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Vorwort

In der vorliegenden Habilitationsschrift werden lokale Methoden und Argu-
mente diskutiert, die zu einem neuen Beweis für Glaubermans Z*-Satz unter einer
zusätzlichen Voraussetzung führen.

Der Inhalt stimmt größtenteils mit der Arbeit
”
Isolated involutions in finite

groups“ überein, die in der Serie Memoirs of the American Mathematical Society
(siehe [Wal]) erscheint. Zusätzlich ist aber ein Abschnitt enthalten, in dem zwei
Sätze über spezielle primitive Paare in endlichen Gruppen bewiesen werden. Diese
Resultate spielen im Z*-Projekt eine wichtige Rolle und wurden in der Zeitschrift
Archiv der Mathematik veröffentlicht, siehe [Wal11].
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KAPITEL 1

Introduction

The protagonist of this text is one of the main results in Glauberman’s article
“Central Elements in Core-Free Groups” from the year 1966:

Glauberman’s Z*-Theorem.
Suppose that G is a finite group and that z ∈ G is an isolated involution. Then
⟨z⟩O(G)EG.

Some explanation is needed here: We say that an element z in a finite group G
is an involution if it has order 2. Then z is called isolated in G if and only if the
only conjugate of z in G commuting with z is z itself. Another way of expressing
this that can be found in the literature (for example in [Gor82]) is to specify a
Sylow 2-subgroup S of G containing z and to say that z is isolated in S with
respect to G if and only if z itself is the only conjugate of z in S. Moreover, the
term O(G) is the standard abbreviation for the subgroup O2′(G), i.e. the largest
normal subgroup of G of odd order. This subgroup is sometimes referred to as the
core of G. Roughly speaking, the Z*-Theorem says that isolated involutions are
central modulo the core. If we denote by Z∗(G) the full pre-image in G of the factor
group Z(G/O(G)), then the Z*-Theorem can be re-phrased in the following way:

Every isolated involution of a finite group G is contained in Z∗(G).

The reader will find versions of the Z*-Theorem with a variety of different
notation and emphasis in the literature. In Glauberman’s original article, the result
that is closest to the version stated here is Theorem 1. Glauberman explains that
his Z*-Theorem “originated as a conjecture in loop theory”. A special case of this
conjecture had been proved earlier by Fischer (see [Fis64] and additional comments
in Chapter 4). If a finite group G has cyclic or quaternion Sylow 2-subgroups,
then the unique involution z in a Sylow 2-subgroup of G is isolated in G. Before
Glauberman’s theorem it was already known, because of results by Burnside and by
Brauer and Suzuki, that ⟨z⟩O(G)EG in these cases. Therefore the Z*-Theorem can
be viewed as a generalisation in particular of the Brauer-Suzuki result, a viewpoint
taken for example by Gorenstein in [Gor82].

As it turned out (and as Gorenstein emphasises in [Gor82]), Glauberman’s
Z*-Theorem became one of the most fundamental local group theoretic results in
the context of the Classification of Finite Simple Groups. To illustrate this, let us
suppose that G is a non-abelian finite simple group. Then the Odd Order Theorem
of Feit and Thompson (see [FT63]) says that G has even order and so it follows
that G contains an element t of order 2. If t is isolated in G, then the Z*-Theorem
forces t ∈ Z∗(G). But G is simple and has even order, so O(G) = 1 and hence
t ∈ Z(G). This is impossible because G is simple and not abelian. We conclude
that t cannot be isolated in G. In fact this can be phrased as a special consequence
of the Z*-Theorem:
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2 1. INTRODUCTION

A non-abelian finite simple group does not contain any isolated involutions.

This can be used as a starting point for understanding the 2-structure of a finite
group and therefore it is not surprising that, in connection with classification results
based on types of Sylow 2-subgroups or involution centralisers, the Z*-Theorem is
a powerful tool. Another important consequence is Glauberman’s main result from
[Gla66b] that leads to proofs of special cases of the Schreier Conjecture. (This
conjecture says that the outer automorphism group of a finite simple group is
soluble.) It is worth emphasising Glauberman’s progress in this direction because,
still, no classification-free proof of the full Schreier Conjecture is known.

Returning to the Z*-Theorem, its discussion in later literature usually not only
points out its consequences for the, at the time, ongoing effort towards the Clas-
sification of Finite Simple Groups, but also the fact that the proof uses elegant
arguments from block theory. Its proof is actually often found as an illustration
of the power of Brauer’s Main Theorems. Also, thinking in the direction of future
generalisations, why not extend the notion of an isolated involution to an “isolated
element of prime order p” and attempt to find an “odd version” of the Z*-Theorem?
This leads to two natural questions:

(1) How difficult is it (if at all possible) to prove the Z*-Theorem with local
group theoretic methods?

(2) What could be a reasonable conjecture that generalises the Z*-Theorem
for odd primes? Is it possible to prove such a conjecture?

The reasons for Question (1) are, from our point of view, both philosophical
and practical. Philosophically speaking, it might be more satisfying if a result that
plays such an important role in local group theory could be understood from a
local perspective, giving also some indication of the strength of local techniques. A
more practical viewpoint comes in as soon as the difficulty of such a task becomes
apparent. Even if finding a new proof fails, it can be expected that interesting
results will emerge and that a number of group theoretic arguments will be refined
and extended on the way.

In this text we prove that the Z*-Theorem holds for all groups where, roughly
speaking, the simple sections in an involution centraliser are known simple groups.
Although some of the background results require representation theory (as for ex-
ample [FT63] or [Gla74]), the proof itself is based on local group theoretic methods
and thus we give an almost complete answer to Question (1) above. We leave it to
the reader to decide how difficult this new proof is – it is certainly much longer
and more technical than Glauberman’s original proof and, maybe unsurprisingly,
it involves quite a few different techniques that play a role in the Classification of
Finite Simple Groups.

Concerning Question (2), it is known by the Classification that the Z*-Theorem
generalises for odd primes in a natural way. But seeing this requires the use of the
Classification in its full strength (see for example [GR93]) and does, so far, not
give much insight into why such a result holds. Special cases have been proved for
example by Rowley (for the prime 3, see [Row81]) and by Broué (see [Bro83]).
There is an ongoing effort from group theorists and from representation theorists to
make some progress towards proving an “Odd Z*-Theorem” without using the full
and immediate strength of the Classification. It is our hope that the local approach
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to Glauberman’s original result will shed some light on what group theoretic tools
might have a role to play.

The remainder of this introduction gives an overview of the strategy and some
indication of what happens mathematically in which part of this text. All groups
mentioned here are finite. In earlier work (see [Wal09]) we show that if G is a
minimal counter-example to Glauberman’s Z*-Theorem and if C is the centraliser
of an isolated involution z ∈ G with z /∈ Z∗(G), then C/O(C) possesses at least
one component. In particular C is not soluble. This work plays a role in our general
approach here and is therefore partly included.

Chapter 2 starts with some preparation: setting up notation, recalling or spe-
cifying definitions and stating background results. This continues in Chapter 3 with
more specialised results, one of which has already been published in [Wal11]. In
order to make this text fairly self-contained, we give precise references or proofs
for all results listed in these preparatory sections. Then, in Chapter 4, we turn to
groups with isolated involutions. We establish a crucial result (Theorem 4.6) that
implies, for example, that a minimal counter-example to the Z*-Theorem is genera-
ted by two involution centralisers and that is the basis for a counting argument at
the end of Chapter 9. It is of similar importance that for every isolated involution
in a group G and for every prime p there exists a Sylow p-subgroup of G that is
normalised by this involution. These results suggest that isolated involutions be-
have as if acting coprimely on every subgroup that they normalise. The content of
Chapter 4 has mostly appeared before in [Wal09].

Then it is time to look at a minimal counter-example to Glauberman’s Theo-
rem. In Chapter 5 we set up our first working hypothesis which says, in a nutshell,
that G is a group with an isolated involution z such that G provides a minimal
counter-example to the Z*-Theorem. In particular z /∈ Z∗(G), but the Z*-Theorem
holds in every proper subgroup of G and in proper factor groups. We set C := CG(z)
and assume this hypothesis in the remainder of the discussion, in particular in Theo-
rems A, B, C and D. We prove initial consequences of this setup, again following
the exposition in [Wal09] in many places. For example it turns out that G is almost
simple and that every maximal subgroup of G containing an isolated involution is
primitive (as defined on page 7). Here we should point out that the p-Complement
Theorem and the Brauer-Suzuki Theorem are used to show that G does not have
cyclic or quaternion Sylow 2-subgroups.

Then we exploit more specific properties of G and z in Chapter 6. We introduce
a variety of balance notions and the concept of signalizer functors. Then we use the
fact that our balance conditions usually fail in G and study the consequences for the
structure of G and specifically of C. Some arguments in this chapter are inspired
by Goldschmidt’s work in [Gol72] and [Gol75], for example we present and apply
signalizer functors that he uses in these papers.

After some preparation in Chapter 7, we work towards the proof of our first
important result in Chapter 8.

Theorem A. Suppose that M is a maximal subgroup of G containing C. If
possible, choose M such that there exists a prime q with Oq(M) ̸= 1 = COq(M)(z).
Then one of the following holds:

- M = C.
- There exists an odd prime p such that F ∗(M) = Op(M).
- E(M) ̸= 1.
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One of the most important ingredients for the proof of Theorem A and also for
arguments in later sections is the so-called Bender Method. It is therefore introduced
at the beginning of Chapter 7. In particular, Lemma 7.2 and the Infection Theorem
7.3 are mainly an adaptation of results of Bender’s for our situation to simplify
quotations. Then we prove some preparatory results about isolated involutions in
proper subgroups of G that are also needed for later sections. Finally we set up our
working hypothesis at the beginning of Chapter 8, assuming that M is a maximal
subgroup of G that properly contains C and that is chosen in a technically suitable
way. We show that, if M is not of characteristic p, then for certain subgroups X of
F (M), we can force NG(X) to be contained in a unique maximal subgroup of G,
namely in M . Then we assume that M is in fact a counter-example to Theorem
A and we find a prime p such that Op(M) is cyclic and z inverts it (Lemma 8.5).
This leads to a non-trivial normal subgroup of G that is contained in M , giving a
contradiction. Later it will emerge that Theorem A can sometimes be strengthened
or that similar statements hold for other involution centralisers (see for example
Theorem 14.23).

In the remainder of the text the strategy is to determine the structure of C :=
C/O(C) as far as possible and then to analyse several involution centralisers at the
same time. First we consider the situation where O2′,2(C), the full pre-image of

O2(C), possesses an elementary abelian subgroup of order 4. This case is excluded
in Chapter 9. The path that we follow is similar to that in [Wal09] at first, but
then some new arguments are necessary. So we conclude:

Theorem B. z is the unique involution in O2′,2(C).

Next we turn to the components of C. In Chapter 10 we restrict their number
and shape, still not using any additional hypothesis.

Theorem C. C possesses at least one and at most three components. If there
are three components, then they are all of type A7 or PSL2(q) for some odd number
q ≥ 5.

Here a component E of C is said to be of type An (or PSL2(q)) if E/Z(E) is
isomorphic to An (or to PSL2(q)). In order to prove Theorem C, we apply results
from Section 6, in particular Goldschmidt’s notion of core-separated subgroups and
signalizer functor theory. In the background, the Gorenstein-Walter-Theorem on
groups with dihedral Sylow 2-subgroups plays a role. It is here that the Soluble
Z*-Theorem follows and we give the arguments, for completeness, although they
are explained in [Wal09] as well. (This is actually the last place where we re-state
results from [Wal09].) We do not need the full strength of Theorem C for the
Soluble Z*-Theorem, but only the fact that C has components at all.

The Soluble Z∗-Theorem.
Suppose that G is a finite group and that z ∈ G is an isolated involution. If CG(z)
is soluble, then ⟨z⟩O(G)EG.

Beginning in Chapter 11, and in all later sections, we suppose that whenever
E is a component of C, then the simple group E/Z(E) is known. In particular
we assume this hypothesis in Theorem D. We begin to understand the structure of
F ∗(C) by looking at the case where r2(G) ≥ 4. In order to obtain information about
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the possible types of components, we prove that C has so-called “unbalanced” com-
ponents, using results from Chapter 6. Although obtained differently, the functor
that we apply for these arguments is the same as in Proposition 4.65 of [Gor82].
Our additional hypothesis about components of C comes in when we argue with
failure of 2-balance and quote a result in [Gor82]. The next step is then to exclude
components of type An where n is at least 10. This is done in Lemma 11.5, again
with a signalizer functor, and enables us to bound the 2-rank of G in Section 12.

Theorem D. G has 2-rank 2 or 3.

The main argument for the proof of this result is to assume that r2(G) ≥ 4
and to show that, as a consequence, conditions about balance or core-separated
subgroups in C are violated. The technical details that we encounter are mainly
dealt with in a series of lemmas, excluding particular configurations for F ∗(C) one
by one, whilst the method is usually to either construct a signalizer functor (and
reach a contradiction) or to analyse a “failure of balance” situation. After the 2-
rank of G is restricted, we can describe the structure of F ∗(C) in much detail.
This information is collected in the F*-Structure Theorem 13.6, subdivided into
four lists referred to as List I, II, III and IV. Once it is established, we apply the
F*-Structure Theorem by saying that “F ∗(C) is as on List I (or II, III or IV)”.

Based on this information, we go back to analysing maximal subgroups con-
taining the centraliser of an involution in Chapter 14. We choose our involutions
carefully and reveal enough of the structure of their centralisers to bring the Bender
Method into the picture again. Having control over centralisers of (at least some)
involutions in G, the stage is set for the “endgame”, a final situation that needs
to be analysed. We attack this in Chapter 15 and, based on this, derive a final
contradiction in the last section. This is also where an independent version of the
Z*-Theorem is stated, with an explanation of why our work proves this version. For
this purpose, we define a K2-group to be a group X where for every isolated invo-
lution t ∈ X and every subgroup H of X containing t, the simple groups involved
in CH(t)/O(CH(t)) are known simple groups. At the end of Chapter 16, we prove:

The Z*-Theorem for K2-groups.
Suppose that G is a K2-group and that z ∈ G is an isolated involution. Then
⟨z⟩O(G)EG.

In particular, whenever a result about finite groups is proved under the hypo-
thesis that every proper simple section is known, then this weaker version of the
Z*-Theorem can be applied. This is relevant, for example, to a minimal counter-
example to the Classification Theorem itself, but also to many results in progress
that contribute to new, different strategies for the Classification.





KAPITEL 2

Preliminaries

In this section we introduce the notation that is used in this text and we
state general results that are applied so that they can be quoted explicitly when
needed. Most of these results are fairly standard and can be found, for example,
in group theory books – in these cases, we give a reference. Otherwise we give a
proof. All groups are meant to be finite and we follow the notation in standard
group theory books such as [Asc00] and [KS04]. We also use throughout, without
further reference, that groups of odd order are soluble ([FT63]). In this section let
X be a group, let π be a set of primes and let p and q be prime numbers.

2.1. Definitions and Notation

– For all n ∈ N, we denote by np the largest power of p dividing n.

– For all x ∈ X, all subgroups Y ≤ X and all subsets U ⊆ X we define
xU := {xu | u ∈ U} and Y U := {Y u | u ∈ U}.
– By HmaxX we mean that H is a maximal subgroup of X.

– A subgroup H of X is said to be primitive if and only if, for all 1 ̸= U EH,
we have that NX(U) = H. A typical example for a primitive group is a maximal
subgroup of a simple group.

– An involution t ∈ X is isolated in X if and only if CX(t) ∩ tX = {t}.
– If an involution t acts on a subset Y of X, then IY (t) denotes the set of

elements of Y that are inverted by t.

– The largest normal π′-subgroup of X is usually denoted by Oπ′(X). Then
Z∗
π(X) denotes the full pre-image of Z(X/Oπ′(X)) in X.

– As a special case of the above, the largest normal subgroup of odd order of X
is abbreviated as O(X) (sometimes referred to as the core of X in the literature).
Then Z∗(X) denotes the full pre-image of Z(X/O(X)) in X (and is hence an
abbreviation of Z∗

{2}(X)).

– To simplify notation, we set Fπ(X) := Oπ(F (X)) .

– If X is a p-group, then ZJ(X) denotes the centre of the Thompson subgroup
of X, see for example on page 162 in [Asc00].

– X is quasi-simple if and only if X ̸= 1, X is perfect (i.e. X ′ = X) and
X/Z(X) is simple.

– Op(X) denotes the smallest normal subgroup of X that has a p-factor group.
We say that X is p-perfect if and only if X = Op(X). We denote by O∞(X) the
smallest normal subgroup of X that has a soluble factor group.

– X is of characteristic p if and only if F ∗(X) = Op(X). We denote this by
char(X) = p. If the prime is supposed to be unspecified, then we just say that X has

7



8 2. PRELIMINARIES

prime characteristic. A special case is that X has odd prime characteristic,
meaning that there exists an odd prime p such that F ∗(X) = Op(X).

– We say that a subgroup A of X is centraliser closed if and only if CX(A) ≤
A. If A is also abelian, then this implies that A = CX(A) whence we also say
that A is self-centralising. For example, if X has characteristic p, then Op(X) is
centraliser closed but not necessarily self-centralising.

– Let A,B ≤ X be subgroups such that AB is a subgroup of X. We say that
AB is a central product and write A ∗B if and only if [A,B] = 1.

– Let A,B ≤ X be 2-subgroups such that [A,B] = 1. If a ∈ A and b ∈ B are
elements of order 4 such that a2 = b2, then ab is an involution and we say that this
involution is diagonal in A ∗B.

– A component of X is a quasi-simple subnormal subgroup of X. We denote
the (central) product of all components of X by E(X).

– Let L be a simple group. A component E of X is said to be of type L if and
only if E/Z(E) ≃ L.

– Oπ′,F∗(X) denotes the preimage of F ∗(X/Oπ′(X)) in X. The subgroups
Oπ′,π(X), Oπ′,F (X) and Oπ′,E(X) are defined similarly.
We simplify notation if π consists of a single prime, for example we write

O2′,2(X) instead of O2′,{2}(X).

– A subnormal subgroup E of X is a π-component of X if and only if E =
O∞(E) and E/Oπ′(E) is quasi-simple. The set of all π-components of X is denoted
by Lπ(X). The most important special case for us occurs for the prime 2 where we
write L2(X) for the set of 2-components (i.e. {2}-components) of X.

– A convenient abbreviation is L(X) := O2′(O2′,E(X)).

– By rp(X) we denote the p-rank of X. This means that if n ∈ N is the largest
number such that X possesses an elementary-abelian p-subgroup of order pn, then
we set rp(X) := n. If there is no ambiguity about the prime we are referring to (for
example because X is a p-group), then we only write r(X) for the rank.

– Let P ∈Sylp(X). Then we say that X is p-nilpotent if and only if X =
Op′(X)P . (Another way of expressing this that can be found in the literature is
that “X has a normal p-complement.” .)

– Suppose that A is a group acting on X. The action of A on X is nilpotent
if and only if there exists a k ∈ N such that [...[[X,A], A]..., A]︸ ︷︷ ︸

k

= 1.

– Suppose that A ≤ X. Then by IX(A, π) we denote the set of A-invariant π-
subgroups of X. We write I∗

X(A, π) for the set of maximal members of IX(A, π)
with respect to inclusion.

– If n ∈ N, then by X ≃ Cn we mean that X is cyclic of order n.

– We say that X is quaternion if and only if X ≃ Q2n for some n ≥ 3 (rather
then saying “generalised quaternion”).

– For all n ∈ N, we denote the symmetric (alternating) group of degree n by
Sn (An). We write 2An for the quasi-simple group that has a centre of order 2 and
that modulo its centre is isomorphic to An (non-split). Similarly the notation 3A7,
3PSL2(9) and 2J2 is used.
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2.2. General Results

Lemma 2.1. Suppose that a π-group P acts on a π′-group Q.

(1) If N is a P -invariant normal subgroup of Q, then CQ/N (P ) = CQ(P )N/N .

(2) Q = [Q,P ]CQ(P ) and [Q,P ] = [Q,P, P ]. If Q is abelian, then
Q = [Q,P ]× CQ(P ).

(3) If Q is the product of two P -invariant subgroups Q1 and Q2, then
CQ(P ) = CQ1(P )CQ2(P ).

(4) If P is an elementary-abelian, non-cyclic p-group, then

Q = ⟨CQ(A) | A ≤ P, |P : A| = p⟩ and

[Q,P ] = ⟨[CQ(A), P ] | A ≤ P, |P : A| = p⟩.
If P has order 4, e.g. P = {1, x, y, xy}, and if Q is nilpotent, then
Q = CQ(x)CQ(y)CQ(xy). Hence if CQ(x) ≤ CQ(y), then IQ(y) ⊆ IQ(x).

(5) If Q is a q-group for some odd prime q ∈ π′ and if P centralises every
element of order q in Q, then [Q,P ] = 1.

(6) If Q is nilpotent and P centralises a centraliser closed subgroup of Q, then
P centralises Q.

(7) Let r ∈ π′. Then I∗
Q(P, r) ⊆ Sylr(Q) and CQP (P ) is transitive on the set

I∗
Q(P, r).

Proof. Most of these results are contained in [KS04], they correspond to
8.2.2, 8.2.3, 8.2.7, 8.2.11, 8.3.4, 8.4.2 and 8.4.3. Statement (6) follows from Thomp-
son’s P × Q-Lemma, but here is a direct argument: Suppose that P centralises a
centraliser closed subgroup Q0 of Q and set Q∗ := CQ(P ). Then Q0 ≤ Q∗ and
therefore Q∗ is centraliser closed in Q. Moreover Q∗ is subnormal in Q because Q
is nilpotent. We argue by induction on |Q| and therefore suppose that the result
holds for all proper P -invariant subgroups of Q that contain Q∗. Now we note that
NQ(Q

∗) is P -invariant, so either NQ(Q
∗) = Q and hence Q∗ EQ or NQ(Q

∗) < Q
in which case we observe that P centralises the centraliser closed subgroup Q∗ of
NQ(Q

∗). Then P centralises NQ(Q
∗) by induction, so NQ(Q

∗) ≤ CQ(P ) ≤ Q∗ and
Q∗ = Q. Thus we look at the case where Q∗ E Q. As Q normalises Q∗ and P
centralises it, we see that [Q,P ] centralises Q∗ and therefore

[Q,P ] ≤ CQ(Q
∗) ≤ Q∗ = CQ(P ).

Now [Q,P, P ] = 1 and (2) yields that P centralises Q. �

Lemma 2.2 (Thompson’s P × Q-Lemma). Suppose that X acts on a p-group
W and that X = PQ is a central product of a p-group P and a p-perfect group Q.
If Q centralises CW (P ), then Q centralises W .

Proof. This is (24.2) in [Asc00]. �

Lemma 2.3. Let P be a π-group that acts on a π′-group Q. Let X := QP and
r ∈ π′. Let R denote the intersection of all P -invariant Sylow r-subgroups of Q.
Then R is the unique maximal PCX(P )-invariant r-subgroup of Q.
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Proof. As PCX(P ) permutes the elements of I∗
Q(P, r), the subgroup R is

PCX(P )-invariant. Let T0 ∈ IQ(PCX(P ), r) be arbitrary. Then T0 lies in some
P -invariant Sylow r-subgroup T of Q. Let S be an arbitrary P -invariant Sylow
r-subgroup of Q. Then by Lemma 2.1 (2) there exists an element x ∈ CX(P ) such
that T x = S. As T0 is PCX(P )-invariant, we have that T0 = T x

0 ≤ T x = S. It
follows that T0 is contained in every P -invariant Sylow r-subgroup of Q and hence
in R. In particular, if T0 ∈ I∗

Q(PCX(P ), r), then we see that T0 = R. �

Lemma 2.4. Suppose that p is an odd prime and that P is a p-group of rank at
most 2. If q is a prime divisor of |Aut(P )| distinct from p, then q < p.

Proof. This is a combination of Lemmas 4.7 and 4.13 in [BG94]. �

Lemma 2.5. Suppose that X is a p-group. Then there exists a characteristic
subgroup P of X (a so called critical subgroup) such that

– every p′-subgroup of Aut(X) is faithful on P ,

– P ′ = ϕ(P ) is elementary abelian and lies in Z(P ) and

– if X is not abelian, then exp(P ) = p if p is odd and exp(P ) = 4 if p = 2.

Proof. Proposition 11.11 in [GLS96]. �

Lemma 2.6. Let H ≤ X be a 2′-subgroup that is normalised by an involution
t ∈ X. Suppose that every t-invariant π-subgroup of H is centralised by t. Then
H = CH(t)Oπ′(H).

Proof. This is Lemma 2.2 in [Wal09]. �

Lemma 2.7. Suppose that q is odd and that an involution t ∈ X acts on a
q-subgroup Q of X. If r(Q) ≥ 3, then Q possesses a t-invariant elementary abelian
subgroup of order q3.

Proof. This is Lemma 11.18 in [GLS98]. �

Theorem 2.8. Suppose that A and A0 are groups, that A is an elementary
abelian p-group of rank at least 3 and that the central product AA0 acts coprimely
on X. Suppose that X is soluble and that X = [X,A0]. Furthermore, let B ≤ A,
let H := CX(A0B) and let Hyp2(A) denote the set of all subgroups of A of index
p2. Then

H = ⟨[CX(Y ), A0] ∩H | Y ∈ Hyp2(A)⟩.

Proof. This result is proved in [Wal08]. �

Lemma 2.9. Let Y be a p-subgroup of Op′,p(X). Then Op′(CX(Y )) ≤ Op′(X).
If X is soluble and if Y is a p-subgroup of X, then Op′(CX(Y )) ≤ Op′(X).
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Proof. The second statement is often referred to as Goldschmidt’s Lemma and
can be found for example as Proposition 1.15(b) in [BG94]. We give an argument
for the first statement. We let Y ≤ Op′,p(X) and we may suppose that Op′(X) = 1,
so that Y ≤ Op(X) and hence E(X) ≤ CX(Y ). Let Q := Op′(CX(Y )). Then

[E(X), Q] ≤ E(X) ∩Q ≤ Op′(E(X)) ≤ Op′(X) = 1.

Moreover Y × Q acts on Op(X) and [COp(X)(Y ), Q] ≤ Op(X) ∩ Q = 1. Then
Thompson’s P × Q-Lemma 2.2 yields that Q centralises Op(X). We recall that
Op′(X) = 1 and therefore F ∗(X) = Op(X)E(X). It follows that

Q ≤ CX(F ∗(X)) = Z(F (X)) ≤ Op(X)

and hence Q = 1. �

Lemma 2.10. Let t ∈ O2′,2(X) be an involution and let D ≤ X be a CX(t)-
invariant 2′-subgroup. Then D ≤ O(X). If D is nilpotent, then [D, t] ≤ F (X).

Proof. Lemma 3.6 in [Wal09]. �

Lemma 2.11. Let V be a p-subgroup of Op′,p(X). Then for all q ∈ p′, the
subgroup CX(V ) is transitive on the set I∗

X(V, q).

Proof. Lemma 3.7 in [Wal09]. �

Lemma 2.12. Suppose that X is a 2-group and that X0EX. If r(X0) ≥ 2, then
either X0 contains a normal elementary abelian subgroup of X of order 4 or X0 is
dihedral or semi-dihedral.

Proof. Lemma 10.11 in [GLS96]. �

Lemma 2.13. Suppose that X is a 2-group and that t ∈ X is an involution. If
CX(t) is elementary abelian of order 4, then X is dihedral or semi-dihedral.

Proof. This is 5.3.10 in [KS04]. �

Lemma 2.14. Suppose that Q1, Q2 ≤ X are commuting quaternion groups and
that Z(Q1) = Z(Q2). Then the rank of Q1Q2 is 3.

Proof. Let Q := Q1Q2 and Z := Z(Q1). Let a1, a2, b1, b2 ∈ Q be such that
a1 and a2 have 2-power order, that b1, b2 have order 4 and that Q1 = ⟨a1, b1⟩ and
Q2 = ⟨a2, b2⟩. Then some powers c1 of a1 and c2 of a2 have order 4. Our hypothesis
Z = Z(Q2) implies that the unique involution s in Q1 is also the unique involution
in Q2. In particular the elements b1, b2, c1, c2 all have the same square, namely s.
As Q1 and Q2 centralise each other, it follows that (b1b2)

2 = s2 = 1. Therefore
b1b2 and similarly c1c2 are diagonal involutions. They are distinct from each other
and distinct from s, in fact A := ⟨b1b2, c1c2, s⟩ is an elementary abelian subgroup
of Q1Q2 of order 8 and hence r(Q) ≥ 3.

Now let a be an arbitrary involution in Q\Z. Then there are elements x1 ∈ Q1

and x2 ∈ Q2 of order 4, respectively, such that a = x1x2. The subgroups CQ1(x1)



12 2. PRELIMINARIES

and CQ2(x2) are cyclic of order at least 4 with intersection Z, so CQ1(x1)CQ2(x2)
has rank 2. If, for i ∈ {1, 2}, we let yi ∈ Qi\CQi(xi) be an element of order 4, then
y1y2 is an involution that commutes with CQ1(x1)CQ2(x2), but is not contained in
it. As CQ(a) = CQ1(x1)CQ2(x2)⟨y1y2⟩, this implies that CQ(a) has rank 3 and thus
r(Q) = 3. �

Lemma 2.15. Suppose that X is a dihedral group of order at least 8 or a semi-
dihedral group of order at least 16. Then Aut(X) is a 2-group.

Proof. This is Proposition 4.53 in [Cra11]. �

Theorem 2.16. Suppose that X is a 2-group with precisely three involutions.
Then Aut(X) is soluble.

Proof. This is Theorem 3.16 in [Wal09]. �

Theorem 2.17. Suppose that X is quasi-simple and that n ∈ N is such that
n ≥ 5 and X/Z(X) ≃ An.

(1) If n ̸= 6, then Aut(X) ≃ Sn.
(2) If Z(X) = 1, then r2(X) = 2 · k, where k is the largest integer less than

or equal to n
4 .

(3) If 2 divides |Z(X)|, then r2(X) = 3 · l + 1, where l is the largest integer
less than or equal to n

8 .

Proof. Theorem 5.2.1 and Proposition 5.2.10 in [GLS98]. �

Lemma 2.18. Let S ∈ Syl2(X) and suppose that P and Q are subgroups of S
such that S = PQ. Suppose that P E S, that Q is cyclic and that P ∩ Q = 1. Let
s be the unique involution in Q. If O2(X) = X, then there exists an X-conjugate t
of s in P such that CS(t) ∈ Syl2(CX(t)).

Proof. This is a generalisation of Thompson’s Transfer Lemma and can be
found as Lemma 15.16 in [GLS96]. �

Lemma 2.19. Suppose that H ≤ X contains a Sylow p-subgroup of X. If for
every p-element y ∈ H we have that yX ∩H = yH , then Op(X) = X if and only if
Op(H) = H.

Proof. Lemma 15.10 (ii) in [GLS96]. �

Theorem 2.20. Suppose that S ∈ Syl2(X) is cyclic. Then X = SO(X). In
particular the unique involution in S is contained in Z∗(X).

Proof. This is 7.2.2 in [KS04] and follows from Burnside’s p-Complement
Theorem. �

Theorem 2.21 (Brauer-Suzuki). Suppose that S ∈ Syl2(X) is quaternion and
let s be the unique involution in S. Then s ∈ Z∗(X).
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Proof. See [Gla74] for a proof using ordinary character theory. �

Theorem 2.22 (Gorenstein-Walter). Suppose that X is non-abelian and simple
and has dihedral Sylow 2-subgroups. Then X is isomorphic to A7 or there exists an
odd number q ≥ 5 such that X ≃ PSL2(q).

Proof. This is Theorem 2 in [GW65]. �

Lemma 2.23. Suppose that E is a component of X and that S ∈ Syl2(E) is of
rank 1. Then E is not simple and E/Z(E) is isomorphic to A7 or there exists an
odd number q ≥ 5 such that E/Z(E) ≃ PSL2(q).

Proof. We first recall that, since E is a component (and hence quasi-simple),
we have that O(E) ≤ Z(E). Now we look at S. This is a 2-group of rank 1 and
hence S is cyclic or quaternion. By Theorem 2.20 it follows that, in the cyclic case,
E = O(E)S. But O(E) ≤ Z(E) and consequently E/Z(E) is a 2-group, which is
a contradiction. Therefore S is quaternion and the Brauer-Suzuki Theorem 2.21
implies that the unique involution in S lies in Z(E). In particular E is not simple.
Moreover a Sylow 2-subgroup of E/Z(E) is dihedral and the Gorenstein-Walter
Theorem 2.22 yields the result. �

Theorem 2.24. Suppose that X has odd order and let P ∈ Sylp(X). If char(X) =
p, then ZJ(P )EX.

Proof. This is a weakened version of Glauberman’s ZJ-Theorem (in [Gla68]).
�

Theorem 2.25. Suppose that X has odd order and let R be an r-subgroup of
X containing Or(X). If X has characteristic r, then K∞(R) is normal in X.

Proof. This is a special case of Theorem A in [Gla]. �

Theorem 2.26. Suppose that the group A acts coprimely on X and that X has
characteristic r for some prime r ≥ 5. Let R denote the unique maximal ACX(A)-
invariant r-subgroup of X. Then K∞(R) is normal in X.

Proof. This is Theorem A in [Fla02]. �

Theorem 2.27. Suppose that X is a π-group and that A is a π′-group of
automorphisms of X. Suppose that t is an automorphism of X of order 2 such that
CX(t) ≤ CX(A). Then [CX(A), t] and [X,A] are normal subgroups of X and [X,A]
is nilpotent of odd order.

Proof. This is a weakened version of Theorem 1 in [Gla72]. �





KAPITEL 3

Specific Preparatory Results

In this section we prove a few technical results that will be used later on. As
before we let X denote a finite group and we let p and q be prime numbers.

3.1. Nilpotent Action

Theorem 3.1. Suppose that p is odd, let F be a field of characteristic p and V
a finite dimensional F-vector space. Suppose that X acts on V and that t ∈ Z∗(X)
is an involution such that dim(CV (t)) ≤ 1. If X/O(X) is 2- and 3-perfect, then the
action of [X, t] on V is nilpotent.

Proof. We first notice that [X, t] ≤ O(X) because t ∈ Z∗(X). It follows that
X = CX(t)O(X) and that [X, t] is soluble because it has odd order. Assume that
the theorem is false and choose X to be a minimal counter-example. More precisely
we choose X such that X/O(X) is 2- and 3-perfect and that the action of [X, t] on
V is not nilpotent, and we assume that |X|+dim(V ) is as small as possible. We may
suppose that F is algebraically closed. It follows that X acts faithfully on V . Next
we show that the action of X is irreducible and that, consequently, Op(X) = 1:

If W is a proper X-invariant subspace of V , then by induction [X, t] acts nilpo-
tently on W and on V/W and hence on V , which is a contradiction. Thus X acts
irreducibly.

As the action of [X, t] on V is not nilpotent by assumption, we have that
[X, t] ̸= 1 and in particular [O(X), t] ̸= 1. Therefore t does not centralise F (O(X))
and we find an odd prime q such that [Oq(X), t] ̸= 1. Applying Lemma 2.5, let Q be
a critical subgroup of Oq(X). Then [Q, t] ̸= 1 and Φ(Q) ≤ Z(Q) =: Z (by Lemma
2.5). Moreover Q is abelian or of exponent q. We note that Q E X and therefore
CV (Q) = 0.

(1) Let n ∈ N and t1, ..., tn ∈ tQ. Let Q0 := Q ∩ ⟨ti | i ∈ {1, ..., n}⟩. Then
dim([V,Q0]) ≤ n.

Proof. Let i ∈ {1, ..., n}. Then dim(CV (ti)) = dim(CV (t)) ≤ 1 and
therefore [V, ti] has codimension at most 1.

Let U :=
∩

i∈{1,...,n}[V, ti]. Then U has codimension at most n in V

and every element in {t1, ..., tn} inverts U . As Q has odd order, we see
that Q0 is generated by products of an even number of conjugates of t and
therefore Q0 centralises U . As U has codimension at most n, this implies
that dim([V,Q0]) ≤ n. �

(2) Let X := X/O(X). Then CX(t) = O2(CX(t)) = O3(CX(t)).

Proof. We know that X = O2(X) = O3(X) by hypothesis. As t ∈
Z∗(X) and hence X = CX(t), this implies the statement. �

15
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(3) [Z, t] = 1. In particular Q is not abelian and hence Q has exponent q. (So
Q is extra-special.)

Proof. Assume otherwise and let y ∈ Z# be such that y is inverted
by t. Then ⟨t, y⟩ = ⟨t, ty⟩ and (1) yields that dim([V, y]) ≤ 2. Let V1

and V2 denote the distinct 1-dimensional eigenspaces for y on V and let
V3 := [V, t]∩ [V, ty]. Then V3 = CV (y) and V = V1 ⊕ V2 ⊕ V3. Moreover Q
normalises V1, V2 and V3 and t inverts V3, therefore [Q, t] centralises V3.
It follows that [V, [Q, t]] = [V1 ⊕ V2, [Q, t]] = V1 ⊕ V2 = [V, y] and hence
[Q, t] = ⟨y⟩. In particular ⟨y⟩ is CX(t)-invariant, but not centralised by
CX(t) because [y, t] ̸= 1. This implies that CCX(t)(y) has even index in
CX(t), contrary to (2). As [Q, t] ̸= 1, it follows that Q is not abelian. �

(4) q = 3. If y1, y2 ∈ Q# are inverted by t and if R := ⟨y1, y2⟩ is extra-special
of order q3, then dim([V,R]) = 3 and R = [Q, t].

Proof. Suppose that y1, y2 ∈ Q# are inverted by t and that R :=
⟨y1, y2⟩ is extra-special of order q3. Then R⟨t⟩ = ⟨t, ty1 , ty2⟩ and therefore
dim([V,R]) ≤ 3 by (1). As [V,R] is a faithful FR-module and q is odd,
it follows that dim([V,R]) ≥ q ≥ 3 and so q = 3 = dim([V,R]). Then
R acts irreducibly on [V,R] and we have proved most of the results in
(4). For the last assertion let x ∈ Z(R) be such that [V,R] = [V, x].
We assume that R ̸= [Q, t]. Then there exists an element y3 ∈ Q\R
of order q that is inverted by t. We set Y := R⟨y3⟩ and apply (1), so
that dim([V, Y ]) ≤ 4. The subgroup P := ⟨y1, y3⟩ of Q is extra-special
of order 27 with Z(P ) = Z = Z(R), because Q is extra-special by (3)
and y1, y3 /∈ Z. Let x′ ∈ Z(P ) be such that [V, P ] = [V, x′] and let
U := [V, x] ∩ [V, x′]. Then U = [V, P ] ∩ [V,R] is 2-dimensional because
dim([V, P ] + [V,R]) = dim([V, Y ]) ≤ 4 and [V, P ] ̸= [V,R]. But x and x′

lie in Z(R) and therefore R normalises [V, x] ∩ [V, x′]. This is impossible
because this is a proper subspace of [V,R] and R acts irreducibly on [V,R].
Thus R = [Q, t] and the proof of (4) is complete. �

Let y1, y2 ∈ Q# be distinct such that t inverts y1 and y2 and such that ⟨y1, y2⟩
is extra-special of order 27. Let R := [Q, t] and x ∈ Z(R)#. Then R = ⟨y1, y2⟩ by
(4) and CX(t) normalises ⟨x⟩ and therefore acts on R/⟨x⟩. This group is elementary
abelian of order 9 and CX(t) normalises it, so CX(t)/CCX(t)(R/⟨x⟩) is isomorphic
to a subgroup of GL2(3). This implies that CX(t)/CCX(t)(R/⟨x⟩) has a non-trivial
2- or 3-factor group whence the same holds for CX(t). This contradicts (2) and
hence the proof is complete. �

Remark 3.2. The non-split extension X of 31+2 with SL2(3) acting on it
(i.e. X is a non-3-perfect {2, 3}-group) arises naturally in the proof. Considering
the action of X on a 3-dimensional vectorspace over GF(7) illustrates why a more
general result, namely omitting the hypothesis that X is 3-perfect, does not hold.

Corollary 3.3. Suppose that p ∈ π(X) is an odd prime and let P := Op(X).
Suppose that X/O(X) is 2- and 3-perfect and that t ∈ Z∗(X) is an involution such
that CP (t) is cyclic. Then the action of [X, t] on P is nilpotent.
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Proof. This follows from Theorem 3.1 because X acts on the elementary
abelian p-group P/Φ(P ). �

3.2. Special Primitive Pairs

Here we introduce the notion of an A-special primitive pair of characteristic q.
These pairs play a role at different places in the text.

Definition 3.4. Suppose that H1,H2 are distinct proper subgroups of X and
that A ≤ H1∩H2. Let π := π(A) and q ∈ π′. Then we say that the pair (H1,H2) is
an A-special primitive pair of characteristic q of X if and only if the following
hold:

• For all i ∈ {1, 2}, if 1 ̸= Y EHi, then NX(Y ) = Hi;

• for all i ∈ {1, 2}, we have that F ∗(Hi) = Oq(Hi);

• CX(A) ≤ H1 ∩H2 and

• A ≤ Z∗
π(H1) ∩ Z∗

π(H2).

Here the subgroup Z∗
π(Hi) (with i ∈ {1, 2}) denotes the full pre-image of

Z(Hi/Oπ′(Hi)) in Hi. The above definition is inspired by the notion of a primitive
pair of characteristic q as, for example, in [KS04] on page 262. The special requi-
rements on A compensate for the fact that we might not have coprime action and
that we do not impose any solubility or stability hypothesis.

We begin with a few preparatory lemmas and then state and prove the main
results.

Lemma 3.5. Suppose that π is a set of primes, that q /∈ π and that A is a π-
subgroup of Z∗

π(X). Then X has a unique maximal ACX(A)-invariant q-subgroup
Q and Oq(X)Oq(CX(A)) ≤ Q ≤ Oπ′(X).

Proof. Let Y ∈ IX(ACX(A), q) be arbitrary. The coprime action of A on Y
yields that Y = CY (A)[Y,A], with Lemma 2.1 (2). As CY (A) is a CX(A)-invariant
q-subgroup of CX(A) and q /∈ π, we see that CY (A) ≤ Oπ′(CX(A)).

Let X := X/Oπ′(X). Then A ≤ Z(X) because A ≤ Z∗
π(X) and therefore

X = CX(A) = CX(A). It follows that

Oπ′(CX(A)) = Oπ′(X) = 1

and hence Oπ′(CX(A)) ≤ Oπ′(X).
Together with the previous paragraph this means that CY (A) ≤ Oπ′(X). We

also see that [Y,A] ≤ Y ∩ Z∗
π(X) ≤ Oπ′(X) because A is a subgroup of Z∗

π(X)
and Y is a π′-group. Therefore every member of IX(ACX(A), q) lies in Oπ′(X).
Together with the coprime action of A on Oπ′(X) and Lemma 2.3 this implies that
the intersection Q of all A-invariant Sylow q-subgroups of Oπ′(X) is the unique
maximal ACX(A)-invariant q-subgroup of X. As Oq(X)Oq(CX(A)) is, of course,
an ACX(A)-invariant q-subgroup of X, it is contained in Q as stated. �

Lemma 3.6. Suppose that A is a q′-subgroup of X and set π := π(A). Let
H ≤ X be such that the following hold:

– CX(A) ≤ H ;
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– A ≤ Z∗
π(H) ;

– H is primitive and of characteristic q and
– 2 ∈ π or q ≥ 5.

Then H has a unique maximal CX(A)-invariant q-subgroup Q, moreover H =
NX(K∞(Q)) and Q ∈ I∗

X(CX(A), q).

Proof. Our hypothesis A ≤ Z∗
π(H) implies that A is abelian and lies in

Oπ′,π(H). Therefore IH(CH(A), q) = IH(ACX(A), q) has a unique maximal ele-
ment Q, by Lemma 3.5. Now let Q0 := K∞(Q). Then Theorem 2.25 (if 2 ∈ π) or
Theorem 2.26 (if q ≥ 5) yield that Q0 EQOπ′(H) and that, in particular, Oπ′(H)
normalises Q0. But also, Q0 is CH(A)-invariant and therefore CX(A)-invariant. As
A ≤ Z∗

π(H), we have that H = CX(A)Oπ′(H) whence H normalises Q0. Thus
NX(Q0) = H because Q0 ̸= 1 and H is primitive. For the last statement let
Q ≤ Q∗ ∈ I∗

X(CX(A), q). Then NQ∗(Q) ≤ NX(Q0) ≤ H and NQ∗(Q) is CX(A)-
invariant which means that NQ∗(Q) lies in the unique member Q of I∗

H(CX(A), q).
Therefore NQ∗(Q) = Q and it follows that Q = Q∗. �

Theorem 3.7.
Suppose that A is a subgroup of X and let π := π(A). Suppose that q ∈ π′, that

Oq(X) = 1 and that, whenever ACX(A) ≤ H < X, then Ĥ := H/Oπ′(H) has a

unique maximal ̂ACX(A)-invariant q-subgroup.
If (H1,H2) is an A-special primitive pair of characteristic q of X and if 2 ∈ π

or q ≥ 5, then Oq(H1) ∩H2 = 1 = Oq(H2) ∩H1.

Proof. Suppose that H1,H2 ≤ X are proper subgroups of X such that
(H1,H2) is an A-special primitive pair of characteristic q of X. We note that this
implies that A is abelian.

(∗) Let Q1, Q2 ∈ I∗
X(CX(A), q) and suppose that Q1 ∩Q2 ̸= 1.

Then Q1 = Q2.

Proof. Let us assume that this is false and choose Q1, Q2 to be
distinct members of I∗

X(CX(A), q) such that D := Q1 ∩ Q2 ̸= 1 is as
large as possible. Since Oq(X) = 1 by hypothesis, we find a maximal
subgroup H of X containing NX(D). As D ̸= Q1, we may choose R1 ∈
I∗

H(CX(A), q) such that D < NQ1(D) ≤ R1. Then we let R1 ≤ R∗
1 ∈

I∗
X(CX(A), q) and see that D < Q1 ∩ R∗

1, hence our choice of Q1 and
Q2 forces Q1 = R∗

1. In particular, this means that R1 ≤ Q1. Arguing
similarly for some R2 ∈ I∗

H(CX(A), q) containing NQ2(D) and for some
R∗

2 ∈ I∗
X(CX(A), q) with R2 ≤ R∗

2, we also have that D < Q2∩R∗
2 whence

Q2 = R∗
2 and R2 ≤ Q2.

By hypothesis, H has a unique maximal CX(A)-invariant q-subgroup
Q modulo Oπ′(H) and therefore QOπ′(H) contains R1Oπ′(H) as well
as R2Oπ′(H). Now we let W := QOπ′(H)CX(A) and we observe that
QOπ′(H) ≤ Oπ′(W ) and hence W = Oπ′(W )CX(A). In particular, A ≤
Oπ′,π(W ). Now Lemma 3.5 is applicable and yields that W has a uni-
que maximal CX(A)-invariant q-subgroup. But also, we chose R1 and R2

from I∗
H(CX(A), q) and since R1, R2 ≤ W , this implies that R1, R2 ∈

I∗
W (CX(A), q). Then uniqueness forces R1 = R2.
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Therefore NQ1(D) ≤ R1 = R1 ∩ R2 ≤ Q1 ∩ Q2 = D whence D =
NQ1(D). It follows that D = Q1 and hence Q1 = Q2, which is a contra-
diction. �

Now we assume further that Oq(H1)∩H2 ̸= 1 or Oq(H2)∩H1 ̸= 1 and we work
towards a contradiction.

By Lemma 3.5 we know that Oq(H1) lies in the unique maximal CX(A)-
invariant q-subgroup Q1 of H1 and that Oq(H2) lies in the unique maximal CX(A)-
invariant q-subgroup Q2 of H2. Our hypotheses that 2 ∈ π or q ≥ 5 and that H1

and H2 are primitive and of characteristic q also yield that Q1, Q2 ∈ I∗
X(CX(A), q),

with Lemma 3.6. The subgroups Oq(H1)∩H2 and Oq(H2)∩H1 are CX(A)-invariant
q-subgroups of H1 as well as H2 and therefore lie in Q1 and in Q2. In particular, as
one of those intersections is non-trivial by our assumption, we see that Q1∩Q2 ̸= 1
and so (∗) forcesQ1 = Q2. Then Lemma 3.6 implies thatH1 = NX(K∞(Q1)) = H2,
which is a contradiction. �

Theorem 3.8.
Suppose that p ̸= q, that Oq(X) = 1 and that y ∈ X is an element of order p.

Suppose further that, whenever CX(y) ≤ H < X, then y ∈ Z∗
p (H).

If (H1,H2) is a ⟨y⟩-special primitive pair of characteristic q of X and if p = 2
or q ≥ 5, then Oq(H1) ∩H2 = 1 = Oq(H2) ∩H1.

Proof. As Oq(X) = 1 by hypothesis, we may choose H < X such that
CX(y) ≤ H. Then y ∈ Z∗

p (H) and Lemma 3.5, applied to π = {p}, yields that
H has a unique maximal CH(y)-invariant q-subgroup. As CX(y) = CH(y), it fol-

lows that Ĥ := H/Op′(H) has a unique maximal ĈX(y)-invariant q-subgroup.
This means that the hypotheses of Theorem 3.7 are satisfied and we conclude
that, if (H1,H2) is a ⟨y⟩-special primitive pair of characteristic q in X, then
Oq(H1) ∩H2 = 1 = Oq(H2) ∩H1 as stated. �
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Isolated Involutions

From now on G is a finite group and z ∈ G is an isolated involution. We set
C := CG(z) and start by collecting some basic facts. Then we deduce knowledge
about the set K := {zzg | g ∈ G} of commutators and use it to make initial
statements about the structure of G.

Lemma 4.1. Let z ∈ S ∈ Syl2(G).

(1) zG ∩ S = {z}.
(2) Every 2-subgroup of G that is normalised by z is centralised by z. In par-

ticular z ∈ Z(S).

(3) For all g ∈ G, the element zzg has odd order.

(4) Whenever z ∈ H ≤ G, then zG ∩H = zH .

(5) Let w ∈ G\zG be an involution. Then the order of zw is even, but not
divisible by 4. In particular, the Sylow 2-subgroups of ⟨z, w⟩ are elementary
abelian of order 4.

(6) If z ∈ X E Y ≤ G, then Y = XCY (z).

(7) Suppose that z /∈ N E G and let G := G/N . Then CG(z) = C and z is

isolated in G.

(8) If C ≤ H ≤ G, then H is the only conjugate of H in G that contains z.

(9) If H ≤ G is a z-invariant subgroup, then H ∩C controls fusion in H ∩C
with respect to H.

(10) O2(G) = G if and only if O2(C) = C.

(11) If s, t ∈ zG are distinct, then st /∈ C.

Proof. (1)-(3) are straightforward from the definition of “isolated”.
(4) Let g ∈ G be such that zg ∈ H. We observe that ⟨z, zg⟩ is a dihedral

group of twice odd order by (3). Thus z and zg are conjugate in ⟨z, zg⟩ by Sylow’s
Theorem.

(5) Set D := ⟨z, w⟩ and note that zw has even order because otherwise z and
w are conjugate. Let z ∈ T ∈ Syl2(D). Then z ∈ Z(T ) by (2) and on the other
hand a power of zw is the unique central involution in D. Therefore T is elementary
abelian of order 4.

(6) Let z ∈ P ∈ Syl2(X). As z is isolated and central in P by (2), we have that
NY (P ) ≤ CY (z). Hence with a Frattini argument, it follows that Y = XNY (P ) ≤
XCY (z) as stated.

(7) Of course C ≤ CG(z), so now we prove the converse. It follows from (4)
that N acts transitively on zG ∩ Nz, so every z-invariant coset of N in G has a
representative from C. Therefore CG(z) ≤ C and the second statement follows from
there.
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(8) Assume that g ∈ G\NG(H) is such that z ∈ Hg. Then z ∈ H ∩ Hg and

therefore z, zg
−1 ∈ H. It follows from (4) that there exists an element h ∈ H such

that z = zhg. Hence hg ∈ C ≤ H and thus g ∈ H, which is a contradiction.
(9) Let x, y ∈ H ∩ C and let h ∈ H be such that xh = y. As x, xh are both

contained in C, it follows that z, zh
−1 ∈ CH(x)⟨z⟩. But then (4) yields that z and

zh
−1

are conjugate in CH(x)⟨z⟩. Let a ∈ CH(x)⟨z⟩ be such that za = zh
−1

and note
that zah = z with this choice. As CH(x) is z-invariant, we find some b ∈ CH(x)
such that a = zb and we see that zbh = zzbh = zah = z. This means that bh ∈ C∩H
and xbh = xh = y.

(10) By (2) we know that C contains a Sylow 2-subgroup of G. Now suppose
that y ∈ C is a 2-element. Then yG ∩ C = yC by (9). So the result follows from
Lemma 2.19.

(11) Assume that st ∈ C and set X := CG(st) and Y := X⟨t⟩. Then t inverts st
and z centralises st and thus z ∈ XEY and t /∈ X. But z and t are both contained
in Y and therefore conjugate in Y by (4). This is impossible. �

Definition 4.2. Recall that K = {zzg | g ∈ G}. We define an operation ◦ in
the following way: For all a, b ∈ K we set a ◦ b := aba.

Fischer introduced such an operation in a more general context in [Fis64] where
he proves a special case of the Z*-Theorem. Glauberman refers to Fischer’s result
in [Gla66a] and he mentions in [Gla] that the Z*-Theorem is a group theoretic
equivalent to the fact that certain finite loops of odd order – which he refers to as
B-loops – are soluble. Therefore the following construction will look familiar to any
reader who has seen the corresponding results from loop theory.

Lemma 4.3.

(1) K is C-invariant and contains 1.
(2) An element x ∈ G is contained in K if and only if x has odd order and z

inverts x.
(3) Let a ∈ K. Then for all n ∈ N, the element an lies in K.
(4) ◦ is a binary operation on K.
(5) Let a, b, d ∈ K. If a◦b = d, then a−1◦d = b. Moreover a−1◦b−1 = (a◦b)−1.
(6) For all a ∈ K, the maps k 7→ k ◦ a and k 7→ a ◦ k are bijective on K.

Proof. The first statement is immediate. For the remainder let a, b ∈ K be
arbitrary and let g, h ∈ G be such that a = zzg and b = zzh. Then ⟨z, zg⟩ is a
dihedral group of order 2 · o(a) and o(a) is odd by Lemma 4.1 (3), moreover z
inverts a. Conversely suppose that x ∈ G has odd order and is inverted by z. Then
x = z · zx and zx ∈ z⟨x⟩, therefore x ∈ K and (2) holds. For (3) we observe that z
inverts a and hence it inverts an, so as an has odd order it follows that an ∈ K by
(2). Looking at (4) we calculate

a ◦ b = aba = zzgzzhzzg = zzha ∈ K

and therefore ◦ is a binary operation on K.
For (5) we recall that a◦b = d means that aba = d. Thus a−1◦d = a−1da−1 = b

as stated. Finally

(a ◦ b)−1 = (aba)−1 = a−1b−1a−1 = a−1 ◦ b−1.
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In (6) it suffices to show that both maps are injective on K. Let d ∈ K and let
k ∈ G be such that d = zzk. Suppose that a ◦ b = a ◦ d. Then immediately b = d.
Now if a ◦ b = d ◦ b, then zzgzzhzzg = zzkzzhzzk and it follows that zha = zhd.

Hence had−1h−1 ∈ C and this means that that zgzh
−1

zkzh
−1 ∈ C. Then Lemma

4.1 (11) forces zgzh
−1

= zkzh
−1

and therefore gzh−1hzk−1 ∈ C. This yields that
gk−1 ∈ C, so zg = zk and finally a = d. �

Definition 4.4. For all a, b ∈ K, we denote by a+ b the (by Lemma 4.3 (6))
unique element d in K with the property that d ◦ a−1 = b. In other words, (a +
b)a−1(a+ b) = (a+ b) ◦ a−1 = b.

Lemma 4.5. Let a, b, d ∈ K.

(1) a+ b = b+ a.
(2) For all c ∈ C we have that (a+ b)c = ac + bc.
(3) (a+ b)−1 = a−1 + b−1.
(4) a+ b = 1 if and only if b = a−1.
(5) a ◦ (b+ d) = a ◦ b+ a ◦ d.

Proof. We have that (a + b) ◦ a−1 = b by definition. Lemma 4.3 (5) yields
that (a+ b)−1 ◦ b = a−1 and then (a+ b) ◦ b−1 = a. But Definition 4.4 implies that
a = (b+ a) ◦ b−1 and hence that a+ b = b+ a.

For all c ∈ C we know that c acts on K by Lemma 4.3 (1). Also, by Definition
4.4, we see that (a + b)a−1(a + b) = b and therefore bc = (a + b)c(a−1)c(a + b)c.
Consequently (2) holds. Then (3) follows from (2) because z is in C and inverts
K, by Lemma 4.3 (2). For (4) we see, just using Definition 4.4, that a + b = 1
if and only if 1 ◦ a−1 = b, and this holds if and only if a−1 = 1a−11 = b. For
the last assertion we recall that (b + d) ◦ b−1 = d by definition. This gives that
a◦d = a◦((b+d)◦b−1). On the other hand, by definition of the element a◦b+a◦d,
we have that a ◦ d = (a ◦ b+ a ◦ d) ◦ (a ◦ b)−1. This yields that

(a ◦ b+ a ◦ d) ◦ (a ◦ b)−1 = a ◦ d = a ◦ ((b+ d) ◦ b−1) = a((b+ d)b−1(b+ d))a
= a((b+ d)aa−1b−1a−1a(b+ d))a = a(b+ d)a((a ◦ b)−1)a(b+ d)a,

by Lemma 4.3 (5). But

a(b+d)a((a◦b)−1)a(b+d)a = (a◦(b+d))(a◦b)−1(a◦(b+d)) = (a◦(b+d))◦(a◦b)−1,

therefore

(a ◦ b+ a ◦ d) ◦ (a ◦ b)−1 = (a ◦ (b+ d)) ◦ (a ◦ b)−1

and Lemma 4.3 (6) gives the result. �

Theorem 4.6. Let a ∈ K and let s ∈ C be an involution. Then there exist
elements u ∈ CK(s) and v ∈ CK(sz) such that a = u ◦ v, and this representation of
a is unique. In particular |K| = |CK(s)||CK(sz)| and K ⊆ ⟨CK(s), CK(sz)⟩.

Proof. Lemma 4.5 (1) and (2) imply that a + as = as + a = (a + as)s and
therefore a+ as ∈ CK(s).

Now, for all b ∈ K, we define b := b+ bs and we set J := {b ∈ K | b = 1}. Then
Lemma 4.5 (4) yields that

J = {b ∈ K | b+ bs = 1} = IK(s) = CK(sz).
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As a ∈ K is of odd order (Lemma 4.3 (2)), there exists a power y of a with
the property that (y−1)2 = a. We pick this element y and observe that, by Lemma
4.3 (3), it is contained in K and thus lies in CK(s). Furthermore y ◦ a = 1. Lemma
4.5 (5) and the fact that s centralises y imply that

y ◦ a = y ◦ (a+ as) = y ◦ a+ y ◦ as = y ◦ a+ (y ◦ a)s = y ◦ a.
Thus y ◦ a = y ◦a = 1 which means that y ◦a ∈ J . Now let u := y−1 and v := y ◦a.
Then

a = y−1yayy−1 = y−1 ◦ (y ◦ a) = u ◦ v ∈ CK(s) ◦ CK(sz).

This proves the existence of a representation as stated.
For the uniqueness we suppose that u′ ∈ CK(s) and v′ ∈ CK(sz) are such that

a = u′ ◦ v′. Then
a = u′ ◦ v′ = (u′ ◦ v′) + (u′ ◦ v′)s = (u′ ◦ v′) + (u′ ◦ v′s) = u′ ◦ (v′ + v′s)

where the last equality comes from Lemma 4.5 (5). Moreover v′ ∈ J = IK(s) by
choice which implies that v′ = 1. We deduce that

a = u′ ◦ (v′ + v′s) = u′ ◦ v′ = u′ ◦ 1 = (u′)2

and therefore (u′)2 = a = u2. As u and u′ are of odd order, we obtain that u = u′.
Finally Lemma 4.3 (6) yields that also v = v′. �

Lemma 4.7. Suppose that z ∈ H ≤ G. Then H = CH(z)(H ∩ K). More
precisely, every coset of CH(z) in H contains a unique element that is inverted by
z. In particular we have that G = CK and that every coset of C in G contains a
unique element that is inverted by z. Moreover, for every involution s ∈ C, we have
that |G| = |C||CK(sz)||CK(s)|.

Proof. Set C0 := CH(z). As K is C-invariant, it follows that H ∩ K is C0-
invariant and every non-trivial element in H ∩ K is inverted and not centralised
by z . Therefore (H ∩ K) ∩ C0 = 1. We also know that |H : C0| ≤ |H ∩ K|
because {zzh | h ∈ H} ⊆ H ∩ K. Now we show that H ∩ K contains a unique
representative for every coset of C0 in H. Suppose that zzg, zzh ∈ H ∩K are such
that C0zz

g = C0zz
h. Then zgzh ∈ C0 ≤ C which by Lemma 4.1 (11) is only

possible if zg = zh.
The first two statements for G follow from this and, together with Theorem

4.6, this implies that |G| = |C||CK(sz)||CK(s)| as stated. �

Lemma 4.8. Let p ∈ π(G). Then I∗
G(⟨z⟩, p) ⊆ Sylp(G).

Proof. As z lies in a Sylow 2-subgroup of G, we only need to discuss the case
that p is odd. We proceed by induction on |G| and first show that IG(⟨z⟩, p) ̸= {1}.
Suppose that r2(G) = 1. Then the Sylow 2-subgroups of G are cyclic or quaternion.
It follows that z ∈ Z∗(G) by Theorem 2.20 or the Brauer-Suzuki Theorem 2.21,
respectively. But then G = CO(G) and at least one of these subgroups has order
divisible by p. If p divides |C|, then z centralises a non-trivial p-subgroup of G. If p
divides |O(G)|, then Lemma 2.1 (7) yields that {1} ≠ IO(G)(⟨z⟩, p) ⊆ IG(⟨z⟩, p).

Thus we may suppose that r2(G) ≥ 2 and we choose an involution s ∈ C
distinct from z. By Lemma 4.7, the prime p divides one of |C|, |CK(s)| or |CK(sz)|.
If p divides |C|, then there is nothing left to prove. Suppose therefore that p does not
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divide |C|. Then by Lemma 4.7 and by symmetry between s and sz we may suppose
that p divides |CK(s)|. If CG(s) < G, then ICG(s)(⟨z⟩, p) ̸= {1} by induction
because z is contained in CG(s). If CG(s) = G, then s ∈ Z(G). We can therefore
argue by induction in the factor group G/⟨s⟩, applying Lemma 4.1 (7). We conclude
that IG(⟨z⟩, p) ̸= {1}.

Now let P0 ∈ I∗
G(⟨z⟩, p) and let N0 := NG(P0). Then we have that z ∈ N0.

First suppose that N0 < G. Then induction yields that I∗
N0

(⟨z⟩, p) ⊆Sylp(N0).
By the maximal choice of P0, this implies that P0 ∈Sylp(N0) and therefore that
P0 ∈Sylp(G). Now suppose that N0 = G. Then P0 EG and in G/P0 there exists a
z-invariant Sylow p-subgroup by induction, because P0 ̸= 1. Its pre-image in G is a
z-invariant Sylow p-subgroup of G and equals P0 by the maximal choice of P0. �

Definition 4.9. From now on, for every subgroup H of G and for every prime
p, we denote by Sylp(H, z) the set of all z-invariant Sylow p-subgroups of H. Simi-
larly, if V is a 2-subgroup of G, then we denote by Sylp(H,V ) the set of V -invariant
Sylow p-subgroups of H.

Lemma 4.10. Let p ∈ π(G). Then C acts transitively on Sylp(G, z).

Proof. Let P1, P2 ∈ Sylp(G, z) and let g ∈ G be such that P g
1 = P2. Since

z ∈ NG(P2) = (NG(P1))
g, we conclude that z and zg are both contained in NG(P2).

They are therefore conjugate in NG(P2) by Lemma 4.1 (4). Choose h ∈ NG(P2)

such that z = zgh. Then gh ∈ C and P gh
1 = Ph

2 = P2. �

Lemma 4.11. Let V ≤ G be an elementary abelian subgroup of order 4 that
contains z and that is generated by (necessarily non-conjugate) isolated involutions.
Let p ∈ π(G). Then I∗

G(V, p) ⊆ Sylp(G) and CG(V ) = NG(V ) is transitive on
Sylp(G,V ).

Proof. We denote the involutions in V by z, a and b and we note that all
previous results on isolated involutions can be applied to all these involutions. For
example, we may apply Lemma 4.8 and arguments from its proof. Let p be a prime.
With Sylow’s Theorem we may suppose that p is odd. The first step is to show that
IG(V, p) ̸= {1}:

Lemma 4.7 yields that p divides |C|, |CK(a)| or |CK(b)|. If p divides |C|, then
with Lemma 4.8, applied to C and the isolated involution a, we see that I∗

C(V, p) ̸=
{1} and hence I∗

G(V, p) ̸= {1}. Therefore we may suppose that p divides |CK(a)| =
|CG(a) : CC(a)|. Then p divides |CG(a)| and therefore Lemma 4.8, applied to CG(a)
and the isolated involution z, yields that I∗

CG(a)(V, p) ̸= {1}. We deduce that

IG(V, p) ̸= {1}.
For the remainder of the proof we argue by induction on |G|. Let P ∈ I∗

G(V, p)
and let H := NG(P ). Then V ≤ H. If H < G, then since a, b and z are isolated
in H we may apply induction and we see that I∗

H(⟨z⟩, p) ⊆Sylp(H). Then the
maximal choice of P implies that P ∈Sylp(H) and therefore that P ∈ Sylp(G). If
H = G, then P EG and in G/P there exists a V -invariant Sylow p-subgroup, again
by induction and because we know that P ̸= 1 from the previous paragraph. A
pre-image of a V -invariant Sylow p-subgroup of G/P in G is a V -invariant Sylow p-
subgroup of G and equals P by the maximal choice of P . This finishes the proof. �
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Lemma 4.12. Suppose that V ≤ G is elementary abelian of order 4 and that
z ∈ V . Let a, b, z denote the involutions in V . Let p be a prime and suppose that
P ∈ Sylp(G) is such that P ≤ CG(a). Suppose that C does not contain any Sylow
p-subgroup of G. Then |CK(b)|p = 1 and |K|p = |CK(a)|p ̸= 1.

Proof. From Lemma 4.7 we know that

|G|p = |C|p|CK(a)|p|CK(b)|p.
From our hypothesis we deduce that |G|p = |P | = |CG(a)|p. But also, again with
Lemma 4.7, it follows that |CG(a)|p = |CC(a)|p|CK(a)|p. Comparing these equati-
ons yields that

|C|p|CK(a)|p|CK(b)|p = |G|p = |CG(a)|p = |CC(a)|p|CK(a)|p
and hence

|C|p|CK(b)|p = |CC(a)|p.
As CC(a) ≤ C, we have that |CC(a)|p ≤ |C|p and thus |CK(b)|p = 1. This implies
that |C|p|K|p = |G|p = |C|p|CK(a)|p. Therefore |K|p = |CK(a)|p and if |K|p = 1,
then C must contain a Sylow p-subgroup of G contrary to our hypothesis. So we
have that |K|p ̸= 1 as stated. �

Lemma 4.13. Let p ∈ π(G) and let P ∈ Sylp(G, z). Then P ∩ C ∈ Sylp(C) and
|K|p = |IP (z)| = |P : CP (z)|.

Proof. Let P∩C ≤ P0 ∈Sylp(C). Then Lemma 4.8 yields that P0 ≤ P1 ∈Sylp(G, z)
and by Lemma 4.10 there exists an element x ∈ C such that P = P x

1 . But then

P x
0 ≤ CP1(z)

x = CP (z) = P ∩ C

and therefore P ∩C is already a Sylow p-subgroup of C. For the second statement,
Lemma 4.7 gives that |G| = |C||K| and thus |P | = |G|p = |C|p|K|p. On the other
hand

|P | = |CP (z)||P : CP (z)| = |CP (z)||IP (z)| = |C|p|IP (z)|
by the previous paragraph. Hence |K|p = |IP (z)|. �



KAPITEL 5

A Minimal Counter-Example to Glauberman’s
Z*-Theorem

We now begin our investigation of a minimal counter-example to the Z*-
Theorem. For the remainder of this text, until stated otherwise (in the last chapter),
we work under Hypothesis 5.1. The reader will be reminded of this hypothesis at
various occasions, but in our results we will usually not mention it. However, the-
re will be additional hypotheses coming in later on and these will be referred to
explicitly.

Hypothesis 5.1.
Let G be a counter-example to Glauberman’s Z*-Theorem that is minimal in

the sense that

• if H is a proper subgroup of G, then every isolated involution of H lies in
Z∗(H) and

• if N EH ≤ G is such that H̃ := H/N is a proper factor of G, then every

isolated involution of H̃ lies in Z∗(H̃).

Let z be an isolated involution in G such that z /∈ Z∗(G). Moreover let C :=
CG(z) and let M be a maximal subgroup of G containing C, let C := C/O(C) and
K := {zzg | g ∈ G}.

We note that if G is chosen to be a minimal counter-example to the Z*-Theorem
with respect to the group order, then G satisfies Hypothesis 5.1. The next few
lemmas capture some fundamental statements that follow from our choices in this
hypothesis and that are used throughout this text many times.

Lemma 5.2. Suppose that t ∈ G is an involution and suppose further that
t ∈ H < G and that t is isolated in H. Then the following hold:

(1) t ∈ Z∗(H), in particular H = CH(t)O(H).

(2) {tth | h ∈ H} ⊆ O(H).

(3) O2′,2(CG(t)) ∩H ≤ O2′,2(H).

(4) I∗
H(⟨t⟩, p) ⊆ Sylp(H) for all p ∈ π(H).

(5) t centralises O2(H)E(H).

(6) If t /∈ Z(H), then there exists an odd prime p such that [Op(H), t] ̸= 1.

Proof. By our hypothesis and since H is a proper subgroup of G, the Z*-
Theorem holds in H. As t is isolated in H, this implies that t ∈ Z∗(H). In particular
[H, t] ≤ O(H) and therefore H = CH(t)O(H), giving (1). For (2) we note that
{tth | h ∈ H} generates [H, t] which is contained in O(H).

27
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For (3) let X := O2′,2(CG(t)) ∩H and set Ĥ := H/O(H). We note that

XO(CG(t))/O(CG(t)) ≤ O2(CG(t)/O(CG(t)))

is a 2-group whence X/X ∩ O(CG(t)) is a 2-group. As t ∈ Z∗(H), we have that
t ∈ O2′,2(H) and consequently Lemma 2.9 is applicable. It yields that

X ∩O(CG(t)) ≤ O(CH(t)) ≤ O(H).

In particular X̂ ≃ X/X∩O(H) is a 2-group. Next let h ∈ CH(t). Then Xh = X

and therefore X̂ is normal in ĈH(t). But H = CH(t)O(H) which means that Ĥ =

ĈH(t) and hence X̂ is a normal 2-subgroup of Ĥ. It follows that X ≤ O2′,2(H). For
(4) we recall that t is isolated in H and that, therefore, Lemma 4.8 is applicable to
t and H.

Next we look at (5) and consider [E(H), t]. By (1) we have that

[E(H), t] ≤ E(H) ∩O(H) ≤ Z(E(H))

because O(H) is soluble. Thus [E(H), t, E(H)] = 1. With the Three Subgroups
Lemma and since E(H) is perfect it follows that [E(H), t] = 1. As t is isolated in
H, Lemma 4.1 (2) yields that t centralises O2(H).

For (6) we assume that t centralises F ∗(H). Then t ∈ CH(F ∗(H)) = Z(F (H))
and therefore t ∈ O2(H). Then t ∈ Z(H) by 4.1 (1), which is a contradiction. We
conclude that [F ∗(H), t] ̸= 1 which, together with (5), yields that [O(F (H)), t] ̸= 1.
Therefore we find an odd prime p such that Op(H) is not centralised by t. �

Lemma 5.3.

(1) r2(G) ≥ 2.
(2) G possesses at least two conjugacy classes of involutions.
(3) K generates a normal subgroup of G of even order.

Proof. If r2(G) = 1, then the Sylow 2-subgroups of G are cyclic or quaternion.
In the cyclic case, Burnside’s Theorem (2.20) yields that z ∈ Z∗(G) contrary to
our hypothesis. In the quaternion case, the Brauer-Suzuki Theorem (2.21) gives
a similar contradiction. This proves (1). In particular it follows that C contains
involutions that are distinct from z. These involutions cannot be conjugate to z
which leads to (2). For (3) we note that ⟨K⟩ = [G, z] E G. If this group has odd
order, then z ∈ Z∗(G) and then G is not a counter-example. �

Lemma 5.4. G = F ∗(G)⟨z⟩ and F ∗(G) is a non-abelian simple group.

Proof.

(1) O(G) = 1 and G = ⟨zG⟩.

Proof. Suppose that O(G) ̸= 1 and let Ĝ := G/O(G). Lemma

4.1 (7) yields that ẑ is isolated in Ĝ. Then from the minimal choice of

G it follows that ẑ ∈ Z∗(Ĝ) = Z(Ĝ). But then z ∈ Z∗(G), which is a
contradiction.

For the second statement assume that H := ⟨zG⟩ < G. We note that
H E G and hence O(H) ≤ O(G) = 1. Together with Lemma 5.2 (1)
it follows that z ∈ Z∗(H) = Z(H) and hence z commutes with all its
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conjugates in G. But z is isolated and consequently z ∈ Z(G). This is a
contradiction. �

(2) F (G) = 1.

Proof. Assume otherwise. Then (1) yields that O2(G) ̸= 1. We note
that z centralises O2(G) by Lemma 4.1 (2). Therefore all conjugates of
z in G centralise O2(G) and with (1) it follows that O2(G) ≤ Z(G).
In particular z /∈ O2(G) because z /∈ Z(G). Now let t ∈ O2(G) be an

involution. In the factor group G̃ := G/⟨t⟩ we have that z̃ is isolated by

Lemma 4.1 (7). The minimal choice of G implies that z̃ ∈ Z∗(G̃). Let

X E G be such that X̃ = O(G̃). Then O(X) ≤ O(G) = 1 by (1) and it
follows that ⟨t⟩ ∈ Syl2(X) and consequently X = ⟨t⟩ by Theorem 2.20.

Therefore z̃ ∈ Z∗(G̃) = Z(G̃) which means that z ∈ O2(G). This is a
contradiction. �

(3) G = F ∗(G)⟨z⟩.

Proof. Assume that F ∗(G)⟨z⟩ < G. Then z ∈ Z∗(F ∗(G)⟨z⟩) by
Lemma 5.2 (1) and therefore

[F ∗(G), z] ≤ F ∗(G) ∩O(F ∗(G)⟨z⟩) ≤ O(F ∗(G)) = 1.

This implies that F ∗(G) centralises z and all its conjugates. It follows
that F ∗(G) ≤ Z(G) = 1, by (1) and (2), and this is impossible. Hence
F ∗(G)⟨z⟩ = G. �

(4) F ∗(G) is simple and non-abelian.

Proof. F ∗(G) is non-abelian by (2), in fact F ∗(G) = E(G). We
assume that F ∗(G) is not simple and deduce that G has at least two
components. Let N be a component of G and let z ∈ S ∈Syl2(G). Then
z ∈ Z(S) by Lemma 4.1 (2) and, as N is subnormal in G, we have that
N ∩ S ∈Syl2(N). Therefore z centralises a non-trivial 2-subgroup of N .
In particular N ∩ Nz ̸= 1. But N and Nz are normal in F ∗(G) whence
N∩Nz is normal in F ∗(G). As N is a minimal normal subgroup of F ∗(G),
this implies that N = Nz. We recall that N ̸= F ∗(G), so N⟨z⟩ < G and
Lemma 5.2 (1) yields that z ∈ Z∗(N⟨z⟩). It follows that z centralises every
component of G whence [F ∗(G), z] = 1, which is a contradiction.

We conclude that F ∗(G) is simple. �
�

Lemma 5.5. If O2(C) ̸= C and z ∈ S ∈ Syl2(G), then S is a direct product of
⟨z⟩ with a subgroup of S of index 2.

Proof. First it follows from Lemma 4.1 (2) that z ∈ Z(S) and thus S ≤ C.
Lemma 4.1 (9) implies that Lemma 2.19 is applicable. As O2(C) ̸= C, it yields that
O2(G) ̸= G and therefore, with Lemma 5.4, that z /∈ O2(G) = F ∗(G). In particular
we see that S = (S ∩ F ∗(G))× ⟨z⟩. �

Lemma 5.6. O2(CF∗(C)(z)) = CF∗(C)(z) and |C : O2(C)| ≤ 2.

In particular |C : O2(C)| ≤ 2 and O2(C/⟨z⟩) = C/⟨z⟩.
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Proof. If G is simple, then Lemma 4.1 (10) yields the result.
Next suppose that G is not simple. Then Lemma 5.4 implies that G = F ∗(G)⟨z⟩

and that O2(G) = F ∗(G) has index 2 in G. Let z ∈ S ∈ Syl2(G) and let T :=
S ∩ F ∗(G). Then S = T × ⟨z⟩ by Lemma 5.5 and T is a Sylow 2-subgroup of
C0 := CF∗(G)(z). The simplicity of F ∗(G) gives that O2(F ∗(G)) = F ∗(G). As C0

is z-invariant, Lemma 4.1 (9) yields that the hypothesis of Lemma 2.19 is satisfied,
so we deduce that O2(C0) = C0. As O

2(C0) = O2(C)∩C0, it follows that C/O2(C)
has order 2 and this implies the remaining assertions. �

The next two results show that G behaves almost like a simple group.

Lemma 5.7.

(1) F ∗(G) is the unique minimal normal subgroup of G.
(2) Let t ∈ G be an isolated involution in G. Then G = F ∗(G)⟨t⟩.
(3) G = ⟨K, z⟩.

Proof. Lemma 5.4 implies (1). For (2) we see that t is isolated and hence
Lemma 5.4 may be applied to G and t instead of G and z. We know that ⟨K⟩EG
by Lemma 5.3 (3) and hence (1) forces F ∗(G) ≤ ⟨K⟩. This yields (3). �

Corollary 5.8. Suppose that t ∈ G is an isolated involution and that H is a
maximal subgroup of G containing t. Then H is primitive.

Proof. Let 1 ̸= X EH. Then the maximality of H implies that NG(X) = G
or NG(X) = H. In the first case, it follows from Lemma 5.7 that G = X⟨t⟩ ≤ H,
which is a contradiction. Therefore the second case holds and consequently H is
primitive. �

The last few lemmas of this section are taken from [Wal08], with minimal
changes.

Lemma 5.9. Suppose that t ∈ zG\M and set n := |M : C|. Let D := M ∩M t

and let I := ID(t). Then the following hold:

(1) D = O(D)CD(t)

(2) zM = {zx | x ∈ I}. In particular D is transitive on zM .

(3) M = CI. More precisely, every coset of C in M contains exactly one
element of I.

(4) |I| = |D : CD(t)| = |D : CD(z)| = n.

(5) Let q ∈ π(G) and Q ∈ Sylq(D, t). Then |IQ(t)| = nq.

Proof. As ⟨D, z⟩ ≤ M ̸= G, Lemma 5.7 yields that D is not normal in G.
Moreover D is t-invariant and therefore D⟨t⟩ is a proper subgroup of G. Since t is
isolated in G, it follows from Lemma 5.2 (1) that

D⟨t⟩ = O(D⟨t⟩)CD⟨t⟩(t).

Hence [D, t] ≤ D ∩O(D⟨t⟩) ≤ O(D) which gives (1).
Let u ∈ zM . Then u and zt are conjugate in ⟨u, zt⟩ because uzt has odd order

by Lemma 4.1 (3). In fact there exists an involution s ∈ ⟨u, zt⟩ such that us = zt.
Now u = zts. On the other hand, since u ∈ zM , Lemma 4.1 (4) yields that z and u
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are also conjugate in M . Choose x ∈ M such that ux = z. Then z = ux = ztsx and
therefore tsx ∈ C. This yields that ts ∈ M because ⟨x,C⟩ ≤ M . As ts is inverted
by t, it follows that ts ∈ M ∩M t = D and thus ts ∈ I. This gives (2) and implies
that M = CI. To finish the proof of (3), let x1, x2 ∈ I be such that Cx1 = Cx2.
Then x1x

−1
2 ∈ C. But x1t and x2t are involutions that are conjugate to t and hence

to z. Therefore x1tx2t = x1t(x2t)
−1 = x1x

−1
2 ∈ C. Lemma 4.1 (11) implies that

x1t = x2t and finally x1 = x2.
For (4), we apply Lemma 4.7 to the isolated involution t in D⟨t⟩ and it follows

that I is a set of representatives for the cosets of CD(t) inD. To prove (5) we observe
that, since t is isolated in D⟨t⟩, we may apply Lemma 4.13. From there we obtain
that CQ(t) ∈ Sylq(CD(t)) and that nq = |D : CD(t)|q = |Q : CQ(t)| = |IQ(t)|. �

Lemma 5.10. Suppose that C is a maximal subgroup of G and let p ∈ π(F (C)).
Then C contains a Sylow p-subgroup of G and every z-invariant p-subgroup of G
is centralised by z.

Proof. Let P ∈Sylp(C). Then z ∈ CG(P ) ≤ CG(Op(C)). But C is maximal in
G and therefore Corollary 5.8 implies thatNG(Op(C)) = C. It follows that CG(P ) ≤
C. Now if we set X := CG(P ) and Y := NG(P ), then Lemma 4.1 (6) yields that
Y = XCY (z). But X and CY (z) are both contained in C, thus NG(P ) = Y ≤ C.
This means that P ∈Sylp(G). The rest follows from Lemmas 4.8 and 4.10. �

Lemma 5.11. Suppose that C is a maximal subgroup of G and let π := π(F (C)).
Let z ∈ H < G. Then [H, z] is a π′-group.

Proof. Let H0 := [H, z] and assume that p ∈ π∩π(H0). From Lemma 5.2 (2)
we know that H0 is of odd order and that z acts coprimely on H0. Then Lem-
ma 2.1 (7) implies that I∗

H0
(⟨z⟩, p) ⊆Sylp(H0). Lemma 5.10 yields that every z-

invariant p-subgroup of H0 is centralised by z. Then it follows with Lemma 2.6 that
H0 = CH0(z)Op′(H0). But this means that H0 = [H0, z] ≤ Op′(H0), contrary to
our choice of p. �

Lemma 5.12. Suppose that q is a prime such that Oq(M) ̸≤ C. Then M does
not contain a Sylow q-subgroup of G.

Proof. First we observe that q is odd by Lemma 4.1 (2). With Lemma 5.2 (4)
we choose Q ∈Sylq(M, z) and assume that Q ∈Sylq(G, z). As Oq(M) ̸≤ C, we have
that 1 ̸= X := IOq(M)(z). If we set n := |M : C|, then Lemma 4.13 implies that
1 ̸= |IQ(z)| = nq. Our objective is to show that X lies in every conjugate of M in
G.

We see that X is C-invariant and hence Lemma 4.10 gives that X is contained
in every z-invariant Sylow q-subgroup of G. The same lemma and our assumption
that Q ∈Sylq(G, z) imply that every z-invariant q-subgroup of G lies in M . Now let
g ∈ G\M and M1 := Mg. We look at D := M1∩Mz

1 and see that D = CD(z)O(D)
and |D : CD(z)| = n by Lemma 5.9 (1) and (4). If we choose T ∈Sylq(D, z), then
part (5) of the same lemma yields that |IT (z)| = nq ̸= 1. Moreover T ≤ M because
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T is z-invariant. Then there exists an element c ∈ C such that IT (z) = IQc(z) =

(IQ(z))
c and finally X = Xc−1 ⊆ IT (z) ⊆ D ≤ M1. Hence

1 ̸= X ⊆ N :=
∩
g∈G

Mg EG.

But we know from Corollary 5.8 that M does not contain any non-trivial normal
subgroup of G, so this is impossible. �

Lemma 5.13. Let t ∈ C\{z} be an involution. Then CG(t) � M .

Proof. Let w := zt. Then we have that 1 ̸= ⟨wG⟩ EG and hence ⟨wG⟩ � M
by Corollary 5.8. So there exists a conjugate u of w that is not contained in M
and thus does not centralise z. We note that w and z are distinct and commute.
As z is isolated, this implies that w and z are not conjugate and it follows that u
and z are not conjugate. Now set D := ⟨u, z⟩. By Lemma 4.1 (5) we know that the
order of uz is even and not divisible by 4. More precisely the Sylow 2-subgroups of
D are elementary abelian of order 4 and contain the unique central involution v of
D. As u ∈ CG(v) and u /∈ M , we have that CG(v) � M . Let z ∈ T ∈Syl2(D) and

let d ∈ D be such that ud ∈ T . It follows that T = ⟨z, ud⟩ and hence v = zud. But
ud (= zv) and w (= zt) both centralise z and therefore they are conjugate in C
by Lemma 4.1 (9). Thus v = zud and t = zw are conjugate in C and CG(v) � M
implies that CG(t) � M . �



KAPITEL 6

Balance and Signalizer Functors

The concept of signalizer functors was introduced by Gorenstein and has many
applications in finite group theory, for example it plays an important role in the
Classification of Finite Simple Groups. Since we keep working under Hypothesis
5.1, the special behaviour of z in our minimal counter-example G leads to signa-
lizer functors for the prime 2 quite naturally and it turns out that they become
powerful tools. In this section, we therefore recall the notion of a signalizer func-
tor and Glauberman’s Soluble Signalizer Functor Theorem. Moreover we introduce
particular balance conditions and special signalizer functors that will have a role to
play in our analysis later on.

Definition 6.1. Suppose that A is an elementary abelian 2-subgroup of C
that contains z.

• For all a ∈ A#, we set

α(a) := O(CC(a)),

γ(a) := [CG(a), z]CO(C)(a) and

Θ(a) := γ(a)O(CC(A)).

• Suppose that A is of rank at least 3. We say that A is balanced if and
only if for all a ∈ A# we have that α(a) ≤ O(C). We say that A is
weakly balanced if and only if for all a ∈ A# we have that α(a) ≤
O(CC(A))O(C).

• For all subgroups V of A of order 4 we set

∆V :=
∩

v∈V #

O(CG(v)) ∩ C.

We say that A is 2-balanced if A is of rank at least 4 and if for all
subgroups V of A of order 4 we have that ∆V ≤ O(C).

The last definition seems to be slightly different from Gorenstein’s notion of “2-
balance for the prime 2̈ın [Gor82], Section 4.4, but it is in fact the same because
for all involutions a ∈ C we know that CG(a) < G by Lemma 5.7 and hence
CG(a) = CC(a)O(CG(a)) by Lemma 5.2 (1). Also, the words “balanced” and
“weakly balanced” have a meaning in standard literature already (see for exam-
ple [GLS96]), but the definitions above are close enough to these standard notions
that we thought that the choice of words is appropriate.

33
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Definition 6.2. Let p be a prime and let A be an abelian p-subgroup of G.
Suppose that for all a ∈ A# there is defined an A-invariant p′-subgroup θ(a) of
CG(a). Then θ is an A-signalizer functor if and only if the following balance
condition is satisfied for all a, b ∈ A#:

θ(a) ∩ CG(b) ≤ θ(b).

θ is soluble if and only if θ(a) is soluble for all a ∈ A#. A (soluble) A-signalizer
functor θ is said to be complete if and only if there exists a (soluble) A-invariant
p′-subgroup W of G such that θ(a) = CW (a) for all a ∈ A#. We refer to such a
subgroup W as the completion for θ.

Theorem 6.3 (Glauberman’s Soluble Signalizer Functor Theorem). Suppose
that p is a prime and that A ≤ G is an abelian p-subgroup of rank at least 3.

If θ is a soluble A-signalizer functor, then θ is complete. In particular, the
completion ⟨θ(a) | a ∈ A#⟩ is a soluble p′-subgroup of G.

Proof. This holds independently of Hypothesis 5.1, see [Gla76]. �

Remark 6.4. It follows from the Odd Order Theorem that signalizer functors
for 2-groups are always soluble.

Lemma 6.5. Suppose that A is an elementary abelian 2-subgroup of C that
contains z.

(1) For all a ∈ A#, we have that α(a) ≤ O(CG(a)) and α(a) = α(az).

(2) If A is balanced, then γ defines an A-signalizer functor.

(3) If A is weakly balanced, then Θ defines an A-signalizer functor.

Proof.

(1) Let a ∈ A#. We know that z ∈ CG(a), so Lemma 5.7 implies that
CG(a) < G and then z ∈ Z∗(CG(a)) with Lemma 5.2 (1). In particu-
lar z ∈ O2′,2(CG(a)) and [CG(a), z] ≤ O(CG(a)). Now Lemma 2.9 yields
that

α(a) = O(CCG(a)(z)) ≤ O(CG(a)).

The fact that CC(a) = CC(az) implies the next statement.

(2) Suppose that A is balanced and let a, b ∈ A#. As CO(C)(a) normalises
[CG(a), z] and these two subgroups are A-invariant 2′-subgroups of CG(a),
it follows that γ(a) is an A-invariant 2′-subgroup of CG(a). Now we apply
Lemma 2.1 (3) to deduce that

γ(a) ∩ CG(b) = C[CG(a),z](b)(CO(C)(a) ∩ CG(b)),

where the second factor lies in CO(C)(b) and hence in γ(b).
Let X := C[CG(a),z](b). Then the coprime action of z on X yields, with

Lemma 2.1 (2), thatX = CX(z)[X, z]. The commutator [X, z] is contained
in [CG(b), z] and hence in γ(b). So it is left to show that CX(z) ≤ γ(b) to
establish the balance condition. But

CX(z) = [CG(a), z] ∩ CC(b) ≤ O(CG(a)) ∩ CC(b)

≤ O(CC(a)) ∩ CG(b) = α(a) ∩ CG(b) ≤ CO(C)(b) ≤ γ(b)
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because A is balanced. Hence γ defines an A-signalizer functor.

(3) Suppose that A is weakly balanced. For all a ∈ A#, we see as in (2) that
Θ(a) is an A-invariant 2′-subgroup of CG(a). For the balance condition
let a, b ∈ A#. Two applications of Lemma 2.1 (3) give that

Θ(a) ∩ CG(b)

= C[CG(a),z](b) · (CO(C)(a) ∩ CG(b)) · (O(CC(A)) ∩ CG(b))

≤ C[CG(a),z](b)CO(C)(b)O(CC(A)).

The second and the third factor are contained in Θ(b), so let Y :=
C[CG(a),z](b). Then

CY (z) ≤ CG(b) ∩O(CG(a)) ∩ C ≤ CG(b) ∩ α(a).

As A is weakly balanced, Lemma 2.1 (3) implies that

CY (z) ≤ Cα(a)(b) ≤ CO(C)(b)CO(CC(A))(b) = CO(C)(b)O(CC(A)) ≤ Θ(b)

But also [Y, z] ≤ [CG(b), z] ≤ Θ(b), so with the coprime action of z
on Y and Lemma 2.1 (2) it follows that Y = CY (z)[Y, z] ≤ Θ(b).

�

In many situations, we use specifically designed signalizer functors to show
that C cannot have large elementary abelian 2-subgroups (or at least that we can
control where they lie in C). The idea is to find a suitable signalizer functor that
is complete and such that its completion, a 2′-subgroup of G, contains the set K.
This contradicts Lemma 5.3 (3). This argument is captured more specifically in the
next lemma and we see some applications in the course of this section.

Lemma 6.6. Suppose that A is an elementary abelian 2-subgroup of G contai-
ning z and suppose that θ is a soluble A-signalizer functor of G. Suppose further,
for all a ∈ A#, that [CG(a), z] ≤ θ(a). Then A is of rank at most 2.

Proof. Assume that A has rank 3 or more. Then Theorem 6.3 implies that
θ is complete. In particular, the completeness subgroup W := ⟨θ(a) | a ∈ A#⟩ is
a subgroup of G of odd order. Now let a ∈ A# and a ̸= z. Then z ∈ CG(a) and
therefore, by definition of the set K, we have that CK(a) ⊆ [CG(a), z] ≤ θ(a).
Theorem 4.6 forces

K ⊆ ⟨CK(a), CK(az)⟩ ≤ ⟨θ(a), θ(az)⟩ ≤ W.

Hence K generates a subgroup of G of odd order contradicting Lemma 5.3 (3). �

Lemma 6.7. C does not possess any 2-balanced subgroups.

Proof. Assume that A ≤ C is a 2-balanced subgroup. Then z ∈ A and r(A) ≥
4 by definition, so we are aiming for a contradiction to Lemma 6.6 by showing that
γ defines an A-signalizer functor. Hence let a, b ∈ A#. As b acts coprimely on γ(a),
we have that

γ(a) ∩ CG(b) = C[CG(a),z](b)CCO(C)(a)(b)

by Lemma 2.1 (3). But we see that CG(b) ∩ CO(C)(a) ≤ CO(C)(b) ≤ γ(b) at
once. Now if we let H := [CG(a), z] and H0 := CH(b), then it is only left to show
that H0 is contained in γ(b).
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First the coprime action of z on H0 yields that H0 = CH0(z)[H0, z] by Lemma
2.1 (2). Furthermore we have that [H0, z] ≤ [CG(b), z] ≤ γ(b). Our objective is to
apply Theorem 2.8. First we observe that z ∈ H < G by Lemma 5.7 and hence
H ≤ O(CG(a)) by Lemma 5.2 (1). In particular H has odd order and H = [H, z].
With ⟨z⟩, H and ⟨b⟩ playing the roles of A0, X and B in Theorem 2.8, respectively,
and with Hyp2(A) denoting the set of subgroups of A of index 4, we obtain that

CH0(z) = CH(z) ∩ CG(b) = ⟨[CH(Y ), z] ∩ CH0(z)|Y ∈ Hyp2(A)⟩.
Let Y ∈ Hyp2(A). By hypothesis, the rank of A is at least 4 and therefore Y

contains a subgroup V of order 4. With the notation from Definition 6.1 we see
that ∆V ≤ O(C) because of our assumption that A is 2-balanced.

Since z ∈ CG(V ) < G, we know that [CG(v), z] ≤ O(CG(v)) for all v ∈ V #, by
Lemma 5.2 (1). This yields, with 2-balance:

[CH(Y ), z] ∩ CH0(z) ≤ [CG(V ), z] ∩ CH0(z) ≤
∩

v∈V #

[CG(v), z] ∩ CH0(z)

≤
∩

v∈V #

O(CG(v)) ∩ CH0(z) ≤ ∆V ∩ CH0(z) ≤ O(C) ∩ CH0(z) ≤ CO(C)(b) ≤ γ(b).

Finally CH0(z) ≤ γ(b) as required and Lemma 6.6 gives a contradiction. �

We want to point out that the signalizer functor γ used in Lemma 6.7 appears
in Section 4.4 of [Gor82], but there it is established in a different way. We decided
to give an alternative approach here. The impact of Lemma 6.7 on the structure of
F ∗(C) will be discussed in detail in Chapter 11. Now we look at the other concepts
of balance. We note that, in the definition of γ, the fact that γ(a) contains [CG(a), z]
for all a ∈ A# together with Lemma 6.6 implies that A has rank at most 2 or that
γ is not allowed to be a signalizer functor. A similar statement holds for Θ. As this
idea will be referred to quite frequently, it is convenient to have it captured in a
result to be quoted later on.

Lemma 6.8. C does not contain any balanced or weakly balanced 2-subgroups.

Proof. Assume otherwise and let A ≤ C be an elementary abelian 2-subgroup
such that A is (weakly) balanced. Then the definition of (weakly) balanced sub-
groups yields that z ∈ A and r(A) ≥ 3. Now Lemma 6.5 (2) or (3), respectively,
imply that γ or (in the weakly balanced case) Θ defines an A-signalizer functor,
contrary to Lemma 6.6. �

The notion of core-separated subgroups appears in [Gol75]. We work with a
variation of it in our specific context and give an explicit proof of Goldschmidt’s
result that, under certain conditions, core-separated subgroups lead to a signalizer
functor.

Definition 6.9. Suppose that A1 and A2 are distinct commuting elementary
abelian subgroups of G such that A1 ∩A2 = 1. Set A := A1 ×A2. Then A1, A2 are
said to be core-separated if and only if for all a ∈ A# and for every 2-component
E of CG(a) we have that

[E,A1] ≤ O(CG(a)) or [E,A2] ≤ O(CG(a)).
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Before we state and prove Goldschmidt’s theorem, we present two of his results
from [Gol75], one of them much simplified. They play a role in the proof, but
nowhere else in this text and they do not depend on Hypothesis 5.1.

Lemma 6.10. Suppose that H is a proper subgroup of G with O(H) = 1 and
let t ∈ G be an involution. If Y is a non-trivial subgroup of O(CH(t)), then H
possesses a ⟨t, Y ⟩-invariant component that is centralised by neither t nor Y .

Proof. This is (2.6) in [Gol75]. �

Lemma 6.11. Suppose that A is an abelian 2-subgroup of G and that B ≤ A.
If Y is an A-invariant 2′-subgroup of G and Y = [Y,A], then

CY (B) = ⟨CY (B) ∩ [CY (B0), A] | B/B0 is cyclic⟩.

Proof. This is a very special case of (2.5) in [Gol75]. �

Lemma 6.12. Suppose that A1, A2 ≤ G are core-separated subgroups of G of
order 4 and let A := A1 ×A2. For all a ∈ A# set

θ(a) :=
∩

i=1,2

[O(CG(a)), Ai](O(CG(a)) ∩O(CG(Ai))).

Then θ defines a soluble A-signalizer functor.

Proof. We follow Goldschmidt’s arguments in [Gol75]. For all a ∈ A# and
i ∈ {1, 2}, we set

γi(a) := [O(CG(a)), Ai](O(CG(a)) ∩O(CG(Ai))).

Let a ∈ A# and i ∈ {1, 2}. Set X := [O(CG(a)), Ai] and let b ∈ A#
i .

(1) Y := [CX(b), Ai] is contained in O(CG(b)).

Proof. SetH := CG(b) and Ĥ := H/O(H). First we note that a ∈ H

because A is abelian. Moreover Y ≤ O(CG(a)) and hence Ŷ ≤ O(CĤ(â)).

Let us assume that Ŷ ̸= 1. Then Lemma 6.10 yields a 2-component

E of H such that Ê is normalised, but not centralised by Ŷ and by â.
Let Aj := A3−i. Then it follows from the fact that A1 and A2 are core-

separated that Ê commutes with Âi or with Âj .

If [Ê, Âi] = 1, then [Âi, Ê, Ŷ ] = 1 = [Ê, Ŷ , Âi] and therefore [Ŷ , Ê] =

[Ŷ , Âi, Ê] = 1 by definition of Ŷ and by the Three Subgroups Lemma.

This is impossible and thus [Ê, Âj ] = 1. Let ai ∈ Ai and aj ∈ Aj be

such that a = aiaj . Then [Ê, âj ] ≤ [Ê, Âj ] = 1, but we noted above that

[Ê, â] ̸= 1 and therefore [Ê, âi] ̸= 1. At the same time, we know that

[Ê, b̂] = 1 and in particular b ̸= ai. We conclude that Ai = ⟨ai, b⟩ because
by hypothesis |Ai| = 4. Since Y centralises a and b, it follows that

Ŷ = [Ŷ , Âi] = [Ŷ , âi] = [Ŷ , âj ].

Thus [Ŷ , Ê] = [Ŷ , âj , Ê] = 1 by the Three Subgroups Lemma, which is a

contradiction. Hence we have that Ŷ = 1 as stated. �
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(2) γi(a) ∩ CG(Ai) ≤ O(CG(Ai)).

Proof. By definition of γi(a) and Lemma 2.1 (3), we have that

Cγi(a)(Ai) = ([O(CG(a)), Ai] ∩ CG(Ai)) · (O(CG(a)) ∩O(CG(Ai))).

We see that the second factor is contained in O(CG(Ai)). Therefore
it suffices to prove that

CX(Ai) = [O(CG(a)), Ai] ∩ CG(Ai) ≤ O(CG(Ai)),

with our notation introduced before (1). Lemma 6.11, applied to Ai and
to the Ai-invariant 2

′-subgroup X, yields that

CX(Ai) = ⟨CX(Ai) ∩ [CX(b), Ai] | b ∈ A#
i ⟩.

We proved in (1) that, for all b ∈ A#
i , the subgroup [CX(b), Ai] is

contained in O(CG(b)). As CG(Ai) ≤ CG(b), it follows that CX(Ai) ≤
O(CG(Ai)). �

(3) Let a, b ∈ A# be arbitrary. Then θ(a) ∩ CG(b) ≤ O(CG(b)).

Proof. Let D := θ(a) ∩ CG(b), let H := CG(b) and Ĥ := H/O(H)

and assume that D̂ ̸= 1. By definition of θ, we know that θ(a) ≤ O(CG(a))

and hence D̂ ≤ O(CĤ(â)). Then Lemma 6.10 gives us a component Ê

of Ĥ that is normalised, but not centralised by D̂ and normalised, but

not centralised by â. As A1 and A2 are core-separated, we know that Ê

centralises Â1 or Â2. By symmetry we may suppose that [Ê, Â1] = 1. Then

Lemma 2.1 (2) implies that D̂ = [D̂, Â1]CD̂(Â1) and the Three Subgroup

Lemma yields that [D̂, Â1, Ê] = 1. Also, we know from (2) that

CD(A1) ≤ γ1(a) ∩ CG(A1) ≤ O(CG(A1))

whence CD̂(Â1) ≤ O(CĤ(Â1)). But Ê is a component of CĤ(Â1) and

therefore [CD̂(Â1), Ê] ≤ [O(CĤ(Â1)), Ê] = 1. Consequently [D̂, Ê] = 1,

which is a contradiction. We deduce that D̂ = 1, so θ(a) ∩ CG(b) ≤
O(CG(b)) as stated. �

(4) θ defines a signalizer functor.

Proof. We only need to establish the balance condition. Hence let
a, b ∈ A#, let i ∈ {1, 2} and set X := θ(a) ∩ CG(b). From (3) we know
that X ≤ O(CG(b)) and therefore

[X,Ai] ≤ [O(CG(b)), Ai] ≤ γi(b).

Moreover (2) yields that CX(Ai) ≤ Cγi(a)(Ai) ≤ O(CG(Ai)) whence

CX(Ai) ≤ O(CG(Ai)) ∩O(CG(b)) ≤ γi(b).

Hence [X,Ai] and CX(Ai) are contained in γi(b). Lemma 2.1 (2) gives
that X = [X,Ai]CX(Ai) which implies that X ≤ γ1(b)∩γ2(b) = θ(b). �

This completes the proof. �

Lemma 6.13. C does not possess any core-separated elementary abelian sub-
groups A1, A2 of order 4.
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Proof. Assume that such a pair of core-separated subgroups exists. Let A :=
A1 ×A2 and consider Goldschmidt’s signalizer functor, i.e. for all a ∈ A# define

θ(a) :=
∩

i=1,2

[O(CG(a)), Ai](O(CG(a)) ∩O(CG(Ai))),

as in Lemma 6.12. This is a soluble A-signalizer functor of G. Now let a ∈ A#,

let H := CG(a) and i ∈ {1, 2}. As z lies in H and in CG(Ai), we first have that
H and CG(Ai) are proper subgroups of G, by Lemma 5.7. Then we deduce that
[H, z] ≤ O(H) and [CG(Ai), z] ≤ O(CG(Ai)) with Lemma 5.2 (2). Let H0 := [H, z].
Then Lemma 2.1 (2) implies that

H0 = [H0, z] = [CH0(Ai)[H0, Ai], z] = ⟨[CH0(Ai), z], [H0, Ai]⟩.

Now [CH0(Ai), z] ≤ O(H) ∩ O(CG(Ai)) and [H0, Ai] ≤ [O(H), Ai], consequently
H0 ≤ θ(a).

So we have established that [CG(a), z] ≤ θ(a) for all a ∈ A#. But A has rank
4 and therefore this contradicts Lemma 6.6. �

We include here another simple application of our signalizer functor results,
again following an idea of Goldschmidt’s, but this time from [Gol72]. After that
we finish this section with a technical lemma that is going to be applied from
Chapter 10 onwards.

Lemma 6.14. Suppose that V ≤ O2′,2(C) is an elementary abelian subgroup of
order 4 containing z. Then r2(CG(V )) = 2.

Proof. Let us assume that this is false and let A be an elementary abelian
subgroup of CG(V ) of order 8 containing V . For all involutions a ∈ A we have that
z ∈ CG(a) < G by Lemma 5.7 and therefore V ≤ O2′,2(C)∩CG(a) ≤ O2′,2(CG(a))
by Lemma 5.2 (3). For all a ∈ A# we set

δ(a) := [O(CG(a)), V ](O(CG(V )) ∩ CG(a)).

(1) Let a, b ∈ A# and X := δ(a) ∩ CG(b). Then [X,V ] ≤ δ(b).

Proof. Set H := CG(b) and recall that V ≤ O2′,2(H). As X has
odd order, we obtain that [X,V ] ≤ X ∩ O2′,2(H) ≤ O(H). Then Lemma
2.1 (2) gives that [X,V ] = [X,V, V ] ≤ [O(H), V ] ≤ δ(b). �

(2) Let a, b ∈ A# and X := δ(a) ∩ CG(b). Then CX(V ) ≤ δ(b).

Proof. We show that Cδ(a)(V ) ≤ O(CG(V )) because this implies
that CX(V ) ≤ O(CG(V )) ∩ CG(b) ≤ δ(b) as desired. By Lemma 2.1 (3)
we have that

Cδ(a)(V ) = C[O(CG(a)),V ](V )(O(CG(V )) ∩ CG(a))

and the second factor is contained in O(CG(V )). So we need to prove
that C[O(CG(a)),V ](V ) ≤ O(CG(V )). Set Y := [O(CG(a)), V ]. Theorem
2.8, applied with 1, A, Y and V in the roles of B, A, X and A0 yields that

CY (V ) = ⟨[CY (t), V ] ∩ CY (V ) | t ∈ A#⟩.
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Hence let t ∈ A# and Y0 := [CY (t), V ] ∩ CY (V ). It suffices to show that
Y0 ≤ O(CG(V )). As V ≤ O2′,2(CG(t)) by Lemma 5.2 (3), we have that
Y0 ≤ O(CG(t)). Moreover Y0 ≤ O(CG(a)), so if t or a is contained in V ,
then Y0 ≤ O(CG(V )). Thus we suppose that neither a nor t is contained
in V . Then there exists some v ∈ V such that t = av (because |A| = 8
and |V | = 4) and so Y0 ≤ CY (V ) ≤ CG(v). Again by Lemma 5.2 (3),
we know that V ≤ O2′,2(CG(v)) and hence Y0 ≤ O(CG(v)). Therefore
Y0 ≤ O(CG(V )), completing the proof. �

(3) δ defines a soluble A-signalizer functor.

Proof. Let a, b ∈ B#. We see that δ(a) is an A-invariant 2′-subgroup
(hence a soluble subgroup) of CG(a) and so we only need to establish the
balance condition. But the work is already done: Lemma 2.1 (2) yields
that X = [X,V ]CX(V ) and we know from (1) and (2) that [X,V ] and
CX(V ) are contained in δ(b). �

As δ defines a soluble A-signalizer functor and as, for all a ∈ A#, we have that

[CG(a), z] ≤ [O(CG(a)), z] ≤ [O(CG(a)), V ] ≤ δ(a),

so that Lemma 6.6 is applicable. It yields a contradiction. �

Lemma 6.15. Suppose that E ∈ L2(C) and that a ∈ E is an involution.

Then α(a) centralises O2(C) as well as every component of C distinct from E.

If O(CE(a)) ≤ O(C) and α(a) � O(C), then α(a) induces non-trivial outer auto-

morphisms on E of odd order.

Proof. Let a ∈ E be an involution. The result is immediate if a = z, so we
suppose that a ̸= z. As O2(C) ≤ CC(a), it follows that

[α(a), O2(C)] ≤ [O(CC(a)), O2(CC(a))] = 1.

Also, for all components L of C distinct from E, we see that L ≤ E(CC(a)))
and thus

[α(a), L] ≤ [O(CC(a)), E(CC(a))] = 1.

Now we suppose that O(CE(a)) ≤ O(C) and α(a) � O(C). Hence there exists

some x ∈ C of odd order such that 1 ̸= x ∈ O(CC(a)). Then x /∈ Z(F ∗(C)) because

this is a 2-group. The first part of the lemma yields that x centralises O2(C) and
every component of C distinct from E (if any exists). Therefore x does not centralise
E. If x induces an inner automorphism on E, then x ∈ ECC(E). It follows that

x ∈ O(CE(a))O(CC(E)) = 1, with our hypothesis that O(CE(a)) ≤ O(C). But this

is impossible. Therefore x induces a non-trivial outer automorphism of E of odd
order. �



KAPITEL 7

Preparatory Results for the Local Analysis

Here we introduce the Bender Method, one of our most important tools for local
arguments. It comes into action for the first time when we analyse the behaviour
of isolated involutions in proper subgroups of G. The results that we obtain are
very often applied to maximal subgroups of G containing the centraliser of an
involution, and therefore they play a role not only in the proof of Theorem A, but
also in Chapters 9, 14 and 15. Throughout, we assume Hypothesis 5.1. Some of the
material in this section is taken from [Wal09].

7.1. The Bender Method

Definition 7.1. Let H1 and H2 be maximal subgroups of G. Then we say that
H1 infects H2 and we write H1 # H2 if and only if there exists a subgroup A of
F (H1) such that ACF∗(H1)(A) ≤ H2.

Lemma 7.2. Suppose that H1 and H2 are maximal subgroups of G that both
contain a conjugate of z and suppose that H1 infects H2. Let σ := π(F (H1)). Then
the following hold:

(1) Z(F (H1))E(H1) ≤ H2.

(2) [E(H1), Oq(H2)] = 1 for all q ∈ σ.

(3) If E(H1) ̸= 1 or |σ| ≥ 2, then Fσ(H2) ≤ H1.

Proof. By hypothesis, there exists an involution in zG ∩H1. This involution
is isolated in G because it is conjugate to z, so Corollary 5.8 yields that H1 is
primitive. Similarly H2 is primitive.

(1) Let A ≤ F (H1) be such that ACF∗(H1)(A) ≤ H2. Then

Z(F (H1))E(H1) ≤ CF∗(H1)(A) ≤ H2.

(2) Let q ∈ σ and Q := Z(Oq(H1)). Then 1 ̸= Q E H1 and from (1) we
know that Q ≤ H2. Moreover NG(Q) = H1 because H1 is primitive and
therefore COq(H2)(Q) ≤ H1 normalises E(H1). Conversely E(H1), which
lies in H2 by (1), normalises COq(H2)(Q). Hence

[COq(H2)(Q), E(H1)] ≤ Oq(H2) ∩E(H1) ≤ Z(E(H1))

and the Three Subgroups Lemma yields that [COq(H2)(Q), E(H1)] = 1.
Then, since Oq(E(H1)) = E(H1), we may apply Thompson’s P × Q-
Lemma. It gives that E(H1) centralises Oq(H2) as stated.

41
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(3) If E(H1) ̸= 1, then by (2) we have that Fσ(H2) ≤ NG(E(H1)) = H1.
Now suppose that |σ| ≥ 2 and let p, q ∈ σ be distinct. Again let Q :=
Z(Oq(H1)) and set P := Z(Op(H1)). Then 1 ̸= P ≤ H2 by (1) and
COq(H2)(Q) ≤ H1 and therefore

[COq(H2)(Q), P ] ≤ Oq(H2) ∩ P = 1.

Once more we apply Thompson’s P×Q-Lemma and obtain that Oq(H2) ≤
CG(P ) ≤ H1. Repeating this argument for all primes in σ yields the
statement.

�

The next theorem is essential for the Bender method. The result is, in fact, due
to Bender and is usually stated for maximal subgroups of simple groups. We felt
that the fact that G is not necessarily simple makes the quotation of theorems for
simple groups slightly inconvenient – so rather than doing that and dealing with
case distinctions every time, we decided to rephrase Bender’s results for our purpose
and to give an explicit proof.

Theorem 7.3 (Infection Theorem). Suppose that H1 and H2 are maximal sub-
groups of G that both contain a conjugate of z and suppose that H1 infects H2. Set
σ := π(F (H1)).

(1) Fσ′(H2) ∩H1 = 1.

(2) If q is a prime such that Oq(H1) ̸= 1 and char(H2) = q, then char(H1) =
q.

(3) If H2 # H1, then H1 = H2 or there exists a prime q such that char(H1) =
q = char(H2).

(4) If E(H2) ≤ H1 and π(F (H2)) ⊆ σ, then H1 = H2 or there exists a prime
q such that char(H1) = q = char(H2).

(5) If H1 and H2 are conjugate and E(H2) = 1, then H1 = H2 or there exists
a prime q such that char(H1) = q = char(H2).

Proof. Let A ≤ F (H1) be such that ACF∗(H1)(A) ≤ H2 and note that, by
Lemma 7.2, we have that Z(F (H1))E(H1) ≤ H2 . We use throughout that H1 and
H2 are primitive subgroups of G, by Corollary 5.8.

(1) First we note that F := Fσ′(H2) ∩H1 acts coprimely on F (H1) and that
[F,ACF (H1)(A)] ≤ F ∩ F (H1) = 1. Therefore F centralises a centraliser
closed subgroup of F (H1). Hence from Lemma 2.1 (6) we deduce that
[F, F (H1)] = 1. But we also know that F and E(H1) normalise each
other and therefore [F,E(H1)] ≤ Z(E(H1)) whence [F,E(H1)] = 1 by
the Three Subgroups Lemma. Thus F ≤ CH1(F

∗(H1)) = Z(F (H1)). This
yields that F = 1 as stated because F is a σ′-group.

(2) Suppose that char(H2) = q and that Oq(H1) ̸= 1. By Lemma 7.2 (2) we
have that E(H1) centralises Oq(H2) = F ∗(H2). But then

E(H1) ≤ CH2(F
∗(H2)) = Z(F ∗(H2))

and thus E(H1) = 1. Now let P := Oq′(Z(F (H1))), let Q := Z(Oq(H1))
and note that COq(H2)(Q) ≤ H1 because H1 is primitive. As P ≤ H2 by
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Lemma 7.2 (1), we consider the action of P × Q on Oq(H2) = F ∗(H2).
Then

[COq(H2)(Q), P ] ≤ Oq(H2) ∩ P = 1.

Thompson’s P × Q-Lemma yields that [Oq(H2), P ] = 1. Therefore P ≤
CH2(F

∗(H2)) = Z(F ∗(H2)). But then P = 1 because P is a q′-group and
thus F (H1) = F ∗(H1) is a q-group.

(3) From Lemma 7.2 (1) we know that Z(F (H1)) ≤ H2 and Z(F (H2)) ≤ H1.
Together with (1) this yields that π(F (H2)) = σ. Again by Lemma 7.2 (1)
we have that E(H1) and E(H2) are contained in H1 ∩ H2, thus each
component of H1 or H2 is a component of H1 ∩ H2. First suppose that
F (H1) = F (H2) = 1. If E is a component of H1 that is not contained in
(and then coincides with) a component of H2, then E centralises E(H2) =
F ∗(H2) and is therefore contained in Z(F (H2)) = 1. This is impossible
and therefore this argument shows that E(H1) = E(H2). Then Corollary
5.8 yields that H1 = H2. Therefore we may suppose that F (H1) ̸= 1 or
F (H2) ̸= 1. As π(F (H2)) = σ, this implies that F (H1) ̸= 1 ̸= F (H2). If
there exists a prime q such that one of F ∗(H2) or F ∗(H1) is a q-group,
then π(F (H2)) = σ = {q} by (2). Thus we suppose that neither F ∗(H2)
nor F ∗(H1) is of prime characteristic. Then, as π(F (H2)) = σ, Lemma
7.2 (3) implies that F (H1) ≤ H2 and also F (H2) ≤ H1 because H2 infects
H1. So we deduce that F ∗(H1) ≤ H2 and F ∗(H2) ≤ H1. Let p ∈ σ and set
P1 := Op(H1) and P2 := Op(H2). Note that P1F (H2) = P1P2×Fp′(H2) is
nilpotent. It follows from the previous paragraph that [P1, O

p(F ∗(H2))] =
1 and it follows that

[P1, CH2(P2)] ≤ CH2(O
p(F ∗(H2))) ∩ CH2(P2) ≤ CH2(F

∗(H2)) ≤ Z(F (H2)).

In particular P1F (H2) is CH2(P2)-invariant. But then we see that P1P2 =
Op(P1F (H2)) is normalised by CH2(P2) and therefore [P1, O

p(CH2(P2))] =
1. Hence we have that Op(CH2(P2)) ≤ CH1(P1) and symmetry yields that
1 ̸= Op(CH1(P1)) = Op(CH2(P2)). This implies that H1 = H2 because H1

and H2 are primitive.

(4) If there exists a prime q such that F ∗(H2) is a q-group, then the hypothesis
yields that Oq(H1) ̸= 1 and then H1 is of characteristic q as well, by (2).
Now suppose that F ∗(H1) is a q-group. Then the hypothesis implies that
π(F (H2)) ⊆ σ = {q} which means that F (H2) is a (possibly trivial) q-
group. Thus the result follows if E(H2) = 1. Now suppose that E(H2) ̸= 1.
As E(H2) ≤ H1 with Lemma 7.2 (1), we have that

[E(H2), ACF∗(H1)(A)] ≤ E(H2) ∩ F ∗(H1) = E(H2) ∩Oq(H1) ≤ Z(E(H2))

because H1 has characteristic q. The Three Subgroups Lemma yields that
E(H2) centralises ACF∗(H1)(A). We recall that ACF∗(H1)(A) is a q-group
by our hypothesis that F ∗(H1) is a q-group, and therefore we may app-
ly Thompson’s P × Q-Lemma to the action of E(H2) · ACF∗(H1)(A) on
F ∗(H1). Then we see that [F ∗(H1), E(H2)] = 1. It follows that

E(H2) ≤ CH1
(F ∗(H1)) = Z(F (H1))

and therefore E(H2) = 1. Thus 1 ̸= Oq(H2) = F ∗(H2). Now the proof is
almost finished – it remains to consider the case where F ∗(H1) is not a
q-group. Then the hypothesis that π(F (H2)) ⊆ σ, together with Lemma
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7.2 (1) and (3), implies that F ∗(H2) ≤ H1. Therefore H2 # H1 and the
result follows from (3).

(5) By hypothesis we have that E(H2) = 1 and π(F (H2)) = π(F (H1)). Thus
(4) yields the result.

�

7.2. t-Minimal Subgroups, Pushing Down and Uniqueness Results

Definition 7.4. Suppose that t ∈ G is an involution and that W is a CG(t)-
invariant 2′-subgroup W of G. Then W is said to be t-minimal if and only if W
is minimal with respect to being normalised by CG(t), but not centralised by t.

Lemma 7.5. Suppose that t ∈ G is an involution, that H is a proper subgroup of
G containing CG(t) and that t is isolated in H. Then precisely one of the following
holds:

(1) t ∈ Z(H) or
(2) there exists some odd prime q ∈ π(F (H)) such that Oq(H) contains a

t-minimal subgroup.

Proof. Suppose that t /∈ Z(H). Then Lemma 5.2 (6) implies that there exists
an odd prime q ∈ π(F (H)) such that [Oq(H), t] ̸= 1. As [Oq(H), t] is CH(t)-invariant
and hence CG(t)-invariant, we find a t-minimal subgroup inside [Oq(H), t]. �

Hypothesis 7.6.
In addition to Hypothesis 5.1, suppose the following:

• t ∈ C is an involution.

• Whenever CG(t) is contained in a proper subgroup H of G, then t is
isolated in H.

• Ht is a maximal subgroup of G such that CG(t) ≤ Ht. If possible, we choo-
se Ht such that there exists a prime r such that Or(Ht) ̸= 1 = COr(Ht)(t).

• We set πt := π(F (Ht)) and if CG(t) ̸= Ht, then we let q ∈ πt be an odd
prime such that Oq(Ht) contains a t-minimal subgroup Ut.

Lemma 7.7. Suppose that Hypothesis 7.6 holds and that CG(t) < Ht. Then
Ut = [Ut, t] and Ut centralises CF∗(Ht)(t).

Proof. If [Ut, t] < Ut, then the t-minimality of Ut forces [Ut, t, t] = 1. By
Lemma 2.1 (2), this means that [Ut, t] = 1, which is a contradiction. The Thompson
P × Q-Lemma 2.2, applied to the action of Oq(CG(t)) × ⟨t⟩ on Ut, together with
the minimality of Ut, implies that Oq(CG(t)) centralises Ut. Moreover Ut centralises
Fq′(H) and E(H) and hence [CF∗(Ht)(t), Ut] = 1. �

Lemma 7.8 (Pushing Down Lemma). Suppose that Hypothesis 7.6 holds and
that t ∈ H < G.

(1) If F ≤ H is a nilpotent CH(t)-invariant subgroup, then [F, t] ≤ F (H).
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(2) [O(F (Ht)) ∩H, t] ≤ F (H).
(3) Suppose that CG(t) < Ht. If Ut ≤ H, then Ut ≤ Oq(H).

Proof. By hypothesis and Lemma 5.2 (2) we have that [F, t] ≤ [H, t] ≤ O(H).
Hence [F, t] is a nilpotent CH(t)-invariant 2′-subgroup of H. By Lemmas 2.10 and
2.1 (2) we obtain that [F, t] = [F, t, t] ≤ F (H), which is (1).

Parts (2) and (3) both follow from (1) because O(F (Ht)) ∩ H and Ut are
nilpotent CH(t)-invariant subgroups of H and because Ut = [Ut, t] by Lemma 7.7.

�

Lemma 7.9. Suppose that Hypothesis 7.6 holds and that CG(t) < Ht. Then Ht

is the unique maximal subgroup of G containing NG(Ut).

Proof. First we note that Ut is not normal in G by Lemma 5.7. Hence we may
choose NG(Ut) ≤ HmaxG. Then CG(t) ≤ H and Ht # H. We set F := Fπ′

t
(H)

and we see that F ∩ CG(t) ≤ F ∩ Ht = 1, by the Infection Theorem (1). Thus t
inverts F .

If F ̸= 1, then our choice of Ht in Hypothesis 7.6 implies that there exists a
prime r ∈ πt such that Or(Ht) is inverted by t. By Lemma 5.2 (5), applied to t and
Ht, we know that r is odd. Let X := Z(Or(Ht)). Then NG(X) = Ht because Ht

is primitive by Corollary 5.8. We also see that [X, t] = X and that X commutes
with Ut whence X ≤ H. Now t is isolated in H by hypothesis and X is a CH(t)-
invariant nilpotent subgroup of H, so the Pushing Down Lemma (1) yields that
X = [X, t] ≤ Or(H). It follows that Or′(H) ≤ CG(X) ≤ Ht. But r ∈ πt, so we
deduce that

F ≤ Fr′(H) ≤ F ∩Hv = 1,

which is a contradiction. We conclude that F = 1.
In order to apply the Infection Theorem (4), we still need to show that E(H) ≤

Ht. But this follows immediately from the fact that t is isolated in H and Lemma
5.2 (5). Hence the Infection Theorem yields that H = Ht or char(H) = char(Ht) =
q. In the second case, we assume that Ht ̸= H and apply Theorem 3.8:

Ht and H are primitive by Corollary 5.8. Whenever CG(t) ∈ H1 < G, then t
is isolated in H1 by Hypothesis 7.6 and therefore t ∈ Z∗(H1) by Lemma 5.2 (1).
Also H and Ht contain CG(t) and they both have characteristic q, so it follows that
(H,Ht) is a ⟨t⟩-special primitive pair of characteristic q of G. Theorem 3.8 implies
that Oq(Ht)∩H = 1 = Oq(H)∩Ht. But Ut ≤ H and therefore Ut = [Ut, t] ≤ Oq(H)
with the Pushing Down Lemma (3). Hence 1 ̸= Ut ≤ Oq(Ht)∩Oq(H) and this is a
contradiction. Consequently Ht = H. �

Lemma 7.10. Suppose that Hypothesis 7.6 holds and that CG(t) < Ht. Suppose
that 1 ̸= X ≤ F (Ht) is a Ut⟨t⟩-invariant subgroup and that H is a maximal subgroup
of G containing NG(X). Then Ht = H or char(Ht) = char(H) = q.

In particular, if |πt| ≥ 2, then NG(X) ≤ Ht.

Proof. By hypothesis, we have that X ≤ F (Ht) and NG(X) ≤ H. Therefore
Ht # H. We also have that Ut⟨t⟩ ≤ H and thus the Pushing Down Lemma (3)
yields that Ut ≤ Oq(H). From Lemma 7.9 we know that NG(Ut) ≤ Ht, so H infects
Ht and the Infection Theorem 7.3 (3) yields the first conclusion. If |πt| ≥ 2, then
only the possibility Ht = H is left and hence NG(X) ≤ Ht. �
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Lemma 7.11. Suppose that Hypothesis 7.6 holds and that t ̸= z. Suppose that
CG(t) = Ht and that q ∈ πt is such that Oq(Ht) � C.

If Q ∈ Sylq(Ht, ⟨z, t⟩) and T ∈ Syl2(CG(Q), ⟨z⟩), then either

(1) NG(Q) � Ht and there exists some c ∈ NG(Q) ∩ NG(T ) ∩ C such that
tc ∈ Z(T ) and tc ̸= t

or

(2) NG(Q) ≤ Ht and the involutions t and tz are not conjugate. Moreover, in
this case, every z-invariant q-subgroup of CG(tz) is centralised by z.

Proof. First we suppose that NG(Q) � Ht in order to obtain (1). By hypo-
thesis t centralises Q whilst CG(Q) ≤ CG(Oq(Ht)) ≤ Ht, because Ht is primitive
by Corollary 5.8. In particular t ∈ Z(CG(Q)) and therefore t ∈ Z(T ).

Assume that NG(Q) ∩NG(T ) ≤ Ht. Then a Frattini argument yields that

NG(Q) = CG(Q)(NG(Q) ∩NG(T )) ≤ Ht,

which is a contradiction. Thus NG(Q) ∩NG(T ) � Ht.
By choice of T and Lemma 4.1 (2), we know that [T, z] = 1, but z /∈ T because

z does not centralise Q by hypothesis. We have seen that NG(T ) � CG(t), so some
element from NG(T )∩NG(Q) maps t to another involution in Z(T ). Lemma 4.1 (9)
implies that this element can be chosen in C. This proves (1).

For (2) we suppose that NG(Q) ≤ Ht and we set w := tz. Let Hw denote
a maximal subgroup of G containing CG(w). As NG(Q) ≤ Ht, it follows that
Q ∈Sylq(G) and we recall that Q is centralised by t, but not by z. Lemma 4.10
implies that C does not contain any Sylow q-subgroup of G. Then from Lemma
4.12 we obtain that |CK(w)|q = 1 and |CK(t)|q ̸= 1. If t and w are conjugate in G,
then they are conjugate in C (by Lemma 4.1 (9)) and then the subsets CK(t) and
CK(w) are C-conjugate as well. This is impossible.

Now let Q0 be some z-invariant q-subgroup of CG(w). The previous paragraph
implies that CC(w) already contains a full Sylow q-subgroup Q1 of CG(w). With
Lemma 5.2 (4) let Q0 ≤ Q2 ∈Sylq(CG(w), z) and with Lemma 4.10, applied to
CG(w), let x ∈ CC(w) be such that Qx

1 = Q2. Then Q0 ≤ Q2 = Qx
1 ≤ CC(w) and

hence z centralises Q0. �

Lemma 7.12. Suppose that Hypothesis 7.6 holds, that t ̸= z and that C is a
maximal subgroup of G. Let π := π(F (C)). If O(F (C)) ∩ Ht ̸= 1, then [Ht, z] is
contained in Fπ′(Ht).

Proof. DefineX := [Ht, z]. Then by Lemma 5.11 we have thatX is a π′-group
and therefore it is sufficient to show that X is nilpotent. We set D := O(F (C))∩Ht

and see that D × ⟨z⟩ acts coprimely on X. As

[CX(z), D] ≤ CX(z) ∩O(F (C)) = 1,

it follows that CX(z) ≤ CX(D). This means that Theorem 2.27 is applicable: it
yields that [CX(D), z] is normal inX and that [X,D] is a nilpotent normal subgroup
of X. With Lemma 5.7 let H be a maximal subgroup of G containing CG(D). Then
z ∈ H and Lemma 5.2 (1) implies that H0 := [H, z] ≤ O(H). So H0 is a soluble
π′-group, again by Lemma 5.11. Moreover M # H because D ≤ F (M). With
the Infection Theorem (1) we deduce that M ∩ H0 ≤ M ∩ Fπ′(H) = 1 and that,
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therefore, H0 is inverted by z. We deduce that H0 is an abelian normal subgroup
of H and in particular H0 ≤ F (H). Now we have that

[CX(D), z] ≤ [CG(D), z] ∩ CX(D) ≤ H0 ∩ CX(D) ≤ F (H) ∩ CX(D) ≤ F (CX(D)).

Hence [CX(D), z] is nilpotent, it is normal in X by the previous paragraph, and
thus [CX(D), z] ≤ F (X). With Lemma 2.1 (2), it follows that X = CX(D)[X,D]
and finally

X = [X, z] ≤ [CX(D), z][X,D, z] ≤ F (X),

so in particular X is nilpotent. �





KAPITEL 8

Maximal Subgroups Containing C

The objective of this section is the proof of Theorem A, and the material is to
a large extent taken from [Wal09]. We proceed by way of contradiction and begin
by phrasing a suitable working hypothesis.

Hypothesis 8.1. Suppose that Hypothesis 5.1 holds and that C < M maxG.

• If possible, then choose M such that there exists a prime r such that
Or(M) ̸= 1 = COr(M)(z).

• Set π := π(F (M)) and let p ∈ π be such that Op(M) contains a z-minimal
subgroup U .

• Suppose that M is not of characteristic p.

• Let P ∈ Sylp(M, z) and Z := Ω1(Z(P )).

Lemma 8.2. Suppose that Hypothesis 8.1 holds. Then Z � Op(M). In particular
Z is not cyclic.

Proof. By Hypothesis 8.1 and Lemma 5.12 we have that P /∈Sylp(G, z) and
therefore NG(P ) is not contained in M . Assume that Z ≤ Op(M). As [U,Z] = 1
and Z is a non-trivial z-invariant subgroup of F (M), Lemma 7.10 is applicable to
Z. From Hypothesis 8.1 we know that M is not of characteristic p, so the lemma
yields that NG(Z) ≤ M . Then it follows that NG(P ) ≤ NG(Z) ≤ M , which is a
contradiction. For the second assertion we assume that Z is cyclic. Then |Z| = p
and since Z ∩ Op(M) ̸= 1, this means that Z ≤ Op(M). However this contradicts
the first statement. �

Lemma 8.3. Suppose that Hypothesis 8.1 holds and that X is a subgroup of
Op(M) such that 1 ̸= X = [X, z]. Then M is the unique maximal subgroup of G
containing NG(X).

Proof. By Lemma 5.7 and since X is z-invariant, there exists a maximal
subgroup H of G containing NG(X). As X ≤ Op(M), we have that M # H.
Our objective is to apply the Infection Theorem (4) and so we first note that
z centralises E(H) by Lemma 5.2 (5). Therefore E(H) ≤ C ≤ M and next we
consider F := Fπ′(H). The Infection Theorem (1) gives that F ∩ M = 1 and in
particular F ∩ C = 1. Thus F is inverted by z.

(1) [F,X] = 1.

49
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Proof. We note that p is odd which means that we can apply the
Pushing Down Lemma 7.8 (2) . It yields that

X = [X, z] ≤ [O(F (M)) ∩H, z] ≤ F (H)

and therefore X ≤ Op(H). Then [F,X] ≤ Oπ′(H) ∩Op(H) = 1. �

(2) If rp(CC(Op(M))) ≥ 2, then F = 1.

Proof. Suppose that there exists an elementary abelian p-subgroup
W ≤ CC(Op(M)) of order at least p2. We note that W and z both lie in
NG(X) and hence in H.

Let w ∈ W#. Then z ∈ CG(w) whence Lemma 5.7 implies that CG(w)
is a proper subgroup of G. Let L be a maximal subgroup of G containing
CG(w). As W ≤ CC(Op(M)) ≤ CC(U), it follows that U⟨z⟩ ≤ CG(w) ≤
L. The Pushing Down Lemma (3) implies that U ≤ Op(L). As Hypothesis
8.1 implies Hypothesis 7.6, Lemma 7.9 yields that L infects M . We obser-
ved above that the subgroup F is inverted by z, in particular CF (w) ≤ L
is inverted by z. It follows that

CF (w) = [CF (w), z] ≤ [L, z] ≤ O(L)

because z ∈ Z∗(L) by Lemma 5.2 (1). Since X ≤ CG(w) ≤ L, we also
have that X = [X, z] ≤ O(L).

We recall that F centralises X by (1) and that F is a p′-group because
p ∈ π. Together with Lemma 2.9 we obtain that

CF (w) = CCF (w)(X) ≤ Op′(CO(L)(X)) ≤ Op′(O(L)) ≤ Op′(L).

As U ≤ Op(L), it follows that [U,CF (w)] = 1. By Lemma 2.1 (4) and
since W is not cyclic, we have that F = ⟨CF (w) | w ∈ W#⟩ and thus
[U,F ] = 1. Now Lemma 7.9 implies that F ≤ NG(U) ≤ M and therefore
F = F ∩M = 1. �

(3) If [Z, z] ̸= 1, then F = 1.

Proof. Suppose that Z possesses an element w ̸= 1 that is inverted
by z. We noted in the first paragraph of the proof that F is also inverted
by z. But we also know that w ∈ Z ≤ CG(X) ≤ H which implies that F
is w-invariant. We conclude that F is centralised by ⟨w⟩ = [⟨w⟩, z]. Now
let L be a maximal subgroup of G containing NG(⟨w⟩). Then z, X, U , Z
and – as we have just seen – also F are contained in L. The Pushing Down
Lemma (2) and (3) imply that X and U are both contained in Op(L) and
hence in Op(CG(w)). From Lemma 5.2 (1) we know that z ∈ Z∗(L) and
therefore F , which is inverted by z, lies in O(L). Lemma 2.9 gives that

F ≤ Op′(CG(X)) ∩ CO(L)(w) ≤ Op′(CO(CG(w))(X)) ≤ Op′(O(CG(w))).

As U ≤ Op(CG(w)), it follows that [U,F ] = 1 and therefore F ≤
CG(U) ≤ M , with Lemma 7.9. Then F = F ∩M = 1 as stated. �

Now we can finish the proof. We know that Z is elementary abelian of order at
least p2, by Lemma 8.2. If [Z, z] = 1, then Z ≤ CC(Op(M)) whence (2) is applicable
and gives that F = 1. If [Z, z] ̸= 1, then (3) implies that F = 1.
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It follows that F (H) is a π-group. The Infection Theorem (4) gives that H = M
or that H and M both have characteristic p. As M is not of characteristic p by
Hypothesis 8.1, we conclude that H = M . Therefore NG(X) ≤ M . �

The next lemmas include a special case of the situation where a component of
M is isomorphic to PSL2(q) for some odd number q, that is needed in Section 15.

Lemma 8.4. Suppose that Hypothesis 8.1 holds and that E(M) = 1 or that
there exists an odd number q such that E(M) ≃ PSL2(q). Suppose further that W
is an elementary abelian subgroup of M of order p2 that is centralised or inverted
by z. Then z inverts W and [COp(M)(W ), z] = 1. In particular CP (z) is cyclic.

Proof. We first note that Hypothesis 8.1 implies Hypothesis 7.6 and therefore
the results from Chapter 7 are applicable.

Assume that the assertion in the lemma is wrong and choose an elementary
abelian subgroupW ofM of order p2 such that z centralisesW or [COp(M)(W ), z] ̸=
1. We recall that, by Hypothesis 8.1, we know that Op(M) is not centralised by
z. Hence if [W, z] = 1, then Thompson’s P × Q-Lemma, applied to the action of
W ×⟨z⟩ on Op(M), yields that [COp(M)(W ), z] ̸= 1. For the remainder of the proof
we therefore assume that [COp(M)(W ), z] ̸= 1 and we work towards a contradiction.

As W is z-invariant, Lemma 5.2 (4) implies that W is contained in a z-invariant
Sylow p-subgroup of M , so we may suppose that W ≤ P . From Lemma 5.12 we
know that P /∈Sylp(G) and in particular NG(P ) � M . Lemma 4.7 yields that

NG(P ) = CNG(P )(z)(K ∩NG(P ))

and this implies that K∩NG(P ) ̸⊆ M . Let h ∈ K∩NG(P ) be such that h /∈ M and
let g ∈ G be such that h = zzg. Then Mh = Mzg

and t := zg is an involution in
zG ∩NG(P ) that is not contained in M and hence does not normalise M (because
M is primitive by Corollary 5.8). If M has a component, then we denote it by E and
we recall that E(M) = E by hypothesis. Our assumption that [COp(M)(W ), z] ̸= 1
implies that COp(M)(W ) possesses an element x of order p that is inverted by z.

(1) Suppose that y ∈ Op(M) is a non-trivial element that is inverted or cen-
tralised by z. Then NG(⟨y⟩) ≤ M . In particular CG(x) ≤ M .

Proof. If y is centralised by z, then y ∈ COp(M)(z) ≤ CG(U) by
Lemma 7.7 and thus NG(⟨y⟩) ≤ M by Lemma 7.10. If y is inverted by z,
then

1 ̸= ⟨y⟩ = [⟨y⟩, z] ≤ Op(M)

and hence NG(⟨y⟩) ≤ M by Lemma 8.3. As z inverts x, it follows that
CG(x) ≤ NG(⟨x⟩) ≤ M . �

(2) F (M t) ≤ M and, for all w ∈ W#, we have that x ∈ Op(CG(w)).

Proof. First we see that Op(M
t) ≤ P t = P ≤ M . Then we consider

Q := Op′(M t) and the coprime action of W on it. Lemma 2.1 (4) implies
that

Q = ⟨CQ(w) | w ∈ W#⟩.
With the Pushing Down Lemma (2) we see, for all w ∈ W#, that

⟨x⟩ = [⟨x⟩, z] ≤ [Op(M) ∩NG(⟨w⟩), z] ≤ Op(NG(⟨w⟩)).



52 8. MAXIMAL SUBGROUPS CONTAINING C

In particular x ∈ Op(CG(w)) as stated. Also x ∈ P ≤ M t, so as x acts on
Q, it follows that

[x,CQ(w)] ≤ Op(CG(w)) ∩Q = 1.

We deduce that CQ(w) ≤ CG(x) ≤ M by (1) and thus Q ≤ M .
�

(3) E(M t) � M , so in particular E(M) ̸= 1.

Proof. Otherwise, together with (2), we see that F ∗(M t) ≤ M and
hence M t # M . As t is an involution, we also have that M # M t and
therefore the Infection Theorem (3) yields that M = M t or that M and
M t have the same prime characteristic. We know that F ∗(M) ̸= Op(M) by
Hypothesis 8.1, so we deduce thatM = M t and this is a contradiction. �

(4) Let s be an involution in E. Then |CE(s)| is divisible by p.

Proof. Set D := Op(CG(s)) ∩ Op(M). First we note that D ̸= 1
because U ≤ CG(E) ≤ CG(s) and then the Pushing Down Lemma (3)
yields that U ≤ Op(CG(s)) and hence U ≤ D. As D ≤ Op(M) and M is
not of characteristic p, Lemma 7.10 forcesNG(D) ≤ M . IfD = Op(CG(s)),
then D is CG(s)-invariant and therefore CG(s) ≤ M . But s ̸= z because
z /∈ E and thus Lemma 5.13 forces CG(s) � M , which is a contradiction.

Therefore D ̸= Op(CG(s)) and D < Y := NOp(CG(s))(D). Then Y ≤
NG(D) ≤ M and hence Y acts on E and leaves the dihedral group CE(s)
invariant. (Recall that E ≃ PSL2(q).) Conversely CE(s) ≤ CG(s) ∩M ≤
NG(Y ).

Now we assume that CE(s) is a p′-group. Then [Y,CE(s)] ≤ Y ∩
CE(s) = 1 and it follows that Y/CY (E) cannot induce a non-trivial field
automorphism on E. Next we argue that D = CY (E): It is immediate
that

D ≤ Y ∩Op(M) ≤ Y ∩ CG(E)

and for the other inclusion we note that CG(E) ≤ M , because M is
primitive, and hence

CY (E) ≤ Op(CG(s)) ∩ CG(E) ∩NG(D) ≤ Op(CG(s)) ∩ CM (E)

≤ Op(M) ∩Op(CG(s)) = D.

Consequently Y/D induces a non-trivial inner automorphism on E cen-
tralising s and it follows that p divides |CE(s)|. This contradicts our as-
sumption that CE(s) is a p′-group. Hence |CE(s)| is divisible by p as
stated. �

Next we argue that the action of W on Et is faithful:
Assume otherwise and let y ∈ W# be such that [Et, y] = 1. Then x ∈

Op(CG(y)) by (2) and therefore

[Et, x] ≤ Et ∩Op(CG(y)) ≤ Op(E
t) = 1,

contrary to (1) and (3).
Thus W acts faithfully on Et and it follows from (4) that the subgroup W0

of W inducing inner automorphisms on Et has order p. Each element from W\W0
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induces a field automorphism on Et of order p. Hence there exists some w ∈ W\W0

such that x /∈ ⟨w⟩CMt(Et). Then Op(CEt(w)) = 1 and it follows with (2) that

[CEt(w), x] ≤ CEt(w) ∩Op(CG(w)) ≤ Op(CEt(w)) = 1.

We deduce that Et = ⟨CEt(w), CEt(x)⟩ ≤ CG(x), which is a contradiction to (1)
and (3). This completes the proof of the lemma. �

Lemma 8.5. Suppose that Hypothesis 8.1 holds and that E(M) = 1 or that
there exists an odd number q such that E(M) ≃ PSL2(q). Then

(1) CZ(z) has order p and it is the unique subgroup of P of order p that is
centralised by z;

(2) IZ(z) has order p and it is the unique subgroup of P of order p that is
inverted by z;

(3) |Z| = p2 and Z = Ω1(P );
(4) z inverts Op(M) and
(5) Op(M) is cyclic.

Proof. We recall that Op(M) ∩ Z ̸= 1 and that |Z| ≥ p2 by Lemma 8.2.
Moreover Lemma 2.1 (2) yields that

Z = CZ(z)× [Z, z] = CZ(z)× IZ(z).

(1) Lemma 8.4 gives that CZ(z) has at most order p and that (therefore) Z
is not centralised by z. If CZ(z) = 1, then z inverts Z whence Lemma 8.4
implies that [COp(M)(Z), z] = 1. But Z ≤ Z(P ) is centralised by Op(M).
So [Op(M), z] = 1, which is a contradiction.

We conclude that CZ(z) has order p and is, by Lemma 8.4, the unique
subgroup of CP (z) of order p.

(2) As |Z| ≥ p2, it follows from (1) that IZ(z) ̸= 1. Assume that IZ(z)
possesses a subgroup V of order p2. Then, as V ≤ Z(P ) ≤ CM (Op(M)),
it follows with Lemma 8.4 that [Op(M), z] = [COp(M)(V ), z] = 1, which is
a contradiction. It is left to show that IZ(z) is the only subgroup of P of
order p that is inverted by z.

First assume that Y ≤ Op(M) is distinct from IZ(z), has order p and
is inverted by z. Then W := Y IZ(z) is elementary abelian of order p2 and
we may apply Lemma 8.4. Thus [Y, z] ≤ [COp(M)(W ), z] = 1, which is a
contradiction. We emphasise here that this means that IZ(z) ≤ Op(M).
Next assume that Y1 ≤ P is distinct from IZ(z), has order p and is inverted
by z. Then W1 := Y1IZ(z) is elementary abelian of order p2, and Lemma
8.4 yields that [IZ(z), z] ≤ [COp(M)(W1), z] = 1. This is impossible again.

(3) Statements (1) and (2) imply that |Z| = p2, and we know that Z ≤ Ω1(P ).
Assume that Z ̸= Ω1(P ). Then there exists a subgroup of P of order p
that is not contained in Z. As Z ≤ Z(P ), it follows that r(P ) ≥ 3. But
P is z-invariant and therefore, with Lemma 2.7, there exists a z-invariant
elementary abelian subgroup X of P of order p3. By Lemma 2.1 (2), we
have that X = CX(z)× [X, z]. But then either CX(z) or IX(z) has order
at least p2 and that contradicts (1) and (2) above. Thus Ω1(P ) ≤ Z.

(4) From Hypothesis 8.1 we know that Op(M) is not centralised by z and
hence there exists a subgroup J of Op(M) of order p that is inverted
by z. Then (2) implies that J = IZ(z). As Z � Op(M) with Lemma
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8.2, it follows that CZ(z) � Op(M). But then (1) yields that Op(M)
does not contain any subgroup of order p that is centralised by z. Hence
COp(M)(z) = 1.

(5) We know from (4) that z inverts Op(M) whence Op(M) is abelian. Then
(2) yields that Op(M) contains a unique subgroup of order p and, as p is
odd, this means that Op(M) is cyclic.

�

Lemma 8.6. Suppose that Hypothesis 8.1 holds and that E(M) = 1 or that
there exists an odd number q such that E(M) ≃ PSL2(q). Then

U ≤
∩
g∈G

Mg.

Proof. Let g ∈ G\M , let t ∈ zG∩Mg and set D := M ∩M t. We note that, by
Lemma 4.1 (8) applied to t, the involution t is not contained in M . From Hypothesis
8.1 we know that z does not centralise Op(M) and hence [P, z] ̸= 1. Then Lemmas
4.13 and 5.9 (4) yield that p divides |M : C| = |D : CD(t)| and it follows that
|[D, t]| / |[D, t] ∩ CD(t)| is divisible by p. Thus there exists a subgroup X of D of
order p that is inverted by t. We show that X is conjugate to U .

By Lemma 8.5 (3) we have that Z = Ω1(P ). Lemma 5.7 implies that NG(Z)
is a proper subgroup of G. Then we let Q ∈Sylp(NG(Z), z) (with Lemma 5.2 (4))
be such that P ≤ Q. From Lemma 8.5 (5) we know that |U | = p and U EM . Thus
NG(U) = M by Corollary 5.8 and it follows that P = NQ(U). Let Q0 := NQ(P ).
ThenQ0 � M because P /∈ Sylp(G) by Lemma 5.12. In particularQ is not contained
inM . As |Q0 : NQ0(U)| = |Q0 : P | ≥ p, we see that UQ0 has at least p elements. But
Q0 normalises Z and therefore every element of UQ0 is one of the p+1 subgroups of
Z of order p. We deduce that UQ0 has precisely p elements and that Q0 normalises
(and therefore centralises) a subgroup Y of order p of Z. The subgroup CZ(Q0) is z-
invariant and hence coincides with U or with CZ(z), because these two subgroups
are the unique z-invariant subgroups of Z of order p. But CZ(Q0) ̸= U because
NG(U) = M and Q0 � M . It follows that CZ(Q0) = CZ(z).

Now we recall that our objective is to show that X is conjugate to U : We
know that X ≤ D ≤ M . Therefore, by Lemma 8.5 (3) and Sylow’s Theorem, the
subgroup X is conjugate in M to a subgroup of order p in Z, i.e. to a member of
UQ0 or to CZ(z).

First suppose thatX is not conjugate to U . ThenX is conjugate to CZ(z). Thus
there exists a conjugate t′ of z distinct from t such that t′ and t are both contained
in NG(X). Hence they are conjugate in NG(X) by Lemma 4.1 (4), applied to the
isolated involution t. This is impossible because t′ centralises X whereas t inverts
it. Thus X must be conjugate to U . Now let h ∈ G be such that X = Uh. Then
t ∈ NG(X) = NG(U

h) = Mh. As t ∈ Mg and as every conjugate of z is contained
in a unique conjugate of M , by Lemma 4.1 (8), this yields that Mh = Mg. Now
we see that X ≤ D ≤ M normalises U EM and therefore [X,U ] = 1. So we have
that U ≤ NG(X) = Mg. As g ∈ G\M was arbitrary, it follows that U lies in every
conjugate of M in G, as stated. �
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Proof of Theorem A.
Recall that in Theorem A, we suppose that G is a minimal counter-example

to the Z*-Theorem, so Hypothesis 5.1 is satisfied. Assume that Theorem A fails.
Then C is properly contained in M and Lemma 7.5 implies that there exists an
odd prime p such that Op(M) contains a z-minimal subgroup U . Again by the
failure of Theorem A, we have that F ∗(M) ̸= Op(M) and E(M) = 1. In particular
Hypothesis 8.1 is satisfied and we may apply Lemmas 8.2 up to 8.5. The (by Lemma
8.5 (2) unique) subgroup of P of order p that is inverted by z must now be U , by
Lemma 8.5 (5). Lemma 8.6 implies that U is contained in every conjugate of M in
G. Then

1 ̸= U ≤
∩
g∈G

Mg EG,

but this contradicts Lemma 5.7. Therefore Theorem A is proved. �

The Bender method returns to the scene in the proof of the next few results.
They lead to a new proof of Theorem 6.19 in [Wal09], avoiding difficulties when
quoting results from [BG94]. We would like to point out that some of the arguments
in this new proof follow ideas from Sections 7 and 8 in Chapter II of [BG94]. Here
we only suppose that our main hypothesis (5.1) holds.

Lemma 8.7. Suppose that C is a maximal subgroup of G and that Y0 ≤ F (C) is
centraliser closed in F (C). Let Y := Y0E(C) and π := π(F (C)). Then the following
hold:

(1) For all r ∈ π, we have that CG(Or(Y0)) ≤ C. In particular CG(Y0) and
(therefore) CG(Y ) are contained in C.

(2) CG(Y ) is a π-group.
(3) IC(Y, π

′) = {1}.
Suppose that Y ≤ H maxG. Then the following hold:

(4) H = CH(z)Fπ′(H).
(5) For all σ ⊆ π′, we have that ⟨IH(Y, σ)⟩ = Fσ(H).
(6) For all q ∈ π′, the subgroup Oq(H) is the unique maximal Y -invariant

q-subgroup of H.

Proof.

(1) As Y0 is centraliser closed in F (C), we have that Z(F (C)) ≤ Y0. Hence
for all primes r ∈ π, Corollary 5.8 implies that

CG(Or(Y0)) ≤ CG(Z(Or(C))) ≤ NG(Z(Or(C))) = C.

Then it follows of course that CG(Y ) ≤ CG(Y0) ≤ CG(Or(Y0)) ≤ C.

(2) Suppose that x ∈ CG(Y ) is a π′-element. Then x ∈ C by (1) and therefore
x acts coprimely on F (C) and centralises a centraliser closed subgroup,
namely Y0. Lemma 2.1 (6) implies that x centralises F (C). Moreover x ∈
CG(Y ) ≤ CG(E(C)) which forces x ∈ CC(F

∗(C)) ≤ Z(F (C)). But this is
a π-group, so x = 1.

(3) Let X ∈ IC(Y, π
′). Then [X,Y0] ≤ X ∩ F (C) = 1, so X centralises the

centraliser closed subgroup Y0 of F (C). With Lemma 2.1 (6) we deduce
that [X,F (C)] = 1. Moreover [X,E(C)] ≤ X ∩ E(C) E E(C). The hy-
pothesis C = M implies that 2 ∈ π and therefore the set π′ consists of
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odd primes. As components are not soluble, they have even order. In par-
ticular X ∩ E(C) cannot be a product of components of C. We conclude
that X ∩ E(C) ≤ Z(E(C)) and then that X centralises E(C), by the
Three Subgroups Lemma. Now we have that X ≤ CC(F

∗(C)) = Z(F (C))
whence X = 1.

Statements (4)–(6) are immediate from (3) if H = C, so we suppose from now
on that H ̸= C.

(4) The hypothesis yields that CF∗(C)(Y0) ≤ Y ≤ H and thus C # H.
Moreover z /∈ Z(H) because H ̸= C. With Lemma 5.2 (5) we have that
E(H) ≤ C and also Lemma 5.10 implies that all z-invariant π-subgroups
of H are centralised by z. As z /∈ Z(H), this forces, with Lemma 5.2 (6),
that F := Fπ′(H) ̸= 1. With the Infection Theorem (1) we see that
F ∩ C = 1 whence F is inverted by z. It follows that z centralises E(H)
and Fπ(H) and inverts F , so we conclude that

[H, z] ≤ CH(F ∗(H)) ≤ Z(F (H)).

From Lemma 2.6 we know that [H, z] is a π′-group, so [H, z] ≤ F .

(5) Let X ∈ IH(Y, σ). As CX(z) ∈ IC(Y, σ) and σ ⊆ π′, part (3) forces
CX(z) = 1 and thus z inverts X. By (4) this implies that X = [X, z] ≤
[H, z] ≤ F (H) and therefore X ≤ Fσ(H). Conversely Fσ(H) is a member
of the set IH(Y, σ).

(6) Let q ∈ π′ and let Q ∈ IH(Y, q). Then (5), applied to σ := {q}, yields
that Q ≤ Oq(H). This means that Oq(H) is the unique maximal member
of IH(Y, q).

�

Lemma 8.8. Suppose the following:
– C is maximal in G and Y0 ≤ F (C) is centraliser closed in F (C);
– Y := Y0E(C) and Y ≤ H maxG, H ̸= C; and
– q ∈ π(F (C))′ is such that Oq(H) ̸= 1.
Then Oq(H) is the unique maximal Y -invariant q-subgroup of G that intersects

H non-trivially.

Proof. We know from Lemma 8.7 (6) that I∗
H(Y, q) = {Oq(H)}. Let Q0 :=

Oq(H) ≤ Q ∈ I∗
G(Y, q) and note that, by Corollary 5.8, we have that NG(Q0) = H.

Therefore NQ(Q0) ≤ H, implying NQ(Q0) = Q0 because NQ(Q0) is a Y -invariant
q-subgroup of H. As Q is a q-group, this forces Q0 = Q. So we have that Q0 is
already a maximal Y -invariant q-subgroup of G.

Assume that our assertion is wrong. Let π := π(F (C)) and choose Q1 ∈
I∗

G(Y, q) such that Q1 ∩ H ̸= 1, but Q1 ̸= Q0 and such that the intersection
D := Q1 ∩ Q0 is as large as possible. Then Q1 ∩ H is a Y -invariant q-subgroup
of H and hence lies in Q0; in fact Q1 ∩ H = D and in particular D ̸= 1. Let
NG(D) ≤ LmaxG (with Lemma 5.7) and note that Y ≤ L. As D is a Y -invariant
q-subgroup of L, Lemma 8.7 (6) yields that D ≤ Oq(L). We also know that Q0 and
Oq(L) are abelian because these subgroups are inverted by z (by Lemma 8.7 (3)).
We deduce first that Q0 ≤ CG(D) ≤ L, then, with part (6) of the same lemma,
that Q0 ≤ Oq(L), and then that Oq(L) ≤ CG(Q0) ≤ H. It is Lemma 8.7 (6) once
more that yields that Oq(L) ≤ Oq(H) = Q0. Therefore Oq(L) = Oq(H) and L = H
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by Corollary 5.8. We conclude that NG(D) ≤ H and hence NQ1(D) ≤ Q1∩H = D,
forcing D = Q1. It follows that Q1 = Q0 after all, which is a contradiction. Thus
Oq(H) is the unique maximal Y -invariant q-subgroup of G that intersects H non-
trivially. �

Theorem 8.9. Suppose that C is maximal in G and that p ∈ π(F (C)) is an
odd prime such that Op(C) contains an elementary abelian subgroup X0 of order

p3. Then for all x ∈ X#
0 , the unique maximal subgroup of G containing CG(x) is

C.

Proof. Let Y0 := CF (C)(X0) and Y := Y0E(C). Then X0 ≤ Y0, moreover Y0

is centraliser closed in F (C) and hence the previous lemmas are applicable. We let
π := π(F (C)) and note that |π| ≥ 2 because 2 ∈ π and p is odd. From Lemma
5.7 we know that Y ̸= G and therefore we may choose a maximal subgroup H of
G containing Y . Then C # H and z ∈ H. In particular Lemma 5.2 (5) implies
that E(H) ≤ C. If F (H) is a π-group, then the Infection Theorem (4) yields that
H = C and there is nothing left to prove. Thus we suppose that H ̸= C and (hence)
that there exists a prime q ∈ π′ such that Q := Oq(H) ̸= 1. By Lemmas 8.7 (3)
and 8.8, it follows that z inverts Q and that Q is the unique member of I∗

G(Y, q)
intersecting H non-trivially. We go further now and show that I∗

G(Y, q) = {Q}:
Let Q1 ∈ I∗

G(Y, q) be arbitrary. As Q1 is Y -invariant, the coprime action of X0

on Q1 and Lemma 2.1 (4) give that

Q1 = ⟨CQ1
(X1) | X1 ≤ X0, |X0 : X1| = p⟩.

Choose X1 ≤ X0 of index p and such that CQ1(X1) ̸= 1. Then X1 is elementary
abelian of order p2 and so we can use the same argument for the coprime action of
X1 on Q, namely

Q = ⟨CQ(x) | x ∈ X#
1 ⟩.

Let x ∈ X#
1 be such that CQ(x) ̸= 1. Then z ∈ CG(x) and therefore Lemma

5.7 implies that CG(x) < G. We let CG(x) ≤ H1 maxG and we observe that
Y ≤ CG(x) ≤ H1. Therefore CQ1(X1) and CQ(x) are Y -invariant q-subgroups
of H1 and thus they are contained in Oq(H1), by Lemma 8.7 (6). In particular
Oq(H1) ̸= 1 and Lemma 8.8 yields that Oq(H1) is the unique member of I∗

G(Y, q)
intersecting H1 non-trivially. But Q and Q1 intersect H1 non-trivially, so we deduce
that Q1 = Q, i.e. I∗

G(Y, q) = {Q}. It follows that Oq(H) = Q = Oq(H1) and thus
H1 = H, because H and H1 are primitive by Corollary 5.8.

Let F := NF∗(C)(Y ). Then F leaves Q invariant which means that Q ∈
IG(F, q). As IG(F, q) ⊆ IG(Y, q), it follows that, conversely, every member of
IG(F, q) lies in Q. Hence I∗

G(F, q) = {Q}. But Y is subnormal in F ∗(C), so this
argument shows that IG(F

∗(C), q) = {Q}. However, this implies that Q = Oq(H)
is C-invariant and thus C = H contradicting our assumption.

We established that Y = CF∗(C)(X0) lies in a unique maximal subgroup of G,

namely in C. If x ∈ X#
0 , then CF∗(C)(X0) ≤ CG(x) < G and therefore CG(x) lies

in the unique maximal subgroup of G containing CF∗(C)(X0), i.e. in C. �





KAPITEL 9

The 2-rank of O2′,2(C)

In this section we prove Theorem B by analysing the behaviour of involutions
from O2′,2(C). Some of the arguments from the first part of this chapter appear
again towards the endgame. For example in Theorem 9.10, one of the main results
of this section, we basically present the proof given in [Wal09], but the reader will
notice that similar, more complicated arguments are used when we begin to analyse
maximal subgroups containing the centraliser of an involution from C\O2′,2(C).

9.1. Involutions in O2′,2(C)\{z}

We begin with a special hypothesis and corresponding notation. The objecti-
ve of the first part of this chapter is to exactly understand what centralisers of
involutions distinct from z in O2′,2(C) look like – if such involutions exist.

Hypothesis 9.1. In addition to Hypothesis 5.1, suppose that a ∈ O2′,2(C) is
an involution distinct from z. Moreover

• V := ⟨a, z⟩ and b := az. Let V ≤ S ∈ Syl2(G).

• For all v ∈ {a, b} let CG(v) ≤ Hv maxG with πv := π(F (Hv)) and such
that, if possible, there exists a prime rv ∈ πv with COrv (Hv)(v) = 1.

• Let C ≤ M maxG and π := π(F (M)) and, if possible, choose M such that
there exists a prime r ∈ π with COr(M)(z) = 1.

• For all v ∈ {a, b}, if CG(v) ̸= Hv, then let Uv denote a v-minimal subgroup
of G that is contained in F (Hv) and if C ̸= M , then let U be a z-minimal
subgroup of G contained in F (M).

• If a and b are conjugate, then suppose that Ha and Hb are conjugate.

Lemma 9.2. Suppose that Hypothesis 9.1 holds. Then

(1) r2(CG(V )) = 2;
(2) if a, z ∈ H ≤ G, then a and b are either conjugate or isolated in H; and
(3) a and b are isolated in every proper subgroup of G containing CK(a).

Proof. As a and z commute, the subgroup V is elementary abelian of order
4. Then Lemma 6.14 is applicable and it yields that r2(CG(V )) = 2.

For (2) we suppose that a, z ∈ H ≤ G and that a and b are not conjugate
in H. Let P ∈Syl2(H) be such that V ≤ P . Then Lemma 4.1 (2) implies that
z ∈ Z(P ). Hence if NP (V ) does not centralise a, then it interchanges a and b.
But a and az are not conjugate in H whence NP (V ) = CP (V ) = CP (a). Part (1)
yields that V is the unique elementary abelian subgroup of order 4 in CG(V ) and
therefore V is normalised by NP (NP (V )). Hence NP (NP (V )) = NP (V ) whence
P = NP (V ) = CP (V ). In particular r(P ) = 2 by (1) and it follows that a, z and az

59
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are the only involutions in P . We note that distinct involutions from P are never
conjugate in H, so (2) holds.

Now we turn to (3) and we suppose that a, z ∈ H < G and that CK(a) ⊆ H.
If a and b are not isolated in H, then (2) says that they are conjugate in H. So by
Lemma 4.1 (9) they are conjugate in CH(z). Let x ∈ CH(z) be such that b = ax.
Then CK(b) = CKx(ax) = (CK(a))x because K is C-invariant by Lemma 4.3 (1).
Therefore CK(b) ⊆ H. Theorem 4.6 forces K to be contained in H. As z ∈ H,
Lemma 5.4 gives that H = G, which is a contradiction. �

Lemma 9.3. Suppose that Hypothesis 9.1 holds. Then

(1) G is non-abelian and simple;
(2) G = ⟨CK(a), CK(b)⟩;
(3) O2(C) = C and
(4) r2(G) = 2.

Proof. We know from Lemma 5.4 that G = F ∗(G)⟨z⟩ and that F ∗(G) is non-
abelian and simple. In particular |G : F ∗(G)| ≤ 2 and therefore V ∩ F ∗(G) ̸= 1. If
G = F ∗(G), then G is simple as stated. Therefore we assume that F ∗(G) < G and
in particular that z /∈ F ∗(G). Lemma 5.2 (1) yields that F ∗(G) does not contain
any isolated involution, but we know that F ∗(G) contains an involution from V
and therefore a and b are not isolated in G. With Lemma 9.2 (2) it follows that a
and b are conjugate in G. But then a and b are both contained in F ∗(G) and hence
z = ab ∈ F ∗(G), which is a contradiction.

We turn to (2) and apply Theorem 4.6 together with (1) and the fact that ⟨K⟩
is a normal subgroup of G by Lemma 5.3 (3). This yields that ⟨CK(a), CK(b)⟩ =
⟨K⟩ = G.

For (3) we note that O2(G) = G by (1), so O2(C) = C by Lemma 4.1 (10).
It is left to prove (4). Let S0 := S ∩ O2′,2(C). Then V ≤ S0 E S and in

particular r(S0) ≥ 2. First we assume that S has no elementary abelian normal
subgroup of order 4 that is contained in S0. In that case Lemma 2.12 implies that
S0 is a dihedral or semi-dihedral group of order at least 8. So we know that Aut(S0)
is a 2-group, by Lemma 2.15. Recall that C := C/O(C). In this factor group we
have that S0 = O2(C) and therefore [O2(C), S0] = 1. But O2(C) = C by (3) and
hence [C, S0] = 1. Then it follows that S0 is abelian and thus S0 is abelian. But
this is not the case and consequently S0 contains a normal subgroup B of S that
is elementary abelian of order 4. With Lemma 9.2 (1), applied to any involution
t ∈ B distinct from z, we deduce that z ∈ B (because z centralises B) and hence
that r2(CG(B)) = 2.

Suppose that A is an elementary abelian subgroup of S of maximal order.
As z ∈ Z(S), we have that z ∈ A and in particular z ∈ A ∩ B. Lemma 9.2 (1)
implies that CA(B) ≤ B whence CA(B) = A ∩ B. As r2(CG(B)) = 2, it follows
that either B = A or |CA(B)| = 2. In the first case (4) holds. In the second case
CA(B) = ⟨z⟩. Our choice of B as a normal subgroup of S yields that A normalises
B and that either A coincides with B or A acts non-trivially on B. Thus if A ̸= B,
then |A : CA(B)| ≤ 2 which leads to |A| ≤ 2 · |CA(B)| = 4.

We conclude that r2(G) = 2. �

Lemma 9.4. Suppose that Hypothesis 9.1 holds, that v ∈ {a, b} and that
CG(v) ̸= Hv. Then E(Hv) = 1 = O2(Hv). If C ̸= M , then E(M) = 1 = O2(M).
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Proof. First z, v and vz are isolated in Hv by Lemma 9.2 (3). Therefore
Lemma 5.2 (5) and (6) yield that O2(Hv)E(Hv) is centralised by V , but that
O2(Hv) does not contain v. Also z /∈ O2(Hv) or else CG(v) ≤ M by Lemma 5.2 (1),
contradicting Lemma 5.13.

Let us assume that O2(Hv) ̸= 1. Then O2(Hv) contains an involution and as
r2(G) = 2 by Lemma 9.3 (4), we conclude from the previous paragraph that vz is
the unique involution in O2(Hv). Thus vz ∈ Z(Hv). It follows that CK(v) ⊆ Hv ≤
CG(vz) whence Hvz contains CK(v) and CK(vz), contrary to Lemma 9.3 (2). Thus
O2(Hv) = 1.

We recall that V centralises E(Hv). Then V ∩ E(Hv) ≤ O2(Hv) = 1 and,
as r2(G) = 2 by Lemma 9.3 (4), this implies that E(Hv) does not contain any
involutions. But components have even order, so this forces E(Hv) = 1.

Now we turn to the case where C < M . With Hypothesis 9.1 let p ∈ π be
an odd prime such that U ≤ Op(M). Assume that O2(M)E(M) ̸= 1 and let
t ∈ O2(M)E(M) be an involution. Then t ̸= z because Op(M) is not centralised
by z. Moreover F ∗(M) is not a p-group in this case. This means that M is as in
Hypothesis 8.1 and hence Lemma 7.10 gives that CG(t) ≤ M . This contradicts
Lemma 5.13 and forces O2(M)E(M) = 1. �

Lemma 9.5. Suppose that Hypothesis 9.1 holds, let q be an odd prime and let
Q1, Q2 ∈ I∗

G(V, q) be such that Q1 ∩Q2 ̸= 1. Then Q1 and Q2 are conjugate by an
element from CG(V ).

Proof. Assume that this is not the case and choose Q1 and Q2 such that
they are not conjugate under CG(V ) and moreover such that D := Q1 ∩ Q2 ̸= 1
is maximal. With Lemma 9.3 (1) we know that NG(D) is a proper subgroup of G
and we set H := NG(D). Then D, NQ1(D) and NQ2(D) are V -invariant subgroups
of H. For all i ∈ {1, 2} we choose NQi(D) ≤ Pi ∈ I∗

H(V, q). As q is odd and
V ≤ O2′,2(H) by Lemma 5.2 (3), we may apply Lemma 2.11 which yields an
element h ∈ CH(V ) such that Ph

1 = P2. Now let P1 ≤ P ∗
1 ∈ I∗

G(V, q). Then
P2 = Ph

1 ≤ (P ∗
1 )

h ∈ I∗
G(V, q). Therefore we have that D < NQ1(D) ≤ Q1 ∩P ∗

1 and
D < NQ2(D) ≤ Q2 ∩ (P ∗

1 )
h. By our choice of Q1 and Q2, it follows that Q1 and

P ∗
1 as well as Q2 and (P ∗

1 )
h are conjugate by an element from CG(V ), respectively.

We chose h ∈ CH(V ) and therefore Q1 and Q2 are conjugate by an element from
CG(V ). This is a contradiction. �

Lemma 9.6. Suppose that Hypothesis 9.1 holds and that q is an odd prime such
that char(Ha) = q = char(Hb). Let v ∈ {a, b} and suppose that Q is a V -invariant
q-subgroup of G, containing Oq(Hv), such that ZJ(Q) is invariant under CK(v)
and such that Q is maximal (with respect to inclusion) subject to these constraints.

Then Q ∈ Sylq(G).

Proof. From Lemma 9.3 (1) we know thatNG(ZJ(Q)) is a proper subgroup of
G, so let NG(ZJ(Q)) ≤ HmaxG. Then H contains V , CK(v) and Q and CK(v) ⊆
O(H) by Lemma 5.2 (2).

Now we have that Uv ≤ Oq(Hv) ≤ Q ≤ H and Lemmas 9.2 (2) and 7.8 (3) yield
that Uv ≤ F (H). Then Lemma 7.9 is applicable and gives that NG(Uv) ≤ Hv and
hence H # Hv. We just saw that Uv ≤ Oq(H) and hence the Infection Theorem (2)
implies that H has characteristic q.
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With Lemma 4.11, applied to V and Hv, we choose Q ≤ Q1 ∈Sylq(Hv, V ).
It follows from char(H) = q that char(Q1O(H)) = q and therefore Theorem 2.24
yields that ZJ(Q1)EQ1O(H)V . Hence ZJ(Q1) is CK(v)-invariant and the choice of
Q gives that Q = Q1 ∈Sylq(H). But NG(Q) ≤ NG(ZJ(Q)) ≤ H and consequently
Q ∈Sylq(NG(Q)). We deduce that Q is in fact a V -invariant Sylow q-subgroup of
G. �

Lemma 9.7. Suppose that Hypothesis 9.1 holds. Then there does not exist a
prime q such that char(Ha) = q = char(Hb).

Proof. Assume that the result is false and that q is a prime such that Ha and
Hb are both of characteristic q.

(1) a /∈ Z(Ha) and b /∈ Z(Hb). In particular q is odd.

Proof. Let v ∈ {a, b}. If v ∈ Z(Hv), then O2(Hv) ̸= 1 and hence
q = 2. Thus it suffices to prove that q is odd. If q = 2, then O2(Hv)
contains its centraliser in Hv and hence z ∈ O2(Hv), by Lemma 5.2 (5).
Together with Lemma 5.2 (6) this forces z ∈ Z(Hv), contradicting Lemma
5.13. �

(2) There exist subgroups Q1 ∈ Sylq(Ha, V ) and Q2 ∈Sylq(Hb, V ) such that
Q1 ∩Q2 ̸= 1.

Proof. Assume otherwise. With Lemma 4.11, applied to V and Ha,
there exists Q1 ∈ Sylq(Ha, V ). If Q1 ∩ Hb ̸= 1, then this intersection
is a V -invariant q-subgroup of Hb and then Lemma 4.11 implies that
it is contained in some Q2 ∈ Sylq(Hb, V ), contrary to our assumption.
Therefore Q1 ∩ Hb = 1 and in particular Q1 is inverted by b and hence
abelian. It follows that

Q1 ≤ CHa(Oq(Ha)) = Z(Oq(Ha))

because Oq(Ha) = F ∗(Ha).
This implies that Q1 = Oq(Ha) and forces NG(Q1) to be contained

in Ha, because Ha is primitive (Corollary 5.8). Therefore Q1 is a Sylow q-
subgroup of G. Now the Sylow q-subgroups of G are abelian, in particular
Oq(M) is abelian. We recall that Oq(Ha) contains an a-minimal subgroup
Ua that is now abelian and (hence) inverted by a. As Oq(Ha) is also
inverted by b, it follows that z centralises Ua. Lemmas 5.2 (3) and 2.10
imply that Ua = [Ua, a] ≤ Oq(M). Now we use that Oq(M) is abelian; this
forces Oq(M) ≤ CG(Ua) ≤ Ha by Lemma 7.9 and consequently M infects
Ha. The Infection Theorem (2) tells us that char(M) = q. Moreover
Oq(M) lies in some z-invariant Sylow q-subgroup of G, hence in all of
them by Lemma 4.10 and therefore Oq(M) ≤ Q1. As Q1 is abelian, we
deduce that Q1 ≤ CM (F ∗(M)) ≤ Oq(M). This forces F ∗(Ha) = F ∗(M)
and then M = Ha by Corollary 5.8. But this is impossible by Lemma
5.13. �

With (2) we choose Q1 ∈Sylq(Ha, V ) and Q2 ∈Sylq(Hb, V ) such that Q1∩Q2 ̸=
1. Let v ∈ {a, b} and let Qv be a V -invariant q-subgroup of G containing Oq(Hv),
such that ZJ(Qv) is CK(v)-invariant and chosen to be maximal subject to these
constraints. Then Lemma 9.6 implies that Qv is a V -invariant Sylow q-subgroup of
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G. Denoting the subgroups that we found in this way by Qa and Qb, we may now
suppose that Q1 ≤ Qa and similarly Q2 ≤ Qb.

As 1 ̸= Q1 ∩Q2 ≤ Qa ∩Qb by our choice of Q1 and Q2, Lemma 9.5 yields an
element x ∈ CG(V ) such that Qx

a = Qb. Then ZJ(Qa)
x = ZJ(Qb) and therefore

NG(ZJ(Qa))
x = NG(ZJ(Qb)). But CK(a) ⊆ NG(ZJ(Qa)) and this means that

CK(a) = CKx(a)x ⊆ NG(ZJ(Qa))
x = NG(ZJ(Qb)).

As CK(b) ⊆ NG(ZJ(Qb)), Lemma 9.3 (2) implies that NG(ZJ(Qb)) = G. This
contradicts Lemma 9.3 (1) and hence the proof is complete. �

Lemma 9.8. Suppose that Hypothesis 9.1 holds. Then there does not exist a
prime q such that char(M) = q = char(Ha).

Proof. Assume otherwise and let q be such a prime. By Lemma 9.2 (2) there
are two cases to consider:

Case 1: a and b are conjugate in G.
Then char(Hb) = q by our choice of Ha and Hb in Hypothesis 9.1 and

this contradicts Lemma 9.7.
Case 2: a and b are isolated in G.

Then the roles of a, b and z can be interchanged which makes Lemma
9.7 applicable to a and z directly. This leads to a contradiction again.

�

Before we embark on one of the main results of this section, we show that if
a and b are isolated in G, then an even stronger version of Theorem A holds for
them (and similarly for z.)

Lemma 9.9. Suppose that Hypothesis 9.1 holds and let v ∈ {a, b}. If v is isolated
in G, then Hv = CG(v) or Hv has odd prime characteristic.

Proof. Assume that CG(v) < Hv, but that Hv does not have odd prime
characteristic. As v is isolated in G and v /∈ Z∗(G), we see that G, v, CG(v) and
Hv satisfy Hypothesis 5.1 in the roles of G, z, C and M . Therefore we may apply
Theorem A to v and Hv instead of z and M . We know from Lemma 9.4 that
E(Hv) = 1 and hence the theorem supplies a contradiction. �

Here comes our main result:

Theorem 9.10. Suppose that Hypothesis 9.1 holds and let v ∈ {a, b}. Then
CG(v) is a maximal subgroup of G and a and b are isolated in G.

Proof. First we assume that CG(v) ̸= Hv and we set w := vz. Let F := F (Hv)
and note that F = F2′(Hv) = F ∗(Hv) by Lemma 9.4 and that by Hypothesis 9.1
we have a v-minimal subgroup Uv in F . In particular Hypothesis 7.6 is satisfied.

(1) [CF (z), v] ̸= 1.

Proof. Assume otherwise. Then CF (z) ≤ CF (v). From Lemma 2.1 (4)
it follows that [F, v] ≤ [F, z] ∩ CG(w) and thus Uv ≤ Hw. As v is isola-
ted in Hw by Lemma 9.2 (3), the Pushing Down Lemma (3) gives that
Uv ≤ F (Hw). Then Lemma 7.9 implies that Hw # Hv. Moreover, Lemma
9.3 (2) and Lemma 9.7 yield that Hv and Hw are neither equal nor of the
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same prime characteristic. So with the Infection Theorem (5) we deduce
that Hv and Hw are not conjugate. Therefore a and b are not conjugate
(following from our choices in Hypothesis 9.1). Lemma 9.2 (2) yields that
a and b are isolated in G and then by Lemma 9.9 there exists an odd prime
q such that char(Hv) = q. Now the Infection Theorem (2) and the fact
that 1 ̸= Uv ≤ Oq(Hw) imply that also char(Hw) = q. This contradicts
Lemma 9.7. �

By (1) we may choose a prime p ∈ πv such that, with P := Op(Hv), we have
that X := [CP (z), v] ̸= 1. In particular [P, v] ̸= 1 so that we may suppose that
Uv ≤ P . As v ∈ O2′,2(M) by Hypothesis 9.1, Lemma 2.10 yields that

X = [X, v] ≤ [P ∩M, v] ≤ Op(M)

and therefore X ≤ CF (M)(z).

(2) C = M .

Proof. Assume that C < M . Then with Lemma 9.4 we know that
E(M) = 1 = O2(M) and thus M has odd prime characteristic by Theo-
rem A. We observed above that 1 ̸= X ≤ Op(M) and this implies that
char(M) = p.

As Hypothesis 7.6 is satisfied by z and M , Lemma 7.7 yields that
[X,U ] ≤ [CF (M)(z), U ] = 1. Therefore X is a non-trivial U⟨z⟩-invariant
subgroup of Op(M). With Lemma 7.10 we obtain that NG(X) lies in
a maximal subgroup of G of characteristic p. We also know that X ≤
F (Hv) whenceHv infects a maximal subgroup of G of characteristic p. But
then, applying the Infection Theorem (2), we obtain that char(Hv) = p
contradicting Lemma 9.8. �

Now (2) and Lemma 5.10 imply that every z-invariant π-subgroup of G is
contained in C = M . In particular we know that [Fπ(Hv), z] = 1. As X ≤ Op(M)
and therefore p ∈ π, the z-invariant p-subgroup P of Hv is now contained in C.
This means that X = [P, v] and hence Uv ≤ X = [P, v]EF is normalised by Uv⟨v⟩.

(3) M infects Hv and (therefore) Fπ′(Hv) is a non-trivial subgroup that is
inverted by z.

Proof. As Uv ≤ X ≤ Op(M), the first statement follows from Lem-
ma 7.9. Moreover we know that M and Hv are neither equal nor both of
characteristic p (by Lemmas 5.13 and 9.8). As E(Hv) = 1 with Lemma
9.4, the Infection Theorem (4) gives that Fπ′(Hv) ̸= 1. This subgroup is
inverted by z by the Infection Theorem (1). �

(4) Hv is the unique maximal subgroup of G containing NG(X).

Proof. We know that NG(X) ̸= G by Lemma 9.3 (1). Suppose that
H is a maximal subgroup ofG containingNG(X). Then asX ≤ F (Hv), we
have that Hv infects H. Lemmas 5.2 (3) and 2.10 imply that Uv ≤ F (H)
and therefore Lemma 7.9 yields that we conversely have that H # Hv.
Now the Infection Theorem (3) forces H and Hv to be equal or both of
characteristic p. But if char(H) = p, then we recall that X ≤ Op(M) and
hence M # H. Then the Infection Theorem (2) implies that char(M) = p
as well, contrary to Lemma 9.8. Thus H = Hv as stated. �
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(5) a and b are conjugate in G.

Proof. Otherwise Lemma 9.2 (2) implies that a and b are isolated
in G and hence that v is isolated in G. Together with our assumption
that CG(v) < Hv, Lemma 9.9 implies that char(Hv) = p. But now, since
F ∗(Hv) = P ≤ M , it follows that Hv # M . As M # Hv by (3), the In-
fection Theorem (3) and Lemma 9.8 imply that M = Hv. This contradicts
Lemma 5.13. �

By Hypothesis 9.1 we now have that Ha and Hb are conjugate and in particular
it follows that CG(w) < Hw and that Y := [Op(Hw), w] ̸= 1. We also recall that
Fπ(Hv) is centralised by z (as noted before (3)) and that Fπ′(Hv) is inverted by
z by (3). In particular Fπ′(Hv) is abelian. Then we see that [Hv, z] ≤ CHv (F ) ≤
F , because F = F ∗(Hv), and together with Lemma 2.6 this implies that Hv =
CHv (z)Fπ′(Hv). We point out that, although a and b are conjugate in G, they are
still isolated in Ha and in Hb, by Lemma 9.2 (3).

(6) Y ≤ Op(M) and NG(Y ) ≤ Hw. In particular M infects Hw.

Proof. We know that v and w are conjugate in G by (5) and hence in
C by Lemma 4.1 (9). Then X and Y are conjugate by an element from C
and the first statement follows because X ≤ Op(M). Again by conjugacy
and by (4), the unique maximal subgroup of G containing NG(Y ) is Hw.
Thus M # Hw. �

(7) Fπ′(Hv) is inverted by w and by z and (therefore) centralised by v.

Proof. Let D := Fπ′(Hv) ∩ CG(w). Then D E Fπ′(Hv) because
Fπ′(Hv) is abelian. Moreover D is invariant under CG(w) ∩ CG(v) =
CC(v) = CC(w). Since [CG(v), z] ≤ [Hv, z] ≤ Fπ′(Hv) (as noted befo-
re (6)), Lemma 5.2 (1) gives that

CG(v) = [CG(v), z]CC(v) ≤ Fπ′(Hv)CC(v).

Consequently CG(v) normalises D. Moreover D is contained in CG(w)
and inverted by z, so it follows that

D = [D, z] ≤ [CG(w), z] ≤ [Hw, z] ≤ Fπ′(Hw).

As v and w are conjugate in G by (5), the subgroup Fπ′(Hw) is abelian
as well. In particular DEFπ′(Hw). Now we can argue as above to deduce
that D is also CG(w)-invariant. Together with Lemma 9.3 (2) we see that
G = ⟨CG(v), CG(w)⟩ ≤ NG(D). This forces D = 1 because G is simple by
part (1) of the same lemma. Hence w inverts Fπ′(Hv). This subgroup is
also inverted by z, by (3), and hence v centralises it. �

(8) Op(M) � Hv.

Proof. Otherwise Y ≤ Op(M) ≤ Hv and it follows that Y ≤ Op(Hv)
with the Pushing Down Lemma (1). Then Hv # Hw by (6). As E(Hv) =
1 = E(Hw) by Lemma 9.4 and as v and w are conjugate by (5), the Infec-
tion Theorem (5) forces Hv and Hw to be equal or to be of characteristic
p. But this is contradicted by Lemma 9.7 and the fact that Hv and Hw

are distinct (by Lemma 9.3 (2)). �
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(9) π ∩ πv = {p}.

Proof. Assume that there exists a prime q ∈ π∩πv such that q ̸= p.
Then, as z centralises Fπ(Hv), we have that P × Oq(Hv) acts on Op(M)
and

[COp(M)(P ), Oq(Hv)] ≤ Op(M) ∩Oq(Hv) = 1.

With Thompson’s P×Q-Lemma (2.2) it follows that [Op(M), Oq(Hv)] = 1
and therefore Op(M) ≤ Hv, contradicting (8). �

(10) X = P ∩Op(M). Moreover XEHv and X is a cyclic group that is inverted
by v and w.

Proof. Let P0 := P ∩Op(M).
First assume that Z := Ω1(Z(Op(M))) ≤ P0. Then Z ≤ P and con-

sequently Fπ′(Hv) ≤ CG(Z) ≤ M (because M is primitive by Corollary
5.8). This contradicts (2) and (3). Thus Z � P0.

Now assume that P0 is not cyclic. Then choose Q0 ≤ P0 to be ele-
mentary abelian of order p2 and let Q0 ≤ Q1 ≤ Q0Z be such that Q1

is elementary abelian of order p3. This choice is possible by the previous
paragraph. As M = C by (2), we may apply Theorem 8.9 and we obtain

that CG(x) ≤ M for all x ∈ Q#
1 . In particular CG(Q0) ≤ M . On the other

hand Q0 ≤ P and thus

Fπ′(Hv) ≤ Fπ′(Hv) ≤ CG(Q0) ≤ M,

which is impossible by (2) and (3). We conclude that P0 is cyclic and hence
P0 is either centralised or inverted by v. Now we recall that Uv ≤ X ≤ P0.
Then [P0, v] ̸= 1, therefore v inverts P0. Moreover P0 is centralised by z
and hence inverted by w. It follows that X ≤ P0 = [P0, v] ≤ [P, v] = X,
so X = P0 as stated.

It remains to show that X E Hv. Of course Fπ′(Hv) centralises X
because p ∈ π, moreover X = P ∩ Op(M) is CHv (z)-invariant. Thus the
fact that Hv = CHv (z)Fπ′(Hv) yields that X is normal in Hv. �

(11) For all primes q ̸= p, there exists a Sylow q-subgroup of Hv that is cen-
tralised by v.

Proof. As X is inverted by v, by (10), and as X is normal in Hv,
we have that [Hv, v] centralises X. Then we recall that P = CP (v)[P, v] =
CP (v)X by Lemma 2.1 (2) and we consider the action of [Hv, v] on P/X.
It follows that P/X is centralised by [Hv, v] as well. Moreover (7) and (9)
yield that [Fp′(Hv), v] = 1 and therefore [Hv, v] centralises Fp′(Hv). This
implies that [Hv, v] ≤ Op(Hv)CHv (F

∗(Hv)) = PZ(F ). Since [Hv, v, v] =
[Hv, v] by Lemma 5.2 (1) and v centralises Fp′(Hv), we deduce that

[Hv, v] ≤ [PZ(F ), v] = [P, v] = X.

Suppose that q ̸= p is a prime and, with Lemma 4.11, let Q ∈Sylq(Hv, V ).
(Here we use again that all involutions in V are isolated in Hv, by Lemma
9.2 (2).) Then it follows that

[Q, v] ≤ [Hv, v] ∩Q ≤ X ∩Q = 1.

�
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With (3) we find a prime q ∈ π′ ∩ πv. Then q ̸= p and, by (11), we may
choose Q ∈Sylq(Hv, V ) such that v centralises Q. Moreover (3) and (9) give that
Fp′(Hv) = Fπ′(Hv) is non-trivial and is inverted by z, so Oq(Hv) is inverted by z
and therefore Q is not centralised by z. As CG(Q) is z-invariant, we may choose v ∈
T ∈Syl2(CG(Q)) such that T is z-invariant (by Lemma 4.8, applied to CG(Q)⟨z⟩).
Then [T, z] = 1 by Lemma 4.1 (2), but z /∈ T . Together with Lemma 9.3 (4)
it follows that v is the unique involution in T and therefore NG(T ) ≤ CG(v).
However, we know from (5) that Lemma 7.11 (1) holds and hence that v is not
the only involution in Z(T ). This contradiction shows that CG(v) is a maximal
subgroup of G as stated. It is left to prove that a and b are isolated in G:

As z is not central in Ha by Lemma 5.13, it follows from Lemma 5.2 (6) that
there exists an odd prime q ∈ πa such that Oq(Ha) is not centralised by z. Lemma
9.2 (2) gives that all involutions in V are isolated in Ha, so with Lemma 4.11 we
may choose Q ∈Sylq(Ha, V ) and a ∈ T ∈ Syl2(CG(Q)) such that T is z-invariant,
as we did in the previous paragraph. Then z centralises T , but is not contained
in it. Again the fact that r2(G) = 2 by Lemma 9.3 (4) yields that a is the unique
involution in T . Thus Lemma 7.11(2) must hold and in particular a and b are not
conjugate in G. Lemma 9.2 (2) implies that a and b are isolated in G.

This finishes the proof of the theorem. �

Corollary 9.11. Suppose that Hypothesis 9.1 holds. Then C = M .

Proof. We know from Theorem 9.10 that a and b are isolated in G. Thus the
roles of z, a and b can be interchanged. In particular, since z ∈ O2′,2(C)∩CG(a) ≤
O2′,2(CG(a)) by Lemma 5.2 (3), we may apply Theorem 9.10 to z instead of v.
Hence C is a maximal subgroup of G. �

9.2. The Proof of Theorem B

After a preparatory lemma, we set up a hypothesis following the results in the
previous part of this chapter. Then we apply local analysis to involution centrali-
sers and we arrive at a contradiction with a counting argument. Hypothesis 5.1 is
assumed to hold throughout.

Hypothesis 9.12.
In addition to Hypothesis 5.1, suppose that a ∈ O2′,2(C) is an involution distinct

from z. Moreover

• V := ⟨a, z⟩ and b := az;

• for all v ∈ {a, b} we let Hv := CG(v) and πv := π(F (Hv)) and

• π := π(F (C)).

Lemma 9.13. Suppose that Hypothesis 9.12 holds and let V ≤ S ∈ Syl2(G).
Then Hypothesis 9.1 is satisfied, the subgroups C, Ha and Hb are maximal in G
and in particular, for all v ∈ V #, Hypothesis 7.6 holds with v, CG(v) and Hv in
the roles of t, CG(t) and Ht. In S there are precisely three involutions and these
are central in S and isolated in G.
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Proof. Hypothesis 9.12 together with some more notation and choices of ma-
ximal subgroups gives Hypothesis 9.1. If v ∈ V #, then Lemma 9.2 (3) implies that
v, CG(v) and Hv satisfy Hypothesis 7.6. Theorem 9.10 and Corollary 9.11 are ap-
plicable and hence C, Ha and Hb are maximal subgroups and a and b are isolated
in G. Thus all involutions in V are isolated in G and hence central in S. Lemma
9.3 (4) yields that r2(G) = 2 and therefore Ω1(S) = V . �

Lemma 9.14. Suppose that Hypothesis 9.12 holds and suppose further that
[C, a] � F (C). Then [Ha, z] ≤ F (Ha) and [Hb, z] ≤ F (Hb).

Proof. By Lemma 9.13 we may apply Lemma 7.12 with a and z interchanged.
Then it follows that O(F (Ha)) ∩ C = 1 and hence that z inverts O(F (Ha)). We
also know from Lemma 5.2 (5) that z centralises O2(Ha)E(Ha). Therefore F ∗(Ha)
is centralised by [Ha, z] and we deduce that [Ha, z] ≤ CHa(F

∗(Ha)) = Z(F (Ha)).
In the same way we argue that [Hb, z] ≤ F (Hb). �

Lemma 9.15. Suppose that Hypothesis 9.12 holds. Suppose that p is a prime
and that P is a V -invariant Sylow p-subgroup of G. Then P is centralised by a, b
or z.

Proof. If p ∈ π, then Lemmas 9.13 and 5.10 give that P is centralised by
z. Thus we now suppose that [P, z] ̸= 1 and hence that p /∈ π. Then Lemma 4.7
implies that p divides |CK(a)| or |CK(b)|. In the first case, the same lemma implies
that |Ha| is divisible by p, but that CHa(z) does not contain a Sylow p-subgroup of
Ha. Therefore |[Ha, z]| is divisible by p. If [Ha, z] � F (Ha), then Lemma 9.14, with
a in the role of z, yields that [C, a] ≤ F (C) and [Hb, a] ≤ F (Hb). (Here we use that
a and b are isolated in G by Lemma 9.13.) In particular, since p /∈ π, we see that a
centralises every V -invariant p-subgroup of C.

If, in this case, we have that p ∈ πb, then Lemma 5.10, applied to b, gives that
Hb contains a Sylow p-subgroup of G. Lemma 4.10 then implies that P ≤ CG(b).

If, still in the same case, we have that p /∈ πb, then a also centralises every
V -invariant p-subgroup of Hb. In particular [CP (z), a] = 1 = [CP (b), a] because P
is V -invariant. Then by Lemma 2.1 (4) it follows that [P, a] = 1.

Finally, if [Ha, z] ≤ F (Ha), then p ∈ π(F (Ha)) and Lemmas 5.10 and 4.10,
applied to a, yield that [P, a] = 1. �

Lemma 9.16. Suppose that Hypothesis 9.12 holds. Then C is perfect.

Proof. Assume otherwise. Then C
′
< C which means that C possesses a

non-trivial abelian factor group. As O(CG(V )) ≤ O(C) by Lemma 2.9, we ha-
ve that O(CG(V )) = O(C) ∩ CG(V ) and therefore C ≃ CG(V )/O(CG(V )). Now
CG(V )/O(CG(V )) possesses a non-trivial abelian factor group. We recall that a
and b are isolated in G by Lemma 9.13. Therefore the same arguments as above
give that

Ha/O(Ha) ≃ CG(V )/O(CG(V )) ≃ Hb/O(Hb).

Hence there exists some prime p such that C, Ha/O(Ha) and Hb/O(Hb) have a
non-trivial p-factor group. But for the same prime p, there exists a V -invariant
Sylow p-subgroup P of G by Lemma 4.11. Then with Lemma 9.15 it follows that
some H ∈ {Ha,Hb, C} contains P . As Hypothesis 9.1 is satisfied by Lemma 9.13,
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Lemma 9.3 (1) yields that G is simple and hence Op(G) = G. Then Lemmas 4.1 (3)
and 2.19 imply that H does not have any non-trivial p-factor group, which is a
contradiction. �

Lemma 9.17. Suppose that Hypothesis 9.12 holds and let p ∈ π be such that
Op(C) is not centralised by a. Then COp(C)(a) is cyclic.

Proof. Lemma 9.13 implies that [O2(C), a] = 1 and therefore p is odd. Set
P := Op(C) and assume that CP (a) contains an elementary abelian subgroup X of
order p2. IfX is a maximal elementary abelian subgroup of P , thenX = Ω1(CP (X))
and therefore a centralises every element of order p in CP (X). As p is odd, it
follows with Lemma 2.1 (5) and (6) first that a centralises CP (X) and then that a
centralises P . This is a contradiction. ThusX lies in an elementary abelian subgroup
Y of P of order p3. Theorem 8.9 forces CG(y) to be contained in C for all y ∈ Y #.
But we have that X ≤ CP (a) ≤ Ha and therefore X acts coprimely on Op′(Ha).
With Lemma 2.1 (4) we obtain that

Op′(Ha) = ⟨COp′ (Ha)(x) | x ∈ X#⟩ ≤ C.

AsOp(Ha) is a z-invariant p-subgroup and p ∈ π, Lemma 5.10 implies thatOp(Ha) ≤
C. Therefore z centralises F (Ha). But this contradicts Lemmas 5.13 and 5.2 (6). �

Lemma 9.18. Suppose that Hypothesis 9.12 holds and let v, w ∈ V #.
Then [CG(v), w] ≤ F (CG(v)).

Proof. By Lemma 9.13, all involutions in G are isolated in G. Therefore it is
sufficient to prove that [C, a] ≤ F (C). As a is isolated in G, Lemma 5.2 (5) gives
that [a,O2(C)E(C)] = 1. It is left to show that, for all odd primes p ∈ π, the
subgroup [C, a] acts nilpotently on Op(C). Thus let p ∈ π be odd. If [Op(C), a] = 1,
then nothing is left to prove. If Op(C) is not centralised by a, then Lemma 9.17
implies that COp(C)(a) is cyclic. From Lemma 9.16 we know that C/O(C) is 2- and
3-perfect and thus Corollary 3.3 is applicable. It yields that [C, a] acts nilpotently
on Op(C) as required. �

Corollary 9.19. Suppose that Hypothesis 9.12 holds. Suppose that p is a
prime in π(G)\π∪πa∪πb and that P ∈ Sylp(G) is V -invariant. Then P is centralised
by V .

Proof. From Lemma 9.15 we know that P is centralised by some involution
in V . Since they are all isolated, we may without loss suppose that P ≤ C. Then
Lemma 9.18 yields that [P, a] ≤ F (C). The choice of p implies that p does not
divide |F (C)| and hence [P, a] = 1. It follows that P is centralised by V . �

Lemma 9.20. Suppose that Hypothesis 9.12 holds and suppose that x ∈ F (C) is
an element that is inverted and not centralised by a. Then C is the unique maximal
subgroup of G containing CF∗(C)(x)⟨a⟩. In particular the only maximal subgroup of
G containing CG(x)⟨a⟩ is C.



70 9. THE 2-RANK OF O2′,2(C)

Proof. As a centralises O2(C), our hypothesis forces x ∈ O(F (C)). Therefore
we may suppose that x is a p-element for some odd prime p ∈ π. In particular
|π| ≥ 2.

Set Y0 := CF (C)(x) and Y := Y0E(C). Then Y is centraliser closed in F (C).
Suppose that Y ⟨a⟩ ≤ HmaxG and assume that H ̸= C. Then z ∈ H, moreover
C infects H and E(H) ≤ C by Lemma 5.2 (5). With the Infection Theorem (4)
there exists a prime q ∈ π′ such that Q := Oq(H) ̸= 1. Then Lemma 8.8 says that
Q is the unique maximal Y -invariant q-subgroup of G intersecting H non-trivially.
Moreover z inverts Q by Lemma 8.7 (3).

(1) Q is centralised by a or by b.

Proof. Q is a V -invariant q-group because Q is normal in H and
V ≤ H. Let Q ≤ Q1 ∈ I∗

q(G,V ). As z inverts Q, it follows that Q1 is not
centralised by z, thus with Lemma 9.15 it is centralised by a or by b. �

By symmetry between a and b, we suppose that Q ≤ Ha.

(2) p < q.

Proof. We know that Q = [Q, z] ≤ F (Ha) by Lemma 9.18. As H
is primitive by Corollary 5.8, we have that NG(Q) = H and consequently
Ha infects H. We note that a centralises E(H) by Lemma 5.2 (5).

Now assume that r(Q) ≥ 3 (and thus r(Oq(Ha)) ≥ 3). Then Theorem
8.9, applied to Ha, yields that CG(y) ≤ Ha for all elements y of order q
that lie in some elementary abelian subgroup of order q3 of Oq(Ha). With
Lemma 2.1 (4) this forces Oq′(H) ≤ Ha. Hence F ∗(H) is centralised by a.
With Lemma 5.2 (6) it follows that H = Ha, which is impossible because
x ∈ H is inverted by a. Thus we have that r(Q) ≤ 2. Let Yp := Op(Y0).
Then CG(Yp) ≤ C by Lemma 8.7 (1) and hence CQ(Yp) ≤ C ∩Q = 1 by
part (3) of the same lemma. In particular Yp acts non-trivially on Q. As
r(Q) ≤ 2, we deduce that p < q with Lemma 2.4. �

(3) q < p.

Proof. Let Q∗ := QCF (Ha)(Q). We know that H ̸= Ha and that
Q∗⟨z⟩ ≤ H because QEH. As x is inverted by a, Lemma 8.7 (4) implies
that x ∈ Op(H). In particular Op(H) ̸= 1. Let P be a maximal Q∗E(Ha)-
invariant p-subgroup P of G. Then Lemma 8.7 and the previous two steps,
applied to Ha instead of C, give the following:

P is inverted by a and centralised by z or by b, and r(P ) ≤ 2. Moreover
Oq(CF (Ha)(Q)) acts non-trivially on P and hence q < p by Lemma 2.4. �

As (2) and (3) contradict each other, the proof is complete. �

Lemma 9.21. Suppose that Hypothesis 9.12 holds and let x ∈ K#. Then there
exists a unique involution u ∈ aC ∪ bC that centralises x.

Proof. The order of x is odd by Lemma 4.3 (2). Thus there exists a power y of
x that is a non-trivial p-element for some odd prime p, and y lies in some z-invariant
Sylow p-subgroup P of G by Lemma 4.8. Lemma 14.7 yields that Lemma 4.11 is
applicable whence G possesses V -invariant Sylow p-subgroups. Then it follows with
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Lemma 4.10 that P is C-conjugate to some V -invariant Sylow p-subgroup of G. Let
c ∈ C be such that P is invariant under V1 := V c. With Lemma 9.15 we find an
involution u ∈ V1 that centralises P and z. We note that u ̸= z because z inverts
y. Hence u is conjugate to a or b (even in C, by Lemma 4.1 (9)) because a, b and z
are representatives for the three distinct conjugacy classes of involutions in G (see
Lemma 9.13). We have that y ∈ CG(u) and ⟨y⟩ = [⟨y⟩, z] ≤ [CG(u), z]. Now Lemma
9.18, applied to CG(u) instead of C, yields that y ∈ F (CG(u)). Lemma 9.20 implies
that CG(u) is the unique maximal subgroup of G containing CG(y)⟨z⟩.

Assume that some involution u′ ∈ aC ∪ bC distinct from u centralises x. Then
u′ ∈ CG(y) and hence ⟨y⟩ = [⟨y⟩, z] ≤ [CG(u

′), z] ≤ F (CG(u
′)), again with Lemma

9.18. Thus Lemma 9.20 forces CG(u
′) to be the unique maximal subgroup of G

containing CG(y)⟨z⟩. This means that CG(u) = CG(u
′). In particular u and u′

commute, so uu′ is an involution because u ̸= u′. As u and u′ are distinct from
z, we deduce that uu′ ∈ zG. But uu′ centralises z whence uu′ = z, because z is
isolated in G. Now we recall that u and u′ centralise y. Then z centralises y, but z
inverts x, and this is impossible. �

Corollary 9.22. Suppose that Hypothesis 9.12 holds. Then

|K#| = |aC | · |CK#(a)|+ |bC | · |CK#(b)|.

Proof. By Lemma 9.21, every element in K# is centralised by either precisely
one conjugate of a or by precisely one conjugate of b. This yields the formula. �

Proof of Theorem B.
Recall that in Theorem B, we suppose that G is a minimal counter-example to

the Z*-Theorem and therefore Hypothesis 5.1 is satisfied. We assume that Theorem
B does not hold. Then there exists an involution a ∈ O2′,2(C) distinct from z, so,
together with some notation, Hypothesis 9.1 holds. Corollary 9.22 gives us three
formulas when applied to the sets K, Ka := {aag | g ∈ G} and Kb := {bbG | g ∈ G},
respectively:

|K#| = |aC | · |CK#(a)|+ |bC | · |CK#(b)|,

|K#
a | = |bHa | · |CK#

a
(b)|+ |zHa | · |CK#

a
(z)|

and

|K#
b | = |zHb | · |CK#

b
(z)|+ |aHb | · |CK#

b
(a)|.

As |aC | = |C : CC(a)| = |C : CC(b)|, we see that

(∗) |aC | = |bC | and similarly |bHa | = |zHa | and |zHb | = |aHb |.

We also note that the numbers in (∗) are all odd and, by Lemma 5.13, not
equal to 1. This means that they are greater than or equal to 3. Next we observe
that Lemma 4.7 implies that |Ha| = |CC(a)| · |CK(a)| and therefore

|CK(a)| = |Ha : CC(a)| = |zHa |.
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Applying this for a, b and z respectively yields

|CK#(a)| = |zHa | − 1 , |CK#(b)| = |zHb | − 1 ,

|CK#
a
(b)| = |aHb | − 1 , |CK#

a
(z)| = |aC | − 1 ,

|CK#
b
(z)| = |bC | − 1 , |CK#

b
(a)| = |bHa | − 1.

Finally we apply Theorem 4.6 to deduce that

|K#| = |CK(a)| · |CK(b)| − 1 = |zHa | · |zHb | − 1

and similarly, for the other two involutions, we have that

|K#
a | = |aHb | · |aC | − 1 and |K#

b | = |bC | · |bHa | − 1.

With all this in mind, the equations above become

|zHa |·|zHb |−1 = |aC |·(|zHa |−1)+|aC |·(|aHb |−1) = |aC |·|zHa |−2|aC |+|aC |·|aHb |,
|aHb |·|aC |−1 = |bHa |·(|aHb |−1)+|bHa |·(|bC |−1) = |bHa |·|aHb |−2|bHa |+|bHa |·|bC |
and

|bC |·|bHa |−1 = |zHb |·(|bC |−1)+|zHb |·(|zHa |−1) = |zHb |·|bC |−2|zHb |+|zHb |·|zHa |.

Addition of these equations and replacing terms, referring to (∗), yields that

−3 = −2|aC | − 2|bHa | − 2|zHb |+ |aC | · |zHa |+ |bHa | · |aHb |+ |zHb | · |bC |

= |aC |(|zHa | − 2) + |bHa |(|aHb | − 2) + |zHb |(|bC | − 2)

≥ |aC |+ |bHa |+ |zHb | ≥ 3 + 3 + 3 = 9

which is impossible. �
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Components of C and the Soluble Z*-Theorem

In this section we use Theorem B to show that E(C) ̸= 1 and to limit the
number of components. As an independent result on the way, we prove the Soluble
Z*-Theorem. Throughout, we suppose that Hypothesis 5.1 holds.

Theorem 10.1. L2(C) ̸= ∅.

Proof. Assume otherwise. Then E(C) = 1 and therefore F ∗(C) = O2(C).
From Theorem B we know that r2(O2′,2(C)) = 1 and therefore a Sylow 2-subgroup
T of O2′,2(C) is cyclic or quaternion. In the first case Aut(T ) is a cyclic 2-group

and we deduce that [O2(C), T ] = 1. Then O2(C) ≤ CC(T ) ≤ T which means that

C is a 2-group and in particular C has cyclic Sylow 2-subgroups. This contradicts
Lemma 5.3 (1). In the second case, assume that T is quaternion of order at least
16. Then Aut(T ) is a 2-group and therefore O2(C) ≤ CC(T ) ≤ T as in the previous
case. Then C has quaternion Sylow 2-subgroups, again contrary to Lemma 5.3 (1).

Thus we consider the situation where T ≃ Q8 and we recall that Aut(Q8) ≃ S4.
As T is quaternion with central involution z, it follows that z ∈ T ′ ≤ G′ = F ∗(G) by
Lemma 5.4. Therefore G = F ∗(G) is simple. Lemma 2.19 yields that O2(C) = C
and in particular C/CC(T ) = C/Z(T ) is isomorphic to a subgroup of A4. Let

T ≤ S ∈Syl2(G). Then S ≤ C and it follows that S induces inner automorphisms
on T . Therefore S = T ≃ Q8, which is impossible by Lemma 5.3 (1). �

The next objective is to prove Theorem C. This is where the notion of core-
separated subgroups that we introduced in Section 6 comes into play. Also, we
appeal to a result that depends on a theorem usually referred to as “L-Balance”.
We state this here, in an appropriate way, for our minimal counter-example G. The
reason why it is not listed among the general results is that, ultimately, it depends
on the Z*-Theorem, because one of the main ingredients for its original proof is
Glauberman’s result on automorphism groups of core-free groups (see [Gla66b]).
However, this still means that the L-Balance Theorem holds in the class of groups
that satisfy the Z*-Theorem, i.e. it holds in every proper subgroup of G by Hypo-
thesis 5.1.

Theorem 10.2. Suppose that H < G and that t ∈ H is an involution. Then
L(CH(t)) ≤ L(H).

Proof. The full result is stated as Theorem 4.73 in [Gor82]. �

Lemma 10.3. Let a ∈ O2′,F∗(C) be an involution and suppose that L1 is a
2-component of CG(a). Then O∞(CL1(z)) is contained in a 2-component of C.
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Proof. Let H := CG(a) and set Ĥ := H/O(H). We have that Ĥ = ĈH(z)
by Lemma 5.2 (1) because z ∈ H < G. By hypothesis L1 ∈ L2(H) and we set
L := ⟨LH

1 ⟩ and L0 := O∞(CL(z)). As L is normal in H, it follows that L0 is normal

in CH(z) = CC(a). We also note that L0 is perfect and that L̂0 = O∞(CL̂(ẑ)) =

O∞(L̂) = L̂. Now

L0 ≤ O2′(CL(z)) ≤ L(CC(a)) ≤ L(C)

by Theorem 10.2 and thus L0 ≤ CL(C)(a). In particular, we see that L0 ≤ CE(C)(a)

and hence that E(C) ̸= 1. Let F := O2′,F∗(C), let n ∈ N and let E1, ..., En be the
2-components of C. We note that E1, ..., En are normal in F and in particular
a-invariant.

We need to show that there exists some j ∈ {1, ..., n} such that O∞(CL1
(z)) ≤

EjO(C). But since CL1(z) is not necessarily normal in CC(a), it is more convenient
to first look at L0 a bit more.

As a ∈ F , it follows that a can be written as a = a1 · · · ant with t ∈ O2′,2(C)
and aj ∈ Ej for all j ∈ {1, ..., n}. We let X,X1, ..., Xn be normal subgroups of

CC(a) such that X = CO2(C)(a) = CO2(C)(t) and Xj = CEj
(aj) = CEj

(a) for all

j ∈ {1, ..., n}. Then CF (a) = XX1 · · ·Xn and L0 is a perfect, normal subgroup of

CE(C)(a), in particular L0 centralises X.

Suppose that L0 is not contained in X1. Then X1 ∩ L0 is a proper normal

subgroup of L0, in particular it is subnormal in L. It follows that X̂1 ∩ L0 = L̂ or

that X̂1 ∩ L0 is either a component of L̂ (and hence conjugate to L̂1 in CĤ(ẑ)) or it

is contained in Z(L̂). A similar statement holds for X2, ..., Xn if L0 is not contained

in either of these subgroups. If for all i ∈ {1, ..., n} we have that X̂i ∩ L0 ≤ Z(L̂),
then

L0 ≤ (X ∩ L0)(X1 ∩ L0) · · · (Xn ∩ L0)O(C)

because modulo O2(C), the product XX1 · · ·Xn is direct and because L0 is perfect.
Thus

L0 = (X ∩ L0)(X1 ∩ L0) · · · (Xn ∩ L0)(L0 ∩O(C)).

We recall that L0 ∩O(C) ≤ O(CC(a)) ≤ O(H) by Lemma 2.9. Consequently, with

our observation from the previous paragraph, L̂0 is contained in Z(L̂) and hence is
abelian, which is a contradiction.

We deduce that there exists some i ∈ {1, ..., n} such that X̂i ∩ L0 is a compo-

nent of L̂ or coincides with L̂. If it is a component, then it is Ĥ-conjugate to L̂1

and hence CĤ(ẑ)-conjugate to it, by Lemma 4.1 (9). As Xi∩L0 is CH(z)-invariant,
it follows in both cases that

L̂ = L̂0 = O∞(ĈL(z)) = O∞(ĈL1(z)) ≤ X̂i ∩ L0.

Set J := (Xi ∩ L0)O(H). Then L0 ≤ J and we see that CL(z) ≤ CJ(z) = (Xi ∩
L0)CO(H)(z) by Lemma 2.1 (3). Moreover Xi ∩ L0 is normalised by CO(H)(z) and
hence normal in CJ(z). This implies that O∞(CJ(z)) ≤ Xi ∩ L0. But we also have
that L0 is normal in CJ(z) and hence that

O∞(CL1(z)) ≤ O∞(L0) ≤ O∞(CJ(z)) ≤ Xi ≤ Ei.

Therefore, in this case, our statement is proved. Now we may suppose that
there exists some j ∈ {1, ..., n} such that L0 ≤ Xj and hence L0O(C) ≤ XjO(C).
This means that L0 ≤ XjO(C) ≤ EjO(C) which is a 2-component of C. �
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Lemma 10.4. Suppose that L2(C) = {E1, ..., En} for some n ∈ N, let i ∈
{1, ..., n−1} and let Y := Ei+1 · · ·EnO2′,2(C). Then C does not possess elementary
abelian subgroups A1 and A2 of order 4 with the following properties:

– A1 ≤ E1 · · ·Ei,
– A2 ≤ CY (A1) and
– A1 ∩A2 = 1.

Proof. Assume that such subgroups A1, A2 exist. Then let A := A1 ×A2, let
F := E1 · · ·EiY and T ∈ Syl2(O2′,2(C)). Our objective is to show that A1 and A2

are core-separated (as in Definition 6.9).
Let a ∈ A# and H := CG(a). If L ∈ L2(H) is arbitrary and L0 := O∞(CL(z)),

then Lemma 10.3 yields that there exists some j ∈ {1, ..., n} such that L0 is con-
tained in Ej . This implies that

[L0, A1] ≤ O(C) (if i < j) or [L0, A2] ≤ O(C) (if i ≥ j).

As z ∈ O2′,2(H) by Lemma 5.2 (3), it follows that

[L0, A1] ≤ O(CH(z)) ≤ O(H) or [L0, A2] ≤ O(CH(z)) ≤ O(H)

with Lemma 2.9. But z ∈ Z∗(H) also means that L = L0O(L) ≤ L0O(H) and
therefore

[L,A1] ≤ [L0O(H), A1] ≤ O(H) or [L,A2] ≤ [L0O(H), A2] ≤ O(H).

Hence A1 and A2 are core-separated and Lemma 6.13 gives a contradiction. �

Lemma 10.5. Suppose that E is a component of C of 2-rank 1 and let
T ∈ Syl2(E). Then E ≃ 2A7 or there exists some odd number q ≥ 5 such that
E ≃ SL2(q). In particular T is quaternion and the unique involution in T is z.

Proof. This follows from Lemma 2.23 and from the fact that by Theorem B
the only involution in Z(E(C)) is z. �

Lemma 10.6. Suppose that E ∈ L2(C) is such that z ∈ E and r2(E) ≥ 2. Then
either r2(E) ≥ 3 or there exists a subgroup W ≤ E such that W ≃ C4 × C2 and
z ∈ Φ(W ).

Proof. Let T ∈Syl2(E). As z ∈ Z(E), Lemma 5.5 yields that O2(C) = C
and hence O2(G) = G by Lemma 4.1 (10). Then Lemma 2.18 implies that T is
not dihedral or semi-dihedral. It follows from Lemma 2.12 that T has a normal
elementary abelian subgroup B of order 4. Set T0 := CT (B), Z := Z(E) and

Ẽ := E/Z. Moreover let

W := {W ≤ E | W ≃ C4 × C2, z ∈ Φ(W )}.
Assume that r2(E) = 2 (in particular z ∈ B) and that W = ∅. Let b ∈ B be
such that B = ⟨z, b⟩. If Z ̸= ⟨z⟩, then Theorem B yields that Z contains a cyclic
subgroup of order 4 and then, as r2(E) = 2, it follows that W ̸= ∅, contrary to

our assumption. Therefore Z = ⟨z⟩. Also r2(Ẽ) ≥ 2 because Ẽ is simple. So there

exists an element u ∈ T such that ũ is an involution and ũ /∈ B̃. Then either u is
an involution or o(u) = 4, in which case ⟨u,B⟩ ≃ D8 because W = ∅. Therefore we
may suppose that u is an involution. As T is not dihedral or semi-dihedral, Lemma
2.13 implies that CT (u) has order at least 8. Together with our assumptions that
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r2(E) = 2 and W = ∅ this yields that CT (u) contains an element of order 4 that
squares to u or to uz. By symmetry we may suppose that x ∈ CT (u) is such that
x2 = u. As B E T and z ∈ Z(T ), we see that x centralises b or interchanges b
and bz. Therefore u centralises B, but u /∈ B, and this contradicts the fact that
r2(T ) = 2. �

Lemma 10.7. Suppose that E1, E2 ∈ L2(C) are distinct. Then r2(E1E2) ≥ 3.

Proof. Assume otherwise. If r2(E1) = r2(E2) = 1, then E1 and E2 have qua-
ternion Sylow 2-subgroups with central involution z by Lemma 10.5. Thus Lemma
2.14 gives a contradiction. We also see that none of the components has 2-rank 3
or more, so we suppose that r2(E1) = r2(E2) = 2. If z /∈ E1, then E1 is simple by
Theorem B and hence E1 ∩E2 = 1. Then it follows that r2(E1E2) = 4, contrary to
our assumption. By symmetry it follows that z ∈ E1 ∩E2. Lemma 10.6 yields that
E1 possesses a subgroup W such that W ≃ C4 × C2 and z ∈ Φ(W ). In particular
there exists an element x ∈ W that squares to z. Similarly there exists an element
y ∈ E2 that squares to z and we can choose y such that [W,y] = 1. Then xy is
an involution that is not contained in W and hence W ⟨xy⟩ has rank 3, which is a
contradiction. �

Lemma 10.8. Suppose that E1, E2 and E3 are distinct components of C. Then
these are the only components of C and for every i ∈ {1, 2, 3}, we have that Ei is
isomorphic to 2A7 or there exists an odd number qi ≥ 5 such that Ei ≃ SL2(qi).
Moreover O2(C) = ⟨z⟩ ≤ E(C).

Proof. By Lemma 10.7 we know that r2(E1E2) ≥ 3 and therefore there exists
an elementary abelian subgroup A of E1E2 of order 4 that does not contain z. If
r2(E3) ≥ 2, then CE3(A) contains an elementary abelian subgroup B of order 4 that
intersects A trivially, contrary to Lemma 10.4. Therefore r2(E3) = 1. By symmetry
we deduce, for all E ∈ L2(C), that r2(E) = 1.

Assume that there exists a 2-component L ∈ L2(C)\{E1, E2, E3} or that
O2′,2(C) has a Sylow 2-subgroup of order at least 4. Lemma 10.4 implies that
these cases cannot occur both at once, because r2(E1E2E3) ≥ 3. Therefore we let
T ∈Syl2(L) or T ∈Syl2(O2′,2(C)), respectively. We recall that r2(E3) = 1 and
therefore z ∈ E3 by Theorem B. This theorem also implies that z is the only squa-
re in T and in E3, therefore TE3 contains diagonal involutions and in particular
r2(TE3) ≥ 2. With A as in the previous paragraph, it follows that CTE3(A) con-
tains an elementary abelian subgroup of order 4 that intersects A trivially. Again
we have a contradiction to Lemma 10.4. Together with Lemma 10.5 this completes
the proof. �

Proof of Theorem C.
Recall that in Theorem C we suppose that G is a minimal counter-example to

the Z*-Theorem. Therefore Hypothesis 5.1 holds. Theorem 10.1 yields that C has
at least one component and by Lemma 10.8 there are at most three components in
C. If C has precisely three components E1, E2 and E3, then with Lemma 10.8 we
have for all i ∈ {1, 2, 3} that Ei is isomorphic to 2A7 or that there exists an odd
number qi ≥ 5 such that Ei is isomorphic to SL2(qi).

This completes the proof of Theorem C. �
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For the Soluble Z*-Theorem we do not need the full force of Theorem C. It is
sufficient that, if Hypothesis 5.1 holds, then L2(C) ̸= ∅.

Proof of the Soluble Z*-Theorem.
Assume that G is a minimal counter-example to the Soluble Z*-Theorem. Let

z ∈ G be an isolated involution such that C := CG(z) is soluble and assume that
z /∈ Z∗(G). If z ∈ H < G, then the choice of G as a minimal counter-example yields
that H = CH(z)O(H) and thus H is soluble. Let t ∈ G be an arbitrary involution.
Lemma 4.1 (2) and Sylow’s Theorem imply that CG(t) contains a conjugate of z.
Thus CG(t) is soluble by the previous paragraph. From the minimality of G and
the fact that every involution centraliser is soluble, it follows that the Z*-Theorem
holds in every proper subgroup and every proper section of G. This means that
Hypothesis 5.1 is satisfied. In particular, Theorem 10.1 is applicable and yields that
C/O(C) has at least one component. This is impossible because C is soluble. �
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Unbalanced Components

In this section we prepare the proof of Theorem D and here it becomes ne-
cessary to invoke knowledge about the simple groups involved in E(C) and their
automorphism groups. Whenever we use specific information about the components
in C (usually the 2-structure, involutions centralisers or automorphisms), then these
details are from [GLS98], more precisely from Tables 3.3.1, 4.5.1 and 4.5.2, Theo-
rems 4.10.5 and 5.2.1, Proposition 5.2.10 and Tables 5.3a, 5.3g and 5.6.1, from the
ATLAS [CCN+03] or from the corresponding sections in [Wil09]. In many places
we make this more precise. Here comes our new main hypothesis:

Hypothesis 11.1. In addition to Hypothesis 5.1, the components of C are
supposed to be known quasi-simple groups.

The following remark captures a general fact about Lie type groups that is used
in connection with balance arguments or in determining types of components. Then
we introduce the notion of an unbalanced component and state the consequences
of results from Chapter 4 in [Gor82] for our situation.

Remark 11.2. Suppose that E is a quasi-simple group of Lie type in odd
characteristic. If t ∈ E is an involution and x ∈Aut(E) is a non-trivial field auto-
morphism of E of odd order, then CE(t) � CE(x).

(The involution is contained in a torus, so this torus lies in CE(t), but not in
CE(x).)

Definition 11.3. A component E of C is called an unbalanced component
if and only if it is of type An (with n ∈ N and n ≡ 3 modulo 4) or of type PSL2(q)
(with an odd number q ≥ 5).

Lemma 11.4. Suppose that Hypothesis 11.1 holds and that r2(G) ≥ 4. Then C
possesses an unbalanced component. Moreover every component of C of 2-rank at
least 4 is unbalanced of type An (with n ≡ 3 modulo 4 and n ≥ 11).

Proof. We refer to Section 4.4 in [Gor82]. By Hypothesis 11.1, the simple
groups involved in E(C) are known. Moreover Lemma 6.7 yields that C does not
possess any 2-balanced subgroups. Therefore by Proposition 4.64 in [Gor82], some
component of C is not locally 2-balanced (as defined there). Then C possesses an
unbalanced component by Theorem 4.61 in [Gor82].

If E ∈ L2(C) has 2-rank at least 4, then Lemma 6.7 yields that E does not
have any 2-balanced subgroups and hence E is unbalanced by Proposition 4.64 and
Theorem 4.61 in [Gor82]. Then there exists some n ∈ N such that n ≡ 3 modulo
4 and n ≥ 11 by Theorem 2.17. �

79
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Lemma 11.5. Suppose that Hypothesis 11.1 holds and let n ∈ N be such that
n ≥ 10. Then C does not possess a component of type An.

Proof. Assume that n ∈ N and E ∈ L2(C) are such that n ≥ 10 and E is
a component of C of type An. If E is not normal in C, then we find elementary
abelian subgroups of order 16 in E and in some conjugate of E, respectively, by
Theorem 2.17. The intersection of these subgroups lies in ⟨z⟩ (with Theorem B).
Hence Lemma 10.4 yields a contradiction and it follows that E is normal in C.

(1) C induces inner automorphisms on E.

Proof. Let S ∈Syl2(C) and T := S∩O2(G). Then Lemma 5.6 yields
that either O2(C) = C and hence S = T or |C : O2(C)| = 2 and hence
S = T × ⟨z⟩, by Lemma 5.5. As E is normal in C and z centralises E,
we deduce that C/CC(E) is isomorphic to a subgroup of O2(Aut(E)) and

then Theorem 2.17 implies that C induces inner automorphisms on E. �

(2) One of the following holds:
– E is the unique component of C or
– C possesses precisely two components E and L and then r2(L) = 1

and F ∗(C) = E(C).

Proof. Suppose that there exists another component L. As n ≥ 10,
Theorem 2.17 yields that there exists an elementary abelian subgroup
A1 ≤ E of order 4 that does not contain z. Thus if r2(L) > 1, then there
exists an elementary abelian subgroup A2 ≤ CL(A1) of order 4 such that
A1 ∩A2 = 1, contrary to Lemma 10.4. Hence L is of 2-rank 1 as stated.

Assume that O2(C) > ⟨z⟩ and let z ∈ T ∈ Syl2(O2′,2(C)). Then T =

O2(C) and T possesses elements of order 4 (because z is the only involution
in T by Theorem B). As all elements of order 4 in L and T square to z,
we have diagonal involutions in TL and therefore CTL(A1) contains an
elementary abelian subgroup of order 4. Again this contradicts Lemma
10.4 and we conclude that O2(C) = ⟨z⟩. Now we have that either E is
the unique component of C or F ∗(C) = EL in which case E and L are
normal in C and CC(F

∗(C)) = ⟨z⟩. �

Set C̃ := C/⟨z⟩. We choose involutions a1, a2, a3 of E such that, for all i ∈
{1, 2, 3}, the following holds:

O(CẼ(ãi)) = 1

or

O(CẼ(ãi)) = O(CẼ(Ã)).

Let a1 ∈ E be such that ã1 ∈ Ẽ corresponds to the element (12)(34)(56)(78) in

An. Let a2 ∈ E be such that ã2 ∈ Ẽ corresponds to the element (13)(24)(57)(68)
in An and let a3 := a1a2.

By Theorem 33.15 in [Asc00], the elements a1, a2 and a3 are commuting

involutions in E. As CE(ai) = CE(ai), we can choose a1, a2 and a3 to be commuting
involutions in E. It follows that A := ⟨a1, a2, z⟩ is an elementary abelian subgroup
of order 8 of C. Unless n = 11, we have for all i ∈ {1, 2, 3} that O(CẼ(ãi)) = 1 as
required in the first case above. When n = 11, the second case holds because then,
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for all involutions a ∈ A\{1, z}, the subgroup O(CẼ(ã)) = O(CẼ(Ã)) is cyclic of
order 3.

(3) A is weakly balanced.

Proof. Let i ∈ {1, 2, 3}. By Lemma 6.5 (1) it suffices to prove that

α(ai) ≤ O(C)O(CC(A)). From (1) we know that α(ai) induces inner au-

tomorphisms on E, and Lemma 6.15 yields that α(ai) centralises O2(C)

and, if it exists, the second component of C. So we deduce that α(ai) indu-
ces inner automorphisms on F ∗(C) and is therefore contained in F ∗(C).

It follows that α(ai) = O(CE(ai)) and then our choice of A implies that

α(ai) = 1 or α(ai) = O(CC(A)).

This forces α(ai) ≤ O(C)O(CC(A)) for all i ∈ {1, 2, 3}, in both cases, as
required. We conclude that A is weakly balanced. �

Now Lemma 6.8 yields a contradiction. �

Corollary 11.6. Suppose that Hypothesis 11.1 holds and that r2(G) ≥ 4.
Then C possesses a component of type A7 or of type PSL2(q) (with an odd number
q ≥ 5).

Proof. By hypothesis and Theorem 11.4 we know that C possesses an unba-
lanced component. But in the case of type An, Lemma 11.5 forces n to be at most
9. As A3 is soluble, the only possible component type left is A7. �
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The 2-Rank of G

In this section we prove Theorem D, one of the most important results towards
understanding the structure of F ∗(C). But even to establish Theorem D we already
need some knowledge about the components of C. In order to make the arguments
more clear, we begin by excluding particular configurations, thus dealing with some
of the technical details separately.

Lemma 12.1. Suppose that Hypothesis 11.1 holds and that E ∈ L2(C). Suppose
further that E ≃ A7 or that there exists an odd number q ≥ 5 such that E ≃
PSL2(q). Then F ∗(C) ̸= ⟨z⟩E.

Proof. Assume otherwise, which means that F ∗(C) = ⟨z⟩E with the type
of E as stated. Then E is simple and therefore z /∈ E, so we see that actually
F ∗(C) = ⟨z⟩ × E. In particular O2(C) ̸= C and therefore O2(G) ̸= G by Lemma
4.1 (10). Let S0 ∈Syl2(E). Then z centralises S0, but z /∈ S0 and thus S1 := ⟨z⟩×S0

is a Sylow 2-subgroup of O2′,F∗(C). Let S1 ≤ S ∈Syl2(G). Then S ≤ C by Lemma

4.1 (2) and S1 = S ∩ O2′,F∗(C) E S, in particular S1 E S. Every element of S

outside S1 centralises z, but is not contained in F ∗(C) and therefore induces an
outer automorphism on E.

Now we assume that S � O2′,F∗(C) which means that S1 < S. Then we recall

that, by the first paragraph, the elements from S\S1 induce outer automorphism on
E. The outer automorphism group of E is 2-nilpotent (because of the type of E),
and we also know that z /∈ O2(C), therefore |C : O2(C)| ≥ 4. But this contradicts
Lemma 5.6.

We conclude that S1 = S ∈ Syl2(G) and this means that S is a direct product
of ⟨z⟩ with the dihedral group S0 (that could be a fours group). As S0 is dihedral,
the Gorenstein-Walter Theorem 2.22 yields that F ∗(G) is isomorphic to A7 or that
there exists an odd number q′ ≥ 5 such that F ∗(G) ≃ PSL2(q

′). As S7 does not
have any isolated involutions, we cannot have that G ≃ S7 and therefore F ∗(G)
is not isomorphic to A7. We are left with the case that F ∗(G) ≃ PSL2(q

′). We
know that z /∈ F ∗(G) and hence z induces an outer automorphism on F ∗(G). This
must be a field automorphism because z centralises a Sylow 2-subgroup of F ∗(G).
Let C0 := CF∗(G)(z). Then there exists a prime power q0 dividing q′ such that

C0 ≃ PGL2(q0). In particular O2(C0) ̸= C0, contrary to Lemma 5.6. �

Lemma 12.2. Suppose that Hypothesis 11.1 holds and that E ∈ L2(C). Then
E cannot be isomorphic to any of the following:

– Sp6(q) with an odd number q;
– 2J2; or
– M11.
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Proof. Assume that E is isomorphic to one of the groups listed and note
that, in the first two cases, this implies that E is not simple. Thus E contains a
central involution which by Theorem B can only be z. We also observe that E has
2-rank at least 3 in the first case because Sp6(q) contains a subgroup isomorphic
to SL2(q)× SL2(q)× SL2(q). In the second case we have that r2(E) = 3 because
r2(2J2) = 3 and in the last case we have that r2(E) = 2, see for example Table
5.6.1 in [GLS98]. Let B be an elementary abelian subgroup of order 4 of E that
does not contain z (as is possible in all cases), so that A := B⟨z⟩ is elementary
abelian of order 8. Let b ∈ B#. With Tables 4.5.2, 5.3g and 5.3a in [GLS98], we

see that O(CE(b)) = 1. Hence if α(b) � O(C), then Lemma 6.15 implies that α(b)

induces an outer automorphism of E of odd order. This is impossible in the J2-case
and in the M11-case (see Tables 5.3g and 5.3a in [GLS98]). In the remaining case

α(b) induces a field automorphism. But we also know that

[α(b), CE(b)] ≤ O(CC(b)) ∩ E ≤ O(CE(b)) = 1.

Then CE(b) ≤ CE(α(b)) and this is impossible by Remark 11.2.

It follows that α(b) ≤ O(C) and hence Lemma 6.5 (1) yields, for all a ∈ A#,
that α(a) ≤ O(C). Thus A is balanced, which is a contradiction to Lemma 6.8. �

Lemma 12.3. Suppose that Hypothesis 11.1 holds. Then C does not have a
simple component of 2-rank 3.

Proof. Assume that E ∈ L2(C) is of 2-rank 3 and such that E is simple. We
know from Hypothesis 11.1 that E is isomorphic to an alternating group, to a Lie
type group or to a sporadic group.

E is not isomorphic to an alternating group by Theorem 2.17 (2). If E is
isomorphic to a group of Lie type in characteristic 2, then Table 3.3.1 in [GLS98]
implies that E ≃ L2(8), Sz(8) or U3(8). If E is isomorphic to a group of Lie type
in odd characteristic, then Theorem 4.10.5 in [GLS98] yields that there exists an
odd number q such that E is isomorphic to G2(q), to

2G2(q) or to
3D4(q), because

we excluded the case Sp6(q) in Lemma 12.2. If E is isomorphic to a sporadic group,
then Table 5.6.1 in [GLS98] leaves the possibilities that E is isomorphic to M12,
to J1 or to O′N , because we excluded the possibilities 2J2 and M11 in Lemma 12.2.

Now we let a ∈ E be an involution and we inspect pages 6, 28 and 66 in the
ATLAS ([CCN+03]) for the cases in characteristic 2 and Tables 4.5.1, 5.3b, 5.3f
and 5.3s in [GLS98] for the remaining cases. Then we see that O(CE(a)) = 1. If

x ∈ C is such that 1 ̸= x ∈ α(a) = O(CC(a)), then Lemma 6.15 forces x to induce

an outer automorphism of odd order on E. This leaves only the Lie type cases,
again by inspection of Tables 5.3b, 5.3f and 5.3s. But, as for the previous lemma,
we have that

[x,CE(a)] ≤ O(CC(a)) ∩E ≤ O(CE(a)) = 1

and therefore CE(a) ≤ CE(x). In the Lie type cases in odd characteristic, this
contradicts Remark 11.2. In the three cases with characteristic 2, we also see (for
example in the ATLAS) that CE(a) � CE(x) and so we have a contradiction there
as well.

It follows that O(CC(a)) = 1. As a ∈ E was an arbitrary involution and
r2(E) = 3, we just proved that C contains a 2-subgroup A of rank 4 containing z
that is balanced. This contradicts Lemma 6.8. �
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Definition 12.4. Let q be a power of an odd prime.
List (a): 2A7, SL2(q), SL4(q), Sp4(q), SU4(q).
List (b): A7, PSL2(q), PSL3(q), PSU3(q), PSU3(4).

Lemma 12.5. Suppose that Hypothesis 11.1 holds. Let E ∈ L2(C) and suppose
that r2(E) ≤ 3. Then E is isomorphic to a group from List (a) or (b).

Proof. By Hypothesis 11.1, we must consider the following cases: E is of
alternating type, of Lie type or sporadic.

We also point out that, if E is simple, then E has 2-rank 2 by Lemmas 10.5
and 12.3. Suppose that E is of alternating type. Then our hypothesis about the
2-rank and Theorem 2.17 imply that E can only be of types A5, A6 or A7. These
are on the lists (recall that A5 ≃ PSL2(5) and A6 ≃ PSL2(9)).

Next suppose that E is of Lie type. If E is defined in characteristic 2, then
inspection of the ATLAS ([CCN+03]) and of Table 3.3.1 in [GLS98] shows that
the only possibilities are that E is of type PSL2(4) ≃ PSL2(5), of type PSL3(2) ≃
PSL2(7), of type Sp4(2)

′ ≃ PSL2(9), or of types PSU3(4) or PSU3(3). These
groups are on the lists above and all other groups can be excluded because their
2-rank is too large. If E is defined in odd characteristic, then Theorem 4.10.5 in
[GLS98] and Lemma 12.2 only leave possibilities from the lists. (Groups like SL3(q)
do not occur because Z(E(C)) is a 2-group.) Finally E cannot be of sporadic type
by Table 5.6.1 in [GLS98] and Lemma 12.2.

�

Proof of Theorem D.
Recall that in Theorem D, we suppose that Hypothesis 11.1 holds. Assume

that the theorem is false. Then r2(G) ≥ 4 and therefore, by Corollary 11.6, there
exists a component in C that is of type A7 or, for a suitable odd number q ≥ 5, of
type PSL2(q). We also know from Theorem B that O2(C) is cyclic or quaternion.
Let E1 ∈ L2(C) be such that E1 is of type A7 or PSL2(q). If E1 is not simple, then
the Sylow 2-subgroups of E1 are quaternion whence precisely one of the following
holds:

– O2(C) = ⟨z⟩ = Z(E1) or
– r2(E1O2(C)) ≥ 2 (because there exist diagonal involutions).

In the following it happens several times that we deduce from the structure
of F ∗(C) that a Sylow 2-subgroup S of C induces inner automorphisms on (and
hence lies in) F ∗(C). More specifically, if the outer automorphism group of F ∗(C)
is 2-nilpotent (as is the case if we have at most two components), then S induces
inner automorphisms on F ∗(C) by Lemma 5.6, because z centralises F ∗(C).

For the remainder of the proof, we fix S ∈Syl2(C) and we refer to the above
argument by saying that the structure of F ∗(C) forces S to be contained in F ∗(C).

Case 1: E1 is the only component of C.
First assume that E1 is simple. Then E1 has dihedral Sylow 2-subgroups,

because of its type, and therefore r2(E1) = 2. It follows that r2(F
∗(C)) =

r2(E1O2(C)) = 3. The structure of F ∗(C) forces S to be contained in
F ∗(C) and therefore S is of rank 4, but this is a contradiction.

It follows that E1 is not simple, therefore Z(E1) contains an involution
and by Theorem B this involution must be z. Again the structure of
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F ∗(C) forces S to be contained in F ∗(C). But then S is a central (and
non-direct) product of a quaternion group with either a cyclic group or
another quaternion group and therefore S has rank 2 or 3. This is again
a contradiction.

Case 2: C has exactly two components.
Let E2 ∈ L2(C) be such that E2 is the second component of C. If

r2(E2) ≥ 4, then Lemma 11.4 forces E2 to be unbalanced of type An

(with n ≡ 3 modulo 4 and n ≥ 11). But this is excluded by Lemma 11.5.
Hence r2(E2) ≤ 3.

Assume first that E1 is simple. Then E1 has 2-rank 2 because of its
type. Moreover we have that E1 ∩ E2O2(C) = 1. Therefore E2O2(C) is
of 2-rank at most 1 because otherwise Lemma 10.4 yields a contradiction.
We deduce that r2(F

∗(C)) = 3 and that E1 and E2 are normal in C.
Therefore the structure of F ∗(C) forces S to be contained in F ∗(C), which
is a contradiction. Thus E1 is not simple. If E2 is simple, then Lemma
12.3 together with the fact that r2(E2) ≤ 3 implies that r2(E2) = 2 and
that, therefore, E2 is isomorphic to a group from List (b) in Definition
12.4. Moreover E1 and E2 are normal in C, so again the structure of
F ∗(C) forces F ∗(C) to contain a Sylow 2-subgroup of C. It follows that
r2(O2′,F∗(C)) = r2(G) ≥ 4, and this is only possible if r2(E1O2(C)) ≥ 2.

But E1O2(C) ∩ E2 = 1 and therefore this contradicts Lemma 10.4. We
conclude that E1 and E2 are both non-simple and that S ≤ F ∗(C). This is
impossible if E2 is isomorphic to 2A7 or SL2(q), because then the 2-rank
of F ∗(C) is only 3 (recall Lemma 2.14 and the fact that O2(C) is cyclic
or quaternion). In the remaining cases from List (a) there exists an odd
number q such that E2 ≃ SL4(q

′), Sp4(q
′) or SU4(q

′). Therefore E has
2-rank at least 2 and Lemma 10.4 forces r2(E1O2(C)) ≤ 2. This means
that O2(C) is cyclic, with Lemma 2.14.

Let U be the 4-dimensional module over a field of order q′ defining
E2 and let U1, U2 be 2-dimensional subspaces of U such that U is the
direct orthogonal sum of U1 and U2. Let a ∈ S be an involution such
that a ∈ E2 and such that U1 and U2 are the eigenspaces of a. Then
CE2

(a) has subgroups L1 and L2 such that L1 × L2 E CE2
(a) and such

that, for all i ∈ {1, 2}, the subgroup Li acts faithfully as SL2(q
′) on Ui and

centralises U3−i. As O(CE2
(a)) acts by scalar multiplication on U1 and U2,

it centralises L1 ×L2. Let L ≤ C be such that L ≃ SL2(q
′) and such that

L is diagonally embedded in L1 × L2. Let T1 := S ∩ E1 and T2 := S ∩ L.
Then T1 and T2 are quaternion with common central involution z, so
Lemma 2.14 yields that T1T2 contains an elementary abelian subgroup B
of order 8. As a centralises B, but is not contained in it, it follows that
A := B⟨a⟩ is elementary abelian of order 16. The subgroup O(CE2

(a)) of

E2 centralises E1 and L1 × L2 and therefore [O(CE2
(a)), A] = 1.

With the notation from Definition 6.1, we prove, for all subgroups V
of order 4 of A, that

∆V ≤ O(C)O(CC(A)). (∗)

Proof. Let V ≤ A be of order 4. If z ∈ V , then ∆V ≤ O(C). Also,
if a ∈ V , then ∆V ≤ O(CG(a)) ∩ C ≤ O(CC(a)). As E1 ≤ E(CC(a)), it
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follows in this case that ∆V centralises E1 and CE2
(a). Thus

∆V ≤ CC(A) ∩O(CC(a)) ≤ O(CC(A))

which implies that ∆V ≤ O(C)O(CC(A)). A similar argument yields the
statement if az ∈ V , so we may suppose that V ∩ ⟨a, z⟩ = 1. As V ⟨z⟩
centralises ∆V , we may also suppose that [∆V , a] � O(C).

For all i ∈ {1, 2} let vi, wi ∈ Ei be elements of order 4 such that
v := v1v2, w := w1w2 and vw are the involutions in V . As ∆V centralises
V and normalises E1 and E2, it follows that ∆V centralises ⟨v1, w1⟩ and
⟨v2, w2⟩. Now we set C̃ := C/Z(E2), and we note first that C

Ẽ1
(Ṽ ) ≤

CC̃(Ã) because Ã = Ṽ ⟨ã, z̃⟩ and Ẽ1 centralises ã. Thus

[∆̃V , CẼ1
(Ṽ )] ≤ CC̃(Ã).

As Ẽ2 is simple and of 2-rank at least 4 (see for example Theorem 4.10.5

in [GLS98]), Theorem 4.61 in [Gor82] implies that C
Ẽ2

(Ṽ ) = 1 and

therefore

[∆̃V , CẼ1E2
(Ṽ )] ≤ CC̃(Ã).

Thus [∆̃V , Ã, Ã] ≤ [∆̃V , CẼ1E2
(Ṽ ), Ã] = 1 and with Lemma 2.1 (2)

it follows first that ∆V ≤ CC(A) and then that ∆V ≤ O(C)O(CC(A)).
Thus the proof of (∗) is finished.

�

Now we show that Θ (as in Definition 6.1) defines a solubleA-signalizer
functor. Let u ∈ A#. Then Θ(u) = [CG(u), z]CO(C)(u)O(CC(A)) is an
A-invariant 2′-subgroup of CG(u) and so we are left with the balance
condition. Let w ∈ A#. With Lemma 2.1 (3), applied twice, we have that

Θ(u) ∩ CG(w)

= C[CG(u),z](w) · (CO(C)(u) ∩ CG(w)) · (O(CC(A)) ∩ CG(w))

≤ C[CG(u),z](w)CO(C)(w)O(CC(A)).

The second and third subgroup are already contained in Θ(w), so let
X := C[CG(u),z](w). As z acts coprimely on X, Lemma 2.1 (2) gives that
X = CX(z)[X, z]. We immediately have that [X, z] ≤ [CG(w), z] ≤ Θ(w),
so now we look at CX(z).

Observing that CX(z) = C[CG(u),z](⟨z⟩⟨w⟩), we apply Theorem 2.8 to
[CG(u), z], ⟨z⟩ and ⟨w⟩ in the roles of X, A0 and B. Then we obtain that

CX(z) = ⟨[C[CG(u),z](V ), z] ∩ CX(z) | V ≤ A, |V | = 4⟩.

Let V ≤ A be a subgroup of order 4. Then with (∗) first and another
application of Lemma 2.1 (3) afterwards it follows that

[C[CG(u),z](V ), z] ∩ CX(z) ≤
∩

v∈V #

[CG(v), z] ∩ CX(z) ≤ ∆V ∩X

≤ O(C)O(CC(A)) ∩ CG(w) ≤ CO(C)(w)O(CC(A)) ≤ Θ(w).

Thus the balance condition is established and we arrive at a contra-
diction to Lemma 6.6.
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Case 3: C has three components.
This case leads to the situation in Lemma 10.8 and in particular z ∈

Φ(S). Thus Lemma 5.5 yields that O2(C) = C and hence O2(C) = C. Our
assumption that r2(G) ≥ 4 and the fact that r2(F

∗(C)) = 3 imply that
F ∗(C) does not contain a Sylow 2-subgroup of C. But since O2(C) = C,
this leads to the following configuration (see also Lemma 14.2 in Chapter
14): C is transitive on L2(C) and there exists a 2-element t ∈ C such that
t ∈ C\F ∗(C) and such that, up to permutation of {1, 2, 3}, the element
t induces an inner automorphism on E3 and an outer automorphism of
2-power order on E1 and on E2. As r(S) ≥ 4, we may choose t to be an
involution and such that t centralises an elementary abelian subgroup of
E(C) of order 8. Then t induces a field automorphism on E1 and on E2.
Let i ∈ {1, 2} and let ai, bi ∈ Ei be elements of order 4 such that a := a1a2
and b := b1b2 are distinct commuting involutions that are centralised by

t. Let C̃ := C/⟨z⟩. Then t̃ induces an inner automorphism on Ẽ3 and an

involutory field automorphism on Ẽ1 and on Ẽ2. In particular we have that
C

Ẽ1
(t̃) is a subfield subgroup and therefore O(C

Ẽ1
(t̃)) = 1. By symmetry

O(C
Ẽ2

(t̃)) = 1. Set A := ⟨a, b, z, t⟩ and let v ∈ A# be arbitrary. Then

O(CC̃(ṽ)) induces inner automorphisms on E(C̃) and thus O(CC̃(ṽ)) =
O(CE(C̃)(ṽ)). Now let V ≤ A be of order 4 and recall Definition 6.1.

Our objective is to prove that ∆V ≤ CC(A)O(C). If z ∈ V , then ∆V ≤
O(C), and if t ∈ V or tz ∈ V , then ∆̃V ≤ O(CE(C̃)(t̃)) = O(C

Ẽ3
(t̃)) =

O(C
Ẽ3

(Ã)) by the previous paragraph. If a, b ∈ V , then

∆̃V ≤ O(CE(C̃)(ã)) ∩O(CE(C̃)(̃b)) = O(Ẽ3) = 1

because, by the structure of the components of C̃, the subgroups C
Ẽ1Ẽ2

(ã)

and C
Ẽ1Ẽ2

(̃b) intersect in a 2-group. This argument also yields that ∆̃V =

1 if V contains a (or az) together with one of bz, ab, abz. By symmetry
between a and b, the only case left to consider is the case where without

loss V = ⟨a, bt⟩. Then we see that ∆̃V ≤ O(CE(C̃)(ã)) which is a direct

product of two cyclic groups of odd order that are inverted by b̃ with

a cyclic group of odd order that is centralised by b̃. Let i ∈ {1, 2}. As

t̃ centralises a subfield subgroup of Ẽi that contains ⟨ãi, b̃i⟩, it centrali-

ses a non-trivial subgroup of O(C
Ẽi
(ã)). Then it follows that b̃t inverts

O(C
Ẽ1Ẽ2

(ã)) and we deduce that

∆̃V ∩ Ẽ1Ẽ2 ≤ O(C
Ẽ1Ẽ2

(ã)) ∩O(C
Ẽ1Ẽ2

(b̃t)) = 1.

Therefore ∆̃V ≤ O(C
Ẽ3

(t̃)) = O(C
Ẽ3

(Ã)) and hence ∆̃V ≤ O(CC̃(Ã)).

We conclude that ∆V ≤ O(CC(A)) whence ∆V ≤ O(C)O(CC(A)) for all
subgroups V of A of order 4.

As in Case 2 it follows that Θ (from Definition 6.1) defines a soluble
A-signalizer functor, and this contradicts Lemma 6.6.

By Theorem C there are no more cases to consider, therefore it is impossible
that r2(G) ≥ 4. �
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The F*-Structure Theorem

As in the previous chapter, we begin with a series of lemmas, each of them
handling a particular possibility for F ∗(C) (or at least for a component in C). The
bound on r2(G) from Theorem D is, of course, crucial. In many situations we can
then still argue with signalizer functors or with the fact that there are no (weakly)
balanced subgroups in C. All this information collected together yields Theorem
13.4, a list of possibilities regarding the number of components in C and their shape.
What is left to be done for the F*-Structure Theorem is to go through these cases
and to exclude a few more configurations where weakly balanced subgroups appear.
The corresponding technical details are dealt with in Lemma 13.5.

The information from the F*-Structure Theorem is our starting point for some
more local analysis in the next sections.

Lemma 13.1. Suppose that Hypothesis 11.1 holds and let E ∈ L2(C).
Then E ̸≃ PSU3(4).

Proof. Assume otherwise and let E ∈ L2(C) be such that E ≃ PSU3(4).
Then E is simple and of 2-rank 2, hence ⟨z⟩E has 2-rank 3. Theorem D implies
that E is the unique simple component of C. Let B ≤ E be elementary abelian of
order 4 and set A := ⟨z⟩B. Then B is the centre of a Sylow 2-subgroup of E (see
for example page 30 in [CCN+03]) and for all b ∈ B# we have that O(CE(b)) = 1.

With Lemma 6.15 we know that O(CC(b)) centralises O2(C) and E(CC(b)). The

type of E (more precisely the fact that its outer automorphism group has order 4,
again by [CCN+03]) implies that O(CC(b)) induces an inner automorphism on E.

It follows, for all b ∈ B#, that

O(CC(b)) = O(CE(b)) = 1

and then, for all a ∈ A#, that O(CC(a)) ≤ O(C).
Thus A is balanced, which is a contradiction to Lemma 6.8.

�

Lemma 13.2. Suppose that Hypothesis 11.1 holds, that E ∈ L2(C) and that q
is a power of an odd prime. Then E is not isomorphic to PSL3(q) or to PSU3(q).

Proof. Assume that E ≃ PSL3(q) or PSU3(q). Then E is simple of 2-rank 2,
so ⟨z⟩E has 2-rank 3 whence by Theorem D it follows that r2(G) = 3. This implies
that E is the unique simple component.

Let B ≤ E be elementary abelian of order 4 and let A := ⟨z⟩B. For all b ∈ B#,
we see that CE(b) is a component of CC(b) isomorphic to SL2(q) and therefore

[α(b), CE(b)] ≤ O(CC(b)) ∩ E(CC(b)) = 1.

89
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As B ≤ CE(b), we conclude that [α(b), B] = 1. Then Lemma 6.5 (1) yields, for

all a ∈ A#, that α(a) ≤ O(C)O(CC(A)) and consequently A is a weakly balanced
subgroup. This contradicts Lemma 6.8. �

Lemma 13.3. Suppose that Hypothesis 11.1 holds and that E ∈ L2(C). Then
E is not isomorphic to A5, A6, A7, PSL2(7) or PSL2(9).

Proof. Assume that E is isomorphic to one of the groups mentioned. We
argue as for the previous lemmas – since E is simple of 2-rank 2, we have that
r2(⟨z⟩E) = 3 and hence r2(G) = 3 by Theorem D. Again this implies that E is the
unique simple component.

We choose B ≤ E to be elementary abelian of order 4 such that O(CE(B)) is

cyclic of order 3 in the A7-case and that O(CE(B)) = 1 in the other four cases. Let

A := ⟨z⟩B. Then for all b ∈ B#, we know that

O(CE(b)) = O(CE(B)) = O(CE(A)).

Lemma 6.15 together with the fact that the outer automorphism group of E is a
2-group implies, for all b ∈ B#, that

O(CC(b)) = O(CE(b)) = O(CE(A))

and therefore α(b) ≤ O(C)O(CC(A)). With Lemma 6.5 (1) we conclude, for all a ∈
A#, that α(a) ≤ O(C)O(CC(A)). Thus A is weakly balanced and this contradicts
Lemma 6.8. �

Theorem 13.4. Suppose that Hypothesis 11.1 holds. Then there exists a sub-
group T of C such that F ∗(C) = E(C)T and T = 1 or T ≃ Q8. Moreover either

O2′(C) = F ∗(C) or |L2(C)| = 3, each member of L2(C) is normal in O2′(C) and
C is transitive on L2(C). Finally, one of the following holds:

(1) T ≃ Q8 and there exists an odd number q ≥ 11 such that E(C) is isomor-
phic to PSL2(q).

(2) T ≃ Q8 and E(C) is isomorphic to 2A7 or there exists an odd number
q ≥ 5 such that E(C) ≃ SL2(q).

(3) T = 1 and there exists an odd number q such that E(C) is isomorphic to
SL4(q), Sp4(q) or SU4(q).

(4) C has two components E1 and E2 and for all i ∈ {1, 2} there exists an
odd number qi ≥ 5 such that Ei ≃ SL2(qi) or Ei ≃ 2A7.

(5) C has two components E1 and E2 and there exist odd numbers q1 ≥ 11
and q2 ≥ 5 such that E1 ≃ PSL2(q1) and E2 ≃ SL2(q2) or E2 ≃ 2A7.
Moreover T = 1.

(6) T = 1 and C has three components E1, E2 and E3, and for all i ∈ {1, 2, 3}
there exists an odd number qi ≥ 5 such that Ei ≃ SL2(qi) or Ei ≃ 2A7.

Proof. From Theorem C we know that C has one, two or three components.
Hence we need to show that these three cases lead to (1)-(6) in the theorem. Let
S0 ≤ C be a 2-subgroup of C such that S0 = O2(C). Then S0 is of rank 1 by
Theorem B and r2(C) ≤ 3 by Theorem D. Thus the hypothesis of Lemma 12.5 is
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satisfied for every member of L2(C) and it follows that every component of C is
isomorphic to a group from List (a) or List (b) in Definition 12.4.

Let C̃ := C/⟨z⟩ and L ∈ L2(C).

(i) If L is simple, then there exists an odd number q ≥ 11 such that L ≃
PSL2(q).

Proof. Lemma 12.5 yields that L is isomorphic to one of the groups
from List (b). Hence Lemmas 13.1, 13.2 and 13.3 imply the statement. �

(ii) If L is not simple, then either r2(L) = 1 or there exists an odd number q

such that L ≃ SL4(q), Sp4(q) or SU4(q) and E(C) = O2′(C).

Proof. It follows from Lemma 12.5 that L is isomorphic to a group
from List (a). We suppose that r2(L) > 1. Then there exists an odd
number q such that L ≃ SL4(q), Sp4(q) or SU4(q). As r2(C) ≤ 3, this
implies that L is the unique component of C and that S0 is not quaternion.

The outer automorphism group of L̃ is 2-nilpotent and O2(C̃) = C̃ by

Lemma 5.6, so O2′(C) = L = E(C). �

(iii) LEO2′(C).

Proof. This follows since |L2(C)| ≤ 3 by Theorem C and O2(C̃) =

C̃ by Lemma 5.6. �

(iv) Suppose that |L2(C)| ≤ 2. Then O2′(C) = E(C)S0 and either S0 ≃ Q8 or
S0 ≤ E(C).

Proof. The first statement follows from (iii) because by (i) and (ii),
the outer automorphism group of every component of C is 2-nilpotent and

O2(C̃) = C̃ by Lemma 5.6. For the second statement we recall that S0 is
cyclic or quaternion by Theorem B and hence the automorphism group
of S0 is a 2-group unless S0 ≃ Q8. Thus S0 ≃ Q8 or S0 = ⟨z⟩ in which
case Theorem B, part (i) and Lemma 12.1 yield that S0 ≤ E(C). �

(v) If L is simple, then the theorem holds.

Proof. Suppose that L is simple. Then by (i) there exists an odd
number q ≥ 11 such that L ≃ PSL2(q) and (iv) yields that S0 ≃ Q8 or
S0 ≤ E(C). The first case leads to (1) and in the second case, the fact
that L is simple implies that C has a component E distinct from L. By
Lemma 10.8 this means that C has exactly two components. Moreover
S0 ≤ E whence E is not simple. It follows from (ii) and Theorem D that
r2(E) = 1 and hence we have (5) by Lemma 10.5. �

(vi) If E(C) = L, then the theorem holds.
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Proof. By (v) we may suppose that L is not simple. Suppose that
part (3) of the theorem does not hold. Then r2(L) = 1 by (ii) whence there
exists an odd number q ≥ 5 such that L is isomorphic to SL2(q) or 2A7.
Moreover (iv) yields that S0 ≃ Q8 or S0 ≤ E(C). But if S0 ≤ E(C), then
C (and hence G) has quaternion Sylow 2-subgroups, contrary to Lemma
5.3 (1). Therefore, if (3) does not hold, then (2) holds. �

(vii) If |L2(C)| = 3, then the theorem holds.

Proof. Lemma 10.8 implies (6). �

By (vi) and (vii) it suffices to consider the case where C has exactly two com-
ponents. Thus let E ∈ L2(C) be such that E(C) = LE. First suppose that one of
the components is simple. Then (i) and Lemma 10.4 yield that, without loss, there
exists an odd prime q ≥ 7 such that L ≃ PSL2(q) and r2(ES0) = 1. Then (iv)
and Lemma 10.5 imply that (5) holds. Next suppose that L and E are both not
simple. Then Lemma 10.4 and (ii) give that both components have 2-rank 1. Thus
(4) holds by Lemma 10.5.

This completes the proof of the theorem. �

Lemma 13.5. Suppose that Hypothesis 11.1 holds. Then C possesses at most
one component of type A7. Moreover if C has a component isomorphic to 2A7, then
O2(C) ̸≃ Q8.

Proof. For the first statement assume otherwise and let E1, E2 ∈ L2(C) be
such that E1 and E2 are of type A7. By Lemma 13.3, both these components are
not simple, hence they share the central involution z and we are in case (4) or (6)
of Theorem 13.4. By Lemma 2.14 we may choose an elementary abelian subgroup
B ≤ E1E2 such that z /∈ B. Moreover we choose B such that B centralises a
subgroup of order 3 of E1 and of E2. Set A := B⟨z⟩. We show that A is weakly
balanced:

By choice of B, we have for all b ∈ B# and i = 1, 2 that the groups O(CEi
(b))

are cyclic of order 3 and centralise all of A. Hence, for all a ∈ A#, it follows that

O(CE1
(a))O(CE2(a)) ≤ O(C)O(CC(A)).

Let b ∈ B#. Then α(b) centralises O2(C) and, if it exists, the third component of

C, by Lemma 6.15. Also, since it has odd order, the subgroup α(b) induces inner

automorphisms on E1 and E2. Thus α(b) ≤ F ∗(C) and we deduce that

α(b) ≤ O(CF∗(C)(b)) = O(CF∗(C)(A)).

This implies that α(b) ≤ O(C)O(CC(A)). With Lemma 6.5 (1) it follows, for all a ∈
A#, that α(a) ≤ O(C)O(CC(A)). But then A is weakly balanced, which contradicts
Lemma 6.8.

For the second statement suppose that E is a component of C isomorphic to
2A7 and assume that O2(C) ≃ Q8. Let T ∈Syl2(O2′,2(C)). Then by Lemma 2.14 we
may choose an elementary abelian subgroup B ≤ ET such that z /∈ B, and again
we choose B such that B centralises a subgroup of order 3 of E. Then A := B⟨z⟩
is weakly balanced just as in the previous paragraph. �
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Theorem 13.6 (The F*-Structure Theorem). Suppose that Hypothesis 11.1
holds. Then there exists an odd number q (or odd numbers q1, q2, q3) such that
F ∗(C) is isomorphic to one of the following groups:

List I
– Q8 ∗ SL2(q);
– SL2(q1) ∗ SL2(q2);
– Q8 ∗ SL2(q1) ∗ SL2(q2);
– SL2(q) ∗ 2A7.
All these products have a common central involution.

List II
– Sp4(q);
– SL4(q);
– SU4(q).

List III
– SL2(q1) ∗ SL2(q2) ∗ 2A7;
– SL2(q1) ∗ SL2(q2) ∗ SL2(q3).
These products have a common central involution.

List IV
– Q8 × PSL2(q) and q ≥ 11;
– 2A7 × PSL2(q) and q ≥ 11;
– SL2(q1)× PSL2(q2) and q2 ≥ 11.

Proof. We go through the cases in Theorem 13.4.
First (1) gives the first case on List IV and (2) gives the first case on List I.

Then (3) gives List II. Looking at (4), we see that the only remaining cases are
those on List I, by Lemma 13.5. We turn to (5) and obtain precisely the last two
cases on List IV. Finally (6) and Lemma 13.5 give List III.

Although this is clear from Theorem B, we mention at this point that whenever
the products describing the shape of F ∗(C) are not direct, then there is a unique
central involution in the intersection of the factors and this involution is z. �





KAPITEL 14

More Involutions

Our starting point is a series of statements following from the F*-Structure
Theorem. Lemmas 14.4 and 14.5 are at the heart of the analysis – there we use
our information about the 2-structure of C in order to deduce knowledge about the
centralisers of specially chosen involutions. This leads to more maximal subgroups
H of G containing the centraliser of an involution and with this involution being
isolated inH. To make our life easier, we refer to particular cases in the F*-Structure
Theorem by saying that “F ∗(C) is as on List I, II, III or IV”, respectively.

14.1. Preliminary Results

Lemma 14.1. Suppose that Hypothesis 11.1 holds and let t ∈ C be an involution
distinct from z. Then the following hold:

(1) G is simple.

(2) O2(C) = C.

(3) Either F ∗(C) = O2′(C) or every member of L2(C) is normal in O2′(C),
and |L2(C)| = 3 with C acting transitively on L2(C).

(4) G = ⟨CG(t), CG(tz)⟩.
(5) CG(t), CG(tz) and C are pairwise distinct. If C ≤ M maxG, CG(t) ≤

Ht maxG and CG(tz) ≤ Htz maxG, then M, Ht and Htz are pairwise
distinct.

Proof. Let S ∈Syl2(C). The F*-Structure Theorem 13.6 implies that z ∈
Φ(S), so (1) and (2) follow from Lemmas 4.1 (10), 5.4 and 5.5. Theorem 13.4
yields (3), and Theorem 4.6, Lemma 5.7 and (1) imply that (4) holds. From there
we deduce that CG(t) and CG(tz) are distinct and that Ht and Htz are distinct,
because these subgroups contain CK(t) and CK(tz), respectively. The involution
centralisers CG(t) and CG(tz) are not equal to C by Lemma 5.13. For the same
reason, the subgroups Ht and Htz are distinct from M . Thus (5) is proved as
well. �

Lemma 14.2. Suppose that Hypothesis 11.1 holds, that O2′(C) ̸= F ∗(C) and
that L2(C) = {E1, E2, E3}. Let q ≥ 5 be an odd number such that Ei ≃ SL2(q) for
all i ∈ {1, 2, 3} and suppose that t ∈ C\L(C) is an involution. Then t induces, up
to permutation of {1, 2, 3}, an outer automorphism in PGL2(q) on E1 and E2 and
centralises E3.

95



96 14. MORE INVOLUTIONS

Proof. Let E := L(C) and C̃ := C/⟨z⟩. Then Ẽ is a direct product of three

groups isomorphic to PSL2(q) and therefore Aut(Ẽ) is the wreath product of

Aut(E1) with S3. For all i ∈ {1, 2, 3} we know from Lemma 14.1 (3) that EiEO2′(C)

and hence C̃/CC̃(Ẽ) is the semi-direct product of Ẽ with a subgroup isomorphic

to A4. (Recall that O2(C̃) = C̃ by Lemma 5.6.) Moreover, up to a permutation

of {1, 2, 3}, the involution t̃ acts as an involutory outer automorphism on Ẽ1 and

Ẽ2 and induces an inner automorphism on Ẽ3. Suppose that t̃ induces a field au-

tomorphism on Ẽ1. Then it induces a field automorphism on Ẽ2 as well and so
there exists a prime power q0 dividing q such that CE1E2

(t) contains a subgroup

isomorphic to SL2(q0) ∗ SL2(q0). This subgroup has 2-rank 3 by Lemma 2.14 and
t centralises it, but is not contained in it. Then r2(C) ≥ 4 contrary to Theorem D.

By symmetry it follows that t̃ induces an outer automorphism in PGL2(q) on E1

and E2.
Next let t ∈ P ∈Syl2(C) be such that T := CP (t) is a Sylow 2-subgroup of

CC(t). For all i ∈ {1, 2, 3} set Pi := P ∩ Ei. Then the previous paragraph implies
that there are elements u1 ∈ P1 and u2 ∈ P2 of order 4 that are inverted by t
and such that CP1P2(t) = ⟨u1u2, z⟩. Assume that t does not centralise P3. We know

from the previous paragraph that t̃ induces an inner automorphism on Ẽ3 and hence
there exists an element u3 ∈ P3 of order 4 such that u3 is inverted by t. As u1u2

and u1u3 are involutions, the subgroup ⟨t, u1u2, u1u3, z⟩ is elementary abelian of
order 16, contrary to Theorem D. Thus t induces an inner automorphism on E3

that centralises P3 and it follows that t centralises E3. �

Lemma 14.3. Suppose that Hypothesis 11.1 holds. Let t ∈ C be an involution
such that t ̸= z and suppose that B is an elementary abelian subgroup of order 4 of
C that contains t, but not z. Let H < G.

(1) There exists an involution b ∈ B such that CG(b) � H. In particular, if

CG(t) ≤ H, then NH(B)/CH(B) is not transitive on B#.

(2) Suppose that F ∗(C) is as on List IV and that E ∈ L2(C) is such that
E is simple and B ≤ E. Suppose that CG(t) ≤ H. Then there exists an
element b ∈ B# such that CC(b) � H.

Proof. Let t, b and tb be the involutions in B. For (1) we assume that CG(t),
CG(b) and CG(tb) are all contained in H. Let Htz denote a maximal subgroup of G
containing CG(tz). Then B ≤ CG(tz) and therefore B acts coprimely on O(Htz).
With Lemma 2.1 (4) this yields that

O(Htz) = ⟨CO(Htz)(v) | v ∈ B#⟩ ≤ ⟨CG(t), CG(b), CG(tb)⟩ ≤ H.

As z ∈ H < G, Lemma 5.2 (2) implies that CK(t) ⊆ O(H). Similarly CK(tz) ⊆
O(Htz) and thus with Lemma 14.1 (4) it follows that

G = ⟨CK(t), CK(tz)⟩ ≤ ⟨O(H), O(Htz)⟩ ≤ H.

This is impossible. In particular NH(B)/CH(B) is not transitive on B#.
We move to (2) and suppose that one of the cases from List IV holds and that

E ∈ L2(C) is such that E is simple and B ≤ E.
Assume that CC(b) and CC(bt) are subgroups of H. Then H contains CG(t),

CC(b) and CC(bt) and the coprime action of B on O(C), together with Lemma
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2.1 (4), implies that O(C) ≤ H. By hypothesis there exists an odd number q ≥ 11
such that E ≃ PSL2(q). As q ≥ 11, the subgroup structure of E (see for example
Dickson’s Theorem 6.5.1 in [GLS98]) gives that E = ⟨CE(t), CE(b)⟩. Therefore

EO(C) = ⟨CE(t), CE(b)⟩O(C) ≤ H.

It follows that all involutions in E are not only contained in H, but also conjugate
in H. We deduce that, for all involutions s ∈ C distinct from z, the centraliser
CC(s) is contained in H (because s itself or sz is conjugate to t in CH(z)). If E
is the only component in C, then it follows that O2′,2(C) ≤ CC(t)O(C) ≤ H. If a

second component E2 exists, then E2 ≤ CC(t)O(C) ≤ H. In both cases we have
that O2′,F∗(C) ≤ H. We conclude that C ≤ H:

For an arbitrary element c ∈ C\O2′,F∗(C), we know that c centralises E or indu-
ces a non-trivial outer automorphism on it, and in the former case c ∈ CC(t)O(C) ≤
H because c ∈ CC(t). Our hypothesis that F ∗(C) is as on List IV yields that

|L2(C)| ≤ 2 and thus C/F ∗(C) has odd order by Lemma 14.1 (3). Therefore we
may suppose that c has odd order. An outer automorphism of odd order of E
must be a field automorphism and hence centralises an involution in E. Conse-
quently there exists an involution s ∈ C such that c ∈ CC(s) which means that
c ∈ CC(s)O(C) ≤ H. Thus we showed that C ≤ H. As H < G, this means that G
has a maximal subgroup that contains C and CG(t), contrary to Lemma 5.13. �

Lemma 14.4. Suppose that Hypothesis 11.1 holds and that a ∈ C is an invo-
lution distinct from z and chosen as follows: a ∈ F ∗(C); if r2(E(C)) ≥ 2, then
a ∈ E(C); if C has a simple component L, then a ∈ L.

Let v ∈ {a, az} and let H be a maximal subgroup of G containing CG(v). Then

(1) v is isolated in H and
(2) either vz ∈ vC or F ∗(C) is as on List IV.

Proof. Let S0 ∈Syl2(CC(v)) and S0 ≤ S ∈ Syl2(C).

(i) Either |S : S0| = 2 and vz ∈ vS or F ∗(C) is as on List IV and S0 = S. In
particular (2) holds.

Proof. Is is immediate from the groups on List IV that, if F ∗(C) is
as on List IV, then S0 = S.

Now suppose that F ∗(C) is as on List II and let E ∈ L2(C). Let q
be a power of an odd prime and let U be the 4-dimensional module over
a field of order q defining E. Let U1, U2 be the eigenspaces of a. As we
saw in the proof of Theorem D, there are subgroups L1 and L2 of CE2

(a)

such that L1 ×L2 ECE2
(a) and such that, for all i ∈ {1, 2}, the subgroup

Li acts faithfully as SL2(q
′) on Ui and centralises U3−i. All involutions in

E distinct from z have 2-dimensional eigenspaces on U and they are all
conjugate in E. In particular az ∈ aS in this case and therefore vz ∈ vS .
Since there exists an element in S interchanging a and az, we see that
|S : S0| = 2. Hence (i) holds in this case.

Finally we suppose that F ∗(C) is as on List I or III. Then all com-
ponents of C have quaternion Sylow 2-subgroups and there exist E1, E2 ∈
L2(C) such that v is diagonal in E1 ∗ E2. So (i) follows because E1 and

E2 are normal in O2′(C). �
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(ii) vz /∈ vH .

Proof. This follows from Lemma 14.1 (4) because CK(v) ⊆ H. �
(iii) S0 ∈ Syl2(H).

Proof. We know that S ∈Syl2(G) and therefore the statement fol-
lows from (i) and (ii). �

From now on we assume that v is not isolated in H. Then there exists an
element h ∈ H such that vh ∈ S0, but vh ̸= v. It follows from Alperin’s Fusion
Theorem (see for example (38.1) in [Asc00], applied toH, S0, v and vh) that S0 has
a subgroup R such that v ∈ R and NS0(R) ∈Syl2(NH(R)), but NH(R) � CG(v).

We set B := ⟨vNH(R)⟩ and we denote by A the group of automorphisms of B
induced by NH(R).

(iv) B is elementary abelian of order 8. In particular z ∈ B.

Proof. As v ∈ Z(S0) and v ∈ R ≤ S0, we have that v ∈ Z(R).
Thus B ≤ Z(R) and B is elementary abelian. The rank of B is 2 or 3
by Theorem D and because NH(R) does not centralise v. The property
that NS0(R) ∈Syl2(NH(R)) implies that A is not a 2-group, hence if B
is a fours group, then A acts transitively on B#. This contradicts Lemma
14.3 (1) and consequently B has order 8. As z centralises B, Theorem D
implies that z ∈ B. �

(v) A is cyclic of order 3 or isomorphic to S3. Moreover B = ⟨z⟩ × [B,A].

Proof. From (iv) we know that Aut(B) ≃ GL3(2). As z is isolated
in H, we see that A is isomorphic to a subgroup of an involution centra-
liser in GL3(2). In particular A is a {2, 3}-group. Moreover the group of
automorphisms induced by NS0(R) on B is a Sylow 2-subgroup of A (and
centralises a), so it follows that |vA| is odd. This yields the first result and
Lemma 2.1 (2), applied to an element of order 3 in A, yields the second
statement. �

(vi) v /∈ [B,A]. In particular B = ⟨v⟩[B,A].

Proof. Otherwise, as A acts transitively on [B,A], we have a con-
tradiction to Lemma 14.3 (1). �

(vii) B ≤ F ∗(C).

Proof. We have that z ∈ B ≤ R and therefore NH(R) ≤ C. Moreo-
ver a ∈ F ∗(C) by hypothesis and z ∈ O2(C), so v ∈ F ∗(C). As C controls

fusion in C by Lemma 4.1 (9), it follows that B = ⟨vNH(R)⟩ ≤ F ∗(C). �

(viii) F ∗(C) is as on List IV and a is contained in the simple component of C.

Proof. If F ∗(C) is as on List IV, then this follows from the choice
of a in the hypothesis of the lemma. So we assume otherwise and let
d ∈ [B,A] be an involution. Then d ∈ B ≤ S0, but d ̸= z and d ̸= v by
(v) and (vi). Then the structure of S in the cases from Lists I-III implies
that d is conjugate to dz in S0. It follows with (v) that all involutions in
B\⟨z⟩ are conjugate in H, contrary to (ii). �
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In light of (viii) let L ∈ L2(C) be such that L is simple and a ∈ L. By (v) there
exists an element x ∈ A of order 3.

First suppose that v = a. Then [a, x] = [B,A] and, as x ∈ C and a ∈ LEC, we
deduce that [a, x] ∈ L. Therefore [B,A] ≤ L. Then (vi) yields that B = ⟨a⟩[B,A] ≤
L, which is impossible because z /∈ L.

Next suppose that v = az. Then [az, x] = [B,A] and hence [B,A] contains an
involution d that is conjugate to a in L. But NH(R) ≤ C and LE C, so it follows
that [B,A] ≤ ⟨dNH(R)⟩ ≤ L. This is a contradiction because az /∈ L.

This completes the proof. �

Lemma 14.5. Suppose that Hypothesis 11.1 holds and that a is chosen as in
Lemma 14.4. Let v ∈ {a, az}, let H be a maximal subgroup of G containing CG(v)

and set V := ⟨a, z⟩ and Ĥ := H/O(H). Then the following hold:

(1) All involutions in V are isolated in H.

(2) Either v and vz are conjugate or F ∗(C) is as on List IV.

(3) If F ∗(C) is as on List I, then H is soluble.

(4) If F ∗(C) is as on List II, then either Ĥ is soluble (in which case q = 3)

or q ̸= 3 and Ĥ has two components isomorphic to SL2(q) with â and âz
being their central involutions, respectively.

(5) If F ∗(C) is as on List III, then Ĥ has precisely one component, its 2-rank
is 1 and ẑ is its central involution.

(6) If F ∗(C) is as on List IV, then either L2(H) = ∅ or Ĥ has precisely one
component, its 2-rank is 1 and ẑ is its central involution.

(7) V centralises O2(H) and E(H).

(8) For all primes r we have that I∗
H(V, r) ⊆ Sylr(H).

Proof. As z is isolated in H, Lemma 14.4 yields (1) and (2).
Suppose that F ∗(C) is as on List I. Then CC(a) is soluble and therefore CC(v)

is soluble. Lemma 5.2 (1) yields that CG(v) = CC(v)O(CG(v)) is soluble and then
the same result, applied to H and v, gives that H is soluble. This proves (3).

In (4)-(6), if L2(H) ̸= ∅, then we always let L ∈ L2(H) and L0 := O∞(CL(V )).
Before we turn to (4), we also observe the following:

As V ≤ Z∗(H) by (1), we have that L̂0 = L̂. Moreover L0O(CG(v)) ∈
L2(CG(v)) whence Lemma 10.3 forces L0 to be contained in a component of C.
This implies that L0 ≤ CE(C)(v) and therefore L0 is one of the components of

CC(v).

In (4) we suppose that F ∗(C) is as on List II and we let q denote the order of the
field that appears in the type of the unique component of E of C. Then CE(v) (and
hence CC(v)) is soluble if an only if q = 3. If q ≥ 5, then CC(v) has two components
isomorphic to SL2(q) that have central involutions v and vz, respectively. In this
case L0 ≤ CE(v) by our observation and therefore L0 is one of the components

of CE(v). As CC(v) ≤ H, it follows that Ĥ has exactly two components and that
they are both isomorphic to SL2(q), with central involutions â and âz. Thus (4) is
proved.

Suppose that F ∗(C) is as on List III and let E1, E2, E3 ∈ L2(C) be such that
a ∈ E1E2. Then E3 is the unique component of CC(v) and, since L0 centralises V ,
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our observation implies that L0 ≤ E3. As CE3(v) ≤ H, it follows that L0 = E3

and therefore L̂ is the unique component of Ĥ, its 2-rank is 1 and ẑ is its central
involution. This yields (5).

Suppose that F ∗(C) is as on List IV. If the first case from List IV holds, then
CC(v) is soluble and hence (1) and Lemma 5.2 (1) imply that H is soluble. Thus
L2(H) = ∅ in this case. Now suppose that one of the other two cases from List
IV holds and let E1, E2 ∈ L2(C) be such that E1 is simple. Then L0 ≤ E2 by our

observation and because L0 centralises C. Conversely CE2(v) ≤ H and therefore Ĥ
has a unique component, it is isomorphic to E2 and therefore of 2-rank 1, and its
central involution is ẑ. Hence (6) is proved.

Lemma 5.2 (5), applied to H and its isolated involutions z and v yields (7).
Finally Lemma 4.11, applied to H and V , implies that there exist V -invariant Sylow
r-subgroups of H for all primes r. �

Hypothesis 14.6.
In addition to Hypothesis 11.1, suppose the following:

• a is an involution in C distinct from z that is chosen as in Lemma 14.4
and V := ⟨z, a⟩.

• We let π := π(F (M)) and if possible, we choose M such that there is some
p ∈ π with COp(M)(z) = 1.

• If v ∈ {a, az}, then Hv denotes a maximal subgroup of G such that
CG(v) ≤ Hv. We set πv := π(F (Hv)) and choose Hv such that, if possible,
there exists a prime p ∈ π(F (Hv)) with COp(Hv)(v) = 1. Moreover let Tv

be a Sylow 2-subgroup of Hv with V ≤ Z(Tv) and Tv ≤ S ∈ Syl2(C). We

abbreviate Ĥv := Hv/O(Hv).

• We choose Ha and Haz to be conjugate if a and az are conjugate in G.

• For all v ∈ {a, az}, if CG(v) ̸= Hv, then let rv ∈ πv be such that Orv (Hv)
contains a v-minimal subgroup Uv. If C < M , then let p ∈ π be such that
Op(M) contains a z-minimal subgroup U .

Lemma 14.7. Suppose that Hypothesis 14.6 holds, let v ∈ {a, az} and suppose
that t ∈ vC . Then Hypothesis 7.6 is satisfied by t, Ht and Ut.

Proof. By hypothesis t is an involution in C. If CG(t) ≤ HmaxG, then t is
isolated in H by Lemma 14.5 (1), because t is conjugate to v. The remainder of
Hypothesis 7.6 is notation and follows from Hypothesis 14.6. �

Lemma 14.8. Suppose that Hypothesis 14.6 holds, let v ∈ {a, az} and suppose
that E(Hv) ̸= 1. Then F ∗(C) is as on List II, there is a unique component L in
Hv, there exists an odd number q ≥ 5 such that L ≃ SL2(q), and v ∈ L.

Proof. Lemma 14.1 (5) yields that Hv � C, therefore Lemma 5.2 (6) implies
that [F (Hv), z] ̸= 1. In particular z /∈ E(Hv). Let L be a component of Hv. Then
it follows from Lemma 14.5 (3)-(6) that F ∗(C) is as on List II, that there exists an
odd number q ≥ 5 such that L ≃ SL2(q) and that L contains v or vz as central
involution. If Z(L) = ⟨vz⟩, then, as v and vz are not conjugate in Hv, it follows
that vz ∈ Z(Hv) contrary to Lemma 14.1 (5). Thus Z(L) = ⟨v⟩ and in particular
L is the unique component. �
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Lemma 14.9. Suppose that Hypothesis 14.6 holds and that C ̸= M . Then M
has odd prime characteristic or M has a unique component E. In the latter case,
the component E is simple and F ∗(C) is as on List IV. In particular we can choose
the involution a to be contained E.

Proof. If M is not of odd prime characteristic, then Theorem A yields that
E(M) ̸= 1. Hence assume that E is a component of M . Then E ≤ C by Lemma
5.2 (5) and therefore E is a component of C. From the F*-Structure Theorem 13.6
we know the possibilities for E and therefore inspection of the Schur multipliers of
the groups appearing in the lists yields that E is either simple or contains a central
involution. (Note that E ̸≃ PSL2(9) or A7 by the F*-Structure Theorem, therefore
E ̸≃ 3PSL2(9) or 3A7.) Theorem B implies that the only involution that can be
central in a component of C is z. However, if z ∈ E, then we see a contradiction
to Lemma 5.2 (6), applied to M . Thus we have that z /∈ E and in particular E is
simple. Then one of the cases from List IV occurs, more precisely there exists an
odd number q ≥ 11 such that E ≃ PSL2(q). The last statement follows from the
choice of a in Lemma 14.4. �

Lemma 14.10. Suppose that Hypothesis 14.6 holds. Let v ∈ {a, az} and suppose
that CG(v) is a maximal subgroup and that a and az are not conjugate. Suppose
that d ∈ C is distinct from v, but centralises v and is conjugate to v in C. Set
Hd := CG(d). Then Hv ̸# Hd and vice versa. In particular Hv ̸= Hd.

Proof. By symmetry between d and v we may assume that Hv # Hd. As
a and az are not conjugate by hypothesis, Lemma 14.8 yields that E(Hv) = 1 =
E(Hd). Then the Infection Theorem (5) gives that Hv = Hd. In particular ⟨v, d⟩ ≤
Z(Hv) and Hv = CG(vd) because Hv is primitive by Corollary 5.8. The fours group
⟨v, d⟩ centralises z and hence vz. If we set w := vz, then Lemma 2.1 (4) implies
that

O(CG(w)) = ⟨CO(CG(w))(v), CO(CG(w))(d), CO(CG(w))(vd)⟩ ≤ Hv.

In particular CK(w) is contained in Hv and this contradicts Lemma 14.1 (4). �

Lemma 14.11. Suppose that Hypothesis 14.6 holds, let v ∈ {a, az} and suppose
that t ∈ C is an involution that is conjugate to v. Let W be a nilpotent CF∗(C)(t)-

invariant 2′-subgroup of F ∗(C). Then [W, t] = 1.

Proof. First we note that W ≤ E(C) because W has odd order, and for all
components E of C, the subgroup W ∩ E is CE(t)-invariant. Moreover t ∈ F ∗(C)

by hypothesis and Lemma 4.1 (9), because F ∗(C) E C. Let E be a component of

C and let C̃ := C/⟨z⟩.
First suppose that F ∗(C) is as on List II. Then t ∈ E because v ∈ E and v and

t are C-conjugate. Moreover CE(t) has index 2 in a maximal subgroup of E. As W

has odd order and lies in E, it follows that W ≤ CE(t) and hence [W, t] = 1.

Next suppose that F ∗(C) is as on List IV and recall that the simple component
of C contains v or vz and hence it contains t or tz. If E is not simple, then it therefore
centralises t, consequently E normalises W and hence it normalises the projection
of W on E. As W has odd order, its projection on E is now trivial and therefore W
is contained in the simple component of C. Hence suppose that E is simple. The
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type of E implies that CẼ(t̃) is a dihedral group with central involution t̃ or t̃z, and

this is a maximal subgroup of Ẽ, therefore W̃ ≤ CẼ(t̃) and again [W, t] = 1.

We are left with the case that F ∗(C) is as on List I or III. If t̃ centralises Ẽ, then

W̃ centralises Ẽ because W̃ = [W̃ , t̃] and because W̃ normalises Ẽ. In particular the

projection of W̃ on every component that is centralised by t̃ is trivial. If t̃ does not

centralise Ẽ, then there exists an involution ũ ∈ Ẽ such that CẼ(t̃) = CẼ(ũ). From

the type of E it follows that this is a dihedral subgroup with central involution ũ

and it is a maximal subgroup of Ẽ. We conclude that the projection of W̃ on Ẽ is

contained in CẼ(t̃) and hence [W̃ , t̃] = 1. Thus [W, t] ≤ W ∩ ⟨z⟩ whence [W, t] = 1.
This last case completes the proof of the lemma. �

Lemma 14.12. Suppose that Hypothesis 14.6 holds, let v ∈ {a, az} and suppose
that t ∈ C is an involution that is conjugate to v. Suppose that C ≤ H ≤ M and
that W is a nilpotent CH(t)-invariant 2′-subgroup of H. Then [W, t] ≤ F (H). In
particular if Ut is a t-minimal subgroup of G contained in H, then Ut ≤ F (H).

Proof. Set H̃ := H/O(H). By Lemma 2.9 we know that

O(H) ∩ C = O(CH(z)) = O(C).

So as H = CO(H) by Lemma 5.2 (1), we deduce that H̃ ≃ C/C ∩ O(H) ≃ C.

Therefore F ∗(H̃) is isomorphic to F ∗(C) and in particular t̃ ∈ F ∗(H̃). This implies

that [W̃ , t̃] ≤ F ∗(H̃) and hence [W, t] ≤ F ∗(C). As W is nilpotent, CC(t)-invariant

and of odd order, Lemma 14.11 yields that [W, t] = 1. Therefore [W, t] ≤ O(H).
It follows from Lemmas 2.10 and 2.1 (2) that [W, t] = [W, t, t] ≤ F (O(H)⟨t⟩). But
then [W, t] ≤ F (H) because F (O(H)⟨t⟩) = F (O(H)).

The last statement of the lemma follows because Ut = [Ut, t] and Ut is CG(t)-
invariant and nilpotent. �

Lemma 14.13. Suppose that Hypothesis 14.6 holds, that C ̸= M and that p ∈
π(F (M)) is such that Op(M) contains a z-minimal subgroup U . Let v ∈ {a, az} and
suppose that t ∈ vC and CG(t) < Ht maxG. Let Ut denote a t-minimal subgroup of
G contained in F (Ht). If Ut ≤ C, then M and Ht are both of characteristic p.

Proof. Suppose that Ut ≤ C. Then Lemma 14.12 implies that Ut ≤ CF (M)(z).
By Lemma 14.7 we may apply Lemma 7.9, so NG(Ut) ≤ Ht. Thus M # Ht.
Moreover Lemma 7.7 gives that Ut ≤ CG(U) and hence U ≤ CG(Ut) ≤ Ht. With
the Pushing Down Lemma (3), it follows that U ≤ Op(Ht) and then conversely
Ht # M , by Lemma 7.9. As CG(t) � M by Lemma 5.13, we see that Ht and M
are distinct. Thus the Infection Theorem (3) forces M and Ht to be of characteristic
p as stated. �

Lemma 14.14. Suppose that Hypothesis 14.6 holds, that H is a maximal sub-
group of G and that C ̸= H. Suppose further that V ≤ H, that L is a component
of H and let v ∈ {a, az}. Then the following hold:

(1) r2(E(H)) ≤ 2. In particular, the 2-rank of L is 1 or 2.

(2) If CG(v) ̸= Hv and Uv ≤ H, then L ≤ Hv.
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(3) If CG(V ) ≤ H, then L ≤ Hv or F ∗(C) is as on List IV and L coincides
with the simple component of C. Then in particular L/O(L) is isomorphic
to the simple component of C and a ∈ L.

Proof. As z ∈ H < G, Lemma 5.2 (5) yields that [E(H), z] = 1. At the same
time, the hypothesis that C ̸= H implies that z /∈ Z(H) and hence z /∈ E(H) by
Lemma 5.2 (6). Then Theorem D gives that r2(E(H)) ≤ 2 as stated in (1).

As E(H) ≤ C, Lemma 14.1 (3) implies that E(H) ≤ (O2′(C))∞ = E(C).
Assume that h ∈ H is such that Lh ̸= L and set L1 := LLh. Then L1 is a central
product of two isomorphic components that is contained in E(C), so inspection of
Lists I-IV for such subgroups yields that r2(L) = 1 and z ∈ L. This implies that
z ∈ Z(H) by Lemma 5.2 (6), contrary to the hypothesis that C ̸= H. Therefore
LEH.

Before we turn to (2), we go through the lists of the F*-Structure Theorem.
We bear in mind that in (2) and (3), the subgroup L is CC(V )-invariant by the
previous paragraph.

Lists I and III: As z /∈ L, the only possible case is that L is diagonal in the
product of two components of C. Then there exists an odd number q0 such that L ≃
PSL2(q0) and, as v ∈ F ∗(C), either v ∈ L or v induces an involutory automorphism
in PGL2(q0) on L. In both cases CL(v) is a dihedral group.

List II: Here CE(C)(V ) is of index 2 in a maximal subgroup of E(C) and the-

refore L is contained in this maximal subgroup. But then L ≤ CE(C)(V ) because

L is quasi-simple and hence O2(L) = L.

List IV: Let E ≤ C denote the simple component. Then v or vz is contained in
E and L ≤ E because L is CC(V )-invariant. Hence there exists an odd number q0
such that L ≃ PSL2(q0) and either v ∈ L or v induces an involutory automorphism
in PGL2(q0) on L. In both cases CL(v) is a dihedral group.

Now suppose that the hypothesis from (2) is satisfied. If L centralises v or Uv,
then L ≤ Hv by choice of Hv and by Lemma 7.7, which is applicable by Lemma
14.7. Thus we suppose that v and Uv act non-trivially on L. In the cases from List
II, we have that v centralises L and then [L, v] ≤ L ∩O(C) ≤ O(L) ≤ Z(L). Thus
v centralises L, contrary to our assumption.

This leaves Lists I, III and IV. If v ∈ L, then Uv = [Uv, v] ≤ L because
L EH, and then the observations for the lists and the corresponding possibilities
for L show that Uv ≤ CL(v). This is impossible. The same argument implies that
Uv does not induce inner automorphisms on L. Now we have that v /∈ L and
inspection of the possibilities above yields that there exists an odd number q0 such
that L/O(L) is isomorphic to SL2(q0) or PSL2(q0) and such that v induces an
involutory automorphism in GL2(q0) or PGL2(q0). As Aut(L) is abelian now, we
deduce that [Uv, v] = 1, which is a contradiction. Thus L ≤ Hv and this proves (2).

Suppose that CG(V ) ≤ H. As L E H, this implies that L is CG(V )-invariant
and hence L is CC(v)-invariant. Thus we know the possibilities for L from the

observations before (2). If L is diagonally embedded in F ∗(C), then we let E1, E2 ∈
L2(C) be such that L ≤ E1 ∗ E2 and we deduce that L = [L,CE1

(v)] ≤ E1, which

is a contradiction. Thus F ∗(C) is as on List II or IV. For the remainder we suppose
that L � Hv. Then v does not centralise L and therefore v does not centralise L.
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This rules out the cases from List II. Now F ∗(C) is as on List IV as stated and
there exists an odd number q0 such that L ≃ PSL2(q0). In particular we saw that
L is contained in the simple component E of C and either v ∈ L or v induces an
involutory automorphism from PGL2(q0) on L. As CE(V ) is a maximal subgroup of

E and leaves L invariant, but does not contain L, it follows that L = E. Therefore
L/O(L) ≃ E and a ∈ L as stated, and the proof of (3) is complete. �

14.2. The Symmetric Case

In the remainder of this chapter we prove that maximal subgroups containing
the centraliser of an involution a chosen as in Lemma 14.4 either have a central
involution or have odd prime characteristic. We begin with the case where both
CG(a) and CG(az) are not maximal in G.

Hypothesis 14.15.
In addition to Hypothesis 14.6, suppose that, if v ∈ {a, az}, then CG(v) is

properly contained in Hv.

With Lemma 14.7, the involutions v appearing in Hypothesis 14.15 satisfy
Hypothesis 7.6. It is also worth mentioning that some of the following arguments
resemble those in Section 9.

Lemma 14.16.
Suppose that Hypothesis 14.15 holds. If v ∈ {a, az}, then O2(Hv)E(Hv) = 1.

Proof. Let v ∈ {a, az}. Then by Lemma 14.5 (1), every involution in V is
isolated in Hv. Lemma 14.1 (5) and the hypothesis imply that V ∩ Z(Hv) = 1, so
it follows from Lemma 5.2 (6) that V ∩O2(Hv)E(Hv) = 1. Thus no Hv-conjugate
of v, of vz or of z can be contained in O2(Hv)E(Hv). Let w := vz.

First we assume that O2(Hv) ̸= 1. Then O2(Hv) has a central involution t and
we noticed above that t is not conjugate to z, to v or to w in Hv. As r2(G) ≤ 3
by Theorem D and as ⟨v, z⟩ ≤ CG(O2(Hv)) by Lemma 14.5 (7) whereas none of
these involutions lies in O2(Hv), it follows that t is the unique involution in O2(Hv).
This implies that t ∈ Z(Hv). In particular, the involution t is central in our Sylow
2-subgroup Tv of Hv which means that Tv contains an elementary abelian subgroup
of order 8. Our special choice of a and the 2-structure of C (and hence of Hv) that
we can see from the F*-Structure Theorem only leaves very few cases where Tv can
contain a central elementary abelian subgroup of order 8. These possibilities are
precisely as described in List IV, in the special case where Tv is the direct product
of a quaternion group with an elementary abelian group of order 4. But then in
C, the involutions t and v or t and w are conjugate. Therefore CG(v) or CG(w)
must be a maximal subgroup as well, but this contradicts Hypothesis 14.15.Thus
O2(Hv) = 1.

Now assume that E(Hv) ̸= 1 and let L be a component of Hv. As V centralises
L and L∩ V = 1, Theorem D yields that r2(L) = 1. This contradicts the fact that
O2(Hv) = 1. �
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Theorem 14.17. Suppose that Hypothesis 14.15 holds. Then Ha and Haz have
odd prime characteristic.

Proof. Assume otherwise. Then one of Ha, Haz does not have odd prime
characteristic. For all v ∈ {a, az}, we set Fv := F ∗(Hv). We know by Lemma
14.16 that E(Hv)O2(Hv) = 1, so in particular Fv = O(F (Hv)) and Hv is not of
characteristic 2. Hence if Hv is not of odd prime characteristic, then Hv is not of
prime characteristic at all, which means that |πv| ≥ 2. For all v ∈ {a, az} we also
set Xv := [COrv (Hv)(w), v].

It is used throughout that, by Lemma 14.1 (5), the subgroups M , Ha and Haz

are pairwise distinct. We also recall that Hypothesis 14.15, which is a special case
of Hypothesis 14.6, implies Hypothesis 7.6 by Lemma 14.7.

From now on let v ∈ {a, az} and w := vz.

(1) At most one of Xv and Xw is non-trivial. If Xv ̸= 1, then rv ∈ πw and
NG(Xv) ≤ Hw, hence Hv # Hw and |πw| ≥ 2.

Proof. As v is isolated in Hw by Lemma 14.5 (1) and as Fv ∩Hw is
a nilpotent CHw(v)-invariant subgroup of Hw, we deduce that

Xv = [Xv, v] ≤ [Fv ∩Hw, v] ≤ Fw

with the Pushing Down Lemma (2). Hence Xv ≤ Orv (Hw) and rv ∈
πw. Also, by definition, we have that [Xv, w] = 1 and then Lemma 7.7
implies that Xv ≤ CFw(w) ≤ CG(Uw). Therefore Xv is a Uw⟨w⟩-invariant
subgroup of Fw.

Suppose that Xv ̸= 1 and let NG(Xv) ≤ HmaxG. Then Hv # H and
Hw # H. If H ̸= Hw, then with Lemma 7.10 it follows that H and Hw

both have characteristic rw. Then the Infection Theorem (2), together
with the fact that Hv # H, implies that Hv has characteristic rw as
well. This contradicts the fact that Ha and Haz do not both have prime
characteristic. Thus H = Hw and Hv # Hw. In particular the Infection
Theorem (2) gives that |πw| ≥ 2.

For the first statement in (1) assume that Xw ̸= 1 as well. Then
Hw # Hv by symmetry and the Infection Theorem (3) yields that Hv =
Hw. This is impossible because Ha ̸= Haz.

Therefore at most one of Xv and Xw is non-trivial. �

(2) If Xv = 1, then Uv ≤ C ∩Orv (M).

Proof. If Xv = 1, then COrv (Hv)(w) ≤ COrv (Hv)(v) and therefore
Lemma 2.1 (4) implies that [Orv (Hv), v] ≤ [Orv (Hv), w] ∩ C. It follows
that

Uv = [Uv, v] ≤ [Orv (Hv), v] ≤ C.

Lemma 14.12 yields that Uv ≤ Orv (M) and hence Uv ≤ C ∩Orv (M). �

(3) C = M .

Proof. Assume otherwise. Then by Hypothesis 14.15 we have a z-
minimal subgroup U in M . Applying (2) suppose that Xv = 1 and hence
Uv ≤ C. Then Lemma 14.13 yields that M and Hv are both of charac-
teristic p. If Xw = 1 as well, then it follows from (2) that Uw ≤ C and
Lemma 14.13 forces char(Hv) = char(M) = char(Hw) = p, contrary to
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our assumption. If Xw ̸= 1, then (1) implies that |πv| ≥ 2, but we just
observed that Hv has characteristic p. So this is impossible and we deduce
that C = M . �

(4) z centralises Fπ(Hv). If Xv = 1, then z inverts Fπ′(Hv) and [Hv, z] ≤
Z(Fv).

Proof. Lemma 5.10 is applicable (by (3)) and gives that Oπ(Hv) is
contained in C. Suppose that Xv = 1. Then Uv ≤ F (C) by (2) and with
Lemma 7.9 it follows that C # Hv. From the Infection Theorem (1) we
deduce that Fπ′(Hv)∩C = 1, so z inverts Fπ′(Hv). As Fv = F ∗(Hv), this
yields that

[Hv, z] ≤ CHv (Fv) ≤ Z(Fv).

�

(5) If Xv = 1, then Fπ′(Hv) is inverted by w and centralised by v.

Proof. Suppose that Xv = 1 and set Qv := Fπ′(Hv). Then Qv is
abelian because z inverts it by (4). Let D := CQv (w).

Suppose that Xw = 1 as well. Then (4) implies that D = [D, z] ≤
[Hw, z] ≤ Z(Fw) and thereforeD is centralised by Fv and by Fw. Moreover
D is invariant under CC(v) = CC(w), so we have that

⟨Fv, Fw, CC(v)⟩ ≤ NG(D).

As z ∈ Z∗(CG(v)), we deduce from (4) that

CG(v) ≤ CC(v)[Hv, z] ≤ CC(v)Z(Fv)

and similarly

CG(w) ≤ CC(w)Z(Fw).

But this means that ⟨CG(v), CG(w)⟩ ≤ NG(D). With Lemma 14.1 (4) and
(1) we deduce first that D is normal in G and then that D = 1. Hence if
Xw = 1, then Qv is inverted by w and by z and therefore centralised by
v. Thus we may suppose that Xv = 1 and Xw ̸= 1. By (1) we have that
Hw # Hv and that |πv| ≥ 2. As D is inverted by z and centralised by w,
it is inverted by v whence, with the Pushing Down Lemma (2), it follows
that

D = [D, v] ≤ [Fv ∩Hw, v] ≤ Fw.

More specifically, we see that D ≤ CFw(w) which means that D is a
Uw⟨w⟩-invariant subgroup of Fw by Lemma 7.7. Assume that D ̸= 1 and
let NG(D) ≤ HmaxG. Then Hv and Hw infect H. If H ̸= Hw, then
Lemma 7.10 gives that H and Hw have characteristic rw. Then it follows
from the Infection Theorem (2) that char(Hv) = rw as well, contrary to
|πv| ≥ 2. Therefore H = Hw which implies that Hv # Hw. As Hv and
Hw are not of the same prime characteristic, the Infection Theorem (3)
leads to a contradiction. Thus D = 1 and the proof is complete. �

(6) If Xv = 1, then v centralises Fr′v (Hv).
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Proof. Suppose that Xv = 1 and assume that q ∈ πv is such that
q ̸= rv and [Oq(Hv), v] ̸= 1. Then Oq(Hv) contains a v-minimal subgroup
U1 with the same properties as Uv. More specifically, Lemma 7.9 (applied
to U1) yields that NG(U1) ≤ Hv. Now let Yv := [COq(Hv)(w), v].

Assume that Yv = 1. Then we apply (2) to Xv and Yv and we obtain
that Uv ≤ Orv (C) and U1 ≤ Oq(C). Now assume that Uw ≤ Orw(C). Then
Uv or U1 centralises Uw. We may assume that Uw and Uv centralise each
other and then Uw ≤ NG(Uv) ≤ Hv with Lemma 7.9. Then the Pushing
Down Lemma (3) yields that Uw ≤ Fv. But NG(Uw) ≤ Hw, again with
Lemma 7.9, so we have that Hv # Hw. Conversely Uv ≤ NG(Uw) ≤
Hw whence Uv ≤ Fw and consequently Hw # Hv. This contradicts the
Infection Theorem (3) because Hv and Hw are distinct and not of the
same prime characteristic. Consequently Uw � Orw(C).

Together with (2) and (4) this implies that Xw ̸= 1 and that rw /∈ π.
Then it follows from (1) that Hw # Hv. We push this a little further and
look at U0 := [CUw(z), w]. If U0 = 1, then Lemma 2.1 (4) implies that

Uw = [Uw, w] ≤ [Uw, z] ∩ CG(v).

The Pushing Down Lemma (3) then forces Uw ≤ Fv whence Hv # Hw,
by Lemma 7.9. Thus, again, we see that Hv and Hw infect each other,
which is a contradiction. We deduce that U0 ̸= 1 and we observe that

U0 = [CUw(z), w] ≤ [Uw ∩M,w] ≤ F (M),

by Lemma 14.12, because Uw∩M is a nilpotent CM (w)-invariant subgroup
of odd order of M . Hence U0 ≤ CF (M)(z) ≤ F (C) and it follows that
rw ∈ π, contrary to an earlier remark.

We conclude that Yv ̸= 1. Then (1), applied to Yv and Xw, yields
that Xw = 1 and that NG(Yv) ≤ Hw. Thus Hv # Hw and Xv = Xw = 1
implies that Uv and Uw are both contained in F (C), by (2). The infecti-
on Hv # Hw is accomplished by Yv, more precisely Yv ≤ Oq(Hv) which
means that Oq′(Hv) ≤ CG(Yv) ≤ Hw. But q ̸= rv by our initial assumpti-
on, so Uv ≤ Oq′(Hv) ≤ Hw implies first that Uv ≤ Fw (with the Pushing
Down Lemma (3)) and then that Hw # Hv (with Lemma 7.9), which is
impossible. This final contradiction shows that v centralises Fr′v

(Hv) as
stated. �

(7) If rv ̸= rw and Xv = 1, then Xw ̸= 1 and rv ∈ π′
w, and moreover Fr′w

(Hw)
is centralised by V .

Proof. Suppose that rv ̸= rw and that Xv = 1. On the one hand, if
rv, rw ∈ π, then (4) and Lemma 14.12 yield that

[Uv, Uw] ≤ [Orv (C), Orw(C)] = 1.

Then it follows with the Pushing Down Lemma (3) and Lemma 7.9 that
Uv ≤ Fw, that Uw ≤ Fv and therefore Hv and Hw infect each other. This
is impossible by the Infection Theorem (3) and Lemma 14.1 (5). On the
other hand (2) implies that rv ∈ π because Xv = 1, so we deduce that
rw /∈ π and in particular Xw ̸= 1 by (2).

Now we know from (1) thatHw # Hv, more precisely thatOr′w
(Hw) ≤

CG(Xw) ≤ Hv, and (1) also yields that |πv| ≥ 2.
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First suppose that |πw| ≥ 2. Then Lemma 7.2 (3) implies that Fπw(Hv) ≤
Hw. Hence if rv ∈ πw, then it follows that Uv ≤ Hw. As rv and rw
are distinct, the Pushing Down Lemma (3) and Lemma 7.9 yield that
Uw ≤ CG(Uv) ≤ Hv and therefore Uw ≤ Fv. But then the same argument
gives that Hv # Hw. This is a contradiction and hence rv /∈ πw in this
case. Next suppose that Hw has characteristic rw. Then clearly rv /∈ πw

because rv ̸= rw.

It is left to prove that Fr′w
(Hw) is centralised by V . LetD := [Fr′w

(Hw), z].
As 1 ̸= Xw ≤ Orw(Hw) and NG(Xw) ≤ Hv by (1), we have that D ≤ Hv

and hence
D = [D, z] ≤ [Hv, z] ≤ Z(Fv)

by (4). Moreover D ≤ CG(Uw) and D ≤ Z(Fv) ≤ CG(Uv). Hence D is a
subgroup of Fv ∩ Fw that is Uw⟨w⟩-invariant and Uv⟨v⟩-invariant.

If D ̸= 1, then Hw is not of characteristic rw and therefore Lemma
7.10 yields that NG(D) ≤ Hw, so Hv # Hw. This is a contradiction to
the Infection Theorem (3) and Lemma 14.1 (5). Thus D = 1. We argue
similarly for D0 := [Fr′w(Hw), w] and recall that D0 ≤ Hv. Then

D0 = [D0, w] ≤ [Fw ∩Hv, w] ≤ Fv

with the Pushing Down Lemma (2) and thus D0 is a Uw⟨w⟩-invariant
subgroup of Fv and of Fw. If D0 ̸= 1, then again |πw| ≥ 2 and Lemma
7.10 and the Infection Theorem (3) give a contradiction. Consequently
D0 = 1 and it follows that Fr′w

(Hw) is centralised by V . �

(8) If Xv = 1, then v inverts Orv (Hv).

Proof. Suppose that Xv = 1 and in addition that rv and rw are
distinct. Then (7) yields that Xw ̸= 1, that rv ∈ π′

w and that Fr′w
(Hw)

is centralised by V . In particular (1) gives that rw ∈ πv and Hw # Hv.
The Infection Theorem (1) implies that Fπ′

w
(Hv) ∩ Hw = 1 and hence

that Fπ′
w
(Hv) is inverted by w. As rv /∈ πw, we conclude that Orv (Hv) is

inverted by w. Moreover (2) and (4) imply that z centralises Orv (Hv), so
v inverts it. Thus we suppose from now on that rv = rw =: r.

Let R := Or(Hw). Then R ̸= 1. Let D := COr(Hv)(v) and assume
that D ̸= 1. From (2) we know that r ∈ π and therefore (4) yields that
Or(Hv) ≤ C. Hence [D,V ] = 1. As D ≤ CG(w) ≤ Hw, we can consider
the action of D × ⟨w⟩ on R. We know that [R,w] ̸= 1 because R =
Or(Hw) contains Uw. Thus Thompson’s P × Q-Lemma 2.2 forces R0 :=
[CR(D), w] ̸= 1. From Lemma 7.7 we know that [D,Uv] = 1 and hence D
is a Uv⟨v⟩-invariant subgroup of Fv. Lemma 7.10 gives that NG(D) ≤ Hv

or that Hv has characteristic r. In the second case z centralises Or(Hv) =
F ∗(Hv) because r ∈ π by an earlier remark, and this contradicts Lemma
14.1 (5) and Lemma 5.2 (6). This argument also shows that |πv| ≥ 2 and
|πw| ≥ 2. We conclude that NG(D) ≤ Hv whence R0 ≤ Hv. It follows that

R0 = [R0, w] ≤ [Fw ∩Hv, w] ≤ Fv

by the Pushing Down Lemma (2). In particular R0 is Z(Fv)-invariant and
CC(v)-invariant. Now we apply (4) to see that

[CG(v), z] ≤ [Hv, z] ≤ Z(Fv)
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and therefore CG(v) ≤ Z(Hv)CC(v). It follows that R0 is CG(v)-invariant.
Let NG(R0) ≤ HmaxG. ThenHv # H and CG(v) ≤ H, in particular

v is isolated in H by Lemma 14.5 (1). Therefore E(H) ≤ Hv by Lemma
5.2 (5). Hence if H ̸= Hv, then the Infection Theorem (1) and (4) imply
that Fπ′

v
(H) is a non-trivial subgroup that is inverted by v. Then it follows

from Hypothesis 14.15 that πv contains a prime p such that Op(Hv) is
inverted by v, and (6) yields that p = r. In particular D = 1 contrary
to our assumption. Therefore H = Hv and NG(R0) ≤ Hv. As R0 ≤ Fw,
this gives that Hw # Hv. We recall that Fw � C and that, therefore,
there exists a prime q such that Q0 := [Oq(Hw), z] ̸= 1. As q ̸= r and
Or′(Hw) ≤ CG(R0) ≤ Hv, we deduce with (4) that

Q0 = [Q0, z] ≤ [Hv, z] ≤ Z(Fv).

Hence Q0 is a non-trivial Uv⟨v⟩-invariant subgroup of Fv and Lemma
7.10 forces NG(Q0) ≤ Hv. But then Uw ≤ CG(Q0) ≤ Hv whence the
Pushing Down Lemma (3) and Lemma 7.9 imply that Uw ≤ Fv and hence
Hv # Hw. Thus Hv and Hw infect each other, which is impossible.

This last contradiction comes from the assumption that COr(Hv)(v) ̸=
1 and therefore the proof is complete. �

(9) If Xv = 1, then [Hv, V ] ≤ Z(Fv).

Proof. Suppose thatXv = 1. Then [Hv, z] ≤ Z(Fv) by (4). Moreover
(6) and (8) imply that [Hv, v] ≤ Z(Fv), so we have that [Hv, V ] ≤ Z(Fv).

�

(10) If Xv = 1, then there exists a prime pv ∈ πv such that Opv (Hv) is centra-
lised by v and inverted by z.

Proof. Suppose that Xv = 1. Then Uv ≤ Orv (C) by (2) and hence
rv ∈ π. Lemma 14.1 (5) implies that z /∈ Z(Hv), thus we have that
[Fv, z] ̸= 1 by Lemma 5.2 (6). Therefore πv ∩ r′v is not contained in π by
(4) and we choose pv ∈ πv ∩ r′v ∩π′. Then Opv (Hv) is inverted by z by (4)
and it is centralised by v by (6). �

(11) If Xv = 1 and if pv ∈ πv is a prime chosen as in (10), then there exists a
V -invariant Sylow pv-subgroup P of Hv such that [P, v] = 1 and [P, z] =
Opv (Hv).

Proof. Suppose that Xv = 1. With Lemma 14.5 (8) let P be a V -
invariant Sylow pv-subgroup of Hv. Then (4) yields that [P, z] ≤ Z(Fv).
As z inverts Opv (Hv) and Opv (Hv) ≤ P , this means that [P, z] = Opv (Hv).
We also have that [P, v] ≤ Z(Fv) by (9). Therefore, with (6) and Lemma
2.1 (2), we deduce that

[P, v] = [P, v, v] ≤ P ∩ [Z(Fv), v] ≤ P ∩Orv (Hv) = 1.

�

(12) There exist a prime p and a V -invariant Sylow p-subgroup P ∗ of G such
that the following hold:

v or w centralises P ∗ and [P ∗, z] equals either Op(Hv) or Op(Hw).
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Proof. From (1) we know that Xv = 1 or Xw = 1, so by sym-
metry we may suppose that Xv = 1. Let p := pv be as in (10). Let
P ∈ Sylp(Hv, V ) be as in (11), so that in particular [P, v] = 1. We note
that CG(P ) ≤ CG(Op(Hv)) ≤ NG(Op(Hv)) = Hv because p ∈ πv and Hv

is primitive by Corollary 5.8. Unfortunately Lemma 7.11 is not applicable,
but we can argue in a similar way here:

First (11) implies that [P, z] = Op(Hv). Then, as z ∈ NG(P ), but
z /∈ CG(P )ENG(P ), it follows that CG(P ) does not contain any conjugate
of z. We have that v lies in CG(P ) and that v is isolated in this subgroup
because CG(P ) ≤ Hv. Let v ∈ T0 ∈ Syl2(CG(P )). As CG(P ) is z-invariant,
we may choose T0 to be z-invariant by Lemma 4.11. Now T0 is contained
in a Sylow 2-subgroup of Hv and Lemma 4.1 (2) implies that v centralises
this Sylow 2-subgroup. Thus v ∈ Z(T0). Let H := NG(P ) ∩ NG(T0). If
H ≤ Hv, then a Frattini argument yields that

NG(P ) = CG(P )H ≤ CG(P )Hv ≤ Hv.

Thus we suppose thatH � Hv, in particularH � CG(v). Then v is not the
only involution in Z(T0) because otherwise it is centralised by NG(T0). As
z centralises T0, but z /∈ T0, it follows that r(T0) ≤ 2 because r2(G) ≤ 3.
So there are exactly three involutions in Z(T0), which we denote by v, d
and vd. We know that d ∈ C because T0 is centralised by z. Let h ∈ H be
such that vh ̸= v, without loss vh = d. By Lemma 4.1 (9) we may choose
h in CH(z).

Now let Hd := (Hv)
h. Then P = Ph ≤ Hd. As Xv = 1, we know

that [Hv, z] ≤ Z(Fv) by (4), so [Hd, z] ≤ Z(F (Hd)) by conjugacy. Thus
Op(Hv) = [P, z] ≤ Z(F (Hd)) and it follows that Op(Hv) = Op(Hd). But
then Hv = Hd because Hv and Hd are primitive (Corollary 5.8) and
therefore h ∈ Hv, which is a contradiction. We conclude that H ≤ Hv and
thusNG(P ) ≤ Hv. Therefore P ∈Sylp(G) and we may choose P ∗ = P . �

Let p and P := P ∗ ∈ Sylp(G,V ) be as in (12). As Xv = 1 or Xw = 1 and
as this leads to the cases p ∈ πv or p ∈ πw, we may by symmetry suppose that
Xv = 1 and hence that p ∈ πv. Then [P, v] = 1 and thus P ≤ CG(v) ≤ Hv. As
P is centralised by v, but not by z (from (11)), it follows with Lemma 4.12 that
|CK(vz)|p = 1 and |CK(v)|p ̸= 1. In particular, the involutions v and vz are not
conjugate in C, so they are not conjugate in G by Lemma 4.1 (9). Therefore a and
az are not conjugate in G. With Lemma 14.5 (2) it follows that F ∗(C) is as on List
IV.

Let E ∈ L2(C) be such that a ∈ E. Let B ≤ E be elementary abelian of order
4 and such that a ∈ B, and denote the involutions in B by a, d and ad. Then
there exists an element x ∈ C such that x has order 3 and such that x permutes
permutes a, d and ad in a 3-cycle and then also az, dz and adz in a 3-cycle. Without
loss ax = d. Recall that v ∈ {a, az} and define e := vx and He := Hx

v . We also
recall that z inverts Op(Hv) and hence Op(Hv) is abelian. Then the coprime action
of e on Op(Hv) and Lemma 2.1 (4) yield that

Op(Hv) = COp(Hv)(e)× [Op(Hv), e].

Case 1: D0 := COp(Hv)(e) ̸= 1.
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As z inverts Op(Hv), we know that D0 = [D0, z] and that Op(Hv) is
abelian, in particular [D0, Uv] = 1. Consequently D0 is a Uv⟨v⟩-invariant,
non-trivial subgroup of Fv. We recall that rv ∈ π by (2) and p /∈ π,
so in particular |πv| ≥ 2. Then Lemma 7.10 forces NG(D0) ≤ Hv. As
[Hv, z] ≤ Z(Fv) by (4), conjugacy yields that

D0 = [D0, z] ≤ [He, z] ≤ Z(Op(He)).

Together this implies that He # Hv. But Hv and He are conjugate and
they both have no components, by Lemma 14.16, so the Infection Theo-
rem (5) and the hypothesis |πv| ≥ 2 force Hv = He. Therefore x ∈ Hv. In
particular, the subgroups CG(v), CG(e) and CG(ev) are now all contained
in Hv. At least one of the involutions v, e and ev is contained in B, and
F ∗(C) is as on List IV, therefore Lemma 14.3 (2) supplies a contradiction.

Case 2: COp(Hv)(e) = 1.
By choice of p, this means that z and e invert P0 := Op(Hv) whence

ez centralises it. If we let Hez denote a maximal subgroup of G containing
CG(ez), then P0 = [P0, z] ≤ Hez. Assume that O(F (C)) ∩Hez = 1. Then
O(F (C)) is inverted by ez and therefore this subgroup is abelian. However,
we have that Uv ≤ O(F (C)) by (2) and then O(F (C)) ≤ CG(Uv) ≤ Hv

with Lemma 7.9. As ez and w are conjugate in C, we also know that w
inverts O(F (C)) whence it follows that

O(F (C)) = [O(F (C)), w] ≤ [Hv, w] ≤ Z(Fv),

by (9). But NG(O(F (C))) = C, so we have that Hv # C. We recall that
Uv ≤ F (C) and hence C # Hv. With the Infection Theorem (3), this
implies that C = Hv, which is a contradiction.

We deduce that O(F (C))∩Hez ̸= 1 whence Lemma 7.12 is applicable.
It gives that [Hez, z] ≤ F (Hez) and in particular

P0 = [Op(Hv), z] ≤ Op(Hez).

Hence Hez # Hv and Op′(Hez) ≤ CG(P0) ≤ Hv. We note that Hv is the
unique maximal subgroup of G containing NG(P0), by Corollary 5.8. But
ez is conjugate to vz = w, so Orw(Hez) contains an ez-minimal subgroup
Uez with Uez = [Uez, ez]. As P0 ≤ CF (Hez)(ez), it follows with Lemma
7.7 that Uez centralises P0. Therefore P0 is a non-trivial Uez⟨ez⟩-invariant
subgroup of F (Hez).

If NG(P0) � Hez, then Lemma 7.10 yields that char(Hez) = p and
that NG(P0) is contained in a maximal subgroup distinct from Hez that
also has characteristic p. But Hv infects this subgroup, contradicting
the Infection Theorem (2) and our hypothesis that |πv| ≥ 2. Therefore
NG(P0) ≤ Hez and we deduce that Hv = Hez. The choice of p implies that
v centralises P0 and therefore ezv = we centralises P0. With a maximal
subgroup Hwe containing CG(we) we argue as in the previous paragraph:

If O(F (C)) ∩ Hwe = 1, then we inverts O(F (C)), so O(F (C)) is
abelian and hence O(F (C)) ≤ CG(Uv) ≤ Hv with Lemma 7.9. As we is
conjugate to v or to w in C, one of v or w inverts O(F (C)), therefore v
and w invert O(F (C)). Thus O(F (C)) ≤ Z(Fv) by (9) and Hv # C. We
already saw that this is impossible. Hence O(F (C)) ∩Hwe ̸= 1 and

P0 = [P0, z] ≤ [Hwe, z] ≤ Op(Hwe)
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by Lemma 7.12. So Hwe # Hv. Then, in particular, a we-minimal sub-
group Uwe ofHwe centralises P0. Thus P0 is a non-trivial Uwe⟨we⟩-invariant
subgroup of F (Hwe) and we deduce first that NG(P0) ≤ Hwe and then
that Hv = Hwe. It follows that CG(v), CG(ez) and CG(we) are contained
in Hv.

Now we recall that F ∗(C) is as on List IV. Depending on whether
v = a or v = az, we know that v or ez is contained in B and for all b ∈ B,
we just observed that CC(b) ≤ Hv. Therefore Lemma 14.3 (2) yields a
contradiction.

Hence both cases cannot occur and this concludes the proof of the theorem. �

Lemma 14.18. Suppose that Hypothesis 14.15 holds. Then Ha and Haz have
the same odd characteristic.

Proof. Set b := az and assume that the statement does not hold. By Theorem
14.17 we may then suppose that there exist distinct odd primes ra and rb such that
char(Ha) = ra and char(Hb) = rb. Now the arguments are similar to those at the
beginning of the proof of Theorem 14.17.

Let Y := [COra (Ha)(b), a]. As a is isolated in Hb by Lemma 14.5 (1), we have
that

Y = [Y, a] ≤ [F (Ha) ∩Hb, a] ≤ F (Hb)

with the Pushing Down Lemma (2). Therefore Y ≤ Ora(Hb) = 1 because ra ̸= rb.
It follows that COra (Ha)(b) ≤ COra (Ha)(a) and therefore

[Ora(Ha), a] ≤ [Ora(Ha), b] ∩ C

with Lemma 2.1 (4). We conclude that

Ua = [Ua, a] ≤ [Ora(Ha), a] ≤ C ≤ M.

A symmetric argument shows that Ub ≤ M and Lemma 14.12 yields that
Ua ≤ Ora(M) and Ub ≤ Orb(M). In particular [Ua, Ub] = 1 because ra ̸= rb which
implies, with Lemma 7.9 and the Pushing Down Lemma (3), that Ua ≤ F (Hb),
contrary to ra ̸= rb. �

14.3. The General Case

We begin with two technical lemmas for our further analysis of maximal sub-
groups containing the centraliser of an involution a that is chosen as in Lemma
14.4 (and similarly the centraliser of az). They play a role in our treatment of the
general case and in Chapter 15.

Lemma 14.19. Suppose that Hypothesis 14.6 holds. Suppose further that C ̸=
M , that E(M) = 1 and that CG(az) is a maximal subgroup of G. Then [U, a] ̸= 1.

Proof. Assume otherwise which means that [U, a] = 1. First we note that
Hypothesis 14.6 implies Hypothesis 7.6 by Lemma 14.7. Now U ≤ Ha and the
Pushing Down Lemma (3) gives that U ≤ Op(Ha), so that Ha # M by Lemma
7.9. Our hypothesis that E(M) = 1 and TheoremA imply thatM has characteristic
p and hence Ha has characteristic p, by the Infection Theorem (2). In particular
a and b := az are not conjugate because b ∈ Z(Hb) by hypothesis. With Lemma
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14.5 (2) this means that one of the cases from List IV holds. Then there exists an
odd number q ≥ 11 such that a lies in a 2-component of C of type PSL2(q) and in

particular there exists an element c ∈ C of odd order such that a, ac and a ·ac = ac
2

are the three involutions of a fours group. We set e := ac and d := ez, and we let
CG(e) ≤ He maxG and CG(d) =: Hd maxG.

(∗) [Op(Ha), a] ≤ C.

Proof. Let X := [COp(Ha)(b), a] and assume that X ̸= 1. Then the
Pushing Down Lemma (2) yields that

X = [X, a] ≤ [Op(Ha) ∩Hb, a] ≤ Op(Hb).

With Lemma 14.1 (1) we letNG(X) ≤ HmaxG. ThenHa # H andHb #
H and therefore the fact that Ha is of characteristic p and p ∈ πb implies
(using the Infection Theorem (1)) that F := Fπ′

b
(H) is inverted by a and b

and hence centralised by z. In particular F ≤ C and therefore F normalises
U . But a centralises U by assumption whence F = [F, a] centralises U as
well. If F ̸= 1, then consequently U ≤ CG(F ) ≤ H because H is primitive
by Corollary 5.8. Then the Pushing Down Lemma (3) gives that U ≤
Op(H) and hence H # M by Lemma 7.9. The Infection Theorem (2) first
implies that H is of characteristic p and then that Hb is of characteristic
p as well. But Hb = CG(b), so this is impossible.

Therefore F = 1 and hence F (H) is a πb-group. We note that X is
CG(V )-invariant and hence CG(V ) ≤ H, which makes Lemma 14.14 (3)
applicable. If E(H) � Hv, then this result yields that H has a component

L such that L/O(L) is isomorphic to the simple component of C and
in particular L contains a. We know from Lemma 7.2 (3) and because
π(F (H)) ⊆ πb that F (H) ≤ Hb = CG(b). As a ∈ L (still assuming that
L � Hv), this means that a and b centralise F (H) and hence z does. Thus
z ∈ Z(H) by Lemma 5.2 (6) and it follows that C = H is a maximal
subgroup, contradicting our hypothesis. We deduce that E(H) ≤ Hb and
the Infection Theorem (4) yields that H = Hb. In particular Ha infects
Hb. Then the Infection Theorem (1) gives that a inverts Fp′(Hb), but this
is false because a centralises O2(Hb) by Lemma 14.5 (7). Hence X = 1
and Lemma 2.1 (4) implies that [Op(Ha), a] ≤ [Op(Ha), b] ∩ C. �

We recall that Ha has characteristic p and that therefore CG(a) < Ha. Then
Op(Ha) contains an a-minimal subgroup Ua by Hypothesis 14.6 and we let U0 :=
[CUa(d), a], with d being conjugate to b as described in the first paragraph. As
U0 ≤ Ua = [Ua, a] ≤ C by (∗), we see that U0 = [CUa(e), a]. This implies that U0 is
CG(⟨a, e⟩)-invariant and CG(⟨a, d⟩)-invariant. Lemma 14.12 yields that Ua ≤ Op(C)
and therefore

U0 ≤ O(C) ∩Hd ≤ O(CC(d)) ≤ O(CG(d)) = O(Hd)

by Lemma 2.9 and because d and b are conjugate. Hence U0 = [U0, a] ≤ [O(Hd), a].
We apply Lemma 2.10 to H := O(Hd)⟨a, d⟩ and see that U0 = [U0, a] ≤ Op(H) =
Op(Hd). In a similar way, we deduce that U0 ≤ O(He) and then U0 ≤ Op(He).
As e is conjugate to a, we may suppose that He is conjugate to Ha and hence has
characteristic p. In particular CG(e) < He. Then Op(He) contains an e-minimal
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subgroup Ue and U0 ≤ COp(He)(e) ≤ CG(Ue) by Lemma 7.7. Moreover U0 is ⟨e⟩-
invariant. Hence if U0 ̸= 1, then Lemma 7.10, applied to He and U0, gives that
NG(U0) is contained in a maximal subgroup of G of characteristic p (which might
coincide with He, but not necessarily). But Hd infects this subgroup, Op(Hd) ̸= 1
andHd is not of characteristic p, so the Infection Theorem (2) yields a contradiction.

Thus U0 = 1. Then CUa(d) ≤ CUa(a) and Lemma 2.1 (4) implies that Ua =
[Ua, a] ≤ [Ua, d] ∩ CG(ad). We recall that Ua ≤ O(C) and hence

Ua ≤ O(C) ∩ CG(ad) ≤ O(CC(ad)) ≤ O(CG(ad))

by Lemma 2.9. It follows that Ua ≤ Op(CG(ad)), again with Lemma 2.10. As ad
is conjugate to b, we know that CG(ad) is a maximal subgroup of G and Lemma
7.9 yields that CG(ad) infects Ha. This is impossible by the Infection Theorem (2)
because Ha has characteristic p, but CG(ad) is conjugate to CG(b) and hence does
not have characteristic p. �

Lemma 14.20. Suppose that Hypothesis 11.1 holds and that a ∈ C is an invo-
lution chosen as in Lemma 14.4. Suppose that C is not a maximal subgroup of G
and let v ∈ C be an involution that is conjugate to a or to az. Then CG(v) is a
maximal subgroup of G or CG(v) is contained in a maximal subgroup Hv such that
Hv has odd prime characteristic.

Proof. As v is conjugate to a or to az, we may without loss suppose that
v ∈ {a, az} and we let w := vz. Then we suppose that Hypothesis 14.6 holds with
its notation. Let p ∈ π be such that U ≤ Op(M).

If CG(v) ̸= Hv and v and w are conjugate, then Hypothesis 14.15 holds whence
Theorem 14.17 is applicable. Thus in this case Hv is of odd prime characteristic as
stated. Hence from now on we suppose that v and w are not conjugate, which by
Lemma 14.5 (2) means that F ∗(C) is as on List IV. By choice of a, there exists an
odd number q ≥ 11 such that either v or w is contained in some E ∈ L2(C) with
E ≃ PSL2(q).

Let us suppose that CG(v) ̸= Hv and, by way of contradiction, that |πv| ≥ 2.
Let r := rv, so that Uv ≤ Or(Hv). We recall that Theorem 14.17 implies that
CG(w) is a maximal subgroup. Let U0 := [CU (v), z] and b := az.

(1) 1 ̸= U0 ≤ Op(Hv).

Proof. First suppose that v = a. Then v lies in an elementary abe-
lian subgroup B of C such that some element of C induces a 3-cycle on
the set of involutions of B. Then the coprime action of B on U , together
with Lemma 2.1 (4), yields that there exists an involution d ∈ B such
that [CU (d), z] ̸= 1. Hence U0 ̸= 1 in this case.

Next suppose that v = b. Then w = a, hence CG(a) is a maximal
subgroup. If U0 = 1, then we first assume that M has characteristic p.
As [CU (b), z] = 1, we have that CU (b) ≤ CU (z) whence U = [U, z] ≤
[U, b] ∩ CG(a), by Lemma 2.1 (4). Then the Pushing Down Lemma (3)
forces U ≤ Op(Ha) and with Lemma 7.9 this implies that Ha # M . But
this is impossible by the Infection Theorem (2) because 2 ∈ π(F (Ha)) and
therefore Ha is not of characteristic p. Therefore M is not of characteristic
p. Then M has a simple component by Lemma 14.9, and in fact E is this
component. Then a ∈ E by hypothesis and [U, a] ≤ [Op(M), E] = 1. Thus
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the Pushing Down Lemma (3) and Lemma 7.9 give that U ≤ Op(Ha) and
then Ha # M . We turn to Hb and let X := [COr(Hb)(z), b]. Then X is a
nilpotent CC(b)-invariant 2

′-subgroup of C and Lemma 14.12 yields that
X = [X, b] ≤ F (C). As E ≤ E(C), we see that [X,E] = 1. In particular
X centralises a and z, so we deduce that X = [X, b] = 1. Therefore
COr(Hb)(z) ≤ COr(Hb)(b) which with Lemma 2.1 (4) implies that

Ub ≤ [Or(Hb), b] ≤ [Or(Hb), z] ∩ CG(a).

With the Pushing Down Lemma (3) and Lemma 7.9 it follows first that
Ub ≤ Or(Ha) and then that Ha # Hb. Moreover r ∈ πa. We recall that
F ∗(C) is as on List IV and therefore Lemma 14.8 forces E(Hb) = 1. AsHa,
Hb are neither equal nor of the same prime characteristic, the Infection
Theorem (4) yields that F := Fπ′

a
(Hb) ̸= 1.

We can say more if we recall that U ≤ Op(Ha): if r ̸= p, then [U,Ub] ≤
[Op(Ha), Or(Ha)] = 1 whence U ≤ NG(Ub) ≤ Hb, then U ≤ Op(Hb)
by the Pushing Down Lemma (3) and finally Hb # M by Lemma 7.9.
Conversely Ub ≤ CG(U) ≤ M by Lemma 7.9, then Ub ≤ F (M) by Lemma
14.12 and therefore M # Hb by Lemma 7.9. Thus M # Hb # M , which
contradicts the Infection Theorem (3). Thus r = p and moreover, as we
can argue in the same way if Fp′(Hb) contains a b-minimal subgroup, we
also see that b centralises Fp′(Hb).

Now we recall that a ∈ E and that a is contained in a fours group in
E where all involutions are conjugate in E. Let e ∈ E be an involution
such that ⟨a, e⟩ is such a fours group. Then a, e and ae are conjugate in
C and therefore b, ez and be are conjugate in C as well. We also recall
that E(Hb) = 1 and that Ha # Hb. Therefore F is inverted by a (by the
Infection Theorem (1)) and Fπa(Hb) is centralised by a by Lemma 7.2 (3),
because CG(a) = Ha and |πa| ≥ 2. In particular

[Hb, a] ≤ CHb
(F (Hb)) = CHb

(F ∗(Hb)) = Z(F (Hb)).

Let He := CG(e) and Hae := CG(ae), and let CG(ez) ≤ Hez maxG and
CG(be) ≤ Hbe maxG. Then conjugacy yields that

[Hez, e] ≤ Z(F (Hez)) and [Hbe, ae] ≤ Z(F (Hbe)).

We have seen earlier that F ≤ Fp′(Hb) is centralised by b and inverted by
a, so F is inverted by z. Now we consider the action of ⟨z, e⟩ on F = [F, z]
and apply Lemma 2.1 (4). It gives that

F = ⟨[CF (z), z], [CF (e), z], [CF (ez), z]⟩ = ⟨[CF (e), z], [CF (ez), z]⟩.

Assume that Y := [CF (ez), z] ̸= 1. Then we first note that

Y = [Y, z] = [Y, e] ≤ [Hez, e] ≤ Z(F (Hez)).

Hence if we let Uez denote an ez-minimal subgroup of Op(Hez), then Y
is Uez⟨ez⟩-invariant and we also recall that Hb, and hence Hez, is not of
prime characteristic. Therefore Lemma 7.10 is applicable and gives that
NG(Y ) ≤ Hez. In particular Hb # Hez and this contradicts Lemma 14.10.
Hence Y = 1 which implies that F = [CF (e), z] is centralised by e. Then
F is centralised by b and e and inverted by z, hence centralised by be and
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therefore inverted by ae. We conclude that

F = [F, ae] ≤ [Hbe, ae] ≤ Z(F (Hbe)).

As Hb is primitive by Corollary 5.8, we know that NG(F ) = Hb and
therefore Hbe # Hb. But this is impossible by Lemma 14.10. This last
contradiction comes from the fact that F ̸= 1, as we established earlier.
That in turn was a consequence of the assumption that U0 = 1. So we
proved that U0 ̸= 1 as stated.

For the second assertion in (1) we apply the Pushing Down Lem-
ma (2). It follows that U0 = [U0, z] ≤ [F (M) ∩Hv, z] ≤ Op(Hv). �

(2) NG(U0) ≤ Hv.

Proof. With Lemma 14.1 (1) let H be a maximal subgroup of G
containing NG(U0).

(2.1) Uv ≤ H, furthermore F (H) is a πv-group and lies in Hv:
We have that M # H and also, by (1), that Hv # H. As U0 ≤ F (Hv)

by (1), Lemma 7.7 yields that

U0 ≤ CF (Hv)(v) ≤ CG(Uv)

and therefore Uv ≤ H. With the Infection Theorem (1) it follows that
Fπ′

v
(H) ∩Hv = 1 and hence that v inverts F := Fπ′

v
(H). But then Uv =

[Uv, v] centralises F which means, by Lemma 7.9, that F ≤ Hv and thus
F = 1. Consequently F (H) is a πv-group that is contained in Hv by
Lemma 7.2 (3), because |πv| ≥ 2 by assumption.

(2.2) E(H) ≤ Hv:
We know from (2.1) that Uv ≤ H. If C = H, then in particular

U0 ≤ C and hence U0 = [U0, z] = 1 by Lemma 2.1 (2). This contradicts
(1). Therefore Lemma 14.14 (2) is applicable and yields that E(H) ≤ Hv.

(2.3) H = Hv:
This follows from (2.1) and (2.2) together with the Infection Theo-

rem (4), because |πv| ≥ 2 by assumption.
Now the proof of (2) is complete. �

(3) Let X := [COr(Hv)(w), v]. Then 1 ̸= X ≤ Or(Hw) and NG(X) ≤ Hv.

Proof. First assume that X = 1. Then

COr(Hv)(w) ≤ COr(Hv)(v) ∩ C

and hence [Or(Hv), v] ≤ [Or(Hv), w]∩C by Lemma 2.1 (4). In particular
Uv ≤ C whence Lemma 14.13, together with (1), implies that M and Hv

both have characteristic p. This contradicts our assumption that |πv| ≥ 2,
hence X ̸= 1.

With the Pushing Down Lemma (2) we have that X ≤ Or(Hw).
Applying Lemma 14.1 (1) let NG(X) ≤ H1 maxG. Then Hv # H1 and
Hw # H1. Assume that r = p. We know that π(F (Hw)) contains 2 and
r (= p) and therefore two distinct primes, and then Lemma 7.2 (3) yields
that Op(H1) ≤ Hw = CG(w). In particular U0 is centralised by w, but also
by v and thus by z. This is impossible by (1) and hence r ̸= p. Now we
see that U0 ≤ CG(X) ≤ H1 and therefore U0 ≤ Op(H1) by the Pushing
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Down Lemma (2). It follows that H1 # Hv by (2) and then that H1 = Hv

by the Infection Theorem (3). �

With (3) we have that Hw # Hv, in particular Or′(Hw) ≤ Hv. As r is odd
and w ∈ Z(Hw), we see that |πw| ≥ 2. Let F := Fπ′

w
(Hv). Then F ̸= 1 by the

Infection Theorem (4), because E(Hv) = 1 by Lemma 14.16 and because Hv ̸= Hw

by Lemma 14.1 (5). Hence the Infection Theorem (1) yields that w inverts F .
Since |πw| ≥ 2, we see that Op(Hv) is either inverted or centralised by w (Infection
Theorem (1) and 7.2 (3)). As U0 ≤ Op(Hv) and U0 is not centralised by w, it follows
that w inverts Op(Hv). Thus p ∈ π′

w whence, with the Pushing Down Lemma (2),
we deduce that [CU (w), z] ≤ [U ∩Hw, z] ≤ Op(Hw) = 1.

Then U = [U, z] ≤ [U,w] ∩ CG(v) by Lemma 2.1 (4) and consequently U ≤
Op(Hv) by the Pushing Down Lemma (3). Then Hv # M by Lemma 7.9. But
conversely M # Hv by (2), so with the Infection Theorem (3) this contradicts
Lemma 14.1 (5). �

Lemma 14.21. Suppose that Hypothesis 11.1 holds and that a ∈ C is an in-
volution chosen as in Lemma 14.4. Let v ∈ C be an involution that is conjugate
to a or to az and suppose that C is a maximal subgroup of G. Let Hv be a maxi-
mal subgroup of G containing CG(v) and suppose that O(F (C)) ∩ Hv = 1. Then
CG(v) = Hv or Hv is of odd prime characteristic.

Proof. Assume that CG(v) ̸= Hv and that Hv is not of odd prime charac-
teristic. If CG(vz) is properly contained in a maximal subgroup, then Hypothesis
14.15 is satisfied, so that Theorem 14.17 is applicable and yields the result. Thus
we suppose that CG(vz) is a maximal subgroup of G and that Hypothesis 14.6
holds with all its notation. We have that v and vz are not conjugate which means,
by Lemma 14.5 (2), that F ∗(C) is as on List IV. Then we may suppose that v or
vz coincides with a and hence lies in a 2-component of C with simple image in
C. Let w := vz. From the shape of O2′,F∗(C), there exists an elementary abelian
subgroup of C containing a and such that some element x ∈ C induces a 3-cycle on
the set of involutions of this subgroup. Then x moves az in a 3-cycle with two other
involutions, but these involutions do not belong to an elementary abelian group of
order 4. In the following, we therefore argue that v, d := vx and dx are conjugate,
but we might need to distinguish the cases where v = a or v = az. Our hypothesis
gives that v inverts O(F (C)) and hence that w inverts O(F (C)). Now d, dx and
then also dz and dxz invert O(F (C)) as well. But then dv = dzw centralises and
inverts O(F (C)), so it follows that O(F (C)) = 1. Then F (O(C)) = 1 which forces
O(C) = 1. Looking at List IV in the F*-Structure Theorem, we let E denote the
simple component of C. Its type yields that, if s, t ∈ E are two distinct involutions,
then E = ⟨CE(s), CE(t)⟩ (recall that E ≃ PSL2(q) with q ≥ 11).

Let Y := [COrv (Hv)(z), v]. This is a CC(v)-invariant 2′-subgroup of F (Hv)
and Lemma 14.12 implies that Y = [Y, v] = 1 and consequently COrv (Hv)(z) ≤
COrv (Hv)(v). Then Lemma 2.1 (4) gives that Uv = [Uv, v] ≤ [Uv, z] ∩ CG(w).

With the Pushing Down Lemma (3) and Lemma 7.9, we deduce that Uv ≤
F (Hw) and therefore Hw # Hv. Hence Fπ′

w
(Hv) is inverted by w by the Infection

Theorem (1). We recall that F ∗(C) is as on List IV and that, therefore, Lemma 14.8
yields that E(Hv) = 1. Moreover Lemma 7.2 (3) implies that Fπw(Hv) is centralised
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by w because |πw| ≥ 2. Therefore

[Hv, w] ≤ CHv (F (Hv)) = Z(F (Hv)).

Let Hd := Hx
v , which is a maximal subgroup of G containing CG(d). If we

let Ud denote a d-minimal subgroup of G in F (Hd), then conjugacy yields that
Ud ≤ CG(dz) and

[Hd, dz] ≤ CHd
(F (Hd)) = Z(F (Hd)).

Case 1: [CUv (d), v] ̸= 1.

As dz and w centralise Uv , we see that

U0 := [CUv (d), v] = [CUv (d), z] = [CUv (d), bz] ≤ [Hd, dz] ≤ Z(F (Hd)).

We know that Ud lies in Or(Hd) and that [U0, Ud] = 1 by Lemma 7.7,
hence U0 is Ud⟨d⟩-invariant. Applying Lemma 7.10 to Hd and using that
|π(F (Hd))| ≥ 2 (because d is conjugate to v), we see that NG(U0) ≤ Hd.
But U0 ≤ F (Hv), therefore Hv # Hd. We have that E(Hv) = 1 = E(Hd)
by Lemma 14.8 and π(F (Hd)) = πv (with at least two distinct primes!),
so that the Infection Theorem (5) gives that Hv = Hd. We noted above
that the simple component E of C is generated by two different involution
centralisers. We also know that v and d or w and dz are contained in E
and therefore

E = ⟨CE(v), CE(d)⟩ = ⟨CE(w), CE(dz)⟩.

As CG(v) and CG(d) are both contained in Hv, we deduce that E ≤ Hv.
Then also E ≤ Hw and in particular x can be chosen to lie in Hv ∩Hw.

This is impossible by Lemma 14.3.

Case 2: [CUv (d), v] = 1.

We apply Lemma 2.1 (4) to the coprime action of ⟨d, z⟩ on Uv and
obtain that

Uv = ⟨[CUv (z), v], [CUv (d), v], [CUv (dz), v]⟩.

We also recall that COrv (Hv)(z) ≤ COrv (Hv)(v), hence [CUv (z), v] = 1
and therefore the present case implies that Uv = [CUv (dz), v]. Now we
consider the action of ⟨z, dv⟩ on Uv. Lemma 2.1 (4) yields that

Uv = ⟨[CUv
(z), v], [CUv

(dv), v], [CUv
(dw), v]⟩ = ⟨[CUv

(dv), v], [CUv
(dw), v]⟩,

again because [CUv (z), v] = 1. Let CG(dv) ≤ Hdv := Hx
d . If v = a, then

dx = dv and we let U1 := [CUv (dv), v]. We recall that dz and w centralise
Uv and we see, with the conjugacy of Hv and Hdv, that

U1 = [U1, v] = [U1, z] = [U1, dw] ≤ [Hdv, dw] ≤ Z(F (Hdv)).

If U1 ̸= 1, then with Udv denoting a dv-minimal subgroup of G contained
in F (Hdv), we deduce that U1 is a Udv⟨dv⟩-invariant non-trivial subgroup
of F (Hdv). Lemma 7.10 implies that NG(U1) ≤ Hdv and therefore Hv #
Hdv. This contradicts Lemma 14.10. In this case we obtain that U1 = 1
and hence that

Uv = [CUv (dw), v].
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In particular Uv is now centralised by w, by dz and by dw. This implies
that Uv is centralised by d, then by z and then by wz = v. But this is
impossible.

If v = az, then CG(dv) is conjugate to CG(w) and hence a maximal
subgroup. We go back and recall that Uv ≤ Hw and then Hw # Hv.
We know therefore, with the Infection Theorem (1) and Lemma 7.2 (3),
that Fπ′

w
(Hv) is inverted by w and that Fπw(Hv) is centralised by w.

As E(Hv) = 1 by Lemma 14.8, this means that [Hv, w] ≤ Z(F (Hv)).
By conjugacy we have that [Hdv, dw] ≤ Z(F (Hdv)). We recall that Uv is
centralised by w and by dz and therefore by dzw = dv. Therefore

Uv = [Uv, v] = [Uv, d] = [Uv, dw] ≤ [Hdv, dw] ≤ Z(F (Hdv))

whence, with Lemma 7.9, it follows that Hdv # Hv. This means, again
with the Infection Theorem (1) and Lemma 7.2 (3), that Fπ′

w
(Hv) is in-

verted by dz (and w) and therefore centralised by dv and that Fπw(Hv) is
centralised by dz (and w) and therefore by dv. This implies that dv cen-
tralises F (Hv) = F ∗(Hv) (with Lemma 14.8) and is therefore contained in
O2(Hv). Lemma 14.1 (5) and Lemma 14.5 (1) imply that V ∩O2(Hv) = 1
and therefore Theorem D forces dv to be the unique involution in O2(Hv).
In particular dv ∈ Z(Hv) and therefore Hv = CG(dv). We recall that, if
s, t ∈ E are two distinct involutions, then E = ⟨CE(s), CE(t)⟩. Applying
this to the involutions w, dv ∈ E, we deduce that

E = ⟨CE(w), CE(dv)⟩ = ⟨CE(v), CE(dv)⟩ ≤ Hv.

In particular E is centralised by dv, which is impossible.

We arrived at a contradiction in both cases and therefore the proof is finished.
�

Lemma 14.22. Suppose that Hypothesis 11.1 holds, that a ∈ C is an involution
chosen as in Lemma 14.4 and that C is a maximal subgroup of G. Let v ∈ C be an
involution that is conjugate to a or to az and let Hv be a maximal subgroup of G
containing CG(v). Suppose that O(F (C)) ∩Hv ̸= 1. Then CG(v) = Hv or Hv is of
odd prime characteristic.

Proof. We begin as for the previous lemma by supposing that CG(v) ̸= Hv

and that CG(vz) is a maximal subgroup of G. In particular v and vz are not
conjugate, so by Lemma 14.5 (2) one of the cases from List IV holds. We may
suppose that v ∈ {a, az} and hence that Hypothesis 14.6 holds with all its notation.
In particular let V := ⟨z, v⟩ and w := vz. We assume that Hv is not of odd
prime characteristic. The shape of O2′,F∗(C) implies that there exists an elementary
abelian subgroup of C containing a and such that some element x ∈ C induces a 3-
cycle on the set of involutions of this subgroup. In the following, we therefore argue
that v, d := vx and dx are conjugate. We let CG(d) ≤ Hd := Hx

v and similarly
CG(vd) ≤ Hvd, where Hvd is conjugate to Hv or to Hw, depending on whether
v = a or v = az. Moreover let r := rv, so that Uv ≤ Or(Hv)

By Lemma 7.12 we have that [Hv, z] ≤ Fπ′(Hv) and similarly [Hd, z] ≤ Fπ′(Hd).
Assume that v or w inverts O(F (C)). Then a inverts it and therefore, with our no-

tation from above, we see that ax and ax
2

also invert O(F (C)). But ax
2

= aax

centralises O(F (C)) and thus we must have that O(F (C)) = 1, which contradicts
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our hypothesis. In particular w does not invert O(F (C)) whence O(F (C))∩Hw ̸= 1
as well. Another application of Lemma 7.12 yields that [Hw, z] ≤ Fπ′(Hw). We use
this relation for all involutions conjugate to a or az.

(1) E(Hv) = 1.

Proof. We know that F ∗(C) is as on List IV and therefore Lemma
14.8 yields the result. �

(2) Uv ≤ C.

Proof. Assume otherwise. Then r /∈ π by Lemma 5.10 and Lemma
14.12 implies that [CUv (z), v] = 1. Thus

Uv = [Uv, v] ≤ [Uv, z] ∩ CG(w)

by Lemma 2.1 (4). Then the Pushing Down Lemma (3) implies that Uv ≤
Or(Hw) and with Lemma 7.9 it follows that Hw # Hv.

Let U1 := [CUv (d), z] and assume that U1 ̸= 1. We have that

U1 = [U1, z] ≤ [Hd, z] ≤ F (Hd)

and therefore U1 ≤ CF (Hd)(d). If we set Ud := Ux
v , then Ud is a d-minimal

subgroup and we see with Lemma 7.7 that U1 is centralised by Ud. Hence
U1 is Ud⟨d⟩-invariant and NG(U1) ≤ Hd by Lemma 7.10 (and because
π(F (Hd)) = πv contains at least two distinct primes). But then Hv # Hd

and this contradicts Lemma 14.10. Therefore U1 = 1.
The coprime action of ⟨v, d⟩ on Uv and Lemma 2.1 (4) then yield that

Uv = [Uv, z] = ⟨[CUv (v), z], [CUv (d), z], [CUv (vd), z]⟩ = [CUv (vd), z].

This means that Uv ≤ CG(vd) and hence (with CG(vd) ≤ Hvd maxG) it
follows that

Uv = [Uv, z] ≤ [Hvd, z] ≤ CF (Hvd)(dv).

If v = a, then vd is conjugate to v. Lemma 7.9 yields that Hvd # Hv,
which is a contradiction to Lemma 14.10. We conclude that if Uv � C, then
v = az and vd is not conjugate to v, but to w. Moreover we recall that Uv

is centralised by w, by vd and (hence) by dz. In particular Hw # Hv and
we recall that Uv ≤ F (Hvd). Similarly, with CG(dz) ≤ Hdz maxG, we have
that Uv = [Uv, z] ≤ F (Hdz). Thus it follows that Hvd and Hdz infect Hv

as well. Let F := Fπ′
w
(Hv). Then F ̸= 1 by (1), the Infection Theorem (4)

and Lemma 14.1 (5). The Infection Theorem (1) implies that F is inverted
by w, by vd and by dz, because πw = π(F (Hdz)) = π(F (Hvd)). But if w
and vd invert F , then dz = wvd centralises it and therefore F = 1. This
is a contradiction.

We conclude that Uv ≤ C. �

(3) C infects Hv, Hd and Hx
d .

Proof. Together with Lemma 14.12, statement (2) yields that Uv ≤
Or(C). In particular r ∈ π and, as NG(Uv) ≤ Hv with Lemma 7.9, we see
that C # Hv. By conjugacy, we also have that C infects Hd and Hx

d . �

(4) [Hv, z] ≤ Z(F (Hv)).
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Proof. From (3) and the Infection Theorem (1) it follows that z in-
verts Fπ′(Hv). Moreover z centralises Fπ(Hv) by Lemma 5.10. As E(Hv) =
1 by (1), we deduce that [Hv, z] ≤ CHv (F

∗(Hv)) = Z(F (Hv)). �

(5) [Fπ′(Hv), v] = 1.

Proof. Assume that this is false and choose p ∈ πv ∩ π′ such that
[Op(Hv), v] ̸= 1. Then P0 := Op(Hv) is inverted by z and therefore this
subgroup is abelian. As [Op(Hv), v] ̸= 1, there exists a v-minimal subgroup
Pv in P0 and Pv = [Pv, v], so Lemma 2.1 (4) implies that Pv = [Pv, v] =
[Pv, z] ≤ CG(w). With the Pushing Down Lemma (3) it follows that Pv ≤
F (Hw) and therefore p ∈ πw. Then Lemma 7.9, applied to Pv, gives that
NG(Pv) ≤ Hv and hence Hw # Hv. We know that 2, p ∈ πw and that
p is odd, therefore |πw| ≥ 2 and Lemma 7.2 (3) forces Fπw(Hv) ≤ Hw.
Therefore w centralises Fπw(Hv) and w inverts Fπ′

w
(Hv) by the Infection

Theorem (1). In particular w centralises P0 and z inverts it, therefore v
inverts P0. The action of ⟨z, d⟩ on P0 and Lemma 2.1 (4) give that

P0 = ⟨CP0(d), CP0(dz)⟩

because z inverts P0. If P1 := CP0
(d) ̸= 1, then

P1 = [P1, z] ≤ [Hd, z] ≤ F (Hd)

because v and d are C-conjugate. As P1 is contained in P0 and P0 is abeli-
an, it follows that P1 is centralised by Uv. So we deduce that NG(P1) ≤ Hv

by Lemma 7.10 (and because |πv| ≥ 2). Thus Hd # Hv and the Infec-
tion Theorem (5), together with the fact that E(Hv) = 1 by (1), forces
Hv = Hd. In particular x ∈ Hv. But CG(v) and CG(d) are both contained
in Hv whence v and d are isolated in Hv by Lemma 14.5 (1). This is a
contradiction.

Consequently P1 = 1, hence P0 ≤ CG(dz) = Hx
w and therefore our v-

minimal subgroup Pv is centralised not only by w, but also by dz and hence
by w · dz = dv. We let Hdv := Hx

d . As Pv = [Pv, z] ≤ [Hdv, z] ≤ F (Hdv)
and NG(Pv) ≤ Hv, we have that Hdv # Hv. Now we have to distinguish
the cases where v = a or v = az, and this is similar to our arguments in
(2).

If v = a, then dv = dx is conjugate to v and Lemma 14.10 yields a
contradiction.

If v = az, then dv is conjugate to w = a, the Infection Theorem (1)
gives that Fπ′

w
(Hv) is inverted by dv and Lemma 7.2 (3) yields that dv

centralises Fπw(Hv). As Uv is centralised by w, we also have that Uv =
[Uv, z] ≤ F (Hw) and hence Hw # Hv, similarly CG(dz) infects Hv. But
then it follows that Fπ′

w
(Hv) is inverted by dv, by w and by dz, hence

it is trivial, and F ∗(Hv) = Fπw(Hv) is then centralised by w, forcing
w ∈ O2(Hv). This is impossible by Lemmas 14.5 (1) and 14.1 (5). �

(6) Fπ′(Hv) = 1.

Proof. Assume otherwise and let F := Fπ′(Hv). Recall that Uv ≤
F (C) and hence Uv ≤ Fπ(Hv), so that [F,Uv] = 1. By (3) and the Infection
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Theorem (1) we have that z inverts F . The coprime action of ⟨d, z⟩ on F
and Lemma 2.1 (4) yield that

F = ⟨[CF (d), z], [CF (dz), z]⟩.
If F1 := [CF (d), z] ̸= 1, then F1 is a non-trivial Uv⟨v⟩-invariant subgroup
of F (Hv), but also a Ud⟨d⟩-invariant subgroup of F (Hd) (because Ud ≤
Fπ(Hd) and F1 = [F1, z] ≤ Fπ′(Hd)). Then Lemma 7.10 forces Hv = Hd

and by Lemma 14.10 this is impossible.
It follows that F = [CF (dz), z], so with Hdz = CG(dz) = Hx

w we
deduce that F = [F, z] ≤ F (Hdz). Then Hdz # Hv because 1 ̸= F EHv

by assumption and because Hv is primitive by Corollary 5.8. As F is
centralised by v, by (5), we also have that F ≤ CG(dw). If we let CG(dw) ≤
Hdw maxG, then F = [F, z] ≤ F (Hdw) and therefore Hdw # Hv as well.
Now there are two cases again – if v = a, then w, dz and dv are conjugate
and therefore Hdv = CG(dv). In particular πw = π(F (Hdz)) = π(F (Hdv))
and the Infection Theorem (1) and Lemma 7.2 (3) together yield that
dz ·dv centralises F (Hv). This is false because dz ·dv = w and w /∈ Z(Hv).

If v = az, then w = a is conjugate to dz and to wdz = dv, so dw
is conjugate to v and we can choose Hdw to be conjugate to Hv. Then
Lemma 14.10 yields a contradiction. �

We know from (3) that C # Hv. Together with (1), (5) and the Infection
Theorem (4) this forces C = Hv. This contradicts Lemma 14.1 (5). �

Theorem 14.23. Suppose that Hypothesis 11.1 holds and let a ∈ C be an
involution that is chosen as in Lemma 14.4. Let Ha be a maximal subgroup of G
containing CG(a) and let Haz be a maximal subgroup of G containing CG(az). Then
one of the following holds:

(1) CG(a) = Ha and CG(az) = Haz.

(2) CG(a) = Ha, CG(az) < Haz with Haz having odd prime characteristic
and one of the cases from List IV in the F*-Structure Theorem holds.

(3) CG(a) < Ha and Ha is of odd prime characteristic, CG(az) = Haz and
one of the cases from List IV in the F*-Structure Theorem holds.

(4) CG(a) < Ha and CG(az) < Haz with Ha and Haz having the same odd
prime characteristic.

Proof. Statement (1) is one of the possibilities, but we suppose now that it
does not hold. The choice of a by hypothesis and some notation yield that Hypo-
thesis 14.6 is satisfied. First suppose that CG(a) < Ha. If CG(az) < Haz, then we
are in the situation of Hypothesis 14.15. Thus Theorem 14.17 and Lemma 14.18 are
applicable and yield (4). Otherwise we have that CG(az) = Haz and we distinguish
the two cases C < M and C = M . If C < M , then we refer to Lemma 14.20 which
gives (3). If C = M , then Lemmas 14.21 and 14.22 also give (3).

Similarly if CG(a) = Ha and CG(az) < Haz, then we can again refer to Lemmas
14.20, 14.21 and 14.22 to see that (2) holds. �
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The Endgame

Our starting point in this chapter is a hypothesis building on Theorem 14.23
where we choose a suitable involution a centralising z and we set up notation that
will be used throughout. In a series of results we first exclude the case where CG(a)
is a maximal subgroup, and then we analyse the case with odd prime characteristic
in order to reach a final contradiction.

Hypothesis 15.1.
We suppose that Hypothesis 14.6 holds and for simplification, we set b := az.

We recall that, by Lemma 14.7, Hypothesis 15.1 implies Hypothesis 7.6.

Lemma 15.2. Suppose that Hypothesis 15.1 holds and that r2(G) = 2. Then
there exists an odd prime r such that, for all involutions t ∈ C with t ̸= z, the
centraliser CG(t) lies in a maximal subgroup Ht of G of characteristic r.

Proof. Our hypothesis implies that Hypothesis 14.6 holds and that F ∗(C) is
as in the first case on List II in the F*-Structure Theorem. Then it follows that all
involutions in C distinct from z are conjugate (as can be seen in C) and therefore
we may suppose that t is our involution a. By Theorem 14.23 we need to exclude
the case that CG(a) = Ha. We assume therefore, by way of contradiction, that
CG(a) = Ha. We know that z /∈ Z(Ha) by Lemma 14.1 (5) and then Lemma
5.2 (6) yields an odd prime p ∈ πa such that [Op(Ha), z] ̸= 1. Let P ∈Sylp(Ha, V )
(with Lemma 14.5 (8)) and let T ∈Syl2(CG(P )). As CG(P ) is z-invariant, we may
suppose that T is z-invariant by Lemma 4.11. Then z centralises T by Lemma
4.1 (2). Moreover a ∈ CG(P ) ≤ Ha, so we see that a is central in CG(P ) and hence
a ∈ Z(T ). The conjugacy of a and b yields that Case (1) from Lemma 7.11 holds, so
there exists an involution distinct from a in Z(T ). Then 2 ≤ r(Z(T )) ≤ r2(G) = 2.
But then it follows that z ∈ Z(T ) ≤ T ≤ CG(P ) ≤ CG(Op(Ha)), which is a
contradiction. �

Lemma 15.3. Suppose that Hypothesis 15.1 holds and that CG(b) is a maximal
subgroup. Then C = M .

Proof. Assume that C < M and let U0 := [CU (b), z].

Case 1: a and b are conjugate.
Then Lemma 14.9 implies that M has characteristic p. We also know

that CG(a) and CG(b) are maximal subgroups and we let x ∈ C be such
that bx = a. If U0 = 1, then

1 = Ux
0 = ([CU (b), z])

x = [CU (a), z]

123
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and this means that CU (a) and CU (b) are both contained in CU (z). With
Lemma 2.1 (4) this forces U = CU (z), which is a contradiction. Hence
U0 ̸= 1. Lemma 2.1 (4) implies that [U0, z] ̸= 1 and hence [U0, a] ̸= 1. In
particular we know that [U, a] ̸= 1. We let H be a maximal subgroup of G
containing NG(U0), with Lemma 14.1 (1), and we assume that H ̸= M .

(1.1) M and Hb infect H and b inverts Fπ′
b
(H) and centralises Fπb

(H).

Proof. We have that M # H because U0 ≤ F (M). With the
Pushing Down Lemma (2), we see that

U0 ≤ [Op(M) ∩Hb, z] ≤ Op(Hb)

and hence Hb # H as well. The Infection Theorem (1) implies that
Fπ′

b
(H) ∩ Hb = 1 whence Fπ′

b
(H) is inverted by b. Also, the set πb

contains at least two distinct primes, namely 2 and p, and therefore
Lemma 7.2 (3) yields that Fπb

(H) ≤ Hb = CG(b). �
(1.2) E(H) ≤ Hb.

Proof. Assume that E(H) � Hb. As CG(V ) ≤ NG(U0) ≤ H,
Lemma 14.14 (3) yields that H has a component L such that L/O(L)
is isomorphic to the simple component of C and such that a ∈ L. But
then [F (H), a] ≤ [F (H), L] = 1 which means, by (1.1), that a and
b centralise Op(H). Hence Op(H) ≤ C. Then the Pushing Down
Lemma (2) implies that

U0 ≤ [Op(M) ∩H, z] ≤ Op(H) ≤ C,

which is a contradiction. �
Now b centralises E(H) and Fπb

(H) by (1.2) and (1.1) and it inverts
Fπ′

b
(H) by (1.1). So we see that [H, b] centralises F ∗(H) and hence [H, b] ≤

Z(F (H)). Moreover we recall that M # H and that M is of characteristic
p. In particular, with the Infection Theorem (1), it follows that Fp′(H) is
inverted by z. As p ∈ πb, this implies that Fπ′

b
(H) is inverted by z and by

b and hence centralised by a. Now we let P ∈Sylp(Hb, V ) (with Lemma
14.5 (8)).

(1.3) There exists a conjugate v of b commuting with b and such that, with
Hv := CG(v), we have the following:
– Hv # H and
– H = CG(vb).

Proof. First we note that 1 ̸= U0 ≤ [Op(Hb), z] ≤ P . Since a
and b are conjugate, Lemma 7.11 (1) yields that NG(P ) � Hb. Let
T ∈Syl2(CG(P )). We may suppose that T is z-invariant by Lemma
4.11, because CG(P ) is z-invariant. With Lemma 7.11 (1), let c ∈
NG(P )∩NG(T )∩C and v ∈ Z(T ) be such that bc = v ̸= b. Let Hv :=
Hc

b (= CG(v)). Then U0 ≤ P ≤ Hv and, again with the Pushing Down
Lemma (2), we deduce that

U0 ≤ [U ∩Hv, z] ≤ Op(Hv).

Therefore Hv # H and as in (1.1) it follows that Fπ′
b
(H) is inverted

by v and that Fπb
(H) is contained in Hv and hence centralised by v.
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We recall that E(H) ≤ Hb, so that E(H) is centralised by b and by
z, hence by a as well. If we check the possibilities from Lists I, II and
III for quasi-simple subgroups of F ∗(C) that are centralised by V ,
then we only see groups that are isomorphic to SL2(q) with a suitable
power q of some odd prime and such that their central involution is
z, a or b. As z /∈ Z(H), we know from Lemma 5.2 (6) that z /∈ E(H).
Therefore, if E(H) ̸= 1, then H possesses a unique component and
this component has a central involution that is conjugate to a (and
then to b). We recall that Hb # H and then Lemma 14.10 forces
H = Hb. Thus M # H by (1.1) and, as char(M) = p, the Infection
Theorem (1) gives that Fp′(H) ∩ M = 1. This is false because b ∈
O2(H)∩M ≤ Fp′(H)∩M . We conclude that E(H) = 1 and therefore
F ∗(H) = F (H) is centralised by bv. With Hbv denoting a maximal
subgroup of G containing CG(bv), this means that F ∗(H) ≤ Hbv

and in particular H # Hbv. Also, we see that U0 ≤ F (H) ≤ Hbv

whence the Pushing Down Lemma (2) implies that U0 ≤ Op(Hbv).
So conversely we have that Hbv # H.
With the Infection Theorem (3), our claim follows or H and Hbv are
distinct and have both characteristic p. But Hb # H by (1.1) and
then the Infection Theorem (2) forces Hb to have characteristic p as
well. This is impossible because O2(Hb) ̸= 1. Consequently CG(bv) ≤
H, then Lemma 14.5 (1) implies that bv is isolated in H and we saw
above that bv ∈ CH(F ∗(H)) = Z(F (H)). This forces bv ∈ Z(H). �

With the notation from (1.3) we have that bv is central in H and that
Hb,Hv and M infect H. We recall that b and v are centralised by z, so
z ∈ H and therefore O2(H) is centralised by z. In particular O2(H) ∩
M ̸= 1. However, M # H whence the Infection Theorem (1) implies
that Fπ′(H) ∩ M = 1. This is a contradiction because 2 /∈ π and hence
O2(H) ≤ Fπ′(H) ∩M .

This last contradiction comes from the assumption that H ̸= M (be-
fore (1.1)), so we have established that NG(U0) ≤ M and in particular
Hb # M . But M is of characteristic p and hence Hb is of characteristic p
by the Infection Theorem (2). This is a contradiction.

Case 2: a and b are not conjugate.
As before let U0 := [CU (b), z]. If E(M) ̸= 1, then Lemma 14.9 yields

that there exists an odd number q ≥ 11 such that E(M) ≃ PSL2(q).
Therefore Hypothesis 8.1, and more specifically the hypothesis of Lemma
8.6, is satisfied. The lemma gives that

U ≤
∩
g∈G

Mg,

but this contradicts Lemma 14.1 (1).
We conclude that E(M) = 1 and then our assumption that C < M

and CG(b) = Hb, together with Lemma 14.19, yields that [U, a] ̸= 1. If
U0 = 1, then CU (b) ≤ CU (z) and it follows from Lemma 2.1 (4) that

U = [U, z] ≤ [U, b] ∩ CG(a),



126 15. THE ENDGAME

contrary to the earlier remark that [U, a] ̸= 1. Therefore U0 ̸= 1. As
before we let NG(U0) ≤ HmaxG, so that M # H. With the Pushing
Down Lemma (2), it follows that U0 ≤ Op(Hb) and hence Hb # H. We
also see, with the same result, that U0 ≤ [F (M) ∩ H, z] ≤ F (H) which
yields that U0 ≤ Op(H). With Lemma 14.5 (8) let P ∈Sylp(Hb, V ) and let
b ∈ T ∈ Syl2(CG(P )). We may suppose that T is z-invariant by Lemma
4.11, applied to CG(P )⟨z⟩. If NG(P ) is not contained in Hb, then with
Lemma 7.11 (1) there exists an element x ∈ NG(P ) ∩ NG(T ) ∩ C such
that d := bx ∈ Z(T ) and d ̸= b. This leads to the next step in the proof,
so we keep this notation.

(2.1) If NG(P ) is not contained in Hb, then H = CG(bd).

Proof. We note that T is z-invariant and hence centralised by
z (by Lemma 4.1 (2)), but that z is not contained in T because 1 ̸=
U0 ≤ [P, z]. Together with Theorem D this implies that Ω1(Z(T )) =
⟨b, d⟩. Let Hd := Hx

b . Then U0 ≤ P = P x ≤ Hd and, with the
Pushing Down Lemma (2), it follows that

U0 = [U0, z] ≤ [O(F (M)) ∩Hd, z] ≤ F (Hd).

Therefore U0 ≤ Op(Hd) and Hd # H as well. The Infection Theo-
rem (1) and Lemma 7.2 (3), together with the fact that b and d are
conjugate, yield that b and d invert Fπ′

b
(H) and centralise Fπb

(H).

Thus bd centralises F (H) which implies that U0 ≤ F (H) ≤ CG(bd).
We know that a lies in a 2-component E of C such that E is iso-
morphic to PSL2(q) with some odd prime power q ≥ 11, by our
hypothesis in this case. Then also dz = bxz = (bz)x = ax ∈ E be-
cause x ∈ C. Therefore ⟨a, dz⟩ is a fours group and bd is conjugate
to a and to dz. Let CG(bd) ≤ Hbd maxG. Then we may choose Hbd

to be conjugate to Ha. Another application of the Pushing Down
Lemma (2) yields that

U0 = [U0, z] ≤ [O(F (M)) ∩Hbd, z] ≤ Op(Hbd)

and hence Hbd # H.
Assume that E(H) ̸= 1. We know that CG(V ) ≤ H and hence Lem-
ma 14.14 yields that either E(H) is centralised by b or H possesses
a component L such that L/O(L) is simple and a ∈ L. In the latter
case we see, since Hb # H and p ∈ πb, that Op(H) is centralised by
b and by a, and therefore U0 ≤ C. But this is impossible. Therefo-
re E(H) ≤ Hb. As a and b are not conjugate in this case, Lemma
14.5 (1) gives that one of the cases from List IV holds and therefore
the only way that H can have a component is that this component
has z as a central involution. This is impossible because H ̸= C. We
conclude that E(H) = 1.
Then F ∗(H) = F (H) is centralised by bd, it follows that F ∗(H) ≤
Hbd and henceH # Hbd. IfH has characteristic p, then we recall that
U0 ≤ F (Hb) and hence Hb # H. So the Infection Theorem (2) yields
that Hb has characteristic p as well, which is impossible. As H and
Hbd infect each other, the Infection Theorem (3) gives that H = Hbd.



15. THE ENDGAME 127

In particular Hbd does not have characteristic p and Theorem 14.23
implies that CG(bd) = Hbd. �

(2.2) NG(P ) ≤ Hb.

Proof. Otherwise we know from (2.1) that NG(U0) ≤ Hbd =
CG(bd). The choice of a and b implies that bd is conjugate to a and
hence that CG(bd) is conjugate to Ha. We recall that U0 ≤ Op(M)
and henceM # Hbd, and we also recall thatHbd = CG(bd) and hence
2 ∈ π(F (Hbd)). Then the Infection Theorem (1) forces Fπ′(Hbd) ∩
M = 1. This is a contradiction because π consists of odd primes and
hence bd ∈ O2(Hbd) ≤ Fπ′(Hbd) ∩ C. �

Now we have that NG(P ) is contained in Hb and Lemma 7.11 (2)
yields that every z-invariant p-subgroup of CG(a) is centralised by z. This
forces [CU (a), z] = 1 and therefore CU (a) ≤ CU (z). But a is contained in
a fours group A0 of C such that all involutions of A0 are C-conjugate, so
Lemma 2.1 (4) implies that

U = ⟨CU (a0) | a0 ∈ A0⟩ ≤ CU (z)

whence U ≤ C, which is a contradiction.

�

Theorem 15.4. Suppose that Hypothesis 15.1 holds and that CG(b) is a maxi-
mal subgroup. Then O(F (C)) ∩Hb = 1.

Proof. Assume otherwise. Lemma 15.3 yields that C = M and it follows with
Lemma 7.12 that [Hb, z] ≤ Fπ′(Hb). Our hypotheses that O(F (C)) ∩Hb ̸= 1 and
that CG(b) = Hb imply that some element from O(F (C)) is centralised by b (and,
of course, by z) and hence by a. Therefore O(F (C)) ∩CG(a) ̸= 1 and in particular
O(F (C)) ∩Ha ̸= 1 as well. Then [Ha, z] ≤ Fπ′(Ha), again by Lemma 7.12. We use
this fact frequently and therefore refer to the following (also with applications to
conjugates of a or b):

[Ha, z] ≤ Fπ′(Ha) and [Hb, z] ≤ Fπ′(Hb) (∗).
Case 1: a and b are conjugate.

From Lemma 14.1 (5) we know that Ha ̸= C and, by Lemma 5.2 (6),
that there exists an odd prime p ∈ πa such that P0 := [Op(Ha), z] ̸= 1. In
particular |πa| ≥ 2. With Lemma 14.1 (1) we let NG(P0) ≤ HmaxG. Mo-
reover let P ∈Sylp(Ha, V ) by Lemma 14.5 (8) and let a ∈ T ∈Syl2(CG(P )).
We may suppose that T is z-invariant by Lemma 4.11, applied to CG(P )⟨z⟩.
As a and b are conjugate, Lemma 7.11 (1) holds and there exist an invo-
lution v and an element c ∈ NG(Q) ∩NG(T ) ∩ C such that v := ac ̸= a.
Let Hv := Hc

a.

(1.1) Ha and Hv infect H. The involutions a and v invert F := Fπ′
a
(H)

and centralise Fπa(H). Moreover H ̸= C.

Proof. As Op(Ha) ̸= 1 and Ha is primitive by Corollary 5.8,
we know that

T ≤ CG(P ) ≤ CG(Op(Ha)) ≤ Ha = CG(a)
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and hence a ∈ Z(T ). We also have that P0 ≤ P ≤ Hv. It follows from
conjugacy and (∗) that [Hv, z] ≤ Fπ′(Hv) and therefore P0 ≤ F (Hv).
Now Ha # H, also Hv # H and the Infection Theorem (1) yields
that a and v invert F as stated. Lemma 7.2 (3) gives that a and v
centralise Fπa(H).
If H = C, then in particular P0 ≤ C which forces P0 = 1 (by Lemma
2.1 (2)). But this is a contradiction. �

(1.2) If H ̸= Ha, then E(H) = 1.

Proof. The subgroup P0 is CG(V )-invariant and so CG(V ) ≤
H. Then Lemma 14.14 (3) implies that E(H) ≤ Ha or that one of the
cases from List IV holds. As a and b are conjugate, Lemma 14.5 (2)
yields that F ∗(C) is as on List I, II or III and therefore E(H) ≤ Ha.
Now we assume that E(H) ̸= 1. By (1.1), no component of H can
have z as central involution, so only the cases from List II remain
and E(H) has a unique component, with central involution a or b.
If the central involution is b, then H = Hb and hence P0 ≤ Hb.
But then P0 is centralised by a and by b, hence by z, and this is a
contradiction. Thus the central involution in the component of H is
a and this implies that H = Ha, contrary to our assumption. We
conclude that E(H) = 1. �

Assume that H ̸= Ha. Then it follows from (1.2) that E(H) = 1 and
thus, with (1.1), we see that av centralises F (H) = F ∗(H). The choice
of a and the F*-Structure Theorem yield that a is C-conjugate to av and
hence Hav := CG(av) is a maximal subgroup of G.

(1.3) If H ̸= Ha, then H = CG(av).

Proof. We saw above that F ∗(H) ≤ Hav and hence we know that
av ∈ CH(F ∗(H)) = Z(F (H)). This implies that av ∈ O2(H). Moreover
O2(H) is centralised by a, v and z, but z /∈ O2(H). If a ∈ O2(H), then a
centralises F (H) and hence F (H) is a πa-group. But E(H) = 1 and then
the Infection Theorem (4) forces H = Ha, contrary to our assumption.
The same argument yields that v /∈ O2(H) because otherwise H = Hv by
infection and then, asHa and Hv are conjugate, the Infection Theorem (5)
implies that Ha = Hv = H, which contradicts our assumption once more.
We know that G has at most rank 3 by Theorem D and so it follows
that O2(H) has at most rank 2. As ⟨a, v, z⟩ centralises O2(H), we see that
either av is the only involution in O2(H) or that ⟨av,w⟩ ≤ O2(H). Thus
if av is not central in H, then av, w and b are contained in O2(H) and
conjugate in H. In particular b centralises F ∗(H), just as av does, and
therefore

P0 = [P0, z] = [P0, b] ≤ [H, b] ≤ CH(F ∗(H)) = Z(F (H)).

But then P0 = [P0, z] ≤ [Hav, z] ≤ Fπ′(Hav), by (∗), because a and av
are conjugate. Thus Hav # H and it follows that F (H) is a πa-group. We
recall that πa = π(F (Hav)) and hence the Infection Theorem (4) gives
that H = Hav. �
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If H ̸= Ha, then H = Hav by (1.3) and hence Hv and Ha infect Hav.
These subgroups are conjugate and E(H) = 1 by (1.2), so the Infection
Theorem (5) gives that Ha = Hav = Hv. But this is impossible by Lemma
14.3 (1). This contradiction comes from our assumption that O(F (C)) ∩
Ha ̸= 1, so the Lemma is proved in the case where a and b are conjugate.

Case 2: a and b are not conjugate.
It will be important here that, by Lemma 14.5 (2), one of the ca-

ses from List IV holds and therefore all involutions in C are conjugate
to a or to b. Then a is contained in a 2-component of C and, in this 2-
component, in a fours group with involutions a, v, av that are all conjugate
in C. Let CG(v) ≤ Hv maxG and CG(av) ≤ Hav maxG. These maximal
subgroups are conjugate to Ha. Conjugacy implies that [Hv, z] ≤ Fπ′(Hv)
and [Hav, z] ≤ Fπ′(Hav), we keep referring to this by (∗) as before. Mo-
reover set w := vz and let CG(w) ≤ Hw maxG, with Hw chosen to be
conjugate to Hb.

We quote Lemmas 14.1 (5) and 5.2 (6) once more and this time choose
an odd prime p ∈ πb such that P0 := [Op(Hb), z] ̸= 1. The objective of
the following steps is to prove that

NG(P0) ≤ Hb.

We let NG(P0) ≤ HmaxG and F := Fπ′
b
(H), and we assume thatH ̸= Hb

and F ̸= 1. It is worth noticing here that H ̸= C because z does not
centralise P0.

(2.1) z inverts F .

Proof. First we set up some notation. Let r ∈ π(F ), let R :=
Or(H) and R0 := CR(z). By way of contradiction we assume that
R0 ̸= 1.

(a) C # H, E(H) = 1 and [H, z] ≤ Z(F (H)).

Proof. We have that Hb # H and CC(b) ≤ H. With
the Infection Theorem (1) and Lemma 7.2 (3), we see that b
inverts F and centralises Fπb

(H). Also, we know that 2 ∈ πb

and hence F is a CC(b)-invariant subgroup of odd order. Now
we suppose that R0 ̸= 1. Then R0 is a non-trivial nilpotent
CC(b)-invariant 2

′-subgroup of C and Lemma 14.12 yields that
1 ̸= R0 = [R0, b] ≤ F (C). Hence r ∈ π. This implies that
R0 = R with Lemma 5.10. Moreover R = R0 ≤ Or(C) means
that C # H as stated, because NG(R) = H by Corollary 5.8.
We know that z centralises E(H) by Lemma 5.2 (5), moreover
z centralises Fπ(H) by Lemma 5.10 and z inverts Fπ′(H) by
the Infection Theorem (1) because C # H. Therefore [H, z] ≤
CH(F ∗(H)) = Z(F (H)). In particular P0 ≤ Z(F (H)).
As P0 is CG(V )-invariant, Lemma 14.14 yields that E(H) ≤ Hb

or that H has a unique component and that a is contained in
this component. In the latter case we see that a centralises
F (H) and hence P0 is centralised by a and by b, hence by z,
and this is impossible. It follows that E(H) ≤ Hb. But this is



130 15. THE ENDGAME

impossible in the cases from List IV (because z /∈ E(H)), so
we actually see that E(H) = 1. �

(b) Let X := COp(H)(w). Then z inverts X and X ≤ CG(av).
Moreover if X ̸= 1, then NG(X) ≤ H.

Proof. Suppose that X ̸= 1 because otherwise the first
statement in (b) is clear. With Lemma 14.1 (1) let NG(X) ≤
H1 maxG. Then H # H1. First we note that p ∈ π′ ∩ πb,
applying Lemma 5.10, because z does not centralise P0. Then
(a) and the Infection Theorem (1) imply that z inverts Op(H)
whence

Op(H) = [Op(H), z] ≤ [Hb, z] ≤ F (Hb)

by (∗). Thus Op(H) ≤ P0. Conversely P0 = [P0, z] ≤ Op(H)
by (a) and therefore P0 = Op(H). This also yields that Op(H)
is abelian and hence F ∗(H) centralises X. Now we know that
X ≤ F (Hb) and therefore Hb # H1. As X is inverted by z and
centralised by w and by b (and therefore by bw = av, too), we
see that

X = [X, z] ≤ [Hw, z] ≤ F (Hw),

again by (∗), and similarly X ≤ F (Hav). Now it follows that
Hw # H1 and Hav # H1. By the Infection Theorem (1),
the involutions b, w and av (= bw) invert Fπ′

b
(H1), so this

subgroup must be trivial. Moreover F ∗(H) ≤ CG(X) ≤ H1,
in particular F = [F, b] ≤ H1. Lemma 7.2 (3) gives that
F (H1) = Fπb

(H1) is centralised by b, hence by [H1, b] and
this implies that F = [F, b] commutes with F (H1). We deduce
that F (H1) ≤ NG(F ) = H (by Corollary 5.8). Next we recall
that [H, z] ≤ Z(F (H)) by (a), in particular P0 ≤ F (H) ≤ H1.
Therefore E(H1), which is centralised by z by Lemma 5.2 (5),
is centralised by P0 = [P0, z]. Thus E(H1) ≤ CG(P0) ≤ H,
and since we already established that F (H1) ≤ H, we conclu-
de that F ∗(H1) ≤ H. Consequently H1 # H and the Infection
Theorem (3) yields that H1 = H as stated, because H is not
of prime characteristic. �

(c) If COp(H)(w) ̸= 1, then H = Hav.

Proof. Let X := COp(H)(w) and suppose that X ̸= 1.
Then X ≤ CG(av) and NG(X) ≤ H by (b). It follows with (∗)
and (b) that X = [X, z] ≤ F (Hav) and therefore Hav # H.
As X ≤ Hw, we also have with (∗) that X = [X, z] ≤ F (Hw)
and hence Hw # H. Moreover Hb # H (from the start) and
then the Infection Theorem (1) and Lemma 7.2 (3) imply that
b and w centralise Fπb

(H) and invert F . Therefore bw = av
centralises F (H) = F ∗(H) by (a). In particular F ∗(H) ≤ Hav

whence H # Hav. Now the Infection Theorem (3), together
with the fact that H is not of characteristic p, yields that H =
Hav. �
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(d) w inverts Op(H).

Proof. Assume that X := COp(H)(w) ̸= 1. Then H =
Hav by (c) and, as av is conjugate to a, Theorem 14.23 yields
that there are two cases to consider:
av is central in Hav or Hav has odd prime characteristic.
In the first case we see that

F (Hb) ≤ NG(P0) ≤ H = CG(av),

so F (Hb) is centralised by b, by av = bw and hence by w
as well. With Lemma 14.8 this gives that F ∗(Hb) ≤ Hw and
thus Hb # Hw. With the same lemma, conjugacy and the
Infection Theorem (5), we conclude that Hb = Hw, which
contradicts Lemma 14.10. In the second case we must have
that char(Hav) = p because 1 ̸= X ≤ Op(Hav). But still
Hb # H = Hav, so the Infection Theorem (2) forces Hb to
be of characteristic p as well, and this is impossible because
2 ∈ πb. This contradiction shows that X = 1. �

(e) Op(H) = [Op(H), z] ≤ CG(v).

Proof. We know by (d) that w = vz inverts Op(H). We
have already noticed (with Lemma 5.10) that p ∈ π′ because z
does not centralise P0. As C # H by (a), the Infection Theo-
rem (1) forces Op(H) to be inverted by z as well and hence to
be centralised by v. This yields the statement. �

(f) If P ∈Sylp(Hb, V ), then NG(P ) � Hb.

Proof. Assume that NG(P ) ≤ Hb. Then Lemma 7.11 (2)
applies and in particular every z-invariant p-subgroup of CG(a)
is centralised by z. By conjugacy, every z-invariant p-subgroup
of CG(v) is centralised by z, so (e) forces

Op(H) = [Op(H), z] = [Op(H), z, z] = 1.

This is impossible because 1 ̸= P0 ≤ Op(H). �

(g) There exists a C-conjugate d of b such that d ̸= b and such
that d centralises Fπb

(H) and inverts F .

Proof. Let P ∈Sylp(Hb, V ), by Lemma 14.5 (8) and let
T ∈Syl2(CG(P )). As CG(P ) is z-invariant, we may suppose
that T is z-invariant by Lemma 4.11. Then (f) and Lemma
7.11 (1) imply that Z(T ) contains a fours group with b in it,
but not z, and with some involution d in this fours group
being distinct from b and conjugate to it with an element
from NG(T ) ∩ NG(P ) ∩ C. Of course CG(P ) ≤ CG(P0) ≤ H,
so if we let Hd := CG(d), then this maximal subgroup is
conjugate to Hb and contains P , hence P0. This means that
P0 = [P0, z] ≤ F (Hd) by (∗) and therefore Hd # H as well.
Then Lemma 7.2 gives that d centralises Fπb

(H) and the In-
fection Theorem (1) yields that d inverts F . �
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(h) H = Hv.

Proof. Let d be an involution as in (g). Then bd centra-
lises F (H) = F ∗(H) whence F ∗(H) ≤ CG(bd). Here we should
note that, as b and d are C-conjugate, it follows that bd is
conjugate to a. With Hbd being a maximal subgroup contai-
ning CG(bd), we may choose Hbd to be conjugate to Ha and
then P0 ≤ F (Hbd), again by (∗). Hence H # Hbd # H. As
π(F (H)) contains the distinct primes r and p, the Infection
Theorem (3) forces H = Hbd. In particular Hbd is not of prime
characteristic (because Hb # Hbd now) and therefore Ha is
not of prime characteristic. We deduce that CG(a) = Ha by
Theorem 14.23 and then CG(v) = Hv, by conjugacy. But (e)
implies that P0 ≤ F (Hv) (by (∗)) whence Hv # H = Hbd.
Finally Lemma 14.10 tells us that Hv = Hbd = H. �

We return to the prime r ∈ π(F )∩π′ from the beginning of the proof
of (2.1). As Hb and C infect H (by choice of H and by (a)), the
Infection Theorem (1) yields that Or(H) is inverted by z and by b,
hence centralised by a. Thus (∗) implies that

Or(H) = [Or(H), z] ≤ F (Ha).

It follows that Ha # H = Hv because NG(Or(H)) = H by Corollary
5.8. As a and v are conjugate and E(H) = 1 by (a), the Infecti-
on Theorem (5) forces Hv = Ha. But this is impossible by Lemma
14.3 (2).
This means that z inverts F . �

(2.2) Ha # H and Fπ′
a
(H) is inverted by z.

Proof. As Hb infects H, the Infection Theorem (1) and (2.1)
above yield that b and z invert F and hence a centralises F . Our
assumption that F ̸= 1 and the fact that F = [F, z] ≤ F (Ha) with
(∗) yields thatHa # H, because H is primitive. In particular Fπ′

a
(H)

is inverted by a, with the Infection Theorem (1).
If Ha has odd prime characteristic, then by our main hypothesis, we
have an a-minimal subgroup Ua ≤ Ora(Ha). As F ≤ CF (Ha)(a) ≤
CG(Ua) by Lemma 7.7, we see that Ua ≤ CG(F ) ≤ H. Hence every
normal subgroup of H which is inverted by a is centralised by Ua

and therefore lies in Ha with Lemma 7.9. Together with the Infec-
tion Theorem (1), this forces F (H) to be an ra-group and this is
impossible. Therefore CG(a) = Ha by Theorem 14.23. Now we have
symmetry between a and b and therefore the previous arguments are
applicable. We assume that r ∈ π′

a is such that R0 := COr(H)(z) ̸= 1,
as we have done in (2.1(a)). Then from Lemma 14.12 we derive that
R0 ≤ Or(C). In particular r ∈ π and R0 = Or(H). We see that
C # H and if H has a component, then it contains a and thus
[F (H), a] = 1. But 1 ̸= Or(H) = [Or(H), b] = [Or(H), a], which is a
contradiction. These statements correspond to (a). Then we continue
as for (b) and set X := COp(H)(w). If X ̸= 1, then NG(X) ≤ H.
This proof only needed E(H) = 1. We argue further that F ̸= 1 and
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R0 ̸= 1 force X = 1, so X is inverted by z and by w, hence centralised
by v which is conjugate to a. This corresponds to (e). Thus it follows
as in (2.1) that z inverts Fπ′

a
(H). �

(2.3) [H, z] ≤ Z(Fπ′(H)) and E(H) = 1.

Proof. With (2.1) and (2.2) we see that, for all primes q in
π(F (H)), we have that q ∈ π′

b (so z inverts Oq(H)) or that q ∈ π′
a

(and again z inverts Oq(H)) or that q is in πa ∩ πb in which case
Oq(H) is centralised by a and b and hence by z. Now z centralises
E(H) and centralises or inverts Oq(H) for every q ∈ π(F (H)). We
deduce that [H, z] ≤ Z(Fπ′(H)).
For the second statement we quote Lemma 14.14. As CG(V ) ≤ H,
it yields that E(H) ≤ Hb or that H has a unique component and
that this component contains a. In the latter case it follows that a
centralises F (H) and, as P0 ≤ F (H) by the first paragraph, it follows
that [P0, a] = 1. But then z centralises P0, which is a contradiction.
Thus E(H) ≤ Hb and, looking at the cases from List IV, this is only
possible if z is contained in (and hence central in) E(H). But this is
impossible because H ̸= C. It follows that E(H) = 1. �

We know that z does not centralise F (Ha) either, so we find a prime
pa ∈ πa such that Q0 := [Opa(Ha), z] ̸= 1 and we can play the same game
with Q0 instead of P0.

(2.4) CG(a) = Ha and NG(Q0) ≤ Ha.

Proof. If CG(a) ̸= Ha, then we have that F ∗(Ha) = Opa(H),
with Theorem 14.23 and our choice of pa. We know that a centralises
F and hence that F = [F, z] ≤ Opa

(Ha) by (∗). Moreover F centra-
lises Ua by Lemma 7.7. Then Lemma 7.9 implies that Ua ≤ H. Also,
the subgroup Fp′

a
(H) is inverted by a because Ha # H. Therefore Ua

centralises Fp′
a
(H), forcing F (H) to be a pa-group (first with Lemma

7.9 and then with the Infection Theorem (1)). Our hypothesis that
F ̸= 1 yields that E(H) = 1, by (2.3), so it follows that H has cha-
racteristic pa. But this is impossible by the Infection Theorem (2)
because Hb # H. Thus we deduce that CG(a) = Ha.
Now let NG(Q0) ≤ H1 maxG and assume that H1 ̸= Ha. If we
assume that F1 := Fπ′

a
(H1) ̸= 1, then we note that Lemma 14.14 (3)

implies that E(H1) ≤ Ha. (Otherwise F1 = 1 because a centralises
it if a is in a component of H1.) As H1 ̸= C, this forces E(H1) = 1
(looking at the possibilities from List IV). We recall that CG(a) and
CG(b) are both maximal subgroups now and therefore the arguments
from (2.1) yield that F1 is inverted by z and hence centralised by b.
Thus F1 ≤ F (Hb) by (∗) and we obtain, as in (2.2), that Hb # H1.
That leads to the fact that [H1, z] ≤ Z(Fπ′(H1)) as in (2.3).
We combine this information – we know that 1 ̸= F ≤ F (Ha) and
therefore F ≤ NG(Q0) ≤ H1. This gives that F = [F, z] ≤ F (H1)
and thus H1 # H. The same argument, the other way around, gives
that F1 (which is inverted by a and by z, thus centralised by b) lies
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in F (Hb) and therefore normalises P0, giving

F1 = [F1, z] ≤ [H, z] ≤ F (H).

So H # H1 as well. Both these subgroups are not of prime charac-
teristic, so the Infection Theorem (3) forces H = H1. This implies
that F (Ha) and F (Hb) are contained in a common maximal sub-
group of G, namely H. But the fact that [Ha, z] ≤ F (Ha) yields
that ⟨CK(a)⟩ ≤ F (Ha) and similarly ⟨CK(b)⟩ ≤ F (Hb). Therefore
CK(a), CK(b) ⊆ H and Lemma 14.1 (4) gives that G ≤ H, which is
a contradiction. �

(2.5) Q0 � H and F = Opa(H).

Proof. If Q0 ≤ H, then Q0 = [Q0, z] ≤ F (H) by (2.3). Thus we
have that H # Ha by (2.4). But also Ha # H by (2.2) and |πa| ≥ 2,
so it follows with the Infection Theorem (3) that H = Ha. Then P0

is centralised by a and by b, hence by z. This is impossible. Next we
assume that F ̸= Opa(H). As

[Op′
a
(F ), Q0] ≤ Op′

a
(F ) ∩Opa(Ha) = 1,

we then see that Q0 ≤ CG(Op′
a
(F )) ≤ H by Corollary 5.8 and this

contradicts the first statement. Thus F = Opa(H). �

(2.6) w centralises F .

Proof. Let P ∈Sylp(Hb, V ) and assume that NG(P ) � Hb.
Then, by Lemma 7.11 (1), there exists a C-conjugate e of b centrali-
sing P , b and z. LetHe := CG(e). We have that P0 ≤ [He, z] ≤ F (He)
by (∗) whence He # H. Applying the Infection Theorem (1) and
Lemma 7.2 (3), it follows that F is inverted by b and by e and
that Fπb

(H) is centralised by b and e. With (2.3) we deduce that
F ∗(H) = F (H) is centralised by be, an involution that is C-conjugate
to a. Then (2.4) implies that Hbe := CG(be) is a maximal subgroup
of G and as F ∗(H) ≤ Hbe, we now have that H # Hbe. But also
P0 ≤ [Hbe, z] ≤ F (Hbe) by (∗) and therefore Hbe # H. Our assump-
tion that F ̸= 1 guarantees that F (H) is not a p-group and therefore
the Infection Theorem (3) yields that H = Hbe. But be is conjugate
to a and Ha # H by (2.2), so Lemma 14.10 forces H = Ha. Then P0

is centralised by b and by a, hence by z, and this is a contradiction.
We conclude that NG(P ) ≤ Hb and that, with Lemma 7.11 (2),
every z-invariant p-subgroup of CG(a) is centralised by z. The same
statement holds for all involution centralisers CG(t) where t is C-
conjugate to a. Now we look at the action of ⟨v, z⟩ on F . Lemma
2.1 (4) yields that

F = [F, z] = ⟨[CF (z), z], [CF (v), z], [CF (w), z]⟩ = [CF (w), z]

because [CF (v), z] = [CF (v), z, z] = 1 by our previous observation
and because a and v are conjugate. Thus F ≤ CG(w). �
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Now we reach a contradiction – we know that F ≤ Hw by (2.6)
and therefore F ≤ [Hw, z] ≤ F (Hw) by (∗). But b and w are conjugate,
therefore π(F (Hw)) = πb whereas F is a π′

b-group by definition. This is a
contradiction, so now we know:

If NG(P0) ≤ H maxG and H ̸= Hb, then Fπ′
b
(H) = 1.

Lemma 7.2 (3) implies that b centralises F (H). As H ̸= Hb by as-
sumption, this means, by the Infection Theorem (4), that E(H) � Hb.
But as we know from Lemma 14.14 (3) and since H ̸= C, this is only
possible if H has a unique component L and L contains a. However, this
implies that a centralises F (H) as well, i.e. that z centralises it, and this
is impossible by Lemma 5.2 (6) because H ̸= C.

We obtain that
NG(P0) ≤ Hb.

From here we proceed in two steps.

(i) If P ∈ Sylp(Hb, V ), then NG(P ) ≤ Hb. Every z-invariant p-subgroup
of CG(a) is centralised by z.

Proof. Assume otherwise. We apply Lemma 7.11 (1) and we let
T0 ∈Syl2(CG(P )) and c ∈ C∩NG(P )∩NG(T0) be such that b ̸= bc ∈
Z(T0). Let e := bc and let He := CG(e). We have that P0 ≤ P ≤ He

and therefore P0 = [P0, z] ≤ F (He) by (∗). As NG(P0) ≤ Hb, this
means that He # Hb. But then Lemma 14.10 yields a contradiction.
The last assertion comes directly from Lemma 7.11 (2). �

(ii) As in our initial notation let v ∈ CC(a) be an involution such that
⟨v, a⟩ is a fours group contained in a 2-component of C and let w :=
vz. Then P0 is centralised by v.

Proof. Let E ∈ L2(C) be such that ⟨a, v⟩ ≤ E. Then there
exists an odd number q ≥ 11 such that E ≃ PSL2(q) as on List IV
and therefore a, v and av are conjugate by some element of order 3
in E. Thus a, v and av are conjugate in C by some element of odd
order. This implies that b and w are commuting involutions that are
conjugate in C. The coprime action of ⟨w, z⟩ on P0 yields that

P0 = ⟨[CP0(z), z], [CP0(v), z], [CP0(w), z]⟩ = ⟨[CP0(v), z], [CP0(w), z]⟩,
by Lemma 2.1 (4). We set P1 := [CP0(w), z]. Then P1 is centralised
by b and by w, hence by bw = av, an involution that is conjugate to
a. As P1 is z-invariant and as P1 = [P1, z] ≤ CG(av) and CG(av) is
C-conjugate to CG(a), we know from (i) that P1 is centralised by z.
Thus P1 = 1 by Lemma 2.1 (2). It follows that P0 = [CP0(v), z], i.e.
v centralises P0 as stated. �

Statement (ii) and the main hypothesis imply that P0 is a non-trivial
z-invariant p-subgroup of CG(v) . Then (i), applied to CG(v) instead of
CG(a), yields that P0 = [P0, z] = 1. This is a contradiction and therefore
the theorem is proved.

�
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Lemma 15.5. Suppose that Hypothesis 15.1 holds and that a and b are not
conjugate. Let v ∈ {a, b} and suppose that C = M and CG(v) < Hv. Then Uv is
centralised by vz.

Proof. With Theorem 14.23 let p be an odd prime such that Hv is of cha-
racteristic p. Then, as C = M and z /∈ Z(Hv), Lemma 5.10 implies that p /∈ π.
We let U0 := [CUv (z), v]. If U0 ̸= 1, then U0 is a nilpotent CC(v)-invariant sub-
group of C of odd order, and therefore we may apply Lemma 14.12. Then U0 =
[U0, v] ≤ O(F (C)). But p /∈ π, so Op(C) = 1 and hence U0 = 1. This implies
that CUv (z) ≤ CUv (v) and thus, with Lemma 2.1 (4), we see that Uv = [Uv, v] ≤
[Uv, z] ∩ CG(vz). �

Lemma 15.6. Suppose that Hypothesis 15.1 holds. Then either CG(a) and CG(b)
are both maximal or neither of them is.

Proof. This statement is immediate if a and b are conjugate. If a and b are not
conjugate, then we first note that Hypothesis 7.6 holds by Lemma 14.7. Suppose
that CG(b) = Hb and assume that there exists some odd prime r such that Ha is
of characteristic r. Then Lemma 15.3 implies that C = M and Lemma 15.5 forces
Ua to be contained in CG(b). With the Pushing Down Lemma (3) we deduce that
Ua ≤ Or(Hb) and therefore Hb # Ha, by Lemma 7.9. But also, in particular, we
see that Or(Hb) ̸= 1 and together with the Infection Theorem (1) this gives that
F ∗(Hb) = Or(Hb). This is a contradiction.

If CG(a) = Ha and r is an odd prime such that Hb is of characteristic r, then
we argue as in the previous paragraph if C = M . Otherwise C < M and we have a
z-minimal subgroup U ≤ Op(M) by hypothesis. If E(M) ̸= 1, then Hypothesis 8.1
is satisfied. Lemma 14.9 yields that there exists an odd number q ≥ 11 such that
E(M) ≃ PSL2(q) and hence

U ≤
∩
g∈G

Mg

by Lemma 8.6. This contradicts Lemma 14.1 (1) and consequently E(M) = 1. Thus
M has characteristic p. We also recall that Or(Hb) contains a b-minimal subgroup
Ub because CG(b) ̸= Hb.

(1) [U, a] ̸= 1.

Proof. Otherwise we have that U ≤ F (Ha) by the Pushing Down
Lemma (3) and hence Ha # M . This contradicts the Infection Theo-
rem (2) because Ha is not of characteristic p. �

(2) Ub ≤ C.

Proof. Set R := [CUb
(a), b] and assume that R ̸= 1. Then with

Lemma 14.1 (1) let NG(R) ≤ HmaxG. The Pushing Down Lemma (2)
yields that R = [R, b] ≤ Or(Ha) and hence Ha and Hb infect H. From
(1) we know that [U, a] ̸= 1 and then Lemma 2.1 (4) implies that U0 :=
[CU (b), z] ̸= 1. It follows with the Pushing Down Lemma (1) that U0 ≤
F (Hb), in particular r = p. Then we deduce that

U0 ≤ CF (Hb)(b) ≤ CG(Ub) ≤ CG(R) ≤ H,
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by Lemma 7.7. Applying the Pushing Down Lemma (2), we see that U0 ≤
Op(H) and therefore U0 ≤ [Op(H), z]. As |πa| ≥ 2 and p = r ∈ πa, Lemma
7.2 (3) yields that [Op(H), z] ≤ Ha and therefore U0 ≤ Ha. But then U0

is centralised by b and by a, hence by z, and this is a contradiction. Thus
R = 1 which implies that Ub = [Ub, b] ≤ [Ub, a] ∩ C. �

(3) U ≤ Op(Hb).

Proof. As Ub ≤ C ≤ M by (2) and this subgroup is CM (b)-invariant,
Lemma 14.12 yields that Ub = [Ub, b] ≤ Op(M). Then Ub ≤ COp(M)(z) ≤
CG(U) by Lemma 7.7 and therefore U ≤ CG(Ub) ≤ Hb by Lemma 7.9.
The Pushing Down Lemma (3) yields that U ≤ Op(Hb). �

(4) [CU (a), z] ̸= 1.

Proof. As a and b are supposed to be not conjugate, one of the
cases from List IV holds by Lemma 14.5 (2) and therefore there exists a
2-component E of C such that a ∈ E. Moreover there exists a fours group
A0 in E containing a and such that the involutions in A0 are all conjugate
in C. As U is C-invariant and

U = [U, z] = ⟨[CU (a0), z] | a0 ∈ A#
0 ⟩,

by Lemma 2.1 (4), we deduce that for all a0 ∈ A#
0 , the commutator

[CU (a0), z] is non-trivial. In particular [CU (a), z] ̸= 1 as stated. �

Let X := [CU (a), z]. Then 1 ̸= X ≤ U ≤ Op(Hb) by (2) and (3) and with
Lemma 14.1 (1) we let NG(X) ≤ HmaxG. Then M and Hb infect H and we
also see, with the Pushing Down Lemma (2), that X ≤ Op(Ha) and hence Ha #
H. Let F := Fπ′

a
(H). As p ∈ πa, we see that F is a p′-group and the Infection

Theorem (1) forces F to be inverted by a, b and z. Consequently F = 1. Moreover
CG(V ) ≤ H and therefore Lemma 14.14 (3) implies that E(H) ≤ Hb ∩ Ha or
that H has a component that contains a. In the latter case, we see from the type
of this component that E(H) contains a fours group A0 such that its involutions
are conjugate within E(H) and such that a ∈ A0. Then the fact that U is E(H)-

invariant and that X ≤ H forces that for all a0 ∈ A#
0 , the subgroup [CU (a0), z] is

contained in H. With Lemma 2.1 (4) it follows that U ≤ H and then U ≤ Op(H)
by the Pushing Down Lemma (3). Lemma 7.9 yields that H # M . But M # H
and therefore the Infection Theorem (3) gives that F ∗(H) = Op(H) (whether it
coincides with M or not does not matter). Then Ha infects a maximal subgroup
of characteristic p and this is impossible by the Infection Theorem (2). This last
contradiction finishes the case where CG(a) is a maximal subgroup of G and CG(b)
is not. �

Lemma 15.7. Suppose that Hypothesis 15.1 holds and that CG(b) is a maximal
subgroup of G. Then O(C) = 1 (and therefore the F*-Structure Theorem describes
F ∗(C)).

Proof. From Lemma 15.3 and Theorem 15.4 we know that C = M and
O(F (C)) ∩ Hb = 1. If r2(G) = 2, then Lemma 15.2 implies that Hb has odd
prime characteristic, which is a contradiction. Hence r2(G) = 3, more precisely
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V is contained in an elementary abelian subgroup of order 8. Let d ∈ C be an
involution distinct from a and b, but commuting with them and such that a, d
and ad are conjugate in C. Choose c ∈ C to be such that ac = d. Now our hy-
pothesis implies that b inverts O(F (C)). Then also a inverts it and d = ac inverts
O(F (C))c = O(F (C)), similarly ad inverts it by conjugacy whereas it also cen-
tralises it. Since O(F (C)) has odd order, this yields that O(F (C)) = 1. But then
F (O(C)) = 1 whence O(C) = 1. �

Lemma 15.8. Suppose that Hypothesis 15.1 holds and that CG(b) is a maximal
subgroup of G. Let p ∈ π(F (Hb)) be an odd prime such that Op(Hb) � C and let
P0 := [Op(Hb), z]. Let P ∈ Sylp(Hb, V ). Then NG(P0) ≤ Hb or NG(P ) ≤ Hb.

Proof. First we apply Lemma 15.7 to deduce that O(C) = 1. We assume that
NG(P0) ≤ HmaxG withH ̸= Hb and thatNG(P ) � Hb, aiming for a contradiction.
Then Hb # H. We recall that |πb| ≥ 2 because πb contains 2 and p. Therefore
Lemma 7.2 (3) and the Infection Theorem (1) yield that Fπb

(H) is centralised by b
and that Fπ′

b
(H) intersects Hb trivially and is therefore inverted by b. In particular

[H, b] centralises F (H).

(1) E(H) ≤ Hb.

Proof. As CG(V ) ≤ H, Lemma 14.14 is applicable and gives that
E(H) ≤ Hb or that H possesses a component that contains a. In the latter
case it follows that F (H) is centralised by a. Thus z centralises E(H) and
Fπb

(H), and it inverts Fπ′
b
(H). We deduce that [H, z] centralises F ∗(H),

therefore [H, z] ≤ Z(F (H)) and hence

P0 = [P0, z] ≤ Op(H) ≤ CG(a).

But then P0 is centralised by b and by a, hence by z, and this is a contra-
diction. Thus E(H) ≤ Hb as stated. �

(2) Let F := Fπ′
b
(H). Then CF (z) = 1, but F ̸= 1, and moreover Ha # H.

Proof. Step (1) implies that [H, b] ≤ CH(F ∗(H)) = Z(F (H)). Since
CC(a) = CC(b) ≤ NG(P0) ≤ H, the group F is a CC(b)-invariant 2′-
subgroup of H. Thus CF (z) is CC(b)-invariant and inverted by b. We
recall that O(C) = 1 and apply Lemma 14.12 to see that CF (z) = 1 as
stated. In particular F is inverted by b and z. Then F ≤ CG(a) and we
know from Lemma 15.6 that CG(a) = Ha, so F is a CHa(z)-invariant
nilpotent subgroup of Ha. The Pushing Down Lemma (1) implies that
F = [F, z] ≤ F (Ha). Since E(H) ≤ C ∩Hb by Lemma 5.2 (5) and by (1)
(and hence E(H) is centralised by a) and since H ̸= Hb by assumption,
the Infection Theorem (4) tells us that F ̸= 1. Then NG(F ) = H by
Corollary 5.8 and it follows that Ha # H. �

(3) a and b are not conjugate.

Proof. If a and b are conjugate, then πa = πb and therefore (2) and
the Infection Theorem (1) imply that F = Fπ′

a
(H) is inverted by a. This

is only possible if F = 1, but this contradicts (2). �
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(4) P0 = Op(Hb).

Proof. We use (1) and also our assumption that NG(P ) � Hb. Let
T0 ∈Syl2(CG(P )). We may suppose that T0 is z-invariant by Lemma 4.11,
applied to CG(P )⟨z⟩. With Lemma 7.11 (1) we let c ∈ NG(P )∩NG(T0)∩C
be such that v := bc is an involution in Z(T0) distinct from b. Then
P = P c ≤ Hc

b =: Hv which means that P is centralised by b and by v. Let
X := COp(Hb)(z). Then X is a CC(a)-invariant p-subgroup of C that is
centralised by b and by v. We need to recall that a and b are not conjugate
by (3) and that, therefore, C possesses a simple component E by Lemma
14.5 (2) and since O(C) = 1. More precisely there exists an odd number
q ≥ 11 such that E ≃ PSL2(q). Then [X,CE(a)] ≤ X ∩ E and we note
that O(CE(a)) is cyclic and inverted by v (because CE(a) is an involution
centraliser in PSL2(q)). As X is centralised by v, it follows that

[X,CE(a), v] ≤ [X, v] = 1 and [v,X,CE(a)] = 1,

so the Three Subgroups Lemma implies that [CE(a), v,X] = 1. We recall
thatO(CE(a)) is inverted by v and therefore [O(CE(a)), X] ≤ [CE(a), v,X] =
1. As X is a p-group, this shows that [CE(a), X] = 1 and hence X can-
not induce non-trivial inner automorphisms on E because v centralises
X. But also, Remark 11.2 says that X does not induce a non-trivial field
automorphism on E, so we deduce that X centralises E. If C possesses
a second component E1, then E1 and O2(C) (being subgroups of CC(a))
normalise X and therefore [O2(C)E1, X] = 1. This forces

X ≤ CC(F
∗(C)) = Z(F (C)) ≤ O2(C)

and hence X = 1. We conclude that P0 = Op(Hb). �

From (4) and Corollary 5.8 it follows that

Hb = NG(Op(Hb)) = NG(P0) ≤ H

and consequently Hb = H, contrary to our assumption. Thus the lemma is proved.
�

All previous statements together with some additional work yield the first main
result of this section.

Theorem 15.9. Suppose that Hypothesis 15.1 holds and that CG(a) is a maxi-
mal subgroup of G. Then a and b are not conjugate.

Proof. We assume, by way of contradiction, that a and b are conjugate. Then,
by Lemma 14.5 (2), we know that one of the cases from List I, II or III holds and
moreover our hypothesis implies that CG(b) = Hb. With Lemma 15.2 and Theorem
D we know that r2(G) = 3, and Lemma 15.7 yields that O(C) = 1.

As z /∈ Z(Ha), we choose, with Lemma 5.2 (6), an odd prime p such that
P0 := [Op(Ha), z] ̸= 1. With Lemma 14.5 (8) let P ∈Sylp(Ha, V ). Then Lemma
7.11 (1) implies that NG(P ) � Ha and then, with Lemma 15.8, that NG(P0) ≤ Ha.

Next we look at X := COp(Ha)(z) and Y := COp(Hb)(z). We assume in the
following that these subgroups are non-trivial. They are conjugate by our assump-
tion that a and b are conjugate. We also note that X and Y normalise each other
whence XY is a p-group.



140 15. THE ENDGAME

(∗) X = Y .

Proof. If F ∗(C) is as on List II, then let E be the unique component
of C. Then X ∩ E is a CE(a)-invariant p-subgroup of CE(a) and hence
centralised by CE(a) and Y ∩E is a CE(a)-invariant p-subgroup of CE(a),
thus also centralised by CE(a). It follows that X ∩E = Y ∩E. Moreover
we know that the outer automorphism group of E has cyclic Sylow p-
subgroups, so the groups of outer automorphisms that X and Y induce
on E coincide. We deduce that XCC(E) = Y CC(E).

Now suppose that F ∗(C) is as on List I or III and hence that a is dia-
gonal. AsX and Y are CC(a)-invariant p-groups, they cannot be contained
in O2(C) or in a component of C that centralises a. For every component
of C, the outer automorphism group has cyclic Sylow p-subgroups and as
X and Y normalise every component of C, we see thatX and Y induce the
same outer automorphisms on every component of C. They also induce
the same inner automorphisms and therefore XCC(E(C)) = Y CC(E(C))
as in the previous case.

Hence if we let x ∈ X, then there exists some y ∈ Y such that x and y
induce exactly the same automorphism on E(C) whence x−1y ∈ XY is a
p-element in C that centralises E(C). As XY is CC(a)-invariant, we also
see that XY centralises O2(C) and hence x−1y ∈ C is a p-element that
centralises F ∗(C). But CC(F

∗(C)) = Z(O2(C)), so we see that x = y and
it follows that X = Y . �

Let NG(X) ≤ HmaxG. Then Ha # H and by (∗) we also know that Hb # H.
Now we recall that a and b are conjugate by assumption and that, therefore, we have
that πa = πb. Then with Lemma 7.2 (3) and the Infection Theorem (1) it follows
that a and b invert Fπ′

a
(H) and centralise Fπa(H). Thus z centralises F ∗(H) and

Lemma 5.2 (6) forces H = C. So Ha and Hb infect C. Moreover Fp′(Ha) and
Fp′(Hb) are contained in CG(X) and hence in C, so in particular X ̸= Op(Ha)
because z /∈ CHa(F (Ha)). Let X1 := NOp(Ha)(X). Then X < X1 ≤ H = C and
thus X1 ≤ COp(Ha)(z) = X, which is a contradiction. �

Lemma 15.10. Suppose that Hypothesis 15.1 holds and that CG(b) is a maximal
subgroup of G. Then there exist a prime p and some P ∈ Sylp(Hb, V ) such that
[Op(Hb), z] ̸= 1 and NG(P ) ≤ Hb.

Proof. Assume otherwise. Hence for all p ∈ πb and for all P ∈ Sylp(Hb, V ) we
have that, if [Op(Hb), z] ̸= 1, then NG(P ) � Hb. With Lemma 5.2 (6) we choose
p ∈ πb such that P0 := [Op(Hb), z] ̸= 1. By Lemma 15.8 and our assumption we have
that NG(P0) ≤ Hb. Also, with Lemma 7.11 (1), we find an element c ∈ C ∩NG(P )
such that d := bc is an involution distinct from b, commuting with b and z and
centralising P . Let Hd := Hc

b . Then Hd = CG(w) by conjugacy and Op(Hb) ≤ P ≤
Hd. Therefore X := COp(Hb)(z) is centralised by d. Looking at C, we first recall that
O(C) = 1 by Lemma 15.7 and then that F ∗(C) is as in one of the cases from List
IV, because a and b are not conjugate by Theorem 15.9 and by Lemma 14.5 (2).
We denote the simple component of C by E and note that CE(a)(= CE(b)) and
X normalise each other. Moreover we recall that d is conjugate to b and commutes
with it, therefore dz is conjugate to a and commutes with it and it follows that dz
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inverts O(CE(a)). At the same time d and z centralise X and hence dz does, so we
have that [dz,X,CE(a)] = 1. We use this information to show that X centralises
E. First [X,CE(a)] ≤ X ∩ E ≤ CG(dz) and therefore [X,CE(a), dz] = 1. Then
[CE(a), dz,X] = 1 with the Three Subgroups Lemma. As dz inverts O(CE(a))
and X is a p-group, we see first that X centralises O(CE(a)) and then that X
centralises all of CE(a). Thus the elements from X# cannot induce (non-trivial)
inner automorphisms on E, and by Remark 11.2 they also cannot induce outer
automorphisms. It follows that [E,X] = 1 as stated. As O2(C) ≤ CC(a) = CC(b)
by choice of a, we also have that X centralises O2(C). If C has a second component,
then this component centralises a and z, hence b, therefore normalises X and is X-
invariant, so it centralises X. All this forces

X ≤ CC(F
∗(C)) = Z(F ∗(C))

which is a 2-group, so X = 1.
From our hypothesis it follows that we can argue in this way for all odd primes in

πb and we obtain, for all r ∈ πb, that Or(Hb) is either centralised by z (which inclu-
des the case r = 2 by Lemma 5.2 (5)) or inverted by it. Hence [Hb, z] ≤ Z(F (Hb)).
Going back to our prime p, the subgroup P0 and the involution d, conjugacy yields
that P0 = [P0, z] ≤ [Hd, z] ≤ Z(F (Hd)) and therefore Hd # Hb. But b and d are
conjugate, so this is a contradiction to Lemma 14.10. �

Theorem 15.11. Suppose that Hypothesis 15.1 holds. Then CG(a) is not a
maximal subgroup of G.

Proof. Assume otherwise. Then Lemma 15.6 yields that CG(b) is a maximal
subgroup as well and we know from Theorem 15.9 that a and b are not conjugate.
With Lemma 15.10 we choose a prime p and a V -invariant Sylow p-subgroup P of
Hb such that [Op(Hb), z] ̸= 1 and NG(P ) ≤ Hb. With Lemma 7.11 (2) we see that
for this prime p, every ⟨z⟩-invariant p-subgroup of CG(a) is centralised by z. Now
we recall that a and b are not conjugate and that, therefore, by Lemmas 14.5 (2)
and 15.7, we have a simple component E in C. Then a ∈ E by hypothesis, we
choose a fours group in E containing a and we denote its involutions by a, v and
av. Then a, v and av are C-conjugate. As every ⟨z⟩-invariant p-subgroup of CG(a)
is centralised by z, conjugacy implies that also every ⟨z⟩-invariant p-subgroup of
CG(v) is centralised by z. Moreover we note that b and w := vz are conjugate and
that ⟨w, z⟩ acts coprimely on P0 := [Op(Hb), z]. Lemma 2.1 (4) yields that

P0 = [P0, z] = ⟨[CP0(z), z], [CP0(v), z], [CP0(w), z]⟩ = ⟨[CP0(v), z], [CP0(w), z]⟩.
As [CP0

(v), z] is a z-invariant p-subgroup of CG(v), we have that [CP0
(v), z, z] =

1 and hence [CP0(v), z] = 1. This implies that P0 = [CP0(w), z] and therefore P0 is
centralised by w and by b. It follows that bw centralises P0. But bw = azvz = av is
conjugate to a, so conjugacy yields that the z-invariant p-subgroup P0 of CG(av)
must be centralised by z. Thus P0 = [P0, z] = 1, which is a contradiction. �

Hypothesis 15.12. In addition to Hypothesis 11.1 we suppose the following:

• a ∈ C is an involution distinct from z and chosen as in Lemma 14.4.

• V := ⟨a, z⟩.
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• M is a maximal subgroup containing C such that, if possible, there exists
an odd prime r such that Or(M) ̸= 1 = COr(M)(z). If C < M , then let
U ≤ O(F (M)) be a z-minimal subgroup.

• For all v ∈ {a, b} we let Hv be a maximal subgroup of G such that CG(v) <
Hv and let p be an odd prime such that F ∗(Hv) = Op(Hv). If possible,
we suppose that v inverts F ∗(Hv). Let Uv ≤ Op(Hv) denote a v-minimal
subgroup.

We note that Hypothesis 15.12 implies Hypothesis 14.6 and therefore, by
Lemma 14.7, also Hypothesis 7.6.

Lemma 15.13. Suppose that Hypothesis 15.12 holds. Let r be an odd prime and

let H < G be such that CG(V ) ≤ H. Then Ĥ := H/O(H) has a unique maximal

ĈG(V )-invariant r-subgroup.

Proof. In C we can choose a Sylow 2-subgroup S such that S contains a
Sylow 2-subgroup S0 of CG(V ). Let V ≤ S0 ≤ S1 ∈ Syl2(H). Then every member
of IH(CG(V ), r) is S0-invariant and we know, from the structure of F ∗(C) (or
explicitly from (i) in the proof of Lemma 14.4), that S0 = S or that S0 has index

2 in S. In particular S0 = S1 or S0 has index 2 in S1. Let Ŷ ∈ IĤ(ĈG(V ), r). As

O2(Ĥ) ≤ Ŝ1, we see that [CO2(Ĥ)(V̂ ), Ŷ ] ≤ O2(Ĥ) ∩ Ŷ = 1 whence Ŷ centralises a

subgroup of index at most 2 of O2(Ĥ). It follows that [O2(Ĥ), Ŷ ] = 1.

If Ĥ has characteristic 2, then Ŷ = 1 and our claim is proved. Thus let us

suppose that Ĥ has a component. Then L2(H) ̸= ∅ and for all L ∈ L2(H), the
subgroup L0 := O∞(CL(z)) lies in C. Moreover L0 is not soluble, therefore induces
inner automorphisms on F ∗(C) and is hence contained in it. Thus, going through

the lists of the F*-Structure Theorem, the possibilities for CL̂(V̂ ) are as follows:

- CL̂(V̂ ) = L̂ or

- CL̂(V̂ ) is cyclic or dihedral or

- there exists an odd prime power q ≥ 5 such that CL̂(V̂ ) has two components

of type SL2(q), with central involutions â and b̂.

We deduce that, as Ŷ is CE(Ĥ)(V̂ )-invariant, it induces inner automorphisms on

every component of Ĥ. Thus Ŷ ≤ F ∗(Ĥ). But then, from the possibilities above and

the CF∗(Ĥ)(V̂ )-invariance of Ŷ , it follows that Ŷ ≤ CF∗(Ĥ)(V̂ ). We already know

that Ŷ centralises O2(Ĥ). For each component L̂, going through the possibilities

for CL̂(V̂ ) yields the following:

- if CL̂(V̂ ) = L̂, then Ŷ ∩ L̂ = 1.

- if CL̂(V̂ ) is cyclic or dihedral, then Ŷ ∩ L̂ is contained in it.

- if CL̂(V̂ ) has two components of type SL2(q) with central involutions â and

b̂, then Ŷ ∩ L̂ centralises CL̂(V̂ ) because Ŷ has odd order.

If Ŷ ∈ I∗
Ĥ
(ĈG(V ), r), then we conclude that either Ŷ ∩L̂ is contained in CL̂(V̂ ),

that it even is a maximal CL̂(V̂ )-invariant r-subgroup there and that it therefore

coincides with Or(CL̂(V̂ )), or that F ∗(C) is as on List II and Ŷ ∩ L̂ centralises
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CL̂(V̂ ). In this case Ŷ ∩ L̂ is also a maximal CĤ(V̂ )-invariant r-subgroup of L̂. We

deduce that Ŷ ∩ L̂ is the unique maximal CL̂(V̂ )-invariant r-subgroup of L̂.

Now let Ŷ1, Ŷ2 ∈ I∗
Ĥ
(ĈG(V ), r). Then Ŷ1 and Ŷ2 are contained in F ∗(Ĥ) and

even in CF∗(Ĥ)(V̂ ) = CO2(Ĥ)E(Ĥ)(V̂ ), as we deduced in the previous paragraph.

But r is odd and hence Ŷ1, Ŷ2 ≤ CE(Ĥ)(V̂ ). Conversely, we know for every

component L̂ of Ĥ that Ŷ1 ∩ L̂ and Ŷ2 ∩ L̂ coincide with the unique maximal

CL̂(V̂ )-invariant r-subgroup R̂L of L̂. Thus

Ŷ1 = Ŷ1 ∩ E(Ĥ) =
∏

L∈L2(H)

R̂L = Ŷ2 ∩E(Ĥ) = Ŷ2.

�

Theorem 15.14. Hypothesis 15.12 does not hold.

Proof. Assume otherwise, with the notation from Hypothesis 15.12. First we
show that (Ha, Hb) is a V -special primitive pair of characteristic p as in Definition
3.4. As Ha and Hb are primitive (by Corollary 5.8) and of characteristic p, we only
need to verify two properties:

- V ≤ Z∗(Ha) ∩ Z∗(Hb) holds because of Lemma 14.5 (1).
- CG(V ) ≤ Ha ∩Hb holds because a, b ∈ V .
Therefore (Ha,Hb) is in fact a V -special primitive pair of characteristic p of

G. Then Lemma 15.13 implies that Theorem 3.7 is applicable and it yields that
Op(Ha) ∩Hb = 1 = Op(Hb) ∩Ha. In particular Op(Ha) ∩Op(Hb) = 1 and Op(Ha)
is inverted by b. Therefore Op(Ha) is abelian and this implies that Ua is elementary
abelian and that a inverts it. It follows that Ua is inverted by a and by b and
therefore Ua ≤ C. Then Lemma 14.12 yields that Ua = [Ua, a] ≤ Op(M). From
Lemma 5.2 (6) we know that Op(Ha) is not centralised by z, but we just saw that
p ∈ π(F (M)). Therefore C ̸= M by Lemma 5.10. In particular, we have our z-
minimal subgroup U and we conclude that Ua ≤ COp(M)(z) ≤ CG(U) with Lemma
7.7. Then Lemma 7.9 implies that U ≤ CG(Ua) ≤ Ha and the Pushing Down
Lemma (3) forces U ≤ Op(Ha). We conclude that, since Op(Ha) ∩ Hb = 1, we
have that U ≤ Op(Ha). Now we recall that also Op(Hb) ∩ Ha = 1, so a inverts
Op(Hb) and by symmetry between a and b we deduce that U ≤ Op(Hb) whereas
Op(Ha) ∩Op(Hb) = 1. This is impossible. �





KAPITEL 16

The Final Contradiction and the Z*-Theorem for
K2-Groups

In the previous chapter we concluded our analysis of maximal subgroups of G
containing an involution centraliser. Without too much effort, we can now reach
a contradiction under the hypothesis that, with all the notation in our minimal
counter-example G, the components of C are known quasi-simple groups:

Theorem 16.1. Hypothesis 11.1 does not hold.

Proof. Assume otherwise. Then in particular we have Hypothesis 5.1 with
all the notation included there. The F*-Structure Theorem is applicable and yields
that we know precisely what the possibilities for the shape of F ∗(C) are. Next
we choose an involution a ∈ C as in Lemma 14.4. Then Theorem 14.23 implies
that either CG(a) is a maximal subgroup of G itself or it is properly contained
in a maximal subgroup Ha of G of odd prime characteristic. With this choice of
the involution a and a suitable choice for a maximal subgroup M containing C,
we can set notation such that Hypothesis 15.1 holds. Therefore we may apply
Theorem 15.11 and we deduce that CG(a) is not a maximal subgroup. Thus we
know that CG(a) is properly contained in a maximal subgroup Ha of G and that
there exists an odd prime p such that F ∗(Ha) = Op(Ha). If possible, we choose Ha

such that a inverts Op(Ha). Lemma 15.6 yields that CG(az) is properly contained
in a maximal subgroup Haz of G of characteristic p and we choose Haz such that
az inverts Op(Haz), if this is possible. Then Hypothesis 15.12 holds and Theorem
15.14 provides a contradiction. �

If we want to state an independent result, then we must somehow capture
the knowledge about simple groups involved in centralisers of isolated involutions
that we incorporated in Hypothesis 11.1 in our minimal counter-example. We recall
that, by the Classification of the Finite Simple Groups (as stated for example in
[Wil09]), every finite simple group is isomorphic to one of the following:

- a cyclic group of prime order,
- an alternating group An for some n ≥ 5,
- a simple group of Lie type,
- a sporadic simple group.

The Z*-Theorem for K2-groups is an attempt to capture, in a suitable hypo-
thesis, the fact that we do not really need information about all proper subgroups
of G, but only about centralisers of isolated involutions.
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Definition 16.2. We say that a finite group X is a K2-group if and only
if for every isolated involution t ∈ X and every subgroup H of X containing t,
all simple sections (i.e. factor groups of subgroups) in CH(t)/O(CH(t)) are known
simple groups. By a “known simple group” we mean a group from the list in the
Classification of Finite Simple Groups.

We note that the definition implies that subgroups and factor groups of K2-
groups are themselves K2-groups. In the literature, the term K2-group is sometimes
used to describe simple groups where in all 2-local subgroups, all simple sections
are known simple groups.

Proof of the Z*-Theorem for K2-groups.
Assume that this result is false and choose G to be a minimal counter-example.

Let then z ∈ G be an isolated involution such that z /∈ Z∗(G). In order to establish
Hypothesis 5.1 for G, we look at an isolated involution t of G and we suppose that
t ∈ H < G. Then our hypothesis implies that H is a K2-group. As t is isolated in
H, the minimal choice of G yields that the theorem holds in H. This means that

t ∈ Z∗(H). Next let NEG be such that t /∈ N and set Ĝ := G/N . Then t̂ is isolated

in Ĝ by Lemma 4.1 (7). Hence if N ̸= 1, then Ĝ is a proper factor group of G and

the minimality of G yields that t̂ ∈ Z∗(Ĝ). Therefore Hypothesis 5.1 holds for G
and, with our additional K2-group hypothesis, we even have that Hypothesis 11.1
holds. This contradicts Theorem 16.1. �
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Addendum zu: Local Arguments for Glauberman’s
Z*-Theorem

Für den Beweis von Lemma 12.5 auf Seite 85 werden alle Möglichkeiten aus dem
Klassifikationssatz für die endlichen einfachen Gruppen nacheinander betrachtet,
und dabei wird für eine gewisse Gruppe nicht explizit erklärt, warum sie nicht als
Typ einer Komponente auftreten kann. Das folgende Lemma holt dieses Argument
nach; wie in vielen anderen Fällen geht es sehr leicht mit 2-Balance. Es wurde
sorgfältig geprüft, dass alle anderen Gruppen explizit oder als Teile einer Serie im
Beweis behandelt werden.

Lemma
Suppose that Hypothesis 11.1 holds and that E ∈ L2(C). Then E/Z(E) is not
isomorphic to PSL3(4).

Proof. Assume otherwise. We refer to the ATLAS ([CCN+03]) for information about
PSL3(4). If Z(E) = 1, then E ≃ PSL3(4) and this is impossible by Lemma 11.4.
Hence Z(E) is a non-trivial 2-group with unique involution z, by Theorem B. The
Schur multiplier leaves the possibilities 2PSL3(4) and 4PSL3(4). As 2PSL3(4)
contains an elementary abelian group of order 16, it is excluded by Lemma 11.4 as
well. Hence E ≃ 4PSL3(4) and in particular r2(E) = 3. Let B be an elementary
abelian subgroup of order 4 of E that does not contain z and let A := B⟨z⟩. Then
A is elementary abelian of order 8. Let b ∈ B#. In PSL3(4) the centralisers of
involutions are 2-groups, and so it follows that O(CE(b)) = 1. Hence if α(b) � O(C),

then α(b) induces an outer automorphism of E of odd order, by Lemma 6.15. This
must be an automorphism of order 3. But since Z(E) has only order 4, this is not
possible. We conclude that α(b) ≤ O(C) for all b ∈ B# (and hence for all b ∈ A#),
so the subgroup A is balanced. This contradicts Lemma 6.8.
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