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Abstract
In this thesis, the volume-averaged transport parameters of the one-dimensional macro-
scopic continuum model (CM) for drying are determined from three-dimensional micro-
scopic discrete pore network models (PNMs). Then these macroscopic parameters are fed
into the CM for quick predictions. The discrete model called throat-pore model (TPM)
is presented and compared with a throat-node model (TNM) by performing simulations
under identical initial and boundary conditions.

The CM used in this work is an isothermal version of the broadly accepted macroscopic
CM of drying. The CM is treated with different boundary conditions. The first treatment
is to impose the evaporation rate at the drying front (or surface). The second is to impose
flux boundary conditions at two interfaces, i.e., at the interface between the (gas-side)
boundary layer and the (medium-side) dry region, as well as at the interface between the
dry and unsaturated regions which evolves freely during drying. The latter approach is
named as three-transport-zone CM, which includes three sectionally applicable transport
equations to reproduce the drying characteristics of capillary porous media.
Parameters included in these models are the moisture transport coefficient in the wet

zone within the porous medium, the vapor transport coefficient in the dry zone within the
porous medium, the vapor transport coefficient in the gas-side diffusion layer, the vapor
pressure-saturation relationship at the surface, as well as the vapor pressure-saturation
relationship at the drying front. Those macroscopic parameters are extracted from the
PNM datasets.
Operation of the CM is very sensitive upon the moisture transport coefficient in the

totally or partially saturated zone of the porous medium. A hybrid method is introduced
to control the effect of the sensitivity of the CM on the macroscopic parameters. By
punctually adjusting the dataset in the high saturation period, the CM provides a stronger
agreement with pore network simulations, which shows that the underlying transport
phenomena are better preserved in the scattered dataset that the new hybrid method
provides.

Moreover, the surface vapor transport coefficient-surface vapor concentration relationship
is assessed from PNM simulations, which can be used in the frame of a CM to couple the
porous medium with the boundary layer. Besides, emendation factors are introduced to
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link the normalized evaporation rate from the wet part of the porous medium surface with
the surface wetness or surface saturation. Their evaluation shows that the normalized
evaporation rate contributed from wet patches tends to surface saturation with increasing
intensity of drying, whereas a similar but weaker trend can be observed with surface
wetness. This correlation provides, especially in case of enhanced and non-isothermal
drying processes, a simple method for coupling the wet surface region with the gas-side
boundary layer in a two-equation CM. The evaporation rate from the wet surface region has
also been evaluated by inserting PNM data into a modified version of Schlünder’s model.
The results are not encouraging the derivation of CM boundary conditions according to
Schlünder, neither for the whole medium surface nor for its wet part.

Furthermore, correlations of macroscopic parameters with pore structures are discussed
with respect to the mean and standard deviation of monomodal throat radius distribution
as well as for bimodal pore size distribution.

Finally, the Brooks and Corey capillary pressure model is revisited from the microscopic
aspect. The parameters in this model, the wetting phase residual saturation, entry
capillary pressure, and the size distribution index, are assessed and their correlations with
microstructural features are discussed.
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Kurzzusammenfassung
In dieser Arbeit werden die volumengemittelten Transportparameter des eindimensionalen
makroskopischen Kontinuumsmodells (CM) für die Trocknung aus dreidimensionalen,
mikroskopischen und diskreten Porennetzwerkmodellen (PNMs) bestimmt. Dann werden
diese makroskopischen Parameter für schnelle Vorhersagen in das CM eingespeist. Das
diskrete Modell, das als Hälse-Poren-Modell (TPM) bezeichnet wird, wird vorgestellt und
mit dem Hälse-Knoten-Modell (TNM) verglichen, indem Simulationen unter identischen
Anfangs- und Randbedingungen durchgeführt werden.

Das verwendete CM ist eine isotherme Version des für die Trocknung allgemein akzep-
tierten makroskopischen CM. Das CM wird mit unterschiedlichen Randbedingungen
gelöst. Die erste Variante besteht darin, das CM mit der Verdampfungsgeschwindigkeit
an der Trocknungsfront (oder Oberfläche) anzusetzen. Die zweite besteht darin, Massen-
stromdichten an zwei Grenzflächen zu definieren, d.h. an der Grenzfläche zwischen der
(gasseitigen) Grenzschicht und dem (mittelseitigen) trockenen Bereich sowie der Gren-
zfläche zwischen dem trockenen und dem teilgesättigten Bereich, die sich frei entwickelt
während des Trocknens. Der letztere Ansatz wird als CM mit drei Transportzonen
bezeichnet, das drei abschnittsweise anwendbare Transportgleichungen enthält, um die
Trocknungseigenschaften von kapillaren porösen Medien zu reproduzieren.

In diesen Modellen enthaltene Parameter sind der Feuchtigkeitstransportkoeffizient
in der Nasszone innerhalb des porösen Mediums, der Dampftransportkoeffizient in der
Trockenzone innerhalb des porösen Mediums, der Dampftransportkoeffizient in der gas-
seitigen Diffusionsschicht, die Beziehung zwischen Dampfdruck und Sättigung an der
Oberfläche sowie die Dampfdruck-Sättigung-Beziehung an der Trocknungsfront. Diese
makroskopischen Parameter werden aus den PNM-Datensätzen extrahiert.
Der Betrieb des CM ist sehr empfindlich gegenüber dem Feuchtigkeitstransportkoef-

fizienten in der vollständig oder teilweise gesättigten Zone des porösen Mediums. Eine
Hybridmethode wird eingeführt, um den Einfluss der Empfindlichkeit des CM auf die
makroskopischen Parameter zu steuern. Durch punktuelle Anpassung des Datensatzes in
der Hochsättigungsperiode ermöglicht das CM eine bessere Übereinstimmung mit Poren-
netzwerksimulationen, was zeigt, dass die zugrunde liegenden Transportphänomene in dem
von der neuen Hybridmethode bereitgestellten Streudatensatz besser erhalten bleiben.
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Darüber hinaus wird die Beziehung zwischen Transportkoeffizienten und Konzentration
des Dampfes an der Körperoberfläche anhand von PNM-Simulationen bewertet, die im
Rahmen eines CM verwendet werden kann, um das poröse Medium mit der Grenzschicht
zu koppeln. Außerdem werden Emendationsfaktoren eingeführt, um die normierte Ver-
dunstungsgeschwindigkeit vom feuchten Teil der Oberfläche des porösen Mediums mit
der Oberflächenfeuchte oder Oberflächensättigung zu verknüpfen. Ihre Bewertung zeigt,
dass die normierte Verdunstungsgeschwindigkeit, die von feuchten Stellen getragen wird,
mit zunehmender Trocknungsintensität zur Oberflächensättigung neigt, während ein ähn-
licher, aber schwächerer Trend auch bei der Oberflächenfeuchte beobachtet werden kann.
Diese Korrelation liefert insbesondere im Fall von schnellen und nicht isothermen Trock-
nungsprozessen ein einfaches Verfahren zum Koppeln des feuchten Oberflächenbereichs
mit der gasseitigen Grenzschicht in einem CM mit zwei Gleichungen. Die Verdunstungs-
geschwindigkeit aus dem feuchten Oberflächenbereich wird durch Einfügen von PNM-Daten
in eine modifizierte Version des Schlünder-Modells bewertet. Die Ergebnisse legen die
Ableitung von CM-Randbedingungen nach Schlünder weder für die gesamte Oberfläche
noch für ihren feuchten Teil nahe.

Weiterhin werden Korrelationen makroskopischer Parameter mit der Porenstruktur für
unterschiedliche Mittelwerte und Standardabweichungen einer monomodalen Verteilung
des Radius von Knotenhälsen sowie für eine entsprechende bimodale Verteilung diskutiert.

Schließlich wird das Kapillardruckmodell von Brooks und Corey unter mikroskopischen
Gesichtspunkten überarbeitet. Die Parameter in diesem Modell, (Restsättigung der
benetzenden Phase, Eintrittskapillardruck, Größenverteilungsindex) werden bewertet und
ihre Korrelationen mit Merkmalen der Mikrostruktur diskutiert.
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Chapter 1

Introduction and overview
Drying of porous materials is central to many environmental and engineering applications,
including the evaporation of water from soils, the drying of food and building materials,
the drying of porous electrodes, etc. Regardless of the application field, mathematical
models for drying of porous materials are generally developed at two model hierarchies: At
the macroscale, a partially saturated porous medium is described as a continuum, and the
distribution of state variables is computed by means of functions in space and time. The
corresponding set of equations is referred to as a continuum model (CM) (Whitaker, 1977).
Discrete pore network models (PNMs) are, in contrast, developed to describe transport
phenomena in partially saturated porous media at the pore scale (microscale). A PNM
approximates the void space within a porous medium as a network of pores and nodes.
Simple physical laws applied to each pore result in a large system of ordinary differential
equations with degrees of freedom at each node of the pore network. Although both
approaches may be useful for applications, each method also suffers from drawbacks.

Thus, this chapter first provides the necessary background about porous media and the
drying process. Afterward, we explain the mathematical approaches to describe the drying
process, i.e. continuum models and pore network models. In fact, the combination of these
two modeling approaches (i.e. CM & PNM) offers new opportunities for simulating the
drying process. In the following section, we will present the motivation for current work.
In the end, the scope of this dissertation is specified.

1.1 Background

1.1.1 Description of porous media

Porous materials are common in the surroundings (Fig. 1.1), but also in engineering
applications, for example as processed foods or solid pharmaceutical dosage forms. In
general, a porous medium consists of a solid or collection of solid bodies (which is called
matrix or frame), with sufficient open space in or around the solids to enable fluids to
pass through (Fig. 1.2). The void space in the porous medium can be mapped by an
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interconnected network of pores. Pores filled or partially filled with fluids can express the
distribution of fluids in the porous medium. This approach is adopted in discrete pore
network modeling (Chapter 2).
Porous media can be classified upon physical properties of the solid matrix and its

interplay with fluid transport. For example, the water (liquid) molecules can be physically
bound on the interior solid free surface by molecular forces (i.e., van der Waals force)
or chemically bound (water of crystallization). Classification of the porous media can
stand on the percentage of bound water over the free water during the transport process.
If the portion of bound water is significant, the porous medium is called hygroscopic.
Hygroscopic materials have in common pore sizes reported to be smaller than about 100
nm, such as cement paste, apple, potato.
In contrast, when free water plays a dominant role in liquid transport, we name these

materials as capillary porous media (or non-hygroscopic porous media). The capillary
porous media are typically composed of pores with sizes in the order of 100 µm (Geoffroy
and Prat, 2014). Typical examples are bricks or a packed bed of relatively large glass
particles. In this work, we only focus on transport properties of capillary porous media.
That is to say, the pore size of porous media is assumed in the micrometer range.

Figure 1.1: Examples of natural materials (a) sandy soils (taken on a beach in Barcelona,
Spain) (b) sandstones (taken in Lanzarote, Spain) as well as of (c) building
materials (taken in Prague, Czech Republic).

To facilitate the quantification of transport properties of capillary porous media, we
need to characterize their morphology. Porosity ε is one major property of the porous
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medium, defined as:
ε = Vg + Vl

Vg + Vl + Vs
= Vvoid

Vtot
. (1.1)

Here, Vvoid (m3) represents the void volume in the porous medium, which consists of the
volume of the gas phase Vg (m3) and liquid phase Vl (m3). Vs (m3) denotes the solid
volume.

Since the porous medium can be filled or partially filled with liquid, local or global
(network) saturation (or moisture content), S or Snet, describes its degree of wetness:

S = Vl
Vg + Vl

; Snet = Vl,net
Vg,net + Vl,net

. (1.2)

Local saturation refers to some control volume which is relevant from the macroscale
perspective (or a slice that makes sense for the discrete model), global saturation represents
the saturation in the entire porous medium.

Figure 1.2: Schematic representation of a multiphase porous medium during the drying
process.

Nevertheless, the major mechanism of liquid transport in the capillary porous medium
is the capillary force. The Young-Laplace equation is most commonly used to express the
capillary pressure, Pc (Pa), under equilibrium (static):

Pc = 2σcosθ
r

. (1.3)

Here, r (m) denotes the radius of the capillary tube, σ (N/m) is the surface tension, and
θ (◦) is the contact angle of the liquid on the wall of the capillary tube (Fig. 1.3). The
Young-Laplace equation can be understood as a balance of the force at the meniscus
surface (capillary force) with the surface forces of fluids, i.e. the water and gas, acting
along the perimeter of the capillary tube. Once this condition is fulfilled, a stable meniscus
as in Fig. 1.3 can be observed.
The dynamic fluid flow in porous media is conventionally quantified via Darcy’s law.
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This relates the instantaneous volume flux q̇ (m3/(m2 · s)) through the porous medium
(superficial velocity), the permeability k (m2), the dynamic viscosity of the fluid µ (Pa · s)
and the pressure gradient (as the driving force for fluid flow) in the form:

q̇ = −k
µ

∂P

∂z
. (1.4)

Here, z is the direction of the capillary pressure, and the equation can be integrated over
distance L (m) from pressure Pa (Pa) to pressure Pb (Pa) (Fig. 1.4) to obtain the integral
form of the Darcy’s law:

q̇ = − k

Lµ
∆P, ∆P = Pb − Pa. (1.5)

r
𝜃

𝜃

meniscus

liquid gas

Figure 1.3: Liquid-gas interface confined in a capillary tube with a hydrophilic solid surface.

In a capillary tube (Fig. 1.3), the pressure difference ∆P between the gas phase, Pg
(Pa), and the liquid phase, Pw (Pa), can be expressed by:

∆P = Pg − Pw = Pc = 2σcosθ
r

. (1.6)

The fluid velocity ν (interstitial velocity, m/s) is related to the volume flux q̇ by the
porosity ε:

ν = q̇

ε
. (1.7)

Key parameter in Darcy’s law is the permeability, k, which represents the ability of the
porous medium to allow the fluid to pass through. The permeability of a porous medium
is related to its porosity, pore size, etc.
Fick’s law can be used to describe diffusion in porous media. It relates the diffusion

mass flux, j (kg/(m2 · s)), to the mass concentration of the diffusing gas species (wx):

j = −D∂wx
∂z

. (1.8)

Here, D (m2/s) denotes the diffusion coefficient. It is equal to the molecular diffusivity of
the gas species in an empty space. In a porous medium it depends on the volume element
considered (void or total). Defined on total volume (or on the empty cross-sectional area),
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D becomes an effective diffusion coefficient that depends on obstruction (elements of the
solid phase are obstacles for gas diffusion) and tortuosity.

Figure 1.4: Schematic of the definition of Darcy’s law.

In this end, the transport properties of fluids in porous media are governed by several
parameters such as permeability, capillary pressure, diffusion coefficient. All these parame-
ters are associated with the microscale properties of the porous media. In this work, we
focus on the transport phenomena in drying porous media, which involves the transport
for the liquid phase and the gas phase. In the following section, we will introduce the
basics of the drying process of capillary porous media.

1.1.2 Drying process

Drying is a mass and heat transfer process resulting in the gradual removal of water or
another solvent by evaporation from a porous material. This process can be strongly
affected by boundary conditions. For example, heat supply from air (gas) flow over the
porous medium or indirect heat supply into the material may be of importance, especially
in case of non-isothermal drying. Moreover, the behavior of drying reflects not only
the interplay between mass and heat transfer in the adjacent gas-side boundary layer
(which could be affected by the temperature, relative humidity, and flow velocity of the
surrounding air) but also the properties of fluid flow within the porous medium.

Nevertheless, global drying kinetics is used to describe the characteristics of the drying
process. This is done in the form of a relationship between the drying rate (dS/dt or
dX/dt) and the overall saturation (S) or the moisture content (X). Most of the porous
media undergo a 1st drying period and a 2nd drying period (Fig. 1.5). The 1st drying period
is defined by constant drying rate, i.e. by values of dS/dt or dX/dt that vary little with
liquid content. This phenomenon is frequently and easily observed with non-hygroscopic
porous media. However, an initial drying period (IDP), in which drying rate demonstrates
a sharp drop, is found for some porous media with high obstacles to liquid transport
(Srikiatden and Roberts, 2007). This very first period may be overseen or overlaid by
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the inaccuracy of classical experimental measurements of the moisture content of porous
media, such as gravimetric drying experiments, especially since the mass of the liquid
evaporated during this period is very much smaller compared to the liquid trapped in the
porous medium. Contrary, this drop of the drying rate could be clearly indicated through
improved technical tools for the measurement of the liquid content of the sample, such as
X-ray microtomography or nuclear magnetic resonance (Gupta et al., 2014).

Figure 1.5: Scheme of drying rate curves for hygroscopic and non-hygroscopic (capillary)
porous medium. X0 is initial liquid content, Xcr critical liquid content, and
Xeq equilibrium liquid content. Four periods are presented: Initial drying
period, constant rate period, falling rate period and receding front period.

Constant drying rate is the typical behavior in the 1st drying period. In this period, the
capillary pumping and the internal film flow maintain the liquid content at the surface
at a level that enables the liquid flux from the porous medium to meet the demand of
evaporation rate (Prat, 2002). As a result, the drying rate remains constant and the
surrounding gas is saturated with vapor at the surface of the porous medium. Therefore,
the drying rate in this period is controlled by external conditions, i.e., external free diffusion
length, temperature, and flow velocity of surrounding air.
The second drying period appears after the 1st drying period at the critical moisture

content. The second drying period contains the falling rate period and the receding front
period. During the second drying period, the capillary forces can no longer bring enough
liquid from the depth of the porous medium to the medium surface, leading to a decline
in the evaporation rate. The starting saturation of the second drying period is defined as
the critical saturation or irreducible saturation. The value of the irreducible saturation is
a transport property that results from the competition of capillary forces, viscous forces,
gravity forces. This value also associates with drying conditions, dimension of the porous
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medium and its inner pore structure. A full discussion of the irreducible saturation against
heterogeneity of the capillary porous media is presented in Chapter 10.

The phenomenon behind the falling drying rate is the shrinkage of surface liquid coverage,
which leads to the drop of vapor pressure adjacent to the surface below the saturation
pressure. The vapor pressure at the surface directly controls the performance of evaporation.
Thus, the relative humidity is defined to indicate the actual vapor pressure, Pv (Pa) over
the saturated vapor pressure, P ∗v (Pa), at a given temperature, T (K):

ϕ = Pv
P ∗v (T ) . (1.9)

For hygroscopic materials, the correlation of the residual saturation (or moisture content)
in the porous medium with relative humidity at equilibrium is named sorption isotherm.
Brunauer (1944) observed five typical types of sorption isotherms. They all show that the
liquid content reaches zero at zero relative humidity. If the relative humidity of the gas is
though larger than zero and the material is hygroscopic, an equilibrium liquid content is
reached after the drying process (Fig. 1.5). The remaining liquid in hygroscopic materials
cannot be removed by the drying process unless the state variables of this process (gas
humidity, temperature, pressure) are changed favorably.

Additionally, internal transport resistance increases during the falling rate period, when
the liquid cannot be directly transported to the outer surface. Instead, the liquid is
locally transformed into vapor and then transported by vapor diffusion towards the surface.
Liquid transport is prevented because the connected liquid phase is broken into dispersed
isolated liquid clusters, the number of which increases in the falling rate period.
The consequence of continuous growth of internal resistance is to reduce the surface

saturation, form a dry region near the surface, and push the liquid-vapor region away from
the surface. These phenomena occur in the receding front period. The evaporation rate in
this period drops dramatically.
In addition to drying curves, the saturation (moisture) profiles provide details of the

drying process. Saturation profiles record the local distribution of the liquid along the
major direction of mass transfer during drying. Figure 1.6 shows schematically classical
profiles for a capillary porous medium at two instants during drying. The saturation is
evenly distributed during the constant drying period (Fig. 1.6a). In contrast, the liquid
has been completely removed from the vicinity of the open surface, whereas saturation at
the bottom may remain constant in the falling rate and in the receding front period (Fig.
1.6b).

The drying front is the interface at which evaporation takes place. It may be curved and
distributed over a certain length of the porous medium. This length is the width of the
drying front. The width of the drying front can be indicated on the saturation profile, see
Fig. 1.6, and depends on the transport mechanism. For example, a sharp drying front is
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observed during the drying of some building materials, such as gypsum (Pel and Landman,
2004). Pore network drying simulations with liquids of high viscosity resulted in drying
fronts with limited width (Metzger et al., 2007b).

To favorably manipulate the drying process, reliable models that can describe the basic
physical mechanisms are needed. Such models could be used for optimizing the drying
process in order to reduce the drying time and thus lower the energy supply. In the
following section, we introduce two approaches for modeling of the drying process.

Figure 1.6: Scheme of saturation profiles characteristic of (a) 1st drying period and (b) 2nd

drying period.
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1.1.3 Drying models

Regardless of the application field, mathematical models are generally developed at two
levels of model hierarchy: At the macroscale, a partially saturated porous medium is
described as a continuum and the state variables are computed as smooth functions of
space and time. The corresponding set of equations is referred to CM (Whitaker, 1977).
On the other hand, PNMs are developed to describe transport phenomena in partially
saturated porous media at the pore scale. A PNM approximates the void space within a
porous medium as a network of pores and nodes. Simple physical laws applied to each
pore result in large systems of algebraic equations with degrees of freedom at each node of
the pore network. Details of these two approaches will be discussed in the following.

1.1.3.1 Continuum model

The most advanced CMs are developed within the framework of the volume averaging
technique. The underlying transport phenomena are described by gradients in spatially-
averaged quantities and controlled by nonlinear parameters (Philip and de Vries, 1957;
Whitaker, 1977) (Fig. 1.7). While the CMs are readily competent on the application side,
they require macroscopic parameters and suffer from significant shortcomings in theoretical
aspects. Macroscopic transport parameters are usually acquired by experiments. For
example, Pel et al. (1993, 1996) and Marchand and Kumaran (1994) measured moisture
concentration profiles and then derived the moisture diffusivity (D), by adding liquid
(Dw) and vapor (Dv) phase diffusivities, as a function of moisture content for building
materials. Pel et al. (1993) distinguished the variation of moisture diffusivity with moisture
content into three regimes. At high saturation, moisture transport is dominated by liquid
transport. With decreasing moisture the large pores are drained by gas and no longer
contribute to liquid transport, so that moisture diffusivity decreases. When the liquid
within the sample no longer forms a continuous phase, moisture transport is governed
by vapor pressure. Gómez et al. (2007) calculated permeability for the liquid phase (kw)
and the vapor phase (kv) by recording the capillary pressure profile with global saturation
along the drying process, to then obtain by conversion the moisture diffusivity (D).

In general, the determination of macroscopic parameters is key to the CM, but not easy.
One major issue is to, without destroying the samples, observe the liquid distribution
inside the porous medium in three-dimensions along the drying process. Although X-ray
tomograms are readily used to extract the structure of porous media, recording the liquid
distribution is still demanding (Wang et al., 2012). It is easier to capture images of the
drying process for pseudo-two-dimensional transparent micromodels, such as a single layer
of packed beads confined between transparent glass plates (Sun et al., 2016; Kharaghani,
2020).

Macroscopic parameters are typically reported as nonlinear functions against saturation.
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Figure 1.7: Schematic of the averaging volume of the porous medium for the continuum
model.

For example, the relationship between capillary entry pressure and saturation can be
described as a power law (Brooks, 1966). Pel et al. (1996) determined the moisture
transport coefficient from measured moisture concentration profiles, showing that the
moisture diffusivity does not decrease continuously with progressing drying process, but
is enhanced again at small moisture content by vapor transport. Moreover, macroscopic
properties are highly associated with pore structure, i.e. mean radius, standard deviation,
etc. Brace (1980) reported the range of permeability to span more than 13 orders of
magnitude for various natural porous materials because of significant variation in pore
structure.
Apart from macroscopic transport parameters, the CM also needs surface parameters.

Critical, here, is the relative humidity. The surface is classically assumed to be at saturation
vapor pressure (relative humidity equal to unity) during the 1st drying period (Carmeliet
et al., 2004; Gómez et al., 2007; Haghighi et al., 2013). Lockington et al. (2003) used
the boundary condition of constant velocity of a drying front moving into the material
during the second stage of drying. Pel et al. (2002) applied at the surface the relative
humidity which is determined by the desorption isotherm for hygroscopic material. In
contrast, for the non-hygroscopic material, as we discussed, the relative humidity at the
surface of the capillary porous medium demands a better explanation. Additionally, the
surface diffusion coefficient also appears in the CM. In Chapter 8, we revisit the surface of
the porous medium from the microscale approach, then evaluate macroscopic parameters.
The derivation of CMs from the basic mass balance equations and the implementation of
suitable parameters are explained in Chapter 4 and Chapter 5.

1.1.3.2 Pore network modeling

While CMs are easily applicable, predicting the transition between the 1st drying period
(with nearly constant drying rate) and the 2nd drying period (with a significant decrease
in drying rate) remains a challenge. Moreover, it is clear that the drying characteristics
are the manifestation of interactions that take place with fluid at a microscopic level
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within the porous matrix. Thus, PNMs were introduced as a tool to provide details about
the interplay of microstructure with transport mechanisms, having been successful in
describing problems that involved two- or multi-phase flow. In early PNMs of drying
by Prat (1993) the drying process is treated as an invasion percolation phenomenon
(Wilkinson and Willemsen, 1983) driven by evaporation. Later on, more versatile PNMs
were developed by several research groups (Yiotis et al., 2001; Metzger and Tsotsas, 2008).

For example, Prat (1993) and his group included the effect of gravity and later Metzger
and Tsotsas (2008) considered liquid viscosity while extending the models from two to three
dimensions. By incorporating these two critical effects, PNMs were able to provide realistic
fluid distributions with liquid clusters and single menisci. Although such simulations
enabled to express the essential characteristics of drying kinetics, the time predictions for
reaching a given saturation level during the 2nd drying period did not correspond well with
experiments, even for the simple case of slow isothermal drying of packing of particles.
One possible explanation is that an essential fluid transport mechanism, referred to as
the film effect, was still neglected in the PNMs. The film effect, which has been observed
to have a substantial impact during the drying process in packings of spherical particles
(Yiotis et al., 2012), was first included in two-dimensional PNMs (Prat, 2007).

It should be noted that computational cost sets limits to the application of PNMs. For
example, Le et al. (2016) only worked on a 50×44 two-dimensional pore network to study
the heat transfer in drying. While, for the slow drying process, the network size was
25×25×51 in Attari Moghaddam et al. (2017a). Through all literature, the simulated size
of the network could hardly ever reach the size of real materials subjected to drying in
industrial applications.
In summary, PNMs like those which are developed and described in Chapter 2 can

offer a detailed solution of the transport process that can pinpoint every pore of the
porous medium. However, the current computation power sets limits to their application.
Therefore, it needs a method to couple properties from the microscale (PNM) to the
practical approaches at the macroscale (CM).

1.1.4 Surface of porous media

The drying of a capillary porous medium often includes a long constant rate period (CRP)
in which the evaporation rate slightly varies with liquid content. Under the capillary
dominated regime, the capillary pumping and the internal film flow maintain the liquid
content at the surface at a level that enables the liquid flux from the porous medium to
meet the demand of evaporation rate (Prat, 2002). The capillary dominated regime is
identified that the characteristic width under controlled by the capillary force is longer
than the length of sample. The isothermal slow drying process (drying under the room
temperature) is a simple limiting case, for which equimolar diffusion can be assumed as the
mechanism of mass transfer in the gas-side boundary layer. Schlünder made an attempt to
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explain the experimentally often observed existence of a long CRP by an idealized model
for the conditions that prevail at the surface of the porous medium (Schlünder, 1988). He
assumed an even distribution of squares of size (2l×2l) on the surface, with a hemispherical
droplet placed in the center of each of them (Fig. 1.8). When the diameter of the wet
patch (2r) is much smaller than the thickness of the external diffusion layer (δ), Schlünder
obtained following correlation of actual evaporation rate (Ṁev) to the evaporation rate of
a completely wet surface (Ṁev,I):

Ṁev

Ṁev,I

= 1

1 + 2r
πε

√
π

4Ψsurf

√ π

4Ψsurf

− 1
 . (1.10)

Here, Ψsurf is the relative wetted surface area (surface wetness), calculated as:

Ψsurf = πr2

(2l)2 . (1.11)

The effect behind Eq. 1.10 is that when lateral diffusion is fast enough, the whole square
appears (seen from the upper end of the boundary layer) to be at (nearly) saturation
pressure. When this is fulfilled, nearly CRP conditions are obtained. If it is not (or not
anymore) fulfilled, Ṁv falls significantly below CRP evaporation rate Ṁev,I .
While very illustrative in explaining how CRPs with maximal evaporation rate can

possibly exist, Schlünder’s model is far less adequate for capturing the complexity of
the drying process in accurate computations. For example, the heterogeneous nature
of the porous medium surface may have an influence on drying rate. Talbi and Prat
(2019) discussed how the shape of droplets at the surface may affect the evaporation rate,
whereby the distribution of wet patches at the surface can also play a role. A transition
period where the drying rate exhibits a distinct and sudden drop from the initial drying
rate appears in many experimental as well as simulation works (Metzger et al., 2007a;
Shahraeeni et al., 2012; Attari Moghaddam et al., 2017b).

Recently, the opportunities offered by PNM to view surface behavior during the drying
process have started being used. Assuming liquid transport in the capillary regime and
external mass transfer by diffusion, Attari Moghaddam et al. (2018) observed that two
types of pores (dry and wet) contribute to the mass transfer from the surface. This result
contrasts with the Schlünder assumption of the whole surface being covered with wet
patches. Attari Moghaddam et al. (2018) also tested Schlünder’s model from the PNM
side. Applying Eq. 1.10 with the radii of specific surface throats and then averaging over
the surface, evaporation rates have been evaluated which did not match well with the
results obtained directly from the PNM. Talbi and Prat (2019) have also reported that
the Schlünder formula leads to a poor prediction when upscaling from a single wet patch
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to a heterogeneous surface, especially in case of low wetted surface area.
Nevertheless, it is important to focus the interest on the surface of drying porous

materials, primarily because the surface couples the internal and the external mass transfer.
Lehmann and Or (2013) used the Schlünder relationship to link these two mass transport
regions for wet pore clusters that reach the drying surface. However, it has also been
pointed out that the Schlünder formula fails to estimate the evaporation rate when the
surface contains no liquid (Or et al., 2013).

Figure 1.8: Scheme of Schlünder’s model: When vapor pressure can be equilibrated by
diffusion in regions (light blue) that surround small wet spots (dark blue) at
the bottom of a thick gas-side boundary layer, a partially wetted surface is
expected to show approximately the same evaporation rate as the fully wetted
surface.

The difficulty in defining boundary conditions for drying porous media by means of,
e.g., the Schlünder formula for calculating the evaporation rate does not even arise when
using the discrete pore network model, because such a model directly couples the internal
with the external mass transfer by applying mass balances and momentum balances at
the microscale. However, pore scale resolution in the description of internal transport
phenomena makes the simulation algorithm time-consuming, and the computational cost
becomes even higher if the external flow field has to be additionally computed by solving the
Navier-Stokes equations (Weishaupt et al., 2019). Therefore, and though PNM simulations
are valuable for analysis at the microscopic level, easily solvable CM must typically be
used in order to describe the drying process for industrial applications at the macroscale.

However, as soon as coarsening to CMs becomes an issue, appropriate boundary condi-
tions are, again, necessary. For example, the one-equation CM requires the external mass

13



transfer rate as a boundary condition. The external mass transfer can be described by
Fick’s law,

ṁv = Dv,aM̃v

R̃T

Pv,surf − Pv,∞
δ

, (1.12)

where Pv,∞ (Pa) denotes the vapor pressure in the bulk air, Pv,surf (Pa) the vapor pressure
at the surface, δ (m) the boundary layer thickness located between the network surface
and the bulk air. M̃v (kg/kmol) is the molar mass of vapor and T (K) is the temperature.
R̃ (J/(kmol ·K)) is the universal gas constant.
The vapor pressure at the surface is typically assumed to be equal to the saturation

pressure when the surface contains liquid (the drying process is assumed to be in the first
drying period) (Shokri et al., 2008; Haghighi et al., 2013; Mosthaf et al., 2014). When
the drying front recedes (in the FRP), the surface vapor pressure is determined by the
desorption isotherm (Pel et al., 2002; Pel and Landman, 2004). It is though inaccurate to
assume CRP drying rate even when the surface contains only a small amount of liquid and
consider the FRP to occur only after a drying front has started to recede from the surface
into the interior of the material. In fact, the drying curve for the viscous case typically
demonstrates a short CRP or no CRP at all, that is to say, the falling rate period appears
when the surface still contains liquid, as has been shown in many works (Defraeye et al.,
2012; Attari Moghaddam et al., 2017a). Therefore, the previously described approach is
too coarse and needs refinement. The new method to treat the surface is presented in
Chapter 8.

1.1.5 Pore structure

The drying process of porous media is based on the interplay of fluid transport with the
solid matrix. The role of pore structure in the drying process has been revealed by Metzger
et al. (2007b). To this purpose, an isothermal model that included capillary and liquid
viscous effects was applied to drying networks of different structures. It has been reported
that the drying rate decreases from the beginning for monomodal pore size distribution,
neglecting the film effect. However, a network with bimodal pore size distribution, featuring
large pores in the vertical direction to the surface, demonstrated an extended first drying
period. The longer first drying period improved the drying rate. Later, more complicated
bimodal networks, i.e. long channels in both space directions and regular distribution
of small clusters, were discussed in term of drying rate and phase distribution (Metzger
et al., 2007c). It was found that the drying rate increases when the long macro-channels
are placed perpendicularly to the network surface. The reason is that viscous forces have
little effect, even for smaller pore dimensions, because the capillary pressure difference
between micro- and macro-pores is usually sufficiently large (Metzger et al., 2007b). Note
that as the drying process is related to pore structure, macroscopic parameters should be
correlated to it. In this work, we will discuss the behavior of macroscopic parameters for
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networks of different pore structure (Chapter 9).

1.1.6 Parameters in capillary pressure function

Invasion percolation (IP) introduced by Wilkinson and Willemsen (1983) provides a
realistic description of the slow biphasic fluid displacement processes in porous materials.
IP is relevant to various applications (such as secondary oil recovery) and was generally
used to model a drainage process during which a wetting fluid is displaced by a nonwetting
fluid (Chandler et al., 1982). IP was also used to model imbibition where a wetting fluid
invades a porous medium originally saturated by a nonwetting fluid (Mason and Mellor,
1995). Moreover, the IP algorithm was adapted to describe immiscible displacement in
drying porous media (Prat, 1993).
Invasion percolation is driven by the capillary pressure Pc which can be modeled with

the normalized or effective wetting-phase saturation as proposed by Brooks (1966):

Se = 1 (Pc ≤ Pe) , (1.13)

Se =
(
Pe
Pc

)λ
(Pc ≥ Pe) . (1.14)

where Pe (Pa) and Se denote the entry pressure and effective saturation, respectively. The
scaling parameter λ denotes the pore size distribution index which must be determined
experimentally for each porous medium. Pe describes the minimum air pressure that needs
to act on the liquid phase prevailing in the medium to allow the air to invade the porous
medium. Se is a linear function of saturation S and related to the irreducible saturation
Sirr, defined as:

Se = S − Sirr
1− Sirr

. (1.15)

The irreducible saturation Sirr defines the amount of liquid that the medium with a given
pore structure can retain. This liquid is held in the medium by capillary forces and cannot
be removed by the capillary pressure.

To investigate whether and how irreducible saturation is correlated with the microstruc-
ture of porous media, it may be worth to make an analogy between irreducible saturation
in the capillary-controlled invasion process and mercury entrapment in porosimetry, as
these processes share common principles. In porosimetry mercury cannot be retracted
from a large pore unless a meniscus appears at one end of that pore so that mercury can
penetrate to the surface. Thus, if a large pore is embedded in a network of fine pores, it
remains full unless some fine pores evacuate at some lower extrusion pressure - this effect
is referred to as shielding effect (Conner and Lane, 1984; Conner et al., 1987). Portsmouth
and Gladden (1991) remarked that there is a characteristic entrapment of mercury in
a network of pores with Gaussian pore size distribution (PSD), which depends on the
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ratio of the standard deviation of the distribution to the mean pore radius - this ratio is
called coefficient of variation and defines the width of the PSD. Further, Conner and Lane
(1984) performed analyses and have concluded that higher connectivity can yield lower
entrapment of mercury. Other researchers have also disclosed the fact that topology of
the medium and spatial correlations between pores and throats can influence porosimetry
results (Portsmouth and Gladden, 1991; Tsakiroglou and Payatakes, 1991; Knackstedt
et al., 2001).
Nevertheless, the irreducible saturation does not have the same correlations with

microstructural features as the mercury entrapment. Isolated mercury from the bulk
of the network is forced to move if the Laplace equation is fulfilled when continuously
decreasing the nonwetting phase pressure. That is to say, the mercury in sites surrounded
by narrow void spaces is trapped in the medium when the Laplace equation is not satisfied.
However, this situation is different in capillary-controlled invasion processes. For instance,
in slow, isothermal drying an isolated liquid cluster is considered as stationary when the
liquid in this cluster cannot move into neighbor clusters by increasing the capillary pressure
that acts on the network, but the liquid can continuously be reduced by evaporation so
that the moisture is transported through the vapor phase. Neglecting evaporation at
the isolated clusters would mean that the liquid in the isolated clusters is not reducible
because these clusters are surrounded by gas phase saturated with vapor. In such situation,
the residual saturation in the network represents the saturation for which liquid can be
transferred by the capillary pressure out of the porous medium. Thus, mercury porosimetry
can provide information on the geometry and topology within the porous medium, but
the irreducible saturation indicates a transport property.

Besides the irreducible saturation, the Brooks and Corey capillary pressure model also
requires the entry pressure Pe (or bubbling pressure). The entry pressure, as defined by
White et al. (1970), is the capillary pressure at the inflection point on the capillary pressure-
saturation (Pc-S) curve, where the value of dPc/dS is a minimum at high saturation. Early
numerical studies conducted at the pore scale show that the entry pressure depends
on the interplay of the pore geometry and wettability of the porous medium (see, e.g.,
Rabbani et al., 2016 and references therein). Further, on the basis of pore scale simulations,
Raeini et al. (2012) suggested that the entry pressure increases as the pore body to pore
throat contraction ratio increases. Ferrari and Lunati (2013) assumed perfect water-wet
conditions, similar to Raeini et al. (2012) but contrary to Rabbani et al. (2016) and
conducted two-phase flow numerical simulations. The results of which indicate that the
entry pressure is marginally dependent on the viscosity ratio and capillary number.
The pore size distribution index of the network is also an essential parameter of the

Brooks and Corey capillary pressure model, which represents the heterogeneity of the
porous medium. The heterogeneity can be characterized using a fractal model, which
reflects the relationship between the number of pores and pore radii. Kewen (2004) reported
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that the pore size distribution index increases with a decrease in the fractal dimension of
the porous medium. Overall, many researchers reported the pore size distribution index as
a specific value to express the fractal nature of pores in a porous medium under the Brooks
and Corey capillary pressure model (Moseley and Dhir, 1996; Kewen, 2004). However,
the heterogeneity of the porous medium is poorly captured in this parameter. As can
be seen from the Brooks and Corey capillary pressure model, the pore size distribution
index correlates the capillary pressure with the saturation. By contrast, the capillary
pressure depends on the meniscus size distribution in the liquid cluster. Thus, it is worth to
reconsider whether the pore size distribution index (as an index for network heterogeneity)
can estimate the capillary pressure.
The Brooks and Corey capillary pressure model (Eqs. 1.13 to 1.15) has widely been

utilized for several decades in petroleum and other industries (Kjosavik et al., 2002).
And, the fact that this model can be put on a solid theoretical base has already been
proven by using the fractal approach to porous media (Kewen, 2004). However, this model
stands at the macroscopic level and thus neglects microscale morphological and topological
information of a porous medium such as the heterogeneity of the pore size distribution
and randomness in pore connectivity. Therefore, it is interesting to revisit the macroscopic
parameters in the Brooks and Corey capillary pressure model and reveal the internal
correlation of these parameters with the heterogeneity of porous media.
Experimental identification of relations between the macroscopic parameters (i.e. Sirr,

Pe and λ) and the pore structure is, though, not straightforward due to the difficulty in
accessing the geometrical features of porous media. Another possibility is to utilize the
opportunities offered by PNMs.

1.2 Aim

The aim of this thesis is to create pore scale resolved data for drying porous media by
PNMs, and then derive from such data parameters that can be used in the frame of CMs
for quick computations at the macroscale. Nontrivial upgraded CMs that can otherwise
not been derived and parameterized are the target.
To reach this aim, we have to fulfill the following conditions: First, the PNM should

be able to produce a reliable relationship between drying process characteristics and
saturation. Second, we should be able to derive usable macroscopic parameters from the
dataset generated by the PNM. Additionally, an upgraded CM should be able, by means
of appropriate parameters, to reproduce the drying process at the macroscale. In short,
we have to handle three issues, at least, in the current thesis: a reliable PNM, proper
macroscopic parameters, and a sophisticated parameterized CM.
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1.2.1 Pore geometry in PNM

As discussed, PNMs become more sophisticated by more comprehensive consideration of
the underlying transport mechanisms in order to improve the prediction of the drying
characteristics. Another aspect that might influence the performance of PNM is the way
that the structure of voids within the drying porous materials is modeled: Yiotis et al.
(2001, 2015) treated the entire void space as pore bodies, leaving throats as conductors and
capillary barriers. This approach is suitable for materials with large pore volumes, such as
granular materials. Prat (1998) and Metzger et al. (2007a) approximated the void space
using hydraulic pore throats and numerical pore nodes. This model is referred to as the
throat-node model (TNM) (Fig. 1.9a). Although this approach extended the application
range of PNMs, it has the drawback that the void space may be overestimated. In the
TNM, the void space is calculated by summing all throat volumes, which are considered
as cylinders with a fixed length. Based on the assumption that throats are connected
with numerical nodes, there is a region of overlap at each node. If one adds all throat
volumes in TNM to yield the void space of a porous medium while ignoring the overlap
region, then the void space is overestimated (Fig. 1.9b). This problem was recognized by
Attari Moghaddam et al. (2018) when they applied TNM to study the surface phenomena
that occur during drying of non-hygroscopic porous media. They obtained a high value for
the irreducible saturation Sirr (i.e., the saturation at which liquid stops being transported
via capillary effects from bottom to top of the drying porous medium) at network porosity
ε = 0.594 (higher than the average porosity of beds packed with mono-sized spherical
particles, ε ≈ 0.4).

In contrast, the throat-pore model (TPM), in which both cylindrical throats and spherical
pores contain liquid and contribute to moisture transport is used in the present work
(see Fig. 1.9c). This network geometry would solve the overlap region dilemma in the
TNM. We focus on a slow, isothermal drying process based on invasion percolation of the
gas phase and viscous flow of the liquid. This kind of TPM has been used by Moebius
and Or (2014) to study the dynamics of displacement fronts in drainage and by Le et al.
(2017) for superheated steam drying, though in two-dimensional space. However, there is
no detailed comparison between TNM and TPM in previous literature, not even for the
slow, isothermal drying process. This gap is closed in the present work. Such comparison
will clarify the reason for the overestimation of the irreducible saturation by the TNM
(see Chapter 3). Thus, we would expect the TPM to provide a reliable description of the
change in drying characteristics with the saturation.

1.2.2 Issues of the current continuum model and its parameterization

Let us briefly discuss the parameterization of CMs. Recently, Attari Moghaddam et al.
(2017b) evaluated the classical CM using parameters obtained from a PNM. The evaluation
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Figure 1.9: Approximation of the pore space by a) the throat-node model with distances of
the ends of the throats from the node, b) the throat node model with volume
overlap at the node and c) the throat-pore model.

resulted in fair but not perfect agreement when comparing saturation profiles from PNM
and CM for the drying process. Attari Moghaddam et al. ignored the significant scatter
in moisture transport coefficients obtained from the PNM, especially in the high local
saturation region, and fitted their data by three smooth curves. This approach can destroy
certain transport information contained in the primary dataset. This may be a reason why
they could not match saturation profiles at the surface of the porous medium, particularly
in the beginning of the drying process. Besides, they realized that fitted moisture transport
coefficient profiles could not capture the transport process in the empty region (i.e. when
S < 2×10−4) of the porous medium. They tackled this issue by recalculating parameters in
their CM based on the identified evaporation rate from the PNM. However, this treatment
of the empty region by Attari Moghaddam et al. (2017b) limits the applicability of the
CM, because the evaporation rate is one expected outcome from the CM. To improve the
performance of the CM, modified versions of this model will be presented in this thesis.

1.2.3 Macroscopic parameters

As discussed, Attari Moghaddam et al. (2017b) treated the PNM dataset very coarsely,
which destroys certain transport information contained in the primary dataset. For
example, Attari Moghaddam et al. (2017b) showed three non-linear curves D(S) over the
whole drying process. Each curve could be separated into two parts: values scattered
when the local saturation was larger than 0.68 but became clear for local saturations
smaller than 0.68. However, possible reasons behind the scatter of data have not been
discussed in their work. Thus, one possible method to improve the performance of CM
could be to more precisely consider the local variation of saturation in different states of
the evolving drying process in the determination of macroscopic parameters. This could
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prevent omitting the critical transport information that prevailed in such datasets.
Additionally, some macroscopic parameters have not been extracted from the dataset

by Attari Moghaddam et al. (2017b). So they recalculated the missing information on
vapor diffusivity for local saturation smaller than 2× 10−4. Rather than re-determination
of this parameter, which is associated with the loss of some predictive ability of the CM,
we could define additional parameters for that region during the drying process.

In summary, macroscopic parameters are key in reproducing the drying characteristics
by CM to reveal the transport information at the pore scale. To this end, this thesis will
present which parameters are needed, how to extract these macroscopic parameters, and
how to understand these macroscopic parameters.

1.2.4 Pore structure effects on macroscopic parameters

Closing the gap between microscopic datasets and the macroscopic CM stresses that
macroscopic parameters can vary very much with pore structure. To understand the
correlation of pore structure with macroscopic parameters, we will focus on aspects such as
the mean pore radius, the standard deviation of pore radius, and the presence of bimodal
pore size distributions.
Regarding the drying process, Metzger and Tsotsas (2008) investigated how vital is

the role of pore structure (with monomodal pore size distribution, i.e. different width
of normal radius distribution, and coordination number) in intraparticle heat and mass
transfer and thus drying kinetics. They reported that connectivity and spatial correlations
of pore size (i.e. macro-channels placed vertically in a network with bimodal pore size
distribution) are important for drying behavior (Metzger et al., 2007a). Different drying
behaviors could be represented by different macroscopic parameter functions. Therefore,
this work will present correlations of macroscopic parameters with pore structure.

1.3 Scope of the work

This thesis aims at bridging the gap between PNM at the microscale and CM at the
macroscale. For this purpose, mathematical models at both the microscopic and the
macroscopic level are employed. In Chapter 2, we review the existing PNMs and modify
the most adaptable throat-node model into the throat-pore model. The algorithm of the
throat-pore model is introduced.

In Chapter 3, we compare the transport properties of TNM and TPM. We demonstrate
how the void space of porous media is represented in those two configurations. The vapor
conductance and the liquid conductance are compared, and the dependence of respective
ratios between TPM and TNM on the ratio of pore radius to throat radius is also presented.
Finally, drying characteristics of the two configurations are compared.
Classical CM is introduced in Chapter 4 and put, in terms of parameters, into the
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diffusion-based format. The boundary conditions are also discussed here. However, the
existing treatment of boundary conditions sets limitations to applications. Therefore,
two modifications of CM are resented in Chapter 5, namely moving front CM and the
three-transport-zone CM. The numerical method (finite volume method) to solve the CM
is also introduced there.
In Chapter 6, we evaluate the macroscopic parameters needed in the CMs based on

PNM datasets. CMs need the moisture transport coefficient, relative humidity in the
two-phase zone and at the surface, as well as the parameter of vapor transport in the dry
zone and the gas-side diffusion layer. Values and behavior of those macroscopic parameters
are discussed.
In Chapter 7, we feed the macroscopic parameters into the CMs. In this process, we

have to face the issue of treating PNM datasets. Macroscopic parameters are usually
highly dependent on the stage of the drying process (network saturation Snet) and the local
saturation S. Two essential aspects in treating PNM datasets, averaging over different
ranges of network saturation and treatment of local saturation, are discussed in regard of
their role in CM performance. A new hybrid method is introduced to capture the interplay
of macroscopic parameters extracted from PNM with CMs.

Chapter 8 studies the surface of the porous media from a PNM standpoint. The surface
is viewed as empty pores and liquid pores. The surface parameters, i.e., the surface
vapor pressure-surface saturation relationship and the surface vapor transport coefficient-
surface vapor concentration relationship, are accessed from PNM datasets. Additionally,
emendation factors are introduced to link the normalized evaporation rate from the wet
part of the porous medium surface with the surface wetness or surface saturation. Besides,
the evaporation rate from the wet surface region is evaluated by inserting PNM data into
a modified version of Schlünder’s model.
In Chapter 9, links between macroscopic parameters and pore structures are explored.

For this purpose, the mean radius and the standard deviation of the throat size distribution
are systematically altered. Additionally, a bimodal pore size distribution in which macro-
channels are vertically and evenly placed in a matrix of micro-channels is investigated.
Another macroscopic parameter, the capillary pressure, is computed based on results

obtained from the static PNM in Chapter 10. The classical empirical equation, Brooks and
Corey capillary pressure model, is revisited based on the PNM simulations. Parameters
required in the Brooks and Corey capillary pressure model (i.e., the irreducible saturation,
pore size index and entry pressure) are directly recorded from the PNM, and also their
correlation with pore structure is discussed.
Chapter 11 summarizes the main results presented in this thesis and also highlights

recommendations for future work.
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Chapter 2

Pore network modeling
This chapter provides a comprehensive presentation of the pore network model (PNM)
with throat-pore configuration (TPM), developed for a capillary porous medium that dries
in the capillary-viscous regime.

2.1 Introduction

Pore network modeling is a versatile tool to describe transport phenomena in porous
media. The PNM that only considers capillary forces (e.g. Prat, 1993; Yiotis et al., 2001)
is named as static PNM. The static PNM is straightforward because it avoids the need
for pressure computation, and in each invasion step, the invaded throat/pore is the one
which has the largest radius according to the Young-Laplace equation (Eq. 1.3). When the
liquid viscosity is introduced into PNM (e.g. Metzger et al., 2006), the invasion process
cannot be distinguished only based on the size of throat/pore radius. We call this model
as dynamic PNM. The dynamic PNM does not rely only on the capillary forces (Eq. 2.1),
but also on the viscous forces. The invasion positions in dynamic PNM should be balanced
as a whole. For each invasion step, the number of invasion sites and invasion positions
is uncertain, which depends on the competition between the capillary pressure and the
liquid viscosity. For the development of our present dynamic PNM, several assumptions
are made, listed as follows.
Isothermal conditions are assumed, similarly as in many PNMs for drying of porous

media (Prat, 1998; Yiotis et al., 2001; Metzger and Tsotsas, 2008). Although the isothermal
condition is a reasonable assumption only for moderate drying conditions, it allows for a
systematic analysis of the involved transport phenomena without the additional complexity
of the interplay with the temperature gradient in the porous medium. Nonisothermal pore
network models have been proposed by Surasani et al. (2008) and Le et al. (2017), but
they were of relatively small size.
Constant gas pressure is considered throughout this work. The vapor transfer in the

gas-filled part of the porous medium and the gas-side boundary layer is described by the
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logarithmic law for non-equimolar diffusion next to an evaporating liquid-gas interface
(Stefan’s law). Since total pressure is constant and there is no net flow of the gas phase,
there is no viscous effect considered in the gas. Additionally, both the Kelvin effect
(the situation of capillary condensation that is caused by the reduction of equilibrium
vapor pressure over the meniscus) and the Knudsen effect (that plays a significant role
for diffusion with pore sizes smaller than the mean free path of the gas molecules) are
disregarded. These simplifications are justifiable if the mean throat/pore radius is larger
than 100 µm and drying takes place at room temperature (20 °C).
The liquid is assumed as free water occupying fully or partly filled pores/throats. The

porous medium is treated as a capillary porous medium, thus any adsorption phenomena
are neglected. Liquid film flows are not taken into account in the current model.

2.2 Model description

In Prat (1998) and Metzger et al. (2007a), network pore structure consists of cylindrical
pore throats and numerical pore nodes. This pore network is called throat-node model
(TNM) in this thesis. This network geometry overestimates the void volume at each node.
In the present work, a different PNM is also defined on a regular three-dimensional lattice
of spherical pores and cylindrical throats, namely a throat-pore model (TPM) (Fig. 2.1).
The drying algorithm is composed of three main parts: The labeling of throats/pores,

generation of pores and throats, and the drying algorithm.

2.2.1 Labeling of pores and throats

First, we have to label throats and pores comprising a three dimensional network. The
numbers of pore layers in x, y, and z directions are Ni, Nj, and Nk, respectively. The top
layer of the network (network surface in Fig. 2.1), denoted by Nk, is coupled with the
gas-side boundary layer, which contains NBL layers of pores (including the surface layer).
The central distance between two adjacent pores is uniform, h = 1000µm.

The labeling algorithm depends on the spatial configuration of the network. For example,
in a cubic network, a pore is intersected with six throats resulting in coordination number 6.
In an octahedron network, a pore is connected with eight throats resulting in coordination
number 8. Although details of labeling of the network are different between those two
configurations, the principle of labeling is similar, which is to find correlations between
pores and throats (pore neighboring throat), between throats and pores (throat neighboring
pore), and between pores and pores (pore neighboring pore). The following part shows an
example of the labeling process for a cubic network.
Labeling of pores starts along the x-direction from the bottom layer to the top layer.

Labeling of throats is swept first along the x-direction (green throats), followed by the
y-direction (yellow throats) and finally along the z-direction (blue throats) (Fig. 2.1). The
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Figure 2.1: Sketch of a 3D cubic pore network (4 × 4 × 10) with the gas-side diffusion
boundary layer (4× 4× 4) on top. Periodic boundary conditions are applied
on the lateral faces of the network. The green throats are in x-direction, yellow
throats are in y-direction, and blue throats are in z-direction.

labeling of throats in the boundary layer is conducted in the same order after all throats
in the network have been labeled. The number of pores in the network is

Np = NiNjNk, (2.1)

and the total number of pores (including boundary layer) is

NP = NiNj (Nk +NBL − 1) . (2.2)

The number of surface pores is
Nsurf = NiNj. (2.3)

The number of throats in the network is

Nt = 3NiNj (Nk − 1) . (2.4)
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It should be noted that in Eq. 2.4 one additional row of throats is counted in x- and in
y-direction, because of periodic boundary conditions being used in these directions. The
total number of throats in the network (including the gas-side boundary layer) is

NT = Nt + (3 (NBL − 1) + 2)Nsurf . (2.5)

Following this labeling method, we generate the throat neighbor pore (TNP) and pore
neighbor pore (PNP) matrices.
The TNP array (2 × NT) stores the information of neighboring pores for each throat.

For the configuration shown in Fig. 2.2 one obtains

TNP =



1 2
2 3
3 4
4 1
... ...


,

which is a small part of the array based on Fig. 2.1. Periodic boundary conditions are
applied on the lateral faces of the network, which means that, for example, the 4th pore is
connected with the 1st pore through the 4th throat. Neighboring pores of each pore are
stored in the pore neighboring pore (PNP) matrix. The matrix dimension of PNP depends
on the given coordination number. For example, for the geometry of Fig. 2.2, the PNP
matrix has a size of 6 × NP, where 6 means that one pore is connected with six other
pores. Figure 2.2 is an example that shows the assignment of neighboring pores (dark blue
pores) to the 1st pore (the red pore) based on the above labeling method. The 1st pore is
directly connected to the 2nd pore, the 5th pore and the 17th pore. By applying the periodic
boundary conditions on the sides of the network, the 1st pore is also linked with the 4th

pore and the 13th pore. The pores neighboring pore 1 are PNP [1] =
[
17 13 5 4 2 0

]
,

for example. The PNP matrix for the pores shown in Fig. 2.2 reads:

PNP =



17 13 5 4 2 0
18 14 6 3 1 0
19 15 7 4 2 0
20 16 8 3 1 0
... ... ... ... ... ...


.

Thus, a pore is connected with six pores, except pores which are in the top layer and the
bottom layer (connected with five pores).
After having generated the matrices TNP and PNP, the matrix pore neighbor throat

(PNT) can be calculated by identifying the correlation of pores with throats. For example,
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in the 1st row of PNP, pore 1 is connected with pore 2. The next step is to find in which
row in TNP pores 1 and 2 exist. Thus, we can ensure that throat 1 appears in the 1st row
of PNT. Applying this algorithm to every element in PNP, the matrix PNT is obtained

PNT =



289 157 145 4 1 0
290 158 146 2 1 0
291 159 147 3 2 0
292 160 148 3 4 0
... ... ... ... ... ...


.

The matrix of throat neighbor throat (TNT) is required for the PNM with volumeless
nodes. However, for the PNM with spherical pores it is unnecessary to compute the TNT
matrix. Additionally, a matrix that records the number of pores neighboring to a throat
(NPT) should be generated. For example, NPT[1] is 5 since pore 1 is connected to 5 pores
and has 5 throats attached to it.

Figure 2.2: An example for the labeling of pores and throats in a network with size of
4× 4× 10 and gas-side diffusion boundary layer (4× 4× 4) on top, as shown
in Fig. 2.1.

2.2.2 Generation of pores and throats

Throat radii (Rt) are sampled randomly from a normal size distribution with a mean of
R̄t = 250 µm and standard deviation of σ0,t = 25 µm. Using this size distribution and
assuming that the pore radius (Rp,i or Rp,j) is greater than or equal to the largest radius
of neighbor throats (Rt,ij), the pore radius distribution with a mean of R̄p = 283 µm and
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standard deviation of σ0,p = 16 µm is obtained. Throat-pore networks in Chapters 3, 6,
7 and 8 are generated according to these two size distributions as shown in Fig. 2.4a.
However, since the mean and standard deviation of throat/pore radii are systematically
varied in Chapters 9 and 10, a check is necessary so as to avoid unreasonable values of
throat/pore radii. First, the radii of throats and pores are sampled from the respective
size distributions. It is then checked for each throat: If its radius is smaller than zero, it is
replaced with a new value calculated as:

Rt,ij = ΩR̄t, (2.6)

where Ω is a random number between 0 and 1. Thus, we ensure that the throat radius
is larger than zero and the pore radius is greater than or equal to the largest radius of
neighbor throats.

Figure 2.3: Schematic of the throat-pore model (TPM).

To calculate the throat length, the radii of two pores located at the throat ends
are subtracted from the center distance between these two pores (h = 1000 µm), i.e.
Lt,ij = h− Rp,i − Rp,j. While doing so, it is ensured that h > (Rp,i + Rp,j). Figure 2.4b
shows the throat length distribution used in Chapters 3, 6, 7 and 8.

After assigning radii to all pores and throats, the array (At/p) is generated to store the
cross-sectional area of pores and throats needed to calculate the flow conductance. The flow
conductance of a throat depends on its cross-sectional area (At,ij = πR2

t,ij) and the flow
conductance of a pore relies on its cross-sectional area (Ap,i = πR2

p,i). The cross-sectional
area for vapor transfer along the network surface (At,surf,x and At,surf,y) is 0.5h2. The
cross-sectional area between the network surface and the gas-side boundary layer (At,surf,z)
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and in the boundary layer (At,BL,x, At,BL,y and At,BL,z) is h2 (see Fig. 2.5).

Figure 2.4: Distributions of pore radius and throat radius with mean throat radius 250
µm and the standard deviation of throat radii 25 µm (a) and the throat length
distribution Lt (b). The pore radii are larger than or at least equal to the
largest radius of neighbor throats.

2.2.3 Drying algorithm in the capillary-viscous regime

We present details of the PNM algorithm that can describe the liquid and vapor transport
in the limit of capillary-viscous regime at isothermal conditions.

2.2.3.1 Saturation of throats and pores

The algorithm begins with pores and throats completely saturated with liquid. Vapor
pressure distribution in the boundary layer is calculated based on the condition that surface
pores (red pores in Fig. 2.1) contain saturation vapor pressure and the pores adjacent
to the bulk air are assumed to have zero vapor pressure. During the drying process, the
liquid-vapor interface (meniscus) moves into the pore network and the saturation decreases.
The change of local saturation is stored in two arrays, the throat saturation St,i and the
pore saturation Sp,i, which can take values from 1 (completely filled with free water) to 0
(completely empty). Thus, three kinds of pores and three types of throats are identified:
Empty pores (Sp,i = 0) and empty throats (St,i = 0), those fully occupied by vapor phase;
full pores (Sp,i = 1) and full throats (St,i = 1), those fully occupied by liquid phase; and
partially filled pores (0 < Sp,i < 1) and partially filled throats (0 < St,i < 1), those at the
liquid-gas interface.

2.2.3.2 Vapor pressure in pores

Once the menisci move into the network, empty pores form. The vapor pressure in these
pores is defined as follows:
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Figure 2.5: Different cases of cross-sectional area for vapor diffusion in the boundary layer
and at the network surface. Surface throats and respective cross-sectional areas
in the horizontal direction are in red. The cross-sectional area of surface pores
to the boundary layer in the vertical direction are in dark blue. The throats
in the gas-side boundary layer are in green (x-direction), yellow (y-direction),
and dark blue (z-direction), corresponding to its cross-sectional area.

1. An empty pore connected to only empty neighbor throats is at unknown vapor
pressure Pv, which can be calculated by a vapor balance equation;

2. An empty pore connected to at least one full or partially filled neighbor throat is
assumed to be at saturation vapor pressure, P ∗v ;

3. The vapor pressure in a partially filled pore is at saturation vapor pressure, P ∗v .

The saturation vapor pressure P ∗v is 2339 Pa at a uniform temperature of 20 °C. The vapor
pressure values of empty pores are stored.

2.2.3.3 Vapor transport

Stefan’s law is used to describe the vapor transport in the gas-filled region of the network
and in the gas-side boundary layer. The vapor phase is considered as a continuous phase.
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Vapor flow rate (Ṁv,ij) between two pores is calculated by:

Ṁv,ij = gv,ijP ln
(
P − Pv,j
P − Pv,i

)
, gv,ij = DvaM̃v

R̃T

(
Rp,i

Ap,i
+ Lt
At

+ Rp,j

Ap,j

) , (2.7)

where Ap,i, Ap,j, and At (m2) denote the cross-sectional area of pore i (πR2
p,i), pore j and

throat (πR2
t ), respectively. Dva (m2/s) denotes the diffusion coefficient of vapor in the air.

Pv,i and Pv,j are the vapor pressure in pore i and pore j, respectively. P (Pa) is the total
(atmospheric) pressure. The derivation of this equation can be found in Chapter 3.

The vapor pressure in empty pores with neighbor throats containing liquid and in
partially filled pores is considered to be equal to the saturation vapor pressure. The mass
balance equation for the vapor phase is then written for all gas pores of unknown vapor
pressure as: ∑

j

Ṁv,ij = 0. (2.8)

The sum is over all neighboring gas pores which are connected by an empty throat. The
boundary conditions are as follows: Saturation vapor pressure for gas pores with neighbor
throats containing liquid and for partially filled pores; vapor pressure of the drying air for
pores located at the far end of the boundary layer.

Figure 2.6 illustrates the vapor mass balance at vapor pore 1 surrounded by liquid pores
(pores 3, 5, and 7 in dark blue) and by vapor pores (pores 2, 4, and 6 in light blue). The
vapor mass balance for pore 1 can be written as:

gv,8P ln
(
P − Pv,1
P − Pv,2

)
+ gv,9P ln

(
P − Pv,1
P − Pv,3

)
+ gv,10P ln

(
P − Pv,1
P − Pv,4

)

+gv,11P ln
(
P − Pv,1
P − Pv,5

)
+ gv,12P ln

(
P − Pv,1
P − Pv,6

)
+ gv,13P ln

(
P − Pv,1
P − Pv,7

)
= 0.

(2.9)

Hereby Pv,3 = Pv,5 = Pv,7 is P ∗v .
Then, the mass balance for pore 1 can be rearranged as:

ln
(

1− Pv,1
P

)
(gv,8 + gv,9 + gv,10 + gv,11 + gv,12 + gv,13)

−gv,8 ln
(

1− Pv,2
P

)
− gv,10 ln

(
1− Pv,4

P

)
− gv,12 ln

(
1− Pv,6

P

)
=

gv,9 ln
(

1− Pv,3
P

)
+ gv,11 ln

(
1− Pv,5

P

)
+ gv,13 ln

(
1− Pv,7

P

)
.

(2.10)

Applying Eq. 2.8 to all gas pores results in a set of equations. Assuming the saturated
vapor pressure for saturated pores and invoking know vapor conductances of all gas pores
gv, the set of equations can be transformed into a linear system by replacing the unknown
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Figure 2.6: Illustration of a vapor mass balance with possible boundary conditions. The
dark blue color represents water, and the light blue color represents vapor.

vapor pressure Pv,i with the variable

Xv,i = ln
(

1− Pv,i

P

)
. (2.11)

In mathematical terms:
Av ×Xv = bv, (2.12)

where Av is the matrix of vapor conductances, Xv the vector of unknown Xv,i and bv is
the vector of boundary conditions. The matrix of vapor conductances is of size NP × NP
(including the nodes in boundary layer) and can be filled as:

Av =



1:NPT [1]∑
i=PNT [1,i]

gv,i −gv,PNT [1,1] 0 · · · 0

−gv,PNT [2,1]

1:NPT [2]∑
i=PNT [2,i]

gv,i 0 ...

0 0 . . .
... . . .

0 · · ·
1:NPT [NP ]∑
i=PNT [NP,i]

gv,i



. (2.13)

The diagonal of matrix Av is calculated by the sum of the vapor conductances of throats
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in each row of PNT. The nonzero values in each row, i, are negative vapor conductances
to neighboring pores (unknown vapor pressure) of each row of PNP[i]. For example, Av

for the situation shown in Fig. 2.5 is rearranged from the left-hand side of Eq. 2.10:

Av =
[
gv,8 + gv,9 + gv,10 + gv,11 + gv,12 + gv,13 −gv,8 0 −gv,10 0 −gv,12 0

]
. (2.14)

The vector of vapor pressure boundary conditions, which has size NP, is denoted by bv.
Each row of bv is made of the sum of the evaporation rates from saturation pores:

bv =



...
Pv[PNP [i]]≡P ∗

v∑
i=PNT [i]

gv,i ln
(

1− P ∗v
P

)
...

 . (2.15)

One example of bv for the simple network model of Fig. 2.6 can be rearranged from the
right-hand side of Eq. 2.10:

bv =
[
gv,9 ln

(
1− Pv,3

P

)
+ gv,11 ln

(
1− Pv,5

P

)
+ gv,13 ln

(
1− Pv,7

P

)]
. (2.16)

Similarly to the boundary condition vector (or NP × 1 matrix), we also generate a
matrix to store the known vapor pressures in the network for each step. Matrix Pv has,
again, the size of NP by 1. It contains the equilibrium vapor pressure (P ∗v = 2339 Pa) for
liquid pores and partially filled pores, as well as empty pores connected to at least one
throat that contains liquid.

After having calculated the two matrices, namely Av and bv the preconditioned conjugate
gradients method (Barrett et al., 1994) is used to tackle Eq. 2.12 for all pores in the
network to obtain the matrix Xv. The vapor pressure for each pore is, finally, solved as:

Pv = P (1− exp (Xv)) . (2.17)

2.2.3.4 Phase change at the liquid-vapor interface

The vapor diffusion rate (Ṁv,ij) between two empty pores as well as between one liquid
pore and one empty pore (Fig. 2.7) can be calculated based on Eq. 2.7.

Once the vapor pressure has been calculated in each pore, the vapor diffusion flow rate
from pore i (i.e. pore 1 in Fig. 2.8) to each of its k empty neighbor pores (pores 2, 3 and 6
in Fig. 2.8) is ∑k Ṁv,ik. Assuming that this flow is contributed from several partially wet
throats to pore i, then the evaporation rate in one of them (denoted as s) can be obtained,
as:

Ṁev,s = As
Atot,i

∑
k

Ṁv,ik, (2.18)
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Figure 2.7: Vapor diffusion rate in empty throats. Dark blue represents the water, and
light blue denotes the vapor. P ∗v is the saturated vapor pressure and Pv,1 and
Pv,2 are unknown vapor pressures that are determined from the vapor mass
balance.

where As is the cross-sectional area of the considered meniscus throat (red in Fig. 2.8)
and Atot,i is the total cross-sectional area of all throats with a meniscus neighbor to pore i.
Justified by slow isothermal drying, condensation of vapor is neglected.

2.2.3.5 Liquid transport

The liquid transport mechanism at the pore scale can be described by Poiseuille’s law.
The liquid flow rate (Ṁw,ij) is motivated by the difference of water pressure between filled
pore i and filled pore j as:

Ṁw,ij = gw,ij (Pw,i − Pw,j) , gw,ij = πρw
8µ

1(
Rp,i

R4
p,i

+ Lt
R4
t

+ Rp,j

R4
p,j

) , (2.19)

where ρw (kg/m3) denotes the liquid density, µ (m2/s) the liquid viscosity, Pw,i (Pa) and
Pw,j (Pa) the liquid pressure in the pores i and j. Geometrical quantities are explained in
Fig. 2.3. Derivation of Eq. 2.19 can be found in Chapter 3. The liquid pressure at each
pore that is filled with water can be determined by the balance equations,

∑
j

Ṁw,ij = 0, (2.20)

meaning that the incoming flow rate equals the outflow rate at each pore. The sum is
over all neighboring liquid pores which are connected by filled throats or partially filled
throats. Based on the boundary conditions, stationary menisci and moving menisci are
identified. Stationary menisci are characterized by the fact that evaporation exists at the
interface, but the saturation is not reduced, which means that the liquid conductance for
the stationary menisci is zero. In contrast, the interface of moving menisci moves (refilling
or emptying) with evaporation. Thus, the balance condition at each throat/pore meniscus
can be described by the Young-Laplace equation. This condition is used to determine the
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associated liquid pressure (Pm,t/p):

Pm,t/p = P − Pc, Pc = 2σ cos θ
Rt/p

, (2.21)

where σ (N/m) and θ (◦) denote the surface tension and the equilibrium contact angle,
respectively. Pc (Pa) and Rt/p (m) denote the capillary pressure and the radius of the
meniscus of throat/pore. In this work, we assume that the liquid is perfectly wetting the
solid matrix, meaning θ = 0◦.

Applying Eq. 2.19 to liquid pores results in a set of equations which is transformed into
a linear system as:

Aw ×Xw = bw, (2.22)

where Aw is the matrix of liquid conductances, Xw is the vector of unknown pressure of
liquid pores Pw and bw is the vector of boundary conditions.

1

23

4 5

6

7

ሶ
𝑀
𝑣
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6

As

Figure 2.8: Phase change at an empty pore. Dark blue represents the water, and light
blue denotes the vapor.

Figure 2.9 shows a small network of pores and throats as an example to explain the
liquid transport calculation. The mass balance is written for liquid pore 1 and the following
boundary conditions are considered: Vapor pores 2, 4 and 6 have the evaporation rates
Ṁv,2, Ṁv,4, Ṁv,6, respectively. Liquid pore 7 has unknown pressure Pw,7. Partially liquid
filled pores 5 and 3 have the meniscus pressures Pm,p,5 and Pm,p,3, respectively. Liquid
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throat 10 contains a stationary meniscus, and liquid throats 9, 11 and 13 contain moving
menisci (as one assumption of the situation for menisci). The detailed algorithm in treating
menisci in model are presented in the following section. The assumption here is served to
illustrate how to solve the mass balance for liquid transport.
Thus, the liquid mass balance for pore 1 can be written as:

gw,9 (Pw,1 − Pm,p,3) + gw,11 (Pw,1 − Pm,p,5) + gw,13 (Pw,1 − Pm,p,7) + Ṁv,2 + Ṁv,4 + Ṁv,6 = 0.
(2.23)

Equation 2.23 is rearranged as:

(gw,9 + gw,11 + gw,13)Pw,1−gw,13Pw,7 = gw,9Pm,p,3+gw,11Pm,p,5−Ṁv,2−Ṁv,4−Ṁv,6. (2.24)

The left-hand side of Eq. 2.24 is rearranged for the liquid conductance of pore 1, as:

Aw =
[
gw,9 + gw,11 + gw,13 0 0 0 0 0 −gw,13 0

]
. (2.25)

Figure 2.9: Illustration of pore 1 with associated boundary conditions. The free liquid
water and the water vapor are shown in dark blue and light blue, respectively.
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Thus, the vector for the unknown liquid pressures appears as:

Xw =



Pw,1

0
0
0
0
0
Pw,7

0



. (2.26)

The right-hand side of Eq. 2.24 is the boundary condition which can be written as:

bw =
[
gw,9Pm,p,3 + gw,11Pm,p,5 − Ṁv,2 − Ṁv,4 − Ṁv,6

]
. (2.27)

More generally, applying the mass balance to each liquid pore in the network, we form
a set of equations that can be transformed into a linear system. Therefore, the matrix Aw

is the size of Np × Np (which only contains pores in the network of the porous medium):

Aw =



PNT [1,j] 6=stationary∑
PNT [1,j]

gw,PNT [1,j] · · · −gw,PNT [1,k] · · ·

...
PNT [2,j]6=stationary∑

PNT [2,j]
gw,PNT [2,j] −gw,PNT [2,k]

...

... −gw,PNT [i,k]

PNT [i,j] 6=stationary∑
PNT [i,j]

gw,PNT [i,j]
...


. (2.28)

Here j are the pore neighboring throats which contain moving menisci and filled throats
connected to pores with unknown liquid pressure, and the sum of the liquid conductances
of PNT[i, k] is placed in Aw,ii; k is the throat connected with another liquid pore of
unknown liquid pressure, placed at position Aw,ik.
The vector Xw can be seen as a matrix with size Np × 1, which is filled with the

unknown values of liquid pore pressure Pw and 0 for the gas pores. The matrix of boundary
conditions bw has size Np × 1. The element of the boundary condition matrix which
corresponds to a specific pore has to be derived by combination of the following cases:

• Once the pore is connected with an empty throat, we have to subtract the vapor
mass flow rate Ṁv from the value of the element of the boundary condition matrix.

• Once the pore is connected with a stationary meniscus throat, we also have to
subtract the vapor mass flow rate at the stationary meniscus Ṁv .
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• Once the pore is connected with a moving meniscus throat with saturation St, we
have to add the value of StgwPm,t to the value of the element of the boundary
condition matrix.

• Once the pore is connected with a partially filled pore, we have to add the value of
gwPm,p.

When Aw and bw are set up, the preconditioned conjugate gradient method is used to
compute the liquid pressure of pores, i.e., Xw.

2.2.3.6 Stability of menisci

The moving or stationary status of menisci should be distinguished before each invasion
step. The invasion process is controlled by capillary pressure, suggesting that the throat
with the largest radius is easiest to invade. In the network, we ensure that each pore
radius is larger than or at least equal to the largest radius of neighbor throat. This makes
menisci pores to be either refilling or emptying.
To deal with the situation of invasion in throats, we assumed the meniscus in the

largest throat filled with liquid as the moving meniscus, other menisci in filled throats are
stationary menisci. The partially filled throats are all assumed to have moving menisci.
Based on this assumption, we calculate the conductance matrix Aw, and the boundary
condition matrix bw. Thus, we can solve the linear Eq. 2.22 to obtain the liquid pressure
distribution of the liquid pores in the network.

After obtaining the liquid pressure distribution under the above assumption, we have to
check whether the so-derived stationary menisci meet the demand of stability. Therefore,
the required liquid pressure Pw,req, which is necessary in order to sustain evaporation,
should be larger than the meniscus pressure calculated by Eq. 2.21. Thus the discrepancy
of pressure:

∆P = Pm,t/p − Pw,req, (2.29)

should be smaller than zero. Here the required water pressure, Pw,req, is according to Fig.
2.10 defined at the stationary meniscus:

Pw,req,i = Pw,i −
Ṁv

gw,ij
. (2.30)

The requirement expressed by Eq. 2.29 should be satisfied by each stationary meniscus.
Otherwise, we have to modify the previous assumption about stationary menisci. We
change the largest meniscus among previously assumed to be stationary menisci into a
moving meniscus. That is to say, a new moving meniscus is created. Thus, matrices Aw

and bw have to be altered correspondingly. The balance equations for liquid pores (Eq.
2.22) must be solved again. These loops have to be calculated until the balance conditions
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are reached for all menisci (shown in Fig. 2.11).

Pw,i
gw,ij

Pm,t

ሶ𝑀𝑣

Figure 2.10: Liquid pressure demand of stationary meniscus. The dark blue color represents
the liquid, and the light blue color represents the vapor.

When gas invades the network, the liquid phase splits up into several regions with
different sizes, the so-called liquid clusters. The liquid clusters consist of at least one
nonempty throat connected to one nonempty pore. The liquid mass balance must be
satisfied not only at each meniscus but also for each liquid cluster. The same procedure is
applied to all liquid clusters.

Figure 2.11: Flow chart of the algorithm to determine the liquid pressure in the network.

2.2.4 Numerical algorithm

After the water pressure in each liquid pore has been determined and all moving menisci
(in the throats or pores) have been found, the time for each invasion step is calculated. The
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mass flow rate for each throat with moving meniscus (emptying or refilling) Ṁt corresponds
to the liquid flow rate (Eq. 2.19) and the diffusion flow rate (Eq. 2.7). The mass flow rate
for each pore with moving meniscus (emptying or refilling) Ṁp has to consider the liquid
flow from neighbor throats/pores, the neighbor menisci diffusion flow, and the diffusion
flow in this pore. The time steps for the emptying and refilling events of meniscus throats
or pores are computed by:

∆temptying,t/p = Vt/pρwSt/p

Ṁt/p

, (2.31)

and

∆trefilling,t/p =
Vt/pρw

(
1− St/p

)
Ṁt/p

, (2.32)

where Vt/p is the moving meniscus throat/pore volume and St/p is the respective saturation.
Evaporation times for single throat menisci and single pore menisci (∆tsingle,t/p) are
calculated from the volume, density, saturation, and evaporation rate as:

∆tsingle,t/p = Vsingle,t/pρwSsingle,t/p

Ṁev,single,t/p

. (2.33)

Each time step (∆t) of the simulation is decided as the minimum among ∆temptying,t/p,
∆trefilling,t/p and ∆tsingle,t/p.

Next, we have to update all saturations for each throat/pore with moving meniscus.
When one throat empties, it creates one meniscus pore, and the connection of the liquid
phase is not affected. Once the meniscus pore dries, it produces meniscus throats and is
likely to break the cluster into small clusters. The number of liquid clusters in the network
has to be counted. A variant of the Hoshen-Kopelman algorithm is used to label liquid
clusters (Metzger et al., 2006).
The main steps of the TPM drying algorithm are as follows (see Fig. 2.12):

1. Generate a cubic network and input the network geometry data (throat/pore radii,
length of throats), as well as the initial (e.g., temperature, liquid viscosity) and
boundary conditions.

2. Calculate the vapor pressure distribution in the boundary layer and evaporation rate
(Ṁev) by the sum of all diffusion flows in the top slice of the network (TS) as:

Ṁev =
∑
TS

Ṁv,TS. (2.34)

3. Find the meniscus throats/pores and calculate their mass flow rates. The number of
liquid clusters and single meniscus throats/pores also has to be identified.

4. Determine the liquid pressure distribution. Calculate the flow rates (emptying/refilling)
of throat/pore menisci. Get the emptying/refilling time of each throat/pore and the
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times of single throats/pores to be emptied or refilled. The time of one invasion step
(∆t) is decided as the minimum time among these calculated times.

5. Update all parameters in the network, e.g., the liquid distribution and meniscus
throats/pores.

6. Cluster labeling is active only when the previous step resulted in an emptied/refilled
pore.

7. Calculate the vapor pressure distribution again, and the evaporation rate.

The network simulation is repeated from step 3 to step 7 until all the liquid has been
evaporated (Snet = 0).

Note that the simulation cost is high for the above algorithm. For example, a PC with
processor Intel i7 CPU 4.00 GHz needs 30h to simulate the network with 25 × 25 pores
considered in every of in total 51 cross-sections of the network and 10 cross-sections of the
gas-side boundary layer. Here, we identify some costly steps in the algorithm.

In every loop of the algorithm, much computational time is attributed to setting up and
solving the linear system for liquid pressure at liquid pores for each cluster. The algorithm
in Fig. 2.11 shows a loop to determine the liquid pressure. The scale of this loop depends
on the number of active menisci throats. However, this number is augmented with ongoing
invasion steps. The relative simulation cost for this part is amplified over every loop.
Additionally, the task of updating labels of liquid throats/pores also takes some time.

In this work, we used the Hoshen-Kopelman algorithm, which is a serial method. The
TPM algorithm only activates the Hoshen-Kopelman algorithm when a meniscus throat
has been invaded. The algorithm of cluster labeling could also be optimized.

When standing at the global perspective, the loop in Fig. 2.12 is a major concern. The
loop scale is extremely large. For example, for the above network size it has around 106

steps. The loop scale depends on the time step for one invasion. This time is selected
among the drying times of each liquid cluster and the drying times of single menisci
throats/pores. We used the minimum drying time to update the saturation. Thus, the
minimum drying time is the effective time that is modeled in every step. However, it is
possible that the time of one invasion step is from the drying of a single throat or pore that
contained a liquid-gas meniscus. Under this circumstance, the liquid pressure distribution
in the network remains identical to the previous step. It is then unnecessary to calculate
the most expensive step by determining the liquid pressure again. Therefore, the algorithm
is especially effective in the receding front period which is characterized by the existence
of many single menisci, compare Fig. 3.9.
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Figure 2.12: Flow chart of the algorithm of the throat-pore network model.
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Chapter 3

Pore network simulations of drying:
Throat-node model vs. throat-pore
model
This chapter is partly taken from “Lu, X., Kharaghani, A., Tsotsas, E., (2020), Trans-
port parameters of macroscopic continuum model determined from discrete pore network
simulations of drying porous media: Throat-node vs. throat-pore configurations. Chemical
Engineering Science 223, 115723”.

The present chapter compares the transport properties of the throat-node model (TNM)
with those of the throat-pore model (TPM). First, we demonstrate how the void space
of a capillary porous medium is approximated by these two configurations. Then, we
evaluate the vapor and liquid conductances in these networks. For each phase, we quantity
the discrepancy in conductances between TPM and TNM. Finally, we present drying
predictions of both models.

3.1 The pore space of porous medium approximated by PNM

The network void space is calculated as the sum of all volumes of throats in TNM or of
throats and pores in TPM. Once the distance between nodes is fixed (h = 1000 µm), the
mean radius decides about the void space. Figure 3.1 shows the porosity (ε) of TNM
and TPM networks with same size of 25× 25× 51 (width, depth, height) and with the
same radius setting for throats and pores, R = Rp = Rt. In other words, for only the
network porosity calculation, the radii of all throats and pores set to the same value. The
plot indicates that the void space is overestimated by the TNM when the mean radius
of throats and pores is larger than 100 µm. When the mean radius reaches 300 µm, the
TNM fails to represent the network, as the calculated value of porosity is larger than 1.

In previous pore network drying simulations, the radius was usually set smaller than 100
µm to avoid excessive overlap of throat ends (Metzger et al., 2007b). These networks only
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represent the drying process at low porosity (ε < 0.1), not in porous media such as bead
packings. In Attari Moghaddam et al. (2017a), the drying process was studied based on
the TNM by setting the radius to 250 µm, resulting in a porosity of 0.594, which is beyond
the porosity of a packed bed (ε = 0.4). However, if we use the TPM to represent the
void space, the calculated porosity of ε = 0.35 is close to packed bed porosity. Therefore,
the TPM seems to be more realistic for porous media which are similar to assemblies of
spheres.

Figure 3.1: Network porosity as a function of the radius of throats and pores (R = Rp = Rt)
for two different model geometries with a fixed distance between nodes, h =
1000 µm.

The potential overestimation of void volume by the PNM would play a role in the
drying simulation. However, the impact on the prediction of simulations has not been
discussed, although the existence of overestimated volume in the TNM has been recognized
(Attari Moghaddam et al., 2018). In this chapter, TPM and TNM simulations are
systematically compared for the throat radii sampled from a normal size distribution with
a mean of R̄t = 250µm and standard deviation of σ0,t = 25µm. The procedure for the
generation of the network geometry is presented in Chapter 2. Simulations were carried
out for a relatively small network with Gaussian distributed radii. To reduce the level of
uncertainty on parameters estimation, ten parallel realizations of the pore network have
been considered. PNM simulation results are strongly influenced by the specific PNM
geometry setting, which varies stochastically from one to the other network realization and
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leads to different simulation results. Adding simulation results and then dividing them by
the number of simulations makes no sense as the macroscopic parameters (or variables)
depend on the saturation. The value of which is influenced by the previous state, which
leads to unique vector correlations between macroscopic parameters with local saturation
and network saturation. The normal averaging method treats the correlation among values
as a scalar. To average the PNM dataset as a vector, we place the dataset into a 100 ×
100 matrix, in which the row represents intervals of local saturation from S = 0.01 to
1.00 defined equidistantly with ∆S = 0.01, and the column denotes the range of network
saturation from S = 0.99 to 0.01 with an even subdivision in steps ∆Snet = 0.01. Then
we average the values of the considered parameter for every element in this matrix. This
method is adopted for averaging all macroscopic parameters.

The structural characteristics of pore network and the physical constants for the simula-
tions are given in Tables 3.1 and 3.2. To observe the viscous effect in a small network, we
assumed an unrealistic value of liquid viscosity in the simulations (Attari Moghaddam et al.,
2017b). Before the comparison of drying characteristics between the two configurations,
transport conductances (gv and gw) are discussed. The spherical pores introduced into the
PNM can influence the transport processes. Therefore, we will formulate the vapor trans-
port conductance and the liquid transport conductance in PNM in the following sections,
and then compare values between the TNM and the TPM. Finally, drying characteristics
obtained from TNM and TPM will be compared.

Table 3.1: Characteristics used for dynamic drying simulations of TNM and TPM.
parameters TNM TPM
Network size 25 × 25 × 51 25 × 25 × 51
Boundary layer size 25 × 25 × 10 25 × 25 × 10
Mean pore radius (µm) - 283
Mean throat radius (µm) 250 250
Standard deviation of throat radii (µm) 25 25
Standard deviation of pore radii (µm) - 16
Center distance between two pores/nodes (mm) 1.0 1.0
Liquid volume (m3) 1.86 × 10−5 1.1 × 10−5

Network porosity 0.59 0.35

Table 3.2: Physical parameters used for drying simulations.
Physical parameters Value
Temperature (K) 293.15
Liquid viscosity (Pa · s) 0.0028
Binary diffusion coefficient (m2/s) 2.5685 × 10−5

Total pressure (Pa) 105

Surface tension (N/m) 0.07274
Saturation vapor pressure at 20 ◦C (Pa) 2339
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3.2 Vapor transport conductance

One-side diffusion, resulting in Stefan’s law is assumed for the vapor transport. That is to
say, the diffusion of air molecules is balanced by the convective flow of air with the total
gas, suggesting the immobility of air molecules. Derivation of vapor transport kinetics is
as follows:

1. Equal diffusion flow rate between vapor and air:

Ṅdiff
a = −Ṅdiff

v . (3.1)

2. Total molar flow rate of vapor:

Ṅv = Ṅdiff
v + ỹṄ conv. (3.2)

3. Molar flow rate of air:

Ṅa = Ṅdiff
v + (1− ỹ)Ṅ conv = 0. (3.3)

Here, Ṅdiff
a is the molar flow rate of air transported by diffusion; Ṅdiff

v is the molar flow
rate of vapor transported by diffusion; Ṅv is total molar flow rate of vapor;Ṅa is total
molar flow rate of the air. The molar vapor fraction is

ỹ = Pv
P
. (3.4)

with Pv as the vapor pressure, and P as the total gas pressure.
Fick’s law is applied to describe the diffusive part of vapor flow:

Ṅdiff
v = −nADva

dỹ
dz . (3.5)

Combining Eqs. 3.1 to 3.5 we can get the total molar flow rate of vapor:

Ṅv = −nADva

1− ỹ
dỹ
dz . (3.6)

Thus, the vapor mass flow rate between two nodes in TNM (Fig. 3.2) can be calculated
by integrating over the length h with

n = P

R̃T
, (3.7)

and
Ṁev,TNM = ṄvM̃v, (3.8)
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resulting in

Ṁev,TNM = PAtDvaM̃v

R̃Th
ln
(
P − Pv,2
P − Pv,1

)
. (3.9)

Here, At is the cross-sectional area of the throat, i.e. πR2
t , h is the length of the throat

(the distance between two nodes), Dva is the diffusion coefficient of vapor in the air, R̃
denotes the universal gas constant, and T is temperature.

Vapor mass flow rate in TPM (Fig. 3.2) is calculated between the centers of two pores
by rearranging Eq. 3.6:

Ṅv

A
dz = −nDva

1− ỹ dỹ. (3.10)

Thus,

Ṅv(
∫ Rp1

0

1
Ap1

dz +
∫ h−Rp2

Rp1

1
At
dz +

∫ h

h−Rp2

1
Ap2

dz) = −nDva(
∫ Pv,2

p

Pv,1
p

∂ỹ

(1− ỹ)). (3.11)

Finally, the vapor mass flow rate from the TPM is calculated as:

Ṁev,TPM = PDvaM̃v

R̃T (Rp,1

Ap,1
+ Lt
At

+ Rp,2

Ap,2
)

ln(P − Pv,2
P − Pv,1

). (3.12)

Figure 3.2: Schematic for the vapor transport conductance in the throat-node and the
throat-pore model.

By use of expressions for the vapor mass flow rate in TNM (Eq. 3.9) and TPM (Eq.
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Figure 3.3: Ratio of vapor conductance for the TPM over TNM for h = 1000 µm, Rt =
250 µm, and (in TPM) Rp,1 = Rp,2.

3.12), the vapor transport conductance can be specified as, respectively:

gv,TNM = AtDvaM̃v

R̃Th
, (3.13)

and
gv,TPM = DvaM̃v

R̃T (Rp,1

Ap,1
+ Lt
At

+ Rp,2

Ap,2
)
. (3.14)

Here, Lt denotes the throat length that is determined by grid space and the pore radii at
throat’s ends, as Lt = h−Rp,1 −Rp,2.
The ratio of vapor conductance in TPM over that in TNM indicates the effect of pore

radius on vapor conductance, defined as relative vapor conductance (RVC):

RV C = gv,TPM
gv,TNM

. (3.15)

Figure 3.3 shows the ratio of vapor conductances for these two configurations for an
identical throat radius of 250 µm and the same length between two nodes or pores, h =
1000 µm. The spherical pores at the throat’s ends, assumed here to have the same radius,
improve the vapor conductance. The RVC increases nonlinearly with the ratio of pore
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radius to throat radius, suggesting that the role of pores cannot be neglected when the
pore radius is significantly larger than the throat radius.
Figure 3.4 shows the relative ratio of the vapor conductance against the ratio of pore

radius to throat radius for different values of throat radius. The pores play a small role in
the vapor conductance with narrow throats of fixed length. For example, the pore radius
does not change significantly the vapor conductance when the throat radius is 50 µm.
Contrary, the pores enhance the vapor conductance in a network with the throat radius of
250 µm.

Rp/Rt

v

Figure 3.4: Relative vapor conductance (TPM over TNM) against the ratio of pore radius
to throat radius for different values of mean throat radius. The pores at the
ends of the throat have the same size, and the center distance is h = 1000 µm.

3.3 Liquid transport conductance

The momentum transport equation (Navier-Stokes equations) can be used to describe
the transport of liquid between two nodes or pores (Fig. 3.5). Assuming steady-state,
incompressible, unidirectional and laminar flow, the Navier-Stokes equations can be
simplified, resulting in the Hagen-Poiseuille equation.
Applying these conditions the momentum transport equation for laminar viscous flow
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in a cylindrical throat (Fig. 3.5) is obtained to:

0 = −dP
dz + µ

[
1
r

d
dr (rdvz

dr )
]
. (3.16)

With the boundary conditions

dvz
dr = 0at r = 0, vz = 0at r = R, (3.17)

we get the velocity distribution profile vz across the radius as:

vz = − 1
4µ

dP
dz (R2 − r2). (3.18)

Equation 3.18 indicates that in a pipe of given length h and radius R, a velocity profile
will be achieved, which is only a function of the ratio ∆P/µ.

The volumetric flow rate can be determined by integration to

Q̇ =
∫ R

0
vzdA. (3.19)

Finally, we combine Eqs. 3.18 and 3.19 to get the volumetric flow rate as:

Q̇ = − π

8µR
4 dP

dz . (3.20)

In the TNM, the volumetric flow rate in a throat can be determined by integration over
the length h, ∫ h

0

Q̇

R4dz = π

8µ

∫ P2

P1
dP, (3.21)

Introducing the liquid mass flow rate

Ṁw = Q̇ρw, (3.22)

the liquid mass flow rate of the TNM can be obtained as:

Ṁw,TNM = πρwR
4
t

8µh (P1 − P2). (3.23)

Regarding the liquid flow in the TPM, the transition process between throat and pore
is neglected, suggesting identical fluid velocity profile in throats and pores (Fig. 3.5). This
treatment can be accepted for the slow isothermal drying process. The liquid mass flow
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rate can then be calculated by integrating Eq. 3.2 over the length h:

Ṁw,TPM = πρw
8µ

1

(Rp,1

R4
p,1

+ Lt
R4
t

+ Rp,2

R4
p,2

)
(P1 − P2). (3.24)

Figure 3.5: Velocity profile across cylindrical throats and spherical pores featuring laminar
viscous flow.

The liquid transport conductances in the TNM and the TPM can be specified according
to Eqs 3.23 and 3.24:

gw,TNM = πρwR
4
t

8µh , (3.25)

gw,TPM = πρw
8µ

1

(Rp,1

R4
p,1

+ Lt
R4
t

+ Rp,2

R4
p,2

)
. (3.26)

The ratio of the liquid conductance of TPM over that of TNM can be evaluated as relative
liquid conductance,

RLC = gw,TPM
gw,TNM

. (3.27)

Figure 3.6 shows RLC against the ratio of pore radius (assumed same for both pores of
the TPM) to throat radius (250 µm) with throat length or center distance of the pores
of h = 1000 µm. The RLC increases strongly with the ratio of Rp/Rt. Once the throat
radius is specified, the liquid conductance depends strongly on the pore radius (Fig. 3.6).
The liquid conductance will be doubled for the network setting with Rp = 350 µm and Rt

= 250 µm. Figure 3.7 shows that the sensitivity of RLC upon pore radius decreases with
shrinking throat radius. The liquid conductance is much more sensitive to the pore radius
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Figure 3.6: Relative liquid conductance of the TPM over TNM for same center distance,
h = 1000 µm, and mean throat radius, R̄t = 250 µm. The two pores at the
ends of the throat are assumed to have the same radius, Rp.

than the vapor conductance. Figure 3.3 indicates that the vapor conductance in TPM is
50% larger than in TNM with the network setting of 350 µm for the pores and 250 µm for
the throat. In contrast, the liquid conductance is doubled between these two systems (Fig.
3.7). This is due to the fact that the liquid conductance depends on the fourth power of
the radius in Eq. 3.26.

3.4 Drying kinetics

To enable the investigation of drying characteristics for the two different geometries,
we introduce the evaluated vapor and liquid conductances into the TNM and TPM,
respectively. Figure 3.8 shows the evolution of network saturation over time during the
entire drying process and the corresponding normalized drying rate as a function of network
saturation for the TNM and the TPM. Those profiles are achieved by averaging ten parallel
simulations. The averaging method among the parallel simulations is introduced in Chapter
6.

The drying time of the TPM is less than half of the drying time obtained for the TNM.
Such difference is not only caused by overestimated volume in the TNM but also affected
by the spherical pores altering the invasion mechanism in the TPM. The two network
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Figure 3.7: RLC for different throat radii with otherwise same conditions as in Fig. 3.6.

geometries share the same evaporation rate until a network saturation of 0.96. At high
saturation (S > 0.96), the two models produce the same number of single menisci and
clusters (Fig. 3.9), and they have the same evaporation rate (Fig. 3.8). The evaporation
rate decreases sharply during this period, which is oftentimes called initial transition
period (TP). The TP is due to the invasion of surface pores, altering the surface vapor
pressure distribution. It is not affected by network geometry. From that point on, the
evaporation rate is higher for the TPM than for the TNM.
The drying kinetics of the TPM demonstrates a constant drying period until Snet =

0.75, whereas the evaporation rate of the TNM falls continually. The surface saturation is
critical to the drying kinetics. During this constant evaporation rate period, the surface
saturation is sustained since the liquid pumped from the depth of the network is sufficient
to replenish the surface. The surface saturation lasts longer in the TPM than in the
TNM. With periodic boundary conditions on the lateral sides, three throats correspond to
one pore in the TPM, so that the TPM has 4N structural elements (N is the number of
pores) in comparison to 3N structural elements in the TNM. As a result, more options
are available in the TPM, suggesting a higher probability of radius difference between
menisci. Therefore the capillary pumping is enhanced in the TPM, which can transport
more liquid from bottom to surface of the porous medium. Meanwhile, liquid transport
suffers less internal resistances in TPM (Fig. 3.9).
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(a) 

(b) 

Figure 3.8: (a) Network saturation and (b) normalized drying rate obtained for TNM and
TPM network geometries. The values are averaged over ten realizations for
small saturation intervals.
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(a) 

(b) 

Figure 3.9: Numbers of (a) liquid clusters and (b) single menisci obtained for TNM and
TPM network geometries. The values are averaged over ten realizations for
small saturation intervals.
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During the drying process, the internal resistance becomes larger than the external
resistance (resistance of vapor transport in the boundary layer). The internal resistance
is produced by, for example, single menisci and dispersed isolated liquid clusters. Once
various single menisci and liquid clusters have been formed in the pore network, they
break down paths for water transport from the depth of the network to the drying front.
When it comes to the constant drying period, the number of single menisci in the TPM
is significantly smaller than that in the TNM (Fig. 3.9). More local capillary pumping
exists in the TPM. Therefore the internal resistance for this network geometry is lower.
After the constant drying rate period, the evaporation rate is larger than the moisture
transport rate within the network. The evaporation rate begins to drop. The internal
resistance is increased by the air invasion forming numerous liquid clusters and single
menisci (Fig. 3.9). The moisture transport resistance increases along with the drying
history, but remains lower for the TPM than for the TNM.
When the evaporation front recedes, the evaporation rate becomes similar in the two

models. During this period, liquid viscosity plays the dominant role in liquid transport.
The number of single menisci reaches a maximum, which means that the internal resistance
dramatically prevents moisture transport. With some fluctuation, the maximal number
of single menisci is the same for both models. This result shows that pore volume plays
a minor role in reducing the number of single menisci during this period. The moisture
transport is dominated by the vapor phase during this period.
Figure 3.10 shows the saturation profiles for two the network geometries (z/H = 0 is

the bottom slice and z/H = 1 is the top slice). The residence time of liquid in the top
slice is longer in the TPM because of more capillary pumping and less internal resistance.
Irreducible saturation Sirr, at which the liquid disconnects, is lower for the TPM than for
the TNM. To further illustrate the differences between the different network geometries, we
introduce the invasion profile. Invasion is defined by the ratio of the number of pores/nodes
containing water (Nl,slice) to the total number of pores/nodes in each slice (Ntot,slice):

I = Nl,slice

Ntot,slice

(3.28)

Figure 3.11 shows the invasion ratio for the two models. In the receding rate period
(e.g., for Snet = 0.3), the two models have similar invasion profiles in bottom layers
(z/H ≈ 0.2 − 0). However, these layers have a different value of saturation (Fig. 3.10).
The overestimated volume in TNM leads to relatively high saturations. Therefore the
irreducible saturation (Sirr) declines when altering pore network geometry from TNM to
TPM.

At this end, it should be noted that the TPM underestimates to a certain extent the
liquid volume in the corners of throat and pore conjunctions (Fig. 3.12). This neglected
volume in the current work would play no role in the invasion mechanism since the liquid
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(a) 

(b) 

Figure 3.10: Saturation profiles (averages over ten realizations) obtained from PNM for
two network geometries (a) TNM and (b) TPM. From top the profiles belong
to network saturations of 0.99, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, and 0.1,
respectively.
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Figure 3.11: Ratio of liquid pores/nodes to total pores/nodes in each slice during drying
obtained for the two models. From the top, profiles correspond to network
saturations of 0.99, 0.9, 0.7, 0.5, 0.3, and 0.1, respectively (values are averaged
over ten realizations).

is assumed to be free water and perfectly wetting. That is to say, the effect of geometry at
the corners, leading to the reshaping of the liquid-vapor interface is not discussed in the
current work. Based on these assumptions, this neglected volume in the corners can be
compensated by assuming that the pore radius is larger or at least comparable with the
largest radius of neighbor throats. This treatment could avoid the drawback of the TPM
at the conjunctions on the void volume description.
The liquid flow at the corners of throats with non-circular cross section can play a

significant role during the drying process. In this sense, the neglected volume at the
conjunction (Fig. 3.12) may be considered further in the TPM. For example, a secondary
capillary invasion process might be assumed. Vapor pressure of pores neighbor to these
throats would then be assumed to remain at saturated vapor pressure even after complete
invasion of the neighbor throats if liquid is still left behind in the corners. The pores would
become unsaturated only after all liquid in the corner has been evaporated in the course of
secondary capillary invasions. This treatment would correspond to the formation of liquid
films that can enhance the liquid hydraulic connectivity, although a large volume of liquid
has been removed by evaporation. Vorhauer et al. (2015) observed secondary capillary
structures in experiments and modeled their influence on the drying process using a 2D
TNM, where throats are cylinders with non-circular cross section.
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Figure 3.12: Schematic for the underestimation of the volume at the conjunctions between
a throat and the two pores with which this throat is connected.
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Chapter 4

One-equation continuum model for
drying capillary porous media
This chapter is partly taken from “Lu, X., Kharaghani, A., Tsotsas, E., (2020). Trans-
port parameters of macroscopic continuum model determined from discrete pore network
simulations of drying porous media: Throat-node vs. throat-pore configurations. Chemical
Engineering Science 223, 115723”.

In this chapter, we derive the one-equation continuum model and introduce its transport
parameters. This continuum model (CM) can be used to describe a drying process in
which the underlying transport phenomena are driven by gradients in spatially averaged
quantities and controlled by nonlinear parameters. Such a description is based on the
hypothesis of local equilibrium within a small volume element of the drying medium,
although the entire medium has not reached the equilibrium state.

4.1 Assumptions

In order to derive the one-equation continuum model, the mass balance equations are
written locally. For each control volume (Fig. 4.1), the following assumptions are made:

• No storage of kinetic energy (which cannot be absorbed by the fluid to alter the
properties of fluid) in the mass of the flowing phases considered, i.e. no inertial
forces and no free convection. The physical properties, density and viscosity, are
independent of time.

• Time-constant reference volume with arbitrary size and shape (representative element
volume, REV).

• Constant mass of the gas phase in a given volume.

In general, a balance equation can be expressed based on the status of the observer: standing
stationary to describe the variables locally (most cases) or moving with a reference velocity.
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To provide an easier pathway to derive equations, we build the following balance equations
on the local format.
Assuming isothermal conditions at low temperature and constant gas pressure during

the entire drying process, we can approximate the process by mass transport only in one
spatial dimension (the direction perpendicular to the evaporative surface). In this frame,
mass balances can be expressed separately for the liquid and for the vapor phase, but they
can also be combined into one equation for the moisture transport.

Figure 4.1: Schematic of the control volume of the porous medium for the continuum
model.

4.2 Component mass balance for liquid water

Because of air invasion, the liquid phase is divided into liquid clusters (dispersed phase),
which means that governing equations may not be suitable for every control volume at
every time. Therefore, it is essential to assume that the liquid phase remains continuous
during drying history.
Then, the general mass balance for liquid water in local formulation reads:

∂ρw,CV
∂t

= − ∂

∂z
(ρw,CV v + jw,CV )− χ, (4.1)

where the accumulation of liquid water in the control volume with time (∂ρw,CV /∂t) is
contributed by the convection flow (ρw,CV v) and the diffusion flow (jw,CV ) as well as the
sink term (χ) in general. The diffusion term can be neglected because the liquid phase
contains only water; the sink term χ is caused by evaporation in the drying process; ρw,CV
is the liquid component density in the control volume, which can be calculated by:

ρw,CV = mw,CV

V
. (4.2)

Herein mw,CV is the mass of liquid water in the control volume, and V is the total volume.
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The total volume can be expressed by:

V = Vvoid
ε

, (4.3)

where Vvoid is the void part of the control volume and ε is the porosity of the porous
medium. The mass of liquid water in the control volume can be expressed by:

mw,CV = ρwVw,CV , (4.4)

where ρw is the density of liquid water and Vw,CV is the volume of liquid water in the
control volume, which can be calculated by:

Vw,CV = SVvoid. (4.5)

Here, S is saturation (0 < S ≤ 1). By combining Eqs. 4.2 to 4.5, ρw,CV can be determined
by:

ρw,CV = ερwS. (4.6)

The velocity of liquid (v) can be calculated by Darcy’s law (neglecting gravity):

v =
−k
µ

∂Pw
∂z

εS
. (4.7)

By introducing Eqs. 4.6 and 4.7 into Eq. 4.1, the mass balance can be rearranged into:

∂(ερwS)
∂t

= − ∂

∂z
(−ρw

k∂Pw
µ∂z

)− χ, (4.8)

where k is the permeability.

4.3 Component mass balance for water vapor

The local vapor balance can be formulated in general as:

∂ρv,CV
∂t

= − ∂

∂z
(−ρv,CV v + jv,CV ) + χ. (4.9)

The accumulation of the vapor in the control volume (∂ρv,CV /∂t) can be determined by the
convection term (ρv,CV v) and by the diffusion term of vapor in air (jv,CV ); χ is the source
term which is equal to the sink term of liquid water at the slow isothermal drying and
ρv,CV is the density of vapor in the control volume. This work assumes that drying takes
place at room temperature and that total pressure within the drying material remains
constant and equal to the total ambient pressure. This means that there is no flow of the
gas phase in the drying material and the convection term can be neglected in Eq. 4.9.
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Stefan’s law is used to express the one-sided diffusion of vapor in the gas phase. Thus,
the vapor mass flux can be calculated from Eq. 3.9 as:

jv = M̃vṄv

A
= −DvaM̃v

R̃T
( P

P − Pv
)∂Pv
∂z

. (4.10)

Using the total cross-sectional area in place of A in Eq. 4.10 means that

jv,CV = jv. (4.11)

The density of vapor in the control volume (ρv,CV ) can be determined by:

ρv,CV = mv,CV

V
= ρvVv,CV

V
, (4.12)

with
Vv,CV = Vvoid − Vw,CV . (4.13)

The density of the vapor in the control volume results in:

ρv,CV = ερv(1− S). (4.14)

Finally, the mass balance for the vapor in local formulation becomes:

∂(ερv(1− S))
∂t

= − ∂

∂z
(−DvaM̃v

R̃T
( P

P − Pv
)∂Pv
∂z

) + χ. (4.15)

4.4 Mass balance for moisture transport

The moisture transport mass balance for the drying process arises by summation of the
mass balances for liquid water (Eq. 4.8) and for water vapor (Eq. 4.15):

ερw
∂S

∂t
= − ∂

∂z
(−ρw

k

µ

∂Pw
∂z
− DvaM̃v

R̃T
( P

P − Pv
)∂Pv
∂z

), (4.16)

assuming that the drying process is quasi-steady in regard of the vapor (i.e., accumulation
of vapor can be neglected).

Equation 4.16 is the one-equation CM, which can be written in the form of a diffusion
model by introducing the vapor pressure-saturation pressure ratio (relative humidity) ϕ:

ϕ = Pv
P ∗v
. (4.17)
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Considering Eq. 4.17 and ∂Pw

∂S
∂S
∂z
, Eq. 4.16 is finally simplified as:

ε
∂S

∂t
= ∂

∂z
(D(S)∂S

∂z
), (4.18)

where D(S)(m2/s) is represented by:

D(S) = k

µ

∂Pw
∂S

+ P ∗vDvaM̃v

ρwR̃T
( P

P − ϕP ∗v
)∂ϕ
∂S

. (4.19)

Therefore, major parameter in the one-equation CM (Eq. 4.18) is the moisture transport
coefficient.

4.5 Initial and boundary conditions

To solve Eq. 4.18, initial and boundary conditions need to be defined. The initial condition
is straightforward, namely that the network is initially filled with free water:

S(z = 0→ L, t = 0) = 1. (4.20)

Two boundary conditions must be set: One is defined at the bottom of the porous medium
(Fig. 4.2) as:

ρwD(S) ∂S
∂z

∣∣∣∣∣
z=0,t

= 0. (4.21)

The second boundary condition can be set at the medium surface or at the drying front.
Classically, the surface is assumed to be at the saturated vapor pressure during the 1st

drying period or at vapor pressure which is corrected using the desorption isotherm. The
vapor mass flow from the surface to the ambient can be considered to be one-dimensional
and described by the Stefan law. Thus, the boundary condition at the surface can be
defined with the evaporation flux:

− ρwD(S) ∂S
∂z

∣∣∣∣∣
z=L,t

= ṁv, ṁv = −DvaM̃vP

R̃Tδ
ln( P − Pv,∞

P − ϕsurfP ∗v
), (4.22)

where Pv,∞ (Pa) denotes the vapor pressure in the bulk air, P (Pa) the atmospheric
pressure, δ (m) the boundary layer thickness located between the network surface and the
bulk air. ϕsurfP ∗v represents the vapor pressure at the surface. Here, the relative humidity
at the surface, ϕsurf , in Eq. 4.22 is an additional macroscopic parameter.

Alternatively, the boundary condition at the liquid-vapor interface can be set depending
on the progress of the drying process. For the first drying period, Eq. 4.22 can be selected.
In contrast, Lockington et al. (2003) and Keita et al. (2013) assumed a constant moving
velocity of the drying front in the second drying period.

Instead of observing the movement of the drying front, an evaporation flux boundary
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condition at the drying front can directly be derived from the recorded profile of the drying
rate obtained from experimental measurements (Pel et al., 1993). Alternatively, as can
be seen in Attari Moghaddam et al. (2017b), the normalized drying rate profile obtained
from pore network simulations, which can be seen as numerical experiments is used to
reproduce the saturation profiles. However, this treatment to the boundary condition at
the liquid-vapor interface limits the applicability of the CM for predictions.

Figure 4.2: Schematic of the application domain of the CM with flux boundary condition
on the surface.
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Chapter 5

Two versions of the one-equation
continuum model for drying
This chapter is partly taken from “Lu, X., Kharaghani, A., Tsotsas, E., (2020). Trans-
port parameters of macroscopic continuum model determined from discrete pore network
simulations of drying porous media: Throat-node vs. throat-pore configurations. Chem-
ical Engineering Science 223, 115723”. Another part is taken from “Lu, X., Tsotsas,
E., Kharaghani, A., (2021). Drying of capillary porous media simulated by coupling of
continuum-scale and microscale models. International Journal of Multiphase Flow 140,
103654”.

The one-equation continuum model in the form that has been presented in Chapter 4 has
difficulties in offering reliable predictions, especially when the drying front has receded
into the porous medium. An issue is that the one-equation continuum model cannot truly
describe the drying process for the receding front period during which the liquid is first
transferred to the gas phase in the voids of the porous medium and then diffuses to the
surface.
This chapter provides two methods to tackle this issue. One method is to use the

one-equation CM with a moving front boundary condition. Another, somewhat more
complex method distinguishes different transport regions in the porous medium, i.e.,
the wet region, the dry zone and the gas-side boundary layer. This is denoted by the
three-transport-zone CM.

5.1 Moving front boundary condition

To implement the dynamic boundary condition into the CM, we have to combine an
additional region, the gas-side boundary layer, with the porous medium of length L (m)
(Fig. 5.1). The thickness of the gas-side boundary layer is δ (m). The vapor pressure at
the bulk air is Pv,∞ (Pa). This version of the CM considers two periods of the process:
Until the surface is still partially wetted, and after a drying front has started to recede.
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5.1.1 Wet surface

Initially, the porous medium is filled with free water. Thus, the initial condition is
considered as follows:

S (z = 0→ L, t = 0) = 1, ϕ (z = L, t = 0) = 1, ϕ (z = L+ δ, t = 0) = Pv,∞
P ∗v

. (5.1)

The mass balance for moisture transport reads as:

ε
∂S

∂t
= ∂

∂z

(
D (S) ∂S

∂z

)
. (5.2)

The boundary condition is set at the surface of the porous medium, according to:

D (S) ∂S
∂z

∣∣∣∣∣
z=L,t

= −ṁv

ρw
. (5.3)

Here ṁv is the drying rate which can be calculated by Eq. 4.22. Equation 4.22 needs
the vapor pressure at the surface. As mentioned, many works simply consider that the
surface is at saturated vapor pressure when it is still wetted. However, this assumption
will be questioned in this work. In fact, the surface vapor pressure has to be determined
from experimental measurements or simulations. The adiabatic boundary condition at the
bottom of the porous medium is given by Eq. 4.21.

z = L+𝛿z = Lz = 0

Figure 5.1: Schematic of the transport regions when the medium surface is still wet during
drying.

5.1.2 Dry surface

After a certain time, the liquid on the surface has been evaporated. Then a drying front
starts receding into the porous medium. As a result, a dry zone is formed between the
drying front and the network surface (Fig. 5.2). The drying front can be locally determined
when solving the moisture transport equation for the receding front drying period. The
interface between the foremost position of the liquid and the empty region in the porous
medium is defined as drying front (DF). The drying front moves into the depth of the
network in the course of the drying process. The drying front in this work is defined
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between two control volumes, where one is filled with saturation larger than 0.0001, and
the next has saturation smaller than 0.0001. At saturation smaller than 0.0001, the control
volume is assumed as empty. Thus, the position of the drying front is a function of drying
time, 0 < DF(t) < L.

Figure 5.2: Schematic of transport regions when the drying front retreats into the porous
medium during drying.

When the DF recedes into the medium, the evaporation rate from the DF is

ṁv,DF = DvaM̃vP

R̃T (δ + ∆h)
ln
(

P − P∞
P − ϕDFP ∗v

)
. (5.4)

Here the distance between the DF and the bulk air is δ + ∆h, which increases further in
the course of the drying process. ϕDF denotes the relative humidity at the drying front.
Thus, the boundary condition at the drying front becomes:

D (S) ∂S
∂z

∣∣∣∣∣
z=DF,t

= −ṁv,DF

ρw
. (5.5)

To solve Eq. 5.4, we have to calculate the relative humidity at the drying front, which is
another macroscopic parameter that we have to determine from the PNM.

In summary, the moving front boundary condition is implemented after the drying front
has started to recede from the surface. Based on this boundary condition, we solve the
one-equation CM using the following macroscopic parameters: The moisture transport
coefficient, D, the relative humidity at the surface, ϕsurf , and the relative humidity at
the drying front, ϕDF . The performance of this treatment of the CM will be presented in
Chapter 7.

5.2 Boundary conditions defined for three transport zones

During the course of the drying process, three mass transport zones can be identified,
namely: A wet zone (saturated or two-phase flow zone) in the porous medium, a dry zone
in the porous medium (formed after the liquid phase has receded from the free surface),
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and the external boundary layer in the gas side (Fig. 5.3). To integrate these three zones
in one CM, we impose flux boundary conditions at two interfaces: The interface between
the (gas-side) boundary layer and the (medium-side) dry region, as well as the interface
between the dry region and the partially saturated part of the wet region which evolves
freely during drying. This model is named the three-transport-zone continuum model.

z = L+𝛿z = Lz = DFz = 0

boundary layerdry zonewet zone

drying front surface

Figure 5.3: Three transport regions during the drying process.

5.2.1 Wet surface

In the first drying period, the whole porous medium belongs to the wet zone (saturated
and partially saturated zone, z = 0 to L). Apart from moisture transport in this zone, only
the vapor diffusion in the gas-side boundary layer (z = L to L+ δ) needs to be considered
during this period. The governing equation for moisture transport in the wet medium (z
= 0 to L) reads:

ε
∂S

∂t
= ∂

∂z

(
D (S) ∂S

∂z

)
. (5.6)

The vapor diffusion in the gas-side boundary layer can be expressed by:

∂ϕ

∂t
= ∂

∂z

(
Dv,b (ϕ) ∂ϕ

∂z

)
, (5.7)

where Dv,b (m2/s) is the vapor diffusion coefficient in the gas-side boundary layer and ϕ
is the relative humidity:

ϕ = Pv
P ∗v
. (5.8)

To solve Eqs. 5.6 and 5.7, we have to specify initial and boundary conditions. The initial
condition for Eq. 5.6 is that of full saturation of the porous medium:

S (z = 0→ L, t = 0) = 1. (5.9)
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The initial condition for Eq. 5.7, ϕ (z = L→ L+ δ, t = 0), should correspond to the
steady state of relative humidity in the boundary layer. It can be calculated based on Eq.
5.7 by inserting the initial guess, as well as the boundary conditions ϕ (z = L, t) = 1 and
ϕ (z = L+ δ, t) = Pv,∞/P

∗
v = ϕ∞.

The boundary condition at the surface is:

ρwD (Ssurf )
∂S

∂z

∣∣∣∣∣
z=L,t

= P ∗v M̃v

R̃T
Dv,b (ϕsurf )

∂ϕ

∂z

∣∣∣∣∣
z=L,t

, (5.10)

where ρw (kg/m3) is the water density, M̃v (kg/kmol) is the molar mass of vapor and T
(K) is the temperature. The boundary conditions at the bottom of the porous medium
and at the border of the boundary layer to bulk of air are, respectively:

ρwD (S) ∂S
∂z

∣∣∣∣∣
z=0,t

= 0, (5.11)

and
ϕ (z = L+ δ, t) = ϕ∞. (5.12)

5.2.2 Dry surface

After a drying front has been built and started to recede into the porous medium, a dry
zone is formed between the drying front and medium’s surface. The governing equation
reads in local formulation for vapor transport in this zone:

ε
∂ϕ

∂t
= ∂

∂z

(
Dv,e (ϕ) ∂ϕ

∂z

)
. (5.13)

where Dv,e (ϕ) (m2/s) is the vapor diffusion coefficient in this zone. In this way, mass
transport takes place in three regions: The wet zone in the porous medium, the dry zone of
the porous medium, and the gas-side diffusion layer. The drying front (DF) is determined
in the same way as in Sec. 5.1.2, namely, based on the saturation (changing in the course
of the drying process) of neighboring control volumes in the porous medium. Moisture
transport in the wet zone (0 ≤ z ≤ DF (t)) can be described by Eq. 5.6. Equation
5.13 applies to the dry zone of the porous medium (DF (t) ≤ z ≤ L), whereas the vapor
transport in the gas-side boundary layer (L ≤ z ≤ L+ δ) can be expressed by Eq. 5.7.
To couple the dry zone with the wet zone in the porous medium and the gas-side

boundary layer, two boundary conditions need to be specified. One boundary condition is
at the drying front (DF):

ρwD (S) ∂S
∂z

∣∣∣∣∣
z=DF,t

= P ∗v M̃v

R̃T
Dv,e (ϕ) ∂ϕ

∂z

∣∣∣∣∣
z=DF,t

, (5.14)
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and another is set at the surface of the porous medium:

P ∗v M̃v

R̃T
Dv,e (ϕ) ∂ϕ

∂z

∣∣∣∣∣
z=L,t

= P ∗v M̃v

R̃T
Dv,b (ϕ) ∂ϕ

∂z

∣∣∣∣∣
z=L,t

. (5.15)

Thus, three parameters are required in form of profiles with the state variables that express
humidity, D (S), De,v (ϕ) and De,b (ϕ), to solve Eqs. 5.6, 5.7, and 5.13. Additionally,
relationships between saturation (S) and relative humidity (ϕ) at the drying front and at
the surface are necessary to solve the boundary conditions for the CM (Eqs. 5.10, 5.14,
and 5.15). The performance of this CM will be presented in Chapter 7.

5.3 Numerical method used to solve the CM

Both presented versions of the CM are based on partial differential equations, which,
in this work, are solved using the finite volume method (FVM) by dividing the porous
medium along its height coordinate into n finite volume elements. The discretization
scheme is illustrated in Fig. 5.4. The lengths of volume elements are the same (∆z), and
Si denotes saturation at the center of each volume element. Based on the CM version of
Sec. 5.1, an example for the numerical solution is given in the following.

Figure 5.4: Representation of the discretization scheme used to solve the continuum model.

The balance equation (Eq. 5.2) is integrated over an arbitrary control volume:

∫ z=i+1

z=i
ε
dSi
dt
dz =

∫ z=i+1

z=i

d

dz

(
D (Si)

dSi
dz

)
dz. (5.16)

Terms in Eq. 5.16 are evaluated separately using the proper profile assumptions (Fig.
5.5). For the accumulation term (left-hand side term in Eq. 5.16) the Leibniz integral
rule is applied and a piecewise constant profile (which means the saturation is uniformly
distributed in each finite volume) is assumed:

∫ z=i+1

z=i
ε
dSi
dt
dz = ε

d

dt

∫ z=i+1

z=i
Sidz = ε

d

dt

(
Si

∫ z=i+1

z=i
dz
)

= ε
d

dt
(Si∆z) . (5.17)
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The diffusion term (right-hand side of Eq. 5.16) is calculated to

∫ z=i+1

z=i

d

dz

(
D (Si)

dSi
dz

)
dz = D (Si)

dSi
dz

∣∣∣∣∣
i+1

i

. (5.18)

By piecewise linear approximation, one gets:

D (Si)
dSi
dz

∣∣∣∣∣
i+1

i

= D (Si)
∣∣∣∣∣
z=zi+1,t

Si+1 − Si
∆z −D (Si)

∣∣∣∣∣
z=zi,t

Si − Si−1

∆z . (5.19)

The spatially discretized equation for ith element is thus obtained by:

ε
d

dt
(Si∆z) = D (Si)

∣∣∣∣∣
z=zi+1,t

Si+1 − Si
∆z −D (Si)

∣∣∣∣∣
z=zi,t

Si − Si−1

∆z . (5.20)

The boundary conditions of this CM should be specified separately for the first (left side)
element and the last element (right side). The left-hand side is blocked for liquid transport,
which makes the term of D (S1) |z=z1,t equal to zero. As a result, we get the moisture
transport equation for the first finite volume element of the porous medium as:

ε
d

dt
(S1∆z) = D (S1)

∣∣∣∣∣
z=z2

S2 − S1

∆z . (5.21)

The right-hand side boundary is at the drying front (DF), the position of which depends
on the drying history. In the first drying period, the drying front is at the surface, and
SDF is equal to Sn. Assuming that there is no accumulation at the surface, which means
same moisture flux at both sides, one then obtains:

D (SDF ) dSDF
dz

∣∣∣∣∣
z=DF,t

= −ṁv

ρw
. (5.22)

In the receding drying front period, the mass balance equation for the volume element
at the drying front (i = DF ) can be written as:

ε
d

dt
(SDF∆z) = −ṁv

ρw
−D (SDF )

∣∣∣∣∣
z=zDF −1,t

SDF − SDF−1

∆z . (5.23)

Consequently, the moisture transport equation (Eq. 5.2) is solved by FVM as:

dS1

dt
= D (S1)

∣∣∣∣∣
z=z2,t

S2 − S1

ε∆z2 for i = 1, (5.24)
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Figure 5.5: The schematic of profile in FVM.

dSi
dt

= D (Si)
∣∣∣∣∣
z=zi+1,t

Si+1 − Si
ε∆z2 −D (Si)

∣∣∣∣∣
z=zi,t

Si − Si−1

ε∆z2 for 1 < i < DF, (5.25)

dSDF
dt

= − ṁv

ε∆zρw
−D (SDF )

∣∣∣∣∣
z=zDF −1,t

SDF − SDF−1

ε∆z2 for i = DF. (5.26)

In these ODEs, D (Si) |z=zi+1,t
represents the moisture transport coefficient at length

zi+1, which depends on saturations Si and Si+1. The system of ODEs is solved using the
solver ode15s in MATLAB. The same method can also be applied to Eqs. 5.6, 5.7 and
5.13, with results which will be presented in Chapter 7.
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Chapter 6

Determination of the macroscopic
parameters of the one-equation
continuum model from pore network
simulations
This chapter is partly taken from “Lu, X., Kharaghani, A., Tsotsas, E., (2020). Trans-
port parameters of macroscopic continuum model determined from discrete pore network
simulations of drying porous media: Throat-node vs. throat-pore configurations. Chem-
ical Engineering Science 223, 115723”. Another part is taken from “Lu, X., Tsotsas,
E., Kharaghani, A., (2021). Drying of capillary porous media simulated by coupling of
continuum-scale and microscale models. International Journal of Multiphase Flow 140,
103654”.

In Chapters 4 and 5 two versions of the one-equation continuum model (CM) have been
presented. Both versions of the CM need macroscopic parameters with boundary conditions
defined differently. The first model version considers a moving boundary condition and
requires the moisture transport coefficient D, the relative humidity at the surface ϕsurf and
at the drying front ϕDF. The second model version requires two additional parameters,
namely the vapor diffusion coefficient in the dry zone of the porous medium Dv,e and in
the gas-side boundary layer Dv,b.
In this chapter, we present the method used to extract these macroscopic parameters

from pore network simulations and the respective results. The parameters are functions of
local saturation or the local relative humidity, which are hard to determine from classical
experiments. With the help of pore network simulations, however, one can capture
relevant transport information in the course of drying. The basic idea is that of extracting
macroscopic parameters by averaging properties over a particular volume of a pore network.
In this work, the averaging volume is a slice containing all horizontal throats/pores of
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a certain layer and half of the volume of throats located above and below the middle
plane. PNM simulations in this chapter are carried out with the geometrical and physical
parameters presented in Tables 3.1 and 3.2.

To reduce randomness of macroscopic parameters, we take several PNM datasets from
ten parallel simulations. The averaging method have been introduced in Chapter 3 and is
used for averaging all macroscopic parameters in this Chapter.

6.1 Moisture transport coefficient

The moisture transport coefficient is an important macroscopic parameter. First, Section
6.1.1 presents the method of evaluation of the moisture transport coefficient from the PNM
dataset. Then, the resulting profiles are discussed in Section 6.1.2. It is necessary to note
that the network geometry, i.e. throat-node model (TNM) or throat-pore model (TPM),
influences the drying kinetics (Chapter 3), suggesting that the moisture transport coefficient
could also be impacted by use of one or the other of these two network configurations,
which will be discussed here.

6.1.1 Computation for extracting the moisture transport coefficient

First the liquid flow rate and the vapor flow rate are computed individually by assorting
respectively the vertically connected pores between every two slices. If both pores are
filled with liquid, they are attributed to the liquid flow rate. When one of the two pores or
both pores are filled with vapor, the vapor flow rate is calculated. In this way, individual
transport coefficients for the liquid and for the vapor are obtained. Summing those up, we
obtain the compounded moisture transport coefficient and its profile upon saturation.
The liquid and vapor flow rates (in the z-direction) between slices can be numerically

identified by summing the liquid fluxes from liquid pores (or nodes) in the nth slice to the
(n+ 1)th slice :

jw,n→n+1 = 1
A

∑
i,j

gw,ij
(
P n
w,i − P n+1

w,j

)
, (6.1)

and the vapor fluxes between the vapor pores (or nodes) in the nth slice and the (n+ 1)th

slice:
jv,n→n+1 = 1

A

∑
i,j

gv,ijP ln
(
P − P n+1

v,j

P − P n
v,i

)
. (6.2)

Moisture transport coefficients are obtained for the liquid phase (Dw(S)) and the vapor
phase (Dv(S)), as:

Dw(S) = − jw,n→n+1

ρw
Sn+1 − Sn

h

, Dv(S) = − jv,n→n+1

ρw
Sn+1 − Sn

h

, (6.3)

where h is the center distance between two pores. They can represent the moisture
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Figure 6.1: (left) A small pore network (5× 5× 10) open to evaporation from the top and
(right) its front projection when Snet = 0.8. A slice contains all throats and
pores of one horizontal layer and half of vertical throats. The liquid and vapor
throats/pores in the network are shown in black and white, respectively. The
blue throats/pores are partially filled with liquid.

transport in the porous medium in simplified way according to Fick’s law that is driven
by saturation. The overall moisture transport coefficient is

D(S) = Dw(S) +Dv(S), (6.4)

and, hence, a function of local saturation

S = Sn + Sn+1

2 . (6.5)

One has to keep in mind that by means of the above equations we only determine data
points along one single line of Fig. 6.2. To obtain the entire moisture transport matrix
profile of the drying process, we must apply similar equations to the entire PNM dataset.

6.1.2 The moisture transport coefficient

Figure 6.2 shows the moisture transport coefficients D(S) as a function of local saturation
obtained from pore network simulations. Attari Moghaddam et al. (2017b) identified D-S
curves related to the drying process and described three critical points: The limit S ≈ 1
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at which moisture transport is dominated by the liquid phase; the limit S ≈ 0 at which
moisture transport is governed by the vapor phase; and the turning point (ST ) at which
the moisture transport reaches a minimal value. They found moisture transport coefficient
profiles to show a clear trend when the local saturation is smaller than Sirr, but failed
to identify moisture transport coefficient profiles at high local saturation. In the present
work, we noticed another critical saturation point when slices contain the maximum of
interfacial area (Sas,max). The interfacial area of the liquid phase (as) is defined as the sum
of the cross-sectional areas of all menisci in each slice. Based on these four points, we can
subdivide the profiles of moisture transport coefficients (D-S profiles) into three regions:
liquid transport dominated region (LTDR), two-phase transport region (TPTR) and vapor
transport dominated region (VTDR).

The LTDR is the range from nearly full saturation (S ≈ 1) to Sas,max , in which moisture
transport is fully in the liquid phase. This region can be observed clearly in the ratio
of liquid flow rate over total flow rate (ζ) when ζ = 1 (Fig. 6.4), which means that the
whole moisture flow rate is contributed by the liquid. However, Sas,max cannot be clearly
seen in Fig. 6.2 due to the coarse time intervals. Figure 6.3 gives the moisture transport
coefficient profiles for TPM with smaller Snet intervals.

The shape of moisture transport coefficient profile in the LTDR depends on the interplay
between capillary and viscous forces. In the initial drying period (high Snet), the evaporation
rate is high, indicating high values of moisture transport coefficient at S ≈ 1, under control
by capillary forces. Thus, the moisture transport coefficient depends on the distribution of
meniscus radii but not on local saturation. After some time (lower Snet), liquid transport
starts to suffer of liquid viscosity from the bottom layers. As a result, lower values of
moisture transport coefficient are observed in high saturation slices (S ≈ 1). As the
drying process continues, liquid viscosity plays a significant role in the bottom slices but
impacts weakly the slices which contain maximum interfacial area (Sas,max) possessing a
high possibility of capillary pumping.
Slices with the maximum interfacial area (Sas,max) are near to the drying front. The

pressure drop caused by liquid viscosity can be calculated as:

∆Pf = 8µṀw

πρw

(
R1

R4
1

+ Lt
R4
t

+ R2

R4
2

)
∝ γ

R4 , (6.6)

so that it is related to the distance between the two menisci (γ). Long distance between two
active menisci produces a high value of pressure drop. Therefore, the moisture transport
coefficient increases from high saturation slices (in bottom layers with long distance for
moisture transport) to slices with Sas,max that have a high probability of capillary pumping
with less transport distance between active menisci.

The value of moisture transport coefficient increases when altering the network geometry
from TNM to TPM (Fig. 6.2). Moreover, the range of LTDR is extended. Figure 6.7
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Figure 6.2: The moisture transport coefficient for (a) TNM and (b) TPM network ge-
ometry. The values are averaged for ten realizations over local saturation
intervals; TNM and TPM from the present work with same time intervals as
in Attari Moghaddam et al. (2017b).
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Figure 6.3: The moisture transport coefficient for TPM network geometry obtained from
pore network simulations by using smaller time intervals. The values are
averaged over ten realizations for intervals of local saturation S.
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shows the liquid-vapor interfacial area as a function of local saturation during the drying
process. As can be seen, the interfacial area profile is not unique. Different values Sas,max

are observed during the drying process. However, Sas,max is always smaller for a network
with TPM geometry. Therefore, the range of LTDR, between S ≈ 1 and Sas,max , expands
in TPM.
The two-phase transport region (TPTR) is a region in which both the liquid and

vapor phases contribute to moisture transport. In this region from Sas,max to ST the
moisture transport coefficient (D) decreases by increasing internal resistance; below ST

the moisture transport is enhanced again, this is why ST is called the turning point. ST
can be determined according to the ratio of liquid flow rate to total moisture flow rate
(ζ) (Fig. 6.4). When ζ = 0.5 (i.e., same contribution of liquid and vapor phases to the
moisture flow), we have observed the minimum value of moisture transport coefficient (Fig.
6.2). In this region, the moisture transport in the vapor phase starts to play a role. The
liquid phase is broken into liquid clusters and single menisci (Fig. 3.9). As a result, the
moisture transport coefficient decreases from Sas,max to ST . The profiles of liquid ratio also
depend strongly on the network geometry. The TPTR is shorter for the TNM because the
TNM produces more liquid clusters and single menisci (Fig. 3.9). However, liquid phase
still has a major contribution in the TPTR for a relatively long saturation range in the
TPM (Fig. 6.4). Different values of ST are also shown for the entire drying process. When
Snet = 0.7, smaller internal resistance is observed in the TPM (Fig. 3.9), so that liquid
can still be pumped to pores near the surface. The ratio ζ does not reach the value 0.5 for
which vapor and liquid provide the same flux contribution. Hence, ST does not appear in
Fig. 6.4. As a result, the moisture transport coefficient (Figs. 6.2b and 6.3a) is absent for
lower local saturation during this period.
The VTDR is observed for local saturation smaller than ST where moisture transport

occurs dominantly in the vapor phase. With air invasion, the liquid is broken down into
a dispersed phase, forming many single menisci and liquid clusters (Fig. 3.9). Whereas
liquid viscosity controls the liquid transport mechanism, the moisture transport in the
vapor phase is driven by differences in vapor pressure. The vapor pressure in the two-phase
zone is related to the active interfacial areas as. Similar profiles are observed for the TPM
and the TNM in the VTDR, because two geometries have the same vapor resistances for
the same network. The VTDR shrinks though in the TPM. The range of VTDR is altered
along drying time (e.g., no VTDR is observed during the first drying period for the TPM
in Fig. 6.3a).
Note that moisture transport coefficients obtained from the PNM dataset have a high

degree of scatter. So it is questionable how such scattered data should be implemented
into the CM and would affect its predictive performance. These issues will be discussed in
Chapter 7.
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Figure 6.4: Ratio of liquid flow rate to total flow rate predicted by the TNM and the
TPM. The values are averaged over ten realizations for small intervals of local
saturation S.

6.2 Relative humidity

Relative humidity at the surface and the drying front is used to identify the boundary
conditions of the CM. In this part, evaluation of these two parameters from the PNM data
and the respective results are discussed.

6.2.1 Computation of the relative humidity

From PNM perspective, different vapor pressures exist at the exits of network surface
throats (Fig. 6.5). The air is saturated with vapor (dark blue) above the partially filled
and completely filled surface throats. In contrast, dry surface throats lead to unknown
surface vapor pressure (light blue in Fig. 6.5), which needs to be specified by solution of
the system of mass balances. We used the ratio of average vapor pressure at the surface
(〈Pv〉surf) from the PNM over the saturated vapor pressure (P ∗v ) to obtain the surface
relative humidity:

ϕsurf(Ssurf) = 〈Pv〉surf
P ∗v

. (6.7)

Moreover, we have calculated surface saturation from the PNM data. Surface saturation,
Ssurf, comprises all throats and pores shown in Fig. 6.5: Vertical throats that end at the
surface, their underlying layer of pores, and horizontal throats connecting the pores of
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this sub-surface layer. Surface saturation, Ssurf, is the volume of liquid in all those pores
and throats divided by their total volume.

Figure 6.5: Surface parameter estimation from pore network modeling; dark blue:
full throat/pore, light blue: partially filled throat/pore, white: dry
throat/pore. Saturation vapor pressure above wet patches (full or partially
filled throats/pores, dark blue); vapor pressure above dry throats/pores (light
blue) is unknown and needs to be determined from the mass balances.

A similar idea is used to calculate the relative humidity at the drying front. However, this
profile would be contained in the set of profiles of the relative humidity for the two-phase
region. In the two-phase region, the relative humidity should again be determined as a
function of local saturation. This can be done by spatially averaging the partial vapor
pressure of each vapor pore/node in the considered slice:

ϕ(S) = 〈Pv〉slice
P ∗v

. (6.8)

Here, S is the average saturation in a slice containing all horizontal throats/pores of a
certain layer and half of the volume of throats immediately above or below this layer (Fig.
6.1).

6.2.2 Relative humidity profile

Figure 6.6 shows the correlation between surface relative humidity and surface saturation.
From the beginning of the drying process, the vapor pressure at the surface deviates from the
saturation vapor pressure, which is contradictory to the conventional assumption that the
relative humidity at the surface of materials can be determined by the desorption isotherm.
Thus, using the desorption isotherm to the CM should be questioned. Attari Moghaddam
et al. (2017b) explained the situation in which the vapor pressure on the surface (or in
the two-phase zone) deviates from the saturation vapor pressure when slice saturation is
smaller than a particular value by non-local equilibrium effects (NLE). This means that
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local thermodynamic equilibrium is satisfied at the meniscus surface (where the vapor
pressure is thus the saturation vapor pressure) but not at the scale of averaging volume,
which is divergent from the CM assumptions. Following this explanation, it is reasonable
that the vapor pressure at the surface early deviates from the saturation vapor pressure.

Figure 6.6: The surface vapor pressure-saturation relationship obtained from TPM pore
network simulations.

The moisture transport through the vapor phase can be observed in the ratio of vapor
pressure to saturation pressure within the network (ϕ), since it is induced by vapor pressure
differences (Fig. 6.8). Vapor pressure deviations from the saturation vapor pressure (NLE
effect) appear after Sas,max . The vapor pressure is related to the interfacial area (as) (Fig.
6.7). The more interfacial area is formed in a slice, the easier it is to maintain the saturated
vapor pressure. Interfacial area as a function of local saturation in the two-phase zone can
be presented as: When air invades the network, the interfacial area increases linearly to a
maximum. Sas,max is a saturation which corresponds to relatively high moisture transport
coefficient, marks the end of the LDTR and denotes the starting point of the NLE effect.
After reaching the maximum, the interfacial area drops linearly due to evaporation. The
structures of the liquid phase in the two-phase zone are different (Fig. 6.7).
The internal NLE effect is observed in both network geometries but it is slightly more

pronounced in the TPM network (Fig. 6.8). Before the network surface dries, similar
profiles of vapor pressure are observed. The strong NLE effect lasts longer for the TPM

82



(smaller value of Sas,max), because the saturation of the surface slice is sustained for longer
time (Fig. 3.10).

Figure 6.7: Interfacial area as a function of local saturation obtained from drying sim-
ulations of TNM and TPM network geometries: (a) Snet = 1.0 − 0.7, (b)
Snet = 0.7 − 0.4, and (c) Snet = 0.4 − 0. The values are averaged over ten
realizations for small saturation S intervals.

6.3 Vapor transport coefficients

Parameters of the vapor transport are required by the three-transport-zone CM. Compa-
rable with the model in Sec. 6.1, we extended the averaging method of determining the
moisture transport coefficient to vapor transport parameters. One major difference here is
that the moisture transport coefficient is correlated with the local saturation. In contrast,
vapor transport parameters can be linked with the local relative humidity.
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Figure 6.8: Mean values of internal NLE function (ϕ) obtained from PNM drying simula-
tions as function of local saturation (S) for different network saturation (Snet)
intervals for: (a) TNM and (b) TPM.
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6.3.1 Computation of the vapor transport parameters

An exemplary network that can be used to illustrate the computation of vapor transport
coefficients is shown in Fig. 6.9.

gas-side 
boundary layer 

dry zone 

wet zone 

network 
surface 

drying 
front 

Slice k 

Slice k+1 

Slice n 

Slice n+1 

Slice z+1 

Slice z 

h 

A 

Figure 6.9: (left) A small pore network (5× 5× 10) open to evaporation from the top with
gas-side boundary layer (5× 5× 3) and (right) its front projection when Snet
= 0.6. A slice contains all throats and pores of one horizontal layer, and half
of the vertical throats. The liquid and vapor throats/pores in the network are
shown in dark and white, respectively. The blue throats/pores are partially
filled with liquid.

The vapor flow rate (in the z-direction) between slices can be numerically calculated by
summing the vapor fluxes between vapor pores in the kth slice and the (k + 1)th slice in
the dry zone (DZ) of the porous medium:

jv,k→k+1,DZ = 1
A

∑
i,j

gv,ij,DZP ln
(
P − P k+1

v,j

P − P k
v,i

)
, (6.9)

where i is the vapor pore in slice k and j represents the vapor pore in slice k + 1, A (m2)
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is the cross-sectional area of the network, and gv,ij,DZ is the conductance:

gv,ij,DZ = DvaM̃v

R̃T (Rp,i

Ap,i
+ Lt
At

+ Rp,j

Ap,j
)
. (6.10)

Here, Ap,i, Ap,j and At denote the cross-sectional areas of pore i (πR2
p,i), pore j and of

the connecting throat (πR2
t ), respectively. Lt is the throat length, which depends on the

sizes of the two pores located at the throat ends. Dva (m2/s) denotes the binary diffusion
coefficient of vapor in the air.
Similarly, the equation that holds in the gas-side boundary layer (GB) is:

jv,z→z+1,GB = 1
A

∑
i,j

gv,ij,GBP ln
(
P − P z+1

v,j

P − P z
v,i

)
. (6.11)

Here, gv,ij,GB is considered as:

gv,ij,GB = DvaM̃vAt,GB

R̃Th
. (6.12)

Since representation by pores and throats is formally continued in the boundary layer, h
is the center distance between two pores and At,GB is the throat cross-sectional area:

At,GB = h2. (6.13)

The vapor diffusion coefficients in the dry zone (Dv,e(ϕ)) and in the gas-side boundary
layer (Dv,b(ϕ)) are obtained from:

Dv,e(ϕ) = − jv,k→k+1,DZ

M̃vP
∗
v

R̃T

ϕk+1 − ϕk
h

, (6.14a)

Dv,b(ϕ) = − jv,z→z+1,GB

M̃vP
∗
v

R̃T

ϕz+1 − ϕz
h

. (6.14b)

Those coefficients can represent the vapor transport in the porous medium in a simplified
way according to Fick’s law that is driven by vapor concentration. Vapor concentration
is here expressed by ϕz+1 and ϕz, or ϕk+1 and ϕk, which represent the average values of
relative humidity in slices z and z+1 or k and k+1, respectively. The diffusion coefficients
are assigned to the arithmetic average of relative humidity between slices:

ϕ = ϕz+1 + ϕz
2 or ϕ = ϕk+1 + ϕk

2 . (6.15)
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6.3.2 Profiles of vapor transport parameters

6.3.2.1 Vapor diffusion coefficient in the gas-side boundary layer

Figure 6.10 shows the vapor diffusion coefficient in the gas-side boundary layer against
relative humidity. It should be noted that the ordinate scale in Fig. 6.10 is very much
magnified. This means, that Dv,b is nearly constant and nearly equal to the binary diffusion
coefficient (2.569×10−5 m2/s at 20◦C, shown as dashed line in Fig. 6.10). This verifies
PNM computations as well as the derivation of the parameter Dv,b. There is a miniature
dependence on ϕ, which is attributed to Stefan flow. Equation 6.14b does not take Stefan
flow into consideration, so that the influence of Stefan flow must be incorporated into
the evaluated Dv,b. However, Stefan flow is small for the investigated case of slow drying
(20◦C), so that dependence on ϕ and deviation from the binary diffusion coefficient are
both very small.

The classical binary diffusivity is considered as a constant value, which is a function of
temperature, ambient pressure, and the molecular species involved (Bruce et al., 2001).
Acosta et al. (2006) reported the 3He diffusion coefficient obtained from NMRmeasurements
(1/D(3He)) to be inversely proportional to the helium molar fraction in four different buffer
gases (4He, N2, Xe, and SF6), whereas 1/D(Xe) was directly proportional to xenon molar
fraction using He as the buffer gas. The diffusion coefficient depends on the molecular
weight of species (diffusing gas and buffer gas). In the vapor-air diffusion process, the
water molecular weight (18 g/mol) is smaller than the average molecular weight of air
(29 g/mol), which is a similar case as helium diffusion in N2, Xe or SF6 gas, indicating
agreement with the correlation of vapor diffusion coefficient with relative humidity (ϕ) in
simulation results.
The relationship of the vapor diffusion coefficient in the gas-side boundary layer with

the relative humidity can also be applied at the surface of the porous medium. Surface
humidity can be determined from the surface NLE (Attari Moghaddam et al., 2018). The
mass transport mechanism for surface humidity is the same as in the gas-side boundary
layer. Thus, the correlation obtained in Fig. 6.10 can be applied to the transport process
in the whole region from the surface to the bulk of the surrounding gas phase.

6.3.2.2 Vapor diffusion coefficient in the dry zone of the porous medium

Figure 6.11 shows the vapor transport coefficient for the dry zone of the porous medium
(Dv,e) over the relative humidity (ϕ). Identified Dv,e is nearly constant over ϕ, which
is again the expected behavior. It verifies PNM computations as well as the derivation
of this parameter. The very weak dependence on ϕ may be due to Stefan flow in the
throats (considered in PNM, but not in Eq. 6.14a), similarly as before. With a molecular
diffusion coefficient of 2.569 × 10−5 m2/s, a significantly lower value of Dv,e is expected.
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Figure 6.10: Vapor diffusion coefficient in the gas-side boundary layer (Dv,b) in dependence
on the local relative humidity (ϕ). The dash line represents the binary diffusion
coefficient at 20◦C. The values have been averaged over ten realizations for
small saturation intervals.

Smaller diffusion coefficients in porous media than in the unconfined gas phase are usually
attributed to obstruction (effect proportional to porosity) and tortuosity. With a total
porosity of 0.35, Dv,e by obstruction should be 8.99× 10−6 m2/s, significantly larger than
observed. This would additionally imply a tortuosity of 1.55, much larger than one would
expect for a simple cubical lattice (eventually equal to 1).
However, in our synthetic porous medium with large pores at network grid points and

smaller throats in between, one should rather expect the throats alone to define the
obstruction effect. With 0.26 volume porosity due to the throats, Dv,e of 6.68×10−6 m2/s
by obstruction is obtained. Considering cross-sectional porosity by the throats, which is
0.17, Dv,e of 4.37×10−6 m2/s is obtained. Identified Dv,e with approximately 5.8×10−6

m2/s lies between those values, and appears very reasonable. Working with the volume
porosity of the throats, the remaining tortuosity effect of 6.68/5.8 = 1.15 may well be
due to the lateral (means: to the sides) expansion of cross-section from the throats to the
pores (which have by definition larger radii).

88



Figure 6.11: Vapor transport coefficient in the dry zone (Dv,e) against local relative hu-
midity (ϕ): The red circles are the volume-averaged original data, whereas
the dark triangles denote the fitted profile. The values have been averaged
over ten realizations for small saturation intervals.
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Chapter 7

Feeding the macroscopic parameters
into the one-equation continuum
model
This chapter is partly taken from “Lu, X., Kharaghani, A., Tsotsas, E., (2020). Trans-
port parameters of macroscopic continuum model determined from discrete pore network
simulations of drying porous media: Throat-node vs. throat-pore configurations. Chem-
ical Engineering Science 223, 115723”. Another part is taken from “Lu, X., Tsotsas,
E., Kharaghani, A., (2021). Drying of capillary porous media simulated by coupling of
continuum-scale and microscale models. International Journal of Multiphase Flow 140,
103654”.

In this chapter, we discuss methods for treating macroscopic parameters extracted from
the PNM dataset to be fed into the continuum model (CM). Those parameters share the
same characteristics: Non-linear, with scatter, process-dependent. To investigate those
effects on the CM, we compare the simulation results by introducing different treatments
on those macroscopic parameters.

To solve the CM (Chapter 5), we have to know macroscopic parameters in advance. As
discussed, there are five such parameters: The moisture transport coefficient D(S), the
vapor diffusion coefficient in the dry zone Dv,e(ϕ), the vapor diffusion coefficient in the
gas-side boundary layer Dv,b(ϕ); Moreover, the non-local equilibrium (NLE) function at
the surface ϕsurf (Ssurf ) and at the drying front ϕDF (SDF ).
As a starting point, the profiles of the moisture transport coefficient D(S) which have

been presented in Fig. 6.3 are used. The moisture transport coefficients were obtained
from the PNM by averaging within each total saturation range of ∆Snet = 0.10 for a
small local saturation interval (S = 0.01), as D(Snet;S). Three of these curves, namely
D(Snet = 0.40 − 0.30; S), D(Snet = 0.30 − 0.20; S) and D(Snet = 0.20 − 0.00; S), had
been averaged into one curve in Fig. 6.3. The functions Dv,e(ϕ) and Dv,b(ϕ) have been be
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determined are shown in Figs. 6.11 and 6.10.
The NLE functions at the surface ϕsurf(Ssurf) and at the drying front ϕDF (SDF ) are

needed for the boundary conditions. Figure 6.6 shows the profile of relative humidity with
surface saturation, which is also used in this chapter. ϕDF can be read from the internal
NLE functions ϕ(S) presented in Fig. 6.8 at SDF . Which function should be used depends
on network saturation. Thus, to introduce internal NLE in terms of ϕDF into the CM, we
have to record the network saturation in CM by:

Snet,CM =

DF∑
i=1

Si

nCV
, (7.1)

where nCM denotes the number of control volume in the porous medium. Using Snet,CM ,
the relative humidity at the drying front can then be determined.

7.1 Influence of averaging intervals on the CM solution

Moisture transport coefficients D(Snet;S) play a prominent role among the five macroscopic
parameters in the operation of CM because of the dependence of this model parameter
on the global state of the drying process (network saturation), the position in the porous
medium (local saturation) as well as pore structure. Attari Moghaddam et al. (2017b)
determined the D(S) function by averaging within consecutive intervals of 0.30, 0.30
and 0.40 in network saturation from the PNM dataset. However, Figure 6.3 analyzed
moisture transport coefficients averaged over smaller intervals of network saturation,
namely ∆Snet = 0.10. Through averaging over different intervals of network saturation,
we have obtained different D(Snet;S) profiles. Thus, the network saturation interval can
affect the performance of the CM.

To better understand this aspect, we performed CM computations by using the macro-
scopic parameters as introduced in Chapter 6, but testing various D(Snet;S) profiles
obtained for different averaging intervals from the PNM dataset to predict the local
saturation distribution at a high global saturation of Snet = 0.99 (Fig. 7.1). D(Snet;S) has
been selected for intervals of 0.01, 0.05, and 0.10 network saturation: D(Snet = 1.00− 0.99;
S), D(Snet = 1.00 − 0.95; S) and D(Snet = 1.00 − 0.90; S). Figure 7.1 indicates that
D(Snet;S) from the largest time interval fails to predict the saturation distribution at Snet
= 0.99. The closest profile to the PNM results is achieved with D(Snet = 1.00− 0.99; S).
Figure 7.1b also shows the normalized differences of local saturations predicted by the CM
from reference values of saturation (directly obtained from PNM) along with the network.
Figure 7.1b demonstrates that the highest difference appears at the surface, which might
affect the performance of the CM in calculating the evaporation rate. Thus, D(Snet;S)
from the smallest interval of network saturation on the PNM dataset could lead to a better
prediction by means of the CM. However, it would not be practicable to provide hundreds
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of D(Snet;S) profiles for the continuous modeling of drying. Therefore, the interval of
network saturation used in PNM to estimate the D(Snet;S) profiles should be at least
restrained to network saturations with similar global drying characteristics.
D(Snet;S) at high saturation is scattered both in Attari Moghaddam et al. (2017b)

and in Fig. 6.3. Such scatter might be caused by the pore structures and amplified by
consideration of several network realizations. Though network geometry is generated
from the same normal size distribution in this case, the individual throat/pore radii and
their spatial distribution are different, which leads to variations of the drying process.
Combining those realizations into one representative figure might reduce the scatter in the
profile. And, the treatment of D(Snet;S) at high saturation might impact the prediction
of the CM.

7.2 Influence of different treatment methods on the CM solution

Attari Moghaddam et al. (2017b) processed the scattered data by fitting. In contrast, this
work directly used the scattered dataset, but interpolated linearly between each two points.
Figure 7.2 shows D(Snet = 1.00− 0.90; S), i.e. moisture transport coefficients gained by
averaging PNM data for network saturations from 1.00 to 0.90, as well as by averaging over
ten realizations. D(Snet = 1.00− 0.90; S) is scattered when the local saturation is larger
than the irreducible saturation, Sirr = 0.78. Figure 7.2 also shows the 90% confidence
bound of the moisture transport coefficient from the PNM. The 90% confidence bounds
indicate that fitting of the function between these bounds could be reasonable. Thus,
S(Snet; z) profiles predicted by using different fitting functions of D(Snet = 1.00− 0.90; S)
could be confined between extremal S(Snet; z) functions simulated by inserting the upper
and the lower bound functions into the CM.
Figure 7.3 shows S(Snet; z) profiles predicted by the continuum model by inserting

D(Snet = 1.00 − 0.90; S > 0.78) according to either the original averaged data, or
the upper bound fitting function, or the lower bound fitting function. In all cases,
D(Snet = 1.00− 0.90; S < 0.78) is the same, and all cases are compared with the same
profile from PNM results, SPNM(Snet = 1.00 − 0.90; z). Figure 7.3 indicates that the
saturation distribution which is based on D(Snet = 1.00−0.90; S > 0.78) from the averaged
data is closer to SPNM (Snet = 1.00− 0.90; z), compared with the SCM (Snet = 1.00− 0.90;
z) profiles from the upper and lower bound fitting functions.

Comparison of the normalized error in the prediction of local saturation in the network
(Fig. 7.3, down) suggests that the fitting approach in the high saturation range would
cause notable differences in saturation prediction, especially at the surface, where the
upper bound profile evolves 100% normalized error. The poor prediction of saturation
at the surface could, for example, result in the surface of the porous medium being dried
earlier than expected. Thus, the relative humidity at the surface might jump out of the
correlation according to surface NLE for conditions that would not correspond to PNM
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Figure 7.1: (a) Saturation profiles at Snet = 0.99 obtained from the PNM and from
the continuum model with various D(Snet;S) profiles, as well as (b) the
normalized difference between those methods; different averaging intervals of
network saturation have been used in the determination of D, corresponding to:
D(Snet = 1.00− 0.99; S), D(Snet = 1.00− 0.95; S) and D(Snet = 1.00− 0.90;
S).
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Figure 7.2: The moisture transport coefficient obtained from pore network simulations
by averaging over a small time interval of network saturation between Snet =
1.00 and Snet = 0.90, and the respective 90% confidence band. The values are
averaged over ten realizations for intervals of local saturation S.

for the given network geometry setting. Such errors may bring troubles in boundary
conditions to the CM and eventually terminate the computation, so that they need to be
prevented.

7.3 Assessment of the CM by PNM simulations

The performance of the CMs can be altered by the methods used to extract parameters
from the database created by means of the PNM. Some evidence of this behavior has been
discussed in the previous sections. Recently, parameterization of the CM by means of
the PNM database has first been attempted by Attari Moghaddam et al. (2017b). They
determined the D(S) function by averaging within consecutive intervals of 0.30, 0.30 and
0.40 in network saturation from the PNM dataset (Fig. 6.2). Besides, they also fitted each
profile into non-linear functions.
In contrast, we have identified 10 D(S) profiles in Fig. 6.3. This has been done by

defining 10 intervals of global saturation with a width of ∆Snet = 0.10 each. Additionally,
PNM data originating from ten parallel realizations have been averaged. To reduce the
possibility of termination of the algorithm, the saturation distribution S(Snet; z) obtained
from the CM for each network saturation interval of 0.10 has been compared with the
reference PNM saturation. If saturation at the surface did not match, some data had to be
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Figure 7.3: The saturation profile at Snet = 0.90 obtained from the PNM and the continuum
model with D(Snet = 1.00− 0.90; S > 0.78) according to the original averaged
data, the upper bound fitting function, or the lower bound fitting function.
Same D(Snet = 1.00− 0.90; S < 0.78) has been used at lower global saturation.
Down: normalized error between PNM and the continuum model.
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ruled out in the high saturation region. The principle was that once the surface saturation
is lower than expected, which means the liquid in the bottom is hard to transport to the
surface, the value of D has to be increased in the high saturation range, otherwise the
value of D is reduced. First, the total range of local saturation was divided into ten equal
intervals, i.e., S = 0.90 to 1.00. In each interval, the mean value, i.e. D̄(S = 0.90− 1.00),
was calculated. Then, reasonable bounds to the D(S) function were set in that interval,
for example by deleting values of D larger than 5D̄ and smaller than 0.01D̄. Linear
interpolation between the remaining points was used to calculate S(Snet; z). The bounds
on D(S) had to be adjusted based on the comparison of S(Snet; z) from the CM and
from the PNM. Figure 7.4 shows the saturation profiles obtained from the pore network
simulations with TPM configuration (Chapter 3) and the solution of the dynamic CM
(Sec. 5.1) obtained by inserting macroscopic parameters from Sec. 6.1 and Sec. 6.2, which
is comparable with the treatment by Attari Moghaddam et al. (2017b).

Figure 7.4: Saturation profiles obtained from the dynamic continuum model (red dots)
and the pore network simulations for the throat-pore configuration (black
lines). TPM saturation profiles are averages over ten realizations. From top
the profiles belong to network saturations of 0.99, 0.90, 0.80, 0.70, 0.60, 0.50,
0.40, 0.30, 0.20 and 0.10, respectively.

The CM predicts fairly the saturation profiles, except those profiles at high network
saturation where the numerical values of the moisture transport coefficient are scattered
(see Fig. 6.3). A fairly good agreement of saturation at the drying front is observed.
Attari Moghaddam et al. (2017b) used fitting functions to represent the data for the
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moisture transport when Snet > 0.68, which resulted in difficulty of predicting the saturation
at the drying front. By comparing their simulation results and our simulation results, we
observed that it is still hard to provide a good agreement for the high saturation slices
especially at regions near the network bottom (z/H = 0). In these slices, the moisture
transport coefficient represents the capillary pumping of viscous liquid, which depends
on the network structure. Due to the limited number of realizations of PNM, data from
these slices is noisy in high local saturation (Fig. 6.3). Hence the extraction of suitable
transport coefficients becomes very difficult.

7.4 Hybrid method

A classical alternative to the estimation of effective parameters by local (slice) results of
the PNM and averaging is the so-called inverse method that pursues the backward path
from liquid saturation as a function of time and space to valid parameters. The inverse
method was also considered for estimating the parameters of two-phase flow problems (Pel
et al. 1995, 1996; Ghaedi et al., 2015; Jabbari et al., 2019). The inverse method could help
to avoid the issue of importing scattered parameters into the CM. However, the optimized
functions used in the inverse method, for example, applied by Jabbari et al. (2019), may
also result in easier breakdown of CM solutions by improper initial guesses or due to
the lack of sufficient constraints. Thus, proper initial guesses, for example macroscopic
parameters obtained from the PNM, as well as proper learning rates in gradient methods,
might help to determine better parameter profiles for use in the CM. Such approaches will
be called hybrid methods in the following.

The hybrid method is applied for, first, a very small interval of ∆Snet = 0.01 from Snet

= 1.00 to 0.99, and then larger intervals of ∆Snet = 0.10 in network saturation (i.e., to Snet
= 0.90, 0.80, 0.70, etc.). It generates CM results by importing ten D(S) profiles (some
of which are exemplarily shown in Fig. 7.5) combined with the other four parameters
(Sec. 6.2 and Sec. 6.3) into the three-transport-zone CM (Sec. 5.2). For example, to
compute the network saturation distribution for Snet = 0.70, the hybrid method imports
the Dinput(Snet = 0.80− 0.70; S) profile shown in Fig. 7.5b into the CM. On this basis, the
distribution of local saturation in the network, SCM(Snet = 0.80− 0.70; zi) is predicted.
This prediction is then compared with the local saturation distribution from the PNM,
SPNM(Snet = 0.80− 0.70; zi), and the comparison is quantified by the objective function
(E):

E = 1
2
∑
i

(SCM (Snet; zi)− SPNM (Snet; zi))2 . (7.2)

The purpose of the hybrid method is to reduce the value of the objective function. The
hybrid method examines the discrepancy of the saturation for each control volume (CV) in
the CM. For example, the accumulation of moisture in the ith CV is controlled by the value
of the moisture transport coefficient at input and output. SCM(Snet; zi) > SPNM(Snet; zi)
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Figure 7.5: Moisture transport coefficients for four exemplarily shown datasets: (a)
D(Snet = 0.99−0.90; S), (b) D(Snet = 0.80−0.70; S), (c) D(Snet = 0.60−0.50;
S), and (d) D(Snet = 0.40−0.30; S); : data used as input, : data optimized
by the hybrid method, : data previously deleted from the datasets.

means that the saturation of the ith CV is overestimated by the CM. To reduce the
saturation at zi, we could increase the value of D at saturation (SCM (zi) + SCM (zi + 1))/2
(output flow) and reduce D at saturation (SCM(zi) + SCM(zi − 1))/2 (input flow) by a
small quantity (i.e., to (1.00 ± 0.01)D). The situation of SCM (Snet; zi) < SPNM (Snet; zi) is
treated inversely. It should be pointed out that the first CV only considers D(Snet; zi = 2)
at the output side, whereas the CV at the drying front alters the D(Snet; zi = DF − 1) at
the input side. Then, the adjusted D(Snet; zi) is an input parameter to solve the CM again.
The simulation result of, for example, SCM(Snet = 0.80 − 0.70; zi) has to be compared
with SPNM(Snet = 0.80− 0.70; zi) by recalculating the objective function, Eq. 7.2. The
procedure will be repeated until the value of the objective function has reached a certain
tolerance, i.e. 0.05. The whole process will be repeated until the network saturation Snet
= 0.10. Finally, ten optimized datasets Doptimized(Snet;S) are obtained, and four of them
are exemplarity shown in Fig. 7.5 (denoted by the blue triangles). Datasets presented
in Fig. 7.5 are D(Snet = 0.99− 0.90; S), D(Snet = 0.80− 0.70; S), D(Snet = 0.60− 0.50;
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S), and D(Snet = 0.40 − 0.30; S). It should be noted that D(Snet = 1.00 − 0.99; S)
has been averaged with D(Snet = 0.99 − 0.90; S), as well as D(Snet = 0.40 − 0.30; S),
D(Snet = 0.30−0.20; S) and D(Snet = 0.20−0.10; S) have been averaged into, respectively,
one profile in Fig. 6.3. Figure 7.5 also shows the moisture transport coefficients (denoted
by red cycles) which have been used as input values for the hybrid method. In the four
plots also points that have previously been deleted from the dataset are appearing as empty
cycles. Not shown profiles (the other six profiles) are similar. The optimized D(Snet;S)
indicate high values of the moisture transport coefficient at specific local saturations, which
correspond to slices that contain maximum interfacial area. For example, the maximum
of the dataset D(Snet = 0.80− 0.70; S) is found at approximately S = 0.70. This value
would not be easy to recognize by averaging over Snet. The trend agrees with the theory
of governing liquid transport in the capillary-viscous regime that has been discussed in
Chapter 6.

Figure 7.6 shows the saturation profiles and drying kinetics by the three-transport-zone
CM (Chapter 5) combined with D(Snet;S) from the hybrid method, as well as compared
with the results obtained from the PNM. As can be seen, the macroscopic CM is capable
of reproducing the drying characteristics of capillary porous media.
The agreement between the adequately parameterized three-transport-zone CM and

the PNM is strong, especially after a drying front has started receding into the medium.
Although the drying kinetics and the saturation profile for the first drying period can
be easily accessed by the CM Pel et al. (1996), literature methods to predict the second
drying period rely on empirical parameters (Pel et al., 2002; Pel and Landman, 2004).
This work presents, for the first time, the coupling of the CM and PNM with the local
macroscopic parameters. The saturation profiles obtained from the CM demonstrate: The
edge effect that appears in the initial drying period (Or et al., 2013); fluctuations in the
saturation distribution which are caused by the random pore size distribution; and, the
viscosity effect that holds the liquid in the bottom of the porous medium (Fig. 7.6). These
effects are missed by the classical approach (Pel et al., 2002; Pel and Landman, 2004).

Saturation profiles obtained in more classical way (dynamic CM without hybrid adaption)
are shown in Fig. 7.4. Their discrepancy from the PNM is shown in Fig. 7.7, and it is
compared to the respective discrepancy of three-transport-zone CM from Fig. 7.6b. This is
done in two ways: (a) calculating the performance errors by summing the discrepancy for
the entire drying period along the length of the network; (b) identifying the performance
errors by summing the discrepancy over the entire length of the network for each of 0.10
network saturation.
Figure 7.7 indicates that CM associated with optimized D(Snet;S) from the hybrid

method provides a better prediction not only at the surface but also among the bottom
slices. Additionally, the CM, coupled with the hybrid method, shows a strong agreement
with the PNM along the whole drying period (Fig. 7.7b). The highest improvement
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Figure 7.6: (a) Drying kinetics and (b) saturation profiles obtained from the three-transport-
zone CM and the PNM simulations. The saturation profiles of the PNM
are averages over ten realizations. From top the profiles belong to network
saturations of 0.99, 0.90, 0.80, 0.70, 0.60, 0.50, 0.40, 0.30, 0.20 and 0.10,
respectively
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Original averaged data 
Hybrid method 

Original averaged data 
Hybrid method 

Figure 7.7: Deviation from PNM results of predictions of three-transport-zone CM using
the hybrid method vs. original averaged data according to Fig. 6.3: (a)
performance errors by summing the discrepancy over the entire drying period
along the length of the network; (b) performance errors by summing the
discrepancy over the entire length of the network for each 0.10 of network
saturation.
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has been seen for the network saturation profile at Snet = 0.80. However, some errors
in saturation prediction using the hybrid method can still be observed in Fig. 7.7. One
reason may be that the amount by which the moisture transport coefficient is changed
within each step is arbitrary and fixed in the hybrid method, i.e., 0.01 of the previous
value of D is assumed in the current work.

Nevertheless, it can be seen that the dataset from the hybrid method preserves much of
the transport information from the primary dataset (created by PNM) when used in the
frame of the CM. Since the saturation profile reflects the complex interplay of capillary
and viscous forces and the structural impact, it can be said that these interactions are
preserved by the scattered values of moisture transport coefficient that the hybrid method
provides. Contrary, such information is at least partially destroyed by the fitting approach
to moisture transport coefficients, i.e. when extensively averaged and smooth functions
are used to approximate this parameter.

7.5 Comparison between the two versions of the continuum model

In this work, we introduced two versions of the CM, and both of them could be used
to predict the saturation profiles (Fig. 7.4 vs. Fig. 7.6). Figure 7.4 used the moving
front boundary condition CM with original data from PNM. In contrast, profiles shown
in Fig. 7.6 were obtained by introducing the optimized moisture transport coefficient
profiles by the hybrid method into the three-transport-zone CM. The comparison in Fig.
7.7 could not point out fundamental differences between the two versions of the CM in
regard of the saturation profiles. To further test those two CMs, we introduce the original
moisture transport coefficients from Fig. 6.3 and the rest of the macroscopic parameters
are discussed in Chapter 6 into both CMs. The moving front boundary condition CM and
the three-transport-zone CM make use of the same moisture transport coefficient profiles,
as well as the same functions of relative humidity at the surface and the drying front. Two
other parameters, the vapor transport coefficient in the dry zone and in the external layer,
are used only in the three-transport-zone CM. Figure 7.8a shows the drying time and Fig.
7.8b shows drying kinetics obtained from those two models and compares them with the
reference result from the PNM. It is clearly indicated that the moving front boundary
condition CM fails to predict the drying time, especially for the receding front period
(S < 0.50) since the drying kinetics is overestimated. In contrast, the drying time and
drying kinetics obtained from the three-transport-zone CM is close to the drying time
predicted by the PNM. The reason behind this behavior is the vapor transport coefficient
at low local saturation slices in the moving front boundary condition CM. In the moving
front boundary condition CM, the dry zone is treated by adding this zone to the gas-side
diffusion layer. The boundary condition is then placed at the drying front by introducing
a Stefan law evaporation rate. This implicitly assumes that the vapor diffusion coefficient
in the dry zone would be equal to the diffusion coefficient in the boundary layer. However,
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this assumption is contradictory to the vapor diffusion coefficients obtained from the PNM
in Fig. 6.11, suggesting a smaller vapor diffusion coefficient in the drying zone. Thus, the
moving front boundary condition CM attributes much lower obstacles to vapor diffusion
and, consequently, results in much short drying time. One method to adjust the moving
front boundary condition CM would be to correspondingly expand the drying zone when
assigning this zone to the gas-side boundary layer.
Additionally, the NLE effect plays a vital role in the three-transport-zone CM. Figure

7.9a shows the drying time obtained from the CM without NLE and from the PNM
simulations. Figure 7.9b presents the saturation profiles obtained from the CM without
NLE. The CM without considering NLE assumes the saturation vapor pressure at the
surface and at the drying front. The moisture transport coefficient is that of the optimized
dataset calculated using the hybrid method (Fig. 7.5); vapor transport parameters are
presented in Sec. 6.3.2. As can be seen in Fig. 7.9a the drying time predicted by the
CM is longer compared to that predicted by PNM. The reason is that the moisture
transport coefficient at the bottom of the network is smaller than that at the top of the
network, suggesting that the liquid cannot easily be transported to the surface by capillary
forces. This is evident in the saturation profiles. From these profiles one can see that the
liquid saturation in the bottom is high when the saturation front starts to recede (after
Snet < 0.90).
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Three-transport-zone CM
PNM

Moving front CM

(a)

(b)

Three-transport-zone CM
PNM

Moving front CM

Figure 7.8: Drying time (a) and drying kinetics (b) predicted by the pore network model
(PNM) and the two continuum models (CM): moving front CM and three-
transport-zone CM. The values of PNM is averages over ten realizations.
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(a)

(b)

Three-transport-zone 
CM without NLE

PNM

Figure 7.9: (a) Drying kinetics obtained from the three-transport-zone CM without NLE
and the PNM simulations and (b) saturation profiles obtained from the three-
transport-zone CM without NLE. The saturation profiles of the PNM are
averages over ten realizations. From top the profiles belong to network satura-
tions of 0.90, 0.80, 0.70, 0.60, 0.50, 0.40, 0.30, 0.20 and 0.10, respectively.
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Chapter 8

Evaporation from the surface of
capillary porous media
Part of this chapter has been published in “Lu, X., Tsotsas, E., Kharaghani, A., (2021),
Insights into evaporation from the surface of capillary porous media gained by discrete pore
network simulations. International Journal of Heat and Mass Transfer, 168, 120877”.

Reliable prediction of the drying rate from the surface of a porous medium remains a
scientific challenge due to complex interactions between the gas-side boundary layer and
porous medium structure. One way to tackle this issue is to opt for a microscale pore
network model (Chapter 2). Two parameter functions (surface vapor pressure-surface
saturation, surface vapor transport coefficient-surface vapor concentration relationship)
are assessed from the pore network modeling (PNM), which can be used in the frame of a
continuum model (CM) to couple the porous medium with the boundary layer (Chapters 4
and 5). The vapor pressure-surface saturation relationship has been discussed in Chapter
6. In this chapter, we focus on the surface vapor transport coefficient.
Surface parameters can be used to avoid the assumption of saturation pressure at the

surface of the drying material in the one-equation CM, taking into account that surface
saturation is controlled by the moisture transport within the porous medium as well
as by diffusion in the boundary layer. Correspondingly, a surface diffusion coefficient
and a vapor pressure-saturation relationship appear in the CM. In this context, Attari
Moghaddam et al. (2017b, 2018) linked the surface saturation with the surface vapor
pressure and redefined their relationship as a non-local equilibrium (NLE) effect. At the
same time, Attari Moghaddam et al. (2018) indicated the way towards two-equation models
by stressing that two kinds of pores exist at the surface (Fig. 8.1), and by evaluating the
relative contribution of dry and wet surface regions to the total mass transfer rate. Such
contributions were though correlated with surface wetness: A quantity which is hard to
apply to macroscale CM, and may differ from surface saturation. Differences between
surface wetness and surface saturation will be stressed in this chapter, keeping in mind
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that a direct link of the mass transfer rate with the surface saturation or the surface vapor
pressure would be preferable, because those are the state variables that usually appear in
CMs.
In this chapter, both approaches which are illustrated in Fig. 8.1 to treat the drying

surface in respective CMs will be addressed. The first method (Fig. 8.1a) corresponds to
the one-equation CM and considers the drying surface as a uniform slice that is affected
by the wet and dry surface regions. Surface saturation influences the surface vapor
concentration, which in turn sets the driving force for mass transfer into the external
transfer region. Latter corresponds to a vapor transport coefficient that can be assessed
from PNM data. The second method (Fig. 8.1b) treats the drying surface as two separate
regions - the wet and the dry region. In the respective two-equation CM, vapor flux
from the dry region to the diffusive boundary layer could be balanced with the internal
vapor flux to the surface of the drying material. Since this is straightforward, it will
not be discussed here. Contrary, we will focus on the more intricate part of defining the
evaporation flux from the wet area and developing practicable tools for its estimation.

Figure 8.1: Presentation of drying surface for one-equation and two-equation CMs, re-
spectively: a) Wet patches (dark blue from fully filled surface throats, light
blue from partially filled surface throats) and dry patches (white, from empty
surface throats) exist on the surface of the drying medium, but surface vapor
pressure is averaged in a virtual slice placed at the porous surface. b) Wet
patches and dry patches are combined into two separate regions, and each
region (the wet and the dry one) contributes separately to the total evaporation
rate.

Moreover, emendation factors are introduced to link the normalized evaporation rate
from the wet part of the porous medium surface with the surface wetness or surface
saturation. Their evaluation shows that the normalized evaporation rate contributed from
wet patches tends to surface saturation with increasing intensity of drying, whereas a
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similar but weaker trend can be observed with surface wetness. This correlation provides,
especially in case of enhanced and non-isothermal drying processes, a simple method for
coupling the wet surface region with the gas-side boundary layer in a two-equation CM.
Besides, we evaluate the evaporation rate from the wet surface region by inserting PNM
data into a modified version of Schlünder’s model.

8.1 Pore network setting and surface parameter estimation

The underground PNM of this scheme is defined on a regular three-dimensional lattice of
spherical pores and cylindrical throats (Chapter 2). Details of the algorithm have been
described in Chapter 3. In the PNM, 25 × 25 pores are considered in every of in total 51
cross-sections of the porous medium. This cubical grid of pores and throats between them,
with 1 mm lattice spacing (center-to-center pore distance) is also extended beyond the
evaporating surface of the medium to simulate external mass transfer by diffusion in the
adjoining gas-side boundary layer. Extension is by 10 layers in the standard case, reduced
to 3 layers for mimicking conditions of faster drying in Sec. 8.4. The bottom of the PNM
is adiabatic, whereas periodic boundary conditions are applied to the side faces. Throat
and pore radii are randomly sampled from the same normal distribution with a mean of
250 µm and a standard deviation of 25 µm. However, pore radii are chosen to be larger
(or at least equally large) than the largest radius of neighbor throats. Ambient pressure
and room temperature (20 °C) are assumed to prevail. Material properties are set for
water and air (or the combination thereof) at this temperature. Specifically, the binary
vapor diffusivity has been obtained according to Schirmer (1938):

Dv,a = 22.6× 10−6
(
T

273

)1.81
, (8.1)

where T is Kelvin temperature, to Dv,a = 2.57 × 10−5 m2/s.
Surface conditions can be evaluated from PNM simulation results in the way that is

illustrated in Fig. 8.2. On one hand, individual values of surface vapor pressure can be
averaged in a virtual slice placed at the top of the porous medium. The resulting average
surface vapor pressure is affected by the existence of dry and wet regions, and thus, is
related to the surface moisture content (Chapter 6.2). Latter can be expressed by means
of surface saturation or surface wetness, as will be seen in Sec. 8.4. Using the surface
saturation and correlating with the (also average) relative humidity ϕsurf , a non-local
equilibrium (NLE) relationship can be obtained (Attari Moghaddam et al., 2017b). NLE
means that thermodynamic equilibrium is satisfied at the menisci but not at the scale
of a slice, so that neither free water saturation conditions nor desorption isotherms are
applicable to the surface of the drying medium. Contrary, the surface NLE function must
be determined and used for computation in the frame of an one-equation CM.

On the other hand, wet and dry surface throats can be distinguished, breaking path for
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Figure 8.2: Surface parameter estimation from pore network modeling; dark blue:
full throat/pore, light blue: partially filled throat/pore, white: dry
throat/pore. Saturation vapor pressure above wet patches (full or partially
filled throats/pores, dark blue); vapor pressure above dry throats/pores (light
blue) is unknown and needs to be determined from the mass balances.

the derivation of parameters which would be relevant for two-equation CMs. For example,
evaporation rates from wet (Jwet,i) and dry (Jdry,i) surface throats can be evaluated
individually, and they can be added to total contributions from either the wet or the dry
part of the surface of the drying medium. Assigning those contributions to Fick’s law and
reversing the respective expression, values of an effective vapor diffusivity can be obtained
separately for the wet region and for the dry region of the surface. Summing those up, it
is possible to return to the one-equation approach with a global effective vapor diffusivity
(Dv), which in case of slow drying should be close to the molecular diffusivity from Eq.
8.1.

8.2 Surface parameters from pore network data

Surface parameters evaluated from PNM data are the surface NLE function, as well as
wet, dry and total effective surface vapor diffusivity. The surface NLE function has been
introduced in Chapter 6. Thus, in this part, we evaluate the surface vapor diffusivity.
Results will be discussed in the following.
Surface saturation, Ssurf , comprises all throats and pores shown in Fig. 8.2: Vertical

throats that end at the surface, their underlying layer of pores, and horizontal throats
connecting the pores of this sub-surface layer. Surface saturation, Ssurf , is the volume of
liquid in all those pores and throats divided by their total volume.

The surface contains two kinds of vertical throat ends (virtual surface pores), and they
all contribute to the evaporation rate (Fig. 8.3). By consideration of Stefan flow, the
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evaporation flow rate from wet pore i is

Jwet,i = Awet,i
Dv,aM̃vP

R̃Th
ln
(
P − Pv,j
P − P ∗v

)
, (8.2)

and from dry pore i is

Jdry,i = Adry,i
Dv,aM̃vP

R̃Th
ln
(
P − Pv,j
P − Pv,i

)
. (8.3)

Here, j is the next vapor pore in vertical direction to the surface (grid node in the gas
region) adjacent to pore i, whereas h is the spacing of the grid (isotropic and uniformly
equidistant in both, the pore network and the gas boundary layer). Pv,j is the vapor
pressure at j. Vapor pressure at i is saturation vapor pressure P ∗v in case of a wet pore; in
case of a dry pore, it is Pv,j and has to be obtained from the PNM. P denotes the total
pressure (here atmospheric). Awet,i and Adry,i are the cross-sectional areas that correspond
to wet or dry pore i, respectively. With equidistant Cartesian tessellation of the surface,
those are equal to h2, i.e. they comprise the whole surface tile and not just the circular
throat end in it (Fig. 8.1). It should be noted that usage of saturation pressure P ∗v over
the whole square tile in case of a wet core means that CRP conditions are assumed for
this unit element of the surface, in accordance with Schlünder’s CRP concept.
The vapor flow rate from the whole wet region (Jv,wet) can be obtained by summing

over all wet surface pores:

Jv,wet =
Nwet∑
i=1

Jwet,i. (8.4)

Similarly, the vapor flow rate from the dry region (Jv,dry) is:

Jv,dry =
Ndry∑
i=1

Jdry,i, (8.5)

where Nwet and Ndry denote the number of wet pores and dry pores at the surface,
respectively.
After having calculated the vapor flow rate for each region, two values of effective

surface vapor diffusivity can be defined and calculated for the wet and for the dry region,
respectively, by reversing Eq. 1.12, i.e. by applying the reversed Fick’s law over the whole
thickness of the gas boundary layer:

Dv,wet =

Jv,wet
Asurf

M̃vP
∗
v

R̃T

(
ϕsurf − ϕ∞

ε

) , (8.6)
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and

Dv,dry =

Jv,dry
Asurf

M̃vP
∗
v

R̃T

(
ϕsurf − ϕ∞

ε

) . (8.7)

Here, ϕ∞ is the relative humidity at the distance ε from the medium surface, assumed to
be zero in the present work.
Figure 8.3 shows the effective surface vapor diffusivity contributed from the wet and

the dry region as a function of surface saturation. The effective surface vapor diffusivity
from the wet region dominates at high surface saturation, since the surface throats and
pores are almost full with liquid. However, the surface pore pressure deviates from the
saturation vapor pressure in the course of the drying process. The dry region starts to
play a role. Correspondingly, the effective surface vapor diffusivity from the dry region
increases during the drying process and becomes even dominating in the low saturation
period. Figure 8.3 suggests that the contribution of each part of the surface is dynamic
within a certain range of values.

Figure 8.3: Effective vapor diffusivity above the wet region and the dry region of the
surface of the pore network as a function of surface saturation. The results are
averaged over 20 realizations.

Since the total surface area Asurf is used in both Eqs. 8.6 and 8.7, the overall effective
vapor diffusivity, Dv, can be determined simply by the sum of the diffusivities from the
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wet and dry regions:
Dv = Dv,wet +Dv,dry. (8.8)

The overall effective vapor diffusivity in the boundary layer is plotted against surface
network saturation, Ssurf , as well as over relative humidity at the surface, ϕsurf , in Fig. 8.4.
Both plots show that the effective parameter (Dv) is very close to the respective physical
parameter that has been used in the PNM, namely the binary molecular diffusivity of
water vapor in air of Dv,a = 2.57 ×10−5 m2/s according to Eq. 8.1. This is the expected
behavior and a verification for the correctness of PNM computations in the boundary layer
as well as of PNM data evaluation.

However, one can also see in Fig. 8.4 that Dv is not exactly equal to Dv,a, but somewhat
larger. The reason is that Stefan’s law has been used for gas-phase vapor transport in
PNM (within the network as well as in the boundary layer, Eqs. 8.2 and 8.3), whereas
the inverse identification of effective boundary layer diffusivities has been conducted by
Fick’s law (Eqs. 8.6, 8.7). Fick’s law is based on equimolar diffusion and linear, whereas
Stefan’s law takes one-side diffusion with a logarithmic driving force into account. The
difference is miniature when the temperature of the evaporating liquid is much smaller
than the boiling temperature of the liquid at the imposed pressure, which is fulfilled for
our slow drying case at 20 ◦C and 1 bar.
Deviation of Dv from Dv,a would though increase at higher temperatures, and when

opting for Fick’s law for the external mass transfer in model equations the effective
parameter should be used in such cases, including the dependence of Dv on Surf or ϕsurf
that has been illustrated in Fig. 8.4. At this end, correlation of Dv with Ssurf may appear
reasonable by analogy to the correlation of internal moisture transport coefficients of
drying porous media with local saturation, e.g. Pel et al. (1993). However, this relationship
is shown to be strongly non-linear in Fig. 8.4, whereas the relationship of Dv with ϕsurf
has the advantage of being nearly linear (Fig. 8.4).

8.3 Wet surface region evaporation rates

We have seen in Sec. 8.2 that an one-equation CM can be used to describe the drying
process at the macroscale, but this model requires heavy fitting of the internal transport
parameters (Attari Moghaddam et al., 2017b) as well as use of an appropriate NLE
function at the surface of the drying medium, like that of Fig. 6.6, in order to properly
work. At the same time, we have seen that two regions (wet and dry) can naturally be
distinguished at the surface, which is also true inside the drying medium. Such findings
motivate the development and use of two-equation models, related with the expectation
that the explicit consideration of a wet and a dry part in such models will reduce the
necessity and arbitrariness of fitting compared to the one-equation CM.

However, in a two-equation CM the boundary condition needs to be defined separately
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Figure 8.4: Overall effective vapor diffusivity in the boundary layer against (a) surface
saturation, (b) surface relative humidity. The results are averaged over 20
realizations.
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for the dry and the wet region of the surface. The dry region could be handled by switching
from the effective vapor diffusivity of the porous medium to molecular (or effective) vapor
diffusivity in the gas-side boundary layer, because the vapor is a continuous phase in the
entire considered domain and there is no phase transition at the boundary. In this frame,
one could, for example, set equal fluxes at the two sides of the dry part of the surface
through Fickian expressions with different diffusivities.
Contrary, liquid transport takes place on one and vapor diffusion on the other side

of the wet region of drying medium’s surface, so that setting the boundary condition is
there more challenging and will be treated in the following. To start with, it is noted that
evaporation rate in the CRP (first, gas-side controlled drying period), denoted by Jv,I , can
easily be predicted from Eq. 1.12: Obtaining boundary layer thickness δ from external flow
correlations or computations, using P ∗v instead of Pv,surf , and multiplying with total surface
area Asurf to transform flux j into a flow rate. It is evident that evaporation flow rate
from the wet part of the surface should be smaller than Jv,I , so that instead of analyzing
Jv,wet, the ratio Jv,wet/Jv,I may be considered, which is similar to the normalized drying
rate used in various empirical approaches to drying kinetics (Tsotsas, 1994). Building
on that, it would be natural to assume Jv,wet/Jv,I being directly proportional to surface
saturation Ssurf . However, this is probably also simplistic, so that we are expanding the
linearity by introducing a correction, which will be called emendation factor and denoted
by F1:

Jv,wet
Jv,I

= F1Ssurf . (8.9)

However, proportionality to surface saturation Ssurf is not evident. For example, surface
wetness ψsurf might be used as well, as in Schlünder’s model (Eq. 1.10). In that case, Eq.
8.9 is rearranged upon the new variable, with F2 as the corresponding emendation factor:

Jv,wet
Jv,I

= F2ψsurf . (8.10)

Especially Eq. 8.9 would be a very elegant definition of the boundary condition for
the liquid phase in a two-equation CM, but the emendation factor should be known in
advance. Use of the PNM provides unique opportunities in this sense to find out: How
the normalized evaporation rate from the wet surface region correlates with Ssurf or ψsurf ;
how far such correlations are from direct proportionality; which emendation factors are
obtained from PNM data.

The assessment of Eq. 8.9 by means of PNM data is shown in Fig. 8.5 in terms of the
dependence of Jv,wet/Jv,I on Ssurf , and in Fig. 8.6 by means of the respective emendation
factor F1. Data points are not far away from the diagonal in Fig. 8.5 (which would mean
F1 = 1), but there are measurable differences, so that the emendation factor deviates
significantly from unity as can be seen in Fig. 8.6.
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Figure 8.6 suggests that the emendation factor depends on the drying process. When
the surface is filled with liquid, the normalized evaporation rate for the wet region equals
the surface saturation, so that the emendation factor is close to unity for Ssurf > 0.5. The
emendation factor starts to play a role when the air invades into the porous medium. The
emendation factor is larger than unity after Ssurf < 0.5, which means that the normalized
evaporation rate for the wet region is larger than the surface saturation. A reason for this
might be that the liquid phase is structured due to the random pore size distribution in
the PNM.

Figure 8.5: Normalized evaporation rate from the wet region over surface saturation from
PNM data.

The interrelation between surface wetness ψsurf and surface saturation Ssurf according
to the PNM is depicted in Fig. 8.7. As explained in Sec. 8.2, PNM surface saturation
Ssurf is obtained by consideration of all structural elements shown in Fig. 8.2, namely
vertical throats to the surface as well as pores and horizontal throats of the layer directly
below the surface. Contrary, every tile that contains the end of a totally or partially
saturated vertical throat is considered to be fully wet in the evaluation of surface wetness,
all others being dry. With equidistant Cartesian tessellation of the surface, this means
that surface wetness ψsurf is simply equal to the number of wet tiles Nwet to the total
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number of square surface elements Ntot:

ψsurf = Nwet

Ntot

. (8.11)

Figure 8.7 shows ψsurf to be tentatively smaller than Ssurf . The surface wetness ψsurf is
only associated with the vertical throats to the surface. Therefore, the emendation factor
F2 of Eq. 8.10, shown in Fig. 8.8, is larger than the emendation factor F1 from Fig. 8.6,
with otherwise similar behavior. There would be appealing aspects in the use of surface
wetness as the variable with which the normalized evaporation rate from the wet region
might be correlated, because of possibilities for the direct experimental determination of
this quantity by, for example, near infrared spectroscopy. On the other hand, it might be
argued that in reality surface saturation is measured by such methods at the macro-scale,
the difference to surface wetness being an artifact that arises because Ssurf is determined
for a very small volume in the PNM. Measured data that would distinguish between 2D
saturation (surface wetness) and 3D saturation in a thin surface slice (surface saturation)
is nonexist to our knowledge, so that this issue cannot be fully resolved. However, the
present results clearly indicate that use of surface wetness ψsurf is rather disadvantageous
(the deviation of the emendation factor from unity is larger), so that surface saturation
Ssurf should be preferred.

Irrespectively of the definition upon ψsurf or Ssurf , emendation factors differ significantly
from unity in the previous evaluation, which, though, has been conducted for a very slow
drying process. In order to estimate the influence of drying intensity while still preserving
the isothermal character of the simulations, thickness of the boundary layer was reduced
from the reference value of δ = 10h in the previous simulations to δ = 3h. Comparison
of the data of Fig. 8.9a with those of Fig. 8.5 shows that the normalized evaporation
rate Jv,wet/Jv,I comes thus closer to Ssurf (i.e., to the diagonal of the plot). At the same
time, the relationship between ψsurf and Ssurf (cf. Fig. 8.9b with Fig. 8.7) does not seem
to change dramatically. Emendation factors defined for Ssurf and ψsurf are plotted in
Figs. 8.10a and b, respectively, for both boundary layer thicknesses. Figure 8.10b shows
emendation factors that decrease significantly with increasing global drying rate when
defined on the basis of ψsurf . Defined for Ssurf , the emendation factor F1 is essentially
equal to unity at δ = 3h. In case of the faster process, surface menisci dry immediately
after having been activated by liquid evaporation. The drying surface and the underneath
region become more uniform, and the growth of cavities to an empty structure below dried
surface areas is reduced.
In total, the results indicate that setting the normalized evaporation rate Jv,wet/Jv,I

equal to surface saturation Ssurf can be expected to be a good approximation for relatively
fast drying processes in practice, which means that Eq. 8.9 with F1 = 1 would be an
appropriate boundary condition to the wet part of two-equation continuous models.
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Figure 8.6: Emendation factor (F1) as a function of surface saturation calculated from the
PNM data of Fig. 8.5.

8.4 Schlünder’s formula for the wet surface region

The previous evaluation has shown that the emendation factor approaches unity with
increasing intensity of the drying process, especially when using surface saturation in order
to capture the decrease in evaporation rate from the wet surface region in the course of
drying. This provides a reasonable and easily implementable boundary condition for the
wet region in two-equation models. However, the question arises whether approaches like
Schlünder’s model might possibly contribute to a still better solution, especially at low
global drying rates. As discussed, Schlünder’s formula has been derived for explaining
the existence of the first drying period. It does not recognize the gradual appearance of
completely dried patches on the surface and is, thus, inadequate for quantitative calculation
of the evaporation rate, especially when the surface has already been depleted from most
of the originally contained liquid. Its application to the wet part of the surface might
though be favorable and has not been investigated before.
To facilitate this investigation, we modify the original derivation which considered

square surface elements with circular wet spots in them and resulted in Eqs. 1.10 and
1.11. Instead, we consider only the circular wet spots as representatives of completely
or partially filled cylindrical surface throats of the PNM. One such cylindrical surface
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Figure 8.7: Correlation of surface wetness ψsurf with surface saturation Ssurf from the
PNM data.

tube with radius rt is shown in Fig. 8.11. The tube is initially filled with liquid up to rt.
However, the liquid-filled part of the tube shrinks to a cylinder of smaller radius rp when
the saturation of the tube with liquid is reduced. This means that surface throats which
are emptying by retreating menisci in the PNM are represented by shrinking tubes in the
modification of Schlünder’s model. Due to geometry, surface throat saturation and surface
wetness are the same and related to rp as:

S = ψ =
(
rp
rt

)2
. (8.12)

Schlünder’s concept in Fig. 8.11 is that water vapor first diffuses from rp at saturation
pressure P ∗v to rt at partial vapor pressure P 0

v , and then over the thickness ε of the
boundary layer from P 0

v to ambient partial vapor pressure Pv,∞ (assumed zero). If the
first step were quick and short in comparison to the second one, then the whole basis area
in light blue appears as if it were at saturation pressure P ∗v .
In total, instead of Eq. 1.10 the modified model for surface throat i results in:

Jv,i
Jv,I

= 1
1 + Φi

, (8.13)
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Figure 8.8: Emendation factor (F2) as a function of surface wetness calculated from PNM
data.

and
Φi = rt,i

2δ

(√
1
Si
− 1

)
. (8.14)

In Eqs. 8.13 and 8.14, the ratio of the evaporation rate from the considered wet surface
throat (Jv,i) to the initial evaporation rate (Jv,I) is correlated with the parameter ψi, which
might be understood as a resistance for vapor diffusion in lateral direction.

Transition from Eq. 8.13 to the whole evaporative surface is achieved by calculating ψi
from Eq. 8.14 for each individual wet surface throat with its specific radius and saturation
(from PNM results), weighing with the individual cross-sectional area Ai, summing over
the total number of wet surface throats Nwet, and dividing by the total surface area of the
porous medium Asurf to obtain:

Jv,wet
Jv,I

= 1
Asurf

Nwet∑
i

Ai
1

1 + Φi

. (8.15)

Use of Eq. 8.15 means that individual data and the modified version of Schlünder’s
formula are used at every wet surface spot, so that the heterogeneity of the surface is
accounted for. Comparison of normalized evaporation rates Jv,wet/Jv,I from Eq. 8.15
with the already shown values of Jv,wet/Jv,I obtained directly from the PNM is presented
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(a) 

(b) 
(b) 

Figure 8.9: (a) Normalized evaporation rate of the wet region from the PNM with δ = 3h;
(b) surface wetness as a function of surface saturation from the PNM with
δ = 3h.

in Fig. 8.12a for very slow (δ = 10h) and in Fig. 8.12b for enhanced (δ = 3h) drying.
Agreement can be seen in some regions (very large Ssurf for δ = 10h, very large as well as
small Ssurf for δ = 3h), but there is also significant overestimation or underestimation
compared with the results obtained from the PNM in other regions. It should be noted
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Figure 8.10: Influence of drying intensity, modified by variation of boundary layer thickness
from δ = 10h (reference case) to δ = 3h on: (a) Emendation factor F1
for correlations with surface saturation Ssurf ; (b) emendation factor F2 for
correlations with surface wetness ψsurf .
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that only surface throats have been considered in Eq. 8.15, whereas surface saturation
Ssurf takes into account also the horizontal throats and pores located immediately below
the surface. These parts of the surface slice also play a role in the surface pore pressure in
the PNM, but not in Schlünder’s formula. Additionally, the pressure of surface pores is
affected by the liquid structure in the surface slice, including the liquid underneath of the
surface, which could help to hold the pressure of vapor pores at saturation. Contrary, only
surface wetness is considered in Schlünder’s formula, which does not seem to be enough to
express the interrelation of liquid content with the evaporation rate. In total, application
of Schlünder’s equation does not seem to improve our ability to correlate the normalized
evaporation rate with surface saturation, so that use in the boundary condition for the
wet part of the porous medium in a two-equation CM does not appear to be reasonable.

Figure 8.11: Schematic of single wet surface throat for the revised Schlünder’s formula:
Initially, the whole cylinder with radius rt is filled with liquid; then, the liquid
retreats with decreasing throat saturation S to a cylinder of radius rp.

Even in case of agreement of Jv,wet/Jv,I obtained from the Schlünder formula and directly
from the PNM, this does not mean that the Schlünder formula could predict F > 1. It
should be clear that the Schlünder formula only includes the relationship between the
saturation of vertical throats and the surface wetness in Eq. 8.15, whereas the surface
saturation Ssurf takes into account also the horizontal throats and pores located beneath
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the surface. In other words, the profile of ψ with S in Schlünder’s formula differs from the
profile of ψsurf with Ssurf in Fig. 8.7. Thus, the evaluated emendation factors F1 or F2 in
Fig. 8.10 make much more sense from the point of view of close representation of PNM
results.

Figure 8.12: Normalized evaporation rates of the wet surface region obtained from Eq.
8.15 (denoted by Schlünder model) as well as directly from the pore network
model for two different values of boundary layer thickness (a) δ = 10h, (b)
δ = 3h.
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Chapter 9

Macroscopic parameters dependence
on the pore network heterogeneity
Part of this chapter will be published as “Lu, X., Tsotsas, E., Kharaghani, A., The
dependence of continuum model parameters on the spatially correlated pore structure
studied by pore-network drying simulations”.

Based on the analysis of the influence of macroscopic parameters on the continuum model
(CM), two parameters, the moisture transport coefficient as well as the relative humidity,
take the primary responsibility in reproducing the drying characteristics of the porous
media. In this chapter, we show the effect that features of pore structure (monomodal
pore size distribution (PSD) with variable mean throat radius and standard deviation of
throat/pore radius, bimodal PSD) have on those two macroscopic parameters.

In this chapter, we employ the throat-pore model introduced in Chapter 2 as a framework
to investigate the influence of pore structure on the macroscopic parameters discussed in
Chapter 6. Default parameters of the pore network model are listed in Tables 3.1 and 3.2.
The network size remains at 25 × 25 × 51 with gas-side boundary layer thickness at 25 ×
25 × 10. It should be noted that the pore radii are larger than or at least equal to the
largest radius of neighbor throats (Fig. 2.4). Initial standard deviations of pores/throats
are set equal. After the adjustment, the mean pore radius is larger than the initial setting
value and the standard deviation of pore radius is smaller. The mean radius and standard
deviation of pores are derived quantities. Thus, in this section, we focus on the impact of
the radius distribution of throats on parameters relevant for the drying process. For each
network, we extract the moisture transport coefficient profiles and profiles of the relative
humidity from the pore network data. To reduce randomness of macroscopic parameters,
we take several PNM datasets from ten parallel simulations. The averaging method has
been introduced in Chapter 3 and is used for averaging all macroscopic parameters also in
this chapter.
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9.1 Influence of mean throat radius

Three values of mean throat radius, R̄t = 50 µm, R̄t = 150 µm and R̄t = 250 µm, with
the same standard deviation of throat radii, σ0,t = 5µm, are separately used to perform
simulations with the throat-pore model (Fig. 9.1). The radii of throats are sampled from
said distributions; the radii of pores are altered corresponding to the explained rules.
These settings result in differences in the void space of the porous medium, altering the
porosity (Table 9.1).

Table 9.1: Characteristics of pore structures used for drying simulations.
Parameters
Network size 25 × 25 × 51 25 × 25 × 51 25 × 25 × 51
Boundary layer size 25 × 25 × 10 25 × 25 × 10 25 × 25 × 10
Mean throat radius (µm) 50 150 250
Mean pore radius (µm) 57 156 256
Standard deviation of throat radius (µm) 5 5 5
Center distance between two pores (mm) 1.0 1.0 1.0
Liquid volume (m3) 6.8× 10−7 5.1× 10−6 1.1× 10−5

Network porosity 0.022 0.162 0.358

Figure 9.2 shows the moisture transport coefficient profiles calculated based on the
method that has been proposed in Chapter 6 for the pore networks with different mean
value of throat radius. The moisture transport coefficient increases with increasing mean
throat radius. This is attributed to the fact that resistance to mass transport decreases at
higher porosities that result from the mean throat radius increase.

However, two characteristic saturations, the saturation when slices contain the maximum
of interfacial area (Sas,max) and the turning point (ST ) at which the moisture transport
reaches a minimal value, remain nearly unchanged. To explore the reason, we determined
the profiles of the interfacial area and the ratio of liquid flow rate over the total flow rate.
The saturation at which slices contain the maximum of interfacial area (Sas,max) is

identified by summing of the cross-sectional areas of all menisci in each slice. However,
the cumulative interface area in a slice is not comparable among samples with different
mean throat radius. Therefore, it is made dimensionless by dividing by the void area in
the slice, obtained from the void volume in the slice Vs over slice thickness h. In this way,
a relative interfacial area is obtained as

τ = as
(Vs/h) . (9.1)

Figure 9.3 shows the alteration of the relative interfacial area for different network
structures. The peak value occurs when the slice has the maximum of interfacial area.
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Figure 9.1: The final radii of throats and pores of three types of networks with identical
standard deviation of throat radius, σ0,t = 5 µm: (a) R̄t = 50 µm, (b) R̄t =
150 µm, (c) R̄t = 250 µm .

The peaks of relative interface area occur for all three networks, and irrespectively of the
stage of the drying process, almost at the same saturation.

Additionally, turning point saturation (ST ) is achieved at the moment when the liquid
flow rate contributes 50% to the total flow rate. According to the simulation results
presented in Fig. 9.4, equality in the contributions of the liquid phase and the vapor phase
is reached almost at the same saturation for the networks with different mean throat radius.
A reason for this behavior might be that the capillary effect is unaltered with expanding
the mean throat radius while keeping the same standard deviation. Assuming the same
liquid viscosity, the difference in capillary pressure, as the driving force, is controlled by
the discrepancy between two active menisci,

∆Pc = 2σ
( 1
R1
− 1
R2

)
= 2σ (R2 −R1)

R1R2
. (9.2)

Here, R1 and R2 denote the radii of two active menisci, respectively. This means that the
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Figure 9.2: Moisture transport coefficient profiles obtained from the pore network drying
simulations for three different values of the mean throat radius R̄t = 50 µm (a,
b), R̄t = 150 µm (c, d) and R̄t = 250 µm (e, f). The values are averaged over
ten realizations for local saturation S intervals.

driving force is not a function of the mean throat radius. Therefore, the similar values
of Sas,max and ST demonstrate that the three regions that can be distinguished in regard
of moisture transport, namely liquid transport dominated region (LTDR), two-phase
transport region (TPTR) and vapor transport dominated region (VTDR), compare with
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Chapter 6, are not shifted.

(a) (b) 

(c) 

Figure 9.3: The relative interfacial area as a function of local saturation, obtained from
PNM simulations for network saturations from (a) 1 to 0.7, (b) 0.7 to 0.4 and
(c) 0.4 to 0. The values are averaged over ten realizations for intervals of local
saturation S.

The relative humidity of the two-phase region has also been determined (Fig. 9.5). The
non-local equilibrium effect (NLE) is increased by reducing the mean throat radius. This
could be due to stronger resistance for the liquid transport that results in a more uniform
drying front, preventing either air invasion or liquid transport from the bottom of the
porous medium to the front, which may strengthen the unevenness of the vapor pressure
distribution in the two-phase region. This explanation can be proved by profiles of the
relative surface area of the liquid phase (Fig. 9.3). The relative interfacial area is, indeed,
increased with increasing the mean throat radius. In other words, the vapor pressure is
more easily held at high values when the porous medium contains more interfacial area.
The surface relative humidity of the three networks is shown in Fig. 9.6. The surface

NLE is very distinct for the network with a smaller value of mean throat radius. Substantial
flow resistance preventing the transport of liquid leads to shrinkage of wet surface area
appearing at very early stage of the drying process, which causes the sharp decrease in
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surface relative humidity. Such behavior of the relative humidity appears to be similar to
a desorption isotherm, but has nothing to do with solid-moisture interactions.

(-)

(-)

Figure 9.4: The ratio of the liquid flux over the total flux during drying of different
pore networks obtained in different intervals of network saturation Snet. The
networks had mean throat radii of 50 µm, 150 µm and 250 µm. The values
have been averaged over ten realizations for small intervals of local saturation
S.

9.2 Influence of the standard deviation of throat radius

Equation 9.2 indicates that the difference in capillary pressure is affected by the discrepancy
between the radii of hydraulically connected pairs of active menisci. Thus, the value of
the standard deviation of throat radius is expected to shift the values of Sas,max and ST .
Figure 9.7 shows the moisture transport coefficient profiles from drying simulations of
three networks with different values of the standard deviation of throat radius, σ0,t = 5 µm,
25 µm and 50 µm, but with the same mean throat radius, R̄t = 250 µm (Table 9.2). The
porosity of the network, on the other hand, is not changed in those three geometry settings.
As the porosity remains the same, resistance in those networks can coarsely be considered
the same, leading to a similar range in the magnitude of identified moisture transport
coefficients (Fig. 9.7). However, the three transport regions mentioned in Chapter 6 are
altered. Thus, we explore the profiles of the relative interface area of the liquid phase (Fig.
9.8) and relative liquid flow rate (Fig. 9.9), for better visualization.
Sas,max is reached when the surface area of the liquid phase is maximum. Figure 9.8b

shows that Sas,max moves to lower values with increasing standard deviation of radii. This

129



(a) (b) 

(c) 

Figure 9.5: Internal NLE functions obtained from PNM drying simulations (ten realizations
each) for different mean throat radii of 50 µm (a), 150 µm (b) and 250 µm (c).

means that the liquid transport dominated region is expanded. This is also correlated
with Fig. 9.9, which shows that the period with full contribution from the liquid phase is
extended in the network with large value of standard deviation. One reason probably is
the enhanced driving force by larger discrepancy in the capillary pressure.
Figure 9.9 can also be used to read the alteration of the turning point ST , i.e. the

saturation when the liquid flow rate over the total flow rate is 0.5. It can be seen that the
turning point ST also moves to lower saturation with wider throat size distribution. The
shifted ST means that the vapor transport dominated region becomes smaller. It can be
seen from Fig. 9.9 that ST is not even reached for the networks with a standard deviation
of σ0,t = 25 µm and 50 µm when Snet = 1.0− 0.7.

Vapor-dominated moisture transport is related to the relative humidity in the two-phase
region (Fig. 9.10). A large slope of the relative humidity is the driving force for high vapor
transport. Although the maximum deviation of the vapor pressure from the saturated
vapor pressure is similar in all three networks, Sas,max moves to lower saturation for wider
standard deviation (Figs. 9.8 and 9.9), suggesting that the NLE effect first appears for
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Table 9.2: Characteristics of pore structures used for drying simulations.
Parameters
Network size 25 × 25 × 51 25 × 25 × 51 25 × 25 × 51
Boundary layer size 25 × 25 × 10 25 × 25 × 10 25 × 25 × 10
Mean throat radius (µm) 250 250 250
Mean pore radius (µm) 256 283 317
Standard deviation of throat radius (µm) 5 25 50
Center distance between two pores (mm) 1.0 1.0 1.0
Liquid volume (m3) 1.11× 10−5 1.10× 10−5 1.19× 10−5

Network porosity 0.357 0.353 0.358

Figure 9.6: Mean value of surface NLE (ϕsurf) obtained from PNM drying simulations
as a function of surface saturation (Ssurf) for networks with different mean
throat radius.

the network with narrower pore size distribution.
Figure 9.10 also shows that the NLE effect in the two-phase region is reduced with

decreasing network saturation in all three networks, though with different rate. For
example, the minimum value of relative humidity is reached at the very beginning of the
drying process (Snet = 0.9− 0.8) for the network with σ0,t = 5 µm. In contrast, for the
network with σ0,t = 50 µm this minimum value occurs when the network saturation is
in the range of 0.6− 0.5. Interestingly, the slope of the profiles that give the maximum
deviation of the average partial vapor pressure from the saturated vapor pressure, i.e. the
strongest NLE effect, demonstrates the largest gradient of vapor pressure in the two-phase
region, implying the highest driving force for the vapor transport. This gradient becomes
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(a) (b)

(c)

(e)

(d)

(f)

Figure 9.7: Moisture transport coefficient profiles obtained from PNM drying simulations
(ten drying simulations each) for different standard deviations of the radii of
throats: σ0,t = 5 µm (a, b), σ0,t = 25 µm (c, d) and σ0,t = 50 µm (e, f).

however flatter in the two-phase region during the later stages of the drying process. Vapor
transport with the largest gradient lasts longer for the network with the widest distribution
of throat radii. This finding indicates that the vapor transport in the two-phase region
becomes more important in the networks with wider pore size distribution.
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(a) (b) 

(c) 

Figure 9.8: Relative interfacial area between liquid and gas as a function of local saturation
obtained for networks with different values of standard deviation of throat
radii. The three figures represent the drying process when network saturation
is between (a) 1 and 0.7, (b) 0.7 and 0.4 and (c) 0.4 and 0. The values have
been averaged over ten realizations for small intervals of local saturation S.

However, the surface NLE does not appear to significantly depend on the standard
deviation of radii. The three networks with different values of standard deviation show
similar profiles of the relative humidity in Fig. 9.11. A reason for this might be that the
overall liquid transport is not influenced by the alteration of the standard deviation. The
surface behavior is the result of interactions among many factors, i.e. capillary pressure,
liquid viscosity, etc.

9.3 Bimodal pore size distribution

A pore structure with bimodal size distribution is generated as follows. Five macro-channels
are placed vertically in perpendicular direction to the network surface in each column of
the network. There, micro-channels are replaced. Otherwise, micro-channels constitute
the throats and pores of the network, similarly as before. Radii of micro-channels (narrow
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(a) (b) 

(c) 

Figure 9.9: The ratio of liquid flux over total flux during drying for networks with different
values of standard deviation of radii (values averaged over ten realizations):
(a) Snet = 1.0− 0.7, (b) Snet = 0.7− 0.4 and (c) Snet = 0.4− 0.

throats and pores) are sampled from a distribution with 200 ± 25 µm (Table 9.3). For
macro-channels (wide throats and pores) a distribution with 350 ± 25 µm is used. It
should be noted that the radius of pore is assumed to be larger than or equal to the radii
of neighbor throats. This shifts the values of pore mean radius and standard deviation
(Fig. 9.12). Other parameters of the PNM are the same as before. The moisture transport
coefficient profiles obtained for the bimodal network are shown in Fig. 9.13.

Table 9.3: Characteristics of pore structures used for drying simulations.
Parameters
Mean throat radius (µm) 200 350
Mean pore radius (µm) 233 361
Standard deviation of throat radius (µm) 25 25
Center distance between two pores (mm) 1.0 1.0
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(a) (b)

(c)

Figure 9.10: Internal NLE functions obtained from PNM drying simulations (ten realiza-
tions each) for networks with different standard deviations of throat radii: (a)
σ0,t = 5 µm, (b) σ0,t = 25 µm and (c) σ0,t = 50 µm.

Figure 9.13 demonstrates that the LTDR prevails during almost the entire drying process,
and the VTDR only appears after network saturations smaller than 0.4. Additionally,
relative liquid surface area shows that Sas,max is reached when the network saturation is
around 0.4 (Fig. 9.14a), as well as ST appears after Snet = 0.4 (Fig. 9.14b). Such behavior
can be explained by the fact that the vertical macro-channels enhance the discrepancy
of capillary pressure, which is considered as the major mechanism for liquid transport.
The introduced vertical macro-channels control the movement of liquid: The liquid in
macro-channels is first drained completely, then followed by draining of the micro-channels
(Metzger and Tsotsas, 2008). This type of invasion sustains the liquid transport dominated
region over an extended period. Thus, Sas,max and ST appear very late during the drying
process.
The moisture transport coefficient of the bimodal network in the VTDR is similar to

profiles for the monomodal networks (Fig. 9.7). It seems that introduced macro-channels
play little role in vapor transport. In the receding drying period, phase transition happens
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Figure 9.11: Surface NLE functions obtained from PNM drying simulations for networks
with different width of the throat radius distribution.

in the micro-channels, which is the same situation as for the monomodal distribution of
radii. However, the NLE effect is less pronounced for the bimodal network structure (Fig.
9.15). Corresponding to the above analysis, the NLE effect only appears when the network
saturation becomes smaller than 0.6. This means prior to this instant, the vapor pressure
in the two-phase region is at saturation pressure.
The surface NLE of the bimodal network is compared with the monomodal network

in Fig. 9.16. The monomodal network generated with a mean throat radius of R̄t = 250
µm and standard deviation of σ0,t = 25 µm was taken as a reference. The presence of
macro-channels does not influence dramatically the surface relative humidity. A similar
profile of relative humidity is observed in the case when the local saturation is larger than
0.6. Afterward, the relative humidity of the bimodal network becomes lower than the
reference case. A reason might be that the reference case is set with mean throat radius R̄t

= 250 µm, but the micro-channels of the bimodal network have a mean throat radius of
merely R̄t = 200 µm. Such behavior is matched with the case of monomodal distributions
having different mean throat radius (Fig. 9.6).
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Figure 9.12: Distributions of throat radius (blue) and pore radius (black) from which
bimodal networks with macro-channels (wide throats and pores), 350 ± 25
µm, and micro-channels (narrow throats and pores), 200 ± 25 µm, have been
generated.

Figure 9.13: Moisture transport coefficient profiles obtained from PNM drying simulations
conducted with the bimodal network (ten realizations).
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(a) 

(b) 

Figure 9.14: Relative interfacial area between liquid and gas (a) and the ratio of liquid
flux over total flux during drying (b) obtained from PNM drying simulations
with the bimodal PSD (the values are averaged over ten realizations for small
intervals of local saturation S).
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Figure 9.15: The vapor pressure-saturation relationships obtained for pore structures with
bimodal network. The values are averaged over ten realizations for local
saturation S intervals.

Figure 9.16: Surface NLE of the bimodal network, compared with the reference case of
monomodal network (R̄t = 250 ± 25 µm).

139



Chapter 10

Parameters in the Brooks and Corey
capillary pressure model
Part of this chapter is taken from “Lu, X.; Kharaghani, A.; Adloo, H.; Tsotsas, E. The
Brooks and Corey capillary pressure model revisited from pore network simulations of
capillarity-controlled invasion percolation process. Processes 2020, 8, 1318”.

In the previous chapters, liquid viscosity was seen as one of the major factors in liquid
transport. Here, however, we return to the more fundamental principle of a capillary-
controlled invasion percolation (IP). By applying the throat and pore network model,
we examine the macroscopic properties as functions of matrix saturation and network
structure. We directly obtain the relationship of capillary pressure with effective saturation
from the pore network simulations. The pore network model (PNM) in this chapter is
quite different from the algorithm presented in Chapter 2. The present PNM is static.
This means the fluid configuration is only dependent on capillary pressure. Based on
PNM results, we identify parameters in the Brooks and Corey capillary pressure model
(wetting phase residual saturation, entry pressure, size distribution index) and revisit their
association with microstructure.

10.1 Model description

One major task in this chapter is to generate networks with different pore structure. As
geometry parameters we vary the mean throat radius R̄t, the mean pore radius R̄p, the
mean radius of network R̄, the mean throat length L̄t, the standard deviation of network
σ0 and the pore connectivity Z. The network size is 25 × 25 × 25. The standard case is
constructed on a regular three-dimensional grid of spherical pores connected by cylindrical
throats. Next, we describe the IP algorithm. Finally, we present results obtained from IP
simulations.
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10.1.1 Network structure

The radii of throats and pores are sampled from a normal distribution with given mean
radius and standard deviation but ensuring that the pore radii are larger than the neighbor
throat radii (same as before). This shifts the mean radius of the pores. Two examples
are given for radii distributions of throats and pores for networks with R̄t = 250 µm and
σ0,t = 5 µm in Fig. 10.1a and R̄t = 250 µm and σ0,t = 50 µm in Fig. 10.1b.

(a) (b)

Figure 10.1: Distributions of pore radius and throat radius with mean throat radius 250
µm and standard deviation of throat radii 5 µm (a) and mean throat radius
250 µm and standard deviation of throat radii 50 µm (b).

The network geometry parameters, R̄t, R̄p, R̄, L̄t and σ0, are determined as follows: The
mean throat radius R̄t and the mean pore radius R̄p are calculated by taking the averages
of generated throat radius and pore radius distributions, respectively. The mean radius of
the network R̄ is calculated by summing up of all pore radii (Rp,i) and throat radii (Rt,ij)
in the network then divided to the total numbers of throats (Nt) and pores (Np):

R̄ =

Np∑
i=1

Rp,i +
Nt∑
ij=1

Rt,ij

Np +Nt

. (10.1)

The standard deviation of the network σ0 is calculated as

σ0 =

√√√√√ 1
Nt +Np − 1

Np∑
i=1

(
Rp,i − R̄

)2
+

Nt∑
ij=1

(
Rt,ij − R̄

)2
. (10.2)

In this chapter, we generate networks with pore structures presented in Tables 10.1, 10.2,
10.3 and 10.4. The center distance between two pores in the network is constant, h = 1000
µm. The throat length is calculated same as before, Lt,ij = h−Ri −Rj . The mean throat
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length L̄t is determined by averaging over the length of all throats in the network,

L̄t =

Nt∑
ij=1

Lt,ij

Nt

. (10.3)

The network geometry parameters with connectivity Z = 6 are listed in Table 10.1.
Moreover, we alter the connectivity of the pores in the network, Z = 3, 4, 5, 6 and

8. The networks with connectivity from 3 to 6 are generated from cubic networks where
one pore is connected with 6 pores. The standard case is Z = 6. For example, to change
the connectivity of the network from 6 to 3, we remove 3 throats attached to one pore.
Then, we update the data structures for throats and pores (see Chapter 2). Finally, we
construct the network with Z = 3. A similar method is used to construct the networks
with Z = 4, 5. It should be noted that the surface of the network only contains vertical
throats (see Chapter 2). To sustain the liquid connectivity in the network, the pores under
the network surface must contain vertical throats. However, the network with Z = 8 is
built on an octahedral grid, in which one pore connects with 8 pores. The center distance
between two pores is, again, assumed as 1000 µm. In this network each surface pore is
connected with 4 throats. The geometry parameters of networks generated with different
connectivity are listed in Table 10.2.

Table 10.1: Geometry parameters of the networks generated with connectivity Z = 6.
R̄t

(µm)
R̄p

(µm)
σ0

(µm)
σ0/R̄

(µm/µm)
L̄t

(µm)
R̄p/L̄t

(µm/µm)
input output output input output input output output output

case 1 10 10 11.3 1 1 1/10 1/10 977 0.01
case 2 10 10 12.6 2 2 2/10 2/10 975 0.01
case 3 10 10 16.7 5 5.2 5/10 5.2/11.8 966 0.02
case 4 10 11.6 23 10 9.1 10/10 9.1/14.6 953 0.02
case 5 100 100 113 10 10 10/100 10/100 773 0.15
case 6 200 200 226 20 22 20/200 22/207 550 0.41
case 7 250 250 256 5 5 5/250 5/251 488 0.52
case 8 250 250 283 25 27 25/250 27/259 432 0.66
case 9 250 250 317 50 55 50/250 55/267 365 0.87

10.1.2 Static PNM algorithm

It is assumed that all throats and pores are initially filled with free capillary water. A
gas reservoir is located at the top of the network (inlet). At the bottom, the network
is connected to a water reservoir (outlet) (Fig. 10.2 as one example). Air invades from
the top of the network according to an IP algorithm. Periodic boundary conditions are
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Table 10.2: Geometry parameters of networks generated with different connectivity Z with
identical value of mean throat radius, R̄t = 250 µm.
Z

(-)
R̄p

(µm)
σ0

(µm)
σ0/R̄

(µm/µm)
ε

(-)
L̄t

(µm)
R̄p/L̄t

(µm/µm)
input output input output input output output output output

case 10 3 275 25 25 25/250 25/260 0.227 447 0.62
case 11 4 277 25 26 25/250 26/259 0.268 442 0.63
case 12 5 280 25 27 25/250 27/259 0.312 437 0.64
case 13 6 283 25 27 25/250 27/259 0.353 432 0.66
case 14 8 287 25 28 25/250 28/258 0.437 426 0.67

applied to the lateral faces of the network. The effects of gravity and liquid viscosity are
neglected. Thus, capillary forces completely control the fluid configurations.

Figure 10.2: Schematic of the pore network used for capillary-controlled IP simulations.
The pore network is connected to air reservoir at the top and liquid reservoir
at the bottom. Throats/pores filled with liquid are shown in black, whereas
gas throats/pores are shown in white.

Network representation by the throat-pore model means that the invasion process
happens at menisci throats and pores. Only the invasion process at throats is however
considered in the throat-node model, usually assuming perfect wetting condition (contact
angle θ of 0°) (Cieplak and Robbins, 1990; Prat, 1993; Metzger et al., 2007a). The
liquid transition between pore and throat is neglected. Once a throat meniscus reaches
the entrance of a pore, a fully developed meniscus forms in the pore. This is because
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Tsakiroglou and Payatakes (1991) illustrated that mercury menisci could reach equilibrium
not only at the entrance to a throat but also at the entrance to the pore. Here, we assumed
that the pore radius is larger (or equal) than the radii of the neighbor throats, leading to
smaller capillary pressure required for the air to invade into the pore.
The capillary-controlled IP algorithm implemented here follows the original invasion

percolation procedure proposed by Wilkinson and Willemsen (1983):

1. Initially, all the pores and throats are completely filled with water. Neglecting
pressure difference due to liquid head, the liquid pressure in the network and the
liquid reservoir are set to zero for simplicity, without affecting the final capillary-
pressure relationship. The air pressure necessary for any of the interior throats to be
displaced with air is computed. We use Young-Laplace equation to find the pressure
difference between air and water necessary for a meniscus to penetrate the throat:

Pc = Pg − Pl = 2σcosθ
r

, (10.4)

where Pc is the capillary pressure, Pg is the gas pressure and Pl denotes the liquid
pressure. Without considering the liquid pressure (Pl = 0), the capillary pressure is
equal to the gas pressure.

The pores at the interface between the air reservoir and the network do not contain
liquid (Fig. 10.2). Thus, the network, initially, has a meniscus in a throat with radius
equal to the radius of that throat (θ = 0◦). Once a single throat gets unfilled of water,
a meniscus pore is formed. The radius of the meniscus in the pore is considered as
the radius of this pore due to the assumed pore body shape. Therefore, if a throat
is unfilled of water, the adjacent downstream pore is also emptied completely at the
same time, creating new menisci at the other throat entrances (filled with water)
attached to that pore body. Accordingly, the water phase in the attached throats
becomes disintegrated at that pore.

2. For the menisci which have been formed in the previous step, the capillary threshold
is calculated by Eq. 10.4. The meniscus throats with the smallest capillary thresholds
are detected.

3. The air pressure is increased to the smallest capillary threshold calculated in step 2
(called entry pressure Pe) to invade accessible throats with that threshold and create
meniscus throats.

4. Once a meniscus pore is invaded, it forms the active capillary thresholds at neighbor
throats which still contain liquid. When a meniscus throat is invaded, it forms a new
active meniscus pore. Hence, the newly formed menisci (meniscus throats/pores)
are identified, along with calculating their capillary threshold pressures.
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5. The network saturation is calculated by integrating over all residual liquid volume in
the network and dividing it by the total void space volume. The smallest capillary
threshold pressure is then assigned to the gas pressure. This is one data point in the
capillary pressure-saturation curve.

6. Due to the random radius distribution of throats/pores, the initially backbone
liquid cluster may be divided into several liquid clusters (may be isolated from the
bottom reservoir). We account for the number of liquid clusters by a variant of
the Hoshen-Kopelman algorithm (Metzger et al., 2006). The invasion percolation
happens simultaneously in each cluster which is still connected to the liquid reservoir
according to step 3. If the invading pressure is greater than the capillary threshold
of any of them, they are also invaded.

7. This algorithm is repeated from step 2 to 6 until the clusters get isolated from the
liquid reservoir which is connected to the network bottom. This means all the pores
at the bottom layer are unfilled of water. The remaining liquid in the network is
considered as the irreducible saturation

Monte Carlo method with 40 realizations is used to reduce the uncertainty of the reported
parameters.

10.2 Wetting phase residual saturation

The wetting phase residual saturation shares the physical characteristics of mercury
entrapment, which indicate that the mercury entrapment varies with the width of the pore
size distribution as well as with the connectivity of the network (Portsmouth and Gladden,
1991). With this background, we performed IP simulations with different values of the
mean radius of the network, with various widths of the pore size distribution as well as
different averaged connectivity of pores (Table 10.1). Figure 10.3 shows the wetting phase
residual saturation as function of structural characteristics of the pore network undergoing
the capillary-controlled invasion percolation (IP) process.

A similar level of Sirr is observed in Fig. 10.3a for the networks with an identical value
of σ0/R̄ = 0.1 (µm) (cases 1 and 5 in Table 10.1). The mean throat radius of the network
in case 5, R̄ = 100 µm, is larger than that in case 1, R̄ = 10 µm. This may infer that Sirr
is independent of the pore size. By contrast, different morphologies at σ0/R̄ ≈ 0.1 (cases
1, 5, 6 and 8) show that Sirr decreases with increase in the ratio of R̄p/L̄t (Fig. 10.3a); the
ratio R̄p/L̄t indicates the role of spherical pore volume in the capillary invasion process,
corresponding to the ratio of the spherical pore volume over the volume of the cylindrical
throat:

Vp
Vt

=
2R3

p

3R2
tLt
∝ Rp

Lt
as Rp = Rt. (10.5)
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Figure 10.3: (a) Residual saturation as a function of ratio of the standard deviation to
the mean radius of the network (σ0/R̄). Data denoted by (‘ ’) have been
obtained for the networks with σ0/R̄ = 1/10 (µm) (case 1), 2/10 (µm) (case
2), 5.2/11.8 (µm) (case 3) and 9.1/14.6 (µm) (case 4). Other data have been
recorded ‘ ’ with σ0/R̄ = 10/100 (µm) (case 5), ‘ ’ with σ0/R̄ = 22/207
(µm) (case 6) and ‘ ’ with σ0/R̄ = 5/251 (µm) (case 7), 27/259 (µm) (case
8), 55/267 (µm) (case 9). The center distance between two pores was h =
1000 µm. R̄p is the mean radius of pores in the network, and L̄t is the mean
throat length. The connectivity (Z) was 6; Parameters for cases 1 − 9 are
listed in Table 10.1. (b) Residual saturation as a function of connectivity
(cases 10 − 14 in Table 10.2). The simulation values are averaged over 40
realizations.
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Figure 10.3 shows that Sirr decreases with increasing σ0/R̄. This result is contradictory
with the results obtained by Portsmouth and Gladden (1991), who reported that mercury
entrapment increases when expanding the standard deviation of network. One should keep
in mind that Sirr in the current work corresponds to that of a drying process that takes
place under capillary-controlled IP. When gas invades the network, the liquid phase splits
up into several regions with different sizes, the so-called liquid clusters that consist of at
least one nonempty throat connected to one nonempty pore, or even forms single liquid
throats/pores surrounded by air, namely single menisci. The isolated clusters and single
menisci, which are separated from the bottom reservoir, cannot be drained to the bottom
reservoir by invasion percolation. The remaining liquid in these isolated clusters and single
menisci could be removed by evaporation when a vapor pressure gradient is present in
the porous medium. However, in the capillary-controlled period of drying, the porous
medium is all saturated with vapor, which leads to the liquid in isolated clusters and
single menisci being trapped in the porous medium. Thus, the isolated menisci clusters
and single menisci are not of interest in current work.
Figure 10.4 depicts the volume distributions of liquid-filled throats and pores in a

network at the initial stage (S = 1) and at the final stage (S = Sirr) with different
R̄p/L̄t. At R̄p/L̄t = 0.01, the pores contain a very small amount of liquid that can be
neglected when compared with liquid stored in the throats (Fig. 10.4a). The spherical pore
volume contribution increases with increasing pore radius (from Fig. 10.4a to 10.4d). By
comparing the liquid-filled volumes before and after the invasion, the fraction of invaded
pores is seen to be larger than that of invaded throats. This could demonstrate that
the pores play a significant role when they store a large fraction of liquid volume in the
porous medium. The effect of throat length has been reported by Sok et al. (2002) based
on stochastically generated networks with coordination number Z = 4 specified from
Fontainebleau sandstone sample, showing that increasing the throat length leads to a
contrary effect on the residual saturation.
Comparing the liquid before and after invasion in Fig. 10.4, it can be seen that the

majority of remaining liquid is trapped in throats with radii smaller than the mean radius.
The mercury extrusion algorithm is different from the IP algorithm that can partially
describe the drying process since the trapped mercury could be reshaped by refilling
the neighboring throats/pores, meeting the demands of the Laplace/Washburn equation
(Portsmouth and Gladden, 1991). Trapped mercury in the porous medium could express
the shielding effect, being surrounded by the smallest throats in the network. The pore
radius is assumed larger than the radius of neighbor throats, so that the pore could
be trapped by the smaller throats. Therefore, the probability of mercury entrapment
is enhanced by expanding the size distribution. This might explain why values of Sirr
simulated for the capillary-controlled IP are contradictory with observations on the mercury
entrapment from porosimetry. Regarding drying, Lai et al. (2018) tested the irreducible
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(a) (b) 

(c) (d) 

Figure 10.4: The volume distribution of liquid-filled throats and pores in the network at
the beginning of the capillary-controlled IP process and at Sirr for a single
simulation: (a) case 1, (b) case 5, (c) case 6, (d) case 8 in Table 10.1. The
network connectivity is 6.

saturation for six rock samples, showing that it decreases with increasing spread of size
distribution. Their observation validates indirectly our pore network simulations.
The wetting phase residual saturation shows a positive linear correlation with the

averaged pore connectivity in the network (Fig. 10.3b). The pore connectivity affects
the porosity of the network, as the porosity increases when plugging more throats onto
a pore, which means that the void space increases during this procedure (Table 10.2).
Thus, normalized wetting phase residual saturation is proposed as the ratio of the wetting
phase residual saturation on the unity of the porous porosity (Sirr/ε) and its correlation
with connectivity is shown in Fig 10.5. Figure 10.5 shows that the normalized wetting
phase residual saturation decreases with connectivity, which agrees with experimental
observations by Ojha et al. (2018). Increasing pore connectivity provides more pathways
for the liquid to be expelled from the network. With increased pore connectivity, more
throat menisci are formed in the network once one liquid pore has completely been invaded.
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As a result, it enhances the IP in that more throat menisci provide more options for air
invasion. Such observations can be supported by the percolation theory (see, e.g., Hunt,
2005; Stauffer and Aharony, 2018).

Figure 10.5: The function Sirr/ε against pore connectivity according to the case 10 to case
14 in Table 10.2. Simulated values have been averaged over 40 realizations.

The residual saturation reported in the current work might be questioned for higher
values than those reported by Sok et al. (2002). This discrepancy can partly be due
to the fact that the present work does not account for the film effect. In fact, liquid
films play a crucial role in the wetting phase residual saturation, because they reduce
the resistance for liquid transport and thereby enhance the liquid hydraulic connectivity
(Prat, 2002). Another reason might be that the spread of size distributions in the present
network simulations is smaller than in real porous media. Sok et al. (2002) reported a pore
volume range from 1× 10−5 mm3 to 1× 10−2 mm3 based on the structure of Fontainebleau
sandstone. The enlarged σ0/R̄ of network radii could decrease the irreducible saturation
(see Fig. 10.3a).

10.3 Entry pressure

Figure 10.6 shows the relation of entry pressure Pe and mean capillary pressure Pc,mean
with the porous medium properties. The entry pressure is computed using the algorithm
described in Sec. 10.1. The mean capillary pressure is calculated by the Young-Laplace
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equation (Eq. 1.3) with the mean radius of network, R̄. Here, the mean capillary pressure
Pc,mean is a reference capillary pressure.
The networks in Fig. 10.6a are generated for a constant standard deviation of the

network (σ0 = 5 µm) and six different mean values of the network (Table 10.3). As can be
seen, Pe is close to Pc,mean when the ratio 1/R̄ is small. A small value of σ0/R̄ means that
the standard deviation has a weak impact on the radius distribution so that the network
can be viewed as morphologically uniform. Figure 10.6b clearly indicates that the entry
pressure decreases with increasing the standard deviation (for geometry parameters see
Table 10.4). Networks with a wider distribution are easier to be invaded by the air since
the probability of having a larger meniscus at the interface is higher. Figure 10.6c shows
that the entry pressure is not related to the connectivity for network coordination numbers
smaller than 6 (geometry parameters are given in Table 10.2). The entry pressure increases
with connectivity slightly up to Z = 6, but decreases drastically at Z = 8. As presented
earlier in this chapter, the network structure is completely altered from cubic (Z = 3 to 6)
to octahedral (Z = 8). For the cubic based networks (Z = 3 to 6), the vertical surface
throats are not altered and surface pores are connected with only one throat. However,
three throats are connected with each surface pore for the octahedral network. As a result,
the air invades more easily into the octahedral network, leading to a lower value of entry
pressure. As a final remark in this section one can note that the mean capillary pressure
varies linearly with the ratio 1/R̄ but it remains almost constant for various values of σ0

and Z.

Table 10.3: Geometry parameters of the networks generated with Z = 6 and σ0 = 5 µm.
R̄t

(µm)
R̄p

(µm)
σ0/R̄

(µm/µm)
L̄t

(µm)
R̄p/L̄t

(µm/µm)
input output output input output output output

case 15 50 50 57 5/50 5/51 886 0.06
case 16 100 100 107 5/100 5/101 786 0.14
case 17 150 150 156 5/150 5/151 688 0.23
case 18 200 200 207 5/200 5/201 586 0.35
case 19 250 250 256 5/250 5/251 488 0.52
case 20 300 300 307 5/300 5/301 386 0.80

10.4 Capillary pressure-effective saturation

Figures 10.7 and 10.8 show the variations of capillary pressure-effective saturation at
various morphologies, obtained from the pore network modeling (Sec. 10.1). The effective
saturation (Se) is determined according to Eq. 1.15 using Sirr from Sec. 10.2. Three
microstructural parameters of the network are discussed: (1) mean radius of network (R̄)
(Fig. 10.7), (2) standard deviation of network (σ0) (Fig. 10.8), (3) pore connectivity (Z)
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Table 10.4: Geometry parameters of the networks generated with Z = 6 and with R̄t =
250 µm.

R̄p

(µm)
σ0

(µm)
σ0/R̄

(µm/µm)
L̄t

(µm)
R̄p/L̄t

(µm/µm)
output input output input output output output

case 21 256 5 5 5/250 5/251 486 0.35
case 22 270 15 16 15/250 16/255 460 0.59
case 23 283 25 27 25/250 27/259 432 0.66
case 24 297 35 38 35/250 25/262 405 0.73
case 25 310 45 49 45/250 49/266 380 0.82

Figure 10.6: Relationship of entry pressure (Pe) and mean capillary pressure (Pc,mean) with
specific properties of the porous medium: (a) Influence of mean radius of
network (R̄) with identical standard deviation (5 µm) and a connectivity of 6
(case 10 to case 20 in Table 10.3); (b) influence of standard deviation with
constant mean radius of network (250 µm) and a connectivity of 6 (case 21
to case 25 in Table 10.4); (c) influence of connectivity (case 10 to case 14 in
Table 10.2). Simulation results have been averaged over 40 realizations.
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(Fig. 10.8). They all affect the capillary-saturation profile of a porous medium in the
capillary-controlled IP.

As can be seen in Fig. 10.7, the capillary pressure strongly depends on the mean radius
of network. With increasing mean radius the value of capillary pressure decreases. This
behavior is expected as the capillary pressure is inversely proportional to the mean radius
according to the Young-Laplace equation (Eq. 1.3). The overall behavior of the capillary
pressure-effective saturation profiles obtained in Fig. 10.7 agrees with the experimental
measurements by Hilpert and Miller (2001) and simulation observations by Sweijen et al.
(2017).

The role of the two other structural parameters in the behavior of capillary pressure-
saturation is presented in Figure 10.8. As shown, the capillary pressure is almost stable
against the effective saturation for the network with a narrow pore size distribution (10.8a).
This might have the reason that narrow pore size distribution confines the radii in a
small range. It can also be seen that the capillary pressure decreases with increasing the
standard deviation. Figure 10.8b shows that the entry pressure (the minimum value of
dPc/dSe when Se = 1) is almost the same for the networks with connectivity from 3 to
6. The capillary pressure decreases with increasing pore connectivity. The reason is that
a pore connected with more throats offers more selections for air invasion, allowing the
capillary pressure to decline.

10.5 Pore size distribution index

As we could obtain the capillary pressure-saturation profile, the irreducible saturation,
and the entry pressure from the pore network simulations, we can evaluate the pore size
distribution (λ) index (for definition of λ, see Chapter 1) by revisiting the Brooks and
Corey capillary pressure model (Eq. 1.14).
Figure 10.9 shows that this evaluation results in a nonlinear profile rather than in a

specific value. This infers that the pore size distribution index λ depends on the progress
of the process (or the effective saturation). Now, it might be questioned whether the
profile has a physical meaning. To address this question, first it should be noted that the
pore size distribution index λ is a fitting parameter in the Brooks and Corey capillary
pressure model. A specific value of this parameter is classically determined by fitting
to experimental data of capillary pressure for minimal statistical deviation. Brooks and
Corey used this value to express the heterogeneity of a porous medium. However, the
primary factor in controlling the capillary pressure is menisci radii distribution. The
distribution of the radii of the menisci in throats and pores becomes narrower during, for
example, a drying process that follows invasion percolation rules. Additionally, the Brooks
and Corey model correlates the capillary pressure with effective saturation. Effective
saturation should though be understood as that saturation which is controlled by the
capillary pressure. In other words, effective saturation in the current work should only
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Figure 10.7: Influence of the mean radius of network (R̄) on capillary pressure profile Pc
with effective saturation (Se): (a) σ0/R̄ = 5/51 (µm) (case 15), (b) σ0/R̄ =
5/151 (µm) (case 17) and (c) σ0/R̄ = 5/251 (µm) (case 19). The network
connectivity is 6. The simulation values are averaged over 40 realizations.

indicate saturation in the major clusters which are connected with the bottom reservoir.
The isolated clusters and the single menisci should thus not be included in the Brooks and
Corey capillary pressure model. However, the smallest radius among throats and pores
tends to be located in isolated clusters and single menisci (Fig. 10.4). This means that
the pore size distribution index of the entire network might not be a reasonable quantity
for correlating the effective saturation with the capillary pressure.
Since the capillary pressure relies on the radii of menisci which are still active at a

certain effective saturation, an index that would represent the distribution of such menisci
would be more accurate for the Brooks and Corey capillary pressure model. Figure 10.10
is one example of the spread of the meniscus size distribution (the normalized spread of
the meniscus size distribution) during the invasion process. At the initial moment, the
standard deviation of menisci equals the standard deviation as assumed for the whole
network. The standard deviation of the menisci drops dramatically as the large throats
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Figure 10.8: The capillary pressure profile Pc with effective saturation Se, influenced by
(a) the ratio σ0/R̄ at constant pore connectivity (Z = 6) (cases 7, 8 and 9 in
Table 10.1) and (b) the pore connectivity (cases 10 to 14 in Table 10.2). The
simulation values are averaged over 40 realizations.

are easily invaded, which corresponds to the strong rise of the capillary pressure in the
high saturation range (Se ∼ 1). Then, the menisci size distribution becomes gradually
narrower with decreasing effective saturation along the invasion process. Finally, a sharp
decline in the spread of the meniscus size distribution is observed when the effective
saturation approaches zero (Se ∼ 0). Kewen (2004) found that the pore size distribution
index increases with the decline in the fractal dimension (the heterogeneity) of the network.
Figure 10.9 shows that the index is close to zero in the high saturation range, where the
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Figure 10.9: The exponent λ related with (a) case 15, case 5 and case 8 & (b) case 15,
case 17 and case 19 the ratio of standard deviation over the mean radius
of network σ0/R̄ with pore connectivity Z = 6 (see Tables 10.1 and 10.3),
and (c) pore connectivity (case 10 to case 14 in Table 10.2). The values are
averaged over 40 realizations.

heterogeneity of the menisci is maximum. With ongoing invasion, the distribution of
menisci becomes narrower, leading to a decline of the heterogeneity of the menisci. Thus,
the index increases slowly during this period. The menisci radii are almost the same when
Se ∼ 0, meaning that the heterogeneity of the menisci is then minimum. Figure 10.9 also
demonstrates the index to soar at the lower limit of effective saturation. Therefore, it
would be more reasonable to consider the index as a meniscus size distribution index in
the Brooks and Corey capillary pressure model.

Figure 10.9 reveals the correlation of the conventionally defined meniscus size distribution
index with the structural properties of the porous medium. The meniscus size distribution
index is a function of the ratio σ0/R̄ and pore connectivity. Figure 10.9a shows that almost
the same profiles are observed for networks with identical σ0/R̄ and the same connectivity.
The index λ escalates with the decline of σ0/R̄ (Fig. 10.9b) which also agrees with Kewen
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(2004). The index λ is not sensitive upon pore connectivity. It increases when increasing
the pore connectivity from Z = 3 to Z = 6, but drops again for a pore connectivity of 8.
This is similar to the behavior of entry pressure shown in Fig. 10.6.

Figure 10.10: The ratio of standard deviation of the distribution of meniscus radii in
throats and pores (σm) to the given standard deviation of the network (σ0)
changes with effective network saturation for case 15.
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Chapter 11

Summary and Outlook
11.1 Summary

This thesis aimed primarily at generating pore scale resolved data for drying porous
media by pore network modeling (PNM), and then computing from such data macroscopic
parameters that can be fed into continuum models (CMs). Scope and goals of the thesis
were presented in Chapter 1, and related to relevant literature.

In Chapter 2, we proposed a representation of the void space by using cylindrical tubes
as throats and spherical bodies as pores, called throat-pore model (TPM). This model
consists of three main parts: Labeling of throats and pores, generation of throats and
pores by assignment of specific radii, and drying algorithm in the capillary-viscous regime.
In contrast to the more classical throat-node model (TNM), the new TPM avoids

the overestimation of the void space. Simulations conducted with both geometrical
configurations, i.e. TNM and TPM, were compared in Chapter 3. We also compared the
vapor conductance of the TPM over the TNM by identifying the relative vapor conductance.
The profile of the relative vapor conductance against the ratio of pore radius over throat
radius indicates that the volume of spherical pores should not be neglected when increasing
the pore radius. A similar procedure was applied to compute the liquid conductance.
Comparison of the profiles for relative vapor and liquid conductances shows that the
liquid conductance is more sensitive to the alteration of pore radius. Additionally, the
drying characteristics of TNM and TPM, i.e. drying kinetics and saturation profiles, were
compared. The invasion profile was introduced to compare the drying process of these
two network geometries. The similarity of invasion steps in the bottom slices between the
two network geometries during the receding front period is contradictory to the obtained
differences in simulated saturation profiles. This difference proves that the overestimation
of the void space at TNM junctions cannot be neglected and that the TPM is more
favorable for pore network simulations of drying porous media.
Chapter 4 focuses on the derivation of the one-equation continuum model (CM). The

one-equation CM was derived from mass balances written for the two separated phases
(the vapor and liquid phase) and then combined for the total moisture transport. Within
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this framework, we proposed two versions of the CM in Chapter 5: The moving boundary
condition CM and the three-transport-zone CM that leads to three separate governing
equations. The moving boundary condition CM sets the boundary condition alongside with
the development of the drying front. In contrast, the three-transport-zone CM includes
three sectionally applicable transport equations to reproduce the drying characteristics
of capillary porous media. To couple the three transport equations of the model, we
introduced flux boundary conditions at the drying front and at the medium surface.

Parameters included in these CMs are evaluated and discussed in Chapter 6. These are
the moisture transport coefficient, the relative humidity at the surface and at the drying
front, and the vapor transport coefficients. The algorithm for determining parameters
from the PNM datasets is in three steps. First, we cut slices virtually from the PNM. One
slice comprises all throats and pores in the respective horizontal layer plus half the up and
down vertical throats. Then, we calculate the mass flow rate between those slices. Finally,
we determine parameters from Fick’s law based on flux between slices.

The moisture transport coefficient profiles are divided into three regions by the limits of
full and zero saturation and by two critical points. From full saturation (S = 1) to the
saturation of maximum interfacial area (Sas,max) the liquid transport dominated region
(LTDR) is located, in which moisture transport takes place by the liquid phase. From
Sas,max to ST (saturation when ζ = 0.5) is the two-phase transport region (TPTR), in
which the moisture transport occurs through the liquid and vapor phases, resisted by liquid
clusters and single menisci. From ST to the empty slice (S = 0) is the vapor transport
dominated region (VTDR) where the vapor phase plays a dominant role in moisture
transport. When altering the network structure from TNM to TPM, capillary pumping
increases, which influences the moisture transport in the LTDR and TPTR. Similar profiles
of moisture transport coefficient in the VTDR are observed, but the range of VTDR is
narrowed.
Results on the vapor partial pressure to saturation vapor pressure relationship within

the network (ϕ) showed a non-local equilibrium effect (NLE) that appeared for both
network geometries after Sas,max . However, the NLE at the surface (ϕsurf ) appears at the
beginning of drying process. This NLE effect is more pronounced in the TPM. The vapor
pressure to saturation pressure ratio at the surface (ϕsurf) is slightly affected by change
in network geometry from TNM to TPM. The interfacial area provides a new aspect to
understand liquid structures which indicate capillary pumping (as the driving force for
liquid transport) and influence the vapor pressure in the two-phase zone.
The vapor transport parameters in the dry zone and the gas-side boundary layer have

been calculated from the pore network model and shown to be nearly constant with
relative humidity. The weak dependence of the vapor transport parameters on the relative
humidity has been attributed to Stefan flow, which has not been taken into account in
the derivation of these model parameters from PNM results. However, the influence of
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Stefan flow is small for the investigated case of slow drying. Smaller diffusion coefficient in
the porous medium than in the unconfined gas phase (gas-side boundary layer) could be
explained reasonably well by obstruction (effect proportional to porosity) and tortuosity.
Effective overall vapor diffusivity has also been derived from pore network results to

show that it is equal to the molecular diffusivity of water vapor in the boundary layer. Very
small deviations have been observed by evaluating for equimolar diffusion pore network
simulations in which the Stefan effect (one-side diffusion) has been considered. It is shown
that profiles of the effective overall vapor diffusivity obtained in this way are non-linear
with surface saturation but linear with relative humidity.

In Chapter 7, the purpose is to feed the macroscopic parameters into the CM. One
should be aware of issues resulting from the fact that the parameter functions are highly
associated with the process history and the microstructures. The averaging interval used to
obtain macroscopic parameters from the PNM plays a significant role in the performance
of the CM. Therefore, averaging should be done only within periods with similar drying
behavior. The direct usage of moisture transport coefficients extracted from the PNM
shows a better performance of the CM than using the fitting approach to transfer the
dataset from the PNM into the CM. In general, inappropriate values of the moisture
transport coefficient may not only reduce the accuracy of CM results, but even cause the
termination of the CM algorithm.

To solve the issue of the CM being highly sensitive to the moisture transport coefficient,
we have introduced a hybrid method to control the performance of the CM by altering this
macroscopic parameter locally within a limited range. In this way, a stronger agreement
between the continuum and the discrete model is observed in terms of both drying kinetics
and saturation profiles. The saturation profiles predicted by the proposed CM using
the macroscopic parameters from PNM indicate that the effect of the random pore size
distribution, the influence of liquid viscosity, and the edge effect are properly captured.
This is hardly possible to achieve by means of classical approaches to the modeling of
drying processes.
Chapter 8 focused on the surface of capillary porous media. Surface parameters are

determined for the one-equation CM. However, two-equation CMs, which include two mass
balances separately for liquid and vapor phases, could be more flexible in representing
the drying process. In such models, the boundary condition for the vapor phase balance
equation could be treated by equal fluxes at the two sides of the outer surface of the drying
medium, since the vapor phase is a continuous phase. Regarding the trickier boundary
condition for the liquid phase, we have hypothesized that the ratio of evaporation rate
from the wet surface region to the initial evaporation rate can be obtained from either
the surface saturation or the surface wetness by multiplication with a quantity that we
have called an emendation factor. Emendation factors based on either surface saturation
or surface wetness have been evaluated from pore network results and shown to be
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process parameters: Higher than unity, dependent on the course of the drying process,
and certainly also dependent on the structure of the porous medium, which has though
not been varied. Most interestingly, global evaporation rate has been increased in the
simulations by reducing the thickness of the gas-side boundary layer and shown to shift
both emendation factors towards unity. Especially the emendation factor that has been
defined with surface saturation was found to be essentially equal to unity for the faster
drying process. This provides a simple and efficient boundary condition to the liquid phase
balance of two-equation CMs for practical applications, of an evaporation rate equal to
the maximal evaporation rate times surface saturation.

The option of further enhancing this approach by use of a modified version of Schlünder’s
model has been considered, but was not found to bring real advantages. Quantitative
use of Schlünder’s model may thus not be recommended either for the whole surface of
the drying material or just for the wet part of it, despite of the success of this model in
illustrating why partially wet surfaces may nearly reach the evaporation rate of a fully
wetted surface.

Since macroscopic parameters could reproduce the drying characteristics of the drying
process, in Chapter 9 we discussed the correlation of macroscopic parameters with different
pore network structures by means of altering the mean throat radius and the standard
deviation of throat radii as well as by placing vertical macro-channels into the grid of
micro-channels to create a bimodal network. The two critical saturations in the moisture
transport coefficient were discussed for different pore network structures. Sas,max and ST
were not influenced by changing the mean radius of throats, indicating that the three
regions in the moisture transport coefficient profile are not altered. Though the values of
the moisture transport coefficients decreased when reducing the mean throat radius, they
did not change by widening the standard deviation of throats. As a result of variation of
the standard deviation of throat size, Sas,max and ST nevertheless were reduced and thus
the LTDR became longer and the VTDR became shorter. In all simulation results, we
observe that the moisture transport coefficients are highly associated with the network
saturation.

Not only the moisture transport coefficient is impacted by the pore structure, but also
the relative humidity at the surface and in the two-phase region is influenced by pore
network structure. The relative humidity deviates from unity after the saturation of
maximum interface area Sas,max has been reached in the two-phase region, but the relative
humidity at the surface decreases even at the beginning of the drying process. Decreasing
the mean throat radius, lower relative humidity can be observed. The standard deviation
of throat radii cannot affect the minimal value of relative humidity but can postpone
reaching this minimum.

Additionally, for a bimodal network, we found an extended period of LTDR, suggesting
lower values of Sas,max and ST . However, the moisture transport coefficient of the bimodal
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network in VTDR is similar to profiles for the monomodal networks. Moreover, the internal
NLE effect is less pronounced for the bimodal structure but the surface NLE effect is not
affected by the macro-channels.

In Chapter 10, we explored the influence of the morphology and topology of pore network
on the macroscopic parameters (irreducible saturation Sirr, entry pressure Pe, and the
index parameter λ) of the Brooks and Corey capillary pressure model. For this purpose,
pore network simulations were carried out for the limiting case of the capillary-controlled
invasion percolation process. This limiting case is relevant in processes such as drainage or
slow early-stage drying. According to our pore network simulation results, the irreducible
saturation Sirr is not a function of the mean radius of network (R̄) but depends on the
ratio standard deviation/mean radius of network (σ0/R̄), the ratio of the mean pore radius
over the mean throat length (R̄p/L̄t), and the pore connectivity (Z). The entry pressure
Pe depends on the largest meniscus radius in the network. It is close to the mean capillary
pressure for a network with narrow size distribution, and constant for a constant value
of σ0/R̄. The entry pressure decreases with increasing σ0, as well as at pore connectivity
above six. The pore size distribution index λ is easier to correlate with the meniscus size
distribution profile, which depends on the invasion process and the structural properties.
Profiles of the distribution index λ are related to the ratio σ0/R̄: They are the same for
networks with the same σ0/R̄ and are shifted upwards with the decline of σ0/R̄. Pore
connectivity plays a minor role in the distribution index.

11.2 Outlook

11.2.1 Pore network modeling

In this thesis, the thickness of the diffusion boundary layer was assumed to be known.
With gas-side mass transfer coefficient from correlations, boundary layer thickness can
easily be calculated in practice. However, in some situations it may be necessary to
compute external flow and mass transfer. Coupling of PNM with, e.g., the Navier-Stokes
equations is still an ongoing topic.
A further restriction of the present derivation concerns the isothermal character of

the pore network model used. In some cases, temperature distributions that arise in
porous media during drying may cause condensation in their top slice. The thermal
effect has already been implemented into 3D PNM (Surasani et al., 2008). However,
macroscopic parameters subjected to the thermal effect would be very interesting to derive
for implementation in more comprehensive, non-isothermal and non-isotropic versions of
the CM.
Moreover, apart from the primary capillary structures considered here, so-called sec-

ondary capillary structures may also exist, for example thin liquid films in non-cylindrical
capillaries of hydrophilic porous media. Secondary capillary structures can reduce the
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moisture transport resistance to the evaporative surface, so that surface saturation can
be replenished more easily by liquid from the bottom (Yiotis et al., 2004; Prat, 2007;
Vorhauer et al., 2015). Vorhauer et al. (2015) proposed a 2D PNM that accounted for
the capillary ring effect, motivated by experimental observations, and considered it by
attributing additional volume at the conjunction of throats in the throat-node model.
This treatment might, though, further overestimate the void space in the porous medium.
In contrast, the throat-pore model underestimates to a certain extent the liquid volume
in the corners of throat and pore conjunctions. Those neglected void volumes could be
locations with significant capillary ring effect.
As the PNM model becomes more sophisticated by including more mechanisms, the

major issue of simulation cost becomes more crucial. Accelerating the performance of
PNM is, thus, a further task. The here presented PNM for drying is calculated by CPUs
in the platform of Matlab. However, Matlab performs computations in a serial order. It
should, therefore, be possible to accelerate the drying algorithm by parallelization.
In Chapter 2, we discussed the bottleneck in the algorithm. Calculating the liquid

pressure for each cluster takes a large percentage of simulation time (Fig. 2.10). The size
of this loop depends on the number of active meniscus throats. The algorithm in Fig. 2.10
determines the final liquid pressure by shifting the static menisci into the status of active
menisci one by one. Such a slow process could be carried out in parallel by making a series
of assumptions for the active and static menisci in advance, then calculating the liquid
pressure under each assumption. After that, we only have to check the calculated liquid
pressure, whether it meets the balance condition of menisci. The result would be selected
from the first assumption for which the calculated liquid pressure meets the requirement.
Additionally, the current algorithm determines the liquid pressure for each cluster in a
series. The liquid pressure in each cluster is though independent, suggesting that a parallel
treatment could be applied among clusters. One possible platform would be the GPU
calculation, for example, the NVIDIA CUDA toolbox.

Furthermore, the formation of single menisci poses a serious issue for fast computation,
since the number of simulation steps to be performed is amplified by taking single
menisci into account. It is possible to neglect the role of single menisci in liquid pressure
determination but focus on the invasion process in the clusters. Therefore, the role of the
single menisci in the drying process should be further investigated and clarified.

11.2.2 Two-equations continuum model

In Chapter 5 of this thesis, we proposed a new way to solve the CM. We identified three
transport zones as regards the mass transport process, namely, the wet zone (saturated or
two-phase flow zone) in the porous medium, the dry zone with the vapor diffusivity of the
porous medium (formed after the liquid has receded from the surface), and the gas-side
boundary layer with, this time, unconfined vapor diffusion, leading to three separate
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governing equations. However, the description of the moisture transport even within the
wet zone of the porous medium is conducted by the one-equation CM. In other words, the
transport processes of the liquid and vapor phase are combined into the global behavior
of the moisture as a whole. In contrast, a two-equation CM, which uses two balance
equations to describe the transport processes in the liquid and vapor phases separately,
might be more accurate and flexible. Based on the two-equation CM, Chapter 8 discussed
the boundary condition for the liquid phase, while the coupling condition for the vapor
phase is straightforward by switching from the effective vapor diffusivity of the porous
medium to molecular (or effective) vapor diffusivity in the gas-side boundary layer. It
would also be interesting to account for the thermal effect in the two-equation CM.

11.2.3 Macroscopic parameters

Macroscopic parameters, the moisture transport coefficient, relative humidity, vapor
transport parameters, etc., have been obtained under the isothermal drying condition.
Besides, in our simple PNM (neglecting some essential physical effects, e.g., the film effect),
we only simulated a relatively small network size (25× 25× 51). Since the heat transfer,
secondary capillary pressure, and network scale could also play roles in the macroscopic
parameters, changes in macroscopic parameters by these factors would deserve to be
explored.
Moreover, in Chapter 10 the heterogeneity of parameters correlated with the capillary

pressure was pointed out. The capillary pressure curve can further be linked to the
transport properties of two-phase flow, i.e., the relative permeability by Darcy’s law.
Srikiatden and Roberts (2007) and Joekar-Niasar and Hassanizadeh (2011) pointed out
that the nonlinear properties, i.e. capillary pressure-saturation function and permeability-
saturation function, are critical for realistic modeling of two (or multi)-phase flow in porous
media. Thus, evaluating the transition from parameters of the capillary pressure-effective
saturation profile to the profile of relative permeability over effective saturation could be a
future research direction.
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