.9) as

AN YA+ Ak =0, (4.10)

for each h € D(A,). Let us consider (4.10) in Lgo)(G), the subspace of La(G)
consisting of functions with vanishing mean value. Define By := AN, L4 A, with

D(By) = D(A,) = {h e WA(G) N LY(G) : 8,,,h = 0 on aG} ,

since Ny lisa relatively compact perturbation of A,. We will show that the operator
B, is positive definite provided A > 0 is large enough. Let p; > 0 be an eigenvalue

of Ny Lin Lgo)(G) with corresponding eigenfunction e;. Then

1 C
“eils = [Nyeslo < —— e
Mj|€J|2 [Nxejl2 < 1 +)\)a|€J|2?

hence p; > % > 0 for each A > 0. It follows that
(Bah|h)y = A(Ny ' hlh)o + (Ach|h) > (A/C = [pla) [hf5 > 0

for each h € D(A,), if A > 0 is sufficiently large.
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On the other hand, let 0 # h, € D(A.) be an eigenfunction of —Ap to the first
nontrivial eigenvalue A\y > 0 of —Ay, hence —Anhy = A\ hs. This yields

(Bahalh)2 = ANy halha)s — o <[[p(]]j - Al) s 2.

Since limy_0, ANy 'hy|hs) = 0 it follows that (Byhi|hs)2 < 0 provided A > 0 is
sufficiently small and M% > \1. Let M% > A1 and define

A« :=sup{A > 0: B, is not positive semi-definite for each p € (0, A]}.

Then A, > 0 by what we have shown above and By has a negative eigenvalue for
each A < )\, since the resolvent of B) is compact. It follows that 0 € (B, ), hence

there exists a solution 0 # h € D(A,) in Léo)(G) of (4.10). A bootstrap argument

finally shows that h € D(A.) N W;’_l/p(G). This in turn yields that o(L) NC4 # ()

[elva

whenever > A1. We have proven the following result.

Proposition 4.1.2. The operator L defined above has the following spectral prop-
erties.

1. o(L)NiR C {0} and 0 € o(L) if and only if [p]va/o € o(—AN).
2. If [p] <0 then o(L) C C_.
3. If [p] > 0 and M}% < A1, then o(L) C C_.

4o I [p] > 0 and 1e >\, then o(L) N Ty # 0.

4.2 Parametrization of the nonlinear phase manifold

We have already seen that after a Hanzawa transformation, the transformed velocity
field is no longer divergence free. Moreover, the jump condition of the stress tensor
as well as the divergence condition are transformed into some nonlinear terms. It is
the aim of this subsection, to parameterize the nonlinear phase manifold
PM = {(u,h) € WEP(O\X)? x [W32/P(2)n X]:
uls, =0, uls, -vs, =0, Ps, (u(Vu+ VUT)VS1) =0, [u] =0,

Ps(u(Vu + Vul)ez) = (Gy(u, h),0), pyuh =0, divu = Fy(u,h)},
as a subset of X, := W]?_Q/p(Q\Z)?’ X WS_Q/p(E), near the trivial equilibrium
(s, hs) = (0,0) over the linear phase manifold

X9 = {(u,h) € WEP(Q\X)? x WS2/P(£)] N Xo : uls, =0, uls, - vs, =0,
Ps, (1(Vu+ Vu")vs,) =0, [u] =0, Ps(u(Vu+ Vu')ez) =0, 8,,,h =0}

Let E, == W)~ 2P(Q\3), E, := W, ~*/P(%),

E, = {ue W2 P(Q\2)*:
[u] =0, u|s, -vs, =0, uls, =0, Ps,(u(Vu+ VUT)Vsl) = 0},
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E:={(u,m,q) € By, xEr xE;: g = [n]}, and

F:={(f1, f2) € W, */P(Q\E) N H, 1 (Q)]x
x Wa=3/P(2)® 1 (Psfa) - vs, = 0 at 9%}
We will need the following auxilliary result for the Stokes problem
pwu — pAu+Vr =0, in Q\3,
divu = fg, in Q\,
~[pdsv] - [WVpw] = gy, on %,
—2[pdsw] + [7] = gw, on X,
[u] =0, onX,
Ps, (1(Vu+ Vu)vg,) =0, on S1\0%,
u-vg, =0, on S;\0X%,

u=0, onSs.

(4.11)

Proposition 4.2.1. Let n =3, p > 5 and p;, u; > 0. If w > 0 is sufficiently large,
then there exists a unique solution (u,m,q) € E of (4.11) if and only if (f4, gv, gw) €
F. Moreover, there exists a constant M, > 0 such that

(w7, @) le < Moll(fas 9os gu) [l

Proof. For the proof of this result one may apply the same strategy which was used
in the proof of Theorem 6.5.1. We omit the details. O

Let us consider the elliptic problem

pwt — pAu+ VT =0, in Q\X,
diva = PoFy(u+a,h), in Q\X,

—[p0sv] — [pVyw] = Gy(u+ a,h), on X,
—2[[/L83U_}]] + [[ﬁ-]] = Gw(u + u, h)? on 2, (412>
[a] =0, on X%,
Ps, (u(Vi+ Va")vs, ) =0, on S;1\0%,
u-vg, =0, on S1\0%,
=0, on Sy,

for (a,7,[7]), where w > 0 and (@, h) € rBxo (0) are given. Here we have set

1
Pof:=f—m|/ﬂfda:,

for f € Li1(Q).
Define a nonlinear mapping N : E, x Xg — IF via
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Let S, denote the solution operator which is induced by Proposition 4.2.1 and define
a mapping H :=E x Xg — E by

>

H((u,7,q), (@,h)) = (@,7,q) — SuN (4,1, h).

Since N(0) = 0 it follows that H(0) = 0. Since N € C? it holds that H € C?, too.
Differentiating H with respect to (@, 7, q) we obtain

yH(0) = I,

where we used the fact that Dz N(0) = 0. The implicit function theorem implies the
existence of a C?-function ¢y : rBxo — E with #0(0) = 0 and ¢{,(0) = 0, such that

H(¢o(a, h), (@i, h)) = 0 whenever (i, h) € erg(O). In other words, this means that
(@, 7,q) = ¢o(i, h) is the unique solution of (4.12) for a given (@, h) € ’I“BX%)(O). It
can furthermore be shown that PyFy(@+ @, h) = F4(@+ @, h) (see proof of Theorem

3.3.1).
Let P(u,7,q) := @ and define ¢(@, h) := P¢o(@i, h) as well as

It follows that ®(rBxo(0)) C PM and that @ is injective. We will now show that

® is locally surjective near 0. To this end we assume that (u,h) € PM is given and
close to 0 in X,. Then we solve the linear problem

pwt — pAu+ VT =0, in Q\X,
diva = PyFy(u,h), in Q\3,
~[10s7] — [uV @] = Gy(u,h), on 3,
—2[poz3w] + [7] = Gw(u, h), on 3,
[a] =0, onX,
P, (n(Vi+ Vi vs,) =0, on S;\9%,
u-vsg, =0, on S1\0%,

u=0, on Sy,

(4.13)

by Proposition 4.2.1 to obtain @ € E,,. Define (@, k) := (u — @, h) and observe that
1
divi = Fywh) = RyFynh) = o / Fy(u, h) de.
Q

Since @ € H,(Q)® with dlg, - vg, = 0, als, = 0 and [a] = 0, it follows that
PoFy(u, h) = Fy(u, h), hence divii =0.

This in turn yields (a, h) € Xg and ¢(u, h) = u, showing that ® is locally surjective
near 0.

4.3 Main result on Rayleigh-Taylor instability

In this subsection we are goint to prove the following main result.
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Theorem 4.3.1. Let n =3, p > 5 and pj, fj,7j,0 > 0. Denote by (uy, hy) = (0,0)
the trivial equilibrium and let s(L) < 0 denote the spectral bound of L. Then the
following assertions hold.

1. If [p]va/o < A1, then (us, hy) is exponentially stable in the following sense.
There exist constants ) € [0,—s(L)) and 6 > 0 such that whenever (ug, hy) €
PM with

[[(wo, ho)l[x, <6,

then the estimate

I(u(t), ()]l x, < e™™[[(uo, ho)llx,
1s valid for all t > 0.

2. If [p] > 0 and [p]va/o > A1, then (uy, hy) is unstable in the following sense.
There is a constant g > 0 such that for each § > 0 there are initial values
(’LL(), h()) € PM with

[ (w0, ho)llx, <6

such that the solution (u,h) of (1.3) satisfies

1(u(to), h(to))llx, = €0
for some tg > 0.

Proof. 1. Let (uo,ho) € X, be fixed such that [lugl|,2-2/» + [holly5-2/» < & for

some sufficiently small 6 > 0 to be determined later. iIt follows fforpn the results
of the last subsection that (uo,ho) = (@0, ho) + (¢(%o, ho),0), i.e. ho = hg, where
(o, ho) € rBxo (0). For h € L1(X), we define

1
PZ = — /
ok \E!/zhdx’

and consider the linear evolution equation

O(ti, h) — L(@,h) = w (I = T1)a, Pyh), (@, h)|=o = (fio, ho), (4.14)

in the space
Xo = Lpo(Q) x {h e Wrlr(s): / hdr' =0, 0y,.h = 0} ;
el

where L has been defined in Subsection 4.1 and (a4, h) € e "[E,(Ry) x Ex(Ry)] are
given functions. Here n € [0, —s(L)), where s(L) < 0 denotes the spectral bound of
L.

By Corollary 2.3.2 & Proposition 4.1.2 it follows that the operator L has the
property of L,-maximal regularity on Ry provided that [p]y./o < A1. Since (f, g) :=
w ((I —T)u, Pyh) € e "Ly(Ry; Xo) and (@o, ho) € XS we obtain a unique solution

(@, 7) € e "[HL(Ry: Xo) N Ly(Rys X1)] = e "E(RY)



4.3. Main result on Rayleigh-Taylor instability 66

for each n € [0, —s(L)), where X; = D(L) is given by (4.3) . We denote by
Ei= (0 — L,tr|i=0) " 1 e "Lp(Ry; Xo) x X2 — e "E(Ry)
the corresponding solution operator which satisfies the estimate

IZ((£, 9), (@0, ho))ll-nie, ) < MI(F,9). (G0, ho))le-nL, (&, ;x0) < x0-

In particular, by (4.4) we obtain on the one hand that V7 is given in terms of (@, h)
and

VTl e=np,®y;L,@) < CMI((S;9); (G0, ho))lle=nr, & ;x0)x x0-
At this point we remark that the function h possesses some more regularity. Indeed,

it holds that . B
Oih = |y, + wPyh € e WA (R 5 Ly(X)),

hence h € e‘”Wﬁflﬂp(RJr; L,(X)) holds in addition.
Next, we consider the problem

divi = PyFy(i+a,h+ k), in Q\X,
—[[/Lag’(_)]] - [[,LLVI/’LZ)]] = G’U(a +u, B + B), on X,
72[[/‘836}] + [[ﬁ-]] - O-Axlﬁ - [[p]]’YaE = Gw(ﬂ’ +u, E’ + E)? on Ea

[a] =0, on X,
wh + 0ih — (ules) = Hy (@ + G, h+h), on X,
Ps, (,u(Vﬁ + VﬂT)Vsl) =0, on 5\0%,
u-vg, =0, on S1\0%,

=0, on Sy,

(4.15)

Ovyseh =0, on 0%,
u(0) = p(ig, ho), in Q\X
h(0) =0, on X%,

where (@,h) = Z((I — T1)a, P;°'h) and V7 is given by (4.4), with (u, k) being re-
placed by (@, h).
Let
eMEL(R,) = {u € e MHLR; Ly(Q)) N Ly(Ry; HAQ\D)?)]
[u] =0, u-vs, =0, Ps,(u(Vu+Vu")vs,) =0, uls, =0},

¢ Er(Ry) = e Ly(Ry; Hy (X)),
e Eq(Ry) i= e MW/2 V2P (R Ly(X)) N Ly(Ry s Wy~ HP(X))],

e Ep(Ry) i= {h € e MWy P(Ry; Ly(S))N
NHY Ry W2HP(E)) 0 Ly(Ry; WEHP(E))] : 0

voG

h =0},
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and
ETE(RY) = {(u, 7, h) € e MEL(Ry) X Ex(Ry) x Eg(Ry) x Ex(R+)] : ¢ = []}.
Moreover, we define the data spaces as follows.

e MR (Ry) := e "Ly (R, ; Ly(Q)3),

e TFS(Ry) = e [H] (Rys Hy (Q)) N Ly(Ros HY(Q\D)))

e "F5(Ry) == {f3 € e MWL 2TV (Ry; Ly (D)%) N Ly(Ry; Wi HP(2)3)] -
PZ(f3) “Vg = 0}7

e MFy(Ry) i= {f1 € e WL V2P (Ry; Lp(E)) N Lp(Ry; W2TYP(E))] : Oy fa = O},

and e "F(Ry) := xj_ e F;(Ry).
Define an operator Ly, : e "TE(Ry) — e "F(R4) by

wpl + Optt — pAu + VT
diva
—[u(Va+ VaT)]es + ges — oAy hes — [p]rahes
wh+ 0h — - e3

Lo (@, 7,q,h) =

where u = (v, w) and set

X, = {(u,h) € W22P(Q\B)® x W3—2/P(%) :
u‘SQ = 07 U‘Sl “Vs, = 07 PS1(M(VU + vuT)V51) = 07 [[U]] = 07 8V8Gh - 0}

Denote by
exty : Xy — e "Ey(Ry) x Ep(Ry)]

a linear extension operator, such that ext, (4, h)|i—o = (@1, h). The existence of such
an extension operator can be seen as in Section 3.2, by solving the corresponding
auxiliary problems in exponentially weighted spaces.

Furthermore, we define a nonlinear mapping N : e "[E, (R4 ) xXE; (R1) xEp(R4)] x
XS — e "F(R4) by

F(u,7,h)

) (1,1 + exty (60, o), 0) — ((0), F(0))])

N((a,7,h), (@, ho)) = CJU((a, R) + exct,[(6(@o, ho), 0) — (a(0), B(om)
G (3, )
iy (a,h)

Here the functions (F, F‘g, Gj, Hy) result from (F, Fy, G}, Hy) by replacing (4, h) and
V# by E((I — T1)u, Py'h) and (4.4), respectively.
Consider the equation

Lo, (@, 7,q,h) = N((a, 7, h), (iio, ho)).
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subject to the initial condition (@,h)|—o = (¢(io, ho),0). If we can show that
this problem has a unique solution (u, 7_T ,h) € e”"E(R,), then, by construction,
(@,7,q,h) is a solution of (4.15).

Let (f, fas 9v Gw, gn) € e "F(R4) and (ug, ho) € X4 be given such that divug =
falt=0 and —[uV wo] — [udsv0] = gvlt=0, where uy = (vo,wp). Consider the linear
problem to find a unique w = (u,m, q,h) € e "E(R,) such that

Low=F, 2(0)= 2z = (uog,ho),

for a sufficiently large w > 0, where F := (f, f4, Gvs Guw,gn) and z := (u,h). By
Corollary 6.4.2 we may assume without loss of generality that f = ug = 0, fg =
gw = 0 and g, = 0. The remaining problem with F' = (0,0,0,0, g5) and Z5 = (0, ho)
can be written in the abstract form

wz+ 2+ Lz=(0,gn), t >0, 2(0)=2Zp,

where the operator L has been defined in Section 4.1. If w > 0 is chosen sufficiently
large, then there exists a unique solution z € e “[E,(Ry) x Ez(R4)], since L has
the property of maximal regularity of type L, in

Lyo () x {h € WZVP(2) : B,h = 0}

by Corollary 2.3.2.
Therefore it makes sense to define a function H : e "[E, (R4 ) xE (R4 ) xXEp(Ry)] x
X9 — e "E(Ry) by

= (ﬂa , Cja B) - (Lwa tr |t:0)_1[N((ﬂ? ﬁ? ]_7“)7 (710, BO))? (QZ)(INL(), iLO)a 0)]

Note that H is well defined, since all compatibility conditions at t = 0 as well as at
0% and 0S5 are satisfied by construction. It follows from Proposition 3.1.1 and the
results in Section 4.2 that H is a C2-mapping with H(0) = 0 and

D(ﬂ,T‘r,(jﬁ)H(O) = le=nE(Ry)-
Therefore, the implicit function theorem yields the existence of a CQ—fungtion Y
X,? — e "E(R4) with ¢(0) = 0 and ¢’(0) = 0 such that H (¢ (o, ho), (T, ho)) = 0,

whenever (iig, ho) € 7B XQ(O) for some sufficiently small r > 0.
Let

(u,m,q,h) := (@, 7,4, ) + (a,7,q,h).

As in the proof of Theorem 3.3.1 one can show that PyFy(u,h) = Fy(u,h), since
divu = div(a + @) = div u. Integrating @ = 4 - e over X yields

/wdas/:/ divay dx = 0.
b (91
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This in turn implies that
d A / — /
(w—i—dt)/ h dx :/[w— (v|Vh)] dx
b b
- / [w — (v| V)] da’
b
_ /(u]yp(t))\/l—}— VR do’
b
— [ (woerhlr) dr(e
I'(t)

/ div(uo ©;") dQi(t)
Q1 (t)

0,

since
div(uo ©; ') = (divu — Fy(u, h)) 0 ©; " = (diva — Fy(u, h)) 0 ©; 1 = 0.

Since hli—g = 0, this readily yields that h is mean value free, hence POZE = h and
therefore (u,m,q,h) is a solution of (1.3) which is unique by Theorem 3.3.1. The
component (u, h) of the solution has the representation

(u, h) = ¥ (tio, ho) + Z(tio, ho),

where 9(@ig, ho) := (@, h) and = results by replacing (@, h) by ¥ (i, ho) in the defi-
nition of =. This yields the estimate

10 ) ey ) < M Gios o) o,

where M > 0 does not depend on (i, ko) € TBX%)(O) as long as r > 0 is sufficiently

small. This follows from the smoothness of the function ¢. Since (o, ho) = (ug, ho)—
o (g, ho) and ¢(0) = 0 as well as ¢'(0) = 0, we find for each € > 0 a number () > 0
such that the estimate

(0, ho)llx, < I|(uo. ho)llx, + llé(@o, ko)l x,
< [[(uo, ho)llx,, + &l (@o, ko) x,

is valid. This implies the final estimate

[ (uy M)l e=n(E, xE,) < Mell(uo, ho)ll x,

proving the first assertion.

2. Denote by o the collection of the eigenvalues of L with positive real part
and let PT be the spectral projection related to o*. Define P~ := I — P* and
X(;—L := P*X,. Since ot is finite, it follows that Xar is finite dimensional and the
decompositions

Xo=X{®X;,, L=Lt®L"
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hold, where L™ is a bounded linear operator from XO+ to XJ . Note further that the
spaces D(LT) and X coincide and that

12l = 1P F2llx, + 1P~ 21 x,

defines an equivalent norm in Xy, since P* are bounded and linear operators. By
spectral theory, it holds that o* = o(L*) and 0~ c C_. Let A\, € 0T denote
the eigenvalue with the smallest real part and choose numbers x,7 > 0 such that
[k —n,k +n] C (0,Re ). It follows that the strip

{AeC:ReXe|r—n,r+n]}

does not contain any eigenvalues of L. Therefore the restricted semigoups eFLt
satisfy the estimates

el | < M=t e Lt < Me= (5Tt ¢ >0, (4.16)

for some constant M > 0.

Our aim is to prove the second assertion by a contradiction argument. To this
end we assume that (u«, h.) = (0,0) is stable. Then there exists a global solution
(u(t), m(t),q(t), h(t)) of (1.3) such that (u,m,q,h) € E(T') for each finite interval
J =10,7] C [0,00). Moreover, for each ¢ > 0 there exists §(¢) > 0 such that
whenever ||(uo, ho)||x, < & then |[(u(t),h(t))|x, < € for all £ > 0. Note that the
solution admits the decomposition

where (i, h) solves (4.14) with 7, ¢ = [#] given in terms of (@, h) (see (4.4)) and
(4,7,q, h) solves (4.15) with a given right hand side (u,m, g, h). Observe that in this
case P°h = h, by integration of (4.15)4 over ¥, since

/(ﬂ|en)dZ‘: divﬂldzz::/ Fd(ul,h)d$:/ divutde
> (951 04 1o

and

/Hl(u,h)dE = /(ath— (ule3))dy = —/ divu'dez,
b)) by Q1

= ug, and where we made use of the fact that Pi’h = h. }
To shorten the notation we introduce the new functions Z := (4, h), z = (u, h),

where u! :

W = (@,7,q,h) and w = (4,7, q,h). The functions P*Z solve the evolutionary
problem

d
%Pig — LT P*: =wP*Qz, P%3|—9 = P*%, (4.17)

where QZ := ((I — T1)@, h) and Zy := (i, ho). In a first step we show that P*Z is
given by the formula

PTE(t) = — /00 eL+(t_5)wP+QZ(5) ds. (4.18)
t

Since P is bounded and Xf/) — Xy, it follows from the assumption that

IP*2(0) s < 1P 20l + P20 s < Ol + 12(0)]1x0)
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for all ¢ > 0. This implies the estimate

T 1/p
le™™ PP 2l L 0mxp) < © (8 </0 e dt) + VV@MEH%(&T;X@)

< C(rp) (= + lle™ 2y )

(4.19)

where
E(T) := Ey(T) x Ex(T),

and E(T) — L,(0,T; Xp), with an embedding constant being independent of 7" > 0.

Employing the relation
%(e‘“tP+Z(t)) (kI 4 LNeMPYE(E) oM PYQE(®),  (4.20)

we obtain that
le=P* Zllsry < Cale + lle ™ Zlg ) (4.21)

where the constant C7 > 0 does not depend on T" > 0. Here we have set
Z(T) == HL(0,T; Xo) 1 Ly(0, T; D(L)).
For the function e~** P~ 2(t) there holds the identity

%(e‘“tP_Z(t)) C(hl 4 L) PE() 4 e PO, (4.22)

Since by (4.16) the semigroup generated by (—xI + L™) is exponentially stable in
X, , we obtain from L,-maximal regularity theory that the estimate

le™™ P~ 2|lzr) < M (HP_EOHXS + He_HtP_QEHLP(QT?XO))

t (4.23)
< M (1P~ Zollxo + lle™2llzer, )

is valid, with some constant M > 0 that does not depend on T" > 0. A combination
of (4.21) and (4.23) implies

le™"Z]| z¢r) < Co (8 + [P~ Zol| xo + He_“tZHfE(T)) , (4.24)

with C > 0 being independent of 7' > 0. In what follows, we want to reproduce
the norm of e "'z in E(T) on the left hand side of (4.24). To this end we have to

estimate e "h, e " d;h in W,,l_l/2p(O,T; L,(%)).

To estimate e A, in I/Vp1 —/%p (0,T; Ly(X)) we cannot simply use interpolation of
HZ} (0,T; L,(X)) with L,(0,T; L,(X)), since the interpolation constant would depend
on T > 0. The following proposition takes care about this problem.

Proposition 4.3.2. Let T' € (0,00), k > 0 and let Z € Z(T') be the unique solution
to (4.14). Then there exists 2 € Z(Ry.) with 2|jo.r) = Z such that the estimate

le 2]l zr,) < M (Hgonxg +lle™ 2l 1, 0,m:x0) + ||€7Kt5HL,,(0,T;XO)>

is valid, with a constant M > 0 being independent of T > 0.
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Proof. We fix a > 0 large enough such that the operator L — al has the property of
L,-maximal regularity on Ry. Define a function f: Ry — X by

JwQZz(t) +az(t), ifte[0,T],
J:= {0, if t > T.

Then f € L,(Ry; Xo) and we may solve the problem
hz—(L—al)z2=f, Zi=0 = Z0, (4.25)

to obtain a unique solution Z € Z(Ry). Observe that by the uniqueness of the
solution of (4.14) it holds that 2|7 = Z.

Multiplying (4.25) by e, it follows that the function e~"*2(t) solves the initial
value problem

O(e™2) — (L — (a+r))e ™2 =e""f 2|40 = %.

Since the operator L — (a+ «)I has L,-maximal regularity on Ry as well, we obtain
the desired estimate. The independence of the constant M > 0 with respect to ¢
follows from the exponential stability of the analytic semigroup which is generated
by L — (a+ k)I. O

Since He*”tZHW;_mp(O’T;XO) < e r 2| (here we use the intrinsic

Wy V2P (R45X0)
norm in WZ} —L/2p ) it follows by the real interpolation method and Proposition 4.3.2
that the estimate

—Kt ~

e~ 2l 1172 gy < M (I20llxe + e 2l 07550) + e 2, 0.7:x0))

< M (Jzollxg + ™™ Zlgry + ™™ Zlzr )
(4.26)

is valid. The second equation in (4.14) and Proposition 4.3.2 together with trace
theory imply

—kta T
le 3th|’W£*1/2”<o,T;Lp<z)>

e (||e**”~tauwz}fl/2p (4.27)

—Kt],
)) + ”6 h"W;71/2P(07T§Lp(E)))

(0,TLp(
< Cu (ollxo + e ™ Zllgery + e ™ Zllzqr)) -
Observe that for the estimate of e "*h we have used the fact that

E(T) — W, ~'/?P(0,T; Ly(%))

with an embedding constant being independent of 7' > 0, since the (instrinsic) norm
in the last space is a part of the norm in E(7T"). Combining (4.24) with (4.26) &
(4.27) we obtain

”e_ﬁt’ngE(T) < Cs (5 + HEOHXQ + ||P_20||X2 + He_ﬁtZ”fE(T)) , (428)
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with a constant Cs > 0 being independent of T" > 0.

We are now turning our attention to the system (4.15) for w = (u, 7, ¢, h) which
we write shortly as L,w = N (@ +w) with initial condition z|;—9 = (¢(Zp),0). It will
be convenient to write N(w) = Ny(z) + Na(z, ), where all components of No(z, )
are zero except for the first one, which is given by My(h)V.

Proposition 4.3.3. Let k > 0. There exists a nondecreasing function o : Ry — R4
with a(e) = 0 as € — 0 such that

1. if z € Z(Ry), then
le™™* N1 (2)llpw,) < a(e)lle™™zllz®, ),
whenever ||z(t)||x, < € for all t > 0;
2. if 2 €9Z(T) and z, € Z(R,.), then
le™ N1(2 + 24)[lr(r) < ee)C (lle™ 2llzry + lle™ 2ullzw,)) »

whenever
12t x, < Ce

for allt € [0,T] and
Iz x, < Ce
for allt > 0. The constant C > 0 does not depend on T > 0.
Proof. The proof of the first assertion follows by similar arguments as in [31, Propo-
sition 9]. i
Therefore we concentrate on the proof of the second assertion. For z € gE(T) we
define a bounded linear extension operator E :oZ(T') —¢Z(R4) by

2(t), t e 0,7,
(B2)(t):=={ 2(2T —t),  t€[T,2T),
0, t>2T.

For the norm of e **(FE2) in Z(R,) we then obtain

T 2T
le™ B2 g, = /0 IO+ [ e ERT = Ol d

T 2T
—I—/O e_”tpH,%(t)Hg(Odt—i—/T e‘”tpH,é@T—t)Hg(odt

T T
- / e (1)1 dt + / e~ H =7 2(r) |1, dr

T T
_ X — k(2T —T)p 1 2
T /0 e E(0) B di + /0 e F TR () 8 dr
<le™2llz(r),

since 2T — 7 > 7 for 7 € [0, 7.
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In addition there holds ||(EZ2)(¢)]|

assertion yields

We2/r < Ce for all t > 0. Then the first

W22/P

le™ N1(2 + 2.)llrery < lle™ ™ N1(E2 + 2) |rry)
< a(e)Clle™™ (B2 + 2) |z,
< a(e)C (lle™™2llzer + lle™ zllzr.)) -
O

In order to apply this proposition to the system L,w = N(w+w®), let z, be an ex-
tension of zg such that ez, € E(Ry) and l2«llzry) < Cll20llx,- The existence of
such an extension can be seen as in Step 1 of the proof. Then we use the representa-
tion N(w) = N1(z)+ Na(z, ) and the identity Ni(z) = Ni(z2— 2z« +24) = N1(Z2+24),
where 2 := (2 — z.) €0Z(T). Finally, note that

le™™ No(2,7)| L, 0,75L,(0)) < Celle™™nllg, (1)-
Therefore, the second assertion of Proposition 4.3.3 implies the estimate

le™ N (@ + @) ||lrer) < a(€)C (le™ 2l zery + lle™ 2llzer) + lle™ 2ullzr,))
+eC ([le™ ||k, (1) + e~ %k, (1))

< a1(e) (Jle ™ 2ligr + le™ 2l + e Rl ) + ollx, ) -

where a1(e) := a(e) + ¢ — 0 as ¢ — 0. Here we have used the estimates
le™*z:llzr,) < Cll20llx, and

le™ ke, ¢z < C (lle™ 2y + ™ Zllgery)

which hold for some constant C' > 0 that does not depend on T" > 0. Note also that
E(T) < Z(T) with a universal embedding constant being independent of 7' > 0 and
12(t)]|x, < (14 C)e for all t € [0,T7, [|2+(t)|x, < Ce for all t > 0.

By the invertibility of LL,, we obtain

le™ " @|lgcry < Co (6(20)llx, + lle™™ N (@ + @)|lw(r))
< Cﬁ<||¢(50)||X7 +an(e)(le™™ Zllger) + lle™" 2l (4.29)
+llzollx,))-
Choose ¢ > 0 sufficiently small, such that Cgay(e) < 1/2 and note that
e wlacry = e 2y + e 7 sy + lle ™ [ ey o)
This implies the estimate
e Zlagry < 265 (l6Go)lx, + @ (le ™ Zlary +I2olx,)) . (4:30)
If £ > 0 is sufficiently small, we obtain from (4.28) and (4.30) that

—Kt ~

le™2lgery + le ™ 2lggry < Cr (= + I2ollxg + 1P Zollxo + l6(20)lx, ) (431)
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with C7 > 0 being independent of 7' > 0, where me made use of the fact that
20 = 20 + ¢(2p). In particular this shows that

e "z e ™z c BE(Ry).

This in turn yields that
R
ert / |29 Pty Q3(s) | x, ds
t

o0 1/p
<ar ([T ds) e sl g < COnlle Mg, < .
t

For the projection of the solution Z of (4.14) to X we have the variation of param-
eters formula

t
PT3(t) = Ptel ™z, +/ €L+(t_S)P+OJQZ(8)dS
0

:P+6L+t20—|-/ 6L+(t_S)P+UJQZ(S)dS—/ eLJr(t_S)P"'wQZ(S)ds
0 t

L+

at our disposal. Since e*"! extends to a Cy-group, we obtain the identity

LTt <P+2(t)+/ eL+(ts)P+wQZ(S)dS> :P+§0+/ e*“sP*sz(s)ds,
¢ 0

which holds for all £ > 0. The left hand side of this equation may be estimated in
Xo as follows.

t

< Mt (nz(t)nxo s [T e P x, ds>
t
< Me™ (He_”té(t)HXO + C) )

Here we made use of the fact that the integral does not grow faster than e by the
computations above. Since the function [t — [e "*Z(t)||x,] is bounded (see above)
it follows that

e (He_’“,%(t)HXO + C) —0

as t — oo. This shows in particular that P*Zy + [° e L5 PrwQz(s)ds = 0, hence
the relation (4.18) holds.

From (4.18) and Young’s inequality we obtain the estimate
le ™™ PT 2|1 ryix0) < M(0)lle™™ P72 1, r, 5 x0)-
By (4.20) this yields

le™™ P* 2|z, < M(n)lle™™ P 2|5, (4.32)

)
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One may now restart right after (4.24) and imitate all the estimates with the interval
[0, T being replaced by R to obtain the relation

o™ 2 e, + o™ Zllgm, ), < € (1P~ Z0llx, +I6Go)lx,) - (433)

At this point we want to emphasize that the term ||Zo|| xo does not appear on the
right hand side of (4.33), since on R4 there is no need to apply Proposition 4.3.2.
Furthermore, since we estimate norms on the half line R, , we may use the first
assertion of Proposition 4.3.3 instead of the second one.

Formula (4.18) for ¢ = 0 and (4.33) then imply

1P* Zollxo < M(w,)lle™2llr.. msx0) < Milw,m)lle™ 2l

< C (1P Zollxo + l6(20)llx, )

since E(Ry) < BUC(]RJF;XS). Due to the fact that ¢(0) = 0 and ¢'(0) = 0, we
may decrease 0 > 0 (if necessary) to achieve that

1

[¢(Z0)llx, < 5

(1P~ Zollx9 + [1P* 20| x0),
whenever %y € 6B Xg(O). Finally, this yields the relation
IP*Zollxo < CIIP~ 2ol xo.

Choosing 2y € (5BX2(O) in such a way that P2y = 0 and P"Zy # 0 we have a
contradiction. The proof is complete. O

We complete this section by considering the special case G = Br(0) and give a
result on stability in dependence on the radius R > 0.

Corollary 4.3.4. Let the conditions of Theorem 4.3.1 be satisfied and let the surface
tension o > 0 be fized. Denote by A\] > 0 the first nontrivial eigenvalue of the
negative Neumann Laplacian on the unit ball B1(0). Then the following assertions

hold.

1. If R?[p]va/o < AL, then (us,hs) = (0,0) is exponentially stable in the sense
of Theorem 4.3.1.

2. If [p] > 0 and R2[p]ya/o > A}, then (us, hi) = (0,0) is unstable in the sense
of Theorem 4.3.1.

Proof. The assertions follow from Theorem 4.3.1. Indeed, denoting by A;(R) > 0 the
first nontrivial eigenvalue of the Neumann Laplacian on Br(0), Theorem 4.3.1 yields
that (0, 0) is exponentially stable if [p]v./0 < A1(R) and unstable if [p]vq/0 > A\ (R)
and [p] > 0. An easy computation yields that A\;(R) = \i/R%. This concludes the
proof of the corollary. O



Chapter 5

Bifurcation at a multiple
eigenvalue

In this chapter we consider the special case G = By := Br(0) C R? for some radius
R > 0. Proposition 4.1.2 implies that an eigenvalue of the linearization L crosses
the imaginary axis through zero if [p]ya/0 = A1, where A\; > 0 is the first nontrivial
eigenvalue of the negative Neumann Laplacian in G. This suggests that (A,0) is a
bifurcation point for the nonlinear Navier-Stokes system (1.3). Unfortunately, the
eigenvalue A\; > 0 is not simple. Indeed, it is a double eigenvalue being semi-simple.
Therefore we cannot directly apply the results of Crandall & Rabinowitz. Instead,
we will use certain symmetry properties of the bifurcation equation to reduce it
to a purely one dimensional bifurcation equation which then can be solved by the
implicit function theorem. For a general theory concerning bifurcation at multiple
eigenvalues, we refer the reader to [27, 46, 66).

We recall that the set of equilibria £ for height functions h with vanishing mean
value is given by

E = {(Us, Tuy G, hi) : us = 0, me = const.,qs = [m] =0, hy solves (5.1)}.

Note that if there exist nontrivial equilibria, i.e. h, # 0, then these equilibria are
determined by the nontrivial solutions of the quasilinear elliptic boundary value
problem

z’h
o divy (V) + [plvah =0, 2’ € Bg(0),

V14 |Vah|?

(5.1)
8y, h=0, z'€dBg(0).

VBRr(0)""

Here the differential operators V,+ and div,s act only in the variables 2’ € G. We
intend to show that if [p]ys/0 = A1, then there bifurcate nontrivial solutions h, of
(5.1) from the trivial solution h = 0. To this end, let

X:={he Wpl_l/p(BR) : / hdx' = 0}, (5.2)
Bgr 5.2

Y i={he W/P(BR) N X : 9p,h = 0},

7
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and define FF: Ry x Y — X by

Fla, h) = divy (”) + ah. (5.3)

V1+|Vayh|?

For h € W;(BRr), s > 0, define (I'o,h)(z') := h(Oy7'), where

0y = (cosgb —sin qb)

sing coso

describes a two-dimensional rotation of Z’ € Bpg through the angle ¢. Note that
Oy is an orthogonal matrix, i.e. OdT) = (’);1. Furthermore, we define (I'gh)(Z’') :=
h(Rz'), where Rz’ := (%1, —%2)'. It is easily seen that T'; leaves both spaces X and
Y invariant and one readily computes Vz([o, h) = O;(F@¢Vx/h), Az (To,h) =
Lo,Ayh and V2,(Co,h) = O;(F%vg,h)@, where 7/ = O:;;a:’. Therefore, the
identity

_ ( Vah ) Ayh (V2,hV o h|V o h)
le:r’

V14 [Vgh|? N VIt VPR «/1+\V9yh\23

implies that I'o, F(a,h) = F(a,T'o,h). Similarly it holds that I'rF(a,h) =
F(a,T'grh). This shows that F' is invariant with respect to the group operations
of the orthogonal group O(2).

5.1 Lyapunov-Schmidt Reduction

By the smoothness of the mapping [R > s — (1 + s2)71/2] it holds that F €
C*® (R4 x Y; X) and the first Fréchet derivative of F' is given by

[DyF(a, h)]h = div, (Wl) — divy <V$/h(Vz/h\VI/h)> + ah.

VI+[Vah]? VIt Vo2

Therefore it holds that D, F(A1,0) = Ay + A\ I, where Ay denotes the Neumann-
Laplacian and A; > 0 is the first eigenvalue of —Ay in X (note that 0 ¢ o(—Ay),
since all functions in X have a vanishing mean value). For convenience, we set
A := DpF(A1,0). We claim that 0 € o(A) is a semi-simple eigenvalue. Since the
operator A has a compact resolvent, it follows that the spectrum consists only of
discrete eigenvalues having finite multiplicity. Therefore it suffices to show that
N(A) = N(A?%). To this end, let 0 # v € N(A?) and u := Av. Then u € N(A) and
we compute

HUH%Q(BR) = (A’U|U)L2(BR) = (v’Au)LQ(BR) =0,
since A is self-adjoint in Lo(Bpg). This shows that v = 0, hence v € N(A) and
0 € o(A) is semi-simple. We note on the go that this implies X = N(A) @ R(A).
Rewriting the eigenvalue problem —Ayxh = Ah in polar coordinates (r, ), it follows
that the kernel N(A) of A is spanned by the two linearly independent functions

ui(@’) = Ji(j1ar/R) cosp,  uz(a’) = Ji(j1,r/R)sin, (5.4)
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r € [0, R], ¢ € [0,27), where J; is a Bessel function of first order and ji ; denotes the
first zero of the derivative J; of J;. Hence dim N(A) = 2 (notably, A is a Fredholm
operator of index zero). In particular, each h € X can be written in a unique way
as h = u+ v, where u € N(A) and v € R(A). Defining Ph := wu, it follows that
P : X — N(A) is a projection onto N(A). With @ := I — P we also have that
Q : X — R(A) is onto and Qh = v. Moreover, it holds that Y = U & V, where
U:=N(A) and V := R(A)NY.

Let us now split the equation F(«, h) = 0 into the two parts PF(a,u+v) =0
and QF (a,u+v) = 0. Since the operator D,QF (A1,0) = QDpF(A1,0) : V — R(A)
is an isomorphism, we may solve the equation QF (o, u 4 v) = 0 in a neighborhood
of (A,0) by the implicit function theorem, to obtain a unique smooth function
vy : Ry x U — V such that QF (o, u + vi(a,u)) = 0 for all (a,u) close to (A1,0).
The function v, = v4(cr, u) has the properties

1. vi(a,0) =0 if & > 0 is close to Ay;
2. Davi(A1,0) =0, Dyvi(A1,0) = 0;
3. Tjve(o,u) = ve(a, Tju), j € {R, 04} if (o, u) is close to (A1,0).

The first two properties follows directly from the (differentiated) equation QF(av, u+
Ui, a,u)) = 0 and the fact that F'(a,0) = 0 for each a € Ry. The last property
follows from the uniqueness of v, and the fact that I';QF (o, u +v) = QF (o, 'ju +
I'jv), 7 € {R,04}. To see this, we differentiate the identity I';F'(a,u) = F(o,I'ju)
with respect to u and evaluate the result at (o, u) = (A1,0) to obtain the relation

;A= AT;.

In other words, I'; commutes with the operator A. It follows readily that I'; leaves
N(A) as well as R(A) invariant, hence I'; P = PI'; as well as I';Q = QT';.

5.2 Reduction to a 1-dimensional bifurcation equation

It remains to study the equation 0 = G(«, u) for (o, u) € Ry x U in some neigh-
borhood of (A1,0), where G(a,u) := PF(a,u + vi(a,u)). Let us remark that this
equation is purely 2-dimensional. Similarly as above it holds that I';G(a,u) =
G(a,Tju) for j € {R,04}. Let ¥ : U — R? be defined by W(u) := (b1, b2)7 for
u = biuy +bous € U, by := (u|uk),(By) € R, where u; := uj/||u}| L, It follows that
U is an isomorphism with inverse &1 given by \Il_l(bl, ba) = biuy + bougy. Consider
now the equation
gla,b) := UG(a, T 1) =0, becR?

and define I‘? = UI;U~! on R? for j € {R,O0,}. With these definitions it holds
that Fgg(a, b) = g(a,F?b) for j € {R,04}. A short computation also shows that

o« I b=0yb;

° F%b = Rb;
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hold for each b € R2. We will use these two properties to reduce g(a,b) = 0 to a
purely one dimensional equation. Choose ¢ in such a way that Oyb = se; = (s, 0)"
for some s € R close to 0. Then g(a,b) = 0 if and only if g(a, se;) = 0 by the first
property. Furthermore Re; = e, hence

g(av 861) = g(Oé, SRel) = Rg(aa 861)'

This in turn yields that go(a, se;) = 0 is always satisfied and therefore we have
reduced the equation g(a,b) = 0 to g1(«a, se;) = 0 for (a,s) € Ry x R close to
(A1,0).

Due to the fact that D,g1(A1,0) = 0, we cannot simply solve the equation
g1(a, ser) = 0 for a in a neighborhood of (A1,0) by the implicit function theorem.
To this end we define a new function

LS s
Since Dpg1(A1,0) = 0, we have g(A1,0) = 0. Moreover we compute
Dag(A1,0) = DaDpgi(M1,0)er.
Since Do DpF(A1,0) = I and
DoDyg(M,0)e1 = WPD,DyF(M\,0)0 ey = e,

it follows that DyDpg1(A1,0)e; = 1 # 0. Hence, the implicit function theorem
yields the existence of a smooth function « : (—n,n) — R with a(0) = A1, such that
g(a(s),s) = 0 for all s € (—n,n) and some (small) n > 0. This in turn yields the
following result.

Theorem 5.2.1. Modulo the action in O(2), all solutions of F(a,h) = 0 in a
neighborhood U of (A1,0) in Ry x Y are given by

FH0) N = {(a(s), sur +y(s)) : |s| <} U{(,0) : (a,0) €U},

where o € C*°((—n,n); R) with a(0) = X\1 >0 andy € C*°((—n,n); R(A)NY) with
y(0) = 4/'(0) = 0 are uniquely determined.

Proof. Define y(s) := vi(a(s), su1). Then the assertions for y follow from the prop-
erties of the function v,. ]

Let us now show that the bifurcation in (A1, 0) is of subcritical type, i.e. sa/(s) < 0
for 0 < |s|] < 0 and some & > 0. We first prove that o/(0) = 0. To this end
we differentiate the expression F'(«(s), su; + y(s)) = 0 with respect to s twice and
evaluate at s = 0 to obtain

0= Apny"(0) + A\1y"(0) + 20/ (0)uy.

Multiplying this identity with u; in Lo(Bpg) and integrating by parts yields
a’(O)Hu1||%2(BR) = 0, since u; € N(A). This implies that o/(0) = 0, since u; # 0.
Differentiating F'(a(s), su1 + y(s)) = 0 a third time yields in s =0

0= Any"(0) + My (0) — 3div(Vauy | Vui|?) + 30" (0)us,
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where we have used the fact that o/(0) = 0. We test the latter equation by wu; in
Ly(Bpg) and integrate by parts to the result

0= " (O)llurl2, s + il 5,
hence o(0) < 0 since u; # 0.

Corollary 5.2.2. The bifurcation in Theorem 5.2.1 at (A1,0) is of subcritical type,
i.e. sa(s) <0 for 0 < |s| <d and some § > 0.

5.3 Instability of the bifurcating equilibria

This section is devoted to the proof of instability of the bifurcating equilibria for the
complete system (1.3). For the sake of readability we shall replace the functions u;
and wuo from the preceding sections, which span the 2D-kernel of the operator A, by
hi and hg, respectively. Hence, it holds that F(«a(s), shy + y(s)) = 0 for all |s| < 6
and some small § > 0, where y(s) = vi(a(s), shi) with y(0) = ¢/(0) = 0.

Step 1. Let us first show that 0 € o(DpF(a(s), sh1 +y(s))) for each s € (=9, 6).
For convenience we set hi(s) := sh1 + y(s) for s € (=4,9) and I'y := T'o,. The
following Proposition will be of importance.

Proposition 5.3.1. Let |s| < 0 be fized. The mapping [R € ¢ — T'yhi(s) € Y] is
continuously Fréchet differentiable and its derivative is given by

D¢F¢h1(8) = S(I + DQU*(Q(S), SF¢h1))D¢F¢h1,
with T'yh1 = hicos ¢ — hasing and Dygl'gh1 = —(hy sin ¢ + ha cos ¢).

Proof. By smoothness of v, and since I'yv.(a(s), shi) = vi(a(s), sT'gh1) it suffices
to show that the mapping

[]R € P¢h1 S N(A)]

is continuously Fréchet differentiable.
Observe that (Tyh1)(z') = Ji(j]17/R)cos(p + ¢), where 2’ = (rcos p,rsinp).
Since
cos(p + @) = cos P cos p — sin @ sin ¢

it follows that
I'ghy = hycos ¢ — hasin ¢,

hence I'yh; € N(A) for each ¢ € R. Furthermore we may differentiate the last
identity with respect to ¢ to obtain

D¢F¢h1 = —(h1 sin ¢ + ho cos ¢) S N(A)

This completes the proof. O
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Applying Proposition 5.3.1 in connection with the identity 0 = F(a(s),T'¢h1(s)),
we obtain

0= DyF(afs), Tyhi(s)) = DpF(a(s),Tphi(s)) Dl yhi(s).

Evaluating the last equation at ¢ = 0 yields

0 = DpF(a(s), hi(s)) Dyl gh1(s)]p=0,
wherefore DyI'yhi(s)|p=0 € N(DpF(c(s), hi(s)). By Proposition 5.3.1 we have

Dyl yh1(8)|g=0 = —sha — sDyv«(a(s), shi)hs.

In particular

ha(s) := ha + Dyv«(a(s), shi)ha # 0, (5.5)
since 0 # hy € N(A) and Dyv.(a(s), sh1)ha € R(A). Moreover, the identity

DypF(a(s),h1(s))ha(s) =0

holds for all s € (—6,0), i.e. [s — ha(s)] is a smooth nontrivial eigenfunction curve
for the eigenvalue 0 € o(DpF'(a(s), hi(s))).

Step 2. The goal of this step is to introduce an operator £ as an analogue of
the operator L in Section 4.1, which represents the full linearization of (1.3) in one
of the bifurcating equilibria given by Theorem 5.2.1. As in Section 4.1 we will first
show how to reproduce the pressure out of a given velocity field and a given height
function. For that purpose we define

((ulv)) := /Qu(m) -v(z) det DO (z)dx, u € Ly(Q)3, v € Ly(Q)?,

where h is an admissible height function, such that ©j, and its inverse @;1 are

well-defined. Then, for f € L,(Q)® and g € W;fl/p(Z), we consider the weak
transmission problem

(MW)VTM(R)VE) = (fIV)1ar & € Wy(Q), (5.6)
[pr] =g, onZ, '

where M(h) € R¥*3 and |M(h) — ||, — 0 as ||h]lwr — 0. We may rewrite the
term in brackets ((|-)) as follows
(M(R)Vr|M(P)V)) = (V[V)r, + (he' M(h)TM(R) V7|V )L, +
+ (M(R)TM(R) = V7|VY)L,,

where we used the fact that det DO, = 1 + hy'. Note, that for each € > 0 there
exists n > 0 such that

(M (R)VTM(R)V)) = (VIVP)L,| < el VTl o) IVOllL, @),

provided that [|A[lw1 sy < 7. A Neumann series argument in combination with
Lemma 6.3.2 then implies that there exists 19 > 0 such that for each h € wWL(®)
with [[h]lwz (s) < 70, problem (5.6) admits a unique solution = € W, (Q2\%).
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If we linearize (1.3) around a bifurcating equilibrium (0, ¢, 0, h;(s)) (given by The-
orem 5.2.1, where ¢ is a constant) we obtain the following linear problem.

Oc(pu) — pAu+ (I — Mo(hi(s)))Vr = ]:u(u, hi(s)), in Q\%,
divu — (Mo(hi(s))V]u) = in O\,
o] — [V ] = %(u, h(s), o,

—2[udsw] + [r] gw(u,hl(s))+[[p]h“DhF(a(s),hl(s))h, on %,

a(s)
~ (ules) = —(1]Varha(s), on ¥,
Ps, ( (Du)ugl) =0, on S1\9%,
(ulvg,) =0, on S1\0%,
u=0, on Sy,
Ovyh =0, on X,
u(0) = up, in Q\X,
h(0) = h on X.

Here the surface tension o = o(s) is given by o(s) = [[5 ]g;’)“ and we have set

Fulu, h) == —p(My(h) : V2u+ My (h)Vu),

Go(u, h) == —[(Vyrv + Vv )[Varh + |V h|? [uds0] +
+ (1 + [V h*) [pdsw] — (Vo b|[pVwrw])) Varh,

G, 1) = — (Vs hl [0V w]) — (Vs | [10]) + Vb 2 [pidgu],

F(a,h) :=divy __Vah + ah
V1+|Vayh|?

For fixed s € (—¢,0) we define a linear operator L(s) : X1 — Xp by

(B Au— (T~ Mo(hi(5))) VD + L Fu(u, ha(s))
L(s)(u,h) := <p r (ules) — (U|V$/h1(8)p) >

and

where Xy := Ly, (Q) x {h € Wy P(2) : [ h da’ =0, 8,,,h =0},
Lpo(Q) = {u € Ly(Q)? : w0 O} ) € Lypo(On,(9Q)}, X1 = Hp(Q\E)® x WP (%)

and

Xy = D(L(s)) = {(u,h) € XN Ay : Ps([uDules) + Go(u, hi(s )
[u] =0, Ps, (u(Du)vs,) =0, (ulvs,) =0, ypeh = 0}.
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The function p € W]}(Q\Z) in the definition of L(s) is determined as the solution of
the weak transmission problem

(St vpmm(s )) (L0t A () MUa()0) ).
[p] = 20Byt] + Gun 11, 1 ()+
+ %?Z;DhF(a(s),hl(s))h, on ¥.
(5.8)

where M(h) := I—My(h). The first equation has to be satisfied for each ¢ € Wpl, ().

Note that the solution p € Wz} (Q\X) is well-defined by the above considerations.
Observe also that for s = 0 the operator £(0) coincides with the operator L from
Section 4.1, since then h;(0) = 0. Furthermore, for v € D(L(s)) we note that

/ - M(1y(5)) V6] det DOy, gy dax = 0.
Q

This can be seen as follows. Let @ := uo 9}711(5) and ¢ := ¢o @;Lll(s . Then we obtain
from the transformation formula, integration by parts and the boundary conditions
on u that

/Q[U'M(hl(s))vﬁﬁ] detD@hl(s)dl’:/Q[ - (Vo)(Ony(s)) det DOy, (yda

= / u- (Vp)dz
Ony ()8

=— / ¢ diva dz.
Ohy (s)82

Since 4 =u 00O, 1(5) € Lpo(Oh,(5$?), the claim follows.

Step 3. In this step we show that for each fixed s # 0 sufficiently close to zero,
the operator L£(s), which has been introduced in Step 2, possesses a real positive
eigenvalue. For that purpose, define the spaces

Y, = {U S Hz(Q\E)g : ’U/‘S2 =0, U‘Sﬁ “Vg = 0, PS1(M(DU)VSI) =0, [[’U,H = 0}’
Yo = H)(Q\X), Y3 =W, /7(D),
Y= {he Wi r(x): /Zh dx' =0, 8y, h =0} N R(A),
Y= {(u,m,q,h) € xj,Y; : ¢ = [7]},

and

X = {(f, fa> Gu» 9> 90) € Lyp()* x [H (D) N H, ' (Q)] %
x WatP(2)? x Wam VP (s) x WEP(S)

/zgh dz' =0, 8z/BRgh =0, gols, - vB, = 0},
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where A and R(A) are defined in Section 5.1. Furthermore, for some small § > 0
and |s| < 0, we define a linear operator family L(s) : Y — X by

%Au — %Vﬂ' + %Fu(u,w, hi(s))
divu — P()Fd<u, hl(s))
L(s)(u,m, g, h) := [10sv] + [pVew] + Gu(u, hi(s)) :
2[udsw] — q + Gu(u, hi(s)) + L2 Dy F(a(s), hi(s))h

o(s)

Py[(ules) — (v|Varha(s))]

where Pk ==k — ﬁ Jskda, u= (v,w),
Fy(u,m, h) := —p(My(R) : V2u + My(h)Vu) + My(h)V,
Fy(u, h) == (Mo(h)V|u),
Go(u,h) := —[u(Varv + Vv )[Varh + [V h|? [uds0]
+ (14 [Varh[P) [pdsw] — (Vo h|[uV w])) Varh,
Gu(u, h) == =(Voh|[pVerw]) = (Varh|[pd30]) + |Varh*[udzw]),

F(a,h) = divy __Vwh + ah
V 1+ |Vh|?

In the following, let ha(s) be defined by (5.5). Let w = (u,m, ¢, h) and consider the
function g : (—0,0) x R x R x Y — X given by

and

—so/(s)Bu

0

g(S, (67 v ’U])) = L(S)w — 0
_mhl(s)

sa(s)

B(Ri(s) = sa’(s)h) + vha(s)

We remark that hq(s)/s = h1 + y(s)/s, hence hi(s)/s — h; as s — 0, since y(0) =
y'(0) = 0. Evaluating g at s = 0 yields

%Au - %VW
divu
g(0,(B,v,w)) = (03] + [pV pw]
2[udsw] — g + B0 Dy F (A, 00+ 1222y
Py[(ules)] — Bhy — yhy

In the following we intend to find (Bp,70,wp) € R x R x Y such that
9(0,(Bo,v0,wo)) = 0. Note that if we have such a solution, then necessarily
P [(ules)] = (ules), since

/(u|eg) da’ :/ divulg, dz =0,
b 91
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by the boundary conditions on u € Y;. Hence we consider the elliptic problem
—pAu+Vr =0, in Q\X,
divu =0, in Q\X,
—[uDu]es + [r]es = [[p)\]ha (DpF(A1,0)h + hi)es, on X,
1
[u] =0, onX,
_ (5.9)
Bh1 + vhy — (ules) =0, on X,
Ps, (u(Du)vs,) =0, on S;\0%,
(ulvs,) =0, on S1\0%,
u=0, on Sy,
Oyp,h =0, onX,

for the unknowns ((3,7),w) € R? x Y. Let us first remove the inhomogeneity h in
the equation (5.9)5. To this end we solve the elliptic transmission problem

(VpIVO)L, =0, ¢ € Wy(Q),

_ lrla
[p] = N ha,

on X,

to obtain a unique solution p € Ys, thanks to Lemma 6.3.3. Therefore we may
reduce (5.9) to the elliptic problem

—pAu+ Vo =—=Vp, in Q\X,

divu = 0,
—[uDules + [r]es =

[u] =0,
Bh1 + vha — (uleg) = 0,

Ps, (M(DU>VS1> =0,
(u|lvs,) =0,

u =0,

Oyg,h =0,

[[p)\]]%DhF()\l, 0O)hes, on %,
1

in Q\X,

on X,

on (5.10)
on S1\0%,
on S1\0%,
on So,

on X.

With the help of the operator L : X; — Xy from Section 4.1 we may rewrite system

(5.10) in the abstract form

Lz — B2y — vz = f,

where we have set z = (u, h), z; := (0, h;)

(5.11)
, 7 €{1,2} and f := (Vp,0) € Xy is given.

Let us compute the kernel of L in X¢. If L(u,h) = 0, it follows from (4.6) that
Du = 0, hence u = 0 by Korn’s second inequality. This in turn implies that A is a

solution of the elliptic problem

Ayph+ Ah =0,

Oy . h =

VBR

= BR(O),

0, 7' e 0BRr(0),
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since h is mean value free. Therefore h € N(A), with A being defined as in Section
5.1, and we already know that dim N(A) = 2. It follows that dim N (L) = 2 as well
with N (L) being spanned by the two elements z; = (0, h1) and 2o = (0, ha), where
hj eN (A)

Next, we show that 0 € (L) is a semi-simple eigenvalue. We already know that
o(L) consist solely of discrete eigenvalues with finite multiplicity and 0 € o(L).
Therefore, it suffices to show that N(L) = N(L?). Let z = (z1,22) € N(L?) and
define w := Lz. Then w = (wy,wz) € N(L), hence w; = 0 and wy € N(A) and it
remains to show that wo = 0. To this end, we test the first equation in Lz = w by
z1 and integrate by parts. It follows that

12Dz [, ) — 0 [(Aacfzz\wz)LQ(BR) + )\1(22|w2)%2(BR)} = 0.

Integrating by parts a second time, we see that the term in brackets |...] vanishes,
since wa € N(A). Therefore Dz; = 0, hence z; = 0 by Korn’s second inequality.
Since then also (z1]es) = 0 on X, the second component in Lz = w implies that wy =
0, showing that 0 € o (L) is semi-simple. Notably it follows that Xg = N(L)® R(L)
and, in particular, L is a Fredholm operator with index zero.

We seek to find a solution z = (u, h) € X; of (5.11) with the additional property
h € R(A). This extra condition yields the uniqueness of the solution. First of all
we find unique f; € N(L) and fo € R(L) such that f = f; + fo. Since 0 € o(A) is
semi-simple, too, this yields the existence of k1, ke € R and z, = (uy, hy) € X7 with
hs € R(A) such that f = Lz, — k121 — k2z2. Setting z = z, it follows that

Lz, — Bz1 — y29 = Lzy — K121 — Koza,
hence 8 = k1 and v = ko. Therefore, the triple
(B0, 70, wo) == (K1, K2, (W, T, [], h))
is the unique solution of (5.9) in Y, where 7, € Y5 solves
(VI V)L, = (nBdusl)r,, & € Wy (),

[7«] = ([uDux]esles) + [[p)]\];}’a (DRF(A1,0)he +hy), on X.

It is noteworthy that the relation

A 62D R, g

Bo =
[[P]]’Ya th”%Q(E)

(5.12)

holds. This follows easily by testing the first equation in (5.9) with u, and integrating
by parts. Assuming that Du, = 0, Korn’s second inequality yields u, = 0, hence m,
is constant and therefore [m.] = 0, since

DhF()\l,O)h* + hl = Ax’h* + )\lh* + hl

is mean value free. But then hy € R(A) N N(A) which yields hy = 0, since 0 € o(A)
is semi-simple, a contradiction. This in turn implies that 8y > 0, a fact that will be
of importance later on.
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Next, we consider the derivative of g with respect to (3, y, w) which we will denote
by Dsg in the sequel. It is given by

EAG - 1va
pAu pr
diva
[1050] + [4V 2] A
2[udsi] — G+ % Dy F (A, 0)h
Py [(iles)] — Bha — ha
We will now show that Dag(0, (0,70, wo0)) : Y — X is an isomorphism. Injectiv-
ity follows by testing the first equation with @, integrating by parts and invoking
the additional condition h € R(A). Therefore it remains to prove surjectivity of

D29(07 (50770)1”0))‘ For that purpose, let g9 = (g1>92ag3ag47g5) € X be given and
consider the equation

D2g(0, (Bo, Y0, wo)) (B, 4, ) =

D2g(07 (507 70, wO))(Bv Y 111) =g

First, let us show that it suffices to consider the special case g = (¢1,0,0,0,g5). To
see this, we solve the elliptic problem

(5.13)

pwu — pAu+ Vo =0, in Q\X,
divu = g2, in Q\X,
—[ndsv] — [pVow] = g3, on X,
—2[pdsw] + [r] = g4, on X, (5.14)

[ul =0, onX,
Pgs, (u(Du)vs,) =0, on S;\0%,
(ulvg,) =0, on S1\0%,

u=20, on S,

by Theorem 6.5.1, where w > 0 is large enough, to obtain a unique solution
(Ui, T, [4]) € X ]3':1Yj- Note that all relevant compatibility conditions at the con-
tact line are satisfied by the definition of the space X. Then, the (shifted) triple

(8,4, w) == (B, 4,1 — (ux, T, [1:], 0))

satisfies the problem

—pAu+ Vr = p(gr + wuy), in Q\X,
diveu =0, in Q\X,
—[uDu]es + [r]es — [[p)]\]% DypF(A1,0)hes =0, on X,
1
[u] =0, onX,
5 . 5.15
PYl(ules)] - B — k2 = g5 — B{(ules)], omxm, 19
Ps, (u(Du)vs,) =0, on S;\0%,
(ulvs,) =0, on S1\0%,
u=0, on Sy,
Oy, h =0, onX.

lIBR
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We recall that for the existence of a solution of (5.15) it is necessary that
P [(ules)] = (ules) because of the divergence condition and the boundary condi-
tions. Let us define f1 := p(g1 + wus) — Th[p(g1 + wus)] and fo 1= g5 — Py*[(uxles)],
where T is the solution operator from (4.4). With the help of the operator
L: X1 — X from Section 4.1 we may rewrite (5.15) as the abstract equation

Lz — Bz — Az = f,

where z = (u, h), f = (fi, f2) and z; := (0,h;) € N(L), j € {1,2}. It follows from
exactly the same considerations as for (5.11) that the latter equation has a unique
solution (5,4) € R? and z = (u,h) € X; with h € R(A). This in turn yields a
solution of (5.13), showing surjectivity of the operator D2g(0, (89,70, wo)) : Y — X.

The implicit function theorem yields the existence of some § > 0 and smooth
functions (8(s),v(s),w(s)) € R x R x Y such that g(s, (5(s),v(s),w(s))) = 0 for
all |s| < ¢ and (8(0),~(0),w(0)) = (Bo, Y0, wp). It can furthermore be shown that
PyFy(u(s),h1(s)) = Fy(u(s),hi(s)) and then also

Py [(u(s)les) — (v(s)|Varha(s))] = (u(s)les) — (v(s)|Varha(s)).

For s # 0 we multiply the equation g(s, (5(s),7(s),w(s))) = 0 by sd/(s) to obtain
the relation

Bs)is)
0
L(s)i(s) = 0 ,
B (9h(s)
B(s)(h(s) = My (5)) = A(s)ha(s)

where w(s) := sd/(s)
s

w(s), B(s) := —sa/(s)B(s) and F(s) := —so/(s)y(s). The
identity F(«(s),hi(s)) =

0 yields furthermore
o/ (s)hi(s) = o' (s) DaF(s), hi(s)) = —DpF(a(s), hi(s))Ri(s),

hence

Bs)u(s)

0
L(s)w(s) = ’
[pl7a Dy F(a(s), hi(s))h](s)

a(s)

B(s)(h(s) = By(s)) = A(s)ha(s)
Since DpF(a(s), hi(s))ha(s) = 0 it follows from the fourth equation that

i(s) = 2[uds(s)] + Gulals), b () +
e 1, p(a(s), () (s) - 1 (5) — 2o s))

a(s) B(s)
Setting h(s) := h(s) — k) (s) — %hg(s) and 2(s) := (a(s), h(s)), it follows that

L(s)2(s) = B(s)2(s)
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for all |s| < 4. Since 2(0) = —(0,h1 + Lh2) # (0,0) (b1 and hy are linearly

independent) it holds that 2(s) # 0 for all |s| close to zero. Furthermore 3(s) =
—sa/(s)B(s) > 0 for s # 0 close to zero, by Corollary 5.2.2 and (5.12), hence 5(s) > 0
is a positive real eigenvalue of the operator L£(s) from Step 2.

Step 4. In this step we prove nonlinear instability of any equilibrium (0, h,) of
(1.3) which is close to zero. Since the strategy follows one-to-one along the lines
of the proof of Theorem 4.3.1, we will only give a sketch of the proof. To explain
the strategy, we rewrite (1.3) in the shorter form Lw = N(w), 2(0) = zo, where
w = (u,m,q,h), ¢ = [r] and z = (u,h), z0 = (ug, ho). Let w, = (0,c4,0, hy) and
24 := (0, hy), where ¢, is a constant and h, is determined by Theorem 5.2.1 in a small
neighborhood of zero. Setting 1 := w — wy, this yields Ly = N (@), 2(0) = 20 — 2,
where L, := L — DN (w,) and

A

N () := N(0 + wy) — N(ws) — DN (wy)w,

since N(w,) = 0. Note that N € C? by Proposition 3.1.1 and N(0) = 0 as well as
DN(0) = 0. The operator L, = L. — DN (w,) is the full linearization of (1.3) at the
equilibrium w,. As in the proof of Theorem 4.3.1, we will decompose w as follows.
Let w > 0 and Bw := (u,0,...,0,h) for w = (u, 7, q,h). Then we consider the two
problems

~

wBw + Lyw = N(w), t>0,
z(0) = Zzo,

and

Here Zg = Zy + Zp, and Zj is is determined by Zy in a similar way as in Section 4.2.
Note that there exists s, € R close to zero such that L,w = wBw is equivalent
to 0;Z — L(s«)Z = wZ, where L(s,) denotes the operator from Step 2. For small
|s«| > 0 the operator L(ss) can be seen as a small perturbation of the operator L
from Section 4.1, wherefore it has the property of maximal regularity of type L,.
By Step 3 it holds that £(s,) has a positive eigenvalue. We are now in a position to
apply the same strategy as in the proof of Theorem 4.3.1 to prove instability of the
equilibrium z, by making use of the corresponding spectral projections. This yields
the following result.

Theorem 5.3.2. The equilibria on the subcritical branches (sa/(s) < 0,0 < |s| <)

gien by Theorem 5.2.1 and Corollary 5.2.2 are unstable in the sense of Theorem
4.8.1.

Remark 5.3.3. The results in this chapter carry over to the two dimensional case,
ie. if G = (—R, R). Indeed, the eigenvalue A; > 0 of the Neumann Laplacian in
La(—R, R) is simple. This allows to apply the results of Crandall & Rabinowitz. It
can also be shown that the full linearization £(s,) has a positive eigenvalue for each
|s«| > 0 close to zero.



Chapter 6

Appendix

6.1 Extension operators

Proposition 6.1.1. Let p > 2. There exists a linear and bounded extension operator ext
from

OW;/271/p(J; LP(R)) N LP(J; W;fQ/p(R))

to
oW Y2120 (T Ly(R x Ry)) N Ly (J; WA VP(R x Ry ))

such that [ext v]|rx (o} = v, for allv GOW,}/%UP(J; L,(R)) N L,(J; W;fQ/p(R)).
Moreover, if

v =wv(t,z,y) €W, > (J Ly(R x Ry)) N Ly(J; W, VPR x Ry)) =: X,

then
try—o v €W/ 2 VP (J; Ly(R)) N Ly(J; Wy~ 2/P(R)) = Y

and there exists a constant C > 0 such that
[try=o vlly < Cllv]lx
forallv e X.
Proof. Let Xo = L,(J; L,(R)) and consider the operator (9; — 2) in X with domain

T

oWy (J; Ly(R)) N Ly (J; W2 (R)).

The operator —A := —(J; — 02)'/? generates an analytic semigroup {e~4Y},>0 in X with
domain D(A) = [Xo, D(A?)]; /5. Since

Da(1—2/p,p) = (X0, D(A))1-2/pp = (X0, D(A*)1/2-1/p.p»
by [65, Theorem 1.15.2], we obtain
Da(1=2/p,p) = oW,/* VP(J; Ly(R)) N Ly (J; W, /7 (R)).
Hence, if v € Da(1 —2/p,p), then
[y — e_Ayv] S W;_l/p(R+; Xo) N Ly(Ry;Da(1 = 1/p,p))
by [19, Theorems 3 & 8], where Da(1 — 1/p,p) = (Xo, D(A?))1/2_1/2p,p, hence

Da(l = 1/p,p) =W/~ (J; Ly(R)) 1 Ly (J: W~ /7(R)).

91
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Setting [ext v](y) = e~4%v yields the first claim, by the Fubini property of the spaces Wy
For the proof of the second assertion, we consider v(¢, z,y) as a function w(y)(t,z), i.e.
w(y)(t,x) := v(t,z,y). Then we have

w e WL VP(Ry; Xo) N Ly(Ry; Da(l — 1/p,p)),

where X and A are defined as above. By [35, Lemma 4.1, (4.4)] with @« = 1 —1/p and
p =1 it holds that tr|,—¢ is a continuous mapping from

Wy~ P(Ry5 X0) N Lp(Ry; Da(l — 1/, p))
to Da(1—1/2p,p) = D42(1/2 — 1/p,p) = (X0, D(A?))1/2-1/p,p with
(X0, D(A*)1j2-1/pp = oW/ >V (J; Ly(R)) N Ly (J; W, /P (R)).
The proof is complete. O
Proposition 6.1.2. Letp >2, J=1[0,T],0<T < oo or J =R, and
g €WEPTYP(J; Ly(R)) NoH ) (J; W —2/P(R)) N Ly (J; W22/P(R)) =: Y.
Then there exists
h €oW2™Y2(J; Ly(R)) NoHp (J; W2HP(RY)) N Ly (J; Wa—Y/P(R2)) =: X,

such that Oyh = g at y = 0.
Moreover, the mapping (tr |y—o 0 0y) : X =Y is continuous.

Proof. (1) Consider the operator (9; — 82) in X := L,(J; L,(R)) with domain
oW, (J5 Lyp(R)) N Ly(J; W (R)).

Let A := (0, — 02)'/2 with domain D(A) = [Xo, D(A?)];/2. Denote by e~“¥ the analytic
Co-semigroup, generated by —A in Xy and set h(y) := —e~4YA~1g. Since

9,009, A” g, A rg €oW,P V(T3 Ly(R)) 0 Ly (J; W 2P (R))
it follows from Proposition 6.1.1 that
h, Och, Ah, Adih € Wy~ P(Ry5 Xo) N Ly(Ry; Da(l — 1/p, p)).

The operator A~! is an isomorphism from (X, D(AQ))l/Q,l/gp’p to (Xo, D(AQ))lfl/prp by
[65, Theorem 1.15.2], hence h as well as 9;h belong to

oW 2P (5 Ly(R3)) N Ly (J; W2 —H/P(RE))

by the Fubini property. Furthermore 9, : (W;(J;X) — oW; '(J;X), s € [1,2) is an
isomorphism, hence

h €Wyt (J; Ly(RY)) NoWy (J; W~ /P (RY)). (6.1)
(2) Next, we use the regularity
Ag €oW, ™ P(; Ly(R)) 0 Ly (J; W, "2/P(R)),

to conclude
—0ih = A%e WA g = e WAg € W) P(Ry; Xo) (6.2)
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by [19, Theorem 8], since
Ag € Da(1—2/p,p) =oW,/27V/P(J; Ly(R)) N L, (J; W, /P (R)).
In particular, this yields that
h e WIVP(Ry; Ly(J; Ly(R))).
(3) It remains to show that
b€ Ly(Rys Ly(J; Wi /7 (R)).

To this end we consider the semigroup {e=4¥}, > in Xg := L,(J; W;_l/p(R)). The domain
of the operator A% := (9, — 92) in Xy is given by

oW (J; WA VP(R)) N Ly (J; WEHP(R)).

Then we have
[y — e~ Mg] € L,(Ry; D(A)),

if
9 € Da(l = 1/p,p) =W,/ > 2P (J; W)~ HP(R)) N Ly (J; W, /P (R)).
Note that the assumption on g implies
g €oHL(J;Wa=2/P(R)) N Ly(J; W2 H/P(R)) < oW/ 2712 (J; W1 Y/P(R)),
which follows from [35, Proposition 3.2]. Replacing g by A~1g it follows that
[y — e AT g] € Ly(Ry; D(A?)),

hence
[y e AT g] € L,(Ry; L, (J; WE—H/P(R))).

(4) For the proof of the second assertion, note first that d, maps X continuously to
oWE2TY20 (] L, (RE)) Mo Hp (J; W HP(RY)) N Ly (J; W H/P(R3)),

since

oW2H2P(J; Ly(R3)) NoHL(J; W2 H/P(R2))

is continuously embedded into
oW, (5 Hy (RY)),

by [35, Proposition 3.2]. Then the assertion follows from similar arguments as in the proof
of Proposition 6.1.1. O

6.2 Partition of unity with vanishing Neumann trace

Proposition 6.2.1. Let G C R? be a bounded domain with boundary 0G € C™*1. Then
for each finite open covering {Uy}i_, of OG in R? there exists an open set Uy C G with
Up NOG = 0, UkN:o Ui O G and a subordinated partition of unity {1x}~_, C C™(R?) such
that supp ¢ C Uy and 9,10, =0 at IG.
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Proof. Let {U; }jvzl be a finite open cover of 0G. Then there exist open sets V; such that
K; :==V; C Uj and U/ng=1 V; D 0G. Moreover, there exist functions ¢; € C°(U;) with
0 < ¢; < 1 such that ¢j|x, = 1. It is well-known that for sufficiently small a > 0, the
mapping F : 0G x (—a,a) — R™, defined by F(p,r) := p + rv(p), is a C*-diffeomorphism
onto its image U, := im F. The inverse mapping F~! may be decomposed as F~! = (II, d),
where IT € C™(U,; 0G) and d € C™(U,; (—a,a)). Note that II(x) denotes the nearest point
on G to x € U, and d(z) stands for the signed distance from = € U, to OG. It can be
shown that
U, = {z € R" : dist(z,0G) < a}.

Choose a > 0 small enough such that U, C Ujvzl K; and define new functions ¢;(z) =

¢;(I(x)) for € U,. It follows that V¢;(x) = DII"(z)V¢;(Il(x)), hence 9,¢;(z) =
(Vo;(II(x))|DIl(x)v(x)) = 0 for z € G, since DII(z)v(z), x € OG. Let

= Jei@eld),  xeU,,
¢j(x) = {0’ iy

where ¢ € C°(R; [0, 1]) such that p(s) = 1if |s| < a/2 and o(s) = 0 if |s| > 3a/4. Then
we still have 0,¢(x) = 0 for € J0G. Define K; := K; N 0G. Then there exists some
6 € (0,a/2) such that Fj := F(Kj,[~6,0]) is compact, F; C U; and Uj\;l F;, 2 0G. It
follows that ¢;| i, = 1 and therefore ojl F =1

Consider the set G := G\ U;\le F;. Then G is a proper open subset of G. Choose an
open set Uy C G that covers G and a set Fo D G that is compactly contained in Up. Define
Fy := Fy. Then there exists a smooth function ¢y € C°(Up; [0, 1]) such that ¢o|p, = 1.

In partjcular it lzolds that U;'V:o F; D G and Z;-V:o ¢j(x) > 0 for z € G. Finally, we set
U = b/ g by k=0,...,N. Then Y3, = 1 and

~ ~ N ~
Doy = P O 2 =099 _ 0,

it (24)

for k € {0,..., N} at G, since by construction also d,d0 = 0 at dG. The proof is complete.
O

It is possible to extend the previous result to cylindrical domains  := G x (Hy, H3). To
this end let Sy := G x (Hy, H),

Sy = G x {H;},

j=1
and ¥ := G x {0}.

Proposition 6.2.2. Let G C R2 be a bounded domain with boundary 0G € C™t! and
Q=G x (Hy,Hy), H <0< Hy. Then for each finite open covering {Uk}ivzl of 0S5 U 9%
in R™ there exist open sets U; CR3, j € {N +1,...,N + 7} such that

e Unt1 C G x (Hy,0), Uvie C G x (0, Ha),
UntsNUnt1NS1# 0, UnysN(ZUSe) =0,
UniaNUniaNS1 #0, UnaN(ZUS) =0
UnisNE #£0, Unys N (S1USy) =0,
UntsNUN1NS2 #0, UnisN(S1UE) =10,

)
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° UN+7ﬂUN+2ﬂSQ 7&@, UN+7ﬂ(S1UE) Z(Z),
o UU; 00

Furthermore, there exists a subordinated partition of unity {dk fc\’:f C C™(R3) such that
supp ¢ C U and O, pr = Oe, o =0 at 0S5y U 0%.

Proof. The idea of the proof is quite simple. Let {Uj}év:ll be an open covering of 9% in
R” and define U; := U; N {R"~! x {0}}. Let V; := U;, j € {1,..., N1}, where we identify
V; with a set in R"~!. Then, of course, {Vj}j\f:l1 is an open covering of 9% in R"~!. Now
we are in a position to apply Proposition 6.2.1 to find an open set Vo C X such that
ij:lo V; D X. Furthermore, by Proposition 6.2.1, there exists a subordinated partition of
unity {¢]2};Y:10 C C™(R"1) with supp 1/)]2 C V; and 81/3(;%‘2 =0 at 9X.

Now we define d)?(x’,xn) = ¢J2(z’)<p(xn), where ¢ € C°(R;[0,1]) such that ¢(s) =1
if [s|] < § and @(s) = 0 if |s| > 25, where § > 0 is sufficiently small. It follows that
¢jz € CT(R™) and, if § > 0 is sufficiently small, then supp ¢]2 Cc Uj for j € {1,..., N, }.
Furthermore we still have 8,,,¢; = 0 and, in addition, 8., ¢3 = 0 at %, since ¢ is constant
in a neighborhood of s = 0.

The same procedure can be applied for the charts covering 952. The remaining set which
is a proper subset of Q\(S; UX) can be covered by finitely many open charts. O

6.3 Auxiliary elliptic and parabolic problems

6.3.1 Elliptic problems
The following result deals with the two-phase elliptic problem

A—Au=f in Q\X,
[pu] =91 on X,
[Osu] = g2 on X, (6.3)
Buslu =h; on S51\0%,

8V52u = h2 on 527

where €2 and ¥ satisfy one of the following conditions.

(a) Q is either a full space, a (bent) half space or a (bent) quarter space and ¥ = (),

(b) Q is either a full space or a (bent) half space with outer unit normal —e,_; at z =0
and ¥ = {R"! x {0}} N Q,

(¢) Q=G x (Hi, Hs), H <0< Hy, is a cylindrical domain where G is a bounded domain
with boundary G € C* and ¥ = G x {0}.

The sets S7 and Ss are the corresponding vertical and horizontal parts of the boundary of

Q, respectively.

Lemma 6.3.1. Let n = 2,3, p > 2 and assume that ) and X are subject to one of the
conditions in (a)-(c) above. Then there exists A\g > 0 such that for each A > Ao the prob-
lem (6.3) has a unique solution u € WE(Q\E) if and only if the data satisfy the following
regqularity and compatibility conditions.

1. f € Ly(Q),

2. g e W2YP(),

3. go € Wy HP(®),

4. hy € W VP(8,\0%),
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5. ha € Wp HP(Sy),
6. [ph1] = O0v,u91 on OX.

Furthermore, for each Ao > 0 there exists a constant C = C(Ag) > 0 such that for all A > Ao
the estimate

Mullz, + lullwz < (1712, + A lgrll s
AN gl lgorse + Bl

for the solution of (6.3) is valid.

Proof. For convenience we restrict ourselves to the case n = 3. The arguments for the case
n = 2 are similar.

(a) If Q and ¥ are subject to the first two conditions in (a), i.e. Q is a full space or a half
space, then the result is folklore. So let us consider the case where ¥ = () and  is a quarter
space. To be precise, let  := RxRy xR; with S} := Rx {0} xR and S3 := Rx R x {0}.
Therefore we have to study the problem

Au—Au=f, x€Q,
Ou = hl, x e 51, (64)
83u = hg, T € Sy.

Extend f and hy with respect to z2 (by even reflection) to some functions f € L,(R? x R,)
and hy € W; —l/p (R?) and solve the half space problem

No—Au=f, zeR?*xR,,
D5t = hy, x € R?x {0},

to obtain a unique solution u € Wg (R? x R, ) for each A > 0. Note that by symmetry, the
function [z — @(x1, —x2, 23)] is a solution of this problem too. Therefore, by uniqueness, it
holds that d»iu|s, = 0.

In a next step, we extend h; by even reflection and with respect to the x3 variable to
some hy € W, —i/p (R?) and solve the half space problem

AM—Av=0, zeRxRL xR,
az’DZ;LQ, .’L‘ERX{O}XR,
to obtain a unique solution & € W2(R x Ry x R) for each A > 0. As above, by symmetry
and uniqueness, it holds that d39|s, = 0. Therefore it follows that u := (@ + 0)|q is the

unique solution of (6.4).
Finally, let 2 be a bent quarter space with Sy as above and

S1,0 = {(x1,22,23) € R?: 2y = 6(z1)},

where 0 € BC3(R) with ||0]s + [|¢[lcc < 7 and 1 > 0 can be made as small as we wish.
Then the corresponding result follows from change of coordinates (set Zo := x5 — 6(x1))
and perturbation theory for elliptic problems. We will give a detailed proof for the case of
a two-phase half space in part (b) below. The technique carries over to this case. Indeed,
things are easier in (a) as there are no compatibility conditions, since X = .

(b) Let Q2 = R3 and ¥ = R? x {0}. Then we have to solve the problem

Au—Au=f xeQ\X,
[[pu]] = g1, T e 27 (65)
[Osu] = g2, €3,
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where p = p1Xa;5<0+ P2Xazs>0 and p; > 0. Since f € L,(R?) we may first solve the full space
problem
AM—Ad=f, xR

to obtain a unique solution % € W72(R™) for each A > 0. Consider now the problem
M—Au=0, z€Q\3,

[pul = g1 — [pi] =: g1, x €%, (6.6)
[[631_1,]] =gy, T EX.

By semigroup theory, it is easy to see that the unique solution of (6.6) is explicitly given by

- 1 e Lrsg, 3 > 0,
u(z3) = L
pr+pa e Po™a, s <0,
where L := (A — A,)'/? and
at = g1+ paL7 g2 — (p1 + p2) L7092, am = —(g1 + p2L7 ) go-

Therefore the function u := %+ @ is the unique solution of (6.5) which exists for each A > 0.
Let now 2 = Rx Ry xR and ¥ = {R? x {0}} N, i.e. we consider the case of a two-phase
half space. Now we have to solve the problem

A —Au=f in Q\X,
[pu] = g1 on X,
[Osu] = g2 on X,
Ou=hy on S;\0%,

(6.7)

where 51 := R x {0} x R. We will first reduce (6.7) to the case hy = 0. To this end we first

extend hi := hy|y, >0 with respect to the x5 variable to some hf € Wy~ /P(R2) and solve
the half space problem

Mt — Aut =0, 25 >0, dput = BT, T9 =0,

to obtain a unique solution u™ € WZ?(R x Ry x R). Then we repeat the same procedure for
hi := hilzs<o0 to obtain a unique solution u~ € W2(R x Ry x R). Define the function

_ {u+7 €3 Z Oa

=<
u-, z3 < 0,

and consider the problem

Mi—Au=f in Q\X,
[o

[[63 = g2 on Ea
82’[1 =0 on 51\82,

% =g on X%, (6.8)

0
0]

where f := f, g1 := g1 — [p] and go := g2 — [031]. Note that by the compatibility condition
on g1 and hy at X it holds that d2g1 = 0 at OX. Therefore it is possible to extend f,g; by
even reflection in 25 to some functions f € L,(R3), g1 € WpQ_l/p(R2) and g € Wpl_l/p(RQ).
Solve (6.5) with (f,g;) replaced by (f, §;) to obtain a unique solution 7 € W2 (R? xR). Since
the function [x — 4(x1, —x2,x3)] is a solution of this problem too, it follows by uniqueness
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that 920 = 0 at S1\0%, hence @ := 1lq is the unique solution of (6.8). Finally, u := @ + @
solves (6.7) for each A > 0 and this solution is unique.
Consider now the case of a bent two-phase half space with outer unit normal —es at z = 0.

To be precise, let
Qo :={z e R : 25 > O(21)},

where § € BC3(R), with 0(0) = 6/(0) = 0 and ||6'||oc + [|0]|cc < 1, where 1 > 0 can be made
as small as we wish. Furthermore, let S; g := 9y and 2y := {R? x {0}} N Qy. We have to
investigate the following problem.

Au—Au=f in Qp\Xo,
[pu]l = g1 on X,
[Osu] = g2 on X,
u=h; on S19\0%.

(6.9)

0

Voxg

First of all we extend f , g1 and gy to some functions f € L,(R?), §; € VV2 1/p(

R?) and
go € VV1 1/p(R2) respectively. Then we solve (6.5) with (f, g1, g2) replaced by (f,91 J2) to
obtain a unique solution @ € W72(R? XR). Let hy := hy — Oy, Uls, , and note that [phi] =0
at 0%y by the compatibility condition on (g1, h1) at 9Xy. We arrive at the problem

AM—Az=0 in Qp\Xo,
[pa] =0 on Xy,
[O5a] =0 on X,
81,82911 =hy on S1.0\0%g.

(6.10)

Transforming Qg, S1 9 and Xgto Q =R xRy xR, S; = Rx {0} xR and ¥ = {R? x {0}} NQ
via the diffeomorphism

Q> (i’l,fg,.’fg) — ({fl,.’fQ + 0(.’21),.’?3) € Qg
yields the transformed problem

Ni— Ad = My (6,3) in Q\5,
i =0 on %,
[0s4] = on X,

82ﬁ = M2 9 u -V 1+ 0'2h1 on Sl\aE,

(6.11)

where @(Z) := @(Z1, T2 + 0(Z1), T3), h1(T1,Z3) := h(Z1,0(z1), T3),
My (0,4) := —20'(21)010200 — 0" (%1) o0 + 0' (1) 2030,

and My(0,4) := 0'(71)014 — 0'(Z1)%020. Observe that [[prl]] =0 at 0%.
Define the function spaces

E:={t € WJ(Q\Y): [pd] = [03a] = 0 on X},
equipped with the equivalent norm [|i[|g, := AY/2¥1/2|a|, + )\1/2p’1/2||ﬁ||wpz, A >0 and
Fi={(f1, f2) € Ly() x W, " VP($1\D%) : [pfo] = 0 at 03},

with

I(f1, f2)llen == A2 2 A, + 1 f2llyyz=170, A > 0.
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Furthermore, let a linear operator L : E — F be defined by

X (Aﬁ — Aﬁ)
Lu = . .
O2ti|s,\ 0%

It follows from our previous considerations that L : E — F is an isomorphism. Moreover,
for each Ao > 0 there exists a constant C' = C'(Ag) > 0 such that for all A > )¢ the estimate

IL=' Fllgx < CIFllpn, F€F, (6.12)

is valid.
Let now F := (0, —v/1+ 02hy) and M(0,4) := (My, My)(0,4). Clearly, for each @ € E,
it holds that M (0,4) € F, since

[p0 (z1)0rt] = 0'(z1) 01 [pt] = O
at 0. Furthermore it holds that
[pV/1+072h] = /14 62[ph] =0

at 9% as well, hence F' € F. Therefore, for @ € E, the expressions L~'M (0, 1), L~'F are
well defined in E and we may rewrite (6.11) in the shorter form

a=L"'M,a)+ L 'F. (6.13)
Making use of trace theory, we may estimate the norm of M (6,4) in F as follows.
1M0, ) |le < C o) (100 Va2, + 110" |oo I Vil 2, )-
Here C'(X\g) > 0 is a universal constant, since

I f)lles < A2l + [ fellyya-

for all A > X\¢. By interpolation we obtain furthermore

~ ~nl/24~1/2
lallw; < ellall”l[alys,
hence, by Young’s inequality
. 16" |, -
10" oI Vallz, <c /\I/QC;OHUHE,»

Choosing first ||0'||« sufficiently small and then A > 0 sufficiently large, it follows that for
each £ > 0 there exist numbers 79 > 0 and Ao > 0 such that ||M(0,4)|r < ||@||g, whenever
[10'lcc <1 € (0,m0) and A > X\g. The estimate (6.12) and a Neumann series argument yield
a unique solution of (6.13).

(c¢) The proof for this assertion uses the technique of localization. By Proposition 6.2.2
there exists a finite covering of 2 and a subordinated partition of unity {¢k}£[:1 such that
Ovoe Pk = 0 at (0¥ U 9S2) N supp ¢y.

Multiplying each equation in (6.3) by ¢, we obtain problems in local coordinates, which
correspond to perturbed versions of one of the problems which have been treated in (a) &
(b). Assume that u is a solution of (6.3), uy = u¢r, g¥ = g1¢x and h¥ = hi¢y, then
[pur] = gt and

Ovg, Uk = P0yg U+ ubyg, O = Qrhy = Ry,

since vs, = (vpg,0)7. In particular, the commutator term in the Neumann boundary
condition is identically zero. By the same reason, one has

Dvs, 91k = drlpha] = [phi],

hence the local data (gf, h}) satisfy the compatibility condition at % N supp ¢y.
The remaining localization procedure follows along standard arguments. We refrain from
giving the details and refer the reader e.g. to [17]. O
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We shall also prove some results on the solvability of (6.3) in case A =0. If A = 0 and Q
is unbounded, one cannot expect to obtain u € L, (). Instead, we are looking for solutions

u€ WZ}(Q\E) N Wg(Q\E), or equivalently Vu € W) (Q\X).

If Vu € W, () is a solution of (6.3) with gy = 0, then, by trace theory, f € L,(Q),
g2 € W,}_l/p(E), hiy € W;‘l/p(sl\az) and hy € W;_l/p(Sg). There is some hidden
compatibility /regularity condition for the data (f, g2, h1). To see this, let ¢ € C°(£2). We
multiply (6.3); by ¢ and integrate by parts, to obtain the identity

<(f5927h17h2)5¢> :Af¢ dl‘—|— g h1¢ dsl

+/ hgqdeg—/ggqde:/Vquﬁda:
Sa b Q

It follows that the linear mapping [¢ — ((f, g2, h1,h2), ¢)] is continuous on C°() with
respect to the norm ||V - ||L,,/(Q)~

If © is a full space, a (bent) half space or a (bent) quarter space, then it is well known,
that C2°(Q) (hence also W, (1)) is dense in WI},(Q) with respect to the norm ||V - [ ().
Therefore, since each functional in

Wl Q) = (W;,(Q))*,

p

is uniquely determined by its restriction to CZ° (), it follows that (f, g, h1, h2) yields a well
defined element of W, *(2) with norm given by

1Cf, g2: vy ho) Iy -1 := sup{{(f, g2, h1, h2), 8)/IV 8|z, = ¢ € C=(2)}
= sup{((f, g2, h1, h2), 0} /IVSllL,, = & € Wy (Q)}.

Note that if € is bounded, then the above representation formula for (f, g, k1, h2) holds for
each ¢ € W, (Q), since W (Q) € W}(Q) if Q is bounded. This follows for example from the
Poincaré-Wirtinger inequality. However, if € is unbounded, then the above representation

for (f, g2, h1, ha) holds at least on the dense subspace C°(€Q).
Furthermore, if S; =0, j € {1,2} and/or ¥ = (), then we simply neglect h; and/or g in
(f7927h'17h'2)-

We are now in a position to state the next auxiliary lemma.

Lemma 6.3.2. Letn=2,3, p> 2 and A = 0. Then the following assertions are valid.

1. If Q and X satisfy one of the conditions in (a),(b) above, then there exists a
unique solution Vu € W, (Q\X) of (6.3) with g1 = 0 if and only if f € L,(Q),
g2 € W VP(2), by € Wy VP(81\0%), hy € Wy Y2(Sy), [phi] = 0 on 9% and
(f, 92, h1, he) € W ().

2. If Q and X are subject to the condition (c) above, then there exists a unique solution
ue W2\X) of (6.3) with g1 = hy = hy = 0 if and only if

FeLO(Q) :={feL,(Q): / fdx = 0}.
Q

Proof. 1. (a) If Q = R™, then we have to solve —Au = f for f in WP*I(Q) NL,(Q). It is
a folkloristic result that whenever f € L,(R™), then there is a unique solution u € WI? (R™)
of the equation —Awu = f. Multiplying —Au = f by ¢ € C°(R"™) and integrating by parts,
we obtain

Vu-V¢ de =— Augp dx = fo dx.
Rn Rn Rn
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Let us show that there exists a constant C' > 0 such that the estimate

| fRn Vu- V¢ dx|
VoL, ®n

IVl 1, @) < Csup{ cp € CSO(R”)} (6.14)

is valid. Indeed, it holds that

sup | Jon Vu- Vo dz|
Ve, &)

| Jan Vu-VO;0 dz|

IVO;elL,, mm
1| [gn O5u - Ap dz|
- C 1AL, &)

e CSO(]R”)} >
(6.15)

for all ¢ € C°(R™), where we integrated by parts and applied the Caldéron-Zygmund
inequality [[V2¢l|L ,@n) < CllAQlIL, @n)-

It is well-known that AC2°(R™) is dense in L,/ (R™) with respect to the L, -norm. Taking
the supremum on the right hand side of (6.15) over all functions ¢ € C°(R"™) we obtain
the desired inequality (6.14). Evidently, for the solution u € Wi (R™) of —Au = f it follows

that

IV, ey < Csup { B2 L
" VoL, @

p € ch(Rn)} .
hence, if f € L,(R") N W, *(R"), then

21 = — e . COO Rn o0,
||f||Wp sup { ||v¢||Lp,(R”) (b € c ( )} <

and we obtain the estimate |[Vul|, gn) < C|fllyy;-1. This shows that u € VVp1 (]R")QW}? (R™)
is the unique solution.
Let Q = R? x R, be a half space and consider the problem

—Au=f =z,

6.16
Jsu=h, z€S, ( )

where S := 9Q = R? x {0}. By Lemma 6.3.1 there exists some \g > 0 such that the shifted
problem

Mt —Au=f, x€qQ,

6.17
Osu=h, x€S, ( )

admits a unique solution @ € W7 (Q) satisfying the estimates
lullwzce) < CUfllz, @) + 1hlly1-17n ),

and
lalhws @) < CICE Rl -

To see the validity of the second estimate we use the notation from [3, Chapter V] and let
Ag := Ao — A with domain
FEi = D(Ao) = {U S WPQ(Q) :03u =0 on S}

in By := Ly(Q). Then Ay is a linear isomorphism from E; to Ey. Let Ey /9 := [Eo, E1]1/2 =

W, () and E_y )5 == (Eii/Q)* = (Wy ()" (A} = Ay, since Ag is symmetric) and denote
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by A_j/; the E_; o-realization of Ag. By the results in [3, Chapter V] it follows that
A_y2: Eyj2 — E_y/3 is a linear isomorphism. Moreover, since E; is dense in FE /3, it holds
that

<A—1/2Ua¢> = )\o/

u¢dw+/Vu~V¢dx
Q Q

for all ¢ € W,,(2) and each u € W, (9).
Multiply the first equation in (6.17) by ¢ € WZ}/(Q) and integrate by parts to the result

)\O/Qa(ﬁdx—k/QV@ngd:v:/ﬂfd>dx—/sh¢|sdS.

By assumption, the right side of the last equation determines a functional (f, k) on W;/(Q),
hence also on Wpl,(Q). Therefore it follows from the considerations above that

u fh), ¢
HUHWZ}(Q) < Cl(f, h)H(Wl/(Q))* =C sup M
! 0FpEW ), (Q) H(bHW;,(Q)
fa h 7¢
<C sup L(f. ), 0) = ClI(f; W)ly1()-

0£SEW, () VoL,

Therefore it suffices to study the problem

—Au, = fio, €Q,

6.18

Osu, =0, z€8, ( )

where f, := f 4+ Aa. Observe that f, € L,(2) N ( ). We extend f, with respect to x3
by even reflection to some f to obtain f € L,(R ) - 1(R3). Solve the full space problem

—A@ = f to obtain a unique solution @ € Wl(IR3 )n VV2 (R?). By uniqueness and symmetry,
it follows that (x1, 22, x3) = u(x1, 22, —x3), hence Z“)Su =0on S. Since

V|, @

W, L(R3)
and ||f||W 1(rs) < 2||f*||w 1) (f is the even extension of f,) it follows that

IVudllz, @) < Cllifllys1 o)

The function u := @ + 4|g = @ + . is the desired unique solution of (6.19), satisfying the
estimates
IV2ullz, @) < CUIFllz @) + Ihllyi-1 )

and
IVullz, @) < ClI M- o

Uniqueness follows by even reflection of the solution of (6.16) with f =h =0 at S and the
uniqueness result for the full space.
If @ =R x Ry xRy is a quarter space, we have to solve

—Au=f, x€Q,
Ou = hl, T €5, (619)
631& = hg, T € SQ,

where S7 = R x {0} x R} and S; = R x Ry x {0}. The data satisfy f € L,(Q), h; €
Wy 7)), j = 1,2 and (f. b, ha) € W, ().
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By Lemma 6.3.1 we first solve
At —Au=f, x€Q,
Ot = hy, x €5y, (620)
O3t = hg, x €S>,

for some sufficiently large Ao > 0 to obtain a unique solution @ € WZ(Q). Note that @
satisfies the estimates

[allwz@) < CUfllz, @ + 1Pallya-re gy + 1P2llya-1ms,)s
and
lllwy o) < CII(f, b, h2)ll -1 q)-
We arrive at the problem
—Au, = fey TEL,

Oy = 0, xe€5, (621)
Osu, =0, x €8s,

where f, := f+Au € Wp_l(Q) N L,(£2), which follows from integration by parts. Extend f.
to the half space Rf_ by even reflection, i.e. we set

f(.]f) — f*(l'l,l’g,l'g), g 2 07
fe(w1, —m2, 223), x2 < 0.

Then f € W, 1(R3) N L,(R2). Next we extend f by even reflection to the full space R? by
defining

f($1,$2, —1‘3), T3 < 0)

(@) = {f(iﬁl,afz,xs), z3 > 0,

This yields that f € WP_I(R3) N L,(R3). Solve the full space problem —Ad = f to obtain a
unique solution 4 € Wpl(]RS) N Wg (R?). Since with @ also @(—x3) and @(—x3) are solutions
of =A@ = f, it follows from the uniqueness of the solution that @(xs) = @(—x3) and
@(x2) = 4(—2x2), hence O34 = 0 on Sy as well as d2% = 0 on S;. Since

IVudlz, @) < IVl @s) < Ol gs),

and ||f

Wt @e) < CHf*”W;l(Q) it follows that

IVellz, ) < Cllfelli 1 o

The function u := @ + 4| = @ + u, is the desired unique solution of (6.19), satisfying the
estimates

IVullz,@) < CUIF Iz @) + Ml yi-1m g,y + I1h2lly1-1m(g,):

and
IVullz, @ < CI(f, hlah2)||W;1(Q)~

If 2 is a bent quarter space, we will use change of coordinates and perturbation theory to
prove the assertion in this case. We will give a detailed proof for the case of a bent two-phase
half space below. The technique from this case carries over to the bent quarter space case.
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(b) Let 2 = R3 and ¥ = R? x {0}. Consider the problem

—Au=f in Q\X,
[pu] =0 on X, (6.22)
[Osu] = g2 on X,

with f € L, (), g2 € W, ~/P() and (f, g2) € W, ().
By Lemma 6.3.1 we may first solve the problem
Xt —Az=f in Q\X,
[pa] =0 on %, (6.23)
[0su] =g2 on %,

where \g > 0 is sufficiently large but fixed. This yields a unique solution u € Wg(Q\E)
Next we consider the equation —A@ = f in R3, where f := f + Au € W;l(R?’) N L,(R3),
since

/(f—|—Aa)¢dx:—/g2¢dE+/ fode— | Vu-Vo¢ dz.
RS b RS RS

by what we have already shown, this full space problem admits a unique solution @ €
W, (Q) N W2(Q). Finally we study the problem

“AG=0 in O\Z,
[pi] =1 on %, (6.24)
[054] =0 on X,

with §1 := —[pt] € Wpl_l/p(Z) N Wﬁ‘””(z). The solution is given in terms of the Poisson
semigroup as follows.
~ 1 e_LJ:Bglu x3 > 07
U(zg) = L a
p1+p2 | —e L=m)gy, x3 <0,

where L := (—A,/)/2. By semigroup theory it follows that @ € WZ}(Q\E) HWE(Q\E). Here

we use the fact that 1
> —s —Lz dz b
(/0 Lk ‘)p||Lke L g|z£p(2)z) (6.25)

defines an equivalent norm in W;(E) fors >0and k > s (if s =j—1/p, 7 € {1,2}, we
choose k = j). The function u := % + @ + @ is the unique solution of (6.22), satisfying the
estimates

||V2uHLp(Q) < C(Hf”Lp(Q) + ||92HW;*1/P(E));

and
IVull, @) < CIF 92) 7 @)

The uniqueness of the solution can be seen as follows. Let u € Wp1 ()N Wg (Q\X) be a
solution of (6.22) with f = go = 0. We want to show that Vu = 0 in Q\3. To this end we
define two functions

v(w1, T2, 23) 1= pou (1, T2, 73) — pru—(T1, T2, —13), (T1,22) € Rz, z3 > 0,

and
w(z1, T, 3) = Uy (T1,To, T3) + u_(T1,T9, —3), (T1,72) € R?, x5 > 0,
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where u4 := u|m320. It follows that v and w solve the half space problems
Av=0, (x1,20) ER? 23>0, v=0, (z1,72) € R? 23 =0,

and
Aw =0, (x1,22) €ER? 23>0, dsw =0, (x1,72) € R? 23 =0,
respectively in Wz} R3)N Wg (R3). Therefore Vw = Vv = 0 by even or uneven reflection
at {xg = 0}. This yields
0= p2Vuy +p1Vu_,
0= VU+ - V’U,_,
wherefore Vu_ = Vuy =0, hence Vu =0 in Q\X.
Let now Q =R3 x R with ¥ = {R? x {0}} N Q. Here we have to solve the problem
—Au=f in Q\X,
[ou] =0 on X,

[Osu] =g2 on X, (6:26)
Oou=hy on S1\0%,
with [phi] = 0 at 9%. For some large Ay > 0, we first solve the problem
Aot — Au = f in Q\X,
[pi] =0 on X, (6.27)

[0s5a] = g2 on X,
8212 = hl on S1\827

by Lemma 6.3.1, to obtain a unique solution @ € W2(Q\X). Let f. := f+ Au and note that

fv € Wp_l(Q) N L, (§2), which follows from integration by parts and from the assumption on
(f,g2,h1). We extend f, with respect to x5 by even reflection to some function

r {f*(m17x27x3)7 $220»

J(@) = fe(x1, —22, 23), x9 < 0.

Then f € Wp_l(R3) N L,(R?) and we may solve the full space problem —A#% = f to obtain
a unique solution @ € Wpl (R3) N WE(RS) with the property @(zs) = @(—x2), hence dxt = 0
at S1\0X. Consider next the problem

At=0 in R™X,
[pi] =g on %, (6.28)
[[837)]] =0 on E,

where g := —[pi] € Wpl_l/p(E) N sz_l/p(E). As in the previous case, the unique solution
RS WZ}(Q) N WZ}(Q) of (6.28) is given in terms of the Poisson semigroup.

Finally, since @(z9) = a(—x2), it follows that g(z2) = g(—x2), hence @(xs) = 4(—x2), by
uniqueness, and therefore dxt = 0 at S1\0%. The function u := @ + @|q + @|q is the unique
solution of (6.26), satisfying the estimates

IV?ull L, ) < CUIf]L, @ + 1Pallyga=1r0 5005y + 192l 1170 5))s

and
IVullz, @) < ClI(f b, g2) i1 )
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In a next step we consider the case of a bent two-phase half space. To be precise, we
assume that
Qg = {JZ S RS LT > 6(331)},

where § € BC?(R) with [|0]|oc + [|0/|lcc < 7, and 7 > 0 can be made as small as we wish.
Let furthermore Sy 9 := {z € R? : 29 = f(z1)} and Xy := {R? x {0}} N Qp. Consider the
problem
—Au = f in Qg\zg,
[ou] =0 on Xy,
[Osu] = g2 on X,
u = hl on 5179\829,

(6.29)

0

Vas,

where f € L,(Q), g2 € Wy /P(Sg), ha € Wy~ V/7(S10\0%0) and (f,g2.h1) € W, ().
Moreover, the compatibility condition [ph;] = 0 at 9% holds.
By means of Lemma 6.3.1, we may solve the problem

0
[05i] = g2 on X, (6.30)

u = hl on 5179\829,

where Ao > 0 is large but fixed. This yields a unique solution @& € W7(Q\Xg). Let
f:= f 4+ At and consider

—Au = f in QQ\ZQ,
[pa] =0 on Xy, (6.31)
[[6317,]] =0 on 29, .
8V329ﬂ =0 on 5179\629.

Observe that f € W;l(Qg) N L,(Qg). We will now transform Qg to Qg by means of the
coordinates T := x1, Tg := xo — 0(x1) and T3 := x3. Assume that @ solves (6.31) and define
w(z) := a(Z1,T2 + 0(Z1),Z3). Then, the function @ is a solution of the problem

—Au=f+ M;(0,u) in Q\X,
[pa] =0 on X,
[05a] =0 on X,
Ot = M>(0,@) on S1\0%,

(6.32)

where f is the transformation of f,
M1 (9, ﬁ) = —20’(3’?1)81821_1, - 9”(@1)82@ + 0’(51)23312,

and MQ(G,@) = 9’(.’?1)81’(] - 9/(531)28211.
Define the function spaces

E:={Vu € W, (Q\Y) : [pu] = [9su] =0 on T},

and

F = {(f1, f2) € Lp(Q) x W) ~V/P(S1\0%) : [pfo] = 0 at 9% and (f1, —f2) € W, (Q)}.
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We equip E and F with the equivalent norms ||al|g,x := A|Val|z, + |V?az,, and

(s )l = I falle, + I F2llya—re + AN (15 = f2)lhi s

for A > 1. Moreover, we define a linear operator L : E — F by

—Au
Lu = _ .
b (32uS1\az>

It follows from our previous considerations that L : E — F is an isomorphism and there
exists a constant C' > 0 which does not depend on A\ > 1 such that the estimate

IL7 Fllg < ClIFlls.

holds for each A > 1 and f € F.
Let F:= (f,0) and M(0,a) := (M, Ms)(0, ). It follows that F € T, since

[ Jodr= /Qf¢ iz,

with ¢(Z) := ¢(Z1,72 — 0(Z1),73) and ¢ € C(Qy). Furthermore, for each u € E, we
have M (6,u) € F. Indeed, as in the proof of Lemma 6.3.1, it can be readily checked that
M(6,1) € Ly(Q) x Wy~ /P(S;\0%) and [pMy(6,@)] = 0 at . It remains to verify the
condition (M, M2)(6,4) € Wp_l (Q). To this end, we integrate by parts to obtain the identity

/ M;(0,u)¢ de — My (0,u)¢ dSy
Q S1

_ /Q (0/(21)02006 + 0/ (1), @0 — 0/ (71)202@) iz,

for each ¢ € C2°(9). This in turn yields the claim. We are now in a position to write (6.32)
in the shorter form
w=L"'M(0,u)+ L 'F.

For the norm of M (6, 4) in F we obtain
1M1.(0, @)l ., < CUI ool V|2, + 10 lloolIVE L, ),

M0, @)l 110 < CI0" oo Vallwy + 16" V] ,,),

My <

and
(M, M) (0, 0) |2 < CllE" [l (A V|, )-

Here the constant C' > 0 is universal. Since

I -
16" ooV, = L0y, ),

it follows that for each € > 0 there exist Ao > 1 and 79 > 0 such that
M0, w)[[rx < el|tlle,x

provided that |6’ < n € (0,m9) and A > Ag. A Neumann series argument finally yields the
solvability of (6.32), hence there exists a unique solution of (6.29).
2. It follows from Lemma 6.3.1 that the operator Au := —Awu with domain

D(A) = {u e W2(Q\Z) : [pu] = [0y u] =0, Oy, u= 0},
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is closed. Since D(A) is compactly embedded in L,(€?), it follows that the spectrum o(A)
consists solely of isolated eigenvalues and A = 0 is a simple eigenvalue of A. In order to see
that, note that N(A) = span1,, with

P1
]lp = XQ1 + XQQ'
P2

Furthermore, N(A?) C N(A), since if u € N(A?), then v := Au € N(A). It follows that
v € L1(Q) and we may integrate Au = v over § to obtain

/vdmz—/Audsz,
Q Q

hence v = 0, since 1, has a non-vanishing mean value.
In particular this yields L,(Q) = N(A) & R(A) and it holds that R(A) = L;S,O)(Q). This
can be seen as follows. Obviously one has the inclusion

R(A) c LV(Q).

So, let f € LZ(,O)(Q). Then there exist unique f; € N(A) and f2 € R(A) such that f = fi+ fo.
This in turn yields f; € Ll(yo) (Q). Since f1 = al, for some o € R with

]lp =X + ﬁXan
P2
it follows that
(v =a (ol + Ll )
P2
hence o = 0 and therefore f = fo € R(A), hence L,()O)(Q) C R(A). O

We will also need an existence and uniqueness result for the weak version of (6.3) with
A = 0. To be precise, we consider the problem

(vu‘va)Q = <f7 ¢>a (rb € Wpl’(ﬂ)v

6.33
[pu]l =g, onX. (633
Then we have the following result.

Lemma 6.3.3. Let p; >0, n=2,3, p> 2 and let Q C R™ satisfy condition (c) from above.
Then there exists a unique solution u € WZ}(Q\E) of (6.33) if and only if f € W; () and

g€ Wy (E).
Proof. Let g € W;fl/p(E). The Neumann Laplacian Ay in L,(X) with domain
D(Ay)={ue Wi(Z) : Opyet = 0 on 0%}
generates an analytic semigroup. In particular, D(Ay) is dense in
Wz}fl/p(z) = (Lp(X), D(AN))1/2-1/2p = Day(1/2 = 1/2p, p).

Therefore, there exists (g )nen C Wﬁ‘”p(z) such that 0,,,9, = 0 for each n € N on 0%
and g, — g as n — oo in Wy~ /?(). Denote by u, € W2(Q\T) the solution of (6.3) with
f=g2=h1=hy =0, g1 =g, and a fixed A > \y. Making use of local coordinates one can
show that the estimate

||un - umHW}}(Q\E) < CHgn - 9m||Wp171/p(E)
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is valid, with some constant C' > 0 which does not depend on n. Indeed, each of the local
charts yields a transformed problem which is subject to one of the conditions in (a) and (b)
above. We have already seen in the proof of Lemma 6.3.1 that the two-phase half space
and the quarter space can be drawn back to a two-phase full space and an ordinary half
space, respectively, by means of reflection techniques. Making use of change of coordinates,
perturbation theory and the results in [28, Section 8] one obtains the desired estimate.

In particular, (u,) is a Cauchy sequence in WZ}(Q\Z) and therefore it has a limit point
u € WZ}(Q\Z) By trace theory it follows that u satisfies the weak problem

Aulg)2 + (VulV)e =0, ¢ € Wy (),

[ul =g, on¥ (639

for some fixed A > Ag.
Next, let

a:{ue WI}(Q\Z) :[pu] =0 on X} x Wpl,(Q) =R, alu,¢):= | Vu-Vedr,
Q

and define an operator B : Wp1 (Q\X2) — (Wpl’(Q))* with domain
D(B) = {u € W, (Q\Z) : [pu] =0 on I},

by means of (Bu,¢) := a(u,¢). It follows from integration by parts that the operator A
from the proof of the second assertion of Lemma 6.3.2 is the part of B in L,(€2). As in
the proof of Lemma 6.3.2 one can show that A = 0 is a simple eigenvalue of B. It follows
that (W, (2))* = N(B) ® R(B) and W, (2\X) = N(B) @Y, where Y is a closed subspace
of W (Q\X). Therefore there exists a unique solution v € Y of the equation Bv = f if

and only if f € R(B) or equivalently (f,1) = 0. It follows readily that R(B) = Wpfl(Q).
Indeed, the inclusion Wp_l(Q) C R(B) is easy, since (f,1) = 0 for each f € Wp_l(Q) and
the restriction of f to W, (Q) belongs to (W, (€2))*. Let now f € R(B), i.e. f € (W,,(Q))*

and (f,1) = 0. This yields g
(o) =1(f,0— @) < Cll¢— Q_S”W;,(Q) < CIVllL,

by the Poincaré-Wirtinger inequality and therefore [¢ — (f, #)] is continuous on C°(£2)
with respect to the norm [V - ||z, (o).

Let u € W, (Q\X) denote the unique solution of (6.34) and let v € I/Vp1 (Q\X) denote the
unique solution of

[pv] =0, onX.

It follows readily that the function w := v4u € Wz} (Q\X) is the unique solution of (6.33). O

A final result in this subsection considers the system (6.3) with A = g1 = go = hy = hy =
0. We assume that the function f depends on the spatial variable z and on some parameter
t,i.e. f = f(t,x). In this case the solution v = u(t,z) depends on t as well. The following
result contains some information about the regularity of u with respect to ¢ and x.

Lemma 6.3.4. Letn=2,3,p>2, J=[0,T] or J=Ry and A=g1 = go = hy = ha = 0.
Then the following assertions are valid.
1. If Q and ¥ satisfy one of the conditions in (a), (b) above, then there exists a unique

solution
Vu €W, (J; Wy (Q\X)) N Ly(J; W2 (Q\X))
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of (6.3) if and only if
FeaWE(JT; W, H(Q) N Ly(Q) N Ly (J; W2(Q\E)).
2. If Q and ¥ are subject to the condition (c) above, then there exists a unique solution

u €Wy (J; Wy (Q\X)) N Ly (J; W (Q\X))

of (6.3) if and only if
FeaWE(I; W, H(Q) N Ly (J; Wh(Q\D)).

Proof. (i) The regularity
Vu €W, (J; W, (Q\X))

in the first assertion and
u oW, (J; W, (\X))

in the second assertion is a direct consequence of Lemma 6.3.2 and Lemma 6.3.3, respectively.

(ii) Concerning the additional spatial regularity of u, one uses the fact that one already
knows the unique solution u of (6.3) with the regularity stated in Lemma 6.3.2 and Lemma
6.3.3. By means of local coordinates, one reduces each of the local problems to one of the
model probolems in (a) and (b) above. In particular, the two-phase half space and the
quarter space can be drawn back to a two-phase full space and an ordinary half space, re-
spectively, by reflection techniques. The mapping behavior of the Laplacian and the Poisson
semigroup in homogeneous Sobolev-Slobodeckii spaces, see (6.25), yield the corresponding
higher order estimates for the solution operators of the model problems. Therefore, the
proof of the additional regularity of u with respect to x follows along the lines of [28, Proof
of Theorem 8.6]. We will not repeat the arguments. O

6.3.2 Parabolic problems
The following auxiliary lemma is concerned with the parabolic one-phase problem
Oy — pAu = f, in Q,
Ps, (,UJ(VU + VUT)I/Sl) = Pg, g1, on S1,
u-vg =gz, ondi, (6.35)

u=gs, on 527
u(0) = ug, in Q.

Again, we will concentrate on the case n = 3. The results in this section remain true for the
case n = 2.

Lemma 6.3.5. Letp>2,p#3, u>0,T >0 and J =[0,T]. Then there exists a unique
solution
u € Hy(J; Ly(Q)°) N Ly(J5 Hp ()%)

of (6.35) if and only if the data are subject to the following regularity and compatibility
conditions

1. f € Ly(J; Ly(2)%),

2. g1 € WP (7L, (81)3) N Ly (J; Wy /2 (81)3),
3. g2 € Wy VP(J; Ly($1) N Ly (J; Wy P (1)),

4o g3 € Wy PP (T Ly(S2)®) N Ly (Js Wi~ P (S2)%),
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- ug € WP ()3,

. Ps, (W(Vug 4+ Vud)vs,) = Ps,g1lt=0 (p > 3),
uols, - vs, = g2li=0, tols, = gsli=0,

. g3 Vs, = g2 at OSs,

- Pog (1(Vargs + Var(93) " vas,) = Poag; at 0Ss,
10. 11(Ous, (93 - €3) + 0392) = g1 - €3 at 0Sa,

where g := Zi:l(gj -ex)ex for j € {1,3}.
The result remains true for the case J = Ry if 0y is replaced by 0y + w, with some
sufficiently large w > 0.

© xS W™

2

Proof. 1. Extend v to some function 4y € W —2/p (R?)3 and solve the full space problem

Oyt — pAG =0, in R3,
) I (6.36)
(0) = 4g, in R>,

to obtain a unique solution
@ € H(J; L(R%)®) 1 L, (J; H2(RP)?).

If w is a solution of (6.35), then u — @|q solves (6.35) with up = 0 and some modified data
(f,91,92,93) (not to be relabeled) having vanishing temporal trace at ¢ = 0, whenever it
exists. Therefore, we may w.l.0.g. assume that ug = 0 in (6.35).

Suppose that u is a solution of (6.35) with up = 0. We cover 955 by finitely many open
balls Uy := B,(xy), © € 052, k = 1,...,N. This way, we obtain N bent quarter spaces
with corresponding solution operators S, which are well-defined, if » > 0 is sufficiently
small. Furthermore, by the results in Section 6.2 there exist open sets Uyyj, j = 1,...,3
such that

Uni1 CQ,
Unt2 NSy #0, Unya NSy =0,
UnisNS1 =0, Unysz NSy # 0,
e OC Ui\’;ﬁ Uy,
and a subordinated partition of unity {¢x}_, C C3(R3;[0,1]) with 9,,, 0k = O30 = 0 at
0S5y. Let uy := upyg, fr = for and g;? := gjk. Then uy solves the problem

Oyup, — pAuy = Fi.(u) + fr, in Q,
Pgy (.U(Vuk + VUDVS{C) = Gr(u) + Pngica on ST,
Uk - Vgk = g5, on SF, (6.37)

U = gglf, on Sg,
up(0) =0, in Q,

where Fj,(u) := —u[A, ppJu and Gy (u) == Pgs (u(Vgpk Qutu® Vgok)l/sf).

Here Qx4 = R3, Qn4o reduces to bent half-spaces with pure-slip boundary conditions,
QN3 is a half-space with Dirichlet boundary conditions and Qg, & = 1,..., N are bent
quarter-spaces with pure-slip boundary conditions on one part of the boundary and Dirichlet
boundary conditions on the other part. S f denote the corresponding parts of the boundary
O and SV = SVHS = 52—,
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Denoting by Sy the corresponding solution operators to each of the N 4 3 problems, we
obtain the representation

up = Sk ((fk’glf’géc’géc) + (Fk(u),Gk(U),0,0)) :

Let {5}, C C(R3;[0,1]) such that ¢, = 1 on supp ¢y and suppx C Ux. Multiplying
ug with ¥ and summing from k£ = 0 to N yields the identity

N
U = Z%Sk ((fkvgf’g?gl?f) + (Fk(u)7 Gk(u)7 0, 0)) . (6'38)
k=0

Therefore, any solution to (6.35), with ug = 0, necessarily satisfies (6.38). The converse
however is in general not true. This pathology stems from the compatibility conditions at
0S% for the commutator term Gy (u) in (6.37). Thanks to Proposition 6.1.1 there exists an
appropriate extension operator ext,, , from

oWy 2T (I L, (055)) 1 Ly (J; W2/ (955))

to
oW,/ 22 (J; Ly (0S5 x Ry ) N Ly(J; W~V /P(0S5 x Ry)),

such that [ext,, r v](0) = v. Replace Gy (u) by
Gi(u,g3) 7= Gr(u) = extoy i (Gr(w)|ay=r, — Gr(93)les=m,) = Gi(g3) + Gi(u),

where G}.(g3) := exta, & Gr(93)|zs—r,- We note on the go that Gr(u,g3) = Gp(u), if u is a
solution of (6.35), since then u = g3 at 053 and gs3|s, - Vs, = g2|s, at dS2 by assumption.
Therefore we will henceforth work with the identity

W= S (Sufgh + Ghlan). ok ob) + SuF).GR).0.0)) . (639)
k=0
Let oE(T) :=0H, (J; Ly(2)*) N Ly, (J; Hy ()°),
Fi(T) = Ly(J x Q)°,
0Fa(T) :=oW, > /2P (J; Ly(S1)*) N Ly (J; Wy /P (1)),
0F3(T) :=oW, /2P (J; Ly(S1)) N Ly (J; W~/ (1)),
oF4(T) :=oW, /2P (J; L(S2)®) N Ly (J; W2 ~H/P(S2)?)
and

oF(T) :={(f, 91,92, 93) € F1(T) xj_o { oF;(T)} :
(8) — (10) in Lemma 6.3.5 are satisfied}.

Since the terms involving u on the right side of (6.39) are of lower order, it follows that
there exists v > 0 such that the a priori estimate

lulleery < M (I(f, 91592, 93) lwery + T ulleery) -

holds for any solution w of (6.39). Therefore, if T' > 0 is sufficiently small, it follows that the
operator L :gE(T) — (F(T') defined by the left side of (6.35) without the initial condition is
injective and has closed range. This in turn implies that L has a left-inverse.
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Applying a Neumann series argument, we see that for each given set of data (f, g1, g2, 93) €
oF (T') there exists a unique solution u of (6.39) on a (possibly) small time interval [0, 7.
This follows as above by taking into account that the terms involving w on the right side
of (6.39) are linear and of lower order. Denote by S : ¢F(T') — oE(T) the corresponding
solution operator. It remains to prove the existence of a right inverse for L. Writing
u=38(f,q,92,93), where (f,g1,92,93) €oF(T), it follows that

N
S(f.91,92,95) = Y ¥x (Sk(fmglf +Gi(93), 95, 95) +5k(Fk(U),Gﬁ(U)70aO))~ (6.40)
k=0

Applying the operator L to (6.40) we obtain

LS(fv 91792793) = (f791792a93) + R(fvglv.QQ;gIS)a

where the linear operator R is given by

N
R(f,91,92,9) = DL wn] (Sl 98 + Ghiga): 95 98) + Se(Fr(w), GE(), 0,0))
0

k=
N
+ Z(Fk(u)a Gk(u,g3), 07 0)
k=0

Since the commutator [L, 1;] as well as F,(u) and G (u, g3) are of lower order compared to
L, it follows that there exists v > 0 such that R satisfies the estimate

IR(f, 91,92, 93)lr(ry < MT||(f, 91,92, 93) lp ()

where M > 0 does not depend on T'. Therefore, a Neumann series argument implies that
the right inverse for L is given by the linear operator S(I — R)™!, provided that T > 0
is sufficiently small. This implies that L is boundedly invertible and the proof of the first
assertion is complete.

2. Concerning the second assertion, we use local coordinates and make use of the fact
that the corresponding local solution operators are bounded by 1/w in the norm of F. By
means of interpolation we are able to control all lower order terms by C'/w® for some uniform
a > 0. Choosing w > 0 large enough, the norms of the lower order terms will become small.
This yields the invertibility of L, as above, where L, results from L by replacing 0; with
8t + w. D

We will also need a result on the well-posedness of the two-phase problem
O(pu) — pAu=f, in Q\X,
Hﬂ83UH + H/Lvm/w]] = Gv, O Ea
[[/“‘La3w]] = Gw, on 27
[u] =us, on X,
PS1 (u(Vu + VUT)Vsl) = Pslgl, on Sl\aE,
u-vg, =g, on S1\0%,

(6.41)

u=gs, on Sy,
u(0) = ug, in Q\X.
Lemma 6.3.6. Letp>2,p#3, u; >0, p; >0, T >0 and J = [0,T]. Then there exists

a unique solution
u € Hy(J; Lp(Q)*) N Ly(J5 Hp (\X)?)

of (6.41) if and only if the data are subject to the following regularity and compatibility
conditions
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~

- f € Lp(J; Lp(2)%),

L 9o €W BTV Ly (2)2) 0 Ly (s Wy P(D)2),

- gw € WPV (T Ly(9) 0 Ly (s W, TR (D)),

Cus = (vs,ws) € Wy V(I Ly(R)%) N Ly (J; WP ()%,

g1 € W BT Ly (S0)P) N Ly (J; Wy P (81\0%)?),

g2 € Wy BT Ly(81)) N Ly (J; Wy VP (81\0%)),

g3 €Wy (T Ly(82)?) N Lu(Js Wy P (82)?),

. ug = (vo, wo) € W2 2/P(Q\%)3,

. Ps, (W(Vug + Vug)vs, ) = Ps,g1li=0, [103v0] + [1Varwo] = guli=o (p > 3),

. uo\sl “Vs, = gz\tzo, UO|S2 = 93|t=0; [[H5’3w0]] = gw|t=0; [[uo]] = u2|t=07

N TS S~ N T N T S

~NN
~ D

. g3-Vs, = g2 at OS2, ux - vs, = [g2] at 0%,

. Pys (Varvs + Vovd)ves) = Poslgi /1] at 0%,

- Ous,wsy = [(g1 - €3) /1 — 0392], (9ulvos) = [g1 - e3] at 9%,
- Pog (1(Vargs + Var(93) vas,) = Pacg; at 0S,

15. (O, (93 - €3) + 0392) = g1 - €3 at 05,

~N N
Lo o

~
B

where g; = Eizl(gj -ex)er for j € {1,3}.
The result remains true for the case J = Ry if 0 is replaced by O0¢ + w, with some
sufficiently large w > 0.

Proof. 1. Without loss of generality we may assume ug = 0. This can be seen as follows.
Extend ug = uo|zse(0,m,) € W,?*Q/p(G x (0, Hp))? first w.r.t. xg, then w.r.t. (z1,22) to

some T € W, —2/p (R?)3 and solve the full space problem

out —Aat =0, inR3,

6.42
at(0) =4af, inR?, (6.42)

to obtain a unique solution
it € Hy(J; Ly(R*)*) N Ly (J; HY (R?)?).

Then we extend wuy := Uo|z,e(m,,0) € ngﬂp(G x (Hy,0))? first wrt. w3, then w.r.t.

(z1,x2) to some U, € W§_2/p(R3)3 and solve (6.42) with @J replaced by @y to obtain a

unique solution
@ € HL(J; L(R)) 1 L, (J; H2(BP)?).

Define @ := @ XGx(0,1,) + U~ XGx(Hy,0)- If u solves (6.41), then u — @ solves (6.41) with
up = 0 and with some modified data (f, g;,us) (not to be relabeled). Note that the time
traces of the modified data at t = 0 are zero by construction, whenever they exist.

Step 1: In a first step we consider the case y; = p; = 1. Extend

(9v, gw) €W/ 27122 (T, Ly (S)) N Ly (J; W H/P(8)?%)

and
us, €oWa= Y3 (J; Ly(2)%) N Ly (J; W2TH/P(R)3),
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to some functions
(Gvr Gu) €W, /27122 (T3 Ly(R?)*) N Ly (J; Wy ~V/P(R?)?)

and
iy, €W, /2P (J; Ly(R?)?) N Ly, (J; W2 /P (R?)?)

respectively. Then we solve the following two-phase problem in R? := R2 x RR.

0t —Au =0, inR5>,
[059] + [Vo@] = §u, on R? x {0},
[05W] = G, on R? x {0}, (6.43)
[a] = ds, onR? x {0},

@(0) =0, inR3
This yields the existence of a unique solution
@ €oHy (J; Ly(R*)®) N Ly (J; H2(R®)?).

If u solves (6.41) with ug = 0, then v — @|q solves (6.41) with ug = g, = g = ux = 0 and
some modified data ( f , 01, G2, g3) in the right regularity classes and with vanishing trace at
t = 0 whenever it exists. Observe that the compatibility conditions on the modified data at
0% read as follows.

[92] = [03g2] =0, and [Ps,g1] = Ps, [§:1] =0

Note that this is in general not the case if [u] # 0. Therefore it follows that
Ps, g1 €oW, /2712 (T3 Ly(51)°) 0 Ly (J; Wy~ /2 (81)%),

and

G2 €W, B (J; Ly(51)) N L (J; WP (50)).
Since the modified data g; also satisfy the compatibility conditions at 0S5, we may solve
(6.35) by Lemma 6.3.5 with =1, f = f, g1 = Ps, 01, g2 = G2, 93 = g3 and ug = 0. This in
turn implies that problem (6.41) is well-posed, provided that 1 = ps = 1.

Step 2: In the second step we consider the case [p] # 0, [u] # 0. Let us first reduce

(6.41) with ug = 0 to the case g1 = g2 = g3 = 0. To this end will apply Lemma 6.3.5 twice.
First we extend g;‘r := 9jlzse(0,m,) Dy some (higher order) reflections at {x3 = 0} to some

functions
G €WV ( 5 Ly(S1)%) N Ly(Js WA=/ (1))

and
G5 €W,V 2P(J; Lp(S1)) N Ly(J; W =HP(Sh)),

such that §j|aj3:H1 = 0. Then, we solve (6.35) with = po, f =0, g1 = Ps,37, 92 = G5,
93les=r, = g5 and g3|z,—m, = 0 to obtain a unique solution

Ut €oH,(J; Ly()*) N Ly(J; H2 (2)%).
Repeating the same procedure for g; = 9jlese(m, 0) yields a unique solution
U €oHy(J; Ly(2)%) N Ly (J; HE(Q)®).

Define @ := 4" XGx(0,#,) + U XGx (#1,0)- If u solves (6.41) with ug = 0, then u — @ solves

(6.41) with ug =0, g1 =0, g2 = 0 g3 = 0 and some modified data (f, Jv, Gw, Uy,) which are
subject to the following compatibility conditions at 9X:

Uy - Vg, =0, a,jsl Wy =0, gy -vgn =0 (6.44)
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and
Pag ((Vw/’f)z; + Vf@%)%})g) =0. (645)

Step 3: Let oE(T) :=oH,(J; Ly(Q)*) N L,(J; H3(Q\X)?) and denote by ¢F(T') the space of
data (f,gj,us), j € {v,w, 1,2, 3} such that the compatibility conditions (11)-(15) in Lemma
6.3.6 are satisfied. Define L : ¢E(T) — oF(T") by the left side of (6.41) without the initial
condition. By means of a localization procedure one can show that L satisfies the a priori
estimate

Jullysry < M| Ll zcry- (6.46)

This can be seen as in the proof of Lemma 6.3.5. Indeed, the charts which intersect 955

and 0% may be treated as in Sections 1.3.1 & 1.3.3, respectively, while the treatment of the

remaining charts is well-known. Note that there is no need to carry any correction terms as

in the proof of Lemma 6.3.5, since for the proof of (6.46) one already starts with a solution

of (6.41). Therefore, the compatibility conditions at 9Ss and 9% are necessarily satisfied.
Next, we set

oE(T) := {u €0HL(J; Ly(2)*) N Ly (J; HA(O\E)?) -
uls, =0, uls, -vs, =0, Ps, (Vu+VuT)vs,) =0},

and denote by OIF‘(T) the space of data (f, gy, gw, us) together with the compatibility con-
ditions (6.44) & (6.45) at 9X. Note that

P51 ((VU + V’LLT)VSI) =0«& P51 (u(Vu + VUT)VSI) =0
at S1\0%. Define L :oE(T) — oF(T) by

O(pu) — pAu
[103v] + [wV o]
[1Osw]

[u]

Since the norm in (E(T) is the same as in ¢E(T') and since

Lu=

IZulloecry = I1Lull 5z

for u € oE(T), it follows from (6.46) that L is injective with closed range, i.e. L is a semi-
Fredholm operator. It is also crucial to observe that the constant M > 0 is uniform on
compact sets of > 0 and p > 0, by continuity.

We replace the coefficients (p1, p2, pi1, p2) by

(p71—7p72—7/’&;7/1/72—) = T(P17P27M17M2) + (1 - T)(17 17 17 1)7 T E [07 1]7

and denote by L. :OIEI(J ) —>OI§‘(J ) the corresponding operator which is induced by replacing
p and p with p™ and u7, resectively. Note that L, satisfies the estimate

||U||01E(T) < MHZ/TUHO]%(T)v

with some constant M > 0 which is uniform with respect to 7 € [0,1]. Hence L, is semi-
Fredholm for each 7 € [0,1]. By Step 1 of the proof, we already know that L is a Fredholm
operator with index zero. The continuity method for semi-Fredholm operators implies that
Ly is Fredholm with index zero as well. We remark that the reduction obtained in Step 2
of the proof is essential, since otherwise the viscosity coefficient p1 appears in the definition
of IF‘(T) Replacing p by p”, it would follow that IF‘(T) depends on 7 as well.

2. The strategy for proof of the second assertion is the same as in the proof of Lemma
6.3.5. Will will not repeat the arguments. O
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6.4 The two-phase Stokes problem on the half line

In this section we want to show that there exists wy > 0 such that for each w > wqg the
two-phase Stokes problem

wpu + O(pu) — pAu+ Vr = f, in Q\X,
divu = fg, in Q\X,
—[pdsv] = [uVew] = g,, on 3,
—2[pdsw] + [7] = g, on %,
[u] =us, on X, (6.47)
Ps, (1(Vu+ Vu")vs,) = Ps,g1, on S1\0%,
u-vs, =g, onS1\0%,
u=gs, on Sy,
u(0) =up, in Q\X,

has a unique solution (u,, [r]) with maximal regularity of type L, on the half line Ry. To
this end we define

Fi = Lp(Ry; Ly(Q)°), Fa:= Ly(Ry; Hy(Q\X)),

Fy 1= Wy 272 (Ry s Ly (2)%) 0 Ly (Ry; W7 (2)?),
Fy := W;/Q_I/QP(RJA Ly(2)) N Lp(Ry; W;}_l/p(z))7
Fs = W~/ (R Ly()°) 0 Ly(Ry; W2H/P(3)%),
Fo i= Wy 2 (R Lp(S1)%) 0 Lyp(Rs Wy =P (S1\OX)°),
Fr = W, =2 (Ry; Ly(S1)) N Ly(Ry; W~ /P(51\0%)),
Fy 1= Wi (R Ly(S2)) N Ly(Rys WETP(S,)),

and IF := x5_FF; as well as
Fi={(f1,....fs) €F: (fa, f5, fr, fs) € Hp(Ry; H ()}

Furthermore, we set X, := ng/p(Q\Z)‘g. Then we have the following result.

Theorem 6.4.1. Let uj,pj, Hj,o0 >0, p>2, p+#3 and let G € R? be open and bounded
with G € C*. Define Q := G x (Hy, Hy) and let ¥ := G x {0}. Let Sy := 0G x (Hy, Hy)
and Sy := (G x {H1}) U (G x {H3}). Then there exists wy > 0 such that for each w > wy
problem (6.47) has a unique solution

u € Hy(Ry; Ly(Q)*) N Ly(Rys Hp (X)), 7 € Ly(Ry; Hy(R\X)),

" [x] € W, 27122 (Ry; L(2)) N Ly(Ry; Wy~ H/P(E))
if and only if the data are subject to the following regularity and compatibility conditions.
1. (f, fa: 9v, 9w, us, 91, 92, 93) € F,
2. ug € X,
8. divug = falt=0, —[1Varwo] — [u0svo] = guli=0, [uo] = us|i=o,
4. Ps,((Vug + Vug )vs,) = Ps, g1li=o (p > 3), uo - vs, = gali=o, w0 = g3li=o,
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5. [g2] = us - vs,,

)

[(91 - €3)/1 — O3g2] = Ous, (us - €3),
7. Pos[(D'vs)V'] = [Posgi /1],
(9ulvs,) = —[g1 - es], (g3|vs,) = g2,
- Poc[u(D'g3)v'] = (Pocygh),

10. pyg, (g3 - €3) + pdsge = g1 - €3.

NS

Proof. The proof is based on a localization procedure. However, in contrast to the proof of
Theorem 2.3.1 we are not able to control the commutator terms in the corresponding local
problems which are of lower order by decreasing the length of the time interval. However,
replacing the time derivative 9y by w+0; in all auxiliary problems which were used in Chapter
1, it follows that there exists wg > 0 such that each of these problems has maximal regularity
of type L, on the half line R, provided w > wy. Indeed, this can be seen by studying the
corresponding symbols s(A, &) of the differential operators. The parameter A is the Laplace
transform of 9, hence replacing A by w + A this yields the symbol s, (A, &) := s(w + A, ).
By means of interpolation and trace theory we are able to control all commutator terms
which appear during the localization procedure by C'/w® for some uniform a € (0,1) and
some C' > 0 being independent of w. Choosing w > 0 large enough, the norms of the lower
order terms will become small. This yields the linear well-posedness of (6.47) on the half
line R+. ]

As an immediate consequence of the last theorem, one obtains maximal regularity of type
L, of (6.47) in exponentially weighted spaces. To see this, we define

e OF; = {f €Fj: [t 2 f(t)] € F,},

where § € R and in the same way e °F and e °F.
We write w = w — § + ¢ in (6.47), multiply each equation by e’ and use the formula
Oy (e%tu(t)) = €% (Su(t) + dyu(t)) to obtain the following result

Corollary 6.4.2. Let the conditions of Theorem 6.4.1 be satisfied. Suppose that 6 € R and
let w > max{wo,wo + d}. Then there exists a unique solution

u € e °[H, (Ry; Lp(Q)*) N Lpy(Rys HY(NZ)?)], 7 € e °[Lyp(Rys Hy(Q\R))],

and
[7] € e W, 2712 (Ry; Ly()) N Ly(Ry; W~ VP(R))]

of (6.47) if and only if the data are subject to the conditions in Theorem 6.4.1 with F being
replaced by e °F.

6.5 Elliptic two-phase Stokes problems

Let f € Ly(Q)3 fa € HXQD), (Gordw) € Wy P23, ax € Wy YP(D), 41 €
W, VP(8\0%), o € W2 YP(5\0%) and g5 € W2 '/P(S,) be given such that
(fa s, 2, §3) € flp_l(Q) and such that the compatibility conditions (5)-(10) in Theorem
6.4.1 are satisfied at 8& N 0Sy and S; N OX.
Define f(t) := te™'f and in the same way fq(t),ux(t),g;(t), j € {v,w,1,2,3}. Then it
holds that
(fs fa: 9os Guws Uz, 91, 92, 93) € ¢ °F
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for each § € (0,1) and the compatibility conditions (3)-(10) in Theorem 6.4.1 are satisfied
with ug = 0. By Corollary 6.4.2 there exists a unique solution (u,, [7]) of (6.47) with
w > wg + 6 such that

u € e loHy(Ry; Lp(Q)®) N Ly(Rys HY(Q\E))],  m € e °[Ly(Ry; Hy(Q\X))),

and
[7] € e [oW, 27127 (Ry5 Ly(£)) N Ly(Rys W, ~V/7(2))].
Therefore, the Laplace transform £ of each term in (6.47) is well defined. Observe that

1 ~
Gret

(LHN) = /0 Ty dt = /O et g

for ReA > —1, hence (£f)(0) = f. Doing the same for all the other data and defining
(G, 7, [7]) := L(u, m, [7]) we obtain that (@, 7, [#]) solves the elliptic problem
wpli — pAG 4+ Vi = f,  in Q\X,
divii= fy, inQ\%,
—[wds0] — [uVy@] = G, on X,
—2[u0sw] + [7] = Gw, on X,
[4] = 4, on X,
Ps, (u(Va+ Vi )vs,) = Ps, g1, on S1\0%,
- vg, = g2, on S1\0%,

(6.48)

@ =gs, on Sy,
whenever w > wp + J. Let Au:= (u/p)Au — (1/p)Vr with domain
D(A)={ue H§(9\2)3 NL,ys(Q): [ndsv] + [uVew] =0, [u] =0,
Ps, (W(Du)vs,) =0, u-vs, =0, uls, =0},

and 7 € WI}(Q\E) is the unique solution of the weak transmission problem

(bvrve) = (Rauve) . sewi)
P L2 () P L2(9)
[7] = 2[u0sw], on X.

Since A has a compact resolvent, the spectrum o(A) of A consists solely of isolated eigen-
values having a finite multiplicity. Furthermore it holds that Rec(A) = o(A4) C (—o0,0) by
Korn’s inequality. Indeed, multiplying the eigenvalue problem Au = Au by v and integrating
by parts, we obtain the identity

Mull?, ) = =l Dulli, 0
This yields the following result.

Theorem 6.5.1. Let w > 0, pj,pj,0 >0, p> 2, p# 3 and let Q and ¥ as in Theorem
6.4.1. Then there ezists a unique solution (u, 7, [7]) with

e HA(Q\D)®, #eH(Q\D), [7]eW, ()

of (6.48) if and only if the data are subject to the following regularity and compatibility
conditions.
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~

. fEL,Q)?, fae HY(Q\Y),

(G0 Gu) € Wy VPR, s € WTHP(R)3,
g€ Wy YP(S1\0D), g2 € WEHP(S1\0%),
g3 €Wy P(SY), (faiis. §2.95) € H M (9),
- g2] = ds - vs,,

- [(91- e3)/p — O3g2] = Oy, (lis - €3),
Pox[(D'os)v'] = [Posgi /1],

- (Golvs,) = =101 - es], (93lvs,) = G2,

- Poc[u(D'g5)v'] = (Pocdh)s

10. pyg, (g3 - €3) + pud3ge = g1 - €3,

© % N S G L e

where V' = vyq.

6.6 Miscellaneous results

Let G € R, n € {2,3} be a bounded domain with boundary G € C' and define
Q=G x (Hy, Hy), with H; < 0 < Hy. Furthermore, let £ := G x {0}, Sy := 0G x (Hy, H3)
and Sy := U?Zl{G x {H;}}. Define 2’ = (21,...,2,-1)" and x = (2/,2,)". Assume that
h:G — (Hy, Hs) is continuous and set

[i={z=(2",2,) €Q: 2, = h(z), 2’ € G},

that is, T' is an (n — 1)-dimensional manifold in € which is given as the graph of the height
function h over .

Proposition 6.6.1 (Divergence theorem in cylindrical domains). For each u € Hj(Q\X)"
the following identity holds.

/divu dx :/ uls, - vs, dSi —|—/ ulg, - Vg, dSs — /[[U]]V[‘ dr,
Q S1 Sa r

where vg; are the outer unit normals on S; and vr is the normal on I' pointing from
O ={z= (2 2,) €Q:z, <h(z)), 2’ € G}
to QQ = Q\m

Proof. The proof follows from the fact that ; are both Lipschitz domains. Indeed, it is
well-known that the divergence theorem is valid for Lipschitz domains, see for example [22,
Section 4.3]. O

For u € H}(Q)", let Du := Vu + Vu'. The following result is well-known: There exists
a constant C' > 0 such that

[ull z2 @) < CllDullL, @)
for all w € H3(Q)™ such that v = 0 on 9Q (in the sense of traces). The proof of this

inequality relies on integration by parts. We will show that the estimate remains true, if
u = 0 on some subset of 92 having a positive (n — 1)-dimensional Hausdorff measure.
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Theorem 6.6.2 (Korn’s inequality). Let Q@ C R™, n = 2,3, be a connected, bounded Lips-
chitz domain. Then there exists C' > 0, which does only depend on  such that the estimate

IVull,@) < Cl|Dul|L,@) (6.49)

holds for each u € H3 ()™ with u = 0 on some subset OpSY of the boundary OQ of Q such
that H"~1(0pQ) > 0, where H? denotes the d-dimensional Hausdorff measure.

Proof. Let us first show that we have some kind of Poincaré type estimate, that is, there
exists a constant C' > 0 such that the estimate

ullzo(@) < CllDullLy (),

holds for all u € H3(2)" with v = 0 on some subset IpQ of the boundary 99 of 2 such
that H"~1(0pQ) > 0.

Assume on the contrary that for each m € N there exists u,, € H3(Q)" with u,, = 0 on
OpQ and |[um| £, () = 1 such that

um |l Loy = Ml Dumll L,

It follows that Du,, — 0 in Lo(92) as m — oco. By Korn’s inequality for functions in Hi ()"
(see [36]) we obtain

lumll 10y < ColllDuml o) + [tmll L)) (6.50)

for some constant Cy > 0. It follows that (u,,) C Hj ()™ is bounded. By Rellich’s theorem,
there exists a subsequence (u,, ) such that w,,, — w, in Ly(2). Then ||lu,| 1,y = 1 and
by trace theory it holds that u.(z) = 0 for a.e. € Ip§2. We make use of (6.50) one more
time to conclude that (u,,) is a Cauchy sequence in H3(Q)", since Duy,, — 0 in Ly ().
Therefore we obtain tu,,, — u. even in Hi (). Since

[ D, — Dusel|Ly) < Cl|Vum, — V| py) — 0

as k — oo it follows readily that Du, = 0.

Therefore there exists a skew-symmetric matrix A € R™*™ and some b € R™ such that
us(z) = Az + b for a.e. z € Q (see [36]). Define U := {z € R" : Az + b= 0}. Then U is an
(n — 1)-dimensional affine subspace of R", since dp) C U and u, # 0. Fix any 27 € U and
define

Up:=U—xo:={x—ax0:2€U}

It follows that dimUy = n — 1 and Az = 0 for each x € Uy. Let Uz be the orthogonal
complement of Uy and let y € Us-. Then (x|Ay) = —(Az|y) = 0 for each z € Uy, since
A is skew-symmetric, wherefore Ay € Uy-. Furthermore we have (Ayly) = 0, since A is
skew-symmetric, hence Ay € (Us-)* = Uy and therefore Ay = 0 for each y € Ug-. But this
means that Az = 0 for each z € R", since R” = Uy @ Ug-. Thus, we have shown that A = 0,
hence u.(z) = b for some b € R™. Since ||u.||r,) = 1 and u.(z) = 0 for a.e. x € Ipf) we
have a contradiction.

Finally, the assertion of the proposition follows from the Poincaré type estimate combined
with Korn’s inequality for functions in H3()". O

Last but not least, we need an auxiliary result which is crucial for the proof of local
well-posedness in Chapter 3.

Proposition 6.6.3. Let p > 2, G C R? be a bounded domain with boundary 0G € C? and
outer unit normal vector field v which is C' in a neighborhood of 0G. Ifv € Wg (G;R?) and

he Wi YP(G) such that (v|v) = d,h = 0 and Pyg|(Dv)v] = 0, then 8, (v|Vh) = 0.
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Proof. An easy computation shows that
9, (v|Vh) = (0,v|Vh) + (v|Vhv),

where 9,v := VoTv.

Note that Pyg[(Dv)v] = 0 implies that ((Dv)v|Vh) = 0, since by assumption 9,h = 0.
This in turn yields (0,v|Vh) = —(Vor|Vh). Making use of the representation Vh = 70, h+
vd,h = 70, h, where 7 € R? with |7| =1 and (7|v) = 0, we obtain

(Vov|Vh) = ((Vh - V)vlv) = 0:h(0-v|v) = —0-h(v|0rv).

Here we made use of the assumption (v|v) =0 and Vh -V = 23:1 0;h0;.
Concentrating on the term (v|V2hv), we obtain

2 2
(’U|V2hy) = Z viai(“)jhuj = Z [v,ﬁi(ajhuj) — viajhaiuj]
3,j=1 i,j5=1
2 2
= (U . V)&,h - Z ’Uiajhaﬂ/j = ('U|T)878Vh + (’U|I/)83h - Z viajhaiuj
i,j=1 1,5=1
2

= — Z viajhaiyj,

i,j=1

since (v|v) = d,h = 0. Here it is important to observe that 9.9,h = 0, whenever d,h = 0,
since 0, denotes the derivative in tangential direction.
Note that

2
Z v;0;h0iv; = ((v- V)v|Vh) = (v|7)(0-v|Vh) = (v|7)0:h(0;v|T) = 0-h(0rv|v),
ij=1
since v = 7(v|T) + v(v|v) = 7(v|T) and Vh = 70, h. Finally, this yields
0, (v|[Vh) = 0;h[(0-v|v) — (O-v|v)] = 0.

The proof is complete.
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