
Rayleigh-Taylor instability for the two-phase

Navier-Stokes equations with surface tension

in cylindrical domains

Habilitationsschrift

zur Erlangung des akademischen Grades

Dr. rer. nat. habil.

vorgelegt der

Naturwissenschaftlichen Fakultät II

der Martin-Luther-Universität Halle-Wittenberg

von

Herrn Dr. rer. nat. Mathias Wilke

geb. am: 04. Oktober 1979 in: Merseburg

Gutachter:

1. Prof. Dr. Jan Prüß, Halle (Saale)
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Introduction

In a wider sense, this thesis is concerned with the mathematical analysis of the
dynamics of fluids. To be more precise, the behavior of two fluids inside a bounded
container, separated by a sharp interface is investigated.

Let u = u(t, x) and p = p(t, x) denote the velocity field and the pressure field of a
single incompressible fluid in a domain Ω. By saying that the fluid is incompressible,
we mean that its density ρ > 0 is constant. Then the dynamics of the fluid are
described by the Navier-Stokes equations

∂t(ρu)− µ∆u+ ρ(u · ∇)u+∇p = ρf, t > 0, x ∈ Ω,

div u = 0, t > 0, x ∈ Ω,
(0.1)

where µ > 0 represents the viscosity of the fluid and f is some external force (e.g.
gravity). The first equation reflects the balance of momentum, while the second
equation states the conservation of mass.

Let us consider a more comprehensive situation, where the domain Ω is occupied
by two incompressible and immiscible fluids, fluid 1 and fluid 2, which are separated
by a sharp interface Γ(t) for each t ≥ 0. We denote by Ωj(t) the subset of Ω which is
filled with fluid j, j ∈ {1, 2} with ρj ,µj being the density and viscosity, respectively,
of fluid j. If uj and pj are the velocity fields and the pressure fields of fluid j,
respectively, then, for t ≥ 0, one sets

u(t, x) :=

{
u1(t, x), x ∈ Ω1(t),

u2(t, x), x ∈ Ω2(t),
p(t, x) :=

{
p1(t, x), x ∈ Ω1(t),

p2(t, x), x ∈ Ω2(t).

Assuming that (uj , pj) satisfies the Navier-Stokes equations in each of the phases
Ωj(t), then we may conclude that (u, p) satisfies (0.1) for all t > 0 and x ∈ Ω\Γ(t),
where ρ and µ are defined by

ρ(x) :=

{
ρ1, x ∈ Ω1(t),

ρ2, x ∈ Ω2(t),
µ(x) :=

{
µ1, x ∈ Ω1(t),

µ2, x ∈ Ω2(t).

Clearly one expects that the two fluids should affect each other in their dynamics.
Therefore, it is natural to ask for relations that describe the coupling of the two
fluids across the interface Γ(t). If one neglects effects of phase transitions between
the phases Ω1(t) and Ω2(t) (e.g. the exchange of mass) then the motion of the
moving boundary Γ(t) should only be caused by the velocity fields of the both
fluids. Therefore it is natural to propose that u2|Γ(t) = u1|Γ(t). Then the normal
velocity VΓ of Γ(t) is given by

VΓ = u · νΓ, (0.2)

1



Introduction 2

where νΓ denotes the unit normal field on Γ(t) pointing from Ω1(t) to Ω2(t). We
call the quantity [[u]] := u2|Γ(t)−u1|Γ(t) the jump of u across Γ(t). Note that [[u]] = 0
if and only if the velocity field u is continuous across the interface Γ(t). Another
condition on Γ(t) reads

−[[µ(∇u+∇uT)]]νΓ + [[p]]νΓ = σHΓνΓ, (0.3)

where σ > 0 denotes the (constant) surface tension of Γ(t) and HΓ := −divΓ νΓ is
the mean curvature of Γ(t) with divΓ being the surface divergence on Γ(t). Condition
(0.3) describes the balance of forces on the interface. To be precise, there is no
contribution to the rate of change of the momentum coming from the interface Γ(t).

If the fixed boundary ∂Ω of Ω is not empty, then the system (0.1)-(0.3) with
[[u]] = 0 has to be equipped with appropriate boundary conditions on ∂Ω as well
as some initial conditions on u(0) = u0 and Γ(0) = Γ0. There is a vast literature
concerning the mathematical treatment of free boundary problems for the Navier-
Stokes equations with or without surface tension. To this end we can only give a
subjective selection and refer the reader to [4, 7, 8, 11, 12, 13, 14, 15, 16, 28, 30, 39,
40, 41, 42, 45, 47, 48, 44, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62]. For a
derivation of (0.1)-(0.3) we refer to [26].

To describe the effect of what is called Rayleigh-Taylor instability, let us consider
the case that Ω = Rn consists of two phases Ω1(t) and Ω2(t) which are separated by
an interface Γ(t), given by a graph of a height function h over Rn−1, i.e.

Γ(t) := {x = (x′, xn) ∈ Ω : xn = h(t, x′), x′ ∈ Rn−1}.

Assume furthermore, that Ω2(t) is the upper phase, hence

Ω2(t) = {x = (x′, xn) ∈ Ω : xn > h(t, x′), x′ ∈ Rn−1}.

Both phases are filled with two fluids with possibly different densities which are
accelerated in the direction of −en by the gravitational force.

Taking a close look at the system (0.1)-(0.3) it turns out that the vanishing velocity
fields, constant pressure fields and the flat interfaces belong to the set of equilibria,
i.e. the set of all solutions, which are constant with respect to t. Henceforth we will
speak of the trivial equilibrium, when u = 0, p is constant and h = 0. Heuristically
one expects that the stability behavior of the trivial equilibrium is being influenced
by the densities ρ2 > 0 and ρ1 > 0 of the fluids. Indeed, if [[ρ]] = ρ2 − ρ1 > 0,
i.e. if the heavier fluid is placed above the lighter fluid, then one expects that the
trivial equilibrium is unstable while in case that [[ρ]] ≤ 0, the trivial equilibrium
should be stable. Indeed, if [[ρ]] > 0 then the upper phase, which is the heavier one,
should sack down into the lower phase, see Figure 1. This effect is called Rayleigh-
Taylor instability and it goes back to the pioneering works of Rayleigh [45] and
Taylor [62]. For more information concerning Rayleigh-Taylor instability we refer
the interested reader to Chandrasekhar [9] & Kull [30] and the references cited
therein. A rigorous proof of Rayleigh-Taylor instability in the above setting has
been given by Prüss & Simonett [42]. The basic strategy is to consider the full
linearization of the quasilinear problem (0.1)-(0.3) at the equilibrium and to compute
the spectrum of the linearization. Due to the lack of compactness, there is a portion
of approximate eigenvalues in the spectrum of the linearization. In addition, there
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Figure 1: Rayleigh-Taylor instability [32].

is no spectral gap which would allow to apply classical tools to carry over the linear
stability properties to the nonlinear case. To this end the authors in [42] apply
Henry’s instability theorem [25, Theorem 5.1.5] which does not require a spectral
gap.

In the periodic framework, i.e. if Ω = T2 × R, where T = R/Z is the 1-torus a
rigorous proof of Rayleigh-Taylor instability has been given by Tice & Wang in
[63]. Note that if [[ρ]] > 0, then the result in [42] states that the trivial equilibrium
is always unstable, no matter what the remaining parameters µ > 0 and σ > 0
are. However, in the periodic setting considered in [63], the stability properties of
the trivial equilibrium do also depend on the surface tension. To be more precise,
there exists a critical surface tension σc > 0 such that if σ > σc, then the trivial
equilibrium is stable, while if 0 < σ < σc, it is unstable. In other words, even if
[[ρ]] > 0, a sufficiently large surface tension σ > 0 of Γ(t) prevents the heavier phase
of sacking down into the lower phase.

An advantage of the approach via maximal regularity of type Lp which has been
used in [42] is that one obtains a semi-flow for the free boundary problem in a
natural phase space. In particular, there is no loss of regularity. With the help of
functional calculus for sectorial operators and harmonic analysis it is then shown
that there exists λ∞ > 0 such that the interval [0, λ∞] is the unstable part of the
spectrum of the linearization. The functional analytic setting used in [42] then allows
to apply Henry’s instability theorem [25, Theorem 5.1.5] to conclude instability for
the nonlinear problem. In contrast to the result in [42], the authors in [63] construct
so-called growing mode solutions (horizontal Fourier modes growing exponentially
in time) for the linearized problem and use several energy estimates to study the
spectrum of the full linearization. The passage from linear to nonlinear (in-)stability
follows from a Guo-Strauss bootstrap procedure, which has been introduced by Guo
& Strauss in [24]. Due to the higher order energy estimates, the regularity of the
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initial values is considerably high and therefore not optimal, when one compares
with the assumptions in [42]. However, the authors in [63] obtain a clear picture of
the stability properties of the trivial equilibrium in dependence of [[ρ]] and σ > 0.

It is one purpose of this thesis to extend the results obtained in [42] & [63] to the
framework of cylindrical domains. To be precise, we assume that Ω = G× (H1, H2),
where G ⊂ Rn−1, n ∈ {2, 3} is a bounded domain with smooth boundary and
H1 < 0 < H2. Suppose furthermore that there is a family of hypersurfaces {Γ(t)}t≥0

given as a graph of some height function h over G, i.e.

Γ(t) = {(x′, xn) ∈ Ω : xn = h(t, x′), x′ ∈ G}, t > 0,

such that for each t ≥ 0 the interface Γ(t) divides Ω into two subdomains Ω1(t) and
Ω2(t) which are filled with two fluids, respectively. Let us make the convention that
Ω2(t) is the upper phase. Assuming that the equations (0.1)-(0.3) together with
the condition [[u]] = 0 are satisfied, we are led in a natural way to the problem of
finding suitable boundary conditions on the vertical part S1 := ∂G × (H1, H2) and
the horizontal part S2 := (G× {H1}) ∪ (G× {H2}) of the boundary ∂Ω of Ω. This
turns out to be a delicate question, since within the above setting we are on the
one side concerned with two parts S1 and S2 of the boundary such that ∂S1 = ∂S2.
Therefore the boundary conditions on S1 and S2 have to be chosen in such a way
that they are compatible to each other. On the other side we have to deal with a
contact angle problem, as ∂Γ(t) is a moving contact line on S1. At this point we
want to emphasize that the choice of the periodic setting in [63] allows to circumvent
the formation of a contact angle.

The theory of contact angle problems, in particular with a dynamic contact angle
which depends on t, is yet not well understood. In fact, there exist different point
of views about how to model such a problem. One party supposes that the dynamic
contact angle is determined by an additional equation, while the other party assumes
that the contact angle will be determined by the dynamic equations for the interface
and the fluid, hence the equation for the contact angle should be redundant. We
refer to [5] & [49] and to the references given therein.

Therefore, in order to avoid this lack of clarity, we assume throughout this thesis,
that the contact angle is constant and equal to 90 degrees. One can interpret this
ansatz as a kind of idealization. It is possible to translate the condition on the
contact angle to a condition on the height function h from above. Indeed, if h is
sufficiently smooth, then the unit normal on Γ(t) with respect to Ω1(t) is given by

νΓ =
1√

1 + |∇x′h|2

(
−∇x′h

1

)
.

Since the outer unit normal on S1 is given by νS1 = (ν∂G, 0)T, the condition on
the contact angle reads νΓ · νS1 = 0 or equivalently ∂ν∂Gh = 0 at the contact
line. Concerning S1 it is not possible to propose Dirichlet boundary conditions,
the so-called no-slip boundary conditions, since this leads to a paradoxon for the
moving contact line, see e.g. [44]. The next canonical choice are the so-called Navier
boundary conditions or partial-slip boundary conditions

u · νS1 = 0, PS1(µ(∇u+∇uT)νS1) + αu = 0,
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where PS1 := I − νS1 ⊗ νS1 denotes the projection to the tangent space on S1. The
parameter α > 0 has the physical meaning of a friction coefficient. However, it turns
out that this kind of boundary condition does not allow the interface to move along
S1 which is not very reasonable, as numerical simulations show. To see this, consider
for simplicity the case n = 2. The equation (0.2) in terms of h then reads

∂th = u2 − u1∂1h, (0.4)

where u = (u1, u2). Observe that for n = 2 the partial slip conditions read as follows

u1 = 0, µ(∂1u2 + ∂2u1) + αu2 = 0.

Therefore it holds that µ∂1u2 +αu2 = 0, which is a Robin boundary condition for u2

on S1. Differentiating (0.4) with respect to x1, and taking into account that ∂1h = 0
at S1 (by the contact angle condition) we obtain ∂1u2 = 0, hence u2 = 0 if α > 0.
Consequently it holds that ∂th = 0 at S2 and therefore h(t) is constant with respect
to t.

In order to circumvent this problem, we will consider the case α = 0, the so-
called pure-slip boundary conditions. From a physical point of view this means that
there is no friction on the boundary S1. Having fixed the boundary conditions on
S1 we may choose suitable boundary conditions on S2, having in mind that these
conditions have to match those on S1. It turns out that homogeneous Dirichlet
boundary conditions are a good choice, since they are compatible with the pure-slip
boundary conditions on S1 and furthermore they allow to apply Korn’s inequality
for Du := ∇u+∇uT, see Theorem 6.6.2. Note that the no-slip boundary conditions
on S2 do not cause any problems with the moving interface, since we will always
have Γ(t) ∩ S2 = ∅ for all t ≥ 0. We are thus led to the problem

∂t(ρu)− µ∆u+ ρ(u · ∇)u+∇p = −ργaen, in Ω\Γ(t),

div u = 0, in Ω\Γ(t),

−[[µ(∇u+∇uT)]]νΓ + [[p]]νΓ = σHΓνΓ, on Γ(t),

[[u]] = 0, on Γ(t),

VΓ = u · νΓ, on Γ(t),

PS1

(
µ(∇u+∇uT)νS1

)
= 0, on S1\∂Γ(t),

u · νS1 = 0, on S1\∂Γ(t),

u = 0, on S2,

νΓ · νS1 = 0, on ∂Γ(t),

u(0) = u0, in Ω\Γ(0),

Γ(0) = Γ0,

(0.5)

where we denote by γa the acceleration constant due to gravity.
The structure of this thesis is as follows. In Chapter 1 we will first transform

(0.5) to a fixed domain which does not vary in time. This will be done by means
of a height function h, assuming that Γ(t) is given as the graph of h over the
domain G. By means of local charts the transformed problem can be drawn back
to certain model problems. As the analysis of two types of these model problems,
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namely the Stokes equations in quarter-spaces and the two-phase Stokes equations in
half spaces is not known, we will provide a systematic treatment of these problems
subsequently. At this point we want to emphasize that the analysis of the latter
problems is more involved than the usual model problems in half spaces. This is
due to the fact that one has to deal with mixed boundary conditions meeting at
the contact line. However, our assumption on the contact angle enables us to use
reflection techniques in order to draw back the quarter space to a half space with
dirichlet boundary conditions and the two-phase half space to a two-phase full space
with a flat interface.

In Chapter 2 we use the results from Chapter 1 combined with a localization pro-
cedure to prove existence and uniqueness of a solution of the principal linearization
having maximal regularity of type Lp. To be precise, if u and p denote the (trans-
formed) velocity field and pressure field, respectively, we will show that (u, p, [[p]], h)
enjoys the regularity

u ∈ H1
p (J ;Lp(Ω)n) ∩ Lp(J ;H2

p (Ω\Σ)n), p ∈ Lp(J ; Ḣ1
p (Ω)),

[[p]] ∈W 1/2−1/2p
p (J ;Lp(Σ)) ∩ Lp(J ;W 1−1/p

p (Σ)).

and
h ∈W 2−1/2p

p (J ;Lp(Σ)) ∩H1
p (J ;W 2−1/p

p (Σ)) ∩ Lp(J ;W 3−1/p
p (Σ)),

where J = [0, T ] is some nonempty bounded interval. This optimal regularity result
in turn allows to apply the contraction mapping principle in Chapter 3 to obtain a
unique solution of the nonlinear problem having optimal regularity as well.

Chapter 4 is devoted to the investigation of the stability properties of the trivial
equilibrium, i.e. u = 0, h = 0 and p is constant. It turns out that if [[ρ]] > 0 then
there exists a critical surface tension σc := [[ρ]]γa/λ1 > 0, where λ1 > 0 denotes
the first nontrivial eigenvalue of the Neumann Laplacian in L2(G). If σ > σc then
the trivial equilibrium is exponentially stable, while in case σ ∈ (0, σc) it will be
unstable. If [[ρ]] ≤ 0, then the trivial equilibrium is always exponentially stable.
Specializing to the case G = BR(0), we obtain as a corollary that for fixed surface
tension σ > 0 and if [[ρ]] > 0 there exists a critical radius

Rc :=

(
σλ∗1

[[ρ]]γa

)1/2

,

such that if R < Rc, then the trivial equilibrium is exponentially stable, while for
R > Rc it will be unstable. Here λ∗1 > 0 denotes the first nontrivial eigenvalue of the
Neumann Laplacian in L2(B1(0)), given by λ∗1 = (j′1,1)2, where j′1,1 is the first zero of
the derivative J ′1 of the Bessel function J1 (see [1]). The proof of the stability result
requires some effort, since after the transformation to a fixed domain one has to pay
the price that in particular the (transformed) velocity field is no longer divergence
free. Therefore, one has to split the solution into two parts in a suitable way such
that one part is divergence free while the other part, whose divergence does not
vanish, satisfies a nonlinear problem, which can be handled by the implicit function
theorem.

The results in Chapter 4 suggest that if σ descreases from σ > σc to σ < σc,
then an eigenvalue of the full linearization will cross the imaginary axis. Therefore
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it is natural to ask for possible bifurcations from the trivial equilibrium. In Chapter
5 we will see that the eigenvalue which crosses the imaginary axis through zero
is, unfortunately, not simple if n = 3. Therefore it is not possible to apply the
bifurcation results of Crandall-Rabinowitz directly. By the choice of the boundary
conditions, the equilibria of the transformed problem are u = 0, p is constant and
the height function h satisfies the capillary equation

σ divx′

(
∇x′h√

1 + |∇x′h|2

)
+ [[ρ]]γah = 0, x′ ∈ BR(0),

∂νBR(0)
h = 0, x′ ∈ ∂BR(0).

(0.6)

This equation for h exhibits certain symmetry properties, in particular we will show
that it is invariant under the group action of the orthogonal group O(2). This
fact enables us to reduce the bifurcation equation to a one dimensional equation
and to apply the implicit function theorem which yields the existence of subcritical
bifurcating branches from the trivial solution. The remaining part of Chapter 5
deals with the proof that the bifurcating equilibria are unstable. To this end we
compute the full linearization in these equilibria and show that there is at least one
eigenvalue in the unstable part of the spectrum of the linearization. The passage to
nonlinear instability follows the same lines as in Chapter 4.

Finally we decided to collect all technical results which are needed for the execu-
tion of the above program in an appendix. Several results concerning extension oper-
ators, auxiliary elliptic and parabolic problems in quarter spaces and two-phase half
spaces but also in bounded cylindrical domains are provided. In addition, we state
the divergence theorem for bounded Lipschitz domains as well as Korn’s inequality
for functions having a vanishing trace on some nontrivial part of the boundary of
the domain.
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to Gieri Simonett for the numerous stimulating discussions we had during my time
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Notation: The symbols Hs
p , W s

p , s ≥ 0 refer to the Bessel potential spaces and
Sobolev-Slobodeckii spaces, respectively (Sobolev spaces for s ∈ N with H = W ). If
J = [0, T ] is some interval and X a suitable Banach space, then 0W

s
p (J ;X) denotes

the subspace of W s
p (J ;X) consisting of all functions having a vanishing trace at

t = 0, whenever it exists. Finally we denote by Ẇ k
p (Ω) = Ḣk

p (Ω) the homogeneous
Sobolev space of order k ∈ N, where Ω ⊂ Rn is some domain.



Chapter 1

Preliminaries and model
problems

For the sake of readability we will assume throughout this thesis that the space
dimension n is equal to 3. This is the most important case from a viewpoint of
applications. However, you will have no problems to verify that the results remain
true for the case n = 2.

Furthermore we will assume from now on that p > n + 2. In Chapter 3 about
the well-posedness of the nonlinear model, this condition on p is a result of some
Sobolev embeddings which are needed for the proof. Observe that in case n = 3 this
yields p > 5.

We consider the following problem.

∂t(ρu)− µ∆u+ ρ(u · ∇)u+∇π = −ργae3, in Ω\Γ(t),

div u = 0, in Ω\Γ(t),

−[[µ(∇u+∇uT)]]νΓ + [[π]]νΓ = σHΓνΓ, on Γ(t),

[[u]] = 0, on Γ(t),

VΓ = u · νΓ, on Γ(t),

PS1

(
µ(∇u+∇uT)νS1

)
= 0, on S1\∂Γ(t),

u · νS1 = 0, on S1\∂Γ(t),

u = 0, on S2,

νΓ · νS1 = 0, on ∂Γ(t),

u(0) = u0, in Ω\Γ(0),

Γ(0) = Γ0.

(1.1)

Here Ω = G × (H1, H2), H1 < 0 < H2, is a cylindrical domain where G ⊂ R2 is an
open bounded domain with a smooth boundary ∂G. The compact free boundary
Γ(t) divides Ω into two unbounded disjoint phases Ωj(t), j = 1, 2, so that Ω =
Ω1(t) ∪ Γ(t) ∪ Ω2(t). The convention is that Ω2(t) is the upper phase while Ω1(t)
is the lower one with the unit normal νΓ at x ∈ Γ(t) pointing from Ω1(t) to Ω2(t).
We denote by νS1 the outer unit normal at the fixed boundary S1. The operator
PS1 := I − νS1 ⊗ νS1 stands for the projection to the tangential space on S1.

8



1.1. Reduction to a flat interface 9

It is convenient to introduce the modified pressure π̃ := π+ργax3. Then we obtain
the following problem

∂t(ρu)− µ∆u+ ρ(u · ∇)u+∇π̃ = 0, in Ω\Γ(t),

div u = 0, in Ω\Γ(t),

−[[µ(∇u+∇uT)]]νΓ + [[π̃]]νΓ = σHΓνΓ + [[ρ]]γax3νΓ, on Γ(t),

[[u]] = 0, on Γ(t),

VΓ = u · νΓ, on Γ(t),

PS1

(
µ(∇u+∇uT)νS1

)
= 0, on S1\∂Γ(t),

u · νS1 = 0, on S1\∂Γ(t),

u = 0, on S2,

νΓ · νS1 = 0, on ∂Γ(t),

u(0) = u0, in Ω\Γ(0),

Γ(0) = Γ0.

(1.2)

1.1 Reduction to a flat interface

We assume that

Γ(t) = {x ∈ G× (H1, H2) : x3 = h(t, x′), x′ = (x1, x2) ∈ G, t ≥ 0}.

Let ϕ ∈ C∞(R; [0, 1])) such that ϕ(s) = 1 if |s| ≤ δ/2 and ϕ(s) = 0 if |s| ≥ δ, where
δ < min{−H1, H2}/2. Define a mapping

Θh(t, x̄) := x̄+ ϕ(x̄3)h(t, x̄′)e3 =: x̄+ θh(t, x̄),

where x̄ := (x̄′, x̄3) and for fixed t > 0 set x = Θh(t, x̄). An easy computation shows
that

θ′Th =

0 0 ∂1hϕ
0 0 ∂2hϕ
0 0 hϕ′

 ,

It follows that if ‖h‖∞,∞ < 1/(2|ϕ′|∞) then Θ′h is invertible and

(Θ′h)−T = (I + θ′Th )−1 =
1

1 + hϕ′

1 + hϕ′ 0 −∂1hϕ
0 1 + hϕ′ −∂2hϕ
0 0 1

 .

In the sequel, let ‖h‖∞,∞ < η with 0 < η ≤ 1/(2|ϕ′|∞) being sufficiently small.
Then the inverse Θ−1

h : Ω → Ω is well defined and it transforms the free interface
Γ(t) to the flat and fixed interface Σ := G × {0}. Now we define the transformed
quantities

ū(t, x̄) := u(t,Θh(t, x̄))

π̄(t, x̄) := π̃(t,Θh(t, x̄))
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and compute νΓ = (−∇x′h, 1)T/
√

1 + |∇x′h|2,

∇π̃ = ∇π̄ −M0(h)∇π̄
div u = div ū− (M0(h)∇|ū)

∆u = ∆ū−M1(h) : ∇2ū−M2(h)∇ū
∂tu = ∂tū− ϕ∂th(1 + ϕ′h)−1∂3ū,

where M0(h) := θ′Th (I + θ′Th )−1,

M1(h) : ∇2ū :=
[
2 sym(θ′Th [I + θ′h]−T)− [I + θ′h]−1θ′hθ

′T
h [I + θ′h]−T

]
: ∇2ū,

and
M2(h)∇ū :=

(
[∆Θ−1

h ] ◦Θh|∇
)
ū.

Furthermore it holds that VΓ = (∂tΘh|νΓ) = ∂th(e3|νΓ) = ∂th/
√

1 + |∇x′h|2. This
yields the following transformed problem for ū and π̄ (for convenience we drop the
bars!!!).

∂t(ρu)− µ∆u+∇π = F (u, π, h), in Ω\Σ,
div u = Fd(u, h), in Ω\Σ,

−[[µ∂3v]]− [[µ∇x′w]] = Gv(u, h), on Σ,

−2[[µ∂3w]] + [[π]]− σ∆x′h− [[ρ]]γah = Gw(u, h), on Σ,

[[u]] = 0, on Σ,

∂th− w = H1(u, h), on Σ,

PS1

(
µ(∇u+∇uT)νS1

)
= H2(u, h), on S1\∂Σ,

u · νS1 = 0, on S1\∂Σ,

u = 0, on S2,

∂ν∂Gh = 0, on ∂Σ,

u(0) = u0, in Ω\Σ
h(0) = h0, on Σ.

(1.3)

Here

F (u, p, h) := ρϕ∂th(1 + ϕ′h)−1∂3u− µ(M1(h) : ∇2u+M2(h)∇u) +M0(h)∇π
Fd(u, h) := (M0(h)∇|u)

Gv(u, h) := −[[µ(∇v +∇vT)]]∇h+ |∇h|2[[µ∂3v]]

+
(
(1 + |∇h|2)[[µ∂3w]]− (∇h|[[µ∇w]])

)
∇h

Gw(u, h) := −(∇h|[[µ∇w]])− (∇h|[[µ∂3v]]) + |∇h|2[[µ∂3w]] + σGκ(h)

Gκ(h) := div

(
∇h√

1 + |∇h|2

)
−∆h

H1(u, h) := −(v|∇h)

H2(u, h) := PS1(µ(M0(h)∇u+∇uTM0(h)T)νS1),

where we have set v := (u1, u2), w := u3 and ∇w = ∇x′w, ∇v = ∇x′v, ∇h = ∇x′h
for the sake of readability.
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1.2 Linearization, regularity and compatibility condi-
tions

We consider first the linear part, defined by the left side of (1.3), that is

∂t(ρu)− µ∆u+∇π = f, in Ω\Σ,
div u = fd, in Ω\Σ,

−[[µ∂3v]]− [[µ∇x′w]] = gv, on Σ,

−2[[µ∂3w]] + [[π]]− σ∆x′h = gw, on Σ,

[[u]] = uΣ, on Σ,

∂th−m[w] = gh, on Σ,

PS1

(
µ(∇u+∇uT)νS1

)
= PS1g1, on S1\∂Σ,

u · νS1 = g2, on S1\∂Σ,

u = g3, on S2,

∂ν∂Gh = g4, on ∂Σ,

u(0) = u0, in Ω\Σ
h(0) = h0, on Σ,

(1.4)

where m[w] := (w+ + w−)/2 is the arithmetic mean of the directional traces w± of
w to Σ from Ω2 and Ω1. Note that we neglected the term [[ρ]]γah in the jump of the
stress tensor, as it is of lower order compared to ∆x′h.

Let J = [0, T ] with T ∈ (0,∞). We are looking for solutions (u, π) of the Stokes
equation with

u ∈ H1
p (J ;Lp(Ω)3) ∩ Lp(J ;H2

p (Ω\Σ)3), π ∈ Lp(J ; Ḣ1
p (Ω)),

and
[[π]] ∈W 1/2−1/2p

p (J ;Lp(Σ)) ∩ Lp(J ;W 1−1/p
p (Σ)).

Note that the latter regularity condition on [[π]] is determined by the regularity of
the Neumann trace of u on Σ. For the height function h this yields

∆x′h ∈W 1/2−1/2p
p (J ;Lp(Σ)) ∩ Lp(J ;W 1−1/p

p (Σ))

and
∂th ∈W 1−1/2p

p (J ;Lp(Σ)) ∩ Lp(J ;W 2−1/p
p (Σ)),

hence the optimal regularity class for h is given by

h ∈W 2−1/2p
p (J ;Lp(Σ)) ∩H1

p (J ;W 2−1/p
p (Σ)) ∩ Lp(J ;W 3−1/p

p (Σ)).

In the sequel we will always assume that p > 2. Let us discuss the necessary regular-
ity and compatibility conditions on the data (f, fd, gv, gw, gh, g1, g2, g3, g4, uΣ, u0, h0).
If (u, π, [[π]], h) is a solution of (1.4) in the regularity classes stated above, then it
holds that f ∈ Lp(J ;Lp(Ω)3), fd ∈ Lp(J ;H1

p (Ω\Σ))

(gv, gw) ∈W 1/2−1/2p
p (J ;Lp(Σ)3) ∩ Lp(J ;W 1−1/p

p (Σ)3),
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uΣ ∈W 1−1/2p
p (J ;Lp(Σ)3) ∩ Lp(J ;W 2−1/p

p (Σ)3),

gh ∈W 1−1/2p
p (J ;Lp(Σ)) ∩ Lp(J ;W 2−1/p

p (Σ)),

PS1g1 ∈W 1/2−1/2p
p (J ;Lp(S1)3) ∩ Lp(J ;W 1−1/p

p (S1\∂Σ)3),

g2 ∈W 1−1/2p
p (J ;Lp(S1)) ∩ Lp(J ;W 2−1/p

p (S1\∂Σ)),

g3 ∈W 1−1/2p
p (J ;Lp(S2)3) ∩ Lp(J ;W 2−1/p

p (S2)3),

g4 ∈W 3/2−1/p
p (J ;Lp(Σ)) ∩H1

p (J ;W 1−2/p
p (Σ)) ∩ Lp(J ;W 2−2/p

p (Σ)),

u0 ∈W 2−2/p
p (Ω\Σ)3, h0 ∈W 3−2/p

p (Σ).

Concerning compatibility conditions at t = 0 we have div u0 = fd|t=0,

gv|t=0 = −[[µ∂3v0]]− [[µ∇x′w0]],

[[u0]] = uΣ|t=0, u0 · νS1 = g2|t=0, u0 = g3|t=0, ∂ν∂Gh0 = g4|t=0 and

PS1(µ(∇u0 +∇uT0 )νS1) = PS1g1|t=0.

Since ∂Σ ⊂ S1 6= ∅ and ∂S1 ∩ ∂S2 6= ∅, there are additional compatibility conditions
which have to be satisfied.

If (u, π, [[π]], h) is a solution of (1.4) with the above regularity, then the following
compatibility conditions at ∂Σ and ∂S2 have necessarily to be satisfied.

• [[g2]] = uΣ · νS1 , [[(g1 · e3)/µ− ∂3g2]] = ∂νS1
(uΣ · e3), at ∂Σ,

• P∂G[(D′vΣ)ν ′] = [[P∂Gg
′
1/µ]], ∂tg4 −m[(g1 · e3)/µ− ∂3g2] = ∂ν∂Ggh, at ∂Σ,

• (gv|ν∂G) = −[[g1 · e3]] at ∂Σ, (g3|νS1) = g2 at ∂S2,

• P∂G[µ(D′g′3)ν ′] = (P∂Gg
′
1), µ∂νS1

(g3 · e3) + µ∂3g2 = g1 · e3 at ∂S2.

Here we use the notation ν ′ = ν∂G, P∂G := I − ν ′ ⊗ ν ′, D′v := sym[∇x′v] and
g′ :=

∑2
k=1(g · ek)ek. These conditions follow easily by comparing the equations

(1.4)3 and (1.4)5−10 with each other.
There is another compatibility and regularity condition hidden in the system,

which stems from the divergence equation. Multiply div u = fd by φ ∈ H1
p′(Ω),

p′ = p/(p− 1) and integrate by parts (see Proposition 6.6.1) to the result∫
Ω
fdφdx−

∫
S1

g2φ|S1dS1 −
∫
S2

(g3 · νS1)φ|S2dS2 +

∫
Σ

(uΣ · νΣ)φ|ΣdΣ

= −
∫

Ω
u · ∇φdx, (1.5)

where νS2(x′, H2) = e3, νS2(x′, H1) = −e3 for x′ ∈ G and νΣ = e3. It follows that
the functional [φ 7→ 〈(fd, g2, g3, uΣ), φ〉] defined by the left side of (1.5) is continuous
on H1

p′(Ω) with respect to the semi-norm ‖∇ · ‖Lp′ (Ω). Since H1
p′(Ω) is dense in

the homogeneous Sobolev space Ḣ1
p′(Ω) (the constants are already factorized) with

respect to ‖∇ · ‖Lp′ (Ω) for all domains Ω which are considered in this thesis, it
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follows that (fd, g2, g3, uΣ) determines a functional on Ḣ1
p′(Ω), i.e. (fd, g2, g3, uΣ) ∈

Ĥ−1
p (Ω) := (Ḣ1

p′(Ω))∗. The norm of (fd, g2, g3, uΣ) in Ĥ−1
p (Ω) is then given by

‖(fd, g2, g3, uΣ)‖Ĥ−1
p

= sup{〈(fd, g2, g3, uΣ), φ〉/‖∇φ‖Lp′ : φ ∈ H1
p′(Ω)}.

Moreover, if u ∈ H1
p (J ;Lp(Ω)n), then d

dt(fd, g2, g3, uΣ) is well defined by the compu-
tation above, hence

(fd, g2, g3, uΣ) ∈ H1
p (J ; Ĥ−1

p (Ω))

is another necessary compatibility and regularity condition on the data. In partic-
ular, if Ω is bounded, then we may choose φ = 1 in (1.5) to obtain∫

Ω
fddx−

∫
S1

g2dS1 −
∫
S2

(g3 · νS1)dS2 +

∫
Σ

(uΣ · νΣ)dΣ = 0.

Remark 1.2.1. For the sake of completeness, let us state the compatibility conditions
at ∂Σ and ∂S2 for the case n = 2. On Σ we have the jump conditions

−[[µ∂2u1]]− [[µ∂1u2]] = gv, [[u]] = uΣ,

and ∂th−m[u2] = gh. The boundary conditions on S1\∂Σ and S2 are u · νS1 = g2,
µ(∂1u2 + ∂2u1)ν∂G = g1 and u = g3, respectively, where νS1 = (ν∂G, 0)T and ν∂G =
±1. In addition we have (∂1h)ν∂G = g4 (note that h does only depend on the single
variable x1 if n = 2. This yields the following compatibility conditions:

• [[g2]] = uΣ · νS1 , gvν∂G = −[[g1]], ∂1(uΣ · e2)ν∂G = [[g1/µ− ∂2g2]] at ∂Σ,

• ∂tg4 −m[g1/µ− ∂2g2] = (∂1gh)ν∂G at ∂Σ,

• g3 · νS1 = g2, µ(∂1g3 + ∂2g2)ν∂G = g1 at ∂S2.

• (fd, g2, g3, uΣ) ∈ H1
p (J ; Ĥ−1

p (Ω)).

1.3 Model problems

The proof of existence and uniqueness of a solution (u, π, [[π]], h) to (1.3) is based on
a localization procedure. We will obtain six different types of charts, which yield six
different types of model problems. These are

• the full space Stokes equations (without any boundary- or interface conditions)

• the two-phase Stokes equations with a flat interface and without any boundary
condition

• the Stokes equations with pure slip boundary conditions in a half-space and
no interface

• the Stokes equations with no-slip boundary conditions in a half-space and no
interface

• the Stokes equations in a quarter space with pure slip boundary conditions on
one part of the boundary and no-slip boundary conditions on the other part
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• the two-phase Stokes equations with pure slip boundary conditions in a half-
space, a flat interface and a contact angle of 90 degrees.

While the first four of these problems are well understood, there seem to be no
results on well-posedness of the last two problems.

1.3.1 The Stokes equations in quarter-spaces

Consider the problem

∂t(ρu)− µ∆u+∇π = f, x1 ∈ R, x2 > 0, x3 > 0,

div u = fd, x1 ∈ R, x2 > 0, x3 > 0,

µ[∂2u1 + ∂1u2, ∂3u2 + ∂2u3]T = g1, x1 ∈ R, x2 = 0, x3 > 0,

u2 = g2, x1 ∈ R, x2 = 0, x3 > 0,

u = g3, x1 ∈ R, x2 > 0, x3 = 0,

u(0) = u0, x1 ∈ R, x2 > 0, x3 > 0.

(1.6)

For convenience, let Ω := R×R+×R+, S1 := R×{0}×R+ and S2 := R×R+×{0}.
In a first step we extend u0 ∈W 2−2/p

p (Ω)3 with respect to x2 via the reflection

ũ0(x1, x2, x3) =

{
u0(x1, x2, x3), if x2 > 0,

−u0(x1,−2x2, x3) + 2u0(x1,−x2/2, x3), if x2 < 0.

Then ũ0 ∈W 2−2/p
p (R× R× R+)3. Applying the same method to

g3 ∈W 1−1/2p
p (J ;Lp(S2)3) ∩ Lp(J ;W 2−1/p

p (S2)3)

yields an extension

g̃3 ∈W 1−1/2p
p (J ;Lp(R× R)3) ∩ Lp(J ;W 2−1/p

p (R× R)3).

Furthermore it holds that g̃3|t=0 = ũ0|x3=0, since g3|t=0 = u0|S2 . Then we solve the
half-space problem

∂tũ−∆ũ = 0, (x1, x2, x3) ∈ R2 × R+,

ũ|x3=0 = g̃3, (x1, x2) ∈ R2, x3 = 0,

ũ(0) = ũ0, (x1, x2, x3) ∈ R2 × R+,

(1.7)

to obtain a unique solution

ũ ∈ H1
p (J ;Lp(R3

+)3) ∩ Lp(J ;H2
p (R3

+)3).

If (u, π) is a solution of (1.6), then the (restricted) function (u − ũ, π) solves (1.6)
with u0 = g3 = 0 and some modified data (f, g1, g2) (not to be relabeled) in the
right regularity classes having a vanishing trace at t = 0 whenever it exists.

In a next step we extend

g1 ∈0W
1/2−1/2p
p (J ;Lp(S1)2) ∩ Lp(J ;W 1−1/p

p (S1)2),
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and
g2 ∈0W

1−1/2p
p (J ;Lp(S1)) ∩ Lp(J ;W 2−1/p

p (S1)),

w.r.t. x3 to some functions

g̃1 ∈0W
1/2−1/2p
p (J ;Lp(R2)2) ∩ Lp(J ;W 1−1/p

p (R2)2),

and
g̃2 ∈0W

1−1/2p
p (J ;Lp(R2)) ∩ Lp(J ;W 2−1/p

p (R2)),

and solve the half-space problem

∂tū−∆ū = 0, x1, x3 ∈ R, x2 > 0,

µ[∂2ū1 + ∂1ū2, ∂3ū2 + ∂2ū3]T = g̃1, x1, x3 ∈ R, x2 = 0,

ū2 = g̃2, x1, x3 ∈ R, x2 = 0,

ū(0) = 0, x1, x3 ∈ R, x2 > 0,

(1.8)

to obtain a unique solution

ū ∈0H
1
p (J ;Lp(R× R+ × R)3) ∩ Lp(J ;H2

p (R× R+ × R)3).

If (u, π) is a solution of (1.6) it follows that the (restricted) function (u− ũ− ū, π)
solves the problem

∂t(ρu)− µ∆u+∇π = f, (x1, x2, x3) ∈ Ω,

div u = fd, (x1, x2, x3) ∈ Ω,

µ[∂2u1 + ∂1u2, ∂3u2 + ∂2u3]T = 0, (x1, x2, x3) ∈ S1,

u2 = 0, (x1, x2, x3) ∈ S1,

u = g3, (x1, x2, x3) ∈ S2,

u(0) = 0, (x1, x2, x3) ∈ Ω,

(1.9)

with some modified data (f, fd, g3) in the right regularity classes having a vanishing
trace at t = 0 whenever it exists. Note that g3 := ū|x3=0 and the compatibility
conditions (g3)2 = ∂2(g3)1,3 = 0 hold if x1 ∈ R, x2 = 0 and x3 = 0. We will
now extend (f1, f3, fd, (g3)1,3) by even reflection and (f2, (g3)2) by odd reflection to
{x2 < 0}. Then we consider the (reflected) half-space problem

∂t(ρû)− µ∆û+∇π̂ = f̃ , x1, x2 ∈ R, x3 > 0,

div û = f̃d, x1, x2 ∈ R, x3 > 0,

û = g̃3, x1, x2 ∈ R, x3 = 0,

û(0) = 0, x1, x2 ∈ R, x3 > 0,

(1.10)

which has a unique solution

û ∈0H
1
p (J ;Lp(R3

+)3) ∩ Lp(J ;H2
p (R3

+)3),

π̂ ∈ Lp(J ; Ḣ1
p (R3

+)),

by [6, Theorem 6.1].
The (restricted) pair (u, π) := (ũ+ ū+ û, π̂) is the desired unique solution to (1.6).

We have thus proven the following
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Theorem 1.3.1. Let n = 3, p > 5, T > 0, ρ, µ > 0 and J = [0, T ]. Then there
exists a unique solution

u ∈ H1
p (J ;Lp(Ω)3) ∩ Lp(J ;H2

p (Ω)3)

π ∈ Lp(J ; Ḣ1
p (Ω))

of (1.6) if and only if the data satisfy the following regularity and compatibility
conditions.

1. f ∈ Lp(J ;Lp(Ω)3);

2. fd ∈ Lp(J ;H1
p (Ω));

3. g1 ∈W 1/2−1/2p
p (J ;Lp(S1)2) ∩ Lp(J ;W

1−1/p
p (S1)2);

4. g2 ∈W 1−1/2p
p (J ;Lp(S1)) ∩ Lp(J ;W

2−1/p
p (S1));

5. g3 ∈W 1−1/2p
p (J ;Lp(S2)3) ∩ Lp(J ;W

2−1/p
p (S2)3);

6. u0 ∈W 2−2/p
p (Ω)3;

7. div u0 = fd|t=0, µ[∂2(u0)1 + ∂1(u0)2, ∂3(u0)2 + ∂2(u0)3]|Tx2=0 = g1|t=0;

8. (u0)2|x2=0 = g2|t=0, u0|x3=0 = g3|t=0;

9. (g3)2|x2=0 = g2|x3=0, µ[∂2(g3)1 + ∂1(g3)2, ∂3g2|x3=0 + ∂2(g3)3]|Tx2=0 = g1|x3=0;

10. (fd, g2, g3) ∈ H1
p (J ; Ĥ−1

p (Ω)).

1.3.2 The Stokes equations in bent quarter-spaces

Let θ ∈ BC3(R) such that

Gθ := {(x1, x2) ∈ R2 : x2 > θ(x1)} and Ωθ = Gθ × R+.

We assume furthermore that |θ′|∞ ≤ η and |θ(j)|∞ ≤ M , j ∈ {2, 3}, where we may
choose η > 0 as small as we wish. Let S1,θ := ∂Gθ × R+ and S2,θ := Gθ × {0}.
Furthermore, let νS1,θ

= (νGθ , 0)T with νGθ := 1√
1+θ′(x1)2

(θ′(x1),−1)T denote the

outer unit normal to S1,θ at (x1, θ(x1), x3), (x1, x3) ∈ R × R+ and let PS1,θ
be the

tangential projection to S1,θ. Consider the problem

∂t(ρu)− µ∆u+∇π = f, x ∈ Ωθ,

div u = fd, x ∈ Ωθ,

PS1,θ
[µ(Du)νS1,θ

] = PS1g1, x ∈ S1,θ,

(u|νS1,θ
) = g2, x ∈ S1,θ,

u = g3, x ∈ S2,θ

u(0) = u0, x ∈ Ωθ.

(1.11)
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Here ρ, µ > 0 are given constants. Note that since νS1 = (ν∂G, 0)T it holds that

PS1,θ
[µ(Du)νS1,θ

] =

(
P∂Gθ [µ(D′v)νGθ ]

µ∂3(v|νGθ) + µ∂νGθw,

)
(1.12)

where D′ = D(x1,x2) and u = (v, w). Therefore, the given data (f, fd, g1, g2, g3, u0)
is subject to the compatibility conditions (g3|νS1,θ

) = g2|S2,θ
,

P∂Gθ [µ(D′g′3)νS1,θ
] = P∂Gθg

′
1,

and µ(∂3g2 + ∂νGθ (g3 · e3)) = g1 · e3 at the contact line {(x1, θ(x1), 0) : x1 ∈ R},
where

g′j :=
2∑

k=1

(gj · ek)ek

for j ∈ {1, 3}. Furthermore, at t = 0 we have div u0 = fd|t=0, u0|S2,θ
= g3|t=0,

(u0|νS1,θ
) = g2|t=0 and PS1,θ

[µ(Du0)νS1,θ
] = PS1,θ

g1|t=0. Lastly, (fd, g2, g3) ∈
H1
p (J ; Ĥ−1

p (Ωθ)).
For convenience we shall reduce (1.11) to the case u0 = f = g3 = 0. To this end

we first extend u0 and f to some ũ0 ∈ W 2−2/p
p (R3)3 and f ∈ Lp(J ;Lp(R3)3) and

solve the full-space problem

∂t(ρũ)− µ∆ũ = f̃ , in R3,

ũ(0) = ũ0, in R3,

to obtain a unique solution

ũ ∈ H1
p (J ;Lp(R3)3) ∩ Lp(J ;H1

p (R3)3).

Let now g̃3 := g3 − ũ|S2 . Then g̃3|t=0 = 0 by construction and we may extend g̃3 to
some

ĝ3 ∈0W
1−1/2p
p (J ;Lp(R2)3) ∩ Lp(J ;W 2−1/p

p (R2)3).

With ĝ3 at hand we solve the half-space problem

∂t(ρû)− µ∆û = 0, in R3
+,

û = ĝ3, on R2,

û(0) = 0, in R3
+,

to obtain a unique solution

û ∈ H1
p (J ;Lp(R3

+)3) ∩ Lp(J ;H1
p (R3

+)3).

If u is a solution of (1.11), it follows that the (restricted) function ū := u−ũ−û solves
(1.11) with f = u0 = g3 = 0 and some modified functions f̄d, ḡj , j ∈ {1, 2} in the cor-
rect regularity classes satisfying the compatibility conditions ḡ2|S2,θ

= 0, P∂Gθ ḡ
′
1 = 0

and ḡ1 · e3 = ∂3ḡ2 at the contact line. Moreover, (f̄d, ḡ2, 0) ∈0H
1
p (J ; Ĥ−1

p (Ωθ)).
Observe that by the identity (PS1,θ

w|νS1,θ
) = 0, w ∈ R3, the second component

of PS1,θ
w is redundant (it can always be calculated from the first one). Therefore
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we may replace the term PS1,θ
[µ(Du)νS1,θ

] by its first and last component, i.e. we
consider the two equations

PS1,θ
[µ(Du)νS1,θ

] · ej = PS1,θ
g1 · ej

for j ∈ {1, 3}. Observe also that PS1,θ
g1 · e3 = g1 · e3, since the last component of

νS1,θ
is identically zero..

In what follows we will transform the domain Gθ to G := R×R+, the boundaries
S1,θ and S2,θ to S1 := ∂G× R+ and S2 := G× {0}, respectively, and, hence, Ωθ to
Ω := G× R+. To this end we introduce the new variables x̄1 = x1, x̄2 = x2 − θ(x1)
and x̄3 = x3 for x ∈ Ωθ = Gθ × R+. Suppose that (u, π) is a solution of (1.11) and
define the new functions

ū(x̄) := u(x̄1, x̄2 + θ(x̄1), x̄3)

and
π̄(x̄) := π(x̄1, x̄2 + θ(x̄1), x̄3),

where x̄ := (x̄1, x̄2, x̄3). In the same way we transform the data (fd, g1, g2) to
(f̄d, ḡ1, ḡ2). It holds that ∂j

k̄
ū = ∂jku for k ∈ {2, 3}, j ∈ {1, 2},

∂1u = ∂1ū− θ′(x̄1)∂2ū

and
∂2

1u = ∂2
1 ū− 2θ′(x̄1)∂1∂2ū− θ′′(x̄1)∂2ū+ θ′(x̄1)2∂2

2 ū.

Therefore, the pair (ū, π̄) solves the following problem

∂t(ρū)− µ∆ū+∇π̄ = M1(θ, ū, π̄), x̄ ∈ Ω,

div ū = M2(θ, ū) + f̄d, x̄ ∈ Ω,

µ(∂1ū2 + ∂2ū1) = M3(θ, ū)−
√

1 + θ′2
3
[PS1,θ

ḡ1 · e1], x̄ ∈ S1,

µ(∂2ū3 + ∂3ū2) = M4(θ, ū)−
√

1 + θ′2[ḡ1 · e3], x̄ ∈ S1,

ū2 = M5(θ, ū)−
√

1 + θ′2ḡ2, x̄ ∈ S1,

ū = 0, x̄ ∈ S2,

ū(0) = 0, x̄ ∈ Ω,

(1.13)

where the functions Mj are given by

M1(θ, ū, π̄) := 2θ′(x̄1)∂1∂2ū+ θ′′(x̄1)∂2ū− θ′(x̄1)2∂2
2 ū+ θ′(x̄1)∂2π̄e1,

M2(θ, ū) := θ′(x̄1)∂2ū1,

M3(θ, ū) := µθ′(x̄1)[2∂1ū1 + θ′(x̄1)(∂1ū2 − ∂2ū1)− (1 + θ′(x̄1)2)∂2ū2],

M4(θ, ū) := µθ′(x̄1)(∂1ū3 − θ′(x̄1)∂2ū3 + ∂3ū1),

M5(θ, ū) := θ′(x̄1)ū1.

Now we want to go back from (1.13) to (1.11). To this end we consider the functions
on the right hand side of (1.13) as given data in the right regularity classes. Our aim
is the to interpret (1.13) as a perturbation of (1.6), provided |θ′|∞ < η and η > 0
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is sufficiently small. It is therefore reasonable to solve (1.13) by a Neumann series
argument. To this end let

0Eu(T ) := {u ∈0H
1
p (J ;Lp(Ω)3) ∩ Lp(J ;H2

p (Ω)3) : u|S2 = 0},

Eπ(T ) := Lp(J ; Ḣ1
p (Ω)),

0E(T ) :=0Eu(T )× Eπ(T ),

F̃(T ) := F1(T )× F2(T )×5
j=3 0Fj(T ),

where
F1(T ) := Lp(J ;Lp(Ω)3),

F2(T ) := Lp(J ;H1
p (Ω)),

0F3(T ) :=0W
1/2−1/2p
p (J ;Lp(S1)) ∩ Lp(J ;W 1−1/p

p (S1)),

0F4(T ) :=0F3(T ), and

0F5(T ) :=0W
1−1/2p
p (J ;Lp(S1)) ∩ Lp(J ;W 2−1/p

p (S1)).

Finally, we set

0F(T ) := {(f1, . . . , f5) ∈ F̃(T ) : (9) & (10) in Theorem 1.3.1 are satisfied}.

Define an operator L : 0E(T )→0F(T ) by

L(ū, π̄) :=


∂t(ρū)− µ∆ū+∇π̄

div ū
µ(∂2ū1 + ∂1ū2)|S1

µ(∂3ū2 + ∂2ū3)|S1

ū2|S1


and note that L : 0E(T )→0F(T ) is an isomorphism by Theorem 1.3.1. Define

M(θ, ū, π̄) := (M1(θ, ū, π̄),M2(θ, ū),M3(θ, ū),M4(θ, ū),M5(θ, ū))T

and
F := (0, f2, f3, f4, f5)T,

with f2 := f̄d,

f3 := −
√

1 + θ′2
3
[PS1,θ

ḡ1 · e1], f4 := −
√

1 + θ′2[ḡ1 · e3]

and f5 := −
√

1 + θ′2ḡ2. By the smoothness of θ, it follows that F ∈ F̃(T ). So it
remains to check that the compatibility conditions (9) & 10 in Theorem 1.3.1 are
satisfied. Since ḡ2|S2 = 0, P∂Gθ ḡ1,v = 0 and ḡ1,w = ∂3ḡ2 at the contact line, the
compatibility conditions in Theorem 1.3.1 (9) are easily verified. To verify (10) in
Theorem 1.3.1 we have to show that (f2, f5, 0) ∈0H

1
p (J ; Ĥ−1

p (Ω)). Note that for the
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reduced data from above we have (fd, g2, 0) ∈0H
1
p (J ; Ĥ−1

p (Ωθ)), hence for a.e. t ∈ J
the functional Ψ(t) : H1

p′(Ωθ)→ R defined by

〈Ψ(t), φ〉 :=

∫
Ωθ

fd(t)φ dx−
∫
S1,θ

g2(t)φ|S1,θ
dSθ

as well as its derivative with respect to t are continuous with respect to the norm
‖∇ · ‖Lp′ (Ωθ). Transforming Ωθ to the quarter space Ω and S1,θ to S1 via the above

diffeomorphism Φ(x1, x2, x3) = (x1, x2 − θ(x1), x3) yields∫
Ωθ

fd(t)φ dx−
∫
S1,θ

g2(t)φ|S1,θ
dSθ =

=

∫
Ω
f̄d(t)φ̄ dx̄−

∫
S1

√
1 + θ′(x̄)2ḡ2(t)φ̄|S1 dS,

where φ̄(x̄1, x̄2, x̄3) := φ(x1, x2 − θ(x1), x3). This shows that for a.e. t ∈ J the
functional Ψ̄(t) : H1

p′(Ω)→ R given by

〈Ψ̄(t), φ̄〉 :=

∫
Ω
f̄d(t)φ̄ dx̄−

∫
S1

√
1 + θ′(x̄)2ḡ2(t)φ̄|S1 dS

and its derivative with respect to t are continuous with respect to the norm ‖∇ ·
‖Lp′ (Ω), hence (f2, f5, 0) ∈0H

1
p (J ; Ĥ−1

p (Ω)). This implies F ∈0F(T ).

Concerning M(θ, ū, π̄), we observe that for ū ∈ 0Eu(T ) we have ū = 0 as well as
∂j ū = 0 at S2 for j ∈ {1, 2} and therefore also at the line

∂S1 = ∂S2 = S1 ∩ S2 = R× {0} × {0},

by continuity of ū and ∂j ū in Ω. Therefore M3(θ, ū) = M5(θ, ū) = 0 at S1 ∩ S2.
Moreover,

M4(θ, ū) = µθ′(x̄1)∂3ū1

at S1 ∩ S2, hence µ∂3M5(θ, ū) = M4(θ, ū). It remains to verify the condition

(M2(θ, ū),−M5(θ, ū), 0) ∈0H
1
p (J ; Ĥ−1

p (Ω))

for ū ∈0Eu(T ). We compute∫
Ω
M2(θ, ū)φ dx̄−

∫
S1

(−M5(θ, ū))φ|S1 dS

=

∫
Ω
θ′(x̄1)(∂2ū1)φ dx̄+

∫
S1

θ′(x̄1)ū1φ|S1 dS

= −
∫

Ω
θ′(x̄1)ū1∂2φ dx̄,

for each φ ∈ H1
p′(Ω), where we integrated by parts with respect to the variable x̄2.

This yields the claim.
It follows that M(θ, ū) ∈ 0F(T ) for each (ū, π̄) ∈ 0E(T ) and therefore we may

rewrite (1.13) shortly as (ū, π̄) = L−1M(θ, ū, π̄) + L−1F in 0E(T ). We intend to
show that for each ε > 0 there exist T0 > 0 and η0 > 0 such that

‖M(θ, ū, π̄)‖F(T ) ≤ ε‖(ū, π̄)‖E(T ), (1.14)
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provided that T ∈ (0, T0) and η ∈ (0, η0).
The above computation for (M2,M5, 0) readily yields that

‖(M2(θ, ū),M5(θ, ū), 0)‖H1
p(J ;Ĥ−1

p (Ω)) ≤ ‖θ
′‖∞‖ū‖Eu(T ).

Moreover, it holds that

‖M2(θ, ū)‖Lp(J ;H1
p(Ω)) ≤ ‖θ′‖∞‖ū‖Eu(T ) + ‖θ′′‖∞‖ū‖Lp(J ;H1

p(Ω))

≤ ‖θ′‖∞‖ū‖Eu(T ) + T 1/2p‖θ′′‖∞‖ū‖L2p(J ;H1
p(Ω))

≤ (‖θ′‖∞ + T 1/2pC‖θ′′‖∞)‖ū‖Eu(T ),

where the constant C > 0 stems from the embeddings

0H
1
p (J ;Lp(Ω)) ∩ Lp(J ;H2

p (Ω)) ↪→0H
1/2
p (J ;H1

p (Ω)) ↪→ L2p(J ;H1
p (Ω)),

valid for each p > 1. Note that C > 0 does not depend on T > 0, since ū|t=0 = 0.
The estimate for M1 is very easy. Indeed, by Hölder’s inequality we obtain

‖M1(θ, ū, π̄)‖Lp(J ;Lp(Ω)) ≤ C
[
‖θ′‖∞(1 + ‖θ′‖∞) + T 1/2p‖θ′′‖∞

]
‖(ū, π̄)‖E(T ).

Again, C > 0 does not depend on T > 0. The estimates for M3,M4 are nearly the
same. So we just concentrate on M4.

‖M4(θ, ū)‖F4(T ) ≤ ‖M4(θ, ū)‖
W

1/2−1/2p
p (J ;Lp(S1))

+ ‖M4(θ, ū)‖
Lp(J ;W

1−1/p
p (S1))

≤ C
[
‖θ′‖∞‖ū‖Eu(T ) + ‖M4(θ, ū)‖

Lp(J ;W
1−1/p
p (S1))

]
.

To estimate last term, it suffices to consider a term of the form θ′∂j ū in

Lp(J ;W
1−1/p
p (S1)) for some j ∈ {1, 2, 3}. Making use of the embedding

Lp(J ;H1
p (Ω)) ↪→ Lp(J ;W 1−1/p

p (S1))

we obtain

‖θ′∂j ū‖Lp(J ;W
1−1/p
p (S1))

≤ C‖θ′∂j ū‖Lp(J ;H1
p(Ω)) ≤ C

[
‖θ′‖∞ + T 1/2p‖θ′′‖∞

]
‖ū‖Eu(T ),

with C > 0 being independent of T > 0. Finally, it remains to estimate M5 in
F5(T ). We employ the embedding

Lp(J ;H2
p (Ω)) ↪→ Lp(J ;W 2−1/p

p (S1))

to the result

‖θ′ū1‖Lp(J ;W
2−1/p
p (S1))

≤ C‖θ′ū1‖Lp(J ;H2
p(Ω))

≤ C
[
‖θ′‖∞ + T 1/2p(‖θ′′‖∞ + ‖θ′′′‖∞)

]
‖ū‖Eu(T ).

Collecting everything together, we have shown that

‖M(θ, ū, π̄)‖F(T ) .
[
‖θ′‖∞ + T 1/2p(‖θ′′‖∞ + ‖θ′′′‖∞)

]
‖(ū, π̄)‖E(T ).
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Recall that ‖θ′‖∞ < η. Therefore, choosing first η > 0, then T > 0 small enough,
we obtain the desired estimate (1.14). A Neumann series argument in 0E(T ) finally
implies that there exists a unique solution (ū, π̄) ∈ 0E(T ) of the equation L(ū, π̄) =
M(θ, ū, π̄) + F or equivalently a solution (u, π) of (1.11), provided that the data
satisfy all relevant compatibility conditions at the contact line S1 ∩ S2.

This in turn yields a solution operator SQS : FQS → EQS for (1.11), where EQS
and FQS are the solution space and data space, respectively, for the bent quarter-
space and the data in FQS satisfy all relevant compatibility conditions at the contact
line {(x1, θ(x1), 0) : x1 ∈ R}.

1.3.3 The two-phase Stokes equations in half-spaces

Consider the problem

∂t(ρu)− µ∆u+∇π = f, x1 ∈ R, x2 > 0, x3 ∈ Ṙ,
div u = fd, x1 ∈ R, x2 > 0, x3 ∈ Ṙ,

−[[µ∂3v]]− [[µ∇x′u3]] = gv, x1 ∈ R, x2 > 0, x3 = 0,

−2[[µ∂3u3]] + [[π]]− σ∆x′h = gw, x1 ∈ R, x2 > 0, x3 = 0,

[[u]] = uΣ, x1 ∈ R, x2 > 0, x3 = 0,

∂th−m[u3] = gh, x1 ∈ R, x2 > 0, x3 = 0,

µ[∂2u1 + ∂1u2, ∂3u2 + ∂2u3]T = g1, x1 ∈ R, x2 = 0, x3 ∈ Ṙ,
u2 = g2, x1 ∈ R, x2 = 0, x3 ∈ Ṙ,
∂2h = g3, x1 ∈ R, x2 = 0, x3 = 0,

u(0) = u0, x1 ∈ R, x2 > 0, x3 ∈ Ṙ,
h(0) = h0 x1 ∈ R, x2 > 0, x3 = 0.

(1.15)

Here m[w] := (w+ + w−)/2, where w± denote the traces of w at x3 = 0 from above
and below, respectively. Note that m[w] = w|x3=0 if w is continuous at x3 = 0, that
is, if [[w]] = 0. Furthermore x′ := (x1, x2).

For convenience we set Ω := R×R+ ×R, S1 := R× {0} ×R, Σ := R×R+ × {0}
and ∂Σ := R × {0} × {0}. We will prove the following existence and uniqueness
result.

Theorem 1.3.2. Let n = 3, p > 5, T > 0, ρj , µj > 0, j = 1, 2, J = [0, T ]. The
problem (1.15) has a unique solution (u, π, h) with regularity

u ∈ H1
p (J ;Lp(Ω)3) ∩ Lp(J ;H2

p (Ω\Σ)3), π ∈ Lp(J ; Ḣ1
p (Ω\Σ)),

[[π]] ∈W 1/2−1/2p
p (J ;Lp(Σ)) ∩ Lp(J ;W 1−1/p

p (Σ)),

h ∈W 2−1/2p
p (J ;Lp(Σ)) ∩H1

p (J ;W 2−1/p
p (Σ)) ∩ Lp(J ;W 3−1/p

p (Σ)),

if and only if the data satisfy the following regularity and compatibility conditions.

1. f ∈ Lp(J ;Lp(Ω)3),

2. fd ∈ Lp(J ;H1
p (Ω\Σ)),
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3. g = (gv, gw) ∈W 1/2−1/2p
p (J ;Lp(Σ)3) ∩ Lp(J ;W

1−1/p
p (Σ))3,

4. uΣ ∈W 1−1/2p
p (J ;Lp(Σ)3) ∩ Lp(J ;W

2−1/p
p (Σ)3);

5. gh ∈W
1−1/2p
p (J ;Lp(Σ)) ∩ Lp(J ;W

2−1/p
p (Σ)),

6. g1 ∈W 1/2−1/2p
p (J ;Lp(S1))2 ∩ Lp(J ;W

1−1/p
p (S1\∂Σ))2,

7. g2 ∈W 1−1/2p
p (J ;Lp(S1)) ∩ Lp(J ;W

2−1/p
p (S1\∂Σ)),

8. g3 ∈W 3/2−1/p
p (J ;Lp(∂Σ)) ∩H1

p (J ;W
1−2/p
p (∂Σ)) ∩ Lp(J ;W

2−2/p
p (∂Σ));

9. u0 = (v0, w0) ∈W 2−2/p
p (Ω)3, h0 ∈W 3−2/p

p (Σ)

10. div u0 = fd|t=0, [[u0]] = uΣ|t=0,

11. µ[∂2(u0)1 + ∂1(u0)2, ∂3(u0)2 + ∂2(u0)3]|Tx2=0 = g1|t=0,

12. (u0)2|x2=0 = g2|t=0, ∂2h0|x2=0 = g3|t=0, −[[µ∂3v0]]− [[µ∇x′(u0)3]] = gv|t=0,

13. (gv)2 + [[(g1)2]] = 0, [[(g1)1/µ]] = ∂2(uΣ)1 + ∂1(uΣ)2 at ∂Σ;

14. [[(g1)2/µ− ∂3g2]] = ∂2(uΣ)3, [[g2]] = (uΣ)2 at ∂Σ,

15. ∂tg3 −m[(g1)2/µ− ∂3g2] = ∂2gh at ∂Σ,

16. (fd, uΣ · e3, g2) ∈ H1
p (J ; Ĥ−1

p (Ω)).

Proof. In a first step we will show that without loss of generality we may assume
u0 = 0 and h0 = 0. We start with h0. For that purpose we extend h0 and gh with

respect to x2 to some functions h̃0 ∈W 3−2/p
p (R2) and

g̃h ∈W 1−1/2p
p (J ;Lp(R2)) ∩ Lp(J ;W 2−1/p

p (R2)),

respectively. Furthermore, we extend u0 with respect to x2 to some function ũ0 ∈
W

2−2/p
p (R2× Ṙ)3, where Ṙ := R\{0}. The extensions for u0 and gh can be achieved

by applying a higher order reflection method as in Section 1.3.1. In general, for the
extension of h0, one cannot apply the reflection technique from Section 1.3.1, since

for large p one has W
3−2/p
p ↪→ C2. However, the extension for h̃0 exists due to the

results in [64, 65]. Let now

h̃(t) = [2e−(I−∆x′ )
1/2t − e−2(I−∆x′ )

1/2t]h̃0+

[e−(I−∆x′ )t − e−2(I−∆x′ )t](I −∆x′)
−1{m[ũ0 · e3] + g̃h|t=0}, t ≥ 0,

where ∆x′ denotes the Laplace operator with respect to the variables x′ = (x1, x2) ∈
R2. Since h̃0 ∈ W

3−2/p
p (R2) and m[ũ0 · e3], g̃h|t=0 ∈ W

2−3/p
p (R2), it follows from

elementary semigroup theory that

h̃ ∈W 2−1/2p
p (J ;Lp(R2)) ∩H1

p (J ;W 2−1/p
p (R2)) ∩ Lp(J ;W 3−1/p

p (R2))

with h̃(0) = h̃0 and ∂th̃(0) = m[ũ0 · e3] + g̃h|t=0.
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Let us turn to u0. Consider the extension ũ0 ∈W 2−2/p
p (R2 × Ṙ)3 from above and

let ũ±0 := ũ0|x3≷0 ∈ W 2−2/p
p (R2 × R±)3. Extend ũ+

0 with respect to the variable x3

to û+
0 ∈W

2−2/p
p (R3)3. Then we solve the full space problem

∂tû
+ −∆û+ = 0, x ∈ R3,

û+(0) = û+
0 , x ∈ R3,

to obtain a unique solution

û+ ∈ H1
p (J ;Lp(R3)3) ∩ Lp(J ;H2

p (R3)3).

Extending ũ−0 with respect to x3 to some û−0 ∈ W
2−2/p
p (R3)3 and solving the latter

full space problem with û+
0 being replaced by û−0 yields a unique solution

û+ ∈ H1
p (J ;Lp(R3)3) ∩ Lp(J ;H2

p (R3)3).

Then we define

û :=

{
û+|Ω, x3 > 0,

û−|Ω, x3 < 0.

Then û ∈ H1
p (J ;Lp(Ω)3) ∩ Lp(J ;H2

p (Ω)3) and û|t=0 = u0 in Ω\Σ. If (u, π, [[π]], h) is

a solution of (1.15), then (u− û, π, [[π]], h− h̃) solves (1.15) with u0 = 0, h0 = 0 and
some modified data (not to be relabeled) (f, fd, gv, gw, uΣ, gh, g1, g2, g3) in the right
regularity classes, having vanishing traces at t = 0 and satisfying the compatibility
conditions at ∂Σ stated in Theorem 1.3.2. Note also that by construction ∂t(h −
h̃)|t=0 = 0.

By Proposition 6.1.2 we may also assume that g3 = 0. Indeed, there exists

h∗ ∈0W
2−1/2p
p (J ;Lp(Σ)) ∩0H

1
p (J ;W 2−1/p

p (Σ)) ∩ Lp(J ;W 3−1/p
p (Σ))

such that ∂2h∗|x2=0 = g3. Replacing h by h − h∗ it follows that ∂2(h − h∗)|x2=0 =
0. The functions gh and gw have to be replaced by gh − ∂th∗ and gw + σ∆x′h∗,
respectively.

Next we extend

g+
1 := g1|x3>0 ∈ 0W

1/2−1/2p
p (J ;Lp(R2

+)2) ∩ Lp(J ;W 1−1/p
p (R2

+)2)

by even reflection and

g+
2 := g2|x3>0 ∈ 0W

1−1/2p
p (J ;Lp(R2

+)) ∩ Lp(J ;W 2−1/p
p (R2

+))

by means of the reflection

g̃+
2 (t, x1, x3) =

{
g+

2 (t, x1, x3), if x3 > 0,

−g+
2 (t, x1,−2x3) + 2g+

2 (t, x1,−x3/2), if x3 < 0.

to functions

g̃+
1 ∈ 0W

1/2−1/2p
p (J ;Lp(R2)2) ∩ Lp(J ;W 1−1/p

p (R2)2)
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and
g̃+

2 ∈ 0W
1−1/2p
p (J ;Lp(R2)) ∩ Lp(J ;W 2−1/p

p (R2)).

Let µ+ := µ|x3>0 and solve the parabolic system

∂tu∗ −∆u∗ = 0, (x1, x3) ∈ R2, x2 > 0,
µ+[∂2(u∗)1 + ∂1(u∗)2, ∂3(u∗)2 + ∂2(u∗)3]T = g̃+

1 , (x1, x3) ∈ R2, x2 = 0,
(u∗)2 = g̃+

2 , (x1, x3) ∈ R2, x2 = 0,
u∗(0) = 0, (x1, x3) ∈ R2, x2 > 0,

(1.16)
by [18], to obtain a solution

u∗ ∈ 0H
1
p (J ;Lp(R2

+ × R))3 ∩ Lp(J ;H2
p (R2

+ × R))3.

Then we repeat the same procedure for g−j := gj |x3<0 to obtain a function

u∗∗ ∈ 0H
1
p (J ;Lp(R2

+ × R))3 ∩ Lp(J ;H2
p (R2

+ × R))3

as a solution of (1.16) with g̃+
j being replaced by the extensions g̃−j of g−j and µ+

being replaced by µ− := µ|x3<0.
Define

v :=

{
u∗, x3 > 0,

u∗∗, x3 < 0.

It follows that the function ū := u− v satisfies ū|t=0 = 0, [[ū]] = uΣ − [[v]] := k and

µ[∂2ū1 + ∂1ū2, ∂3ū2 + ∂2ū3] = 0, ū2 = 0

at S1\Σ. In order to remove the jump of ū, we note that by the compatibility
conditions it holds that k2 = 0 and ∂2k1 = ∂2k3 = 0 on at ∂Σ. Therefore it is
possible to extend

k ∈ 0W
1−1/2p
p (J ;Lp(R2

+))3 ∩ Lp(J ;W 2−1/p
p (R2

+))3

to a function

k̃ ∈ 0W
1−1/2p
p (J ;Lp(R2))3 ∩ Lp(J ;W 2−1/p

p (R2))3

by even reflection of k1, k3 and odd reflection of k2. Then we solve the Dirichlet
problem

∂tw −∆w = 0, (x1, x2) ∈ R2, x3 > 0,

trx3=0w = k̃, (x1, x2) ∈ R2, x3 = 0,
w(0) = 0, (x1, x2) ∈ R2, x3 > 0,

(1.17)

to obtain a unique solution

w ∈ 0H
1
p (J ;Lp(R3

+)) ∩ Lp(J ;H2
p (R3

+)).

Note that by symmetry the function

w̄(t, x) =

 w1(t, x1,−x2, x3),
−w2(t, x1,−x2, x3),
w3(t, x1,−x2, x3)


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is a solution of (1.17) too, hence w = w̄ and therefore it holds that w2 = 0 as well
as ∂2w1 + ∂1w2 = ∂3w2 + ∂2w3 = 0 at S1\Σ. Let ū± := ū|x3≷0 and define

u∗ :=

{
ū+ − w, if x3 > 0,

ū−, if x3 < 0.

Then [[u∗]] = 0 and

µ[∂2u
∗
1 + ∂1u

∗
2, ∂3u

∗
2 + ∂2u

∗
3] = 0, u∗2 = 0

on S1\Σ. We arrive at the problem

∂t(ρu)− µ∆u+∇π = f, x ∈ Ω\Σ,
div u = fd, x ∈ Ω\Σ,

−[[µ∂3v]]− [[µ∇x′w]] = gv, x ∈ Σ,

−2[[µ∂3u3]] + [[π]]− σ∆x′h = gw, x ∈ Σ,

[[u]] = 0, x ∈ Σ,

∂th− u3 = gh, x ∈ Σ,

µ[∂2u1 + ∂1u2, ∂3u2 + ∂2u3]T = 0, x ∈ S1\∂Σ,

u2 = 0, x ∈ S1\∂Σ,

∂2h = 0, x ∈ ∂Σ,

u(0) = 0, x ∈ Ω\Σ,
h(0) = 0 x ∈ Σ,

(1.18)

with modified data f ∈ Lp(J ;Lp(Ω))3,

fd ∈ Lp(J ;H1
p (Ω\Σ)),

(gv, gw) ∈ 0W
1/2−1/2p
p (J ;Lp(Σ)3) ∩ Lp(J ;W 1−1/p

p (Σ)3),

and
gh ∈ 0W

1−1/2p
p (J ;Lp(Σ)) ∩ Lp(J ;W 2−1/p

p (Σ)),

satisfying the compatibility conditions (gv)2 = ∂2gh = 0 at ∂Σ and (fd, 0, 0) ∈
0H

1
p (J ; Ĥ−1

p (Ω)).
Therefore it is possible to extend (f1, f3, fd, (gv)1, gw, gh) by even reflection to
{x2 < 0}. On the other side we may extend (f2, (gv)2) by odd reflection to {x2 < 0}.
In a next step we consider the (reflected) problem

∂t(ρũ)− µ∆ũ+∇π̃ = f̃ , (x1, x2) ∈ R2, x3 ∈ Ṙ,
div ũ = f̃d, (x1, x2) ∈ R2, x3 ∈ Ṙ,

−[[µ∂3ṽ]]− [[µ∇x′ ũ3]] = g̃v, (x1, x2) ∈ R2, x3 = 0,

−2[[µ∂3ũ3]] + [[π̃]]− σ∆x′ h̃ = g̃w, (x1, x2) ∈ R2, x3 = 0,

[[ũ]] = 0, (x1, x2) ∈ R2, x3 = 0,

∂th̃− ũ3 = g̃h, (x1, x2) ∈ R2, x3 = 0,

ũ(0) = 0, (x1, x2) ∈ R2, x3 ∈ Ṙ,
h̃(0) = 0, (x1, x2) ∈ R2, x3 = 0,

(1.19)
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with given reflected data f̃ ∈ Lp(J ;Lp(R2 × R))3,

f̃d ∈ Lp(J ;H1
p (R2 × Ṙ)),

(g̃v, g̃w) ∈ 0W
1/2−1/2p
p (J ;Lp(R2)3) ∩ Lp(J ;W 1−1/p

p (R2)3),

and
g̃h ∈ 0W

1−1/2p
p (J ;Lp(R2)) ∩ Lp(J ;W 2−1/p

p (R2)),

where (f̃d, 0) ∈0H
1
p (J ; Ĥ−1

p (R2 × R)).

By [40, Theorem 5.1] there exists a unique solution (ũ, π̃, [[π̃]], h̃) of (1.19) with
regularity

ũ ∈0H
1
p (J ;Lp(R3))3 ∩ Lp(J ;H2

p (Ṙ3))3,

π̃ ∈ Lp(J ; Ḣ1
p (Ṙ3)),

[[π̃]] ∈0W
1/2−1/2p
p (J ;Lp(R2)) ∩ Lp(J ;W 1−1/p

p (R2)),

and

h̃ ∈0W
2−1/2p
p (J ;Lp(R2)) ∩0H

1
p (J ;W 2−1/p

p (R2)) ∩ Lp(J ;W 3−1/p
p (R2)).

Note that by symmetry the function (ū, π̄, h̄) with ūj(x) := ũj(x1,−x2, x3), j ∈
{1, 3}, ū2(x) := −ũ2(x1,−x2, x3), π̄(x) := π̃(x1,−x2, x3) and h̄(x′) := h̃(x1,−x2) is
a solution of (1.19) too. Therefore, by uniqueness, it follows that

ũj(x1,−x2, x3) = ũj(x1, x2, x3), j ∈ {1, 3},

ũ2(x1, x2, x3) = −ũ2(x1,−x2, x3), π̃(x1, x2, x3) = π̃(x1,−x2, x3)

and h̃(x1, x2) = h̃(x1,−x2). This necessarily yields

ũ2 = (∂2ũ1 + ∂1ũ2) = (∂3ũ2 + ∂2ũ3) = 0,

as well as ∂2h̃ = 0 at S1\Σ. Hence the restriction (ũ, π̃, [[π̃]], h̃)|Ω is the unique strong
solution of (1.18).

1.3.4 The two-phase Stokes equations in bent half-spaces

Let θ ∈ BC3(R) such that

Gθ := {(x1, x2) ∈ R2 : x2 > θ(x1)} and Ωθ = Gθ × R.

We assume furthermore that |θ′|∞ ≤ η and |∂jxθ|∞ ≤ M , j ∈ {2, 3}, where we
may choose η > 0 as small as we wish. Let S1,θ := ∂Gθ × R. Furthermore, let
νS1,θ

= (νGθ , 0)T with νGθ := 1√
1+θ′(x1)2

(θ′(x1),−1)T denote the outer unit normal

to S1,θ at (x1, θ(x1), x3), (x1, x3) ∈ R×R and let PS1,θ
be the tangential projection

to S1,θ. Furthermore, let Σθ := Gθ × {0} and ∂Σθ := ∂Gθ × {0}.



1.3. Model problems 28

Consider the problem

∂t(ρu)− µ∆u+∇π = f, x ∈ Ωθ\Σθ,

div u = fd, x ∈ Ωθ\Σθ,

−[[µ∂3v]]− [[µ∇x′w]] = gv, x ∈ Σθ,

−2[[µ∂3w]] + [[π]]− σ∆x′h = gw, x ∈ Σθ,

[[u]] = uΣ, x ∈ Σθ,

∂th−m[w] = gh, x ∈ Σθ,

PS1,θ

(
µ(∇u+∇uT)νS1,θ

)
= PS1,θ

g1, x ∈ S1,θ\∂Σθ,

u · νS1,θ
= g2, x ∈ S1,θ\∂Σθ,

∂νGθh = g3, x ∈ ∂Σθ

u(0) = u0, x ∈ Ωθ\Σθ,

h(0) = h0, x ∈ Σθ,

(1.20)

where u = (v, w) and v = (u1, u2), w = u3. Without loss of generality we may
consider u0 = 0 and h0 = 0 in (1.20). Literally, this can be seen as in Section 1.3.3,
we will not go into the details. The remaining modified data (not to be relabeled)
belong to the right regularity classes and they have vanishing traces at t = 0.

Next, we will show that we may assume uΣ = 0. For that purpose, extend uΣ

with respect to x2 to some function

ũΣ ∈0W
1−1/2p
p (J ;Lp(R2)3) ∩ Lp(J ;W 2−1/p

p (R2)3),

and solve the half space problem

∂tu∗ −∆u∗ = 0, x ∈ R2 × R+,

u∗ = ũΣ, x ∈ R2 × {0},
u∗(0) = 0, x ∈ R2 × R+,

by [18] to obtain a unique solution

u∗ ∈0H
1
p (J ;Lp(R2 × R+)3) ∩ Lp(J ;H2

p (R2 × R+)3).

If (u, π, [[π]], h) is a solution of (1.20) with u0 = 0 and h0 = 0, and

u∗∗ :=

{
ū+ − u∗, if x3 > 0,

ū−, if x3 < 0.

where u± := u|x3≷0, then [[u∗∗]] = 0. Again the remaining modified data have the
correct regularity and vanishing traces at t = 0. Note that in this case m[w∗∗] = w∗∗,
where u∗∗ = (v∗∗, w∗∗).

Let us show that we may reduce (1.20) with u0 = 0, h0 = 0 and uΣ = 0 to the
case gv = 0, gw = 0 and gh = 0. To this end we extend the data (gv, gw, gh) with
respect to x2 to some functions

(g̃v, g̃w) ∈0W
1/2−1/2p
p (J ;Lp(R2)3) ∩ Lp(J ;W 1−1/p

p (R2)3),
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and
g̃h ∈0W

1−1/2p
p (J ;Lp(R2)) ∩ Lp(J ;W 2−1/p

p (R2)).

Then we consider the two-phase problem

∂tũ−∆ũ = 0, x ∈ R2 × Ṙ,
−[[µ∂3ṽ]]− [[µ∇x′w̃]] = g̃v, x ∈ R2 × {0},
−2[[µ∂3w̃]]− σ∆x′ h̃ = g̃w, x ∈ R2 × {0},

[[ũ]] = 0, x ∈ R2 × {0},
∂th̃− w̃ = g̃h, x ∈ R2 × {0},

ũ(0) = 0, x ∈ R2 × Ṙ,
h̃(0) = 0, x ∈ R2 × {0},

(1.21)

for the unknowns (ũ, h̃). Interestingly, the equations for ṽ and w̃ decouple. Therefore
we study for the moment the problem

∂tw̃ −∆w̃ = 0, x ∈ R2 × Ṙ,
−2[[µ∂3w̃]]− σ∆x′ h̃ = g̃w, x ∈ R2 × {0},

[[w̃]] = 0, x ∈ R2 × {0},
∂th̃− w̃ = g̃h, x ∈ R2 × {0},

w̃(0) = 0, x ∈ R2 × Ṙ,
h̃(0) = 0, x ∈ R2 × {0},

(1.22)

for the unknowns (w̃, h̃). Assume that (w̃, h̃) are already known. Then, w̃ is explic-
itly given by

w̃(x3) =
1

2(µ+ + µ−)

{
e−Lx3L−1(σ∆x′ h̃+ g̃w), if x3 > 0,

e−L(−x3)L−1(σ∆x′ h̃+ g̃w), if x3 < 0,
(1.23)

where L := (∂t −∆x′)
1/2. Therefore,

w̃|x3=0 =
1

2(µ+ + µ−)
L−1(σ∆x′ h̃+ g̃w)

and it follows that we may reduce (1.22) to a single equation for h̃ which reads

∂th̃−
σ

2(µ+ + µ−)
L−1∆x′ h̃ =

1

2(µ+ + µ−)
L−1g̃w + g̃h, (1.24)

and which is subject to the initial condition h̃(0) = 0. Making use of the R-
boundedness of the operator ∆x′ in Ks

p(R2), K ∈ {W,H}, the operator-valued H∞-
calculus for ∂t in 0H

r
p(J ;Ks

p(R2)) and real interpolation one can show as in [40, Sec-

tion 5] that the operator ∂t− σ
2(µ++µ−)L

−1∆x′ is invertible in 0W
1−1/2p
p (J ;Lp(R2))∩

Lp(J ;W
2−1/p
p (R2)) with domain

0W
2−1/2p
p (J ;Lp(R2)) ∩0H

1
p (J ;W 2−1/p

p (R2)) ∩ Lp(J ;W 3−1/p
p (R2)).
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Hence there exists a unique solution

h̃ ∈0W
2−1/2p
p (J ;Lp(R2)) ∩0H

1
p (J ;W 2−1/p

p (R2)) ∩ Lp(J ;W 3−1/p
p (R2))

of (1.24). Then w̃ is given by (1.23) and, finally, ṽ is the unique solution of the
two-phase problem

∂tṽ −∆ṽ = 0, x ∈ R2 × Ṙ,
−[[µ∂3ṽ]] = [[µ∇x′w̃]] + g̃v, x ∈ R2 × {0},

[[ṽ]] = 0, x ∈ R2 × {0},
ṽ(0) = 0, x ∈ R2 × Ṙ.

In summary, we have shown that we may reduce (1.20) to the problem

∂t(ρu)− µ∆u+∇π = f, x ∈ Ωθ\Σθ,

div u = fd, x ∈ Ωθ\Σθ,

−[[µ∂3v]]− [[µ∇x′w]] = 0, x ∈ Σθ,

−2[[µ∂3w]] + [[π]]− σ∆x′h = 0, x ∈ Σθ,

[[u]] = 0, x ∈ Σθ,

∂th− w = 0, x ∈ Σθ,

PS1,θ

(
µ(∇u+∇uT)νS1,θ

)
= PS1,θ

g1, x ∈ S1,θ\∂Σθ,

u · νS1,θ
= g2, x ∈ S1,θ\∂Σθ,

∂νGθh = g3, x ∈ ∂Σθ

u(0) = 0, x ∈ Ωθ\Σθ,

h(0) = 0, x ∈ Σθ,

(1.25)

with given data (f, g1, g2, g3) having vanishing traces at t = 0 and which satisfy the
compatibility conditions

[[g2]] = 0, [[g1 · e3]] = 0, [[PS1,θ
g1 · e1/µ]] = 0, [[∂3g2 − g1 · e3/µ]] = 0,

and
∂tg3 + ∂3g2 − g1 · e3/µ = 0

at the contact line {(x1, θ(x1), 0) : x1 ∈ R}. To see this, one can apply the repre-
sentation (1.12) from Section 1.3.2. Note also that the second component of PS1,θ

w
is redundant, as it can always be reproduced from the first component. Finally, it
holds that (fd, 0, g2) ∈0H

1
p (J ; Ĥ−1

p (Ωθ)).
We will now transform Ωθ to Ω := R× R+ × R, S1,θ to S1 := R× {0} × R, Σθ to

Σ := R × R+ × {0} and ∂Σθ to ∂Σ := R+ × {0} × {0}. To this end we introduce
the new variables x̄1 = x1, x̄2 = x2 − θ(x1) and x̄3 = x3 for x ∈ Ωθ. Suppose that
(u, π, h) is a solution of (1.20) and define the new functions

ū(x̄) := u(x̄1, x̄2 + θ(x̄1), x̄3)

π̄(x̄) := π(x̄1, x̄2 + θ(x̄1), x̄3)
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and
h̄(x̄′) := h(x̄1, x̄2 + θ(x̄1)),

where x̄′ := (x̄1, x̄2). In the same way we transform all of the data. Then, as in
Section 1.3.2, (ū, π̄, h̄) satisfies the problem

∂t(ρū)− µ∆ū+∇π̄ = M1(θ, ū, π̄) + f̄ , x̄ ∈ Ω\Σ,
div ū = M2(θ, ū) + f̄d, x̄ ∈ Ω\Σ,

−[[µ∂3v̄]]− [[µ∇x̄′w̄]] = M3(θ, ū), x̄ ∈ Σ

−2[[µ∂3w̄]] + [[π̄]]− σ∆x̄′ h̄ = M4(θ, h̄), x̄ ∈ Σ,

[[ū]] = 0, x̄ ∈ Σ

∂th̄− w̄ = 0, x̄ ∈ Σ,

µ(∂1ū2 + ∂2ū1) = M5(θ, ū)−
√

1 + θ′2
3
[PS1,θ

ḡ1 · e1], x̄ ∈ S1\∂Σ,

µ(∂2ū3 + ∂3ū2) = M6(θ, ū)−
√

1 + θ′2[ḡ1 · e3], x̄ ∈ S1\∂Σ,

ū2 = M7(θ, ū)−
√

1 + θ′2ḡ2, x̄ ∈ S1\∂Σ,

∂2h̄ = M8(θ, h̄)−
√

1 + θ′2ḡ3, x̄ ∈ ∂Σ,

ū(0) = 0, x̄ ∈ Ω\Σ
h̄(0) = 0, x̄ ∈ Σ,

(1.26)

where ū = (v̄, v̄). The functions Mj are given by

M1(θ, ū, π̄) := 2θ′(x̄1)∂1∂2ū+ θ′′(x̄1)∂2ū− θ′(x̄1)2∂2
2 ū+ θ′(x̄1)∂2π̄e1,

M2(θ, ū) := θ′(x̄1)∂2ū1,

M3(θ, ū) = [−θ′(x̄1)[[µ∂2w̄]], 0]T,

M4(θ, h̄) = σ
(
−2θ′(x̄1)∂1∂2h̄− θ′′(x̄1)∂2h̄+ θ′(x̄1)2∂2

2 h̄
)
,

M5(θ, ū) := µθ′(x̄1)[2∂1ū1 + θ′(x̄1)(∂1ū2 − ∂2ū1)− (1 + θ′(x̄1)2)∂2ū2],

M6(θ, ū) := µθ′(x̄1)(∂1ū3 − θ′(x̄1)∂2ū3 + ∂3ū1),

M7(θ, ū) := θ′(x̄1)ū1.

and
M8(θ, h̄) = θ′(x̄1)

(
∂1h̄− θ′(x̄1)∂2h̄

)
.

Let us define the function spaces

0Eu(T ) := {u ∈0H
1
p (J ;Lp(Ω)3) ∩ Lp(J ;H2

p (Ω\Σ)3) : [[u]] = 0, on Σ},

Eπ(T ) := Lp(J ; Ḣ1
p (Ω\Σ)),

0Eq(T ) :=0W
1/2−1/2p
p (J ;Lp(Σ)) ∩ Lp(J ;W 1−1/p

p (Σ)),

0Eh(T ) :=0W
2−1/2p
p (J ;Lp(Σ)) ∩0H

1
p (J ;W 2−1/p

p (Σ)) ∩ Lp(J ;W 3−1/p
p (Σ))
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0E(T ) := {(u, π, q, h) ∈0Eu(T )× Eπ(T )×0Eq(T )×0Eh(T ) :

q = [[π]], ∂th− u · e3 = 0 on Σ},

F̃(T ) := F1(T )× F2(T )×8
j=3 0Fj(T ),

where
F1(T ) := Lp(J ;Lp(Ω)3),

F2(T ) := Lp(J ;H1
p (Ω\Σ)),

0F3(T ) :=0W
1/2−1/2p
p (J ;Lp(Σ)2) ∩ Lp(J ;W 1−1/p

p (Σ)2),

0F4(T ) :=0W
1/2−1/2p
p (J ;Lp(Σ)) ∩ Lp(J ;W 1−1/p

p (Σ)),

0F5(T ) :=0W
1/2−1/2p
p (J ;Lp(S1)) ∩ Lp(J ;W 1−1/p

p (S1\∂Σ)),

0F6(T ) :=0F5(T ),

0F7(T ) :=0W
1−1/2p
p (J ;Lp(S1)) ∩ Lp(J ;W 2−1/p

p (S1)),

and

0F8(T ) :=0W
3/2−1/p
p (J ;Lp(Σ)) ∩0H

1
p (J ;W 1−2/p

p (Σ)) ∩ Lp(J ;W 2−2/p
p (Σ)).

Finally, we set

0F(T ) := {(f1, . . . , f8) ∈ F̃(T ) : (13) & (16) in Theorem 1.3.2 are satisfied}.

Define an operator L : 0E(T )→0F(T ) by

L(ū, π̄, q̄, h̄) :=



∂t(ρū)− µ∆ū+∇π̄
div ū

−[[µ∂3v̄]]− [[µ∇x̄′w̄]]
−2[[µ∂3w̄]] + q̄ − σ∆x̄′ h̄
µ(∂2ū1 + ∂1ū2)|S1

µ(∂3ū2 + ∂2ū3)|S1

ū2|S1

∂2h̄|∂Σ


and note that L : 0E(T )→0F(T ) is an isomorphism by Theorem 1.3.2. Define

M(θ, ū, π̄, h̄) := (M1,M2,M3,M4,M5,M6,M7,M8)T(θ, ū, π̄, h̄)

and
F := (f1, f2, 0, 0, f5, f6, f7, f8)T,

with f1 := f̄ , f2 := f̄d,

f5 := −
√

1 + θ′2
3
[PS1,θ

ḡ1 · e1], f6 := −
√

1 + θ′2[ḡ1 · e3],

f7 := −
√

1 + θ′2ḡ2 and f8 := −
√

1 + θ′2ḡ3. It can be readily checked that the
components of F satisfy the compatibility conditions (13)-(16) in Theorem 1.3.2.
In fact, this can be seen as in Section 1.3.2. Since θ ∈ BC3(R) this implies that
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F ∈ 0F(T ). In the same way one can show that the components of M(θ, ū, π̄, h̄)
satisfy the compatibility conditions (14)-(16) as well as the second compatibility
condition in (13) in Theorem 1.3.2. Unfortunately the first condition in Theorem
1.3.2 (13) for M6, which reads

[[M6(θ, ū)]] = 0 on Σ,

is in general not satisfied. To circumvent this problem, we modify M3(θ, ū) as follows

M̄3(θ, ū) := θ′(x̄1)
[
[[µ∂2w̄]],− extΣ

(
[[µ(∂1w̄ − θ′(x̄1)∂2w̄ + ∂3ū1)|S1\∂Σ]]

)]T
.

Here extΣ is a suitable bounded and linear extension operator from

0W
1/2−1/p
p (J ;Lp(∂Σ)) ∩ Lp(J ;W 1−2/p

p (∂Σ))

to

0W
1/2−1/2p
p (J ;Lp(Σ)) ∩ Lp(J ;W 1−1/p

p (Σ)),

such that [extΣ z]|∂Σ = z for all z ∈ 0W
1/2−1/p
p (J ;Lp(∂Σ)) ∩ Lp(J ;W

1−2/p
p (∂Σ)),

which exists due to Proposition 6.1.1. Note that if we have a solution (u, π, q, h) ∈
0E(T ) of (1.26) with M3(θ, ū) replaced by M̄3(θ, ū), then, by the first component of
the third line in (1.26), we obtain that

[[µ(∂1w̄ − θ′(x̄1)∂2w̄ + ∂3ū1)]] = 0

on Σ, hence M̄3(θ, ū) = M3(θ, ū) in this case.
Let us define

M̄(θ, ū, π̄, h̄) := (M1,M2, M̄3,M4,M5,M6,M7,M8)T(θ, ū, π̄, h̄).

Since the modification in M3 does not affect the other compatibility conditions in
Theorem 1.3.2, it follows readily that M̄(θ, ū, π̄, h̄) ∈ 0F(T ) for each (ū, π̄, q̄, h̄) ∈
0E(T ). Therefore, we may rewrite (1.26), with M3 replaced by M̄3, in the more
condensed form

(ū, π̄, q̄, h̄) = L−1M̄(θ, ū, π̄, h̄) + L−1F (1.27)

in the space 0E(T ). As in Section 1.3.2 we will apply a Neumann series argument
to show that (1.27) has a unique solution (ū, π̄, q̄, h̄) ∈ 0E(T ). For that purpose we
need to show the following property for M̄ . For each ε > 0 there exist T0 > 0 and
η0 > 0 such that

‖M̄(θ, ū, π̄, h̄)‖F(T ) ≤ ε‖(ū, π̄, q̄, h̄)‖E(T ),

provided that T ∈ (0, T0) and η ∈ (0, η0). Mimicking the estimates of Section 1.3.2
for the components of M̄ and taking into account that the operator extΣ is linear
and bounded, one obtains an estimate of the form

‖M̄(θ, ū, π̄, h̄)‖F(T ) ≤ C
[
‖θ′‖∞ + T 1/2p(‖θ′′‖∞ + ‖θ′′′‖∞)

]
‖(ū, π̄, q̄, h̄)‖E(T ),

with a uniform constant C > 0. Since ‖θ′‖∞ ≤ η, we may first choose η > 0
sufficiently small and then T > 0 sufficiently small, to obtain the desired estimate
for the function M̄ .
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Then we may apply a Neumann series argument in 0E(T ) to conclude that there
exists a unique solution (ū, h̄, π̄) ∈0E(T ) of the equation

L(ū, π̄, q̄, h̄) = M̄(θ, ū, π̄, h̄) + F

or equivalently a unique solution (u, π, q, h) of (1.20) as explained above.
This in turn yields a solution operator SHS : FHS → EHS for (1.11), where EHS

and FHS are the solution space and data space, respectively, for the bent half-space
and the data in FHS satisfy all relevant compatibility conditions at the contact line
∂Σθ.



Chapter 2

General bounded cylindrical
domains

Let n = 3 and p > 5. In this section we will prove that system (1.4) admits
a unique solution. To this end we apply the method of localization. We want
to emphasize that this localization procedure cannot be simply carried over from
standard parabolic systems. This is due to the divergence equation and the presence
of the pressure in (1.4). Let

Eu(J) := H1
p (J ;Lp(Ω)3) ∩ Lp(J ;H2

p (Ω\Σ)3), Eπ(J) := Lp(J ; Ḣ1
p (Ω)),

Eq(J) := W 1/2−1/2p
p (J ;Lp(Σ)) ∩ Lp(J ;W 1−1/p

p (Σ)).

Eh(J) := W 2−1/2p
p (J ;Lp(Σ)) ∩H1

p (J ;W 2−1/p
p (Σ)) ∩ Lp(J ;W 3−1/p

p (Σ)),

and
E(J) := {(u, π, q, h) ∈ Eu(J)× Eπ(J)× Eq(J)× Eh(J) : q = [[π]]}.

2.1 Regularity of the pressure

Let (u)Ω := u − 1
|Ω|
∫

Ω udx denote the part of u ∈ L1(Ω) with mean value zero.
We start with an auxiliary lemma which provides some additional regularity for the
pressure.

Lemma 2.1.1. Let (u, π, [[π]], h) ∈ E(J) be a solution of (1.4) with

fd = u0 = h0 = g2 = uΣ · νΣ = g3 · ν∂Ω = 0,

and f ∈0W
α
p (J ;Lp(Ω)3) for some α ∈ (0, 1/2−1/2p). Then the following assertions

hold.

1. If Ω is bounded, then (π)Ω ∈0W
α
p (J ;Lp(Ω)) and the estimate

‖(π)Ω‖Wα
p (Lp) ≤ C

(
‖u‖Eu + ‖[[π]]‖Eq + ‖f‖Wα

p (Lp)

)
is valid, where C > 0 does not depend on the length of the interval J .

35
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2. If Ω is a full space, a (bent) quarter space or a (bent) half space, then
(π)K ∈0W

α
p (J ;Lp(K)) for each bounded set K ⊂ Ω. Furthermore there exists

a constant CK > 0 which does not depend on the length of the interval J such
that the estimate

‖(π)K‖Wα
p (Lp(K)) ≤ CK

(
‖u‖Eu + ‖[[π]]‖Eq + ‖f‖Wα

p (Lp)

)
is valid.

Proof. 1. Let g ∈ Lp′(Ω) be given and solve the problem

∆ψ = g − (g|1) in Ω\Σ,
[[ρψ]] = 0 on Σ,

[[∂νΣψ]] = 0 on Σ, (2.1)

∂ν∂Ω
ψ = 0 on ∂Ω\∂Σ = (S1\∂Σ) ∪ S2,

by Lemma 6.3.2 and define φ := ρψ. Since ((π)Ω|1) = (u|∇φ) = 0 we obtain by
integration by parts

((π)Ω|g) = ((π)Ω|(g)Ω)

=

(
(π)Ω

ρ
|∆φ

)
= −

∫
Σ

[[
(π)Ω

ρ
∂νΣφ]]dΣ−

(
∇π
ρ
|∇φ

)
= −

∫
Σ

[[π]]
∂νΣφ

ρ
dΣ−

(
µ

ρ
∆u|∇φ

)
− (f |∇φ)

=

∫
Ω

µ

ρ
∇u : ∇2φdx−

∫
∂Ω

µ∂ν∂Ω
u

ρ
∇φdσ +

∫
Σ
{[[µ∂νΣu

ρ
∇φ]]− [[π]]

∂νΣφ

ρ
}dΣ

− (f |∇φ).

Note that there exists a constant C > 0 such that ‖φ‖W 2
p′
≤ C‖g‖Lp′ . Hence, taking

the supremum of the left hand side over all functions g ∈ Lp′(Ω) with norm less or
equal to one, we obtain

‖(π)Ω(t)‖Lp(Ω) ≤ C
(
‖∇u(t)‖Lp(Ω) + ‖∂ν∂Ω

u(t)‖Lp(∂Ω)

+ ‖ (∂νΣu(t))± ‖Lp(Σ) + ‖[[π(t)]]‖Lp(Σ) + ‖f(t)‖Lp(Ω)

)
,

for almost all t ∈ J . The same strategy yields the estimate

‖(π)Ω(t)− (π)Ω(s)‖Lp(Ω) ≤ C
(
‖∇(u(t)− u(s))‖Lp(Ω) + ‖∂ν∂Ω

(u(t)− u(s))‖Lp(∂Ω)

+ ‖ (∂νΣ(u(t)− u(s)))± ‖Lp(Σ) + ‖[[π(t)]]− [[π(s)]]‖Lp(Σ) + ‖f(t)− f(s)‖Lp(Ω)

)
,

for almost all s, t ∈ J .
By the mixed derivative theorem and trace theory it holds that ∂kul ∈

0H
1/2
p (J ;Lp(Ω)),

(∂kul)± |Σ ∈0W
1/2−1/2p
p (J ;Lp(Σ))

and
∂kul|∂Ω ∈0W

1/2−1/2p
p (J ;Lp(∂Ω)),
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for k, l ∈ {1, 2, 3}. Moreover, [[π]] ∈ 0W
1/2−1/2p
p (J ;Lp(Σ)). Since Hs

p ↪→ W s−ε
p for

each s > 0, ε ∈ (0, s), the claim follows.
2. The proof of the second assertion follows essentially the lines of the proof

of the first assertion. We fix a bounded set K ⊂ Ω. Let g ∈ Lp(K) and define
(g)K := g− 1

|K|(g|1)K , where (u|v)K :=
∫
K uvdx. Extend (g)K by zero to g̃ ∈ Lp(Ω).

Then g̃ ∈ Ŵ−1
p (Ω) ∩ Lp(Ω) and we may solve the elliptic problem (2.1) with g̃ as

an inhomogeneity in the first equation by Lemma 6.3.2. This yields a solution
ψ ∈ Ḣ1

p (Ω\Σ) ∩ Ḣ2
p (Ω\Σ) satisfying the estimate

‖∇ψ‖Lp(Ω) + ‖∇2ψ‖Lp(Ω) ≤ C‖g̃‖Lp(Ω) ≤ CK‖g‖Lp(K).

We have ((π)K |g)K = ((π)K |(g)K)K = ((π)K |g̃)Ω :=
∫

Ω(π)K g̃dx. We are now in
a position to imitate the steps in the proof of the first assertion. This yields the
validity of the second assertion.

2.2 Reduction of the data

It is convenient to reduce the data in (1.4) to the special case

f = fd = u0 = h0 = g2 = uΣ · νΣ = g3 · ν∂Ω = 0.

Extend h0 ∈ W 3−2/p
p (Σ) and gh|t=0,m[u0 · e3] ∈ W 2−3/p

p (Σ) to some functions h̃0 ∈
W

3−2/p
p (R2) and g̃0

h, m̃0 ∈W 2−3/p
p (R2), respectively, and define

h̃∗(t) = [2e−(I−∆x′ )
1/2t − e−2(I−∆x′ )

1/2t]h̃0+

[e−(I−∆x′ )t − e−2(I−∆x′ )t](I −∆x′)
−1
(
m̃0 + g̃0

h

)
, t ≥ 0.

Then

h̃∗ ∈W 2−1/2p
p (J ;Lp(R2)) ∩H1

p (J ;W 2−1/p
p (R2)) ∩ Lp(J ;W 3−1/p

p (R2))

and it holds that h̃∗(0) = h̃0 as well as ∂th̃∗(0) = m̃0 + g̃0
h. Defining h∗ := h̃∗|Σ it

follows that h∗(0) = h0 and ∂th∗(0) = m[u0] + gh|t=0. Setting h1 := h− h∗ we have
h1|t=0 = ∂th1|t=0 = 0.

Next, let u0 = (v0, w0) and q0 := 2[[µ∂3w0]] + σ∆x′h0 + gw|t=0 ∈ W
1−3/p
p (Σ).

Extend q0 to some q̃0 ∈W 1−3/p
p (R2) and define q̃∗(t) := e∆x′ tq̃0. Then

q̃∗ ∈W 1/2−1/2p
p (J ;Lp(R2)) ∩ Lp(J ;W 1−1/p

p (R2)).

Setting q∗ := q̃∗|Σ it follows that

q∗ ∈W 1/2−1/2p
p (J ;Lp(Σ)) ∩ Lp(J ;W 1−1/p

p (Σ))

and q∗|t=0 = q0. Given q∗, we solve the weak elliptic transmission problem

(∇π∗|∇φ) = 0, φ ∈ H1
p′(Ω),

[[π∗]] = q∗, on Σ
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to obtain a unique solution π∗ ∈ Lp(J ; Ḣ1
p (Ω\Σ)) by Lemma 6.3.3.

Next we solve the parabolic transmission problem

∂t(ρu∗)− µ∆u∗ = −∇π∗ + ρf, in Ω\Σ,
−[[µ∂3v∗]]− [[µ∇x′w∗]] = gv, on Σ,

−2[[µ∂3w∗]] = gw − q∗ + σ∆x′h∗, on Σ,

[[u∗]] = uΣ, on Σ,

PS1

(
µ(∇u∗ +∇uT∗ )νS1

)
= PS1g1, on S1\∂Σ,

u∗ · νS1 = g2, on S1\∂Σ,

u∗ = g3, on S2,

u∗(0) = u0, in Ω\Σ.

(2.2)

to obtain a solution u∗ ∈ H1
p (J ;Lp(Ω)3) ∩ Lp(J ;H2

p (Ω\Σ)3) by Lemma 6.3.6. Note
that all relevant compatibility conditions of the data are satisfied by assumption.
Setting u1 = u − u∗ and π1 = π − π∗ we see that w.l.o.g. we may assume that
u0 = h0 = f = 0. To remove fd we solve the transmission problem

∆ψ = fd − div u∗ in Ω\Σ,
[[ρψ]] = 0 on Σ,

[[∂e3ψ]] = 0 on Σ,

∂ν∂Ω
ψ = 0 on ∂Ω\∂Σ = (S1\∂Σ) ∪ S2,

(2.3)

by Lemma 6.3.4. We remark that
∫

Ω(fd − div u∗)dx = 0 by the compatibility con-
ditions on (fd, uΣ, g2, g3) and

fd − div u∗ ∈0H
1
p (J ; Ĥ−1

p (Ω)) ∩ Lp(J ;H1
p (Ω\Σ)).

Therefore we obtain a solution ∇ψ ∈ 0Eu(J). Setting u2 := u1 − ∇ψ, π2 := π1 +
ρ∂tψ − µ∆ψ and h2 := h1 we see that we may assume that fd = g2 = uΣ · e3 =
g3 · e3 = 0. The time trace of all the remaining data at t = 0 vanishes.

2.3 Localization procedure

Before we can state the main result of this section, we introduce some function
spaces. Let

F1(J) := Lp(J ;Lp(Ω)3), F2(J) := Lp(J ;H1
p (Ω\Σ)).

F3(J) := W 1/2−1/2p
p (J ;Lp(Σ)2) ∩ Lp(J ;W 1−1/p

p (Σ)2),

F4(J) := W 1/2−1/2p
p (J ;Lp(Σ)) ∩ Lp(J ;W 1−1/p

p (Σ)),

F5(J) := W 1−1/2p
p (J ;Lp(Σ)3) ∩ Lp(J ;W 2−1/p

p (Σ)3),

F6(J) := W 1−1/2p
p (J ;Lp(Σ)) ∩ Lp(J ;W 2−1/p

p (Σ)),

F7(J) := W 1/2−1/2p
p (J ;Lp(S1)3) ∩ Lp(J ;W 1−1/p

p (S1\∂Σ)3),
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F8(J) := W 1−1/2p
p (J ;Lp(S1)) ∩ Lp(J ;W 2−1/p

p (S1\∂Σ)),

F9(J) := W 1−1/2p
p (J ;Lp(S2)) ∩ Lp(J ;W 2−1/p

p (S2)),

F10(J) := W 3/2−1/p
p (J ;Lp(∂Σ)) ∩H1

p (J ;W 1−2/p
p (∂Σ)) ∩ Lp(J ;W 2−2/p

p (∂Σ)),

and F̃(J) := ×10
j=1Fj(J) as well as

F(J) := {(f1, . . . , f10) ∈ F̃(J) : (f2, f5, f8, f9) ∈ H1
p (J ; Ĥ−1

p (Ω))}.

Furthermore, we set Xγ := Xγ,u ×Xγ,h, where Xγ,u := W
2−2/p
p (Ω\Σ)3 and Xγ,h :=

W
3−2/p
p (Σ).
The main result of this section reads as follows.

Theorem 2.3.1. Let µj , ρj , Hj , σ > 0, n = 3, p > 5 and let G ∈ Rn−1 be open
and bounded with ∂G ∈ C4. Define Ω := G × (H1, H2) and let Σ := G × {0}. Let
S1 := ∂G×(H1, H2) and S2 := (G×{H1})∪(G×{H2}) be the vertical and horizontal
parts of the boundary of Ω, respectively. Then there exists a unique solution

u ∈ H1
p (J ;Lp(Ω)3) ∩ Lp(J ;H2

p (Ω\Σ)3), π ∈ Lp(J ; Ḣ1
p (Ω\Σ)),

[[π]] ∈W 1/2−1/2p
p (J ;Lp(Σ)) ∩ Lp(J ;W 1−1/p

p (Σ))

h ∈W 2−1/2p
p (J ;Lp(Σ)) ∩H1

p (J ;W 2−1/p
p (Σ)) ∩ Lp(J ;W 3−1/p

p (Σ)),

of (1.4) if and only if the data are subject to the following regularity and compatibility
conditions.

1. (f, fd, gv, gw, uΣ, gh, g1, g2, g3, g4) ∈ F(J),

2. (u0, h0) ∈ Xγ,

3. div u0 = fd|t=0, −[[µ∇x′w0]]− [[µ∂3v0]] = gv|t=0, [[u0]] = uΣ|t=0,

4. PS1(µ(∇u0 +∇uT0 )νS1) = PS1g1|t=0, u0 · νS1 = g2|t=0, u0 = g3|t=0,

5. ∂ν∂Gh0 = g4|t=0,

6. [[g2]] = uΣ · νS1,

7. [[(g1 · e3)/µ− ∂3g2]] = ∂νS1
(uΣ · e3),

8. P∂G[(D′vΣ)ν ′] = [[P∂Gg
′
1/µ]],

9. ∂tg4 −m[(g1 · e3)/µ− ∂3g2] = ∂νS1
gh,

10. (gv|νS1) = −[[g1 · e3]], (g3|νS1) = g2,

11. P∂G[µ(D′g′3)ν ′] = (P∂Gg
′
1),

12. µ∂νS1
(g3 · e3) + µ∂3g2 = g1 · e3,

where ν ′ := ν∂G.



2.3. Localization procedure 40

Proof. We will split the proof in two parts.

(I) Existence of a left inverse
Let (u, π, [[π]], h) be a solution of (1.4). By the results of the last subsection there

exists (ū, π̄, [[π̄]], h̄) such that (ũ, π̃, [[π̃]], h̃) := (u, π, [[π]], h) − (ū, π̄, [[π̄]], h̄) solves the
problem

∂t(ρũ)− µ∆ũ+∇π̃ = 0, in Ω\Σ,
div ũ = 0, in Ω\Σ,

−[[µ∂3ṽ]]− [[µ∇x′w̃]] = g̃v, on Σ,

−2[[µ∂3w̃]] + [[π̃]]− σ∆x′ h̃ = g̃w, on Σ,

[[ũ]] = ũΣ, on Σ,

∂th̃−m[w̃] = g̃h, on Σ,

PS1

(
µ(∇ũ+∇ũT)νS1

)
= PS1 g̃1, on S1\∂Σ,

ũ · νS1 = 0, on S1\∂Σ,

ũ = g̃3, on S2,

∂ν∂G h̃ = g̃4, on ∂Σ,

ũ(0) = 0, in Ω\Σ
h̃(0) = 0, on Σ,

(2.4)

and (g̃3|e3) = (ũΣ|e3) = 0. Choose open sets Uk = Br(xk) with

• ∂Σ ⊂
⋃N1
k=7 Uk,

• ∂S2 ⊂
⋃N
k=N1+1 Uk,

and choose r > 0 sufficiently small such that the corresponding solution operators
from Sections 1.3.2 & 1.3.4 are well-defined. According to Proposition 6.2.1 there
exist open and connected sets

• U0 ∩ Σ 6= ∅, U0 ∩ ∂Ω = ∅;

• Uk ⊂ Ωk, k = 1, 2;

• Uk ∩ S1 6= ∅, Uk ∩ (Σ ∪ S2) = ∅, k = 3, 4;

• Uk ∩ S2 6= ∅, Uk ∩ (Σ ∪ S1) = ∅, k = 5, 6,

and a family of functions {ϕ}Nk=0 ⊂ C3
c (R3; [0, 1]) such that Ω ⊂

⋃N
k=0 Uk, suppϕk ⊂

Uk,
∑N

k=0 ϕk = 1 and ∂νS1
ϕk(x) = ∂e3ϕk(x) = 0 for x ∈ Uk ∩ (∂Σ ∪ ∂S2), k ≥ 7.
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Multiplying each equation in (2.4) by ϕk we obtain the following local problems

∂t(ρũk)− µ∆ũk +∇π̃k = Fk(ũ, π̃), in Ωk\Σk,

div ũk = Fdk(ũ), in Ωk\Σk,

−[[µ∂3ṽk]]− [[µ∇x′w̃k]] = g̃vk +Gvk(ũ), on Σk,

−2[[µ∂3w̃k]] + [[π̃k]]− σ∆x′ h̃k = g̃wk +Gwk(ũ, h̃), on Σk,

[[ũk]] = ũΣk, on Σk,

∂th̃k −m[w̃k] = g̃hk, on Σk,

PSk1

(
µ(∇ũk +∇ũTk )νk

)
= PSk1

g̃1k +G1k(ũ), on Sk1\∂Σk,

ũk · νk = 0, on Sk1\∂Σk,

ũk = g̃3k, on Sk2 ,

∂νk h̃k = g̃4k, on ∂Σk,

ũk(0) = 0, in Ωk\Σk

h̃k(0) = 0, on Σk,

(2.5)

where
Fk(ũ, π̃) := [∇ϕk]π̃ − µ[∆, ϕk]ũ,

Fdk(ũ) := ũ · ∇ϕk,

Gvk(ũ) := (I − e3 ⊗ e3)Gk(ũ, h̃),

Gwk(ũ, h̃) := Gk(ũ, h̃)e3,

Gk(ũ, h̃) := [[−µ(∇ϕk ⊗ ũ+ ũ⊗∇ϕk)]]e3 − σ[∆Σ, ϕk]h̃e3,

and
G1k(ũ) := (I − νk ⊗ νk)(µ(∇ϕk ⊗ ũ+ ũ⊗∇ϕk))νk.

Furthermore we have set PSk1
:= I − νk ⊗ νk.

For k = 0 we obtain a pure two-phase problem with a flat interface in Rn. This case
has been treated in [40]. If k ∈ {1, 2} then we are lead to one-phase Stokes equations
in Rn. An analysis of these problems can be found in [6]. If k ∈ {7, . . . , N1} and
k ∈ {N1 + 1, . . . , N} then we rotate the coordinate system (with respect to the x3

axis) and translate it to obtain two-phase Stokes equations in bent half-spaces and
one-phase Stokes equations in bent quarter-spaces, respectively. These problems
have been treated in Sections 1.3.2 and 1.3.4. Hence, the solution operators for
the charts Uk, k ≥ 7 are well defined by the results in 1.3.2 and 1.3.4. Finally, if
k ∈ {3, 4} then we obtain the Stokes equations in bent half-spaces with pure-slip
conditions, while for k ∈ {5, 6} we are lead to the Stokes equations in half-spaces
with no-slip boundary condition, see e.g. [6] for the theory of the last two type of
problems. We denote the corresponding solution operators for each chart Uk by Sk.

Note that all functions Fj , Gj carry additional time regularity (take into account
Lemma 2.1.1) with exception of Fdk. To circumvent this problem we will reduce
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(2.5) to the case Fdk = 0. For this purpose we apply Lemma 6.3.4 and solve the
transmission problem

∆φk = Fdk(ũ) in Ωk\Σk,

[[ρφk]] = 0 on Σk,

[[∂e3φk]] = 0 on Σk,

∂νkφk = 0 on ∂Ωk\∂Σk.

This yields a solution

∇φk ∈0H
1
p (J ;H1

p (Ωk\Σk)3) ∩ Lp(J ;H3
p (Ωk\Σk)3) =:0Z(J)

satisfying the estimate
‖∇φk‖Z(J) ≤ CN‖ũ‖Eu(J). (2.6)

The constant CN > 0 depends on N but not on the length of J . We define ûk :=
ũk −∇φk and π̂k := π̃k + ρ∂tφk − µ∆φk. With ĥ = h̃ we obtain the system

∂t(ρûk)− µ∆ûk +∇π̂k = Fk(ũ, π̃), in Ωk\Σk,

div ûk = 0, in Ωk\Σk,

−[[µ∂3v̂k]]− [[µ∇x′ŵk]] = g̃vk + Ĝvk(ũ), on Σk,

−2[[µ∂3ŵk]] + [[π̂k]]− σ∆x′ ĥk = g̃wk + Ĝwk(ũ, h̃), on Σk,

[[ûk]] = ũΣk − [[∇φk]], on Σk,

∂tĥk −m[ŵk] = g̃hk +m[∂3φk], on Σk,

PSk1

(
µ(∇ûk +∇ûTk )νk

)
= PSk1

g̃1k + Ĝ1k(ũ), on Sk1\∂Σk,

ûk · νk = 0, on Sk1\∂Σk,

ûk = g̃3k −∇φk, on Sk2 ,

∂νk ĥk = g̃4k, on Sk1 ∩ Σk,

ûk(0) = 0, in Ωk\Σk

ĥk(0) = 0, on Σk,

(2.7)

where
Ĝk(ũ, h̃) := Gk(ũ, h̃) + 2[[µ∇2φk]]e3 − [[µ∆φk]]e3,

Ĝkv, Ĝkw defined as above and

Ĝ1k(ũ) := G1k(ũ)− 2µ(I − νk ⊗ νk)∇2φkνk.

With the help of the solution operators Sk, we may rewrite (2.7) as

(ûk, π̂k, ĥk) = Sk
(
H̃k +Hk(ũ, π̃, h̃)

)
, (2.8)

where H̃k stands for the set of given data and Hk(ũ, π̃, h̃) denotes the remaining
part on the right hand side of (2.7). Let {θk}Nk=0 ⊂ C∞c (Uk) such that θk|suppϕk = 1
and multiply (2.8) by θk. By Lemma 2.1.1 it holds that (π̃k∇jθk), (π̂k∇jθk) ∈
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0W
α
p (J ;Lp(Ω

k)) for each j ∈ {0, 1, 2} and k ∈ {0, . . . , N}, since supp θk ⊂ Uk is
bounded. In addition, the estimate

‖π̃k∇jθk‖Wα
p (J ;Lp(Ωk)) + ‖π̂k∇jθk‖Wα

p (J ;Lp(Ωk))

≤ C
(
‖ũ‖Eu(J) + ‖h̃‖Eu(J) + ‖H̃‖F(J)

)
is valid, where C > 0 does not depend on T > 0. This implies

‖(∇jθk)(ρ∂tφk − µ∆φk)‖Wα
p (J ;Lp(Ωk)) = ‖(∇jθk)(π̂k − π̃k)‖Wα

p (J ;Lp(Ωk))

≤ C
(
‖ũ‖Eu(J) + ‖h̃‖Eu(J) + ‖H̃‖F(J)

)
and since ∆φk = Fdk(ũ) ∈0Eu(J), it follows that

‖(∇jθk)∂tφk‖0Wα
p (J ;Lp(Ωk)) ≤ C

(
‖ũ‖Eu(J) + ‖h̃‖Eu(J) + ‖H̃‖F(J)

)
for each j ∈ {0, 1, 2} and k ∈ {0, . . . , N}. Hence, by Hölder’s inequality and Sobolev
embedding

‖(∇jθk)∂tφk‖Lp(J ;Lp(Ωk)) ≤ T 1/2p‖(∇jθk)∂tφk‖0Wα
p (J ;Lp(Ωk)).

Next, we apply Hölder’s inequality, Sobolev embeddings and the mixed derivative
theorem to obtain

‖θk∂tφk‖Lp(J ;H1
p(Ωk)) ≤ T 1/2p‖θk∂tφk‖L2p(J ;H1

p(Ωk))

≤ CT 1/2p‖θk∂tφk‖Wα/2−ε
p (J ;H1

p(Ωk))

≤ CT 1/2p‖θk∂tφk‖Hα/2−ε/2
p (J ;H1

p(Ωk))

≤ CT 1/2p‖θk∂tφk‖Hα−ε
p (J ;Lp(Ωk))∩Lp(J ;H2

p(Ωk))

≤ CT 1/2p‖θk∂tφk‖Wα
p (J ;Lp(Ωk))∩Lp(J ;H2

p(Ωk))

for some α ∈ (0, 1/2− 1/2p) and a sufficiently small ε > 0. Note that

‖∇∂tφk‖Lp(J ;Lp(Ωk)) + ‖∇2∂tφk‖Lp(J ;Lp(Ωk)) ≤ C‖ũ‖Eu(J),

by (2.6), hence

‖θk∂tφk‖Lp(J ;H1
p(Ωk)) ≤ CT 1/2p

(
‖ũ‖Eu(J) + ‖h̃‖Eu(J) + ‖H̃‖F(J)

)
.

In particular, this implies

‖θk∂t∇φk‖Lp(J ;Lp(Ωk)) ≤ ‖θk∂tφk‖Lp(J ;H1
p(Ωk)) + ‖(∇θk)∂tφk‖Lp(J ;Lp(Ωk))

≤ CT 1/2p
(
‖ũ‖Eu(J) + ‖h̃‖Eu(J) + ‖H̃‖F(J)

)
.

Moreover, by Sobolev embedding and the mixed derivative theorem, we obtain

‖θk∇φk‖Lp(J ;H2
p(Ωk)) ≤ CT 1/2p‖∇φk‖

0H
1/2
p (J ;H2

p(Ωk))
≤ CT 1/2p‖ũ‖Eu(J).
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Since all terms in Hk(ũ, π̃, h̃) carry additional time regularity, there exists some
γ > 0 such that

‖Hk(ũ, π̃, h̃)‖F(J) ≤ CT γ‖(ũ, π̃, h̃)‖E(J).

We may now replace θkûk by θk(ũk −∇φk) and θkπ̂k by θk(π̃k + ρ∂tφk − µ∆φk) in
(2.8) to obtain the estimate

‖θk(ũk, π̃k, h̃k)‖E(J) ≤ C
(
‖θkH̃k‖F(J) + T γ̃‖(ũ, π̃, h̃)‖E(J)

)
, (2.9)

with a constant C > 0 being independent of T > 0. Here γ̃ := max{1/2p, γ}. Since
θk(ũk, π̃k, h̃k) = (ũk, π̃k, h̃k) we may take the sum over all charts to obtain

‖(ũ, π̃, h̃)‖E(J) ≤ CN
(
‖H̃‖F(J) + T γ̃‖(ũ, π̃, h̃)‖E(J)

)
.

Therefore, choosing T > 0 sufficiently small, we obtain the a priori estimate

‖(ũ, π̃, h̃)‖E(J) ≤ CN‖H̃‖F(J)

for the solution of (2.4). A successive application of the above argument yields
the estimate on each finite interval J = [0, T ]. It follows that the solution-to-data
operator L : 0E(J) → 0F(J), defined by the left hand side of (2.4) is injective with
closed range. In particular, there exists a left inverse S for L, that is SLz = z for
all z ∈0E(J).

(II) Existence of a right inverse
It remains to prove the existence of a right inverse for L. To this end, let the

data F := (f, fd, gv, gw, g1, g2, g3, g4, uΣ, gh) ∈ F(J), (u0, h0) ∈ Xγ , subject to the
conditions in Theorem 2.3.1 be given. By the results in Section 2.2, we may assume
without loss of generality that u0 = h0 = 0. In particular this means that the time
traces of all inhomogeneities at t = 0 vanish if they exist.

Let u∗,∇ψ ∈ 0Eu(J) denote the unique solutions of (2.2) and (2.3), respectively,
where now q∗ = π∗ = h∗ = 0. Set ū := u∗ − ∇ψ, π̄ := µ∆ψ − ρ∂tψ and h̄ = 0.
Defining

S̄F := (ū, π̄, [[π̄]], h̄)

it holds that

LS̄F = L(ū, π̄, [[π̄]], h̄) =



f
fd

gv +Gv(ψ)
gw +Gw(ψ)
uΣ +GΣ(ψ)
Gh(u∗, ψ)
g1 +G1(ψ)

g2

g3 +G3(ψ)
0


,

where
Gv(ψ) := 2[[µ(I − e3 ⊗ e3)(∇2ψe3)]],

Gw(ψ) := 2[[µ(∇2ψe3) · e3]] + [[µ∆ψ]],
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GΣ(ψ) := −[[∇ψ]], Gh(u∗, ψ) := −m[u∗ · e3 − ∂3ψ],

G1(ψ) := −2µ(I − νS1 ⊗ νS1)(∇2ψνS1),

and G3(ψ) := −∇ψ|S2 .
In a next step we consider the problems

∂t(ρũk)− µ∆ũk +∇π̃k = 0, in Ωk\Σk,

div ũk = 0, in Ωk\Σk,

−[[µ∂3ṽk]]− [[µ∇x′w̃k]] = Gkv(ψ), on Σk,

−2[[µ∂3w̃k]] + [[π̃k]]− σ∆x′ h̃k = Gkw(ψ), on Σk,

[[ũk]] = GkΣ(ψ), on Σk,

∂th̃k −m[w̃k] = Gkh(u∗, ψ)− gkh, on Σk,

PSk1

(
µ(∇ũk +∇ũTk )νk

)
= Gk1(ψ), on Sk1\∂Σk,

ũk · νk = 0, on Sk1\∂Σk,

ũk = Gk3(ψ), on Sk2 ,

∂νk h̃k = −gk4 , on ∂Σk,

ũ(0) = 0, in Ωk\Σk

h̃(0) = 0, on Σk,

(2.10)

where

Gkj (ψ) := Gj(ψ)ϕk, j ∈ {v, w,Σ, 1, 3}, Gkh(u∗, ψ) := Gh(u∗, ψ)ϕk,

and gkm := gmϕk, m ∈ {h, 4}. Let us check whether the right hand side in (2.10)
satisfies all relevant compatibility conditions at ∂Σk and ∂Sk2 , k ≥ 7. Consider first
the case x ∈ ∂Sk2 , k ∈ {7, . . . , N1}.

We have to show that the relations Gk3(ψ) · νk = 0, µ∂νk(Gk3(ψ) · e3) = Gk1(ψ) · e3

and
P∂Gk [µ(D′Gk

′
3 (ψ))ν ′k] = −P∂Gk [µ(D′ψ)ν ′k]ϕk

hold at ∂Sk2 , where

Gk
′

3 (ψ) :=

(
Gk3(ψ) · e1

Gk3(ψ) · e2

)
.

The first condition is equivalent to ϕk(∇ψ · νk) = 0 at ∂Sk2 . Since νk = νS1 = (ν ′, 0)
on suppϕk, the claim follows from the fact that ∂νkψ = ∇ψ · νk = ∇x′ψ · ν ′ = 0 at
x ∈ ∂S2 ∩ suppϕk, by construction of ψ. Next, we compute

∂νk(Gk3(ψ) · e3) = −∂νk(ϕk∂3ψ) = −∂3ψ∂νkϕk − ϕk∂νk∂3ψ = 0,

since ∂νkϕk = 0 and
∂νk∂3ψ = ∂ν′∂3ψ = ∂3∂ν′ψ = 0

at suppϕk ∩ ∂S2, since ν ′ does not depend on x3 and ∂ν′ψ(x3) = 0 for all x3 ∈
[H1, H2]\{0} by construction of ψ. Furthermore we have

Gk1ψ · e3 = ν1∂1∂3ψ + ν2∂2∂3ψ = ∂3∂ν′ψ = 0
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at suppϕk ∩ ∂S2. Therefore, the second compatibility condition holds. Concerning
the last compatibility condition, note that

D′Gk
′

3 (ψ) = −D′(ϕk∇x′ψ) = −2ϕk∇2ψ −∇x′ϕk ⊗∇x′ψ −∇x′ψ ⊗∇x′ϕk.

From this identity we obtain

(D′Gk
′

3 (ψ))ν ′k = −2ϕk∇2ψν ′k −∇x′ϕk∂ν′kψ −∇x′ψ∂ν′kϕk
= −P∂Gk [µ(D′ψ)ν ′k],

since ν ′k = ν ′ on suppϕk and therefore ∂ν′kϕk = ∂ν′kψ = 0 at ∂S2∩suppϕk. It follows

that all compatibility conditions at ∂Sk2 are satisfied.
The validity of the compatibility conditions at ∂Σk, k ∈ {N1 + 1, . . . , N}, can be

checked in a very similar way, taking into account the properties of ψ and the fact
that ∂ν′kϕk = 0 at ∂Σ ∩ suppϕk, k ∈ {N1 + 1, . . . , N}.

Therefore, for each k ∈ {0, . . . , N}, there exists a unique solution (ũk, π̃k, h̃k)
of (2.10). Let {θk}Nk=0 ⊂ C∞c (Uk) such that θk|suppϕk = 1. Note that the function
(∇θk ·ũk)|Ω is mean value free, since ũk is a divergence free vector field and [[ũk]]·e3 =
0 on Σ∩Uk, ũk · νk = 0 at (S1\∂Σ)∩Uk as well as ũk · e3 = 0 at S2 ∩Uk. Therefore,
we may solve the problems

∆ψk = (∇θk · ũk)|Ω in Ω\Σ,
[[ρψk]] = 0 on Σ,

[[∂e3ψk]] = 0 on Σ,

∂ν∂Ω
ψk = 0 on ∂Ω\∂Σ = (S1\∂Σ) ∪ S2,

(2.11)

by Lemma 6.3.4. This yields unique solutions

∇ψk ∈0H
1
p (J ;H1

p (Ω\Σ)3) ∩ Lp(J ;H3
p (Ω\Σ)3).

Finally, we define

S̃F :=

N∑
k=0

(θkũk −∇ψk, θkπ̃k + ρ∂tψk − µ∆ψk, θkh̃k),

and we observe that

LS̃F =
N∑
k=0



−µ[∆, θk]ũk + [∇, θk]π̃k
0

θkG
k
v(ψ) + (I − e3 ⊗ e3)G(ũk, h̃k) +Gv(ψk)

θkG
k
w(ψ) +G(ũk, h̃k)e3 +Gw(ψk)

θkG
k
Σ(ψ) +GΣ(ψk)

θk(G
k
h(u∗, ψ)− gkh) +m[∂3ψk]

θkG
k
1(ψ) + PSk1

[µ(∇θk ⊗ ũk + ũk ⊗∇θk)νk] +G1(ψk)

0
θkG

k
3(ψ) +G3(ψk)

h̃k∂νkθk − θkgk4


,
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where
G(ũk, h̃k) := [[−µ(∇θk ⊗ ũk + ũk ⊗∇θk)]]e3 − σ[∆x′ , θk]h̃ke3.

Since θk|suppϕk = 1 it follows that θkG
k
j (ψ) = Gkj (ψ), θkg

k
m = gkm and θkG

k
h(u∗, ψ) =

Gkh(u∗, ψ) for j ∈ {v, w,Σ, 1, 3}, m ∈ {h, 4}. Therefore we have

N∑
k=0

θkG
k
j (ψ) = Gj(ψ)

as well as
∑N

k=0 θkg
k
m = gm and

∑N
k=0 θkG

k
h(u∗, ψ) = Gh(u∗, ψ) since

∑N
k=0 ϕk = 1.

Setting ŜF := S̄F − S̃F , we obtain the identity

LŜF = LS̄F − LS̃F = F −RF

where

RF :=
N∑
k=0



−µ[∆, θk]ũk + [∇, θk]π̃k
0

(I − e3 ⊗ e3)G(ũk, h̃k) +Gv(ψk)

G(ũk, h̃k)e3 +Gw(ψk)
GΣ(ψk)

0
PSk1

[µ(∇θk ⊗ ũk + ũk ⊗∇θk)νk] +G1(ψk)

0
G3(ψk)

h̃k∂νkθk


.

If we can show that there exists a constant C > 0 being independent of T > 0 such
that the estimate

‖RF‖F(J) ≤ CT γ‖F‖F(J)

for some γ > 0 holds, then, if T > 0 is sufficiently small, the operator (I − R) is
invertible and the right inverse S for L is given by S := Ŝ(I −R)−1.

We remark that all terms which involve ũk and h̃k are of lower order and therefore
these terms carry additional (time-) regularity. Furthermore the terms involving ψk
carry additional (time-) regularity as well, since ∇ψk is regular enough. The only
difficulty that arises is the estimate of

∑N
k=0[∇, θk]π̃k in Lp(J ;Lp(Ω)3). However, by

Lemma 2.1.1 we know that π̃k ∈0W
α
p (0, T ;Lp,loc(Ω

k)) for some α ∈ (0, 1/2− 1/2p).
Since θk has compact support, this yields the estimate

‖[∇, θk]π̃k‖Wα
p (Lp) ≤ C

(
‖ũk‖Eu + ‖h̃k‖Eh + ‖∇ψ‖Eu

)
for some constant C > 0 which does not depend on T > 0. In particular this implies

‖
N∑
k=0

[∇, θk]π̃k‖Lp(J ;Lp(Ω)) ≤ CNT γ
(
‖u∗‖Eu(J) + ‖∇ψ‖Eu(J)

+ ‖gh‖F6(J) + ‖g4‖F10(J)

)
≤ CNT γ‖F‖F(J),

for some γ > 0, by Hölder’s inequality.
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We shall also prove a result on well-posedness for the linear system

∂t(ρu)− µ∆u+∇π = f, in Ω\Σ,
div u = fd, in Ω\Σ,

−[[µ∂3v]]− [[µ∇x′w]] = gv, on Σ,

−2[[µ∂3w]] + [[π]]− σ∆x′h− γa[[ρ]]h = gw, on Σ,

[[u]] = uΣ, on Σ,

∂th−m[w] = gh, on Σ,

PS1

(
µ(∇u+∇uT)νS1

)
= PS1g1, on S1\∂Σ,

u · νS1 = g2, on S1\∂Σ,

u = g3, on S2,

∂ν∂Gh = g4, on ∂Σ,

u(0) = u0, in Ω\Σ
h(0) = h0, on Σ.

(2.12)

Corollary 2.3.2. Let γa > 0. Under the assumptions of Theorem 2.3.1, there exists
a unique solution

u ∈ H1
p (J ;Lp(Ω)3) ∩ Lp(J ;H2

p (Ω\Σ)3), π ∈ Lp(J ; Ḣ1
p (Ω\Σ)),

[[π]] ∈W 1/2−1/2p
p (J ;Lp(Σ)) ∩ Lp(J ;W 1−1/p

p (Σ))

h ∈W 2−1/2p
p (J ;Lp(Σ)) ∩H1

p (J ;W 2−1/p
p (Σ)) ∩ Lp(J ;W 3−1/p

p (Σ)),

of (2.12) if and only if the data are subject to the conditions (1)-(12) in Theorem
2.3.1.

Proof. Necessity of the conditions follows from trace theory. To prove the sufficiency
part, let

E1(J) := H1
p (J ;Lp(Ω)3) ∩ Lp(J ;H2

p (Ω\Σ)3), E2(J) := Lp(J ; Ḣ1
p (Ω\Σ)),

E3(J) := W 1/2−1/2p
p (J ;Lp(Σ)) ∩ Lp(J ;W 1−1/p

p (Σ))

E4(J) := W 2−1/2p
p (J ;Lp(Σ)) ∩H1

p (J ;W 2−1/p
p (Σ)) ∩ Lp(J ;W 3−1/p

p (Σ)),

and E(J) := {(u, π, q, h) ∈ ×4
j=1Ej(J) : q = [[π]]}. We first solve (1.4) for the given

data, to obtain a unique solution (u∗, π∗, q∗, h∗) ∈ E(J). Then we consider the
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problem

∂t(ρu)− µ∆u+∇π = 0, in Ω\Σ,
div u = 0, in Ω\Σ,

−[[µ∂3v]]− [[µ∇x′w]] = 0, on Σ,

−2[[µ∂3w]] + [[π]]− σ∆x′h− γa[[ρ]]h = γa[[ρ]]h∗, on Σ,

[[u]] = 0, on Σ,

∂th−m[w] = 0, on Σ,

PS1

(
µ(∇u+∇uT)νS1

)
= 0, on S1\∂Σ,

u · νS1 = 0, on S1\∂Σ,

u = 0, on S2,

∂ν∂Gh = 0, on ∂Σ,

u(0) = 0, in Ω\Σ
h(0) = 0, on Σ.

(2.13)

Define L :0E(J)→0F(J) by the left side of (2.13) and L0 :0E(J)→0F(J) by the left
side of (1.4) without the initial conditions. We already know that L0 :0E(J)→0F(J)
is boundedly invertible, hence

L = L0 + (L− L0) = L0(I + L−1
0 (L− L0)).

This in turn yields that L : 0E(J) → 0F(J) is boundedly invertible, provided that
((I+L−1

0 (L−L0)) :0E(J)→0E(J) has this property. To this end it suffices to show
that the norm of L−1

0 (L−L0) in E(J) is less than one. For z ∈0E(J) we obtain the
estimate

‖L−1
0 (L− L0)z‖E(J) ≤Mγa[[ρ]]‖h‖F4(J) ≤ TαMγa[[ρ]]‖h‖E4(J) ≤ TαMγa[[ρ]]‖z‖E(J),

for some α > 0. Here M := ‖L−1
0 ‖B(0F(J0);0E(J0)) and J = [0, T ] ⊂ [0, T0] =: J0.

It follows that if T > 0 is sufficiently small, then L : 0E(J) → 0F(J) is boundedly
invertible. The result extends to all T > 0 by a successive application of this
argument.



Chapter 3

Nonlinear well-posedness

It is the aim of this section to establish an existence and uniqueness result for the
nonlinear problem (1.3).

3.1 Function spaces and regularity

Before we go into the details, there is a remark concerning the nonlinearity

H2(u, h) = PS1

(
µ(M0(h)∇u+∇uTM0(h)T)νS1

)
in (1.3) in order. One readily computes

(M0(h)∇u+∇uTM0(h)T)νS1 =
1

1 + hϕ′

ϕ∂3u1∂ν∂Gh+ ϕ∂1h∂3(u · νS1)
ϕ∂3u2∂ν∂Gh+ ϕ∂2h∂3(u · νS1)
ϕ∂3u3∂ν∂Gh+ ϕ′h∂3(u · νS1)

 ,

where νS1 = (ν1, ν2, 0)T. Therefore, if u · νS1 = 0 on S1\∂Σ and ∂ν∂Gh = 0 on ∂G,
it follows that H2(u, h) = 0 at S1\∂Σ (note that the function h depends only on
x′ = (x1, x2), wherefore it is constant with respect to x3).

Define the solution spaces

Eu(T ) := {u ∈ H1
p (J ;Lp(Ω)3) ∩ Lp(J ;H2

p (Ω\Σ)3) :

[[u]] = 0, u · νS1 = 0, PS1(µ(∇u+∇uT)νS1) = 0, u|S2 = 0},

Eπ(T ) := Lp(J ; Ḣ1
p (Ω\Σ)),

Eq(T ) := W 1/2−1/2p
p (J ;Lp(Σ)) ∩ Lp(J ;W 1−1/p

p (Σ)),

Eh(T ) := {h ∈W 2−1/2p
p (J ;Lp(Σ)) ∩H1

p (J ;W 2−1/p
p (Σ)) ∩ Lp(J ;W 3−1/p

p (Σ)) :

∂ν∂Gh = 0},

and
E(T ) := {(u, π, q, h) ∈ Eu(T )× Eπ(T )× Eq(T )× Eh(T ) : q = [[π]]}.
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Moreover, we define the data spaces as follows.

F1(T ) := Lp(J ;Lp(Ω)3),

F2(T ) := H1
p (J ; Ĥ−1

p (Ω)) ∩ Lp(J ;H1
p (Ω\Σ)),

F3(T ) := {f3 ∈W 1/2−1/2p
p (J ;Lp(Σ)3) ∩ Lp(J ;W 1−1/p

p (Σ)3) : PΣ(f3) · νS1 = 0},

F4(T ) := {f4 ∈W 1−1/2p
p (J ;Lp(Σ)) ∩ Lp(J ;W 2−1/p

p (Σ)) : ∂ν∂Gf4 = 0},

and F(T ) := ×4
j=1Fj(T ).

Define an operator L = (L1, L2, L3, L4) on E(T ) by

L1(u, π) := ρ∂tu− µ∆u+∇π
L2(u) := div u

L3(u, q, h) := [[−µ(∇u+∇uT)]]e3 + qe3 − (∆x′h)e3 − γa[[ρ]]he3

L4(u, h) := ∂th− (u|e3)

and a nonlinear mapping N = (N1, N2, N3, N4) on E(T ) by

N1(u, π, h) := F (u, π, h)

N2(u, h) := Fd(u, h)− 1

|Ω|

∫
Ω
Fd(u, h) dx

N3(u, h) := (Gv(u, h), 0)T +Gw(u, h)e3

N4(u, h) := H1(u, h).

It follows from Corollary 2.3.2 that for each fixed T > 0 the mapping L : 0E(T ) →
0F(J) is an isomorphism, since all compatibility conditions at the contact line ∂Σ
are satisfied by construction.

Let UT := {z = (u, π, q, h) ∈ E(T ) : ‖h‖L∞(L∞) < η}, where η > 0 is sufficiently
small. Concerning the nonlinearity N(z) we have the following result

Proposition 3.1.1. Let p > n+ 2. Then

1. N ∈ C2(UT ;F(T )) and N(0) = 0 as well as DN(0) = 0.

2. DN(w) ∈ B(UT ;F(T )) for each w ∈ E(T ).

Proof. We shall show that N(z) ∈ F(T ) for each z ∈ UT . Let z = (u, π, q, h) ∈ UT .
Then it is easily seen that N1(z) = F (u, π, h) ∈ F1(T ). Concerning N2(z), we have

‖N2(z)‖Lp(H1
p) ≤ C(‖h‖L∞(W 2

∞)‖u‖Lp(H1
p) + ‖h‖L∞(W 1

∞)‖u‖Lp(H2
p)),

since Eh(T ) ↪→ BUC([0, T ];C2(Σ)) for p > n + 2. Furthermore, for φ ∈ Ḣ1
p (Ω) we

obtain after integration by parts (h does not depend on x3)

(N2(z)|φ)2 = (N2(z)|φ− φ̄)2 = −
∫

Ω

[
(u1∂1h+ u2∂2h)∂3

(
(φ− φ̄)

ϕ

1 + hϕ′

)
+

+ u3h∂3

(
(φ− φ̄)

ϕ′

1 + hϕ′

)]
dx,



3.2. Reduction to time trace zero 52

where φ̄ := 1
|Ω|
∫

Ω φdx. Since Eh(T ) ↪→ BUC1([0, T ];C1(Σ)) for p > n+ 2, it follows

from Poincaré’s inequality for functions with mean value zero that N2(z) ∈ F2(T ).
The desired regularity property of N3(z) can be readily checked. It remains to

show that
PΣN3(z) · νS1 = (Gv(u, h), 0)T · νS1 = 0.

Inserting the expression for Gv(u, h) yields

PΣN3(z) · νS1 = −
(

[[µ(∇x′v +∇x′vT)]]∇x′h|ν∂G
)

+ |∇x′h|2[[µ∂3(u|νS1)]] +
(
(1 + |∇x′h|2)[[µ∂3w]]− (∇x′h|[[µ∇w]])

)
∂ν∂Gh,

where νS1 = (ν∂G, 0)T. The last term in this equation vanishes, since ∂ν∂Gh = 0.
Moreover, since µ(u · νS1)(x3) = 0 for each x3 ∈ (H1, 0) ∪ (0, H2), the second term
vanishes as well. Finally, since PS1(µ(∇u+∇uT)νS1) = 0, it holds that

µ(∇u+∇uT)νS1 =
(
µ(∇u+∇uT)νS1 |νS1

)
νS1

on S1\∂Σ, hence also

[[µ(∇u+∇uT)]]νS1 =
(

[[µ(∇u+∇uT]])νS1 |νS1

)
νS1

at the contact line, since νS1 does not depend on x3. Taking the inner product with
(∇x′h, 0)T yields

([[µ(∇u+∇uT)]]νS1 |(∇x′h, 0)T) =
(
µ(∇u+∇uT)νS1 |νS1

)
∂ν∂Gh = 0,

since ∂ν∂Gh = 0. But by symmetry of the stress tensor we also have

([[µ(∇u+∇uT)]]νS1 |(∇h, 0)T) = (ν∂G|[[µ(∇x′v +∇x′vT)]]∇h),

where u = (v, w), hence N3(z) ∈ F3(T ).
Finally, concerning N4(z), one has to observe that (u|νS1) = 0 and PS1((∇u +
∇uT)νS1) = 0 on S1\∂Σ if u ∈ Eu(T ). For νS1 = (ν∂G, 0)T, this implies in particular
that (v|ν∂G) = 0 and P∂G((∇x′v + ∇x′vT)ν∂G) = 0 on S1\∂Σ. Since [[v]] = 0 on
Σ, by continuity of v, we clearly have [[∇x′v]] = 0 on Σ, since the jump acts into
the direction of x3 which is perpendicular to both e1 and e2. In particular we have
(v|ν∂G) = 0 and P∂G((∇x′v + ∇x′vT)ν∂G) = 0 at the contact line ∂Σ. Since in
addition we know that ∂ν∂Gh = 0 at ∂Σ, it follows from Proposition 6.6.3 that
∂ν∂G(v|∇x′h) = 0 at ∂Σ.

The remaining assertions can be proven as in [40, Proposition 6.2].

3.2 Reduction to time trace zero

Let (u0, h0) ∈W 2−2/p
p (Ω\Σ)3 ×W 3−2/p

p (Σ) such that

div u0 = Fd(u0, h0), −[[µ∂3v0]]− [[µ∇x′w0]] = Gv(v0, h0),

[[u0]] = 0 on Σ, u0 · νS1 = 0, PS1(µ(∇u0 +∇uT0 )νS1) = 0 on S1\∂Σ, u0|S2 = 0 and
∂ν∂Gh0 = 0 on ∂Σ.
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Let H := max{H1,−H2} < 0 and u+
0 := u0|x3∈[0,H2]. Define

ũ+
0 (x) :=

{
u+

0 (x1, x2, x3), if x3 ∈ [0, H2),

−u+
0 (x1, x2,−2x3) + 2u+

0 (x1, x2,−x3/2), if x3 ∈ (H/2, 0)

as well as

ū+
0 (x) :=


ũ+

0 (x1, x2, x3), if x3 ∈ [0, H2),

ũ+
0 (x1, x2, x3)ψ(x3), if x3 ∈ (H/2, 0),

0, if x3 ∈ (H1, H/2],

where ψ ∈ C∞c (R; [0, 1]) such that ψ(s) = 1 if |s| < −H/6 and ψ(s) = 0 if |s| >
−H/3. It follows by construction that ū+

0 ∈ W
2−2/p
p (Ω)3 ↪→ C1(Ω)3, if p > n + 2.

We then solve the parabolic problem

∂t(u
+)− µ+∆u+ = 0, in Ω,

PS1

(
µ+(∇u+ +∇(u+)T)νS1

)
= 0, on S1,

u+ · νS1 = 0, on S1,

u+ = 0, on S2,

u+(0) = ū+
0 , in Ω,

(3.1)

by Lemma 6.3.5, where µ+ := µ|x3∈(0,H2) > 0 is constant.

Let us check whether ū+
0 satisfies the relevant compatibility conditions at S1 and

S2. It is easy to see that ū+
0 = 0 at S2. Furthermore we have u+

0 · νS1 = 0 for all
x3 ∈ (0, H2) by the assumption on u0. From the definition of ũ+

0 we obtain that
ũ+

0 · νS1 = 0 for all x3 ∈ (H/2, 0), hence also ū+
0 · νS1 = 0 for x3 ∈ (H1, 0) by the

definition of ū+
0 . Since ū+

0 ∈ C1(Ω)3 we also have ū+
0 ·νS1 = 0 for x3 = 0. It remains

to prove that

PS1

(
µ+(∇ū+

0 +∇(ū+
0 )T)νS1

)
= 0 (3.2)

on S1. Again, this is true for x3 ∈ (0, H2), by the assumption on u0. Since the
first two components of this tangential projection do only contain derivatives with
respect to the (x1, x2)-variables, it follows from the definition of ū+

0 that

PS1

(
µ+(∇ū+

0 +∇(ū+
0 )T)νS1

)
· ej = 0

for j ∈ {1, 2} and x3 ∈ (H1, 0). The third component of the projection is given by

∂νS1
(ū+

0 · e3) + ∂3(ū+
0 · νS1).

Evidently, it holds that ∂νS1
(ū+

0 · e3) = 0 by the same reasons as above, since the
last component of νS1 vanishes. Furthermore, we have

∂3(ū+
0 · νS1) =

{
ψ∂3(ũ+

0 · νS1) + ψ′(ũ+
0 · νS1), if x3 ∈ (H/2, 0),

0, if x3 ∈ (H1, H/2].

Since u+
0 ·νS1 = 0 for all x3 ∈ (0, H2) it follows that ∂3(u+

0 ·νS1) = 0 for x3 ∈ (0, H2).
From the identity

∂3(ũ+
0 · νS1) = −∂3[u+

0 (x1, x2,−2x3) · νS1 ] + 2∂3[u+
0 (x1, x2,−x3/2) · νS1 ]
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for x3 ∈ (H/2, 0), we readily obtain that ∂3(ū+
0 · νS1) = 0 for x3 ∈ (H1, 0). Finally,

since ū+
0 ∈ C1(Ω)3, it follows that (3.2) holds on all of S1.

Solving (3.1) by Lemma 6.3.5 yields a unique solution

u+ ∈ H1
p (J ;Lp(Ω)3) ∩ Lp(J ;H2

p (Ω)3)

satisfying the estimate

‖u+‖H1
p(Lp)∩Lp(H2

p) ≤M‖ū+
0 ‖W 2−2/p

p
,

where M > 0 does not depend on u+
0 .

Applying the same procedure to u−0 := u0|x3∈[H1,0] (with a suitable cut-off function

ψ) yields a C1-extension ū−0 of u−0 . Therefore, we obtain a unique solution

u− ∈ H1
p (J ;Lp(Ω)3) ∩ Lp(J ;H2

p (Ω)3)

of (3.1) with µ+ and ū+
0 replaced by µ− and ū−0 , respectively, satisfying the estimate

‖u−‖H1
p(Lp)∩Lp(H2

p) ≤M‖ū−0 ‖W 2−2/p
p

,

where M > 0 does not depend on u−0 . We then define

ū :=

{
u+, if x3 ∈ (0, H2),

u−, if x3 ∈ (H1, 0).

Note that in general ū ∈ H1
p (J ;Lp(Ω)3) ∩ Lp(J ;H2

p (Ω\Σ)3), since [[ū]] is not neces-
sarily zero.

In a next step we solve the two phase problem

∂t(ρũ)− µ∆ũ = 0, in Ω\Σ,
[[µ∂3ṽ]] + [[µ∇x′w̃]] = [[µ∂3v̄]] + [[µ∇x′w̄]], on Σ,

[[µ∂3w̃]] = [[µ∂3w̄]], on Σ,

[[ũ]] = 0, on Σ,

PS1

(
µ(∇ũ+∇ũT)νS1

)
= 0, on S1\∂Σ,

ũ · νS1 = 0, on S1\∂Σ,

ũ = 0, on S2,

ũ(0) = u0, in Ω\Σ,

(3.3)

by Lemma 6.3.6, where ũ = (ṽ, w̃) and ū = (v̄, w̄). The compatibility conditions at
t = 0 are satisfied, since ū(0) = u0. Let us check that the compatibility condition

[[µ∂3(ū|νS1)]] + [[µ∂νS1
w̄]] = 0

holds at the contact line ∂Σ. Since by construction of ū we have

PS1

(
µ(∇ū+∇ūT)νS1

)
= 0,
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at S1\∂Σ, the third component yields µ
(
∂νS1

w̄ + ∂3(ū · νS1)
)

= 0 at S1\∂Σ. This

in turn implies that [[µ∂3(ū|νS1)]] + [[µ∂νS1
w̄]] = 0. Note that for the third equation

in (3.3) there has no compatibility condition at ∂Σ to be satisfied. Therefore we
obtain a unique solution ũ ∈ Eu(T ) by Lemma 6.3.6.

Define f∗d := div ũ ∈ F2(T ), g∗ := [[−µ(∇ũ + ∇ũT)e3]] ∈ F3(T ) and g∗h :=
e−At(v0|Σ · ∇h0), with A := (I − ∆N ), where ∆N is the Neumann-Laplacian
and e−At denotes the C0-semigroup, generated by −A in Lp(Σ). Then, since

(v0|Σ · ∇h0) ∈ W
2−3/p
p (Σ) with ∂ν∂G(v0|Σ · ∇h0) = 0 by Proposition 6.6.3 at ∂Σ,

it follows that e−Atgh ∈ F4(T ). The fact that PΣ([[−µ(∇ũ+∇ũT)e3]]) ·νS1 = 0 holds
by construction of ũ.

By Corollary 2.3.2 there exists a unique solution z∗ = (u∗, π∗, q∗, h∗) ∈ E(T )
of the initial value problem Lz∗ = (0, f∗d , g

∗, g∗h), (u∗, h∗)|t=0 = (u0, h0), since the
compatibility conditions at t = 0 in the second and third component are satisfied
by construction. We remark that z∗ satisfies the estimate

‖z∗‖E(T ) ≤ C0‖(u0, h0)‖Xγ ,

and C0 > 0 does not depend on (u0, h0).

3.3 Nonlinear well-posedness

Define the mapping K(z) := N(z + z∗) − Lz∗, where z ∈ 0E(T ). By Proposition
3.1.1 it holds that K(z) ∈0F(T ) for each z ∈0E(T ), wherefore, we may consider the
mapping K(z) := L−1K(z). We intend to show that this mapping has a fixed point
in 0E(T ).

The main result of this section reads as follows.

Theorem 3.3.1. Let n = 3, p > 5. For each given T > 0 there exists a number

η = η(T ) > 0 such that for all initial values (u0, h0) ∈ W 2−2/p
p (Ω\Σ)3 ×W 3−2/p

p (Σ)
satisfying the compatibility conditions

div u0 = Fd(u0, h0), −[[µ∂3v0]]− [[µ∇x′w0]] = Gv(v0, h0),

[[u0]] = 0, u0 · νS1 = 0, PS1(µ(∇u0 + ∇uT0 )νS1) = 0, u0|S2 = 0 and ∂ν∂Gh0 = 0 as
well as the smallness condition

‖u0‖W 2−2/p
p (Ω\Σ)

+ ‖h0‖W 3−2/p
p (Σ)

≤ η,

there exists a unique solution (u, π, q, h) ∈ E(T ) of (1.3).

Proof. For a given Banach space Z, let

BZ := {z ∈ Z : ‖z‖Z ≤ 1}.

Based on Proposition 3.1.1, for each ε ∈ (0, 1) there exists δ(ε) > 0 such that

‖DN(z + z∗)‖B(E(T ),F(T )) ≤ ε

whenever (z + z∗) ∈ δBE(T ) ⊂ UT . Let M := ‖L−1‖B(0F(T );0E(T )) > 0 and C :=
‖L‖B(E(T );F(T )) > 0. We assume that ε > 0 from above is chosen sufficiently small,
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such that ε ∈ (0, 1/(2M)). Suppose furthermore that z ∈ δ
2B0E(T ) and (u0, h0) ∈

δ
4MC0(1+C)BXγ . This yields

‖z + z∗‖E(T ) ≤ δ/2 + δ/(4M(1 + C)) < δ

and therefore

‖K(z)‖E(T ) ≤M‖K(z)‖F(T ) ≤M(‖N(z + z∗)‖F(T ) + ‖Lz∗‖F(T ))

≤M [ε(‖z‖E(T ) + ‖z∗‖E(T )) + C‖z∗‖E(T )]

≤M(ε‖z‖E(T ) + C0(1 + C)‖(u0, h0)‖Xγ )

≤Mε
δ

2
+
δ

4
≤ δ/2

hence K : δ2B0E(T ) → δ
2B0E(T ) is a self-mapping. Furthermore we obtain

‖K(z1)−K(z2)‖E(T ) ≤Mε‖z1 − z2‖E(T ) ≤
1

2
‖z1 − z2‖E(T ),

valid for all z1, z2 ∈ δ
2B0E(T ) and all initial values (u0, h0) ∈ δ

4MC0(1+C)BXγ . The

contraction mapping principle yields a unique fixed point z̃ ∈ δ
2B0E(T ) of K(z), i.e.

z̃ = K(z̃). Equivalently this means Lz̃ = N(z̃ + z∗) − Lz∗, hence z̄ := z̃ + z∗
solves Lz̄ = N(z̄). To show that z̄ = (ū, π̄, q̄, h̄) is a solution of (1.3), it remains
to prove that Fd(ū, h̄) is mean value free. Indeed, let t ∈ [0, T ] be fixed and set
û(t, x) := ū(t,Θ−1

h̄
(t, x)) it follows that û ∈ H1

p (Ω) with (û|νS1) = 0 at S1\∂Γ(t),
û = 0 at S2 and

div û = (div ū− Fd(ū, h̄)) ◦Θ−1
h̄
.

The divergence theorem and the transformation formula yield

0 =

∫
Ω\Γ(t)

div û dx

=

∫
Ω\Σ

(
div ū− Fd(ū, h̄)

)
det Θ′h̄ dx̄

= − 1

|Ω|

∫
Ω\Σ

Fd(ū, h̄) dx̄

∫
Ω\Σ

det Θ′h̄ dx̄,

where x̄ := Θ−1
h̄

(x). Since det Θ′
h̄
> 0, the claim follows.



Chapter 4

Rayleigh-Taylor instability

4.1 Equilibria and spectrum of the linearization

In this subsection we compute the equilibria of (1.2) as well as the spectrum of the
linearization of (1.2) around the trivial equilibrium.

Assume that we have a time independent solution of (1.2). Then multiplying
(1.2)1 by u and integrating by parts yields the identity

‖µ1/2Du‖2L2(Ω) = 0,

hence u = 0 on ∂Ω and therefore u = 0 in all of Ω, by Korn’s inequality. If u = 0,
then π must be constant, with possibly different values in different phases. Hence,
(1.2)3 yields that

σHΓ + [[ρ]]γax3 = const,

on Γ. In particular, if HΓ = 0 then x3 must be constant, hence flat interfaces belong
to the set of equilibria. Assume that Γ is given by the graph of a height function h,
that is

Γ = {x ∈ Ω : x3 = h(x1, x2), (x1, x2) ∈ G}.

Then the normal νΓ on Γ, pointing from Ω1 (x3 < h(x1, x2)) into Ω2 (x3 > h(x1, x2))
is given by

νΓ(x′, h(x′)) =
1√

1 + |∇x′h(x′)|2
[−∇x′h(x′), 1]T, x′ = (x1, x2) ∈ BR(0).

Since HΓ = −divΓ νΓ, we obtain the quasilinear elliptic problem

σ divx′

(
∇x′h√

1 + |∇x′h|2

)
+ [[ρ]]γah = c, x′ ∈ G,

∂ν∂Gh = 0, x′ ∈ ∂G,
(4.1)

where c := 1
|G|
∫
G hdx

′. All admissible height functions which solve (4.1) belong to
the set of equilibria,

We are interested in the stability properties of the flat interface Σ = G × {0} in
Ω := G × (H1, H2). After transformation of (1.2) to the fixed domain Ω\Σ and

57
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linearization around the equilibrium (0,Σ), we obtain the linear problem

∂t(ρu)− µ∆u+∇p = 0, in Ω\Σ,
div u = 0, in Ω\Σ,

−[[µ(∇u+∇uT)]]e3 + [[p]]e3 = σ(∆x′h)e3 + [[ρ]]γahe3, on Σ,

[[u]] = 0, on Σ,

∂th− u3 = 0, on Σ,

PS1

(
µ(∇u+∇uT)νS1

)
= 0, on S1\∂Σ,

(u|νS1) = 0, on S1\∂Σ,

u = 0, on S2,

∂ν∂Gh = 0, on ∂Σ,

u(0) = u0, in Ω\Σ,
h(0) = h0, on Σ.

(4.2)

Define a linear operator L : X1 → X0 by

L(u, h) := [(µ/ρ)∆u− (1/ρ)∇p, u · e3],

where X0 := Lp,σ(Ω)× {h ∈W 2−1/p
p (Σ) :

∫
G h dx

′ = 0, ∂ν∂Gh = 0},

Lp,σ(Ω) := {u ∈ C∞c (Ω)3 : div u = 0}‖·‖Lp , X̄1 = H2
p (Ω\Σ)3 ×W 3−1/p

p (Σ)

and

X1 := D(L) = {(u, h) ∈ X0 ∩ X̄1 : PΣ([[µ(∇u+∇uT)]]e3) = 0, [[u]] = 0,

PS1

(
µ(∇u+∇uT)νS1

)
= 0, (u|νS1) = 0, ∂ν∂Gh = 0}. (4.3)

The function p ∈ Ḣ1
p (Ω\Σ) in the definition of L is determined as the solution of

the weak transmission problem(
1

ρ
∇p|∇φ

)
L2(Ω)

=

(
µ

ρ
∆u|∇φ

)
L2(Ω)

[[p]] = σ∆x′h+ [[ρ]]γah+ ([[µ(∇u+∇uT)]]e3|e3), on Σ,

where φ ∈ H1
p′(Ω) and p′ = p/(p− 1), which is well-defined thanks to Lemma 6.3.3.

We will sometimes make use of the notation via solution operators, i.e.

1

ρ
∇p = T1[(µ/ρ)∆u] + T2[σ∆x′h+ [[ρ]]γah+ ([[µ(∇u+∇uT)]]e3|e3)], (4.4)

where T1 : Lp(Ω)3 → Lp(Ω)3 and T2 : W
1−1/p
p (Σ) → Lp(Ω)3 are bounded linear

operators.
In what follows we will analyze the spectrum of the operator L. Note that L has

a compact resolvent. This implies that the spectrum of L is discrete and it con-
sists solely of eigenvalues with finite multiplicity. Consider the eigenvalue problem
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λ(u, h) = L(u, h), that is

λρu− µ∆u+∇p = 0, in Ω\Σ,
div u = 0, in Ω\Σ,

−[[µ(∇u+∇uT)]]e3 + [[p]]e3 = σ(∆x′h)e3 + [[ρ]]γahe3, on Σ,

[[u]] = 0, on Σ,

λh− u3 = 0, on Σ,

PS1

(
µ(∇u+∇uT)ν∂Ω

)
= 0, on S1\∂Σ,

(u|νS1) = 0, on S1\∂Σ,

u = 0, on S2,

∂ν∂Gh = 0, on ∂Σ,

(4.5)

We test the first equation with u and integrate by parts to obtain

λ|ρ1/2u|2L2(Ω) +
1

2
|µ1/2Du|2L2(Ω) + λ̄

[
σ|∇x′h|2L2(G) − [[ρ]]γa|h|2L2(G)

]
= 0, (4.6)

The above identity for λ = 0 implies u = 0, by Korn’s inequality, hence p as well as
[[p]] are constant. Therefore h is a solution of the linear elliptic problem

∆x′h+
[[ρ]]γa
σ

h = 0, x′ ∈ G,

∂ν∂Gh = 0, x′ ∈ ∂G,
(4.7)

since h is mean value free. Let σ(−∆N ) ⊂ (0,∞) denote the spectrum of the negative
Neumann-Laplacian in the space

X :=

{
h ∈W 1−1/p

p (G) :

∫
G
h dx′ = 0

}
and let E(η) denote the eigenspace corresponding to the eigenvalue η ∈ σ(−∆N ). It
follows that h = 0 is the unique solution of (4.7) if and only if

[[ρ]]γa
σ

/∈ σ(−∆N )

and there exists 0 6= h ∈ E(η) if and only if

η :=
[[ρ]]γa
σ
∈ σ(−∆N ).

This shows that

0 ∈ σ(L) if and only if
[[ρ]]γa
σ
∈ σ(−∆N ).

Suppose that 0 6= λ ∈ σ(L) with Reλ = 0. Taking real parts in (4.6) it follows that
u = 0 by Korn’s inequality, hence h must be nontrivial. By equation (4.5)5 it follows
that λ = 0. This shows that λ = 0 is the only eigenvalue of L on the imaginary axis.
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In particular, if
[[ρ]]γa
σ

< λ1,

λ1 > 0 being the first nontrivial eigenvalue of −∆N in X, then

σ(L) ⊂ {λ ∈ C : Reλ ≤ −ω < 0},

for some ω > 0, since

|∇x′h|2L2(G) −
[[ρ]]γa
σ
|h|2L2(G) ≥ 0,

by the Poincaré inequality for functions h with mean value zero. Note that there
exists κ > 0 such that κ−L is a sectorial operator, since L has maximal Lp-regularity.
In particular, it holds that σ(L−κ) ⊂ Σπ/2+δ or equivalently σ(L) ⊂ Σπ/2+δ +κ for
some δ ∈ (0, π/2). This concludes the proof of existence of the number ω > 0 above.

We aim to show that σ(L) ∩ C+ 6= ∅ whenever [[ρ]]γa
σ > λ1. To this end, for λ ≥ 0

and given g ∈W 1−1/p
p (G), p > 2, we solve the elliptic two-phase Stokes problem

λρu− µ∆u+∇p = 0, in Ω\Σ,
div u = 0, in Ω\Σ,

−[[µ(∇u+∇uT)]]e3 + [[p]]e3 = ge3, on Σ,

[[u]] = 0, on Σ,

PS1

(
µ(∇u+∇uT)νS1

)
= 0, on S1\∂Σ,

(u|νS1) = 0, on S1\∂Σ,

u = 0, on S2,

(4.8)

by Theorem 6.5.1 to obtain a unique solution u ∈ H2
p (Ω\Σ) ∩ H1

p (Ω). Define the

(reduced) Neumann-to-Dirichlet operator Nλ : W
1−1/p
p (G)→W

2−1/p
p (G) by Nλg :=

(u|e3). With the compact operator Nλ at hand we may rewrite the eigenvalue
problem (4.5) as follows

λh+Nλ(A∗h) = 0, (4.9)

where A∗h := −σ∆Nh− [[ρ]]γah is the shifted Neumann Laplacian with domain

D(A∗) =

{
h ∈W 3−1/p

p (G) :

∫
G
h dx′ = 0, ∂ν∂Gh = 0 on ∂G

}
.

We remark that for λ ≥ 0 problems (4.5) and (4.9) are equivalent. Therefore it

suffices to show that for [[ρ]]γa
σ > λ1 there exists λ > 0 such that equation (4.9) has

a nontrivial solution h ∈ D(A∗).
Concerning Nλ we have the following result.

Proposition 4.1.1. The Neumann-to-Dirichlet operator Nλ of the Stokes-problem
(4.8) admits a compact self-adjoint extension to L2(G) which has the following prop-
erties.
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1. If u denotes the solution of (4.8), then

(Nλg|g)2 = λ|ρ1/2u|2L2(Ω) +
1

2
|µ1/2Du|2L2(Ω)

for all g ∈W 1−1/p
p (G) and λ ≥ 0.

2. For each α ∈ (0, 1/2) there is a constant C > 0 such that

(Nλg|g)2 ≥
(1 + λ)α

C
|Nλg|2L2(G),

for all g ∈ L2(G) and λ ≥ 0. In particular,

|Nλ|B(L2(G)) ≤
C

(1 + λ)α

for all λ ≥ 0.

3. Nλg has mean value zero for all λ ≥ 0 and each g ∈ L2(G).

Proof. The first assertion follows from integration by parts, while for the proof of the
second assertion one uses trace theory, interpolation theory and Korn’s inequality.
To show the third assertion, observe that for each λ ≥ 0 we have∫

G
Nλg dx

′ =

∫
G

(u|e3) dx′ =

∫
Ω1

div u1 dx = 0,

by the divergence theorem, where u1 := u|Ω1 .

Proposition 4.1.1 combined with Korn’s inequality imply that whenever Nλg = 0,
then u = 0, hence g must be constant. Therefore, the restriction of Nλ to functions
with mean value zero is injective. Therefore we may rewrite equation (4.9) as

λN−1
λ h+A∗h = 0, (4.10)

for each h ∈ D(A∗). Let us consider (4.10) in L
(0)
2 (G), the subspace of L2(G)

consisting of functions with vanishing mean value. Define Bλ := λN−1
λ +A∗ with

D(Bλ) = D(A∗) =
{
h ∈W 2

2 (G) ∩ L(0)
2 (G) : ∂ν∂Gh = 0 on ∂G

}
,

since N−1
λ is a relatively compact perturbation of A∗. We will show that the operator

Bλ is positive definite provided λ > 0 is large enough. Let µj > 0 be an eigenvalue

of N−1
λ in L

(0)
2 (G) with corresponding eigenfunction ej . Then

1

µj
|ej |2 = |Nλej |2 ≤

C

(1 + λ)α
|ej |2,

hence µj ≥ 1
C > 0 for each λ ≥ 0. It follows that

(Bλh|h)2 = λ(N−1
λ h|h)2 + (A∗h|h)2 ≥ (λ/C − [[ρ]]γa) |h|22 > 0

for each h ∈ D(A∗), if λ > 0 is sufficiently large.
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On the other hand, let 0 6= h∗ ∈ D(A∗) be an eigenfunction of −∆N to the first
nontrivial eigenvalue λ1 > 0 of −∆N , hence −∆Nh∗ = λ1h∗. This yields

(Bλh∗|h∗)2 = λ(N−1
λ h∗|h∗)2 − σ

(
[[ρ]]γa
σ
− λ1

)
|h∗|22.

Since limλ→0+ λ(N−1
λ h∗|h∗) = 0 it follows that (Bλh∗|h∗)2 < 0 provided λ > 0 is

sufficiently small and [[ρ]]γa
σ > λ1. Let [[ρ]]γa

σ > λ1 and define

λ∗ := sup{λ > 0 : Bµ is not positive semi-definite for each µ ∈ (0, λ]}.

Then λ∗ > 0 by what we have shown above and Bλ has a negative eigenvalue for
each λ < λ∗, since the resolvent of Bλ is compact. It follows that 0 ∈ σ(Bλ∗), hence

there exists a solution 0 6= h ∈ D(A∗) in L
(0)
2 (G) of (4.10). A bootstrap argument

finally shows that h ∈ D(A∗) ∩W 3−1/p
p (G). This in turn yields that σ(L) ∩ C+ 6= ∅

whenever [[ρ]]γa
σ > λ1. We have proven the following result.

Proposition 4.1.2. The operator L defined above has the following spectral prop-
erties.

1. σ(L) ∩ iR ⊂ {0} and 0 ∈ σ(L) if and only if [[ρ]]γa/σ ∈ σ(−∆N ).

2. If [[ρ]] ≤ 0 then σ(L) ⊂ C−.

3. If [[ρ]] > 0 and [[ρ]]γa
σ < λ1, then σ(L) ⊂ C−.

4. If [[ρ]] > 0 and [[ρ]]γa
σ > λ1, then σ(L) ∩ C+ 6= ∅.

4.2 Parametrization of the nonlinear phase manifold

We have already seen that after a Hanzawa transformation, the transformed velocity
field is no longer divergence free. Moreover, the jump condition of the stress tensor
as well as the divergence condition are transformed into some nonlinear terms. It is
the aim of this subsection, to parameterize the nonlinear phase manifold

PM := {(u, h) ∈W 2−2/p
p (Ω\Σ)3 × [W 3−2/p

p (Σ) ∩X] :

u|S2 = 0, u|S1 · νS1 = 0, PS1(µ(∇u+∇uT)νS1) = 0, [[u]] = 0,

PΣ(µ(∇u+∇uT)e3) = (Gv(u, h), 0), ∂ν∂Gh = 0, div u = Fd(u, h)},

as a subset of Xγ := W
2−2/p
p (Ω\Σ)3 × W

3−2/p
p (Σ), near the trivial equilibrium

(u∗, h∗) = (0, 0) over the linear phase manifold

X0
γ := {(u, h) ∈ [W 2−2/p

p (Ω\Σ)3 ×W 3−2/p
p (Σ)] ∩X0 : u|S2 = 0, u|S1 · νS1 = 0,

PS1(µ(∇u+∇uT)νS1) = 0, [[u]] = 0, PΣ(µ(∇u+∇uT)e3) = 0, ∂ν∂Gh = 0}.

Let Eπ := Ẇ
1−2/p
p (Ω\Σ), Eq := W

1−3/p
p (Σ),

Eu := {u ∈W 2−2/p
p (Ω\Σ)3 :

[[u]] = 0, u|S1 · νS1 = 0, u|S2 = 0, PS1(µ(∇u+∇uT)νS1) = 0},
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E := {(u, π, q) ∈ Eu × Eπ × Eq : q = [[π]]}, and

F := {(f1, f2) ∈ [W 1−2/p
p (Ω\Σ) ∩ Ĥ−1

p (Ω)]×

×W 1−3/p
p (Σ)3 : (PΣf2) · νS1 = 0 at ∂Σ}.

We will need the following auxilliary result for the Stokes problem

ρωu− µ∆u+∇π = 0, in Ω\Σ,
div u = fd, in Ω\Σ,

−[[µ∂3v]]− [[µ∇x′w]] = gv, on Σ,

−2[[µ∂3w]] + [[π]] = gw, on Σ,

[[u]] = 0, on Σ,

PS1(µ(∇u+∇uT)νS1) = 0, on S1\∂Σ,

u · νS1 = 0, on S1\∂Σ,

u = 0, on S2.

(4.11)

Proposition 4.2.1. Let n = 3, p > 5 and ρj , µj > 0. If ω > 0 is sufficiently large,
then there exists a unique solution (u, π, q) ∈ E of (4.11) if and only if (fd, gv, gw) ∈
F. Moreover, there exists a constant Mω > 0 such that

‖(u, π, q)‖E ≤Mω‖(fd, gv, gw)‖F.

Proof. For the proof of this result one may apply the same strategy which was used
in the proof of Theorem 6.5.1. We omit the details.

Let us consider the elliptic problem

ρωū− µ∆ū+∇π̄ = 0, in Ω\Σ,
div ū = P0Fd(ū+ ũ, h̃), in Ω\Σ,

−[[µ∂3v̄]]− [[µ∇x′w̄]] = Gv(ū+ ũ, h̃), on Σ,

−2[[µ∂3w̄]] + [[π̄]] = Gw(ū+ ũ, h̃), on Σ,

[[ū]] = 0, on Σ,

PS1(µ(∇ū+∇ūT)νS1) = 0, on S1\∂Σ,

ū · νS1 = 0, on S1\∂Σ,

ū = 0, on S2,

(4.12)

for (ū, π̄, [[π̄]]), where ω > 0 and (ũ, h̃) ∈ rBX0
γ
(0) are given. Here we have set

P0f := f − 1

|Ω|

∫
Ω
f dx,

for f ∈ L1(Ω).
Define a nonlinear mapping N : Eu ×X0

γ → F via

N(ū, ũ, h̃) :=

P0Fd(ū+ ũ, h̃)

Gv(ū+ ũ, h̃)

Gw(ū+ ũ, h̃)

 .



4.3. Main result on Rayleigh-Taylor instability 64

Let Sω denote the solution operator which is induced by Proposition 4.2.1 and define
a mapping H := E×X0

γ → E by

H((ū, π̄, q̄), (ũ, h̃)) := (ū, π̄, q̄)− SωN(ū, ũ, h̃).

Since N(0) = 0 it follows that H(0) = 0. Since N ∈ C2 it holds that H ∈ C2, too.
Differentiating H with respect to (ū, π̄, q̄) we obtain

D(ū,π̄,q̄)H(0) = IE,

where we used the fact that DūN(0) = 0. The implicit function theorem implies the
existence of a C2-function φ0 : rBX0

γ
→ E with φ0(0) = 0 and φ′0(0) = 0, such that

H(φ0(ũ, h̃), (ũ, h̃)) = 0 whenever (ũ, h̃) ∈ rBX0
γ
(0). In other words, this means that

(ū, π̄, q̄) = φ0(ũ, h̃) is the unique solution of (4.12) for a given (ũ, h̃) ∈ rBX0
γ
(0). It

can furthermore be shown that P0Fd(ū+ ũ, h̃) = Fd(ū+ ũ, h̃) (see proof of Theorem
3.3.1).

Let P (ū, π̄, q̄) := ū and define φ(ũ, h̃) := Pφ0(ũ, h̃) as well as

Φ(ũ, h̃) := (ũ, h̃) + (φ(ũ, h̃), 0).

It follows that Φ(rBX0
γ
(0)) ⊂ PM and that Φ is injective. We will now show that

Φ is locally surjective near 0. To this end we assume that (u, h) ∈ PM is given and
close to 0 in Xγ . Then we solve the linear problem

ρωū− µ∆ū+∇π̄ = 0, in Ω\Σ,
div ū = P0Fd(u, h), in Ω\Σ,

−[[µ∂3v̄]]− [[µ∇x′w̄]] = Gv(u, h), on Σ,

−2[[µ∂3w̄]] + [[π̄]] = Gw(u, h), on Σ,

[[ū]] = 0, on Σ,

PS1(µ(∇ū+∇ūT)νS1) = 0, on S1\∂Σ,

ū · νS1 = 0, on S1\∂Σ,

ū = 0, on S2,

(4.13)

by Proposition 4.2.1 to obtain ū ∈ Eu. Define (ũ, h̃) := (u− ū, h) and observe that

div ũ = Fd(u, h)− P0Fd(u, h) =
1

|Ω|

∫
Ω
Fd(u, h) dx.

Since ũ ∈ H1
p (Ω)3 with ũ|S1 · νS1 = 0, ũ|S2 = 0 and [[ũ]] = 0, it follows that

P0Fd(u, h) = Fd(u, h), hence div ũ = 0.
This in turn yields (ũ, h̃) ∈ X0

γ and φ(ũ, h̃) = ū, showing that Φ is locally surjective
near 0.

4.3 Main result on Rayleigh-Taylor instability

In this subsection we are goint to prove the following main result.
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Theorem 4.3.1. Let n = 3, p > 5 and ρj , µj , γj , σ > 0. Denote by (u∗, h∗) = (0, 0)
the trivial equilibrium and let s(L) < 0 denote the spectral bound of L. Then the
following assertions hold.

1. If [[ρ]]γa/σ < λ1, then (u∗, h∗) is exponentially stable in the following sense.
There exist constants η ∈ [0,−s(L)) and δ > 0 such that whenever (u0, h0) ∈
PM with

‖(u0, h0)‖Xγ ≤ δ,

then the estimate

‖(u(t), h(t))‖Xγ ≤ e−ηt‖(u0, h0)‖Xγ

is valid for all t ≥ 0.

2. If [[ρ]] > 0 and [[ρ]]γa/σ > λ1, then (u∗, h∗) is unstable in the following sense.
There is a constant ε0 > 0 such that for each δ > 0 there are initial values
(u0, h0) ∈ PM with

‖(u0, h0)‖Xγ ≤ δ

such that the solution (u, h) of (1.3) satisfies

‖(u(t0), h(t0))‖Xγ ≥ ε0

for some t0 > 0.

Proof. 1. Let (u0, h0) ∈ Xγ be fixed such that ‖u0‖W 2−2/p
p

+ ‖h0‖W 3−2/p
p

≤ δ for

some sufficiently small δ > 0 to be determined later. It follows from the results
of the last subsection that (u0, h0) = (ũ0, h̃0) + (φ(ũ0, h̃0), 0), i.e. h̃0 = h0, where
(ũ0, h̃0) ∈ rBX0

γ
(0). For h ∈ L1(Σ), we define

PΣ
0 h :=

1

|Σ|

∫
Σ
h dx′,

and consider the linear evolution equation

∂t(ũ, h̃)− L(ũ, h̃) = ω
(
(I − T1)ū, PΣ

0 h̄
)
, (ũ, h̃)|t=0 = (ũ0, h̃0), (4.14)

in the space

X0 := Lp,σ(Ω)×
{
h ∈W 2−1/p

p (Σ) :

∫
G
h dx′ = 0, ∂ν∂Gh = 0

}
,

where L has been defined in Subsection 4.1 and (ū, h̄) ∈ e−η[Eu(R+)× Eh(R+)] are
given functions. Here η ∈ [0,−s(L)), where s(L) < 0 denotes the spectral bound of
L.

By Corollary 2.3.2 & Proposition 4.1.2 it follows that the operator L has the
property of Lp-maximal regularity on R+ provided that [[ρ]]γa/σ < λ1. Since (f, g) :=
ω
(
(I − T1)ū, PΣ

0 h̄
)
∈ e−ηLp(R+;X0) and (ũ0, h̃0) ∈ X0

γ we obtain a unique solution

(ũ, h̃) ∈ e−η[H1
p (R+;X0) ∩ Lp(R+;X1)] =: e−ηẼ(R+)
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for each η ∈ [0,−s(L)), where X1 = D(L) is given by (4.3) . We denote by

Ξ := (∂t − L, tr |t=0)−1 : e−ηLp(R+;X0)×X0
γ → e−ηẼ(R+)

the corresponding solution operator which satisfies the estimate

‖Ξ((f, g), (ũ0, h̃0))‖e−ηẼ(R+) ≤M‖((f, g), (ũ0, h̃0))‖e−ηLp(R+;X0)×X0
γ
.

In particular, by (4.4) we obtain on the one hand that ∇π̃ is given in terms of (ū, h̄)
and

‖∇π̃‖e−ηLp(R+;Lp(Ω)) ≤ CM‖((f, g), (ũ0, h̃0))‖e−ηLp(R+;X0)×X0
γ
.

At this point we remark that the function h̃ possesses some more regularity. Indeed,
it holds that

∂th̃ = ũ3|Σ + ωPΣ
0 h̄ ∈ e−ηW 1−1/2p

p (R+;Lp(Σ)),

hence h̃ ∈ e−ηW 2−1/2p
p (R+;Lp(Σ)) holds in addition.

Next, we consider the problem

ωρū+ ∂tρū− µ∆ū+∇π̄ = F (ũ+ ū, π̃ + π̄, h̃+ h̄), in Ω\Σ,
div ū = P0Fd(ũ+ ū, h̃+ h̄), in Ω\Σ,

−[[µ∂3v̄]]− [[µ∇x′w̄]] = Gv(ũ+ ū, h̃+ h̄), on Σ,

−2[[µ∂3w̄]] + [[π̄]]− σ∆x′ h̄− [[ρ]]γah̄ = Gw(ũ+ ū, h̃+ h̄), on Σ,

[[ū]] = 0, on Σ,

ωh̄+ ∂th̄− (u|e3) = H1(ũ+ ū, h̃+ h̄), on Σ,

PS1

(
µ(∇ū+∇ūT)νS1

)
= 0, on S1\∂Σ,

ū · νS1 = 0, on S1\∂Σ,

ū = 0, on S2,

∂ν∂G h̄ = 0, on ∂Σ,

ū(0) = φ(ũ0, h̃0), in Ω\Σ
h̄(0) = 0, on Σ,

(4.15)

where (ũ, h̃) = Ξ
(
(I − T1)ū, PΣ

0 h̄
)

and ∇π̃ is given by (4.4), with (u, h) being re-

placed by (ũ, h̃).
Let

e−ηEu(R+) := {u ∈ e−η[H1
p (R+;Lp(Ω)3) ∩ Lp(R+;H2

p (Ω\Σ)3)] :

[[u]] = 0, u · νS1 = 0, PS1(µ(∇u+∇uT)νS1) = 0, u|S2 = 0},

e−ηEπ(R+) := e−ηLp(R+; Ḣ1
p (Ω\Σ)),

e−ηEq(R+) := e−η[W 1/2−1/2p
p (R+;Lp(Σ)) ∩ Lp(R+;W 1−1/p

p (Σ))],

e−ηEh(R+) := {h ∈ e−η[W 2−1/2p
p (R+;Lp(Σ))∩

∩H1
p (R+;W 2−1/p

p (Σ)) ∩ Lp(R+;W 3−1/p
p (Σ))] : ∂ν∂Gh = 0},
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and

e−ηE(R+) := {(u, π, q, h) ∈ e−η[Eu(R+)× Eπ(R+)× Eq(R+)× Eh(R+)] : q = [[π]]}.

Moreover, we define the data spaces as follows.

e−ηF1(R+) := e−ηLp(R+;Lp(Ω)3),

e−ηF2(R+) := e−η[H1
p (R+; Ĥ−1

p (Ω)) ∩ Lp(R+;H1
p (Ω\Σ))],

e−ηF3(R+) := {f3 ∈ e−η[W 1/2−1/2p
p (R+;Lp(Σ)3) ∩ Lp(R+;W 1−1/p

p (Σ)3)] :

PΣ(f3) · νS1 = 0},

e−ηF4(R+) := {f4 ∈ e−η[W 1−1/2p
p (R+;Lp(Σ)) ∩ Lp(R+;W 2−1/p

p (Σ))] : ∂ν∂Gf4 = 0},

and e−ηF(R+) := ×4
j=1e

−ηFj(R+).
Define an operator Lω : e−ηE(R+)→ e−ηF(R+) by

Lω(ū, π̄, q̄, h̄) :=


ωρū+ ∂tρū− µ∆ū+∇π̄

div ū
−[[µ(∇ū+∇ūT)]]e3 + q̄e3 − σ∆x′ h̄e3 − [[ρ]]γah̄e3

ωh̄+ ∂th̄− ū · e3

 ,

where ū = (v̄, w̄) and set

X̄γ := {(u, h) ∈W 2−2/p
p (Ω\Σ)3 ×W 3−2/p

p (Σ) :

u|S2 = 0, u|S1 · νS1 = 0, PS1(µ(∇u+∇uT)νS1) = 0, [[u]] = 0, ∂ν∂Gh = 0}

Denote by
extη : X̄γ → e−η[Eu(R+)× Eh(R+)]

a linear extension operator, such that extη(û, ĥ)|t=0 = (û, ĥ). The existence of such
an extension operator can be seen as in Section 3.2, by solving the corresponding
auxiliary problems in exponentially weighted spaces.

Furthermore, we define a nonlinear mappingN : e−η[Eu(R+)×Eπ(R+)×Eh(R+)]×
X0
γ → e−ηF(R+) by

N((ū, π̄, h̄), (ũ0, h̃0)) :=


F̄ (ū, π̄, h̄)

F̄d

(
(ū, h̄) + extη[(φ(ũ0, h̃0), 0)− (ū(0), h̄(0))]

)
Ḡv

(
(ū, h̄) + extη[(φ(ũ0, h̃0), 0)− (ū(0), h̄(0))]

)
Ḡw(ū, h̄)
H̄1(ū, h̄)

 .

Here the functions (F̄ , F̄d, Ḡj , H̄1) result from (F, Fd, Gj , H1) by replacing (ũ, h̃) and
∇π̃ by Ξ

(
(I − T1)ū, PΣ

0 h̄
)

and (4.4), respectively.
Consider the equation

Lω(ū, π̄, q̄, h̄) = N((ū, π̄, h̄), (ũ0, h̃0)).
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subject to the initial condition (ū, h̄)|t=0 = (φ(ũ0, h̃0), 0). If we can show that
this problem has a unique solution (ū, π̄, q̄, h̄) ∈ e−ηE(R+), then, by construction,
(ū, π̄, q̄, h̄) is a solution of (4.15).

Let (f, fd, gv, gw, gh) ∈ e−ηF(R+) and (u0, h0) ∈ X̄γ be given such that div u0 =
fd|t=0 and −[[µ∇x′w0]]− [[µ∂3v0]] = gv|t=0, where u0 = (v0, w0). Consider the linear
problem to find a unique w = (u, π, q, h) ∈ e−ηE(R+) such that

Lωw = F, z(0) = z0 = (u0, h0),

for a sufficiently large ω > 0, where F := (f, fd, gv, gw, gh) and z := (u, h). By
Corollary 6.4.2 we may assume without loss of generality that f = u0 = 0, fd =
gw = 0 and gv = 0. The remaining problem with F̃ = (0, 0, 0, 0, gh) and z̃0 = (0, h0)
can be written in the abstract form

ωz + ż + Lz = (0, gh), t > 0, z(0) = z̃0,

where the operator L has been defined in Section 4.1. If ω > 0 is chosen sufficiently
large, then there exists a unique solution z ∈ e−ω[Eu(R+) × Eh(R+)], since L has
the property of maximal regularity of type Lp in

Lp,σ(Ω)×
{
h ∈W 2−1/p

p (Σ) : ∂ν∂Gh = 0
}
,

by Corollary 2.3.2.
Therefore it makes sense to define a functionH : e−η[Eu(R+)×Eπ(R+)×Eh(R+)]×

X0
γ → e−ηE(R+) by

H((ū, π̄, h̄), (ũ0, h̃0))

:= (ū, π̄, q̄, h̄)− (Lω, tr |t=0)−1[N((ū, π̄, h̄), (ũ0, h̃0)), (φ(ũ0, h̃0), 0)].

Note that H is well defined, since all compatibility conditions at t = 0 as well as at
∂Σ and ∂S2 are satisfied by construction. It follows from Proposition 3.1.1 and the
results in Section 4.2 that H is a C2-mapping with H(0) = 0 and

D(ū,π̄,q̄,h̄)H(0) = Ie−ηE(R+).

Therefore, the implicit function theorem yields the existence of a C2-function ψ :
X0
γ → e−ηE(R+) with ψ(0) = 0 and ψ′(0) = 0 such that H(ψ(ũ0, h̃0), (ũ0, h̃0)) = 0,

whenever (ũ0, h̃0) ∈ rBX0
γ
(0) for some sufficiently small r > 0.

Let
(u, π, q, h) := (ũ, π̃, q̃, h̃) + (ū, π̄, q̄, h̄).

As in the proof of Theorem 3.3.1 one can show that P0Fd(u, h) = Fd(u, h), since
div u = div(ũ+ ū) = div ū. Integrating w̃ = ũ · e3 over Σ yields∫

Σ
w̃ dx′ =

∫
Ω1

div ũ1 dx = 0.
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This in turn implies that

(ω +
d

dt
)

∫
Σ
h̄ dx′ =

∫
Σ

[w̄ − (v|∇h)] dx′

=

∫
Σ

[w − (v|∇h)] dx′

=

∫
Σ

(u|νΓ(t))
√

1 + |∇h|2 dx′

=

∫
Γ(t)

(
(u ◦Θ−1

h )|νΓ(t)

)
dΓ(t)

=

∫
Ω1(t)

div(u ◦Θ−1
h ) dΩ1(t)

= 0,

since

div(u ◦Θ−1
h ) = (div u− Fd(u, h)) ◦Θ−1

h = (div ū− Fd(u, h)) ◦Θ−1
h = 0.

Since h̄|t=0 = 0, this readily yields that h̄ is mean value free, hence PΣ
0 h̄ = h̄ and

therefore (u, π, q, h) is a solution of (1.3) which is unique by Theorem 3.3.1. The
component (u, h) of the solution has the representation

(u, h) = ψ̄(ũ0, h̃0) + Ξ̄(ũ0, h̃0),

where ψ̄(ũ0, h̃0) := (ū, h̄) and Ξ̄ results by replacing (ū, h̄) by ψ̄(ũ0, h̃0) in the defi-
nition of Ξ. This yields the estimate

‖(u, h)‖e−η [Eu×Eh] ≤M‖(ũ0, h̃0)‖X0
γ
,

where M > 0 does not depend on (ũ0, h̃0) ∈ rBX0
γ
(0) as long as r > 0 is sufficiently

small. This follows from the smoothness of the function ψ. Since (ũ0, h̃0) = (u0, h0)−
φ(ũ0, h̃0) and φ(0) = 0 as well as φ′(0) = 0, we find for each ε > 0 a number r(ε) > 0
such that the estimate

‖(ũ0, h̃0)‖Xγ ≤ ‖(u0, h0)‖Xγ + ‖φ(ũ0, h̃0)‖Xγ
≤ ‖(u0, h0)‖Xγ + ε‖(ũ0, h̃0)‖Xγ

is valid. This implies the final estimate

‖(u, h)‖e−η [Eu×Eh] ≤Mε‖(u0, h0)‖Xγ ,

proving the first assertion.
2. Denote by σ+ the collection of the eigenvalues of L with positive real part

and let P+ be the spectral projection related to σ+. Define P− := I − P+ and
X±0 := P±X0. Since σ+ is finite, it follows that X+

0 is finite dimensional and the
decompositions

X0 = X+
0 ⊕X

−
0 , L = L+ ⊕ L−
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hold, where L+ is a bounded linear operator from X+
0 to X+

0 . Note further that the
spaces D(L+) and X+

0 coincide and that

‖z‖ := ‖P+z‖X0 + ‖P−z‖X0

defines an equivalent norm in X0, since P± are bounded and linear operators. By
spectral theory, it holds that σ± = σ(L±) and σ− ⊂ C−. Let λ∗ ∈ σ+ denote
the eigenvalue with the smallest real part and choose numbers κ, η > 0 such that
[κ− η, κ+ η] ⊂ (0,Reλ∗). It follows that the strip

{λ ∈ C : Reλ ∈ [κ− η, κ+ η]}

does not contain any eigenvalues of L. Therefore the restricted semigoups e∓L
±t

satisfy the estimates

‖eL−t‖ ≤Me(κ−η)t, ‖e−L+t‖ ≤Me−(κ+η)t, t ≥ 0, (4.16)

for some constant M > 0.
Our aim is to prove the second assertion by a contradiction argument. To this

end we assume that (u∗, h∗) = (0, 0) is stable. Then there exists a global solution
(u(t), π(t), q(t), h(t)) of (1.3) such that (u, π, q, h) ∈ E(T ) for each finite interval
J = [0, T ] ⊂ [0,∞). Moreover, for each ε > 0 there exists δ(ε) > 0 such that
whenever ‖(u0, h0)‖Xγ ≤ δ then ‖(u(t), h(t))‖Xγ ≤ ε for all t ≥ 0. Note that the
solution admits the decomposition

(u, π, q, h) = (ũ, π̃, q̄, h̃) + (ū, π̄, q̄, h̄),

where (ũ, h̃) solves (4.14) with π̃, q̃ = [[π̃]] given in terms of (ũ, h̃) (see (4.4)) and
(ū, π̄, q̄, h̄) solves (4.15) with a given right hand side (u, π, q, h). Observe that in this
case PΣ

0 h̄ = h̄, by integration of (4.15)6 over Σ, since∫
Σ

(ū|en)dΣ =

∫
Ω1

div ū1dx =

∫
Ω1

Fd(u
1, h)dx =

∫
Ω1

div u1dx

and ∫
Σ
H1(u, h)dΣ =

∫
Σ

(∂th− (u|e3))dΣ = −
∫

Ω1

div u1dx,

where u1 := u|Ω1 and where we made use of the fact that PΣ
0 h = h.

To shorten the notation we introduce the new functions z̃ := (ũ, h̃), z̄ = (ū, h̄),
w̃ = (ũ, π̃, q̄, h̃) and w̄ = (ū, π̄, q̄, h̄). The functions P±z̃ solve the evolutionary
problem

d

dt
P±z̃ − L±P±z̃ = ωP±Qz̄, P±z̃|t=0 = P±z̃0, (4.17)

where Qz̄ := ((I − T1)ū, h̄) and z̃0 := (ũ0, h̃0). In a first step we show that P+z̃ is
given by the formula

P+z̃(t) = −
∫ ∞
t

eL
+(t−s)ωP+Qz̄(s) ds. (4.18)

Since P+ is bounded and X0
γ ↪→ X0, it follows from the assumption that

‖P+z̃(t)‖X+
0
≤ ‖P+z(t)‖X+

0
+ ‖P+z̄(t)‖X+

0
≤ C(ε+ ‖z̄(t)‖X0)
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for all t ≥ 0. This implies the estimate

‖e−κtP+z̃‖Lp(0,T ;X+
0 ) ≤ C

(
ε

(∫ T

0
e−κpt dt

)1/p

+ ‖e−κtz̄‖Lp(0,T ;X0)

)
≤ C(κ, p)

(
ε+ ‖e−κtz̄‖Ẽ(T )

)
,

(4.19)

where
Ẽ(T ) := Eu(T )× Eh(T ),

and Ẽ(T ) ↪→ Lp(0, T ;X0), with an embedding constant being independent of T > 0.
Employing the relation

d

dt
(e−κtP+z̃(t)) = (−κI + L+)e−κtP+z̃(t) + e−κtP+Qz̄(t), (4.20)

we obtain that
‖e−κtP+z̃‖Z(T ) ≤ C1(ε+ ‖e−κtz̄‖Ẽ(T )), (4.21)

where the constant C1 > 0 does not depend on T > 0. Here we have set

Z(T ) := H1
p (0, T ;X0) ∩ Lp(0, T ;D(L)).

For the function e−κtP−z̃(t) there holds the identity

d

dt
(e−κtP−z̃(t)) = (−κI + L−)e−κtP−z̃(t) + e−κtP−Qz̄(t). (4.22)

Since by (4.16) the semigroup generated by (−κI + L−) is exponentially stable in
X−0 , we obtain from Lp-maximal regularity theory that the estimate

‖e−κtP−z̃‖Z(T ) ≤M
(
‖P−z̃0‖X0

γ
+ ‖e−κtP−Qz̄‖Lp(0,T ;X0)

)
≤M

(
‖P−z̃0‖X0

γ
+ ‖e−κtz̄‖Ẽ(T )

) (4.23)

is valid, with some constant M > 0 that does not depend on T > 0. A combination
of (4.21) and (4.23) implies

‖e−κtz̃‖Z(T ) ≤ C2

(
ε+ ‖P−z̃0‖X0

γ
+ ‖e−κtz̄‖Ẽ(T )

)
, (4.24)

with C2 > 0 being independent of T > 0. In what follows, we want to reproduce
the norm of e−κtz̃ in Ẽ(T ) on the left hand side of (4.24). To this end we have to

estimate e−κth̃, e−κt∂th̃ in W
1−1/2p
p (0, T ;Lp(Σ)).

To estimate e−κth̃ in W
1−1/2p
p (0, T ;Lp(Σ)) we cannot simply use interpolation of

H1
p (0, T ;Lp(Σ)) with Lp(0, T ;Lp(Σ)), since the interpolation constant would depend

on T > 0. The following proposition takes care about this problem.

Proposition 4.3.2. Let T ∈ (0,∞), κ > 0 and let z̃ ∈ Z(T ) be the unique solution
to (4.14). Then there exists ẑ ∈ Z(R+) with ẑ|[0,T ] = z̃ such that the estimate

‖e−κtẑ‖Z(R+) ≤M
(
‖z̃0‖X0

γ
+ ‖e−κtz̄‖Lp(0,T ;X0) + ‖e−κtz̃‖Lp(0,T ;X0)

)
is valid, with a constant M > 0 being independent of T > 0.
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Proof. We fix a > 0 large enough such that the operator L− aI has the property of
Lp-maximal regularity on R+. Define a function f : R+ → X0 by

f(t) :=

{
ωQz̄(t) + az̃(t), if t ∈ [0, T ],

0, if t > T.

Then f ∈ Lp(R+;X0) and we may solve the problem

∂tẑ − (L− aI)ẑ = f, ẑ|t=0 = z̃0, (4.25)

to obtain a unique solution ẑ ∈ Z(R+). Observe that by the uniqueness of the
solution of (4.14) it holds that ẑ|[0,T ] = z̃.

Multiplying (4.25) by e−κt, it follows that the function e−κtẑ(t) solves the initial
value problem

∂t(e
−κtẑ)− (L− (a+ κ)I)e−κtẑ = e−κtf, ẑ|t=0 = z̃0.

Since the operator L− (a+κ)I has Lp-maximal regularity on R+ as well, we obtain
the desired estimate. The independence of the constant M > 0 with respect to t
follows from the exponential stability of the analytic semigroup which is generated
by L− (a+ κ)I.

Since ‖e−κtz̃‖
W

1−1/2p
p (0,T ;X0)

≤ ‖e−κtẑ‖
W

1−1/2p
p (R+;X0)

(here we use the intrinsic

norm in W
1−1/2p
p ) it follows by the real interpolation method and Proposition 4.3.2

that the estimate

‖e−κtz̃‖
W

1−1/2p
p (0,T ;X0)

≤M
(
‖z̃0‖X0

γ
+ ‖e−κtz̄‖Lp(0,T ;X0) + ‖e−κtz̃‖Lp(0,T ;X0)

)
≤M

(
‖z̃0‖X0

γ
+ ‖e−κtz̄‖Ẽ(T ) + ‖e−κtz̃‖Z(T )

)
(4.26)

is valid. The second equation in (4.14) and Proposition 4.3.2 together with trace
theory imply

‖e−κt∂th̃‖W 1−1/2p
p (0,T ;Lp(Σ))

≤ C3

(
‖e−κtũ‖

W
1−1/2p
p (0,T ;Lp(Σ))

+ ‖e−κth̄‖
W

1−1/2p
p (0,T ;Lp(Σ))

)
≤ C4

(
‖z̃0‖X0

γ
+ ‖e−κtz̄‖Ẽ(T ) + ‖e−κtz̃‖Z(T )

)
.

(4.27)

Observe that for the estimate of e−κth̄ we have used the fact that

Ẽ(T ) ↪→W 1−1/2p
p (0, T ;Lp(Σ))

with an embedding constant being independent of T > 0, since the (instrinsic) norm
in the last space is a part of the norm in Ẽ(T ). Combining (4.24) with (4.26) &
(4.27) we obtain

‖e−κtz̃‖Ẽ(T ) ≤ C5

(
ε+ ‖z̃0‖X0

γ
+ ‖P−z̃0‖X0

γ
+ ‖e−κtz̄‖Ẽ(T )

)
, (4.28)
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with a constant C5 > 0 being independent of T > 0.
We are now turning our attention to the system (4.15) for w̄ = (ū, π̄, q̄, h̄) which

we write shortly as Lωw̄ = N(w̃+ w̄) with initial condition z̄|t=0 = (φ(z̃0), 0). It will
be convenient to write N(w) = N1(z) +N2(z, π), where all components of N2(z, π)
are zero except for the first one, which is given by M0(h)∇π.

Proposition 4.3.3. Let κ ≥ 0. There exists a nondecreasing function α : R+ → R+

with α(ε)→ 0 as ε→ 0 such that

1. if z ∈ Z(R+), then

‖e−κtN1(z)‖F(R+) ≤ α(ε)‖e−κtz‖Z(R+),

whenever ‖z(t)‖Xγ ≤ ε for all t ≥ 0;

2. if ẑ ∈0Z(T ) and z∗ ∈ Z(R+), then

‖e−κtN1(ẑ + z∗)‖F(T ) ≤ α(ε)C
(
‖e−κtẑ‖Z(T ) + ‖e−κtz∗‖Z(R+)

)
,

whenever
‖ẑ(t)‖Xγ ≤ Cε

for all t ∈ [0, T ] and
‖z∗(t)‖Xγ ≤ Cε

for all t ≥ 0. The constant C > 0 does not depend on T > 0.

Proof. The proof of the first assertion follows by similar arguments as in [31, Propo-
sition 9].

Therefore we concentrate on the proof of the second assertion. For ẑ ∈ 0Ẽ(T ) we
define a bounded linear extension operator E :0Z(T )→0Z(R+) by

(Eẑ)(t) :=


ẑ(t), t ∈ [0, T ],

ẑ(2T − t), t ∈ [T, 2T ],

0, t ≥ 2T.

For the norm of e−κt(Eẑ) in Z(R+) we then obtain

‖e−κtEẑ‖pZ(R+) =

∫ T

0
e−κtp‖ẑ(t)‖pX1

dt+

∫ 2T

T
e−κtp‖ẑ(2T − t)‖pX1

dt

+

∫ T

0
e−κtp‖ ˙̂z(t)‖pX0

dt+

∫ 2T

T
e−κtp‖ ˙̂z(2T − t)‖pX0

dt

=

∫ T

0
e−κtp‖ẑ(t)‖pX1

dt+

∫ T

0
e−κ(2T−τ)p‖ẑ(τ)‖pX1

dτ

+

∫ T

0
e−κtp‖ ˙̂z(t)‖pX0

dt+

∫ T

0
e−κ(2T−τ)p‖ ˙̂z(τ)‖pX0

dτ

≤ ‖e−κtẑ‖Z(T ),

since 2T − τ ≥ τ for τ ∈ [0, T ].
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In addition there holds ‖(Eẑ)(t)‖
W

2−2/p
p ×W 3−2/p

p
≤ Cε for all t ≥ 0. Then the first

assertion yields

‖e−κtN1(ẑ + z∗)‖F(T ) ≤ ‖e−κtN1(Eẑ + z∗)‖F(R+)

≤ α(ε)C‖e−κt(Eẑ + z∗)‖Z(R+)

≤ α(ε)C
(
‖e−κtẑ‖Z(T ) + ‖e−κtz∗‖Z(R+)

)
.

In order to apply this proposition to the system Lωw̄ = N(w̄+ w̃), let z∗ be an ex-
tension of z0 such that e−κtz∗ ∈ Ẽ(R+) and ‖z∗‖Z(R+) ≤ C‖z0‖Xγ . The existence of
such an extension can be seen as in Step 1 of the proof. Then we use the representa-
tion N(w) = N1(z)+N2(z, π) and the identity N1(z) = N1(z−z∗+z∗) = N1(ẑ+z∗),
where ẑ := (z − z∗) ∈0Z(T ). Finally, note that

‖e−κtN2(z, π)‖Lp(0,T ;Lp(Ω)) ≤ Cε‖e−κtπ‖Eπ(T ).

Therefore, the second assertion of Proposition 4.3.3 implies the estimate

‖e−κtN(w̄ + w̃)‖F(T ) ≤ α(ε)C
(
‖e−κtz̃‖Z(T ) + ‖e−κtz̄‖Z(T ) + ‖e−κtz∗‖Z(R+)

)
+ εC

(
‖e−κtπ̃‖Eπ(T ) + ‖e−κtπ̄‖Eπ(T )

)
≤ α1(ε)

(
‖e−κtz̃‖Ẽ(T ) + ‖e−κtz̄‖Ẽ(T ) + ‖e−κtπ̄‖Eπ(T ) + ‖z0‖Xγ

)
,

where α1(ε) := α(ε) + ε → 0 as ε → 0. Here we have used the estimates
‖e−κtz∗‖Z(R+) ≤ C‖z0‖Xγ and

‖e−κtπ̃‖Eπ(T ) ≤ C
(
‖e−κtz̃‖Ẽ(T ) + ‖e−κtz̄‖Ẽ(T )

)
,

which hold for some constant C > 0 that does not depend on T > 0. Note also that
Ẽ(T ) ↪→ Z(T ) with a universal embedding constant being independent of T > 0 and
‖ẑ(t)‖Xγ ≤ (1 + C)ε for all t ∈ [0, T ], ‖z∗(t)‖Xγ ≤ Cε for all t ≥ 0.

By the invertibility of Lω we obtain

‖e−κtw̄‖E(T ) ≤ C6

(
‖φ(z̃0)‖Xγ + ‖e−κtN(w̄ + w̃)‖F(T )

)
≤ C6

(
‖φ(z̃0)‖Xγ + α1(ε)(‖e−κtz̄‖Ẽ(T ) + ‖e−κtz̃‖Ẽ(T )

+ ‖z0‖Xγ )
)
.

(4.29)

Choose ε > 0 sufficiently small, such that C6α1(ε) ≤ 1/2 and note that

‖e−κtw̄‖E(T ) = ‖e−κtz̄‖Ẽ(T ) + ‖e−κtπ̄‖Eπ(T ) + ‖e−κt[[π̄]]‖Eq(T ).

This implies the estimate

‖e−κtz̄‖Ẽ(T ) ≤ 2C6

(
‖φ(z̃0)‖Xγ + α1(ε)(‖e−κtz̃‖Ẽ(T ) + ‖z0‖Xγ )

)
. (4.30)

If ε > 0 is sufficiently small, we obtain from (4.28) and (4.30) that

‖e−κtz̃‖Ẽ(T ) + ‖e−κtz̄‖Ẽ(T ) ≤ C7

(
ε+ ‖z̃0‖X0

γ
+ ‖P−z̃0‖X0

γ
+ ‖φ(z̃0)‖Xγ

)
(4.31)
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with C7 > 0 being independent of T > 0, where me made use of the fact that
z0 = z̃0 + φ(z̃0). In particular this shows that

e−κtz̃, e−κtz̄ ∈ Ẽ(R+).

This in turn yields that

e−κt
∫ ∞
t
‖eL+(t−s)P+ωQz̄(s)‖X0 ds

≤M
(∫ ∞

t
eηp
′(t−s) ds

)1/p′

‖e−κtωz̄‖Lp(R+;X0) ≤ C(η, p′)‖e−κtωz̄‖Ẽ(R+) <∞.

For the projection of the solution z̃ of (4.14) to X+
0 we have the variation of param-

eters formula

P+z̃(t) = P+eL
+tz̃0 +

∫ t

0
eL

+(t−s)P+ωQz̄(s)ds

= P+eL
+tz̃0 +

∫ ∞
0

eL
+(t−s)P+ωQz̄(s)ds−

∫ ∞
t

eL
+(t−s)P+ωQz̄(s)ds

at our disposal. Since eL
+t extends to a C0-group, we obtain the identity

e−L
+t

(
P+z̃(t) +

∫ ∞
t

eL
+(t−s)P+ωQz̄(s)ds

)
= P+z̃0 +

∫ ∞
0

e−L
+sP+ωQz̄(s)ds,

which holds for all t ≥ 0. The left hand side of this equation may be estimated in
X0 as follows.

‖e−L+t
(
P+z̃(t) +

∫ ∞
t

eL
+(t−s)P+ωQz̄(s)ds

)
‖X0

≤Me−(κ+η)t

(
‖z̃(t)‖X0 +

∫ ∞
t
‖eL+(t−s)P+ωQz̄(s)‖X0 ds

)
≤Me−ηt

(
‖e−κtz̃(t)‖X0 + C

)
.

Here we made use of the fact that the integral does not grow faster than eκt by the
computations above. Since the function [t 7→ ‖e−κtz̃(t)‖X0 ] is bounded (see above)
it follows that

e−ηt
(
‖e−κtz̃(t)‖X0 + C

)
→ 0

as t→∞. This shows in particular that P+z̃0 +
∫∞

0 e−L
+sP+ωQz̄(s)ds = 0, hence

the relation (4.18) holds.
From (4.18) and Young’s inequality we obtain the estimate

‖e−κtP+z̃‖Lp(R+;X0) ≤M(η)‖e−κtP+z̄‖Lp(R+;X0).

By (4.20) this yields

‖e−κtP+z̃‖Z(R+) ≤M(η)‖e−κtP+z̄‖Ẽ(R+). (4.32)
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One may now restart right after (4.24) and imitate all the estimates with the interval
[0, T ] being replaced by R+ to obtain the relation

‖e−κtz̃‖Ẽ(R+) + ‖e−κtz̄‖Ẽ(R+) ≤ C
(
‖P−z̃0‖Xγ + ‖φ(z̃0)‖Xγ

)
. (4.33)

At this point we want to emphasize that the term ‖z̃0‖X0
γ

does not appear on the

right hand side of (4.33), since on R+ there is no need to apply Proposition 4.3.2.
Furthermore, since we estimate norms on the half line R+, we may use the first
assertion of Proposition 4.3.3 instead of the second one.

Formula (4.18) for t = 0 and (4.33) then imply

‖P+z̃0‖X0
γ
≤M(ω, η)‖e−κtz̄‖L∞(R+;X0

γ) ≤M1(ω, η)‖e−κtz̄‖Ẽ(R+)

≤ C
(
‖P−z̃0‖X0

γ
+ ‖φ(z̃0)‖Xγ

)
,

since Ẽ(R+) ↪→ BUC(R+;X0
γ). Due to the fact that φ(0) = 0 and φ′(0) = 0, we

may decrease δ > 0 (if necessary) to achieve that

‖φ(z̃0)‖Xγ ≤
1

2
(‖P−z̃0‖X0

γ
+ ‖P+z̃0‖X0

γ
),

whenever z̃0 ∈ δBX0
γ
(0). Finally, this yields the relation

‖P+z̃0‖X0
γ
≤ C‖P−z̃0‖X0

γ
.

Choosing z̃0 ∈ δBX0
γ
(0) in such a way that P−z̃0 = 0 and P+z̃0 6= 0 we have a

contradiction. The proof is complete.

We complete this section by considering the special case G = BR(0) and give a
result on stability in dependence on the radius R > 0.

Corollary 4.3.4. Let the conditions of Theorem 4.3.1 be satisfied and let the surface
tension σ > 0 be fixed. Denote by λ∗1 > 0 the first nontrivial eigenvalue of the
negative Neumann Laplacian on the unit ball B1(0). Then the following assertions
hold.

1. If R2[[ρ]]γa/σ < λ∗1, then (u∗, h∗) = (0, 0) is exponentially stable in the sense
of Theorem 4.3.1.

2. If [[ρ]] > 0 and R2[[ρ]]γa/σ > λ∗1, then (u∗, h∗) = (0, 0) is unstable in the sense
of Theorem 4.3.1.

Proof. The assertions follow from Theorem 4.3.1. Indeed, denoting by λ1(R) > 0 the
first nontrivial eigenvalue of the Neumann Laplacian on BR(0), Theorem 4.3.1 yields
that (0, 0) is exponentially stable if [[ρ]]γa/σ < λ1(R) and unstable if [[ρ]]γa/σ > λ1(R)
and [[ρ]] > 0. An easy computation yields that λ1(R) = λ∗1/R

2. This concludes the
proof of the corollary.



Chapter 5

Bifurcation at a multiple
eigenvalue

In this chapter we consider the special case G = BR := BR(0) ⊂ R2 for some radius
R > 0. Proposition 4.1.2 implies that an eigenvalue of the linearization L crosses
the imaginary axis through zero if [[ρ]]γa/σ = λ1, where λ1 > 0 is the first nontrivial
eigenvalue of the negative Neumann Laplacian in G. This suggests that (λ1, 0) is a
bifurcation point for the nonlinear Navier-Stokes system (1.3). Unfortunately, the
eigenvalue λ1 > 0 is not simple. Indeed, it is a double eigenvalue being semi-simple.
Therefore we cannot directly apply the results of Crandall & Rabinowitz. Instead,
we will use certain symmetry properties of the bifurcation equation to reduce it
to a purely one dimensional bifurcation equation which then can be solved by the
implicit function theorem. For a general theory concerning bifurcation at multiple
eigenvalues, we refer the reader to [27, 46, 66].

We recall that the set of equilibria E for height functions h with vanishing mean
value is given by

E = {(u∗, π∗, q∗, h∗) : u∗ = 0, π∗ = const., q∗ = [[π∗]] = 0, h∗ solves (5.1)}.

Note that if there exist nontrivial equilibria, i.e. h∗ 6= 0, then these equilibria are
determined by the nontrivial solutions of the quasilinear elliptic boundary value
problem

σ divx′

(
∇x′h√

1 + |∇x′h|2

)
+ [[ρ]]γah = 0, x′ ∈ BR(0),

∂νBR(0)
h = 0, x′ ∈ ∂BR(0).

(5.1)

Here the differential operators ∇x′ and divx′ act only in the variables x′ ∈ G. We
intend to show that if [[ρ]]γa/σ = λ1, then there bifurcate nontrivial solutions h∗ of
(5.1) from the trivial solution h = 0. To this end, let

X := {h ∈W 1−1/p
p (BR) :

∫
BR

hdx′ = 0},

Y := {h ∈W 3−1/p
p (BR) ∩X : ∂BRh = 0},

(5.2)
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and define F : R+ × Y → X by

F (α, h) := divx′

(
∇x′h√

1 + |∇x′h|2

)
+ αh. (5.3)

For h ∈W s
p (BR), s > 0, define (ΓOφh)(x̄′) := h(Oφx̄′), where

Oφ :=

(
cosφ − sinφ
sinφ cosφ

)
describes a two-dimensional rotation of x̄′ ∈ BR through the angle φ. Note that
Oφ is an orthogonal matrix, i.e. OT

φ = O−1
φ . Furthermore, we define (ΓRh)(x̄′) :=

h(Rx̄′), where Rx̄′ := (x̄1,−x̄2)T. It is easily seen that Γj leaves both spaces X and
Y invariant and one readily computes ∇x̄′(ΓOφh) = OT

φ (ΓOφ∇x′h), ∆x̄′(ΓOφh) =

ΓOφ∆x′h and ∇2
x̄′(ΓOφh) = OT

φ (ΓOφ∇2
x′h)Oφ, where x̄′ = OT

φx
′. Therefore, the

identity

divx′

(
∇x′h√

1 + |∇x′h|2

)
=

∆x′h√
1 + |∇x′h|2

−
(∇2

x′h∇x′h|∇x′h)√
1 + |∇x′h|2

3

implies that ΓOφF (α, h) = F (α,ΓOφh). Similarly it holds that ΓRF (α, h) =
F (α,ΓRh). This shows that F is invariant with respect to the group operations
of the orthogonal group O(2).

5.1 Lyapunov-Schmidt Reduction

By the smoothness of the mapping [R 3 s 7→ (1 + s2)−1/2] it holds that F ∈
C∞(R+ × Y ;X) and the first Fréchet derivative of F is given by

[DhF (α, h)]ĥ = divx′

(
∇x′ ĥ√

1 + |∇x′h|2

)
− divx′

(
∇x′h(∇x′ ĥ|∇x′h)√

1 + |∇x′h|2
3

)
+ αĥ.

Therefore it holds that DhF (λ1, 0) = ∆N + λ1I, where ∆N denotes the Neumann-
Laplacian and λ1 > 0 is the first eigenvalue of −∆N in X (note that 0 /∈ σ(−∆N ),
since all functions in X have a vanishing mean value). For convenience, we set
A := DhF (λ1, 0). We claim that 0 ∈ σ(A) is a semi-simple eigenvalue. Since the
operator A has a compact resolvent, it follows that the spectrum consists only of
discrete eigenvalues having finite multiplicity. Therefore it suffices to show that
N(A) = N(A2). To this end, let 0 6= v ∈ N(A2) and u := Av. Then u ∈ N(A) and
we compute

‖u‖2L2(BR) = (Av|u)L2(BR) = (v|Au)L2(BR) = 0,

since A is self-adjoint in L2(BR). This shows that u = 0, hence v ∈ N(A) and
0 ∈ σ(A) is semi-simple. We note on the go that this implies X = N(A) ⊕ R(A).
Rewriting the eigenvalue problem −∆Nh = λh in polar coordinates (r, ϕ), it follows
that the kernel N(A) of A is spanned by the two linearly independent functions

u∗1(x′) := J1(j′1,1r/R) cosϕ, u∗2(x′) := J1(j′1,1r/R) sinϕ, (5.4)
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r ∈ [0, R], ϕ ∈ [0, 2π), where J1 is a Bessel function of first order and j′1,1 denotes the
first zero of the derivative J ′1 of J1. Hence dimN(A) = 2 (notably, A is a Fredholm
operator of index zero). In particular, each h ∈ X can be written in a unique way
as h = u + v, where u ∈ N(A) and v ∈ R(A). Defining Ph := u, it follows that
P : X → N(A) is a projection onto N(A). With Q := I − P we also have that
Q : X → R(A) is onto and Qh = v. Moreover, it holds that Y = U ⊕ V , where
U := N(A) and V := R(A) ∩ Y .

Let us now split the equation F (α, h) = 0 into the two parts PF (α, u + v) = 0
and QF (α, u+ v) = 0. Since the operator DvQF (λ1, 0) = QDhF (λ1, 0) : V → R(A)
is an isomorphism, we may solve the equation QF (α, u+ v) = 0 in a neighborhood
of (λ1, 0) by the implicit function theorem, to obtain a unique smooth function
v∗ : R+ × U → V such that QF (α, u + v∗(α, u)) = 0 for all (α, u) close to (λ1, 0).
The function v∗ = v∗(α, u) has the properties

1. v∗(α, 0) = 0 if α > 0 is close to λ1;

2. Dαv∗(λ1, 0) = 0, Duv∗(λ1, 0) = 0;

3. Γjv∗(α, u) = v∗(α,Γju), j ∈ {R,Oφ} if (α, u) is close to (λ1, 0).

The first two properties follows directly from the (differentiated) equation QF (α, u+
v∗, α, u)) = 0 and the fact that F (α, 0) = 0 for each α ∈ R+. The last property
follows from the uniqueness of v∗ and the fact that ΓjQF (α, u+ v) = QF (α,Γju+
Γjv), j ∈ {R,Oφ}. To see this, we differentiate the identity ΓjF (α, u) = F (α,Γju)
with respect to u and evaluate the result at (α, u) = (λ1, 0) to obtain the relation

ΓjA = AΓj .

In other words, Γj commutes with the operator A. It follows readily that Γj leaves
N(A) as well as R(A) invariant, hence ΓjP = PΓj as well as ΓjQ = QΓj .

5.2 Reduction to a 1-dimensional bifurcation equation

It remains to study the equation 0 = G(α, u) for (α, u) ∈ R+ × U in some neigh-
borhood of (λ1, 0), where G(α, u) := PF (α, u + v∗(α, u)). Let us remark that this
equation is purely 2-dimensional. Similarly as above it holds that ΓjG(α, u) =
G(α,Γju) for j ∈ {R,Oφ}. Let Ψ : U → R2 be defined by Ψ(u) := (b1, b2)T for
u = b1u1 + b2u2 ∈ U , bk := (u|uk)L2(BR) ∈ R, where uj := u∗j/‖u∗j‖L2 . It follows that

Ψ is an isomorphism with inverse Ψ−1 given by Ψ−1(b1, b2) = b1u1 + b2u2. Consider
now the equation

g(α, b) := ΨG(α,Ψ−1b) = 0, b ∈ R2,

and define Γ0
j := ΨΓjΨ

−1 on R2 for j ∈ {R,Oφ}. With these definitions it holds

that Γ0
jg(α, b) = g(α,Γ0

jb) for j ∈ {R,Oφ}. A short computation also shows that

• Γ0
Oφb = Oφb;

• Γ0
Rb = Rb;
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hold for each b ∈ R2. We will use these two properties to reduce g(α, b) = 0 to a
purely one dimensional equation. Choose φ in such a way that Oφb = se1 = (s, 0)T

for some s ∈ R close to 0. Then g(α, b) = 0 if and only if g(α, se1) = 0 by the first
property. Furthermore Re1 = e1, hence

g(α, se1) = g(α, sRe1) = Rg(α, se1).

This in turn yields that g2(α, se1) = 0 is always satisfied and therefore we have
reduced the equation g(α, b) = 0 to g1(α, se1) = 0 for (α, s) ∈ R+ × R close to
(λ1, 0).

Due to the fact that Dαg1(λ1, 0) = 0, we cannot simply solve the equation
g1(α, se1) = 0 for α in a neighborhood of (λ1, 0) by the implicit function theorem.
To this end we define a new function

g̃(α, s) :=

{
g1(α, se1)/s, s 6= 0,

Dbg1(α, 0)e1, s = 0.

Since Dbg1(λ1, 0) = 0, we have g̃(λ1, 0) = 0. Moreover we compute

Dαg̃(λ1, 0) = DαDbg1(λ1, 0)e1.

Since DαDhF (λ1, 0) = I and

DαDbg(λ1, 0)e1 = ΨPDαDhF (λ1, 0)Ψ−1e1 = e1,

it follows that DαDbg1(λ1, 0)e1 = 1 6= 0. Hence, the implicit function theorem
yields the existence of a smooth function α : (−η, η)→ R with α(0) = λ1, such that
g̃(α(s), s) = 0 for all s ∈ (−η, η) and some (small) η > 0. This in turn yields the
following result.

Theorem 5.2.1. Modulo the action in O(2), all solutions of F (α, h) = 0 in a
neighborhood U of (λ1, 0) in R+ × Y are given by

F−1(0) ∩ U = {(α(s), su1 + y(s)) : |s| < η} ∪ {(α, 0) : (α, 0) ∈ U},

where α ∈ C∞((−η, η);R) with α(0) = λ1 > 0 and y ∈ C∞((−η, η);R(A) ∩ Y ) with
y(0) = y′(0) = 0 are uniquely determined.

Proof. Define y(s) := v∗(α(s), su1). Then the assertions for y follow from the prop-
erties of the function v∗.

Let us now show that the bifurcation in (λ1, 0) is of subcritical type, i.e. sα′(s) < 0
for 0 < |s| < δ and some δ > 0. We first prove that α′(0) = 0. To this end
we differentiate the expression F (α(s), su1 + y(s)) = 0 with respect to s twice and
evaluate at s = 0 to obtain

0 = ∆Ny
′′(0) + λ1y

′′(0) + 2α′(0)u1.

Multiplying this identity with u1 in L2(BR) and integrating by parts yields
α′(0)‖u1‖2L2(BR) = 0, since u1 ∈ N(A). This implies that α′(0) = 0, since u1 6= 0.

Differentiating F (α(s), su1 + y(s)) = 0 a third time yields in s = 0

0 = ∆Ny
′′′(0) + λ1y

′′′(0)− 3 div(∇u1|∇u1|2) + 3α′′(0)u1,
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where we have used the fact that α′(0) = 0. We test the latter equation by u1 in
L2(BR) and integrate by parts to the result

0 = α′′(0)‖u1‖2L2(BR) + ‖u1‖4L4(BR),

hence α′′(0) < 0 since u1 6= 0.

Corollary 5.2.2. The bifurcation in Theorem 5.2.1 at (λ1, 0) is of subcritical type,
i.e. sα′(s) < 0 for 0 < |s| < δ and some δ > 0.

5.3 Instability of the bifurcating equilibria

This section is devoted to the proof of instability of the bifurcating equilibria for the
complete system (1.3). For the sake of readability we shall replace the functions u1

and u2 from the preceding sections, which span the 2D-kernel of the operator A, by
h1 and h2, respectively. Hence, it holds that F (α(s), sh1 + y(s)) = 0 for all |s| < δ
and some small δ > 0, where y(s) = v∗(α(s), sh1) with y(0) = y′(0) = 0.

Step 1. Let us first show that 0 ∈ σ(DhF (α(s), sh1 + y(s))) for each s ∈ (−δ, δ).
For convenience we set h1(s) := sh1 + y(s) for s ∈ (−δ, δ) and Γφ := ΓOφ . The
following Proposition will be of importance.

Proposition 5.3.1. Let |s| < δ be fixed. The mapping [R ∈ φ 7→ Γφh1(s) ∈ Y ] is
continuously Fréchet differentiable and its derivative is given by

DφΓφh1(s) = s(I +D2v∗(α(s), sΓφh1))DφΓφh1,

with Γφh1 = h1 cosφ− h2 sinφ and DφΓφh1 = −(h1 sinφ+ h2 cosφ).

Proof. By smoothness of v∗ and since Γφv∗(α(s), sh1) = v∗(α(s), sΓφh1) it suffices
to show that the mapping

[R ∈ φ 7→ Γφh1 ∈ N(A)]

is continuously Fréchet differentiable.
Observe that (Γφh1)(x′) = J1(j′1,1r/R) cos(ϕ + φ), where x′ = (r cosϕ, r sinϕ).

Since
cos(ϕ+ φ) = cosφ cosϕ− sinφ sinϕ

it follows that
Γφh1 = h1 cosφ− h2 sinφ,

hence Γφh1 ∈ N(A) for each φ ∈ R. Furthermore we may differentiate the last
identity with respect to φ to obtain

DφΓφh1 = −(h1 sinφ+ h2 cosφ) ∈ N(A).

This completes the proof.
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Applying Proposition 5.3.1 in connection with the identity 0 = F (α(s),Γφh1(s)),
we obtain

0 = DφF (α(s),Γφh1(s)) = DhF (α(s),Γφh1(s))DφΓφh1(s).

Evaluating the last equation at φ = 0 yields

0 = DhF (α(s), h1(s))DφΓφh1(s)|φ=0,

wherefore DφΓφh1(s)|φ=0 ∈ N(DhF (α(s), h1(s)). By Proposition 5.3.1 we have

DφΓφh1(s)|φ=0 = −sh2 − sDuv∗(α(s), sh1)h2.

In particular
h2(s) := h2 +Duv∗(α(s), sh1)h2 6= 0, (5.5)

since 0 6= h2 ∈ N(A) and Duv∗(α(s), sh1)h2 ∈ R(A). Moreover, the identity

DhF (α(s), h1(s))h2(s) = 0

holds for all s ∈ (−δ, δ), i.e. [s 7→ h2(s)] is a smooth nontrivial eigenfunction curve
for the eigenvalue 0 ∈ σ(DhF (α(s), h1(s))).

Step 2. The goal of this step is to introduce an operator L as an analogue of
the operator L in Section 4.1, which represents the full linearization of (1.3) in one
of the bifurcating equilibria given by Theorem 5.2.1. As in Section 4.1 we will first
show how to reproduce the pressure out of a given velocity field and a given height
function. For that purpose we define

((u|v)) :=

∫
Ω
u(x) · v(x) detDΘh(x)dx, u ∈ Lp(Ω)3, v ∈ Lp′(Ω)3,

where h is an admissible height function, such that Θh and its inverse Θ−1
h are

well-defined. Then, for f ∈ Lp(Ω)3 and g ∈ W
1−1/p
p (Σ), we consider the weak

transmission problem

((M(h)∇π|M(h)∇φ)) = (f |∇φ)L2 , φ ∈W 1
p′(Ω),

[[ρπ]] = g, on Σ,
(5.6)

where M(h) ∈ R3×3 and ‖M(h) − I‖L∞ → 0 as ‖h‖W 1
∞
→ 0. We may rewrite the

term in brackets ((·|·)) as follows

((M(h)∇π|M(h)∇φ)) = (∇π|∇φ)L2 + (hϕ′M(h)TM(h)∇π|∇φ)L2+

+ ((M(h)TM(h)− I)∇π|∇φ)L2 ,

where we used the fact that detDΘh = 1 + hϕ′. Note, that for each ε > 0 there
exists η > 0 such that

|((M(h)∇π|M(h)∇φ))− (∇π|∇φ)L2 | ≤ ε‖∇π‖Lp(Ω)‖∇φ‖Lp′ (Ω),

provided that ‖h‖W 1
∞(Σ) ≤ η. A Neumann series argument in combination with

Lemma 6.3.2 then implies that there exists η0 > 0 such that for each h ∈ W 1
∞(Σ)

with ‖h‖W 1
∞(Σ) ≤ η0, problem (5.6) admits a unique solution π ∈ Ẇ 1

p (Ω\Σ).
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If we linearize (1.3) around a bifurcating equilibrium (0, c, 0, h1(s)) (given by The-
orem 5.2.1, where c is a constant) we obtain the following linear problem.

∂t(ρu)− µ∆u+ (I −M0(h1(s)))∇π = Fu(u, h1(s)), in Ω\Σ,
div u− (M0(h1(s))∇|u) = 0, in Ω\Σ,
−[[µ∂3v]]− [[µ∇x′w]] = Gv(u, h1(s)), on Σ,

−2[[µ∂3w]] + [[π]] = Gw(u, h1(s)) +
[[ρ]]γa
α(s)

DhF (α(s), h1(s))h, on Σ,

∂th− (u|e3) = −(v|∇x′h1(s)), on Σ,

PS1 (µ(Du)νS1) = 0, on S1\∂Σ,

(u|νS1) = 0, on S1\∂Σ,

u = 0, on S2,

∂ν∂Gh = 0, on Σ,

u(0) = u0, in Ω\Σ,
h(0) = h0, on Σ.

(5.7)

Here the surface tension σ = σ(s) is given by σ(s) = [[ρ]]γa
α(s) and we have set

Fu(u, h) := −µ(M1(h) : ∇2u+M2(h)∇u),

Gv(u, h) := −[[µ(∇x′v +∇x′vT)]]∇x′h+ |∇x′h|2[[µ∂3v]]+

+
(
(1 + |∇x′h|2)[[µ∂3w]]− (∇x′h|[[µ∇x′w]])

)
∇x′h,

Gw(u, h) := −(∇x′h|[[µ∇x′w]])− (∇x′h|[[µ∂3v]]) + |∇x′h|2[[µ∂4w]],

and

F (α, h) := divx′

(
∇x′h√

1 + |∇x′h|2

)
+ αh.

For fixed s ∈ (−δ, δ) we define a linear operator L(s) : X1 → X0 by

L(s)(u, h) :=

(µ
ρ∆u− 1

ρ(I −M0(h1(s)))∇p+ 1
ρFu(u, h1(s))

(u|e3)− (v|∇x′h1(s))

)
where X0 := L̃p,σ(Ω)× {h ∈W 2−1/p

p (Σ) :
∫
G h dx

′ = 0, ∂ν∂Gh = 0},

L̃p,σ(Ω) := {u ∈ Lp(Ω)3 : u ◦Θ−1
h1(s) ∈ Lp,σ(Θh1(s)Ω)}, X̄1 = H2

p (Ω\Σ)3×W 3−1/p
p (Σ)

and

X1 := D(L(s)) = {(u, h) ∈ X0 ∩ X̄1 : PΣ([[µDu]]e3) + Gv(u, h1(s)) = 0,

[[u]] = 0, PS1 (µ(Du)νS1) = 0, (u|νS1) = 0, ∂ν∂Gh = 0}.
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The function p ∈ Ẇ 1
p (Ω\Σ) in the definition of L(s) is determined as the solution of

the weak transmission problem((
1

ρ
M(h1(s))∇p|M(h1(s))∇φ

))
=

((
µ

ρ
∆u+ Fu(u, h1(s))|M(h1(s))∇φ

))
,

[[p]] = 2[[µ∂3w]] + Gw(u, h1(s))+

+
[[ρ]]γa
α(s)

DhF (α(s), h1(s))h, on Σ.

(5.8)

whereM(h) := I−M0(h). The first equation has to be satisfied for each φ ∈W 1
p′(Ω).

Note that the solution p ∈ Ẇ 1
p (Ω\Σ) is well-defined by the above considerations.

Observe also that for s = 0 the operator L(0) coincides with the operator L from
Section 4.1, since then h1(0) = 0. Furthermore, for u ∈ D(L(s)) we note that∫

Ω
[u · M(h1(s))∇φ] detDΘh1(s)dx = 0.

This can be seen as follows. Let ū := u ◦Θ−1
h1(s) and φ̄ := φ ◦Θ−1

h1(s). Then we obtain
from the transformation formula, integration by parts and the boundary conditions
on ū that∫

Ω
[u · M(h1(s))∇φ] detDΘh1(s)dx =

∫
Ω

[ū · (∇φ̄)](Θh1(s)) detDΘh1(s)dx

=

∫
Θh1(s)Ω

ū · (∇φ̄)dx̄

= −
∫

Θh1(s)Ω
φ̄ divū dx̄.

Since ū = u ◦Θ−1
h1(s) ∈ Lp,σ(Θh1(s)Ω), the claim follows.

Step 3. In this step we show that for each fixed s 6= 0 sufficiently close to zero,
the operator L(s), which has been introduced in Step 2, possesses a real positive
eigenvalue. For that purpose, define the spaces

Y1 := {u ∈ H2
p (Ω\Σ)3 : u|S2 = 0, u|S1 · νS1 = 0, PS1(µ(Du)νS1) = 0, [[u]] = 0},

Y2 := Ḣ1
p (Ω\Σ), Y3 := W 1−1/p

p (Σ),

Y4 := {h ∈W 3−1/p
p (Σ) :

∫
Σ
h dx′ = 0, ∂νBRh = 0} ∩R(A),

Y := {(u, π, q, h) ∈ ×4
j=1Yj : q = [[π]]},

and

X := {(f, fd, gv, gw, gh) ∈ Lp(Ω)3 × [H1
p (Ω\Σ) ∩ Ĥ−1

p (Ω)]×

×W 1−1/p
p (Σ)2 ×W 1−1/p

p (Σ)×W 2−1/p
p (Σ) :∫

Σ
gh dx

′ = 0, ∂νBRgh = 0, gv|S1 · νBR = 0},
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where A and R(A) are defined in Section 5.1. Furthermore, for some small δ > 0
and |s| < δ, we define a linear operator family L(s) : Y→ X by

L(s)(u, π, q, h) :=


µ
ρ∆u− 1

ρ∇π + 1
ρFu(u, π, h1(s))

div u− P0Fd(u, h1(s))
[[µ∂3v]] + [[µ∇x′w]] +Gv(u, h1(s))

2[[µ∂3w]]− q +Gw(u, h1(s)) + [[ρ]]γa
α(s) DhF (α(s), h1(s))h

PΣ
0 [(u|e3)− (v|∇x′h1(s))]

 ,

where PΣ
0 k := k − 1

|Σ|
∫

Σ k dx
′, u = (v, w),

Fu(u, π, h) := −µ(M1(h) : ∇2u+M2(h)∇u) +M0(h)∇π,

Fd(u, h) := (M0(h)∇|u),

Gv(u, h) := −[[µ(∇x′v +∇x′vT)]]∇x′h+ |∇x′h|2[[µ∂3v]]

+
(
(1 + |∇x′h|2)[[µ∂3w]]− (∇x′h|[[µ∇x′w]])

)
∇x′h,

Gw(u, h) := −(∇x′h|[[µ∇x′w]])− (∇x′h|[[µ∂3v]]) + |∇x′h|2[[µ∂3w]],

and

F (α, h) := divx′

(
∇x′h√

1 + |∇x′h|2

)
+ αh.

In the following, let h2(s) be defined by (5.5). Let w = (u, π, q, h) and consider the
function g : (−δ, δ)× R× R× Y→ X given by

g(s, (β, γ, w)) := L(s)w −


−sα′(s)βu

0
0

− [[ρ]]γa
sα(s)h1(s)

β(h′1(s)− sα′(s)h) + γh2(s)

 .

We remark that h1(s)/s = h1 + y(s)/s, hence h1(s)/s → h1 as s → 0, since y(0) =
y′(0) = 0. Evaluating g at s = 0 yields

g(0, (β, γ, w)) =


µ
ρ∆u− 1

ρ∇π
div u

[[µ∂3v]] + [[µ∇x′w]]

2[[µ∂3w]]− q + [[ρ]]γa
λ1

DhF (λ1, 0)h+ [[ρ]]γa
λ1

h1

PΣ
0 [(u|e3)]− βh1 − γh2

 .

In the following we intend to find (β0, γ0, w0) ∈ R × R × Y such that
g(0, (β0, γ0, w0)) = 0. Note that if we have such a solution, then necessarily
PΣ

0 [(u|e3)] = (u|e3), since∫
Σ

(u|e3) dx′ =

∫
Ω1

div u|Ω1 dx = 0,
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by the boundary conditions on u ∈ Y1. Hence we consider the elliptic problem

−µ∆u+∇π = 0, in Ω\Σ,
div u = 0, in Ω\Σ,

−[[µDu]]e3 + [[π]]e3 =
[[ρ]]γa
λ1

(DhF (λ1, 0)h+ h1) e3, on Σ,

[[u]] = 0, on Σ,

βh1 + γh2 − (u|e3) = 0, on Σ,

PS1 (µ(Du)νS1) = 0, on S1\∂Σ,

(u|νS1) = 0, on S1\∂Σ,

u = 0, on S2,

∂νBRh = 0, on Σ,

(5.9)

for the unknowns ((β, γ), w) ∈ R2 ×Y. Let us first remove the inhomogeneity h1 in
the equation (5.9)3. To this end we solve the elliptic transmission problem

(∇p|∇φ)L2 = 0, φ ∈W 1
p′(Ω),

[[p]] =
[[ρ]]γa
λ1

h1, on Σ,

to obtain a unique solution p ∈ Y2, thanks to Lemma 6.3.3. Therefore we may
reduce (5.9) to the elliptic problem

−µ∆u+∇π = −∇p, in Ω\Σ,
div u = 0, in Ω\Σ,

−[[µDu]]e3 + [[π]]e3 =
[[ρ]]γa
λ1

DhF (λ1, 0)he3, on Σ,

[[u]] = 0, on Σ,

βh1 + γh2 − (u|e3) = 0, on Σ,

PS1 (µ(Du)νS1) = 0, on S1\∂Σ,

(u|νS1) = 0, on S1\∂Σ,

u = 0, on S2,

∂νBRh = 0, on Σ.

(5.10)

With the help of the operator L : X1 → X0 from Section 4.1 we may rewrite system
(5.10) in the abstract form

Lz − βz1 − γz2 = f, (5.11)

where we have set z = (u, h), zj := (0, hj), j ∈ {1, 2} and f := (∇p, 0) ∈ X0 is given.
Let us compute the kernel of L in X0. If L(u, h) = 0, it follows from (4.6) that

Du = 0, hence u = 0 by Korn’s second inequality. This in turn implies that h is a
solution of the elliptic problem

∆x′h+ λ1h = 0, x′ ∈ BR(0),

∂νBRh = 0, x′ ∈ ∂BR(0),
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since h is mean value free. Therefore h ∈ N(A), with A being defined as in Section
5.1, and we already know that dimN(A) = 2. It follows that dimN(L) = 2 as well
with N(L) being spanned by the two elements z1 = (0, h1) and z2 = (0, h2), where
hj ∈ N(A).

Next, we show that 0 ∈ σ(L) is a semi-simple eigenvalue. We already know that
σ(L) consist solely of discrete eigenvalues with finite multiplicity and 0 ∈ σ(L).
Therefore, it suffices to show that N(L) = N(L2). Let z = (z1, z2) ∈ N(L2) and
define w := Lz. Then w = (w1, w2) ∈ N(L), hence w1 = 0 and w2 ∈ N(A) and it
remains to show that w2 = 0. To this end, we test the first equation in Lz = w by
z1 and integrate by parts. It follows that

|µ1/2Dz1|2L2(Ω) − σ
[
(∆x′z2|w2)L2(BR) + λ1(z2|w2)2

L2(BR)

]
= 0.

Integrating by parts a second time, we see that the term in brackets [. . .] vanishes,
since w2 ∈ N(A). Therefore Dz1 = 0, hence z1 = 0 by Korn’s second inequality.
Since then also (z1|e3) = 0 on Σ, the second component in Lz = w implies that w2 =
0, showing that 0 ∈ σ(L) is semi-simple. Notably it follows that X0 = N(L)⊕R(L)
and, in particular, L is a Fredholm operator with index zero.

We seek to find a solution z = (u, h) ∈ X1 of (5.11) with the additional property
h ∈ R(A). This extra condition yields the uniqueness of the solution. First of all
we find unique f1 ∈ N(L) and f2 ∈ R(L) such that f = f1 + f2. Since 0 ∈ σ(A) is
semi-simple, too, this yields the existence of κ1, κ2 ∈ R and z∗ = (u∗, h∗) ∈ X1 with
h∗ ∈ R(A) such that f = Lz∗ − κ1z1 − κ2z2. Setting z = z∗ it follows that

Lz∗ − βz1 − γz2 = Lz∗ − κ1z1 − κ2z2,

hence β = κ1 and γ = κ2. Therefore, the triple

(β0, γ0, w0) := (κ1, κ2, (u∗, π∗, [[π∗]], h∗))

is the unique solution of (5.9) in Y, where π∗ ∈ Y2 solves

(∇π∗|∇φ)L2 = (µ∆u∗|φ)L2 , φ ∈W 1
p′(Ω),

[[π∗]] = ([[µDu∗]]e3|e3) +
[[ρ]]γa
λ1

(DhF (λ1, 0)h∗ + h1) , on Σ.

It is noteworthy that the relation

β0 =
λ1

[[ρ]]γa

‖µ1/2Du∗‖2L2(Ω)

‖h1‖2L2(Σ)

(5.12)

holds. This follows easily by testing the first equation in (5.9) with u∗ and integrating
by parts. Assuming that Du∗ = 0, Korn’s second inequality yields u∗ = 0, hence π∗
is constant and therefore [[π∗]] = 0, since

DhF (λ1, 0)h∗ + h1 = ∆x′h∗ + λ1h∗ + h1

is mean value free. But then h1 ∈ R(A)∩N(A) which yields h1 = 0, since 0 ∈ σ(A)
is semi-simple, a contradiction. This in turn implies that β0 > 0, a fact that will be
of importance later on.
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Next, we consider the derivative of g with respect to (β, γ, w) which we will denote
by D2g in the sequel. It is given by

D2g(0, (β0, γ0, w0))(β̂, γ̂, ŵ) =


µ
ρ∆û− 1

ρ∇π̂
div û

[[µ∂3v̂]] + [[µ∇x′ŵ]]

2[[µ∂3ŵ]]− q̂ + [[ρ]]γa
λ1

DhF (λ1, 0)ĥ

PΣ
0 [(û|e3)]− β̂h1 − γ̂h2

 .

We will now show that D2g(0, (β0, γ0, w0)) : Y → X is an isomorphism. Injectiv-
ity follows by testing the first equation with û, integrating by parts and invoking
the additional condition ĥ ∈ R(A). Therefore it remains to prove surjectivity of
D2g(0, (β0, γ0, w0)). For that purpose, let g = (g1, g2, g3, g4, g5) ∈ X be given and
consider the equation

D2g(0, (β0, γ0, w0))(β̂, γ̂, ŵ) = g. (5.13)

First, let us show that it suffices to consider the special case g = (g1, 0, 0, 0, g5). To
see this, we solve the elliptic problem

ρωu− µ∆u+∇π = 0, in Ω\Σ,
div u = g2, in Ω\Σ,

−[[µ∂3v]]− [[µ∇x′w]] = g3, on Σ,

−2[[µ∂3w]] + [[π]] = g4, on Σ,

[[u]] = 0, on Σ,

PS1 (µ(Du)νS1) = 0, on S1\∂Σ,

(u|νS1) = 0, on S1\∂Σ,

u = 0, on S2,

(5.14)

by Theorem 6.5.1, where ω > 0 is large enough, to obtain a unique solution
(u∗, π∗, [[π∗]]) ∈ ×3

j=1Yj . Note that all relevant compatibility conditions at the con-
tact line are satisfied by the definition of the space X. Then, the (shifted) triple

(β̂, γ̂, w) := (β̂, γ̂, ŵ − (u∗, π∗, [[π∗]], 0))

satisfies the problem

−µ∆u+∇π = ρ(g1 + ωu∗), in Ω\Σ,
div u = 0, in Ω\Σ,

−[[µDu]]e3 + [[π]]e3 −
[[ρ]]γa
λ1

DhF (λ1, 0)he3 = 0, on Σ,

[[u]] = 0, on Σ,

PΣ
0 [(u|e3)]− β̂h1 − γ̂h2 = g5 − PΣ

0 [(u∗|e3)], on Σ,

PS1 (µ(Du)νS1) = 0, on S1\∂Σ,

(u|νS1) = 0, on S1\∂Σ,

u = 0, on S2,

∂νBRh = 0, on Σ.

(5.15)
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We recall that for the existence of a solution of (5.15) it is necessary that
PΣ

0 [(u|e3)] = (u|e3) because of the divergence condition and the boundary condi-
tions. Let us define f1 := ρ(g1 + ωu∗)− T1[ρ(g1 + ωu∗)] and f2 := g5 − PΣ

0 [(u∗|e3)],
where T1 is the solution operator from (4.4). With the help of the operator
L : X1 → X0 from Section 4.1 we may rewrite (5.15) as the abstract equation

Lz − β̂z1 − γ̂z2 = f,

where z = (u, h), f = (f1, f2) and zj := (0, hj) ∈ N(L), j ∈ {1, 2}. It follows from
exactly the same considerations as for (5.11) that the latter equation has a unique
solution (β̂, γ̂) ∈ R2 and z = (u, h) ∈ X1 with h ∈ R(A). This in turn yields a
solution of (5.13), showing surjectivity of the operator D2g(0, (β0, γ0, w0)) : Y→ X.

The implicit function theorem yields the existence of some δ > 0 and smooth
functions (β(s), γ(s), w(s)) ∈ R × R × Y such that g(s, (β(s), γ(s), w(s))) = 0 for
all |s| < δ and (β(0), γ(0), w(0)) = (β0, γ0, w0). It can furthermore be shown that
P0Fd(u(s), h1(s)) = Fd(u(s), h1(s)) and then also

PΣ
0 [(u(s)|e3)− (v(s)|∇x′h1(s))] = (u(s)|e3)− (v(s)|∇x′h1(s)).

For s 6= 0 we multiply the equation g(s, (β(s), γ(s), w(s))) = 0 by sα′(s) to obtain
the relation

L(s)w̃(s) =


β̃(s)ũ(s)

0
0

− [[ρ]]γa
α(s) α

′(s)h1(s)

β̃(s)(h̃(s)− h′1(s))− γ̃(s)h2(s)

 ,

where w̃(s) := sα′(s)w(s), β̃(s) := −sα′(s)β(s) and γ̃(s) := −sα′(s)γ(s). The
identity F (α(s), h1(s)) = 0 yields furthermore

α′(s)h1(s) = α′(s)DαF (α(s), h1(s)) = −DhF (α(s), h1(s))h′1(s),

hence

L(s)w̃(s) =


β̃(s)ũ(s)

0
0

[[ρ]]γa
α(s) DhF (α(s), h1(s))h′1(s)

β̃(s)(h̃(s)− h′1(s))− γ̃(s)h2(s)

 .

Since DhF (α(s), h1(s))h2(s) = 0 it follows from the fourth equation that

q̃(s) = 2[[µ∂3w̃(s)]] +Gw(ũ(s), h1(s))+

[[ρ]]γa
α(s)

DhF (α(s), h1(s))[h̃(s)− h′1(s)− γ(s)

β(s)
h2(s)].

Setting ĥ(s) := h̃(s)− h′1(s)− γ(s)
β(s)h2(s) and ẑ(s) := (ũ(s), ĥ(s)), it follows that

L(s)ẑ(s) = β̃(s)ẑ(s)
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for all |s| < δ. Since ẑ(0) = −(0, h1 + γ0

β0
h2) 6= (0, 0) (h1 and h2 are linearly

independent) it holds that ẑ(s) 6= 0 for all |s| close to zero. Furthermore β̃(s) =
−sα′(s)β(s) > 0 for s 6= 0 close to zero, by Corollary 5.2.2 and (5.12), hence β̃(s) > 0
is a positive real eigenvalue of the operator L(s) from Step 2.

Step 4. In this step we prove nonlinear instability of any equilibrium (0, h∗) of
(1.3) which is close to zero. Since the strategy follows one-to-one along the lines
of the proof of Theorem 4.3.1, we will only give a sketch of the proof. To explain
the strategy, we rewrite (1.3) in the shorter form Lw = N(w), z(0) = z0, where
w = (u, π, q, h), q = [[π]] and z = (u, h), z0 = (u0, h0). Let w∗ = (0, c∗, 0, h∗) and
z∗ := (0, h∗), where c∗ is a constant and h∗ is determined by Theorem 5.2.1 in a small
neighborhood of zero. Setting ŵ := w−w∗, this yields L∗ŵ = N̂(ŵ), ẑ(0) = z0− z∗,
where L∗ := L−DN(w∗) and

N̂(ŵ) := N(ŵ + w∗)−N(w∗)−DN(w∗)ŵ,

since N(w∗) = 0. Note that N̂ ∈ C2 by Proposition 3.1.1 and N̂(0) = 0 as well as
DN̂(0) = 0. The operator L∗ = L−DN(w∗) is the full linearization of (1.3) at the
equilibrium w∗. As in the proof of Theorem 4.3.1, we will decompose ŵ as follows.
Let ω > 0 and Bw := (u, 0, . . . , 0, h) for w = (u, π, q, h). Then we consider the two
problems

ωBw̄ + L∗w̄ = N̂(w), t > 0,

z̄(0) = z̄0,

and

L∗w̃ = ωBw̄, t > 0,

z̃(0) = z̃0.

Here ẑ0 = z̃0 + z̄0, and z̄0 is is determined by z̃0 in a similar way as in Section 4.2.
Note that there exists s∗ ∈ R close to zero such that L∗w̃ = ωBw̄ is equivalent
to ∂tz̃ − L(s∗)z̃ = ωz̄, where L(s∗) denotes the operator from Step 2. For small
|s∗| > 0 the operator L(s∗) can be seen as a small perturbation of the operator L
from Section 4.1, wherefore it has the property of maximal regularity of type Lp.
By Step 3 it holds that L(s∗) has a positive eigenvalue. We are now in a position to
apply the same strategy as in the proof of Theorem 4.3.1 to prove instability of the
equilibrium z∗ by making use of the corresponding spectral projections. This yields
the following result.

Theorem 5.3.2. The equilibria on the subcritical branches (sα′(s) < 0, 0 < |s| < δ)
given by Theorem 5.2.1 and Corollary 5.2.2 are unstable in the sense of Theorem
4.3.1.

Remark 5.3.3. The results in this chapter carry over to the two dimensional case,
i.e. if G = (−R,R). Indeed, the eigenvalue λ1 > 0 of the Neumann Laplacian in
L2(−R,R) is simple. This allows to apply the results of Crandall & Rabinowitz. It
can also be shown that the full linearization L(s∗) has a positive eigenvalue for each
|s∗| > 0 close to zero.



Chapter 6

Appendix

6.1 Extension operators

Proposition 6.1.1. Let p > 2. There exists a linear and bounded extension operator ext
from

0W
1/2−1/p
p (J ;Lp(R)) ∩ Lp(J ;W 1−2/p

p (R))

to

0W
1/2−1/2p
p (J ;Lp(R× R+)) ∩ Lp(J ;W 1−1/p

p (R× R+))

such that [ext v]|R×{0} = v, for all v ∈0W
1/2−1/p
p (J ;Lp(R)) ∩ Lp(J ;W

1−2/p
p (R)).

Moreover, if

v = v(t, x, y) ∈0W
1/2−1/2p
p (J ;Lp(R× R+)) ∩ Lp(J ;W 1−1/p

p (R× R+)) =: X,

then
try=0 v ∈0W

1/2−1/p
p (J ;Lp(R)) ∩ Lp(J ;W 1−2/p

p (R)) =: Y

and there exists a constant C > 0 such that

‖ try=0 v‖Y ≤ C‖v‖X

for all v ∈ X.

Proof. Let X0 = Lp(J ;Lp(R)) and consider the operator (∂t − ∂2
x) in X0 with domain

0W
1
p (J ;Lp(R)) ∩ Lp(J ;W 2

p (R)).

The operator −A := −(∂t − ∂2
x)1/2 generates an analytic semigroup {e−Ay}y≥0 in X0 with

domain D(A) = [X0, D(A2)]1/2. Since

DA(1− 2/p, p) = (X0, D(A))1−2/p,p = (X0, D(A2))1/2−1/p,p,

by [65, Theorem 1.15.2], we obtain

DA(1− 2/p, p) = 0W
1/2−1/p
p (J ;Lp(R)) ∩ Lp(J ;W 1−2/p

p (R)).

Hence, if v ∈ DA(1− 2/p, p), then

[y 7→ e−Ayv] ∈W 1−1/p
p (R+;X0) ∩ Lp(R+;DA(1− 1/p, p))

by [19, Theorems 3 & 8], where DA(1− 1/p, p) = (X0, D(A2))1/2−1/2p,p, hence

DA(1− 1/p, p) =0W
1/2−1/2p
p (J ;Lp(R)) ∩ Lp(J ;W 1−1/p

p (R)).

91
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Setting [ext v](y) = e−Ayv yields the first claim, by the Fubini property of the spaces W s
p .

For the proof of the second assertion, we consider v(t, x, y) as a function w(y)(t, x), i.e.
w(y)(t, x) := v(t, x, y). Then we have

w ∈W 1−1/p
p (R+;X0) ∩ Lp(R+;DA(1− 1/p, p)),

where X0 and A are defined as above. By [35, Lemma 4.1, (4.4)] with α = 1 − 1/p and
µ = 1 it holds that tr |y=0 is a continuous mapping from

W 1−1/p
p (R+;X0) ∩ Lp(R+;DA(1− 1/p, p))

to DA(1− 1/2p, p) = DA2(1/2− 1/p, p) = (X0, D(A2))1/2−1/p,p with

(X0, D(A2))1/2−1/p,p = 0W
1/2−1/p
p (J ;Lp(R)) ∩ Lp(J ;W 1−2/p

p (R)).

The proof is complete.

Proposition 6.1.2. Let p > 2, J = [0, T ], 0 < T <∞ or J = R+ and

g ∈0W
3/2−1/p
p (J ;Lp(R)) ∩0H

1
p (J ;W 1−2/p

p (R)) ∩ Lp(J ;W 2−2/p
p (R)) =: Y.

Then there exists

h ∈0W
2−1/2p
p (J ;Lp(R2

+)) ∩0H
1
p (J ;W 2−1/p

p (R2
+)) ∩ Lp(J ;W 3−1/p

p (R2
+)) =: X,

such that ∂yh = g at y = 0.
Moreover, the mapping (tr |y=0 ◦ ∂y) : X → Y is continuous.

Proof. (1) Consider the operator (∂t − ∂2
x) in X0 := Lp(J ;Lp(R)) with domain

0W
1
p (J ;Lp(R)) ∩ Lp(J ;W 2

p (R)).

Let A := (∂t − ∂2
x)1/2 with domain D(A) = [X0, D(A2)]1/2. Denote by e−Ay the analytic

C0-semigroup, generated by −A in X0 and set h(y) := −e−AyA−1g. Since

g, ∂tg,A
−1g,A−1∂tg ∈0W

1/2−1/p
p (J ;Lp(R)) ∩ Lp(J ;W 1−2/p

p (R))

it follows from Proposition 6.1.1 that

h, ∂th,Ah,A∂th ∈W 1−1/p
p (R+;X0) ∩ Lp(R+;DA(1− 1/p, p)).

The operator A−1 is an isomorphism from (X0, D(A2))1/2−1/2p,p to (X0, D(A2))1−1/2p,p by
[65, Theorem 1.15.2], hence h as well as ∂th belong to

0W
1−1/2p
p (J ;Lp(R2

+)) ∩ Lp(J ;W 2−1/p
p (R2

+))

by the Fubini property. Furthermore ∂t : 0W
s
p (J ;X) → 0W

s−1
p (J ;X), s ∈ [1, 2) is an

isomorphism, hence

h ∈0W
2−1/2p
p (J ;Lp(R2

+)) ∩0W
1
p (J ;W 2−1/p

p (R2
+)). (6.1)

(2) Next, we use the regularity

Ag ∈0W
1−1/p
p (J ;Lp(R)) ∩ Lp(J ;W 1−2/p

p (R)),

to conclude
−∂2

yh = A2e−AyA−1g = e−AyAg ∈W 1−1/p
p (R+;X0) (6.2)
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by [19, Theorem 8], since

Ag ∈ DA(1− 2/p, p) =0W
1/2−1/p
p (J ;Lp(R)) ∩ Lp(J ;W 1−2/p

p (R)).

In particular, this yields that

h ∈W 3−1/p
p (R+;Lp(J ;Lp(R))).

(3) It remains to show that

h ∈ Lp(R+;Lp(J ;W 3−1/p
p (R))).

To this end we consider the semigroup {e−Ay}y≥0 in X̃0 := Lp(J ;W
1−1/p
p (R)). The domain

of the operator A2 := (∂t − ∂2
x) in X̃0 is given by

0W
1
p (J ;W 1−1/p

p (R)) ∩ Lp(J ;W 3−1/p
p (R)).

Then we have
[y 7→ e−Ayg] ∈ Lp(R+;D(A)),

if
g ∈ DA(1− 1/p, p) =0W

1/2−1/2p
p (J ;W 1−1/p

p (R)) ∩ Lp(J ;W 2−2/p
p (R)).

Note that the assumption on g implies

g ∈0H
1
p (J ;W 1−2/p

p (R)) ∩ Lp(J ;W 2−2/p
p (R)) ↪→0W

1/2−1/2p
p (J ;W 1−1/p

p (R)),

which follows from [35, Proposition 3.2]. Replacing g by A−1g it follows that

[y 7→ e−AyA−1g] ∈ Lp(R+;D(A2)),

hence
[y 7→ e−AyA−1g] ∈ Lp(R+;Lp(J ;W 3−1/p

p (R))).

(4) For the proof of the second assertion, note first that ∂y maps X continuously to

0W
3/2−1/2p
p (J ;Lp(R2

+)) ∩0H
1
p (J ;W 1−1/p

p (R2
+)) ∩ Lp(J ;W 2−1/p

p (R2
+)),

since

0W
2−1/2p
p (J ;Lp(R2

+)) ∩0H
1
p (J ;W 2−1/p

p (R2
+))

is continuously embedded into

0W
3/2−1/2p
p (J ;H1

p (R2
+)),

by [35, Proposition 3.2]. Then the assertion follows from similar arguments as in the proof
of Proposition 6.1.1.

6.2 Partition of unity with vanishing Neumann trace

Proposition 6.2.1. Let G ⊂ R2 be a bounded domain with boundary ∂G ∈ Cm+1. Then
for each finite open covering {Uk}Nk=1 of ∂G in R2 there exists an open set U0 ⊂ G with

U0 ∩ ∂G = ∅,
⋃N
k=0 Uk ⊃ G and a subordinated partition of unity {ψk}Nk=0 ⊂ Cmc (R2) such

that suppψk ⊂ Uk and ∂νψk = 0 at ∂G.
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Proof. Let {Uj}Nj=1 be a finite open cover of ∂G. Then there exist open sets Vj such that

Kj := V j ⊂ Uj and
⋃N
k=1 Vj ⊃ ∂G. Moreover, there exist functions φj ∈ C∞c (Uj) with

0 ≤ φj ≤ 1 such that φj |Kj = 1. It is well-known that for sufficiently small a > 0, the
mapping F : ∂G × (−a, a) → Rn, defined by F (p, r) := p + rν(p), is a C2-diffeomorphism
onto its image Ua := imF . The inverse mapping F−1 may be decomposed as F−1 = (Π, d),
where Π ∈ Cm(Ua; ∂G) and d ∈ Cm(Ua; (−a, a)). Note that Π(x) denotes the nearest point
on ∂G to x ∈ Ua and d(x) stands for the signed distance from x ∈ Ua to ∂G. It can be
shown that

Ua = {x ∈ Rn : dist(x, ∂G) < a}.

Choose a > 0 small enough such that Ua ⊂
⋃N
j=1Kj and define new functions φ̄j(x) :=

φj(Π(x)) for x ∈ Ua. It follows that ∇φ̄j(x) = DΠT(x)∇φj(Π(x)), hence ∂ν φ̄j(x) =
(∇φj(Π(x))|DΠ(x)ν(x)) = 0 for x ∈ ∂G, since DΠ(x)ν(x), x ∈ ∂G. Let

φ̃j(x) :=

{
φ̄j(x)ϕ(d(x)), x ∈ Ua,
0, x /∈ Ua,

where ϕ ∈ C∞c (R; [0, 1]) such that ϕ(s) = 1 if |s| < a/2 and ϕ(s) = 0 if |s| > 3a/4. Then
we still have ∂ν φ̃(x) = 0 for x ∈ ∂G. Define K̃j := Kj ∩ ∂G. Then there exists some

δ ∈ (0, a/2) such that Fj := F (K̃j , [−δ, δ]) is compact, Fj ⊂ Uj and
⋃N
j=1 Fj ⊃ ∂G. It

follows that φj |K̃j = 1 and therefore φ̃j |Fj = 1.

Consider the set G := G\
⋃N
j=1 Fj . Then G is a proper open subset of G. Choose an

open set U0 ⊂ G that covers G and a set F0 ⊃ G that is compactly contained in U0. Define
F0 := F0. Then there exists a smooth function φ̃0 ∈ C∞c (U0; [0, 1]) such that φ̃0|F0 = 1.

In particular it holds that
⋃N
j=0 Fj ⊃ G and

∑N
j=0 φ̃j(x) > 0 for x ∈ G. Finally, we set

ψk := φ̃k/
∑N
j=0 φ̃j , k = 0, . . . , N . Then

∑N
k=0 ψk = 1 and

∂νψk =
∂ν φ̃k∑N
j=0 φ̃j

−
φ̃k
∑N
j=0 ∂ν φ̃j(∑N
j=0 φ̃j

)2 = 0,

for k ∈ {0, . . . , N} at ∂G, since by construction also ∂ν φ̃0 = 0 at ∂G. The proof is complete.

It is possible to extend the previous result to cylindrical domains Ω := G× (H1, H2). To
this end let S1 := ∂G× (H1, H2),

S2 :=

2⋃
j=1

G× {Hj},

and Σ := G× {0}.

Proposition 6.2.2. Let G ⊂ R2 be a bounded domain with boundary ∂G ∈ Cm+1 and
Ω := G× (H1, H2), H1 < 0 < H2. Then for each finite open covering {Uk}Nk=1 of ∂S2 ∪ ∂Σ
in Rn there exist open sets Uj ⊂ R3, j ∈ {N + 1, . . . , N + 7} such that

• UN+1 ⊂ G× (H1, 0), UN+2 ⊂ G× (0, H2),

• UN+3 ∩ UN+1 ∩ S1 6= ∅, UN+3 ∩ (Σ ∪ S2) = ∅,

• UN+4 ∩ UN+2 ∩ S1 6= ∅, UN+4 ∩ (Σ ∪ S2) = ∅,

• UN+5 ∩ Σ 6= ∅, UN+5 ∩ (S1 ∪ S2) = ∅,

• UN+6 ∩ UN+1 ∩ S2 6= ∅, UN+6 ∩ (S1 ∪ Σ) = ∅,
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• UN+7 ∩ UN+2 ∩ S2 6= ∅, UN+7 ∩ (S1 ∪ Σ) = ∅,

•
⋃N+7
j=1 Uj ⊃ Ω.

Furthermore, there exists a subordinated partition of unity {φk}N+7
k=1 ⊂ Cmc (R3) such that

suppφk ⊂ Uk and ∂ν∂Gφk = ∂enφk = 0 at ∂S2 ∪ ∂Σ.

Proof. The idea of the proof is quite simple. Let {Uj}N1
j=1 be an open covering of ∂Σ in

Rn and define Ũj := Uj ∩ {Rn−1 × {0}}. Let Vj := Ũj , j ∈ {1, . . . , N1}, where we identify

Vj with a set in Rn−1. Then, of course, {Vj}N1
j=1 is an open covering of ∂Σ in Rn−1. Now

we are in a position to apply Proposition 6.2.1 to find an open set V0 ⊂ Σ such that⋃N1

j=0 Vj ⊃ Σ. Furthermore, by Proposition 6.2.1, there exists a subordinated partition of

unity {ψΣ
j }

N1
j=0 ⊂ Cmc (Rn−1) with suppψΣ

j ⊂ Vj and ∂ν∂Gψ
Σ
j = 0 at ∂Σ.

Now we define φΣ
j (x′, xn) := ψΣ

j (x′)ϕ(xn), where ϕ ∈ C∞c (R; [0, 1]) such that ϕ(s) = 1
if |s| < δ and ϕ(s) = 0 if |s| > 2δ, where δ > 0 is sufficiently small. It follows that
φΣ
j ∈ Cmc (Rn) and, if δ > 0 is sufficiently small, then suppφΣ

j ⊂ Uj for j ∈ {1, . . . , N1}.
Furthermore we still have ∂ν∂Gφ

Σ
k = 0 and, in addition, ∂enφ

Σ
j = 0 at ∂Σ, since ϕ is constant

in a neighborhood of s = 0.
The same procedure can be applied for the charts covering ∂S2. The remaining set which

is a proper subset of Ω\(S2 ∪ Σ) can be covered by finitely many open charts.

6.3 Auxiliary elliptic and parabolic problems

6.3.1 Elliptic problems

The following result deals with the two-phase elliptic problem

λu−∆u = f in Ω\Σ,
[[ρu]] = g1 on Σ,

[[∂νΣu]] = g2 on Σ,

∂νS1
u = h1 on S1\∂Σ,

∂νS2
u = h2 on S2,

(6.3)

where Ω and Σ satisfy one of the following conditions.
(a) Ω is either a full space, a (bent) half space or a (bent) quarter space and Σ = ∅,
(b) Ω is either a full space or a (bent) half space with outer unit normal −en−1 at x = 0

and Σ = {Rn−1 × {0}} ∩ Ω,
(c) Ω = G× (H1, H2), H1 < 0 < H2, is a cylindrical domain where G is a bounded domain

with boundary ∂G ∈ C4 and Σ = G× {0}.
The sets S1 and S2 are the corresponding vertical and horizontal parts of the boundary of
Ω, respectively.

Lemma 6.3.1. Let n = 2, 3, p ≥ 2 and assume that Ω and Σ are subject to one of the
conditions in (a)-(c) above. Then there exists λ0 ≥ 0 such that for each λ ≥ λ0 the prob-
lem (6.3) has a unique solution u ∈ W 2

p (Ω\Σ) if and only if the data satisfy the following
regularity and compatibility conditions.

1. f ∈ Lp(Ω),

2. g1 ∈W 2−1/p
p (Σ),

3. g2 ∈W 1−1/p
p (Σ),

4. h1 ∈W 1−1/p
p (S1\∂Σ),
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5. h2 ∈W 1−1/p
p (S2),

6. [[ρh1]] = ∂ν∂Gg1 on ∂Σ.

Furthermore, for each λ0 > 0 there exists a constant C = C(λ0) > 0 such that for all λ ≥ λ0

the estimate

λ‖u‖Lp + ‖u‖W 2
p
≤ C

(
‖f‖Lp + λ1−1/2p‖g1‖W 2−1/p

p

+ λ1/2−1/2p[‖g2‖W 1−1/p
p

+ ‖h1‖W 1−1/p
p

+ ‖h2‖W 1−1/p
p

]
)

for the solution of (6.3) is valid.

Proof. For convenience we restrict ourselves to the case n = 3. The arguments for the case
n = 2 are similar.

(a) If Ω and Σ are subject to the first two conditions in (a), i.e. Ω is a full space or a half
space, then the result is folklore. So let us consider the case where Σ = ∅ and Ω is a quarter
space. To be precise, let Ω := R×R+×R+ with S1 := R×{0}×R+ and S2 := R×R+×{0}.
Therefore we have to study the problem

λu−∆u = f, x ∈ Ω,

∂2u = h1, x ∈ S1,

∂3u = h2, x ∈ S2.

(6.4)

Extend f and h2 with respect to x2 (by even reflection) to some functions f ∈ Lp(R2×R+)

and h̃2 ∈W 1−1/p
p (R2) and solve the half space problem

λũ−∆ũ = f̃ , x ∈ R2 × R+,

∂3ũ = h̃2, x ∈ R2 × {0},

to obtain a unique solution ũ ∈ W 2
p (R2 × R+) for each λ > 0. Note that by symmetry, the

function [x 7→ ũ(x1,−x2, x3)] is a solution of this problem too. Therefore, by uniqueness, it
holds that ∂2ũ|S1 = 0.

In a next step, we extend h1 by even reflection and with respect to the x3 variable to

some h̃1 ∈W 1−1/p
p (R2) and solve the half space problem

λṽ −∆ṽ = 0, x ∈ R× R+ × R,

∂2ṽ = h̃2, x ∈ R× {0} × R,

to obtain a unique solution ṽ ∈ W 2
p (R × R+ × R) for each λ > 0. As above, by symmetry

and uniqueness, it holds that ∂3ṽ|S2
= 0. Therefore it follows that u := (ũ + ṽ)|Ω is the

unique solution of (6.4).
Finally, let Ω be a bent quarter space with S2 as above and

S1,θ := {(x1, x2, x3) ∈ R3 : x2 = θ(x1)},

where θ ∈ BC3(R) with ‖θ‖∞ + ‖θ′‖∞ ≤ η and η > 0 can be made as small as we wish.
Then the corresponding result follows from change of coordinates (set x̄2 := x2 − θ(x1))
and perturbation theory for elliptic problems. We will give a detailed proof for the case of
a two-phase half space in part (b) below. The technique carries over to this case. Indeed,
things are easier in (a) as there are no compatibility conditions, since Σ = ∅.

(b) Let Ω = R3 and Σ = R2 × {0}. Then we have to solve the problem

λu−∆u = f, x ∈ Ω\Σ,
[[ρu]] = g1, x ∈ Σ,

[[∂3u]] = g2, x ∈ Σ,

(6.5)
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where ρ = ρ1χx3<0 +ρ2χx3>0 and ρj > 0. Since f ∈ Lp(R3) we may first solve the full space
problem

λũ−∆ũ = f, x ∈ Rn;

to obtain a unique solution ũ ∈W 2
p (Rn) for each λ > 0. Consider now the problem

λū−∆ū = 0, x ∈ Ω\Σ,
[[ρū]] = g1 − [[ρũ]] =: ḡ1, x ∈ Σ,

[[∂3ū]] = g2, x ∈ Σ.

(6.6)

By semigroup theory, it is easy to see that the unique solution of (6.6) is explicitly given by

ū(x3) :=
1

ρ1 + ρ2

{
e−Lx3a+, x3 ≥ 0,

e−L(−x3)a−, x3 < 0,

where L := (λ−∆x′)
1/2 and

a+ := ḡ1 + ρ2L
−1g2 − (ρ1 + ρ2)L−1g2, a− = −(ḡ1 + ρ2L

−1)g2.

Therefore the function u := ũ+ ū is the unique solution of (6.5) which exists for each λ > 0.
Let now Ω = R×R+×R and Σ = {R2×{0}}∩Ω, i.e. we consider the case of a two-phase

half space. Now we have to solve the problem

λu−∆u = f in Ω\Σ,
[[ρu]] = g1 on Σ,

[[∂3u]] = g2 on Σ,

∂2u = h1 on S1\∂Σ,

(6.7)

where S1 := R× {0} ×R. We will first reduce (6.7) to the case h1 = 0. To this end we first

extend h+
1 := h1|x3>0 with respect to the x3 variable to some h̃+

1 ∈ W
1−1/p
p (R2) and solve

the half space problem

λu+ −∆u+ = 0, x2 > 0, ∂2u
+ = h̃+

1 , x2 = 0,

to obtain a unique solution u+ ∈W 2
p (R×R+ ×R). Then we repeat the same procedure for

h−1 := h1|x3<0 to obtain a unique solution u− ∈W 2
p (R× R+ × R). Define the function

ū :=

{
u+, x3 ≥ 0,

u−, x3 < 0,

and consider the problem

λũ−∆ũ = f̄ in Ω\Σ,
[[ρũ]] = ḡ1 on Σ,

[[∂3ũ]] = ḡ2 on Σ,

∂2ũ = 0 on S1\∂Σ,

(6.8)

where f̄ := f , ḡ1 := g1− [[ρū]] and ḡ2 := g2− [[∂3ū]]. Note that by the compatibility condition
on g1 and h1 at ∂Σ it holds that ∂2ḡ1 = 0 at ∂Σ. Therefore it is possible to extend f̄ , ḡj by

even reflection in x2 to some functions f̂ ∈ Lp(R3), ĝ1 ∈W 2−1/p
p (R2) and ĝ2 ∈W 1−1/p

p (R2).

Solve (6.5) with (f, gj) replaced by (f̂ , ĝj) to obtain a unique solution û ∈W 2
p (R2×Ṙ). Since

the function [x 7→ û(x1,−x2, x3)] is a solution of this problem too, it follows by uniqueness
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that ∂2û = 0 at S1\∂Σ, hence ũ := û|Ω is the unique solution of (6.8). Finally, u := ũ + ū
solves (6.7) for each λ > 0 and this solution is unique.

Consider now the case of a bent two-phase half space with outer unit normal −e2 at x = 0.
To be precise, let

Ωθ := {x ∈ R3 : x2 > θ(x1)},

where θ ∈ BC3(R), with θ(0) = θ′(0) = 0 and ‖θ′‖∞+ ‖θ‖∞ ≤ η, where η > 0 can be made
as small as we wish. Furthermore, let S1,θ := ∂Ωθ and Σθ := {R2 × {0}} ∩ Ωθ. We have to
investigate the following problem.

λu−∆u = f in Ωθ\Σθ,
[[ρu]] = g1 on Σθ,

[[∂3u]] = g2 on Σθ,

∂ν∂Σθ
u = h1 on S1,θ\∂Σθ.

(6.9)

First of all we extend f , g1 and g2 to some functions f̃ ∈ Lp(R3), g̃1 ∈ W 2−1/p
p (R2) and

g̃2 ∈W 1−1/p
p (R2), respectively. Then we solve (6.5) with (f, g1, g2) replaced by (f̃ , g̃1, g̃2) to

obtain a unique solution ũ ∈W 2
p (R2×Ṙ). Let h̄1 := h1−∂ν∂Σθ

ũ|S1,θ
and note that [[ρh̄1]] = 0

at ∂Σθ by the compatibility condition on (g1, h1) at ∂Σθ. We arrive at the problem

λū−∆ū = 0 in Ωθ\Σθ,
[[ρū]] = 0 on Σθ,

[[∂3ū]] = 0 on Σθ,

∂ν∂Σθ
ū = h̄1 on S1,θ\∂Σθ.

(6.10)

Transforming Ωθ, S1,θ and Σθ to Ω = R×R+×R, S1 = R×{0}×R and Σ = {R2×{0}}∩Ω
via the diffeomorphism

Ω 3 (x̄1, x̄2, x̄3) 7→ (x̄1, x̄2 + θ(x̄1), x̄3) ∈ Ωθ

yields the transformed problem

λû−∆û = M1(θ, û) in Ω\Σ,
[[ρû]] = 0 on Σ,

[[∂3û]] = 0 on Σ,

∂2û = M2(θ, û)−
√

1 + θ′2ĥ1 on S1\∂Σ,

(6.11)

where û(x̄) := ū(x̄1, x̄2 + θ(x̄1), x̄3), ĥ1(x̄1, x̄3) := h̄(x̄1, θ(x̄1), x̄3),

M1(θ, û) := −2θ′(x̄1)∂1∂2û− θ′′(x̄1)∂2û+ θ′(x̄1)2∂2
2 û,

and M2(θ, û) := θ′(x̄1)∂1û− θ′(x̄1)2∂2û. Observe that [[ρĥ1]] = 0 at ∂Σ.
Define the function spaces

E := {û ∈W 2
p (Ω\Σ) : [[ρû]] = [[∂3û]] = 0 on Σ},

equipped with the equivalent norm ‖û‖E,λ := λ1/2+1/2p‖û‖Lp + λ1/2p−1/2‖û‖W 2
p
, λ > 0 and

F := {(f1, f2) ∈ Lp(Ω)×W 1−1/p
p (S1\∂Σ) : [[ρf2]] = 0 at ∂Σ},

with
‖(f1, f2)‖F,λ := λ1/2p−1/2‖f1‖Lp + ‖f2‖W 1−1/p

p
, λ > 0.
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Furthermore, let a linear operator L : E→ F be defined by

Lû :=

(
λû−∆û
∂2û|S1\∂Σ

)
.

It follows from our previous considerations that L : E → F is an isomorphism. Moreover,
for each λ0 > 0 there exists a constant C = C(λ0) > 0 such that for all λ ≥ λ0 the estimate

‖L−1F‖E,λ ≤ C‖F‖F,λ, F ∈ F, (6.12)

is valid.
Let now F := (0,−

√
1 + θ′2ĥ1) and M(θ, û) := (M1,M2)(θ, û). Clearly, for each û ∈ E,

it holds that M(θ, û) ∈ F, since

[[ρθ′(x̄1)∂1û]] = θ′(x̄1)∂1[[ρû]] = 0

at ∂Σ. Furthermore it holds that

[[ρ
√

1 + θ′2ĥ1]] =
√

1 + θ′2[[ρĥ1]] = 0

at ∂Σ as well, hence F ∈ F. Therefore, for û ∈ E, the expressions L−1M(θ, û), L−1F are
well defined in E and we may rewrite (6.11) in the shorter form

û = L−1M(θ, û) + L−1F. (6.13)

Making use of trace theory, we may estimate the norm of M(θ, û) in F as follows.

‖M(θ, û)‖F ≤ C(λ0)(‖θ′‖∞‖∇2û‖Lp + ‖θ′′‖∞‖∇û‖Lp).

Here C(λ0) > 0 is a universal constant, since

‖(f1, f2)‖F,λ ≤ λ1/2p−1/2
0 ‖f1‖Lp + ‖f2‖W 1−1/p

p
,

for all λ ≥ λ0. By interpolation we obtain furthermore

‖û‖W 1
p
≤ c‖û‖1/2Lp

‖û‖1/2W 2
p
,

hence, by Young’s inequality

‖θ′′‖∞‖∇û‖Lp ≤ c
‖θ′′‖∞
λ1/2p

‖û‖E,λ.

Choosing first ‖θ′‖∞ sufficiently small and then λ > 0 sufficiently large, it follows that for
each ε > 0 there exist numbers η0 > 0 and λ0 > 0 such that ‖M(θ, û)‖F ≤ ε‖û‖E, whenever
‖θ′‖∞ ≤ η ∈ (0, η0) and λ ≥ λ0. The estimate (6.12) and a Neumann series argument yield
a unique solution of (6.13).

(c) The proof for this assertion uses the technique of localization. By Proposition 6.2.2
there exists a finite covering of Ω and a subordinated partition of unity {φk}Nk=1 such that
∂ν∂Gφk = 0 at (∂Σ ∪ ∂S2) ∩ suppφk.

Multiplying each equation in (6.3) by φk, we obtain problems in local coordinates, which
correspond to perturbed versions of one of the problems which have been treated in (a) &
(b). Assume that u is a solution of (6.3), uk := uφk, gk1 := g1φk and hk1 := h1φk, then
[[ρuk]] = gk1 and

∂νS1
uk = φk∂νS1

u+ u∂νS1
φk = φkh1 = hk1 ,

since νS1
= (ν∂G, 0)T. In particular, the commutator term in the Neumann boundary

condition is identically zero. By the same reason, one has

∂νS1
g1,k = φk[[ρh1]] = [[ρhk1 ]],

hence the local data (gk1 , h
k
1) satisfy the compatibility condition at ∂Σ ∩ suppφk.

The remaining localization procedure follows along standard arguments. We refrain from
giving the details and refer the reader e.g. to [17].
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We shall also prove some results on the solvability of (6.3) in case λ = 0. If λ = 0 and Ω
is unbounded, one cannot expect to obtain u ∈ Lp(Ω). Instead, we are looking for solutions

u ∈ Ẇ 1
p (Ω\Σ) ∩ Ẇ 2

p (Ω\Σ), or equivalently ∇u ∈W 1
p (Ω\Σ).

If ∇u ∈ W 1
p (Ω) is a solution of (6.3) with g1 = 0, then, by trace theory, f ∈ Lp(Ω),

g2 ∈ W
1−1/p
p (Σ), h1 ∈ W

1−1/p
p (S1\∂Σ) and h2 ∈ W

1−1/p
p (S2). There is some hidden

compatibility/regularity condition for the data (f, g2, h1). To see this, let φ ∈ C∞c (Ω). We
multiply (6.3)1 by φ and integrate by parts, to obtain the identity

〈(f, g2, h1, h2), φ〉 :=

∫
Ω

fφ dx+

∫
S1

h1φ dS1

+

∫
S2

h2φ dS2 −
∫

Σ

g2φ dΣ =

∫
Ω

∇u · ∇φ dx.

It follows that the linear mapping [φ 7→ 〈(f, g2, h1, h2), φ〉] is continuous on C∞c (Ω) with
respect to the norm ‖∇ · ‖Lp′ (Ω).

If Ω is a full space, a (bent) half space or a (bent) quarter space, then it is well known,
that C∞c (Ω) (hence also W 1

p′(Ω)) is dense in Ẇ 1
p′(Ω) with respect to the norm ‖∇ · ‖Lp′ (Ω).

Therefore, since each functional in

Ŵ−1
p (Ω) :=

(
Ẇ 1
p′(Ω)

)∗
,

is uniquely determined by its restriction to C∞c (Ω), it follows that (f, g2, h1, h2) yields a well
defined element of Ŵ−1

p (Ω) with norm given by

‖(f, g2, h1, h2)‖Ŵ−1
p

:= sup{〈(f, g2, h1, h2), φ〉/‖∇φ‖Lp′ : φ ∈ C∞c (Ω)}

= sup{〈(f, g2, h1, h2), φ〉/‖∇φ‖Lp′ : φ ∈W 1
p′(Ω)}.

Note that if Ω is bounded, then the above representation formula for (f, g2, h1, h2) holds for
each φ ∈ Ẇ 1

p′(Ω), since Ẇ 1
q (Ω) ⊂W 1

q (Ω) if Ω is bounded. This follows for example from the
Poincaré-Wirtinger inequality. However, if Ω is unbounded, then the above representation
for (f, g2, h1, h2) holds at least on the dense subspace C∞c (Ω).

Furthermore, if Sj = ∅, j ∈ {1, 2} and/or Σ = ∅, then we simply neglect hj and/or g2 in
(f, g2, h1, h2).

We are now in a position to state the next auxiliary lemma.

Lemma 6.3.2. Let n = 2, 3, p ≥ 2 and λ = 0. Then the following assertions are valid.

1. If Ω and Σ satisfy one of the conditions in (a), (b) above, then there exists a
unique solution ∇u ∈ W 1

p (Ω\Σ) of (6.3) with g1 = 0 if and only if f ∈ Lp(Ω),

g2 ∈ W
1−1/p
p (Σ), h1 ∈ W

1−1/p
p (S1\∂Σ), h2 ∈ W

1−1/p
p (S2), [[ρh1]] = 0 on ∂Σ and

(f, g2, h1, h2) ∈ Ŵ−1
p (Ω).

2. If Ω and Σ are subject to the condition (c) above, then there exists a unique solution
u ∈W 2

p (Ω\Σ) of (6.3) with g1 = h1 = h2 = 0 if and only if

f ∈ L(0)
p (Ω) := {f ∈ Lp(Ω) :

∫
Ω

fdx = 0}.

Proof. 1. (a) If Ω = Rn, then we have to solve −∆u = f for f in Ŵ−1
p (Ω) ∩ Lp(Ω). It is

a folkloristic result that whenever f ∈ Lp(Rn), then there is a unique solution u ∈ Ẇ 2
p (Rn)

of the equation −∆u = f . Multiplying −∆u = f by φ ∈ C∞c (Rn) and integrating by parts,
we obtain ∫

Rn
∇u · ∇φ dx = −

∫
Rn

∆uφ dx =

∫
Rn
fφ dx.
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Let us show that there exists a constant C > 0 such that the estimate

‖∇u‖Lp(Rn) ≤ C sup

{
|
∫
Rn ∇u · ∇φ dx|
‖∇φ‖Lp′ (Rn)

: φ ∈ C∞c (Rn)

}
(6.14)

is valid. Indeed, it holds that

sup

{
|
∫
Rn ∇u · ∇φ dx|
‖∇φ‖Lp′ (Rn)

: φ ∈ C∞c (Rn)

}
≥
|
∫
Rn ∇u · ∇∂jϕ dx|
‖∇∂jϕ‖Lp′ (Rn)

≥ 1

C

|
∫
Rn ∂ju ·∆ϕ dx|
‖∆ϕ‖Lp′ (Rn)

,

(6.15)

for all ϕ ∈ C∞c (Rn), where we integrated by parts and applied the Caldéron-Zygmund
inequality ‖∇2ϕ‖Lp′ (Rn) ≤ C‖∆ϕ‖Lp′ (Rn).

It is well-known that ∆C∞c (Rn) is dense in Lp′(Rn) with respect to the Lp′ -norm. Taking
the supremum on the right hand side of (6.15) over all functions ϕ ∈ C∞c (Rn) we obtain
the desired inequality (6.14). Evidently, for the solution u ∈ Ẇ 2

p (Rn) of −∆u = f it follows
that

‖∇u‖Lp(Rn) ≤ C sup

{
|
∫
Rn fφ dx|

‖∇φ‖Lp′ (Rn)
: φ ∈ C∞c (Rn)

}
.

hence, if f ∈ Lp(Rn) ∩ Ŵ−1
p (Rn), then

‖f‖Ŵ−1
p

= sup

{
|
∫
Rn fφ dx|

‖∇φ‖Lp′ (Rn)
: φ ∈ C∞c (Rn)

}
<∞,

and we obtain the estimate ‖∇u‖Lp(Rn) ≤ C‖f‖Ŵ−1
p

. This shows that u ∈ Ẇ 1
p (Rn)∩Ẇ 2

p (Rn)

is the unique solution.
Let Ω = R2 × R+ be a half space and consider the problem

−∆u = f, x ∈ Ω,

∂3u = h, x ∈ S,
(6.16)

where S := ∂Ω = R2 × {0}. By Lemma 6.3.1 there exists some λ0 > 0 such that the shifted
problem

λ0ū−∆ū = f, x ∈ Ω,

∂3ū = h, x ∈ S,
(6.17)

admits a unique solution ū ∈W 2
p (Ω) satisfying the estimates

‖ū‖W 2
p (Ω) ≤ C(‖f‖Lp(Ω) + ‖h‖

W
1−1/p
p (S)

),

and
‖ū‖W 1

p (Ω) ≤ C‖(f, h)‖Ŵ−1
p (Ω).

To see the validity of the second estimate we use the notation from [3, Chapter V] and let
A0 := λ0 −∆ with domain

E1 := D(A0) = {u ∈W 2
p (Ω) : ∂3u = 0 on S}

in E0 := Lp(Ω). Then A0 is a linear isomorphism from E1 to E0. Let E1/2 := [E0, E1]1/2 =

W 1
p (Ω) and E−1/2 := (E]1/2)∗ = (W 1

p′(Ω))∗ (A]0 = A0, since A0 is symmetric) and denote
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by A−1/2 the E−1/2-realization of A0. By the results in [3, Chapter V] it follows that
A−1/2 : E1/2 → E−1/2 is a linear isomorphism. Moreover, since E1 is dense in E1/2, it holds
that

〈A−1/2u, φ〉 = λ0

∫
Ω

uφ dx+

∫
Ω

∇u · ∇φ dx

for all φ ∈W 1
p′(Ω) and each u ∈W 1

p (Ω).

Multiply the first equation in (6.17) by φ ∈W 1
p′(Ω) and integrate by parts to the result

λ0

∫
Ω

ūφ dx+

∫
Ω

∇ū · ∇φ dx =

∫
Ω

fφ dx−
∫
S

hφ|S dS.

By assumption, the right side of the last equation determines a functional (f, h) on Ẇ 1
p′(Ω),

hence also on W 1
p′(Ω). Therefore it follows from the considerations above that

‖ū‖W 1
p (Ω) ≤ C‖(f, h)‖(W 1

p′ (Ω))∗ = C sup
06=φ∈W 1

p′ (Ω)

|〈(f, h), φ〉|
‖φ‖W 1

p′ (Ω)

≤ C sup
06=φ∈W 1

p′ (Ω)

|〈(f, h), φ〉|
‖∇φ‖Lp′ (Ω)

= C‖(f, h)‖Ŵ−1
p (Ω).

Therefore it suffices to study the problem

−∆u∗ = f∗, x ∈ Ω,

∂3u∗ = 0, x ∈ S,
(6.18)

where f∗ := f + ∆ū. Observe that f∗ ∈ Lp(Ω) ∩ Ŵ−1
p (Ω). We extend f∗ with respect to x3

by even reflection to some f̃ to obtain f̃ ∈ Lp(R3)∩ Ŵ−1
p (R3). Solve the full space problem

−∆ũ = f̃ to obtain a unique solution ũ ∈ Ẇ 1
p (R3)∩ Ẇ 2

p (R3). By uniqueness and symmetry,
it follows that ũ(x1, x2, x3) = ũ(x1, x2,−x3), hence ∂3ũ = 0 on S. Since

‖∇u∗‖Lp(Ω) ≤ ‖∇ũ‖Lp(R3) ≤ C‖f̃‖Ŵ−1
p (R3),

and ‖f̃‖Ŵ−1
p (R3) ≤ 2‖f∗‖Ŵ−1

p (Ω) (f̃ is the even extension of f∗) it follows that

‖∇u∗‖Lp(Ω) ≤ C‖f∗‖Ŵ−1
p (Ω).

The function u := ū + ũ|Ω = ū + u∗ is the desired unique solution of (6.19), satisfying the
estimates

‖∇2u‖Lp(Ω) ≤ C(‖f‖Lp(Ω) + ‖h‖
W

1−1/p
p (S)

),

and
‖∇u‖Lp(Ω) ≤ C‖(f, h)‖Ŵ−1

p (Ω).

Uniqueness follows by even reflection of the solution of (6.16) with f = h = 0 at S and the
uniqueness result for the full space.

If Ω = R× R+ × R+ is a quarter space, we have to solve

−∆u = f, x ∈ Ω,

∂2u = h1, x ∈ S1,

∂3u = h2, x ∈ S2,

(6.19)

where S1 = R × {0} × R+ and S2 = R × R+ × {0}. The data satisfy f ∈ Lp(Ω), hj ∈
W

1−1/p
p (Sj), j = 1, 2 and (f, h1, h2) ∈ Ŵ−1

p (Ω).
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By Lemma 6.3.1 we first solve

λ0ū−∆ū = f, x ∈ Ω,

∂2ū = h1, x ∈ S1,

∂3ū = h2, x ∈ S2,

(6.20)

for some sufficiently large λ0 > 0 to obtain a unique solution ū ∈ W 2
p (Ω). Note that ū

satisfies the estimates

‖ū‖W 2
p (Ω) ≤ C(‖f‖Lp(Ω) + ‖h1‖W 1−1/p

p (S1)
+ ‖h2‖W 1−1/p

p (S2)
),

and
‖ū‖W 1

p (Ω) ≤ C‖(f, h1, h2)‖Ŵ−1
p (Ω).

We arrive at the problem

−∆u∗ = f∗, x ∈ Ω,

∂2u∗ = 0, x ∈ S1,

∂3u∗ = 0, x ∈ S2,

(6.21)

where f∗ := f + ∆ū ∈ Ŵ−1
p (Ω)∩Lp(Ω), which follows from integration by parts. Extend f∗

to the half space R3
+ by even reflection, i.e. we set

f̃(x) :=

{
f∗(x1, x2, x3), x2 ≥ 0,

f∗(x1,−x2, x3), x2 < 0.

Then f̃ ∈ Ŵ−1
p (R3

+) ∩ Lp(R3
+). Next we extend f̃ by even reflection to the full space R3 by

defining

f̂(x) :=

{
f̃(x1, x2, x3), x3 ≥ 0,

f̃(x1, x2,−x3), x3 < 0,

This yields that f̂ ∈ Ŵ−1
p (R3)∩Lp(R3). Solve the full space problem −∆û = f̂ to obtain a

unique solution û ∈ Ẇ 1
p (R3) ∩ Ẇ 2

p (R3). Since with û also û(−x3) and û(−x2) are solutions

of −∆û = f̂ , it follows from the uniqueness of the solution that û(x3) = û(−x3) and
û(x2) = û(−x2), hence ∂3û = 0 on S2 as well as ∂2û = 0 on S1. Since

‖∇u∗‖Lp(Ω) ≤ ‖∇û‖Lp(R3) ≤ C‖f̂‖Ŵ−1
p (R3),

and ‖f̂‖Ŵ−1
p (R3) ≤ C‖f∗‖Ŵ−1

p (Ω) it follows that

‖∇u∗‖Lp(Ω) ≤ C‖f∗‖Ŵ−1
p (Ω).

The function u := ū + û|Ω = ū + u∗ is the desired unique solution of (6.19), satisfying the
estimates

‖∇2u‖Lp(Ω) ≤ C(‖f‖Lp(Ω) + ‖h1‖W 1−1/p
p (S1)

+ ‖h2‖W 1−1/p
p (S2)

),

and
‖∇u‖Lp(Ω) ≤ C‖(f, h1, h2)‖Ŵ−1

p (Ω).

If Ω is a bent quarter space, we will use change of coordinates and perturbation theory to
prove the assertion in this case. We will give a detailed proof for the case of a bent two-phase
half space below. The technique from this case carries over to the bent quarter space case.
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(b) Let Ω = R3 and Σ = R2 × {0}. Consider the problem

−∆u = f in Ω\Σ,
[[ρu]] = 0 on Σ,

[[∂3u]] = g2 on Σ,

(6.22)

with f ∈ Lp(Ω), g2 ∈W 1−1/p
p (Σ) and (f, g2) ∈ Ŵ−1

p (Ω).
By Lemma 6.3.1 we may first solve the problem

λ0ū−∆ū = f in Ω\Σ,
[[ρū]] = 0 on Σ,

[[∂3ū]] = g2 on Σ,

(6.23)

where λ0 > 0 is sufficiently large but fixed. This yields a unique solution ū ∈ W 2
p (Ω\Σ).

Next we consider the equation −∆ũ = f̃ in R3, where f̃ := f + ∆ū ∈ Ŵ−1
p (R3) ∩ Lp(R3),

since ∫
R3

(f + ∆ū)φ dx = −
∫

Σ

g2φ dΣ +

∫
R3

fφ dx−
∫
R3

∇ū · ∇φ dx.

by what we have already shown, this full space problem admits a unique solution ũ ∈
Ẇ 1
p (Ω) ∩ Ẇ 2

p (Ω). Finally we study the problem

−∆û = 0 in Ω\Σ,
[[ρû]] = ĝ1 on Σ,

[[∂3û]] = 0 on Σ,

(6.24)

with ĝ1 := −[[ρũ]] ∈ Ẇ 1−1/p
p (Σ) ∩ Ẇ 2−1/p

p (Σ). The solution is given in terms of the Poisson
semigroup as follows.

û(x3) =
1

ρ1 + ρ2

{
e−Lx3 ĝ1, x3 ≥ 0,

−e−L(−x3)ĝ1, x3 < 0,

where L := (−∆x′)
1/2. By semigroup theory it follows that û ∈ Ẇ 1

p (Ω\Σ)∩Ẇ 2
p (Ω\Σ). Here

we use the fact that (∫ ∞
0

z(k−s)p‖Lke−Lzg‖pLp(Σ)

dz

z

)1/p

(6.25)

defines an equivalent norm in Ẇ s
p (Σ) for s > 0 and k > s (if s = j − 1/p, j ∈ {1, 2}, we

choose k = j). The function u := ū + ũ + û is the unique solution of (6.22), satisfying the
estimates

‖∇2u‖Lp(Ω) ≤ C(‖f‖Lp(Ω) + ‖g2‖W 1−1/p
p (Σ)

),

and
‖∇u‖Lp(Ω) ≤ C‖(f, g2)‖Ŵ−1

p (Ω).

The uniqueness of the solution can be seen as follows. Let u ∈ Ẇ 1
p (Ω\Σ) ∩ Ẇ 2

p (Ω\Σ) be a
solution of (6.22) with f = g2 = 0. We want to show that ∇u = 0 in Ω\Σ. To this end we
define two functions

v(x1, x2, x3) := ρ2u+(x1, x2, x3)− ρ1u−(x1, x2,−x3), (x1, x2) ∈ R2, x3 > 0,

and
w(x1, x2, x3) := u+(x1, x2, x3) + u−(x1, x2,−x3), (x1, x2) ∈ R2, x3 > 0,
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where u± := u|x3≷0. It follows that v and w solve the half space problems

∆v = 0, (x1, x2) ∈ R2, x3 > 0, v = 0, (x1, x2) ∈ R2, x3 = 0,

and
∆w = 0, (x1, x2) ∈ R2, x3 > 0, ∂3w = 0, (x1, x2) ∈ R2, x3 = 0,

respectively in Ẇ 1
p (R3

+) ∩ Ẇ 2
p (R3

+). Therefore ∇w = ∇v = 0 by even or uneven reflection
at {x3 = 0}. This yields

0 = ρ2∇u+ + ρ1∇u−,
0 = ∇u+ −∇u−,

wherefore ∇u− = ∇u+ = 0, hence ∇u = 0 in Ω\Σ.
Let now Ω = R2

+ × R with Σ = {R2 × {0}} ∩ Ω. Here we have to solve the problem

−∆u = f in Ω\Σ,
[[ρu]] = 0 on Σ,

[[∂3u]] = g2 on Σ,

∂2u = h1 on S1\∂Σ,

(6.26)

with [[ρh1]] = 0 at ∂Σ. For some large λ0 > 0, we first solve the problem

λ0ū−∆ū = f in Ω\Σ,
[[ρū]] = 0 on Σ,

[[∂3ū]] = g2 on Σ,

∂2ū = h1 on S1\∂Σ,

(6.27)

by Lemma 6.3.1, to obtain a unique solution ū ∈W 2
p (Ω\Σ). Let f∗ := f + ∆ū and note that

f∗ ∈ Ŵ−1
p (Ω)∩Lp(Ω), which follows from integration by parts and from the assumption on

(f, g2, h1). We extend f∗ with respect to x2 by even reflection to some function

f̃(x) :=

{
f∗(x1, x2, x3), x2 ≥ 0,

f∗(x1,−x2, x3), x2 < 0.

Then f̃ ∈ Ŵ−1
p (R3) ∩ Lp(R3) and we may solve the full space problem −∆ũ = f̃ to obtain

a unique solution ũ ∈ Ẇ 1
p (R3) ∩ Ẇ 2

p (R3) with the property ũ(x2) = ũ(−x2), hence ∂2ũ = 0
at S1\∂Σ. Consider next the problem

∆û = 0 in Rn\Σ,
[[ρû]] = g on Σ,

[[∂3û]] = 0 on Σ,

(6.28)

where g := −[[ρũ]] ∈ Ẇ 1−1/p
p (Σ) ∩ Ẇ 2−1/p

p (Σ). As in the previous case, the unique solution
û ∈ Ẇ 1

p (Ω) ∩ Ẇ 1
p (Ω) of (6.28) is given in terms of the Poisson semigroup.

Finally, since ũ(x2) = ũ(−x2), it follows that g(x2) = g(−x2), hence û(x2) = û(−x2), by
uniqueness, and therefore ∂2û = 0 at S1\∂Σ. The function u := ū+ ũ|Ω + û|Ω is the unique
solution of (6.26), satisfying the estimates

‖∇2u‖Lp(Ω) ≤ C(‖f‖Lp(Ω) + ‖h1‖W 1−1/p
p (S1\∂Σ)

+ ‖g2‖W 1−1/p
p (Σ)

),

and
‖∇u‖Lp(Ω) ≤ C‖(f, h1, g2)‖Ŵ−1

p (Ω).
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In a next step we consider the case of a bent two-phase half space. To be precise, we
assume that

Ωθ := {x ∈ R3 : x2 > θ(x1)},

where θ ∈ BC3(R) with ‖θ‖∞ + ‖θ′‖∞ < η, and η > 0 can be made as small as we wish.
Let furthermore S1,θ := {x ∈ R3 : x2 = θ(x1)} and Σθ := {R2 × {0}} ∩ Ωθ. Consider the
problem

−∆u = f in Ωθ\Σθ,
[[ρu]] = 0 on Σθ,

[[∂3u]] = g2 on Σθ,

∂ν∂Σθ
u = h1 on S1,θ\∂Σθ,

(6.29)

where f ∈ Lp(Ωθ), g2 ∈ W 1−1/p
p (Σθ), h1 ∈ W 1−1/p

p (S1,θ\∂Σθ) and (f, g2, h1) ∈ Ŵ−1
p (Ωθ).

Moreover, the compatibility condition [[ρh1]] = 0 at ∂Σθ holds.
By means of Lemma 6.3.1, we may solve the problem

λ0û−∆û = f in Ωθ\Σθ,
[[ρû]] = 0 on Σθ,

[[∂3û]] = g2 on Σθ,

∂ν∂Σθ
û = h1 on S1,θ\∂Σθ,

(6.30)

where λ0 > 0 is large but fixed. This yields a unique solution û ∈ W 2
p (Ωθ\Σθ). Let

f̃ := f + ∆û and consider

−∆ũ = f̃ in Ωθ\Σθ,
[[ρũ]] = 0 on Σθ,

[[∂3ũ]] = 0 on Σθ,

∂ν∂Σθ
ũ = 0 on S1,θ\∂Σθ.

(6.31)

Observe that f̃ ∈ Ŵ−1
p (Ωθ) ∩ Lp(Ωθ). We will now transform Ωθ to Ω0 by means of the

coordinates x̄1 := x1, x̄2 := x2− θ(x1) and x̄3 := x3. Assume that ũ solves (6.31) and define
ū(x̄) := ũ(x̄1, x̄2 + θ(x̄1), x̄3). Then, the function ū is a solution of the problem

−∆ū = f̄ +M1(θ, ū) in Ω\Σ,
[[ρū]] = 0 on Σ,

[[∂3ū]] = 0 on Σ,

∂2ū = M2(θ, ū) on S1\∂Σ,

(6.32)

where f̄ is the transformation of f̃ ,

M1(θ, ū) := −2θ′(x̄1)∂1∂2ū− θ′′(x̄1)∂2ū+ θ′(x̄1)2∂2
2 ū,

and M2(θ, ū) := θ′(x̄1)∂1ū− θ′(x̄1)2∂2ū.
Define the function spaces

E := {∇ū ∈W 1
p (Ω\Σ) : [[ρū]] = [[∂3ū]] = 0 on Σ},

and

F := {(f1, f2) ∈ Lp(Ω)×W 1−1/p
p (S1\∂Σ) : [[ρf2]] = 0 at ∂Σ and (f1,−f2) ∈ Ŵ−1

p (Ω)}.
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We equip E and F with the equivalent norms ‖ū‖E,λ := λ‖∇ū‖Lp + ‖∇2ū‖Lp , and

‖(f1, f2)‖F,λ := ‖f1‖Lp + ‖f2‖W 1−1/p
p

+ λ‖(f1,−f2)‖Ŵ−1
p
,

for λ ≥ 1. Moreover, we define a linear operator L : E→ F by

Lū :=

(
−∆ū

∂2ū|S1\∂Σ

)
.

It follows from our previous considerations that L : E → F is an isomorphism and there
exists a constant C > 0 which does not depend on λ ≥ 1 such that the estimate

‖L−1F‖E,λ ≤ C‖F‖F,λ

holds for each λ ≥ 1 and f ∈ F.
Let F := (f̄ , 0) and M(θ, ū) := (M1,M2)(θ, ū). It follows that F ∈ F, since∫

Ωθ

f̃φ dx =

∫
Ω

f̄ φ̄ dx̄,

with φ̄(x̄) := φ(x̄1, x̄2 − θ(x̄1), x̄3) and φ ∈ C∞c (Ωθ). Furthermore, for each ū ∈ E, we
have M(θ, ū) ∈ F. Indeed, as in the proof of Lemma 6.3.1, it can be readily checked that

M(θ, ū) ∈ Lp(Ω) ×W 1−1/p
p (S1\∂Σ) and [[ρM2(θ, ū)]] = 0 at ∂Σ. It remains to verify the

condition (M1,M2)(θ, ū) ∈ Ŵ−1
p (Ω). To this end, we integrate by parts to obtain the identity∫

Ω

M1(θ, ū)φ dx−
∫
S1

M2(θ, ū)φ dS1

=

∫
Ω

(
θ′(x̄1)∂2ū∂1φ+ θ′(x̄1)∂1ū∂2φ− θ′(x̄1)2∂2ū∂2φ

)
dx.

for each φ ∈ C∞c (Ω). This in turn yields the claim. We are now in a position to write (6.32)
in the shorter form

ū = L−1M(θ, ū) + L−1F.

For the norm of M(θ, ū) in F we obtain

‖M1(θ, ū)‖Lp ≤ C(‖θ′‖∞‖∇2ū‖Lp + ‖θ′′‖∞‖∇ū‖Lp),

‖M2(θ, ū)‖
W

1−1/p
p

≤ C(‖θ′‖∞‖∇ū‖W 1
p

+ ‖θ′′‖∞‖∇ū‖Lp),

and
λ‖(M1,M2)(θ, ū)‖Ŵ−1

p
≤ C‖θ′‖∞(λ‖∇ū‖Lp).

Here the constant C > 0 is universal. Since

‖θ′′‖∞‖∇ū‖Lp =
‖θ′′‖∞
λ

(λ‖∇ū‖Lp),

it follows that for each ε > 0 there exist λ0 ≥ 1 and η0 > 0 such that

‖M(θ, ū)‖F,λ ≤ ε‖ū‖E,λ

provided that ‖θ′‖ ≤ η ∈ (0, η0) and λ ≥ λ0. A Neumann series argument finally yields the
solvability of (6.32), hence there exists a unique solution of (6.29).

2. It follows from Lemma 6.3.1 that the operator Au := −∆u with domain

D(A) = {u ∈W 2
p (Ω\Σ) : [[ρu]] = [[∂νΣ

u]] = 0, ∂νSj u = 0},
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is closed. Since D(A) is compactly embedded in Lp(Ω), it follows that the spectrum σ(A)
consists solely of isolated eigenvalues and λ = 0 is a simple eigenvalue of A. In order to see
that, note that N(A) = span1ρ, with

1ρ := χΩ1 +
ρ1

ρ2
χΩ2 .

Furthermore, N(A2) ⊂ N(A), since if u ∈ N(A2), then v := Au ∈ N(A). It follows that
v ∈ L1(Ω) and we may integrate Au = v over Ω to obtain∫

Ω

v dx = −
∫

Ω

∆u dx = 0,

hence v = 0, since 1ρ has a non-vanishing mean value.

In particular this yields Lp(Ω) = N(A) ⊕ R(A) and it holds that R(A) = L
(0)
p (Ω). This

can be seen as follows. Obviously one has the inclusion

R(A) ⊂ L(0)
p (Ω).

So, let f ∈ L(0)
p (Ω). Then there exist unique f1 ∈ N(A) and f2 ∈ R(A) such that f = f1+f2.

This in turn yields f1 ∈ L(0)
p (Ω). Since f1 = α1ρ for some α ∈ R with

1ρ := χΩ1
+
ρ1

ρ2
χΩ2

,

it follows that

(f1|1) = α

(
|Ω1|+

ρ1

ρ2
|Ω2|

)
,

hence α = 0 and therefore f = f2 ∈ R(A), hence L
(0)
p (Ω) ⊂ R(A).

We will also need an existence and uniqueness result for the weak version of (6.3) with
λ = 0. To be precise, we consider the problem

(∇u|∇φ)2 = 〈f, φ〉, φ ∈W 1
p′(Ω),

[[ρu]] = g, on Σ.
(6.33)

Then we have the following result.

Lemma 6.3.3. Let ρj > 0, n = 2, 3, p ≥ 2 and let Ω ⊂ Rn satisfy condition (c) from above.

Then there exists a unique solution u ∈ Ẇ 1
p (Ω\Σ) of (6.33) if and only if f ∈ Ŵ−1

p (Ω) and

g ∈W 1−1/p
p (Σ).

Proof. Let g ∈W 1−1/p
p (Σ). The Neumann Laplacian ∆N in Lp(Σ) with domain

D(∆N ) = {u ∈W 2
p (Σ) : ∂ν∂Gu = 0 on ∂Σ}

generates an analytic semigroup. In particular, D(∆N ) is dense in

W 1−1/p
p (Σ) = (Lp(Σ), D(∆N ))1/2−1/2p = D∆N

(1/2− 1/2p, p).

Therefore, there exists (gn)n∈N ⊂ W
2−1/p
p (Σ) such that ∂ν∂Ggn = 0 for each n ∈ N on ∂Σ

and gn → g as n→∞ in W
1−1/p
p (Σ). Denote by un ∈ W 2

p (Ω\Σ) the solution of (6.3) with
f = g2 = h1 = h2 = 0, g1 = gn and a fixed λ ≥ λ0. Making use of local coordinates one can
show that the estimate

‖un − um‖W 1
p (Ω\Σ) ≤ C‖gn − gm‖W 1−1/p

p (Σ)
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is valid, with some constant C > 0 which does not depend on n. Indeed, each of the local
charts yields a transformed problem which is subject to one of the conditions in (a) and (b)
above. We have already seen in the proof of Lemma 6.3.1 that the two-phase half space
and the quarter space can be drawn back to a two-phase full space and an ordinary half
space, respectively, by means of reflection techniques. Making use of change of coordinates,
perturbation theory and the results in [28, Section 8] one obtains the desired estimate.

In particular, (un) is a Cauchy sequence in W 1
p (Ω\Σ) and therefore it has a limit point

u ∈W 1
p (Ω\Σ). By trace theory it follows that u satisfies the weak problem

λ(u|φ)2 + (∇u|∇φ)2 = 0, φ ∈W 1
p′(Ω),

[[ρu]] = g, on Σ,
(6.34)

for some fixed λ ≥ λ0.
Next, let

a : {u ∈W 1
p (Ω\Σ) : [[ρu]] = 0 on Σ} ×W 1

p′(Ω)→ R, a(u, φ) :=

∫
Ω

∇u · ∇φdx,

and define an operator B : W 1
p (Ω\Σ)→ (W 1

p′(Ω))∗ with domain

D(B) = {u ∈W 1
p (Ω\Σ) : [[ρu]] = 0 on Σ},

by means of 〈Bu, φ〉 := a(u, φ). It follows from integration by parts that the operator A
from the proof of the second assertion of Lemma 6.3.2 is the part of B in Lp(Ω). As in
the proof of Lemma 6.3.2 one can show that λ = 0 is a simple eigenvalue of B. It follows
that (W 1

p′(Ω))∗ = N(B)⊕ R(B) and W 1
p (Ω\Σ) = N(B)⊕ Y , where Y is a closed subspace

of W 1
p (Ω\Σ). Therefore there exists a unique solution v ∈ Y of the equation Bv = f if

and only if f ∈ R(B) or equivalently 〈f,1〉 = 0. It follows readily that R(B) = Ŵ−1
p (Ω).

Indeed, the inclusion Ŵ−1
p (Ω) ⊂ R(B) is easy, since 〈f,1〉 = 0 for each f ∈ Ŵ−1

p (Ω) and
the restriction of f to W 1

p′(Ω) belongs to (W 1
p′(Ω))∗. Let now f ∈ R(B), i.e. f ∈ (W 1

p′(Ω))∗

and 〈f,1〉 = 0. This yields

|〈f, φ〉| = |〈f, φ− φ̄〉| ≤ C‖φ− φ̄‖W 1
p′ (Ω) ≤ C‖∇φ‖Lp′ (Ω),

by the Poincaré-Wirtinger inequality and therefore [φ 7→ 〈f, φ〉] is continuous on C∞c (Ω)
with respect to the norm ‖∇ · ‖Lp′ (Ω).

Let u ∈ W 1
p (Ω\Σ) denote the unique solution of (6.34) and let v ∈ Ẇ 1

p (Ω\Σ) denote the
unique solution of

(∇v|∇φ)2 = 〈f, φ〉 − (∇u|∇φ)2, φ ∈W 1
p′(Ω),

[[ρv]] = 0, on Σ.

It follows readily that the function w := v+u ∈ Ẇ 1
p (Ω\Σ) is the unique solution of (6.33).

A final result in this subsection considers the system (6.3) with λ = g1 = g2 = h1 = h2 =
0. We assume that the function f depends on the spatial variable x and on some parameter
t, i.e. f = f(t, x). In this case the solution u = u(t, x) depends on t as well. The following
result contains some information about the regularity of u with respect to t and x.

Lemma 6.3.4. Let n = 2, 3, p ≥ 2, J = [0, T ] or J = R+ and λ = g1 = g2 = h1 = h2 = 0.
Then the following assertions are valid.

1. If Ω and Σ satisfy one of the conditions in (a), (b) above, then there exists a unique
solution

∇u ∈0W
1
p (J ;W 1

p (Ω\Σ)) ∩ Lp(J ;W 3
p (Ω\Σ))
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of (6.3) if and only if

f ∈0W
1
p (J ; Ŵ−1

p (Ω) ∩ Lp(Ω)) ∩ Lp(J ;W 2
p (Ω\Σ)).

2. If Ω and Σ are subject to the condition (c) above, then there exists a unique solution

u ∈0W
1
p (J ;W 1

p (Ω\Σ)) ∩ Lp(J ;W 3
p (Ω\Σ))

of (6.3) if and only if

f ∈0W
1
p (J ; Ŵ−1

p (Ω)) ∩ Lp(J ;W 1
p (Ω\Σ)).

Proof. (i) The regularity
∇u ∈0W

1
p (J ;W 1

p (Ω\Σ))

in the first assertion and
u ∈0W

1
p (J ;W 1

p (Ω\Σ))

in the second assertion is a direct consequence of Lemma 6.3.2 and Lemma 6.3.3, respectively.
(ii) Concerning the additional spatial regularity of u, one uses the fact that one already

knows the unique solution u of (6.3) with the regularity stated in Lemma 6.3.2 and Lemma
6.3.3. By means of local coordinates, one reduces each of the local problems to one of the
model probolems in (a) and (b) above. In particular, the two-phase half space and the
quarter space can be drawn back to a two-phase full space and an ordinary half space, re-
spectively, by reflection techniques. The mapping behavior of the Laplacian and the Poisson
semigroup in homogeneous Sobolev-Slobodeckii spaces, see (6.25), yield the corresponding
higher order estimates for the solution operators of the model problems. Therefore, the
proof of the additional regularity of u with respect to x follows along the lines of [28, Proof
of Theorem 8.6]. We will not repeat the arguments.

6.3.2 Parabolic problems

The following auxiliary lemma is concerned with the parabolic one-phase problem

∂tu− µ∆u = f, in Ω,

PS1

(
µ(∇u+∇uT)νS1

)
= PS1

g1, on S1,

u · νS1
= g2, on S1,

u = g3, on S2,

u(0) = u0, in Ω.

(6.35)

Again, we will concentrate on the case n = 3. The results in this section remain true for the
case n = 2.

Lemma 6.3.5. Let p > 2, p 6= 3, µ > 0, T > 0 and J = [0, T ]. Then there exists a unique
solution

u ∈ H1
p (J ;Lp(Ω)3) ∩ Lp(J ;H2

p (Ω)3)

of (6.35) if and only if the data are subject to the following regularity and compatibility
conditions

1. f ∈ Lp(J ;Lp(Ω)3),

2. g1 ∈W 1/2−1/2p
p (J ;Lp(S1)3) ∩ Lp(J ;W

1−1/p
p (S1)3),

3. g2 ∈W 1−1/2p
p (J ;Lp(S1)) ∩ Lp(J ;W

2−1/p
p (S1)),

4. g3 ∈W 1−1/2p
p (J ;Lp(S2)3) ∩ Lp(J ;W

2−1/p
p (S2)3),



6.3. Auxiliary elliptic and parabolic problems 111

5. u0 ∈W 2−2/p
p (Ω)3,

6. PS1

(
µ(∇u0 +∇uT0 )νS1

)
= PS1

g1|t=0 (p > 3),

7. u0|S1
· νS1

= g2|t=0, u0|S2
= g3|t=0,

8. g3 · νS1
= g2 at ∂S2,

9. P∂G
(
µ(∇x′g′3 +∇x′(g′3)T)ν∂S2

)
= P∂Gg

′
1 at ∂S2,

10. µ(∂νS1
(g3 · e3) + ∂3g2) = g1 · e3 at ∂S2,

where g′j :=
∑2
k=1(gj · ek)ek for j ∈ {1, 3}.

The result remains true for the case J = R+ if ∂t is replaced by ∂t + ω, with some
sufficiently large ω > 0.

Proof. 1. Extend u0 to some function ũ0 ∈W 2−2/p
p (R3)3 and solve the full space problem

∂tũ− µ∆ũ = 0, in R3,

ũ(0) = ũ0, in R3,
(6.36)

to obtain a unique solution

ũ ∈ H1
p (J ;Lp(R3)3) ∩ Lp(J ;H2

p (R3)3).

If u is a solution of (6.35), then u − ũ|Ω solves (6.35) with u0 = 0 and some modified data
(f, g1, g2, g3) (not to be relabeled) having vanishing temporal trace at t = 0, whenever it
exists. Therefore, we may w.l.o.g. assume that u0 = 0 in (6.35).

Suppose that u is a solution of (6.35) with u0 = 0. We cover ∂S2 by finitely many open
balls Uk := Br(xk), xk ∈ ∂S2, k = 1, . . . , N . This way, we obtain N bent quarter spaces
with corresponding solution operators Sk, which are well-defined, if r > 0 is sufficiently
small. Furthermore, by the results in Section 6.2 there exist open sets UN+j , j = 1, . . . , 3
such that

• UN+1 ⊂ Ω,

• UN+2 ∩ S1 6= ∅, UN+2 ∩ S2 = ∅,

• UN+3 ∩ S1 = ∅, UN+3 ∩ S2 6= ∅,

• Ω ⊂
⋃N+3
k=1 Uk,

and a subordinated partition of unity {ϕk}Nk=0 ⊂ C3
c (R3; [0, 1]) with ∂ν∂Gϕk = ∂3ϕk = 0 at

∂S2. Let uk := uϕk, fk := fϕk and gkj := gjϕk. Then uk solves the problem

∂tuk − µ∆uk = Fk(u) + fk, in Ωk,

PSk1

(
µ(∇uk +∇uTk )νSk1

)
= Gk(u) + PSk1 g

k
1 , on Sk1 ,

uk · νSk1 = gk2 , on Sk1 ,

uk = gk3 , on Sk2 ,

uk(0) = 0, in Ωk,

(6.37)

where Fk(u) := −µ[∆, ϕk]u and Gk(u) := PSk1

(
µ(∇ϕk ⊗ u+ u⊗∇ϕk)νSk1

)
.

Here ΩN+1 = R3, ΩN+2 reduces to bent half-spaces with pure-slip boundary conditions,
ΩN+3 is a half-space with Dirichlet boundary conditions and Ωk, k = 1, . . . , N are bent
quarter-spaces with pure-slip boundary conditions on one part of the boundary and Dirichlet
boundary conditions on the other part. Skj denote the corresponding parts of the boundary

∂Ωk and SN+1
j = SN+3

1 = SN+2
2 = ∅.
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Denoting by Sk the corresponding solution operators to each of the N + 3 problems, we
obtain the representation

uk = Sk
(
(fk, g

k
1 , g

k
2 , g

k
3 ) + (Fk(u), Gk(u), 0, 0)

)
.

Let {ψk}Nk=0 ⊂ C∞c (R3; [0, 1]) such that ψk ≡ 1 on suppϕk and suppψk ⊂ Uk. Multiplying
uk with ψk and summing from k = 0 to N yields the identity

u =

N∑
k=0

ψkSk
(
(fk, g

k
1 , g

k
2 , g

k
3 ) + (Fk(u), Gk(u), 0, 0)

)
. (6.38)

Therefore, any solution to (6.35), with u0 = 0, necessarily satisfies (6.38). The converse
however is in general not true. This pathology stems from the compatibility conditions at
∂Sk2 for the commutator term Gk(u) in (6.37). Thanks to Proposition 6.1.1 there exists an
appropriate extension operator extx3,k from

0W
1/2−1/p
p (J ;Lp(∂S

k
2 )) ∩ Lp(J ;W 1−2/p

p (∂Sk2 ))

to

0W
1/2−1/2p
p (J ;Lp(∂S

k
2 × R+)) ∩ Lp(J ;W 1−1/p

p (∂Sk2 × R+)),

such that [extx3,k v](0) = v. Replace Gk(u) by

G̃k(u, g3) := Gk(u)− extx3,k

(
Gk(u)|x3=Hj −Gk(g3)|x3=Hj

)
= G1

k(g3) +G2
k(u),

where G1
k(g3) := extx3,kGk(g3)|x3=Hj . We note on the go that G̃k(u, g3) = Gk(u), if u is a

solution of (6.35), since then u = g3 at ∂S2 and g3|S1
· νS1

= g2|S2
at ∂S2 by assumption.

Therefore we will henceforth work with the identity

u =

N∑
k=0

ψk
(
Sk(fk, g

k
1 +G1

k(g3), gk2 , g
k
3 ) + Sk(Fk(u), G2

k(u), 0, 0)
)
. (6.39)

Let 0E(T ) :=0H
1
p (J ;Lp(Ω)3) ∩ Lp(J ;H2

p (Ω)3),

F1(T ) := Lp(J × Ω)3,

0F2(T ) :=0W
1/2−1/2p
p (J ;Lp(S1)3) ∩ Lp(J ;W 1−1/p

p (S1)3),

0F3(T ) :=0W
1−1/2p
p (J ;Lp(S1)) ∩ Lp(J ;W 2−1/p

p (S1)),

0F4(T ) :=0W
1−1/2p
p (J ;Lp(S2)3) ∩ Lp(J ;W 2−1/p

p (S2)3)

and

0F(T ) := {(f, g1, g2, g3) ∈ F1(T )×4
j=2 { 0Fj(T )} :

(8)− (10) in Lemma 6.3.5 are satisfied}.

Since the terms involving u on the right side of (6.39) are of lower order, it follows that
there exists γ > 0 such that the a priori estimate

‖u‖E(T ) ≤M
(
‖(f, g1, g2, g3)‖F(T ) + T γ‖u‖E(T )

)
,

holds for any solution u of (6.39). Therefore, if T > 0 is sufficiently small, it follows that the
operator L :0E(T )→0F(T ) defined by the left side of (6.35) without the initial condition is
injective and has closed range. This in turn implies that L has a left-inverse.
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Applying a Neumann series argument, we see that for each given set of data (f, g1, g2, g3) ∈
0F(T ) there exists a unique solution u of (6.39) on a (possibly) small time interval [0, T ].
This follows as above by taking into account that the terms involving u on the right side
of (6.39) are linear and of lower order. Denote by S : 0F(T ) → 0E(T ) the corresponding
solution operator. It remains to prove the existence of a right inverse for L. Writing
u = S(f, g1, g2, g3), where (f, g1, g2, g3) ∈0F(T ), it follows that

S(f, g1, g2, g3) =

N∑
k=0

ψk

(
Sk(fk, g

k
1 +G1

k(g3), gk2 , g
k
3 ) + Sk(Fk(u), G2

k(u), 0, 0)
)
. (6.40)

Applying the operator L to (6.40) we obtain

LS(f, g1, g2, g3) = (f, g1, g2, g3) +R(f, g1, g2, g3),

where the linear operator R is given by

R(f, g1, g2, g3) :=

N∑
k=0

[L,ψk]
(
Sk(fk, g

k
1 +G1

k(g3), gk2 , g
k
3 ) + Sk(Fk(u), G2

k(u), 0, 0)
)

+

N∑
k=0

(Fk(u), Gk(u, g3), 0, 0)

Since the commutator [L,ψk] as well as Fk(u) and Gk(u, g3) are of lower order compared to
L, it follows that there exists γ > 0 such that R satisfies the estimate

‖R(f, g1, g2, g3)‖F(T ) ≤MT γ‖(f, g1, g2, g3)‖F(T ),

where M > 0 does not depend on T . Therefore, a Neumann series argument implies that
the right inverse for L is given by the linear operator S(I − R)−1, provided that T > 0
is sufficiently small. This implies that L is boundedly invertible and the proof of the first
assertion is complete.

2. Concerning the second assertion, we use local coordinates and make use of the fact
that the corresponding local solution operators are bounded by 1/ω in the norm of F. By
means of interpolation we are able to control all lower order terms by C/ωa for some uniform
a > 0. Choosing ω > 0 large enough, the norms of the lower order terms will become small.
This yields the invertibility of Lω as above, where Lω results from L by replacing ∂t with
∂t + ω.

We will also need a result on the well-posedness of the two-phase problem

∂t(ρu)− µ∆u = f, in Ω\Σ,
[[µ∂3v]] + [[µ∇x′w]] = gv, on Σ,

[[µ∂3w]] = gw, on Σ,

[[u]] = uΣ, on Σ,

PS1

(
µ(∇u+∇uT)νS1

)
= PS1g1, on S1\∂Σ,

u · νS1 = g2, on S1\∂Σ,

u = g3, on S2,

u(0) = u0, in Ω\Σ.

(6.41)

Lemma 6.3.6. Let p > 2, p 6= 3, µj > 0, ρj > 0, T > 0 and J = [0, T ]. Then there exists
a unique solution

u ∈ H1
p (J ;Lp(Ω)3) ∩ Lp(J ;H2

p (Ω\Σ)3)

of (6.41) if and only if the data are subject to the following regularity and compatibility
conditions
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1. f ∈ Lp(J ;Lp(Ω)3),

2. gv ∈W 1/2−1/2p
p (J ;Lp(Σ)2) ∩ Lp(J ;W

1−1/p
p (Σ)2),

3. gw ∈W 1/2−1/2p
p (J ;Lp(Σ)) ∩ Lp(J ;W

1−1/p
p (Σ)),

4. uΣ = (vΣ, wΣ) ∈W 1−1/2p
p (J ;Lp(Σ)3) ∩ Lp(J ;W

2−1/p
p (Σ)3),

5. g1 ∈W 1/2−1/2p
p (J ;Lp(S1)3) ∩ Lp(J ;W

1−1/p
p (S1\∂Σ)3),

6. g2 ∈W 1−1/2p
p (J ;Lp(S1)) ∩ Lp(J ;W

2−1/p
p (S1\∂Σ)),

7. g3 ∈W 1−1/2p
p (J ;Lp(S2)3) ∩ Lp(J ;W

2−1/p
p (S2)3),

8. u0 = (v0, w0) ∈W 2−2/p
p (Ω\Σ)3,

9. PS1

(
µ(∇u0 +∇uT0 )νS1

)
= PS1

g1|t=0, [[µ∂3v0]] + [[µ∇x′w0]] = gv|t=0 (p > 3),

10. u0|S1 · νS1 = g2|t=0, u0|S2 = g3|t=0, [[µ∂3w0]] = gw|t=0, [[u0]] = uΣ|t=0,

11. g3 · νS1 = g2 at ∂S2, uΣ · νS1 = [[g2]] at ∂Σ,

12. P∂Σ

(
(∇x′vΣ +∇x′vTΣ)ν∂Σ

)
= P∂Σ[[g′1/µ]] at ∂Σ,

13. ∂νS1
wΣ = [[(g1 · e3)/µ− ∂3g2]], (gv|ν∂Σ) = [[g1 · e3]] at ∂Σ,

14. P∂G
(
µ(∇x′g′3 +∇x′(g′3)T)ν∂S2

)
= P∂Gg

′
1 at ∂S2

15. µ(∂νS1
(g3 · e3) + ∂3g2) = g1 · e3 at ∂S2,

where g′j =
∑2
k=1(gj · ek)ek for j ∈ {1, 3}.

The result remains true for the case J = R+ if ∂t is replaced by ∂t + ω, with some
sufficiently large ω > 0.

Proof. 1. Without loss of generality we may assume u0 = 0. This can be seen as follows.

Extend u+
0 := u0|x3∈(0,H2) ∈ W

2−2/p
p (G × (0, H2))3 first w.r.t. x3, then w.r.t. (x1, x2) to

some ũ+
0 ∈W

2−2/p
p (R3)3 and solve the full space problem

∂tũ
+ −∆ũ+ = 0, in R3,

ũ+(0) = ũ+
0 , in R3,

(6.42)

to obtain a unique solution

ũ+ ∈ H1
p (J ;Lp(R3)3) ∩ Lp(J ;H2

p (R3)3).

Then we extend u−0 := u0|x3∈(H1,0) ∈ W
2−2/p
p (G × (H1, 0))3 first w.r.t. x3, then w.r.t.

(x1, x2) to some ũ−0 ∈ W
2−2/p
p (R3)3 and solve (6.42) with ũ+

0 replaced by ũ−0 to obtain a
unique solution

ũ− ∈ H1
p (J ;Lp(R3)3) ∩ Lp(J ;H2

p (R3)3).

Define ũ := ũ+χG×(0,H2) + ũ−χG×(H1,0). If u solves (6.41), then u − ũ solves (6.41) with
u0 = 0 and with some modified data (f, gj , uΣ) (not to be relabeled). Note that the time
traces of the modified data at t = 0 are zero by construction, whenever they exist.

Step 1: In a first step we consider the case µj = ρj = 1. Extend

(gv, gw) ∈0W
1/2−1/2p
p (J ;Lp(Σ)3) ∩ Lp(J ;W 1−1/p

p (Σ)3)

and
uΣ ∈0W

1−1/2p
p (J ;Lp(Σ)3) ∩ Lp(J ;W 2−1/p

p (Σ)3),
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to some functions

(g̃v, g̃w) ∈0W
1/2−1/2p
p (J ;Lp(R2)3) ∩ Lp(J ;W 1−1/p

p (R2)3)

and
ũΣ ∈0W

1−1/2p
p (J ;Lp(R2)3) ∩ Lp(J ;W 2−1/p

p (R2)3)

respectively. Then we solve the following two-phase problem in Ṙ3 := R2 × Ṙ.

∂tũ−∆ũ = 0, in Ṙ3,

[[∂3ṽ]] + [[∇x′w̃]] = g̃v, on R2 × {0},
[[∂3w̃]] = g̃w, on R2 × {0},

[[ũ]] = ũΣ, on R2 × {0},
ũ(0) = 0, in Ṙ3.

(6.43)

This yields the existence of a unique solution

ũ ∈0H
1
p (J ;Lp(R3)3) ∩ Lp(J ;H2

p (Ṙ3)3).

If u solves (6.41) with u0 = 0, then u− ũ|Ω solves (6.41) with u0 = gv = gw = uΣ = 0 and

some modified data (f̂ , ĝ1, ĝ2, ĝ3) in the right regularity classes and with vanishing trace at
t = 0 whenever it exists. Observe that the compatibility conditions on the modified data at
∂Σ read as follows.

[[ĝ2]] = [[∂3ĝ2]] = 0, and [[PS1 ĝ1]] = PS1 [[ĝ1]] = 0

Note that this is in general not the case if [[µ]] 6= 0. Therefore it follows that

PS1
ĝ1 ∈0W

1/2−1/2p
p (J ;Lp(S1)3) ∩ Lp(J ;W 1−1/p

p (S1)3),

and
ĝ2 ∈0W

1−1/2p
p (J ;Lp(S1)) ∩ Lp(J ;W 2−1/p

p (S1)).

Since the modified data ĝj also satisfy the compatibility conditions at ∂S2, we may solve

(6.35) by Lemma 6.3.5 with µ = 1, f = f̂ , g1 = PS1
ĝ1, g2 = ĝ2, g3 = ĝ3 and u0 = 0. This in

turn implies that problem (6.41) is well-posed, provided that µ1 = µ2 = 1.
Step 2: In the second step we consider the case [[ρ]] 6= 0, [[µ]] 6= 0. Let us first reduce

(6.41) with u0 = 0 to the case g1 = g2 = g3 = 0. To this end will apply Lemma 6.3.5 twice.
First we extend g+

j := gj |x3∈(0,H2) by some (higher order) reflections at {x3 = 0} to some
functions

g̃+
1 ∈0W

1/2−1/2p
p (J ;Lp(S1)3) ∩ Lp(J ;W 1−1/p

p (S1)3)

and
g̃+

2 ∈0W
1−1/2p
p (J ;Lp(S1)) ∩ Lp(J ;W 2−1/p

p (S1)),

such that g̃+
j |x3=H1 = 0. Then, we solve (6.35) with µ = µ2, f = 0, g1 = PS1 g̃

+
1 , g2 = g̃+

2 ,

g3|x3=H2
= g+

3 and g3|x3=H1
= 0 to obtain a unique solution

ũ+ ∈0H
1
p (J ;Lp(Ω)3) ∩ Lp(J ;H2

p (Ω)3).

Repeating the same procedure for g−j := gj |x3∈(H1,0) yields a unique solution

ũ− ∈0H
1
p (J ;Lp(Ω)3) ∩ Lp(J ;H2

p (Ω)3).

Define ũ := ũ+χG×(0,H2) + ũ−χG×(H1,0). If u solves (6.41) with u0 = 0, then u − ũ solves

(6.41) with u0 = 0, g1 = 0, g2 = 0 g3 = 0 and some modified data (f̂ , ĝv, ĝw, ûΣ) which are
subject to the following compatibility conditions at ∂Σ:

ûΣ · νS1
= 0, ∂νS1

ŵΣ = 0, ĝv · ν∂Σ = 0 (6.44)
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and
P∂Σ

(
(∇x′ v̂Σ +∇x′ v̂TΣ)ν∂Σ

)
= 0. (6.45)

Step 3: Let 0E(T ) :=0H
1
p (J ;Lp(Ω)3)∩Lp(J ;H2

p (Ω\Σ)3) and denote by 0F(T ) the space of
data (f, gj , uΣ), j ∈ {v, w, 1, 2, 3} such that the compatibility conditions (11)-(15) in Lemma
6.3.6 are satisfied. Define L : 0E(T ) → 0F(T ) by the left side of (6.41) without the initial
condition. By means of a localization procedure one can show that L satisfies the a priori
estimate

‖u‖
0E(T ) ≤M‖Lu‖0F(T ). (6.46)

This can be seen as in the proof of Lemma 6.3.5. Indeed, the charts which intersect ∂S2

and ∂Σ may be treated as in Sections 1.3.1 & 1.3.3, respectively, while the treatment of the
remaining charts is well-known. Note that there is no need to carry any correction terms as
in the proof of Lemma 6.3.5, since for the proof of (6.46) one already starts with a solution
of (6.41). Therefore, the compatibility conditions at ∂S2 and ∂Σ are necessarily satisfied.

Next, we set

0Ẽ(T ) := {u ∈0H
1
p (J ;Lp(Ω)3) ∩ Lp(J ;H2

p (Ω\Σ)3) :

u|S2
= 0, u|S1

· νS1
= 0, PS1

(
(∇u+∇uT)νS1

)
= 0},

and denote by 0F̃(T ) the space of data (f, gv, gw, uΣ) together with the compatibility con-
ditions (6.44) & (6.45) at ∂Σ. Note that

PS1

(
(∇u+∇uT)νS1

)
= 0⇔ PS1

(
µ(∇u+∇uT)νS1

)
= 0

at S1\∂Σ. Define L̃ :0Ẽ(T )→0F̃(T ) by

L̃u =


∂t(ρu)− µ∆u

[[µ∂3v]] + [[µ∇x′w]]
[[µ∂3w]]

[[u]]

 .

Since the norm in 0Ẽ(T ) is the same as in 0E(T ) and since

‖Lu‖
0F(T ) = ‖L̃u‖

0F̃(T )

for u ∈ 0Ẽ(T ), it follows from (6.46) that L̃ is injective with closed range, i.e. L̃ is a semi-
Fredholm operator. It is also crucial to observe that the constant M > 0 is uniform on
compact sets of µ > 0 and ρ > 0, by continuity.

We replace the coefficients (ρ1, ρ2, µ1, µ2) by

(ρτ1 , ρ
τ
2 , µ

τ
1 , µ

τ
2) := τ(ρ1, ρ2, µ1, µ2) + (1− τ)(1, 1, 1, 1), τ ∈ [0, 1],

and denote by L̃τ :0Ẽ(J)→0F̃(J) the corresponding operator which is induced by replacing
ρ and µ with ρτ and µτ , resectively. Note that L̃τ satisfies the estimate

‖u‖
0Ẽ(T ) ≤M‖L̃τu‖0F̃(T ),

with some constant M > 0 which is uniform with respect to τ ∈ [0, 1]. Hence L̃τ is semi-
Fredholm for each τ ∈ [0, 1]. By Step 1 of the proof, we already know that L0 is a Fredholm
operator with index zero. The continuity method for semi-Fredholm operators implies that
L1 is Fredholm with index zero as well. We remark that the reduction obtained in Step 2
of the proof is essential, since otherwise the viscosity coefficient µ appears in the definition
of F̃(T ). Replacing µ by µτ , it would follow that F̃(T ) depends on τ as well.

2. The strategy for proof of the second assertion is the same as in the proof of Lemma
6.3.5. Will will not repeat the arguments.
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6.4 The two-phase Stokes problem on the half line

In this section we want to show that there exists ω0 > 0 such that for each ω ≥ ω0 the
two-phase Stokes problem

ωρu+ ∂t(ρu)− µ∆u+∇π = f, in Ω\Σ,
div u = fd, in Ω\Σ,

−[[µ∂3v]]− [[µ∇x′w]] = gv, on Σ,

−2[[µ∂3w]] + [[π]] = gw, on Σ,

[[u]] = uΣ, on Σ,

PS1

(
µ(∇u+∇uT)νS1

)
= PS1

g1, on S1\∂Σ,

u · νS1
= g2, on S1\∂Σ,

u = g3, on S2,

u(0) = u0, in Ω\Σ,

(6.47)

has a unique solution (u, π, [[π]]) with maximal regularity of type Lp on the half line R+. To
this end we define

F1 := Lp(R+;Lp(Ω)3), F2 := Lp(R+;H1
p (Ω\Σ)),

F3 := W 1/2−1/2p
p (R+;Lp(Σ)2) ∩ Lp(R+;W 1−1/p

p (Σ)2),

F4 := W 1/2−1/2p
p (R+;Lp(Σ)) ∩ Lp(R+;W 1−1/p

p (Σ)),

F5 := W 1−1/2p
p (R+;Lp(Σ)3) ∩ Lp(R+;W 2−1/p

p (Σ)3),

F6 := W 1/2−1/2p
p (R+;Lp(S1)3) ∩ Lp(R+;W 1−1/p

p (S1\∂Σ)3),

F7 := W 1−1/2p
p (R+;Lp(S1)) ∩ Lp(R+;W 2−1/p

p (S1\∂Σ)),

F8 := W 1−1/2p
p (R+;Lp(S2)) ∩ Lp(R+;W 2−1/p

p (S2)),

and F̃ := ×8
j=1Fj as well as

F := {(f1, . . . , f8) ∈ F̃ : (f2, f5, f7, f8) ∈ H1
p (R+; Ĥ−1

p (Ω))}.

Furthermore, we set Xγ := W
2−2/p
p (Ω\Σ)3. Then we have the following result.

Theorem 6.4.1. Let µj , ρj , Hj , σ > 0, p > 2, p 6= 3 and let G ∈ R2 be open and bounded
with ∂G ∈ C4. Define Ω := G × (H1, H2) and let Σ := G × {0}. Let S1 := ∂G × (H1, H2)
and S2 := (G × {H1}) ∪ (G × {H2}). Then there exists ω0 > 0 such that for each ω ≥ ω0

problem (6.47) has a unique solution

u ∈ H1
p (R+;Lp(Ω)3) ∩ Lp(R+;H2

p (Ω\Σ)3), π ∈ Lp(R+; Ḣ1
p (Ω\Σ)),

and
[[π]] ∈W 1/2−1/2p

p (R+;Lp(Σ)) ∩ Lp(R+;W 1−1/p
p (Σ))

if and only if the data are subject to the following regularity and compatibility conditions.

1. (f, fd, gv, gw, uΣ, g1, g2, g3) ∈ F,

2. u0 ∈ Xγ ,

3. div u0 = fd|t=0, −[[µ∇x′w0]]− [[µ∂3v0]] = gv|t=0, [[u0]] = uΣ|t=0,

4. PS1
(µ(∇u0 +∇uT0 )νS1

) = PS1
g1|t=0 (p > 3), u0 · νS1

= g2|t=0, u0 = g3|t=0,
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5. [[g2]] = uΣ · νS1 ,

6. [[(g1 · e3)/µ− ∂3g2]] = ∂νS1
(uΣ · e3),

7. P∂Σ[(D′vΣ)ν′] = [[P∂Σg
′
1/µ]],

8. (gv|νS1
) = −[[g1 · e3]], (g3|νS1

) = g2,

9. P∂G[µ(D′g′3)ν′] = (P∂Gg
′
1),

10. µ∂νS1
(g3 · e3) + µ∂3g2 = g1 · e3.

Proof. The proof is based on a localization procedure. However, in contrast to the proof of
Theorem 2.3.1 we are not able to control the commutator terms in the corresponding local
problems which are of lower order by decreasing the length of the time interval. However,
replacing the time derivative ∂t by ω+∂t in all auxiliary problems which were used in Chapter
1, it follows that there exists ω0 > 0 such that each of these problems has maximal regularity
of type Lp on the half line R+, provided ω ≥ ω0. Indeed, this can be seen by studying the
corresponding symbols s(λ, ξ) of the differential operators. The parameter λ is the Laplace
transform of ∂t, hence replacing λ by ω + λ this yields the symbol sω(λ, ξ) := s(ω + λ, ξ).

By means of interpolation and trace theory we are able to control all commutator terms
which appear during the localization procedure by C/ωa for some uniform a ∈ (0, 1) and
some C > 0 being independent of ω. Choosing ω > 0 large enough, the norms of the lower
order terms will become small. This yields the linear well-posedness of (6.47) on the half
line R+.

As an immediate consequence of the last theorem, one obtains maximal regularity of type
Lp of (6.47) in exponentially weighted spaces. To see this, we define

e−δFj := {f ∈ Fj : [t 7→ eδtf(t)] ∈ Fj},

where δ ∈ R and in the same way e−δF̃ and e−δF.
We write ω = ω − δ + δ in (6.47), multiply each equation by eδt and use the formula

∂t(e
δtu(t)) = eδt(δu(t) + ∂tu(t)) to obtain the following result

Corollary 6.4.2. Let the conditions of Theorem 6.4.1 be satisfied. Suppose that δ ∈ R and
let ω ≥ max{ω0, ω0 + δ}. Then there exists a unique solution

u ∈ e−δ[H1
p (R+;Lp(Ω)3) ∩ Lp(R+;H2

p (Ω\Σ)3)], π ∈ e−δ[Lp(R+; Ḣ1
p (Ω\Σ))],

and
[[π]] ∈ e−δ[W 1/2−1/2p

p (R+;Lp(Σ)) ∩ Lp(R+;W 1−1/p
p (Σ))]

of (6.47) if and only if the data are subject to the conditions in Theorem 6.4.1 with F being
replaced by e−δF.

6.5 Elliptic two-phase Stokes problems

Let f̂ ∈ Lp(Ω)3, f̂d ∈ H1
p (Ω\Σ), (ĝv, ĝw) ∈ W

1−1/p
p (Σ)3, ûΣ ∈ W

2−1/p
p (Σ)3, ĝ1 ∈

W
1−1/p
p (S1\∂Σ), ĝ2 ∈ W

2−1/p
p (S1\∂Σ) and ĝ3 ∈ W

2−1/p
p (S2) be given such that

(f̂d, ûΣ, ĝ2, ĝ3) ∈ Ĥ−1
p (Ω) and such that the compatibility conditions (5)-(10) in Theorem

6.4.1 are satisfied at ∂S1 ∩ ∂S2 and S1 ∩ ∂Σ.
Define f(t) := te−tf̂ and in the same way fd(t), uΣ(t), gj(t), j ∈ {v, w, 1, 2, 3}. Then it

holds that
(f, fd, gv, gw, uΣ, g1, g2, g3) ∈ e−δF
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for each δ ∈ (0, 1) and the compatibility conditions (3)-(10) in Theorem 6.4.1 are satisfied
with u0 = 0. By Corollary 6.4.2 there exists a unique solution (u, π, [[π]]) of (6.47) with
ω ≥ ω0 + δ such that

u ∈ e−δ[ 0H
1
p (R+;Lp(Ω)3) ∩ Lp(R+;H2

p (Ω\Σ)3)], π ∈ e−δ[Lp(R+; Ḣ1
p (Ω\Σ))],

and
[[π]] ∈ e−δ[ 0W

1/2−1/2p
p (R+;Lp(Σ)) ∩ Lp(R+;W 1−1/p

p (Σ))].

Therefore, the Laplace transform L of each term in (6.47) is well defined. Observe that

(Lf)(λ) =

∫ ∞
0

e−λtf(t) dt = f̂

∫ ∞
0

te−(λ+1)t dt =
1

(λ+ 1)2
f̂ ,

for Reλ > −1, hence (Lf)(0) = f̂ . Doing the same for all the other data and defining
(û, π̂, [[π̂]]) := L(u, π, [[π]]) we obtain that (û, π̂, [[π̂]]) solves the elliptic problem

ωρû− µ∆û+∇π̂ = f̂ , in Ω\Σ,

div û = f̂d, in Ω\Σ,
−[[µ∂3v̂]]− [[µ∇x′ŵ]] = ĝv, on Σ,

−2[[µ∂3ŵ]] + [[π̂]] = ĝw, on Σ,

[[û]] = ûΣ, on Σ,

PS1

(
µ(∇û+∇ûT)νS1

)
= PS1

ĝ1, on S1\∂Σ,

û · νS1
= ĝ2, on S1\∂Σ,

û = ĝ3, on S2,

(6.48)

whenever ω ≥ ω0 + δ. Let Au := (µ/ρ)∆u− (1/ρ)∇π with domain

D(A) = {u ∈ H2
p (Ω\Σ)3 ∩ Lp,σ(Ω) : [[µ∂3v]] + [[µ∇x′w]] = 0, [[u]] = 0,

PS1
(µ(Du)νS1

) = 0, u · νS1
= 0, u|S2

= 0},

and π ∈ Ẇ 1
p (Ω\Σ) is the unique solution of the weak transmission problem(

1

ρ
∇π|∇φ

)
L2(Ω)

=

(
µ

ρ
∆u|∇φ

)
L2(Ω)

, φ ∈W 1
p′(Ω),

[[π]] = 2[[µ∂3w]], on Σ.

Since A has a compact resolvent, the spectrum σ(A) of A consists solely of isolated eigen-
values having a finite multiplicity. Furthermore it holds that Reσ(A) = σ(A) ⊂ (−∞, 0) by
Korn’s inequality. Indeed, multiplying the eigenvalue problem Au = λu by u and integrating
by parts, we obtain the identity

λ‖u‖2L2(Ω) = −‖µ1/2Du‖2L2(Ω).

This yields the following result.

Theorem 6.5.1. Let ω ≥ 0, µj , ρj , σ > 0, p > 2, p 6= 3 and let Ω and Σ as in Theorem
6.4.1. Then there exists a unique solution (û, π̂, [[π̂]]) with

û ∈ H2
p (Ω\Σ)3, π̂ ∈ Ḣ1

p (Ω\Σ), [[π̂]] ∈W 1−1/p
p (Σ)

of (6.48) if and only if the data are subject to the following regularity and compatibility
conditions.
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1. f̂ ∈ Lp(Ω)3, f̂d ∈ H1
p (Ω\Σ),

2. (ĝv, ĝw) ∈W 1−1/p
p (Σ)3, ûΣ ∈W 2−1/p

p (Σ)3,

3. ĝ1 ∈W 1−1/p
p (S1\∂Σ), ĝ2 ∈W 2−1/p

p (S1\∂Σ),

4. ĝ3 ∈W 2−1/p
p (S2), (f̂d, ûΣ, ĝ2, ĝ3) ∈ Ĥ−1

p (Ω),

5. [[ĝ2]] = ûΣ · νS1
,

6. [[(ĝ1 · e3)/µ− ∂3ĝ2]] = ∂νS1
(ûΣ · e3),

7. P∂Σ[(D′v̂Σ)ν′] = [[P∂Σĝ
′
1/µ]],

8. (ĝv|νS1
) = −[[ĝ1 · e3]], (ĝ3|νS1

) = ĝ2,

9. P∂G[µ(D′ĝ′3)ν′] = (P∂Gĝ
′
1),

10. µ∂νS1
(ĝ3 · e3) + µ∂3ĝ2 = ĝ1 · e3,

where ν′ = ν∂G.

6.6 Miscellaneous results

Let G ⊂ Rn−1, n ∈ {2, 3} be a bounded domain with boundary ∂G ∈ C1 and define
Ω := G× (H1, H2), with H1 < 0 < H2. Furthermore, let Σ := G×{0}, S1 := ∂G× (H1, H2)

and S2 :=
⋃2
j=1{G × {Hj}}. Define x′ = (x1, . . . , xn−1)T and x = (x′, xn)T. Assume that

h : G→ (H1, H2) is continuous and set

Γ := {x = (x′, xn) ∈ Ω : xn = h(x′), x′ ∈ G},

that is, Γ is an (n− 1)-dimensional manifold in Ω which is given as the graph of the height
function h over Σ.

Proposition 6.6.1 (Divergence theorem in cylindrical domains). For each u ∈ H1
2 (Ω\Σ)n

the following identity holds.∫
Ω

div u dx =

∫
S1

u|S1
· νS1

dS1 +

∫
S2

u|S2
· νS2

dS2 −
∫

Γ

[[u]]νΓ dΓ,

where νSj are the outer unit normals on Sj and νΓ is the normal on Γ pointing from

Ω1 := {x = (x′, xn) ∈ Ω : xn < h(x′), x′ ∈ G}

to Ω2 := Ω\Ω1.

Proof. The proof follows from the fact that Ωj are both Lipschitz domains. Indeed, it is
well-known that the divergence theorem is valid for Lipschitz domains, see for example [22,
Section 4.3].

For u ∈ H1
2 (Ω)n, let Du := ∇u +∇uT. The following result is well-known: There exists

a constant C > 0 such that
‖u‖H1

2 (Ω) ≤ C‖Du‖L2(Ω)

for all u ∈ H1
2 (Ω)n such that u = 0 on ∂Ω (in the sense of traces). The proof of this

inequality relies on integration by parts. We will show that the estimate remains true, if
u = 0 on some subset of ∂Ω having a positive (n− 1)-dimensional Hausdorff measure.
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Theorem 6.6.2 (Korn’s inequality). Let Ω ⊂ Rn, n = 2, 3, be a connected, bounded Lips-
chitz domain. Then there exists C > 0, which does only depend on Ω such that the estimate

‖∇u‖L2(Ω) ≤ C‖Du‖L2(Ω) (6.49)

holds for each u ∈ H1
2 (Ω)n with u = 0 on some subset ∂DΩ of the boundary ∂Ω of Ω such

that Hn−1(∂DΩ) > 0, where Hd denotes the d-dimensional Hausdorff measure.

Proof. Let us first show that we have some kind of Poincaré type estimate, that is, there
exists a constant C > 0 such that the estimate

‖u‖L2(Ω) ≤ C‖Du‖L2(Ω),

holds for all u ∈ H1
2 (Ω)n with u = 0 on some subset ∂DΩ of the boundary ∂Ω of Ω such

that Hn−1(∂DΩ) > 0.
Assume on the contrary that for each m ∈ N there exists um ∈ H1

2 (Ω)n with um = 0 on
∂DΩ and ‖um‖L2(Ω) = 1 such that

‖um‖L2(Ω) ≥ m‖Dum‖L2(Ω).

It follows that Dum → 0 in L2(Ω) as m→∞. By Korn’s inequality for functions in H1
2 (Ω)n

(see [36]) we obtain

‖um‖H1
2 (Ω) ≤ C0(‖Dum‖L2(Ω) + ‖um‖L2(Ω)), (6.50)

for some constant C0 > 0. It follows that (um) ⊂ H1
2 (Ω)n is bounded. By Rellich’s theorem,

there exists a subsequence (umk) such that umk → u∗ in L2(Ω). Then ‖u∗‖L2(Ω) = 1 and
by trace theory it holds that u∗(x) = 0 for a.e. x ∈ ∂DΩ. We make use of (6.50) one more
time to conclude that (umk) is a Cauchy sequence in H1

2 (Ω)n, since Dumk → 0 in L2(Ω).
Therefore we obtain umk → u∗ even in H1

2 (Ω). Since

‖Dumk −Du∗‖L2(Ω) ≤ C‖∇umk −∇u∗‖L2(Ω) → 0

as k →∞ it follows readily that Du∗ = 0.
Therefore there exists a skew-symmetric matrix A ∈ Rn×n and some b ∈ Rn such that

u∗(x) = Ax+ b for a.e. x ∈ Ω (see [36]). Define U := {x ∈ Rn : Ax+ b = 0}. Then U is an
(n− 1)-dimensional affine subspace of Rn, since ∂DΩ ⊂ U and u∗ 6≡ 0. Fix any x0 ∈ U and
define

U0 := U − x0 := {x− x0 : x ∈ U}.

It follows that dimU0 = n − 1 and Ax = 0 for each x ∈ U0. Let U⊥0 be the orthogonal
complement of U0 and let y ∈ U⊥0 . Then (x|Ay) = −(Ax|y) = 0 for each x ∈ U0, since
A is skew-symmetric, wherefore Ay ∈ U⊥0 . Furthermore we have (Ay|y) = 0, since A is
skew-symmetric, hence Ay ∈ (U⊥0 )⊥ = U0 and therefore Ay = 0 for each y ∈ U⊥0 . But this
means that Ax = 0 for each x ∈ Rn, since Rn = U0⊕U⊥0 . Thus, we have shown that A = 0,
hence u∗(x) = b for some b ∈ Rn. Since ‖u∗‖L2(Ω) = 1 and u∗(x) = 0 for a.e. x ∈ ∂DΩ we
have a contradiction.

Finally, the assertion of the proposition follows from the Poincaré type estimate combined
with Korn’s inequality for functions in H1

2 (Ω)n.

Last but not least, we need an auxiliary result which is crucial for the proof of local
well-posedness in Chapter 3.

Proposition 6.6.3. Let p > 2, G ⊂ R2 be a bounded domain with boundary ∂G ∈ C2 and
outer unit normal vector field ν which is C1 in a neighborhood of ∂G. If v ∈W 2

p (G;R2) and

h ∈W 3−1/p
p (G) such that (v|ν) = ∂νh = 0 and P∂G[(Dv)ν] = 0, then ∂ν(v|∇h) = 0.
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Proof. An easy computation shows that

∂ν(v|∇h) = (∂νv|∇h) + (v|∇2hν),

where ∂νv := ∇vTν.
Note that P∂G[(Dv)ν] = 0 implies that ((Dv)ν|∇h) = 0, since by assumption ∂νh = 0.

This in turn yields (∂νv|∇h) = −(∇vν|∇h). Making use of the representation ∇h = τ∂τh+
ν∂νh = τ∂τh, where τ ∈ R2 with |τ | = 1 and (τ |ν) = 0, we obtain

(∇vν|∇h) = ((∇h · ∇)v|ν) = ∂τh(∂τv|ν) = −∂τh(v|∂τν).

Here we made use of the assumption (v|ν) = 0 and ∇h · ∇ :=
∑2
j=1 ∂jh∂j .

Concentrating on the term (v|∇2hν), we obtain

(v|∇2hν) =

2∑
i,j=1

vi∂i∂jhνj =

2∑
i,j=1

[vi∂i(∂jhνj)− vi∂jh∂iνj ]

= (v · ∇)∂νh−
2∑

i,j=1

vi∂jh∂iνj = (v|τ)∂τ∂νh+ (v|ν)∂2
νh−

2∑
i,j=1

vi∂jh∂iνj

= −
2∑

i,j=1

vi∂jh∂iνj ,

since (v|ν) = ∂νh = 0. Here it is important to observe that ∂τ∂νh = 0, whenever ∂νh = 0,
since ∂τ denotes the derivative in tangential direction.

Note that

2∑
i,j=1

vi∂jh∂iνj = ((v · ∇)ν|∇h) = (v|τ)(∂τν|∇h) = (v|τ)∂τh(∂τν|τ) = ∂τh(∂τν|v),

since v = τ(v|τ) + ν(v|ν) = τ(v|τ) and ∇h = τ∂τh. Finally, this yields

∂ν(v|∇h) = ∂τh[(∂τν|v)− (∂τν|v)] = 0.

The proof is complete.
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[28] M. Köhne, J. Prüss, M. Wilke, Qualitative behavior of solutions for the two-phase
Navier-Stokes equations with surface tension. Math. Ann. 356, 737–792 (2013).
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die den benutzten Werken wörtlich und inhaltlich entnommenen Stellen als solche kenntlich
gemacht habe.

Halle (Saale), 20.06.2013

Mathias Wilke



128

Curriculum Vitae

Personal Data

Name: Mathias Wilke
Date, Place of birth: 04.10.1979, Merseburg
Nationality: German

Education

1999-2004 studies in mathematics (major) and physics (minor),
Martin-Luther University Halle-Wittenberg, Germany

September 2004 diploma
Nov. 2004 - Nov. 2007 PhD student at the Department of Mathematics,

Martin-Luther University Halle-Wittenberg, Germany
Nov. 2007 Defense of the PhD thesis:

”Analysis for phase-field models of Cahn-Hilliard type”
Supervisor: Prof. J. Prüss

Positions

Nov. 2004 - Nov. 2007 ”Wissenschaftlicher Mitarbeiter” (Research Assistant),
MLU Halle

Dec. 2007 - present ”Wissenschaftlicher Mitarbeiter” (Postdoc),
MLU Halle

Aug. 2010 - July 2011 Visiting Assistant Professor, Vanderbilt University,
Nashville, TN, USA (on leave in Halle)

Awards

October 2005 Award of the ’Georg-Cantor-Vereinigung’ for the diploma thesis
January 2008 Martin-Luther award for the PhD thesis

Halle, 20.06.2013


