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Vorwort

In der vorliegenden Habilitationsschrift werden lokale Methoden und Argu-
mente diskutiert, die zu einem neuen Beweis fiir Glaubermans Z*-Satz unter einer
zusétzlichen Voraussetzung fithren.

Der Inhalt stimmt groéftenteils mit der Arbeit ,Isolated involutions in finite
groups® iiberein, die in der Serie Memoirs of the American Mathematical Society
(sieche [Wal]) erscheint. Zusétzlich ist aber ein Abschnitt enthalten, in dem zwei
Sétze iiber spezielle primitive Paare in endlichen Gruppen bewiesen werden. Diese
Resultate spielen im Z*-Projekt eine wichtige Rolle und wurden in der Zeitschrift
Archiv der Mathematik verotfentlicht, siche [Wall1].
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KAPITEL 1

Introduction

The protagonist of this text is one of the main results in Glauberman’s article
“Central Elements in Core-Free Groups” from the year 1966:

GLAUBERMAN’S Z*-THEOREM.
Suppose that G is a finite group and that z € G is an isolated involution. Then
(2)0(G) 4G.

Some explanation is needed here: We say that an element z in a finite group G
is an involution if it has order 2. Then z is called isolated in G if and only if the
only conjugate of z in G commuting with z is z itself. Another way of expressing
this that can be found in the literature (for example in [Gor82]) is to specify a
Sylow 2-subgroup S of G containing z and to say that z is isolated in S with
respect to G if and only if z itself is the only conjugate of z in S. Moreover, the
term O(G) is the standard abbreviation for the subgroup O (G), i.e. the largest
normal subgroup of G of odd order. This subgroup is sometimes referred to as the
core of G. Roughly speaking, the Z*-Theorem says that isolated involutions are
central modulo the core. If we denote by Z*(G) the full pre-image in G of the factor
group Z(G/O(Q)), then the Z*-Theorem can be re-phrased in the following way:

Every isolated involution of a finite group G is contained in Z*(QG).

The reader will find versions of the Z*-Theorem with a variety of different
notation and emphasis in the literature. In Glauberman’s original article, the result
that is closest to the version stated here is Theorem 1. Glauberman explains that
his Z*-Theorem “originated as a conjecture in loop theory”. A special case of this
conjecture had been proved earlier by Fischer (see [Fis64] and additional comments
in Chapter 4). If a finite group G has cyclic or quaternion Sylow 2-subgroups,
then the unique involution z in a Sylow 2-subgroup of G is isolated in G. Before
Glauberman’s theorem it was already known, because of results by Burnside and by
Brauer and Suzuki, that (z)O(G) <G in these cases. Therefore the Z*-Theorem can
be viewed as a generalisation in particular of the Brauer-Suzuki result, a viewpoint
taken for example by Gorenstein in [Gor82].

As it turned out (and as Gorenstein emphasises in [Gor82]), Glauberman’s
Z*-Theorem became one of the most fundamental local group theoretic results in
the context of the Classification of Finite Simple Groups. To illustrate this, let us
suppose that G is a non-abelian finite simple group. Then the Odd Order Theorem
of Feit and Thompson (see [FT63]) says that G has even order and so it follows
that G contains an element ¢ of order 2. If ¢ is isolated in G, then the Z*-Theorem
forces t € Z*(G). But G is simple and has even order, so O(G) = 1 and hence
t € Z(G). This is impossible because G is simple and not abelian. We conclude
that ¢ cannot be isolated in G. In fact this can be phrased as a special consequence
of the Z*-Theorem:
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A non-abelian finite simple group does not contain any isolated involutions.

This can be used as a starting point for understanding the 2-structure of a finite
group and therefore it is not surprising that, in connection with classification results
based on types of Sylow 2-subgroups or involution centralisers, the Z*-Theorem is
a powerful tool. Another important consequence is Glauberman’s main result from
[Gla66b] that leads to proofs of special cases of the Schreier Conjecture. (This
conjecture says that the outer automorphism group of a finite simple group is
soluble.) It is worth emphasising Glauberman’s progress in this direction because,
still, no classification-free proof of the full Schreier Conjecture is known.

Returning to the Z*-Theorem, its discussion in later literature usually not only
points out its consequences for the, at the time, ongoing effort towards the Clas-
sification of Finite Simple Groups, but also the fact that the proof uses elegant
arguments from block theory. Its proof is actually often found as an illustration
of the power of Brauer’s Main Theorems. Also, thinking in the direction of future
generalisations, why not extend the notion of an isolated involution to an “isolated
element of prime order p” and attempt to find an “odd version” of the Z*-Theorem?
This leads to two natural questions:

(1) How difficult is it (if at all possible) to prove the Z*-Theorem with local
group theoretic methods?

(2) What could be a reasonable conjecture that generalises the Z*-Theorem
for odd primes? Is it possible to prove such a conjecture?

The reasons for Question (1) are, from our point of view, both philosophical
and practical. Philosophically speaking, it might be more satisfying if a result that
plays such an important role in local group theory could be understood from a
local perspective, giving also some indication of the strength of local techniques. A
more practical viewpoint comes in as soon as the difficulty of such a task becomes
apparent. Even if finding a new proof fails, it can be expected that interesting
results will emerge and that a number of group theoretic arguments will be refined
and extended on the way.

In this text we prove that the Z*-Theorem holds for all groups where, roughly
speaking, the simple sections in an involution centraliser are known simple groups.
Although some of the background results require representation theory (as for ex-
ample [FT63] or [GlaT4]), the proof itself is based on local group theoretic methods
and thus we give an almost complete answer to Question (1) above. We leave it to
the reader to decide how difficult this new proof is — it is certainly much longer
and more technical than Glauberman’s original proof and, maybe unsurprisingly,
it involves quite a few different techniques that play a role in the Classification of
Finite Simple Groups.

Concerning Question (2), it is known by the Classification that the Z*-Theorem
generalises for odd primes in a natural way. But seeing this requires the use of the
Classification in its full strength (see for example [GR93]) and does, so far, not
give much insight into why such a result holds. Special cases have been proved for
example by Rowley (for the prime 3, see [Row81]) and by Broué (see [Bro83]).
There is an ongoing effort from group theorists and from representation theorists to
make some progress towards proving an “Odd Z*-Theorem” without using the full
and immediate strength of the Classification. It is our hope that the local approach
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to Glauberman’s original result will shed some light on what group theoretic tools
might have a role to play.

The remainder of this introduction gives an overview of the strategy and some
indication of what happens mathematically in which part of this text. All groups
mentioned here are finite. In earlier work (see [Wal09]) we show that if G is a
minimal counter-example to Glauberman’s Z*-Theorem and if C' is the centraliser
of an isolated involution z € G with z ¢ Z*(G), then C/O(C') possesses at least
one component. In particular C is not soluble. This work plays a role in our general
approach here and is therefore partly included.

Chapter 2 starts with some preparation: setting up notation, recalling or spe-
cifying definitions and stating background results. This continues in Chapter 3 with
more specialised results, one of which has already been published in [Wall1]. In
order to make this text fairly self-contained, we give precise references or proofs
for all results listed in these preparatory sections. Then, in Chapter 4, we turn to
groups with isolated involutions. We establish a crucial result (Theorem 4.6) that
implies, for example, that a minimal counter-example to the Z*-Theorem is genera-
ted by two involution centralisers and that is the basis for a counting argument at
the end of Chapter 9. It is of similar importance that for every isolated involution
in a group G and for every prime p there exists a Sylow p-subgroup of G that is
normalised by this involution. These results suggest that isolated involutions be-
have as if acting coprimely on every subgroup that they normalise. The content of
Chapter 4 has mostly appeared before in [Wal09].

Then it is time to look at a minimal counter-example to Glauberman’s Theo-
rem. In Chapter 5 we set up our first working hypothesis which says, in a nutshell,
that G is a group with an isolated involution z such that G provides a minimal
counter-example to the Z*-Theorem. In particular z ¢ Z*(G), but the Z*-Theorem
holds in every proper subgroup of G and in proper factor groups. We set C' := Cg(2)
and assume this hypothesis in the remainder of the discussion, in particular in Theo-
rems A, B, C and D. We prove initial consequences of this setup, again following
the exposition in [Wal09] in many places. For example it turns out that G is almost
simple and that every maximal subgroup of G containing an isolated involution is
primitive (as defined on page 7). Here we should point out that the p-Complement
Theorem and the Brauer-Suzuki Theorem are used to show that G does not have
cyclic or quaternion Sylow 2-subgroups.

Then we exploit more specific properties of G and z in Chapter 6. We introduce
a variety of balance notions and the concept of signalizer functors. Then we use the
fact that our balance conditions usually fail in G and study the consequences for the
structure of G and specifically of C'. Some arguments in this chapter are inspired
by Goldschmidt’s work in [Gol72] and [Gol75], for example we present and apply
signalizer functors that he uses in these papers.

After some preparation in Chapter 7, we work towards the proof of our first
important result in Chapter 8.

THEOREM A. Suppose that M is a maximal subgroup of G containing C. If
possible, choose M such that there exists a prime ¢ with Og(M) # 1 = Co_(ar)(2)-
Then one of the following holds:

-M=C.

- There exists an odd prime p such that F*(M) = O,(M).

- E(M) # 1.
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One of the most important ingredients for the proof of Theorem A and also for
arguments in later sections is the so-called Bender Method. It is therefore introduced
at the beginning of Chapter 7. In particular, Lemma 7.2 and the Infection Theorem
7.3 are mainly an adaptation of results of Bender’s for our situation to simplify
quotations. Then we prove some preparatory results about isolated involutions in
proper subgroups of G that are also needed for later sections. Finally we set up our
working hypothesis at the beginning of Chapter 8, assuming that M is a maximal
subgroup of G that properly contains C' and that is chosen in a technically suitable
way. We show that, if M is not of characteristic p, then for certain subgroups X of
F(M), we can force Ng(X) to be contained in a unique maximal subgroup of G,
namely in M. Then we assume that M is in fact a counter-example to Theorem
A and we find a prime p such that O, (M) is cyclic and z inverts it (Lemma 8.5).
This leads to a non-trivial normal subgroup of GG that is contained in M, giving a
contradiction. Later it will emerge that Theorem A can sometimes be strengthened
or that similar statements hold for other involution centralisers (see for example
Theorem 14.23).

In the remainder of the text the strategy is to determine the structure of C :=
C/O(C) as far as possible and then to analyse several involution centralisers at the
same time. First we consider the situation where Og 2(C), the full pre-image of
O5(C), possesses an elementary abelian subgroup of order 4. This case is excluded
in Chapter 9. The path that we follow is similar to that in [Wal09] at first, but
then some new arguments are necessary. So we conclude:

THEOREM B. z is the unique involution in Oy 2(C).

Next we turn to the components of C. In Chapter 10 we restrict their number
and shape, still not using any additional hypothesis.

THEOREM C. C possesses at least one and at most three components. If there
are three components, then they are all of type A7 or PSLs(q) for some odd number
q=09.

Here a component F of C is said to be of type A,, (or PSLs(q)) if E/Z(E) is
isomorphic to A,, (or to PSLs(q)). In order to prove Theorem C, we apply results
from Section 6, in particular Goldschmidt’s notion of core-separated subgroups and
signalizer functor theory. In the background, the Gorenstein-Walter-Theorem on
groups with dihedral Sylow 2-subgroups plays a role. It is here that the Soluble
Z*-Theorem follows and we give the arguments, for completeness, although they
are explained in [Wal09] as well. (This is actually the last place where we re-state
results from [Wal09].) We do not need the full strength of Theorem C for the
Soluble Z*-Theorem, but only the fact that C' has components at all.

THE SOLUBLE Z*-THEOREM.

Suppose that G is a finite group and that z € G is an isolated involution. If Cg(2)
is soluble, then (2)O(G) < G.

_ Beginning in Chapter 11, and in all later sections, we suppose that whenever
E is a component of C, then the simple group E/Z(F) is known. In particular
we assume this hypothesis in Theorem D. We begin to understand the structure of

F*(C) by looking at the case where 72(G) > 4. In order to obtain information about
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the possible types of components, we prove that C has so-called “unbalanced” com-
ponents, using results from Chapter 6. Although obtained differently, the functor
that we apply for these arguments is the same as in Proposition 4.65 of [Gor82].
Our additional hypothesis about components of C' comes in when we argue with
failure of 2-balance and quote a result in [Gor82]. The next step is then to exclude
components of type A, where n is at least 10. This is done in Lemma 11.5, again
with a signalizer functor, and enables us to bound the 2-rank of G in Section 12.

THEOREM D. G has 2-rank 2 or 3.

The main argument for the proof of this result is to assume that ro(G) > 4
and to show that, as a consequence, conditions about balance or core-separated
subgroups in C' are violated. The technical details that we encounter are mainly
dealt with in a series of lemmas, excluding particular configurations for F*(C') one
by one, whilst the method is usually to either construct a signalizer functor (and
reach a contradiction) or to analyse a “failure of balance” situation. After the 2-
rank of G is restricted, we can describe the structure of F*(C) in much detail.
This information is collected in the F*-Structure Theorem 13.6, subdivided into
four lists referred to as List I, I, IIT and IV. Once it is established, we apply the
F*-Structure Theorem by saying that “F*(C) is as on List I (or II, III or IV)”.

Based on this information, we go back to analysing maximal subgroups con-
taining the centraliser of an involution in Chapter 14. We choose our involutions
carefully and reveal enough of the structure of their centralisers to bring the Bender
Method into the picture again. Having control over centralisers of (at least some)
involutions in GG, the stage is set for the “endgame”, a final situation that needs
to be analysed. We attack this in Chapter 15 and, based on this, derive a final
contradiction in the last section. This is also where an independent version of the
Z*-Theorem is stated, with an explanation of why our work proves this version. For
this purpose, we define a Ko-group to be a group X where for every isolated invo-
lution ¢ € X and every subgroup H of X containing ¢, the simple groups involved

in Cy(t)/O(Cg(t)) are known simple groups. At the end of Chapter 16, we prove:

THE Z*-THEOREM FOR K2-GROUPS.

Suppose that G is a Ko-group and that z € G is an isolated involution. Then
(2)O(G) 4G.

In particular, whenever a result about finite groups is proved under the hypo-
thesis that every proper simple section is known, then this weaker version of the
Z*-Theorem can be applied. This is relevant, for example, to a minimal counter-
example to the Classification Theorem itself, but also to many results in progress
that contribute to new, different strategies for the Classification.






KAPITEL 2

Preliminaries

In this section we introduce the notation that is used in this text and we
state general results that are applied so that they can be quoted explicitly when
needed. Most of these results are fairly standard and can be found, for example,
in group theory books — in these cases, we give a reference. Otherwise we give a
proof. All groups are meant to be finite and we follow the notation in standard
group theory books such as [Asc00] and [KS04]. We also use throughout, without
further reference, that groups of odd order are soluble ([FT63]). In this section let
X be a group, let m be a set of primes and let p and ¢ be prime numbers.

2.1. Definitions and Notation

— For all n € N, we denote by n, the largest power of p dividing n.

— For all x € X, all subgroups Y < X and all subsets U C X we define

2V ={2*|ueU}and YV :={Y"|ueU}.

— By H max X we mean that H is a maximal subgroup of X.

— A subgroup H of X is said to be primitive if and only if, for all 1 £ U < H,
we have that Nx(U) = H. A typical example for a primitive group is a maximal
subgroup of a simple group.

— An involution ¢ € X is isolated in X if and only if Cx (t) NtX = {¢}.

— If an involution ¢ acts on a subset Y of X, then Iy (t) denotes the set of
elements of Y that are inverted by t.

— The largest normal 7’-subgroup of X is usually denoted by O/ (X). Then
Z%(X) denotes the full pre-image of Z(X/O, (X)) in X.

— As a special case of the above, the largest normal subgroup of odd order of X
is abbreviated as O(X) (sometimes referred to as the core of X in the literature).
Then Z*(X) denotes the full pre-image of Z(X/O(X)) in X (and is hence an
abbreviation of Z7,, (X)).

— To simplify notation, we set F(X) := O, (F(X)) .

—If X is a p-group, then ZJ(X) denotes the centre of the Thompson subgroup
of X, see for example on page 162 in [Asc00].

— X is quasi-simple if and only if X # 1, X is perfect (i.e. X' = X) and
X/Z(X) is simple.

— OP(X) denotes the smallest normal subgroup of X that has a p-factor group.

We say that X is p-perfect if and only if X = OP(X). We denote by O*(X) the
smallest normal subgroup of X that has a soluble factor group.

— X is of characteristic p if and only if F*(X) = O,(X). We denote this by
char(X) = p. If the prime is supposed to be unspecified, then we just say that X has

7
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prime characteristic. A special case is that X has odd prime characteristic,
meaning that there exists an odd prime p such that F*(X) = O,(X).

— We say that a subgroup A of X is centraliser closed if and only if Cx (4) <
A. If A is also abelian, then this implies that A = Cx(A) whence we also say
that A is self-centralising. For example, if X has characteristic p, then O,(X) is
centraliser closed but not necessarily self-centralising.

— Let A, B < X be subgroups such that AB is a subgroup of X. We say that
AB is a central product and write A * B if and only if [4, B] = 1.

— Let A, B < X be 2-subgroups such that [A,B] =1.Ifa € A and b € B are
elements of order 4 such that a? = b2, then ab is an involution and we say that this
involution is diagonal in A * B.

— A component of X is a quasi-simple subnormal subgroup of X. We denote
the (central) product of all components of X by E(X).

— Let L be a simple group. A component F of X is said to be of type L if and
only if E/Z(E) ~ L.

— Opr p+(X) denotes the preimage of F*(X/O/ (X)) in X. The subgroups

O (X)), Op p(X) and On/ g(X) are defined similarly.

We simplify notation if 7 consists of a single prime, for example we write
02/72(X) instead of 02/){2} (X)

— A subnormal subgroup F of X is a m-component of X if and only if £ =
O>*(E) and E/O. (E) is quasi-simple. The set of all m-components of X is denoted
by L;(X). The most important special case for us occurs for the prime 2 where we
write L2(X) for the set of 2-components (i.e. {2}-components) of X.

— A convenient abbreviation is L(X) := 0% (O 5(X)).
— By 7,(X) we denote the p-rank of X. This means that if n € N is the largest
number such that X possesses an elementary-abelian p-subgroup of order p™, then

we set 7, (X) := n. If there is no ambiguity about the prime we are referring to (for
example because X is a p-group), then we only write (X) for the rank.

— Let P €Syl,(X). Then we say that X is p-nilpotent if and only if X =
O (X)P. (Another way of expressing this that can be found in the literature is
that “X has a normal p-complement.” .)

— Suppose that A is a group acting on X. The action of A on X is nilpotent
if and only if there exists a k € N such that [...[[X, 4], 4]..., A] = 1.
—_——

k
— Suppose that A < X. Then by Vx (A, 7) we denote the set of A-invariant -
subgroups of X. We write % (A, ) for the set of maximal members of W x (A4, )
with respect to inclusion.

—If n € N, then by X ~ (), we mean that X is cyclic of order n.

— We say that X is quaternion if and only if X ~ Qon for some n > 3 (rather
then saying “generalised quaternion”).

— For all n € N, we denote the symmetric (alternating) group of degree n by
Sn (Ay). We write 24, for the quasi-simple group that has a centre of order 2 and
that modulo its centre is isomorphic to A,, (non-split). Similarly the notation 3Az,
3PSLy(9) and 2J; is used.
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2.2. General Results
LEMMA 2.1. Suppose that a w-group P acts on a 7' -group Q.
(1) If N is a P-invariant normal subgroup of Q, then Cq/n(P) = Cq(P)N/N.
(2) Q@ =1Q,P|Cq(P) and [Q,P] =[Q, P, P]. If Q is abelian, then
Q=[Q, P x Cq(P).
(3) If Q is the product of two P-invariant subgroups Q1 and Qs, then
Cq(P) = Cq,(P)Cq,(P).
(4) If P is an elementary-abelian, non-cyclic p-group, then
Q= (Co(A)|A<P, |P:Al=p) and
(Q, P] = ([Cq(A), Pl | A< P, |P: Al =p).
If P has order 4, e.g. P ={1,z,y,zy}, and if Q is nilpotent, then
Q = Cq(x)Cq(y)Cq(xy). Hence if Cq(x) < Cqoly), then Ig(y) C Ig(x).
(5) If Q is a q-group for some odd prime q € 7' and if P centralises every
element of order q in Q, then [Q, P] = 1.
(6) If Q is nilpotent and P centralises a centraliser closed subgroup of Q, then
P centralises Q.

(7) Letr €x'. Then V5 (P,r) C Syl.(Q) and Cqp(P) is transitive on the set
NG (P,r).

PROOF. Most of these results are contained in [KS04], they correspond to
8.2.2,8.2.3,8.2.7, 8.2.11, 8.3.4, 8.4.2 and 8.4.3. Statement (6) follows from Thomp-
son’s P x Q-Lemma, but here is a direct argument: Suppose that P centralises a
centraliser closed subgroup Qo of @ and set Q* := Cg(P). Then Qy < Q* and
therefore Q* is centraliser closed in Q. Moreover Q* is subnormal in ) because )
is nilpotent. We argue by induction on |@| and therefore suppose that the result
holds for all proper P-invariant subgroups of ) that contain Q*. Now we note that
No(Q™) is P-invariant, so either Ng(Q*) = @ and hence Q* < Q or Np(Q*) < @
in which case we observe that P centralises the centraliser closed subgroup Q* of
Ng(Q*). Then P centralises Ng(Q*) by induction, so Ng(Q*) < Cg(P) < Q* and
Q* = Q. Thus we look at the case where Q* < Q. As @ normalises @Q* and P
centralises it, we see that [@Q, P] centralises Q* and therefore

[Q,P] < Co(Q") < Q" = Cq(P).
Now [@Q, P, P] =1 and (2) yields that P centralises Q. O

LEMMA 2.2 (Thompson'’s P x @-Lemma). Suppose that X acts on a p-group
W and that X = PQ is a central product of a p-group P and a p-perfect group Q.
If Q centralises Cyy (P), then Q centralises W .

PRrROOF. This is (24.2) in [Asc00]. O

LEMMA 2.3. Let P be a m-group that acts on a ©'-group Q. Let X := QP and
r € . Let R denote the intersection of all P-invariant Sylow r-subgroups of Q.
Then R is the unique mazimal PCx (P)-invariant r-subgroup of Q.
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PROOF. As PCx(P) permutes the elements of N (P,r), the subgroup R is
PCx (P)-invariant. Let Ty € Ug(PCx(P),r) be arbitrary. Then Ty lies in some
P-invariant Sylow r-subgroup T of Q). Let S be an arbitrary P-invariant Sylow
r-subgroup of . Then by Lemma 2.1 (2) there exists an element « € C'x (P) such
that 7% = S. As Ty is PCx(P)-invariant, we have that Top = T§ < T* = S. It
follows that T} is contained in every P-invariant Sylow r-subgroup of @) and hence
in R. In particular, if Ty € U5 (PCx (P),r), then we see that Ty = R. O

LEMMA 2.4. Suppose that p is an odd prime and that P is a p-group of rank at
most 2. If q is a prime divisor of | Aut(P)| distinct from p, then q < p.

PRrROOF. This is a combination of Lemmas 4.7 and 4.13 in [BG94]. O

LEMMA 2.5. Suppose that X is a p-group. Then there exists a characteristic
subgroup P of X (a so called critical subgroup) such that

- every p'-subgroup of Aut(X) is faithful on P,

— P = ¢(P) is elementary abelian and lies in Z(P) and

—if X is not abelian, then exp(P) = p if p is odd and exp(P) =4 if p = 2.

PROOF. Proposition 11.11 in [GLS96]. O

LEMMA 2.6. Let H < X be a 2'-subgroup that is normalised by an involution

t € X. Suppose that every t-invariant m-subgroup of H is centralised by t. Then
H=Cyg(t)On (H).

PRrROOF. This is Lemma 2.2 in [Wal09]. O

LEMMA 2.7. Suppose that q is odd and that an involution t € X acts on a
q-subgroup Q of X. If r(Q) > 3, then Q possesses a t-invariant elementary abelian
subgroup of order ¢>.

PRrROOF. This is Lemma 11.18 in [GLS98]. O

THEOREM 2.8. Suppose that A and Ay are groups, that A is an elementary
abelian p-group of rank at least 3 and that the central product AAy acts coprimely
on X. Suppose that X is soluble and that X = [X, Ag]. Furthermore, let B < A,
let H :== Cx(AoB) and let Hyp?(A) denote the set of all subgroups of A of index
p?. Then

H={(Cx(Y),A)JNH |Y € Hyp*(A)).
ProoF. This result is proved in [Wal08|. O

LEMMA 2.9. Let Y be a p-subgroup of Op ,(X). Then Op (Cx(Y)) < Op (X).
If X is soluble and if Y is a p-subgroup of X, then Oy (Cx(Y)) < Op(X).
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Proor. The second statement is often referred to as Goldschmidt’s Lemma and
can be found for example as Proposition 1.15(b) in [BG94]. We give an argument
for the first statement. We let Y < O, ,(X) and we may suppose that O (X) =1,
so that Y < O,(X) and hence E(X) < Cx(Y). Let @ := Oy (Cx(Y)). Then

[E(X),Q] < E(X)NQ < 0y(E(X)) <Opy(X) =1.
Moreover Y x @ acts on O,(X) and [Co, (x)(Y),Q] < Op(X)NQ = 1. Then

Thompson’s P x @-Lemma 2.2 yields that @ centralises O,(X). We recall that
Oy (X) =1 and therefore F*(X) = O,(X)E(X). It follows that

Q < Ox(F*(X)) = Z(F(X)) < Op(X)
and hence @ = 1. O

LEMMA 2.10. Let t € Oy o(X) be an involution and let D < X be a Cx(t)-
invariant 2'-subgroup. Then D < O(X). If D is nilpotent, then [D,t] < F(X).

PROOF. Lemma 3.6 in [Wal09]. O

LEMMA 2.11. Let V be a p-subgroup of Op ,(X). Then for all ¢ € p, the
subgroup Cx (V') is transitive on the set % (V,q).

PROOF. Lemma 3.7 in [Wal09]. O

LEMMA 2.12. Suppose that X is a 2-group and that Xo<X. If r(Xo) > 2, then
either Xo contains a normal elementary abelian subgroup of X of order 4 or Xq is
dihedral or semi-dihedral.

PrROOF. Lemma 10.11 in [GLS96]. O

LEMMA 2.13. Suppose that X is a 2-group and that t € X is an involution. If
Cx (t) is elementary abelian of order 4, then X is dihedral or semi-dihedral.

PROOF. This is 5.3.10 in [KS04]. O

LEMMA 2.14. Suppose that Q1,Q2 < X are commuting quaternion groups and
that Z(Q1) = Z(Q2). Then the rank of Q1Q2 is 3.

PROOF. Let Q := Q1Q2 and Z := Z(Q1). Let a1,a2,b1,ba € Q be such that
a1 and ag have 2-power order, that by, by have order 4 and that @ = (a1, b;) and
Q2 = (az, b2). Then some powers c¢; of a1 and ¢ of ag have order 4. Our hypothesis
Z = Z(Q2) implies that the unique involution s in @ is also the unique involution
in Q2. In particular the elements by, b2, 1, co all have the same square, namely s.
As Q1 and Qo centralise each other, it follows that (b1by)? = s? = 1. Therefore
b1bo and similarly c¢jco are diagonal involutions. They are distinct from each other
and distinct from s, in fact A := (b1ba, c1co, ) is an elementary abelian subgroup
of Q1Q> of order 8 and hence r(Q) > 3.

Now let a be an arbitrary involution in @\ Z. Then there are elements z; € @
and xo € Q2 of order 4, respectively, such that a = z122. The subgroups Cg, (z1)
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and Cg,(x2) are cyclic of order at least 4 with intersection Z, so Cg, (21)Cq, (z2)
has rank 2. If, for ¢ € {1,2}, we let y; € Q;\Cgq,(x;) be an element of order 4, then
y1y2 is an involution that commutes with Cq, (z1)Cq,(z2), but is not contained in
it. As Cg(a) = Cg, (21)Cq, (z2)(y1y2), this implies that Cg(a) has rank 3 and thus
r(Q) = 3. O

LEMMA 2.15. Suppose that X is a dihedral group of order at least 8 or a semi-
dihedral group of order at least 16. Then Aut(X) is a 2-group.

Proor. This is Proposition 4.53 in [Crall]. O

THEOREM 2.16. Suppose that X is a 2-group with precisely three involutions.
Then Aut(X) is soluble.

PRrROOF. This is Theorem 3.16 in [Wal09]. O

THEOREM 2.17. Suppose that X is quasi-simple and that n € N is such that
n>5and X/Z(X) ~ A,.
(1) If n # 6, then Aut(X) >~ S,.
(2) If Z(X) =1, then ro(X) = 2 - k, where k is the largest integer less than
or equal to 7.
(3) If 2 divides |Z(X)|, then ro(X) = 3 -1+ 1, where [ is the largest integer
less than or equal to g .

PrOOF. Theorem 5.2.1 and Proposition 5.2.10 in [GLS98]. O

LEMMA 2.18. Let S € Syla(X) and suppose that P and Q are subgroups of S
such that S = PQ. Suppose that P .S, that Q is cyclic and that PN Q = 1. Let

s be the unique involution in Q. If O*(X) = X, then there exists an X -conjugate t
of s in P such that Cs(t) € Syl(Cx(1)).

Proor. This is a generalisation of Thompson’s Transfer Lemma and can be
found as Lemma 15.16 in [GLS96]. O

LEMMA 2.19. Suppose that H < X contains a Sylow p-subgroup of X. If for
every p-element y € H we have that y* N H =y, then OP(X) = X if and only if
OP(H)=H.

PrROOF. Lemma 15.10 (ii) in [GLS96]. O

THEOREM 2.20. Suppose that S € Syla(X) is cyclic. Then X = SO(X). In
particular the unique involution in S is contained in Z*(X).

ProoF. This is 7.2.2 in [KS04] and follows from Burnside’s p-Complement
Theorem. O

THEOREM 2.21 (Brauer-Suzuki). Suppose that S € Syla(X) is quaternion and
let s be the unique involution in S. Then s € Z*(X).
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PROOF. See [Gla74] for a proof using ordinary character theory. O

THEOREM 2.22 (Gorenstein-Walter). Suppose that X is non-abelian and simple
and has dihedral Sylow 2-subgroups. Then X is isomorphic to Ay or there exists an

odd number ¢ > 5 such that X ~ PSLs(q).
PRrROOF. This is Theorem 2 in [GW65]. O

LEMMA 2.23. Suppose that E is a component of X and that S € Syla(FE) is of
rank 1. Then E is not simple and E/Z(E) is isomorphic to Ay or there exists an
odd number ¢ > 5 such that E/Z(E) ~ PSLy(q).

PrOOF. We first recall that, since E is a component (and hence quasi-simple),
we have that O(E) < Z(E). Now we look at S. This is a 2-group of rank 1 and
hence S is cyclic or quaternion. By Theorem 2.20 it follows that, in the cyclic case,
E = O(E)S. But O(E) < Z(E) and consequently E/Z(E) is a 2-group, which is
a contradiction. Therefore S is quaternion and the Brauer-Suzuki Theorem 2.21
implies that the unique involution in S lies in Z(F). In particular F is not simple.
Moreover a Sylow 2-subgroup of E/Z(E) is dihedral and the Gorenstein-Walter
Theorem 2.22 yields the result. ([l

THEOREM 2.24. Suppose that X has odd order and let P € Syl,(X). If char(X) =
p, then ZJ(P) < X.

PrROOF. This is a weakened version of Glauberman’s ZJ-Theorem (in [Gla68]).
O

THEOREM 2.25. Suppose that X has odd order and let R be an r-subgroup of
X containing O, (X). If X has characteristic r, then K*(R) is normal in X.

PRrOOF. This is a special case of Theorem A in [Gla]. O

THEOREM 2.26. Suppose that the group A acts coprimely on X and that X has
characteristic r for some prime r > 5. Let R denote the unique mazimal ACx (A)-
invariant r-subgroup of X. Then K*°(R) is normal in X.

PRrROOF. This is Theorem A in [Fla02]. O

THEOREM 2.27. Suppose that X is a w-group and that A is a @' -group of
automorphisms of X. Suppose that t is an automorphism of X of order 2 such that
Cx(t) < Cx(A). Then [Cx(A),t] and [X, A] are normal subgroups of X and [X, A
is milpotent of odd order.

PrROOF. This is a weakened version of Theorem 1 in [Gla72]. O
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Specific Preparatory Results

In this section we prove a few technical results that will be used later on. As
before we let X denote a finite group and we let p and g be prime numbers.

3.1. Nilpotent Action

THEOREM 3.1. Suppose that p is odd, let F be a field of characteristic p and V
a finite dimensional F-vector space. Suppose that X acts on V and that t € Z*(X)
is an involution such that dim(Cy (t)) < 1. If X/O(X) is 2- and 3-perfect, then the
action of [X,t] on V is nilpotent.

ProOOF. We first notice that [X,t] < O(X) because t € Z*(X). It follows that
X = Cx(t)O(X) and that [X,¢] is soluble because it has odd order. Assume that
the theorem is false and choose X to be a minimal counter-example. More precisely
we choose X such that X/O(X) is 2- and 3-perfect and that the action of [X,¢] on
V is not nilpotent, and we assume that | X|4dim (V) is as small as possible. We may
suppose that F is algebraically closed. It follows that X acts faithfully on V. Next
we show that the action of X is irreducible and that, consequently, O,(X) = 1:

If W is a proper X-invariant subspace of V', then by induction [X ¢] acts nilpo-
tently on W and on V/W and hence on V, which is a contradiction. Thus X acts
irreducibly.

As the action of [X,t] on V is not nilpotent by assumption, we have that
[X,t] # 1 and in particular [O(X),t] # 1. Therefore ¢ does not centralise F(O(X))
and we find an odd prime ¢ such that [O4(X),t] # 1. Applying Lemma 2.5, let Q be
a critical subgroup of O4(X). Then [@,t] # 1 and ®(Q) < Z(Q) =: Z (by Lemma
2.5). Moreover @ is abelian or of exponent q. We note that @ < X and therefore
Cv(Q) =0.

(1) Let n € N and ty,...,t, € t9. Let Qo := QN (t; | i € {1,...,n}). Then
dim([V, Qo)) < n.

PRrOOF. Let ¢ € {1,...,n}. Then dim(Cy(¢;)) = dim(Cy(t)) < 1 and
therefore [V, t;] has codimension at most 1.

Let U := N;cq1,..ny[Voti]. Then U has codimension at most n in V'
and every element in {t,...,t,} inverts U. As @ has odd order, we see
that Qg is generated by products of an even number of conjugates of ¢ and

therefore Q¢ centralises U. As U has codimension at most n, this implies
that dim([V, Qo)) < n. O

(2) Let X := X/O(X). Then Cx(t) = 0*(Cx (1)) = O3(Cx (1)).

PrOOF. We know that X = O?(X) = O3(X) by hypothesis. As t €
Z*(X) and hence X = Cx(t), this implies the statement. O

15
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(3) [Z,t] = 1. In particular @ is not abelian and hence @ has exponent ¢. (So
Q is extra-special.)

PROOF. Assume otherwise and let y € Z# be such that y is inverted
by t. Then (t,y) = (¢, t¥) and (1) yields that dim([V,y]) < 2. Let 1}
and V5 denote the distinct 1-dimensional eigenspaces for y on V' and let
Vs .= [V, ¢]N[V,tY]. Then V3 = Cy (y) and V = V5 @ Vo @ V5. Moreover @
normalises V1, V5 and V3 and ¢ inverts Vs, therefore [Q, ¢] centralises V3.
It follows that [V,[Q,t]] = [Vi1 @ V2, [Q,t]] = V1 @ V2 = [V, y] and hence
[Q,t] = (y). In particular (y) is Cx(¢)-invariant, but not centralised by
Cx (t) because [y,t] # 1. This implies that Cc, (4)(y) has even index in
Cx (t), contrary to (2). As [Q,t] # 1, it follows that @ is not abelian. O

(4) q=3.If y1,y2 € Q¥ are inverted by t and if R := (y, y2) is extra-special
of order ¢3, then dim([V, R]) = 3 and R = [Q, t].

PROOF. Suppose that y;,y2 € Q¥ are inverted by ¢ and that R :=
{y1,y2) is extra-special of order ¢®. Then R(t) = (t,t¥1,#¥2) and therefore
dim([V, R]) < 3 by (1). As [V, R] is a faithful FR-module and ¢ is odd,
it follows that dim([V,R]) > ¢ > 3 and so ¢ = 3 = dim([V; R]). Then
R acts irreducibly on [V, R] and we have proved most of the results in
(4). For the last assertion let x € Z(R) be such that [V,R] = [V,z].
We assume that R # [Q,t]. Then there exists an element y3 € Q\R
of order ¢ that is inverted by ¢. We set Y := R(ys) and apply (1), so
that dim([V,Y]) < 4. The subgroup P := (y1,ys) of @ is extra-special
of order 27 with Z(P) = Z = Z(R), because @ is extra-special by (3)
and y1,y3 ¢ Z. Let ¢’ € Z(P) be such that [V, P] = [V,2] and let
U := [V,z]n[V,2']. Then U = [V, P] N[V, R] is 2-dimensional because
dim([V, P] + [V, R]) = dim([V, Y]) < 4 and [V, P] # [V, R]. But  and 2’
lie in Z(R) and therefore R normalises [V, z] N [V, 2]. This is impossible
because this is a proper subspace of [V, R] and R acts irreducibly on [V, R].
Thus R = [@, t] and the proof of (4) is complete. |

Let y1,72 € Q7 be distinct such that ¢ inverts y; and y» and such that (y;,y2)
is extra-special of order 27. Let R := [Q,t] and € Z(R)¥. Then R = (y;,y2) by
(4) and Cx (t) normalises () and therefore acts on R/(x). This group is elementary
abelian of order 9 and C'x (t) normalises it, so Cx (t)/Cc (+)(R/(x)) is isomorphic
to a subgroup of G'Ly(3). This implies that Cx (t)/Ccy ) (R/(x)) has a non-trivial
2- or 3-factor group whence the same holds for Cx(¢). This contradicts (2) and
hence the proof is complete. ([

REMARK 3.2. The non-split extension X of 3'*2 with SLs(3) acting on it
(i.e. X is a non-3-perfect {2,3}-group) arises naturally in the proof. Considering
the action of X on a 3-dimensional vectorspace over GF(7) illustrates why a more
general result, namely omitting the hypothesis that X is 3-perfect, does not hold.

COROLLARY 3.3. Suppose that p € 7(X) is an odd prime and let P := O,(X).
Suppose that X/O(X) is 2- and 3-perfect and that t € Z*(X) is an involution such
that Cp(t) is cyclic. Then the action of [X,t] on P is nilpotent.
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PrOOF. This follows from Theorem 3.1 because X acts on the elementary
abelian p-group P/®(P). O

3.2. Special Primitive Pairs

Here we introduce the notion of an A-special primitive pair of characteristic q.
These pairs play a role at different places in the text.

DEFINITION 3.4. Suppose that Hy, Hy are distinct proper subgroups of X and
that A < HyNHy. Let m:= w(A) and ¢ € #’. Then we say that the pair (Hy, Hz) is
an A-special primitive pair of characteristic ¢ of X if and only if the following
hold:

e Forallie {1,2},if 1 #Y < H;, then Nx(Y) =
e for all i € {1,2}, we have that F*(H;) = O4(H;)
° Cx(A) < H; N Hy and
e A< ZI(Hy)NZ:(H>2).

Here the subgroup Z}(H;) (with ¢ € {1,2}) denotes the full pre-image of
Z(H;/On (H;)) in H;. The above definition is inspired by the notion of a primitive
pair of characteristic ¢ as, for example, in [KS04] on page 262. The special requi-
rements on A compensate for the fact that we might not have coprime action and
that we do not impose any solubility or stability hypothesis.

We begin with a few preparatory lemmas and then state and prove the main
results.

H;;
;

LEMMA 3.5. Suppose that  is a set of primes, that ¢ ¢ ™ and that A is a -
subgroup of ZX(X). Then X has a unique mazimal ACx (A)-invariant q-subgroup
Q and 0g(X)0,4(Cx(A4)) < Q < Ox(X).

PROOF. Let Y € Nx(ACx(A), q) be arbitrary. The coprime action of A on Y
yields that Y = Cy (A)[Y, 4], with Lemma 2.1 (2). As Cy (A) is a Cx (A)-invariant
g-subgroup of Cx(A) and ¢ ¢ m, we see that Cy (A4) < O (Cx(A)).

Let X := X/O.(X). Then A < Z(X) because A < Z*(X) and therefore
X = Cx(4) = Cx(A). It follows that

On (Cx(A4)) = O (X) =11

and hence O,/ (Cx(A)) < O (X).

Together with the previous paragraph this means that Cy (A) < O,/ (X). We
also see that [Y,A] < Y N ZXX) < O (X) because A is a subgroup of Z*(X)
and Y is a 7’-group. Therefore every member of Nx (ACx(A),q) lies in O (X).
Together with the coprime action of A on O,/(X) and Lemma 2.3 this implies that
the intersection @ of all A-invariant Sylow g-subgroups of O,/(X) is the unique
maximal ACy (A)-invariant g-subgroup of X. As O,(X)04(Cx(A)) is, of course,
an ACx (A)-invariant g-subgroup of X, it is contained in @ as stated. ([

LEMMA 3.6. Suppose that A is a ¢'-subgroup of X and set m := w(A). Let
H < X be such that the following hold:

~Cx(A) < H;
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- A< ZI(H) ;
— H is primitive and of characteristic ¢ and
-2emorq>5.

Then H has a unique mazimal Cx (A)-invariant g-subgroup Q, moreover H =
Nx(K*(Q)) and Q € Ny (Cx(A),q).

PROOF. Our hypothesis A < Z*(H) implies that A is abelian and lies in
Or »(H). Therefore Ny (Cu(A), q) = Ng(ACx(A),q) has a unique maximal ele-
ment @, by Lemma 3.5. Now let Qg := K*°(Q). Then Theorem 2.25 (if 2 € «) or
Theorem 2.26 (if ¢ > 5) yield that Qo < QO (H) and that, in particular, O, (H)
normalises Q. But also, Qg is Cy(A)-invariant and therefore C'x (A)-invariant. As
A < ZX(H), we have that H = Cx(A)Or(H) whence H normalises Q. Thus
Nx(Qo) = H because Qo # 1 and H is primitive. For the last statement let
Q < Q* € Ux(Cx(A),q). Then Ng«(Q) < Nx(Qo) < H and Ng-(Q) is Cx(A)-
invariant which means that Ng- (@) lies in the unique member @ of N (Cx (4), q).
Therefore Ng-(Q) = Q and it follows that Q = Q*. O

THEOREM 3.7.
Suppose that A is a subgroup of X and let m := w(A). Suppose that q € 7', that

04(X) =1 and that, whenever ACx(A) < H < X, then H := H/O,(H) has a

unique mazimal ACx (A)-invariant q-subgroup.
If (Hy, Hy) is an A-special primitive pair of characteristic ¢ of X and if 2 €
orq>5, then Oy(H1) N Hy =1 = 04(Hz) N Hy.

PROOF. Suppose that Hy, Ho < X are proper subgroups of X such that
(Hy, Hs) is an A-special primitive pair of characteristic ¢ of X. We note that this
implies that A is abelian.

() Let Q1,Q2 € N (Cx(A),q) and suppose that Q1 N Qs # 1.
Then Q1 = Qs.

PROOF. Let us assume that this is false and choose @1,Q2 to be
distinct members of N (Cx(A),q) such that D :== Q1 N Q2 # 1 is as
large as possible. Since O4(X) = 1 by hypothesis, we find a maximal
subgroup H of X containing Nx (D). As D # @Q1, we may choose Ry €
N (Cx(A),q) such that D < Ng,(D) < Ry. Then we let By < R} €
N% (Cx(A),q) and see that D < Q1 N R}, hence our choice of Q1 and
Q2 forces Q1 = Rj. In particular, this means that R; < (1. Arguing
similarly for some Ry € N (Cx(A),q) containing Ng, (D) and for some
R; € N (Cx(A),q) with Ry < R3, we also have that D < Q2N Rj whence
Q2 = R5 and Ry < Q».

By hypothesis, H has a unique maximal C'x (A)-invariant g-subgroup
@ modulo O/ (H) and therefore QO (H) contains RO, (H) as well
as RaOn (H). Now we let W := QO (H)Cx(A) and we observe that
QO (H) < Or (W) and hence W = O (W)Cx (A). In particular, A <
Oy »(W). Now Lemma 3.5 is applicable and yields that ¥ has a uni-
que maximal Cx (A)-invariant g-subgroup. But also, we chose Ry and Ry
from U} (Cx(A),q) and since Ry, Ry < W, this implies that Ry, Ry €
Ny (Cx(A),q). Then uniqueness forces Ry = Rs.
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Therefore ]\7Q1 (D) S R1 = R1 N R2 S Ql N QQ = D whence D =
Ng, (D). It follows that D = (); and hence Q1 = @2, which is a contra-
diction. g

Now we assume further that O,(H1)NHs # 1 or O,(H2)NHy # 1 and we work
towards a contradiction.

By Lemma 3.5 we know that O4(H;) lies in the unique maximal Cx(A4)-
invariant g-subgroup @1 of Hy and that O4(H2) lies in the unique maximal Cx (A)-
invariant g-subgroup @2 of Hs. Our hypotheses that 2 € m or ¢ > 5 and that H;
and Hs are primitive and of characteristic g also yield that Q1, Q2 € % (Cx(A),q),
with Lemma 3.6. The subgroups O,(H1)NH; and O,(H2)NH; are Cx (A)-invariant
g-subgroups of H; as well as Hy and therefore lie in @7 and in Q2. In particular, as
one of those intersections is non-trivial by our assumption, we see that Q1 NQ2 # 1
and so (*) forces ()1 = Q2. Then Lemma 3.6 implies that H; = Nx (K*°(Q1)) = Hs,
which is a contradiction. (]

THEOREM 3.8.

Suppose that p # q, that Oy(X) =1 and that y € X is an element of order p.
Suppose further that, whenever Cx(y) < H < X, then y € Z;(H).

If (Hy, Hy) is a (y)-special primitive pair of characteristic ¢ of X and if p =2
orq>5, then Og(H1) N Hy =1 = 0Oy(Hz2) N Hy.

PRrROOF. As O4(X) = 1 by hypothesis, we may choose H < X such that
Cx(y) < H. Then y € Z;(H) and Lemma 3.5, applied to m = {p}, yields that
H has a unique maximal Cy(y)-invariant ¢g-subgroup. As Cx(y) = Cg(y), it fol-
lows that H := H /Op (H) has a unique maximal C'/X(\y)—invariant g-subgroup.
This means that the hypotheses of Theorem 3.7 are satisfied and we conclude
that, if (Hy,Hs) is a (y)-special primitive pair of characteristic ¢ in X, then
O4(Hy)NHy =1=04(Hz) N Hy as stated. O
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Isolated Involutions

From now on G is a finite group and z € G is an isolated involution. We set
C := Cg(z) and start by collecting some basic facts. Then we deduce knowledge
about the set K := {229 | g € G} of commutators and use it to make initial
statements about the structure of G.

LEMMA 4.1. Let z € S € Syl(G).

(1) 2608 ={z}.

(2) Ewery 2-subgroup of G that is normalised by z is centralised by z. In par-
ticular z € Z(S).

(3) For all g € G, the element zz9 has odd order.

(4) Whenever z € H < G, then 26 N H = 2.

(5) Let w € G\z% be an involution. Then the order of zw is even, but not
divisible by 4. In particular, the Sylow 2-subgroups of (z,w) are elementary
abelian of order 4.

(6) Ifze X QY <G, then Y = XCy(2).

(7) Suppose that = ¢ N < G and let G := G/N. Then Cz(z) = C and z is
isolated in G.

(8) If C < H <@, then H is the only conjugate of H in G that contains z.

(9) If H < G is a z-invariant subgroup, then H N C controls fusion in HNC
with respect to H.

(10) O*(G) = G if and only if O*(C) = C.
(11) If s,t € 2€ are distinct, then st ¢ C.

PROOF. (1)-(3) are straightforward from the definition of “isolated”.

(4) Let g € G be such that z9 € H. We observe that (z,29) is a dihedral
group of twice odd order by (3). Thus z and z9 are conjugate in (z, 29) by Sylow’s
Theorem.

(5) Set D := (z,w) and note that zw has even order because otherwise z and
w are conjugate. Let z € T € Syla(D). Then z € Z(T) by (2) and on the other
hand a power of zw is the unique central involution in D. Therefore T is elementary
abelian of order 4.

(6) Let z € P € Syla(X). As z is isolated and central in P by (2), we have that
Ny (P) < Cy(z). Hence with a Frattini argument, it follows that Y = X Ny (P) <
XCy(z) as stated.

(7) Of course C' < Cx(Z), so now we prove the converse. It follows from (4)
that N acts transitively on 2% N Nz, so every z-invariant coset of N in G has a
representative from C. Therefore C5(Z) < C and the second statement follows from
there.

21
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(8) Assume that g € G\Ng(H) is such that z € H9. Then z € H N HY and
therefore z,29 ' € H. It follows from (4) that there exists an element h € H such
that z = 2"9. Hence hg € C < H and thus ¢ € H, which is a contradiction.

(9) Let z,y € HNC and let h € H be such that 2" = y. As x,2" are both
contained in C, it follows that z, 2" € Cr(x)(z). But then (4) yields that z and
z""" are conjugate in C (2)(2). Let a € Cy(2)(2) be such that 2% = 2" and note
that 29" = 2 with this choice. As Cg(x) is z-invariant, we find some b € Cg(x)
such that a = zb and we see that 2" = 2**" = %" = 2 This means that bh € CNH
and 2" = 2" = y.

(10) By (2) we know that C' contains a Sylow 2-subgroup of G. Now suppose
that y € C is a 2-element. Then y“ N C = y© by (9). So the result follows from
Lemma 2.19.

(11) Assume that st € C and set X := Cg(st) and Y := X (¢). Then ¢ inverts st
and z centralises st and thus z € X 4Y and ¢t ¢ X. But z and ¢ are both contained
in Y and therefore conjugate in Y by (4). This is impossible. O

DEFINITION 4.2. Recall that K = {229 | ¢ € G}. We define an operation o in
the following way: For all a,b € K we set a o b := aba.

Fischer introduced such an operation in a more general context in [Fis64] where
he proves a special case of the Z*-Theorem. Glauberman refers to Fischer’s result
in [Gla66a] and he mentions in [Gla] that the Z*-Theorem is a group theoretic
equivalent to the fact that certain finite loops of odd order — which he refers to as
B-loops — are soluble. Therefore the following construction will look familiar to any
reader who has seen the corresponding results from loop theory.

LEMMA 4.3.

(1) K is C-invariant and contains 1.

(2) An element x € G is contained in K if and only if x has odd order and z
mverts x.

(3) Let a € K. Then for alln € N, the element a™ lies in K.

(4) o is a binary operation on K.

(5) Leta,b,d € K. Ifaob = d, then a~*od = b. Moreover a=tob™! = (aob)~1.

(6) For alla € K, the maps k+— koa and k — aok are bijective on K.
PROOF. The first statement is immediate. For the remainder let a,b € K be

arbitrary and let g,h € G be such that a = 229 and b = zz". Then (z,29) is a

dihedral group of order 2 - o(a) and o(a) is odd by Lemma 4.1 (3), moreover z

inverts a. Conversely suppose that € G has odd order and is inverted by z. Then

x=z-zx and zz € 2% therefore x € K and (2) holds. For (3) we observe that z

inverts a and hence it inverts a”, so as a™ has odd order it follows that o™ € K by

(2). Looking at (4) we calculate

h

aob=aba=22922"229 = 22" e K

and therefore o is a binary operation on K.
For (5) we recall that aob = d means that aba = d. Thusa'od = a~'da™! = b
as stated. Finally

(aob) ™ =(aba) ' =a b e =a " ob
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In (6) it suffices to show that both maps are injective on K. Let d € K and let
k € G be such that d = zz*. Suppose that a o b = a o d. Then immediately b = d.
Now if aob = dob, then z2922"229 = zzFz2"22F and it follows that z"he = zhd,
Hence had~'h~! € C and this means that that z9°" ' 2¥*"" € C. Then Lemma
4.1 (11) forces 29" = zk#h"" and therefore gzh~'hzk~! € C. This yields that
gk™' € C, s0 29 = 2F and finally a = d. O

DEFINITION 4.4. For all a,b € K, we denote by a + b the (by Lemma 4.3 (6))
unique element d in K with the property that d o a=! = b. In other words, (a +
bla~l(a+b)=(a+b)oa"t =b.

LEMMA 4.5. Let a,b,d € K.

(1) a+b=b+a.

(2) For all ¢ € C we have that (a +b)° = a® + b°.
(3) (a+b)~t=a"t+b"1.

(4) a+b=1if and only ifb=a"'.

(5) ao(b+d)=aob+aod.

PROOF. We have that (a + b) o a~! = b by definition. Lemma 4.3 (5) yields
that (a+b)"'ob=a"! and then (a +b) ob~! = a. But Definition 4.4 implies that
a=(b+a)ob ! and hence that a +b = b+ a.

For all ¢ € C' we know that ¢ acts on K by Lemma 4.3 (1). Also, by Definition
4.4, we see that (a + b)a=t(a + b) = b and therefore b¢ = (a + b)(a=1)(a + b)°.
Consequently (2) holds. Then (3) follows from (2) because z is in C' and inverts
K, by Lemma 4.3 (2). For (4) we see, just using Definition 4.4, that a + b = 1
if and only if 1 0 a=!' = b, and this holds if and only if a=' = 1la='1 = b. For
the last assertion we recall that (b+ d) o b= = d by definition. This gives that
aod = ao((b+d)ob~1). On the other hand, by definition of the element aob+aod,
we have that aod = (aob+aod)o (aob)~!. This yields that

(aob+aod)o(aob) ' =aod=ao((b+d)ob ) =a((b+d)b (b+d))a

=a((b+d)aa b ra"ta(b+d))a = a(b+ d)a((aob)"Va(b + d)a,

by Lemma 4.3 (5). But
a(b+d)a((aob) ™ a(b+d)a = (ao(b+d))(acd) ™' (ao(b+d)) = (ao(b+d))o(acd) ™",

therefore
(aobdaod)o(aob)™ =(ao(b+d)o(aob)™!
and Lemma 4.3 (6) gives the result. O

THEOREM 4.6. Let a € K and let s € C be an involution. Then there exist
elements u € Ck(s) and v € Ck(sz) such that a = wov, and this representation of
a is unique. In particular |K| = |Ck(s)||Ck (sz)| and K C (Ck(s), Ck(s2)).

PrROOF. Lemma 4.5 (1) and (2) imply that a + a® = ¢®* + a = (a + a®)® and
therefore a + a® € Ck(s).

Now, for all b € K, we define b := b+ b* and we set J := {b € K | b= 1}. Then
Lemma 4.5 (4) yields that

J={be K|b+b°=1} =Ik(s) = Cgk(sz).
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As @ € K is of odd order (Lemma 4.3 (2)), there exists a power y of @ with
the property that (y~1)? = @. We pick this element y and observe that, by Lemma
4.3 (3), it is contained in K and thus lies in Ck(s). Furthermore y 0@ = 1. Lemma
4.5 (5) and the fact that s centralises y imply that

yoa=yo(a+ta’)=yoatyoa’®=yoa+(yoa) =7yoa.

1

Thus yoa = yoa = 1 which means that yoa € J. Now let u := y~" and v := yoa.

Then
a=y lyayy ' =y lo(yoa) =uov e Ck(s) o Ck(s2).
This proves the existence of a representation as stated.
For the uniqueness we suppose that v’ € Ck(s) and v’ € Ck(sz) are such that

a=u'ov'. Then
a=uov = (uov)+ (uov) = ov)+ (v ov)=u" o (v +0%)
where the last equality comes from Lemma 4.5 (5). Moreover v € J = Ik(s) by
choice which implies that v/ = 1. We deduce that
a=1uo(W +v) =uov =u ol =(u)>
and therefore (u’)?

=a =% As u and «’ are of odd order, we obtain that u = u'.
Finally Lemma 4.3 (6)

yields that also v = v'. O

LEMMA 4.7. Suppose that z € H < G. Then H = Cyx(z)(H N K). More
precisely, every coset of Cy(z) in H contains a unique element that is inverted by
z. In particular we have that G = CK and that every coset of C in G contains a
unique element that is inverted by z. Moreover, for every involution s € C, we have

that |G| = |C||Ck (s2)||Ck (s)].

PROOF. Set Cy := Cp(z). As K is C-invariant, it follows that H N K is Cy-
invariant and every non-trivial element in H N K is inverted and not centralised
by z . Therefore (H N K) N Cy = 1. We also know that |H : Cy| < |H N K|
because {zz" | h € H} C HN K. Now we show that H N K contains a unique
representative for every coset of Cy in H. Suppose that 229, zz" € HN K are such
that Cpzz9 = Cyzz". Then 292" € Cy < C which by Lemma 4.1 (11) is only
possible if 29 = z".

The first two statements for G follow from this and, together with Theorem
4.6, this implies that |G| = |C||Ck(s2)||Ck(s)| as stated. O

LEMMA 4.8. Let p € w(G). Then 5 ((z),p) C Syl,(G).

PROOF. As z lies in a Sylow 2-subgroup of G, we only need to discuss the case
that p is odd. We proceed by induction on |G| and first show that U ((z),p) # {1}.
Suppose that 79(G) = 1. Then the Sylow 2-subgroups of G are cyclic or quaternion.
It follows that z € Z*(G) by Theorem 2.20 or the Brauer-Suzuki Theorem 2.21,
respectively. But then G = CO(G) and at least one of these subgroups has order
divisible by p. If p divides |C|, then z centralises a non-trivial p-subgroup of G. If p
divides |O(G)|, then Lemma 2.1 (7) yields that {1} # Vo(q)((2),p) € Va((z),p).

Thus we may suppose that 79(G) > 2 and we choose an involution s € C
distinct from z. By Lemma 4.7, the prime p divides one of |C|, |Ck (s)| or |Ck (sz)].
If p divides |C|, then there is nothing left to prove. Suppose therefore that p does not



4. ISOLATED INVOLUTIONS 25

divide |C|. Then by Lemma 4.7 and by symmetry between s and sz we may suppose
that p divides |Ck(s)]. If Ca(s) < G, then Vg, (s)((2),p) # {1} by induction
because z is contained in Cg(s). If Cq(s) = G, then s € Z(G). We can therefore
argue by induction in the factor group G/(s), applying Lemma 4.1 (7). We conclude
that g ({(z),p) # {1}.

Now let Py € U5 ((z),p) and let Ny := Ng(Pp). Then we have that z € Ny.
First suppose that Ny < G. Then induction yields that Wy, ((z),p) € Syl,(No).
By the maximal choice of Py, this implies that Py € Syl,(Nog) and therefore that
Py € Syl,(G). Now suppose that Ng = G. Then Py <G and in G/ P, there exists a
z-invariant Sylow p-subgroup by induction, because Py # 1. Its pre-image in G is a
z-invariant Sylow p-subgroup of G and equals Py by the maximal choice of Py. [J

DEFINITION 4.9. From now on, for every subgroup H of G and for every prime
p, we denote by Syl,(H, z) the set of all z-invariant Sylow p-subgroups of H. Simi-
larly, if V' is a 2-subgroup of G, then we denote by Syl,(H, V') the set of V-invariant
Sylow p-subgroups of H.

LEMMA 4.10. Let p € w(G). Then C acts transitively on Syl,(G, z).

PROOF. Let Py, P, €Syl,(G,z) and let ¢ € G be such that P{ = P». Since
z € Ng(Py) = (Ng(P1))?, we conclude that z and 29 are both contained in Ng(P2).
They are therefore conjugate in Ng(P2) by Lemma 4.1 (4). Choose h € Ng(P»)
such that z = z9". Then gh € C and P/" = P} = P,. O

LEMMA 4.11. Let V < G be an elementary abelian subgroup of order 4 that
contains z and that is generated by (necessarily non-conjugate) isolated involutions.
Let p € w(G). Then N5 (V,p) CSyl,(G) and Ce(V) = Ng(V) is transitive on
Syl, (G, V).

PROOF. We denote the involutions in V' by z, a and b and we note that all
previous results on isolated involutions can be applied to all these involutions. For
example, we may apply Lemma 4.8 and arguments from its proof. Let p be a prime.
With Sylow’s Theorem we may suppose that p is odd. The first step is to show that
Ua(V.p) # {1}:

Lemma 4.7 yields that p divides |C|, |Ck(a)| or |Ck(b)|. If p divides |C|, then
with Lemma 4.8, applied to C and the isolated involution a, we see that N5 (V, p) #
{1} and hence U (V,p) # {1}. Therefore we may suppose that p divides |Ck (a)| =
|Ca(a) : Co(a)]. Then p divides |Cg(a)| and therefore Lemma 4.8, applied to Cg(a)
and the isolated involution z, yields that We ) (V,p) # {1}. We deduce that
VIG(V7p) 7& {1}

For the remainder of the proof we argue by induction on |G|. Let P € U (V, p)
and let H := Ng(P). Then V < H. If H < G, then since a, b and z are isolated
in H we may apply induction and we see that Wy ((z),p) CSyl,(H). Then the
maximal choice of P implies that P € Syl,(H) and therefore that P € Syl,(G). If
H = G, then P <G and in G/P there exists a V-invariant Sylow p-subgroup, again
by induction and because we know that P # 1 from the previous paragraph. A
pre-image of a V-invariant Sylow p-subgroup of G/P in G is a V-invariant Sylow p-
subgroup of G and equals P by the maximal choice of P. This finishes the proof. [
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LEMMA 4.12. Suppose that V < G is elementary abelian of order 4 and that
z € V. Let a,b, z denote the involutions in V. Let p be a prime and suppose that
P € Syl,(G) is such that P < Cg(a). Suppose that C does not contain any Sylow
p-subgroup of G. Then |Ck ()|, =1 and |K|, = |Ck(a)|, # 1.

PRrROOF. From Lemma 4.7 we know that
|G‘p = |C|p‘CK(a)|p|CK(b)|p~

From our hypothesis we deduce that |G|, = |P| = |Cg(a)|,. But also, again with
Lemma 4.7, it follows that |Cg(a)|, = |Cc(a)|p|Ck(a)|,. Comparing these equati-
ons yields that

Clp|Ck (a)lp|Ck (D)l = |Gl = [Cala)lp, = |Cola)lp|Cr (a)l,
and hence
CloICr )]y = [Cola)l,-
As Cc(a) < C, we have that |Cc(a)|, < |C|, and thus |Ck(b)|, = 1. This implies
that |C|,|K|, = |G|y = |C|p|Ck(a)|p. Therefore |K|, = |Ck(a)|, and if |K|, =1,
then C' must contain a Sylow p-subgroup of G contrary to our hypothesis. So we
have that | K|, # 1 as stated. O

LEMMA 4.13. Let p € (G) and let P € Syl,(G, z). Then PN C € Syl,(C) and
[Klp = [Ip(2)] = [P : Cp(2)]-

PrOOF. Let PNC < Py € Syl,(C). Then Lemma 4.8 yields that Py < P; € Syl,(G, 2)
and by Lemma 4.10 there exists an element € C' such that P = P{. But then

Pg < CPI(Z)x = CP(Z) =PnC
and therefore PN C is already a Sylow p-subgroup of C. For the second statement,
Lemma 4.7 gives that |G| = |C||K| and thus |P| = |G|, = |C|,|K|p. On the other
hand
[Pl = |Cp(2)||P: Cp(2)| = |Cp(2)[|Ip(2)] = [Clp|Ip(2)|

by the previous paragraph. Hence | K|, = |Ip(2)|. O



KAPITEL 5

A Minimal Counter-Example to Glauberman’s
Z*-Theorem

We now begin our investigation of a minimal counter-example to the Z*-
Theorem. For the remainder of this text, until stated otherwise (in the last chapter),
we work under Hypothesis 5.1. The reader will be reminded of this hypothesis at
various occasions, but in our results we will usually not mention it. However, the-
re will be additional hypotheses coming in later on and these will be referred to
explicitly.

HYPOTHESIS 5.1.
Let G be a counter-example to Glauberman’s Z*-Theorem that is minimal in
the sense that
e if H is a proper subgroup of G, then every isolated involution of H lies in
Z*(H) and
e if NI H <G is such that H := H/N is a proper factor of G, then every
isolated involution of H lies in Z*(H).
Let z be an isolated involution in G such that z ¢ Z*(G). Moreover let C :=
Ca(z) and let M be a mazimal subgroup of G containing C, let C := C/O(C) and
K :={z229] g€ G}.

We note that if G is chosen to be a minimal counter-example to the Z*-Theorem
with respect to the group order, then G satisfies Hypothesis 5.1. The next few
lemmas capture some fundamental statements that follow from our choices in this
hypothesis and that are used throughout this text many times.

LEMMA 5.2. Suppose that t € G is an involution and suppose further that
t € H <G and that t is isolated in H. Then the following hold:

(1) t € Z*(H), in particular H = Cg(t)O(H).
(2) {tt" |h e H} CO(H).
(3) O22(Ca(t)) N H < Oy 2(H).
(4) Wy ((t),p) S Syl,(H) for all p € w(H).
(5) t centralises Oz(H)E(H).
(6) Ift ¢ Z(H), then there exists an odd prime p such that [O,(H),t] # 1.
PROOF. By our hypothesis and since H is a proper subgroup of G, the Z*-
Theorem holds in H. As ¢ is isolated in H, this implies that ¢t € Z*(H). In particular

[H,t] < O(H) and therefore H = Cy(t)O(H), giving (1). For (2) we note that
{tt" | h € H} generates [H,t] which is contained in O(H).

27
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For (3) let X := Oy 2(Cq(t)) N H and set H := H/O(H). We note that
XO(Ca(t))/0(Ca(t) < 02(Ca(t)/0(Calt)))

is a 2-group whence X/X N O(Cg(t)) is a 2-group. As t € Z*(H), we have that
t € Oy 2(H) and consequently Lemma 2.9 is applicable. It yields that

XNO(Cs(t) <O(Cu(t)) <O(H).

In particular X ~ X/XNO(H) is a 2-group. Next let h € Cg(t). Then X" = X
and therefore X is normal in Cp (t). But H = Cp (t)O(H) which means that H =

C’/H(\t) and hence X is a normal 2-subgroup of H. Tt follows that X < Oy o(H). For
(4) we recall that ¢ is isolated in H and that, therefore, Lemma 4.8 is applicable to
t and H.

Next we look at (5) and consider [E(H),t]. By (1) we have that

[E(H),1] < E(H) N O(H) < Z(E(H))

(
because O(H) is soluble. Thus [F(H),t, E(H)] = 1. With the Three Subgroups
Lemma and since E(H) is perfect it follows that [E(H),t] = 1. As t is isolated in
H, Lemma 4.1 (2) yields that ¢ centralises Oz (H).

For (6) we assume that t centralises F*(H). Then t € Cy(F*(H)) = Z(F(H))
and therefore t € Oz(H). Then ¢t € Z(H) by 4.1 (1), which is a contradiction. We
conclude that [F*(H),t] # 1 which, together with (5), yields that [O(F(H)),t] # 1.
Therefore we find an odd prime p such that O,(H) is not centralised by ¢. g

LEMMA 5.3.
(1) r2(G) = 2.
(2) G possesses at least two conjugacy classes of involutions.
(3) K generates a normal subgroup of G of even order.

PRrOOF. If ro(G) = 1, then the Sylow 2-subgroups of G are cyclic or quaternion.
In the cyclic case, Burnside’s Theorem (2.20) yields that z € Z*(G) contrary to
our hypothesis. In the quaternion case, the Brauer-Suzuki Theorem (2.21) gives
a similar contradiction. This proves (1). In particular it follows that C contains
involutions that are distinct from z. These involutions cannot be conjugate to z
which leads to (2). For (3) we note that (K) = [G, z] 9 G. If this group has odd
order, then z € Z*(G) and then G is not a counter-example. ]

LEMMA 5.4. G = F*(G)(z) and F*(G) is a non-abelian simple group.

PROOF.
(1) O(G) =1 and G = (z9).

PROOF. Suppose that O(G) # 1 and let G = G/O(G). Lemma
4.1 (7) yields that Z is isolated in G. Then from the minimal choice of

G it follows that Z € Z*(G) = Z(G). But then z € Z*(G), which is a
contradiction.

For the second statement assume that H := (z¢) < G. We note that
H < G and hence O(H) < O(G) = 1. Together with Lemma 5.2 (1)

it follows that z € Z*(H) = Z(H) and hence z commutes with all its
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conjugates in G. But z is isolated and consequently z € Z(G). This is a
contradiction. O

(2) F(G) = 1.

PROOF. Assume otherwise. Then (1) yields that O2(G) # 1. We note
that z centralises O2(G) by Lemma 4.1 (2). Therefore all conjugates of
z in G centralise O3(G) and with (1) it follows that O2(G) < Z(QG).
In particular z ¢ O3(G) because z ¢ Z(G). Now let t € O2(G) be an
involution. In the factor group G := G/(t) we have that Z is isolated by

Lemma 4.1 (7). The minimal choice of G implies that z € Z*(G). Let
X <G be such that X = O(G). Then O(X) < O(G) = 1 by (1) and it
follows that (t) € Syla(X) and consequently X = (¢) by Theorem 2.20.
Therefore 7 € Z*(G) = Z(G) which means that z € Oy(G). This is a

contradiction. O
(3) G =F*(G){2).

PROOF. Assume that F*(G)(z) < G. Then z € Z*(F*(G)(z)) by
Lemma 5.2 (1) and therefore

[F*(G), 2] < F*(G) NO(F*(G)(2)) < O(F(G)) = 1.
This implies that F*(G) centralises z and all its conjugates. It follows
that F*(G) < Z(G) = 1, by (1) and (2), and this is impossible. Hence
F*(G){z) =G. O

(4) F*(G) is simple and non-abelian.

PROOF. F*(@G) is non-abelian by (2), in fact F*(G) = E(G). We
assume that F*(G) is not simple and deduce that G has at least two
components. Let N be a component of G and let z € S € Syls(G). Then
z € Z(S) by Lemma 4.1 (2) and, as N is subnormal in G, we have that
N NS €Syla(N). Therefore z centralises a non-trivial 2-subgroup of N.
In particular N N N® # 1. But N and N* are normal in F*(G) whence
NNNZ#isnormal in F*(G). As N is a minimal normal subgroup of F*(G),
this implies that N = N*. We recall that N # F*(G), so N(z) < G and
Lemma 5.2 (1) yields that z € Z*(N(z)). It follows that z centralises every
component of G whence [F*(G), z] = 1, which is a contradiction.

We conclude that F*(G) is simple. O

O

LEMMA 5.5. If O?(C) # C and z € S € Syl(G), then S is a direct product of
(z) with a subgroup of S of index 2.

PROOF. First it follows from Lemma 4.1 (2) that z € Z(S) and thus S < C.
Lemma 4.1 (9) implies that Lemma 2.19 is applicable. As O?(C') # C, it yields that
O?(G) # G and therefore, with Lemma 5.4, that z ¢ O?(G) = F*(G). In particular
we see that S = (SN F*(GQ)) x (z). O

LEMMA 5.6. OQ(CF*(C)(Z)) = CF*(C’)(Z) and |C : OQ(C)| < 2.
In particular |C : O?(C)| < 2 and O*(C/(z)) = C/{(z).



30 5. A MINIMAL COUNTER-EXAMPLE TO GLAUBERMAN’S Z*-THEOREM

PROOF. If G is simple, then Lemma 4.1 (10) yields the result.

Next suppose that G is not simple. Then Lemma 5.4 implies that G = F*(G)(z)
and that O*(G) = F*(G) has index 2 in G. Let z € S €Syla(G) and let T :=
SNF*(G). Then S = T x (z) by Lemma 5.5 and T is a Sylow 2-subgroup of
Co := Cp+(c)(2). The simplicity of F*(G) gives that O*(F*(G)) = F*(G). As Cy
is z-invariant, Lemma 4.1 (9) yields that the hypothesis of Lemma 2.19 is satisfied,
so we deduce that O?(Cy) = Cy. As O%(Cy) = O?*(C)N Oy, it follows that C/O?(C)
has order 2 and this implies the remaining assertions. O

The next two results show that G behaves almost like a simple group.

LEMMA 5.7.
(1) F*(Q) is the unique minimal normal subgroup of G.
(2) Lett € G be an isolated involution in G. Then G = F*(G)(t).
3) G=(K,z).

PROOF. Lemma 5.4 implies (1). For (2) we see that ¢ is isolated and hence
Lemma 5.4 may be applied to G and ¢ instead of G and z. We know that (K) <G
by Lemma 5.3 (3) and hence (1) forces F*(G) < (K). This yields (3). O

COROLLARY 5.8. Suppose that t € G is an isolated involution and that H is a
mazimal subgroup of G containing t. Then H is primitive.

PRrROOF. Let 1 # X < H. Then the maximality of H implies that Ng(X) = G
or Ng(X) = H. In the first case, it follows from Lemma 5.7 that G = X () < H,
which is a contradiction. Therefore the second case holds and consequently H is
primitive. (]

The last few lemmas of this section are taken from [Wal08|, with minimal
changes.

LEMMA 5.9. Suppose that t € z9\M and set n := |M : C|. Let D :== M N M*
and let I := Ip(t). Then the following hold:

(1) D=0(D)Cp(t)

(2) 2M = {2 | z € I}. In particular D is transitive on ™.

(3) M = CI. More precisely, every coset of C' in M contains exactly one
element of 1.

(4) |[I|=|D:Cp(t)|=|D:Cp(z)] =n.

(5) Let ¢ € m(G) and Q € Syly(D,t). Then |Ig(t)| = ny.

PRrROOF. As (D, z) < M # G, Lemma 5.7 yields that D is not normal in G.
Moreover D is t-invariant and therefore D(t) is a proper subgroup of G. Since ¢ is
isolated in G, it follows from Lemma 5.2 (1) that

D(t) = O(D(t))Cp)(t)-

Hence [D,t] < DNO(D(t)) < O(D) which gives (1).
Let u € ™. Then u and 2! are conjugate in (u, z*) because uz’ has odd order
by Lemma 4.1 (3). In fact there exists an involution s € {(u, 2%) such that u® = 2.

Now u = 2!, On the other hand, since u € 2™, Lemma 4.1 (4) yields that z and u



5. A MINIMAL COUNTER-EXAMPLE TO GLAUBERMAN’S Z*THEOREM 31
are also conjugate in M. Choose x € M such that u® = z. Then z = u® = 2z!** and
therefore tsz € C. This yields that ts € M because (x,C) < M. As ts is inverted
by t, it follows that ts € M N M* = D and thus ts € I. This gives (2) and implies
that M = CI. To finish the proof of (3), let 21,22 € I be such that Cx; = Cuxs.
Then :clx;l € C. But z1t and x5t are involutions that are conjugate to ¢ and hence
to z. Therefore zitzot = x1t(wat)™! = x1x2_1 € C. Lemma 4.1 (11) implies that
x1t = xot and finally x1 = 5.

For (4), we apply Lemma 4.7 to the isolated involution ¢ in D(t) and it follows
that I is a set of representatives for the cosets of Cp(t) in D. To prove (5) we observe
that, since t is isolated in D({t), we may apply Lemma 4.13. From there we obtain
that Cq(t) € Syly(Cp(t)) and that ny = |D : Cp(t)|, = |Q : Co(t)| = [Io(¥)|. O

LEMMA 5.10. Suppose that C is a maximal subgroup of G and let p € w(F(C)).
Then C contains a Sylow p-subgroup of G and every z-invariant p-subgroup of G
is centralised by z.

PRrOOF. Let P € Syl,(C). Then z € Cq(P) < Ca(0,(C)). But C is maximal in
G and therefore Corollary 5.8 implies that Ng(O,(C)) = C'. It follows that Cq(P) <
C. Now if we set X := Cg(P) and Y := Ng(P), then Lemma 4.1 (6) yields that
Y = XCy(z). But X and Cy(z) are both contained in C, thus Ng(P) =Y < C.
This means that P € Syl,(G). The rest follows from Lemmas 4.8 and 4.10. O

LEMMA 5.11. Suppose that C is a mazimal subgroup of G and let w := 7w(F(C)).
Let z € H < G. Then [H, z] is a 7' -group.

PRrOOF. Let Hy := [H, z] and assume that p € mN7(Hp). From Lemma 5.2 (2)
we know that Hy is of odd order and that z acts coprimely on Hy. Then Lem-
ma 2.1 (7) implies that W3 ((z),p) € Syl,(Hp). Lemma 5.10 yields that every z-
invariant p-subgroup of Hj is centralised by z. Then it follows with Lemma 2.6 that
Hy = Cpu,(2)Op (Hp). But this means that Hy = [Ho,z] < Op(Hy), contrary to
our choice of p. ([l

LEMMA 5.12. Suppose that q is a prime such that Oy(M) £ C. Then M does
not contain a Sylow q-subgroup of G.

PrROOF. First we observe that ¢ is odd by Lemma 4.1 (2). With Lemma 5.2 (4)
we choose Q) € Syl (M, z) and assume that Q € Syl,(G, z). As Oy(M) £ C, we have
that 1 # X := Ip_ (a)(2). If we set n := [M : C|, then Lemma 4.13 implies that
1 # |Ig(%)| = ng. Our objective is to show that X lies in every conjugate of M in
G.

We see that X is C-invariant and hence Lemma 4.10 gives that X is contained
in every z-invariant Sylow g-subgroup of G. The same lemma and our assumption
that @ € Syl,(G, z) imply that every z-invariant g-subgroup of G lies in M. Now let
g € G\M and M; := M9. We look at D := M; N M7 and see that D = Cp(2)O(D)
and |D : Cp(z)] =n by Lemma 5.9 (1) and (4). If we choose T € Syl,(D, z), then
part (5) of the same lemma yields that |I7(z)| = ng # 1. Moreover T' < M because
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T is z-invariant. Then there exists an element ¢ € C such that Ip(z) = Ig-(z) =
(Io(2))¢ and finally X = X< CIp(z) € D < M. Hence

1£XCN:= ()M QG
geG
But we know from Corollary 5.8 that M does not contain any non-trivial normal
subgroup of G, so this is impossible. O

LEMMA 5.13. Let t € C\{z} be an involution. Then C¢(t) & M.

PROOF. Let w := zt. Then we have that 1 # (w“) < G and hence (w%) £ M
by Corollary 5.8. So there exists a conjugate u of w that is not contained in M
and thus does not centralise z. We note that w and z are distinct and commute.
As z is isolated, this implies that w and z are not conjugate and it follows that
and z are not conjugate. Now set D := (u, z). By Lemma 4.1 (5) we know that the
order of uz is even and not divisible by 4. More precisely the Sylow 2-subgroups of
D are elementary abelian of order 4 and contain the unique central involution v of
D. As u € Cg(v) and u ¢ M, we have that Cg(v) £ M. Let z € T € Syly(D) and
let d € D be such that u? € T. It follows that T' = (z,u?) and hence v = zu?. But
u? (= zv) and w (= zt) both centralise z and therefore they are conjugate in C
by Lemma 4.1 (9). Thus v = zu? and ¢t = 2w are conjugate in C and Cg(v) £ M
implies that Cg(t) £ M. O



KAPITEL 6

Balance and Signalizer Functors

The concept of signalizer functors was introduced by Gorenstein and has many
applications in finite group theory, for example it plays an important role in the
Classification of Finite Simple Groups. Since we keep working under Hypothesis
5.1, the special behaviour of z in our minimal counter-example G leads to signa-
lizer functors for the prime 2 quite naturally and it turns out that they become
powerful tools. In this section, we therefore recall the notion of a signalizer func-
tor and Glauberman’s Soluble Signalizer Functor Theorem. Moreover we introduce
particular balance conditions and special signalizer functors that will have a role to
play in our analysis later on.

DEFINITION 6.1. Suppose that A is an elementary abelian 2-subgroup of C'
that contains z.

e For all a € A#, we set
a(a) == O(Cc(a)),

7(a) := [Ca(a), 2Co(c (a) and
6(a) := 7(@)O(Ce(A)).

e Suppose that A is of rank at least 3. We say that A is balanced if and
only if for all a € A# we have that a(a) < O(C). We say that A is
weakly balanced if and only if for all @ € A% we have that a(a) <
O(Cc(4)0(0).

e For all subgroups V of A of order 4 we set

Ay = (] O(Cgv))NC.
veV#
We say that A is 2-balanced if A is of rank at least 4 and if for all
subgroups V of A of order 4 we have that Ay < O(C).

The last definition seems to be slightly different from Gorenstein’s notion of “2-
balance for the prime 2in [Gor82], Section 4.4, but it is in fact the same because
for all involutions a € C we know that Cg(a) < G by Lemma 5.7 and hence
Cg(a) = Cc(a)O(Cg(a)) by Lemma 5.2 (1). Also, the words “balanced” and
“weakly balanced” have a meaning in standard literature already (see for exam-
ple [GLS96]), but the definitions above are close enough to these standard notions
that we thought that the choice of words is appropriate.

33
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DEFINITION 6.2. Let p be a prime and let A be an abelian p-subgroup of G.
Suppose that for all a € A# there is defined an A-invariant p’-subgroup 6(a) of
Cg(a). Then 0 is an A-signalizer functor if and only if the following balance
condition is satisfied for all a,b € A#:

0(a) N Ca(b) < O(b).

6 is soluble if and only if §(a) is soluble for all a € A#. A (soluble) A-signalizer
functor 6 is said to be complete if and only if there exists a (soluble) A-invariant
p’-subgroup W of G such that §(a) = Cy(a) for all a € A#. We refer to such a
subgroup W as the completion for 6.

THEOREM 6.3 (Glauberman’s Soluble Signalizer Functor Theorem). Suppose
that p is a prime and that A < G is an abelian p-subgroup of rank at least 3.

If 0 is a soluble A-signalizer functor, then 6 is complete. In particular, the
completion (0(a) | a € A%) is a soluble p'-subgroup of G.

PRrROOF. This holds independently of Hypothesis 5.1, see [GlaT6]. O

REMARK 6.4. It follows from the Odd Order Theorem that signalizer functors
for 2-groups are always soluble.

LEMMA 6.5. Suppose that A is an elementary abelian 2-subgroup of C that
contains z.
(1) For all a € A%, we have that a(a) < O(Cg(a)) and ala) = aaz).
(2) If A is balanced, then 7 defines an A-signalizer functor.
(3) If A is weakly balanced, then © defines an A-signalizer functor.

PROOF.

(1) Let a € A¥. We know that 2 € Cg(a), so Lemma 5.7 implies that
Ca(a) < G and then z € Z*(Cg(a)) with Lemma 5.2 (1). In particu-
lar z € Oy 2(Cg(a)) and [Cg(a),z] < O(Cq(a)). Now Lemma 2.9 yields
that

a(a) = O(Cey(a)(2)) < O(Cala)).
The fact that Ce(a) = Ce(az) implies the next statement.

(2) Suppose that A is balanced and let a,b € A%. As Co(c)(a) normalises
[Ce(a), z] and these two subgroups are A-invariant 2'-subgroups of C¢(a),
it follows that y(a) is an A-invariant 2’-subgroup of Cz(a). Now we apply
Lemma 2.1 (3) to deduce that

v(a) N Ca(b) = Ciog(a),(b)(Coc)(a) N Ca(b)),
where the second factor lies in Co(cy(b) and hence in y(b).

Let X := Cicg(a),2] (D). Then the coprime action of z on X yields, with
Lemma 2.1 (2), that X = Cx(2)[X, z]. The commutator [X, z] is contained
in [Ca(b), z] and hence in y(b). So it is left to show that Cx(z) < ~(b) to
establish the balance condition. But

Cx(2) = [Ca(a), 2] N Ca(b) < O(Ca(a)) N Ceo(b)
< O0(Cc(a))NCq(b) = ala) N Cq(b) < Cocy(b) < (b)
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because A is balanced. Hence v defines an A-signalizer functor.

(3) Suppose that A is weakly balanced. For all a € A%, we see as in (2) that
O(a) is an A-invariant 2'-subgroup of Cg(a). For the balance condition
let a,b € A#. Two applications of Lemma 2.1 (3) give that

©(a) N Ca(b)

= Clog(a).2](b) - (Coc)(a) N Ca (b)) - (O(Cc(A)) N Ca(b))
< Clos(a),2](0)Coc) ()O(Cc(A)).
The second and the third factor are contained in O(b), so let ¥ :=
C[Cc(a),z] (b) Then
Cy(z) <Ca(b)NO(Cq(a))NC < Cq(b) Na(a).
As A is weakly balanced, Lemma 2.1 (3) implies that
Cy (2) < Caa)(b) < Co(c)(0)Coce(ay (D) = Cowc) (b)O(Cc(A)) < O(b)

But also [Y, z] < [Ca(b),z] < ©(b), so with the coprime action of z
on Y and Lemma 2.1 (2) it follows that Y = Cy (2)[Y, 2] < ©(b).

O

In many situations, we use specifically designed signalizer functors to show
that C cannot have large elementary abelian 2-subgroups (or at least that we can
control where they lie in C). The idea is to find a suitable signalizer functor that
is complete and such that its completion, a 2’-subgroup of G, contains the set K.
This contradicts Lemma 5.3 (3). This argument is captured more specifically in the
next lemma and we see some applications in the course of this section.

LEMMA 6.6. Suppose that A is an elementary abelian 2-subgroup of G contai-
ning z and suppose that 0 is a soluble A-signalizer functor of G. Suppose further,
for all a € A%, that [Cg(a), z] < 0(a). Then A is of rank at most 2.

PrOOF. Assume that A has rank 3 or more. Then Theorem 6.3 implies that
6 is complete. In particular, the completeness subgroup W := (0(a) | a € A#) is
a subgroup of G of odd order. Now let a € A# and a # 2. Then z € Cg(a) and
therefore, by definition of the set K, we have that Cx(a) C [Ca(a),z] < 0(a).
Theorem 4.6 forces

K C (Ck(a),Ck(az)) < (0(a),0(az)) < W.
Hence K generates a subgroup of G of odd order contradicting Lemma 5.3 (3). O

LEMMA 6.7. C does not possess any 2-balanced subgroups.

PROOF. Assume that A < C'is a 2-balanced subgroup. Then z € A and r(A4) >
4 by definition, so we are aiming for a contradiction to Lemma 6.6 by showing that
7 defines an A-signalizer functor. Hence let a,b € A*. As b acts coprimely on (a),
we have that

v(a) N Ca(b) = Cleg(a),2](0)Cop ey (a) (b)
by Lemma 2.1 (3). But we see that Cg(b) N Co(cy(a) < Cocy(b) < v(b) at
once. Now if we let H := [Cg(a),z] and Hy := Cp(b), then it is only left to show
that Hy is contained in ~(b).
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First the coprime action of z on Hy yields that Hy = Cp,(2)[Ho, z] by Lemma
2.1 (2). Furthermore we have that [Hy, z] < [Cq(b), 2] < v(b). Our objective is to
apply Theorem 2.8. First we observe that z € H < G by Lemma 5.7 and hence
H < 0O(Cg(a)) by Lemma 5.2 (1). In particular H has odd order and H = [H, z].
With (z), H and (b) playing the roles of Ay, X and B in Theorem 2.8, respectively,
and with Hyp?(A) denoting the set of subgroups of A of index 4, we obtain that

Cho(2) = C(2) NCa(b) = ([Cu(Y), 2] N Cry (2)]Y € Hyp®(A)).

Let Y € Hyp?(A). By hypothesis, the rank of A is at least 4 and therefore Y’
contains a subgroup V of order 4. With the notation from Definition 6.1 we see
that Ay < O(C) because of our assumption that A is 2-balanced.

Since z € Cq(V) < G, we know that [Cg(v),2] < O(Cg(v)) for all v € V#, by
Lemma 5.2 (1). This yields, with 2-balance:

[Cr(Y),2] N Chy(2) < [Ca(V),2] N Cay(2) < () [Ca(v),2] N Cry (2)

< m O(C(;(’U)) n CHO(Z) <Ay N CHO(Z) < O(C) n CHO(Z) < Co(c)(b) < ’y(b)

vEV#

Finally Cp,(z) < (b) as required and Lemma 6.6 gives a contradiction. (]

We want to point out that the signalizer functor v used in Lemma 6.7 appears
in Section 4.4 of [Gor82], but there it is established in a different way. We decided
to give an alternative approach here. The impact of Lemma 6.7 on the structure of
F*(C) will be discussed in detail in Chapter 11. Now we look at the other concepts
of balance. We note that, in the definition of v, the fact that v(a) contains [Cg(a), 2]
for all @ € A# together with Lemma 6.6 implies that A has rank at most 2 or that
v is not allowed to be a signalizer functor. A similar statement holds for ©. As this
idea will be referred to quite frequently, it is convenient to have it captured in a
result to be quoted later on.

LEMMA 6.8. C does not contain any balanced or weakly balanced 2-subgroups.

PrOOF. Assume otherwise and let A < C be an elementary abelian 2-subgroup
such that A is (weakly) balanced. Then the definition of (weakly) balanced sub-
groups yields that z € A and r(A) > 3. Now Lemma 6.5 (2) or (3), respectively,
imply that v or (in the weakly balanced case) © defines an A-signalizer functor,
contrary to Lemma 6.6. (Il

The notion of core-separated subgroups appears in [Gol75]. We work with a
variation of it in our specific context and give an explicit proof of Goldschmidt’s
result that, under certain conditions, core-separated subgroups lead to a signalizer
functor.

DEFINITION 6.9. Suppose that A; and As are distinct commuting elementary
abelian subgroups of G such that A; N Ay = 1. Set A := A; x As. Then A, Ay are
said to be core-separated if and only if for all a € A# and for every 2-component
E of Cg(a) we have that

[E,A1] < O(Cg(a)) or [E, A3] < O(Cg(a)).
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Before we state and prove Goldschmidt’s theorem, we present two of his results
from [Gol75], one of them much simplified. They play a role in the proof, but
nowhere else in this text and they do not depend on Hypothesis 5.1.

LEMMA 6.10. Suppose that H is a proper subgroup of G with O(H) = 1 and
let t € G be an involution. If Y is a non-trivial subgroup of O(Cy(t)), then H
possesses a (t,Y)-invariant component that is centralised by neither t nor Y.

PRrROOF. This is (2.6) in [Gol75]. O

LEMMA 6.11. Suppose that A is an abelian 2-subgroup of G and that B < A.
If Y is an A-invariant 2'-subgroup of G and Y = [Y, A], then
Cy(B) = <Cy(B) n [Cy(Bo),A] | B/B() 18 CyCliC>.
PrOOF. This is a very special case of (2.5) in [Gol75]. O

LEMMA 6.12. Suppose that A1, Ay < G are core-separated subgroups of G of
order 4 and let A := Ay x Ay. For all a € A¥ set

0(a) = ﬂ [0(Cc(a)), Ai](O(Ca(a)) NO(Ca(Ai)))-

Then 0 defines a soluble A-signalizer functor.

PrOOF. We follow Goldschmidt’s arguments in [Gol75]. For all a € A# and
i €{1,2}, we set

vi(a) == [0(Ca(a)), Ai(O(Ca(a)) N O(Ca(Ai))-
Let a € A# and i € {1,2}. Set X := [0(Cc(a)), 4;] and let b € A7
(1) Y :=[Cx(b), A;] is contained in O(Cg(b)).

PROOF. Set H := Cg(b) and H := H/O(H). First we note that a € H
because A is abelian. Moreover Y < O(C¢(a)) and hence Y < O(Cx(a)).
Let us assume that Y # 1. Then Lemma 6.10 yields a 2- 2-component
E of H such that E is normalised, but not centralised by Y and by a.
Let A; := As_;. Then it follows from the fact that A; and A, are core-

separated that £ commutes with A or with A
If [E, A;] =1, then [A;, E, Y|=1=[EY ,A;] and therefore [V, E] =

[Y A“E] = 1 by definition of Y and by the Three Subgroups Lemma.

This is impossible and thus [E, AJ] = 1. Let a; € A; and a; € A; be

such that a = a;a;. Then [E,d}] < [E,?l;] = 1, but we noted above that

[E,d) # 1 and therefore [E,@] # 1. At the same time, we know that

[E,E] = 1 and in particular b # a;. We conclude that A; = (a;,b) because

by hypothesis |A;| = 4. Since Y centralises a and b, it follows that
V=[V, 4 =[V,a]=[V,d)

Thus [}7, E] = [?,@,E} = 1 by the Three Subgroups Lemma, which is a

contradiction. Hence we have that ¥ = 1 as stated. (]
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7i(a) N Ca(4i) < O(Ca(4)).

PROOF. By definition of v;(a) and Lemma 2.1 (3), we have that

Chia)(Ai) = ([0(Cg(a)), Ai] N Ca(As)) - (O(Ca(a)) N O(Ca(4i))).

We see that the second factor is contained in O(Cg(4;)). Therefore
it suffices to prove that

Cx (4i) = [0(Cg(a)), Ai] N Ca(4i) < O(Ca(A)),
with our notation introduced before (1). Lemma 6.11, applied to A; and
to the A;-invariant 2’-subgroup X, yields that
Cx(A;) = (Cx(4;) N [Cx (), A;] | b € AF).

We proved in (1) that, for all b € Af, the subgroup [Cx(b), 4] is
contained in O(Cg(b)). As Ca(A;) < Cg(b), it follows that Cx(A;) <
O(Ca(Ay)). 0

Let a,b € A# be arbitrary. Then §(a) N Cq(b) < O(Cq(b)).

PROOF. Let D := 6(a) N Cg(b), let H := C(b) and H := H/O(H)
and assume that D # 1. By definition of 6, we know that 0(a) < O(Cg(a)

and hence D < O(Cg(@)). Then Lemma 6.10 gives us a component £
of H that is normalised, but not centralised by D and normalised, buAt
not centralised by @. As A; and Ay are core-separated, we know that E
centralises E\l or 2\2 By symmetry we may suppose that [E , ;1\1] = 1. Then
Lemma 2.1 (2) implies that D = [D, :4\1]05(:4:) and the Three Subgroup
Lemma yields that [13, 2\1,@] = 1. Also, we know from (2) that
Cp(A1) < m(a) N Ca(Ar) < O(Ca(Ar))

whence 05(21\1) < O(Cﬁ(;l\l)) But E is a component of C’ﬁ(;ﬁ) and
therefore [Cﬁ(;ﬂ),ﬁ] < [O(C’ﬁ(;ﬂ)),ﬁ] = 1. Consequently [D, E] = 1,
which is a contradiction. We deduce that D = 1, so 0(a) N Ca(b) <
O(Cg (b)) as stated. O

0 defines a signalizer functor.

PrOOF. We only need to establish the balance condition. Hence let
a,b € A% let i € {1,2} and set X := 6(a) N Cg(b). From (3) we know
that X < O(Cg(b)) and therefore

[X, 4] <[0(Ce(b)), Ai] <7i(b).
Moreover (2) yields that Cx (4;) < C,,(q)(4i) < O(Cg(A;)) whence
Cx(Ai) < 0(Ca(Ai)) NO(Ca(b)) <7i(b).

i
Hence [X, A;] and Cx(A;) are contained in v;(b). Lemma 2.1 (2) gives
that X = [X, A;]Cx (4;) which implies that X < ;1 (b)Ny2(b) =0(b). O

This completes the proof. ([l

LEMMA 6.13. C does not possess any core-separated elementary abelian sub-
groups Ay, Ao of order 4.
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PRrROOF. Assume that such a pair of core-separated subgroups exists. Let A :=
A; x Ay and consider Goldschmidt’s signalizer functor, i.e. for all a € A# define

6(a) = [ [0(Ca(a)), 4:)(O(Cs(a)) NO(Ca(Ar)),

i=1,2
as in Lemma 6.12. This is a soluble A-signalizer functor of G. Now let a € A%,

let H := Cg(a) and i € {1,2}. As z lies in H and in Cg(A;), we first have that
H and Cg(A;) are proper subgroups of G, by Lemma 5.7. Then we deduce that
[H,z] < O(H) and [Cg(A;), 2] < O(Ce(A )) with Lemma 5.2 (2). Let Hy := [H, z].
Then Lemma 2.1 (2) implies that

Ho = [Ho, 2] = [Cr, (Ai)[Ho, Ai], 2] = ([Ch, (Ai), 2], [Ho, Ai]).
Now [Ch,(As), 2] < O(H) N O(Cg(A;)) and [Hy, A;] < [O(H), A;], consequently
Ho < 9(@)
So we have established that [Cg(a), z] < 6(a) for all @ € A¥. But A has rank
4 and therefore this contradicts Lemma 6.6. ]

We include here another simple application of our signalizer functor results,
again following an idea of Goldschmidt’s, but this time from [Gol72]. After that
we finish this section with a technical lemma that is going to be applied from
Chapter 10 onwards.

LEMMA 6.14. Suppose that V' < O 2(C) is an elementary abelian subgroup of
order 4 containing z. Then ro(Ce(V)) = 2.

PROOF. Let us assume that this is false and let A be an elementary abelian
subgroup of C¢(V) of order 8 containing V. For all involutions a € A we have that
z € Cg(a) < G by Lemma 5.7 and therefore V' < O 2(C) N Cg(a) < Oz 2(Ca(a))
by Lemma 5.2 (3). For all a € A% we set

8(a) := [0(Cq(a)), VI(O(Cs(V)) N Ca(a)).

(1) Let a,b € A# and X := 6(a) N Cg(b). Then [X, V] < §(b).

PROOF. Set H := Cg(b) and recall that V' < Og o(H). As X has
odd order, we obtain that [X,V] < X N Oy 2(H) < O(H). Then Lemma
2.1 (2) gives that [X,V] = [X,V,V] < [O(H) V] <4(b). O

(2) Let a,b € A* and X := 6(a) N Cg(b). Then Cx (V) < §(b).

PROOF. We show that Cj,) (V) < O(Cg(V)) because this implies
that Cx (V) < O(Cq(V)) N Cq(b) < §(b) as desired. By Lemma 2.1 (3)
we have that

Cs(a) (V) = Clo(ca(an vi(V)(O(Ca(V)) N Cala))

)
and the second factor is contained in O(Cg(V)). So we need to prove
that C[O(Cc(a)),v](v) < O(Cg(V)). Set Y := [O(Cg(a)),V]. Theorem
2.8, applied with 1, A, Y and V in the roles of B, A, X and Ag yields that

Oy (V) = {[Cy(t),V]NCy (V) | t € A%).
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Hence let t € A% and Yy := [Cy (t), V] N Cy (V). It suffices to show that
Yo < O(Ce(V)). As V < O 2(Cg(t)) by Lemma 5.2 (3), we have that
Yo < O(Cq(t)). Moreover Yy < O(Cg(a)), so if ¢ or a is contained in V/,
then Yy < O(C¢(V)). Thus we suppose that neither a nor ¢ is contained
in V. Then there exists some v € V such that ¢t = av (because |A| = 8
and |V| = 4) and so Yy < Cy (V) < Cg(v). Again by Lemma 5.2 (3),
we know that V' < Oz 2(Cq(v)) and hence Yy < O(Cg(v)). Therefore
Yo < O(Cq(V)), completing the proof. O

(3) ¢ defines a soluble A-signalizer functor.

PROOF. Let a,b € B#. We see that §(a) is an A-invariant 2/-subgroup
(hence a soluble subgroup) of C¢(a) and so we only need to establish the
balance condition. But the work is already done: Lemma 2.1 (2) yields
that X = [X,V]Cx (V) and we know from (1) and (2) that [X,V] and
Cx (V) are contained in 6(b). O

As § defines a soluble A-signalizer functor and as, for all a € A%, we have that
[Cala), 2] < [0(Cq(a)), 2] < [0(Ccala)),V] < d(a),
so that Lemma 6.6 is applicable. It yields a contradiction. ([

LEMMA 6.15. Suppose that E € Lo(C) and that a € E is an involution.

Then a(a) centralises O2(C) as well as every component of C distinct from E.

If O(Cg(a)) < O(C) and a(a) £ O(C), then a(a) induces non-trivial outer auto-
morphisms on E of odd order.

PROOF. Let a € F be an involution. The result is immediate if a = z, so we

suppose that a # 2. As 05(C) < Cx(a), it follows that

[a(a), 02(C)] < [0(C5(a)), 02(Ce(a))] = 1.
Also, for all components L of C' distinct from E, we see that L < E(Cx(a)))
and thus o
[a(a), L] < [0(Ce(a)), E(Ca(@)] = 1.
Now we suppose that O(Cg(a)) < O(C) and a(a) £ O(C). Hence there exists

some = € C of odd order such that 1 # Z € O(Cx(a)). Then T ¢ Z(F*(C)) because
this is a 2-group. The first part of the lemma yields that Z centralises O2(C) and
every component of C distinct from E (if any exists). Therefore T does not centralise
E. If T induces an inner automorphism on E, then T € ECx(E). It follows that
7 € O(C5(a))O(Cx(E)) = 1, with our hypothesis that O(Cg(a)) < O(C). But this
is impossible. Therefore T induces a non-trivial outer automorphism of E of odd

order. O



KAPITEL 7

Preparatory Results for the Local Analysis

Here we introduce the Bender Method, one of our most important tools for local
arguments. It comes into action for the first time when we analyse the behaviour
of isolated involutions in proper subgroups of GG. The results that we obtain are
very often applied to maximal subgroups of G containing the centraliser of an
involution, and therefore they play a role not only in the proof of Theorem A, but
also in Chapters 9, 14 and 15. Throughout, we assume Hypothesis 5.1. Some of the
material in this section is taken from [Wal09].

7.1. The Bender Method

DEFINITION 7.1. Let H; and Hy be maximal subgroups of G. Then we say that
H, infects Hs and we write H; & H, if and only if there exists a subgroup A of
F(Hy) such that ACp«(g,)(A) < H.

LEMMA 7.2. Suppose that Hy and Hs are maximal subgroups of G that both
contain a conjugate of z and suppose that Hy infects Hy. Let o := w(F(Hy)). Then
the following hold:

(1) Z(F(Hy))E(Hy) < Hs.
(2) [E(H1),04(H2)) =1 forallq € o.
(3) If E(Hy) #1 or|o| > 2, then Fy(H3) < Hy.

PRrOOF. By hypothesis, there exists an involution in z& N H;. This involution
is isolated in G because it is conjugate to z, so Corollary 5.8 yields that H; is
primitive. Similarly Hs is primitive.

(1) Let A < F(H;) be such that ACp-(g,)(A) < Hz. Then
Z(F(Hy))E(Hy) < Cpe(m1,)(A) < Ha.

(2) Let ¢ € 0 and Q := Z(O4(H1)). Then 1 # Q < H; and from (1) we
know that @ < Hs. Moreover Ng(Q) = H; because H; is primitive and
therefore Co, (r,)(Q) < Hy normalises E(Hy). Conversely E(H;), which
lies in Hy by (1), normalises Co, (11,)(Q). Hence

[Co,(1,)(Q), E(H1)] < Oy(H2) N E(Hy) < Z(E(Hy))

and the Three Subgroups Lemma yields that [Co, (m,)(Q), E(H1)] = 1.
Then, since OY(E(H,)) = E(H;), we may apply Thompson’s P x Q-
Lemma. It gives that E(H;) centralises O, (H2) as stated.
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If E(Hy) # 1, then by (2) we have that F,(Hs) < Ng(E(H1)) = H;.
Now suppose that |o] > 2 and let p,q € o be distinct. Again let Q :=
Z(Og¢(H1)) and set P := Z(Op(H1)). Then 1 # P < Hy by (1) and
Co, (1) (Q) < Hy and therefore

[Co,(1)(Q), Pl < O4(Hz) N P = 1.

Once more we apply Thompson’s P x (Q)-Lemma and obtain that Oy (Hs) <
Ca(P) < H;. Repeating this argument for all primes in o yields the
statement.

O

The next theorem is essential for the Bender method. The result is, in fact, due
to Bender and is usually stated for maximal subgroups of simple groups. We felt
that the fact that G is not necessarily simple makes the quotation of theorems for
simple groups slightly inconvenient — so rather than doing that and dealing with
case distinctions every time, we decided to rephrase Bender’s results for our purpose
and to give an explicit proof.

THEOREM 7.3 (Infection Theorem). Suppose that Hy and Hy are mazimal sub-
groups of G that both contain a conjugate of z and suppose that Hy infects Hy. Set
o :=7(F(Hy)).

(1)
(2)

Fo(Hy) N Hy = 1.

If q is a prime such that Oy,(Hy) # 1 and char(Hz) = ¢, then char(H;) =
q.

If Hy & Hy, then Hy = Hy or there exists a prime q such that char(Hy) =
q = char(Hy).

If E(Hs) < Hy and w(F(Hs)) C o, then Hy = Hy or there exists a prime
q such that char(Hy) = q = char(Has).

If Hy and Hy are conjugate and E(Hy) = 1, then Hy = Hy or there exists
a prime q such that char(H,) = q = char(Hs).

PRrROOF. Let A < F(Hy) be such that ACp-(g,)(A) < Hy and note that, by
Lemma 7.2, we have that Z(F'(H;))E(Hy) < Hy . We use throughout that H; and
H, are primitive subgroups of G, by Corollary 5.8.

(1)

First we note that F':= F,/(H3) N Hy acts coprimely on F'(H;) and that
[F,ACpu,)(A)] < FNF(H;) = 1. Therefore F' centralises a centraliser
closed subgroup of F(H;). Hence from Lemma 2.1 (6) we deduce that
[F,F(Hy)] = 1. But we also know that F and E(H;) normalise each
other and therefore [F, E(H;)] < Z(E(Hy)) whence [F, E(Hy)] = 1 by
the Three Subgroups Lemma. Thus F' < Cy, (F*(H;)) = Z(F(Hy)). This
yields that F' = 1 as stated because F' is a o’-group.

Suppose that char(Hs) = ¢ and that O,(H1) # 1. By Lemma 7.2 (2) we
have that E(H1) centralises O4(Hz2) = F*(Hz). But then

E(H,) < Cn,(F*(Hz)) = Z(F"(H2))

and thus E(Hy1) = 1. Now let P := Oy (Z(F(H1))), let Q := Z(04(H1))
and note that Co,_(m,)(Q) < Hy because H; is primitive. As P < Hj by
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Lemma 7.2 (1), we consider the action of P x Q on O4(Hs) = F*(Has).
Then

[COQ(HQ)(Q)vP] < Oq(HQ) ne=1
Thompson’s P x Q-Lemma yields that [O4(Hz), P] = 1. Therefore P <
Cu,(F*(Hy)) = Z(F*(Hz)). But then P =1 because P is a ¢’-group and
thus F(H,) = F*(H;) is a g-group.

(3) From Lemma 7.2 (1) we know that Z(F(Hy)) < Hy and Z(F(H3)) < Hj.
Together with (1) this yields that 7(F'(Hz)) = 0. Again by Lemma 7.2 (1)
we have that F(H;) and F(H3) are contained in H; N Hs, thus each
component of Hy or Hy is a component of H; N Hy. First suppose that
F(H,) = F(Hy) = 1. If E is a component of H; that is not contained in
(and then coincides with) a component of Ha, then E centralises E(Hz) =
F*(H3) and is therefore contained in Z(F(H3)) = 1. This is impossible
and therefore this argument shows that E(H;) = E(Hz). Then Corollary
5.8 yields that H; = Hj. Therefore we may suppose that F(Hy) # 1 or
F(Hy) # 1. As m(F(H3)) = o, this implies that F(Hy) # 1 # F(Hs). If
there exists a prime ¢ such that one of F*(Hjy) or F*(Hy) is a g-group,
then w(F(Hz)) = 0 = {¢} by (2). Thus we suppose that neither F*(Hz)
nor F*(H;) is of prime characteristic. Then, as 7(F(Hz)) = o, Lemma
7.2 (3) implies that F'(Hq1) < Hy and also F(Hsy) < H; because Hs infects
H;. So we deduce that F*(Hy) < Hs and F*(Hsy) < H;. Let p € o and set
P1 = Op(Hl) and P2 = OP(HQ) Note that PlF(Hg) = P1P2 X Fp/ (Hg) is
nilpotent. It follows from the previous paragraph that [P, O (F*(Hz))] =
1 and it follows that

[Pr, C, (P2)] < Cr, (OP(F*(Hz2))) N Crt, (P2) < O, (F*(Hz)) < Z(F(Hz)).

In particular Py F(Hs) is Cp, (Ps)-invariant. But then we see that Py Py =
O, (P F(H2)) is normalised by Cg, (P,) and therefore [Py, O (Ch, (P2))] =
1. Hence we have that OP(Cp,(Ps)) < Cp, (P1) and symmetry yields that
1+ OP(Cy,(P1)) = OP(Ch,(Ps)). This implies that H; = Hy because H;
and Hy are primitive.

(4) If there exists a prime g such that F*(Hs) is a g-group, then the hypothesis
yields that O,(H1) # 1 and then H; is of characteristic ¢ as well, by (2).
Now suppose that F*(H;) is a g-group. Then the hypothesis implies that
m(F(Hs)) C 0 = {q} which means that F(Hs) is a (possibly trivial) ¢-
group. Thus the result follows if F(H3) = 1. Now suppose that E(Hs) # 1.
As E(Hy) < Hy with Lemma 7.2 (1), we have that

[E(H2), ACp-(m,)(A)] < E(Hz2) N F*(H1) = E(Hz2) N O4(Hy) < Z(E(H2))
because H; has characteristic ¢. The Three Subgroups Lemma yields that
E(Hz) centralises ACp-(f7,)(A). We recall that ACp«(g,)(A) is a g-group
by our hypothesis that F*(H;) is a g-group, and therefore we may app-
ly Thompson’s P x Q-Lemma to the action of E(Hz) - ACp-(g,)(A) on
F*(H;). Then we see that [F*(Hy), E(H2)] = 1. It follows that

E(Hz) < Cy, (F*(Hy)) = Z(F(H1))

and therefore E(Hy) = 1. Thus 1 # O,(Hz2) = F*(Hz). Now the proof is
almost finished — it remains to consider the case where F*(H;) is not a
g-group. Then the hypothesis that 7(F(Hz)) C o, together with Lemma
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7.2 (1) and (3), implies that F*(Hy) < Hy. Therefore Hy & H; and the
result follows from (3).
(5) By hypothesis we have that E(Hz) =1 and 7(F(Hz)) = n(F(H;)). Thus
(4) yields the result.
O

7.2. t-Minimal Subgroups, Pushing Down and Uniqueness Results

DEFINITION 7.4. Suppose that ¢t € G is an involution and that W is a Cg(t)-
invariant 2’-subgroup W of G. Then W is said to be t-minimal if and only if W
is minimal with respect to being normalised by C¢(t), but not centralised by .

LEMMA 7.5. Suppose thatt € G is an involution, that H is a proper subgroup of
G containing Cg(t) and that t is isolated in H. Then precisely one of the following
holds:
(1) te Z(H) or
(2) there exists some odd prime q € w(F(H)) such that Oy (H) contains a
t-manimal subgroup.

PRrROOF. Suppose that t ¢ Z(H). Then Lemma 5.2 (6) implies that there exists

an odd prime ¢ € 7w(F(H)) such that [O4(H),t] # 1. As [O,(H), ] is Cy (t)-invariant
and hence Cg(t)-invariant, we find a ¢-minimal subgroup inside [O4(H), t]. O

HYPOTHESIS 7.6.
In addition to Hypothesis 5.1, suppose the following:
o t € C is an involution.
o Whenever Cg(t) is contained in a proper subgroup H of G, then t is
isolated in H.
e H, is a maximal subgroup of G such that Ce(t) < Hy. If possible, we choo-
se Hy such that there exists a prime r such that O,.(Hy) # 1 = Co,_(m,)(t).

o We set mp := w(F(Hy)) and if Ca(t) # Hy, then we let ¢ € 7 be an odd
prime such that Oq(Hy) contains a t-minimal subgroup Uy.

LEMMA 7.7. Suppose that Hypothesis 7.6 holds and that Cg(t) < Hy. Then
Us = [Us, t] and Uy centralises Cpe(g1,)(1).

PrOOF. If [Uy,t] < Uy, then the t-minimality of U; forces [Uy,t,t] = 1. By
Lemma 2.1 (2), this means that [Uy, t] = 1, which is a contradiction. The Thompson
P x -Lemma 2.2, applied to the action of O,(Cq(t)) x (t) on Uy, together with
the minimality of Uy, implies that O,(Cg(t)) centralises U;. Moreover U; centralises
Fy(H) and E(H) and hence [Cp«(g,)(t),Us] = 1. O

LEMMA 7.8 (Pushing Down Lemma). Suppose that Hypothesis 7.6 holds and
thatt € H < G.

(1) If F < H s a nilpotent Cg (t)-invariant subgroup, then [F,t] < F(H).
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(2) [O(F(Hy))NH, 1] < F(H).
(3) Suppose that Cq(t) < He. If Uy < H, then Uy < O4(H).

PrOOF. By hypothesis and Lemma 5.2 (2) we have that [F,t] < [H,t] < O(H).
Hence [F,t] is a nilpotent Cp (t)-invariant 2'-subgroup of H. By Lemmas 2.10 and
2.1 (2) we obtain that [F,t] = [F,t,t] < F(H), which is (1).

Parts (2) and (3) both follow from (1) because O(F(H;)) N H and U; are
nilpotent Cy (¢)-invariant subgroups of H and because Uy = [U, t] by Lemma 7.7.

]

LEMMA 7.9. Suppose that Hypothesis 7.6 holds and that Cq(t) < Hy. Then Hy
is the unique maximal subgroup of G containing Ng(Uy).

PROOF. First we note that U; is not normal in G by Lemma 5.7. Hence we may
choose Ng(U;) < HmaxG. Then Cg(t) < H and Hy & H. We set F := F/(H)
and we see that F'N Cx(t) < F N Hy = 1, by the Infection Theorem (1). Thus ¢
inverts F'.

If FF # 1, then our choice of Hy in Hypothesis 7.6 implies that there exists a
prime r € m; such that O,.(H;) is inverted by ¢. By Lemma 5.2 (5), applied to ¢ and
H;, we know that r is odd. Let X := Z(O,(H;)). Then Ng(X) = H; because H;
is primitive by Corollary 5.8. We also see that [X,t] = X and that X commutes
with U; whence X < H. Now t is isolated in H by hypothesis and X is a Cy(t)-
invariant nilpotent subgroup of H, so the Pushing Down Lemma (1) yields that
X = [X,t] < O.(H). It follows that O,(H) < Cg(X) < Hy. But r € my, so we
deduce that

F<F.(H)<FNH, =1,
which is a contradiction. We conclude that F' = 1.

In order to apply the Infection Theorem (4), we still need to show that E(H) <
H;. But this follows immediately from the fact that ¢ is isolated in H and Lemma
5.2 (5). Hence the Infection Theorem yields that H = H; or char(H) =char(H;) =
q. In the second case, we assume that Hy; # H and apply Theorem 3.8:

H, and H are primitive by Corollary 5.8. Whenever Cq(t) € H1 < G, then ¢t
is isolated in H; by Hypothesis 7.6 and therefore ¢t € Z*(H;) by Lemma 5.2 (1).
Also H and H; contain C¢(t) and they both have characteristic ¢, so it follows that
(H, H;) is a (t)-special primitive pair of characteristic ¢ of G. Theorem 3.8 implies
that Oq(H;)NH =1 = O4(H)NH;. But U; < H and therefore U; = [Uy,t] < Oq(H)
with the Pushing Down Lemma (3). Hence 1 # U, < O,(H;) N O,(H) and this is a
contradiction. Consequently Hy = H. |

LEMMA 7.10. Suppose that Hypothesis 7.6 holds and that Ca(t) < Hy. Suppose
that 1 # X < F(Hy) is a U(t)-invariant subgroup and that H is a mazimal subgroup
of G containing Ng(X). Then H, = H or char(H;) = char(H) = gq.

In particular, if |m¢| > 2, then Ng(X) < Hy.

PRrROOF. By hypothesis, we have that X < F(H;) and Ng(X) < H. Therefore
H; + H. We also have that U;(t) < H and thus the Pushing Down Lemma (3)
yields that U, < O4(H). From Lemma 7.9 we know that Ng(U;) < Hy, so H infects
H; and the Infection Theorem 7.3 (3) yields the first conclusion. If |m;| > 2, then
only the possibility H; = H is left and hence Ng(X) < H;. a
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LEMMA 7.11. Suppose that Hypothesis 7.6 holds and that t # z. Suppose that
Ca(t) = Hy and that q € 7, is such that Oy(Hy) £ C.
If Q € Syly(Hy, (z,t)) and T € Syl (Cq(Q), (2)), then either

(1) Ne(Q) £ Hy and there exists some ¢ € Ng(Q) N Ne(T) N C such that
tce Z(T) and t° # 1t

or

(2) Na(Q) < Hy and the involutions t and tz are not conjugate. Moreover, in
this case, every z-invariant q-subgroup of Cq(tz) is centralised by z.

PROOF. First we suppose that Ng(Q) ¢ H; in order to obtain (1). By hypo-
thesis ¢ centralises @ whilst Cq(Q) < Cq(O4(H;)) < Hy, because H is primitive
by Corollary 5.8. In particular t € Z(Cg(Q)) and therefore t € Z(T).

Assume that Ng(Q) N Ng(T) < H;. Then a Frattini argument yields that

Ne(Q) = Ca(Q)(Na(Q) N Ng(T)) < Hy,

which is a contradiction. Thus Ng(Q) N Ng(T) £ H,.

By choice of T' and Lemma 4.1 (2), we know that [T, z] = 1, but z ¢ T because
z does not centralise @ by hypothesis. We have seen that Ng(T') £ Cg(t), so some
element from N (T) N Ng(Q) maps t to another involution in Z(T'). Lemma 4.1 (9)
implies that this element can be chosen in C. This proves (1).

For (2) we suppose that Ng(Q) < H; and we set w := tz. Let H,, denote
a maximal subgroup of G containing Cg(w). As Ng(Q) < Hy, it follows that
@ €9Syly(G) and we recall that @ is centralised by ¢, but not by z. Lemma 4.10
implies that C' does not contain any Sylow g-subgroup of G. Then from Lemma
4.12 we obtain that |Cx(w)|g = 1 and |Ck (t)|q # 1. If t and w are conjugate in G,
then they are conjugate in C' (by Lemma 4.1 (9)) and then the subsets C'k(t) and
Ck (w) are C-conjugate as well. This is impossible.

Now let Q¢ be some z-invariant g-subgroup of Cg(w). The previous paragraph
implies that Ce(w) already contains a full Sylow g-subgroup Q; of Cg(w). With
Lemma 5.2 (4) let Qo < Q2 €8Syly(Cq(w), z) and with Lemma 4.10, applied to
Ca(w), let & € Ce(w) be such that Q7 = Q2. Then Qp < Q2 = QF < Ce(w) and
hence z centralises Q. O

LEMMA 7.12. Suppose that Hypothesis 7.6 holds, that t # z and that C is a
mazimal subgroup of G. Let w := w(F(C)). If O(F(C)) N Hy # 1, then [Hy,z] is
contained in Fr(Hy).

PRrROOF. Define X := [Hy, z]. Then by Lemma 5.11 we have that X is a #’-group
and therefore it is sufficient to show that X is nilpotent. We set D := O(F(C))NH,
and see that D x (z) acts coprimely on X. As

[Cx(2), D] < Cx(2) NO(F(C)) = 1,

it follows that Cx(z) < Cx (D). This means that Theorem 2.27 is applicable: it
yields that [Cx (D), z] is normal in X and that [X, D] is a nilpotent normal subgroup
of X. With Lemma 5.7 let H be a maximal subgroup of G containing C (D). Then
z € H and Lemma 5.2 (1) implies that Hy := [H,z] < O(H). So Hy is a soluble
7’-group, again by Lemma 5.11. Moreover M & H because D < F(M). With
the Infection Theorem (1) we deduce that M N Hy < M N Fr(H) = 1 and that,
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therefore, Hy is inverted by z. We deduce that Hj is an abelian normal subgroup
of H and in particular Hy < F(H). Now we have that
[Cx(D),Z] < [Cg(D),Z} N Ox(D) < HpnN Cx(D) < F(H) N Cx(D) < F(Cx(D))

Hence [Cx (D), z] is nilpotent, it is normal in X by the previous paragraph, and
thus [Cx (D), z] < F(X). With Lemma 2.1 (2), it follows that X = Cx(D)[X, D]
and finally

X =[X,2] <[Cx(D),?|[X,D,z] < F(X),

so in particular X is nilpotent. (I
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Maximal Subgroups Containing

The objective of this section is the proof of Theorem A, and the material is to
a large extent taken from [Wal09]. We proceed by way of contradiction and begin
by phrasing a suitable working hypothesis.

HypOTHESIS 8.1. Suppose that Hypothesis 5.1 holds and that C < M maxG.

o If possible, then choose M such that there exists a prime r such that
Or(M) #1=Co,m) ().

o Setm:=m(F(M)) and let p € 7 be such that O,(M) contains a z-minimal
subgroup U.

o Suppose that M is not of characteristic p.

o Let P € Syl,(M,z) and Z := Q1(Z(P)).

LEMMA 8.2. Suppose that Hypothesis 8.1 holds. Then Z £ O,(M). In particular
Z s not cyclic.

ProoOF. By Hypothesis 8.1 and Lemma 5.12 we have that P ¢ Syl,(G, z) and
therefore Ng(P) is not contained in M. Assume that Z < O,(M). As [U,Z] =1
and Z is a non-trivial z-invariant subgroup of F(M), Lemma 7.10 is applicable to
Z. From Hypothesis 8.1 we know that M is not of characteristic p, so the lemma
yields that Ng(Z) < M. Then it follows that Ng(P) < Ng(Z) < M, which is a
contradiction. For the second assertion we assume that Z is cyclic. Then |Z| = p
and since Z N O,(M) # 1, this means that Z < O,(M). However this contradicts
the first statement. O

LEMMA 8.3. Suppose that Hypothesis 8.1 holds and that X is a subgroup of
Op(M) such that 1 # X = [X,z]. Then M is the unique mazimal subgroup of G
containing Ng(X).

PrOOF. By Lemma 5.7 and since X is z-invariant, there exists a maximal
subgroup H of G containing Ng(X). As X < O,(M), we have that M & H.
Our objective is to apply the Infection Theorem (4) and so we first note that
z centralises E(H) by Lemma 5.2 (5). Therefore E(H) < C < M and next we
consider F' := F,/(H). The Infection Theorem (1) gives that F N M = 1 and in
particular F'N C = 1. Thus F is inverted by z.

1) [F,X] =1.
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PROOF. We note that p is odd which means that we can apply the
Pushing Down Lemma 7.8 (2) . It yields that

X =[X,z]<[O(F(M))NH,z] < F(H)
and therefore X < O,(H). Then [F, X| < O (H)NO,(H) =1. O
If r,(Cc(0p(M))) > 2, then F = 1.

PROOF. Suppose that there exists an elementary abelian p-subgroup
W < Cc(O,(M)) of order at least p*>. We note that W and z both lie in
N¢g(X) and hence in H.

Let w € W#. Then z € Cg(w) whence Lemma 5.7 implies that Cq(w)
is a proper subgroup of G. Let L be a maximal subgroup of G containing
Ca(w). As W < Ce(0Op(M)) < Ce(U), it follows that U(z) < Ca(w) <
L. The Pushing Down Lemma (3) implies that U < O,(L). As Hypothesis
8.1 implies Hypothesis 7.6, Lemma 7.9 yields that L infects M. We obser-
ved above that the subgroup F is inverted by z, in particular Cp(w) < L
is inverted by z. It follows that

Cr(w) = [Cr(w), 2] < [L, 2] <O(L)

because z € Z*(L) by Lemma 5.2 (1). Since X < Cg(w) < L, we also
have that X = [X, 2] < O(L).

We recall that F centralises X by (1) and that F is a p/-group because
p € m. Together with Lemma 2.9 we obtain that

Cr(w) = Copw)(X) < Op(Cor)(X)) < Op(O(L)) < Op(L).

As U < O,(L), it follows that [U,Cr(w)] = 1. By Lemma 2.1 (4) and
since W is not cyclic, we have that F = (Cp(w) | w € W#) and thus
[U,F] = 1. Now Lemma 7.9 implies that F < Ng(U) < M and therefore
F=FNnM-=1. ([

If [Z,z] #1, then F = 1.

PROOF. Suppose that Z possesses an element w # 1 that is inverted
by z. We noted in the first paragraph of the proof that F' is also inverted
by z. But we also know that w € Z < Cg(X) < H which implies that F
is w-invariant. We conclude that F' is centralised by (w) = [(w), z]. Now
let L be a maximal subgroup of G containing Ng((w)). Then z, X, U, Z
and — as we have just seen — also F' are contained in L. The Pushing Down
Lemma (2) and (3) imply that X and U are both contained in O,(L) and
hence in O,(Cg(w)). From Lemma 5.2 (1) we know that z € Z*(L) and
therefore F', which is inverted by z, lies in O(L). Lemma 2.9 gives that

F <0y (Ca(X))NCory(w) < Op (Cocgw) (X)) < Op(0(Ca(w))).

As U < 0,(Cg(w)), it follows that [U, F] = 1 and therefore F' <
Ce(U) < M, with Lemma 7.9. Then F' = FN M =1 as stated. O

Now we can finish the proof. We know that Z is elementary abelian of order at

least p?, by Lemma 8.2. If [Z, z] = 1, then Z < C(O,(M)) whence (2) is applicable
and gives that F' = 1. If [Z, z] # 1, then (3) implies that F' = 1.
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It follows that F'(H) is a w-group. The Infection Theorem (4) gives that H = M
or that H and M both have characteristic p. As M is not of characteristic p by
Hypothesis 8.1, we conclude that H = M. Therefore Ng(X) < M. O

The next lemmas include a special case of the situation where a component of
M is isomorphic to PSLsy(q) for some odd number ¢, that is needed in Section 15.

LEMMA 8.4. Suppose that Hypothesis 8.1 holds and that E(M) = 1 or that
there exists an odd number q such that E(M) ~ PSLs(q). Suppose further that W
is an elementary abelian subgroup of M of order p? that is centralised or inverted
by z. Then z inverts W and [Co, (ar) (W), 2] = 1. In particular Cp(z) is cyclic.

PROOF. We first note that Hypothesis 8.1 implies Hypothesis 7.6 and therefore
the results from Chapter 7 are applicable.

Assume that the assertion in the lemma is wrong and choose an elementary
abelian subgroup W of M of order p? such that z centralises W or [Co, (v (W), 2] #
1. We recall that, by Hypothesis 8.1, we know that O,(M) is not centralised by
z. Hence if [W, 2] = 1, then Thompson’s P x Q-Lemma, applied to the action of
W x (z) on O, (M), yields that [Co_ ary(W), 2] # 1. For the remainder of the proof
we therefore assume that [Co_ (ar) (W), 2] # 1 and we work towards a contradiction.

As W is z-invariant, Lemma 5.2 (4) implies that TV is contained in a z-invariant
Sylow p-subgroup of M, so we may suppose that W < P. From Lemma 5.12 we
know that P ¢ Syl,(G@) and in particular Ng(P) £ M. Lemma 4.7 yields that

Na(P) = Cng(p)(2)(K N Na(P))
and this implies that KN Ng(P) € M. Let h € KNNg(P) be such that h ¢ M and
let g € G be such that h = zz9. Then M" = M*’ and t := 29 is an involution in
%N Ng(P) that is not contained in M and hence does not normalise M (because
M is primitive by Corollary 5.8). If M has a component, then we denote it by E and

we recall that E(M) = E by hypothesis. Our assumption that [Co_(ar) (W), 2] # 1
implies that Co_ (ar)(W) possesses an element = of order p that is inverted by z.

(1) Suppose that y € Op(M) is a non-trivial element that is inverted or cen-
tralised by z. Then Ng((y)) < M. In particular Cg(x) < M.

Proor. If y is centralised by z, then y € Co, r)(2) < Ca(U) by
Lemma 7.7 and thus Ng((y)) < M by Lemma 7.10. If y is inverted by z,
then

# (y) = [(w), 2] < Op(M)

by Lemma 8.3. As z inverts x, it follows that

1
and hence Ng({(y)) < M
<M. O

Co(z) < Na({x))
(2) F(M?!) < M and, for all w € W#, we have that x € O,(Cq(w)).

Proor. First we see that Op(Mt) < Pt = P < M. Then we consider
Q := Oy (M?") and the coprime action of W on it. Lemma 2.1 (4) implies
that
Q= (Co(w) | w e W#).
With the Pushing Down Lemma (2) we see, for all w € W#, that

{z) = [(2), 2] < [0p(M) N Na((w)), 2] < Op(Ne((w)))-
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In particular z € O,(Cg(w)) as stated. Also x € P < M*, so as z acts on
Q, it follows that

[, Cq(w)] < 0p(Co(w)) NQ = 1.
We deduce that Co(w) < Cg(z) < M by (1) and thus @ < M.

E(M?") £ M, so in particular E(M) # 1.

PROOF. Otherwise, together with (2), we see that F*(M?') < M and
hence M! 9+ M. As t is an involution, we also have that M ¢ M? and
therefore the Infection Theorem (3) yields that M = M?" or that M and
M have the same prime characteristic. We know that F*(M) # O,(M) by
Hypothesis 8.1, so we deduce that M = M? and this is a contradiction. [

Let s be an involution in E. Then |Cg(s)| is divisible by p.

PROOF. Set D := 0,(Cq(s)) N Op(M). First we note that D # 1
because U < Cg(F) < Cg(s) and then the Pushing Down Lemma (3)
yields that U < O,(Cg(s)) and hence U < D. As D < Op,(M) and M is
not of characteristic p, Lemma 7.10 forces Ng(D) < M.If D = O0,(Cq(s)),
then D is Cg(s)-invariant and therefore Cg(s) < M. But s # z because
z ¢ E and thus Lemma 5.13 forces C(s) £ M, which is a contradiction.

Therefore D # O,(Cg(s)) and D <Y := Np_(cs(s))(D). Then YV <
Ng(D) < M and hence Y acts on E and leaves the dihedral group Cg(s)
invariant. (Recall that E ~ PSLs(q).) Conversely Cg(s) < Ca(s) N M <
Ne(Y).

Now we assume that Cg(s) is a p’-group. Then [Y,Cg(s)] < Y N
Cg(s) =1 and it follows that Y/Cy (E) cannot induce a non-trivial field
automorphism on E. Next we argue that D = Cy(E): It is immediate
that

D <YNO,(M)<YnCs(E)

and for the other inclusion we note that Cq(E) < M, because M is
primitive, and hence
Cy(E) < 0p(C(s)) N Ca(E) N Na(D) < 0p(Ca(s)) N Cu(E)

< Op(M) N 0y(Ca(s)) = D-
Consequently Y/D induces a non-trivial inner automorphism on E cen-
tralising s and it follows that p divides |Cg(s)|. This contradicts our as-

sumption that Cg(s) is a p’-group. Hence |Cg(s)| is divisible by p as
stated. O

Next we argue that the action of W on E! is faithful:

Assume otherwise and let y € W# be such that [E',y] = 1. Then x €

0,(Ce(y)) by (2) and therefore

[E*, 2] < E'N 0,(Ca(y)) < Op(E") =1,

contrary to (1) and (3).

Thus W acts faithfully on E* and it follows from (4) that the subgroup Wy

of W inducing inner automorphisms on E* has order p. Each element from W\W,
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induces a field automorphism on E? of order p. Hence there exists some w € W\Wj
such that z ¢ (w)Cyt(E"). Then Op(Cgt(w)) =1 and it follows with (2) that

(Cr (w),2] < Cpe(w) N Op(Co(w)) < Op(Cre(w)) = 1.

We deduce that E* = (Cgt(w), Cge(z)) < Cg(x), which is a contradiction to (1)
and (3). This completes the proof of the lemma. O

LEMMA 8.5. Suppose that Hypothesis 8.1 holds and that E(M) = 1 or that
there exists an odd number q such that E(M) ~ PSLs(q). Then

(1)
2)
(3)

(4)
()

Cz(z) has order p and it is the unique subgroup of P of order p that is
centralised by z;

I7(z) has order p and it is the unique subgroup of P of order p that is
inverted by z;

|Z| = p? and Z = Q1 (P);

z inverts Op(M) and

0,(M) is cyclic.

PrOOF. We recall that O,(M) N Z # 1 and that |Z| > p* by Lemma 8.2.
Moreover Lemma 2.1 (2) yields that

(1)

Z =Cy(2) x [Z,2) = Cz(z) x Iz(z).

Lemma 8.4 gives that Cz(z) has at most order p and that (therefore) Z
is not centralised by z. If Cz(z) = 1, then z inverts Z whence Lemma 8.4
implies that [Co, (a)(Z), 2] = 1. But Z < Z(P) is centralised by O,(M).
So [O,(M), z] = 1, which is a contradiction.

We conclude that Cz(z) has order p and is, by Lemma 8.4, the unique

subgroup of Cp(z) of order p.
As |Z| > p?, it follows from (1) that Iz(z) # 1. Assume that Iz(z)
possesses a subgroup V of order p?. Then, as V < Z(P) < Cp(0,(M)),
it follows with Lemma 8.4 that [O,(M), 2] = [Co,ar)(V), 2] = 1, which is
a contradiction. It is left to show that Iz(z) is the only subgroup of P of
order p that is inverted by z.

First assume that Y < O,(M) is distinct from Iz(z), has order p and
is inverted by z. Then W := Y Iz(z) is elementary abelian of order p? and
we may apply Lemma 8.4. Thus [Y, 2] < [Co,r)(W), 2] = 1, which is a
contradiction. We emphasise here that this means that Iz(z) < O,(M).
Next assume that Y7 < P is distinct from Iz(z), has order p and is inverted
by z. Then W; := Y1I7(z) is elementary abelian of order p?, and Lemma
8.4 yields that [Iz(2), 2] < [Co, () (W1), 2] = 1. This is impossible again.
Statements (1) and (2) imply that |Z| = p?, and we know that Z < Q(P).
Assume that Z # Q1 (P). Then there exists a subgroup of P of order p
that is not contained in Z. As Z < Z(P), it follows that r(P) > 3. But
P is z-invariant and therefore, with Lemma 2.7, there exists a z-invariant
elementary abelian subgroup X of P of order p?. By Lemma 2.1 (2), we
have that X = Cx(z) X [X, z]. But then either Cx(z) or Ix(z) has order
at least p? and that contradicts (1) and (2) above. Thus Q;(P) < Z.
From Hypothesis 8.1 we know that O,(M) is not centralised by z and
hence there exists a subgroup J of O,(M) of order p that is inverted
by z. Then (2) implies that J = Iz(z). As Z £ O,(M) with Lemma
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8.2, it follows that Cz(z) £ Op(M). But then (1) yields that O,(M)
does not contain any subgroup of order p that is centralised by z. Hence
Cop(]u)(z) =1.

(5) We know from (4) that z inverts O, (M) whence O, (M) is abelian. Then
(2) yields that O, (M) contains a unique subgroup of order p and, as p is
odd, this means that O,(M) is cyclic.

O

LEMMA 8.6. Suppose that Hypothesis 8.1 holds and that E(M) = 1 or that
there exists an odd number q such that E(M) ~ PSLs(q). Then

U< ()Mo
geG

PROOF. Let g € G\M, let t € 29N M9 and set D := M N M?*. We note that, by
Lemma 4.1 (8) applied to ¢, the involution ¢ is not contained in M. From Hypothesis
8.1 we know that z does not centralise O,(M) and hence [P, z] # 1. Then Lemmas
4.13 and 5.9 (4) yield that p divides |M : C| = |D : Cp(t)| and it follows that
I[D,t]| / I[D,t] N Cp(t)] is divisible by p. Thus there exists a subgroup X of D of
order p that is inverted by ¢t. We show that X is conjugate to U.

By Lemma 8.5 (3) we have that Z = Qy(P). Lemma 5.7 implies that Ng(Z)
is a proper subgroup of G. Then we let Q € Syl,,(Ng(Z), z) (with Lemma 5.2 (4))
be such that P < Q. From Lemma 8.5 (5) we know that |U| = p and U < M. Thus
Ng(U) = M by Corollary 5.8 and it follows that P = Ng(U). Let Qo := Ng(P).
Then Qo £ M because P ¢ Syl,(G) by Lemma 5.12. In particular @ is not contained
in M. As |Qo : Ng,(U)| = |Qo : P| > p, we see that U has at least p elements. But
Qo normalises Z and therefore every element of U®0 is one of the p+1 subgroups of
Z of order p. We deduce that U0 has precisely p elements and that @y normalises
(and therefore centralises) a subgroup Y of order p of Z. The subgroup Cz(Qy) is 2-
invariant and hence coincides with U or with Cz(z), because these two subgroups
are the unique z-invariant subgroups of Z of order p. But Cz(Qo) # U because
Ng(U) = M and Qo £ M. Tt follows that Cz(Qo) = Cz(2).

Now we recall that our objective is to show that X is conjugate to U: We
know that X < D < M. Therefore, by Lemma 8.5 (3) and Sylow’s Theorem, the
subgroup X is conjugate in M to a subgroup of order p in Z, i.e. to a member of
U or to Cz(z).

First suppose that X is not conjugate to U. Then X is conjugate to Cz(z). Thus
there exists a conjugate t' of z distinct from ¢ such that ¢’ and ¢ are both contained
in Ng(X). Hence they are conjugate in Ng(X) by Lemma 4.1 (4), applied to the
isolated involution ¢. This is impossible because ' centralises X whereas ¢ inverts
it. Thus X must be conjugate to U. Now let h € G be such that X = U". Then
t € Nog(X) = Ng(U") = M". As t € M9 and as every conjugate of z is contained
in a unique conjugate of M, by Lemma 4.1 (8), this yields that M" = M9. Now
we see that X < D < M normalises U < M and therefore [X,U] = 1. So we have
that U < Ng(X) = M9. As g € G\M was arbitrary, it follows that U lies in every
conjugate of M in G, as stated. (]
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PROOF OF THEOREM A.

Recall that in Theorem A, we suppose that G is a minimal counter-example
to the Z*-Theorem, so Hypothesis 5.1 is satisfied. Assume that Theorem A fails.
Then C' is properly contained in M and Lemma 7.5 implies that there exists an
odd prime p such that O,(M) contains a z-minimal subgroup U. Again by the
failure of Theorem A, we have that F*(M) # O,(M) and E(M) = 1. In particular
Hypothesis 8.1 is satisfied and we may apply Lemmas 8.2 up to 8.5. The (by Lemma
8.5 (2) unique) subgroup of P of order p that is inverted by z must now be U, by
Lemma 8.5 (5). Lemma 8.6 implies that U is contained in every conjugate of M in
G. Then

1£U< (| M? 4G,
geG
but this contradicts Lemma 5.7. Therefore Theorem A is proved. O

The Bender method returns to the scene in the proof of the next few results.
They lead to a new proof of Theorem 6.19 in [Wal09], avoiding difficulties when
quoting results from [BG94]. We would like to point out that some of the arguments
in this new proof follow ideas from Sections 7 and 8 in Chapter II of [BG94]. Here
we only suppose that our main hypothesis (5.1) holds.

LEMMA 8.7. Suppose that C is a mazimal subgroup of G and that Yy < F(C) is
centraliser closed in F(C). Let Y := YoE(C) and 7 := w(F(C)). Then the following
hold:

(1) For all r € 7, we have that Cq(0,(Yy)) < C. In particular C(Yy) and
(therefore) Ca(Y) are contained in C.

(2) Cg(Y) is a w-group.

(3) Ve (Y,7') = {1}.

Suppose that Y < H maxG. Then the following hold:

(4) H=Cy(2)Fw(H).

(5) For all o C ', we have that (g (Y,0)) = F,(H).

(6) For all ¢ € ', the subgroup Oy4(H) is the unique mazimal Y -invariant
q-subgroup of H.

PROOF.

(1) As Yp is centraliser closed in F(C), we have that Z(F(C)) < Y. Hence
for all primes r € w, Corollary 5.8 implies that

Ca(0r(Y0)) < Ca(2(0:(C))) < Na(Z(0:(C))) = C.
Then it follows of course that Ca(Y) < Cq (Vo) < Ce(0,(Yo)) < C.

(2) Suppose that z € C;(Y) is a n’-element. Then z € C by (1) and therefore
x acts coprimely on F(C) and centralises a centraliser closed subgroup,
namely Yy. Lemma 2.1 (6) implies that = centralises F'(C'). Moreover x €
Cq(Y) < Cq(E(C)) which forces x € Co(F*(C)) < Z(F(C)). But this is
a m-group, so r = 1.

(3) Let X € Ne(Y,n'). Then [X,Yy] < X N F(C) =1, so X centralises the
centraliser closed subgroup Yy of F(C). With Lemma 2.1 (6) we deduce
that [X, F(C)] = 1. Moreover [X,E(C)] < X N E(C) < E(C). The hy-
pothesis C = M implies that 2 € 7 and therefore the set 7’ consists of
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odd primes. As components are not soluble, they have even order. In par-
ticular X N E(C') cannot be a product of components of C. We conclude
that X N E(C) < Z(E(C)) and then that X centralises E(C), by the
Three Subgroups Lemma. Now we have that X < Co(F*(C)) = Z(F(C))
whence X = 1.

Statements (4)—(6) are immediate from (3) if H = C, so we suppose from now
on that H # C.

(4) The hypothesis yields that Cp«c)(Yo) < Y < H and thus C & H.
Moreover z ¢ Z(H) because H # C. With Lemma 5.2 (5) we have that
E(H) < C and also Lemma 5.10 implies that all z-invariant mw-subgroups
of H are centralised by z. As z ¢ Z(H), this forces, with Lemma 5.2 (6),
that F := Fo(H) # 1. With the Infection Theorem (1) we see that
FNC =1 whence F is inverted by z. It follows that z centralises E(H)
and Fr(H) and inverts F', so we conclude that

[H, 2] < Cu(F"(H)) < Z(F(H)).
From Lemma 2.6 we know that [H, z] is a 7’-group, so [H,z] < F.

(5) Let X € Ny(Y,0). As Cx(z) € Ne(Y,0) and o C «’, part (3) forces
Cx(z) = 1 and thus z inverts X. By (4) this implies that X = [X,z] <
[H,z] < F(H) and therefore X < F,(H). Conversely F,(H) is a member
of the set Ny (Y, 0).

(6) Let ¢ € " and let Q € Uk (Y, q). Then (5), applied to o := {q}, yields
that Q < Og4(H). This means that Oy (H) is the unique maximal member
of Ny (Y, q).

O

LEMMA 8.8. Suppose the following:

- C is mazimal in G and Yo < F(C) is centraliser closed in F(C);

-Y :=YyE(C) and Y < HmazG, H # C; and

-qen(F(C)) is such that Oy(H) # 1.

Then O4(H) is the unique mazimal Y -invariant q-subgroup of G that intersects
H non-trivially.

PROOF. We know from Lemma 8.7 (6) that U3 (Y, q) = {O,(H)}. Let Qo :=
O,(H) < Q € N;(Y, q) and note that, by Corollary 5.8, we have that Ng(Qo) = H.
Therefore Ng(Qo) < H, implying Ng(Qo) = Qo because Ng(Qo) is a Y-invariant
g-subgroup of H. As @ is a g-group, this forces Qg = Q. So we have that Qg is
already a maximal Y-invariant g-subgroup of G.

Assume that our assertion is wrong. Let m := m(F(C)) and choose Q1 €
NZ(Y,q) such that Q1 N H # 1, but Q1 # Qo and such that the intersection
D = Q1 N Qg is as large as possible. Then @ N H is a Y-invariant g-subgroup
of H and hence lies in Qp; in fact Q1 N H = D and in particular D # 1. Let
Ng(D) < Lmax G (with Lemma 5.7) and note that Y < L. As D is a Y-invariant
g-subgroup of L, Lemma 8.7 (6) yields that D < O4(L). We also know that Qo and
O4(L) are abelian because these subgroups are inverted by z (by Lemma 8.7 (3)).
We deduce first that Qo < Cg(D) < L, then, with part (6) of the same lemma,
that Qo < O4(L), and then that Oy(L) < Ce(Qo) < H. It is Lemma 8.7 (6) once
more that yields that Oq(L) < O4(H) = Qo. Therefore Oy(L) = Oy(H) and L = H
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by Corollary 5.8. We conclude that Ng(D) < H and hence Ng, (D) < Q1NH = D,
forcing D = @Q;. It follows that (1 = Qo after all, which is a contradiction. Thus
Oq(H) is the unique maximal Y-invariant ¢g-subgroup of G that intersects H non-
trivially. (I

THEOREM 8.9. Suppose that C is mazimal in G and that p € ©(F(C)) is an
odd prime such that O,(C) contains an elementary abelian subgroup Xo of order

p>. Then for all x € Xé’é, the unique mazimal subgroup of G containing Ca(x) is
C.

PROOF. Let Yy := Cp(c)(Xo) and Y := Yo E(C). Then X, < Yp, moreover Yy
is centraliser closed in F/(C) and hence the previous lemmas are applicable. We let
7 := 7w(F(C)) and note that |7r| > 2 because 2 € 7 and p is odd. From Lemma
5.7 we know that Y # G and therefore we may choose a maximal subgroup H of
G containing Y. Then C' & H and z € H. In particular Lemma 5.2 (5) implies
that E(H) < C. If F(H) is a m-group, then the Infection Theorem (4) yields that
H = C and there is nothing left to prove. Thus we suppose that H # C and (hence)
that there exists a prime ¢ € 7’ such that @ := O4(H) # 1. By Lemmas 8.7 (3)
and 8.8, it follows that z inverts @ and that @ is the unique member of N (Y, q)
intersecting H non-trivially. We go further now and show that V¢, (Y, q) = {Q}:

Let Q1 € VI (Y, q) be arbitrary. As Q1 is Y-invariant, the coprime action of X
on @ and Lemma 2.1 (4) give that

Q1= (Cq,(X1) | X1 < Xo, |Xo: X1| =p).

Choose X1 < X, of index p and such that Cg, (X1) # 1. Then X, is elementary
abelian of order p? and so we can use the same argument for the coprime action of
X7 on @, namely
Q= (Cq(z) |z € XT).

Let z € X}"7é be such that Cg(z) # 1. Then z € Cg(x) and therefore Lemma
5.7 implies that Cg(z) < G. We let Cg(z) < HymaxG and we observe that
Y < Cq(z) < Hi. Therefore Cg,(X;) and Cg(z) are Y-invariant g-subgroups
of Hy and thus they are contained in O4(H;), by Lemma 8.7 (6). In particular
Oq(H;) # 1 and Lemma 8.8 yields that O4(H;) is the unique member of N (Y, q)
intersecting H; non-trivially. But @ and @ intersect H; non-trivially, so we deduce
that @1 = Q, i.e. 5 (Y, q) = {Q}. It follows that Oy(H) = Q = O,(H1) and thus
H, = H, because H and H; are primitive by Corollary 5.8.

Let F' := Np«)(Y). Then F leaves @ invariant which means that @ <
Na(F,q). As Ng(F,q) C Wg(Y,q), it follows that, conversely, every member of
NG(F, q) lies in Q. Hence VG (F,q) = {Q}. But Y is subnormal in F*(C), so this
argument shows that g (F*(C), q) = {Q}. However, this implies that @ = O,(H)
is C-invariant and thus C' = H contradicting our assumption.

We established that Y = Cp+ () (Xo) lies in a unique maximal subgroup of G,
namely in C. If z € X, then Cr+(c)(Xo) < Ca(x) < G and therefore Cg(x) lies
in the unique maximal subgroup of G containing Cp-(¢)(Xo), i.e. in C. |






KAPITEL 9
The 2-rank of Oy 2(C')

In this section we prove Theorem B by analysing the behaviour of involutions
from Og 2(C). Some of the arguments from the first part of this chapter appear
again towards the endgame. For example in Theorem 9.10, one of the main results
of this section, we basically present the proof given in [Wal09], but the reader will
notice that similar, more complicated arguments are used when we begin to analyse
maximal subgroups containing the centraliser of an involution from C\Og 2(C').

9.1. Involutions in Oy 2(C)\{z}

We begin with a special hypothesis and corresponding notation. The objecti-
ve of the first part of this chapter is to exactly understand what centralisers of
involutions distinct from z in Oy 2(C) look like — if such involutions exist.

HyYPOTHESIS 9.1. In addition to Hypothesis 5.1, suppose that a € Oq o(C) is
an involution distinct from z. Moreover

e Vi={(a,z) andb:=az. Let V < S € Syh(QG).

e For all v € {a,b} let Ce(v) < H, maxG with m, := 7n(F(H,)) and such
that, if possible, there exists a prime r, € m, with Co, (m,)(v)=1.

o Let C < M maxG and m := w(F(M)) and, if possible, choose M such that
there exists a prime v € © with Co_(ay(2) = 1.

e Forallv € {a,b}, if Ca(v) # Hy, then let U, denote a v-minimal subgroup
of G that is contained in F(H,) and if C # M, then let U be a z-minimal
subgroup of G contained in F(M).

e Ifa and b are conjugate, then suppose that H, and Hy are conjugate.

LEMMA 9.2. Suppose that Hypothesis 9.1 holds. Then
(1) r2(Ca(V)) =2;
(2) ifa,z € H<G, then a and b are either conjugate or isolated in H; and
(3) a and b are isolated in every proper subgroup of G containing Ck(a).

PROOF. As a and z commute, the subgroup V is elementary abelian of order
4. Then Lemma 6.14 is applicable and it yields that ro(Cg(V)) = 2.

For (2) we suppose that a,z € H < G and that a and b are not conjugate
in H. Let P €Syla(H) be such that V' < P. Then Lemma 4.1 (2) implies that
z € Z(P). Hence if Np(V) does not centralise a, then it interchanges a and b.
But a and az are not conjugate in H whence Np(V) = Cp(V) = Cp(a). Part (1)
yields that V is the unique elementary abelian subgroup of order 4 in C¢(V) and
therefore V' is normalised by Np(Np(V)). Hence Np(Np(V)) = Np(V) whence
P = Np(V)=Cp(V). In particular r(P) = 2 by (1) and it follows that a, z and az
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are the only involutions in P. We note that distinct involutions from P are never
conjugate in H, so (2) holds.

Now we turn to (3) and we suppose that a,z € H < G and that Ck(a) C H.
If a and b are not isolated in H, then (2) says that they are conjugate in H. So by
Lemma 4.1 (9) they are conjugate in Cp(z). Let € C(z) be such that b = a”.
Then Ck(b) = Ck=(a*) = (Ck(a))* because K is C-invariant by Lemma 4.3 (1).
Therefore Ci(b) C H. Theorem 4.6 forces K to be contained in H. As z € H,
Lemma 5.4 gives that H = GG, which is a contradiction. ([l

LEMMA 9.3. Suppose that Hypothesis 9.1 holds. Then
(1) G is non-abelian and simple;
(2) G =(Ck(a),Ck(b));
(3) O*(C)=C and
(4) r2(G) =2.

ProOF. We know from Lemma 5.4 that G = F*(G)(z) and that F*(G) is non-
abelian and simple. In particular |G : F*(G)| < 2 and therefore VN F*(G) # 1. If
G = F*(@), then G is simple as stated. Therefore we assume that F*(G) < G and
in particular that z ¢ F*(G). Lemma 5.2 (1) yields that F*(G) does not contain
any isolated involution, but we know that F*(G) contains an involution from V
and therefore a and b are not isolated in G. With Lemma 9.2 (2) it follows that a
and b are conjugate in G. But then a and b are both contained in F*(G) and hence
z = ab € F*(G), which is a contradiction.

We turn to (2) and apply Theorem 4.6 together with (1) and the fact that (K
is a normal subgroup of G by Lemma 5.3 (3). This yields that (Ck(a), Ck (b)) =
(K) =G.

For (3) we note that O?(G) = G by (1), so O?(C) = C by Lemma 4.1 (10).

It is left to prove (4). Let Sy := S N Oy 2(C). Then V< S5 < S and in
particular r(Sp) > 2. First we assume that S has no elementary abelian normal
subgroup of order 4 that is contained in Sy. In that case Lemma 2.12 implies that
So is a dihedral or semi-dihedral group of order at least 8. So we know that Aut(Sp)
is a 2-group, by Lemma 2.15. Recall that C' := C/O(C). In this factor group we
have that Sy = O2(C) and therefore [02(C), Sy] = 1. But O?(C) = C by (3) and
hence [C, Sp] = 1. Then it follows that Sy is abelian and thus Sy is abelian. But
this is not the case and consequently Sy contains a normal subgroup B of S that
is elementary abelian of order 4. With Lemma 9.2 (1), applied to any involution
t € B distinct from z, we deduce that z € B (because z centralises B) and hence
that 75(Cq(B)) = 2.

Suppose that A is an elementary abelian subgroup of S of maximal order.
As z € Z(S), we have that z € A and in particular z € AN B. Lemma 9.2 (1)
implies that C4(B) < B whence C4(B) = AN B. As m3(Cg(B)) = 2, it follows
that either B = A or |C4(B)| = 2. In the first case (4) holds. In the second case
Ca(B) = (z). Our choice of B as a normal subgroup of S yields that A normalises
B and that either A coincides with B or A acts non-trivially on B. Thus if A # B,
then |A : C4(B)| < 2 which leads to |A| < 2-|Ca(B)| = 4.

We conclude that ro(G) = 2. O

LEMMA 9.4. Suppose that Hypothesis 9.1 holds, that v € {a,b} and that
Ca(v) # Hy. Then E(H,) =1= 03(H,). If C # M, then E(M) =1 = O2(M).
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PROOF. First z,v and vz are isolated in H, by Lemma 9.2 (3). Therefore
Lemma 5.2 (5) and (6) yield that O2(H,)E(H,) is centralised by V, but that
O2(H,) does not contain v. Also z ¢ O3(H,) or else Cg(v) < M by Lemma 5.2 (1),
contradicting Lemma 5.13.

Let us assume that Oy(H,) # 1. Then O2(H,) contains an involution and as
ro(G) = 2 by Lemma 9.3 (4), we conclude from the previous paragraph that vz is
the unique involution in Oy (H,). Thus vz € Z(H,). It follows that Cx (v) C H, <
Cg(vz) whence H,, contains Ck (v) and Ck (vz), contrary to Lemma 9.3 (2). Thus
O-(H,) =1.

We recall that V' centralises E(H,). Then V N E(H,) < Os(H,) = 1 and,
as ro(G) = 2 by Lemma 9.3 (4), this implies that E(H,) does not contain any
involutions. But components have even order, so this forces F(H,) = 1.

Now we turn to the case where C' < M. With Hypothesis 9.1 let p € 7 be
an odd prime such that U < O,(M). Assume that Ox(M)E(M) # 1 and let
t € Ox(M)E(M) be an involution. Then ¢t # z because O,(M) is not centralised
by z. Moreover F*(M) is not a p-group in this case. This means that M is as in
Hypothesis 8.1 and hence Lemma 7.10 gives that Cg(t) < M. This contradicts
Lemma 5.13 and forces O2(M)E(M) = 1. O

LEMMA 9.5. Suppose that Hypothesis 9.1 holds, let q be an odd prime and let
Q1,Q2 € NG(V, q) be such that Q1 N Q2 # 1. Then Q1 and Q2 are conjugate by an
element from Cg (V).

PROOF. Assume that this is not the case and choose @)1 and Q2 such that
they are not conjugate under C (V) and moreover such that D := Q1 N Q2 # 1
is maximal. With Lemma 9.3 (1) we know that Ng(D) is a proper subgroup of G
and we set H := Ng(D). Then D, Ng, (D) and Nq, (D) are V-invariant subgroups
of H. For all i € {1,2} we choose Ng,(D) < P; € Uy(V,q). As ¢ is odd and
V < Oy 2(H) by Lemma 5.2 (3), we may apply Lemma 2.11 which yields an
element h € Cy (V) such that P! = P,. Now let P, < P € UE(V,q). Then
Py = P} < (P})" € NE(V, q). Therefore we have that D < Ng, (D) < Q1 N P; and
D < Ng,(D) < Q2N (Pf)". By our choice of @ and Qs, it follows that @ and
Py as well as Qo and (P;)" are conjugate by an element from Cg(V'), respectively.
We chose h € Cy (V) and therefore @1 and @y are conjugate by an element from
Ca (V). This is a contradiction. O

LEMMA 9.6. Suppose that Hypothesis 9.1 holds and that q is an odd prime such
that char(H,) = q = char(Hp). Let v € {a,b} and suppose that Q is a V-invariant
g-subgroup of G, containing O4(H,), such that ZJ(Q) is invariant under Ck (v)
and such that Q is maximal (with respect to inclusion) subject to these constraints.

Then Q € Syly(G).

PrOOF. From Lemma 9.3 (1) we know that N¢(ZJ(Q)) is a proper subgroup of
G, so let Ng(ZJ(Q)) < HmaxG. Then H contains V, Ck(v) and Q and Ck(v) C
O(H) by Lemma 5.2 (2).

Now we have that U, < O,(H,) < Q < H and Lemmas 9.2 (2) and 7.8 (3) yield
that U, < F(H). Then Lemma 7.9 is applicable and gives that Ng(U,) < H, and
hence H ¢ H,,. We just saw that U, < O4(H) and hence the Infection Theorem (2)
implies that H has characteristic q.
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With Lemma 4.11, applied to V and H,, we choose Q < Q1 €Syl,(H,, V).
It follows from char(H) = ¢ that char(Q10(H)) = ¢ and therefore Theorem 2.24
yields that ZJ(Q1)<Q10(H)V. Hence Z.J(Q1) is Ck (v)-invariant and the choice of
Q gives that Q = Q1 € Syl,(H). But Ng(Q) < Ng(ZJ(Q)) < H and consequently

Q €Syl,
G.

(Ne(Q)). We deduce that @ is in fact a V-invariant Sylow g-subgroup of

O

LEMMA 9.7. Suppose that Hypothesis 9.1 holds. Then there does mot exist a
prime q such that char(H,) = g = char(Hp).

PROOF. Assume that the result is false and that ¢ is a prime such that H, and
H,, are both of characteristic g.

(1)

a¢ Z(H,) and b ¢ Z(Hy). In particular ¢ is odd.

PROOF. Let v € {a,b}. If v € Z(H,), then Oz(H,) # 1 and hence
g = 2. Thus it suffices to prove that ¢ is odd. If ¢ = 2, then Os(H,)
contains its centraliser in H, and hence z € O2(H,), by Lemma 5.2 (5).
Together with Lemma 5.2 (6) this forces z € Z(H,), contradicting Lemma
5.13. (]

There exist subgroups Q1 € Syly(H,,V) and Q2 € Syl,(Hy, V') such that
Q1NQy# 1.

PRrROOF. Assume otherwise. With Lemma 4.11, applied to V and H,,
there exists Q1 €Syly(H,, V). If Q1 N Hy # 1, then this intersection
is a V-invariant g-subgroup of H, and then Lemma 4.11 implies that
it is contained in some Q2 € Syl,(Hp, V'), contrary to our assumption.
Therefore Q1 N Hy, = 1 and in particular @ is inverted by b and hence
abelian. It follows that

Q1 < Cn,(04(Ha)) = Z(04(Ha))

because O4(H,) = F*(H,).

This implies that Q1 = O4(H,) and forces Ng(Q1) to be contained
in H,, because H, is primitive (Corollary 5.8). Therefore @; is a Sylow ¢-
subgroup of G. Now the Sylow g-subgroups of G are abelian, in particular
O4(M) is abelian. We recall that O4(H,) contains an a-minimal subgroup
U, that is now abelian and (hence) inverted by a. As Oq(H,) is also
inverted by b, it follows that z centralises U,. Lemmas 5.2 (3) and 2.10
imply that U, = [U,, a] < O4(M). Now we use that O, (M) is abelian; this
forces Oy(M) < Ce(U,) < H, by Lemma 7.9 and consequently M infects
H,. The Infection Theorem (2) tells us that char(M) = ¢. Moreover
Og4(M) lies in some z-invariant Sylow g-subgroup of G, hence in all of
them by Lemma 4.10 and therefore O,(M) < Q1. As Q1 is abelian, we
deduce that Q1 < Cp (F*(M)) < O4(M). This forces F*(H,) = F*(M)
and then M = H, by Corollary 5.8. But this is impossible by Lemma
5.13. O

With (2) we choose Q1 € Syly(H,, V) and Q2 € Syl (Hy, V) such that Q1NQ2 #
1. Let v € {a,b} and let @, be a V-invariant g-subgroup of G containing O,(H,),
such that ZJ(Q,) is Ck(v)-invariant and chosen to be maximal subject to these
constraints. Then Lemma 9.6 implies that @, is a V-invariant Sylow g-subgroup of
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G. Denoting the subgroups that we found in this way by @, and @, we may now
suppose that @1 < @, and similarly Q2 < Q.

As1# Q1NQ2 < QN Qyp by our choice of @1 and @2, Lemma 9.5 yields an
element & € Cg(V) such that QF = Qp. Then ZJ(Q,)* = ZJ(Qp) and therefore
Ne(ZJ(Q4))* = Na(ZJ(Qp)). But Ck(a) C Ng(ZJ(Q,)) and this means that

Ck(a) = Ck=(a)” € Ng(Z2J(Qa))" = Na(ZJ(Q))-

As Ck(b) € Ng(ZJ(Qp)), Lemma 9.3 (2) implies that Ng(ZJ(Qp)) = G. This
contradicts Lemma 9.3 (1) and hence the proof is complete. (]

LEMMA 9.8. Suppose that Hypothesis 9.1 holds. Then there does not exist a
prime q such that char(M) = q = char(H,).

PROOF. Assume otherwise and let ¢ be such a prime. By Lemma 9.2 (2) there
are two cases to consider:

Case 1: a and b are conjugate in G.
Then char(Hy) = g by our choice of H, and Hp, in Hypothesis 9.1 and
this contradicts Lemma 9.7.
Case 2: a and b are isolated in G.
Then the roles of a, b and z can be interchanged which makes Lemma
9.7 applicable to a and z directly. This leads to a contradiction again.

]

Before we embark on one of the main results of this section, we show that if
a and b are isolated in G, then an even stronger version of Theorem A holds for
them (and similarly for z.)

LEMMA 9.9. Suppose that Hypothesis 9.1 holds and let v € {a,b}. If v is isolated
in G, then H, = Cg(v) or H, has odd prime characteristic.

PrOOF. Assume that Cg(v) < H,, but that H, does not have odd prime
characteristic. As v is isolated in G and v ¢ Z*(G), we see that G, v, Cg(v) and
H, satisfy Hypothesis 5.1 in the roles of G, z, C and M. Therefore we may apply
Theorem A to v and H, instead of z and M. We know from Lemma 9.4 that
E(H,) =1 and hence the theorem supplies a contradiction. (]

Here comes our main result:

THEOREM 9.10. Suppose that Hypothesis 9.1 holds and let v € {a,b}. Then
Cg(v) is a mazimal subgroup of G and a and b are isolated in G.

PRrROOF. First we assume that Cq(v) # H, and we set w := vz. Let F' := F(H,)
and note that F = Fy(H,) = F*(H,) by Lemma 9.4 and that by Hypothesis 9.1
we have a v-minimal subgroup U, in F'. In particular Hypothesis 7.6 is satisfied.

(1) [Cr(2),0] # 1.

PROOF. Assume otherwise. Then Cr(z) < Cp(v). From Lemma 2.1 (4)
it follows that [F,v] < [F,z] N Cg(w) and thus U, < H,. As v is isola-
ted in H,, by Lemma 9.2 (3), the Pushing Down Lemma (3) gives that
U, < F(Hy,). Then Lemma 7.9 implies that H,, & H,. Moreover, Lemma
9.3 (2) and Lemma 9.7 yield that H, and H,, are neither equal nor of the
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same prime characteristic. So with the Infection Theorem (5) we deduce
that H, and H,, are not conjugate. Therefore a and b are not conjugate
(following from our choices in Hypothesis 9.1). Lemma 9.2 (2) yields that
a and b are isolated in G and then by Lemma 9.9 there exists an odd prime
g such that char(H,) = ¢q. Now the Infection Theorem (2) and the fact
that 1 # U, < O4(H,,) imply that also char(H,) = ¢. This contradicts
Lemma 9.7. ]

By (1) we may choose a prime p € m, such that, with P := O,(H,), we have
that X := [Cp(2),v] # 1. In particular [P,v] # 1 so that we may suppose that
Uy, < P. As v € Oy 2(M) by Hypothesis 9.1, Lemma 2.10 yields that

X = [X,0] < [PNM,v] < O,(M)

and therefore X < Cp(pr)(2).

(2)

C=M.

PROOF. Assume that C < M. Then with Lemma 9.4 we know that
E(M)=1= 02(M) and thus M has odd prime characteristic by Theo-
rem A. We observed above that 1 # X < O,(M) and this implies that
char(M) = p.

As Hypothesis 7.6 is satisfied by z and M, Lemma 7.7 yields that
[X,U] < [Cpy(2),U] = 1. Therefore X is a non-trivial U (z)-invariant
subgroup of O,(M). With Lemma 7.10 we obtain that Ng(X) lies in
a maximal subgroup of G of characteristic p. We also know that X <
F(H,) whence H, infects a maximal subgroup of G of characteristic p. But
then, applying the Infection Theorem (2), we obtain that char(H,) = p
contradicting Lemma 9.8. ]

Now (2) and Lemma 5.10 imply that every z-invariant m-subgroup of G is
contained in C' = M. In particular we know that [Fr(H,), 2] = 1. As X < O,(M)
and therefore p € m, the z-invariant p-subgroup P of H, is now contained in C.
This means that X = [P,v] and hence U, < X = [P,v] < F is normalised by U, (v).

3)

M infects H, and (therefore) Fy (H,) is a non-trivial subgroup that is
inverted by z.

PRrROOF. As U, < X < Op,(M), the first statement follows from Lem-
ma 7.9. Moreover we know that M and H, are neither equal nor both of
characteristic p (by Lemmas 5.13 and 9.8). As E(H,) = 1 with Lemma
9.4, the Infection Theorem (4) gives that Fy/(H,) # 1. This subgroup is
inverted by z by the Infection Theorem (1). O

H, is the unique maximal subgroup of G containing N¢(X).

PROOF. We know that Ng(X) # G by Lemma 9.3 (1). Suppose that
H is a maximal subgroup of G containing Ng(X). Then as X < F(H,), we
have that H, infects H. Lemmas 5.2 (3) and 2.10 imply that U, < F(H)
and therefore Lemma 7.9 yields that we conversely have that H & H,,.
Now the Infection Theorem (3) forces H and H, to be equal or both of
characteristic p. But if char(H) = p, then we recall that X < O,(M) and
hence M 9 H. Then the Infection Theorem (2) implies that char(M) = p
as well, contrary to Lemma 9.8. Thus H = H, as stated. (]
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a and b are conjugate in G.

PROOF. Otherwise Lemma 9.2 (2) implies that a and b are isolated
in G and hence that v is isolated in G. Together with our assumption
that Cg(v) < Hy, Lemma 9.9 implies that char(H,) = p. But now, since
F*(H,) = P < M, it follows that H, & M. As M 3 H, by (3), the In-
fection Theorem (3) and Lemma 9.8 imply that M = H,,. This contradicts
Lemma 5.13. O

By Hypothesis 9.1 we now have that H, and H; are conjugate and in particular
it follows that Cq(w) < H,, and that Y := [O,(H,), w] # 1. We also recall that
F.(H,) is centralised by z (as noted before (3)) and that Fy (H,) is inverted by
z by (3). In particular F,/(H,) is abelian. Then we see that [H,,z] < Cq, (F) <
F, because F' = F*(H,), and together with Lemma 2.6 this implies that H, =

Ch,(2)Fr (H,). We point out that, although a and b are conjugate in G, they are

still isolated in H, and in Hp, by Lemma 9.2 (3).

(6)

Y <0,(M) and Ng(Y) < Hy. In particular M infects H,,.

PROOF. We know that v and w are conjugate in G by (5) and hence in
C by Lemma 4.1 (9). Then X and Y are conjugate by an element from C
and the first statement follows because X < O,(M). Again by conjugacy
and by (4), the unique maximal subgroup of G containing N (Y') is H,,.
Thus M & H,. [l

F./(H,) is inverted by w and by z and (therefore) centralised by v.

PROOF. Let D := Fp.(H,) N Cg(w). Then D < F./(H,) because
F./(H,) is abelian. Moreover D is invariant under Cg(w) N Cg(v) =
Ceo(v) = Ce(w). Since [Ca(v), 2] < [Hy,z] < Fr(H,) (as noted befo-
re (6)), Lemma 5.2 (1) gives that

Ce(v) = [Ca(v), 2|Co(v) < Fr(H,)Co(v).

Consequently C(v) normalises D. Moreover D is contained in Cg(w)
and inverted by z, so it follows that

D= [D,Z] < [CG(w)vz] < [Hu,,Z] < Fﬂ"(Hw)'

As v and w are conjugate in G by (5), the subgroup F,/(H,) is abelian
as well. In particular D < F,..(H,,). Now we can argue as above to deduce
that D is also Cg(w)-invariant. Together with Lemma 9.3 (2) we see that
G = (Cg(v),Ca(w)) < Ng(D). This forces D = 1 because G is simple by
part (1) of the same lemma. Hence w inverts Fy/(H,). This subgroup is
also inverted by z, by (3), and hence v centralises it. O

Op(M) £ H,.

PRrROOF. Otherwise Y < O,(M) < H, and it follows that Y < O, (H,)
with the Pushing Down Lemma (1). Then H, & H,, by (6). As E(H,) =
1 = E(H,) by Lemma 9.4 and as v and w are conjugate by (5), the Infec-
tion Theorem (5) forces H, and H, to be equal or to be of characteristic
p. But this is contradicted by Lemma 9.7 and the fact that H, and H,
are distinct (by Lemma 9.3 (2)). O
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TN, = {p}.

PROOF. Assume that there exists a prime g € w N, such that g # p.
Then, as z centralises F(H,), we have that P x O,(H,) acts on O,(M)
and

[Co, ) (P); Oq(Hy)] < Op(M) N Oy(H,) = 1.
With Thompson’s P x @-Lemma (2.2) it follows that [0,(M), O,(H,)] =1
and therefore O,(M) < H,, contradicting (8). O

X = PNO,(M). Moreover X <H, and X is a cyclic group that is inverted
by v and w.

PROOF. Let Py := PN O,(M).

First assume that Z := Q1(Z(0,(M))) < Py. Then Z < P and con-
sequently Fr/(H,) < Cg(Z) < M (because M is primitive by Corollary
5.8). This contradicts (2) and (3). Thus Z £ P.

Now assume that Py is not cyclic. Then choose Q9 < Py to be ele-
mentary abelian of order p? and let Qo < Q1 < QoZ be such that Q;
is elementary abelian of order p®. This choice is possible by the previous
paragraph. As M = C by (2), we may apply Theorem 8.9 and we obtain
that C(z) < M for all z € Q. In particular C(Qo) < M. On the other
hand Qg < P and thus

Fﬂ"(Hv) S Fﬂ’(Hv) < CG(QO) S M7

which is impossible by (2) and (3). We conclude that P is cyclic and hence
Py is either centralised or inverted by v. Now we recall that U, < X < Fj.
Then [Py, v] # 1, therefore v inverts Py. Moreover Py is centralised by z
and hence inverted by w. It follows that X < Py = [Py, v] < [P,v] = X,
so X = F, as stated.

It remains to show that X < H,. Of course Fy (H,) centralises X
because p € 7, moreover X = PN O,(M) is Cy, (z)-invariant. Thus the
fact that H, = Cp, (2)Fr (H,) yields that X is normal in H,. O

For all primes ¢ # p, there exists a Sylow g-subgroup of H, that is cen-
tralised by v.

PROOF. As X is inverted by v, by (10), and as X is normal in H,,
we have that [H,,v] centralises X. Then we recall that P = Cp(v)[P,v] =
Cp(v)X by Lemma 2.1 (2) and we consider the action of [H,,v] on P/X.
It follows that P/X is centralised by [H,,v] as well. Moreover (7) and (9)
yield that [F,/(H,),v] = 1 and therefore [H,,v| centralises F)(H,). This
implies that [H,,v] < Op(H,)Cn, (F*(H,)) = PZ(F). Since [H,,v,v] =
[Hy,v] by Lemma 5.2 (1) and v centralises Fj/ (H,), we deduce that

[H,,v] < [PZ(F),v] = [P,v] = X.

Suppose that ¢ # p is a prime and, with Lemma 4.11, let Q € Syl,(H,,V).
(Here we use again that all involutions in V' are isolated in H,, by Lemma
9.2 (2).) Then it follows that

Q0] < [Hy,v]NQ<XNQ=1.
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With (3) we find a prime ¢ € 7' N m,. Then ¢ # p and, by (11), we may
choose @) € Syl,(H,,V) such that v centralises ). Moreover (3) and (9) give that
F,(H,) = Fp(H,) is non-trivial and is inverted by z, so Oq(H,) is inverted by z
and therefore @) is not centralised by z. As C¢(Q) is z-invariant, we may choose v €
T €Syla(Ce(Q)) such that T is z-invariant (by Lemma 4.8, applied to Ca(Q)(z)).
Then [T,z] = 1 by Lemma 4.1 (2), but z ¢ T. Together with Lemma 9.3 (4)
it follows that v is the unique involution in T and therefore Ng(T) < Cg(v).
However, we know from (5) that Lemma 7.11 (1) holds and hence that v is not
the only involution in Z(T'). This contradiction shows that Cg(v) is a maximal
subgroup of GG as stated. It is left to prove that a and b are isolated in G:

As z is not central in H, by Lemma 5.13, it follows from Lemma 5.2 (6) that
there exists an odd prime g € 7, such that O,(H,) is not centralised by z. Lemma
9.2 (2) gives that all involutions in V' are isolated in H,, so with Lemma 4.11 we
may choose Q € Syly(H,,V) and a € T € Sylx(C(Q)) such that T is z-invariant,
as we did in the previous paragraph. Then z centralises 7', but is not contained
in it. Again the fact that ro(G) = 2 by Lemma 9.3 (4) yields that @ is the unique
involution in 7. Thus Lemma 7.11(2) must hold and in particular a and b are not
conjugate in G. Lemma 9.2 (2) implies that a and b are isolated in G.

This finishes the proof of the theorem. O

COROLLARY 9.11. Suppose that Hypothesis 9.1 holds. Then C = M.

PrOOF. We know from Theorem 9.10 that a and b are isolated in G. Thus the
roles of z,a and b can be interchanged. In particular, since z € Oz 2(C) N Cg(a) <
Oz 2(Cg(a)) by Lemma 5.2 (3), we may apply Theorem 9.10 to z instead of v.
Hence C' is a maximal subgroup of G. (|

9.2. The Proof of Theorem B

After a preparatory lemma, we set up a hypothesis following the results in the
previous part of this chapter. Then we apply local analysis to involution centrali-
sers and we arrive at a contradiction with a counting argument. Hypothesis 5.1 is
assumed to hold throughout.

HyPOTHESIS 9.12.
In addition to Hypothesis 5.1, suppose that a € Oy 2(C) is an involution distinct
from z. Moreover
o V:={(a,z) and b:= az;
o for allv € {a,b} we let H, := Cg(v) and m, := 7(F(H,)) and
o m:=7(F(C)).

LEMMA 9.13. Suppose that Hypothesis 9.12 holds and let V' < S € Syb(G).
Then Hypothesis 9.1 is satisfied, the subgroups C, H, and H, are maximal in G
and in particular, for all v € V#, Hypothesis 7.6 holds with v, Cq(v) and H, in
the roles of t, Cq(t) and Hy. In S there are precisely three involutions and these
are central in S and isolated in G.
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PrOOF. Hypothesis 9.12 together with some more notation and choices of ma-
ximal subgroups gives Hypothesis 9.1. If v € V#, then Lemma 9.2 (3) implies that
v, Ce(v) and H, satisfy Hypothesis 7.6. Theorem 9.10 and Corollary 9.11 are ap-
plicable and hence C, H, and H;, are maximal subgroups and a and b are isolated
in G. Thus all involutions in V' are isolated in G and hence central in S. Lemma
9.3 (4) yields that r5(G) = 2 and therefore Q4(S) = V. O

LEMMA 9.14. Suppose that Hypothesis 9.12 holds and suppose further that
[C,a] £ F(C). Then [H,, 2] < F(H,) and [Hy, 2] < F(Hy).

Proor. By Lemma 9.13 we may apply Lemma 7.12 with a and z interchanged.
Then it follows that O(F(H,)) N C = 1 and hence that z inverts O(F(H,)). We
also know from Lemma 5.2 (5) that z centralises O2(H,)E(H,). Therefore F*(H,)
is centralised by [H,, z] and we deduce that [H,, 2] < Cy,(F*(H,)) = Z(F(H,)).
In the same way we argue that [Hy, 2] < F(Hp). O

LEMMA 9.15. Suppose that Hypothesis 9.12 holds. Suppose that p is a prime
and that P is a V-invariant Sylow p-subgroup of G. Then P is centralised by a, b
or z.

Proor. If p € 7, then Lemmas 9.13 and 5.10 give that P is centralised by
z. Thus we now suppose that [P, z] # 1 and hence that p ¢ 7. Then Lemma 4.7
implies that p divides |Ck (a)| or |Ck(b)|. In the first case, the same lemma implies
that |H,| is divisible by p, but that Cp, (2) does not contain a Sylow p-subgroup of
H,. Therefore |[H,, 2] is divisible by p. If [H,, 2] £ F(H,), then Lemma 9.14, with
a in the role of z, yields that [C,a] < F(C) and [Hyp,a] < F(Hp). (Here we use that
a and b are isolated in G by Lemma 9.13.) In particular, since p ¢ 7, we see that a
centralises every V-invariant p-subgroup of C.

If, in this case, we have that p € 7, then Lemma 5.10, applied to b, gives that
H,, contains a Sylow p-subgroup of G. Lemma 4.10 then implies that P < Cg(b).

If, still in the same case, we have that p ¢ 7, then a also centralises every
V-invariant p-subgroup of Hy. In particular [Cp(z),a] = 1 = [Cp(b),a] because P
is V-invariant. Then by Lemma 2.1 (4) it follows that [P, a] = 1.

Finally, if [H,, 2] < F(H,), then p € n(F(H,)) and Lemmas 5.10 and 4.10,
applied to a, yield that [P, a] = 1. O

LEMMA 9.16. Suppose that Hypothesis 9.12 holds. Then C is perfect.

PROOF. Assume otherwise. Then C' < O which means that C possesses a
non-trivial abelian factor group. As O(Cg(V)) < O(C) by Lemma 2.9, we ha-
ve that O(Cg(V)) = O(C) N Cq(V) and therefore C ~ Cg(V)/O(Cq(V)). Now
Ca(V)/O(Cq(V)) possesses a non-trivial abelian factor group. We recall that a
and b are isolated in G by Lemma 9.13. Therefore the same arguments as above
give that

H,/O(H,) ~Ca(V)/O(Ca(V)) ~ Hy/O(Hy).
Hence there exists some prime p such that C, H,/O(H,) and H,/O(H) have a
non-trivial p-factor group. But for the same prime p, there exists a V-invariant
Sylow p-subgroup P of G by Lemma 4.11. Then with Lemma 9.15 it follows that
some H € {H,, H,, C} contains P. As Hypothesis 9.1 is satisfied by Lemma 9.13,
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Lemma 9.3 (1) yields that G is simple and hence OP(G) = G. Then Lemmas 4.1 (3)
and 2.19 imply that H does not have any non-trivial p-factor group, which is a
contradiction. (]

LEMMA 9.17. Suppose that Hypothesis 9.12 holds and let p € w be such that
O, (C) is not centralised by a. Then Co (c)(a) is cyclic.

PrROOF. Lemma 9.13 implies that [O2(C),a] = 1 and therefore p is odd. Set
P := 0,(C) and assume that Cp(a) contains an elementary abelian subgroup X of
order p?. If X is a maximal elementary abelian subgroup of P, then X = Q;(Cp (X))
and therefore a centralises every element of order p in Cp(X). As p is odd, it
follows with Lemma 2.1 (5) and (6) first that a centralises Cp(X) and then that a
centralises P. This is a contradiction. Thus X lies in an elementary abelian subgroup
Y of P of order p3. Theorem 8.9 forces Cg(y) to be contained in C for all y € Y#.
But we have that X < Cp(a) < H, and therefore X acts coprimely on O, (H,).
With Lemma 2.1 (4) we obtain that

Op (Ha) = (Co,(m,)(z) | x € X¥) < C.

As O,(H,) is a z-invariant p-subgroup and p € 7, Lemma 5.10 implies that O, (H,) <
C'. Therefore z centralises F'(H,). But this contradicts Lemmas 5.13 and 5.2 (6). O

LEMMA 9.18. Suppose that Hypothesis 9.12 holds and let v,w € V#.
Then [Cq(v),w] < F(Cg(v)).

PrOOF. By Lemma 9.13, all involutions in G are isolated in G. Therefore it is
sufficient to prove that [C,a] < F(C). As a is isolated in G, Lemma 5.2 (5) gives
that [a, O2(C)E(C)] = 1. It is left to show that, for all odd primes p € =, the
subgroup [C, a] acts nilpotently on O,(C). Thus let p € 7 be odd. If [0, (C),a] =1,
then nothing is left to prove. If O,(C) is not centralised by a, then Lemma 9.17
implies that Co, (¢)(a) is cyclic. From Lemma 9.16 we know that C/O(C) is 2- and
3-perfect and thus Corollary 3.3 is applicable. It yields that [C, a] acts nilpotently
on O,(C) as required. O

COROLLARY 9.19. Suppose that Hypothesis 9.12 holds. Suppose that p is a
prime in 7(G)\nwUm, U, and that P € Syl,(GQ) is V-invariant. Then P is centralised
by V.

PROOF. From Lemma 9.15 we know that P is centralised by some involution
in V. Since they are all isolated, we may without loss suppose that P < C. Then
Lemma 9.18 yields that [P,a] < F(C). The choice of p implies that p does not
divide |F(C)| and hence [P, a] = 1. It follows that P is centralised by V. O

LEMMA 9.20. Suppose that Hypothesis 9.12 holds and suppose that x € F(C) is
an element that is inverted and not centralised by a. Then C is the unique maximal
subgroup of G containing Cp«(cy(x){a). In particular the only mazimal subgroup of
G containing Cg(z){a) is C.
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PROOF. As a centralises Oy(C'), our hypothesis forces x € O(F(C)). Therefore
we may suppose that x is a p-element for some odd prime p € 7. In particular
|| > 2.

Set Yy := Cp(c)(z) and Y := YoE(C). Then Y is centraliser closed in F(C).
Suppose that Y(a) < HmaxG and assume that H # C. Then z € H, moreover
C infects H and E(H) < C by Lemma 5.2 (5). With the Infection Theorem (4)
there exists a prime ¢ € 7’ such that @ := O,(H) # 1. Then Lemma 8.8 says that
@ is the unique maximal Y-invariant g-subgroup of G intersecting H non-trivially.
Moreover z inverts @ by Lemma 8.7 (3).

(1) @ is centralised by a or by b.

PROOF. @ is a V-invariant g-group because @ is normal in H and
V < H.Let Q < Q1 € (G, V). As z inverts Q, it follows that Q1 is not
centralised by z, thus with Lemma 9.15 it is centralised by a or by b. [

By symmetry between a and b, we suppose that @ < H,.
(2) p<q

PROOF. We know that Q = [@, z] < F(H,) by Lemma 9.18. As H
is primitive by Corollary 5.8, we have that Ng(Q) = H and consequently
H, infects H. We note that a centralises E(H) by Lemma 5.2 (5).

Now assume that 7(Q) > 3 (and thus 7(O,(H,)) > 3). Then Theorem
8.9, applied to H,, yields that Cg(y) < H, for all elements y of order ¢
that lie in some elementary abelian subgroup of order ¢* of O,(H,). With
Lemma 2.1 (4) this forces Oy (H) < H,. Hence F*(H) is centralised by a.
With Lemma 5.2 (6) it follows that H = H,, which is impossible because
x € H is inverted by a. Thus we have that r(Q) < 2. Let Y, := O,(Y0).
Then C¢(Y,) < C by Lemma 8.7 (1) and hence Co(Y,) < CNQ =1 by
part (3) of the same lemma. In particular Y, acts non-trivially on Q. As
r(Q) < 2, we deduce that p < ¢ with Lemma 2.4. O

(3) ¢<p.

PROOF. Let Q* := QCp(y,)(Q). We know that H # H, and that
Q*(z) < H because @ < H. As zx is inverted by a, Lemma 8.7 (4) implies
that z € O,(H). In particular O,(H) # 1. Let P be a maximal Q*E(H,)-
invariant p-subgroup P of G. Then Lemma 8.7 and the previous two steps,
applied to H, instead of C, give the following:

P is inverted by a and centralised by z or by b, and r(P) < 2. Moreover
O4(Cp(m,)(Q)) acts non-trivially on P and hence ¢ < p by Lemma 2.4. [

As (2) and (3) contradict each other, the proof is complete. O

LEMMA 9.21. Suppose that Hypothesis 9.12 holds and let x € K#. Then there
exists a unique involution u € a® UbY that centralises x.

PROOF. The order of z is odd by Lemma 4.3 (2). Thus there exists a power y of
x that is a non-trivial p-element for some odd prime p, and y lies in some z-invariant
Sylow p-subgroup P of G by Lemma 4.8. Lemma 14.7 yields that Lemma 4.11 is
applicable whence G possesses V-invariant Sylow p-subgroups. Then it follows with
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Lemma 4.10 that P is C-conjugate to some V-invariant Sylow p-subgroup of G. Let
¢ € C be such that P is invariant under V; := V¢ With Lemma 9.15 we find an
involution w € V; that centralises P and z. We note that u # z because z inverts
y. Hence u is conjugate to a or b (even in C, by Lemma 4.1 (9)) because a, b and z
are representatives for the three distinct conjugacy classes of involutions in G (see
Lemma 9.13). We have that y € Ce(u) and (y) = [(y), 2] < [Ce(u), z]. Now Lemma
9.18, applied to Cg(u) instead of C, yields that y € F(Cg(u)). Lemma 9.20 implies
that Cg(u) is the unique maximal subgroup of G containing Cg(y)(z).

Assume that some involution u’ € a® U b® distinct from u centralises z. Then
u’ € Cg(y) and hence (y) = [(y), 2] < [Ca(u'),z2] < F(Ca(u')), again with Lemma
9.18. Thus Lemma 9.20 forces Cg(u’) to be the unique maximal subgroup of G
containing Cg(y)(z). This means that Cg(u) = Cg(u'). In particular v and «’
commute, so wu’ is an involution because u # wu'. As u and v’ are distinct from
z, we deduce that uu’ € 2%. But uu’ centralises z whence uu’ = z, because z is
isolated in G. Now we recall that u and u’ centralise y. Then z centralises y, but z
inverts x, and this is impossible. O

COROLLARY 9.22. Suppose that Hypothesis 9.12 holds. Then
[K#| = [a“] - |Cie (@) + 6] - |Cie (b))

PRrROOF. By Lemma 9.21, every element in K# is centralised by either precisely
one conjugate of a or by precisely one conjugate of b. This yields the formula. O

ProOOF OF THEOREM B.

Recall that in Theorem B, we suppose that GG is a minimal counter-example to
the Z*-Theorem and therefore Hypothesis 5.1 is satisfied. We assume that Theorem
B does not hold. Then there exists an involution a € Oy 2(C') distinct from z, so,
together with some notation, Hypothesis 9.1 holds. Corollary 9.22 gives us three
formulas when applied to the sets K, K, := {aa? | g € G} and K}, := {bb® | g € G},
respectively:

[K#| = 1a%] - |Ckew (@) + [0 - |Cre (B)],

[KF = [b7] - [Crep (B)] + [ [Crep (2)]

and
K] = |20 |Cyp ()] + [a™] - [Cpep (a)]

As [a®| = |C : Cc(a)| = |C : Cc(b)|, we see that
(%) |a®| = [b°| and similarly |pfa| = |zH| and |zF¢| = |af|.

We also note that the numbers in (x) are all odd and, by Lemma 5.13, not
equal to 1. This means that they are greater than or equal to 3. Next we observe
that Lemma 4.7 implies that |H,| = |Cc(a)| - |Ck (a)| and therefore

Ck(a)| = [Hq : Co(a)| = |2].
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Applying this for a, b and z respectively yields
Crex (@)l = [z =1, [Cewe (b)] = 2] ~ 1,
Crr(®)] = la™*] =1, [Cgp(2)| =[]~ 1,
(Crp ()] = 07 =1, [Cpep(@)] = [b2] — 1.

Finally we apply Theorem 4.6 to deduce that
[K#| = |Cx(a)] - [Cx (b)| =1 = |7 - |27 - 1
and similarly, for the other two involutions, we have that

[K#| = la"] - |a®| = 1 and [KF| = ] - [pe| - 1.
With all this in mind, the equations above become

2] |27 =1 = [a“] (|22 = 1) +]a®| - (|a"*| = 1) = [a® [z = 2|0 +[a®]-[a"],
@ ]-[a|=1 = b5 |- (|l | = 1)+ [pTe |- (j69 = 1) = [b™e |- [T | —2[b"= |+ [b%e | [
and
6] | =1 = |2 |- (|67 = 1)+ |20 |- (|2 = 1) = [0 ] o€ = 2|20 | 1|20 | 2He .
Addition of these equations and replacing terms, referring to (x), yields that
=3 = —2[a”| = 2[pfe| = 2|27 + [a] - [T | 4 [pe] - |aTTo] 4 [2H0] - b€

= [a®|(l2"] = 2) + [p"=[(Ja’"] = 2) + [27] (]b7] - 2)

> [aC] + [pHe| + |27 | >3434+3=9
which is impossible. ([
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Components of C' and the Soluble Z*-Theorem

In this section we use Theorem B to show that E(C) # 1 and to limit the
number of components. As an independent result on the way, we prove the Soluble
Z*-Theorem. Throughout, we suppose that Hypothesis 5.1 holds.

THEOREM 10.1. L5(C) # @.

PROOF. Assume otherwise. Then E(C) = 1 and therefore F*(C) = O2(C).
From Theorem B we know that 72(O2 2(C)) = 1 and therefore a Sylow 2-subgroup
T of Oy 5(C) is cyclic or quaternion. In the first case Aut(T) is a cyclic 2-group
and we deduce that [O?(C),T| = 1. Then O*(C) < Cx(T) < T which means that
C' is a 2-group and in particular C has cyclic Sylow 2-subgroups. This contradicts
Lemma 5.3 (1). In the second case, assume that T' is quaternion of order at least
16. Then Aut(T) is a 2-group and therefore O%(C) < C5(T) < T as in the previous
case. Then C has quaternion Sylow 2-subgroups, again contrary to Lemma 5.3 (1).

Thus we consider the situation where T' ~ Qs and we recall that Aut(Qg) ~ S4.
As T is quaternion with central involution z, it follows that z € T" < G’ = F*(G) by
Lemma 5.4. Therefore G = F*(G) is simple. Lemma 2.19 yields that O?(C) = C
and in particular C/Cx(T) = C/Z(T) is isomorphic to a subgroup of A4. Let
T < S €Syly(G). Then S < C and it follows that S induces inner automorphisms
on T. Therefore S = T ~ Qg, which is impossible by Lemma 5.3 (1). O

The next objective is to prove Theorem C. This is where the notion of core-
separated subgroups that we introduced in Section 6 comes into play. Also, we
appeal to a result that depends on a theorem usually referred to as “L-Balance”.
We state this here, in an appropriate way, for our minimal counter-example G. The
reason why it is not listed among the general results is that, ultimately, it depends
on the Z*-Theorem, because one of the main ingredients for its original proof is
Glauberman’s result on automorphism groups of core-free groups (see [Gla66b)).
However, this still means that the L-Balance Theorem holds in the class of groups
that satisfy the Z*-Theorem, i.e. it holds in every proper subgroup of G by Hypo-
thesis 5.1.

THEOREM 10.2. Suppose that H < G and that t € H is an involution. Then
L(Cy(t)) < L(H).

PRrROOF. The full result is stated as Theorem 4.73 in [Gor82]. O

LEMMA 10.3. Let a € Oy p«(C) be an involution and suppose that Ly is a
2-component of Cg(a). Then O (CL,(z)) is contained in a 2-component of C.

73
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PrOOF. Let H := Cg(a) and set H:= H/O(H). We have that H= C/H(\z)
by Lemma 5.2 (1) because z € H < G. By hypothesis L1 € Lo(H) and we set
L := (L) and Lo := O>(Cy(z)). As L is normal in H, it follows that L is normal
in Cg(z) = Co(a). We also note that Lg is perfect and that Lo = 0>(C3: (7)) =
0>=(L) = L. Now

Lo < 0% (Cp(2)) < L(Co(a)) < L(C)
by Theorem 10.2 and thus Ly < Cp(¢)(a). In particular, we see that Ly < Cpe (@)
and hence that E(C) # 1. Let F := Oy p~(C), let n € N and let Ey, ..., E,, be the
2-components of C. We note that Fy,..., E, are normal in F' and in particular
a-invariant.

We need to show that there exists some j € {1,...,n} such that O>(Cp, (z)) <
E;0(C). But since Cr, (z) is not necessarily normal in C¢(a), it is more convenient
to first look at Lo a bit more.

As a € F, it follows that a can be written as a = aq - - - a,t with t € Og 2(C)
and a; € E; for all j € {1,...,n}. We let X, X;,...,X,, be normal subgroups of
Cc(a) such that X = Cp (@) = Cp, @) (1) and X; = Cf(i) = CE(*) for all
j €{1,...,n}. Then Cx(a) = XX;--- X, and Ly is a perfect, normal subgroup of
Cp(c) (@), in particular Lo centralises X.

Suppose that Ly is not contained in X;. Then X; N Lo is a proper normal
subgroup of Lg, in particular it is subnormal in L. It follows that Xl/ﬂ\LO =TLor
that X7 N Lo is either a component of L (and hence conjugate to Ly in Cg(2)) orit
is contained in Z (L ) A similar statement holds for Xs, ..., X,, if Lg is not contained
in either of these subgroups. If for all 7 € {1,...,n} we have that Xi/ﬁ\Lo < Z(E),
then

Lo < (X NLp)(X1NLp)- (XN Lo)O(C)
because modulo O (C'), the product X X - - - X, is direct and because Ly is perfect.
Thus
Lo=(XNLy)(X1NLp) - (XnNLo)(Lo NO(C)).
We recall that Lo N O(C) < O(Ce(a)) < O(H ) by Lemma 2.9. Consequently, with
our observation from the previous paragraph, LO is contained in Z (L) and hence is
abelian, which is a contradiction.

We deduce that there exists some ¢ € {1,...,n} such that X;NLoisa compo-

nent of L or coincides with L. If it is a component, then it is H- conjugate to L1

and hence C'g(Z)-conjugate to it, by Lemma 4.1 (9). As X; N Lo is Cy(2)-invariant,
it follows in both cases that

L=To=0%(Cy(2) = 0°(Cp,(2)) < X; N L.
Set J := (X; N Lo)O(H). Then Ly < J and we see that Cr(z) < Cj(z) = (X; N
Lo)Co(my(2) by Lemma 2.1 (3). Moreover X; N L is normalised by Co () (z) and
hence normal in Cj(z). This implies that O>(C;(z)) < X; N Ly. But we also have
that Lo is normal in C;(z) and hence that

0=(CL,(2)) < 0=(Lo) < 0%(Cy(2)) < X; < E;.
Therefore, in this case, our statement is proved. Now we may suppose that

there exists some j € {1,...,n} such that Ly < X, and hence LyO(C) < X;0(C).
This means that Ly < X;0(C) < E;O(C) which is a 2-component of C. O
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LEMMA 10.4. Suppose that Lo(C) = {Ex,...,E,} for some n € N, let i €
{1,...,n—=1} and letY := E; 11 --- E,O9 2(C). Then C does not possess elementary
abelian subgroups A1 and As of order 4 with the following properties:

- A < E;---Ej,
*AQ S Cy(Al) and
A NAy=1.

PROOF. Assume that such subgroups Ai, As exist. Then let A := A; x As, let
F:=FE;---EY and T € Syl2(Oy 2(C)). Our objective is to show that A; and A,
are core-separated (as in Definition 6.9).

Let a € A# and H := Cg(a). If L € L3(H) is arbitrary and Lg := O®(CL(2)),
then Lemma 10.3 yields that there exists some j € {1,...,n} such that Ly is con-
tained in E;. This implies that

[Lo, A1] < O(C) (if i < j) or [Lo, Ao] < O(C) (if i > j).
As z € Oy 2(H) by Lemma 5.2 (3), it follows that
(Lo, A1) < O(Cia(2)) < O(H) or [Lo, As] < O(Ci(2)) < O(H)
with Lemma 2.9. But z € Z*(H) also means that L = LyO(L) < LoO(H) and
therefore
[L, A1) < [LoO(H), A1) < O(H) or [L, A5] <

[LoO(H), A2] < O(H).

Hence A; and A, are core-separated and Lemma 6.13 gives a contradiction. [J

~ LEMMA 10.5. Suppose that E is a component of C of 2-rank 1 and let
T €Syb(E). Then I ~ 2A7 or there exists some odd number q > 5 such that
E ~ SLy(q). In particular T is quaternion and the unique involution in T is Z.

PROOF. This follows from Lemma 2.23 and from the fact that by Theorem B
the only involution in Z(E(C)) is Z. O

LEMMA 10.6. Suppose that E € Lo(C) is such that z € E and ro(E) > 2. Then
either ro(E) > 3 or there exists a subgroup W < E such that W ~ Cy x Cy and
z € d(W).

PROOF. Let T € Syla(E). As z € Z(E), Lemma 5.5 yields that O?(C) = C
and hence O?(G) = G by Lemma 4.1 (10). Then Lemma 2.18 implies that T is
not dihedral or semi-dihedral. It follows from Lemma 2.12 that 7" has a normal
elementary abelian subgroup B of order 4. Set Ty := Cr(B), Z := Z(E) and
E := E/Z. Moreover let

W ={W<LSE|W=x~CyxCy z€PW)}.

Assume that ro(E) = 2 (in particular z € B) and that W = @. Let b € B be
such that B = (z,b). If Z # (z), then Theorem B yields that Z contains a cyclic
subgroup of order 4 and then, as ro(EF) = 2, it follows that W # @, contrary to
our assumption. Therefore Z = (). Also r5(E) > 2 because E is simple. So there
exists an element u € T such that @ is an involution and & ¢ B. Then either u is
an involution or o(u) = 4, in which case (u, B) ~ Dg because W = @. Therefore we
may suppose that v is an involution. As T is not dihedral or semi-dihedral, Lemma
2.13 implies that Cp(u) has order at least 8. Together with our assumptions that
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ro(E) = 2 and W = & this yields that Cr(u) contains an element of order 4 that
squares to u or to uz. By symmetry we may suppose that « € Cr(u) is such that
2?2 = u. As B<T and 2z € Z(T), we see that x centralises b or interchanges b
and bz. Therefore u centralises B, but « ¢ B, and this contradicts the fact that
T2 (T) =2. U

LEMMA 10.7. Suppose that Ey, Es € L2(C) are distinct. Then ro(E1E2) > 3.

PROOF. Assume otherwise. If r5(E1) = ro(Es) = 1, then E; and Ey have qua-
ternion Sylow 2-subgroups with central involution Z by Lemma 10.5. Thus Lemma
2.14 gives a contradiction. We also see that none of the components has 2-rank 3
or more, so we suppose that ro(Fy) = ro(Fs) = 2. If z ¢ E;, then E; is simple by
Theorem B and hence E; N Ey = 1. Then it follows that ro(E; Ey) = 4, contrary to
our assumption. By symmetry it follows that z € E1 N Ey. Lemma 10.6 yields that
E; possesses a subgroup W such that W ~ Cy x Cy and z € ®(W). In particular
there exists an element = € W that squares to z. Similarly there exists an element
y € Ey that squares to z and we can choose y such that [W,y] = 1. Then xy is
an involution that is not contained in W and hence W (xy) has rank 3, which is a
contradiction. O

LEMMA 10.8. Suppose that E,, Ey and Es are distinct components of C. Then
these are the only components of C and for every i € {1,2,3}, we have that E; is
isomorphic to 2A7 or there exists an odd number g; > 5 such that E; ~ SLa(g;).
Moreover O2(C) = (z) < E(C).

PRrROOF. By Lemma 10.7 we know that ro(FE1 F2) > 3 and therefore there exists
an elementary abelian subgroup A of EjFEs of order 4 that does not contain z. If
ro(Es3) > 2, then Cg,(A) contains an elementary abelian subgroup B of order 4 that
intersects A trivially, contrary to Lemma 10.4. Therefore ro(E3) = 1. By symmetry
we deduce, for all E € £4(C), that ro(E) = 1.

Assume that there exists a 2-component L € Lo(C)\{FE1, Es, E5} or that
Oz 2(C) has a Sylow 2-subgroup of order at least 4. Lemma 10.4 implies that
these cases cannot occur both at once, because ro(E1 EoF3) > 3. Therefore we let
T €Syla(L) or T €Syla(O 2(C)), respectively. We recall that ro(E3) = 1 and
therefore z € E3 by Theorem B. This theorem also implies that z is the only squa-
re in T and in Fj, therefore T E3 contains diagonal involutions and in particular
ro(TE3) > 2. With A as in the previous paragraph, it follows that Crg,(A) con-
tains an elementary abelian subgroup of order 4 that intersects A trivially. Again
we have a contradiction to Lemma 10.4. Together with Lemma 10.5 this completes
the proof. O

Proor or THEOREM C.

Recall that in Theorem C we suppose that G is a minimal counter-example to
the Z*-Theorem. Therefore Hypothesis 5.1 holds. Theorem 10.1 yields that C has
at least one component and by Lemma 10.8 there are at most three components in
C. If C has precisely three components E;, E, and E3, then with Lemma 10.8 we
have for all i € {1,2,3} that F; is isomorphic to 247 or that there exists an odd
number ¢; > 5 such that E; is isomorphic to SLa(g;).

This completes the proof of Theorem C. O



10. COMPONENTS OF C AND THE SOLUBLE Z*-THEOREM s

For the Soluble Z*-Theorem we do not need the full force of Theorem C. It is
sufficient that, if Hypothesis 5.1 holds, then £5(C) # @.

PROOF OF THE SOLUBLE Z*-THEOREM.

Assume that G is a minimal counter-example to the Soluble Z*-Theorem. Let
z € G be an isolated involution such that C' := Cg(z) is soluble and assume that
z ¢ Z*(G).If z € H < G, then the choice of G as a minimal counter-example yields
that H = Cy(2)O(H) and thus H is soluble. Let ¢ € G be an arbitrary involution.
Lemma 4.1 (2) and Sylow’s Theorem imply that Cg(¢) contains a conjugate of z.
Thus Cg(t) is soluble by the previous paragraph. From the minimality of G and
the fact that every involution centraliser is soluble, it follows that the Z*-Theorem
holds in every proper subgroup and every proper section of G. This means that
Hypothesis 5.1 is satisfied. In particular, Theorem 10.1 is applicable and yields that
C/O(C) has at least one component. This is impossible because C' is soluble. [
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Unbalanced Components

In this section we prepare the proof of Theorem D and here it becomes ne-
cessary to invoke knowledge about the simple groups involved in E(C) and their
automorphism groups. Whenever we use specific information about the components
in C' (usually the 2-structure, involutions centralisers or automorphisms), then these
details are from [GLS98], more precisely from Tables 3.3.1, 4.5.1 and 4.5.2, Theo-
rems 4.10.5 and 5.2.1, Proposition 5.2.10 and Tables 5.3a, 5.3g and 5.6.1, from the
ATLAS [CCNT03] or from the corresponding sections in [Wil09]. In many places

we make this more precise. Here comes our new main hypothesis:

HypoTHESIS 11.1. In addition to Hypothesis 5.1, the components of C are
supposed to be known quasi-simple groups.

The following remark captures a general fact about Lie type groups that is used
in connection with balance arguments or in determining types of components. Then
we introduce the notion of an unbalanced component and state the consequences
of results from Chapter 4 in [Gor82] for our situation.

REMARK 11.2. Suppose that E is a quasi-simple group of Lie type in odd
characteristic. If ¢ € E is an involution and x € Aut(F) is a non-trivial field auto-
morphism of E of odd order, then Cg(t) £ Cg(x).

(The involution is contained in a torus, so this torus lies in Cg(t), but not in

DEFINITION 11.3. A component E of C is called an unbalanced component
if and only if it is of type A, (with n € N and n = 3 modulo 4) or of type PSL2(q)
(with an odd number ¢ > 5).

LEMMA 11.4. Suppose that Hypothesis 11.1 holds and that r3(G) > 4. Then C
possesses an unbalanced component. Moreover every component of C of 2-rank at
least 4 is unbalanced of type A, (with n =3 modulo 4 and n > 11).

PROOF. We refer to Section 4.4 in [Gor82]. By Hypothesis 11.1, the simple
groups involved in E(C) are known. Moreover Lemma 6.7 yields that C' does not
possess any 2-balanced subgroups. Therefore by Proposition 4.64 in [Gor82], some
component of C' is not locally 2-balanced (as defined there). Then C possesses an
unbalanced component by Theorem 4.61 in [Gor82].

If E € £3(C) has 2-rank at least 4, then Lemma 6.7 yields that E does not
have any 2-balanced subgroups and hence E is unbalanced by Proposition 4.64 and
Theorem 4.61 in [Gor82]. Then there exists some n € N such that n = 3 modulo
4 and n > 11 by Theorem 2.17. (]

79
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LEMMA 11.5. Suppose that Hypothesis 11.1 holds and let n € N be such that
n > 10. Then C does not possess a component of type A,.

PROOF. Assume that n € N and E € £5(C) are such that n > 10 and F is
a component of C of type A,. If E is not normal in C, then we find elementary
abelian subgroups of order 16 in E and in some conjugate of E, respectively, by
Theorem 2.17. The intersection of these subgroups lies in (z) (with Theorem B).
Hence Lemma 10.4 yields a contradiction and it follows that E is normal in C.

(1) C induces inner automorphisms on E.

PROOF. Let S € Syly(C) and T := SNO?(G). Then Lemma 5.6 yields
that either O?(C') = C and hence S = T or |C : O?(C)| = 2 and hence
S =T x (z), by Lemma 5.5. As E is normal in C' and z centralises F,
we deduce that C'/Cx(E) is isomorphic to a subgroup of O?( Aut(E)) and
then Theorem 2.17 implies that C' induces inner automorphisms on E. [

(2) One of the following holds: B
— E is the unique component of C'or - -
— C possesses precisely two components E and L and then ro(L) =1

and F*(C) = E(C).

PROOF. Suppose that there exists another component L. As n > 10,
Theorem 2.17 yields that there exists an elementary abelian subgroup
Ay < E of order 4 that does not contain z. Thus if ro(L) > 1, then there
exists an elementary abelian subgroup As < Cp (A1) of order 4 such that
A1 N Ay =1, contrary to Lemma 10.4. Hence L is of 2-rank 1 as stated.

Assume that O(C) > (z) and let z € T € Syly(Og 2(C)). Then T =
O3(C) and T possesses elements of order 4 (because z is the only involution
in T by Theorem B). As all elements of order 4 in L and T square to z,
we have diagonal involutions in T'L and therefore Crp (A1) contains an
elementary abelian subgroup of order 4. Again this contradicts Lemma
10.4 and we conclude that O3(C) = (). Now we have that either E is
the unique component of C' or F*(C) = EL in which case E and L are

normal in C' and Cx(F*(C)) = (z). O

Set C' := C/(z). We choose involutions a;,as,as of E such that, for all i €
{1,2, 3}, the following holds:
O(Cpla)) =1
or
O(Cg(ai)) = O(Cp(A)).

Let a; € E be such that ¢ € E corresponds to the element (12)(34)(56)(78) in
Ay. Let az € E be such that dy € E corresponds to the element (13)(24)(57)(68)
in A, and let as := ajas.

By Theorem 33.15 in [Asc00], the elements @, a; and @z are commuting
involutions in E. As C5(a;) = Cg(a;), we can choose ai, as and a; to be commuting
involutions in E. It follows that A := (a1, as, z) is an elementary abelian subgroup
of order 8 of C. Unless n = 11, we have for all 7 € {1,2,3} that O(Cj(d;)) =1 as
required in the first case above. When n = 11, the second case holds because then,
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for all involutions a € A\{1,z}, the subgroup O(C3(@)) = O(Cz(A)) is cyclic of
order 3.

(3) A is weakly balanced.

PRrROOF. Let ¢ € {1,2,3}. By Lemma 6.5 (1) it suffices to prove that
ala;) < O(C)O(Ce(A)). From (1) we know that a(a;) induces inner au-
tomorphisms on E, and Lemma 6.15 yields that a(a;) centralises O2(C)
and, if it exists, the second component of C. So we deduce that a(a;) indu-

ces inner automorphisms on F*(C') and is therefore contained in F*(C').
It follows that a(a;) = O(C(@;)) and then our choice of A implies that

(a;) =1 or a(a;) = O(Cx(A)).

This forces a(a;) < O(C)O(Cc(A)) for all i € {1,2,3}, in both cases, as
required. We conclude that A is weakly balanced. O

o

Now Lemma 6.8 yields a contradiction. O

COROLLARY 11.6. Suppose that Hypothesis 11.1 holds and that ro(G) > 4.

Then C possesses a component of type Az or of type PSLa(q) (with an odd number
q>5).

PROOF. By hypothesis and Theorem 11.4 we know that C possesses an unba-
lanced component. But in the case of type A,,, Lemma 11.5 forces n to be at most
9. As Aj is soluble, the only possible component type left is As. |
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The 2-Rank of ¢

In this section we prove Theorem D, one of the most important results towards
understanding the structure of F*(C). But even to establish Theorem D we already
need some knowledge about the components of C. In order to make the arguments
more clear, we begin by excluding particular configurations, thus dealing with some

of the technical details separately.

LEMMA 12.1. Suppose that Hypothesis 11.1 holds and that E € L2(C). Suppose
further that £ ~ A7 or thaithere erists an odd number q > 5 such that E ~

PSLy(q). Then F*(C) # (Z)E.

PROOF. Assume otherwise, which means that F*(C) = (z)E with the type
of E as stated. Then E is simple and therefore Z ¢ E, so we see that actually
F*(C) = (z) x E. In particular O?(C) # C and therefore O?(G) # G by Lemma

1 (10). Let Sp € Syla(E). Then z centralises Sy, but z ¢ Sy and thus S := (2) xSy
is a Sylow 2-subgroup of Oy g« (C). Let S1 < § € Syla(G). Then S < C by Lemma
4.1 (2) and S; = SN Oy p+(C) < S, in particular S; < S. Every element of S
outside S; centralises Z, but is not contained in F*(C) and therefore induces an
outer automorphism on E.

Now we assume that S £ O p+(C) which means that S; < S. Then we recall
that, by the first paragraph, the elements from S\S; induce outer automorphism on
E. The outer automorphism group of E is 2-nilpotent (because of the type of E),
and we also know that Z ¢ O2?(C), therefore |C : O%(C)| > 4. But this contradicts
Lemma 5.6.

We conclude that S; = S € Syla(G) and this means that S is a direct product
of (z) with the dihedral group Sy (that could be a fours group). As Sy is dihedral,
the Gorenstein-Walter Theorem 2.22 yields that F*(G) is isomorphic to A7 or that
there exists an odd number ¢’ > 5 such that F*(G) ~ PSLy(¢'). As S; does not
have any isolated involutions, we cannot have that G ~ S7 and therefore F*(QG)
is not isomorphic to A7. We are left with the case that F*(G) ~ PSLa(q"). We
know that z ¢ F*(G) and hence z induces an outer automorphism on F*(G). This
must be a field automorphism because z centralises a Sylow 2-subgroup of F*(G).
Let Co := Cp-(e)(2). Then there exists a prime power g dividing ¢’ such that
Co ~ PGLy(qo). In particular O?(Cy) # Cp, contrary to Lemma 5.6. O

LEMMA 12.2. Suppose that Hypothesis 11.1 holds and that E € Lo(C). Then
E cannot be isomorphic to any of the following:

- Spe(q) with an odd number q;

- 2J3; or

- M.

83
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PROOF. Assume that E is isomorphic to one of the groups listed and note
that, in the first two cases, this implies that E is not simple. Thus E contains a
central involution which by Theorem B can only be Z. We also observe that E has
2-rank at least 3 in the first case because Spg(g) contains a subgroup isomorphic
to SLa(q) x SL2(q) x SL2(q). In the second case we have that r2(E) = 3 because
r2(2J2) = 3 and in the last case we have that ro(F) = 2, see for example Table
5.6.1 in [GLS98]. Let B be an elementary abelian subgroup of order 4 of E that
does not contain z (as is possible in all cases), so that A := B(z) is elementary
abelian of order 8. Let b € B#. With Tables 4.5.2, 5.3g and 5.3a in [GLS98], we
see that O(Cg(b)) = 1. Hence if a(b) £ O(C), then Lemma 6.15 implies that a(b)
induces an outer automorphism of E of odd order. This is impossible in the J;-case
and in the M;j;-case (see Tables 5.3g and 5.3a in [GLS98]). In the remaining case
w induces a field automorphism. But we also know that

[a(b), C(b)] < O(C&(b)) N E < O(Cx(b) = 1.

Then Cg(b) < Cx(a(b)) and this is impossible by Remark 11.2.
It follows that a(b) < O(C) and hence Lemma 6.5 (1) yields, for all a € A%,
that a(a) < O(C). Thus A is balanced, which is a contradiction to Lemma 6.8. [

LEMMA 12.3. Suppose that Hypothesis 11.1 holds. Then C does not have a
simple component of 2-rank 3.

PROOF. Assume that E € £5(C) is of 2-rank 3 and such that E is simple. We
know from Hypothesis 11.1 that E is isomorphic to an alternating group, to a Lie
type group or to a sporadic group.

E is not isomorphic to an alternating group by Theorem 2.17 (2). If E is
isomorphic to a group of Lie type in characteristic 2, then Table 3.3.1 in [GLS98]
implies that E ~ Ly(8), Sz(8) or Uz(8). If E is isomorphic to a group of Lie type
in odd characteristic, then Theorem 4.10.5 in [GLS98] yields that there exists an
odd number ¢ such that E is isomorphic to Ga(q), to 2G2(q) or to 3Dy4(q), because
we excluded the case Spg(q) in Lemma 12.2. If E is isomorphic to a sporadic group,
then Table 5.6.1 in [GLS98] leaves the possibilities that E is isomorphic to Mo,
to J; or to O'N, because we excluded the possibilities 2.J, and M7; in Lemma 12.2.

Now we let a € F be an involution and we inspect pages 6, 28 and 66 in the
ATLAS ([CCNT03]) for the cases in characteristic 2 and Tables 4.5.1, 5.3b, 5.3f
and 5.3s in [GLS98] for the remaining cases. Then we see that O(Cz(a)) = 1. If
x € C is such that 1 # 7 € a(a) = O(Cx(a)), then Lemma 6.15 forces T to induce
an outer automorphism of odd order on E. This leaves only the Lie type cases,
again by inspection of Tables 5.3b, 5.3f and 5.3s. But, as for the previous lemma,
we have that

[z, O5(@)] < O(C(@) N E < 0(Cx(a) = 1

and therefore C5(a@) < Cf(T). In the Lie type cases in odd characteristic, this
contradicts Remark 11.2. In the three cases with characteristic 2, we also see (for
example in the ATLAS) that Cx(a) £ C5(%) and so we have a contradiction there
as well.

It follows that O(Cx(@)) = 1. As a € E was an arbitrary involution and
ro(F) = 3, we just proved that C' contains a 2-subgroup A of rank 4 containing z
that is balanced. This contradicts Lemma 6.8. d
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DEFINITION 12.4. Let g be a power of an odd prime.
List (a): 247, SLa(q), SLa(q), Spa(q), SU4(q).
List (b): A7, PSLo(q), PSLs(q), PSUs(q), PSUs(4).

LEMMA 12.5. Suppose that Hypothesis 11.1 holds. Let E € Lo(C) and suppose
that ro(E) < 3. Then E is isomorphic to a group from List (a) or (b).

ProoOF. By Hypothesis 11.1, we must consider the following cases: E is of
alternating type, of Lie type or sporadic.

We also point out that, if E is simple, then E has 2-rank 2 by Lemmas 10.5
and 12.3. Suppose that E is of alternating type. Then our hypothesis about the
2-rank and Theorem 2.17 imply that E can only be of types As, Ag or A7. These
are on the lists (recall that A5 ~ PSLy(5) and Ag ~ PSL3(9)).

Next suppose that E is of Lie type. If E is defined in characteristic 2, then
inspection of the ATLAS ([CCNT'03]) and of Table 3.3.1 in [GLS98] shows that
the only possibilities are that E is of type PSLy(4) ~ PSLs(5), of type PSL3(2) ~
PSLy(7), of type Spa(2) ~ PSL5(9), or of types PSUs3(4) or PSU;(3). These
groups are on the lists above and all other groups can be excluded because their
2-rank is too large. If E is defined in odd characteristic, then Theorem 4.10.5 in
[GLS98] and Lemma 12.2 only leave possibilities from the lists. (Groups like SL3(q)
do not occur because Z(E(C)) is a 2-group.) Finally E cannot be of sporadic type
by Table 5.6.1 in [GLS98] and Lemma 12.2.

O

Proor oF THEOREM D.

Recall that in Theorem D, we suppose that Hypothesis 11.1 holds. Assume
that the theorem is false. Then r2(G) > 4 and therefore, by Corollary 11.6, there
exists a component in C that is of type A7 or, for a suitable odd number ¢ > 5, of
type PSLy(q). We also know from Theorem B that O2(C) is cyclic or quaternion.
Let By € L5(C) be such that Ej is of type A7 or PSLy(q). If By is not simple, then
the Sylow 2-subgroups of E; are quaternion whence precisely one of the following
holds:

- 02(C) = (z) = Z(E1) or

—1r9(E102(C)) > 2 (because there exist diagonal involutions).

In the following it happens several times that we deduce from the structure
of F*(C) that a Sylow 2-subgroup S of C induces inner automorphisms on (and

hence lies in) F*(C'). More specifically, if the outer automorphism group of F*(C)
is 2-nilpotent (as is the case if we have at most two components), then S induces

inner automorphisms on £ (C') by Lemma 5.6, because Z centralises ™ (C').
For the remainder of the proof, we fix S € Syl, (Cland we refer to the above
argument by saying that the structure of F*(C') forces S to be contained in F*(C).

Case 1: E; is the only component of C.

First assume that E; is simple. Then E; has dihedral Sylow 2-subgroups,
because of its type, and therefore ro(E7) = 2. It follows that ro(F*(C)) =
r2(E102(C)) = 3. The structure of F*(C) forces S to be contained in
F*(C) and therefore S is of rank 4, but this is a contradiction.

It follows that E; is not simple, therefore Z(E;) contains an involution
and by Theorem B this involution must be Z. Again the structure of
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F*(C) forces S to be contained in F*(C). But then S is a central (and
non-direct) product of a quaternion group with either a cyclic group or
another quaternion group and therefore S has rank 2 or 3. This is again
a contradiction.

C has exactly two components.

Let By € L£5(C) be such that Ej is the second component of C. If
ro(Ey) > 4, then Lemma 11.4 forces Ey to be unbalanced of type A,
(with n = 3 modulo 4 and n > 11). But this is excluded by Lemma 11.5.
Hence 75 (E3) < 3.

Assume first that E; is simple. Then E; has 2-rank 2 because of its
type. Moreover we have that E; N E;O5(C) = 1. Therefore E205(C) is
of 2-rank at most 1 because otherwise Lemma 10.4 yields a contradiction.
We deduce that ro(F*(C)) = 3 and that E; and E; are normal in C.
Therefore the structure of F*(C) forces S to be contained in F*(C), which
is a contradiction. Thus E; is not simple. If Ey is simple, then Lemma
12.3 together with the fact that 72(Fs) < 3 implies that ro(E2) = 2 and
that, therefore, Ey is isomorphic to a group from List (b) in Definition
12.4. Moreover E; and E5 are normal in C, so again the structure of
F*(C) forces F*(C) to contain a Sylow 2-subgroup of C. It follows that
72(Ogr p+(C)) = r2(G) > 4, and this is only possible if r2(E102(C)) > 2.
But E105(C) N Ey = 1 and therefore this contradicts Lemma 10.4. We
conclude that E; and Ey are both non-simple and that S < F*(C). This is
impossible if E5 is isomorphic to 247 or SLs(q), because then the 2-rank
of F*(C) is only 3 (recall Lemma 2.14 and the fact that O(C) is cyclic
or quaternion). In the remaining cases from List (a) there exists an odd
number ¢ such that By ~ SL4(q'), Spa(q’) or SU4(q"). Therefore E has
2-rank at least 2 and Lemma 10.4 forces ro(E102(C)) < 2. This means
that O2(C) is cyclic, with Lemma 2.14.

Let U be the 4-dimensional module over a field of order ¢’ defining
FE5 and let U, U, be 2-dimensional subspaces of U such that U is the
direct orthogonal sum of U; and Us. Let a € S be an involution such
that @ € F5 and such that U; and U, are the eigenspaces of a@. Then
CE(E) has subgroups L; and Ly such that L, x Ly < CE(E) and such
that, for all i € {1, 2}, the subgroup L; acts faithfully as SL(¢') on U; and
centralises Us ;. As O(Cg;(@)) acts by scalar multiplication on Uy and Us,
it centralises L; x Lo. Let L < C be such that L ~ SLy(q¢’) and such that
Lis diagonally embedded in L1 XLy Let Ty :=SNE; and Ty := SN L.
Then T; and 15 are quaternion with common central involution z, so
Lemma 2.14 yields that 71T, contains an elementary abelian subgroup B
of order 8. As a centralises B, but is not contained in it, it follows that
A= B(a) is elementary abelian of order 16. The subgroup O(Cg;(@)) of
E centralises Fy and L; x Ly and therefore [O(Cx (@), Al =1.

With the notation from Definition 6.1, we prove, for all subgroups V'
of order 4 of A, that

Ay <0O(C)0(Ca(A)). (%)

PrOOF. Let V' < A be of order 4. If z € V|, then Ay < O(C). Also,
if a € V, then Ay < O(Cg(a)) NC < O(Cc(a)). As By < E(Cx(a)), it
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follows in this case that Ay centralises E1 and Cg(a@). Thus
Ay < Cz(4) NO(Cx(@) < O(Cx(A))

which implies that Ay < O(C)O(Cc(A)). A similar argument yields the
statement if az € V, so we may suppose that V N (a,2) = 1. As V{(z)
centralises Ay, we may also suppose that [Ay,a] £ O(C).

For all ¢ € {1,2} let v;,w; € E; be elements of order 4 such that
v := v1v2, w := wiws and vw are the involutions in V. As Ay centralises
V and normalises E; and Es, it follows that Ay centralises (v7,w7) and

(v3,W3). Now we set C := C/Z(E,), and we note first that Cp (V) <
C~(A) because A = V (@, 7) and E; centralises a. Thus

C
Ay, Cg (V)] < C(A).

As .E; is simple and of 2-rank at least 4 (see for example Theorem 4.10.5
in [GLS98]), Theorem 4.61 in [Gor82] implies that Cz (V) = 1 and
therefore - N N

Ay, O (V)] < ColA).

Thus [Z;,g, Z] < [Z;,CE\E/Q(?),Z] = 1 and with Lemma 2.1 (2)

it follows first that Ay < Cx(A) and then that Ay < O(C)O(Cc(A)).
Thus the proof of (x) is finished.
t

Now we show that © (as in Definition 6.1) defines a soluble A-signalizer
functor. Let u € A#. Then O(u) = [Ca(u), 2]Coc)(u)O(Cc(A)) is an
A-invariant 2'-subgroup of Cg(u) and so we are left with the balance
condition. Let w € A#. With Lemma 2.1 (3), applied twice, we have that

O(u) N Ca(w)

= Cleg ()21 (w) - (Co(c)(u) N Ca(w)) - (O(Ce(A) N Ca(w))
< Cleg ), (w)Co(oy (w)O(Co(A)).

The second and third subgroup are already contained in ©(w), so let
X = Cicg(u),z)(w). As z acts coprimely on X, Lemma 2.1 (2) gives that
X = Cx(2)[X, z]. We immediately have that [X, z] < [Ca(w), 2] < O(w),
so now we look at C'x (z).

Observing that Cx (2) = Clog(u),2)((2)(w)), we apply Theorem 2.8 to
[Ca(u), 2], (2) and (w) in the roles of X, Ag and B. Then we obtain that

Cx(2) = ([Cloe),:)(V), 21N Cx(2) |V < A, [V] = 4).

Let V' < A be a subgroup of order 4. Then with (x) first and another
application of Lemma 2.1 (3) afterwards it follows that
[C[CG(ULZ](V),Z] NCx(z) < ﬂ [Ce(v),z]NCx(2) <Ay NX
veEV#
< 0(C)0(Cc(A)) N Ca(w) < Cocy(w)O(Ce(4)) < O(w).

Thus the balance condition is established and we arrive at a contra-
diction to Lemma 6.6.



88 12. THE 2-RANK OF G

Case 3: C has three components.

This case leads to the situation in Lemma 10.8 and in particular z €
®(9). Thus Lemma 5.5 yields that O?(C) = C and hence O?(C) = C. Our
assumption that ro(G) > 4 and the fact that 7o (F*(C)) = 3 imply that
F*(C) does not contain a Sylow 2-subgroup of C. But since O?(C) = C,
this leads to the following configuration (see also Lemma 14.2 in Chapter
14): C is transitive on Lo(C') and there exists a 2-element ¢ € C such that
t € C\F*(C) and such that, up to permutation of {1,2,3}, the element
t induces an inner automorphism on E3 and an outer automorphism of
2-power order on E; and on Fy. As r(S) > 4, we may choose  to be an
involution and such that £ centralises an elementary abelian subgroup of
E(C) of order 8. Then 7 induces a field automorphism on E; and on Ej.
Let ¢ € {1,2} and let a;,b; € E; be elements of order 4 such that a := ajas
and b := b1by are distinct commutlng involutions that are centralised by
t. Let C := C/(z). Then induces an inner automorphism on Ej and an
1nvolutory field automorphism on E1 and on EQ In partlcular we have that
Cp(t 1) is a subfield subgroup and therefore O(Cg (¢ 1)) = 1. By symmetry
O(Cg (t 1)) = 1. Set A := (a,b,2,t) and let v € A# be arbitrary. Then

O(Cs(v)) induces inner automorphisms on E (C) and thus O(Cs(v)) =
O(C’E(C)( v)). Now let V' < A be of order 4 and recall Definition 6.1.

Our objective is to prove that Ay < Ce(A)O(C). If z € V, then Ay <
O(C), and if t € V or tz € V, then Ay < O(Cp g (1) = O(Cx (1) =

O(CI;:3 (Z)) by the previous paragraph. If a,b € V', then
AV < O(Cry(@) N O(Cry () = O(Fs) = 1

because, by the structure of the components of C, the subgroups Cg 5 (@)
and C5 5 (E) intersect in a 2-group. This argument also yields that Ay =
1 if V contains a (or az) together with one of bz, ab, abz. By symmetry
between a and b, the only case left to consider is the case where without
loss V' = (a, bt). Then we see that Ay < O(Cg (@) which is a direct
product of two cyclic groups of odd order that are inverted by b with
a cyclic group of odd order that is centralised by b. Let i € {1,2}. As
t centralises a subfield subgroup of E that contains (a;, b:), it centrali-
ses a non-trivial subgroup of O(Cy; (a)). Then it follows that bt inverts
O(Cg, 5, (a)) and we deduce that

Ay N E By < O(Cx 5 (@) N O(Cy g (b)) =
Therefore Ay < O(C (f)) = O(Cg (A)) and hence Ay < O(Cx(A)).

We conclude that Ay < O(Cx(A)) whence Ay < O(C)O(Ce(A)) for all
subgroups V of A of order 4.
As in Case 2 it follows that © (from Definition 6.1) defines a soluble

A-signalizer functor, and this contradicts Lemma 6.6.

By Theorem C there are no more cases to consider, therefore it is impossible
that r3(G) > 4. O



KAPITEL 13

The F*-Structure Theorem

As in the previous chapter, we begin with a series of lemmas, each of them
handling a particular possibility for F*(C) (or at least for a component in C). The
bound on 72(G) from Theorem D is, of course, crucial. In many situations we can
then still argue with signalizer functors or with the fact that there are no (weakly)
balanced subgroups in C. All this information collected together yields Theorem
13.4, a list of possibilities regarding the number of components in C' and their shape.
What is left to be done for the F*-Structure Theorem is to go through these cases
and to exclude a few more configurations where weakly balanced subgroups appear.
The corresponding technical details are dealt with in Lemma 13.5.

The information from the F*-Structure Theorem is our starting point for some
more local analysis in the next sections.

LEMMA 13.1. Suppose that Hypothesis 11.1 holds and let E € Lo(C).
Then E # PSU3(4).

PROOF. Assume otherwise and let E € L£5(C) be such that E ~ PSUs(4).
Then E is simple and of 2-rank 2, hence (Z)E has 2-rank 3. Theorem D implies
that E is the unique simple component of C. Let B < E be elementary abelian of
order 4 and set A := (z)B. Then B is the centre of a Sylow 2-subgroup of F (see
for example page 30 in [CCN'03]) and for all b € B# we have that O(C5(b)) = 1.
With Lemma 6.15 we know that O(Cx(D)) centralises O2(C) and E(Cx(b)). The
type of E (more precisely the fact that its outer automorphism group has order 4,

again by [CCNT103]) implies that O(Cx(b)) induces an inner automorphism on E.
It follows, for all b € B#, that

O(Cg(b)) = O(CE(b) =1

and then, for all @ € A%, that O(C¢(a)) < O(C).
Thus A is balanced, which is a contradiction to Lemma 6.8.
O

LEMMA 13.2. Suppose that Hypothesis 11.1 holds, that E € L2(C) and that q
is a power of an odd prime. Then E is not isomorphic to PSL3(q) or to PSU3(q).

PROOF. Assume that E ~ PSL3(q) or PSU3(q). Then E is simple of 2-rank 2,
so (Z)E has 2-rank 3 whence by Theorem D it follows that r5(G) = 3. This implies
that E is the unique simple component.

Let B < E be elementary abelian of order 4 and let A := (z)B. For all b € B¥,
we see that C5(D) is a component of C=(b) isomorphic to SLs(g) and therefore

[a(b), Cx(b)] < O(Co (b)) N E(Cg(b)) = 1.

89



90 13. THE F*-STRUCTURE THEOREM

As B < C5(b), we conclude that [a(b), B] = 1. Then Lemma 6.5 (1) yields, for
all a € A%, that a(a) < O(C)O(Cc(A)) and consequently A is a weakly balanced
subgroup. This contradicts Lemma 6.8. O

LEMMA 13.3. Suppose that Hypothesis 11.1 holds and that E € Lo(C). Then
E is not isomorphic to As, Ag, A7, PSLa(7) or PSLy(9).

PROOF. Assume that E is isomorphic to one of the groups mentioned. We
argue as for the previous lemmas — since E is simple of 2-rank 2, we have that
r2((Z)E) = 3 and hence ro(G) = 3 by Theorem D. Again this implies that F is the
unique simple component.

We choose B < E to be elementary abelian of order 4 such that O(Cg(B)) is
cyclic of order 3 in the A7-case and that O(Cg(B)) = 1 in the other four cases. Let
A = (2)B. Then for all b € B#, we know that

O(Cg(b)) = O(Cx(B)) = O(Cx(A)).
Lemma 6.15 together with the fact that the outer automorphism group of E is a
2-group implies, for all b € B# . that

O(Cz(b)) = O(C5(b)) = O(CE(A))

and therefore a(b) < O(C)O(Cc(A)). With Lemma 6.5 (1) we conclude, for all a €
A# | that a(a) < O(C)O(Cc(A)). Thus A is weakly balanced and this contradicts
Lemma 6.8. g

THEOREM 13.4. Suppose that Hypothesis 11.1 holds. Then there exists a sub-
group T of C such that F*(C) = E(C)T and T = 1 or T ~ Qg. Moreover either
0?2 (C) = F*(C) or |£2(C)| = 3, each member of Lo(C) is normal in O (C) and
C is transitive on Lo(C). Finally, one of the following holds:

(1) T ~ Qg and there exists an odd number q > 11 such that E(C) is isomor-
phic to PSL2(q).

(2) T ~ Qg and E(C) is isomorphic to 2A; or there erists an odd number
q > 5 such that E(C) ~ SLs(q).

(3) T =1 and there exists an odd number q such that E(C) is isomorphic to
SLa(q), Spa(q) or SUu(q).

(4) C has two components E1 and Eo and for all i € {1,2} there exists an
odd number q; > 5 such that E; ~ SLs(q;) or E; ~ 2A7.

(5) C has two components E1 and Ey and there exist odd numbers ¢1 > 11
and gz > 5 such that By ~ PSLy(q1) and By ~ SLy(q) or By ~ 2A5.
Moreover T = 1.

(6) T =1 and C has three components Ey, Ey and E3, and for alli € {1,2,3}
there exists an odd number ¢; > 5 such that E; ~ SLs (g;) or E; ~2A7.

PRrROOF. From Theorem C we know that C has one, two or three components.
Hence we need to show that these three cases lead to (1)-(6) in the theorem. Let
Syp < C be a 2-subgroup of C such that Sy = O3(C). Then Sy is of rank 1 by
Theorem B and r2(C) < 3 by Theorem D. Thus the hypothesis of Lemma 12.5 is
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satisfied for every member of L5(C) and it follows that every component of C is
isomorphic to a group from List (a) or List (b) in Definition 12.4.
Let C := C/(z) and L € L5(C).

(i)

(iii)

(vi)

If L is simple, then there exists an odd number ¢ > 11 such that L ~
PSLs(q).

PROOF. Lemma 12.5 yields that L is isomorphic to one of the groups
from List (b). Hence Lemmas 13.1, 13.2 and 13.3 imply the statement. [

If L is not simple, then either ro(L) = 1 or there exists an odd number ¢
such that I ~ SLy(q), Spa(q) or SU4(q) and E(C) = 0% (C).

PRroOOF. It follows from Lemma 12.5 that L is isomorphic to a group
from List (a). We suppose that ro(L) > 1. Then there exists an odd
number ¢ such that L ~ SLy(q), Spa(q) or SUs(q). As ro(C) < 3, this
implies that L is the unique component of C and that Sy is not quaternion.
The outer automorphism group of L is 2-nilpotent and 02(5) =C by
Lemma 5.6, so 02 (C) = L = E(C). O

L<0?(0).
_ ProoF. This follows since |£2(C)| < 3 by Theorem C and 02(C) =
C by Lemma 5.6. O

Suppose that [£o(C)| < 2. Then 0% (C) = E(C)S, and either Sy ~ Qg or
So < E(C).

PRrOOF. The first statement follows from (iii) because by (i) and (ii),
the outer automorphism group of every component of C' is 2-nilpotent and
02(C) = C by Lemma 5.6. For the second statement we recall that Sy is
cyclic or quaternion by Theorem B and hence the automorphism group
of Sp is a 2-group unless Sy ~ Qg. Thus Sy =~ Qg or Sy = (z) in which
case Theorem B, part (i) and Lemma 12.1 yield that Sy < E(C). O

If L is simple, then the theorem holds.

PROOF. Suppose that L is simple. Then by (i) there exists an odd
number ¢ > 11 such that L ~ PSLy(q) and (iv) yields that Sy ~ Qg or
So < E(C). The first case leads to (1) and in the second case, the fact
that L is simple implies that C' has a component E distinct from L. By
Lemma 10.8 this means that C has exactly two components. Moreover
So < E whence E is not simple. It follows from (ii) and Theorem D that
r2(E) = 1 and hence we have (5) by Lemma 10.5. O

If E(C) = L, then the theorem holds.
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PROOF. By (v) we may suppose that L is not simple. Suppose that
part (3) of the theorem does not hold. Then r3(L) = 1 by (ii) whence there
exists an odd number ¢ > 5 such that L is isomorphic to SLs(q) or 247.
Moreover (iv) yields that Sy ~ Qg or Sy < E(C). But if Sy < E(C), then
C (and hence G) has quaternion Sylow 2-subgroups, contrary to Lemma
5.3 (1). Therefore, if (3) does not hold, then (2) holds. O

(vii) If |£2(C)| = 3, then the theorem holds.

PROOF. Lemma 10.8 implies (6). O

By (vi) and (vii) it suffices to consider the case where C has exactly two com-
ponents. Thus let E € L2(C) be such that E(C) = LE. First suppose that one of
the components is simple. Then (i) and Lemma 10.4 yield that, without loss, there
exists an odd prime ¢ > 7 such that L ~ PSLy(q) and 72(ESy) = 1. Then (iv)
and Lemma 10.5 imply that (5) holds. Next suppose that L and E are both not
simple. Then Lemma 10.4 and (ii) give that both components have 2-rank 1. Thus
(4) holds by Lemma 10.5.

This completes the proof of the theorem. ([

LEMMA 13.5. Suppose that Hypothesis 11.1 holds. Then C possesses at most
one component of type Az. Moreover if C' has a component isomorphic to 2Az, then

02(C) # Qs.

ProoF. For the first statement assume otherwise and let Eq, Es € L2(C) be
such that E; and Ey are of type A7. By Lemma 13.3, both these components are
not simple, hence they share the central involution Z and we are in case (4) or (6)
of Theorem 13.4. By Lemma 2.14 we may choose an elementary abelian subgroup
B < EjE; such that 2 ¢ B. Moreover we choose B such that B centralises a
subgroup of order 3 of E; and of Ey. Set A := B(z). We show that A is weakly
balanced:

By choice of B, we have for all b € B# and i = 1,2 that the groups O(CE(B))

are cyclic of order 3 and centralise all of A. Hence, for all a € A% it follows that

O(Cr,(a))0(Cr,(a)) < O(C)O(Ce(A)).

Let b € B#. Then «a(b) centralises O2(C) and, if it exists, the third component of

C, by Lemma 6.15. Also, since it has odd order, the subgroup a(b) induces inner

automorphisms on E7 and Ey. Thus a(b) < F*(C) and we deduce that

a(b) < O(Cp. (b)) = O(Cp.(g)(4))-
This implies that a(b) < O(C)O(Cc(A)). With Lemma 6.5 (1) it follows, for all a €
A7 that a(a) < O(C)O(Cc(A)). But then A is weakly balanced, which contradicts
Lemma 6.8.

For the second statement suppose that E is a component of C' isomorphic to
2A7 and assume that O3(C) ~ Qs. Let T' € Syla(Oa 2(C)). Then by Lemma 2.14 we
may choose an elementary abelian subgroup B < ET such that z ¢ B, and again
we choose B such that B centralises a subgroup of order 3 of E. Then A := B(z)

is weakly balanced just as in the previous paragraph. ([l
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THEOREM 13.6 (The F*-Structure Theorem). Suppose that Hypothesis 11.1
holds. Then there exists an odd number q (or odd numbers qi,qq,qs3) such that

F*(C) is isomorphic to one of the following groups:

List I
— Qs * SLa(q);
- SLQ(ql) * SLQ((]Q),’
— Qs * SLa(q1) * SLa(ge);
- SLQ(Q) * 2A7
All these products have a common central involution.
List 1T
— Spa(q);
= SLa(q);
~ SU4(q).
List III
— SLa(q1) * SLa(ga) * 2A7;
- SLQ(ql) * SLQ((]Q) * SLQ((]g).
These products have a common central involution.
List IV

— Qs X PSLy(q) and ¢ > 11;
~2A7 x PSLy(q) and g > 11;
— SLy(q1) x PSLy(q2) and g2 > 11.

PrOOF. We go through the cases in Theorem 13.4.

First (1) gives the first case on List IV and (2) gives the first case on List I
Then (3) gives List II. Looking at (4), we see that the only remaining cases are
those on List I, by Lemma 13.5. We turn to (5) and obtain precisely the last two
cases on List IV. Finally (6) and Lemma 13.5 give List III.

Although this is clear from Theorem B, we mention at this point that whenever

the products describing the shape of F*(C) are not direct, then there is a unique
central involution in the intersection of the factors and this involution is Z. (Il
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More Involutions

Our starting point is a series of statements following from the F*-Structure
Theorem. Lemmas 14.4 and 14.5 are at the heart of the analysis — there we use
our information about the 2-structure of C' in order to deduce knowledge about the
centralisers of specially chosen involutions. This leads to more maximal subgroups
H of G containing the centraliser of an involution and with this involution being
isolated in H. To make our life easier, we refer to particular cases in the F*-Structure

Theorem by saying that “F*(C') is as on List I, II, IIT or IV”, respectively.

14.1. Preliminary Results

LEMMA 14.1. Suppose that Hypothesis 11.1 holds and let t € C' be an involution
distinct from z. Then the following hold:

(1) G is simple.

(2) 0*(C)=C.
(3) Either F*(C) = 0% (C) or every member of L3(C) is normal in O% (C),
and |L2(C)| = 3 with C acting transitively on Lo(C).

(4) G =(Cg(t),Cq(tz)).

(5) Ca(t), Caltz) and C are pairwise distinct. If C < M maxG, Cg(t) <
H;maxG and Cg(tz) < Hi, mazG, then M, H; and H;, are pairwise
distinct.

PrOOF. Let S €8Syly(C). The F*-Structure Theorem 13.6 implies that z €
®(S), so (1) and (2) follow from Lemmas 4.1 (10), 5.4 and 5.5. Theorem 13.4
yields (3), and Theorem 4.6, Lemma 5.7 and (1) imply that (4) holds. From there
we deduce that Cg(t) and Cg(tz) are distinct and that H; and Hy, are distinct,
because these subgroups contain Ck(t) and Ck(tz), respectively. The involution
centralisers Cg(t) and Cg(tz) are not equal to C' by Lemma 5.13. For the same
reason, the subgroups H; and H;, are distinct from M. Thus (5) is proved as
well. ]

LEMMA 14.2. Suppose that Hypothesis 11.1 holds, that O% (C) # F*(C) and
that Lo(C) = {E1, Eo, E3}. Let ¢ > 5 be an odd number such that E; ~ SLy(q) for
all i € {1,2,3} and suppose that t € C\L(C) is an involution. Then t induces, up
to permutation of {1,2,3}, an outer automorphism in PGLo(q) on E1 and Eo and
centralises Fs.

95
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PROOF. Let E := L(C) and C := C/(z). Then F is a direct product of three
groups isomorphic to PSLy(q) and therefore Aut(E) is the wreath product of
Aut(E7) with Ss. For all i € {1,2, 3} we know from Lemma 14.1 (3) that E; <902 (C)
and hence C / C@(E) is the semi-direct product of E with a subgroup isomorphic
to As. (Recall that 02(5) =C by Lemma 5.6.) Moreover, up to a permutation
of {1,2, 3}, the involution t acts as an involutory outer automorphism on E’; and
E; and induces an inner automorphism on E; Suppose that ¢ induces a field au-
tomorphism on Ez . Then it induces a field automorphism on E; as well and so
there exists a prime power ¢g dividing ¢ such that Cm(f) contains a subgroup
isomorphic to SLs(qg) * SLa2(go). This subgroup has 2-rank 3 by Lemma 2.14 and
t centralises it, but is not contained in it. Then r9(C) > 4 contrary to Theorem D.
By symmetry it follows that ¢ induces an outer automorphism in PGLy(q) on Ey
and Fs.

Next let t € P € Syly(C) be such that T := Cp(t) is a Sylow 2-subgroup of
Ce(t). For all i € {1,2,3} set P, := PN E;. Then the previous paragraph implies
that there are elements u; € P; and us € Py of order 4 that are inverted by ¢
and such that Cp, p, (t) = (ujug, z). Assume that ¢ does not centralise P3. We know
from the previous paragraph that t induces an inner automorphism on E:/g and hence
there exists an element uz € P3 of order 4 such that ug is inverted by ¢. As ujus
and wjuz are involutions, the subgroup (t,ujus,uiug, z) is elementary abelian of
order 16, contrary to Theorem D. Thus 7 induces an inner automorphism on Ej
that centralises P; and it follows that T centralises Es. O

LEMMA 14.3. Suppose that Hypothesis 11.1 holds. Let t € C be an involution
such that t # z and suppose that B is an elementary abelian subgroup of order 4 of
C that contains t, but not z. Let H < G.

(1) There exists an involution b € B such that Cg(b) ¢ H. In particular, if
Cc(t) < H, then Ng(B)/Cg(B) is not transitive on B¥.

(2) Suppose that F*(C) is as on List IV and that E € Lo(C) is such that
E is simple and B < E. Suppose that Cg(t) < H. Then there exists an
element b € B¥ such that Cc(b) £ H.

PROOF. Let ¢,b and tb be the involutions in B. For (1) we assume that Cg(t),
C¢(b) and Cg(td) are all contained in H. Let H,, denote a maximal subgroup of G
containing Cg(tz). Then B < Cg(tz) and therefore B acts coprimely on O(Hy,).
With Lemma 2.1 (4) this yields that

O(H¢:) = (Coqm,.)(v) | v € B¥) < (Ca(t), Ca(b), Ca(th)) < H.
As z € H < G, Lemma 5.2 (2) implies that Ck (t) C O(H). Similarly Ck (tz) C
O(Hq,) and thus with Lemma 14.1 (4) it follows that
G = (Ck(t),Ck(tz)) < (O(H),O(H,)) < H.

This is impossible. In particular Nz (B)/Cy(B) is not transitive on B¥.

We move to (2) and suppose that one of the cases from List IV holds and that
E € £5(C) is such that E is simple and B < E.

Assume that Co(b) and Ce(bt) are subgroups of H. Then H contains Cg(t),
Cc(b) and Ce(bt) and the coprime action of B on O(C), together with Lemma



14.1. PRELIMINARY RESULTS 97

2.1 (4), implies that O(C) < H. By hypothesis there exists an odd number ¢ > 11
such that E ~ PSLy(q). As ¢ > 11, the subgroup structure of E (see for example
Dickson’s Theorem 6.5.1 in [GLS98]) gives that E = (C5(f), C5(b)). Therefore

EO(C) = (Cr(t),Cr(b)0(C) < H.

It follows that all involutions in E are not only contained in H, but also conjugate
in H. We deduce that, for all involutions s € C distinct from z, the centraliser
Cco(s) is contained in H (because s itself or sz is conjugate to t in Cg(z)). If E
is the only component in C, then it follows that Oy 2(C) < Co(t)O(C) < H. If a
second component Es exists, then Ey < Co(t)O(C) < H. In both cases we have
that Oy p-(C) < H. We conclude that C < H:

For an arbitrary element ¢ € C\Oa g+ (C), we know that ¢ centralises E or indu-
ces a non-trivial outer automorphism on it, and in the former case ¢ € C(¢)O(C) <
H because ¢ € Cx(t). Our hypothesis that F*(C) is as on List IV yields that
|£2(C)| < 2 and thus C/F*(C) has odd order by Lemma 14.1 (3). Therefore we
may suppose that ¢ has odd order. An outer automorphism of odd order of F
must be a field automorphism and hence centralises an involution in E. Conse-
quently there exists an involution s € C such that ¢ € Cx(5) which means that
¢ € Co(s)O(C) < H. Thus we showed that C < H. As H < G, this means that G
has a maximal subgroup that contains C' and Cg(t), contrary to Lemma 5.13. O

LEMMA 14.4. Suppose that Hypothesis 11.1 holds and that a € C is an invo-
lution distinct from z and chosen as follows: @ € F*(C); if ro(E(C)) > 2, then
ac E(C); if C has a simple component L, then a € L.

Let v € {a,az} and let H be a mazimal subgroup of G containing Ca(v). Then

(1) v is isolated in H and
(2) either vz € v° or F*(C) is as on List IV.

PROOF. Let Sy € Syly(Ce(v)) and Sy < S € Syly(C).
(i) Either |S: Sp| =2 and vz € v or F*(C) is as on List IV and Sy = S. In
particular (2) holds.

PRrROOF. Is is immediate from the groups on List IV that, if F*(C) is
as on List IV, then Sy = S.

Now suppose that F*(C) is as on List II and let E € L5(C). Let ¢
be a power of an odd prime and let U be the 4-dimensional module over
a field of order ¢ defining E. Let Uy, Us be the eigenspaces of @. As we

saw in the proof of Theorem D, there are subgroups L; and Ly of CE(E)
such that L x Ly I Cp(@) and such that, for all i € {1,2}, the subgroup
L; acts faithfully as SLs(q') on U; and centralises Us_;. All involutions in
E distinct from Z have 2-dimensional eigenspaces on U and they are all
conjugate in E. In particular az € ¢ in this case and therefore vz € v5.
Since there exists an element in S interchanging a and az, we see that
|S : So| = 2. Hence (i) holds in this case.

Finally we suppose that F*(C) is as on List I or III. Then all com-
ponents of C have quaternion Sylow 2-subgroups and there exist E1, Ey €
L5(C) such that v is diagonal in Fj * Ey. So (i) follows because F; and
F5 are normal in 02/(6). O
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(i)

(iii)
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vz ¢ vfl
ProoF. This follows from Lemma 14.1 (4) because Cx(v) C H. O
So € Sylz(H)

PrOOF. We know that S € Sylo(G) and therefore the statement fol-
lows from (i) and (ii). O

From now on we assume that v is not isolated in H. Then there exists an
element h € H such that v" € Sy, but v # v. It follows from Alperin’s Fusion
Theorem (see for example (38.1) in [Asc00], applied to H, Sy, v and v") that Sy has
a subgroup R such that v € R and Ng,(R) € Sylo(Ng(R)), but Ny (R) % Ca(v).

We set B := (vV#(B)) and we denote by A the group of automorphisms of B
induced by Ng(R).

(iv)

(vi)

(vii)

(viii)

B is elementary abelian of order 8. In particular z € B.

PROOF. As v € Z(Sy) and v € R < Sy, we have that v € Z(R).
Thus B < Z(R) and B is elementary abelian. The rank of B is 2 or 3
by Theorem D and because Ny (R) does not centralise v. The property
that Ng,(R) € Syla(Ng(R)) implies that A is not a 2-group, hence if B
is a fours group, then A acts transitively on B#. This contradicts Lemma
14.3 (1) and consequently B has order 8. As z centralises B, Theorem D
implies that z € B. ([

A is cyclic of order 3 or isomorphic to S3. Moreover B = (z) x [B, A].

PROOF. From (iv) we know that Aut(B) ~ GL3(2). As z is isolated
in H, we see that A is isomorphic to a subgroup of an involution centra-
liser in GL3(2). In particular A is a {2, 3}-group. Moreover the group of
automorphisms induced by Ng,(R) on B is a Sylow 2-subgroup of A (and
centralises a), so it follows that [v4| is odd. This yields the first result and
Lemma 2.1 (2), applied to an element of order 3 in A, yields the second
statement. (|

v ¢ [B, A]. In particular B = (v)[B, A].

PrOOF. Otherwise, as A acts transitively on [B, A], we have a con-
tradiction to Lemma 14.3 (1). O

B < F*(C).

PROOF. We have that z € B < R and therefore Ny (R) < C. Moreo-
ver @ € F*(C) by hypothesis and z € O2(C), so v € F*(C). As C controls
fusion in C' by Lemma 4.1 (9), it follows that B = (7™V#(®)) < F*(C). O

F*(C) is as on List IV and @ is contained in the simple component of C.

ProoF. If F*(C) is as on List IV, then this follows from the choice
of a in the hypothesis of the lemma. So we assume otherwise and let
d € [B, A] be an involution. Then d € B < Sy, but d # z and d # v by
(v) and (vi). Then the structure of S in the cases from Lists I-III implies
that d is conjugate to dz in Sy. It follows with (v) that all involutions in
B\(z) are conjugate in H, contrary to (ii). O
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In light of (viii) let L € £2(C) be such that L is simple and a € L. By (v) there
exists an element z € A of order 3.

First suppose that v = a. Then [a,z] = [B, A] and, asz € C and a € L<IC, we
deduce that [a, 2] € L. Therefore [B, A] < L. Then (vi) yields that B = (a)[B, A] <
L, which is impossible because z ¢ L.

Next suppose that v = az. Then [az,z] = [B, A] and hence [B, A] contains an
involution d that is conjugate to a in L. But Ng(R) < C and L <, so it follows
that [B, A] < (aN#() < L. This is a contradiction because az ¢ L.

This completes the proof. ([l

LEMMA 14.5. Suppose that Hypothesis 11.1 holds and that a is chosen as in
Lemma 14.4. Let v € {a,az}, let H be a maximal subgroup of G containing Cg(v)
and set V := (a,z) and H := H/O(H). Then the following hold:

(

—_

All involutions in V are isolated in H.

FEither v and vz are conjugate or F*(C) is as on List IV.
If F*(C) is as on List I, then H is soluble.

If F*(C) is as on List II, then either H is soluble (in which case ¢ = 3)
or q # 3 and H has two components isomorphic to SLs(q) with @ and az
being their central involutions, respectively.

(5) If F*(C) is as on List III, then H has precisely one component, its 2-rank
is 1 and Z is its central involution.

(6) If F*(C) is as on List IV, then either Lo(H) = @ or H has precisely one
component, its 2-rank is 1 and Z is its central involution.

(7) V centralises O2(H) and E(H).

(8) For all primes r we have that N (V,r) C Syl,.(H).

PROOF. As z is isolated in H, Lemma 14.4 yields (1) and (2).
Suppose that F*(C) is as on List I. Then Cx(@) is soluble and therefore C:(v)
is soluble. Lemma 5.2 (1) yields that Cg(v) = Co(v)O(Cg(v)) is soluble and then

the same result, applied to H and v, gives that H is soluble. This proves (3).

In (4)-(6), if L2(H) # &, then we always let L € Lo(H) and Ly := O (C(V)).
Before we turn to (4), we also observe the following:

As V < Z*(H) by (1), we have that Lo = L. Moreover LoO(Cg(v)) €
L2(Cg(v)) whence Lemma 10.3 forces Lo to be contained in a component of C.
This implies that Lo < Cp(e) (V) and therefore Ly is one of the components of
Cz(0).

In (4) we suppose that F'*(C') is as on List I and we let g denote the order of the
field that appears in the type of the unique component of E of C. Then C(v) (and
hence C#(7)) is soluble if an only if ¢ = 3. If ¢ > 5, then C'=(7) has two components
isomorphic to SLs(q) that have central involutions T and vz, respectively. In this
case Ly < Cg(?) by our observation and therefore L is one of the components
of C5(v). As Ceo(v) < H, it follows that H has exactly two components and that
they are both isomorphic to SLs(g), with central involutions @ and az. Thus (4) is
proved.

Suppose that F*(C) is as on List I1I and let E1, Ea, E5 € L2(C) be such that
@ € FE1E,. Then Es is the unique component of C#(v) and, since Lo centralises V/,

(2
(3
(

>~

)
)
)
)
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our observation implies that Ly < F3. As Cp,(v) < H, it follows that Lo = E5
and therefore L is the unique component of H its 2-rank is 1 and 7 is its central
involution. This yields (5).

Suppose that F*(C) is as on List IV. If the first case from List IV holds, then
Cc(v) is soluble and hence (1) and Lemma 5.2 (1) imply that H is soluble. Thus
Lo(H) = @ in this case. Now suppose that one of the other two cases from List
IV holds and let Ey, Ey € L5(C) be such that E is simple. Then Ly < E3 by our
observation and because L centralises C. Conversely Cg,(v) < H and therefore H
has a unique component, it is isomorphic to E, and therefore of 2-rank 1, and its
central involution is Z. Hence (6) is proved.

Lemma 5.2 (5), applied to H and its isolated involutions z and v yields (7).
Finally Lemma 4.11, applied to H and V', implies that there exist V-invariant Sylow
r-subgroups of H for all primes r. O

HypPOTHESIS 14.6.
In addition to Hypothesis 11.1, suppose the following:

e a is an involution in C' distinct from z that is chosen as in Lemma 14.4
and V :=(z,a).

o Weletm:=n(F(M)) and if possible, we choose M such that there is some
p € m with Co,(ar)(2) = 1.

e If v € {a,az}, then H, denotes a mazimal subgroup of G such that
Ce(v) < H,. We set m, := n(F(H,)) and choose H, such that, if possible,
there exists a prime p € w(F(H,)) with Co_(g,)(v) = 1. Moreover let T,
be a Sylow 2-subgroup of H, with V < Z(T,) and T, < S € Syl (C). We
abbreviate H, := H,/O(H,).

o We choose H, and H,, to be conjugate if a and az are conjugate in G.

e Forallv € {a,az}, if Cq(v) # H,, then let r, € m, be such that O, (H,)
contains a v-minimal subgroup U,. If C < M, then let p € m be such that
Op(M) contains a z-minimal subgroup U.

LEMMA 14.7. Suppose that Hypothesis 14.6 holds, let v € {a,az} and suppose
that t € v©. Then Hypothesis 7.6 is satisfied by t, H, and U,.

PRrROOF. By hypothesis ¢ is an involution in C. If C¢(t) < H max G, then t is
isolated in H by Lemma 14.5 (1), because t is conjugate to v. The remainder of
Hypothesis 7.6 is notation and follows from Hypothesis 14.6. ]

LEMMA 14.8. Suppose that Hypothesis 14.6 holds, let v € {a,az} and suppose
that E(Hy) # 1. Then F*(C) is as on List II, there is a unique component L in
H,, there exists an odd number g > 5 such that L ~ SLy(q), and v € L.

PROOF. Lemma 14.1 (5) yields that H, jé C, therefore Lemma 5.2 (6) implies
that [F(H,),z] # 1. In particular z ¢ E(H,). Let L be a component of H,. Then
it follows from Lemma 14.5 (3)-(6) that F*(C’) is as on List II, that there exists an
odd number ¢ > 5 such that L ~ SLs(q) and that L contains v or vz as central
involution. If Z(L) = (vz), then, as v and vz are not conjugate in H,, it follows
that vz € Z(H,) contrary to Lemma 14.1 (5). Thus Z(L) = (v) and in particular
L is the unique component. ([l
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LEMMA 14.9. Suppose that Hypothesis 14.6 holds and that C # M. Then M
has odd prime characteristic or M has a unique component E. In the latter case,

the component E is simple and F*(C) is as on List IV. In particular we can choose
the wnvolution a to be contained E.

PROOF. If M is not of odd prime characteristic, then Theorem A yields that
E(M) # 1. Hence assume that E is a component of M. Then E < C by Lemma
5.2 (5) and therefore E is a component of C. From the F*-Structure Theorem 13.6
we know the possibilities for E and therefore inspection of the Schur multipliers of
the groups appearing in the lists yields that FE is either simple or contains a central
involution. (Note that E 2 PSLs(9) or A; by the F*-Structure Theorem, therefore
E % 3PSLs(9) or 3A7.) Theorem B implies that the only involution that can be
central in a component of C is z. However, if z € E, then we see a contradiction
to Lemma 5.2 (6), applied to M. Thus we have that z ¢ F and in particular F is
simple. Then one of the cases from List IV occurs, more precisely there exists an
odd number g > 11 such that E ~ PSLs(q). The last statement follows from the
choice of a in Lemma 14.4. O

LEMMA 14.10. Suppose that Hypothesis 14.6 holds. Let v € {a,az} and suppose
that C(v) is a mazimal subgroup and that a and az are not conjugate. Suppose
that d € C s distinct from v, but centralises v and is conjugate to v in C. Set
Hy:= Cg(d). Then H, % Hg and vice versa. In particular H, # Hy.

PrOOF. By symmetry between d and v we may assume that H, & Hy. As
a and az are not conjugate by hypothesis, Lemma 14.8 yields that E(H,) = 1 =
E(Hg). Then the Infection Theorem (5) gives that H, = Hg. In particular (v, d) <
Z(H,) and H, = C¢(vd) because H, is primitive by Corollary 5.8. The fours group
(v,d) centralises z and hence vz. If we set w := vz, then Lemma 2.1 (4) implies
that

O(Ca(w)) = (Co(cq w)) (v), Cocow)) (), Cocaw) (vd)) < Hy.
In particular Ck (w) is contained in H, and this contradicts Lemma 14.1 (4). O

LEMMA 14.11. Suppose that Hypothesis 14.6 holdsiet v € {a,az} and suppose
that t € C is an involution that is conjugate to v. Let W be a nilpotent CF*@) (t)-

invariant 2'-subgroup of F*(C). Then [W,t] = 1.

PROOF. First we note that W < E(é) because W has odd order, and for all
components E of C, the subgroup W N E is C()-invariant. Moreover ¢ € F*(C)
by hypothesis and Lemma 4.1 (9), because F*(C) < C. Let E be a component of
C and let C := C/(z).

First suppose that F*(C) is as on List II. Then € E because ¥ € E and v and
t are C-conjugate. Moreover C5(f) has index 2 in a maximal subgroup of E. As W
has odd order and lies in E, it follows that W < C%(%) and hence [W,#] = 1.

Next suppose that F*(C) is as on List IV and recall that the simple component
of C contains ¥ or vz and hence it contains f or tz. If E is not simple, then it therefore
centralises 7, consequently E normalises W and hence it normalises the projection
of W on E. As W has odd order, its projection on E is now trivial and therefore W
is contained in the simple component of C. Hence suppose that E is simple. The
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type of E implies that C = (t~) is a dihedral group with central involution ¢ or ¢z, and
this is a maximal subgroup of E, therefore W < C 5 (t) and again [W,7] = 1.

We are left with the case that F*(C) is as on List I or III. If # centralises E, then
W centralises E because W = [W,%V] and because W normalises E. In particular the
projection of W on every component that is centralised by ¢ is trivial. If ¢ does not
centralise , then there exists an involution & € E such that C % t)y=C (). From
the type of F it follows that this is a dihedral subgroup with central involution u
and it is a maximal subgroup of E. We conclude that the projection of W on E is
contained in C(f) and hence [W,#] = 1. Thus [W,#] < W N () whence [W, ] = 1.

This last case completes the proof of the lemma. O

LEMMA 14.12. Suppose that Hypothesis 14.6 holds, let v € {a,az} and suppose
that t € C is an involution that is conjugate to v. Suppose that C < H < M and
that W is a nilpotent Cy (t)-invariant 2'-subgroup of H. Then [W,t] < F(H). In
particular if Uy is a t-minimal subgroup of G contained in H, then U, < F(H).

PROOF. Set H := H/O(H). By Lemma 2.9 we know that
O(H)NC =0(Cu(z)) =0(C).
So as H = CO(H) by Lemma 5.2 (1), we deduce that H ~ C/CNOH) ~ C.

Therefore F*(H) is isomorphic to F*(C) and in particular ¢ € F*(H). This implies
that [W,f] < F*(H) and hence [W,7] < F*(C). As W is nilpotent, Cx(t)-invariant
and of odd order, Lemma 14.11 yields that [W,#] = 1. Therefore [W,¢] < O(H).
It follows from Lemmas 2.10 and 2.1 (2) that [W,t] = [W,¢,t] < F(O(H)(t)). But
then [W,t] < F(H) because F(O(H)(t)) = F(O(H)).

The last statement of the lemma follows because Uy = [Us, t] and Uy is Cg(t)-
invariant and nilpotent. |

LEMMA 14.13. Suppose that Hypothesis 14.6 holds, that C' # M and that p €
w(F(M)) is such that O,(M) contains a z-minimal subgroup U. Let v € {a,az} and

suppose that t € v¢ and Cg(t) < Hy mazG. Let Uy denote a t-minimal subgroup of
G contained in F(Hy). If Uy < C, then M and Hy are both of characteristic p.

PROOF. Suppose that Uy < C. Then Lemma 14.12 implies that Uy < Cp(ap)(2)-
By Lemma 14.7 we may apply Lemma 7.9, so Ng(U;) < Hy. Thus M & Hy.
Moreover Lemma 7.7 gives that U; < Cg(U) and hence U < Cg(U;) < Hy. With
the Pushing Down Lemma (3), it follows that U < O,(H;) and then conversely
H; & M, by Lemma 7.9. As C(t) £ M by Lemma 5.13, we see that Hy and M
are distinct. Thus the Infection Theorem (3) forces M and H; to be of characteristic
p as stated. O

LEMMA 14.14. Suppose that Hypothesis 14.6 holds, that H is a mazimal sub-
group of G and that C # H. Suppose further that V < H, that L is a component
of H and let v € {a,az}. Then the following hold:

(1) ro(E(H)) < 2. In particular, the 2-rank of L is 1 or 2.
(2) If Cq(v) # Hy and U, < H, then L < H,,.
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(3) IfCa(V) < H, then L < H, or F*(C) is as on List IV and L coincides
with the simple component of C'. Then in particular L/O(L) is isomorphic
to the simple component of C and a € L.

PROOF. As z € H < G, Lemma 5.2 (5) yields that [E(H), z] = 1. At the same
time, the hypothesis that C # H implies that z ¢ Z(H) and hence z ¢ E(H) by
Lemma 5.2 (6). Then Theorem D gives that ro(E(H)) < 2 as stated in (1).

As E(H) < C, Lemma 14.1 (3) implies that E(H) < (0% (C))>® = E(C).
Assume that h € H is such that L" # L and set L, := LL". Then L, is a central
product of two isomorphic components that is contained in E(C), so inspection of
Lists I-IV for such subgroups yields that ro(L) = 1 and z € L. This implies that
z € Z(H) by Lemma 5.2 (6), contrary to the hypothesis that C' # H. Therefore
L<H.

Before we turn to (2), we go through the lists of the F*-Structure Theorem.
We bear in mind that in (2) and (3), the subgroup L is Cx(V)-invariant by the
previous paragraph.

Lists T and III: As z ¢ L, the only possible case is that L is diagonal in the
product of two components of C. Then there exists an odd number ¢q such that L ~
PSLy(qo) and, as© € F*(C), either 7 € L or ¥ induces an involutory automorphism
in PGLy(qo) on L. In both cases Cz(v) is a dihedral group.

List II: Here Cpg, (V) is of index 2 in a maximal subgroup of E(C) and the-
refore L is contained in this maximal subgroup. But then L < Cp ) (V) because
L is quasi-simple and hence O?(L) = L.
~ List IV: Let E< éidenote the simple component. Then v or vz is contained in
E and L < E because L is C5(V)-invariant. Hence there exists an odd number go

such that L ~ PSLs(qo) and either v € L or 7 induces an involutory automorphism
in PGL3(qo) on L. In both cases C(7) is a dihedral group.

Now suppose that the hypothesis from (2) is satisfied. If L centralises v or Uy,
then L < H, by choice of H, and by Lemma 7.7, which is applicable by Lemma
14.7. Thus we suppose that v and U, act non-trivially on L. In the cases from List
II, we have that o centralises L and then [L,v] < LN O(C) < O(L) < Z(L). Thus
v centralises L, contrary to our assumption.

This leaves Lists I, III and IV. If v € L, then U, = [U,,v] < L because
L < H, and then the observations for the lists and the corresponding possibilities
for L show that U, < Cp(v). This is impossible. The same argument implies that
U, does not induce inner automorphisms on L. Now we have that v ¢ L and
inspection of the possibilities above yields that there exists an odd number ¢y such
that L/O(L) is isomorphic to SLa(gp) or PSLa(go) and such that v induces an
involutory automorphism in GL2(qp) or PGL2(qo). As Aut(L) is abelian now, we
deduce that [U,,v] = 1, which is a contradiction. Thus L < H, and this proves (2).

Suppose that Cg(V) < H. As L < H, this implies that L is Cg(V)-invariant
and hence L is Cx(v)-invariant. Thus we know the possibilities for L from the
observations before (2). If L is diagonally embedded in F*(C), then we let E, By €
L5(C) be such that L < Ey % E; and we deduce that L = [L, C5-(v)] < Ey, which

is a contradiction. Thus F*(C) is as on List II or IV. For the remainder we suppose
that L ﬁ H,. Then v does not centralise L and therefore 7 does not centralise L.
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This rules out the cases from List II. Now F*(C) is as on List IV as stated and
there exists an odd number qq such that L ~ PSLy(qo). In particular we saw that
L is contained in the simple component E of C' and either 7 € L or ¥ induces an
involutory automorphism from PGLs(qo) on L. As C5(V) is a maximal subgroup of
F and leaves L invariant, but does not contain L, it follows that L = E. Therefore
L/O(L) ~ F and a € L as stated, and the proof of (3) is complete. O

14.2. The Symmetric Case

In the remainder of this chapter we prove that maximal subgroups containing
the centraliser of an involution a chosen as in Lemma 14.4 either have a central
involution or have odd prime characteristic. We begin with the case where both
Cg(a) and Cg(az) are not maximal in G.

HyPOTHESIS 14.15.
In addition to Hypothesis 14.6, suppose that, if v € {a,az}, then Cg(v) is
properly contained in H,.

With Lemma 14.7, the involutions v appearing in Hypothesis 14.15 satisfy
Hypothesis 7.6. It is also worth mentioning that some of the following arguments
resemble those in Section 9.

LEMMA 14.16.
Suppose that Hypothesis 14.15 holds. If v € {a,az}, then Oz(H,)E(H,) = 1.

PRrROOF. Let v € {a,az}. Then by Lemma 14.5 (1), every involution in V is
isolated in H,. Lemma 14.1 (5) and the hypothesis imply that V N Z(H,) = 1, so
it follows from Lemma 5.2 (6) that V N Oz (H,)E(H,) = 1. Thus no H,-conjugate
of v, of vz or of z can be contained in Os(H,)E(H,). Let w := vz.

First we assume that Os(H,) # 1. Then O(H,) has a central involution ¢ and
we noticed above that ¢ is not conjugate to z, to v or to w in H,. As r2(G) < 3
by Theorem D and as (v, z) < Cg(O2(H,)) by Lemma 14.5 (7) whereas none of
these involutions lies in Oy (H,), it follows that ¢ is the unique involution in O3 (H,).
This implies that ¢ € Z(H,). In particular, the involution ¢ is central in our Sylow
2-subgroup T, of H, which means that T, contains an elementary abelian subgroup
of order 8. Our special choice of a and the 2-structure of C' (and hence of H,) that
we can see from the F*-Structure Theorem only leaves very few cases where T, can
contain a central elementary abelian subgroup of order 8. These possibilities are
precisely as described in List IV, in the special case where T;, is the direct product
of a quaternion group with an elementary abelian group of order 4. But then in
C, the involutions ¢ and v or ¢ and w are conjugate. Therefore Cg(v) or Cqg(w)
must be a maximal subgroup as well, but this contradicts Hypothesis 14.15.Thus
O2(H,) = 1.

Now assume that E(H,) # 1 and let L be a component of H,. As V centralises
L and LNV =1, Theorem D yields that ro(L) = 1. This contradicts the fact that
Os(H,) = 1. O
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THEOREM 14.17. Suppose that Hypothesis 14.15 holds. Then H, and H,, have
odd prime characteristic.

PROOF. Assume otherwise. Then one of H,, H,, does not have odd prime
characteristic. For all v € {a,az}, we set F, := F*(H,). We know by Lemma
14.16 that F(H,)O2(H,) = 1, so in particular F, = O(F(H,)) and H, is not of
characteristic 2. Hence if H, is not of odd prime characteristic, then H, is not of
prime characteristic at all, which means that |m,| > 2. For all v € {a,az} we also
set X, := [Co,, (m,)(w),v].

It is used throughout that, by Lemma 14.1 (5), the subgroups M, H, and H,,
are pairwise distinct. We also recall that Hypothesis 14.15, which is a special case
of Hypothesis 14.6, implies Hypothesis 7.6 by Lemma 14.7.

From now on let v € {a,az} and w := vz.

(1)

At most one of X,, and X, is non-trivial. If X,, # 1, then r, € m, and
N¢(X,) < Hy, hence H, & H,, and |m,| > 2.

PROOF. As v is isolated in H,, by Lemma 14.5 (1) and as F, N H,, is
a nilpotent Cp, (v)-invariant subgroup of H,,, we deduce that

X, = [XU,U] < [vaHun'U] < Fy

with the Pushing Down Lemma (2). Hence X, < O, (H,) and r, €
. Also, by definition, we have that [X,,w] = 1 and then Lemma 7.7
implies that X, < Cp,(w) < Ce(Uy). Therefore X, is a U, (w)-invariant
subgroup of Fy,.

Suppose that X, # 1 and let Ng(X,) < HmaxG. Then H, & H and
H, v H.If H+# H,, then with Lemma 7.10 it follows that H and H,,
both have characteristic r,,. Then the Infection Theorem (2), together
with the fact that H, & H, implies that H, has characteristic r,, as
well. This contradicts the fact that H, and H,, do not both have prime
characteristic. Thus H = H,, and H, & H,,. In particular the Infection
Theorem (2) gives that |m,| > 2.

For the first statement in (1) assume that X,, # 1 as well. Then
H, %+ H, by symmetry and the Infection Theorem (3) yields that H, =
H,,. This is impossible because H, # H,.

Therefore at most one of X, and X, is non-trivial. ([

If X, =1, then U, < C'NO,, (M).
Proor. If X, = 1, then Cop, (u,)(w) < Co,, (u,)(v) and therefore

Lemma 2.1 (4) implies that [O,, (H,),v] < [Oy, (T;-L, ,w] N C. Tt follows
that
U, = [Uv;v] < [Orv (HU),U] <C.

Lemma 14.12 yields that U, < O, (M) and hence U, < CNO, (M). O
C=M.

PROOF. Assume otherwise. Then by Hypothesis 14.15 we have a z-
minimal subgroup U in M. Applying (2) suppose that X, = 1 and hence
U, < C. Then Lemma 14.13 yields that M and H, are both of charac-
teristic p. If X, = 1 as well, then it follows from (2) that U, < C and
Lemma 14.13 forces char(H,) =char(M) =char(H,) = p, contrary to
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our assumption. If X,, # 1, then (1) implies that |7,| > 2, but we just
observed that H, has characteristic p. So this is impossible and we deduce
that C = M. O

z centralises F(H,). If X, = 1, then z inverts F, (H,) and [H,,z] <
Z(F,).

PROOF. Lemma 5.10 is applicable (by (3)) and gives that O, (H,) is
contained in C'. Suppose that X, = 1. Then U, < F(C) by (2) and with
Lemma 7.9 it follows that C ¢ H,. From the Infection Theorem (1) we
deduce that F (H,)NC =1, so z inverts Fy/ (H,). As F, = F*(H,), this
yields that

[Hy, 2] < Cq, (Fy) < Z(Fy).

— v

If X, =1, then F,/(H,) is inverted by w and centralised by v.

PROOF. Suppose that X, = 1 and set @, := Fr/(H,). Then Q, is
abelian because z inverts it by (4). Let D := Cq, (w).

Suppose that X,, = 1 as well. Then (4) implies that D = [D, z] <
[Hy, 2] < Z(Fy) and therefore D is centralised by F,, and by F,,. Moreover
D is invariant under C¢(v) = Ce(w), so we have that

(Fy, Fu, Cc(v)) < Ng(D).
As z € Z*(Cg(v)), we deduce from (4) that
Ca(v) < Ce(v)[Hy, 2] < Ca(v)Z(F,)

and similarly
Co(w) < Co(w)Z(Fy).

But this means that (Cq(v), Ca(w)) < Ng(D). With Lemma 14.1 (4) and
(1) we deduce first that D is normal in G and then that D = 1. Hence if
X = 1, then Q, is inverted by w and by z and therefore centralised by
v. Thus we may suppose that X, = 1 and X,, # 1. By (1) we have that
H, % H, and that |m,| > 2. As D is inverted by z and centralised by w,
it is inverted by v whence, with the Pushing Down Lemma (2), it follows
that

D = [D,v] < [Fy, N Hy,v] < F,.

More specifically, we see that D < Cp, (w) which means that D is a
U, (w)-invariant subgroup of F,, by Lemma 7.7. Assume that D # 1 and
let No(D) < HmaxG. Then H, and H, infect H. If H # H,,, then
Lemma 7.10 gives that H and H,, have characteristic r,,. Then it follows
from the Infection Theorem (2) that char(H,) = r,, as well, contrary to
|my| > 2. Therefore H = H,, which implies that H, & H,. As H, and
H,, are not of the same prime characteristic, the Infection Theorem (3)
leads to a contradiction. Thus D = 1 and the proof is complete. (I

If X, = 1, then v centralises F, (H,).
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PROOF. Suppose that X, = 1 and assume that ¢ € 7, is such that
q # 1y and [Og(H,),v] # 1. Then Oy(H,) contains a v-minimal subgroup
U; with the same properties as U,. More specifically, Lemma 7.9 (applied
to Uy) yields that Ng(Uy) < H,. Now let Y, := [Co,(m,)(w),v].

Assume that Y, = 1. Then we apply (2) to X, and Y, and we obtain
that U, < O, (C) and U; < O,4(C). Now assume that U,, < O, (C). Then
U, or U; centralises U,,. We may assume that U,, and U, centralise each
other and then U,, < Ng(U,) < H, with Lemma 7.9. Then the Pushing
Down Lemma (3) yields that U, < F,. But N¢(U,) < H,, again with
Lemma 7.9, so we have that H, ¢+ H,. Conversely U, < Ng(U,) <
H,, whence U, < F,, and consequently H,, & H,. This contradicts the
Infection Theorem (3) because H, and H, are distinct and not of the
same prime characteristic. Consequently U,, £ O, (C).

Together with (2) and (4) this implies that X,, # 1 and that r,, ¢ .
Then it follows from (1) that H,, % H,. We push this a little further and
look at Uy := [Cy, (2),w]. If Uy = 1, then Lemma 2.1 (4) implies that

Uy = [Uy,w] < [Uy, 2] N Cq(v).

The Pushing Down Lemma (3) then forces U,, < F, whence H, & H,,
by Lemma 7.9. Thus, again, we see that H, and H,, infect each other,
which is a contradiction. We deduce that Uy # 1 and we observe that

Uy =[Cy, (2),w] < [Uy, NM,w] < F(M),

w

by Lemma 14.12, because U,,\M is a nilpotent Cys(w)-invariant subgroup
of odd order of M. Hence Uy < Cp(a)(z) < F(C) and it follows that
rw € m, contrary to an earlier remark.

We conclude that Y, # 1. Then (1), applied to Y, and X,,, yields
that X,, = 1 and that Ng(Y,) < H,,. Thus H, & H,, and X, = X,, =1
implies that U, and U,, are both contained in F(C), by (2). The infecti-
on H, + H, is accomplished by Y,, more precisely Y, < O4(H,) which
means that Oy (H,) < Cg(Y,) < Hy,. But ¢ # r, by our initial assumpti-
on, so U, < Oy (H,) < H, implies first that U, < F,, (with the Pushing
Down Lemma (3)) and then that H,, & H, (with Lemma 7.9), which is
impossible. This final contradiction shows that v centralises I, (H,) as
stated. O

If 7, # 7w and X, = 1, then X, # 1 and r,, € m,,, and moreover F,, (H.,,)
is centralised by V.

PRrROOF. Suppose that r, # r,, and that X, = 1. On the one hand, if
Ty, Tw € T, then (4) and Lemma 14.12 yield that

Uy, U] <10, (C),0,,(C)] = 1.

Then it follows with the Pushing Down Lemma (3) and Lemma 7.9 that
U, < Fy, that U, < F, and therefore H, and H,, infect each other. This
is impossible by the Infection Theorem (3) and Lemma 14.1 (5). On the
other hand (2) implies that r, € 7 because X, = 1, so we deduce that
ry ¢ m and in particular X, # 1 by (2).

Now we know from (1) that H,, & H,,, more precisely that O, (H,) <
Ca(Xy) < Hy, and (1) also yields that |m,| > 2.
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First suppose that |7, | > 2. Then Lemma 7.2 (3) implies that Fy. (H,) <

H,. Hence if r, € m,, then it follows that U, < H,. As r, and 7y
are distinct, the Pushing Down Lemma (3) and Lemma 7.9 yield that
Uy < Ce(U,) < H, and therefore U,, < F,,. But then the same argument
gives that H, ¢+ H,,. This is a contradiction and hence r, ¢ 7, in this
case. Next suppose that H,, has characteristic r,,. Then clearly r, ¢ m,
because 1, % .

It is left to prove that F.. (H.,) is centralised by V. Let D := [Fy, (Hy), 2].

w w
As1# X, <O, (Hy,) and Ng(X,) < H, by (1), we have that D < H,
and hence
D =[D,z] < [Hy, 2] < Z(Fy)
by (4). Moreover D < C¢(Uy) and D < Z(F,) < Cg(U,). Hence D is a
subgroup of F, N F,, that is U, (w)-invariant and U, (v)-invariant.

If D # 1, then H, is not of characteristic r,, and therefore Lemma
7.10 yields that Ng(D) < H,, so H, & H,. This is a contradiction to
the Infection Theorem (3) and Lemma 14.1 (5). Thus D = 1. We argue
similarly for Dy := [F}, (H,),w] and recall that Dy < H,. Then

Do = [Do,w] < [Fy, N Hy,w] < F,

with the Pushing Down Lemma (2) and thus Dy is a U, (w)-invariant
subgroup of F, and of Fy,. If Dy # 1, then again |m,| > 2 and Lemma
7.10 and the Infection Theorem (3) give a contradiction. Consequently
Do = 1 and it follows that Fy, (H,) is centralised by V. O

If X, =1, then v inverts O, (H,).

PROOF. Suppose that X, = 1 and in addition that r, and r, are
distinct. Then (7) yields that X,, # 1, that 7, € 7, and that F,, (Hy)
is centralised by V. In particular (1) gives that r,, € 7, and Hy, & H,.
The Infection Theorem (1) implies that Fr, (H,) N H, = 1 and hence
that F, (H,) is inverted by w. As r, ¢ m,, we conclude that O, (H,) is
inverted by w. Moreover (2) and (4) imply that z centralises O, (H,), so
v inverts it. Thus we suppose from now on that r, = r,, =: r.

Let R := O.(Hy). Then R # 1. Let D := Co, (g,)(v) and assume
that D # 1. From (2) we know that r € 7 and therefore (4) yields that
O,(H,) < C. Hence [D,V] = 1. As D < Cg(w) < H,, we can consider
the action of D x (w) on R. We know that [R,w] # 1 because R =
O, (H,) contains U,. Thus Thompson’s P x Q-Lemma 2.2 forces Ry :=
[Cr(D),w] # 1. From Lemma 7.7 we know that [D,U,] = 1 and hence D
is a U, (v)-invariant subgroup of F,. Lemma 7.10 gives that Ng (D) < H,
or that H, has characteristic r. In the second case z centralises O,.(H,) =
F*(H,) because r € 7 by an earlier remark, and this contradicts Lemma
14.1 (5) and Lemma 5.2 (6). This argument also shows that |m,| > 2 and
|mw| > 2. We conclude that Ng(D) < H, whence Ry < H,. It follows that

Ry = [Royw} < [meH'U,w] <F

by the Pushing Down Lemma (2). In particular Ry is Z(F},)-invariant and
Cc(v)-invariant. Now we apply (4) to see that

[Ca(v),2] < [Hy, 2] < Z(F)
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and therefore Cg(v) < Z(H,)Cc(v). It follows that Ry is Cg(v)-invariant.

Let Ng(Rp) < HmaxG. Then H, & H and Cg(v) < H, in particular
v is isolated in H by Lemma 14.5 (1). Therefore E(H) < H, by Lemma
5.2 (5). Hence if H # H,, then the Infection Theorem (1) and (4) imply
that I, (H) is a non-trivial subgroup that is inverted by v. Then it follows
from Hypothesis 14.15 that 7, contains a prime p such that O,(H,) is
inverted by v, and (6) yields that p = r. In particular D = 1 contrary
to our assumption. Therefore H = H, and Ng(Ro) < H,. As Ry < F,,,
this gives that H,, &~ H,. We recall that F, ﬁ C and that, therefore,
there exists a prime ¢ such that Qo := [Oy(Hy), 2] # 1. As g # r and
O, (Hy) < Cq(Rp) < H,, we deduce with (4) that

QO = [QO,Z] < [H'U)Z] < Z(FU)

Hence Qo is a non-trivial U, (v)-invariant subgroup of F, and Lemma
7.10 forces Ng(Qo) < H,. But then U, < Cg(Qo) < H, whence the
Pushing Down Lemma (3) and Lemma 7.9 imply that U,, < F, and hence
H,+ H,. Thus H, and H,, infect each other, which is impossible.

This last contradiction comes from the assumption that Co, (g,)(v) #
1 and therefore the proof is complete. ([

If X, = 1, then [H,, V] < Z(F,).

PROOF. Suppose that X, = 1. Then [H,, 2] < Z(F,) by (4). Moreover
(6) and (8) imply that [H,,v] < Z(F,), so we have that [H,, V] < Z(F,).
(]

If X, = 1, then there exists a prime p, € m, such that O, (H,) is centra-
lised by v and inverted by z.

PROOF. Suppose that X, = 1. Then U, < O, (C) by (2) and hence
ry, € m. Lemma 14.1 (5) implies that z ¢ Z(H,), thus we have that
[Fy, 2] # 1 by Lemma 5.2 (6). Therefore m, Nr, is not contained in m by
(4) and we choose p, € m, Nr, N@'. Then O,, (H,) is inverted by z by (4)
and it is centralised by v by (6). O

If X, =1 and if p, € 7, is a prime chosen as in (10), then there exists a
V-invariant Sylow p,-subgroup P of H, such that [P,v] =1 and [P, 2] =
Op, (Ho).

PROOF. Suppose that X, = 1. With Lemma 14.5 (8) let P be a V-
invariant Sylow p,-subgroup of H,. Then (4) yields that [P,z] < Z(F,).
As z inverts Oy, (H,) and O,, (H,) < P, this means that [P, z] = O, (H,).
We also have that [P,v] < Z(F,) by (9). Therefore, with (6) and Lemma
2.1 (2), we deduce that

[P,v] = [P,v,v] < PN[Z(F,),v] < PNO,, (H,) =1.
O

There exist a prime p and a V-invariant Sylow p-subgroup P* of G such
that the following hold:
v or w centralises P* and [P*, z] equals either O,(H,) or Op(Hy).
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PRrROOF. From (1) we know that X, = 1 or X,, = 1, so by sym-
metry we may suppose that X, = 1. Let p := p, be as in (10). Let
P €8yl,(H,,V) be as in (11), so that in particular [P,v] = 1. We note
that Cq(P) < Ca(O,(Hy)) < Ng(0O,(H,)) = H, because p € 7, and H,
is primitive by Corollary 5.8. Unfortunately Lemma 7.11 is not applicable,
but we can argue in a similar way here:

First (11) implies that [P,z] = O,(H,). Then, as z € Ng(P), but
z ¢ Cq(P)<Ng(P), it follows that Co(P) does not contain any conjugate
of z. We have that v lies in C¢(P) and that v is isolated in this subgroup
because Cg(P) < H,. Let v € Ty € Syla(Ca(P)). As C(P) is z-invariant,
we may choose Tj to be z-invariant by Lemma 4.11. Now T} is contained
in a Sylow 2-subgroup of H, and Lemma 4.1 (2) implies that v centralises
this Sylow 2-subgroup. Thus v € Z(Tp). Let H := Ng(P) N Ng(Tp). It
H < H,, then a Frattini argument yields that

Ng(P) = Cq(P)H < Cq(P)H, < H,.

Thus we suppose that H £ H,, in particular H % C¢(v). Then v is not the
only involution in Z(Tp) because otherwise it is centralised by Ng(Tp). As
z centralises Ty, but z ¢ Ty, it follows that r(Tp) < 2 because r2(G) < 3.
So there are exactly three involutions in Z(7Tp), which we denote by v,d
and vd. We know that d € C because Tj is centralised by z. Let h € H be
such that v" # v, without loss v" = d. By Lemma 4.1 (9) we may choose
hin Cy(2).

Now let Hy := (H,)". Then P = P*" < Hy. As X, = 1, we know
that [H,,z] < Z(F,) by (4), so [Hg, 2] < Z(F(Hg)) by conjugacy. Thus
O,(H,) = [P,z] < Z(F(Hy)) and it follows that O,(H,) = Op(Hg). But
then H, = H, because H, and H, are primitive (Corollary 5.8) and
therefore h € H,, which is a contradiction. We conclude that H < H, and
thus Ng(P) < H,. Therefore P € Syl,,(G) and we may choose P* = P. [

Let p and P := P* €Syl,(G,V) be as in (12). As X,, = 1 or X,, = 1 and
as this leads to the cases p € m, or p € m,, we may by symmetry suppose that
X, = 1 and hence that p € m,. Then [P,v] = 1 and thus P < Cg(v) < H,. As
P is centralised by v, but not by z (from (11)), it follows with Lemma 4.12 that
|Ck (vz)|, = 1 and |Ck(v)|p, # 1. In particular, the involutions v and vz are not
conjugate in C, so they are not conjugate in G by Lemma 4.1 (9). Therefore a and
az are not conjugate in G. With Lemma 14.5 (2) it follows that F*(C) is as on List
Iv.

Let E € £2(C) be such that a € E. Let B < E be elementary abelian of order
4 and such that ¢ € B, and denote the involutions in B by a, d and ad. Then
there exists an element z € C such that T has order 3 and such that x permutes
permutes a, d and ad in a 3-cycle and then also az, dz and adz in a 3-cycle. Without
loss a® = d. Recall that v € {a,az} and define e := v* and H, := H?. We also
recall that z inverts O, (H,) and hence O,(H,) is abelian. Then the coprime action
of e on O,(H,) and Lemma 2.1 (4) yield that

OP(HU) = OOP(HU)(G) X [OP(HU),S].

Case 1: Dy := Co, (m,)(e) # 1.
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As z inverts O, (H,), we know that Dy = [Dy, 2] and that O,(H,) is
abelian, in particular [Dg, U,] = 1. Consequently Dy is a U, (v)-invariant,
non-trivial subgroup of F,. We recall that r, € = by (2) and p ¢ ,
so in particular |m,| > 2. Then Lemma 7.10 forces Ng(Do) < H,. As
[Hy, 2] < Z(F,) by (4), conjugacy yields that

Dy = [Do,z] < [HE»Z] < Z(OP(HS))'

Together this implies that H, & H,. But H, and H. are conjugate and
they both have no components, by Lemma 14.16, so the Infection Theo-
rem (5) and the hypothesis |7, | > 2 force H, = H.. Therefore x € H,. In
particular, the subgroups Cg(v), Ce(e) and Cg(ev) are now all contained
in H,. At least one of the involutions v, e and ev is contained in B, and

F*(C) is as on List IV, therefore Lemma 14.3 (2) supplies a contradiction.

Co,(m,)(e) =1.

By choice of p, this means that z and e invert Py := O,(H,) whence
ez centralises it. If we let H., denote a maximal subgroup of G containing
Ca(ez), then Py = [Py, 2] < H,,. Assume that O(F(C)) N H,, = 1. Then
O(F(C)) is inverted by ez and therefore this subgroup is abelian. However,
we have that U, < O(F(C)) by (2) and then O(F(C)) < Cs(U,) < H,
with Lemma 7.9. As ez and w are conjugate in C, we also know that w
inverts O(F(C)) whence it follows that

O(F(C)) = [O(F(C)),w] < [Hy,w] < Z(Fy),
by (9). But Ng(O(F(C))) = C, so we have that H, & C. We recall that
U, < F(C) and hence C' 3 H,. With the Infection Theorem (3), this
implies that C = H,,, which is a contradiction.

We deduce that O(F(C))NH,, # 1 whence Lemma 7.12 is applicable.
It gives that [H,,, 2] < F(H,,) and in particular

Py = [Op(Hv)vZ] < Op(HeZ)-

Hence H., & H, and Oy (H.,) < Cq(Fy) < H,. We note that H, is the
unique maximal subgroup of G containing N¢(FPp), by Corollary 5.8. But
ez is conjugate to vz = w, so O, (H,.) contains an ez-minimal subgroup
Ue. with U, = [Ue.,ez]. As Py < Cpp,.)(ez), it follows with Lemma
7.7 that U, centralises Py. Therefore P is a non-trivial U, (ez)-invariant
subgroup of F(H.,,).

If Ng(Py) % He., then Lemma 7.10 yields that char(H.,) = p and
that Ng(Pp) is contained in a maximal subgroup distinct from H,, that
also has characteristic p. But H, infects this subgroup, contradicting
the Infection Theorem (2) and our hypothesis that |7,| > 2. Therefore
N¢(Py) < H., and we deduce that H, = H.,. The choice of p implies that
v centralises Py and therefore ezv = we centralises Py. With a maximal
subgroup H,,. containing Ce(we) we argue as in the previous paragraph:

If O(F(C)) N Hye = 1, then we inverts O(F(C)), so O(F(C)) is
abelian and hence O(F(C)) < Cg(U,) < H, with Lemma 7.9. As we is
conjugate to v or to w in C, one of v or w inverts O(F(C)), therefore v
and w invert O(F(C)). Thus O(F(C)) < Z(F,) by (9) and H, & C. We
already saw that this is impossible. Hence O(F(C)) N Hye # 1 and

PO = [POaZ] < [Hweaz] < Op(Hwe)
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by Lemma 7.12. So Hye & H,. Then, in particular, a we-minimal sub-
group Uy, of H,, centralises Py. Thus P, is a non-trivial Uy, (we)-invariant
subgroup of F(Hy.) and we deduce first that Ng(Py) < Hye and then
that H, = Hye. It follows that Cg(v), Cg(ez) and Cg(we) are contained
in H,.

Now we recall that F*(C) is as on List IV. Depending on whether
v =a or v = az, we know that v or ez is contained in B and for all b € B,
we just observed that Cc(b) < H,. Therefore Lemma 14.3 (2) yields a
contradiction.

Hence both cases cannot occur and this concludes the proof of the theorem. O

LEMMA 14.18. Suppose that Hypothesis 14.15 holds. Then H, and H,, have
the same odd characteristic.

PROOF. Set b := az and assume that the statement does not hold. By Theorem
14.17 we may then suppose that there exist distinct odd primes r, and r, such that
char(H,) = rq and char(H,) = r,. Now the arguments are similar to those at the
beginning of the proof of Theorem 14.17.

Let Y := [Co,, (m,)(b),a]. As a is isolated in Hj by Lemma 14.5 (1), we have
that

Y =[Y,a] <[F(H,) N Hy,a] < F(Hp)
with the Pushing Down Lemma (2). Therefore Y < O, (Hp) = 1 because 14 # 1.
It follows that Co, (m,)(b) < Co,, (m,)(a) and therefore

[0y, (H,),a] < [0, (H,),b]NC

with Lemma 2.1 (4). We conclude that
Uy = [Ua,a] < [0y, (Hy),a]l <C < M.

A symmetric argument shows that U, < M and Lemma 14.12 yields that
Uy < O, (M) and Up < Oy, (M). In particular [U,,Uy] = 1 because r, # rp which
implies, with Lemma 7.9 and the Pushing Down Lemma (3), that U, < F(H,),
contrary to rq # 5. O

14.3. The General Case

We begin with two technical lemmas for our further analysis of maximal sub-
groups containing the centraliser of an involution a that is chosen as in Lemma
14.4 (and similarly the centraliser of az). They play a role in our treatment of the
general case and in Chapter 15.

LEMMA 14.19. Suppose that Hypothesis 14.6 holds. Suppose further that C #
M, that E(M) =1 and that Cg(az) is a mazimal subgroup of G. Then [U,a] # 1.

PROOF. Assume otherwise which means that [U,a] = 1. First we note that
Hypothesis 14.6 implies Hypothesis 7.6 by Lemma 14.7. Now U < H, and the
Pushing Down Lemma (3) gives that U < O,(H,), so that H, & M by Lemma
7.9. Our hypothesis that F(M) = 1 and Theorem A imply that M has characteristic
p and hence H, has characteristic p, by the Infection Theorem (2). In particular
a and b := az are not conjugate because b € Z(H,) by hypothesis. With Lemma
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14.5 (2) this means that one of the cases from List IV holds. Then there exists an
odd number ¢ > 11 such that a lies in a 2-component of C' of type PSLa(q) and in
particular there exists an element ¢ € C of odd order such that a,a® and a-a® = ac”

are the three involutions of a fours group. We set e := a® and d := ez, and we let
Cg(e) < Homax G and Cg(d) =: HymaxG.

(*) [Op(Ha)va} <C.

Proor. Let X := [Co, (m,)(),a] and assume that X # 1. Then the
Pushing Down Lemma (2) yields that

X = [X,a] < [0,(H,) N Hy,a] < O,(Hy).

With Lemma 14.1 (1) we let Ng(X) < HmaxG. Then H, + H and H, &
H and therefore the fact that H, is of characteristic p and p € m, implies
(using the Infection Theorem (1)) that I := Fy; (H) is inverted by a and b
and hence centralised by z. In particular F' < C' and therefore F' normalises
U. But a centralises U by assumption whence F' = [F,a] centralises U as
well. If F' # 1, then consequently U < Cq(F') < H because H is primitive
by Corollary 5.8. Then the Pushing Down Lemma (3) gives that U <
O,(H) and hence H ¢ M by Lemma 7.9. The Infection Theorem (2) first
implies that H is of characteristic p and then that Hj is of characteristic
p as well. But H, = Cg(b), so this is impossible.

Therefore F' = 1 and hence F(H) is a m,-group. We note that X is
Ce(V)-invariant and hence C¢(V) < H, which makes Lemma 14.14 (3)
applicable. If E(H) £ H,, then this result yields that H has a component
L such that L/O(L) is isomorphic to the simple component of C' and
in particular L contains a. We know from Lemma 7.2 (3) and because
w(F(H)) C m that F(H) < H, = Cg(b). As a € L (still assuming that
L £ H,), this means that a and b centralise F((H) and hence z does. Thus
z € Z(H) by Lemma 5.2 (6) and it follows that C' = H is a maximal
subgroup, contradicting our hypothesis. We deduce that F(H) < H}, and
the Infection Theorem (4) yields that H = Hy,. In particular H, infects
Hy,. Then the Infection Theorem (1) gives that a inverts F,/(Hp), but this
is false because a centralises O2(Hp) by Lemma 14.5 (7). Hence X =1
and Lemma 2.1 (4) implies that [O,(H,),a] < [Op(H,), 0N C. O

We recall that H, has characteristic p and that therefore Cg(a) < H,. Then
O,(H,) contains an a-minimal subgroup U, by Hypothesis 14.6 and we let Uj :=
[Cy, (d),a], with d being conjugate to b as described in the first paragraph. As
Up < U, = [Uy,a] < C by (x), we see that Uy = [Cy, (), a]. This implies that Uy is
Cs({a, e))-invariant and C¢({a, d))-invariant. Lemma 14.12 yields that U, < O,(C)
and therefore

Up <O(C)NHy < O(Ce(d)) < O(Ca(d)) = O(Hq)

We apply Lemma 2.10 to H := O(Hy){a,d) and see that Uy = [Up,a] < O,(H) =
Op(Hyg). In a similar way, we deduce that Uy < O(H.) and then Uy < O,(H.).
As e is conjugate to a, we may suppose that H, is conjugate to H, and hence has
characteristic p. In particular Cg(e) < H.. Then O,(H,) contains an e-minimal

by Lemma 2.9 and because d and b are conjugate. Hence Uy = [Up, a] < [O(Hy), a).
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subgroup U, and Uy < Co, (g,)(e) < Cg(U.) by Lemma 7.7. Moreover Uy is (e)-
invariant. Hence if Uy # 1, then Lemma 7.10, applied to H, and Uy, gives that
N¢(Up) is contained in a maximal subgroup of G of characteristic p (which might
coincide with H., but not necessarily). But Hy infects this subgroup, O,(Hy) # 1
and H, is not of characteristic p, so the Infection Theorem (2) yields a contradiction.

Thus Uy = 1. Then Cy,(d) < Cy,(a) and Lemma 2.1 (4) implies that U, =
[Ua,a] < [Uq,d] N Cg(ad). We recall that U, < O(C) and hence

Us < 0(C) N Cglad) < O(Cc(ad)) < O(Cg(ad))

by Lemma 2.9. It follows that U, < O,(Cg(ad)), again with Lemma 2.10. As ad
is conjugate to b, we know that Cg(ad) is a maximal subgroup of G and Lemma
7.9 yields that Cg(ad) infects H,. This is impossible by the Infection Theorem (2)
because H, has characteristic p, but Cg(ad) is conjugate to Ci(b) and hence does
not have characteristic p. O

LEMMA 14.20. Suppose that Hypothesis 11.1 holds and that a € C' is an invo-
lution chosen as in Lemma 14.4. Suppose that C is not a mazximal subgroup of G
and let v € C be an involution that is conjugate to a or to az. Then Cg(v) is a
mazimal subgroup of G or Cg(v) is contained in a mazimal subgroup H, such that
H, has odd prime characteristic.

PROOF. As v is conjugate to a or to az, we may without loss suppose that
v € {a,az} and we let w := vz. Then we suppose that Hypothesis 14.6 holds with
its notation. Let p € 7 be such that U < O,(M).

If Ce(v) # H, and v and w are conjugate, then Hypothesis 14.15 holds whence
Theorem 14.17 is applicable. Thus in this case H, is of odd prime characteristic as
stated. Hence from now on we suppose that v and w are not conjugate, which by
Lemma 14.5 (2) means that F*(C) is as on List IV. By choice of a, there exists an
odd number ¢ > 11 such that either v or w is contained in some E € L5(C') with
E ~ PSLs(q).

Let us suppose that Cg(v) # H, and, by way of contradiction, that |m,| > 2.
Let r := r,, so that U, < O,(H,). We recall that Theorem 14.17 implies that
Cea(w) is a maximal subgroup. Let Uy := [Cy (v), 2] and b := az.

(1) 14 Uy < Op(H,).

PROOF. First suppose that v = a. Then v lies in an elementary abe-
lian subgroup B of C such that some element of C' induces a 3-cycle on
the set of involutions of B. Then the coprime action of B on U, together
with Lemma 2.1 (4), yields that there exists an involution d € B such
that [Cy(d),z] # 1. Hence Uy # 1 in this case.

Next suppose that v = b. Then w = a, hence Cg(a) is a maximal
subgroup. If Uy = 1, then we first assume that M has characteristic p.
As [Cy(b), 2] = 1, we have that Cy(b) < Cy(z) whence U = [U,z] <
[U,b] N Cg(a), by Lemma 2.1 (4). Then the Pushing Down Lemma (3)
forces U < O,(H,) and with Lemma 7.9 this implies that H, & M. But
this is impossible by the Infection Theorem (2) because 2 € w(F(H,)) and
therefore H, is not of characteristic p. Therefore M is not of characteristic
p. Then M has a simple component by Lemma 14.9, and in fact F is this
component. Then a € E by hypothesis and [U, a] < [O,(M), E] = 1. Thus
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the Pushing Down Lemma (3) and Lemma 7.9 give that U < O,(H,) and
then H, 3 M. We turn to Hy and let X := [Cp,(p,)(2),b]. Then X is a
nilpotent C¢(b)-invariant 2’-subgroup of C' and Lemma 14.12 yields that
X =[X,b] < F(C). As E < E(C), we see that [X, E] = 1. In particular
X centralises a and z, so we deduce that X = [X,b] = 1. Therefore
Co,(m,)(2) < Co, (m,)(b) which with Lemma 2.1 (4) implies that

U, < [OT(Hb),b] < [OT(Hb),Z] N Cg(a).

With the Pushing Down Lemma (3) and Lemma 7.9 it follows first that
Uy, < O,.(H,) and then that H, & H,. Moreover r € 7,. We recall that
F*(C)is as on List IV and therefore Lemma 14.8 forces E(Hy) = 1. As H,,
H, are neither equal nor of the same prime characteristic, the Infection
Theorem (4) yields that F':= Fy, (Hp) # 1.

We can say more if we recall that U < O, (H,): if r # p, then [U, U] <
[0p(Hq),O0r(H,)] = 1 whence U < Ng(Up) < Hp, then U < O,(H,)
by the Pushing Down Lemma (3) and finally H, & M by Lemma 7.9.
Conversely U, < C(U) < M by Lemma 7.9, then U, < F(M) by Lemma
14.12 and therefore M & Hy by Lemma 7.9. Thus M & H, & M, which
contradicts the Infection Theorem (3). Thus » = p and moreover, as we
can argue in the same way if F,/(H,) contains a b-minimal subgroup, we
also see that b centralises F (Hp).

Now we recall that a € E and that a is contained in a fours group in
FE where all involutions are conjugate in FE. Let e € F be an involution
such that (a,e) is such a fours group. Then a, e and ae are conjugate in
C and therefore b, ez and be are conjugate in C as well. We also recall
that E(Hp) = 1 and that H, & H,. Therefore F is inverted by a (by the
Infection Theorem (1)) and F;, (Hp) is centralised by a by Lemma 7.2 (3),
because Cg(a) = H, and |m,| > 2. In particular

[Hy, a] < C,(F(Hy)) = Cn, (F*(Hy)) = Z(F(Hy)).

Let He := Cg(e) and Hy,e := Cg(ae), and let Cg(ez) < H, maxG and
Cg(be) < Hp. max G. Then conjugacy yields that

[Heo,e] < Z(F(H.,)) and [Hpe,ae] < Z(F(Hp.)).

We have seen earlier that F' < F,/(H,) is centralised by b and inverted by
a, so F is inverted by z. Now we consider the action of (z,e) on F = [F, z]
and apply Lemma 2.1 (4). It gives that

F = ([Cr(2),2],[Cr(e), 2], [Cr(ez), 2]) = ([Cr(e), 2], [Cr(e2), 2]).
Assume that Y := [CFr(ez), z] # 1. Then we first note that
Y =[Y.2]=[V,e] < [He,¢] < Z(F(He:)).

Hence if we let U., denote an ez-minimal subgroup of Op,(H.,), then ¥
is U, (ez)-invariant and we also recall that Hp, and hence H.,, is not of
prime characteristic. Therefore Lemma 7.10 is applicable and gives that
N¢(Y) < He,. In particular Hy, & H,, and this contradicts Lemma 14.10.
Hence Y = 1 which implies that F' = [Cr(e), z] is centralised by e. Then
F is centralised by b and e and inverted by z, hence centralised by be and
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therefore inverted by ae. We conclude that
F = [F,ae] < [Hpe,ae] < Z(F(Hpe)).

As H,y is primitive by Corollary 5.8, we know that Ng(F) = H, and
therefore Hp, & H;. But this is impossible by Lemma 14.10. This last
contradiction comes from the fact that F' # 1, as we established earlier.
That in turn was a consequence of the assumption that Uy = 1. So we
proved that Uy # 1 as stated.

For the second assertion in (1) we apply the Pushing Down Lem-
ma (2). It follows that Uy = [Up, 2] < [F(M) N Hy, 2] < Op(Hy). O

Ng(Up) < H,.

ProoOF. With Lemma 14.1 (1) let H be a maximal subgroup of G
containing Ng(Uy).
(2.1) U, < H, furthermore F(H) is a m,-group and lies in H,:

We have that M & H and also, by (1), that H, & H. As Uy < F(H,)
by (1), Lemma 7.7 yields that

Uo < Cra,)(v) < Ca(Uy)

and therefore U, < H. With the Infection Theorem (1) it follows that
Fr (H) N H, = 1 and hence that v inverts F' := Fy, (H). But then U, =
[U,,v] centralises F' which means, by Lemma 7.9, that F' < H,, and thus
F = 1. Consequently F(H) is a m,-group that is contained in H, by
Lemma 7.2 (3), because |m,| > 2 by assumption.
(2.2) E(H) < H,:

We know from (2.1) that U, < H. If C = H, then in particular
Uy < C and hence Uy = [Uy, z] = 1 by Lemma 2.1 (2). This contradicts
(1). Therefore Lemma 14.14 (2) is applicable and yields that FE(H) < H,.
(2.3) H = H,:

This follows from (2.1) and (2.2) together with the Infection Theo-
rem (4), because |m,| > 2 by assumption.

Now the proof of (2) is complete. O

Let X := [Co, (m,)(w),v]. Then 1 # X < O,(H,) and Ng(X) < H,.
PRrROOF. First assume that X = 1. Then
Co,(m,)(w) < Co,(m,)(v)NC
and hence [0, (H,),v] < [O,(H,),w]NC by Lemma 2.1 (4). In particular

U, < C whence Lemma 14.13, together with (1), implies that M and H,
both have characteristic p. This contradicts our assumption that |m,| > 2,
hence X # 1.

With the Pushing Down Lemma (2) we have that X < O,(H,).
Applying Lemma 14.1 (1) let Ng(X) < HymaxG. Then H, ¢+ H; and
H, % Hi. Assume that r = p. We know that = (F(H,)) contains 2 and
r (= p) and therefore two distinct primes, and then Lemma 7.2 (3) yields
that O,(H1) < H,, = Cg(w). In particular Uy is centralised by w, but also
by v and thus by z. This is impossible by (1) and hence r # p. Now we
see that Uy < Cg(X) < H; and therefore Uy < O,(Hp) by the Pushing
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Down Lemma (2). It follows that H; & H, by (2) and then that H, = H,
by the Infection Theorem (3). O

With (3) we have that H,, & H,, in particular O, (H,,) < H,. As r is odd
and w € Z(H,), we see that |m,| > 2. Let F := Fy, (H,). Then F # 1 by the
Infection Theorem (4), because E(H,) = 1 by Lemma 14.16 and because H, # H,,
by Lemma 14.1 (5). Hence the Infection Theorem (1) yields that w inverts F.
Since |m,| > 2, we see that O,(H,) is either inverted or centralised by w (Infection
Theorem (1) and 7.2 (3)). As Uy < O,(H,) and Uy is not centralised by w, it follows
that w inverts O,(H,). Thus p € 7/, whence, with the Pushing Down Lemma (2),
we deduce that [Cy(w),z] < [UNHy,z] < O,(Hy,) = 1.

Then U = [U,z] < [U,w] N Cg(v) by Lemma 2.1 (4) and consequently U <
O,(H,) by the Pushing Down Lemma (3). Then H, % M by Lemma 7.9. But
conversely M & H, by (2), so with the Infection Theorem (3) this contradicts
Lemma 14.1 (5). O

LEMMA 14.21. Suppose that Hypothesis 11.1 holds and that a € C is an in-
volution chosen as in Lemma 14.4. Let v € C be an involution that is conjugate
to a or to az and suppose that C' is a mazximal subgroup of G. Let H, be a mai-
mal subgroup of G containing Cg(v) and suppose that O(F(C)) N H, = 1. Then
Cq(v) = Hy or H, is of odd prime characteristic.

PROOF. Assume that Cg(v) # H, and that H, is not of odd prime charac-
teristic. If Cg(vz) is properly contained in a maximal subgroup, then Hypothesis
14.15 is satisfied, so that Theorem 14.17 is applicable and yields the result. Thus
we suppose that Cg(vz) is a maximal subgroup of G and that Hypothesis 14.6
holds with all its notation. We have that v and vz are not conjugate which means,
by Lemma 14.5 (2), that F*(C) is as on List IV. Then we may suppose that v or
vz coincides with a and hence lies in a 2-component of C' with simple image in
C. Let w := vz. From the shape of Oy p«(C), there exists an elementary abelian
subgroup of C' containing a and such that some element = € C induces a 3-cycle on
the set of involutions of this subgroup. Then z moves az in a 3-cycle with two other
involutions, but these involutions do not belong to an elementary abelian group of
order 4. In the following, we therefore argue that v, d := v” and d” are conjugate,
but we might need to distinguish the cases where v = a or v = az. Our hypothesis
gives that v inverts O(F(C)) and hence that w inverts O(F(C)). Now d, d* and
then also dz and d®z invert O(F(C)) as well. But then dv = dzw centralises and
inverts O(F(C)), so it follows that O(F(C)) = 1. Then F(O(C)) = 1 which forces
O(C) = 1. Looking at List IV in the F*-Structure Theorem, we let F denote the
simple component of C'. Its type yields that, if s,¢ € F are two distinct involutions,
then F = (Cg(s),Cg(t)) (recall that E ~ PSLa(q) with ¢ > 11).

Let Y := [Co, (m,)(?),v]. This is a Cc(v)-invariant 2'-subgroup of F'(H,)
and Lemma 14.12 implies that ¥ = [Y,v] = 1 and consequently Co, (m,)(2) <
Co.,, (r,)(v). Then Lemma 2.1 (4) gives that U, = [U,,v] < [Uy, 2] N Cg(w).

With the Pushing Down Lemma (3) and Lemma 7.9, we deduce that U, <
F(H,) and therefore H,, % H,. Hence I/ (H,) is inverted by w by the Infection
Theorem (1). We recall that F*(C) is as on List IV and that, therefore, Lemma 14.8
yields that E(H,) = 1. Moreover Lemma 7.2 (3) implies that F (H,) is centralised

w
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by w because |m,,| > 2. Therefore
[Hy,w] < Cp, (F(Hy)) = Z(F(Hy)).

Let H; := HZ, which is a maximal subgroup of G containing Cg(d). If we
let Uy denote a d-minimal subgroup of G in F(Hy), then conjugacy yields that
Ug < Cg(dz) and

[Ha,dz] < Cp,(F(Ha)) = Z(F(Ha)).

Case 1: [Cy,(d),v] # 1.
As dz and w centralise U, , we see that
Up := [Cy,(d),v] = [Cy,(d), 2] = [Cy, (d), bz] < [Hg,dz] < Z(F(Ha)).

We know that Uy lies in O,.(Hy) and that [Up,Ug] = 1 by Lemma 7.7,
hence Uy is Ug{d)-invariant. Applying Lemma 7.10 to H; and using that
|7m(F(Hyg))| > 2 (because d is conjugate to v), we see that Ng(Up) < Hy.
But Uy < F(H,), therefore H, & Hy. We have that E(H,) =1 = E(H,)
by Lemma 14.8 and n(F'(Hg)) = m, (with at least two distinct primes!),
so that the Infection Theorem (5) gives that H, = Hy. We noted above
that the simple component E of C is generated by two different involution
centralisers. We also know that v and d or w and dz are contained in F
and therefore

E = (Cg(v),CE(d)) = (Cp(w), Cr(dz)).

As Cg(v) and Cg(d) are both contained in H,, we deduce that F < H,.
Then also F < H,, and in particular x can be chosen to lie in H, N H,,.
This is impossible by Lemma 14.3.

Case 2: [Cy,(d),v] = 1.

We apply Lemma 2.1 (4) to the coprime action of (d,z) on U, and
obtain that

Uy = <[CU’U (Z)v U]> [CUv (d)) U]’ [CUu (dz)v U]>

We also recall that Co, (1,)(2) < Co,, (u,)(v), hence [Cy, (2),v] =1
and therefore the present case implies that U, = [Cy,(dz),v]. Now we
consider the action of (z,dv) on U,. Lemma 2.1 (4) yields that

Uy = ([Cu, (2), 9], [Cu, (dv), v], [Cu, (dw), v]) = ([C, (dv),v], [Cu, (dw), v]),

again because [Cy, (z),v] = 1. Let Cq(dv) < Hgy := Hj. If v = a, then
d* = dv and we let Uy := [Cy, (dv), v]. We recall that dz and w centralise
U, and we see, with the conjugacy of H, and Hy,, that

U1 = [Ul,v] = [Ul,z] = [Ul,dw] S [Hdv,dw] S Z(F(Hdv))

If Uy # 1, then with Uy, denoting a dv-minimal subgroup of G contained
in F(Hg,), we deduce that Uy is a Ug, (dv)-invariant non-trivial subgroup
of F(Hg,). Lemma 7.10 implies that Ng(U;) < Hy, and therefore H, 3
Hyg,. This contradicts Lemma 14.10. In this case we obtain that U; = 1
and hence that

U, = [Cy, (dw), v].
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In particular U, is now centralised by w, by dz and by dw. This implies
that U, is centralised by d, then by z and then by wz = v. But this is
impossible.

If v = az, then Cg(dv) is conjugate to Cg(w) and hence a maximal
subgroup. We go back and recall that U, < H, and then H, & H,.
We know therefore, with the Infection Theorem (1) and Lemma 7.2 (3),
that Fy, (H,) is inverted by w and that Fy (H,) is centralised by w.
As E(H,) = 1 by Lemma 14.8, this means that [H,,w] < Z(F(H,)).
By conjugacy we have that [Hg,, dw] < Z(F(Hyy)). We recall that U, is
centralised by w and by dz and therefore by dzw = dv. Therefore

Uy = [Uy,v] = [Uy,d] = [Uy, dw] < [Hay, dw] < Z(F(Hay))

whence, with Lemma 7.9, it follows that Hg, & H,. This means, again
with the Infection Theorem (1) and Lemma 7.2 (3), that Fy, (H,) is in-
verted by dz (and w) and therefore centralised by dv and that Fy. (H,) is
centralised by dz (and w) and therefore by dv. This implies that dv cen-
tralises F(H,) = F*(H,) (with Lemma 14.8) and is therefore contained in
O2(H,). Lemma 14.1 (5) and Lemma 14.5 (1) imply that VNO2(H,) =1
and therefore Theorem D forces dv to be the unique involution in Oz (H,).
In particular dv € Z(H,) and therefore H, = Cg(dv). We recall that, if
s,t € E are two distinct involutions, then E = (Cg(s), Cg(t)). Applying
this to the involutions w, dv € F, we deduce that

E = <CE<U)),CE(CZ’U)> = <CE(U),CE(dU>> S HU.
In particular F is centralised by dv, which is impossible.

We arrived at a contradiction in both cases and therefore the proof is finished.
O

LEMMA 14.22. Suppose that Hypothesis 11.1 holds, that a € C' is an involution
chosen as in Lemma 14.4 and that C is a mazimal subgroup of G. Let v € C be an
involution that is conjugate to a or to az and let H, be a maximal subgroup of G
containing Ca(v). Suppose that O(F(C)) N H, # 1. Then Cg(v) = H, or H, is of
odd prime characteristic.

PrROOF. We begin as for the previous lemma by supposing that Cq(v) # H,
and that Cg(vz) is a maximal subgroup of G. In particular v and vz are not
conjugate, so by Lemma 14.5 (2) one of the cases from List IV holds. We may
suppose that v € {a,az} and hence that Hypothesis 14.6 holds with all its notation.
In particular let V' := (z,v) and w := vz. We assume that H, is not of odd
prime characteristic. The shape of Oy p~(C) implies that there exists an elementary
abelian subgroup of C' containing a and such that some element = € C' induces a 3-
cycle on the set of involutions of this subgroup. In the following, we therefore argue
that v, d := v” and d® are conjugate. We let Ci(d) < Hy := HZ? and similarly
Ca(vd) < H,q, where H,q is conjugate to H, or to H,, depending on whether
v =a or v = az. Moreover let r := r,, so that U, < O,.(H,)

By Lemma 7.12 we have that [H,, z] < F(H,) and similarly [Hy, z] < Fy (Hg).
Assume that v or w inverts O(F(C)). Then a inverts it and therefore, with our no-
tation from above, we see that a® and a* also invert O(F(C)). But a* = aa®
centralises O(F(C')) and thus we must have that O(F(C)) = 1, which contradicts
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our hypothesis. In particular w does not invert O(F(C')) whence O(F(C))NH,, # 1

as well.

Another application of Lemma 7.12 yields that [H,,, 2] < Fr/(Hy). We use

this relation for all involutions conjugate to a or az.

(1)

(4)

BE(H,) = 1.

PROOF. We know that F*(C) is as on List IV and therefore Lemma
14.8 yields the result. O

U, <C.

PROOF. Assume otherwise. Then r ¢ 7 by Lemma 5.10 and Lemma
14.12 implies that [Cy, (z),v] = 1. Thus

U, = [Uy,v] < [Uy, 2] N Ca(w)

by Lemma 2.1 (4). Then the Pushing Down Lemma (3) implies that U, <
O, (H,) and with Lemma 7.9 it follows that H,, & H,.
Let U; := [Cy, (d), z] and assume that U; # 1. We have that

U1 = [Ul,z] < [Hd,z] < F(Hd)

and therefore Uy < Cp(p,)(d). If we set Ug := U, then Uy is a d-minimal
subgroup and we see with Lemma 7.7 that U; is centralised by Uy. Hence
Uy is Ug{d)-invariant and Ng(U;) < Hg by Lemma 7.10 (and because
m(F(Hy)) = m, contains at least two distinct primes). But then H, & Hy
and this contradicts Lemma 14.10. Therefore U; = 1.

The coprime action of (v,d) on U, and Lemma 2.1 (4) then yield that
U’U = [U’lM Z] = <[CU‘U (U)7 2]7 [CUU (d)7 Z], [CUU (Ud)v Z]> = [CUU (’Ud), Z}

This means that U, < Cg(vd) and hence (with Cg(vd) < H,qmaxG) it
follows that

U’u = [UU,Z] < [Hvdvz] < CF(HUd)(d’U)

If v = a, then vd is conjugate to v. Lemma 7.9 yields that H,q & H,,
which is a contradiction to Lemma 14.10. We conclude that if U,, £ C, then
v = az and vd is not conjugate to v, but to w. Moreover we recall that U,
is centralised by w, by vd and (hence) by dz. In particular H,, & H, and
we recall that U, < F(H,q). Similarly, with Cg(dz) < H,, max G, we have
that U, = [Uy, 2] < F(Hg,). Thus it follows that H,q and Hg, infect H,
as well. Let F':= Fy, (H,). Then F' # 1 by (1), the Infection Theorem (4)
and Lemma 14.1 (5). The Infection Theorem (1) implies that F is inverted
by w, by vd and by dz, because 7, = 7(F(Hg.)) = 7(F(Hyq)). But if w
and vd invert F', then dz = wwvd centralises it and therefore F' = 1. This
is a contradiction.

We conclude that U, < C. O
C infects H,, Hq and Hj.

PrOOF. Together with Lemma 14.12, statement (2) yields that U, <
O,(C). In particular r € 7 and, as N¢g(U,) < H, with Lemma 7.9, we see
that C' &= H,. By conjugacy, we also have that C infects Hy and Hj. 0O

[Hy, 2] < Z(F(Hy)).
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PRrROOF. From (3) and the Infection Theorem (1) it follows that z in-
verts F.(H,). Moreover z centralises Fi(H,) by Lemma 5.10. As E(H,) =
1 by (1), we deduce that [H,, 2] < Cy, (F*(H,)) = Z(F(H,)). O

[Fr (Hy),v]) = 1.

PROOF. Assume that this is false and choose p € m, N7 such that
[Op(Hy),v] # 1. Then Py := O,(H,) is inverted by z and therefore this
subgroup is abelian. As [O,(H,), v] # 1, there exists a v-minimal subgroup
P, in Py and P, = [P,,v], so Lemma 2.1 (4) implies that P, = [P,,v] =
[Py, 2] < Cq(w). With the Pushing Down Lemma (3) it follows that P, <
F(H,) and therefore p € m,,. Then Lemma 7.9, applied to P,, gives that
N¢(P,) < H, and hence H,, & H,. We know that 2,p € 7, and that
p is odd, therefore |m,,| > 2 and Lemma 7.2 (3) forces Fy (H,) < H,.
Therefore w centralises Fi, (H,) and w inverts F, (H,) by the Infection
Theorem (1). In particular w centralises Py and z inverts it, therefore v
inverts Py. The action of (z,d) on Py and Lemma 2.1 (4) give that

Po = (Cp,(d), Cr,(dz))
because z inverts Py. If P; := Cp,(d) # 1, then
Pl == [P17Z] S [Hd7z] S F(Hd)

because v and d are C-conjugate. As P is contained in Py and P, is abeli-
an, it follows that P; is centralised by U, . So we deduce that Ng(P;) < H,
by Lemma 7.10 (and because |m,| > 2). Thus Hq & H, and the Infec-
tion Theorem (5), together with the fact that F(H,) = 1 by (1), forces
H, = Hy. In particular z € H,. But C(v) and Cg(d) are both contained
in H, whence v and d are isolated in H, by Lemma 14.5 (1). This is a
contradiction.

Consequently P; = 1, hence Py < Cg(dz) = HZ and therefore our v-
minimal subgroup P, is centralised not only by w, but also by dz and hence
by w-dz = dv. We let Hy, := Hj. As P, = [P,, 2] < [Hay,2] < F(Hgy)
and Ng(P,) < H,, we have that Hy, & H,. Now we have to distinguish
the cases where v = a or v = az, and this is similar to our arguments in
(2).

If v = a, then dv = d* is conjugate to v and Lemma 14.10 yields a
contradiction.

If v = az, then dv is conjugate to w = a, the Infection Theorem (1)
gives that Fi/ (H,) is inverted by dv and Lemma 7.2 (3) yields that dv
centralises Fy (H,). As U, is centralised by w, we also have that U, =
[U,,z] < F(H,) and hence H,, & H,, similarly C(dz) infects H,. But
then it follows that Fy, (H,) is inverted by dv, by w and by dz, hence
it is trivial, and F*(H,) = Fy,(H,) is then centralised by w, forcing
w € Oz(H,). This is impossible by Lemmas 14.5 (1) and 14.1 (5). O

Fo(H,) = 1.

PROOF. Assume otherwise and let F' := F,,(H,). Recall that U, <
F(C) and hence U, < Fr(H,), so that [F,U,] = 1. By (3) and the Infection



122 14. MORE INVOLUTIONS

Theorem (1) we have that z inverts F. The coprime action of (d, z) on F’
and Lemma 2.1 (4) yield that

F = ([Cr(d), 2], [Cr(dz), 2])-

If Fy :=[CFr(d),z] # 1, then F; is a non-trivial U, (v)-invariant subgroup
of F(H,), but also a Ug{d)-invariant subgroup of F(H,) (because Uy <
F.(Hq) and Fy = [F1,z] < Fr/(Hg)). Then Lemma 7.10 forces H, = Hy
and by Lemma 14.10 this is impossible.

It follows that F = [Cr(dz),z], so with Hy, = Cg(dz) = HE we
deduce that F = [F,z] < F(Hg,). Then Hy, & H, because 1 # F < H,
by assumption and because H, is primitive by Corollary 5.8. As F is
centralised by v, by (5), we also have that F' < Cg(dw). If we let Cg(dw) <
Hgy, max G, then F = [F, z] < F(Hy,) and therefore Hg,, & H, as well.
Now there are two cases again — if v = a, then w, dz and dv are conjugate
and therefore Hg, = Cg(dv). In particular m, = 7(F(Hg.)) = m(F(Hgy))
and the Infection Theorem (1) and Lemma 7.2 (3) together yield that
dz-dv centralises F'(H,). This is false because dz-dv = w and w ¢ Z(H,).

If v = az, then w = a is conjugate to dz and to wdz = dv, so dw
is conjugate to v and we can choose Hy, to be conjugate to H,. Then

Lemma 14.10 yields a contradiction. ([l
We know from (3) that C' & H,. Together with (1), (5) and the Infection
Theorem (4) this forces C' = H,. This contradicts Lemma 14.1 (5). O

THEOREM 14.23. Suppose that Hypothesis 11.1 holds and let a € C be an
involution that is chosen as in Lemma 14.4. Let H, be a maximal subgroup of G
containing Cq(a) and let H,, be a maximal subgroup of G containing C(az). Then
one of the following holds:

(1) Cgla) = H, and Cg(az) = Hyg,.

(2) Cgla) = H,, Cglaz) < H,, with Hy, having odd prime characteristic
and one of the cases from List IV in the F*-Structure Theorem holds.

(3) Cgla) < H, and H, is of odd prime characteristic, Cq(az) = H,, and
one of the cases from List IV in the F*-Structure Theorem holds.

(4) Cgla) < H, and Cg(az) < H,, with H, and H,, having the same odd
prime characteristic.

PROOF. Statement (1) is one of the possibilities, but we suppose now that it
does not hold. The choice of a by hypothesis and some notation yield that Hypo-
thesis 14.6 is satisfied. First suppose that Cg(a) < H,. If Cg(az) < H,,, then we
are in the situation of Hypothesis 14.15. Thus Theorem 14.17 and Lemma 14.18 are
applicable and yield (4). Otherwise we have that Cg(az) = H,, and we distinguish
the two cases C < M and C' = M. If C < M, then we refer to Lemma 14.20 which
gives (3). If C = M, then Lemmas 14.21 and 14.22 also give (3).

Similarly if Cs(a) = H, and Cg(az) < H,,, then we can again refer to Lemmas
14.20, 14.21 and 14.22 to see that (2) holds. O
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The Endgame

Our starting point in this chapter is a hypothesis building on Theorem 14.23
where we choose a suitable involution a centralising z and we set up notation that
will be used throughout. In a series of results we first exclude the case where Cg(a)
is a maximal subgroup, and then we analyse the case with odd prime characteristic
in order to reach a final contradiction.

HypoTHESIS 15.1.
We suppose that Hypothesis 14.6 holds and for simplification, we set b := az.

We recall that, by Lemma 14.7, Hypothesis 15.1 implies Hypothesis 7.6.

LEMMA 15.2. Suppose that Hypothesis 15.1 holds and that ro(G) = 2. Then
there exists an odd prime r such that, for all involutions t € C with t # z, the
centraliser Ca(t) lies in a maximal subgroup Hy of G of characteristic .

PrROOF. Our hypothesis implies that Hypothesis 14.6 holds and that F*(C) is
as in the first case on List II in the F*-Structure Theorem. Then it follows that all
involutions in C' distinct from z are conjugate (as can be seen in C) and therefore
we may suppose that ¢ is our involution a. By Theorem 14.23 we need to exclude
the case that Cg(a) = H,. We assume therefore, by way of contradiction, that
Cg(a) = H,. We know that z ¢ Z(H,) by Lemma 14.1 (5) and then Lemma
5.2 (6) yields an odd prime p € m, such that [O,(H,), 2] # 1. Let P € Syl,(H,,V)
(with Lemma 14.5 (8)) and let T € Syla(C(P)). As Cg(P) is z-invariant, we may
suppose that T is z-invariant by Lemma 4.11. Then z centralises T by Lemma
4.1 (2). Moreover a € Cq(P) < H,, so we see that a is central in Cg(P) and hence
a € Z(T). The conjugacy of a and b yields that Case (1) from Lemma 7.11 holds, so
there exists an involution distinct from a in Z(T). Then 2 < r(Z(T)) < r2(G) = 2.
But then it follows that z € Z(T) < T < Cg(P) < Cg(O,(H,)), which is a
contradiction. (]

LEMMA 15.3. Suppose that Hypothesis 15.1 holds and that Cg(b) is a mazimal
subgroup. Then C = M.
PRrROOF. Assume that C' < M and let Uy := [Cy (D), z].

Case 1: a and b are conjugate.
Then Lemma 14.9 implies that M has characteristic p. We also know
that Cg(a) and Cg(b) are maximal subgroups and we let z € C be such
that b* = a. If Uy = 1, then

1=U§ = ([Cu(b),2))" = [Cu(a), 2]

123
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and this means that Cy(a) and Cy (b) are both contained in Cy(z). With
Lemma 2.1 (4) this forces U = Cy(z), which is a contradiction. Hence
Up # 1. Lemma 2.1 (4) implies that [Uy, 2] # 1 and hence [Up,a] # 1. In
particular we know that [U, a] # 1. We let H be a maximal subgroup of G
containing Ng(Up), with Lemma 14.1 (1), and we assume that H # M.

(1.1) M and Hy infect H and b inverts Fy (H) and centralises Fr, (H).

PROOF. We have that M & H because Uy < F(M). With the
Pushing Down Lemma (2), we see that

Uo < [0p(M) N Hy, 2] < Op(Hy)

and hence H, & H as well. The Infection Theorem (1) implies that
Fo (H) N Hy = 1 whence Fo (H) is inverted by b. Also, the set 7,
contains at least two distinct primes, namely 2 and p, and therefore
Lemma 7.2 (3) yields that Fr, (H) < H, = Cg(b). O

(1.2) E(H) < H,y.

PROOF. Assume that E(H) £ Hy. As Cq(V) < Ng(Up) < H,
Lemma 14.14 (3) yields that H has a component L such that L/O(L)
is isomorphic to the simple component of C' and such that @ € L. But
then [F(H),a] < [F(H),L] = 1 which means, by (1.1), that e and
b centralise O,(H). Hence O,(H) < C. Then the Pushing Down
Lemma (2) implies that

UO S [OP(M) N H7Z] < Op(H) S Ca
which is a contradiction. O

Now b centralises E(H) and Fy,(H) by (1.2) and (1.1) and it inverts
Fr (H) by (1.1). So we see that [H, b] centralises F'*(H) and hence [H, b] <
Z(F(H)). Moreover we recall that M ¢ H and that M is of characteristic
p. In particular, with the Infection Theorem (1), it follows that F,/(H) is
inverted by z. As p € 7, this implies that Fy (H) is inverted by z and by
b and hence centralised by a. Now we let P € Syl,(Hp, V) (with Lemma
14.5 (8)).

(1.3) There exists a conjugate v of b commuting with b and such that, with
H, := Cg(v), we have the following:
- H, 3+ H and
- H= Cg(vb)

PRrROOF. First we note that 1 # Uy < [O,(Hy), 2] < P. Since a
and b are conjugate, Lemma 7.11 (1) yields that Ng(P) £ Hp. Let
T €Syla(Ca(P)). We may suppose that T is z-invariant by Lemma
4.11, because Cg(P) is z-invariant. With Lemma 7.11 (1), let ¢ €
Ng(P)NNg(T)NC and v € Z(T') be such that b¢ = v # b. Let H,, :=
H{(= Cg(v)). Then Uy < P < H,, and, again with the Pushing Down
Lemma (2), we deduce that

Up < [U N Hy, 2] < O,(H,).

Therefore H, & H and as in (1.1) it follows that Fi, (H) is inverted
by v and that Fy, (H) is contained in H, and hence centralised by v.
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We recall that E(H) < Hy, so that E(H) is centralised by b and by
z, hence by a as well. If we check the possibilities from Lists I, IT and
III for quasi-simple subgroups of F*(C) that are centralised by V,
then we only see groups that are isomorphic to SLs(q) with a suitable
power ¢ of some odd prime and such that their central involution is
Z,aorb. As z ¢ Z(H), we know from Lemma 5.2 (6) that z ¢ F(H).
Therefore, if E(H) # 1, then H possesses a unique component and
this component has a central involution that is conjugate to a (and
then to b). We recall that H, & H and then Lemma 14.10 forces
H = Hy. Thus M & H by (1.1) and, as char(M) = p, the Infection
Theorem (1) gives that F,,(H) N M = 1. This is false because b €
Ox(H)NM < Fp(H)NM. We conclude that E(H) = 1 and therefore
F*(H) = F(H) is centralised by bv. With Hj, denoting a maximal
subgroup of G containing Cg(bv), this means that F*(H) < Hy,
and in particular H & Hy,. Also, we see that Uy < F(H) < Hy,
whence the Pushing Down Lemma (2) implies that Uy < Op,(Hpy).
So conversely we have that Hy, & H.

With the Infection Theorem (3), our claim follows or H and Hy, are
distinct and have both characteristic p. But H, & H by (1.1) and
then the Infection Theorem (2) forces Hj to have characteristic p as
well. This is impossible because Oy (Hp) # 1. Consequently Ce (bv) <
H, then Lemma 14.5 (1) implies that bv is isolated in H and we saw
above that bv € Cy(F*(H)) = Z(F(H)). This forces bv € Z(H). O

With the notation from (1.3) we have that bv is central in H and that
Hy, H, and M infect H. We recall that b and v are centralised by z, so
z € H and therefore O2(H) is centralised by z. In particular Oz(H) N
M # 1. However, M & H whence the Infection Theorem (1) implies
that F (H) N M = 1. This is a contradiction because 2 ¢ 7 and hence
O5(H)'< o (H) N M.

This last contradiction comes from the assumption that H # M (be-
fore (1.1)), so we have established that Ng(Up) < M and in particular
Hy, &~ M. But M is of characteristic p and hence Hy is of characteristic p
by the Infection Theorem (2). This is a contradiction.

a and b are not conjugate.

As before let Uy := [Cy(b), 2]. If E(M) # 1, then Lemma 14.9 yields
that there exists an odd number ¢ > 11 such that E(M) ~ PSLs(q).
Therefore Hypothesis 8.1, and more specifically the hypothesis of Lemma
8.6, is satisfied. The lemma gives that

U< ()M,
geG
but this contradicts Lemma 14.1 (1).
We conclude that E(M) = 1 and then our assumption that C < M

and Cg(b) = Hp, together with Lemma 14.19, yields that [U,a] # 1. If
Uy =1, then Cy(b) < Cy(z) and it follows from Lemma 2.1 (4) that

U=1[Uz<[UbNCql(a),



126

15. THE ENDGAME

contrary to the earlier remark that [U,a] # 1. Therefore Uy # 1. As
before we let Ng(Up) < Hmax @G, so that M ¢ H. With the Pushing
Down Lemma, (2), it follows that Uy < O,(H) and hence H, ¢ H. We
also see, with the same result, that Uy < [F(M) N H,z] < F(H) which
yields that Uy < O,(H). With Lemma 14.5 (8) let P € Syl,,(H,, V') and let
b €T €Syly(Cq(P)). We may suppose that T is z-invariant by Lemma
4.11, applied to Cg(P)(z). If Ng(P) is not contained in Hp, then with
Lemma 7.11 (1) there exists an element € Ng(P) N Ng(T) N C such
that d := b* € Z(T) and d # b. This leads to the next step in the proof,
so we keep this notation.

(2.1) If Ng(P) is not contained in Hy, then H = C¢/(bd).

PRrROOF. We note that T is z-invariant and hence centralised by
z (by Lemma 4.1 (2)), but that z is not contained in T because 1 #
Uy < [P, z]. Together with Theorem D this implies that Q;(Z(T)) =
(b,d). Let Hy := HF. Then Uy < P = P* < Hy and, with the
Pushing Down Lemma (2), it follows that

Uy = [Uo,Z] < [O(F(M)) ﬂHd,Z] < F(Hd)

Therefore Uy < O,(Hy) and Hy & H as well. The Infection Theo-
rem (1) and Lemma 7.2 (3), together with the fact that b and d are
conjugate, yield that b and d invert Fy, (H) and centralise Fr,(H).
Thus bd centralises F'(H) which implies that Uy < F(H) < Cg(bd).
We know that a lies in a 2-component E of C such that E is iso-
morphic to PSLs(q) with some odd prime power ¢ > 11, by our
hypothesis in this case. Then also dz = b"z = (bz)* = a” € E be-
cause x € C. Therefore (a,dz) is a fours group and bd is conjugate
to a and to dz. Let Cg(bd) < Hpy max G. Then we may choose Hpq
to be conjugate to H,. Another application of the Pushing Down
Lemma (2) yields that

Uo = [Uo, 2| < [O(F(M)) N Hya, 2] < Op(Hpa)

and hence Hygy & H.

Assume that E(H) # 1. We know that C¢(V) < H and hence Lem-
ma 14.14 yields that either E(H) is centralised by b or H possesses
a component L such that L/O(L) is simple and a € L. In the latter
case we see, since H, & H and p € m, that O,(H) is centralised by
b and by a, and therefore Uy < C. But this is impossible. Therefo-
re E(H) < Hp. As a and b are not conjugate in this case, Lemma
14.5 (1) gives that one of the cases from List IV holds and therefore
the only way that H can have a component is that this component
has z as a central involution. This is impossible because H # C. We
conclude that E(H) = 1.

Then F*(H) = F(H) is centralised by bd, it follows that F*(H) <
Hpq and hence H & Hypg. If H has characteristic p, then we recall that
Uy < F(H,) and hence Hy & H. So the Infection Theorem (2) yields
that H; has characteristic p as well, which is impossible. As H and
Hy, infect each other, the Infection Theorem (3) gives that H = Hpq.
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In particular Hpg does not have characteristic p and Theorem 14.23
implies that Cg(bd) = Hpg. O

(2.2) Na(P) < Hy,.

PRrROOF. Otherwise we know from (2.1) that Ng(Up) < Hpq =
Cg(bd). The choice of a and b implies that bd is conjugate to a and
hence that Cg(bd) is conjugate to H,. We recall that Uy < O,(M)
and hence M & Hyg, and we also recall that Hyg = Cg(bd) and hence
2 € w(F(Hpg)). Then the Infection Theorem (1) forces Fr/(Hpq) N
M = 1. This is a contradiction because 7 consists of odd primes and
hence bd € OQ(Hbd) < F (Hbd) NnC. [l

Now we have that Ng(P) is contained in H, and Lemma 7.11 (2)
yields that every z-invariant p-subgroup of C¢(a) is centralised by z. This
forces [Cy(a), z] = 1 and therefore Cy(a) < Cy(z). But a is contained in
a fours group Ag of C such that all involutions of Ay are C-conjugate, so
Lemma 2.1 (4) implies that

U = <CU((10) | ag € A0> < CU(Z)

whence U < C, which is a contradiction.
O

THEOREM 15.4. Suppose that Hypothesis 15.1 holds and that C(b) is a mawi-
mal subgroup. Then O(F(C)) N Hy, = 1.

PROOF. Assume otherwise. Lemma 15.3 yields that C' = M and it follows with
Lemma 7.12 that [Hp, 2] < Fp(Hp). Our hypotheses that O(F(C)) N Hy # 1 and
that Cg(b) = Hp imply that some element from O(F(C)) is centralised by b (and,
of course, by z) and hence by a. Therefore O(F(C)) N Cg(a) # 1 and in particular
O(F(C))NH, # 1 as well. Then [H,, z] < F/(H,), again by Lemma 7.12. We use
this fact frequently and therefore refer to the following (also with applications to
conjugates of a or b):

[H,, 2] < Fro(H,) and [Hy, 2] < Fro (Hyp) (x).

Case 1: a and b are conjugate.

From Lemma 14.1 (5) we know that H, # C and, by Lemma 5.2 (6),
that there exists an odd prime p € m, such that Py := [O,(Hg),2] # 1. In
particular |m,| > 2. With Lemma 14.1 (1) we let Ng(FPy) < H max G. Mo-
reover let P € Syl,,(H,, V') by Lemma 14.5 (8) and let a € T' € Syla(C(P)).
We may suppose that T is z-invariant by Lemma 4.11, applied to Ci(P)(z).
As a and b are conjugate, Lemma 7.11 (1) holds and there exist an invo-
lution v and an element ¢ € Ng(Q) N Ng(T) N C such that v := a® # a.
Let H, := H.

(1.1) H, and H, infect H. The involutions a and v invert F' := Fy/ (H)
and centralise F; (H). Moreover H # C.
ProoOF. As O,(H,) # 1 and H, is primitive by Corollary 5.8,
we know that

T < Ca(P) < C(0p(Ha)) < Ho = Cg(a)
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and hence a € Z(T'). We also have that Py < P < H,. It follows from
conjugacy and (x) that [H,, z] < Fy(H,) and therefore Py < F(H,).
Now H, ¢ H, also H, ¢+ H and the Infection Theorem (1) yields
that @ and v invert F' as stated. Lemma 7.2 (3) gives that a and v
centralise Fr, (H).

If H = C, then in particular Py < C which forces Py = 1 (by Lemma
2.1 (2)). But this is a contradiction. O

(1.2) If H # H,, then E(H) = 1.

PROOF. The subgroup Py is Cg(V)-invariant and so Cg(V) <
H. Then Lemma 14.14 (3) implies that E(H) < H, or that one of the
cases from List IV holds. As a and b are conjugate, Lemma 14.5 (2)
yields that F*(C) is as on List I, II or IIT and therefore E(H) < H,,.
Now we assume that E(H) # 1. By (1.1), no component of H can
have z as central involution, so only the cases from List II remain
and E(H) has a unique component, with central involution a or b.
If the central involution is b, then H = Hj; and hence Py < Hy.
But then P, is centralised by a and by b, hence by z, and this is a
contradiction. Thus the central involution in the component of H is
a and this implies that H = H,, contrary to our assumption. We
conclude that E(H) = 1. O

Assume that H # H,. Then it follows from (1.2) that E(H) = 1 and
thus, with (1.1), we see that av centralises F(H) = F*(H). The choice
of a and the F*-Structure Theorem yield that a is C-conjugate to av and
hence Hy,, := Cg(av) is a maximal subgroup of G.

If H # H,, then H = Cg(av).

PROOF. We saw above that F*(H) < H,, and hence we know that
av € Cy(F*(H)) = Z(F(H)). This implies that av € O2(H). Moreover
Os(H) is centralised by a,v and z, but 2z ¢ Oy(H). If a € O3(H), then a
centralises F'(H) and hence F(H) is a m,-group. But E(H) = 1 and then
the Infection Theorem (4) forces H = H,, contrary to our assumption.
The same argument yields that v ¢ O2(H) because otherwise H = H,, by
infection and then, as H, and H, are conjugate, the Infection Theorem (5)
implies that H, = H, = H, which contradicts our assumption once more.
We know that G has at most rank 3 by Theorem D and so it follows
that O2(H) has at most rank 2. As {(a, v, z) centralises O (H ), we see that
either av is the only involution in O3(H) or that {(av,w) < O2(H). Thus
if av is not central in H, then av,w and b are contained in Os(H) and
conjugate in H. In particular b centralises F*(H), just as av does, and
therefore

Py = [Py, 2] = [Po,b] < [H,b] < Cu(F* (H)) = Z(F(H)).

But then Py = [Py, 2] < [Haw, 2] < Fo(Hgay), by (%), because a and av
are conjugate. Thus H,, & H and it follows that F(H) is a m,-group. We
recall that m, = 7(F(Hgy)) and hence the Infection Theorem (4) gives
that H = Hg,. (]
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If H+# H,, then H = H,, by (1.3) and hence H, and H, infect Hy,.
These subgroups are conjugate and E(H) = 1 by (1.2), so the Infection
Theorem (5) gives that H, = H,, = H,. But this is impossible by Lemma
14.3 (1). This contradiction comes from our assumption that O(F(C)) N
H, # 1, so the Lemma is proved in the case where a and b are conjugate.

a and b are not conjugate.

It will be important here that, by Lemma 14.5 (2), one of the ca-
ses from List IV holds and therefore all involutions in C' are conjugate
to a or to b. Then a is contained in a 2-component of C' and, in this 2-
component, in a fours group with involutions a, v, av that are all conjugate
in C. Let Cg(v) < H,maxG and Cg(av) < Hg, max G. These maximal
subgroups are conjugate to H,. Conjugacy implies that [H,, z] < Fr/(H,)
and [Hgy, 2] < Fr(Hgy), we keep referring to this by (%) as before. Mo-
reover set w := vz and let Cq(w) < H, maxG, with H,, chosen to be
conjugate to Hp.

We quote Lemmas 14.1 (5) and 5.2 (6) once more and this time choose
an odd prime p € m, such that Py := [O,(Hp), 2] # 1. The objective of
the following steps is to prove that

Ng(FRy) < Hy.

We let N¢(Pp) < Hmax G and F := Fyy (H), and we assume that H # H,
and F' # 1. It is worth noticing here that H # C because z does not
centralise Fy.

(2.1) z inverts F.

PRrROOF. First we set up some notation. Let r € w(F), let R :=
O,(H) and Ry := Cg(z). By way of contradiction we assume that
Ry # 1.

(a) C+ H, E(H)=1and [H,z] < Z(F(H)).

PROOF. We have that H, & H and C¢(b) < H. With
the Infection Theorem (1) and Lemma 7.2 (3), we see that b
inverts F' and centralises Fr, (H). Also, we know that 2 € m
and hence F is a C¢(b)-invariant subgroup of odd order. Now
we suppose that Ry # 1. Then Ry is a non-trivial nilpotent
Cc¢(b)-invariant 2'-subgroup of C' and Lemma 14.12 yields that
1 # Ry = [Ro,b] < F(C). Hence r € w. This implies that
Ry = R with Lemma 5.10. Moreover R = Ry < O,.(C)) means
that C' ¢ H as stated, because Ng(R) = H by Corollary 5.8.
We know that z centralises E(H) by Lemma 5.2 (5), moreover
z centralises F;(H) by Lemma 5.10 and z inverts Fy.(H) by
the Infection Theorem (1) because C' & H. Therefore [H, z] <
Cy(F*(H))=Z(F(H)). In particular Py < Z(F(H)).

As Py is Cg(V)-invariant, Lemma 14.14 yields that E(H) < H,
or that H has a unique component and that a is contained in
this component. In the latter case we see that a centralises
F(H) and hence Py is centralised by a and by b, hence by z,
and this is impossible. It follows that E(H) < H,. But this is
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impossible in the cases from List IV (because z ¢ E(H)), so
we actually see that F(H) = 1. O

Let X := Co,(m)(w). Then z inverts X and X < Cg(av).
Moreover if X # 1, then Ng(X) < H.

PROOF. Suppose that X # 1 because otherwise the first
statement in (b) is clear. With Lemma 14.1 (1) let Ng(X) <
HimaxG. Then H & H;. First we note that p € @' N m,
applying Lemma 5.10, because z does not centralise FPy. Then
(a) and the Infection Theorem (1) imply that z inverts O,(H)
whence

Op(H) = [Op(H), 2] < [Hy, 2] < F(Hp)

by (%). Thus O,(H) < Py. Conversely Py = [Py,z] < O,(H)
by (a) and therefore Py = O,(H). This also yields that O,(H)
is abelian and hence F*(H) centralises X. Now we know that
X < F(H,) and therefore H, & H;. As X is inverted by z and
centralised by w and by b (and therefore by bw = av, too), we
see that

X =[X,2] < [Hy, 2] < F(Hy),

again by (*), and similarly X < F(H,,). Now it follows that
H, & H; and H,, % H;. By the Infection Theorem (1),
the involutions b, w and av (= bw) invert F (Hp), so this
subgroup must be trivial. Moreover F*(H) < Cq(X) < Hy,
in particular F = [F,b] < H;. Lemma 7.2 (3) gives that
F(H,) = Fy,(Hp) is centralised by b, hence by [Hi,b] and
this implies that F' = [F, b] commutes with F(H;). We deduce
that F(Hy) < Ng(F) = H (by Corollary 5.8). Next we recall
that [H,z] < Z(F(H)) by (a), in particular Py < F(H) < Hj.
Therefore E(H;), which is centralised by z by Lemma 5.2 (5),
is centralised by Py = [Py, 2]. Thus E(H;) < Cg(Py) < H,
and since we already established that F'(H;) < H, we conclu-
de that F*(H;) < H. Consequently H; & H and the Infection
Theorem (3) yields that H; = H as stated, because H is not
of prime characteristic. O

If COP(H) (w) # 1, then H = Hy,,.

Proor. Let X := Co,)(w) and suppose that X # 1.
Then X < Cg(av) and Ng(X) < H by (b). It follows with (x)
and (b) that X = [X,z] < F(Hg,) and therefore H,, & H.
As X < H,,, we also have with (%) that X = [X, 2] < F(H,,)
and hence H,, & H. Moreover H, ¢+ H (from the start) and
then the Infection Theorem (1) and Lemma 7.2 (3) imply that
b and w centralise F, (H) and invert F. Therefore bw = av
centralises F'(H) = F*(H) by (a). In particular F*(H) < Hyg,
whence H & H,,. Now the Infection Theorem (3), together
with the fact that H is not of characteristic p, yields that H =
He,. (]
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w inverts Oy, (H).

PrOOF. Assume that X := Co, (g)(w) # 1. Then H =
H,, by (c) and, as av is conjugate to a, Theorem 14.23 yields
that there are two cases to consider:
av is central in Hy,, or H,, has odd prime characteristic.

In the first case we see that

F(Hpy) < Ng(Py) < H= Cg(a’l})7

so F(Hp) is centralised by b, by av = bw and hence by w
as well. With Lemma 14.8 this gives that F*(H,) < H,, and
thus H, & H,. With the same lemma, conjugacy and the
Infection Theorem (5), we conclude that H, = H,, which
contradicts Lemma 14.10. In the second case we must have
that char(Hg,,) = p because 1 # X < O,(Hyy). But still
H, & H = H,,, so the Infection Theorem (2) forces H, to
be of characteristic p as well, and this is impossible because
2 € . This contradiction shows that X = 1. O

Op(H) = [Op(H), 2] < Cg(v).

PRrROOF. We know by (d) that w = vz inverts O,(H). We
have already noticed (with Lemma 5.10) that p € 7’ because z
does not centralise Py. As C' & H by (a), the Infection Theo-
rem (1) forces Op(H) to be inverted by z as well and hence to
be centralised by v. This yields the statement. O

If P €Syl,(H,,V), then Ng(P) £ H,.

PROOF. Assume that Ng(P) < Hyp. Then Lemma 7.11 (2)
applies and in particular every z-invariant p-subgroup of Cg(a)
is centralised by z. By conjugacy, every z-invariant p-subgroup
of Cg(v) is centralised by z, so (e) forces

Op(H) = [Op(H), 2] = [Op(H), 2, 2] = 1.
This is impossible because 1 # Py < O,(H). d

There exists a C-conjugate d of b such that d # b and such
that d centralises Fy, (H) and inverts F.

PROOF. Let P €Syl,(Hp, V), by Lemma 14.5 (8) and let
T €Syla(Ce(P)). As Cg(P) is z-invariant, we may suppose
that T is z-invariant by Lemma 4.11. Then (f) and Lemma
7.11 (1) imply that Z(T) contains a fours group with b in it,
but not z, and with some involution d in this fours group
being distinct from b and conjugate to it with an element
from Ng(T) N Ng(P) N C. Of course Cq(P) < Ca(Py) < H,
so if we let Hy := Cg(d), then this maximal subgroup is
conjugate to Hjp and contains P, hence Fy. This means that
Py = [Py, z] < F(Hy) by (%) and therefore Hy & H as well.
Then Lemma 7.2 gives that d centralises Fy, (H) and the In-
fection Theorem (1) yields that d inverts F. O
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(h) H = H,.

PROOF. Let d be an involution as in (g). Then bd centra-
lises F(H) = F*(H) whence F*(H) < C¢(bd). Here we should
note that, as b and d are C-conjugate, it follows that bd is
conjugate to a. With Hp, being a maximal subgroup contai-
ning Cg(bd), we may choose Hpq to be conjugate to H, and
then Py < F(Hpq), again by (x). Hence H & Hpy & H. As
m(F(H)) contains the distinct primes r and p, the Infection
Theorem (3) forces H = Hpq. In particular Hpq is not of prime
characteristic (because H, ¢ Hpq now) and therefore H, is
not of prime characteristic. We deduce that Cg(a) = H, by
Theorem 14.23 and then Cg(v) = H,, by conjugacy. But (e)
implies that Py < F(H,) (by (x)) whence H, & H = Hpq.
Finally Lemma 14.10 tells us that H, = Hyq = H. ([l

We return to the prime r € w(F)N7’ from the beginning of the proof
of (2.1). As Hp and C infect H (by choice of H and by (a)), the
Infection Theorem (1) yields that O,(H) is inverted by z and by b,
hence centralised by a. Thus (x) implies that

O,(H) = [0,(H), 2] < F(H,).

It follows that H, & H = H, because N (O, (H)) = H by Corollary
5.8. As a and v are conjugate and E(H) = 1 by (a), the Infecti-
on Theorem (5) forces H, = H,. But this is impossible by Lemma
14.3 (2).

This means that z inverts F'. (]

H, % H and Fy, (H) is inverted by z.

PROOF. As Hy infects H, the Infection Theorem (1) and (2.1)
above yield that b and z invert F' and hence a centralises F'. Our
assumption that F # 1 and the fact that F = [F,z] < F(H,) with
() yields that H, 9 H, because H is primitive. In particular Fy, (H)
is inverted by a, with the Infection Theorem (1).

If H, has odd prime characteristic, then by our main hypothesis, we
have an a-minimal subgroup U, < Oy, (H,). As F' < Cpg,(a) <
Ca(U,) by Lemma 7.7, we see that U, < Cg(F) < H. Hence every
normal subgroup of H which is inverted by a is centralised by U,
and therefore lies in H, with Lemma 7.9. Together with the Infec-
tion Theorem (1), this forces F(H) to be an r,-group and this is
impossible. Therefore C(a) = H, by Theorem 14.23. Now we have
symmetry between a and b and therefore the previous arguments are
applicable. We assume that r € 7/, is such that Ry := Co, (i) (2) # 1,
as we have done in (2.1(a)). Then from Lemma 14.12 we derive that
Ry < O,(C). In particular r € m and Ry = O,(H). We see that
C & H and if H has a component, then it contains a and thus
[F(H),a] =1. But 1 # O,(H) = [O,(H),b] = [O,(H), a], which is a
contradiction. These statements correspond to (a). Then we continue
as for (b) and set X := Co,u)(w). If X # 1, then Ng(X) < H.
This proof only needed E(H) = 1. We argue further that F' # 1 and
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Ry # 1 force X =1, so X is inverted by z and by w, hence centralised
by v which is conjugate to a. This corresponds to (e). Thus it follows
as in (2.1) that z inverts Fi/ (H). O

(2.3) [H, 2] < Z(Fy (H)) and E(H) = 1.

Proor. With (2.1) and (2.2) we see that, for all primes ¢ in
w(F(H)), we have that ¢ € 7}, (so z inverts Oy(H)) or that ¢ € w),
(and again z inverts O,(H)) or that ¢ is in m, N m, in which case
O4(H) is centralised by a and b and hence by z. Now z centralises
E(H) and centralises or inverts Oq(H) for every ¢ € w(F(H)). We
deduce that [H,z] < Z(Fy (H)).

For the second statement we quote Lemma 14.14. As Cq(V) < H,
it yields that E(H) < H, or that H has a unique component and
that this component contains a. In the latter case it follows that a
centralises F'(H) and, as Py < F(H) by the first paragraph, it follows
that [Py, a] = 1. But then z centralises Py, which is a contradiction.
Thus E(H) < H, and, looking at the cases from List IV, this is only
possible if z is contained in (and hence central in) E(H). But this is
impossible because H # C. It follows that E(H) = 1. d

We know that z does not centralise F'(H,) either, so we find a prime
Pa € T such that Qo := [O,, (H,), 2] # 1 and we can play the same game
with Qg instead of Py.

(2.4) Cg(a) = H, and Ng(Qo) < H,.

Proor. If Cg(a) # H,, then we have that F*(H,) = O,, (H),
with Theorem 14.23 and our choice of p,. We know that a centralises
F and hence that F = [F, z] < O,, (H,) by (). Moreover F centra-
lises U, by Lemma 7.7. Then Lemma 7.9 implies that U, < H. Also,
the subgroup F), (H) is inverted by a because H, % H. Therefore U,
centralises Fy, (H), forcing F/(H) to be a p,-group (first with Lemma
7.9 and then with the Infection Theorem (1)). Our hypothesis that
F # 1 yields that E(H) = 1, by (2.3), so it follows that H has cha-
racteristic p,. But this is impossible by the Infection Theorem (2)
because Hy & H. Thus we deduce that Cg(a) = H,.

Now let Ng(Qo) < HymaxG and assume that Hy; # H,. If we
assume that Iy := Fy, (Hy) # 1, then we note that Lemma 14.14 (3)
implies that E(H;) < H,. (Otherwise F; = 1 because a centralises
it if @ is in a component of Hy.) As Hy # C, this forces F(H;) =1
(looking at the possibilities from List IV). We recall that Cs(a) and
C¢(b) are both maximal subgroups now and therefore the arguments
from (2.1) yield that F; is inverted by z and hence centralised by b.
Thus Fy < F(Hp) by (%) and we obtain, as in (2.2), that H, & H;.
That leads to the fact that [Hy, 2] < Z(Fr/(Hy)) as in (2.3).

We combine this information — we know that 1 # F' < F(H,) and
therefore F' < Ng(Qo) < H;. This gives that F = [F,z] < F(H)
and thus H; & H. The same argument, the other way around, gives
that Fy (which is inverted by a and by z, thus centralised by b) lies
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in F(Hp) and therefore normalises Py, giving

So H & H; as well. Both these subgroups are not of prime charac-
teristic, so the Infection Theorem (3) forces H = Hj. This implies
that F'(H,) and F(H,) are contained in a common maximal sub-
group of G, namely H. But the fact that [H,,z] < F(H,) yields
that (Ck(a)) < F(H,) and similarly (Ck (b)) < F(Hp). Therefore
Ck(a),Ck(b) € H and Lemma 14.1 (4) gives that G < H, which is
a contradiction. O

Qo £ H and F = O, (H).

PrROOF. If Qp < H, then Qg = [Qo, 2] < F(H) by (2.3). Thus we
have that H ¢ H, by (2.4). But also H, & H by (2.2) and |m,| > 2,
so it follows with the Infection Theorem (3) that H = H,. Then Py

is centralised by a and by b, hence by z. This is impossible. Next we
assume that F # O, (H). As

[OPQ(F)vQO] < Opg(F) ﬂopa(Ha) =1,

we then see that Qo < Cq(O,, (F)) < H by Corollary 5.8 and this
contradicts the first statement. Thus F' = O,, (H). O

w centralises F'.

PROOF. Let P €Syl,(Hy, V) and assume that Ng(P) £ H,.
Then, by Lemma 7.11 (1), there exists a C-conjugate e of b centrali-
sing P, b and z. Let H, := C¢(e). We have that Py < [H,, z] < F(H,)
by (%) whence H, & H. Applying the Infection Theorem (1) and
Lemma 7.2 (3), it follows that F is inverted by b and by e and
that Fy,(H) is centralised by b and e. With (2.3) we deduce that
F*(H) = F(H) is centralised by be, an involution that is C-conjugate
to a. Then (2.4) implies that Hp. := Cg(be) is a maximal subgroup
of G and as F*(H) < Hp., we now have that H & H.. But also
Py < [Hpe, 2] < F(Hp) by (%) and therefore Hp, & H. Our assump-
tion that F' # 1 guarantees that F'(H) is not a p-group and therefore
the Infection Theorem (3) yields that H = Hy.. But be is conjugate
to a and H, & H by (2.2), so Lemma 14.10 forces H = H,. Then Py
is centralised by b and by a, hence by z, and this is a contradiction.
We conclude that Ng(P) < Hp and that, with Lemma 7.11 (2),
every z-invariant p-subgroup of Cg(a) is centralised by z. The same
statement holds for all involution centralisers C(t) where t is C-
conjugate to a. Now we look at the action of (v,z) on F. Lemma
2.1 (4) yields that

[Fv Z] = <[CF(Z)7 Z]v [OF(U)v Z]a [OF(w)7Z]> = [CF(w)v Z]

because [Cr(v),z] = [Cr(v),z,2] = 1 by our previous observation
and because a and v are conjugate. Thus F < Cg(w). O
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Now we reach a contradiction — we know that F' < H,, by (2.6)
and therefore F' < [H,,, 2| < F(H,) by (x). But b and w are conjugate,
therefore w(F(H,,)) = m, whereas F is a m,-group by definition. This is a
contradiction, so now we know:

If No(Py) < HmazG and H # Hy, then Fry (H) = 1.

Lemma 7.2 (3) implies that b centralises F(H). As H # H, by as-
sumption, this means, by the Infection Theorem (4), that E(H) £ Hy.
But as we know from Lemma 14.14 (3) and since H # C, this is only
possible if H has a unique component L and L contains a. However, this
implies that a centralises F'(H) as well, i.e. that z centralises it, and this
is impossible by Lemma 5.2 (6) because H # C.

We obtain that

Ng(Py) < Hy,.

From here we proceed in two steps.

(i) If P € Syl,(Hyp, V), then Ng(P) < H,. Every z-invariant p-subgroup
of C¢(a) is centralised by z.

PROOF. Assume otherwise. We apply Lemma 7.11 (1) and we let
Ty € Syla(Ce(P)) and ¢ € CNNg(P)NNg(Ty) be such that b # b¢ €
Z(Tp). Let e := b° and let H, := Cg(e). We have that Py < P < H,
and therefore Py = [Py, z] < F(H,) by (x). As Ng(Py) < Hp, this
means that H. & Hp. But then Lemma 14.10 yields a contradiction.
The last assertion comes directly from Lemma 7.11 (2). (]

(ii) As in our initial notation let v € Cc(a) be an involution such that
(v,a) is a fours group contained in a 2-component of C' and let w :=
vz. Then P, is centralised by v.

PRrROOF. Let E € L5(C) be such that (a,v) < E. Then there
exists an odd number ¢ > 11 such that E ~ PSLy(q) as on List IV
and therefore @, v and av are conjugate by some element of order 3
in E. Thus a,v and av are conjugate in C by some element of odd
order. This implies that b and w are commuting involutions that are
conjugate in C. The coprime action of (w, z) on Py yields that

Py = ([Cr,(2), 2], [Cr, (v), 2], [Cry (w), 2]) = ([Cp, (v), 2], [Cp, (w), 1),

by Lemma 2.1 (4). We set P, := [Cp,(w), z]. Then P; is centralised
by b and by w, hence by bw = av, an involution that is conjugate to
a. As P; is z-invariant and as P; = [Py, 2] < Cg(av) and Cg(av) is
C-conjugate to Cg(a), we know from (i) that P; is centralised by z.
Thus P; = 1 by Lemma 2.1 (2). It follows that Py = [Cp,(v), 2], i.e.
v centralises Py as stated. (I

Statement (ii) and the main hypothesis imply that Py is a non-trivial
z-invariant p-subgroup of Cg(v) . Then (i), applied to Cg(v) instead of
Cg(a), yields that Py = [Py, z] = 1. This is a contradiction and therefore
the theorem is proved.

O
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LEMMA 15.5. Suppose that Hypothesis 15.1 holds and that a and b are not
conjugate. Let v € {a,b} and suppose that C = M and Cg(v) < H,. Then U, is
centralised by vz.

Proor. With Theorem 14.23 let p be an odd prime such that H, is of cha-
racteristic p. Then, as C = M and z ¢ Z(H,), Lemma 5.10 implies that p ¢ .
We let Uy := [CUU( ),v]. If Uy # 1, then Uy is a nilpotent C¢(v)-invariant sub-
group of C of odd order, and therefore we may apply Lemma 14.12. Then Uy =
[Uo,v] < O(F(C)). But p ¢ 7, so Op(C) = 1 and hence Uy = 1. This implies
that Cy, (2) < Cy, (v) and thus, with Lemma 2.1 (4), we see that U, = [U,,v] <
[Uy, 2] N Cg(vz). O

LEMMA 15.6. Suppose that Hypothesis 15.1 holds. Then either Ca(a) and Ca (D)
are both mazimal or neither of them is.

PRrROOF. This statement is immediate if a and b are conjugate. If ¢ and b are not
conjugate, then we first note that Hypothesis 7.6 holds by Lemma 14.7. Suppose
that Cq(b) = Hp and assume that there exists some odd prime r such that H, is
of characteristic 7. Then Lemma 15.3 implies that C' = M and Lemma 15.5 forces
U, to be contained in Cg(b). With the Pushing Down Lemma (3) we deduce that
U, < O,(Hp) and therefore H, & H,, by Lemma 7.9. But also, in particular, we
see that O,.(Hp) # 1 and together with the Infection Theorem (1) this gives that
F*(Hyp) = O,(Hyp). This is a contradiction.

If Cg(a) = H, and r is an odd prime such that Hy is of characteristic r, then
we argue as in the previous paragraph if C = M. Otherwise C' < M and we have a
z-minimal subgroup U < O,(M) by hypothesis. If E(M) # 1, then Hypothesis 8.1
is satisfied. Lemma 14.9 yields that there exists an odd number ¢ > 11 such that
E(M) ~ PSLy(q) and hence

U< ()M
geG
by Lemma 8.6. This contradicts Lemma 14.1 (1) and consequently F(M) = 1. Thus
M has characteristic p. We also recall that O,.(Hp) contains a b-minimal subgroup
Uy, because Ci(b) # Hp.

(1) [Ua] # 1.

PROOF. Otherwise we have that U < F(H,) by the Pushing Down
Lemma (3) and hence H, 3% M. This contradicts the Infection Theo-
rem (2) because H, is not of characteristic p. O

2) U, < C.

PROOF. Set R := [Cy,(a),b] and assume that R # 1. Then with
Lemma 14.1 (1) let N (R) < HmaxG. The Pushing Down Lemma (2)
yields that R = [R,b] < O,(H,) and hence H, and H} infect H. From
(1) we know that [U, a] # 1 and then Lemma 2.1 (4) implies that Uy :=
[Cu(b),z] # 1. Tt follows with the Pushing Down Lemma (1) that Uy <
F(H,), in particular r = p. Then we deduce that

Uo < Cpm,)(b) < Ca(Us) < Ca(R) < H,
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by Lemma 7.7. Applying the Pushing Down Lemma (2), we see that Uy <
O, (H) and therefore Uy < [O,(H), z]. As |me| > 2 and p = r € 7,, Lemma
7.2 (3) yields that [O,(H),z] < H, and therefore Uy < H,. But then Uy
is centralised by b and by a, hence by z, and this is a contradiction. Thus
R =1 which implies that U, = [Up,b] < [Up,a] N C. O

(3) U < Op(Hy).

PROOF. AsU, < C' < M by (2) and this subgroup is Cj(b)-invariant,
Lemma 14.12 yields that U, = [Us,b] < Op(M). Then Uy, < Co, (ar)(2) <
Ca(U) by Lemma 7.7 and therefore U < Cq(Up) < Hp by Lemma 7.9.
The Pushing Down Lemma (3) yields that U < O, (Hp). O

(4) [Cu(a), 2] # 1.

PROOF. As a and b are supposed to be not conjugate, one of the
cases from List IV holds by Lemma 14.5 (2) and therefore there exists a
2-component E of C such that a € E. Moreover there exists a fours group
Ap in F containing a and such that the involutions in Aq are all conjugate
in C. As U is C-invariant and

U =1[U,2 = ([Culao), 2] | ap € AT),

by Lemma 2.1 (4), we deduce that for all ¢y € A¥, the commutator
[Cu(ao), 2] is non-trivial. In particular [Cy(a), z] # 1 as stated. O

Let X := [Cy(a),z]. Then 1 # X < U < O,(H) by (2) and (3) and with
Lemma 14.1 (1) we let Ng(X) < HmaxG. Then M and H, infect H and we
also see, with the Pushing Down Lemma (2), that X < O,(H,) and hence H,
H. Let I := Fr (H). As p € m,, we see that I is a p’-group and the Infection
Theorem (1) forces F' to be inverted by a, b and z. Consequently F' = 1. Moreover
Cg(V) < H and therefore Lemma 14.14 (3) implies that E(H) < H, N H, or
that H has a component that contains a. In the latter case, we see from the type
of this component that E(H) contains a fours group Ag such that its involutions
are conjugate within F(H) and such that a € Ag. Then the fact that U is E(H)-
invariant and that X < H forces that for all ag € A¥, the subgroup [Cy (ao), 2] is
contained in H. With Lemma 2.1 (4) it follows that U < H and then U < O,(H)
by the Pushing Down Lemma (3). Lemma 7.9 yields that H & M. But M & H
and therefore the Infection Theorem (3) gives that F*(H) = O,(H) (whether it
coincides with M or not does not matter). Then H, infects a maximal subgroup
of characteristic p and this is impossible by the Infection Theorem (2). This last
contradiction finishes the case where C(a) is a maximal subgroup of G and Cg(b)
is not. |

LEMMA 15.7. Suppose that Hypothesis 15.1 holds and that Cg(b) is a mazimal
subgroup of G. Then O(C) =1 (and therefore the F*-Structure Theorem describes
F(C)).

PrROOF. From Lemma 15.3 and Theorem 15.4 we know that C' = M and
O(F(C)) N Hy = 1. If r9(G) = 2, then Lemma 15.2 implies that H; has odd
prime characteristic, which is a contradiction. Hence ro(G) = 3, more precisely
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V' is contained in an elementary abelian subgroup of order 8. Let d € C be an
involution distinct from a and b, but commuting with them and such that a, d
and ad are conjugate in C. Choose ¢ € C to be such that a¢ = d. Now our hy-
pothesis implies that b inverts O(F(C)). Then also a inverts it and d = a® inverts
O(F(C))¢ = O(F(C)), similarly ad inverts it by conjugacy whereas it also cen-
tralises it. Since O(F(C)) has odd order, this yields that O(F(C)) = 1. But then
F(O(C)) =1 whence O(C) = 1. O

LEMMA 15.8. Suppose that Hypothesis 15.1 holds and that C(b) is a mazimal
subgroup of G. Let p € w(F(Hy)) be an odd prime such that O,(Hy) £ C and let
Py :=[Op(Hy), 2]. Let P € Syl,(Hy, V). Then Ng(Py) < Hy or Ng(P) < Hy,.

PROOF. First we apply Lemma 15.7 to deduce that O(C) = 1. We assume that
N¢(Py) < HmaxG with H # Hy, and that Ng(P) £ Hyp, aiming for a contradiction.
Then H, & H. We recall that |m,| > 2 because 7, contains 2 and p. Therefore
Lemma 7.2 (3) and the Infection Theorem (1) yield that Fr, (H) is centralised by b
and that F (H) intersects H, trivially and is therefore inverted by b. In particular
[H, b] centralises F'(H).

(1) E(H) < H,

Proor. As Cg(V) < H, Lemma 14.14 is applicable and gives that
E(H) < Hy or that H possesses a component that contains a. In the latter
case it follows that F'(H) is centralised by a. Thus z centralises E(H) and
Fr,(H), and it inverts Fi; (H). We deduce that [H, z] centralises F™*(H),
therefore [H, z] < Z(F(H)) and hence

P() = [P(),Z] S Op(H) S CG(&).

But then P is centralised by b and by a, hence by z, and this is a contra-
diction. Thus E(H) < Hy, as stated. O

(2) Let F':= Fyy (H). Then Cp(z) = 1, but I # 1, and moreover H, % H.

PROOF. Step (1) implies that [H,b] < Cy(F*(H)) = Z(F(H)). Since
Cc(a) = Ceo(b) < Ng(Py) < H, the group F is a C¢(b)-invariant 2’-
subgroup of H. Thus Cr(z) is Cc(b)-invariant and inverted by b. We
recall that O(C') = 1 and apply Lemma 14.12 to see that Cp(z) = 1 as
stated. In particular F' is inverted by b and z. Then F' < Cg(a) and we
know from Lemma 15.6 that Cg(a) = H,, so F is a Cg, (z)-invariant
nilpotent subgroup of H,. The Pushing Down Lemma (1) implies that
F =|[F,z] < F(H,). Since E(H) < C N Hy by Lemma 5.2 (5) and by (1)
(and hence E(H) is centralised by a) and since H # Hj by assumption,
the Infection Theorem (4) tells us that F # 1. Then Ng(F) = H by
Corollary 5.8 and it follows that H, & H. O

(3) a and b are not conjugate.

PrROOF. If a and b are conjugate, then 7, = m, and therefore (2) and
the Infection Theorem (1) imply that F' = I, (H) is inverted by a. This
is only possible if F' = 1, but this contradicts (2). O
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(4) Py = Op(Hy).

PRrROOF. We use (1) and also our assumption that Ng(P) £ H,. Let
Ty € Syla(Cq(P)). We may suppose that Tj is z-invariant by Lemma 4.11,
applied to Cg(P)(z). With Lemma 7.11 (1) we let ¢ € Ng(P)NNg(To)NC
be such that v := b° is an involution in Z(Tp) distinct from b. Then
P = P¢ < Hf =: H, which means that P is centralised by b and by v. Let
X = Co,(m,)(2). Then X is a Cc(a)-invariant p-subgroup of C' that is
centralised by b and by v. We need to recall that a and b are not conjugate
by (3) and that, therefore, C' possesses a simple component E by Lemma
14.5 (2) and since O(C') = 1. More precisely there exists an odd number
g > 11 such that E ~ PSLy(q). Then [X,Cg(a)] < X N E and we note
that O(Cg(a)) is cyclic and inverted by v (because Cg(a) is an involution
centraliser in PSLs(q)). As X is centralised by v, it follows that

[X,Cg(a),v] < [X,v]=1and [v,X,Cg(a)] =1,

so the Three Subgroups Lemma implies that [Cg(a), v, X] = 1. We recall
that O(Cg(a)) is inverted by v and therefore [O(Cg(a)), X] < [Cg(a),v, X]| =
1. As X is a p-group, this shows that [Cg(a),X] = 1 and hence X can-
not induce non-trivial inner automorphisms on E because v centralises
X. But also, Remark 11.2 says that X does not induce a non-trivial field
automorphism on F, so we deduce that X centralises E. If C' possesses

a second component Ey, then E; and O3(C) (being subgroups of Cc(a))
normalise X and therefore [O2(C)E;, X| = 1. This forces

X < Ce(F7(0) = Z(F(0)) < 02(C)
and hence X = 1. We conclude that Py = O, (Hy). O

From (4) and Corollary 5.8 it follows that
Hy = Na(Op(Hy)) = Na(Po) < H

and consequently H, = H, contrary to our assumption. Thus the lemma is proved.
O

All previous statements together with some additional work yield the first main
result of this section.

THEOREM 15.9. Suppose that Hypothesis 15.1 holds and that Cg(a) is a maxi-
mal subgroup of G. Then a and b are not conjugate.

PrOOF. We assume, by way of contradiction, that a and b are conjugate. Then,
by Lemma 14.5 (2), we know that one of the cases from List I, IT or III holds and
moreover our hypothesis implies that C(b) = Hp. With Lemma 15.2 and Theorem
D we know that r2(G) = 3, and Lemma 15.7 yields that O(C) = 1.

As z ¢ Z(H,), we choose, with Lemma 5.2 (6), an odd prime p such that
Py := [O,(H,), 2] # 1. With Lemma 14.5 (8) let P € Syl,(H,,V). Then Lemma
7.11 (1) implies that Ng(P) £ H, and then, with Lemma 15.8, that Ng(Py) < H,.

Next we look at X := Co (m,)(z) and Y := Co (m,)(2). We assume in the
following that these subgroups are non-trivial. They are conjugate by our assump-
tion that a and b are conjugate. We also note that X and Y normalise each other
whence XY is a p-group.
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(x) X=Y.

PrOOF. If F*(C) is as on List IT, then let E be the unique component
of C. Then X N E is a Cg(a)-invariant p-subgroup of Cg(a) and hence
centralised by Cg(a) and YN E is a Cg(a)-invariant p-subgroup of Cg(a),
thus also centralised by Cg(a). It follows that X N E' =Y N E. Moreover
we know that the outer automorphism group of E has cyclic Sylow p-
subgroups, so the groups of outer automorphisms that X and Y induce
on E coincide. We deduce that XCo(E) = YCo(E).

Now suppose that F*(C') is as on List I or III and hence that a is dia-
gonal. As X and Y are C¢(a)-invariant p-groups, they cannot be contained
in O5(C) or in a component of C' that centralises a. For every component
of C', the outer automorphism group has cyclic Sylow p-subgroups and as
X and Y normalise every component of C', we see that X and Y induce the
same outer automorphisms on every component of C. They also induce
the same inner automorphisms and therefore XCe(E(C)) = YCo(E(C))
as in the previous case.

Hence if we let © € X, then there exists some y € Y such that x and y
induce exactly the same automorphism on E(C) whence 271y € XY is a
p-element in C that centralises E(C). As XY is C¢(a)-invariant, we also
see that XY centralises O3(C) and hence 7'y € C is a p-element that
centralises F*(C'). But Co(F*(C)) = Z(02(C)), so we see that = y and
it follows that X =Y. |

Let Ng(X) < HmaxG. Then H, & H and by () we also know that H, ¢ H.
Now we recall that a and b are conjugate by assumption and that, therefore, we have
that m, = 7. Then with Lemma 7.2 (3) and the Infection Theorem (1) it follows
that a and b invert Fy, (H) and centralise Fi, (H). Thus z centralises F**(H) and
Lemma 5.2 (6) forces H = C. So H, and H; infect C. Moreover F,(H,) and
F,/(Hp) are contained in Ce(X) and hence in C, so in particular X # Op,(H,)
because z ¢ Cp, (F(H,)). Let X1 := No,(m,)(X). Then X < X; < H = C and
thus Xy < Co,(m,)(2) = X, which is a contradiction. O

LEMMA 15.10. Suppose that Hypothesis 15.1 holds and that Cg(b) is a mazimal
subgroup of G. Then there exist a prime p and some P € Syl,(Hy, V) such that
[Op(Hb),Z] 7£ 1 and Ng(P) S Hb.

PROOF. Assume otherwise. Hence for all p € m, and for all P € Syl,(H, V') we
have that, if [O,(Hy), 2] # 1, then Ng(P) %« H,. With Lemma 5.2 (6) we choose
p € m, such that Py := [O,(Hy), z] # 1. By Lemma 15.8 and our assumption we have
that Ng(Py) < Hp. Also, with Lemma 7.11 (1), we find an element ¢ € C' N Ng(P)
such that d := b° is an involution distinct from b, commuting with b and z and
centralising P. Let Hy := Hf. Then Hy = Ce(w) by conjugacy and Op,(Hp) < P <
Hg. Therefore X := Co, (m,)(2) is centralised by d. Looking at C, we first recall that
O(C) =1 by Lemma 15.7 and then that F*(C) is as in one of the cases from List
IV, because a and b are not conjugate by Theorem 15.9 and by Lemma 14.5 (2).
We denote the simple component of C' by E and note that Cg(a)(= Cg(b)) and
X normalise each other. Moreover we recall that d is conjugate to b and commutes
with it, therefore dz is conjugate to a and commutes with it and it follows that dz
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inverts O(Cg(a)). At the same time d and z centralise X and hence dz does, so we
have that [dz, X,Cg(a)] = 1. We use this information to show that X centralises
E. First [X,Cg(a)] < X NE < Cg(dz) and therefore [X,Cg(a),dz] = 1. Then
[Cr(a),dz,X] = 1 with the Three Subgroups Lemma. As dz inverts O(Cg(a))
and X is a p-group, we see first that X centralises O(Cg(a)) and then that X
centralises all of Cg(a). Thus the elements from X# cannot induce (non-trivial)
inner automorphisms on E, and by Remark 11.2 they also cannot induce outer
automorphisms. It follows that [E, X]| = 1 as stated. As O3(C) < C¢(a) = Ce(b)
by choice of a, we also have that X centralises O3 (C). If C has a second component,
then this component centralises a and z, hence b, therefore normalises X and is X-
invariant, so it centralises X. All this forces

X < Ce(F7(C)) = Z(F*(C))

which is a 2-group, so X = 1.

From our hypothesis it follows that we can argue in this way for all odd primes in
7, and we obtain, for all r € 7y, that O,.(Hy) is either centralised by z (which inclu-
des the case r = 2 by Lemma 5.2 (5)) or inverted by it. Hence [Hp, 2] < Z(F(Hy)).
Going back to our prime p, the subgroup Py and the involution d, conjugacy yields
that Py = [Py, 2] < [Hy,2] < Z(F(Hg)) and therefore Hy & Hy. But b and d are
conjugate, so this is a contradiction to Lemma 14.10. |

THEOREM 15.11. Suppose that Hypothesis 15.1 holds. Then Cg(a) is not a
maximal subgroup of G.

PRrROOF. Assume otherwise. Then Lemma 15.6 yields that Cg(b) is a maximal
subgroup as well and we know from Theorem 15.9 that a and b are not conjugate.
With Lemma 15.10 we choose a prime p and a V-invariant Sylow p-subgroup P of
H,, such that [O,(H,), 2] # 1 and Ng(P) < Hy. With Lemma 7.11 (2) we see that
for this prime p, every (z)-invariant p-subgroup of C¢(a) is centralised by z. Now
we recall that a and b are not conjugate and that, therefore, by Lemmas 14.5 (2)
and 15.7, we have a simple component F in C. Then a € FE by hypothesis, we
choose a fours group in E containing a and we denote its involutions by a, v and
av. Then a, v and av are C-conjugate. As every (z)-invariant p-subgroup of Cg(a)
is centralised by z, conjugacy implies that also every (z)-invariant p-subgroup of
C¢(v) is centralised by z. Moreover we note that b and w := vz are conjugate and
that (w, z) acts coprimely on Py := [O,(Hy), z]. Lemma 2.1 (4) yields that

Py = [P, 2] = ([Cp, (2), 2], [Cp,y (v), 2], [Cry (w), 2]) = ([Cry (v), 2], [Cpy (w), 2])-

As [Cp,(v), 2] is a z-invariant p-subgroup of C(v), we have that [Cp, (v), 2, 2] =
1 and hence [Cp,(v), z] = 1. This implies that Py = [Cp,(w), z] and therefore P is
centralised by w and by b. It follows that bw centralises Py. But bw = azvz = av is
conjugate to a, so conjugacy yields that the z-invariant p-subgroup Py of Cg(av)
must be centralised by z. Thus Py = [Py, z] = 1, which is a contradiction. O

HypPOTHESIS 15.12. In addition to Hypothesis 11.1 we suppose the following:
e a € C is an involution distinct from z and chosen as in Lemma 14.4.
o V:i={a,z).
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o M is a maximal subgroup containing C' such that, if possible, there exists
an odd prime r such that O.(M) # 1 = Co, (a)(2). If C < M, then let
U < O(F(M)) be a z-minimal subgroup.

e Forallv € {a,b} we let H, be a mazimal subgroup of G such that Cg(v) <
H, and let p be an odd prime such that F*(H,) = Oy(H,). If possible,
we suppose that v inverts F*(H,). Let U, < Op(H,) denote a v-minimal
subgroup.

We note that Hypothesis 15.12 implies Hypothesis 14.6 and therefore, by
Lemma 14.7, also Hypothesis 7.6.

LEMMA 15.13. Suppose that Hypothesis 15.12 holds. Let r be an odd prime and
let H < G be such that Cq(V) < H. Then H := H/O(H) has a unique mazimal

Ca(V)-invariant r-subgroup.

PRrROOF. In C' we can choose a Sylow 2-subgroup S such that S contains a
Sylow 2-subgroup Sy of Cq(V). Let V < Sy < S; € Syla(H). Then every member
of Ny (Cq(V),r) is Sp-invariant and we know, from the structure of F*(C) (or
explicitly from (i) in the proof of Lemma 14.4), that Sp = S or that Sy has index

21in S In particular So = 51 or Sy has index 2 in 51 Let Y € U5 (Cg(\) r). As
O5(H) < Sy, we see that [Co, (H)(\//\') Y] < O2(H)NY =1 whence Y centralises a
subgroup of index at most 2 of Oz(H). It follows that [O2(H H),Y]=1.

If H has characterlstlc 2, then Y = 1 and our claim is proved. Thus let us
suppose that H has a component. Then Lo(H) # @ and for all L € L£y(H), the
subgroup Lg := O (C1(2)) lies in C. Moreover Ly is not soluble, therefore induces
inner automorphisms on F*(C) and is hence contained in it. Thus, going through
the lists of the F*-Structure Theorem, the possibilities for CE(‘A/) are as follows:

- CE(‘Z) =TLor

- C3(V) is cyclic or dihedral or

- there exists an odd prime power g > 5 such that CE(‘/}) has two components
of type SLy(q), with central involutions a and b.

We deduce that, as Y is C ( )-invariant, it induces inner automorphisms on

every component of H. Thus Y < F * (H ). But then, from the p0851b1htles above and
the Cp. ( )-invariance of Y, it follows that ¥ < Cr. ( ). We already know
that Y centrahses O2(H ) For each component L gomg through the possibilities
for CE( ) yields the following:

- if CE(V) =L, thenYNL=1.

- if C’z(‘A/) is cyclic or dihedral, then ¥ N L is contained in it.

- if CE(‘A/) has two components of type SLz(g) with central involutions @ and
b, then Y N L centralises CE(IA/) because Y has odd order.

Ity e I/I*ﬁ(CE(V), r), then we conclude that either YN L is contained in C’E(\A/),
that it even is a maximal C’E(XA/)—invariant r-subgroup there and that it therefore
coincides with OT(CZ(XA/)), or that F*(C) is as on List II and Y N L centralises
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C;(V V). In this case Y N L is also a maximal C' ( V)-invariant r-subgroup of L. We
deduce that ¥ N L is the unique maximal CE( )-invariant r-subgroup of L.

Now let Y3,Y, € M}I(Cg(?), ). Then Y; and Y, are contained in F* (H) and

~

even in Cp, )(17) =Cp, ()BT )(V) as we deduced in the previous paragraph.
But r is odd and hence Yl,Yg < CE( H)( ) Conversely, we know for every

component L of H that Y1 n L and Yg N L coincide with the unique maximal
C’A( )-invariant r-subgroup Ry of L. Thus

Vi=VinEH)= [[ Ri=Y2nE(H) =Y,
LeLy(H)

THEOREM 15.14. Hypothesis 15.12 does not hold.

PROOF. Assume otherwise, with the notation from Hypothesis 15.12. First we
show that (H,, Hyp) is a V-special primitive pair of characteristic p as in Definition
3.4. As H, and Hj, are primitive (by Corollary 5.8) and of characteristic p, we only
need to verify two properties:

-V < Z*(H,) N Z*(Hp) holds because of Lemma 14.5 (1).

- Ca(V) < H, N Hy, holds because a,b € V.

Therefore (H,, Hp) is in fact a V-special primitive pair of characteristic p of
G. Then Lemma 15.13 implies that Theorem 3.7 is applicable and it yields that
Op(H,) N Hy =1= 0,(Hp) N H,. In particular O,(H,) N O,(Hy) =1 and O,(H,)
is inverted by b. Therefore O,(H,,) is abelian and this implies that U, is elementary
abelian and that a inverts it. It follows that U, is inverted by a and by b and
therefore U, < C. Then Lemma 14.12 yields that U, = [U,,a] < O,(M). From
Lemma 5.2 (6) we know that O,(H,) is not centralised by z, but we just saw that
p € w(F(M)). Therefore C' # M by Lemma 5.10. In particular, we have our z-
minimal subgroup U and we conclude that U, < Co,(ar)(2) < Cg(U) with Lemma
7.7. Then Lemma 7.9 implies that U < Cg(U,) < H, and the Pushing Down
Lemma (3) forces U < Op(H,). We conclude that, since O,(H,) N H, = 1, we
have that U < O,(H,). Now we recall that also O,(H,) N H, = 1, so a inverts
O,(Hyp) and by symmetry between a and b we deduce that U < O,(H}) whereas
Op(Ha) N O,(H,) = 1. This is impossible. O






KAPITEL 16

The Final Contradiction and the Z*-Theorem for
Ko-Groups

In the previous chapter we concluded our analysis of maximal subgroups of G
containing an involution centraliser. Without too much effort, we can now reach
a contradiction under the hypothesis that, with all the notation in our minimal
counter-example G, the components of C' are known quasi-simple groups:

THEOREM 16.1. Hypothesis 11.1 does not hold.

PROOF. Assume otherwise. Then in particular we have Hypothesis 5.1 with
all the notation included there. The F*-Structure Theorem is applicable and yields
that we know precisely what the possibilities for the shape of F*(C) are. Next
we choose an involution a € C as in Lemma 14.4. Then Theorem 14.23 implies
that either Cg(a) is a maximal subgroup of G itself or it is properly contained
in a maximal subgroup H, of G of odd prime characteristic. With this choice of
the involution a and a suitable choice for a maximal subgroup M containing C,
we can set notation such that Hypothesis 15.1 holds. Therefore we may apply
Theorem 15.11 and we deduce that Cg(a) is not a maximal subgroup. Thus we
know that Cg(a) is properly contained in a maximal subgroup H, of G and that
there exists an odd prime p such that F*(H,) = Op(H,). If possible, we choose H,
such that a inverts O,(H,). Lemma 15.6 yields that C(az) is properly contained
in a maximal subgroup H,, of G of characteristic p and we choose H,, such that
az inverts Op(H,;), if this is possible. Then Hypothesis 15.12 holds and Theorem
15.14 provides a contradiction. (I

If we want to state an independent result, then we must somehow capture
the knowledge about simple groups involved in centralisers of isolated involutions
that we incorporated in Hypothesis 11.1 in our minimal counter-example. We recall
that, by the Classification of the Finite Simple Groups (as stated for example in
[Wil09]), every finite simple group is isomorphic to one of the following:

- a cyclic group of prime order,

- an alternating group A,, for some n > 5,
- a simple group of Lie type,

- a sporadic simple group.

The Z*-Theorem for Ks-groups is an attempt to capture, in a suitable hypo-
thesis, the fact that we do not really need information about all proper subgroups
of G, but only about centralisers of isolated involutions.

145



146 16. THE FINAL CONTRADICTION AND THE Z*-THEOREM FOR K3-GROUPS

DEFINITION 16.2. We say that a finite group X is a Ka-group if and only
if for every isolated involution t € X and every subgroup H of X containing ¢,
all simple sections (i.e. factor groups of subgroups) in Cr(t)/O(Cy(t)) are known
simple groups. By a “known simple group” we mean a group from the list in the
Classification of Finite Simple Groups.

We note that the definition implies that subgroups and factor groups of KCo-
groups are themselves Ko-groups. In the literature, the term Ks-group is sometimes
used to describe simple groups where in all 2-local subgroups, all simple sections
are known simple groups.

PROOF OF THE Z*-THEOREM FOR K2-GROUPS.

Assume that this result is false and choose G to be a minimal counter-example.
Let then z € G be an isolated involution such that z ¢ Z*(G). In order to establish
Hypothesis 5.1 for G, we look at an isolated involution ¢ of G and we suppose that
t € H < G. Then our hypothesis implies that H is a Ko-group. As t is isolated in
H, the minimal choice of G yields that the theorem holds in H. This means that
t € Z*(H). Next let N <@ be such that t ¢ N and set G := G/N. Then 7 is isolated
in G by Lemma 4.1 (7). Hence if N # 1, then Gisa proper factor group of G and
the minimality of G yields that ¢ € Z *((A?) Therefore Hypothesis 5.1 holds for G
and, with our additional Ko-group hypothesis, we even have that Hypothesis 11.1
holds. This contradicts Theorem 16.1. (I
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Addendum zu: Local Arguments for Glauberman’s
Z*-Theorem

Fiir den Beweis von Lemma 12.5 auf Seite 85 werden alle Moglichkeiten aus dem
Klassifikationssatz fiir die endlichen einfachen Gruppen nacheinander betrachtet,
und dabei wird fiir eine gewisse Gruppe nicht explizit erkldrt, warum sie nicht als
Typ einer Komponente auftreten kann. Das folgende Lemma holt dieses Argument
nach; wie in vielen anderen Fillen geht es sehr leicht mit 2-Balance. Es wurde
sorgfiltig gepriift, dass alle anderen Gruppen explizit oder als Teile einer Serie im
Beweis behandelt werden.

Lemma o
Suppose that Hypothesis 11.1 holds and that E € Lo(C). Then E/Z(E) is not
isomorphic to PSL3(4).

Proof. Assume otherwise. We refer to the ATLAS ([CCNT03]) for information about
PSL3(4). If Z(E) = 1, then E ~ PSL3(4) and this is impossible by Lemma 11.4.
Hence Z(E) is a non-trivial 2-group with unique involution z, by Theorem B. The
Schur multiplier leaves the possibilities 2PSL3(4) and 4PSLs(4). As 2PSLs(4)
contains an elementary abelian group of order 16, it is excluded by Lemma 11.4 as
well. Hence E ~ 4PSL3(4) and in particular r2(E) = 3. Let B be an elementary
abelian subgroup of order 4 of E that does not contain z and let A := B(z). Then
A is elementary abelian of order 8. Let b € B#. In PSL3(4) the centralisers of

involutions are 2-groups, and so it follows that O(Cx(b)) = 1. Hence if a(b) £ O(C),

then a(b) induces an outer automorphism of E of odd order, by Lemma 6.15. This
must be an automorphism of order 3. But since Z(F) has only order 4, this is not
possible. We conclude that a(b) < O(C) for all b € B# (and hence for all b € A%),

so the subgroup A is balanced. This contradicts Lemma 6.8.
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