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ABSTRACT

The present work examined the theoretical studies of nonlinear optical phenomena
associated with light beams carrying orbital angular momentum which can be most
realizable in the form of Laguerre Gaussian (LG) beams and also popularly dubbed as
twisted light. The thesis is divided into two main parts. Thefirst part explained the
propagation properties of twisted light in a nonlinear medium. Under which, the self-
focusing and defocusing of LG beams propagating in a nonlinear dielectric medium
has been investigated. A differential equation for the beam width parameter is derived
analytically as a function of the propagation distance, theangular frequency, the beam
waist and the intensity of the beam utilizing the Wentzel-Kramers-Brillouin and the
paraxial approximations. The predicted focusing and defocusing of LG beams can be
used to manipulate the trapping spot size and the strength ofthe tweezers by cross-
ing two LG beams at the focused distance. Next, the study on the transmission and
the reflection of LG beams through a dielectric multilayer structure containing phase-
conjugating interfaces has been demonstrated. Analyticalexpressions for the reflection
and the transmission of the fields at individual layers are calculated. It is shown that the
phase conjugation at the interfaces results in a characteristic angular and radial pattern
of the reflected beam. These interference patterns have dependence on the thickness of
the medium and can be varied on the scale of the incoming LG beam. This fact can be
exploited in the field of characterization of refractive inhomogeneities in bulk optical
materials. Whereas, the second part of the thesis focused onthe particle dynamics in a
focused, high intensity twisted light. It has been shown that the intensity distribution of
twisted light results in the trapping, guiding and acceleration of neutral helium atoms
to the centre of laser focus with a minimum intensity on axis via the ponderomotive
potential, an effect which can be used for atom beam structuring and for lithographic
applications.

Keywords: Orbital angular momentum, Laguerre Gaussian beam, Self-focusing,
Wentzel-Kramers-Brillouin, Paraxial approximation, Phase conjugation, Refractive in-
homogeneties, Ponderomotive potential.



ZUSAMMENFASSUNG

In der vorliegenden Arbeit werden nichtlineare optische Phänomene im Zusammen-
hang mit Licht, welches einen orbitalen Bahndrehimpuls besitzt, theoretisch unter-
sucht. Dieses besondere Licht, auch bekannt unter dem Namen“twisted light (TL)”,
wird meistens in Form von Laguerre-Gauß (LG) Lichtstrahlenrealisiert. Die Arbeit ist
in zwei Hauptteile gegliedert. Der erste Teil erläutert die Ausbreitungseigenschaften
von TL in einem nichtlinearen Medium. Hier werden Selbst-Fokussierung und De-
fokussierung von TL Strahlen, welche sich in einem nichtlinearen dielektrischen Medium
ausbreiten, untersucht. Eine Differentialgleichung für die Breite des Strahls als Funk-
tion der Ausbreitungsstrecke, Kreisfrequenz, Strahltaille und der Intensität des Strahls
wurde im Rahmen der Wentzel-Kramers-Brillouin und paraxialen Näherung analytisch
hergeleitet. Die vorhergesagten Fokussierungs- und Defokussierungseffekte eignen
sich hervorragend zur Manipulation der Größe und der Stärke von optischen Pinzetten,
indem man zwei TL Strahlen kreuzt. Weiterhin wird die Transmission und Reflex-
ion der LG Strahlen an einer dielektrischen mehrschichtigen Struktur bestehend aus
phasenkonjugierenden Grenzflächen studiert. Dabei werden analytische Ausdrücke für
die Reflexions- und die TransmissionsKoeffizienten hergeleitet. Es zeigt sich, dass die
Phasenkonjugation an den Grenzflächen ein charakteristisches radiales Muster des re-
flektierten Strahls bewirkt. Diese Interferenzmuster stehen in Abhängigkeit zur Dicke
des Mediums und können durch den einfallenden LG Strahl manipuliert genutzt wer-
den. Dieser Effekt kann im Gebeit der Charakterisierung von lichtbrechenden Inho-
mogenitäten in optischen Materialien genutzt werden. Derzweite Teil der vorliegen-
den Arbeit konzentriert sich auf die Dynamik von Teilchen ineinem fokussierten und
sehr intensiven TL Strahl. Es wurde gezeigt, dass aufgrund des ponderomotiven Poten-
zials die Intensitätsverteilung von TL das Einfangen von neutralen Heliumatomen und
eine gleichzeitige Beschleunigen dieser Atome hin zur Mitte des fokussierten Strahls,
wo die Intensität minimal ist, bewirkt. Dieser Effekt könnte im Bereich der Atom-
strahlstrukturierung und Lithographie Einsatz finden.

Schlagwörter: Optische Wirbel, Bahndrehimpuls, Laguerre-Gauß-Strahl, Selbst-
Fokussierung, Wentzel-Kramers-Brillouin Näherung, paraxiale Näherung, Phasenkon-
jugation, Lichtbrechende Inhomogenitäten, ponderomotives Potenzial.
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Potassium tantalate niobate KTa1−xNbxO3

Bismuth silicon oxide Bi12SiO20

Bismuth germanium oxide B12GeO20

Gallium asenide GaAs
Indium phosphide InP
Phase conjugated wave PCW
Degenerate four wave mixing DFWM
Four wave mixing FWM
Stimulated Brillouin scattering SBS
Backward stimulated scattering BSS
Helium He
Laguerre-Gaussian LG

If any notation differs from the above given list, then it would be stated separately in
the following text.
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Chapter1
Introduction

Over the years, scientists have used the properties of lightin a variety of disciplines
to investigate various applications in biological and non-biological fields. It is a well
known fact that light beams carries energy and both, linear and angular momentum.
The total angular momentum can contain a spin contribution associated with light po-
larization, and an orbital contribution associated with the spatial and phase structure of
the light. Although, both forms of angular momentum have been identified in electro-
magnetic theory for many years, it is only over the past decade that the orbital angular
momentum (OAM) has drawn a major attention and became the subject of intense theo-
retical and experimental studies. Usually laser beams consists of spherical wavefronts
whereas the light beams carrying orbital angular momentum i.e. Laguerre-Gaussian
(LG) beam with helical wavefronts looks very different; its intensity profile consists of
a ring of light as a result of the beam’s particular phase profile. The profiles of the light
beams carrying OAM can be twisted like a corkscrew about the axis of propagation
and have zero intensity at their center, hence also dubbed astwisted light (TL) . For
these helically phased beams, the Poynting vector has an azimuthal phase dependence
of exp(−iℓφ) whereφ is the azimuthal coordinate in the beam’s cross-section andℓ

is the topological charge or winding number which can take any integer value either
positive or negative. Thus, it is also called an optical vortex (OV) which represents the
number of times the light twists in one wavelength. The higher this number, the faster
the light spins around its axis and the larger the dark regionat the center of the beam
becomes. Wave dislocations and singularities were first explored by Nye and Berry in
1973 [1] and optical vortices were experimentally realized optically as carrying orbital
angular momentum in the early 1990’s [2–4].

The beams with helical wavefronts are shown to have OAM, muchlike circularly
polarized light has spin angular momentum (SAM) which can betransferred to matter.
The amount of OAM, a beam of light carries is proportional to how much the phase
gradient of the light varies. Experimentally, the light beams with both spin and orbital
angular momentum can be realized. In 1936, Beth [5] showed that the circular polar-
ization of light is associated with SAM, when a birefringentplate was made to rotate
by hitting with the circularly polarized light. Whereas, Allen et al. demonstrated the
use of cylindrical lens to convert Hermite-Gaussian (HG) modes into LG modes and
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showed experimentally that the intrinsic (SAM) and the extrinsic (OAM) nature of the
light’s angular momentum behaved differently. As the transfer of SAM to the parti-
cle results into the spinning rotation of the particle around its own axis, the transfer
of OAM results into the orbital rotation of the particle around the beam axis. Unlike
SAM, which has only two independent states (i.e. left and right circular polarization),
OAM has an unlimited states corresponding to the integer value of ℓ. Thus, make it
useful at both the classical and quantum levels. Still, a number of possible studies with
useful applications using the OAM nature of light have yet tobe exploited.

Various theoretical and experimental aspects of light beams that have angular mo-
mentum in linear and non-linear optics have been explored. In context to nonlinear
optics, the major subject is related to the refractive indexchange by induced intense
laser beam as well as the impact of this change on the laser beam itself. This self-action
effect of the laser beam known as self-focusing. Immediately, after the consideration of
the self-focusing process by Askar’yan [6] in 1962, it attracted a great deal of attention
particularly using the LG mode due to its interesting spatial structure which will be re-
ported in this thesis. The another important area is relatedto the studies of optical phase
conjugation (OPC). In 1972, a Russian researcher reported the experimental observa-
tion of wavefront reversal property of backward stimulatedBrillouin scattering [7] and
soon after this experimental study, it was realized that OPCtechniques are quite use-
ful for many special applications, such as the high brightness lasing, the abberation
compensation in a disturbing propagation medium, the real time optical holographic
wavefront reconstruction, and the optical data storage andprocessing. Since then the
process of OPC draw a major attention and consequently many studies have been car-
ried out both at theoretical and experimental levels. Recently, the realization of OPC
has been made using the LG beams by Okulov [8] and Denz [9] experimentally where
they investigated OPC using the method of stimulated Brillouin scattering (SBS) and
degenerated four wave mixing (DGFW) respectively where only single phase conju-
gated mirror (PCM) layer is taken into consideration. Whereas, in our work, we have
considered the multilayered structure with phase conjugating interfaces which results
in characteristic angular and radial pattern of the reflected beam, a fact that can be
exploited for the detection and the characterization of phase conjugation in composite
optical materials. The another major advantage of the LG beams can also be seen in
the improvement of ”Optical tweezers” set ups, where small objects are trapped and
moved with the help of focused laser beams. The unique capability of the light with
OAM, to rotate the trapped particle has found numerous applications in many fields of
science. Especially, in the field of biophysics where the biological objects are prone to
less thermal damage as the use of LG beams in optical trapping(OT) leads to the re-
gion of low intensity at the center of trapping beam. The highefficiency of the optical
vortex (OV) trap over conventional Gaussian beam formed thebasis of many theoret-
ical and experimental studies. Recently, the OT of neutral atoms in a strong focused
Gaussian beam have been observed by Eichmann and his team [10] where they iden-
tified the ponderomotive force on electrons leading to the ultra strong acceleration of
neutral atoms. Our present work on OT, guiding and acceleration of neutral atoms is
also motivated by this work using the LG beam.
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1.1 Road map to this thesis

The primary aim of this Ph.D dissertation is to investigate nonlinear optical phenom-
ena associated with the beams carrying OAM which are most realizable in the form
of Laguerre-Gaussian (LG) modes popularly known astwisted light (TL) . The con-
cept concerning light’s OAM came into limelight over the last two decades and from
then intensely explored in many classical and quantum applications. We have studied
the propagation properties of the beams with helically phased wavefronts in nonlinear
media (Chapter 3 and 4) and particle dynamics in twisted light (Chapter 5).

The thesis is organized as follows. Chapter 2 briefly introduces the concept of an-
gular momentum of light which is then followed by a discussion on the important
characteristics of the beams carrying OAM i.e. LG beams in Section 2.2 which are
the root key of their popularity. Some major classical and quantum applications of TL
have been discussed in Section 2.3. Then the novel techniques to generate OAM of a
light beam such as spiral phase plate, diffractive optical elements, and cylindrical lens
mode convertors are explained under section 2.4.

Chapter 3 presents the results on self-focusing and de-focusing of TL in nonlin-
ear media by deriving the differential equation for the beam width parameter (f) as a
function of the propagation distance (ξ), angular frequency (ω), beam waist (ω0) and
intensity of the beam (I). The chapter starts with a brief introduction to the concept
of self-focusing in Section 3.1. Further, it is followed by a mathematical background
related to the self-focusing in dielectric media which includes, in particular, the prop-
agation of electromagnetic waves (EM) in a linear isotropicmedium and in an inho-
mogeneous medium in Section 3.2. Then in the last Section 3.3, the results on the
self-focusing of twisted light in a dielectric media are presented, while formulating
the theoretical background on the analytical calculationsfollowed by a discussion and
conclusions.

Phase conjugation is a nonlinear optical process which is also known as wavefront
reversal, time reversal reflection or retro-reflection. Thestudy on calculating the re-
flection and transmission coefficients of twisted light at phase conjugating interfaces
with a comparison with previous experiments is presented inChapter 4. Followed by
the properties of optical phase conjugate materials i.e. photo-refractive materials like
lithium niobate (LiNbO3), lithium tantalate (LiTaO3), barium titanate (BaTiO3) etc.
in Section 4.2. Then, the methods to produce phase conjugated waves (PCW)like
four wave mixing, stimulated scattering and stimulated emission processes have been
reported in Section 4.3 and after that the theoretical formulation which leads to the re-
sults concerning reflection and transmission of TL at phase conjugating interfaces are
addressed in Section 4.4.

Chapter 5 presents the results on the particles dynamics in TL. In Section 5.1, the
calculations on the classical trajectory of a charged particle in TL and the generation
of magnetic field with TL are shown. Immediately, after that the study on the optical
trapping, guiding and acceleration of neutral atoms on the basis of recent experiment
by Eichmann et al. [10] has been shown. The various multi-photon effects like multi-
photon ionization (MPI), above threshold ionization (ATI)and high harmonic gener-
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ation (HHG) are discussed in section 5.2. Then in Section 5.3, firstly, the concept of
OT and its underlying principle of exerting a small force of the order of pico-Newton
on the microscopic objects within the range of nm toµm and secondly, the role of TL
over Gaussian beams in optical trapping or optical tweezers(OT) are explained. In the
last section 5.4, the results on the optical manipulation of neutral atoms in twisted light
have been presented in details. Finally, the last chapter 6 concludes the thesis.
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Chapter2
Introduction to Laguerre-Gaussian (LG)
beams

2.1 History of angular momentum of light

In 19th century, a Scottish scientist named Sir James Clerk Maxwell smartly collected
and corrected the four important laws of the electromagnetic theory which later be-
came popularly known as Maxwell’s equations (Eq.2.1 in Gaussian units) [11]. He
especially corrected the Ampere’s law by adding an additional term i.e. drift current
(D) to the free current source.

∇ · D = 4πρ Coulomb law, (2.1a)

∇ · B = 0 Gauss law, (2.1b)

∇ × E = −1
c
∂B
∂t

Faraday law, (2.1c)

∇ × H =
4π
c

J +
1
c
∂D
∂t

Ampere law, (2.1d)

whereρ is the free charge density,J is the free current density,E is the electric field
intensity,D is the electric displacement,B is the magnetic flux density or the magnetic
induction,H is the magnetic field intensity and c is the speed of light in free space. It
is a well known fact that the electromagnetic waves possess three important quantities
i.e. linear momentum (p = ~k per photon), energy (E = ~ω per photon) and angu-
lar momentum which can be further divided into two parts: Spin angular momentum
(SAM) and orbital angular momentum (OAM). It was Poynting in1909 who firstly re-
alized that the spin angular momentum is related to light’s polarization. According to
him, each photon can possessσ~ of angular momentum whereσ can have two discrete
states either+1 or−1 where the sign is given by the chirality and its experimental proof
was given by Beth [5] by using birefringent wave plates. The SAM is inherent in light
beams with circular or elliptical polarization and dependson the vectorial properties
of the electric field (Fig.2.1). It has been detected by Friese et al. [12] that the transfer
of SAM to objects sets the objects in rotation about their ownaxis. On the contrary,
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2 Introduction to Laguerre-Gaussian (LG) beams

Figure 2.1: (a) The optical field structure of Left and Right circularly polarized beam, respec-
tively. (b) The helical phase front of beams carrying different values of OAM
(Here, propagation direction is indicated by a green arrow and regions of low and
high intensity are denoted by red and yellow color respectively) [13].

OAM is independent of the polarization state and associatedwith the spatial structure
of the optical field. Thus, the beam with a helical phase-front has a definite value of
OAM in the propagation direction and given by the relationℓ~ per photon (Fig.2.1).
Both SAM and OAM can be treated classically as well as quantummechanically [2].

The most common form of a helically phased beam is the Laguerre-Gaussian (LG)
mode, the details of which can be seen in Section 2.2. The Poynting vectorS for any
beam (which represents energy flux) is always perpendicularto the phase front but for
the beam with a spiral phase front (i.e. LG beam), it rotates at an inclined angle with
respect to the propagation direction and hence leads to ‘twist of light’. The relation
between the angular momentum density (L ), momentum density (P) and Poynting
vector (S) can be written as [14,15]

L = r × P, (2.2)

where

P =
1
c2

S2. (2.3)
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Therefore,

L = r × 1
c2µ0

(E × B). (2.4)

Thus, the total angular momentum of the field (L t) is

L t =

∫

r × Sdr , (2.5)

wherer is the radius vector of the field andε0 is the vacuum permittivity of free space.
The total angular momentum of the field is equal to the sum of the orbital (ℓ) and
spin angular momentum (σ). In case of linearly polarized light,σ = 0 and hence, the
contribution to the total angular momentum (L t) can be given in the form of orbital an-
gular momentum only and is denoted asL . For the beam with helical phase-fronts, the
Poynting vector (S) has an azimuthal component given by exp(−iℓφ) whereφ denotes
the azimuthal co-ordinate in the beam’s cross-section andℓ is the topological charge or
winding number. The transfer of OAM can be seen by focusing the LG beam into the
samples of micro-spheres in the process of optical trapping, as explained in the chapter
5.

2.2 Laguerre-Gaussian (LG) beams

A realizable example of the beam carrying OAM is the Laguerre-Gaussian (LG) beam
which came into existence after the introduction of the concept of OAM by Allen et
al. [16,17]. The LG beam is not the only example of the beam carrying helical phase-
fronts, there are several other families of beams too which carry OAM such as Mathieu
beams [18], Bessel beams [19, 20], Ince-Gaussian beams [21] and Hypergeometric
beams [22] etc. However, this thesis aimed to address the issues concerning the LG
beams only. The LG beam, (or phase singularity or optical vortex) has, in general, an
annular transverse intensity profile and its polynomial i.e. L|ℓ|p is specified by the mode
indicesℓ, related to the angular degree of freedom around the propagation direction,
andp describes the number of radial nodes of the beam’s radial profile. It has a spiral
phase front with a 2πℓ phase shift around the circumference of the beam, whereℓ is an
integer which can either be positive or negative. The phase at the center of the beam is
undefined and hence, carries no energy or momentum and results in a dark central core
or singularity. Thus, the transverse intensity profile of anoptical vortex is just a ring
of light. A vortex with a negative value ofℓ has a spiral phase front with the opposite
helicity to that of a vortex withℓ value of the same magnitude but positive polarity.

Just like Gaussian beam, the optical vortex is also able to trap objects with a higher
refractive index than their surroundings into the most intense region of light. Objects
that are small compared to the size of the beam become trappedoff-axis in the bright
ring of the beam whereas objects with larger size as comparedto the beam are trapped
on-axis. Below, the transverse intensity profiles and azimuthal phases of the LG beams
(or optical vortex) with the changing values ofℓ are shown in Fig.2.2. The amplitude
distribution of the LG beam which is a solution to the paraxial wave equation can be
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Figure 2.2: Intensity profiles of Laguerre-Gaussian beams withp=0 and (a)ℓ=0, (b)ℓ=1, (c)

ℓ = 2, (d) ℓ = 3. The corresponding azimuthal phase is shown below the intensity
profiles in (e), (f), (g) and (h), where the color chart shows the corresponding
phase. Three dimensional representations of the phase fronts are shown in (i), (j),
(k) and (l) with vertical propagation axisz [23].
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given as [24]

uLG
ℓp (r, φ, z) =

C|ℓ|p

w(z)













√
2r

w(z)













|ℓ|

exp

(

−r2

w2(z)

)

L|ℓ|p

(

2r2

w2(z)

)

× exp

(

−i
kr2z

2(z2 + z2
R)
− iℓφ + i(2p + ℓ + 1) arctan

(

z
zR

))

, (2.6)

wherer, φ andz are cylindrical coordinates,ℓ is the azimuthal index,p is the radial

mode index,zR=πw
2
0/λ is the Rayleigh range,w(z)=w0

√

1+ (z2)/(z2
R) is the radius of

the beam atz, wherew0 is the beam waist atz = 0. L|ℓ|p (x) is the associated Laguerre
polynomial,C|ℓ|p is the normalization constant, and (2p + ℓ + 1) arctan

(

z
zR

)

is the Guoy
phase. The radius of curvature of the wavefront,R(z) is

R(z) = z

(

1+
(zR

z

)2
)

. (2.7)

At the beam waist,z = 0, the amplitude of the Laguerre- Gaussian beam simplifies to

uLG
ℓp (r, φ, z = 0) = C|ℓ|p













√
2r
w0













|ℓ|

exp

(

−r2

w2
0

)

L|ℓ|p

(

2r2

w2
0

)

exp(−iℓφ). (2.8)

and the transverse intensity profile for the LG beam can be given by

I(r, z) =
2p!

π(p + |l|)!
P0

w2(z)
exp

(

−2r2

w2(z)

) (

−2r2

w2(z)

)|ℓ| (

L|ℓ|p

(

2r2

w2(z)

))2

, (2.9)

whereP0 is the power of the laser beam. The radius corresponding to the maximum
intensity is [14]

r(z)max. int. =

√
w(z)ℓ
2

. (2.10)

2.3 Applications of Laguerre-Gaussian (LG) beams

There are wealth of applications which can be afforded by the beams carrying orbital
angular momentum. For instance, in the field of optical manipulation, the orbital an-
gular momentum can be transferred to trapped microscopic objects causing them to
rotate, or to driven micro-machines, or in astrophysics andto encode quantum infor-
mation due to its infinite dimensionality etc. Below, we haveaddressed an important
classical (Section 2.3.1) and quantum application (Section 2.3.2) of twisted light.

2.3.1 Optical manipulation

The main idea behind implementing the optical vortices i.e.LG beams in the area of
optical manipulation is that both angular as well as linear momentum can be transferred
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to trapped objects. The azimuthal phase term i.e. exp(iℓφ) associated with LG beams
give rise to helical wavefronts and hence this azimuthal component of the Poynting
vector leads to the origin of OAM [3,25]. It has been observed that the OAM exerts
torque on particles which can be increased by simply increasing the azimuthal index
whereas the optical torque due to SAM is limited to~ per photon and varies with op-
tical power [26]. He and his colleagues [4] were the first one who conducted the first
rotation experiments by the use of LG modes generated by holographic techniques on
absorptive copper oxide particles in two dimensions. In a related work, Simpson and
coworkers [27] used the cylindrical lens mode convertor to generate a trapping beam of
the LG mode of single order to set the absorptive objects intorotation in three dimen-
sions. Then in 1990’s, Friese et al. [26] ensured the results on the optically absorptive
particles using holographically generated LG modes with azimuthal indexℓ = 3 and
clearly showed the physical properties of the circularly polarized LG beams. The na-
ture of the angular momentum of light can be understood by examining the motion of
particles trapped off-axis in optical tweezers created with the vortex light field. The in-
trinsic and the extrinsic nature of light’s angular momentum simultaneously on a single
particle was achieved in 2003 [18]. The particles were placed off-axis within the cir-
cumference of the LG beams and showed that the different forms of motion are related
to SAM (spinning of particle about its own axis) or OAM (rotation around the beam
axis) [18]. Whereas Curtis and Grier [28] explored the dependence of rotations on
the azimuthal index of the LG beam. They found that the annular radius of the beam
scaled linearly with the winding numberℓ. Later on, Jesacher and colleagues [29]
revealed the trapping of particles held at air-water surface with the LG modes. This
study discussed the effect of the particle’s shape on the momentum transfer in the LG
beams, which was not considered in the previous studies. Thetwo responsible factors:
(i) asymmetric particle shape, (ii) confinement of the particle at the two dimensional
air-water interface laid the foundation of this observation. On the other hand, Tao and
colleagues [30] used the fractional optical vortex beams to rotate trappedparticles.
However, the fractional optical vortex beam significantly hinder the smooth orbital ro-
tation of the particle as it shows the intensity discontinuity (low intensity gap) around
the beam circumference. This fractional vortex was exploited in the guiding and trans-
port of microscopic particles.

Later, in 2008, Dienerowitz et al. [31] for the first time showed the transfer and con-
finement of OAM from the LG beam to 100 nm gold particles at 514 nm, considered
to be the smallest particles to set into rotation by the transfer of the OAM. They found
the linear increase in rotation rate with respect to laser power, with a maximum rate of
3.6 Hz at 110 mW. In optical manipulation, it is not solely the phase structure of the
LG beams but their annular intensity profile is also of interest in the optical trapping
of particles with a higher refractive index than its surroundings. The LG beams also
proved worth to trap low index particles which found applications in numerous chem-
ical and biological processes where the target samples get repelled from the region of
high light intensity. The trapping of low index particles was firstly observed by Arthur
Ashkin [32]. He observed that the low index particles get repelled fromthe high inten-
sity region of light while the high index particles get trap easily onto the region of high
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intensity. Then, on the basis of this observation, he demonstrated the trapping of low
index glass spheres against gravity while using the LG modes. Gahagan and Swat-
zlander [33] also confirmed the trapping of low index particles, in theirstudies they
confined the 20µm size hollow spheres. Immediately, after that other studies have
also been conducted to show the trapping of both high and low index particles by the
LG modes simultaneously [34]. The another important use of the LG beams can also
be seen in the improvement of the axial confinement [35] where the LG modes exert
less on-axis scattered force along the axial direction as compare to Gaussian beams
where light leads to axial scattering forces that act against gradient forces to destabi-
lize the trap. The light fields possessing optical vortices also allow the manipulation of
droplets where the refractive indices of most liquids are smaller than their surrounding
medium. Lee et al. [36] used this property of the beams with optical vortices in their
study by misalignment of the spiral plate in a direction orthogonal to the beam propa-
gation direction. This allowed the formation of an efficient stable asymmetrical optical
light pattern which can be considered as an off-axis vortex beams. It is also observed
that one can rotate a three dimensional cubic structure by interfering two LG beams of
equal but opposite sign azimuthal index which generates an annular ray of spots that
can be rotated with careful adjustment of relative path length between the two arms
of interferometer [37]. Moreover, the trapped particle can also be spun with high fre-
quency by applying the angular Doppler technique to create afrequency shift between
the interfering LG beams [38]. Thus, indeed the optical manipulation with embedded
optical vortex i.e. LG beams has its own importance which shed light on various appli-
cations in different fields of science. The chapter 5 of the thesis will address the same
application of twisted light in more details while concluding the interesting results on
it.

2.3.2 Quantum optics and quantum communication

The use of the OAM of light is not only limited to classical applications rather it has
become the mode of important applications at quantum level as well, in particular,
in the field of quantum information. From the point of view of quantum optics, the
quantum excitations of electromagnetic waves can be described in terms of physical
quantities like energy, momentum and angular momentum [39]. This set of quantities
then gives rise to a family of modes of an electromagnetic field. The very first family
mode are well known “plane waves” which consists of parameters like energy, linear
momentum and transversal polarization. The second set of family mode are “elec-
tromagnetic multipolar mode or spherically symmetric electromagnetic modes” which
are parameterized by energy, total angular momentum of the field, thez component of
the angular momentum and the parity of the field. These modes are important in the
processes like light-matter interactions but difficult to generate, control and measure
which make them less used in the field of quantum information.The third family of
modes belongs to “cylindrically symmetric paraxial modes”which can be defined in
terms of the energy, thez component of the linear momentum, thez component of
the OAM and thez component of the SAM. The important property of these modes
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is that both the SAM and the OAM can be determined independently by controlling
the spatial properties and the polarization of the field. Themain obstacle in dealing
with the SAM is its inherent binary dimensionality, therefore only a bit of information
can be encoded, whereas the OAM dimensionality is infinite which results in the more
alphabets in the OAM space which can be used in the field of space telecommunication
more efficiently [40].

Aspect and his coworkers [41] showed that the angular momentum (AM) of two
photons can be entangled in such a way that a measurement on the polarization of one
of the photons appears to modify instantaneously the polarization state of the other
photon irrespective of the distance between the particles.Thus, the polarization of the
entangled photon pair can be written as

|ψ〉 =
1
√

2
(| 	〉i| �〉s + | �〉i| 	〉s) , (2.11)

where| 	〉, | �〉 denotes the left and right polarization states, andi, s are the idler
and signal photons. The evidence of these experiments strongly supports the quantum
mechanics and provides convincing existence of entangled states. The SAM entangled
states are the basis of many impressive quantum informationschemes such as; quantum
cloning, quantum communication, quantum cryptography andmany more.

However, the breakthrough in the OAM entanglement in photonpair was seen in
2001 by Zeilinger and coworkers [42]. They measured the OAM correlations be-
tween two photons with the help of a spontaneous parametric down-conversion source
(SPDC) and showed that the photons could be entangled in their OAM degree of free-
dom.

The SPDC can generate an entangled state over the whole OAM states as,

|ψ〉 = 1
√

2

+∞
∑

ℓ=−∞

(| − ℓ〉i|ℓ〉s + |ℓ〉i| − ℓ〉s) , (2.12)

where|ℓ〉 denotes the OAM state. In this experiment, it has been confirmed that light’s
OAM is a quantum variable associated with a single photon. The major drawback
in encoding OAM information in photons in communication is its non-reliability to
transmit information over the large distances but besides that it is still quite useful in
testing the properties of high dimensional spaces.

2.4 Methods to generate twisted light

In practice, there are many ways to generate the helically phased wavefronts. Out of
them, few powerful ones have been described below in details.

2.4.1 Spiral phase plate (SPP)

SPP is a type of beam mode convertor. It has a thickness which varies with circumfer-
ence around the plate but is uniform radially. The plate is made of a dielectric material
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which is transparent in nature with one plane and one spiral surface. Such a thin trans-
parent plate typically has strips or radial sectors that canbe obtained by coating or
etching a substrate [3]. The thickness of the spiral phase plate (SPP) increases propor-
tional to the azimuthal angle,φ, around a point at the center of plate. Thus, the spiral
surface forms a period of helix. Hence, when a fundamental mode i.e. Gaussian beam
mode (TEM00) of wavelengthλ passes through the SPP, it undergoes a phase change
which introduces a spiral element into its wavefront resulting into a generation of heli-
cal wavefront with OAM equal to~ per photon (Fig.2.3). The SPP introduces a phase
shift in the output beam,δ, which depends on the azimuthal angleφ by a relation

δ =
(n1 − n2)d

λ
φ, (2.13)

wheren1, n2 are the refractive indices of the SPP and surrounding medium, respec-
tively, andd is the physical step height atφ = 0. In order to generate a beam with a
well-defined value of OAM, e.g.ℓ~, the total phase delay around the SPP must be an
integer multiple of 2π, i.e. 2πℓ. Thus, to produce this beam, the thickness of the SPP
is given as

d =
ℓλ

(n1 − n2)
. (2.14)

It is important to have the step height ‘d’ of the SPP to be an integer number of wave-
length otherwise the phase of beam gets discontinuous at ‘d’ and this discontinuity
breaks the ring intensity pattern. Later, Beijersbergen etal. [43] shown that the conver-
tor only changes the phase pattern of beam and it does not change the beam’s intensity
by taking small angle approximation into account. Thus, thebeam produced is not a
pure LG mode, but is an infinite superposition of the LG modes [44] which leads to
the observation that a rigorous calculation of the SPP operation would require vector-
diffraction theory. Thus, for a beam with a small divergence and with a sufficiently
small step height, we remain in the paraxial regime. So, the effect of the SPP is con-
sidered to be an operation acting on the field phase only. Although the OAM is a
property of the beam as a whole, it is useful to consider this in terms of two equivalent
angular momentum per photon. Let us, consider a ring of radius r is projected on the
spiral surface. Then, the angle,θ, of the local azimuthal slope of the spiral surface is
given as [13]

tanθ =
d

2πr
. (2.15)

A ray parallel to, but at a distancer from, the optical axes will be refracted as it emerges
from the spiral surface. By using Snell’s law, one can give the deflection angle,α, as

n2 sin(α + θ) = n1 sinθ. (2.16)

It has been seen that before refraction, the beam has a linearmomentum ofn2~/2πλ per
photon and after refraction, there is a component of linear momentum in the azimuthal
direction

Pφ =
n2~

2πλ
sinα. (2.17)
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2 Introduction to Laguerre-Gaussian (LG) beams

Figure 2.3: Schematic of a spiral phase plate (SPP) illuminated by a TEM00 beam and its
outgoing wave i.e. Helical beam [13].

Thus, there is a transfer of angular momentum,L, between the SPP and the beam of
light of

Lz =
n2~r
2πλ

sinα. (2.18)

per photon in the beam. For a small angle, it can be shown that the OAM transfer from
the plate to the light is equal to

Lz = ℓ~ (2.19)

per photon in the direction of the beam which will result intotwo important effects.
First, the beam now has a non-zero angular momentum. Second,the beam must has a
null field amplitude on its axis. This non-zero angular momentum has some interesting
consequences such as the ability for trapping and rotating of particles, as mentioned in
the Section (2.3.1).

2.4.2 Diffractive optical elements (DOE)

The LG beams can also be generated by using diffractive optical elements i.e. nu-
merically computed holograms. Such holograms can generatebeams with any desired
values of OAM which cannot be achieved by using the spiral phase plates (Fig.2.4).
These holograms can be formed by recording onto a photographic film, the interfer-
ence pattern between a plane wave and the beam one seeks to produce with the same
uniform and equal intensities.

Consider a plane reference wave in thex−y plane,Er = E0ei(kx x+kzz) with an incident
angleα=arcsin

(

kx
k

)

and intensity|E0|2. At thez=0 plane, the interference pattern with
a helical beam,Eℓ = E0eiℓφ is given by

I = 2|E0|2(1+ cos(kx x − ℓφ)). (2.20)

At the exit of the hologram, the optical field is given as:

Et =
A0

2
(1+ cos(kx x − ℓφ)). (2.21)
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2 Introduction to Laguerre-Gaussian (LG) beams

Figure 2.4: The intensity density pattern of interference between two helical and a planar beam
for several different values of the charge singularities [13].

Figure 2.5: Beams generated by a sinusoidal pitch-fork hologram. A fraction of the power
is diffracted on the first order and other part remains on the zeroth order. The
topology of the hologram is objected to generate beams with|ℓ|=2 [13].
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2 Introduction to Laguerre-Gaussian (LG) beams

generate a helical beam with ℓ = 2. For amplitude holograms, the squared grating has

Figure 2.6: Different holograms pattern for the generation of a helical beamwith ℓ=2. (a)
Sinusoidal, (b) Blazed, (c) Binary, and (d) Triangle holograms [13].

Type of grating Amplitude Hologram Phase Hologram

Generated order Efficiency Generated order Efficiency

sinusoidal zero + first orders 6.25% all 33.85%

blazed all 2.53% Just first order 100%

squared odd 10.13% odd 40.52%

triangle odd 4.10% all 29.81%

Table 2.1: Ideal efficiency of different types of grating and different kind of holograms [13].

This optical field can be recognized as consisting of a zero-order beam propagating
along the axes and two (conjugate) first-order diffracted beams each of them containing
a singularity of opposite charge (+ℓ) and (−ℓ) (Fig.2.5). The grating’s shape (Fig.2.6),
that is fringe’s shape patterns of a hologram also plays an important role in determining
the efficiency of a given hologram, in addition to the way of encodingeither in ampli-
tude or phase. There are mainly four types of gratings which are summarized in the
table (Table.2.1) along with their efficiencies which leads to the LG beams generation.
The diffractive optical elements can also be found in the form of spatial light modulator
commercially [45]. These are pixellated liquid crystal devices that can be programmed
through the video interface of a computer to act as holograms. Changing their design
is very simple as by just changing the image displayed by the computer interfacing the
device. Usually, a spatial light modulator (SLM) modulatesthe intensity of the light
beam. However, it is also possible to produce devices that modulate the phase of the
beam or both the intensity and the phase simultaneously.

2.4.3 Cylindrical lens mode convertors

The other powerful method of generating the LG beams is the use of cylindrical lens
mode convertor. It is an optical device which alters the polarization state of a light wave
traveling through it. Its work is to shift the phase between perpendicular polarization
components of the light wave. The Woerdman’s group [46] was the first one who
demonstrated how the LG modes can be generated with the help of cylindrical lens
mode convertor while using the Hermite-Gaussian (HG) modesas the primary source.

The mechanism of the cylindrical lens mode converter can be understood on the
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2 Introduction to Laguerre-Gaussian (LG) beams

basis of LG and HG mode relations. The HG mode is given as:

|HG〉m,n =
√

2
2(m+n)πm!n!

1
√

1+ ζ2
e−i(m+n+1) arctanζ

× e
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(2.22)

whereHn(x) is the Hermite polynomials of the order n, (ξ = x
w0
, η =

y

w0
, ζ = z

zR
) are the

dimensionless coordinates in the paraxial waves where,w0 is the beam waist andzR is
the Rayleigh parameter. The HG modes are an orthogonal set ofmodes

m′,n′〈HG|HG〉m,n = δm,m′δn,n′ . (2.23)

and can carry finite power. According to the mode orderN = m + n, the LG mode is
written as

|LG〉m,n = (−1)min(m,n)

√

2
πm!n!

1
√

1+ ζ2
e−i(m+n+1) arctanζ

× e
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(

2ρ2

1+ ζ2

)

(2.24)

whereζ = (η + ξ) andmin(m, n) denotes the minimum betweenm andn. The radial
indexp of the LG beam normally used ismin(m, n) and the azimuthal indexm is m−n.
The generation of the LG modes using mode convertors is basedon the fact that a
HGm,n mode at an angle of 45◦ is decomposed onto a set of HG modes and then this
set of HG modes when re-phased can combine to form a particular LG mode. The
re-phasing occurs because as each HG mode is focused by the lenses it undergoes a
different Gouy phase shift (ζ) depending on its modes indices and orientation with
respect to the cylindrical lenses [46, 47]. As, both HG and LG modes carry finite
power, they form an orthogonal and complete set of modes. So,it is possible to expand
the LG beam into a set of HG modes of the same order with the helpof the following
relation:

|LG〉m,n =
N

∑

k=0

ikb(m, n; k)|HG〉N−k,k (2.25)

and similarly HG mode is expanded in the HG basis by rotating its principal axis about
45◦ around the propagation axis i.e.ζ by using the following relation:

|HG〉m,n|@45◦ =

N
∑

k=0

ikb(m, n; k)|HG〉N−k,k, (2.26)

whereb(m, n; k) is the real expansion coefficient and is given as

b(m, n; k) =

√

(N − k)!k!
2(m+n)m!n!

1
k

dk

dtk
[(1 − t)n(1+ tm)]|t=0 (2.27)
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2 Introduction to Laguerre-Gaussian (LG) beams

Figure 2.7: Decomposition of the LG0,1, LG0,−1, HG0,1|@45◦ and HG0,1|@−45◦ modes in the HG
basis [13].

whereN indicates the mode order. The factorik corresponds to aπ/2 relative phase
difference between the successive components. The only difference between Eq.2.25
and Eq.2.26is the relative phase between successive terms and in the expansion given
by Eq.2.26, all the terms are in phase which can be seen in the last rows ofFig. 2.7

The cylindrical lens mode convertors have two main forms: the π/2 mode conver-
tor and theπ mode convertor. Theπ/2 mode convertor transforms any incident HG
modes with indicesm, n oriented at 45◦ to the cylindrical axis of the lens, into an LG
mode with indicesl = m − n and p = min(m, n) (Fig. 2.8). On the other hand, theπ
mode convertor (Fig.2.9), transforms any mode into its own mirror image and is opti-
cally equivalent to a Dove prism. These cylindrical lens convertors are mathematically
analogous to the action on polarization of a birefringentλ/4 plate and aλ/2 plate re-
spectively. Their advantage over diffractive optical elements (Section 2.4.3) is that the
optical efficiency of the conversion is much higher, limited only by the quality of the
anti-reflection coatings of the lenses.
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2 Introduction to Laguerre-Gaussian (LG) beams

Figure 2.8: Schematic of theπ/2 mode convertor. The distance between two cylindrical lenses
is f√

2
. Theπ/2 mode convertor converts diagonal HG0,1|@45◦ to LG0,1, wheref is

the lens focal length [13].

Figure 2.9: Schematic of theπ mode convertor. The distance between two cylindrical lenses
is 2f. Theπ mode convertor converts LG0,ℓ to LG0,−ℓ, wheref is the lens focal
length [13].
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2 Introduction to Laguerre-Gaussian (LG) beams

The table (Table.2.2) compares the three above explained methods of generating
LG beams on the ground of their efficiencies [48].

p

Mode purity Conversion

Creation method , mode p50 p51 efficiency Extinction ratio

Spiral phase plate 1 78.5% @14#

2 50% @14#

Computer generated 1 93% @17# 80% @16# 40%

holograms 3 77% @17#

6 62.8% @17#

Diffractive optics 1 92.9% 40% (2.560.8)31022

~this work! 2 99.3% 60% (3.360.8)31022

Table 2.2:Comparison of LGℓp beam characteristics using different generation methods of
twisted light [48].
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Chapter3
Self-focusing and de-focusing of twisted
light in non-linear media

The self-focusing of electromagnetic waves in nonlinear optical media has been a fas-
cinating topic and inspired many theoretical and experimental studies from the past few
decades [6,49–55]. It is regarded as a basic phenomena in nonlinear optics with a va-
riety of important applications that rely on the manipulation and control of the photon
beam. The phenomenon of self-focusing and de-focusing of electromagnetic beams
in nonlinear media was reviewed by Akhmanov et al. [54]. The theoretical formula-
tion of self-focusing is well known for many years and is found to be dependent on
the propagation characteristics, the properties of the medium and to the pulse width of
laser beams. Recently, several investigations were conducted to study the propagation
properties of Cosh-Gaussian and Hermite-Gaussian beams indifferent media [56,57].
Here, in this chapter, we study the self-focusing and de-focusing of the light beam
carrying orbital angular momentum (called twisted light) propagating in a nonlinear
medium [58]. We have derived a differential equation for the beam width parameter
(f ) as a function of the propagation distance (ξ), angular frequency (ω), beam waist
(ω0) and intensity of the beam (I). The method is based on the Wentzel-Kramers-
Brillouin (WKB) and the paraxial approximations. Analytical expressions forf are
obtained, analyzed and illustrated for the typical experimental situations.

3.1 Basics of self-focusing

The invention of the first laser in 1960′s, revolutionized the field of nonlinear optics.
In nonlinear effects, the polarization of a material,P, is no longer a linear function of
the electric fieldE and can be written as a series expansion of the electric field [59]

Pi = χ
(1)
i j E j + χ

(2)
i jkE jEk + χ

(3)
i jklE jEkEl + ............., (3.1)

whereχ(1)
i j denotes the linear susceptibility tensor,χ

(2)
i jk is the second-order susceptibil-

ity tensor andχ(3)
i jkl is the third-order susceptibility tensor and so on. The self-focusing
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3 Self-focusing and de-focusing of twisted light in non-linear media

effect, arises from the third order nonlinearity (i.e.χ(3)) and it is known that the sus-
ceptibility of the material is related to the refractive index of the material which can be
written as

n = n0 + n2|E|2 + n4|E|4 + ....., (3.2)

whereni are generally complex-valued which implies absorption as well as refraction.
Askar’yan [6] in 1962 was the first one who considered the self-focusing ofan elec-

tromagnetic beam when he showed that an intense optical beamcould induce a differ-
ence between the medium, outside the beam and inside the beamwhich could create
conditions which are favorable for the wave-guiding of the beam thus counteracting
the beam’s natural diffraction. It has been observed that in a nonlinear medium likedi-
electric, semiconductors and plasmas. If a high power electromagnetic beam increases
the electrical susceptibility and thus the refractive index with wave intensity, then in
a region where the wave amplitude is amplified, the refractive index gets enhanced.
The beam thus creates a refractive index profile across its wavefront corresponding
to its own intensity profile and focuses itself. This nonlinear optical self-action effect
is called theself-focusing[60]. It is an induced lens effect which results from the
wavefront distortion imposed on the beam by itself while passing through a nonlinear
medium as seen in Fig.3.1.

Self-focusing

z
f

Figure 3.1: Distortion of the wavefront of a laser beam (dashed curve) leading to self-focusing
in a nonlinear medium. Herez f is the self-focusing distance, defined as the dis-
tance between the position of self-focused spot (black dot)and the entrance face
of the medium.

In order to understand the basic phenomena of self-focusingof an intense electro-
magnetic beam, consider the propagation of a parallel cylindrical beam of uniform
intensity with the circular cross-section of radius ‘a’ (Fig. 3.2).

The refractive index of the illuminated region is given by

n = n0 + n2〈E · E∗〉

where〈〉 denotes the time average and〈E2〉 = 1
2E2

0 =
1
2(E∗E).
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3 Self-focusing and de-focusing of twisted light in non-linear media

If the amplitude of the electric field vector isE0 and the absorption by the material
is negligible, then the refractive index is

n = n0 +
1
2

n2E2
0.

Heren0 andn2 are the linear and the non-linear components of the refractive index.
Therefore, the waves diverging at an angleθ with the axis will suffer total internal
reflection whenθ<θc whereθc is obtained from

cosθc =
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We assume that the nonlinearity is weak i.e.1
2n2E2

0≪n0, which is indeed true for most
systems, consequentlyθc will also be small and we will have
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Figure 3.2: Refraction (θ > θc) and total internal reflection (θ < θc) of rays in a nonlinear
medium [60].

Now, a beam that is limited by an aperture of radius ‘a’ will undergo diffraction, we
know that the large fraction of the power will be carried by the rays that make an angle
less thanθd with axis, where

θd �
0.61λ

2a
=

0.61λ0

2an0
. (3.3)

23



3 Self-focusing and de-focusing of twisted light in non-linear media

whereλ = λ0/n0 represents the wave length in the medium,λ0 is the wavelength in
vacuum andn0 is the linear component of the refractive index.
If θd < θc, then the diffracted rays will make an angle less thanθc with axis. Hence,
the rays will suffer total internal reflection at the boundary and will return to the beam.
Whenθd >θc , the beam will spread by diffraction. The critical power of the beam for
self-focusing corresponds toθc=θd is given by

Pcr =
(1.22)2λ2

0c

128n2
(3.4)

wherePcr is the critical power of the beam.

There are three possibilities:

1. WhenP<Pcr or θd>θc. In this case, the beam will diverge.

2. WhenP=Pcr or θd=θc. In this case, the beam propagates without divergence or
convergence.

3. WhenP>Pcr or θd<θc. In this case, the convergence of the beam takes place.

Due to the Kerr effect, an intense laser pulse, while propagating in a nonlinear
medium, can experience self-focusing (or de-focusing): depending upon the nonlin-
ear susceptibility (χ) of the medium. In the case of Kerr nonlinearity with positiveχ,
the higher optical intensities on the beam axis cause an effectively increased refractive
index of the beam which results in the focusing effect whereas a negativeχ nonlinear-
ity, leads to the self de-focusing effect, where the Kerr lens has a reduced refractive
index on the beam axis. In 1964, Chiao and Townes [61] showed that there are two
main consequences of the self-focusing as given by Eq.3.4. They observed that the
beam power exactly at the self-focusing limit exhibits self-trapping, where the beam
profile stays constant over a longer distance, because divergence gets compensated by
the nonlinear focusing effect and for optical powers far above the self-focusing limit,
filamentation can occur, where the beam breaks up into several beams with smaller
powers.

3.2 Mathematical background of self-focusing in
dielectric media

3.2.1 Maxwell’s equations

The phenomena in electromagnetism are governed by Maxwell’s equations, expressed
in the Gaussian system of units followed by most of the scientists engaged in the study
of self-focusing of electromagnetic (EM) beams. The Maxwell’s equations are
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3 Self-focusing and de-focusing of twisted light in non-linear media

∇ · D = 4πρ, (3.5)

∇ · B = 0, (3.6)

∇ × E = −1
c
∂B
∂t
, (3.7)

∇ × H =
4π
c

J +
1
c
∂D
∂t
, (3.8)

whereρ is the free charge density,J is the free current density,E is the electric field
intensity,D is the electric displacement,B is the magnetic flux density or the magnetic
induction,H is the magnetic field intensity andc is the speed of light in free space.
The fieldsE,D andB,H are related through the constitutive relations:

D = εE, (3.9)

H =
B
µ
. (3.10)

The dielectric functionε and the magnetic permeabilityµ are properties of the
medium in which the fields are measured and are scalars for isotropic media.

For small field intensities, the scalarsε andµ can be considered to be constants and
the relations (Eq.3.9 and Eq.3.10) are then linear. However, in general, these prop-
erties depend on the corresponding fields making the constitutive relations nonlinear.
We shall mainly be concerned with non-magnetic materials (µ = 1, B=H), with non-
linear dielectric response i.e.ε = ε(E). To start with, we shall further assume that
the medium does not carry free charges and is non-conductingso that there are no free
currents (no dielectric losses). The Maxwell equations therefore, reduce to

∇ · D = 0 (3.11)

∇ · B = 0 (3.12)

∇ × E = −1
c
∂B
∂t

(3.13)

∇ × H =
1
c
∂D
∂t

(3.14)

SubstitutingD = εE andH = B in Eq.3.11and Eq.3.14one obtains

∇ · (εE) = ∇ε · E + ε∇ · E = 0, (3.15)

and

∇ × B =
ε

c
∂E
∂t
. (3.16)
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3 Self-focusing and de-focusing of twisted light in non-linear media

3.2.2 Propagation of EM waves in a linear isotropic medium

Let us first consider the propagation through a linear, uniform, isotropic medium. For
such a medium the dielectric function is constant, i.e.ε = constant.
So that Eq.3.15gives

∇ · (εE) = ε∇ · E = 0. (3.17)

Taking the curl of Eq.3.13, one obtains

∇ × (∇ × E) = −1
c
∇ × ∂B

∂t
(3.18)

The left hand side (L.H.S.) of this equation can be expressedas

∇ × (∇ × E) = ∇(∇ · E) − ∇2E

On the right hand side (R.H.S.) of Eq.3.18, the operator∇ being a space operator,
commutes with the time operator∂/∂t so that

∇ ×
∂B
∂t
=
∂(∇ × B)

∂t
,

which, in view of Eq.3.16reduces to

∇ × ∂B
∂t
=
ε

c2

∂2E
∂t2

Substituting these two relations in Eq.3.18, one obtains

∇(∇ · E) − ∇2E = − ε
c2

∂2E
∂t2

. (3.19)

Eq.3.17then reduces the above equation to the wave equation

∇2E −
ε

c2

∂2E
∂t2
= 0. (3.20)

A solution of this equation is

E = E0 expi(ωt − k · r ) which represents a plane wave propagating in the direction
of the wave vectork with

k2 =
εω2

c2
, (3.21)

ω/k is the phase speed of the wave.

For purely transverse waves, the wave vectork and the fieldsE andB are mutually
perpendicular. Henceforth, we shall assume that the EM waveis purely transverse and
propagating in the positivez direction so that it can be represented as

E = E0 expi(ωt − kz), k · E = 0. (3.22)
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3.2.3 Propagation of EM waves through an inhomogeneous
medium

In an inhomogeneous medium the dielectric function dependson the space coordinates;
the inhomogeneity may be partly or wholly on account of the dependence ofε on E
and the non-uniform distribution ofE in space. The space coordinates may be cartesian
(x, y, z) or cylindrical polar (r, θ, z). In either case, thez direction is the direction of
propagation of the EM wave as stated before.

Let us first consider the propagation of a plane wave of uniform irradiance (intensity)
profile through non-absorbing medium for which the dielectric function is given by
ε = ε(z).
In this case, Eq.3.15simplifies to

∇ · (εE) =
∇ε · E
ε
= −1

ε
k̂
∂ε

∂z
· E

where,k̂ is a unit vector in thez direction. The fieldE is perpendicular to the wave
vector which is also directed along thez axis therefore,̂k · E = 0. Hence, the wave
equation reduces to the form (Eq.3.20) with ε = ε(z). The Laplacian operator reduces
to ∇2 = ∂2/∂z2, since the fieldE is independent of the transverse space coordinates.
Therefore, the wave equation Eq.3.19takes an one dimensional form

∂2E
∂z2
−
ε(z)
c2

∂2E
∂t2
= 0. (3.23)

PuttingE(z, t) = E0(z) exp(±iωt) in the above equation, whereω is the wave fre-
quency, one obtains

d2E0(z)
dz2

−
ω2

c2
ε(z)E0(z) = 0. (3.24)

Writing

ω2

c2
ε(z) = k2(z), (3.25)

Eq.3.24can be put in the form

d2E0(z)
dz2

− k2(z)E0(z) = 0 (3.26)

or in the scalar form

d2E0i(z)
dz2

−
ω2

c2
ε(z)E0i(z) = 0, (3.27)

in terms of scalar components (i = x, y). Eq. 3.24 is encountered in the several ar-
eas of physics and engineering and can be solved by the Wentzel-Kramers-Brillouin
(commonly known as WKB) method withk(z) satisfying
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≪ k(z).

The solution obtained is

E0(z) =
constant
√

k(z)
exp

(

i
∫ z

0
k(z)dz

)

. (3.28)

Hence

E(z, t) = E0

√

k(0)
k(z)

exp

[

i

(

ωt −
∫ z

0
k(z)dz

)]

. (3.29)

The signs ofω and k(z) in the exponential term have been so chosen such that the
solution represents a wave progressing in the forwardz direction.

3.3 Self-focusing of twisted light

Here, we investigate the self-focusing of the LG beams [2, 16, 46, 62] in a nonlinear
medium using the Wentzel-Kramers-Brillouin (WKB) and the paraxial approximations
[54,60]. The Laguerre-Gaussian (LG) beams with a central hole singularity have been
shown to play an important role in several areas of optics [3,63]. Here, in this chapter,
we have shown the self-focusing while taking into the account the LG modes withp =
0 andℓ, 0. In this case, the intensity cross-section perpendicularto the propagation
direction consists of one bright ring with no on-axis intensity. This feature makes
them ideal for applications in optical trapping and opticaltweezers. Furthermore, as
the LG beam can transfer the orbital angular momentum to the trapped particle, it can
also act with a torque on the trapped particle [12, 27, 33, 64]. The LG tweezers can
also trap metallic particles with a refractive index higherthan that of the surrounding
medium [65,66].

All of these applications rely on the light scattering and hence they are related to the
strength and the distribution of the intensity. The focusing and de-focusing are thus
important, e.g. in the above context they allow the manipulation of the trapping spot
size and the strength of the tweezers. This section is structured as follows: starting
from the amplitude distribution of the LG beams propagatingin a nonlinear dielec-
tric medium, we derive a general differential equation for the beam width parameter.
Utilizing the WKB and paraxial approximations, we derive ananalytical expression
for the intensity distribution as a function of the beam’s parameters and the results are
presented graphically and discussed. Finally a brief conclusion and future prospectives
are also given.

3.3.1 Theoretical formulation

For investigation of the self-focusing phenomenon, mainlythree theories are provided
in the literature, which are:

28



3 Self-focusing and de-focusing of twisted light in non-linear media

1. Paraxial ray approximation

2. Moment theory

3. Variational approach

Here, we make use of the paraxial ray approximation (PRA) in the analytical deriva-
tions.

Paraxial ray approximation
The interaction of the electromagnetic Gaussian beams witha nonlinear medium is

usually explained under the paraxial approximation, in which the irradiance and the
eikonal (S) is expanded upto the first order inr2 (r being the radial coordinate in a
cylindrical polar system with the axisz chosen along the axis of the beam). This ap-
proximation ensures that the radial profile of the irradiance of a beam retains its nature
during propagation in the nonlinear medium. Actually on account of the paraxial ap-
proximation, the eikonal (S) compensates for any distortion in the irradiance of the
wave front during propagation and leads to an exact solutionfor the irradiance main-
taining the Gaussian nature of the beam profile.

Self-focusing and de-focusing in a nonlinear medium
The amplitude distribution of the LG beamuLG

ℓp (r, φ, z) in a cylindrical coordinate
with z axis being along the beam propagation direction, is given as(for more details,
see chapter 2)

uLG
ℓp (r, φ, z) =

C|ℓ|p

w(z)













√
2r

w(z)













|ℓ|

exp

(

−r2

w2(z)

)

L|ℓ|p

(

2r2

w2(z)

)

× exp

(

−i
kr2z

2(z2 + z2
R)
− iℓφ + i(2p + ℓ + 1) arctan

(

z
zR

))

, (3.30)

wherer is the radial coordinate andφ is the azimuthal angle.w(z)=w0

√

1+ (z2)/(z2
R)

is the radius of the beam atz, andzR is the Rayleigh range.w0 is the beam waist at
z= 0. L|ℓ|p (x) is the associated Laguerre polynomial,C|ℓ|p is the normalization constant,
and (2p + ℓ + 1) arctan

(

z
zR

)

is the Guoy phase. At the beam waist,z = 0, the amplitude
of a Laguerre-Gaussian beam simplifies to

uLG
ℓp (r, φ, z = 0) =

C|ℓ|p

w0













√
2r
w0













|ℓ|

exp

(

−r2

w2
0

)

L|ℓ|p

(

2r2

w2
0

)

exp(−iℓφ). (3.31)

We consider a nonlinear medium characterized by the dielectric functionε = ε0 +

F(EE∗), i.e.ε(r, z) depends upon the beam irradiance; the functional dependence ofF
is determined by the physical situation/mechanism under study. In turn|E|2 depends
on z in a manner yet to be determined. In the spirit of the paraxialapproximation, we
expandF in a Taylor series in powers ofr2 and retain terms up tor2. This leads to

ε(r, z) ≈ ε0(z) − r2ε2(z). (3.32)
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3 Self-focusing and de-focusing of twisted light in non-linear media

In the wave equation governing the propagation of the laser beam

∇2E +
ω2

c2
εE + ∇

(

E ∇ε
ε

)

= 0 (3.33)

the third term can be neglected ifk−2∇2(ln ε) ≪ 1, wherek is the wave number. This
inequality is satisfied in almost all cases of practical interest. For a cylindrically sym-
metric beam a solution for

∇2E +
ω2

c2
εE = 0 (3.34)

we obtain using WKB and the paraxial approximation Refs. [54,60] as

E(r, φ, z) = A(r, φ, z) exp[i(ωt − kz)], (3.35)

wherek = ω
c

√
ε0 and A(r, φ, z) is the complex amplitude of the electric field. Sub-

stituting for E(r, φ, z) and neglecting∂
2A
∂z2 on the basis of WKB approximation which

implies that the characteristic distance of intensity variation is much greater than the
wavelength. We obtain

2ik
∂A
∂z
=
∂2A
∂r2
+

1
r
∂A
∂r
+

1
r2

∂2A
∂φ2
− ω

2

c2
ε2r2A. (3.36)

To solve Eq.3.36we expressA(r, φ, z) as

A(r, φ, z) = A0(r, z) exp[i(−kS (r, z) − ℓφ)] (3.37)

whereA0 andS are real functions ofr, φ andz. The eikonalS is

S =
r2

2
β(z) + Θ(z). (3.38)

Θ(z) is an additive function whereas

β(z) =
1
f

d f
dz
. (3.39)

The parameterβ(z) is the curvature of the wavefront. Substituting forA(r, φ, z) andS
from Eq.3.38and Eq.3.39in Eq.3.37, one obtains

2
∂S
∂z
+

(

∂S
∂r

)2

=
1

k2A0

[

∂2A0

∂r2
+

1
r
∂A0

∂r
-
ℓ2

r2
A0

]

−
ε2

ε0
r2, (3.40)

∂A2
0

∂z
+
∂A2

0

∂r
∂S
∂r
+ A2

0

(

∂2S
∂r2
+

1
r
∂S
∂r

)

= 0. (3.41)

The solution of Eq.3.40for the LG beam can be written as

A0(r, z) =
E0

f
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)

. (3.42)
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Forℓ=1 andp=0, substituting forS andA0 from Eq.3.38, Eq.3.42in Eq.3.40, yields

1
f

d2 f
dz2
=

4c2

ω2ε0(z)w4
0 f 4
−
ε2(z)
ε0(z)

. (3.43)

Eq.3.43can always be solved by considering the conditions

f = 1 and
d f
dz
= 0 atz = 0. (3.44)

It is, however, convenient to reduce Eq.3.43to a dimensionless form by transforming
the coordinatez to the dimensionless distance of propagation

ξ =
zc

w2
0ω

(3.45)

and the beam widthw0 to the dimensionless beam width

ρ =
w0ω

c
(3.46)

Substituting Eq.3.45and Eq.3.46in Eq.3.43yields

ε0(z)
f

d2 f
dξ2
=

4
f 4
− ρ2w2

0ε2(z). (3.47)

In case of a parabolic nonlinearity, that is when the nonlinear term is proportional to
E2, we have ther dependent term

ε2( f )r2 =
αE2

0

f 2

r2

w2
0 f 2

(3.48)

whereα is a constant. Substitution ofε2( f ) in Eq.3.47yields

d2 f
dξ2
=

1
ε0 f 3

(4− ρ2αE2
0). (3.49)

The analytical solution of Eq.3.49under the conditions Eq.3.44is

f =

√

ε0 + 4ξ2 − E2
0αξ

2ρ2

ε0
. (3.50)

For further analysis, it is useful to write Eq.3.49in the form

d2 f
dz2
=

c2

ε0w
4
0ω

2

(

4−
αw2

0ω
2

c2
E2

0

)

f −3. (3.51)
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3.3.2 Results and discussion

Eq. 3.49, or Eq.3.51is the fundamental second order differential equation governing
self-focusing/defocusing of the LG beams in a parabolic medium. Essentially, the
effect of the non-linearity is dictated by the second term on theright side of Eq.3.49,
or Eq.3.51.

Figure 3.3: a) Intensity (in CGS units) of the Gaussian beam (i.e.ℓ= 0, andp= 0) verses the
radial distance from the propagation direction (in cm). Theangular frequency is
ω=2 × 1014 rad/sec, w0=1 cm,ǫ0=1, α=1, E0=0.3 StatV/cm,ρ=0.66 × 104,
b) Initial intensity profile (dotted curve) compared to the propagated intensity at
ξ=4 × 10−4.
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3 Self-focusing and de-focusing of twisted light in non-linear media

Figure 3.4: a) Intensity (in CGS units) of the LG beam verses the radial distance from the
propagation direction (in cm) for theℓ = 1, andp = 0. The angular frequency is
ω=2 × 1014 rad/sec, w0=1 cm,ǫ0=1, α=1, E0=0.3 StatV/cm,ρ=0.66 × 104,
b) Initial intensity profile (dotted curve) compared to the propagated intensity at
ξ=4 × 10−4.

In the absence of this termd
2 f

dξ2 remains positive causing the beam width parameter
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3 Self-focusing and de-focusing of twisted light in non-linear media

(a)

Figure 3.5: a) Intensity (in CGS units) of LG beam verses the radial distance from the propaga-
tion direction (in cm) for theℓ=5, andp=2. The angular frequency isω=2 ×1014

rad/sec, w0=1 cm,ǫ0=1,α=1, E0=0.3 StatV/cm,ρ=0.66 × 104, b) Initial inten-
sity profile (dotted curve) compared to the propagated intensity atξ=4 × 10−4.

( f ) to increase continuously leading to a steady divergence. This effect is the natu-
ral diffraction divergence. The second term containing the nonlinear effect is negative
and acts in the opposite direction tending to converge the beam. The convergence (fo-
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3 Self-focusing and de-focusing of twisted light in non-linear media

cusing) or divergence (de- focusing) of the beam depends on which of the two terms
predominates. Eq.3.51makes also clear that for the focusing the product (w0ωE0)2 is
relevant, i.e. for a focused beam the frequency has to be increased when the intensity
(or the waist) is lowered to maintain focusing. Fig.3.3, Fig. 3.4and Fig.3.5 illustrate
the focusing effects for the Gaussian and the LG beam for typical feasible parameters.
In the case of Gaussian beam (Fig.3.3), the maximum intensity can be seen at center
due to its beam’s profile structure whereas Fig.3.4proves the concept of minimum in-
tensity at the center of the LG beam. Fig.3.5reveals the focusing effects for the higher
modes LG beam where the intensity is decreasing with an increase in the value of a
radial mode,p, which is due to the intensity distribution of electric field. From these
figures (Figs.3.3, 3.4, 3.5), it is clear that the focusing and an intensity increase occur
until a certain value of the normalized distance of propagation (ξ) = 0.00062, after that
de-focusing sets in. This is due to the fact that at higher intensity nonlinear refractive
term dominates over the diffractive term for some initial distance of propagation after
that the diffractive term strongly overcomes the nonlinear refractive term and therefore
the beam de-focuses. From Fig.3.4 and Fig.3.5, it is also obvious that the focusing
effect can be utilized, e.g. for creating tighter and stronger three-dimensional optical
traps by crossing the two LG beams at the focused distance.The predicted focusing
effect can also be used for the realization of more versatile optical tweezers. From
Eq. 3.51, we infer that to achieve results similar to those in Fig.3.4 and Fig.3.5 for
a smaller starting waist one has either to increase the intensity (or the frequency) by
roughly the same amount.

3.3.3 Conclusions

We studied the self-focusing of twisted light in a nonlineardielectric medium by using
the WKB and paraxial approximations. The differential equation for the beam width
parameter (f) is solved analytically. The occurrence of the focusing is pointed out and
its dependence on the beam’s parameters is worked out analytically and illustrated by
numerical calculations. We have compared the focusing effects for both the Gaussian
and the higher modes LG beam and shown that the focusing can beseen only at cer-
tain value of distance of propagation and after that the de-focusing occur. It can be
explained either on the basis of excess heating of the laser beam which results into the
breakdown of the system or by the paraxial approximation which drops down after a
certain limit of the propagation distance . The practical applications of the predicted
effect are pointed out in the field of optical trapping and will beexplained thoroughly
in chapter 5.
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Chapter4
Reflection and transmission of twisted
light at phase conjugating interfaces

In the recent years, the light beam with the orbital angular momentum (OAM) [3,17,
46,58,67–69] has emerged as a new and exciting form of light that has a varying phase
structure as it propagates through space. They occur as a particular solution to the
wave equation in cylindrical coordinates and have drawn a major attention, particularly
in the field of the optical manipulation and characterization of materials. So, in this
chapter while introducing the concept of optical phase conjugation and the methods
of generating it. We will report the study on the transmission and the reflection of the
light beams carrying orbital angular momentum (OAM) considering a dielectric mul-
tilayered structure (Fig.4.15) with phase conjugating interfaces [70]. We will present
the results analytically and demonstrate numerically thatthe phase conjugation at the
interfaces results in a characteristic angular and radial pattern of the reflected beam
(Fig. 4.17 and Fig.4.18). A fact which can be exploited for the detection and the
characterization of phase conjugation in composite optical materials.

4.1 Introduction to Optical phase conjugation (OPC)

Optical phase conjugation (OPC) is a process which involvesthe use of nonlinear op-
tical effects to precisely reverse the direction of propagation of each plane wave in an
arbitrary beam of light, thereby causing the return beam to exactly retrace the path of
the incident beam. This nonlinear optical process is also known aswavefront reversal,
time reversal reflectionor retro-reflection [71,72]. When the light strikes the mirror
normal to its surface, gets reflected straight back the way itcame which is true for both
the cases, i.e, either from the plane mirror (Fig.4.1(A)) or the phase conjugate mirror
(Fig. 4.1(B)). However, when the light strikes the plane mirror at an angle, it reflects
back in the opposite direction such that the angle of incidence (i) is equal to the angle
of reflection (r) Fig.4.1(C) which is not true in case of the phase conjugate mirror(as
it doesn’t matter what the angle of incidence) Fig.4.1(D). The reflection from both the
mirrors have significant consequences which can be explained while placing an irregu-
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i
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Regular mirror Phase conjugate mirror

Figure 4.1: A comparison between reflection from a regular and phase conjugate mirror.

lar distorting glass in the path of a beam of light. In the normal mirror, the parallel rays
get bent in random directions, and after reflection, each rayof light is bent even farther,
and the beam is scattered as depicted in Fig.4.2. But the situation, in case of the phase

Regular mirror

Distorting  glass
Distorting  glass

Figure 4.2: Reflection from a distorting glass in case of a regular mirror.

conjugate mirror is entirely different, each ray is reflected back in the direction it came
from and therefore reflected conjugate wave propagates backwards through the dis-
torting medium, and removed the influence of the distortion,and returns to a coherent
beam of parallel rays traveling in the opposite direction asshown in Fig.4.3. These
remarkable image-transformation properties (even in the presence of a distorting opti-
cal element) are of interest for potential applications such as holography, mirror optics,
optical fibers, optical trapping and many more [73]. These unique features of the phase
conjugating mirrors are also confirmed by various experimental studies [74,75]. The
optical phase conjugated waves can be categorized into two main classes i.e., degen-
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Phase conjugate mirror

Distorting  glass
Distorting  glass

Figure 4.3: Reflection from a distorting glass in case of a phase conjugate mirror.

erate and non-degenerate backward PCW and forward PCW and their mathematical
definitions are summarized below in the flow chart (Fig.4.4) [73].
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Figure 4.4: Features of phase conjugating mirror (PCM).
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4.2 Photo-refractive materials

The photo-refractive effect is a nonlinear process which refers to a change in the re-
fractive index of a material caused by light. This effect occurs due to the interfer-
ence pattern of dark and light fringes by coherent beams of light while illuminat-
ing on photo-refractive materials. The photo-refractive materials like lithium niobate
(LiNbO3), lithium tantalate (LiTaO3), barium titanate (BaTiO3), potassium tantalate
niobate (KTa1−xNbxO3), bismuth silicon oxide (Bi12SiO20), bismuth germanium oxide
(Bi12GeO20), gallium arsenide (GaAs) and indium phosphide (InP) etc. [76] are the
excellent materials for recording volume phase holograms in real-time as they are con-
sidered to be rich in resolution, efficiency, storage capacity, sensitivity and reversibil-
ity. The table (Tab.4.1) gives the comparison between the extended class of photo-
refractive materials.

Ferroelectric

Oxides

Cubic Oxides 

of the Sillenite 

family

Semi-insulating

compound

semiconductors

Electro-optic

Coefficients

Photo-Sensitivity

Wavelength

Examples

Photorefractive Materials

Large electro-optic coefficients 

which leads to large nonlinear

effects.

Small electro-optic 

coefficients.

They have electro-optic 

coefficients similar in 

magnitude to the sillenites.

Small charge carrier mobilities 

and large dielectric constants 

cause poor sensitivity.

Better sensitivity than 

ferroelectric because of 

larger photo-

conductivities.

They are sensitive at 

Infra red wavelengths.

For e.g: Bi12SiO20,

Bi12GeO20, Bi12TiO20.

They are sensitive at 

visible wavelengths.

For e.g: Lithium Niobate

(LiNbO3),  Barium Titanate

(BaTiO3),  Potassium Niobate

(KNbO3).

They are near the theoretical 

limit of sensitivity.

They are sensitive near     

Infra red wavelength band. 

For e.g: GaAs, InP, CdTe, 

CdS, SbSI.

Table 4.1:Photorefractive materials and their characteristics.

In the above mentioned materials, the OPC can be generated atlow light intensi-
ties using a degenerate four-wave mixing (DFWM) process with a lower power He-Ne
laser at 633 nm and holographic processes with a maximum phase conjugated beam
reflectivity of about 0.24 %. The generation of the phase conjugated (PC) wave from
both the processes i.e. DFWM and holographic process can be differentiated on the
behavior of intensity of PC signal as a function of time as shown in Fig. 4.5 via illu-
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minating the material with three wavesE1 (forward pump beam),E2 (backward pump
beam) andE3 (probe beam) from He-Ne laser. It has been observed that initially there
will be a rise in the peak corresponding to the intensity of PCsignal for few minutes
due to the presence of both DFWM and holographic processes. But if the wavesE1

andE3 get switched off, one can see the slow decay in the intensity of PC signal which
shows that the wavesE1 andE3 are due to DFWM whereas the beamE2 is the contri-
bution from holographic process as PC signal still remains present even in the absence
of other two beams (i.e.E1 andE3).

Figure 4.5: Measured PC signal as a function of recording time [77].

Similar studies have also been carried out in the semiconductor doped glasses (for
e.g. CdSxSe1−x [78]) which can be commercially found in the form of colored glass
filters. These glasses also referred as Selenium ruby glasses which are able to exhibit
third order nonlinearities of 10−9−10−8 esu using DFWM with short ( 10 nsec) laser
pulses at various visible wavelengths and efficient to observe a phase conjugated beam
reflectivity up-to 10 %. Table.4.2summarizes the third order susceptibilities measured
by DFWM in CdSxSe1−x glasses at different wavelengths. Even, the OPC has also been
observed by the picosecond pulses using photo-refractive Sn2P2S6 crystals [79]. The
phase conjugated reflectiveness up to 45 % is achieved by 7.2 ps pulses at 1.06µm with
an intensity 23 W/cm2 which is two orders of magnitude faster as BaTiO3:Rh [80].
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4 Reflection and transmission of twisted light at phase conjugating interfaces

Table 4.2:Representative choices of wavelengths, corresponding CdSxSe1−x glasses, and
third-order susceptibilities measured by DFWM [78].

4.3 Methods to produce phase conjugated waves
(PCW)

Generally, there are three major methods for the generationof backward phase conju-
gated waves (PCW) which are explained in the below subsections.

1. Degenerate four wave mixing process [81,82].

2. Various stimulated (Brillouin, Raman, Rayleigh-wing orKerr) scattering pro-
cesses [7,83].

3. Stimulated emission (lasing) processes which exhibit the same phase conjuga-
tion property as backward stimulated scattering under appropriate conditions
[73,84,85].

Whereas, the forward PCW [73,86] are generated by the forward wave mixing in the
similar fashion as backward within appropriate conditions. Here, we have confined
ourselves in explaining the generation method of backward phase conjugated waves
(PCWs) only.

4.3.1 Backward degenerate four wave mixing (DFWM)

It was Hellwarth in 1977 who firstly proposed the backward DFWM process [81]. In
DFWM, a nonlinear medium is illuminated simultaneously with two counter propagat-
ing strong plane waves and a signal beam with an arbitrary wavefront distortion and
different propagation direction as shown in Fig.4.6. Then, if all these incident beams
have the same frequencyω, one may observe a newly generated wave with the same
frequencyω along the opposite propagation direction of the signal beam. This newly
generated wave is then called the backward frequency degenerate PCW of the incident
signal beam. In order to realize the whole process, let’s consider a signal beam prop-
agating along thez-axis, then the three incident monochromatic waves can be written
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Figure 4.6: Backward phase conjugation wave generation by DFWM.

as

E1(ω) = a1A1(r )e−i(ωt−k1·r ), (4.1a)

E2(ω) = a2A2(r )e−i(ωt−k2·r ), (4.1b)

E3(ω) = a3A3(z)e
−i(ωt−k3z). (4.1c)

Here,a1 is a unit vector along the light’s polarization direction ofthe ith wave,k1 =

−k2 is the wave vector of the pump wave,k3 is the absolute value of the wave vector
of the signal beam,A1 andA2 are the real amplitude functions of the two plane pump
waves, andA3 is the complex amplitude function of the signal wave. The fourth co-
herent wave will be produced through the third order nonlinear polarization response
of the medium according to the working principle of four wavemixing process. Thus,
the newly generated phase conjugated wave with propagationdirection along−z axis
can be written as

P(3)
4 (ω) = ε0χ

(3)(ω,ω,−ω)a1a2a3A1A2A∗3e−i(ωt+k3z), (4.2a)

E4(ω) = a4A4(z)e
−i(ωt+k3z). (4.2b)

In the above process, the phase matching condition is alwayssatisfied becausek1+k2 =

k3 + k4 = 0, as a result, the signal wave will always get amplified whilethe waveE4 is
created.

4.3.2 Backward non-degenerate four wave mixing (NDFWM)

The generation of PCW via non-degenerate FWM process can be explained on the
basis of induced holographic model [86]. According to the principle of holography,
the two beams of the same frequency are used to produce the hologram while the
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another beam with a different frequency is used to read the hologram. In this case,
the diffracted beam has the same frequency as the reading beam, but the reconstructed
spatial structure of this beam may be influenced by the wavelength difference between
the recording beam and the reading beam. Fig.4.7(a) shows the generation of the
backward non-degenerate PCW via partially degenerate FWM in a non-linear medium
where the pump waveA1(ω1) and the signal waveA3(ω1) have the same frequency
and the same polarization state (which is the essential condition to produce the phase
grating) and thus create an induced phase grating. While, the reading waveA2(ω2) with
another frequency will create the diffracted waveA4(ω2) through the induced grating.
The spatial information carried by the signal waveA3(ω1) can be restored in the wave
A4(ω2); in other words, the latter is the frequency non-degenerate PCW of the former.
Similarly, in the case shown in Fig.4.7(b) the wavesA2(ω1) andA3(ω1) have the same
frequency and polarization state and can produce the grating, while the reading wave
A1(ω2) with another frequency will create the diffracted waveA4(ω2). In this case, the
waveA4(ω2) is phase-conjugated withA3(ω1) [87].

Nonlinear medium Nonlinear medium

A1( 1)

A3( 1)

A4( 2)

A2( 2)

A1( 2)

A3( 1)

A2( 1)

A4( 2)

(a) (b)

Figure 4.7: The generation of the backward non-degenerate PCW via partially degenerate
FWM in a non-linear medium.

4.3.3 Backward stimulated scattering (BSS)

This method of producing phase conjugated wave was firstly observed by Zel’dovich
et. al [7] in 1972 which required a strongly focused laser beam to pumpa given scat-
tering medium, which results into the generation of the backward stimulated scattering
beam, which is exactly a phase conjugate of the input pump beam, under appropriate
conditions. Fig.4.8shows an experimental set up, where a single axial mode ruby laser
is taken as a pump source and the pump beam is made to pass through an abberation
plate. The pump beam is then focused onto the scattering medium (here, in the above
shown set-up a high pressure CF6 gas filled in a 94 cm long cell has been taken as a
scattering medium) which induces a special holographic process due to the intensity
dependent refractive index changes of the medium. Thus, after passing through the
same abberation plate, the spatial structure of the backward stimulated Brillouin scat-
tering (SBS) is a phase conjugated wave of the incident pump beam. It has also been
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Figure 4.8: Experimental setup for observing phase conjugation behavior of backward stimu-
lated scattering (BSS) [7].

observed that the divergence of the input beam which was 0.182 mrad at wavelength
λ0= 694.3 nm after passing through the abberation plate get increased to∼ 3.5 mrad.
If a plane wave is put in the path of pump beam and after allowing the reflected pump
beam to pass the aberrator second time, it would further increase the beam divergence
to ∼ 6.5 mrad. On the contrary, it has been seen that the abberation influence imposed
on an input pump beam automatically gets canceled in the backward SBS beam after
passing through the same aberrator [7]. A clear picture of the abberation correction
by backward SBS is shown in Fig4.9[88] which shows the intensity distributions and
photographs of far field patterns of the original pump beam, the aberrated beam and
the aberrated-corrected backward SBS beam from CS2 liquid.

Figure 4.9: Normalized far field intensity distributions and photographs for the original pump
beam, the aberrated pump beam, and the aberrated-correctedbackward SBS beam
[88].

All the various scattering mechanisms which clearly demonstrate the phase conju-
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gation properties of backward stimulated scattering can beexplained on the basis of a
quasi collinear FWM model (Fig.4.10) proposed in 1985−1986 [89–91]. This model
is based on Gabor’s idea of holograph which states that “Whena coherent light wave
pass through a transparent object (phase object), the object is assumed to be such that
a considerable part of the wave penetrates undisturbed through it, and a hologram is
formed by the interference of the secondary wave arising from the presence of the ob-
ject with the strong background wave” [91]. According to this principle, after passing
through a phase object, the total optical field can be expressed as a superposition of
two portions [91]:

U = U(i) + U(s) = A(i)eiφi + A(s)eiφs = eiφi [A(i) + A(s)ei(φs−φi)]. (4.3)

whereU(i) is the undisturbed part of the transmitted field,U(s) is the disturbed part
arising from the presence of the object,A(i) andA(s) are their amplitude functions, and
φi andφs are the corresponding phase functions respectively.

Fig. 4.10shows the non-degenerate FWM model for the phase formation of back-
ward stimulated scattering. HereE(ω0) is a quasi-plane pump wave which after pass-

Figure 4.10:Schematic illustration of the non-degenerate FWM model forthe phase formation
of backward stimulated scattering [73].

ing through an aberration plate or a phase subject decomposes itself as a superposition
of two portions; E1(ω0) (a stronger undisturbed wave) and E2(ω0) (a weaker distorted
wave). The interference of these two waves (E1(ω0), E2(ω0)) in a scattering medium
will then create an induced volume holographic grating due to the intensity-dependent
refractive index changes of the medium. In this process, only the undisturbed pump
wave E1(ω0) (also named as reference beam) is strong enough to fulfill the threshold
requirement and to generate an initial BSS wave E3(ω′) (referred as reading beam) that
exhibits a regular wavefront as wave E1(ω0). When wave E3(ω′) passes back through
the induced holographic grating region, a diffracted wave E4(ω′) which will be the
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phase conjugate replica of the E2(ω0) wave can be created. Moreover, the wave E4(ω′)
will experience an amplification with the waveE3(ω′) together because both the waves
have the same scattering frequency.

From the above explanation, it can be concluded that the pumpfield-induced holo-
graphic grating is the common mechanism for the generation of the phase-conjugation
by using either FWM or BSS method except the difference in the former, only two
waves (the signal wave and the backward diffracted wave) are phase-conjugate to each
other whereas in the latter, the sum of the two portions of theBSS beam should be
phase-conjugated to the sum of the two portions of the input pump beam.

4.4 Reflection and transmission of LG beams

Recently, the behavior of the LG beams at dielectric interfaces have been the subject
of several studies showing that the beam-interface interactions are dependent on the
incident angles of the LG beams. In the case of normal incidence, the azimuthal index
of the reflected or the transmitted LG beam is increased and decreased by the cross-
polarization coupling in the beam component of the incidentbeam [92–94]. In this
section, we have shown the results on the propagation of twisted light in a multilay-
ered dielectric medium containing interfaces which act as phase-conjugating mirrors
(PCM) [7–9,71]. There are several popular methods for the realization of optical phase
conjugation which have already been described in Section 4.3 thoroughly. The treat-
ment of the propagation of the LG beam for a single PCM has alsobeen addressed
previously [8,9]. As in the work of Okulov [8], the time reversal property of the phase
conjugating mirror has revealed experimentally on the basis of stimulated brillouin
scattering (SBS). They demonstrated the hidden anisotropyof an SBS mirror due to
excitation of internal helical waves whose existence has been proved for MHz range
sound [95].

A very nice comparison between a conventional mirror (M, bottom) and a wavefront
reversal mirror (PCM, upper) can be seen from the point of view of angular momentum
transformation in the photon’s reflection in Fig.4.11. It has been shown that while
reflecting from a conventional mirror, the incident ‘right’photon with spinS z = +~

and momentumpz ≈ ~|k| moving in the positive direction of thez-axis is transformed
into a ‘left’ photon havingpz ≈ −~|k|, with same spin projectionS z = +~ and vice-
versa. This was explained on the basis of a mechanical effect on the mirror i.e. light
pressure [26,96], whose major component is normal to the mirror surface as a result
of which, the conventional mirror accepts momentum△pz ≈ 2~k as a single entity
and does not change both the spinS and orbital momentumL . Whereas the situation
changes drastically in case of reflection from the PCM, in this case, the conjugated
photon with ‘right’ OAM remains ‘right’ and the photon with ‘left’ OAM remains
‘left’ due to the time reversal property of the phase conjugated mirror which makes
the retro-reflected photon to pass all the states of the incident one in reverse sequence.
Consequently, the accurate wavefront match of the incidentand the reflected photon
occurs which turned the OAM to 180◦ and changed the OAM projectionLz = +ℓ~ to
the opposite oneLz =−ℓ~ without changing the sign of topological charge or winding
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number (ℓ) in the propagation direction (Fig4.11).

Figure 4.11:Comparison between a conventional mirror (M, bottom) and a wavefront reversal
mirror (PCM, upper) from the point of view of angular momentum transformation
in the photon’s reflection [8].

In order to differentiate the reflection of the Gaussian and the first order LGbeam
from a conventional mirror, they considered the interference patterns produced by two
counter-propagating fields i.e. incident (pump)Ep and reflected (stokes)Es with equal
amplitudesEo

p,s in case of both the Gaussian (Eq.4.4) and the first order LG beam
(Eq. 4.5). It is shown that for the Gaussian beam and the first order LG beam, the
reflection through a conventional mirror results in the pancake like rotational ellipsoids
structure and toroidal rings respectively.

E(p,s)(r, φ, z, t) ≈ Eo
p,s exp

[

−iω(p,s)t ± ik(p,s)z −
r2

D2(1± iz/(k(p,s)D2))

]

,

I isosur f ace = |E(r, φ, z, t)|2 = |Ep(r, φ, z, t) + Es(r, φ, z, t)|2

� 2|Eo
p,s|2

[

1+ cos
[

(ωp − ωs)t − (kp + ks)z
]

]

exp

[

−
2r2

D2(1+ z2/(k2
pD4))

]

.

(4.4)

E(p,s)(r, φ, z, t) ≈ Eo
p,sr

ℓ exp[−iω(p,s)t ± ik(p,s)z + iℓφ] −
[

r2

(D2(1± iz/(k(p,s)D2)))

]

,

I isosur f ace = |E(r, φ, z, t)|2 = |Ep(r, φ, z, t) + Es(r, φ, z, t)|2

� 2|Eo
p,s|2

[

1+ cos
[

(ωp − ωs)t − (kp + ks)z
]

]

rℓ exp

[

− 2r2

D2(1+ z2/(k2
pD4))

]

.

(4.5)

whereEp, Es are incident (pump) and reflected (stokes) fields respectively, D is the
diameter of the beam,ℓ is the topological charge or winding number,z is the distance
passed along thez-axis,r= |r | is the length of the radius vector perpendicular toz-axis,
φ is the azimuthal angle,ωp, ωs are the frequencies of the pump and stokes fields,Eo

s
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andEo
p are the maximal electric field amplitudes andkp, ks are propagation direction

of pump and stokes fields respectively.

]. In liquid crystals, which are used for

phase-conjugation, the relaxation time is significantly longer

the macroscopic torque on PCM for appropriate time scales.

] there might appear a macroscopic rotational recoil

] we choose a more intuitive approach of using classical

.

Figure 4.12: Interference pattern of the incident (pump) Gaussian mode wave Ep with field Es

reflected from a conventional mirror [8].

In the case of PCM, the interference pattern changes from a sequence of toroidal
rings to a double helix for first order LG beam as shown in Fig.4.13 and can be
calculated on the basis of Eq.4.6which is given as

E(p,s)(r, φ, z, t) ≈ Eo
p,sr

ℓ exp[−iω(p,s)t ± ik(p,s)z ± iℓφ] −
[

r2

(D2(1± iz/(k(p,s)D2)))

]

I isosur f ace = |E(r, φ, z, t)|2 = |Ep(r, φ, z, t) + Es(r, φ, z, t)|2

� 2|Eo
p,s|2

[

1+ cos
[

(ωp − ωs)t − (kp + ks)z + 2ℓφ
]

]

r2ℓ exp

[

−
2r2

D2(1+ z2/(k2
pD4))

]

.

(4.6)

The spiral interference pattern (Fig.4.13) has two maxima because the azimuthal
dependence contains the doubled azimuthal angleφ and it rotates with angular ve-
locity equal to the acoustical frequencyΩa = (ωp − ωs). The angular velocity (Ω)
depends on the physical mechanism of the wavefront reversaland it could span from
units of Hz for the photo-refractive crystals to the range ofTHz for Raman phase
conjugators [7]. Denz et. al [9] have reported the method of degenerate four wave
mixing (Section 4.3.1) in nonlinear media which produces a very stable and high fi-
delity interference pattern. They also showed the interference patterns for the higher
order LG beams in case of conventional and PCM (Fig.4.14) are comparable to the
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Figure 4.13: Interference pattern of the incident ‘right’(pump) first order LG waveEp and
phase conjugated ‘right’ replicaEs for a topological chargeℓ=+1 [8].

(a) (b)

(c) (d)

Fig. 5. Interference pattern of m 2 vortices (a,b) and m 3 vortices (c,d). The left

mFigure 4.14: Interference pattern of|m| = 2 vortices (a,b) and|m| = 3 vortices (c,d). The left
column shows a comparison between vortices reflected by a phase-conjugating
(left) and a conventional mirror (right). At the right column, both vortices are
interfering, yielding a 2|m| multi-pole interference pattern [9].

49



4 Reflection and transmission of twisted light at phase conjugating interfaces

interference patterns shown in Fig.4.12and Fig.4.13. Hence, proved the theoretical
investigations [8] that during reflection from the PCM, the spin angular momentum
(SAM) remains conserved and the orbital angular momentum (OAM) get reversed.
Thus, the law of conservation of angular momentum requires the phase conjugating
mirror (PCM) to accept the difference in the orbital angular momentum (OAM).

In contrast to the above mentioned works by Okulov and Denz etal., in the next
section, we treat a multilayered structure (Fig.4.15) to see the effect on the reflection
and transmission of twisted light through it which is a special case of above described
works [8,9] where medium 1 and medium 2 (Fig.4.15) are absent. We checked that
our results are in good agreement in this case with the previous studies. The key idea
behind the present work is that when the light is reflected from the interface between
medium 1 and medium 2 (Fig.4.15), it interferes with the field reflected at the interface
at z = 0 and thus, the interference pattern carries information onthe depth profile of
refractive inhomogeneities. It is also shown that the structure containing several PCM
interferences leads to a characteristic angular and radialpattern of the reflected beam.
This pattern can in turn serve as an indicator for the phase conjugation of composite
optical materials.

4.4.1 Theoretical formulation

E0i 

E1t 

E2t 

E0r 

E1r d1 

d2=∞ 

z=0 

z >0 

          pcm 

          pcm 

Medium 0 

Medium 1 

Medium 2 

Figure 4.15:Schematic representation of the propagation of LG beam in a multi layer dielec-
tric structure. The interfaces with PCM are indicated.

In our work, we have considered a trilayered dielectric structure (the layers and re-
lated quantities are indexed by 0, 1, 2) as sketched in Fig.4.15. All the layers are
parallel and infinitely extended. The monochromatic LG beamwith the frequencyω
propagates in the medium 0 and impinges onto the medium 1. Theinterface between
medium 0 and medium 1 as well as the interface between medium 1and medium 2
are phase conjugating andd1 is the thickness of the layer 1 (our treatment is also valid
when the whole medium 1 is phase conjugating). We denote the incident, the reflected
and the transmitted fields byi, r andt respectively andn0, n1andn2 are the refractive
indices of the media 0, 1 and 2, respectively. We operate within the paraxial approxi-
mation, i.e. we assume that the transverse beam profile varies slowly along the direc-
tion of propagation. Beams with this property are collimated and have a well defined
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direction of propagation. We restrict the consideration tothe case of a large Rayleigh
range, corresponding to a well collimated beam with a relatively little divergence. The
electric fieldE (at the beam waist,z = 0) of the LG beam in cylindrical coordinates
(with the z axis chosen to be along the incident beam propagation direction) is given
by [24,97].

E =
C|ℓ|p
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wherer andφ are the radial and azimuthal coordinates,ℓ can take any integer value
either positive or negative and means physically the topological charge of the optical
vortex. L|ℓ|p is the associated Laguerre polynomial,C|ℓ|p is a normalization constant,w0

is the half beam width, andk0=ω/c is the wave number in vacuum.
The well known time reversal property of the phase conjugating mirror plays a key

role in determining the behavior of the scattered beam’s electric fields. As detailed in
Refs. [8,9], the orbital angular momentum changes sign upon a wavefront reversal at
PCM, i.e.ℓ changes sign (this goes with excitations in the PCM materialsuch that the
total angular momentum balance is guaranteed [8,9,98,99]). This ℓ property has to be
imposed as an additional requirement on the beam when traversing the structure. To
keep the notation simple we can incorporate this condition on ℓ by the ansatz
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Here, the temporal factor exp(−iωt) is omitted for the sake of simplicity. To evaluate
the reflection and the transmission coefficients, we shall apply the condition of the
continuity and smoothness of the field at the boundaries within the structure [100,101]
(note the behavior ofℓ upon scattering is already accounted for by the ansatz (Eq.4.8-
Eq.4.12))

[
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, (4.13a)
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Ē2t

]

z=d1
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Eqs.(4.13) and (4.14) lead to

1+ r0 = t1 + r1, (4.15a)

t1eiα1 + r1e−iα1 = t2, (4.15b)

and

n0[1 − r0] = n1[t1 − r1], (4.16a)

n1[t1eiα1 − r1e−iα1] = n2t2. (4.16b)

With the notation
α1 = k0n1d1.

On solving Eq.4.15and Eq.4.16, we obtain the reflection coefficient r0 related to
the propagation in the medium 0, and the reflection and the transmission coefficients
related to the propagation in the medium 1 and 2 denoted byr1, t1, r2 andt2, respec-
tively. Explicitly, the reflection and the transmission coefficients are

r0 =

(

n0A− + n1A+

n0A− − n1A+

)

, (4.17)

r1 =
1+ r0

1− e−2iα1N
, (4.18)

t1 = −r1e−2iα1N, (4.19)

t2 =
n1

n2
[t1eiα1 − r1e−iα1]. (4.20)

where

A+ = 1+ e−2iα1N,

A− = 1− e−2iα1N,

N =

(

n2 + n1

n2 − n1

)

.

After substituting for the reflection and the transmission coefficients in the Eqs. (4.8-
4.12), we can obtain the electromagnetic fields that describe thepropagation of the LG
beam through the system depicted in Fig.4.15.
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4.4.2 Results and discussion
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Figure 4.16:For the structure depicted in Fig.4.15 we show the calculated total radial (r)
intensity (in CGS system) of the LG laser beam for a conventional mirror (Red
curve), and a PCM (Dashed curve) in the medium 0 forℓ=1, p=0. The material
parameters and laser properties are chosen as:φ = 30◦, n0 = 1(air), n1 = 1.77
(Al2O3), n2=1.457 (SiO2), d1=20µm, w0=1 µm, λ=632.9 nm.

Experimentally, we imagine a situation where the reflected beam perpendicular to
the structure (i.e. along the−z axis) is detected. This case has been studied recently
experimentally and theoretically for a single PCM in [8,9]. The results of these studies
can be recovered from the above formula as a special case whenonly one PCM is
present. The clear difference in the intensity of LG beam reflected from one PCM
layer and multilayered structure can be seen in Fig.4.16. In a multilayered structure
interference effects are to be expected. The particular interest for us are those effects
which are related toℓ and the phase conjugating properties, say of the interface to
medium 2. The idea is to infer from the detected reflected beamon the properties of
the inhomogeneities (medium 1) in a bulk optical material.

To this end, we show in Fig.4.17 the radial distribution of the total intensity of
the reflected field (Eq.4.9) from the structure in Fig.4.15for the LG beam withλ =
632.9 nm. We consider a situation where the medium 0 is air (n0 = 1), medium 1
is Al2O3 (n1 = 1.77), and medium 2 is SiO2 (n2 = 1.457). The thickness of Al2O3 is
d1=20µm. A very thin PCM is deposited on Al2O3 and another thin PCM is deposited
on SiO2. Fig. 4.17show that the reflected beam maintains the initial beam shapeupon
traversing the whole structure for different values ofℓ and p. As discussed in Refs.
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Figure 4.17:For the structure depicted in Fig.4.15 we show the calculated total radial (r)
intensity (in CGS system) of the LG laser beam in the medium 0 for ℓ=1, p=0
(a), and forℓ = 10, p = 2 (b). The material parameters and laser properties are
chosen as:φ=30◦, n0=1(air), n1=1.77 (Al2O3), n2=1.457 (SiO2), d1=20 µm,
w0=1 µm,λ=632.9 nm.
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Figure 4.18:The same as in Fig4.17for ℓ=1, p=0 but here we show the angular (φ) distribu-
tion of the LG beam intensity (in CGS system) for a different thicknessd1 of the
medium 1. The blue solid curve is ford1 = 11πλ/2 and the dashed curve is for
d1=4πλ. The radial distancer is fixed to bew0/2.

[8,9], the angular distribution of the LG beam leads a special interference pattern upon
reflection from one PCM. Qualitatively, we can thus expect a characteristic change of
this pattern when the LG beam reflected from the interface to medium 2 contributes
to the total reflected intensity. Obviously, this change depends on the thicknessd1

and varies on the scale of the wave length of the incoming LG beam. This behavior is
confirmed by Fig.4.18from which we can conclude that the reflected LG carries depth
information on phase conjugating inhomogeneity.

The similar interesting effects for the reflected LG light beams can also been seen
after adding one additional layer to the structure shown in Fig. 4.15. A visible effect of
an additional layer in the structure (Fig.A.1) on the total radial intensity distribution
of the reflected LG beam (in medium 0) is shown in Fig.4.19(a) for the conventional
mirror and the PCM indicated by red curve and dashed curve respectively (for more
details on the calculation for this case, refer Appendix A).The Fig.4.19(b) depicts the
increase in total radial intensity distribution in medium 0for ℓ = 10, p= 5. There is a
drastic effect of the thickness of medium on the angular distribution ofthe LG beam
which can be seen in Fig.4.19(c) and Fig.4.19(d) for ℓ = 1, p = 0 andℓ = 5, p = 2
respectively. A similar kind of investigations in the case of localized wave like Bessel
beams in the presence of an absorbing media have also been reported in [102, 103]
where they predicted out the use of Bessel beams over plane waves, in the detection of
buried objects, in particular, inside very dry material such as sandy or clayey ground.
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4 Reflection and transmission of twisted light at phase conjugating interfaces

Figure 4.19: For the structure with additional one layer as depicted in Fig. 4.15we show the
calculated total radial (r) intensity (in CGS system) of the LG laser beam in the
medium 0 (a) In case ofℓ = 1, p = 0 for a conventional mirror (Red curve), and
PCM (Dashed curve). (b) The total intensity of the LG beam in the medium 0 for
ℓ=10, p=2.The material parameters and laser properties are chosen as: φ=30◦,
n0=1(air), n1=1.77 (Al2O3), n2=1.457 (SiO2), n3=2.427 (BaTiO3),d1=20µm,
d1 = 30 µm w0=1 µm, λ = 632.9 nm. (c) The angular (φ) distribution of the
LG beam intensity for a different thicknessesd1 and d2 of the media 1 and 2
respectively. The blue solid curve corresponds ford1=11πλ/2 andd2=13πλ/2.
The dashed curve is ford1=4πλ andd2=6πλ. (d) The angular (φ) distribution of
the LG beam intensity for a different thicknessesd1 andd2 of the media 1 and 2
respectively forℓ=5, p=2. The radial distancer is fixed to bew0/2.
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4 Reflection and transmission of twisted light at phase conjugating interfaces

4.4.3 Conclusions

We have studied the propagation of the light beams carrying orbital angular momen-
tum (OAM) in a dielectric multi layer structure with phase conjugating properties.
Analytical expressions for the reflection and the transmission of the fields at individual
layers are provided and we have demonstrated that the scattering of the OAM beams
from phase conjugating refractive inhomogeneities leads to characteristic interferences
that depend on the depth profile which can be tested, e.g. by varying the light wave
length. Thus, this fact can be exploited to detect and characterize buried objects of
non-metallic nature. Specially, the reflection propertiesof the beam with OAM from
phase conjugating materials can be exploited in the identification of inhomogeneities
of the bulk materials under ground by quantifying the amountof ℓ absorbed by the
materials.
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Chapter5
Particle dynamics in twisted light

The optical manipulation of atoms and ions has been the subject of interest in many
fields of physics. Especially the dynamics of charged particles have found a wide field
of applications in particle accelerator [104], electron microscopes, magnetron, geo-
physics and in plasma physics [105]. In this chapter, we address the dynamics of a
charged particle and neutral atoms with the help of twisted light. We have divided
the present work into two main parts, the first part concerns with the trajectory of
a charged particle in twisted light and the generation of magnetic field with the LG
beams using the concept of Liénard-Wiechert potential [100]. Further, in the second
part, we demonstrate the optical trapping, guiding and acceleration of neutralHe atom
in the strong LG beam based on the recent studies by Eichmann et al. [10]. As dis-
cussed in Ref. [10], the key point is the stabilization of the atom against ionization in a
strong laser field [106] with a strength that exceeds by orders of magnitude ( 108) that
employed for atom manipulation based on the photon momentumtransfer [107–109].
The physical picture behind the drift atomic motion is as follows [10]: While the active
electron oscillates in large orbits in the presence of the laser and the ionic core and is
recaptured into bound states, it experiences a net drift force, stemming from the pon-
deromotive potential. The motion of the electron is partially converted into a center of
mass-motion of the neutral atom due to electron-ion binding. In Section 5.3, we adopt
this picture and study the effects brought about by the structured light.

5.1 Trajectory, acceleration and generation of
magnetic field with twisted light

Here, we have demonstrated the confinement of a charged particle at the high intensity
LG beam which results in the transversal trapping and longitudinal acceleration of a
charged particle at the same time. In this regard by solving Lagrangian equations of
motion, at first we have calculated the trajectory of a charged particle i.e. an electron
(for complete derivation, refer Appendix A) followed by showing the acceleration and
then the generation of magnetic field with twisted light.

The Lagrangian of a particle with charge ‘q’ moving with the velocity ‘v′ in an
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5 Particle dynamics in twisted light

electromagnetic field with the scalar and vector potentialsϕ andA respectively can be
written as [100]:-

L =
1
2

mv2 − qϕ +
q
c

A · v (5.1)

Forϕ = 0, z = 0, Eq.5.1reduces to

L =
1
2

mv2 +
q
c

A · v (5.2)

L =
1
2

m(ṙ2 + r2φ̇2) +
q
c

A · v (∵ x = r cosφ) (5.3)

(5.4)

While the product termA · v can be written as

A · v = −r(t) sinφ(t)φ̇(t) fℓp + ṙ(t) cosφ(t) fℓp (5.5)

where thefℓp, the field amplitude of LG beam is ( [97] or chapter2)

f LG
ℓp (r, φ, z = 0, t) =

C|ℓ|p

w0
E0
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|ℓ|
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−r(t)2

w2
0

)

L|ℓ|p

(

2r(t)2

w2
0

)

exp(iℓφ(t)) expi(φ0+ωt)

(5.6)
wherer, φ andz are cylindrical coordinates,ℓ is the azimuthal index,p is the radial
mode index,w0 is the beam waist atz = 0, L|ℓ|p

(

2r2

w(z)2

)

is the associated Laguerre Poly-
nomial,φ0 is the initial phase of the field andCℓ

p is the normalization constant.
The Euler-Lagrange equations of motion in cylindrical coordinates are

d
dt

(

∂L
∂ṙ

)

=
∂L
∂r
, (5.7)

d
dt

(

∂L

∂φ̇

)

=
∂L
∂φ
, (5.8)

d
dt

(

∂L
∂ż

)

=
∂L
∂z
. (5.9)

On solving the Eqs.5.7-5.9 for LG1
0 mode withz = 0, we have the classical non-

relativistic equations of motion for an electron in cylindrical coordinates as

r̈(t) = r(t)φ̇(t)2 − q
mc

E0
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)

,

(5.10)
and

r(t)2φ̈(t) = − 2mr(t)ṙ(t)φ̇(t) +
q

mc
E0
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(5.11)
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5 Particle dynamics in twisted light

Figure 5.1: Trajectory of an electron in the LG beam with following parameters:me= 9.1 ×
10−31kg,w0=1.05µm,ω=25.2× 1014 rad/s,φ0=98.5◦, E0=0.6× 109 V/m, ℓ=1,
p=0, r (t=0)= (0.5 nm, 0, 0), ṙ (t=0)= (106 m/s, 0, 0).

whereA =
(

[r(t)]λ
(

−2r(t)
w2

0

)

+ λ[r(t)]λ−1
)

, B = cos(ωt + φ0 + λφ(t))(ω + λφ′(t)), Θ1 =

sin(ωt + φ0 + λφ(t)) andΘ2 = cos(ωt + φ0 + λφ(t)).
The trajectory (Fig.5.1) and the acceleration of the charged particle (Fig.5.2) has

been drawn on the basis of Eqs.5.10and5.11.
By using the Liénard-Wiechert potential, the expressionsfor the electric and the

magnetic field for the accelerated charged particle can be given with the help of Eq.5.12
and5.13[100] respectively. Thus, the generated magnetic field with TL can be shown
as in Fig.5.3.

E =
q

4πε0

1
κ3R2

(n − β)(1− β2) +
1

cκ3R
n ×

[

(n − β) × β̇
]

, (5.12)

B = ∇ × A =
1
c

n × E (5.13)

whereβ = v/c & n = R
|R| .
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5 Particle dynamics in twisted light

Figure 5.2: Acceleration of a charged particle in twisted light for the same parameters as
in Fig. 5.1. The red and blue curve show the acceleration inφ and r direction
respectively.

Figure 5.3: The magnetic field due to the LG beam for the same paramaters asin Fig. 5.1.
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5 Particle dynamics in twisted light

5.2 Dynamics of atoms and molecules in intense
laser fields

It is a well known that a short laser light focused on a small region may have an
electric field strength comparable to the Coulomb electric field acting upon the bound
electrons in the atom. Thus, the relationship between the laser intensity ‘I’ and the
generated electric field strengthE can be given as:

I =
1
2
ε0cE2 (5.14)

whereε0 is the vacuum electrical permittivity andc is the speed of light in vacuum.
For, e.g. hydrogen, the electric field acting on the electronin the ground state isE ≃
5× 109 V/cm which corresponds to an intensityI≃ 3.5× 1016 W/cm2.

U(x, t)

EI

barrier width

(a)

(b)

x

I<1015 W/cm2  
U(x)

EI

U(x, t)

EI

(a)

(b)

x

I >1015 W/cm2  I<1014 W/cm2  

x

Case:- I Case:- II Case:- III

Figure 5.4: Case I: Tunneling ionization regime. Curve (a) shows the total potential energy
U (x,t) of an atom in an intense laser field, the curve (b) represents the laser-
electron interaction energy. Here, it shows that the laser field distorts the Coulomb
potential. Case II: Multi-photon ionization regime. The figure shows the potential
energy U (x) of an atom in presence of a weak external laser field. In this regime
(I<1014 W/cm2), the laser is not able to modify the Coulomb potential. Here, the
arrows indicates that the ionization occurs through multi-photon absorption. Case
III: OTBI regime. The curve (a) shows the potential energy U (x,t) of an atom
in the presence of a strong external laser field, (b) represents the electron-laser
interaction energy. In this regime (I > 1015 W/cm2), the ground state energy lies
above the potential barrier. Here, in all the three cases,EI andI are the ionization
energy and the intensity of the field respectively.

Depending upon the laser intensity, the variety of new phenomena have been ob-
served and among these the most important are :

• Multi-photon ionization (MPI)

• Above threshold ionization (ATI)
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5 Particle dynamics in twisted light

• High harmonic generation (HHG)

The above mentioned ionization regimes can be discriminated on the basis of Keldysh
parameter (γ) which is defined by the ratio between the tunneling time (Ttun) i.e, the
time required to cross the potential barrier, and the laser period (TL) i.e.

γ =
Ttun

TL
=

√

EI

2Up
(5.15)

whereEI is the ionization energy of the atom andUp is the ponderomotive energy.

• If γ < 1, the intense laser field ( 1014-1015 W/cm2) make the width of potential
barrier small, as a result, the tunneling time (Ttun) becomes short as compared to
the laser period (TL) (Fig. 5.4);

• If γ > 1, the intensity of the laser field is usually less than 1014 W/cm2 and
the tunneling time is too long compared to the laser period which makes the
probability of the electron tunneling during a laser cycle very small which results
in MPI (Fig. 5.4);

• If γ ≪ 1, the laser field intensity is so strong (> 1015 W/cm2), it shifts the
ground state energy of the atom above the distorted potential barrier created
by the intense laser field. Consequently, the ionization takes place in a very
short time compared to the laser period, so that the atom can be considered fully
ionized at the beginning of the laser cycle only, thus it is called the over the
barrier ionization (OTBI) (Fig.5.4).

5.2.1 Multi-photon ionization (MPI)

Multi-photon ionization (MPI) is the process of ionizationof an atom by means of
absorption of the number of photons just necessary to overcome the ionization energy
EI (Fig. 5.5). The energy of the emitted electronEe, is given by the relation:

Ee = N~ω − EI < ~ω (5.16)

whereN is the number of photons absorbed,ω is the photon frequency and the proba-
bility of ionization for N photons,PN is given as [110,111]

PN ∝ IN (5.17)

whereI is the intensity of the driven laser field.

5.2.2 Above threshold ionization (ATI)

In 1980, Gontier and Trahin [112] observed the process of ionization which occurs
through the absorption of the number of photons larger than the minimum necessary to
overcome the ionization energy and this phenomenon was named as above threshold
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N   
I
E

eE

Figure 5.5: Process of Multi-photon ionization (MPI):EI is the ionization energy of the atom,
Ee is the kinetic energy of the emitted electron andN, the number of photons at
frequency(ω) absorbed.

S   
I
E

eES   

Figure 5.6: A typical ATI process with the absorption of (N + S ) photons.S , the number of
photons absorbed above the minimum number needed to overcome the ionization
barrier. Ee, EI are the electron energy emitted and the ionization energy respec-
tively.
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ionization (ATI) (Fig.5.6).
In ATI, the energy of the emitted electron and ionization probability are given by fol-
lowing relations respectively:-

Ee = (N + S )~ω − EI (5.18)

and
PN ∝ IN+S (5.19)

whereI is the intensity of the laser field andS is the number of photons absorbed in
excess.

5.2.3 High harmonic generation (HHG)

It is a nonlinear optical process in which the original laserlight’s frequency is converted
into its integer multiples i.e.N~ω. The maximum photon energy (Emax) producible
with the high harmonic generation is given by the cut-off law of harmonic plateau
[113].

Emax = Ip + 3.17Up, (5.20)

whereIp is the ionization potential of the target atom andUp =
E2

0

4ω2 is the pondero-
motive energy withE0 andω being electric field strength and frequency respectively.
Many features of the high harmonic generation (HHG) can be intuitively and qualita-
tively explained on the basis of the semiclassical‘three step model’ (Fig. 5.7), also
referred as the semi-classical model of the high harmonic generation. HHG requires
that the laser light needs to be linearly polarized. Otherwise the electron would not
be accelerated back towards the atom with a significant probability. In this model, the
atom is approximated to have only one electron. The motion ofthis electron in the
laser field is treated classically while the active tunneling and recombination processes
are treated quantum mechanically which are well explained in the following steps:-

Three step model [ 114]

• First Step:- Tunneling ionization.
The presence of the intense laser field results in the distortion of the potential
energy of the system and thus, the potential barrier gets lowered. Consequently,
the electron tunnels in the continuum overcoming the potential barrier due to the
Coulomb and the laser field.

• Second Step:- Propagation in the laser field.
The electron is treated classically and consists of free oscillations driven by the
laser field. During this propagation, the electron gains kinetic energy and accel-
erates away from the atom by electric field.

• Third Step:- Recombination.
If the electron is near the nucleus, there is certain probability that it can recom-
bine back to the atom emitting a photon with energy equal to the kinetic energy
gained in the second step plus the ionization energy (Eq.5.20).

65



5 Particle dynamics in twisted light

T/2 T/2
T/2

Time

E
le

c
tr

ic
 f

ie
ld

E
n

e
rg

y

0 Radius

Free electron

Recombination

Tunneling

1.Laser field suppresses 

Coulomb barrier, thus 

electron can tunnel out of 

the atom

2.Free electron gains 

momentum in laser field

3. Electron can recombine with 

parent ion and emits a photon of 

higher energy

Figure 5.7: Process of three step model.

5.3 Introduction to Optical trapping (OT)

Trapping and controlling charged particles by a time-dependent, non-uniform electro-
magnetic field was triggered by the work of Boot et. al. [115] in 1957. The underlying
mechanism can be understood classically as the second ordereffect that depends on
the spatial gradient of the field intensity and tends to push the particles from regions of
high to low intensities. This fact can be utilized for the confinement of charged parti-
cles [116] and plasmas [117]. In 1966, Phillips and Sanderson [118] proposed that the
electrons could be trapped in a laser focus with a minimum intensity on axis. Since
then a wealth of phenomena associated with the ponderomotive force and its corre-
sponding potential named as ponderomotive potential have been revealed [6,119–127]
which found applications in diverse areas, ranging from accelerator physics and optical
manipulation to plasma physics and biology. The ponderomotive potential is a result
of the variation of a charged particle’s average kinetic energy in a spatially varying
electromagnetic field. The potential is highest in the regions of greatest intensity and
lowest in the region of least intensity. This generates a force that will tend to push the
particle away from the regions of high intensity. Its expression is given as [127] :-

Fp = −
e2

2mω2
∇〈E2〉, (5.21)

wheree andm are the particle’s charge and mass respectively, whilew andE are the
frequency and amplitude of the electric field.
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For a focused laser pulse, due to the diffraction effect,Fp in acceleration stage can
be larger than that in de-acceleration stage, therefore theelectron may obtain a larger
energy near the focus and lose the energy at the de-acceleration stage. This is the basic
idea of the ponderomotive force electron acceleration using an intense focused pulse
laser. In non-relativistic case, the ponderomotive potential is given as:

Φp =
e2

2mω2
〈E2〉. (5.22)

For the LG beam, the normalized time averaged intensity is given as:
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This intensity distribution has the added advantage that the ponderomotive potential
will be approximately parabolic near the intensity minimum. Its parabolic shape results
in the two-dimensional simple harmonic motion transverse to the beam direction.

For the LG1
0 mode, the ponderomotive potential will reduce to
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Now, we will show the results on the trapping of a neutral He atom in the pondero-
motive potential given by Eq.5.24, but before that we will explain the principle of
optical trapping and the role of twisted light in OT.

5.3.1 Principle of optical trapping (OT)

A light beam can exert a force on an object and this very small force of the order of
piconewtons can be used to manipulate small objects such as micro-spheres. A very
large scaled example of this phenomenon is that of a comet whose dust particles are
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optically pushed by radiation pressure from the Sun’s light. Similar idea shed the light
to use the laser light to manipulate objects which was first realized by Arthur Ashkin
also known as “Father of Optical Trapping” in 1970 at Bell Labs. It was Ashkin’s
idea which formed the basis for Steven Chu’s work on cooling and trapping atom,
which earned him the 1997 Noble prize in physics along with scientists Claude Cohen-
Tannoudji and William Phillips. Since, then the field of optical trapping or optical
tweezers (OT) has grown tremendously and has emerged as a powerful tool with the
broad reaching applications within both biological and non-biological fields. Below,
some of the milestones in the field of OT are reported:

• 1970: Arthur Ashkin (Bell Laboratories) demonstrates the effect of radiation
pressure on latex spheres in water [32].

• 1978: Two opposing laser beams were used to trap and cool atoms [128].

• 1986: Development of a single beam gradient force optical trap [129].

• 1987: First application to biological samples [130,131].

Soon, it was realized that the gradient force alone would be sufficient to trap small
particles and the use of a single tightly focused laser beam with an objective lens of
high numerical aperture (NA) can trap a transparent particle in three dimension and
such an arrangement called as optical tweezers (OT) (Fig.5.8). The Fig.5.8 shows
the single beam optical gradient force trap [132] which use a strongly focused beam of
light to trap small objects like dielectric particles.

Photons can consider as particles in motion, which transferpart of their momentum
to the particle when they are scattered and hence exerts force on the particle called as
radiation pressure. He (Arthur Ashkin) investigated how the radiation pressure could
be used to influence microscopic objects. The radiation pressure can be divided into
two components: the scattering force (which points in the direction of the propaga-
tion of incident laser light) and the gradient force (which points in the direction of the
intensity gradient of the light). On scattering, the photons transfer part of their mo-
mentum to the particle (for example a latex micro-sphere) (Fig. 5.9(1)). As a result of
it, the scattering force pushes away the particle along the beam propagation direction.
Some photons are not reflected and cross the interface. Theirpath is changed and some
momentum is transferred to the particle as well, which is attracted toward the region
of greater light intensity. This is the gradient force component of radiation pressure
(Fig. 5.9(2)). A TEM00 focused laser beam has a Gaussian intensity profile, with the
region of more intense light is toward the propagation axis.If the beam is strongly
focused by a microscope objective, the brightest region is in the focal plane. Thus,
the gradient force pulls the micro-sphere toward the laser focus (Fig.5.9(3)). For mi-
crometer sized dielectric particles, like latex or silica micro-spheres, the gradient force
is always greater than the scattering force, so that they aretrapped in the region near
the focus. For small displacement from the laser focus, particles can be considered as
trapped in a harmonic potential. The condition of stable three-dimensional optical trap
is that the ratio of the gradient force to the scattering force must be greater than 1.
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Anew generation of techniques that use the
forces exerted by carefully sculpted wavefronts
of light offers precisely the level of access and
control needed for rapid progress at the
frontiers of several branches of science and

engineering. In particular, optical forces are ideally suited
to manipulating mesoscopic systems, which are
characterized by length scales ranging from tens of
nanometres to hundreds of micrometres, forces ranging
from femtonewtons to nanonewtons and time scales
ranging upward from a microsecond. In biology, this
range covers many of the inter- and intracellular processes
responsible for respiration, reproduction and signalling.
In physics and chemistry, it corresponds to the still-
puzzling interface between classical and quantum
mechanical behaviour, which is made all the more
perplexing by the general inapplicability of statistical
many-body theory in this realm. Fulfilment of the
promise of mesoscopic engineering has been held back by
the need for tiny motors to drive micromachines and for
robust human-scale interfaces with atomic-scale
nanotechnology. Until quite recently, the options for
manipulating, analysing and organizing mesoscopically
textured matter have been limited. The advent of flexible
multifunctional optical traps meets this need.

Many of the most powerful optical manipulation tech-
niques are derived from single-beam optical traps known as
optical tweezers (see Fig. 1), which were introduced by
Arthur Ashkin, Steven Chu and their coworkers at AT&T
Bell Laboratories1,2. An optical tweezer uses forces exerted
by a strongly focused beam of light to trap small objects.
Although the theory behind optical tweezers is still being
developed, the basic principles are straightforward for
objects either much smaller than the wavelength of light or
much larger. Small objects develop an electric dipole
moment in response to the light’s electric field, which, gen-
erally speaking, is drawn up intensity gradients in the elec-
tric field toward the focus. Larger objects act as lenses,
refracting the rays of light and redirecting the momentum
of their photons. The resulting recoil draws them toward
the higher flux of photons near the focus3. This recoil is all
but imperceptible for a macroscopic lens but can have a sub-
stantial influence on mesoscopic objects.

Optical gradient forces compete with radiation pressure
resulting from the momentum absorbed or otherwise
transferred from the photons in the beam, which acts like a
fire hose to blow particles down the optical axis. Stable trap-
ping requires the axial gradient force to dominate, and is
achieved when the beam diverges rapidly enough away
from the focal point. For this reason, optical tweezers are

usually constructed around microscope objective lenses,
whose high numerical apertures and well corrected aberra-
tions focus light as tightly as possible.

Optical tweezers can trap objects as small as 5 nm
(refs 4,5) and can exert forces exceeding 100 pN (refs 6–8)
with resolutions as fine as 100 aN (refs 9–11). This is the
ideal range for exerting forces on biological and macromol-
ecular systems and for measuring their responses. Biologi-
cal and medical applications of optical tweezers have been
reviewed extensively2,12,13, and so just a few examples of their
uses will be outlined. Optical tweezers have been used to
probe the viscoelastic properties of single biopolymers
(such as DNA), cell membranes, aggregated protein fibres
(such as actin), gels of such fibres in the cytoskeleton, and
composite structures (such as chromatin and chromo-
somes). They have also been used to characterize the forces
exerted by molecular motors such as myosin, kinesin,
processive enzymes and ribosomes. These measurements
have revealed that cells use mechanical forces not only
for mobility, motility and chromosome sorting during
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Optical tweezers use the forces exerted by a strongly focused beam of light to trap and move objects ranging in
size from tens of nanometres to tens of micrometres. Since their introduction in 1986, the optical tweezer has
become an important tool for research in the fields of biology, physical chemistry and soft condensed matter
physics. Recent advances promise to take optical tweezers out of the laboratory and into the mainstream of
manufacturing and diagnostics; they may even become consumer products. The next generation of single-beam
optical traps offers revolutionary new opportunities for fundamental and applied research. 
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Figure 1 Optical tweezers use a strongly focused beam of light to trap
objects. Intensity gradients in the converging beam draw small objects,
such as a colloidal particle, toward the focus, whereas the radiation
pressure of the beam tends to blow them down the optical axis. Under
conditions where the gradient force dominates, a particle can be trapped,
in three dimensions, near the focal point.

Figure 5.8: Single beam optical gradient force trap for a colloidal particle. Intensity gradients
in the converging beam draw small objects, such as a colloidal particle, toward the
focus, whereas the radiation pressure of the beam tends to blow them down the
optical axis. Under conditions where the gradient force dominates, a particle can
be trapped, in three dimensions, near the focal point [133].

Optical tweezers (OT) are able to trap particles like dielectric particles (polystyrene,
silica), metallic (gold, silver,copper), biological (cells, macro-molecules, intracellular
structures) within the size of 20 nm-20µm which have provided us the access to phys-
ical, chemical and biological processes in the mesoscopic domain. The majority of
OT make use of the conventional Gaussian beams. However a number of other beam
types have been used to trap particles, including high orderlaser beams i.e. Hermite-
Gaussian beam, Laguerre-Gaussian beams and Bessel beams. But, here in this chapter,
we make use of the LG beams to trap particles (Section 5.4). Basically, the optical ma-
nipulation can be divided into three regimes as shown in Fig.5.10:-

• Case (a) Mie regime where the radius of the trapped object or sphere is much
larger than the wavelength of the laser light i.e.a≫λ.

• Case (b) Lorentz-Mie regime where the radius of the trapped object is approxi-
mately the same as the wavelength of the laser light i.e.a∼λ.

• Case (c) Rayleigh regime where the radius of the trapped object or sphere is
much smaller than the wavelength of the laser light i.e.a≪λ.
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5 Particle dynamics in twisted light

Figure 5.9: (1) Scattering force due to the radiation pressure, (2) Gradient force component
of the radiation pressure, (3) Gradient force pulls the particle into the laser focus
[Source: http://optical-tweezers.com/RadiationPressure.htm].

In Mie regime (a≫ λ) [134], the optical forces can be computed from simple ray
optics approach (Fig.5.11) which can be explained with the momentum transfer asso-
ciated with the bending of light. It is known that light carries both the linear and the
angular momentum and can thus exert forces and torque on matter. Optical tweezers
exploit this fundamental property only to trap objects. Themomentum carried by light
is proportional to its energy and in the direction of propagation. Any change in the
direction of light, by reflection or refraction, will resultin a change of the momen-
tum of the light. If an object bends the light, changing its momentum, conservation
of momentum requires that the object must undergo an equal and opposite momentum
change. This give rise to a force acting on the object which has been described in the
Fig. 5.11for (a) x andy direction as well as for (b)z direction. The light rays get re-
fracted as soon as they travel through the particle which brings change in direction and
leads to the change in momentum of light. According to Newton’s third law, this has
to be balanced by an equal and opposite change in momentum of the particle. Then the
particle will move into the focal spot of the laser where the forces on the particle will
be balanced and thus formed the stable 3d trap. Ray optics canbe used to describe the
effects of a strongly focused laser beam over a transparent dielectric particle, whose
index of refraction is greater than the surrounding medium.

Whereas, in Rayleigh regime (a ≪ λ), the particle or object is treated as electric
dipole in an electric field. The expression for the gradient force (Fgrad) and the scatter-
ing force (Fscat) for trapped objects in the Rayleigh regime are given as [132]:

Fgrad =
−nm

2
αp∇E2 =

−n3
ma3

2

(

m2 − 1
m2 − 2

)

∇E2, (5.25)

Fscat =
nmPscat

c
=

nmI
c

128a6π5

3λ4

(

m2 − 1
m2 + 2

)2

. (5.26)

70



5 Particle dynamics in twisted light

(a) (b) (c)

Figure 5.10: Image (a) represents the Mie regime where the object is much larger than the laser
wavelength (object size> 10λ). Image (b) represents the Lorentz-Mie regime
where the object is approximately the same dimensions as thelaser wavelength.
Image (c) represents the Rayleigh regime where the object ismuch smaller than
the laser wavelength (object size<λ/20).
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Figure 5.11:Ray optics description of the gradient force (a) A transparent bead is illuminated
by a parallel beam of light with an intensity gradient increasing from left to right,
(b) The bead is illuminated by a focused beam of light with a radial intensity
gradient to form a stable trap in three dimension.
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and the scattering cross-section of the sphere,σsc, is [135]

σsc =
128a6π5

3λ4

(

m2 − 1
m2 + 2

)2

, (5.27)

where∇ is the gradient operator,E is the electric field vector,m = ns/nm is the ratio
between the refractive index of the sphere (ns), and that of the surrounding medium
(nm), λ is the wavelength,c is the speed of light,a is the radius of the sphere,I is the
intensity,Pscat is the scattered power andαp is the polarizability of the sphere. As the
gradient force is proportional to polarizability, so a sphere with a high polarizability
will be trapped more strongly than a less polarizable sphere.

The regime between Mie and Rayleigh is called Lorentz-Mie regime where neither
the ray optics nor the point dipole approach is valid and can be explained only by the
electromagnetic theories [136–140] which involve the treatment of either time depen-
dent or time harmonic Maxwell equations using appropriate boundary conditions.

5.3.2 Role of twisted light over Gaussian beams in optical
tweezers (OT)

In most of the applications of OT, it is the linear momentum oflight that is transferred
to the trap objects but as we know that light can carry angularmomentum too which can
be further divided into the spin angular momentum associated with circular polariza-
tion and the orbital angular momentum related with twisted phase-fronts. It means that
the light beams carrying orbital angular momentum (OAM) such as Laguerre-Gaussian
beams (LG) (explained in chapter 2) can be used in the trapping of microscopic ob-
jects. These beams exert torques to twist or rotate microscopic objects. Now, when the
trapping beam is scattered by the object in the trap alteringeither spin or orbital angu-
lar momentum results in the optical torque which can be measured optically without
any calibration procedure as shown in Fig.5.12[141].

In 1986, Ashkin et al. [132] explained that when a focused laser beam interacts with
a small particle, two forces named the scattering force along the direction of light prop-
agation and the gradient force in the direction of the spatial light gradient (explained
in above Section 5.3.1) have a key importance. They showed that the low absorbing
dielectric spherical particles with a refractive index (np) higher than the surrounding
medium or liquid (n0) can also be trapped in three dimension by using a strongly fo-
cused Gaussian beam. Whereas, in the trapping of spherical low index particles such as
bubbles and droplets, the direction of the gradient force gets reversed and the particle
experiences a force away from the maximum intensity region which results in the re-
pulsion of low index particles from the beam axis. Optical tweezers (OT) based on the
Laguerre-Gaussian (LG) beams popularly known as twisted light can overcome this
problem, as the LG beams is associated with helical wavefronts which is an annular
intensity distribution with a zero on-axis intensity also referred as optical vortex. In
optical vortex, the low index particles again experiences the gradient force directed to
the beam axis and thus enable three dimensional stable trapping of the hollow glass
spheres within the range of 2 to 50µm in diameter [143]. It has been explained that
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5 Particle dynamics in twisted light

Figure 5.12:Angular momentum transfer in optical tweezers. Rotation ofa trapped object
can be induced by (a), the transfer of spin angular momentum using a circular
polarized beam or (b), the transfer of orbital angular momentum using a beam
such as high order Laguerre-Gaussian or Bessel beam [141].

0.00 s 0.12 s 0.24 s 0.36 s

0.48 s 0.60 s 0.72 s 0.84 s

0.96 s 1.08 s 1.20 s 1.32 s

1.44 s 1.56 s 1.68 s 1.80 s

1.92 s 2.04 s 2.16 s 2.28 s

Figure 5.13:Reversal of rotation of absorbing polystyrene spheres trapped in a helical beam
[142].
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the successful trapping requires a position of stable equilibrium where the net gradient
and the scattering forces are balanced. For a low index particle (np<n0) such as water
droplets in acetophenone (4− 20 µm in diameter) and hollow glass sphere in water
(12− 30 µm diameter) in a strongly focused vortex beam, the equilibrium position
occurs on the optical axis just above the focal plane [33, 144] and for the high index
particles which can also simultaneously trapped by vortex beams to the normal posi-
tion just below the beam focus. The transverse trapping attributes to the gradient and
the scattering forces directed to vortex core whereas the longitudinal trapping results
from the balanced scattering and gradient forces. The othermajor advantage of the
LG beam over the conventional Gaussian beam in OT is related to the optical trapping
of absorbing particles [142]. Although, optical tweezers using conventional Gaussian
beam works well for most dielectric particles but the absorbing particles experience a
much higher scattering force that often destructs a stable trap. Therefore, the optical
vortex based tweezers are more efficient than the conventional Gaussian beam based
one. Fig.5.13shows the trapping of the absorbing particles (polystyrenespheres) in
the LG modes. These modes makes the particles trapped and rotated. Although, the
particles normally trapped with optical tweezers are highly transparent, usually some
absorption occurs. However, when the absorbability of micron sized particles becomes
high enough, the radiation pressure becomes much greater than the gradient force, and
they can no longer be trapped using the dipole forces. These absorbing particles are
then affected primarily by the radiation pressure, whereby the momentum of absorbed
light is transferred to the particle. In the LG beam modes, the laser intensity is concen-
trated in a ring of light: which means that the radiation force along the beam axis is less
than for the Gaussian mode and hence, the radiation trappingbecomes comparatively
more strong which makes the LG modes more advantageous over Gaussian modes.

An additional advantage of the vortex beams based optical tweezers (OVT) over
Gaussian beams is that the particle is exposed to lower intensities and thus is less
likely to exhibit optically induced damage. On the contrary, in the conventional OT,
the formation of stable traps requires high optical intensities(>105 W/cm2) which can
damage fragile objects such as biological cells or nano-particles. Optical vortex tweez-
ers (OVT) are also proved to be more reliable in increasing the axial trapping efficien-
cies over the optical tweezers using the Gaussian beam. Simpson et al. [27] have made
a comparison between the axial trapping efficiencies produced by OT using the Gaus-
sian beam and the LG mode with an index valueℓ = 3 by measuring the threshold
laser power required to achieve the axial trapping of silicaspheres within the range of
1-5 µm in diameter, suspended in water. It has been observed that for the spheres of
5 µm diameter, which are significantly larger than the diameterof the focused laser
mode, the use of the LG mode withℓ=3 as the trapping beam improves the axial effi-
ciency of the OT by a factor of approximately 2. Even, it has also been seen that both
the axial and the lateral trapping efficiencies can be improved with the LG modes in
‘inverted’ optical tweezers [145]. In the inverted geometry based optical tweezers, the
trapping beam is directed upwards allowing easy and unrestricted access to the sample
which has more applications in biomedical field whereas in the case of conventional
optical tweezers, the trapping beam is directed downwards to the sample. It has been
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concluded out that for spheres with size larger than the diameter of the focused beam,
the use of high mode LG modes is highly improves the axial trapping efficiency of op-
tical tweezers while the lateral trapping remains unaltered and for small-size spheres
the TEM00 Gaussian beam is more recommendable.

On the contrary, recently in 2012 [146], it has been demonstrated that the transverse
or lateral trapping efficiency can also be enhanced on dielectric sphere by the high
order LG beams in Rayleigh regime i.e where radius of trappedsphere is less than
the wavelength of the beam. It was investigated that for Rayleigh particles, the LG
beams withℓ = 0 improves the transverse trapping effect with increasing value of
p compared to Gaussian beam; while the axial trapping remainsthe same, although
the central trapping region reduces asp increases. However, for the high order LG
modes (i.e. ℓ ≥ 1), it has been found that the maximal transverse gradient forces
increase with the increasing ofp values and the axial radiation forces reduce slightly,
therefore an optimal selection on the value ofp andℓ is necessary for obtaining an
optimal optical guiding effect. Thus, the above mentioned facts are really helpful to
draw the conclusion on the efficiency of the LG beams over the Gaussian beams in
optical trapping process.

5.4 Optical trapping, guiding and acceleration of
neutral atoms with twisted light

It is a well known fact that the classical interaction of a free electron with a rapidly os-
cillating, spatially inhomogeneous electromagnetic fields results in the so called pon-
deromotive force on the electron directed towards the regions of low intensity. The
same fact can be used in the case of ponderomotive interaction of an optical field with
Rydberg atom as it is comprised of an electron that is weakly bound to an ionic core
through Coulomb interaction, thus considered as a free electron. Hence, a Rydberg
atom immersed in an optical field can be described by the threecoordinates system i.e.
R (position of the Rydberg atom center of mass), r (relative coordinate between the
Rydberg electron and the ionic core) andρ (describes the quiver motion of the driven
oscillation of the electron in the applied field) as shown in Fig. 5.14.

Our present work is motivated by a recent experimental studyon the acceleration
of neutral atoms in a strong Gaussian laser beam [10] where the captivity of Rydberg
electron in the ponderomotive potential of a strongly focused Gaussian beam is ob-
served. Hence, the captivity of Rydberg electron can be explained on the basis of the
three step model (details are given in section 5.2). Eichmann and his coworkers [10]
explained that the helium’s electron, which oscillates vigorously near its ionic core in
response to the laser field, still lacks enough energy after the pulse to escape the core
of the atom. As a result, the electron is recaptured by the core in a bound excited state.
However, during the oscillation, the strongly focused laser beam induces a pondero-
motive force which leads to the ultra-strong acceleration of neutral atoms. We adopt
a similar physical picture as in [10], namely the three-step model for strong field ion-
ization [114], according to which the valence electron tunnels out of theatom near the
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Figure 5.14:Relevant coordinates for a Rydberg atom immersed in an applied optical field.

laser peak field. The escaping electron propagates in the laser field and may eventually
be recaptured into the atom.

Our findings based on the analysis of the classical trajectories are summarized as
follows: The atom as a whole attains a net internal twist due to the transfer of a net
angular momentumℓ to the electron as it traverses the region of high intensity.Since
the increase ofℓ enhances the centrifugal barrier, the electron is recaptured into outer
orbits. Thus, this procedure might be useful for the generation of Rydberg atoms with
internal orbital currents and for spin manipulation in spin-orbit coupled systems, e.g.
as discussed in Refs. [67,69]. Furthermore, depending on the initial velocity and the
position of the atom with respect to the optical axis, due to the ponderomotive potential
the atom is trapped within the beam or accelerated away from it. This effect can be
used for laser guiding and structuring of a distribution of neutral atoms and might be
useful for lithographic applications. Here, we will present numerical calculations for
the parameters given in the experiment with He atoms [10] and contrast with the results
for the Gaussian beam.

5.4.1 Results and discussion

The electric fieldE of the LG beam in cylindrical coordinates (with thez axis chosen
to be along the incident beam propagation direction) is [24, 97](for more details, see
chapter2):-

E(r, φ, z, t) = e
C|ℓ|p
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[
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]

exp(iℓφ) + c.c., (5.28)

wherer andφ are the radial and azimuthal coordinates, respectively,ℓ is the topological
charge of the optical vortex, ande is the polarization vector.L|ℓ|p (x) is the associated
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Laguerre polynomial,C|ℓ|p is a normalization constant,w(z)=w0

√

1+
(

z
z0

)2
is the radius

of the beam atz, w0 is the half beam width,k is the wave number in vacuum andφ0 is
a constant phase of the field.

In the present work, for an atom in the presence of the light beam with OAM, we
have considered the classical equations of motions for the structureless ionic core and
one active electron including the electrostatic forcesFc. The calculations are per-
formed for He atoms [10]. As outlined below for a sizable effect the spatial intensity
gradient is essential. Hence, the atoms of interest here arethose initially residing
aroundr ≈ w0/4. Adopting the three-step model [114], we consider the second step
where the liberated electron traverses the high-intensityregion of the field (Eq.5.28).
The electron moving in the plane perpendicular to the light propagation direction at-
tains an angular twist, i.e. a velocity component (˙r⊥(t) = rφ̇(t)) perpendicular to the
radial direction to the ion. This is important insofar, as the electron re-entering the
ionic fields has then the classical angular momentumL=mrṙ⊥(t)=mr2φ̇(t) and there-
fore, it experiences a centrifugal barrier pushing it to outer orbits. Note, that this barrier
can be enhanced by increasingℓ. The sign ofℓ sets the sign of the orbital current. This
procedure can thus be used to “pump” the atom to an oriented high Rydberg state.
However, the above description contrasts the previous study by Babiker et al. [147]
on the OAM exchange between the light carrying OAM and molecules. In their work,
they stated on the basis of explicit analysis that during theinteraction of the light beams
containing OAM with molecules, the exchange of the OAM occurs only between the
light beams and center of mass motion i.e. no internal electron state of an atom would
participate in any OAM exchange in the electric dipole interactions. And only in the
case of weaker electric quadruple interaction, the exchange of the OAM can take place
involving all the three subsystems, i.e. the light, the internal motion and the center of
mass motion. Recently, an another interesting study by Lloyd et al. [148] came into
picture in favor of our predicted result that OAM exchange indeed can occur even in
the case of electric dipole transition. It has been argued theoretically that the electric
dipole transition involves the transfer of a single unit of OAM between the light beam
and the internal motion of the atomic electron whereas the higher multi-pole transitions
leads to the exchange of two or more units of OAM between the vortex beam and the
atomic system. For illustrations, we have solved numerically the Lagrangian equations
of motion and Fig.5.15shows the trajectory of an electron in thex−y plane endorsing
the above statements (for detailed calculations, refer to Appendix C).

The radial drift motion of an atom on the other hand is determined by the pondero-
motive forcesFpe andFpi on the electron and the ion, respectively, i.e.

mer̈1 = Fpe+ Fc (5.29)

mi r̈2 = Fpi − Fc. (5.30)

Hereme (mi) is the mass of the electron (ion) andre (r i) is the radial coordinate of
the electron (ion). Switching over to a relative and a centerof massR coordinate and
neglecting terms of the order 1/m2

i we find for the drift motion of the atom as a whole
the following equation of motion (for detailed calculations, refer to Appendix B);
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Figure 5.15:Trajectory of an electron in the LG beam with Coulomb potential for following
parameters:me=9.1× 10−31kg, w0=1.05µm,ω=25.2 × 1014 rad/s,φ0=98.5◦,
E0=0.7× 108 V/m, ℓ=1, p=0, r (t=0)= (0.5 nm, 0, 0), ṙ (t=0)= (106 m/s, 0, 0).

MR̈(t) = −
e2

4meω2
∇|E|2, (5.31)

whereM is the atom mass ande is the electron charge.
The ponderomotive force depends on the gradient of the spatial distribution of the

intensityI. ForLG1
0 mode, we have

I ∝ |E|2 = 4E2
0

2r2

w2(z)
exp

(

−2r2

w2(z)

)

. (5.32)

The ponderomotive potential is thus approximately parabolic near the intensity min-
ima. The number of minima is determined byp. We note thatℓ does not appear ex-
plicitly in I, similar to the case ofℓ = 0 corresponding to the Gaussian beam. Hence,
sufficiently cold atoms starting near the radial minima of the beam perform harmonic
motion with a frequency determined by the radial shape of thebeam. For a fixed waist
and overall shape of the beam the frequencies can be increased by increasingp. Along
the beam the atoms drift almost freely with their initial velocities. In general the atom
center of massR evolves according to

R̈(t) =
−e2E2

0

Mω2

(

4R
w2(z)

)

exp

(

−2R2

w2(z)

) (

1− 2R2

w2(z)

)

. (5.33)

To obtain analytical results we argue as follows: atoms initially located around the
optical axis or at distances larger than the beam waistw0 hardly experience any laser-
induced drift. The maximum laser influence is exerted on atoms residing initially at
R = w0/2 (with Ṙ(t = 0) = 0). For these atoms, integrating over the full pulse laser
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Figure 5.16:Dynamics of a neutral He atom in the LG beam for different initial conditions.
(a) Ponderomotive potential of LG10 mode (blue curve) and LG12 mode (dashed
curve) with the following parameters:M(He atom)=6.68×10−27kg, w0=16µm,
ω = 28.96× 1014 rad/s (λ = 650 nm), E0 = 5.3 × 107 V/m; (b) The neutral atom
resides initially atR(t = 0) = 10 µm, Ṙ(t = 0) = 0 m/s for ℓ = 1, p = 0 (black
curve),ℓ=1, p=2 (dashed red curve); (c) Scattering of atom atR(t=0)=30µm,
Ṙ(t = 0)= 0 m/s (indicated with the red curve) and witḣR(t = 0)= 40× 103 m/s
(indicated with the dot-dashed curve).
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duration, we find the maximum velocityvmax(z) (For full derivations, refer Appendix
B) to be given by

vmax(z) =
−I0 exp(−0.5)

√
πτ

2Mω2w0

(

1+
(

z
z0

)2
)

3
2

, (5.34)

whereτ is the pulse width,I0 is the field intensity andω is the laser frequency. This
relation we confirmed by solving fully numerically for Eq.5.33. For numerical il-
lustration we employ similar laser and atom parameters as inthe experiment ( [10]).
Fig. 5.16 shows the dynamics of the neutral He atoms initially residing at different
radial positions with respect to the optical axis. The ponderomotive potential forLG1

0
mode (blue curve) andLG1

2 (dashed curve) are shown in Fig.5.16(a) that evidences the
trapping of a neutral He atom initially located atR=10µm (Fig.5.16(b)) for ℓ=1, p=0
with the black curve and forℓ=1, p=2 with the red dashed curve (while repeating the
same calculations) where it exhibits the rapid oscillations through the focus of the LG
beam. For the initial value of the radial coordinateR=30µm, the atom is scattered as
indicated by the red curve in Fig.5.16(c). For a high initial velocity, i.e. 40× 103 m/s,
the atom remains initially bound to the potential well but ata later time it escapes (dot-
dashed curve). In this case the situation resembles the one for the Gaussian beam and
indeed the velocities are similar to those reported in [10]. In summary, a neutral atom
attains an internal twist and can be trapped in the radial minima of an LG beam where
it oscillates with a frequency determined by the spatial distribution of the beam.

5.4.2 Conclusions

We studied the dynamics of neutral atoms in the focused, high-intensity laser beam
carrying an orbital angular momentum. The dynamics of the active electron in the
high intensity region of the laser field results in a transferof a net angular momentum
to the atom. The ponderomotive force on the electrons translates into an unbounded
or a bounded drift radial motion of the whole atom, dependingon its initial velocity
and position in the beam. In particular, the radial minima ofthe beam may trap the
neutral atoms, an effect which may be exploited for an atom guiding, structuring and
for lithographic applications.
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Chapter6
Summary

In the recent years, the light beams carrying orbital angular momentum have received
an increased attention by Optics fraternity. Here, in the present work we focused on the
study of optical nonlinear phenomena such as self-focusingand de-focusing, optical
phase conjugation and particle dynamics with twisted light. For these helical wavefront
beams, the Poynting vector unlike spin angular momentum is not parallel to the beam
axis, thus results into many interesting nonlinear effects by varying beam parameters
like beam waist, frequency and intensity. The studies on self-focusing of light beams
have been carried out for many years but here for the first timeto the best of our knowl-
edge, the self-focusing and de-focusing of twisted light innonlinear media has been
pointed out by solving the differential wave equation for the beam width parameter an-
alytically using the WKB and paraxial approximations. The results thus obtained are
analyzed and illustrated for typical experimental situations with the help of numerical
calculations. The predicted focusing effect can be used for the realization of more ver-
satile optical tweezers, e.g. for creating tighter and stronger three-dimensional optical
traps for both high and low refractive index particles in comparison to their surrounding
media by crossing two LG beams at the focused distance. Next,a study on the reflec-
tion and the transmission of twisted light through multilayered structure containing
phase conjugating interfaces has been conducted and the obtained results are found in
good agreement with the previous experimental studies containing single PCM layer
structure. The key idea behind this work is to calculate the interference pattern for
reflected beams resulting from the multilayered structure with phase conjugating in-
terfaces. It has been observed that the interference pattern for reflected beams has
dependence on the thickness of the medium and thus prove helpful to obtain informa-
tion on the depth profile of refractive in-homogeneities of composite optical materials.
The obtained results can also be useful to simulate a certainexperimental situation to
study the phase conjugation in composite optical materials.

Since the last few decades, the field of optical micromanipulation using twisted
light has emerged as one of the key advances seen in the modernphotonics. The major
point of implementing the twisted light in trapping is that angular as well as linear
momentum can be transferred to trapped objects. In such light beams, the OAM offers
itself as a useful tool in the exertion of torques on particles by simply increasing the
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6 Summary

azimuthal index in contrast to the optical torque arising from spin angular momentum
which varies with optical power and is limited to~ per photon. Here, we used the same
principle of optical trapping to study the dynamics of charged particles and neutral
atoms by calculating their classical trajectories using the focused, high-intensity laser
beam carrying an orbital angular momentum. Our present workis motivated by a
recent experimental study on the acceleration of neutral atoms in a strong Gaussian
laser beam carried out by Eichmann et al. [10]. Considering the same fact, we studied
the dynamics of the active electron of the neutral He atom in the high intensity region of
the laser field carrying OAM which results into a transfer of anet angular momentum
to the atom. The ponderomotive force on the electrons translates into an unbounded or
a bounded drift radial motion of the whole atom, depending onits initial velocity and
position in the beam. In particular, the radial minima of thebeam may trap the neutral
atoms and this effect can be used for an atom guiding, structuring and in lithographic
applications.
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Appendix A: Calculation on reflection
and transmission coefficients of twisted
light for quadra-layered structure

Here, we have considered a quadra-layered dielectric structure (the layers and related
quantities are indexed by 0, 1, 2, 3) as sketched in Fig.A.1, similar as described in
chapter 4. The only difference is that here, we will present calculations for structure
containing three layers of PCM. All the layers are parallel and infinitely extended.
The monochromatic LG beam with the frequencyω propagates in the medium 0 and
impinges onto the medium 1. The interface between medium 0 and medium 1, the
interface between medium 1 and 2 as well as the interface between medium 2 and
medium 3 are phase conjugating,d1 is the thickness of the layer 1 andd2 is the thick-
ness of the layer 2 (our treatment is also valid when the wholemedium 1 is phase
conjugating). We denote the incident, the reflected and the transmitted fields byi, r
andt respectively andn0, n1, n2 andn3 are the refractive indices of the media 0, 1, 2
and 3 respectively.

E0i

E1t

E2t

E0r

E1r

E2r

E3t

d1

d2

z=0

z >0

d3=!

pcm

pcm

pcm

Medium 0

Medium 1

Medium 2

Medium 3

Figure A.1: Schematic representation of the propagation of LG beam in a multi layer dielectric
structure. The interfaces with PCM are indicated.
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Appendix A: Reflection and transmission coefficients of twisted light

The electric fieldE (at the beam waist,z=0) of the LG beam in cylindrical coordi-
nates (with thez axis chosen to be along the incident beam propagation direction) is
given by [24,97].

E =
C|ℓ|p
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expi(k0nz − ωt) exp(iℓφ), (A.1)

wherer andφ are the radial and azimuthal coordinates,ℓ can take any integer value
either positive or negative and means physically the topological charge of the optical
vortex. L|ℓ|p is the associated Laguerre polynomial,C|ℓ|p is a normalization constant,w0

is the half beam width, andk0=ω/c is the wave number in vacuum.
To keep the notation simple we can incorporate the conditiononℓ due to time rever-

sal property of phase conjugating mirror by the ansatz
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−iℓφ = r0

C|ℓ|p

w0













√
2r
w0













|ℓ|

exp

(

−r2

w2
0

)

L|ℓ|p

(

2r2

w2
0

)

e−i(k0n0z+ℓφ), (z ≤ 0) (A.3)

E1t = Ē1te
iℓφ = t1
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E1r = Ē1re
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E2t = Ē2te
iℓφ = t2
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E2r = Ē2re
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E3t = Ē3te
iℓφ = t3
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Here, the temporal factor exp(−iωt) is omitted for the sake of simplicity. To evaluate
the reflection and the transmission coefficients, we shall apply the condition of the
continuity and smoothness of the field at the boundaries within the structure [100,101]
(note the behavior ofℓ upon scattering is already accounted for by the ansatz (Eq.A.2-
Eq.A.8))

[

Ē0i + Ē0r

]

z=0
=

[

Ē1t + Ē1r

]

z=0
, (A.9a)

[

Ē1t + Ē1r

]

z=d1
=

[

Ē2t + Ē2r

]

z=d1
, (A.9b)

[

Ē2t + Ē2r

]

z=(d1+d2)
=

[

Ē3t

]

z=(d1+d2)
. (A.9c)
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Appendix A: Reflection and transmission coefficients of twisted light

and
[

∂Ē0i
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+
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∂z

]
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=
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+
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]
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=

[

∂Ē2t
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+
∂Ē2r
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]
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[

∂Ē2t

∂z
+
∂Ē2r

∂z

]

z=(d1+d2)

=

[

∂Ē3t

∂z

]

z=(d1+d2)

. (A.10c)

Eqs.(A.9) and (A.10) lead to

1+ r0 = t1 + r1, (A.11a)

t1eiα1 + r1e−iα1 = t2 + r2, (A.11b)

t2eiα2 + r2e−iα2 = t3, (A.11c)

and

n0[1 − r0] = n1[t1 − r1], (A.12a)

n1[t1eiα1 − r1e−iα1] = n2(t2 − r2), (A.12b)

n2[t2eiα2 − r2e−iα2] = n3t3. (A.12c)

With the notationα1 = k0n1d1, α2 = k0n2d2.
On solving Eq.A.11 and Eq.A.12, we obtain the reflection coefficientr0 related to

the propagation in the medium 0, and the reflection and the transmission coefficients
related to the propagation in the medium 1, 2 and 3 denoted byr1, t1, r2, t2 and t3,
respectively. Explicitly, the reflection and the transmission coefficients are

r0 =

(

an0 − a1n1

an0 + a1n1

)

, (A.13)

r1 =
1+ r0 − r2A−e−iα1

1− e−2iα1
, (A.14)

t1 = e−iα1(r2A− − r1e−iα1), (A.15)

r2 = −
2n1e−iα1(1+ r0)

n2A+(e−2iα1 − 1)− n1A−(e−2iα1 + 1)
, (A.16)

t2 = −r2e−2iα2N, (A.17)

t3 =
n2

n3
(t2eiα2 − r2e−iα2). (A.18)

where

a = (e−2iα1 − 1)2(n1A− + n2A+) − 2n1A−e−2iα1(e−2iα1 − 1),

a1 = [(e−2iα1 − 1)(n1A− + n2A+) − 2n1A−e−2iα1](e−2iα1 − 1)+ 4n1A−e−2iα1,

A+ = 1+ e−2iα2N,

A− = 1− e−2iα2N,

N =

(

n3 + n2

n3 − n2

)

.

85



Appendix A: Reflection and transmission coefficients of twisted light

After substituting for the reflection and the transmission coefficients in the Eqs. (A.2-
A.8), we can obtain the electromagnetic fields that describe thepropagation of the LG
beam through the system depicted in Fig.A.1.
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Appendix B: Calculation on Lagrangian
equations of motion of the LG beam in
the absence of Coulomb potential

The lagrangian of a particle with charge ‘q’ moving with the velocity ‘v′ in an electro-
magnetic field with the scalar and vector potentialsϕ andA respectively can be written
as [100]:

L =
1
2

mv2 − qϕ +
q
c

A · v (B.1)

Forϕ = 0, z = 0, the Eq.B.1 reduces to

L =
1
2

mv2 +
q
c

A · v (B.2)

L =
1
2

m(ṙ2 + r2φ̇2) +
q
c

A · v (∵ x = r cosφ) (B.3)

(B.4)

While the termA · v can be written as

A · v = −r(t) sinφ(t)φ̇(t) fℓp + ṙ(t) cosφ(t) fℓp, (B.5)

where thefℓp, the field amplitude of the LG beam is [97]
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ℓp (r, φ, z = 0, t) =
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(B.6)
wherer, φ andz are cylindrical coordinates,ℓ is the azimuthal index,p is the radial
mode index,w0 is the beam waist atz = 0, L|ℓ|p

(

2r2

w(z)2

)

is the associated Laguerre Poly-

nomial andC|ℓ|p is the normalization constant.

For ℓ>1, p=0, the value of Laguerre polynomial i.e.L|ℓ|p
(

2r(t)2

w2
0

)

= 1 [149], then the

Eq.B.6 reduces to (in more generalized form as):

fℓp(r, φ, t) = E0
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Appendix B: Lagrangian equations of motion of the LG beam without Coulomb potential

whereλ represents the azimuthal indexℓ and the term
C|ℓ|p

w0
has been omitted in the

further steps for simplicity.
The Euler-Lagrangian equations of motion in cylindrical coordinates are [100]:

d
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Now Eq.B.8 implies
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The L.H.S. of Eq.B.11equals to
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Appendix B: Lagrangian equations of motion of the LG beam without Coulomb potential

The R.H.S. of Eq.B.11equals to
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After substituting Eq.B.12and Eq.B.13 in Eq.B.11, we get

r̈(t) = r(t)φ̇(t)2 −
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(
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Now Eq.B.9 implies
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Appendix B: Lagrangian equations of motion of the LG beam without Coulomb potential

The L.H.S. of Eq.B.15equals to
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The R.H.S. of Eq.B.15equals to
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ṙ(t)
∂

∂φ

(

fℓp cosφ(t)
)

−
q
c

r(t)φ̇(t)
∂

∂φ

(

sinφ(t) fℓp

)

= −q
c

ṙ(t) sinφ(t) fℓp +
q
c

ṙ(t) cosφ(t)
∂

∂φ
( fℓp)

− q
c

r(t)φ̇(t) cosφ(t) fℓp −
q
c

r(t)φ̇(t) sinφ(t)
∂

∂φ
( fℓp)

= −
q
c

ṙ(t) sinφ(t) fℓp +
λq
c

ṙ(t) cosφ(t)E0
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)
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= −
q
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(

r(t)φ̇(t) cosφ(t) + ṙ(t) sinφ(t)
)

+
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E0
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
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
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
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(
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)
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×
(

ṙ(t) cosφ(t) − r(t)φ̇(t) sinφ(t)
)

(B.17)

After substituting Eq.B.16and Eq.B.17 in Eq.B.15, we get
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Appendix B: Lagrangian equations of motion of the LG beam without Coulomb potential

r(t)2φ̈(t) = − 2mr(t)ṙ(t)φ̇(t) +
q

mc
E0


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
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)
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×
(

λṙ(t) cosφ(t) − λr(t)φ̇(t) sinφ(t) + r(t) sinφ(t)(ω + λφ′(t))
)

+
q

mc
E0r(t) sinφ(t)













√
2

w0










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λ

exp

(

−r(t)2

w2
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r′(t)Θ1A

(B.18)

whereΘ2 = cos(ωt + φ0 + λφ(t)).
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Appendix C: Calculation on Lagrangian
equations of motion of the LG beam in
the presence of Coulomb potential

The Lagrangian of a particle with charge ‘q’ moving with the velocity ‘v′ in an elec-
tromagnetic field with the scalar and vector potentialsϕ andA respectively and in the
soft Coulomb potentialVc can be written as [100]:

L =
1
2

mv2 − qϕ +
q
c

A · v − Vc (C.1)

whereVc = − 1√
1+r(t)2

is called Coulomb potential. Forϕ = 0, z = 0, the Eq.C.1

reduces to

L =
1
2

mv2 +
q
c

A · v − Vc (C.2)

L =
1
2

m(ṙ2 + r2φ̇2) +
q
c

A · v − Vc (∵ x = r cosφ) (C.3)

While the termA · v can be written as

A · v = −r(t) sinφ(t)φ̇(t) fℓp + ṙ(t) cosφ(t) fℓp , (C.4)

where thefℓp, the field amplitude of the LG beam is [97]

f LG
ℓp (r, φ, z = 0, t) =

C|ℓ|p

w0
E0


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







√
2r(t)
w0













|ℓ|

exp

(

−r(t)2

w2
0

)

L|ℓ|p

(

2r(t)2

w2
0

)

expi(φ0+ωt+ℓφ(t)) f (t)

(C.5)
wherer, φ andz are cylindrical coordinates,ℓ is the azimuthal index,p is the radial
mode index,w0 is the beam waist atz = 0, L|ℓ|p

(

2r2

w(z)2

)

is the associated Laguerre Poly-

nomial,C|ℓ|p is the normalization constant andf (t) = exp
(

− (t−t0)2

τ2

)

is the pulse envelope
with τ is the pulse width.

For ℓ>1, p=0, the value of Laguerre polynomial i.e.L|ℓ|p
(

2r(t)2

w2
0

)

= 1 [149], then the

Eq.C.5reduces to (in more generalized form as):

fℓp(r, φ, t) = E0


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







√
2r(t)
w0













λ

exp

(

−r(t)2

w2
0

)

sin(ωt + φ0 + λφ(t)) f (t) (C.6)
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Appendix C: Lagrangian equations of motion of the LG beam with Coulomb potential

whereλ represents the azimuthal indexℓ and the term
C|ℓ|p

w0
has been omitted in the

further steps for simplicity.
The Euler-Lagrangian equations of motion in cylindrical coordinates can be given

as [100]:

d
dt

(

∂L
∂ṙ

)

=
∂L
∂r
, (C.7)

d
dt

(

∂L

∂φ̇

)

=
∂L
∂φ
, (C.8)

d
dt

(

∂L
∂ż

)

=
∂L
∂z
. (C.9)

Now Eq.C.7 implies
d
dt

(

∂L
∂ṙ

)

=
∂L
∂r

, (C.10)

The L.H.S. of Eq.C.10equals to

d
dt

(

∂L
∂ṙ

)

=
d
dt

∂

∂ṙ(t)

[m
2

(

ṙ(t)2 + r(t)2φ̇(t)2
)

+
q
c

(

ṙ(t) cosφ(t) fℓp − r(t) sinφ(t)φ̇(t) fℓp

)

− Vc

]

=
d
dt

(

mṙ(t) +
q
c

(

fℓp cosφ(t)
)

)

= mr̈(t) +
q
c

d
dt

(

fℓp cosφ(t)
)

= mr̈(t) −
q
c

fℓp sinφ(t)φ̇(t) +
q
c

cosφ(t)
d
dt

(

fℓp

)

= mr̈(t) − q
c

fℓp sinφ(t)φ̇(t) +
q
c

E0 cosφ(t)


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√
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
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

λ
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(
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w2
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)

B f (t)

+
q
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E0 cosφ(t)


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

λ
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(

−r(t)2

w2
0

) (

−2r(t)

w2
0

)

r′(t)Θ1 f (t)

+
q
c

E0 cosφ(t)


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(
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E0 cosφ(t)
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(

−r(t)2

w2
0

)

Θ1 f (t)

(

−2(t − t0)
τ2

)

= mr̈(t) −
q
c

fℓp sinφ(t)φ̇(t) +
q
c

E0 cosφ(t)


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B

+
q
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E0 cosφ(t)
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

λ

exp

(
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) (
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r′(t)Θ1A

+
q
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E0 cosφ(t)


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Θ1 f (t)

(

−
2(t − t0)
τ2

)

, (C.11)
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Appendix C: Lagrangian equations of motion of the LG beam with Coulomb potential

The R.H.S. of Eq.C.10equals to

∂L
∂r
=

∂

∂r

[m
2

(

ṙ(t)2 + r(t)2φ̇(t)2
)

+
q
c

(

ṙ(t) cosφ(t) fℓp − r(t) sinφ(t)φ̇(t) fℓp − Vc

)

]

= mr(t)φ̇(t)2 +
q
c
∂

∂r

(

ṙ(t) cosφ(t) fℓp − r(t) sinφ(t)φ̇(t) fℓp − Vc

)

= mr(t)φ̇(t)2 +
q
c

ṙ(t) cosφ(t)
∂

∂r
( fℓp) −

q
c

sinφ(t)φ̇(t)
∂

∂r
[r(t) fℓp −

∂

∂r
(Vc)]

= mr(t)φ̇(t)2 +
q
c

ṙ(t) cosφ(t)E0


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
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


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(

−r(t)2

w2
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)

Θ1A

−
q
c
φ̇(t) sinφ(t) fℓp −

q
c

r(t)φ̇(t) sinφ(t)E0


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
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w0


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







λ

exp

(

−r(t)2

w2
0

)

Θ1A

−
(

r(t)

(1+ r(t)2)
3
2

)

. (C.12)

After substituting Eq.C.11and Eq.C.12in Eq.C.10, we get

r̈(t) =r(t)φ̇(t)2 −
q

mc
E0


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





λ

exp

(

−r(t)2
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)

f (t)

(

r(t)φ̇(t) sinφ(t)Θ1A

+ [r(t)]λ cosφ(t)B + [r(t)]λ cosφ(t)Θ1

(

−
2(t − t0)
τ2

) )

−
1
m















r(t)
(

1+ r(t)2
)

3
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








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

(C.13)

whereA =
(

[r(t)]λ
(

−2r(t)
w2

0

)

+ λ[r(t)]λ−1
)

, B = cos(ωt + φ0 + λφ(t))(ω + λφ′(t)) & Θ1 =

sin(ωt + φ0 + λφ(t)).
Eq.C.8 implies

d
dt

(

∂L

∂φ̇

)

=
∂L
∂φ

, (C.14)
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Appendix C: Lagrangian equations of motion of the LG beam with Coulomb potential

The L.H.S. of Eq.C.14equals to

d
dt

(

∂L

∂φ̇

)

=
d
dt

∂

∂φ̇

[m
2

(

ṙ(t)2 + r(t)2φ̇(t)2
)

+
q
c

(

ṙ(t) cosφ(t) fℓp − r(t) sinφ(t)φ̇(t) fℓp − Vc

)

]

=
d
dt
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mr(t)2φ̇(t) −
q
c

fℓpr(t) sinφ(t)
)

= mr(t)2φ̈(t) + 2mr(t)ṙ(t)φ̇(t) − q
c

d
dt

(

fℓpr(t) sinφ(t)
)

= mr(t)2φ̈(t) + 2mr(t)ṙ(t)φ̇(t)

− q
c

E0r(t) sinφ(t)


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Θ1 f (t)

− q
c

fℓp

(

r(t)φ̇(t) cosφ(t) + ṙ(t) sin(t)
)

, (C.15)

The R.H.S. of Eq.C.14equals to

∂L
∂φ

=
∂

∂φ

[m
2

(

ṙ(t)2 + r(t)2φ̇(t)2
)

+
q
c

(

ṙ(t) cosφ(t) fℓp − r(t) sinφ(t)φ̇(t) fℓp − Vc

)

]
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∂φ
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)

−
q
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∂

∂φ

(

sinφ(t) fℓp

)

= −q
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ṙ(t) sinφ(t) fℓp +
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−
q
c
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. (C.16)
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On substituting Eq.C.15and Eq.C.16in Eq.C.14, we get

r(t)2φ̈(t) = − 2mr(t)ṙ(t)φ̇(t) +
q

mc
E0
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mc
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)

Θ1 f (t)

×
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[r(t)]λ
(

−2(t − t0)
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+ r′(t)A

)

,

(C.17)

whereΘ2 = cos(ωt + φ0 + λφ(t)).
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Appendix D: Calculations on Optical
trapping of neutral atoms with the LG
beam

The equations of motion for an electron and the ion in the ponderomotive forces i.eFpe

andFpi, respectively can be given as:

mer̈1 = Fpe+ Fc, (D.1)

mi r̈2 = Fpi − Fc. (D.2)

whereme (mi) is the mass of the electron (ion) andre (r i) is the radial coordinate of the
electron (ion).

Switching over to a relative and a center of massR coordinate and neglecting terms
of the order 1/m2

i , the equation of motion for the drift motion of the atom as a whole
can be given as:

MR̈ = −
e2

4meω2
∇|E|2. (D.3)

As the ponderomotive force depends on the gradient of the spatial distribution of the
intensityI, therefore for LG1

0 mode, we have

I ∝ |E|2 = 4E2
0

2r2w2

w2(z)
exp

(

−2r2

w2(z)

)

, (D.4)

where

w(z) = w0

√

1+

(

z
z0

)2

(D.5)

is the radius of the beam atz. And E is given as

E(r, φ, z, t) = e
C|ℓ|p

w(z)


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√
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w(z)


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







|ℓ|

exp

(

−r2

w2(z)

)

× L|ℓ|p

(

2r2

w2(z)

)

exp
[

i(kz+ωt + φ0)
]

exp(iℓφ) f (t) + c.c., (D.6)

wherer andφ are the radial and azimuthal coordinates, respectively,ℓ is the topological
charge of the optical vortex, ande is the polarization vector.Lℓp(x) is the associated
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Laguerre polynomial,Cℓ
p is a normalization constant,w0 is the half beam width,k is

the wave number in vacuum andφ0 is a constant phase andf (t) = exp
(

− t2

τ2

)

is the laser
pulse envelope,τ is the pulse width. On substituting the value of|E|2 from Eq.D.4 in
Eq.D.3, we can write now Eq.D.3 as

MR̈(t) = − e2

4meω2

∂

∂r

[

4E2
0

2r2w2

w2(z)
exp

(

−2r2

w2(z)

)]

f (t),

R̈(t) = −
e2E2

0

Mω2

∂

∂r

[

2r2w2

w2(z)
exp

(

−2r2

w2(z)

)]

f (t) (∵ me = 1),

R̈(t) = −
e2E2

0

Mω2

[

2r2

w2(z)
exp

(

− 2r2

w2(z)

) (

− 4r
w2(z)

)

+ exp

(

− 2r2

w2(z)

) (

4r
w2(z)

)]

f (t). (D.7)

Then for the atom center of massR, Eq.D.7 can be written as

R̈(t) = −
e2E2

0

Mω2
exp

(

−
2R2

w2(z)

) (

4R
w2(z)

) (

1−
2R
w2(z)

)

exp

(

−
t2

τ2

)

. (D.8)

The atoms residing atR = w0/2 with Ṙ(t = 0), will experience the maximum laser,
thus the maximum velocity can be given as

Ṙ(t) = −
e2E2

0

Mω2
exp

(

−
2R2

w2(z)

) (

4R
w2(z)

) (

1−
2R
w2(z)

) ∫ 1

0
exp

(

−
t2

τ2

)

dt

= −
e2E2

0

Mω2
exp

(

− 2R2

w2(z)

) (

4R
w2(z)

) (

1− 2R
w2(z)

)

1
2

√
πτ. (D.9)

Now on substituting the value ofw(z) from Eq. D.5 in above Eq.D.9, we get the
expression for maximum velocity as:

vmax = −
I0 exp(−0.5)

√
πτ

2Mω2w0

(

1+
(

z
z0

)2
)

3
2

, (D.10)

whereI0 is the field intensity.
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