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Abstract

I propose AdaptivePLSA for dynamic topic modeling with streams of documents. For
the SIGIR proceedings, the learned topics give clear hints to the main research subjects.
Next, I propose TopicTable, a visualization for presenting topics learned from docu-
ment streams. TopicTable visualizes useful pieces of information, e.g., topics similarities
and newly emerging words. It is e�ective as it provides clear hints to alien documents
which were added to a test stream of documents. Next, I propose an approach for the
disambiguation of social tags which have been added to documents by many users of
a collaborative tagging system. This approach uncovers unobvious semantics of tags
and visualizes topics which are learned from the tagged documents. Last, I apply bilin-
gual topic modeling to NMR spectra and chemical constitutions of chemical compounds.
The learned bilingual topics might be exploited by new approaches for data mining in
chemical- and structure-databases of chemical compounds.

Keywords: probabilistic topic models, data mining, visualization, collaborative tag-
ging systems, analysis of social tags, statistical modeling of chemical data, dynamic top-
ics, statistical modeling of document streams, statistical modeling of 2D NMR spectra,
statistical modeling of chemical constitutions, chemical databases, chemical structure
databases, bilingual topic models, PLSA, Probabilistic Latent Semantic Analysis, LDA,
statistical modeling of document collections, statistical modeling of social tags, social
tags, disambiguation for social tags, unobvious semantics of social tags, semantic analysis
of social tags



Zusammenfassung

Ich schlage AdaptivePLSA für das Lernen von dynamischen Topics aus Dokumentströ-
men vor. Für die SIGIR Konferenzbände liefern die gelernten Topics Hinweise auf die
wissenschaftlichen Hauptthemen. Ich schlage TopicTable als eine Visualisierung für die
aus Dokumentströmen gelernten Topics vor. TopicTable visualisiert nützliche Zusatzin-
formationen wie Topicähnlichkeiten und neu auftretende Wörter. In einem Beispiel liefert
TopicTable eindeutige Hinweise auf fremdartige Dokumente in einem Dokumentstrom.
Desweiteren beschäftige ich mich mit dem Aufdecken der semantischen Mehrdeutigkeit
von sozialen Tags. Der vorgestellte Ansatz deckt unerwartete Bedeutungen dieser Tags
auf und visualisiert Themen der Dokumente mit diesen Tags. Zuletzt wende ich ein bilin-
guales Topic-Modell an, um NMR-Spektren und chemische Konstitutionen chemischen
Verbindungen zu modellieren. Die gelernten bilingualen Topics könnten Anwendung
�nden in neuartigen Ansätzen zum Datamining in chemischen Strukturdatenbanken.

Schlagwörter: Probabilistische Themenmodelle, Datamining, Visualisierung, kollabo-
rative Tagging-Systeme, Tag-Analyse, statistische Modellierung chemischer Daten, dy-
namische Topics, statistische Modellierung von Dokumentströmen, statistische Model-
lierung von 2D-NMR-Spektren, statistische Modellierung von chemischen Konstitutio-
nen, chemische Datenbanken, Strukturdatenbanken, bilinguale Themenmodelle, PLSA,
Probabilistic Latent Semantic Analysis, LDA, statistische Modellierung von Dokument-
mengen, statistische Modellierung von sozialen Tags, Begri�sklärung für soziale Tags,
soziale Tags, unerwartete Semantik sozialer Tags, semantische Analyse sozialer Tags
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Chapter 1

Introduction

From cuneiform writing to instant messaging, written texts have constituted an impor-
tant part of human communication from the very beginning. Increasing literacy turned
written texts into a tool of the masses. Ever since, large parts of the population have, ac-
tively and passively, participated in written communication. For several thousand years
by now, mankind has been aware of texts as one form of recording human knowledge.
Consequently, we started to systematically collect and categorize our knowledge and to
put it into encyclopedic books about 2000 years ago.

A �rst revolution of publishing is the invention of mechanical printing of books, i.e.,
woodblock printing and the letterpress invented by the Chinese (ca. 8th century) and
Johannes Gutenberg (15th century), respectively. With the dawn of personal comput-
ers (PC), which became available for household use in the 1980's, a second revolution
of writing texts began. Writing and publishing texts became simpler, and, with the
progression of the world wide web (WWW), new ways of publishing like online news,
electronic mail, and instant messaging emerged. Nowadays, PCs and the WWW provide
a large number of people around the globe with the possibility of writing and publishing
texts electronically. The dominance of written texts has changed the quality of human
communication. This strongly became evident in the scienti�c �eld, where the number
of journals steadily increased from the �rst two modern journals founded in 1665 [1],
i.e., the French Le Journal des Sçavans and the Philosophical Transactions published in
London, to about 23750 in the year 2006 [2]. Similarly, as visualized in Figure 1.1, the
number of scienti�c articles published per year has dramatically increased; from an esti-
mated number of 344 in 1726 to about 1.5 million in 2009 [3]. Nowadays, electronically
published texts have become the most important way of scienti�c communication, e.g.,
in math, engineering and natural sciences.

On the one hand, the enormous amount of electronic documents are a vast source of
knowledge. On the other hand, e�ective managing and searching for relevant documents
in these enormous volumes is challenging. Computers are not only a tool for writing
and publishing but also for managing, organizing and retrieving information from large
text collections. For example, nowadays we often use online search-engines and links
between documents for a keyword-guided search. But, the combination of computers
with modern approaches of machine learning like topic modeling could even make more
powerful, thematic-guided orientation, overviewing, managing, and searching in large
volumes of documents possible. David Blei describes thematic-guided work as follows
([4], p. 1):
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Figure 1.1: Number of published research articles per year estimated by Jinha [3]. Their
cumulative sum reaches about 50 million by the end of 2009.

�Imagine searching and exploring documents based on the themes that run
through them. We might `zoom in' and `zoom out' to �nd speci�c or broader
themes; we might look at how those themes changed through time or how
they are connected to each other. Rather than �nding documents through
keyword search alone, we might �rst �nd the theme that we are interested
in, and then examine the documents related to that theme.�

Probabilistic topic models were proposed in the community of machine learning in
the 1990's [4]. Most topic models assume the word distributions of documents to be
a mixture of relatively few discrete prototype distributions over the whole vocabulary.
These prototype distributions are called topics. Intuitively, a topic represents a combi-
nation of words which often occur together in documents. These combinations often can
be interpreted by humans as thematic subjects of the documents. Meaningfully inter-
pretable topics learned in an unsupervised manner from documents are a potential basis
for thematic-guided orientation, overviewing, managing and searching in large volumes
of documents.

Exploiting the e�ectiveness of topic models to learn meaningful topics is a general
approach taken in this thesis for solving di�erent problems. In more detail, this thesis
presents the following research subjects. In Chapter 3, we shall get familiar with an
extension of the learning process for the topic model called Probabilistic Latent Semantic
Analysis (PLSA) from batch to online learning. Online-learning of PLSA is learning
topics and their change with time from a stream of documents. Learning topics over
time is useful in the context of studying document streams. When interpreting the
learned topics and their changes, the reader might get an idea about the present thematic
subjects and their lifespans. Further on, having discovered a thematic subject of interest,
the reader might go into more detail by reading documents related to this subject.
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Moreover, studying the content of a stream might also be useful for other objectives.
For example, by learning topics from a stream of Twitter1 messages, Twitter users and
sta� will get an thematic overview of the kind of subjects users are most interested in
during a certain period of time. The extension of PLSA to online learning was published
at the SIAM Conference on Data Mining in 2009 [5].

In Chapter 4, we shall get familiar with a visualization technique for presenting top-
ics and their evolution over time. Often, users are primarily interested in studying the
learned topics, which basically are distributions over the entire vocabulary consisting
of up to several thousand words. Hence, applying topic models for studying topics is
only as e�ective as the presentation of the learned topics is. The proposed visualization
technique called TopicTable is especially tailored to presenting topics learned from docu-
ment streams. It presents changes of word patterns, topic strength, topic evolution and
similarities among topics over time. TopicTable might be used to present topics that
have been learned by any topic model that is capable of learning topics and their evolu-
tion over time. This work was published at the International Conference on Knowledge
Discovery and Information Retrieval (KDIR) 2010 where the submitted paper won the
Best Student Paper Award [6]. An extension of this paper was selected for publication
in the series Communications in Computer and Information Science [7]. In addition,
results of the KDIR paper and future prospects were presented in the special session on
visual analytics of the LWA2 forum 2011 of the German Computer Science Society [8].

In Chapter 5, we shall see how online learning of PLSA and the visualization technique
might be applied to discover meanings of tags that are used in collaborative tagging
systems. Collaborative tagging systems are online systems for managing resources, e.g.,
pieces of music3 or bibliographic references4. Users upload resources and associate them
with tags, which are publicly visible, short, descriptive words or phrases. For instance,
the bibliographic reference entitled �Toward a Generalized Bayesian Network� [9] has
tags5 bayes, model-building and para-leer. Meanings of some tags might be less obvious
to a speci�c reader because tagging is an unsupervised, public activity; all users might
choose arbitrary words as tags and attach these to all resources at will. The here
proposed approach is meant as help for exploring the meanings of tags. Exploring and
understanding the variety of possible meanings of tags, users might work more e�ectively
with social tagging systems. A part of this work was published in combination with
work on TopicTable [6]. Work on detecting unobvious semantic meanings of social
tags was published at the International Conference on Web Intelligence, Mining and
Semantics 2011 [10].

In Chapter 6, we shall see how e�ective a polylingual extension of PLSA is for model-
ing chemical data. Topic models have been primarily proposed for studying documents
by learning topics from these. Their e�ectiveness of learning topics might be helpful for
other research directions, too. In this work, the polylingual extension of PLSA is applied
to the prediction of fragments of the chemical constitution of chemical compounds from

1twitter.com, May 3, 2012
2LWA stands for Lernen, Wissen, Adaption, which in English means Learning, Knowledge, Adapta-

tion. The LWA forum took place in Magdeburg, Germany, September 28�30, 2011, http://lwa2011.
cs.uni-magdeburg.de (May 3, 2012)

3last.fm, May 3, 2012
4citeulike.org, May 3, 2012
5citeulike.org, January 29, 2012

twitter.com
http://lwa2011.cs.uni-magdeburg.de
http://lwa2011.cs.uni-magdeburg.de
last.fm
citeulike.org
citeulike.org
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their nuclear magnetic resonance (NMR) spectra and vice versa. In a real-world appli-
cation, such predicted structural fragments might be used as �ngerprints of chemical
compounds. These �ngerprints might then be used for look-ups in chemical databases,
e.g., to search for structurally similar compounds. Parts of this work was presented at
the International Conference on Machine Learning 2010 [11].

Before more details of the mentioned works are presented, general concepts of topic
modeling shall be discussed in Chapter 2. In this chapter, we shall learn what topic
models are, what a topic exactly is, and what di�erentiates topic models from mixture
models. Further on, this chapter presents details of Bayesian learning for PLSA and
explains the relation of PLSA to the most popular topic model Latent Dirichlet Alloca-
tion. Last, a toy example of learning topics from documents is presented which shows
how the learned topics agree with the prior knowledge about the thematic subjects of
the toy documents.



Chapter 2

Probabilistic topic modeling

Basic concepts and notation often used in context of probabilistic topic modeling shall
be discussed in this chapter. First, a common representation of documents is introduced.
Next, the mixture of unigrams, which is a simple topic model, and Probabilistic Latent
Semantic Analysis (PLSA), the basic topic model used in this thesis, are described.
Afterwards, a parameter prior for PLSA is de�ned before the Expectation Maximization
algorithm, which is used for parameter learning, is discussed. The close relation between
PLSA and the popular topic model Latent Dirichlet Allocation is made clear and, last,
PLSA is exemplarily applied to some toy documents and the learning topics are analyzed.

2.1 Document representation as co-occurrence data

Topics are learned from a given set of documents, which is called a corpus of documents.
In this corpus each document has its own unique document ID d. The number of
di�erent document IDs is denoted by N and the document IDs range from 1 to N .
Some documents might be identical to each other although they have di�erent document
IDs. Documents are made up of occurrences of words from a given vocabulary. The
vocabulary spans M di�erent words, each of which is identi�ed by a unique word ID w
with 1 ≤ w ≤M .

The word occurrences in documents are described by pairs (d, w) of a document
ID and a word ID. Such a pair encodes that the word with ID w occurs once in the
document with ID d. The vector of pairs, one for each word occurrence in each document,
~X = ((d1, w1), . . . , (d| ~X|, w| ~X|)) describes the given corpus. The number of pairs, i.e., the

number of elements of vector ~X, is denoted by | ~X| and, for compactness of writing, a
pair (di, wi) is also denoted by (d, w)i. If a word occurs several times in a document,

then the corresponding pair occurs several times in ~X. So, the length | ~X| is equal to
the total number of word occurrences in the given corpus.

As no correspondence between the order of pairs in vector ~X and the order of words
in documents is enforced, information about the word order is lost. This is inline with
many topic models that often do not model the order of word occurrences in documents.
Instead, they assume each document to be a bag of words, i.e., a set of word occurrences.
Examples of topic models that assume documents to be bags of words are the mixture
of unigrams, Probabilistic Latent Semantic Analysis, and Latent Dirichlet Allocation.

5
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Figure 2.1: Plate-model representation of the mixtures of unigrams. This plate model
visualizes the generative process of a corpus of N documents; the dth document consists
of Nd word occurrences.

2.2 Mixtures of unigrams

The term n-gram refers to a sequence of n subsequent words in a document. A n-gram
of length n = 1 is referred to as a unigram. The mixture of unigrams is a simple
probabilistic topic model.

Mixture models approximate complex distributions as combinations of several simpler
distributions, which are called component distributions. A mixture of unigrams is a
mixture of K ≥ 2 generalized Bernoulli distributions, which are indexed by the index
variable 1 ≤ z ≤ K. Each generalized Bernoulli distribution P (w|z) with 1 ≤ w ≤M is
a discrete distribution over the vocabulary.

The mixture of unigrams approximates the word distribution of each document by
exactly one component distribution. In other words, it assumes that all words of one
document are drawn from one component distribution [12]. Under this model, a docu-
ment is generated by drawing a document ID d �rst. Then, a component distribution
is chosen by drawing a component index z. Last, the words of the document d are
sampled from the component distribution P (w|z). Figure 2.1 shows a plate model of
this generative process.

Usually, it is unknown from which components the words of the documents were
sampled; the component indices are hidden variables. Hence, under the mixture model
the probability of each pair (d, w) is given by marginalization over the hidden variable.

P (w, d) = P (d)P (w|d) (2.1)

= P (d)
K∑
k=1

P (w|z = k)P (z = k) (2.2)

The underlying statistical independence assumptions are (i) once the component index
z is known, the distribution of words does not depend on the document d anymore, i.e.,
P (w|z, d) = P (w|z), and (ii) the component probability is independent of the document
d, i.e., P (z|d) = P (z). As a consequence, the weights or prior probabilities of each
component distribution P (z) with 1 ≤ z ≤ K are speci�c for the entire corpus.

Component distributions encode combinations of words that often co-occur in di�er-
ent documents. The words of such a combination will get a relatively high probability
in the component distribution that corresponds to this combination.
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2.3 Topics � patterns of co-occurring words

Patterns of co-occurring words are combinations of words that often co-occur in doc-
uments. These patterns re�ect word-to-word relatedness. Two fundamental ways of
determining word-to-word relatedness, di�erent from exact keyword matching, are [13]

1. compute semantic correlations between words of the vocabulary

2. compute frequency�co-occurrence statistics of words from large corpora

When taking the approach of probabilistic topic modeling, we learn a number K of
patterns of co-occurring words from co-occurrence statistics in an unsupervised manner.
These patterns are called topics and mathematically they are conditional, generalized
Bernoulli distributions over the discrete space de�ned by the vocabulary. Generalized
Bernoulli distributions are also known under the name multinomial distribution. Topics
are indexed by an index variable 1 ≤ z ≤ K and the word probabilities of each topic
sum up to 1.

∀ 1 ≤ z ≤ K : 1 =
M∑
m=1

P (w = m|z) (2.3)

Each topic re�ects a pattern of co-occurring words. Words of the encoded pattern
have a relatively high conditional probability given that topic. Having learned topics
from a given document corpus and studying the most likely words per topic, humans
are often able to interpret these as thematic subjects of the investigated documents. For
example, the words plane, airport, crash, �ight, safety, aircraft, passenger, board, airline
might indicate a subject about aircraft (example from [14]).

Learning a mixture of unigrams involves learning itsK component distributions P (w|z)
with 1 ≤ z ≤ K. These distributions are topics and they are learned under the assump-
tion that words of each document are sampled from a single topic. But this assumption
is unlikely to be ful�lled by real documents as these are often mixtures of thematic sub-
jects themselves. Thus, it comes as no surprise that mixtures of unigrams have been
shown to be ine�ective for probabilistically modeling of large document corpora [15].

The assumption of documents being mixtures of thematic subjects is the fundamen-
tal idea behind admixture models, of which Probabilistic Latent Semantic Analysis and
Latent Dirichlet Allocation are prominent examples. Before Probabilistic Latent Seman-
tic Analysis is introduced in more detail, the following section gives clues about why
admixture models are e�ective for topic modeling.

2.4 Admixture models

Although mixtures of unigrams are e�ective in modeling complex word distributions,
they still have limitations. If each document is a mixture of topics itself, the mixture of
unigrams could fail to learn these word patterns. An illustrative example is modeling the
heights of people in three cities: Tokyo, Stockholm, and Berlin. We assume that three
di�erent classes of tallness exist: small, medium and tall, and that the same number of
people live in each city. The heights of people who are small is equally distributed over
a certain range of tallness that is visualized by a red bar in Figure 2.2. The same is
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height, all

height, Berlinheight, Tokyo height, Stockholm

Figure 2.2: Distribution of heights of people in three cities. Diagram at the top illustrates
the distribution of heights when observing all people at once.

true for the medium and tall heights; the corresponding ranges are visualized by a blue,
and a green bar, respectively. People in Tokyo are small and medium in tallness, people
in Berlin are small and tall, and people in Stockholm are medium and tall. Taking
the mixture model approach for learning a distribution over the heights of people, we
would investigate the heights of all people from all cities at once without exploiting
the information about from which cities the people come. But, studying the heights of
all people at once makes the discovery of the three classes of tallness nontrivial: these
heights are equally distributed across the whole range of tallness from small to tall (top
of Figure 2.2).

Admixture models are more sophisticated and were �rstly proposed in genetics [16].
In context of genetics, an admixture arises when two previously isolated populations
begin interbreeding [17]. As a consequence, each o�spring is genetically a mixture of the
genome of the isolated populations. An admixture topic model assumes each document
to be a mixture of patterns of co-occurring words, i.e., topics. This assumption �ts our
intuition about documents better; patterns of co-occurring words might be di�erent in
di�erent parts of a document, e.g., the introduction or conclusions of scienti�c papers.
In other words, the valuable assumption of an admixture topic model is that documents
themselves are mixtures of topics.

Returning to the illustrative example and focusing at the bottom of Figure 2.2, one
might get an idea why an admixture model might be better suited for learning the three
classes of tallness. The admixture model exploits the information about which people
come from which cities. The admixture assumption here is that the distribution of
heights in each city is a mixture of some common classes of height. We might clearly
observe the two classes small and tall when we observe people from Berlin. The di�erent
classes of height in Tokyo and Stockholm are still not visible directly. A crucial capability
of admixture models is helpful here: information about the latent classes is mediated
among the di�erent cities. For example, the clear distinction between small and tall
people from Berlin is helpful for discovering that the distribution of height of people
from Stockholm indeed is a mixture of the two classes tall and medium. This is why, in
the case of topic models, modeling a document corpus with an admixture model might
result in more meaningful topics as compared to those which might be obtained with a
simple mixture model approach.
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2.5 Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis (PLSA) is an admixture topic model; it assumes
each document to be a mixture of topics. By that, PLSA overcomes the limitation of
the mixture of unigrams, which assumes each document to be represented by only one
topic.

2.5.1 Generative process

PLSA was proposed by Hofmann in 1999 [14, 18]. PLSA consists of K topics, which
are generalized Bernoulli distributions and which are indexed by the index variable
1 ≤ z ≤ K. Words of each document are sampled from a document-speci�c mixture of
these topics. The weights of this mixture for document d are given by the parameters of
a generalized Bernoulli distribution P (z|d), which is a discrete distribution over indices
1 to K speci�c for document d.

The generation of a corpus of documents as described by pairs of document and word
IDs ~X is assumed to be as follows. Each pair (d, w)i with 1 ≤ i ≤ | ~X| is drawn by the
following three steps.

di ∼ P (d) (2.4)

zi ∼ P (z|d = di) (2.5)

wi ∼ P (w|z = zi) (2.6)

First, the document ID di is drawn from a generalized Bernoulli distribution, which
is a discrete distribution over document IDs from 1 to N . Then, a topic index zi is
sampled from the document-speci�c distribution over topic indices. Last, a word ID is
drawn from the topic with index zi.

The fundamental assumption underlying this generative process is that for a given
pair (d, w) the word ID and document ID are conditionally independent of each other
if the topic is known. In more detail, the joint probability P (di, wi, zi) can always
be factorized as P (wi|zi, di)P (zi|di)P (di). If the topic index zi is known, then word
wi will be sampled from that topic independently of the document di. Consequently,
the conditional probability P (wi|zi, di) depends only on zi but not on di and one ob-
tains P (di, wi, zi) = P (wi|zi)P (zi|di)P (di).

2.5.2 Parametrization and likelihood

The parameters of a PLSA model are the following:

1. parameters ~δ of the generalized Bernoulli distribution P (d) that encodes document
probabilities

2. for each document: parameters ~θn of the generalized Bernoulli distribution P (z|d = n)
that encodes the document-speci�c topic weights called topic-mixture proportions

3. for each topic: parameters ~ωk of the generalized Bernoulli distribution P (w|z = k)
that encodes the topic-speci�c word probabilities called word-topic associations
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All parameters of a PLSA model ζ are jointly denoted by ζ := (~θ, ~ω, ~δ).

In the following, the PLSA parameters are speci�ed in more detail. The variables
n, k, and w lie in the following ranges: 1 ≤ n ≤ N , 1 ≤ k ≤ K, and 1 ≤ m ≤
M . The parameter ~θ is de�ned as ~θ := (~θ1, . . . , ~θN) with ~θn := (θn,1, . . . , θn,K) and
θn,k := logP (z = k|d = n)1. Consequently, the topic-mixture proportions of the nth doc-
ument are given by (exp(θn,1), . . . , exp(θn,K)). The parameter ~ω is de�ned as
~ω := (~ω1, . . . , ~ωK) with ~ωk := (ωk,1, . . . , ωk,M) and ωk,m := logP (w = m|z = k). The
word-topic associations of the kth topic are given by (exp(ωk,1), . . . , (expωk,M)). The

parameter ~δ is de�ned as ~δ := (δ1, . . . , δN) with δn := logP (d = n). So, the document
probability of the nth document is given by exp(δn).

Pairs of document IDs and word IDs are identically and independently distributed
given the model parameters ζ. The topic index variables are usually unobserved for a
given document corpus. Consequently, topic indices are marginalized by summing over
their states. The likelihood reads as follows.

P ( ~X|ζ) =

| ~X|∏
i=1

P (di, wi|ζ) (2.8)

=

| ~X|∏
i=1

P (di|ζ)
K∑
k=1

P (wi|zi = k, ζ)P (zi = k|di, ζ) (2.9)

=

| ~X|∏
i=1

exp(δdi)
K∑
k=1

exp(ωk,wi) exp(θdi,k) (2.10)

2.5.3 Prior

Hofmann proposed PLSA without de�ning a prior over model parameters [14, 18]. In
contrast to Hofmann, who took the Maximum-Likelihood approach for learning PLSA, a
Bayesian approach is taken in this thesis. Bayesian learning requires a prior over model
parameters. Generally, priors might enhance learning of parameters of statistical models
in two ways.

1. They express a-priori knowledge about the parameters in a mathematical, princi-
pled manner.

2. Priors may smooth parameter estimates. If data sets are small in size, smoothing
is especially useful to prevent artifacts of parameter learning like zero probabilities.

1PLSA invokes probability mass functions of the generalized Bernoulli distribution. In general, a
generalized Bernoulli distribution is de�ned for a random variable Y that might take discrete values
as encoded by the integers 1, . . . , S. Its natural parameter is the vector of logarithmic probabilities
~η = (η1, . . . , ηS) = (logP (Y = 1), . . . , logP (Y = S)), with

∑S
s=1 exp(ηs) = 1. The generalized Bernoulli

distribution assigns the following probability to each realization of Y

∀ 1 ≤ s ≤ S : P (y = s|~η) := exp

(
S∑

s=1

ηs1y=s

)
(2.7)

with 1 denoting the Kronecker delta.
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The prior for parameter ~δ is a uniform prior. In the context of Bayesian learning,
de�ning a uniform prior is equivalent to not de�ning a prior at all, and so the prior for
parameter ~δ is omitted in the following. Priors for ~θ and ~ω are independent of each
other. Eventually, the prior over the PLSA parameters reads as

P (ζ) = P (~θ)P (~ω) . (2.11)

Prior for word-topic associations

The prior for the parameter ~ω is a product ofK Dirichlets, one Dirichlet for each topic ~ωk.

P (~ω) =
K∏
k=1

Dir(~ωk|β) (2.12)

Dir(~ωk|β) ∝
M∏
m=1

exp(ωk,m)
β
KM (2.13)

These Dirichlets have been transformed2 in correspondence with the transformation
of the parameters into the logarithmic space. Normalization factors are neglected for
the sake of simplicity. The Dirichlets have one hyper-parameter β which determines
the exponents of elements of ~ω by the principle of equivalent sample-size [19]. This
means, the Dirichlet hyper-parameter re�ects a-priori data points whose number should
be the same when, e.g., comparing PLSA models learned with di�erent vocabularies and
numbers of topics. Hence, β is �xed and divided by the number of elements of ~ω, i.e.,
K ·M .

Prior for topic-mixture proportions

The prior for topic-mixture proportions is a product of N Dirichlets, one Dirichlet for
each document-speci�c topic-mixture proportions.

P (~θ) =
N∏
n=1

Dir(~θn|α) (2.14)

Dir(~θn|α) ∝
K∏
k=1

exp(θn,k)
α
K (2.15)

Again, the Dirichlet has one hyper-parameter α; for determining the exponents for el-
ements of ~θn, the hyper-parameter α is divided by the number of topics K. It is not
divided by N ·K as this prior should be independent of the overall number of documents.

2As a result, the exponent of exp(ωk,m) misses the −1 term known from the standard Dirichlet.



12

d

zw ~θ α~ω

β ~δ
| ~X|

Figure 2.3: Plate-model representation of the generative process underlying PLSA.

2.5.4 Extended generative process

The generative process (Equations 2.4 - 2.6) is extended by drawing parameters ~ω and
~θ from their priors before the data are sampled.

∀ 1 ≤ n ≤ N : ~θn ∼ Dir(~θn|α) (2.16)

∀ 1 ≤ k ≤ K : ~ωk ∼ Dir(~ωk|β) (2.17)

Figure 2.3 shows a graphical representation of the entire generative process using the
plate-model representation.

2.5.5 Geometric interpretation in terms of dimension reduction

The word simplex of dimension M is the space de�ned by points ~x = (x1, . . . , xM) that
ful�ll (i) ∀ 1 ≤ m ≤M : xm ≥ 0, and (ii)

∑M
m=1 xm = 1. In this word simplex documents

are represented by points that correspond to their empirical word distributions. An
example with three documents is shown in Figure 2.4(a).

The simple unigram model assumes that words of all documents are drawn from a
common corpus-speci�c generalized Bernoulli distribution P (w). This corpus-speci�c
word distribution can be represented by a point of the word simplex, too. A geometrical
interpretation of Maximum-Likelihood learning of this corpus-speci�c word distribution
is as follows: we determine the mean of all points that correspond to the empirical word
distributions of the documents of a given corpus. A unigram model approximates the
word distributions of the documents by this mean distribution. By that, it reduces the
space of word distributions of documents to this single point.

The mixture of unigrams assumes that all words of each document are drawn from
one out of K corpus-speci�c topics. These topics again are word distributions and can
be represented as K points exp(~ωk), 1 ≤ k ≤ K, of the word simplex. Figure 2.4(b)
illustrates an example with K = 3 topics. The mixture of unigrams approximates the
word distribution of each document to exactly one topic. In other words, the points that
correspond to the word distributions of the documents are mapped to one of the topic
points. Hence, the space of word distributions is reduced to the K topic points.

Similar to the mixture of unigrams, PLSA assumes K topics. These K points de�ne
the basis of a sub-space of the word simplex which is called topic simplex. This topic
simplex is geometrically de�ned by all points that are linear combinations of the K topic
points where the mixture weights sum up to 1. In other words, each point of the topic
simplex is a word distribution that is a mixture of the K word-topic associations exp(~ωk).
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Being an admixture model, PLSA approximates the word distribution of each document
by a linear combination of the K topics. Geometrically, this means that the points of
the word simplex that correspond to the word distributions of the given documents are
mapped somewhere onto the topic simplex. Hence, the space of word distributions of
the documents is reduced to the topic simplex.

To make an example, PLSA consists of topic-mixture proportions for all documents.
The learned topic-mixture proportions (exp(θn,1), . . . , exp(θn,K)) of the nth document de-
�ne a point in the K-dimensional topic simplex. The word distribution of this document
is approximated by a document-speci�c mixture of theK topics:

∑K
k=1 exp(~ωk) exp(θn,k).

Figure 2.4(c) illustrates how word distributions are approximated by mapping their
points from the word simplex onto the topic simplex. Figure 2.4(d) shows an exam-
ple topic simplex; its points correspond to the topic-mixture proportions of the learned
PLSA model.

The unigram model, the mixture of unigrams, and PLSA all map the empiric word
distributions of documents onto a sub-space of the word simplex. In comparison to the
other two models, PLSA might better capture the approximated word distributions as
PLSA has a larger statistical expressiveness. Instead of mapping the empirical word
distributions of the documents to a few single points of the word simplex, it maps these
somewhere onto a sub-space of the word simplex, namely onto the topic simplex

2.6 Parameter learning for PLSA

Hofmann [14, 18] followed the Maximum-Likelihood principle for learning the parameters
of a PLSA model. Inline with Cien and Wu [20], I proposed to apply the principle of
Maximum-A-Posteriori (MAP) to parameter learning of PLSA [5]. In section 2.6.1, the
derivation of the Expectation Maximization algorithm for MAP parameter learning is
presented. Afterwards, di�erent approaches for determining an optimal number K of
topics are discussed in Section 2.6.2. The relation between PLSA and the popular Latent
Dirichlet Allocation is subject of the Section 2.6.3.

2.6.1 EM algorithm for MAP learning

The data are pairs of document and word IDs (d, w)i with 1 ≤ i ≤ | ~X|. PLSA assumes
that the word wi in document di is drawn from one of the K topics. The index of this
topic is given by the index variable 1 ≤ zi ≤ K. The topic-index variables for all pairs
are denoted by ~Z = (z1, . . . , z| ~X|).

As the values of the topic indices ~Z are unknown, the marginalized a-posteriori prob-
ability of the model parameters must be maximized.

~ζ∗ := argmax
ζ

P (ζ| ~X) (2.18)

= argmax
ζ

∑
~z

P (ζ, ~Z = ~z| ~X) (2.19)

= argmax
ζ

∑
~z

P ( ~X, ~Z = ~z|ζ)P (ζ) (2.20)
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Figure 2.4: Geometric interpretation of unigram model, mixture of unigrams, and PLSA.

This maximization is solved with the help of the Expectation Maximization (EM)
algorithm [21], which is a sophisticated gradient-ascent approach for parameter learning
of probabilistic models with hidden variables [22�24]. The EM algorithm iteratively re-

estimates parameters in order to locally maximize the a-posteriori probability P (ζ| ~X).
In each iteration, the algorithm goes through two steps: the expectation (E) and the
maximization (M) step. The parameter estimates in iteration t are denoted by ζ(t).

E step

During the E step of the (t+1)th iteration, the algorithm computes posterior probabilities

for each hidden variable zi, 1 ≤ i ≤ | ~X|, and for each of its states 1 ≤ k ≤ K.

γ
(t+1)
i,k := P (zi = k|ζ(t), ~X) (2.21)

Applying the Bayes rule, one �nds that these posteriors are proportional to the product
of the likelihood and P (zi = k|ζ(t)).

γ
(t+1)
i,k ∝ P ((d, w)i|zi = k, ζ(t))P (zi = k|ζ(t)) (2.22)
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The posteriors are computed using the parameter estimates ζ(t) of the last M step of
EM iteration t. The probability P (zi = k|ζ(t)) is identi�ed with the topic probability
P (z = k)(t) for topic k in the last EM iteration.

γ
(t+1)
i,k =

P ((d, w)i|zi = k, ζ(t))P (z = k)(t)∑K
k̄=1 P ((d, w)i|zi = k̄, ζ(t))P (z = k̄)(t)

(2.23)

=
exp(ω

(t)
k,wi

) exp(θ
(t)
di,k

)P (z = k)(t)∑K
k̄=1 exp(ω

(t)

k̄,wi
) exp(θ

(t)

di,k̄
)P (z = k̄)(t)

(2.24)

All posteriors determined in the (t+ 1)th iteration are jointly denoted by ~γ(t+1).

M step

The model parameters are re-estimated by analytically maximizing the expectation of the
sum of the log-complete-data-likelihood and the log-prior. The expectation is determined
with respect to the posteriors ~γ(t+1).

(ζ∗)(t+1) := argmax
ζ(t+1)

E
[
logP ( ~X, ~Z|ζ(t+1)) + logP (ζ(t+1))

]
P (~Z|ζ(t), ~X)

(2.25)

The following parameter estimates (1 ≤ k ≤ K, 1 ≤ m ≤ M , 1 ≤ n ≤ N) result from
this maximization.

exp(ω∗k,m)(t+1) ∝ β/KM +
∑

1≤i≤| ~X|,
wi=m

γ
(t+1)
i,k (2.26)

exp(θ∗n,k)
(t+1) ∝ α/K +

∑
1≤i≤| ~X|,
di=n

γ
(t+1)
i,k (2.27)

For compactness of writing, Normalization constants, which would result from the con-
straints 1 =:

∑M
m=1 exp(ω∗k,m)(t+1), and 1 =:

∑K
k=1 exp(θ∗n,k)

(t+1), were neglected in the
Equations above.

Document probabilities ~δ are estimated without the EM algorithm as these are inde-
pendent of the hidden variables ~Z. Because of the uniform prior, MAP estimates of the
document probabilities for documents 1 ≤ n ≤ N are equal to the relative document
lengths

exp(δ∗n) ∝ Nn (2.28)

with Nn being the number of word occurrences in the nth document.

The probability of topic k in the EM iteration (t+ 1) is computed as follows.

P (z = k)(t+1) :=

∑| ~X|
i=1 γ

(t+1)
i,k∑K

k̄=1

∑| ~X|
i=1 γ

(t+1)

i,k̄

(2.29)

This topic probability is not a model parameter but needed by the EM algorithm.
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Break condition

The EM algorithm continuously goes through E and M steps until some break condition
stops it. Common quantities for break conditions are the number of EM iterations
already passed or the improvement of the a-posteriori probability between two successive
EM iterations.

Local maxima

Getting stuck in local optima or saddle points is a risk of gradient-ascent methods like the
EM algorithm. An option of dealing with this problem is to re-start the EM algorithm
several times and to use di�erent start con�gurations of the model parameters each time.
Afterwards, one would omit all but the very EM run that reached the highest a-posteriori
probability. The last parameter estimates of this run are then used to instantiate a PLSA
model.

2.6.2 Number of topics

The number of topics K is an essential parameter of topic models. Often, the optimal
number of topics depends on the speci�c application at hand. If general topics are
of interest, the number of topics should be substantially smaller than the number of
documents, i.e., K � N . The number of topics has an impact on their quality and,
hence, on their interpretation. For some applications, users might �x the number of
topics prior to learning the topic model. For other applications it might be necessary to
determine the optimal number of topics by some kind of evaluation strategy for assessing
di�erent numbers of topics.

Fixing the number of topics prior to learning

Generally, the number of topics in�uences the detailedness of learned patterns of word
co-occurrences. Figure 2.5 visualizes the general tendency of the expected detailedness
of topics according to their number. If the number of topics is small, then learned
topics will re�ect coarse patterns of co-occurring words probably via higher-order co-
occurrences. Higher-order co-occurring words are those whose occurrences are linked
via a third or a fourth word; for example, word w2 connects occurrences of separately
occurring words w1 and w3 because w2 co-occurs with w1 and with w3 [25]. If the number
of topics increases, then learned topics will encode �ner patterns of co-occurring words,
from more speci�c subjects to single phrases or even to single words (actually, in this
case one would not call this pattern a co-occurrence pattern).

The expected detailedness of learned topics could be a reasonable guidance for �xing
the number of topics prior to learning a topic model. This strategy could be e�ective,
e.g., for an exploratory analysis by which one wants to uncover general thematic subjects
that are present in a large corpus.

Determining the number of topics during learning

If �xing the number of topics prior to learning is inexpedient, one might determine an
optimal number of topics by some evaluation strategy. The number of topics could be
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Figure 2.5: Relationship between number of topics and detailedness of captured patterns
of co-occurring words.

assessed by the goodness-of-�t of the entire topic model that has been learned with
di�erent numbers of topics. Often, the goodness-of-�t of a topic model is measured by
the likelihood or the perplexity of yet unseen data [25]. Other measures for assessing the
goodness-of-�t of a topic model might be deduced from a speci�c application at hand.
For example, if a topic model is used for classifying emails into ham and spam, then
the observed classi�cation performance reached for di�erent numbers of topics could be
used to determine an optimal number of topics. Another approach is to measure the
interpretability of the learned topics [26]. This approach assesses the topics themselves
instead of using some kind of computational score.

Di�erent evaluation procedures could be used for the purpose of determining the
goodness-of-�t. Examples include cross-validation with help of which a topic model is
learned with a subset of the data and the goodness-of-�t is determined with respect to the
remaining data. As a result, one obtains empiric estimates of the mean goodness-of-�t
and its variance.

A very di�erent approach for dealing with the uncertainty about the optimal number
of topics is to extend topic models such that they take into account a distribution over
the number of topics instead of considering a �xed number of topics. An example of
this approach is the extension of a topic model by the Dirichlet process, which models a
distribution over the number of topics [27]. Although this approach makes determining
an optimal number of topics obsolete, it comes with the need to determine an optimal
distribution over the number of topics. Di�erent parameter setting of the Dirichlet
process, for example, might signi�cantly a�ect the goodness-of-�t of the resulting topic
model.

2.6.3 Bayesian learning

Although parameter learning following the MAP principle takes parameter priors into
account, it determines point estimates of parameters. A fully Bayesian approach treats
parameters as hidden variables with prior distributions and aims at determining their
posterior distribution. Often, this posterior is not tractable directly. In this case, meth-
ods that approximate the posterior, e.g., Variational Bayes (VB) [28, 29], are applicable.
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Another approach would be to use Markov Chain Monte Carlo methods [30, 31], e.g.,
Gibbs Sampling (GS), which simulate samples from the posterior.

In 2003, Blei et al. proposed Latent Dirichlet Allocation (LDA) [15]. The generative
processes of LDA and the extended generative process of PLSA (as given in Section 2.5)
are almost the same [32]. A slight di�erence is that PLSA directly uses document IDs
but LDA not. Asuncion et al. [32] showed that the generative process of LDA can be ex-
tended by incorporating document IDs. The close relatedness between PLSA and LDA
have been discussed by other researchers, too. Kaban et al. [33] stated that the com-
bination of PLSA and Maximum-Likelihood parameter learning, as originally proposed
by Hofmann [14, 18], essentially reveals the Maximum-Likelihood solution of LDA. In a
later work, Buntine et al. [34] also discussed the relatedness between PLSA and LDA. As
the generative processes of PLSA and LDA are closely related, the essential di�erence
between both models is the approach taken for parameter learning.

Di�erent approaches for parameter learning have been suggested for LDA. Initially,
Blei et al. proposed VB; later, Gri�ths et at. proposed GS [35]. Re�nements of these
procedures have been proposed in the sequel; for example, collapsed VB [36] or col-
lapsed GS [37, 38].

Often, fully Bayesian approaches are assumed to be superior over MAP point esti-
mates of model parameters. The seminal work of Asuncion et al. [32] sheds light on
how MAP parameter learning for PLSA is related to VB or GS for LDA. Comparing
PLSA and LDA is possible because both models assume almost the same generating
process. Beside other methods for parameter inference, Asuncion et al. compared MAP
parameter learning for PLSA, and VB, collapsed VB, GS and collapsed GS for LDA.
Asuncion et al. found that the observed di�erences between PLSA and LDA with re-
spect to, e.g., the perplexity of unseen data, might be eliminated by optimal choices
of the hyper-parameters. Asuncion et al. [32] state: � . . . our empirical results sug-
gest that these inference algorithms have relatively similar predictive performance when
the hyper-parameters for each method are selected in an optimal fashion.� Hence, if
hyper-parameters are chosen optimally, then a PLSA model whose parameters have
been learned with MAP is comparable, with regard to the predictive performance, to
LDA whose parameters have been inferred with VB or GS.

Beside prediction, topic models are often used for exploratory, unsupervised data
analyses to uncover thematic subjects present in the given documents. For such un-
supervised analyses estimates of the model parameters, i.e., topic-mixture proportions
and word-topic associations, are helpful. Asunction et al. [32] showed that estimates
of topic-mixture proportions and word-topic associations following the MAP principle
are very similar to those which have been obtained by VB. In summary, these �ndings
suggest that (i) the generative process of PLSA is very similar to that one of LDA, and
(ii) the MAP principle for parameter learning and the VB approach are equally useful
for parameter learning.

2.7 Example study for PLSA

An exploratory analysis of a small document corpus is presented in this section. This
toy example gives clues about the capabilities of PLSA, e.g., how topics learned from the
documents look like and how well the learned topics agree with the thematic subjects
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used for the construction of the toy documents.
The documents are composition of three di�erent subjects: theology, computer, and

plant. Each subject is associated with seven words as shown in Table 2.1. The union of
all these 21 words de�nes the vocabulary of the corpus.

Two di�erent corpora of three bunches of 100 documents, which are made up of 20
word occurrences, are considered. Each document of the �rst corpus was constructed
from words of one subject only whereas the documents of the second corpus mainly
consisted of words from one subject but contain some words from the other subjects,
too.

2.7.1 Thematically pure documents

Each bunch corresponds to one subject. All 100 documents from a bunch were con-
structed by sampling with equal probability 20 words from all words of the correspond-
ing subject. For example, a document on theology could look like this: spirit worship
god god prayer god sin prayer worship creation god trinity creation spirit creation spirit
god trinity creation trinity.

Parameters of a PLSA model with K = 3 topics were learned following the Maximum-
Likelihood principle. The learned topics and averaged topic-mixture proportions are
presented in Figure 2.6. Topics are presented by visualizing their discrete cumulative
distribution functions over the vocabulary. To this end, words are sorted for each topic
according to their probability (word-topic association) in decreasing order.

Inspecting the �rst learned topic in Figure 2.6(a), we �nd that all words from theology
have a relative high probability whereas all other words are negligibly likely. Thus,
we can clearly interpret this topic as being about theology. Studying the word-topic
associations for the other two topics, we clearly �nd that the second/third topic is about
computer/plant.

Studying the learned topic-mixture proportions in Figure 2.6(d), we �nd the �rst
topic, which we have interpreted as being about theology, is most likely in documents of
the bunch that was constructed from the theology subject. The second topic (computer)
and the third topic (plant) are most likely in documents from the bunch that corresponds
by construction to the subject computer and plant, respectively.

Inspecting topic-mixture proportions for each bunch separately, we �nd that PLSA
clearly assigns most probability mass to the topic that corresponds to the true subject
of each bunch. Inspecting topic-mixture proportions averaged over the whole corpus, we
�nd that each topic is equally likely. These �ndings are consistent with the construction
of the corpus; all bunches are of the same size, hence, each topic should be equally likely
when all documents are considered at once.

2.7.2 Thematically mixed documents

A fundamental assumption of PLSA is that documents are mixtures of topics. The �rst
corpus is a special case, in which each document is about one thematic subject only.
Now, each bunch of 100 documents mainly corresponds to one topic, but documents are
mixtures of the three subjects. For each document, ten words were sampled with equal
probability from the subject of the bunch to which this document belongs. Another
10 words were sampled with equal probability from the whole vocabulary. A document
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Table 2.1: Words assigned to the three subjects.
theology computer plant

god keyboard plant
spirit ram root
trinity monitor leaf
creation printer �ower
worship laptop basal
prayer usb seed
sin internet soil

mainly about theology could be: usb �ower internet worship monitor root spirit cre-
ation trinity god basal monitor spirit creation trinity trinity keyboard keyboard worship
trinity.

Again, a PLSA model withK = 3 topics was learned. The resulting PLSA parameters
are visualized in Figure 2.7. We �nd all seven words associated to theology, six of all
seven words associated to computer, and six words associated to the subject about plant
among the top-ten words of topic 1, topic 2, and topic 3, respectively (Figures 2.7(a-c)).
Hence, we again can clearly interpret the �rst, second, and third learned topic as being
about theology, computer and plant, respectively.

The learned topic-mixture proportions are shown in Figure 2.7(d). Again, we �nd one
learned topic to be dominant in each bunch. Further on, the topic that is dominant in
each bunch corresponds to the main subject of this bunch. For example, the �rst topic,
which could be interpreted as being about theology, is the most likely topic in the bunch
that corresponds, due to construction, to the subject on theology. As in the previous
example, we �nd that the relative probabilities of the learned topics in each bunch agree
with the thematic construction of these bunches. This is also true for the entire corpus;
all three topics are almost equally likely as one would expect from the construction of
the corpus.

2.7.3 Summary

An intuitive example of an exploratory study with PLSA for a document corpus was
presented in this section. The three PLSA topics, which have been learned in an un-
supervised manner, could be well related to the thematic subjects which were used for
the construction of the documents. In addition, the learned topic-mixture proportions
in each bunch of thematically similar documents and across the whole corpus agree well
with the expected strength of the thematic subjects.
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(a) Topic 1 corresponds to thematic
subject about theology.
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(b) Topic 2 corresponds to thematic
subject about computer.
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(c) Topic 3 corresponds to thematic
subject about plant.
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Figure 2.6: Results for thematically pure documents. Colors indicate topics.
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(a) Topic 1 corresponds to thematic
subject about theology.
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(b) Topic 2 corresponds to thematic
subject about computer.
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(c) Topic 3 corresponds to thematic
subject about plant.
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Figure 2.7: Results for thematically mixed documents. Colors indicate topics.



Chapter 3

Learning topics from document

streams

Scholars, journalists and practitioners of many disciplines use streaming Web documents
for regular acquisition of information on thematic subjects of interest. Examples of
streaming documents, which are ordered according to their publication date, are news
articles published at the Web, received Twitter messages, and articles published in con-
ference proceedings. Although powerful tools have emerged to assist in this task, they
often do not deal with the volatile nature of the Web. Contents of streaming documents
may change over time as well as the terminology used in these documents. A changing
vocabulary yields static text mining models obsolete and static pro�le-based �lters inef-
fective for acquisition of information from streaming documents. Text mining models,
which take into account publication dates beside contents of documents, have recently
attracted a lot attention in the research community. In this chapter, a method for sum-
marizing the changing contents of streaming documents is proposed. This method learns
topics and their evolution over time; it discovers topics, adapts them to newly arriving
documents, and detects threads of topics, while considering the evolution of terminology.
As such, this method helps in overviewing the contents of streaming documents and in
identifying particular thematic subjects of interest.

Most approaches for learning topic evolution can be categorized into methods that
treat streaming documents as (i) a �nite sequence, or as (ii) a stream of documents.
A �nite sequence of documents refers to a static collection of documents that are or-
dered according to their publication date. Methods for �nite sequences learn topics
from this sequence under the closed-world assumption. Essentially, the whole collection
of documents and their time stamps are assumed to be known. The vocabulary over all
documents induces a �xed feature space. In contrast, a stream of documents is a collec-
tion of documents that continually grows over time. It grows by adding documents in
the order of their publication/arrival date. Approaches for streams of documents make
the open-world assumption, i.e., yet unknown, new documents arrive, new words emerge
and old ones become out-dated. This implies a feature space that changes over time,
and, hence, prevents propagation of word statistics backward in time. Word statistics
might be propagated forward in time, i.e., the combination of word statistics of old and
newly arriving documents are used to update topics.

Stream-based approaches are intuitively closer to the volatile nature of the Web.
However, recent evolutionary methods for topic detection based on Probabilistic La-
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tent Semantic Analysis [39] and Latent Dirichlet Allocation, e.g., the Dynamic Topic
Model [40], and Topics Over Time [41], treat streaming documents as a �nite sequence.
A simple approach, making the open-world assumption, may take a retrospective view
of the world: for each new document to be added all information seen so far is used
to re-build an extended topic model. This perspective has two disadvantages. First, it
only works if the document stream is slow such that retrospection of the complete past
is feasible. This disagrees with the conventional perception, according to which each
data record is seen only once and processing is limited to whatever information can be
accommodated to a comparatively small bu�er. This assumption limits the applicability
of the approach to those streams, in which the elapsed time between the arrival of any
two documents is larger than the time needed to rebuild the model. The assumption
holds for slow streams, e.g., all publications of an annual conference but not for fast ones,
e.g., an online news-ticker. Second, the feature space grows with time, thus giving raise
to the problem of the curse of dimensionality : the number of data points needed for
a reliable estimate (of any property) grows exponentially with the number of features.
Related to the curse of dimensionality is the fact of data proliferation, meaning that
the feature space grows and, hence, lets grow the demand in space and processing costs
with time: very old documents and out-dated words, which are assumed to have, if at
all, only a minor impact on current topics, become unnecessary ballast. As learning of
most topic models is based on iterative learning algorithms like the EM algorithm, high
space demand and processing overhead renders repeated retrospective learning quickly
impractical for real application scenarios.

Since a stream cannot be slow and fast at the same time and it will contain future
documents with yet unknown words, evolutionary topic monitoring requires adaptation
to changes in the word-topic associations and in the vocabulary/feature space. The here
proposed method deals with these problems by adapting the feature space and the un-
derlying model gradually. It applies Probabilistic Latent Semantic Analysis (PLSA) to
documents covered by a window that slides across the stream. As the window slides for-
ward, out-dated words and documents are deleted and new documents are incorporated
into the model so that the model is adapted to new words and changing contents. This
gradual adaption of the model renders retrospection of all past information unnecessary.

Gradual model adaptation brings an inherent advantage over re-learning: not only is
the model adapted as a whole, rather each topic learned at some point in time evolves
naturally into its follow-up topic. Hence, in contrast to [39], adaptation of PLSA models,
each of which learns K topics, results in K index-based topic threads, each of which is
de�ned by topics with the same index across all PLSA models. These threads provide a
comprehensive summary of the evolution of topics and terminology. Mei and Zhai [39]
learn PLSA models individually for each point in time, and so, in order to de�ne threads,
they have to match topics of successive PLSA models by some kind of post-processing.

The remainder of this chapter is structured as follows. Related work is discussed in
the next section. Then, in Section 3.2, the notations and the sliding window for docu-
ment streams are introduced. The proposed method for learning topics from document
streams is explained in detail in Section 3.3. A baseline approach, to which the proposed
method will be compared, is introduced in Section 3.4 before the evaluation framework
is explained in Section 3.5. Results of the evaluation are presented in Section 3.6, and
the conclusions are given in Section 3.7.
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3.1 Related work

Many studies on topic evolution derive topics by clustering of documents; each cluster of
documents is assumed to represent one thematic subject. Most of them consider a �xed
feature space over the document stream. For example, Morinaga and Yamanishi [42]
use an Expectation Maximization approach to build soft clusters. A topic consists of
the words with the largest information gain for a cluster. Aggarwal and Yu [43] trace
droplets over document clusters. A droplet consists of two vectors that accommodate
words associated with the cluster. In contrast, the cluster evolution monitor MONIC [44]
and its variants [45�47] treat topic evolution as a special case of cluster evolution over a
changing feature space.

Topic models like PLSA [18] and Latent Dirichlet Allocation (LDA) [15] characterize
a topic as a generalized Bernoulli distribution over words rather than a cluster of doc-
uments. Most of evolutionary topic models based on PLSA or LDA [39�41] make the
closed-world assumption. For example, Mei and Zhai [39] assume the complete vocab-
ulary to be known. They learn several PLSA models over time. These are connected
by a static unigram model that models the distribution of background words and whose
parameters are estimated using all documents of the �nite sequence at once. Having
learned the PLSA models, Mei and Zhai extract their topics. To de�ne threads of topics,
they match topics from di�erent models by applying the KL divergence to the word
distributions of the topics.

To �nd scienti�c topics from PNAS1 abstracts, Gri�ths and Steyvers [38] learn a
single LDA model with all abstracts over time at once. For parameter learning, they use
a collapsed Gibbs sampler. They assign temporal properties to topics, such as becoming
�cold� or �hot�. Incremental LDA [48], which is another approach based on LDA, updates
the parameters of the LDA model as new documents arrive, but again assumes a �xed
vocabulary and does neither forget the in�uence of past documents nor of out-dated
words.

The dynamic topic model (DTM) [40] learns a sequence of LDA models over time
assuming a �xed vocabulary. LDA models are connected by propagating the LDA hyper-
parameters forward in time via a state-space model. Similar to Mei and Zhai, topics
are extracted from the learned LDA models. A �dynamic topic� is a sequence of topics
(word distributions) with the same index over time. AlSumait et al. [49] follow a similar
idea and propose Online LDA which propagates hyper-parameters between successive
LDA models, too. They extend the Gibbs sampling approach suggested by Gri�ths and
Steyvers to handle streams of documents. Beside sampling model parameters, they use
Gibbs sampling to derive hyper-parameters of topic-word associations of future models.
By that, successive LDA models are coupled. AlSumait et al. [49] do not assume a �xed
vocabulary; they integrate new words into the model when these �rst occur. However,
AlSumait et al. do not neglect out-dated words. Hence, the vocabulary continually grows
and might give rise to the curse of dimensionality.

Wang et al. [41] extend the generative process of LDA in such a way that it additionally
generates time stamps of documents. They take a retrospective view: they use the whole
�nite sequence of documents in combination with their time stamps at once, and assume
a �xed vocabulary. A topic over time is a stable distribution over the vocabulary that

1Proceedings of the National Academy of Sciences
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~D1 ~D2 ~D3 ~D4

Time

arriving
documents

Figure 3.1: A stream of documents. Documents (black dots) arrive at irregular points in
time. Horizontal lines represent positions of a sliding window of length l = 7 documents.
This sliding window shifts forward by lnew = 5 documents and it covers at its four
positions the following sub-sequences of document IDs ~D1, ~D2, ~D3 and ~D4.

appears at particular points in time. So, Wang et al. learn static topics and, for each
topic, periods of time during which this topic is present.

Chien and Wu [20] propose an incremental learning procedure for PLSA. For learning
an updated PLSA model for some current documents, they take statistics about all past
documents into account. To this end, they exploit the posterior of the last model as
the prior for the current model. By this approach Chien and Wu keep all past statistics
and so the feature space grows continually with time. In contrast thereto, the here
proposed approach neglects word statistics of previous documents immediately when
these become out-dated. As such the method for learning topics from document streams,
which is proposed in this chapter, neither associates points in time with static topics nor
assumes it a static vocabulary. Instead, it learns a sequence of PLSA models by adapting
the models to new documents and new words, while removing out-dated documents and
obsolete words. Closest to this approach is the Incremental Probabilistic Latent Semantic
Indexing method of Chou and Chen [50], which was developed simultaneously to and
independently of the here proposed method. In contrast to Chou and Chen, the here
described method additionally addresses over�tting by exploiting parameter priors.

3.2 Document streams

A document stream is a data stream with records being documents. A time stamp
is assigned to each document. This time stamp refers to the point in time when the
document became part of the stream; this event is also called arrival of the document.
The time stamp of the nth document is denoted by tn.

The time stamps induce an ordering of the documents according to increasing arrival
date with the special case that no ordering is induced among documents with time
stamps that refer to the same point in time. This ordering is represented by the vector
of document IDs ~D = (d1, d2, d3, . . .) with ti ≤ tj for any 1 ≤ i ≤ j. An example stream
of documents is depicted in Figure 3.1.

The sequence of successive documents as represented by ~D is split into successive
batches with the help of a sliding window. At its ith position the sliding window covers
a sub-sequence ~Di of ordered document IDs from ~D. The documents referred to by ~Di

comprise a partial collection of documents ordered according to their time stamp [51].

As a result, the sequence of streaming documents ~D is split into a sequence of successive,
possibly overlapping batches: ~D1, ~D2, ~D3, . . ..

Typically, a sliding window shifts by one document at a time, i.e., the least recent
document within the sliding window is forgotten when a new document arrives. In this
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thesis, positions of the sliding window are de�ned either by time or by the number of
covered documents as explained in the following.

3.2.1 De�nition by time

A sliding window that is de�ned by time contains all documents that arrive during
a certain time interval. If the length of the time interval is u time units and if the
window is shifted by unew time units then the window contains at its ith position docu-
ments ~Di = (di, . . . , dj). The corresponding time stamps (ti, . . . , tj) must lie in the time
interval ((i− 1)unew; (i− 1)unew + u].

De�ning the sliding window via time has two consequences. First, if documents
arrive irregularly, then di�erent batches might contain a di�erent number of documents.
Second, certain batches may contain no documents at all. A simple way to deal with
empty batches is to neglect these during further analyses.

3.2.2 De�nition by number of documents

A sliding window which is de�ned by a number of documents contains l successive
documents and shifts by lnew documents. That means it shifts to a new position af-
ter lnew documents have arrived. Such a sliding window covers at position i the following
batch ~Di = (dr(i), . . . , dr(i)+l−1) with r(i) = 1 + (i− 1)lnew.

Figure 3.1 visualizes an example with 22 streaming documents. The sliding window
covers l = 7 and shifts by lnew = 5 documents. Four sequential positions of this sliding
window are shown by which it de�nes the batches ~D1, ~D2, ~D3 and ~D4.

De�ning the size of the sliding window in document units guarantees that each batch
contains the same number of documents. Thus, probabilistic models, which are learned
for each batch, are learned from the same number of documents. Two consequences
follow from de�ning the window size in document units. First, at di�erent positions
the sliding window may span di�erent periods of time. Second, a larger number of
document batches each of which covers a smaller period of time is de�ned for a fast
stream as compared to a slow stream. In this case, learning topics on a more �ne-
grained time scale with the help of document batches that cover small periods of time
might be adequate as topics in a fast stream may change fast.

3.2.3 Dates of sliding window

At its ith position the sliding window de�nes the batch ~Di = (di, . . . , dj). For annota-
tion of the positions of the sliding window/batches, the time stamp of the last covered
document is assigned to the window positions/batches. Windows that do not cover any
document are left without annotation.

3.3 Adaptive Probabilistic Latent Semantic Analysis

An adaptive learning approach for PLSA, which is called AdaptivePLSA, is presented
in this section. This method learns a sequence of PLSA models over time from a stream
of documents. For learning a PLSA model, AdaptivePLSA gradually adapts a previous
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Figure 3.2: Folding-in new documents (determining their topic-mixture proportions)
into an already learned PLSA model.

PLSA model to new documents and words. The resulting sequence of adaptively learned
PLSA models approximates the contents of the stream of documents. Studying the
learned topics, the reader might get an overview of the thematic subjects, which are
present in the stream. AdaptivePLSA utilizes new folding-in techniques for gradually
learning PLSA models. Parameter learning is done following the principle of Maximum-
A-Posteriori as described in Section 2.6.

In the next section, the basic concepts, which are used by AdaptivePLSA, are de-
scribed. These are folding-in of new documents into a PLSA model (Section 3.3.1) and
two equivalent parametrizations (word-based and document-based) of a PLSA model
(Section 3.3.2). Then, an overview of AdaptivePLSA is presented in Section 3.3.3, and,
afterwards, AdaptivePLSA is explained in full depth in Section 3.3.4.

3.3.1 Folding-in documents

As described in Section 2.5, a PLSA model ζ is parametrized by a tuple (~θ, ~ω, ~δ) of

logarithmic document probabilities ~δ, logarithmic topic-mixture proportions ~θd for each
document d, and logarithmic word-topic associations ~ωk for each topic k. The number
of topics is denoted by K.

As help for the explanations, a PLSA model is visualized by two matrices as shown in
Figure 3.2. Logarithmic topic-mixture proportions are represented by a N ×K matrix;
the rows of this matrix contain the logarithmic topic-mixture proportions of the N
documents. Logarithmic word-topic associations are represented by a K ×M matrix.
The kth row contains the logarithmic word-topic associations of the kth topic.

To incorporate new documents into an already learned PLSA model, Hofmann [18]
suggests Maximum-Likelihood folding-in of the new documents. In this thesis, Maximum-
Likelihood folding-in is adapted to MAP-folding-in of a new document d′.

The idea behind folding-in is to continue the EM algorithm (Section 2.6.1) having

�xed the parameters ~ω but updating logarithmic topic-mixture proportions ~θd′ of the
new document. In contrast to Maximum-Likelihood folding-in, MAP-folding-in takes
the prior of the parameter ~θd′ into account. For folding-in the new document d′ only
those word occurrences of it are used that refer to words known by the PLSA model; all
other word occurrences are neglected. Hence, folding-in a new document requires that
the vocabulary known by the PLSA model and the vocabulary of the new document
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Figure 3.3: Plate-model representation of two equivalent parametrizations of a PLSA
model suited for folding-in new documents (left) and for folding-in new words (right).
Transformation between both forms is done by Bayesian calculus. Nd denotes the number
of word occurrences in document d. Nw denotes the number of document occurrences
of word w.

overlap at least to some degree. After having folded-in new documents, AdaptivePLSA
is capable of incorporating new words of these documents into the current PLSA model.

Newly determined logarithmic topic-mixture proportions ~θd′ are concatenated row-
wise to the corresponding matrix [~θ ~θd′ ]; this is visualized by the green block in Figure 3.2.
Last, document probabilities are re-estimated for all documents (old and new) following

Equation 2.28. The parameters of the PLSA model ([~θ ~θd′ ], ~ω, ~δ) now consist of updated
logarithmic topic-mixture proportions and logarithmic document probabilities, and the
unchanged logarithmic word-topic associations ~ω.

3.3.2 Document-based and word-based parametrization of PLSA

Two di�erent equivalent parametrizations of a PLSA model are used by AdaptivePLSA.
These parametrizations are a consequence of the following two di�erent decompositions
of the joint probability P (d, w).

P (d, w) = P (d)
K∑
k=1

P (w|z = k)P (z = k|d) (document-based) (3.1)

= P (w)
K∑
k=1

P (d|z = k)P (z = k|w) (word-based) (3.2)

To distinguish these two versions the model corresponding to Equation 3.1 and 3.2 are
called document-based and word-based, respectively. So far, document-based PLSA mod-
els have been introduced and discussed. Documents, which are composed of words drawn
from K topics that capture word patterns, are the primary focus of document-based
PLSA models. In contrast thereto, the main view point of word-based PLSA models
is words that are characterized by mixtures of K patterns of document memberships.
These patterns are modeled by generalized Bernoulli distributions over document IDs
P (d|z) with 1 ≤ d ≤ M and 1 ≤ z ≤ K. The patterns of document memberships can
be interpreted as combination of documents in which some words often occur together.

In its document-based form a PLSA model is suited for folding-in new documents as
topic-mixture proportions can be learned independently of each other. AdaptivePLSA
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uses the word-based form for incorporating new words into an already learned PLSA
model. This is possible as parameters that corresponds to new words can be learned
independently of each other in a similar manner as topic-mixture proportions of new
documents in a document-based PLSA model can be learned independently of each
other.

Parametrization

Plate models of PLSA models in their document- and word-based form are shown in Fig-
ure 3.3. A PLSA model ζ = (~θ, ~ω, ~δ) in its document-based form consists of logarithmic
topic-mixture proportions for documents, logarithmic word-topic associations, and loga-
rithmic document probabilities. A PLSA model ζw = (~ϑ, ~$, ~ρ) in its word-based form
consists of logarithmic topic-mixture proportions for words ϑz,w = logP (z|w), logarith-
mic document-topic associations $d,z = logP (d|z), and logarithmic word probabilities
ρw = logP (w), with 1 ≤ z ≤ K, 1 ≤ d ≤ N , 1 ≤ w ≤ M . The motivation for using
model parameters in the logarithmic domain is that these correspond to the natural
parametrization of the underlying generalized Bernoulli distributions (cf. Section 2.5).

Prior

The priors for a document-based PLSA model are described in Section 2.5.3. The same
Dirichlet prior as for logarithmic topic-mixture proportions of documents ~θ (document-
based PLSA; cf. Equations 2.14 and 2.15) is used for logarithmic topic-mixture pro-

portions of words ~ϑ (word-based PLSA). For logarithmic document-topic associations
~$ (word-based PLSA) a similar Dirichlet prior is used as for word-topic associations
~ω (document-based PLSA, cf. Equations 2.12 and 2.13). The di�erence is that this
prior now is de�ned over the N -dimensional simplex with N denoting the number of
documents. Consequently, the hyper-parameter β is divided by K ·N instead of K ·M .

Transformation between document- and word-based PLSA

AdaptivePLSA uses Bayesian calculus for transforming a PLSA model between its
document- and word-based form. While explaining AdaptivePLSA in depth, details
of transforming PLSA models shall be discussed in Section 3.3.4.

3.3.3 Overview

When a sliding window is applied to a given stream of documents ~D, one obtains a
sequence of batches ~D1, ~D2, . . .. AdaptivePLSA is applied to these batches from which
it learns a sequence of PLSA models ζ1, ζ2, . . ., one for each batch. As the vocabulary of
documents might change over time, AdaptivePLSA evolves each model, except the �rst
one, from its predecessor model by adaption to new words.

When AdaptivePLSA evolves a PLSA model, we are in the situation depicted in
Figure 3.4. A predecessor PLSA model was learned with respect to documents of the
batch ~Di and now should be adapted to documents of the next batch ~Di+1. The following
more uncluttered notation is used in the following.

Notation:
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Figure 3.4: Two successive positions i and i+1 of sliding window covering documents D
and D, respectively. Also shown: annotation of corresponding partial document sets.

• batches ~Di and ~Di+1 are denoted by D and D

• vocabulary of D and D is denoted by W and W

• d, d, w, w are IDs in D, D, W , W

• PLSA models ζ and ζ correspond to batches D and D

• out-dated documents Dout are those that are in D but not in D

• new documents Dnew are those that are in D but not in D

• old documents Dold are those that appear in D and D

• out-dated words Wout are word IDs of words that appear in W but not in W

• new words Wnew are word IDs of words that appear in W but not in W

• old words Wold are word IDs of words that appear in W and W

AdaptivePLSA evolves a PLSA model by adapting it to both: new documents and
new words. This includes to incorporate new and to forget out-dated words. Forgetting
out-dated words prevents from accumulating all words seen so far and from unnecessarily
blowing up the feature space. Roughly, AdaptivePLSA goes through the following seven
steps to evolve a PLSA model ζ into an updated model ζ. A visualization of these steps
is presented in Figure 3.5.

Seven steps of AdaptivePLSA:

start with PLSA model ζ

1. remove topic-mixture proportions of out-dated documents Dout

2. fold-in new documents Dnew into model ζ using its document-based form

3. turn model ζ into its word-based form by Bayesian calculus

4. remove topic-mixture proportions P (z|w) of out-dated words Wout

5. fold-in new words Wnew

6. turn intermediate PLSA model into document-based form using Bayesian calculus

7. recalibrate intermediate model by running the EM algorithm using data D

result: PLSA model ζ

Each of these steps is described in depth in the next section.
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Figure 3.5: Overview of AdaptivePLSA that adapts a PLSA model i, which has been
learned for documents D, to the follow-up model i+1 for D̄. Logarithmic topic-mixture
proportions (logP (z|d)) and word-topic associations (logP (w|z)) are visualized by rect-
angles, which correspond to their matrix representations. Document probabilities are
omitted.
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3.3.4 Adapting PLSA models

AdaptivePLSA starts with a learned PLSA model ζ = (~θ, ~ω, ~δ) in its document-based

form. This model has logarithmic topic-mixture proportions ~θd and document probabili-
ties δd for all documents d ∈ D and logarithmic word-topic associations for all K topics
and words w ∈ W .

Remove out-dated documents

First, AdaptivePLSA removes topic-mixture proportions ~θd of out-dated documents d
with d ∈ Dout by deleting ~θd from ~θ. Removing these parameters is possible as they
are independent of the other model parameters. When viewing the PLSA model in the
proposed matrix representation (cf. Figure 3.5), all rows of the matrix ~θ are indepen-
dent of the other model parameters and AdaptivePLSA deletes rows that correspond
to out-dated documents. To advert the temporary nature of the reduced logarithmic

topic-mixture proportions, these are denoted by ~̃θ. The intermediate PLSA model has

parameters ζ̃ = (~̃θ, ~ω, ~δ).

Fold-in new documents

Next, AdaptivePLSA integrates new documents Dnew into the intermediate model. For
folding-in new documents, AdaptivePLSA reduces the new documents to the vocabu-
lary W of the current PLSA model. Then, AdaptivePLSA determines logarithmic topic-
mixture proportions of the new documents by folding-in as described in Section 3.3.1.
In matrix representation, folding-in new documents means to append rows, one for each
new document, to the matrix of topic-mixture proportions. The result is a |D| ×K ma-

trix ~̃θ := [~θd; ~θd′ ] with d ∈ Dold and d
′ ∈ Dnew.

AdaptivePLSA resets logarithmic document probabilities ~̃δ = [δd] with d ∈ D by
new Maximum-Likelihood estimates. For these estimates it uses the documents Dold

(not reduced) and the new documents Dnew which have been reduced to words of the

vocabulary W . The length of the vector ~̃δ is equal to the number of documents D.

Turn PLSA model into word-based form

AdaptivePLSA transforms the current document-based PLSA model ζ̃ = (~̃θ, ~ω, ~̃δ) into

its equivalent word-based form ζ̃w. The parameters of ζ̃w are logarithmic topic-mixture
proportions for words ~ϑ, logarithmic document-topic associations ~$, and logarithmic
word probabilities ρ (cf. Figure 3.3, Section 3.3.2).

Logarithmic topic-mixture proportions for words could be seen as a |W | ×K matrix.
Each row of this matrix contains conditional log-probabilities logP (z = k|ω = w) for
topics 1 ≤ k ≤ K given the word w to which this row corresponds. Logarithmic
document-topic associations could be seen as a K × |D| matrix. The kth row contains
conditional log-probabilities logP (d|z = k) of document IDs given the kth topic. This
matrix representation is used in Figure 3.5.

AdaptivePLSA uses Bayesian calculus for turning a document-based PLSA model into
its equivalent word-based form. To this end, AdaptivePLSA �rst computes unconditional
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topic probabilities. The expression d ∈ D indicates a run over all document IDs of the
batch D. Unconditional topic probabilities are computed by

P (z = k) =
∑
d∈D

P (d)P (z = k|d) (3.3)

=
∑
d∈D

exp(δ̃d) · exp(θ̃d,k) . (3.4)

Next, AdaptivePLSA computes logarithmic document-topic associations $k,d, which are
de�ned as $k,d = logP (d|z = k), for documents d ∈ D and all K topics by

P (d|z = k) =
P (z = k|d)P (d)

P (z = k)
(3.5)

=
exp(θ̃d,k) · exp(δ̃d)

P (z = k)
. (3.6)

Third, AdaptivePLSA computes logarithmic word probabilities ρw = logP (w) with
w ∈ W by marginalization as

P (w) =
K∑
k=1

P (w|z = k)P (z = k) (3.7)

=
K∑
k=1

exp(ωk,w) · P (z = k) . (3.8)

Last, AdaptivePLSA determines logarithmic topic-mixture proportions ϑw,k, which are
de�ned as ϑw,k = logP (z = k|w) for each word w ∈ W and each topic by

P (z = k|w) =
P (w|z = k)P (z = k)

P (w)
(3.9)

=
exp(ωk,w) · P (z = k)

exp(ρw)
. (3.10)

At this point, the intermediate PLSA model in its word-based form is ζ̃w = (~ϑ, ~$, ~ρ).

Remove out-dated words

AdaptivePLSA removes logarithmic topic-mixture proportions of out-dated words by
deleting the corresponding rows of ~ϑ. This is possible as the topic-mixture proportions
of out-dated words are independent of all other parameters of the word-based PLSA
model. In matrix notation, AdaptivePLSA removes rows of the |W | ×K matrix ~ϑ. The

remaining matrix ~̃ϑ := [~ϑw] has only rows that correspond to words w ∈ Wold. The

current PLSA model reads as ζ̃w = (~̃ϑ, ~$, ~ρ).
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Fold-in new words

Folding-in new words as proposed in [5] aims at incorporation of new words into an
already learned PLSA model. For folding-in new words, AdaptivePLSA follows the idea
of folding-in new documents. That is, it estimates topic-mixture proportions of new
words by running the EM algorithm while having �xed the remaining parameters of the
intermediate word-based PLSA model.

For folding-in new words, AdaptivePLSA considers all occurrences of a new word
w ∈ Wnew in a document d ∈ D. For each such word occurrence a pair (w, d) of a

word ID and a document ID with w ∈ Wnew and d ∈ D is added to ~F . The vector
~F = ((d, w)1, . . . , (d, w)|~F |) with |~F | denoting the number of elements in ~F summarizes
all these pairs.

The EM algorithm for folding-in new words works as follows. In its (t+ 1)th iteration,

the EM algorithm determines posteriors for all data points of ~F in its E step. To this
end, it uses the model parameters which have been estimated in the previous iteration.

1 ≤ i ≤ |~F |, 1 ≤ k ≤ K : γ
(t+1)
i,k =

exp($k,di) exp(ϑwi,k)
(t)∑K

k̄=1 exp($k̄,di) exp(ϑwi,k̄)
(t)

(3.11)

Logarithmic document-topic associations ~$ are �xed. The topic-mixture proportions
for new words w ∈ Wnew are re-estimated by

exp(ϑw,k)
(t+1) ∝ α/K +

∑
1≤i≤|~F |
wi=w

γ
(t+1)
i,k . (3.12)

The EM algorithm continually runs through these E and M steps until a stopping crite-
rion is ful�lled.

Derived logarithmic topic-mixture proportions of new words are added to the model

parameters ~̃ϑ = [~ϑ, ~ϑw′ ] with w′ ∈ Wnew. Logarithmic word probabilities are reset by new
Maximum-Likelihood estimates for all words W according to their relative frequency

among all documents D. The intermediate PLSA model now is ζ̃w = (~̃ϑ, ~$, ~̃ρ). In

Figure 3.5, the parameters ~̃ϑ, and ~$ are represented by a |W |×K, and a K×|D| matrix,
respectively.

Turn PLSA model into document-based form

Next, AdaptivePLSA transforms the current word-based PLSA model ζ̃w into its equiv-
alent document-based form. Topic and document-probabilities are determined by the
following equations.

P (z = k) =
∑
w∈W

P (w|z)P (w) (3.13)

=
∑
w∈W

exp(ϑ̃w,k) · exp(ρ̃w) (3.14)
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P (d) =
K∑
k=1

P (d|z = k)P (z = k) (3.15)

=
∑
k=1

exp($̃k,d) · P (z = k) (3.16)

As a result, one obtains δ̃d = logP (d) with d ∈ D. For all documents d ∈ D, Adaptive-
PLSA computes topic-mixture proportions by

P (z = k|d) =
P (d|z = k)P (z = k)

P (d)
(3.17)

=
exp($̃k,d) · P (z = k)

exp(δd)
(3.18)

and one obtains parameters θ̃d,k = logP (z = k|d). Last, for all words w ∈ W , Adaptive-
PLSA computed word-topic associations by

P (w|z = k) =
P (z = k|w)P (w)

P (z = k)
(3.19)

=
exp(ϑk,w) · exp(ρw)

P (z = k)
. (3.20)

Logarithmic word-topic associations are ω̃k,w = logP (w|z) with 1 ≤ k ≤ K. The

intermediate document-based PLSA model is ζ̃ = (~̃θ, ~̃ω, ~̃δ).

Recalibrate

Finally, AdaptivePLSA jointly recalibrates parameters of the current PLSA model ζ̃.
The goal of this recalibration is to exchange mutual information among the new parame-
ters. This is necessary, as topic-mixture proportions and word-topic associations of new
documents and new words have been computed separately from each other so far. Adap-
tivePLSA continues the EM procedure for a few iterations as described in Section 2.6.1.
It uses all word occurrences of the documents d ∈ D. After recalibration, the �nal PLSA
model is ζ which has been evolved from the previous PLSA model ζ by adaption to new
documents and new words.

Limitations of AdaptivePLSA

AdaptivePLSA has two limitations. First, as it might happen that new documents
contain only words yet unknown by the current PLSA model, some new documents
might not be part of the evolved PLSA model ζ̄. Second, as a consequence of the �rst
point, AdaptivePLSA might fail to incorporate some new words, for example if these only
occur in documents that could not be folded-in. The risk of missing new documents and
words might be lowered, e.g., by de�ning successive batches such that these considerably
overlap each other.
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3.3.5 Index-based topic threads

Applied to a stream of documents, AdaptivePLSA learns a sequence of PLSA mod-
els ζ1, ζ2, . . ., each consists of K topics. These topics track the contents of the document
stream over time. As each PLSA model evolves from the previous one, the kth topic of a
model evolves from the kth topic of the previous model. The sequence of topics with the
same index forms an index-based topic thread. Here, index refers to the value of the index
variable 1 ≤ z ≤ K which enumerates theK topics in each model. In more detail, the kth

index-based topic thread is the sequence of word-topic associations exp(ω)1
k, exp(ω)2

k, . . .

learned from batches ~D1, ~D2, . . .. As a consequence, the kth index-based topic thread
describes the evolution of the kth topic over time.

3.4 Baseline approach

As explained in Section 3.1, almost all methods for topic monitoring over time assume
a static vocabulary over time. This assumption is questionable in context of real stream
data because future vocabulary is unknown in the present. A baseline approach, which
takes vocabulary evolution into account, is learning topic models independently of each
other for each of the batches ~D1, ~D2, . . .. The vocabulary of these batches might change
over time. As each model of the sequence ζ1, ζ2, . . . is learned anew with documents of
its corresponding batch, the vocabulary of the models might change over time. Thus,
the models adapt to the changing vocabulary. In this work, the models that are learned
independently of each other are PLSA models and this baseline approach is called Inde-
pendentPLSA. Inline with AdaptivePLSA, IndependentPLSA learns model parameters
with the help of the EM algorithm and by maximizing the a-posteriori probability of
the model parameters. It uses the same prior con�gurations as AdaptivePLSA does.
A simple approach for extracting threads of topics from a sequence of PLSA models
which have been learned by IndependentPLSA is measuring similarity between topics of
successive models and connecting those by a thread that are most similar to each other.

3.5 Evaluation framework

Learning topic evolution with simultaneous adaption to new documents and an evolving
vocabulary has not been intensively studied in the past. The objective of this evaluation
framework is the comparison of AdaptivePLSA with IndependentPLSA. Omitting the
additional background component used by Mei and Zhai [39] renders their approach for
learning a sequence of PLSA models equivalent to IndependentPLSA. That background
component uses knowledge of future words and, thus, cannot be applied to a real stream-
scenario.

In absence of ground truth, AdaptivePLSA and IndependentPLSA are compared by
determining perplexities for the learned PLSA models. Informally, perplexity measures
how surprised a probabilistic model is with respect to yet unknown data. In other words,
it assesses the capability of generalizing to unseen data; the less the model is surprised
the better it generalizes. Hence, lower perplexities are better. In this work, two di�erent
perplexities are used: perplexity with respect to hold-out data and predictive perplexity.
Both perplexities are very similar but a subtle di�erence exists. The hold-out perplex-
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ity measures how well does the model recognize hold-out parts of training documents,
whereas the predictive perplexity measures how well does the model recognize future
documents.

Hold-out perplexity

For PLSA model ζ i the hold-out perplexity is computed with respect to word occur-
rences in documents of the corresponding batch ~Di. The hold-out data of batch ~Di are
constructed by randomly splitting all word occurrences in documents of ~Di into two
disjoint parts: a training part (80%) and a hold-out part (20%).

In more detail, two counters for occurrences of word w in document d of batch ~Di

are maintained: ad,w for the training part and bd,w for the hold-out part. Both counters
sum up to the total number of occurrences of word w in document d and 1/4ad,w ≈ bd,w.

The hold-out counts are stored in the vector ~B.

PLSA models are learned using the training data only, i.e., all word occurrences
of word in documents of batch ~Di as described by the training counts. The hold-out
perplexity for a learned model ζ i with respect to the hold-out data of batch ~Di reads as

perplex(ζ i) = exp

−
∑

bd,w∈ ~B
bd,w log

[∑K
k=1 exp(θd,k) · exp(ωk,w)

]
∑

bd,w∈ ~B
bd,w

 (3.21)

The topic-mixture proportions and word-topic associations are parameters of the model
ζ i.

Predictive perplexity

The predictive perplexity for PLSA model ζ i is measured with respect to future docu-
ments of the next batch ~Di+1. Future documents must be folded-in into the PLSA model
to determine their topic-mixture proportions which are necessary for computing the pre-
dictive perplexity [18, 39]. In this work half-folding-in as suggested by Welling et al. [52]
is used as this approach is supposed to give more realistic results.

First, words from the future documents in ~Di+1 are removed that do not belong to the
vocabulary known by the PLSA model ζ i. Then, the reduced future documents are split
into a fold-in (50%) and a hold-out part (50%). As in the case of hold-out perplexity,

two counters of occurrences of word w in each document d in ~Di+1 are maintained: ad,w
and bd,w with ad,w ≈ bd,w. Folding-in and hold-out counts are stored in the vectors ~A

and ~B, respectively.

Future documents are folded-in into the PLSA model using folding-in data as de-
scribed by counts ~A. Folding-in extends the model ζ i by estimates of logarithmic topic-
mixture proportions of the future documents. Afterwards, the predictive perplexity for
the extended PLSA model ζ i with respect to the hold-out data of the future documents
~B is computed with Equation 3.21. Computing the predictive perplexity is possible
for all models of a sequence except for the last model as for the last model no future
documents are available, yet.
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3.5.1 In�uence of hyper-parameters

The choice of hyper-parameters might have an considerable e�ect on the perplexity of
topic models as discussed in Section 2.6.3. To analyze this e�ect, PLSA models with
di�erent setting of hyper-parameters α and β (see Figure 2.3, p. 12) are learned and the
hold-out perplexities are determined.

3.5.2 In�uence of learning procedure

For a sequence of document batches ~D1, ~D2, . . . AdaptivePLSA and IndependentPLSA
learn a sequence of PLSA models ζ1, ζ2, . . .. Parameter learning of these models by
AdaptivePLSA and IndependentPLSA mainly di�ers by initialization of the model pa-
rameters. IndependentPLSA uses random initialization whereas AdaptivePLSA uses
learned parameters of a previous model as start con�guration of the next model. To
investigate whether this coupling indeed propagates useful information for parameter
learning of the next model, hold-out perplexities of models learned with AdaptivePLSA
and IndependentPLSA are compared.

In addition, the e�ect of the number of learning iterationsm on the hold-out perplexity
is considered. In more detail, the number of learning iterations is either the number of
EM iterations used by IndependentPLSA or the number of EM iterations used for model
recalibration by AdaptivePLSA. To make this comparison fair, the EM algorithm used
by IndependentPLSA is restarted three times. Only those parameters that give the best
a-posteriori probability are used for model parametrization.

3.5.3 In�uence of natural stream order

The impact of the natural order of the streaming documents on the performance of
predicting future documents is investigated. To this end, the streaming documents are
considered in their original (natural) order and in a permuted order. AdaptivePLSA and
IndependentPLSA are used for learning sequences of PLSA models from the natural and
permuted document stream. Afterwards, predictive perplexities are computed. If the
order of streaming documents contains useful latent information, then the predictive
perplexities computed for the permuted stream should be larger than those obtained for
the natural stream.

3.5.4 Meaningfulness of index-based topic threads

Index-based topic threads are primarily de�ned via a technical parameter, i.e., the value
of the index variable 1 ≤ z ≤ K. This index variable simply enumerates the K topics
of a PLSA model. This experiment sheds light on how e�ective this construction of
index-based topic threads is. To this end, the semantic meaningfulness of index-based
topic threads is investigated.

Each index-based topic thread de�nes index-based pairs of successive topics, i.e.,
pairs of topics with the same index in two successive models. In contrast thereto,
best-matching pairs of topics from two successive models are pairs of topics that are
most similar to each other. As best-matching pairs of topics are de�ned with respect
to their content, i.e., with respect to their word-topic associations, best-matching pairs
better agree with our intuition about meaningful threads of topics. Consequently, the
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Year 2000 2001 2002 2003
|D| 57 71 85 87

Year 2004 2005 2006 2007
|D| 115 121 133 194

Table 3.1: Number of documents per year for the SIGIR data set.

semantic meaningfulness of index-based topic threads is assessed by how many of their
index-based pairs agree with the de�nition of best-matching pairs.

For the purpose of determining best-matching pairs, it is necessary to de�ne a simi-
larity measure between pairs of topics. In this experiment, the similarity between two
topics is measured by the cosine similarity between their word-topic associations. These
associations are vectors in R|W i| and R|W i+1| with |W i| denoting the size of vocabulary of
batch ~Di. As both sizes are very likely di�erent both vectors are embedded into the space
spanned by the joint vocabulary of both batches. Missing word-topic associations are
�lled with zero-probabilities. From a sequence of PLSA models ζ1, ζ2, . . . , ζN̄ the set of
all best-matching pairs is determined as follows. First, the most similar follow-up topic
is determined for each topic of the models up to ζN̄−1. Then all pairs are neglected whose
cosine similarity is lower than a given threshold MinSim. Omitting best-matching pairs
with a very low similarity is necessary in order to keep only meaningful best-matching
pairs with a reasonable high similarity.

The percentage of index-based pairs that are also best-matching pairs is reported.
If topologies of topic-based index threads and best-matching pairs agree well (the re-
ported percentage is high), then the index-based topic threads are assumed to be indeed
meaningful.

3.6 Experiments

In this section, details about the data set are given and the results are discussed.

3.6.1 Data set

Articles of the ACM Digital Library which have been published at the ACM SIGIR2

conference between 2000 and 2007 were used. The titles and abstracts of these articles
are easily accessible through the ACM Digital Library. Posters were excluded because
they often do not have abstracts. A document was de�ned for each remaining article
by merging its title and abstract. Last, English stopwords were removed and the Porter
stemmer was applied to the documents. This data set is called SIGIR data hereafter.

The number of SIGIR documents of the constructed data set varies per year as shown
in Table 3.1. Their number increases from 2000 to 2007. The reason might be an
increasing popularity of the SIGIR conference.

A stream of SIGIR documents was de�ned by ordering the SIGIR documents accord-
ing to their year of publication. Sliding windows of size one year and two years were

2Association for Computing Machinery Special Interest Group in Information Retrieval
www.sigir.org, May 3, 2012

www.sigir.org
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Figure 3.6: Word statistics of SIGIR data for di�erent lengths of the sliding window.
Complete vocabulary is the vocabulary before stopword removal, stemming and learning.

applied to this document stream. Regardless of their size, the windows were shifted by
one year. This resulted in 8 and 7 batches of size one and two years, respectively. Words
that appeared only in one document per batch were removed from the vocabulary of the
corresponding batch. This reduced the vocabulary/feature space but would not harm
the learning of topics as these are patterns of frequently co-occurring words.

Word statistics of the SIGIR documents are presented in Figure 3.6. The overall
vocabulary increases from 2000 to 2007 by a factor of about 2. A reason for this observa-
tion could be the increasing number of published documents. The vocabularies utilized
by the PLSA models increase by about the same factor, although their sizes are smaller
than the total vocabulary of the corresponding batch. Three reasons could be (i) omit-
ting of rare words, (ii) removing stopwords, and (iii) it might have happened that some
words could not be incorporated into the model as described in Section 3.3.4 (Limita-
tions of AdaptivePLSA). Especially, removing rare words might reduce the size of the
vocabulary substantially as it is known that word frequencies often follow the Zipf's law
which says, simplistically speaking, that only a few words occur occur very frequently
whereas a lot of words occur rarely. Last, successive models have at least 50% of their
vocabulary in common. This percentage is, on average, higher for batches of size two
years than for batches of size one year. This agrees with the expectation that partially
overlapping batches should lead to vocabularies that overlap to a higher degree.

3.6.2 Impact of hyper-parameters

Hyper-parameters α and β are the parameters of the Dirichlet priors for topic-mixture
proportions and topic-word associations, respectively (see Section 2.6.1). These hyper-
parameters were varied such that the real pseudo counts (α/K, β/KM) of MAP parameter
estimates are in {0.01, 0.1, 1, 10, 100}.

For this experiment, one single batch that contained all documents from 2000 to 2007
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Figure 3.7: In�uence of priors on hold-out perplexity (lower perplexities are better).
Hyper-parameters α and β control the Dirichlet priors for topic-mixture proportions
and word-topic associations, respectively. Results for the combination α/K ∈ {10, 100}
are not shown because they lead to worse perplexities.

was used and the number of topics was �xed atK = 10. Word occurrences were randomly
partitioned into 80% training data and 20% hold-out data. Hold-out perplexities were
determined with respect to the hold-out data after PLSA models have been learned
with di�erent setting of the hyper-parameters. Learning was repeated 50 times and the
obtained average hold-out perplexities are shown in Figure 3.7.

The hyper-parameters indeed a�ect the perplexities. The combination β/KM = 0.1
and α/K = 0.1 gives best hold-out perplexity. These results indicate that

1. the Maximum-A-Posteriori principle of parameter estimation opens room for im-
proving the generalization capability of PLSA models as optimal hyper-parameters
might improve the hold-out perplexity

2. optimizing hyper-parameters is valuable as this might lead to better parameter
estimates in terms of hold-out perplexity

The determined optimal setting of hyper-parameters was used in the following experi-
ment.

3.6.3 In�uence of learning procedure

The two learning procedures AdaptivePLSA and IndependentPLSA were used in this ex-
periment and the number of learning iterations m ∈ {1, 2, 4, 8, 16, 32, 64, 128} was varied.
The number of topics was �xed at K = 10. In general, a trained PLSA model will �t
the training data better when the number of learning iterations increases. On the other
hand, the better a PLSA model is �t to the training data the worse it may generalize
from these data and predict yet unseen hold-out data. PLSA models that well generalize
to hold-out data better model the overall characteristics of the streaming documents. A
number of 50 sequences of PLSA models were learned for each combination of a learning
procedure, a length of the sliding window (one and two years), and a number of learning
iterations m. Hold-out perplexities that have been averaged over all models of all 50
repeats per combination are depicted in Figure 3.8.
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Figure 3.8: AdaptivePLSA vs. IndependentPLSA and impact of number of learning
EM steps m on average hold-out perplexity.

Figure 3.8(a) reveals that AdaptivePLSA is generally superior over IndependentPLSA
as hold-out perplexities for AdaptivePLSA are smaller than the corresponding ones for In-
dependentPLSA. This tendency is independent of the number of EM steps m. Moreover,
hold-out perplexities have a local minimum for both learning approaches. The number
of EM steps needed to reach this minimum are those for which one obtains optimally
generalizing PLSA model. Interestingly, the numbers of optimal EM steps are small: 4
EM steps for AdaptivePLSA and 8 EM steps for IndependentPLSA. A reason for this
�nding could be that titles and abstracts are very condensed descriptions; they use very
conscious and speci�c words. Fitting a PLSA model too close to the speci�c words of
training abstracts and titles, one might quickly end up with PLSA models that poorly
generalize to hold-out data. Further on, the number of EM iterations needed to give
optimal PLSA models is slightly smaller in the case of AdaptivePLSA compared to Inde-
pendentPLSA. In summary, using AdaptivePLSA leads to better hold-out perplexities
in less EM steps.

Figure 3.8(b) reveals almost the same tendencies with respect to the comparison of
AdaptivePLSA and IndependentPLSA. One di�erence is that the hold-out perplexities
for IndependentPLSA show now local minimum; hold-out perplexities steadily decrease
toward m = 128 learning iterations. The overall best hold-out perplexity is obtained
when using AdaptivePLSA and m = 4 learning steps. All hold-out perplexities of PLSA
models learned with IndependentPLSA are substantially higher (worse). As Adaptive-
PLSA needs less learning iterations and still learns models that better generalize to
hold-out data, AdaptivePLSA turns out to be superior over IndependentPLSA.

3.6.4 Impact of natural stream order

AdaptivePLSA and IndependentPLSA were used to learn 50 sequences of PLSA models
from the SIGIR document stream in its natural stream order. Learning was repeated a
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Figure 3.9: Impact of natural stream order on capability of predicting new documents.
Again, two di�erent sizes of the sliding window are taken into account (one t = 1
and two t = 2 years). The star notes signi�cant di�erences according to a t-test with
signi�cance level 0.05.

second time having permuted the time stamps of the documents each turn anew. The
sizes of the new batches were equal to the sizes of the original batches. Again, the
number of topics was set equal to K = 10.

Averaged predictive perplexities per model for each combination of a learning proce-
dure and stream order are presented in Figure 3.9. The natural stream order leads to
signi�cantly better predictive perplexities if the sliding window is of size one year. This
result is true for both learning approaches. Figure 3.9 indicates further that Adaptive-
PLSA bene�ts slightly more from the natural stream order than IndependentPLSA. If
the sliding window is of size two years, then the impact of the natural stream order is
less obvious. The reported predictive perplexities are almost the same for the natural
and the permuted order. Two reasons could be (i) the larger size of training documents
as each PLSA model was learned with documents of two successive years, and (ii) a
larger vocabulary of the training data. A larger number of training documents could
lead to better parameter estimates and so might enhance the predictive perplexity. A
larger vocabulary might include future words with a higher probability and so might
lead to PLSA models that are capable of better predicting future documents.

Last, adaptively learned PLSA models lead to lower predictive perplexities than in-
dependently learned PLSA models. This �nding is in agreement with previous results
and indicates that AdaptivePLSA has the potential to learn PLSA models that better
generalize to yet unseen data.

3.6.5 Meaningfulness of index-based topic threads

A sequence of PLSA models with K = 10 topics was learned from the SIGIR document
stream in natural order with AdaptivePLSA. The meaningfulness of index-based topic
threads was measured by opposing them to best-matching pairs.

Figure 3.10(a) shows that the largest number of best-matching pairs is obtained if
the lower threshold MinSim on the cosine similarity of best-matching pairs is equal to
zero (MinSim = 0.0). This means that each topic has a best-matching follow-up topic
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Figure 3.10: Best-matching pairs vs. index-based topic threads. Length of sliding
window: one (t = 1) and two (t = 2) years.

as all best-matching pairs are considered. The largest possible number of best-matching
pairs is 70 and 60 for a sliding window of size one and two years, respectively. For a
sliding window of size one year this number is 70 because each model has K = 10 topics
and the number of transitions between two successive batches is seven. Using a sliding
window of size two years, the number of transition is six and so the maximal number
of best-matching pairs is 60. As the threshold MinSim increases to 0.8, the number
of best-matching pairs decreases below 20 and 50 for a window size of one and two
years, respectively. As all remaining best-matching pairs (see Figure 3.10(b)) are also
index-based pairs, these best-matching pairs connect only topics with the same index.
Increasing the threshold further would leave the percentage of best-matching pairs that
are also index-based pairs unchanged at 100%. Consequently, the threshold MinSim is
meaningfully varied only in the interval [0; 0.8].

Figure 3.10(b) reveals that, for a window size of two years, all best-matching pairs,
regardless of the value of the threshold, are index-based pairs. For a window size of
one year at least 94.5% of the best-matching pairs agree with index-based pairs. This
percentage increases to 100% when the threshold MinSim reaches 0.8. This �nding
indicates that strong best-matching pairs, which are those that remain after increasing
the threshold MinSim to 0.8, tend to connect only topics with the same index. This
demonstrates that AdaptivePLSA learns sequences of PLSA models such that topics
with the same topic index in successive models could be meaningfully connected. The
resulting index-based topic threads agree with best-matching pairs to a high degree. As
such, index-based topic threads are similar to those topic threads proposed by Mei and
Zhai [39] that are constructed by matching topics with respect to their similarity.
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Figure 3.11: Index-based topic threads for SIGIR data from 2000 to 2007. For each
topic the top-25 most likely words are shown.
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3.6.6 Example index-based topic threads

A sequence of eight PLSA models with K = 5 topics using AdaptivePLSA was learned
for this example analysis. The sliding window was of size one year and it was shifted
by one year. As a result, each batch covered documents of one year and batches did
not overlap. Table 3.11 presents the learned topics which are arranged such that each
index-based topic thread is shown along one row. The top-25 most likely words per topic
are listed. The index-based topic threads presented in Table 3.11 might be interpreted
as follows.

Thread 5: two main aspects: multilingual IR and natural language processing; further
aspects are relevance feedback for multilingual IR, natural language processing
with sub-area automatic translation and multimedia in context of presentation;
another sub-area seems to be image annotation

Thread 4: main thematic subject is web; the two sub-areas on information extraction
and link traversal are present at the beginning; web search and user queries ap-
pear later; other subjects are improving document rankings by exploiting citations,
social networks and evaluation

Thread 3: document clustering in information retrieval is main subject of the third
topic thread; data mining in databases appears in 2000 and 2003; a sub-area on
semantic techniques is present from 2004 on

Thread 2: main subject seems to be evaluation of methods for information retrieval
with respect to documents; a sub-area on ranking of video data seems to be present
in 2003 and 2004; a sub-area on relevance feedback appears later in 2005 and 2006

Thread 1: supervised machine learning and classi�cation; later, more elaborate aspects
such as feature selection, collaborative �ltering and support vector machines ap-
pear

Some index-based topic threads are relatively stable whereas others considerably
change. For example, the third topic thread is clearly on document clustering and
this main subject seems to be relatively stable from 2000 to 2007. In contrast, the �rst
topic thread, which is about supervised machine learning (a multi-term that does not
appear among the words), is changing considerably. This thread captures aspects of
classi�cation at the beginning. More speci�c aspects, e.g., on support vector machines
and feature selection, appear later.

All together, these �ve index-based topic threads are a comprehensible summary of the
thematic subjects that are present in the SIGIR document stream. As such they provide
the reader with an overview of the research topics presented at the SIGIR conference
from 2000 until 2007.

3.7 Conclusions and further directions

This chapter deals with learning a summary of contents of document streams, in which
the thematic subjects and the vocabulary of the documents change with time. The
proposed approach, which is called AdaptivePLSA, is an online learning procedure for
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learning PLSA models from a document stream. By adapting PLSA models to new
documents and words while removing out-dated words, AdaptivePLSA keeps the feature
space up-to-date. By that, AdaptivePLSA waives the assumption that the complete
vocabulary is known in advance and it alleviates the negative impact of large, continually
growing vocabularies with many words of only temporary importance. The topics of the
learned PLSA models re�ect the contents of a given document stream. By studying
and interpreting these topics, the reader is able to discover thematic subjects, which are
present in the streaming documents, and their evolution over time.

AdaptivePLSA is evaluated by applying it to a stream of documents of the ACM
SIGIR conference from 2000 to 2007. The hold-out perplexities of the learned PLSA
models di�er when the hyper-parameters of the PLSA priors are varied. This indicates
that determining optimal hyper-parameters is necessary for learning PLSA models that
well generalize to yet unseen data. This �nding is inline with Asuncion et al. [32] who
�nd that choosing optimal priors of topic models has an important in�uence on the
perplexity. In addition, the number of iterations of the EM algorithm for parameter
learning strongly in�uences perplexities. Surprisingly, a few iterations are necessary for
learning PLSA models that reach best perplexities. This indicates that running the
EM algorithm until convergence is unnecessary for obtaining parameter estimates which
give best perplexities. An additional advantage of stopping the EM algorithm already af-
ter a few steps is that the computational costs of learning are reduced. A comparison of
AdaptivePLSA with IndependentPLSA shows that AdaptivePLSA leads to PLSA mod-
els that reach better perplexities. This demonstrates the e�ectiveness of AdaptivePLSA
in utilizing latent information from previous models for learning PLSA models from a
stream of documents. Next, the intrinsic value of the order of the streaming documents
was analyzed. The results show that PLSA models which have been learned by Adaptive-
PLSA from the SIGIR stream in its natural order better predict future documents than
models learned from a permuted SIGIR stream. This �nding indicates that the natural
order of streaming SIGIR documents has some intrinsic value for adaptively learning
PLSA models. In addition, this �nding demonstrates that AdaptivePLSA is capable of
exploiting this intrinsic value. Last, index-based topic threads, which are extracted from
a sequence of PLSA models learned by AdaptivePLSA, strongly agree to threads of most
similar topics. Thus, index-based topic threads are meaningful in the sense that they,
although being de�ned via a mere technical parameter, agree with humans' intuition of
threads of similar topics.

As streams of documents become an emerging part of modern life, they are a reason-
able subject of current and on-going research of machine learning. A future direction of
online learning of topic models is recurring topics. Recurring topics, when identi�ed in a
stream of documents, might be exploited for learning future topic models from the latest
documents of this stream. Likewise, identifying and modeling correlations among topics
that occur in a document stream at di�erent points in time also might be exploited for
enhancing learning of future topic models. Another potential direction of research is
designing topic models for modeling streams of other kinds of data, e.g., audio or video
data. The focus of this research would be the various data streams that people nowa-
days are confronted with. Examples include video streams and audio streams like online
music streams. Last, machine learning approaches for learning topics from streams of
documents for the inspection by a user are only as powerful as the presentation of the
learned topics is. Thus, another direction of research is the development of sophisti-



49

cated visualization techniques for presenting topics learned from streaming documents
and their evolution over time.
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Chapter 4

Visually summarizing document

streams

Nowadays, streams of documents are present in everyday life. Examples are annual
conference proceedings, articles in newspapers or news reports, received e-mails, pub-
lished research articles in scienti�c journals, received short messages via SMS, entries
in online blogs, Twitter messages and many more. Streams of documents are a source
of knowledge. For instance, documents published in the annual conference proceedings
of the SIGIR conference re�ect what the main research topics have been and how they
changed over time. Such pieces of information are helpful for organizers who want to
identify current subjects of research and how these evolved from former subjects. An-
other example are news articles; analyzing them over time, journalists might investigate
periods of time in which a certain political debate of interest was going on.

An electronic collection of streaming documents proliferates and grows continually.
Its contents change with time and so do the thematic subjects which the documents are
about. If one wants to know the changing contents, one might inspect the streaming
documents. But, inspecting whole documents is time consuming and, if the stream is
fast, impractical. In this chapter, a visualization technique, which is meant as a tool for
generating a comprehensible summary of the changing contents present in a document
stream, is proposed.

Topic evolution is a relatively new research subject which encompasses the unsuper-
vised discovery of thematic subjects in a stream of documents and the adaptation of these
subjects as new documents arrive. Research on summarizing document collections [53�
55] aims at helping readers to keep up with changing contents in growing collections.
While many powerful methods for analyzing and modeling topic evolution exist, the
combination of learning and visualization of the evolving topics has been less explored,
although e�ective visualization is indispensable for readers who want to discover and
track thematic subjects in streams of documents.

Learning topics is successfully pursued with probabilistic topic models like PLSA [18]
or LDA [15] which derive a small number K of groups of words that appear frequently
together in documents. These groups of words are probabilistically represented as dis-
tributions over the vocabulary. Often, only a few very likely words are presented to the
readers for inspection and interpretation. In most cases, humans can interpret these few
words as thematic subjects.

In the stream scenario, interpreting topics becomes more tedious as topics change
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Figure 4.1: Box scheme for two topics (rows) over time (columns). Example topics were
inferred from the Science corpus and are taken from the manuscript on the Dynamic
Topic Model [40].

continually when new batches of documents arrive. Consequently, for each batch and
each of the K topics, the reader would have to study a list of words. The total number
of word lists would be equal to the number of topics K times the number of batches. To
ease that task a new visualization method, which is called TopicTable is introduced in
this Chapter. TopicTable visualizes learned topics in combination with additional pieces
of information useful for deducing the thematic subjects and their evolution.

TopicTable solves the following design challenges: (i) it uses the canvas e�ciently,
and (ii) it displays important information while retaining less important ones. To this
end, the box scheme is extended that is often used for presenting topics in the literature
on topic modeling. An example of the box scheme is shown in Figure 4.1; each box
corresponds to one topic and lists a small number of its most likely words. Columns cor-
respond to time periods as given by the time stamps of documents of the corresponding
batches. Vertically aligned boxes present topics learned from the same batch of docu-
ments. Horizontally aligned boxes indicate relatedness among the displayed topics and
emphasizes the perception of their evolution over time.

Beside the most likely words of each topic, the box scheme often neglects other pieces
of information, which could be helpful for deducing thematic subjects and their evolu-
tion. TopicTable visualizes, at a glance and in an intuitive manner, the following four
additional pieces of information.

1. emergence of new words

2. relative strength of topics

3. similarity of topics presented in any two successive boxes along one row

4. similarity among all topics across the whole table



53

All these pieces of information have the potential of assisting the reader in identifying
and assessing the contents of a document stream. For example, the strength of topics
might be particularly helpful for readers if they are interested in the relative prevalence
of topics, or if readers are mainly interested in studying the most prevalent topics of
each batch.

As lists of words and similarities among topics are the input, TopicTable might be
combined with any topic model that is capable of learning topics and their evolution from
document streams. In this work, AdaptivePLSA, an extension of PLSA for dynamic topic
modeling discussed in Chapter 3, is used for learning topics from streams of documents.
AdaptivePLSA is especially suited as learned topics with the same index over time might
be meaningfully connected to an index-based topic thread as described in Section 3.3.5.
Hence, topics of each index-based topic thread could be well aligned along one row of
TopicTable. There is no extra need for matching successive topics to each other in order
to obtain well interpretable threads of topics. The possibility to combine TopicTable with
any suited topic model makes TopicTable a promising visualization tool for presenting
topics and their evolution.

The remainder of this chapter is structured as follows. Related work is discussed
in Section 4.1. In section 4.2, the notation for document streams is shortly recalled
and document prototypes, an interface for coupling TopicTable with di�erent methods
for learning topics from document streams, are introduced. TopicTable is described in
detail in Section 4.3 and, afterwards, the e�ects of parameter settings on TopicTable
are discussed in Section 4.4. Afterwards, two case studies for the summarization of
the contents of NIPS and SIGIR articles and their evolution over time are presented in
Section 4.5. The conclusions are given in Section 4.6.

4.1 Related work

Visually summarizing contents of document streams is a way of knowledge discovery; it
helps in uncovering the multiple thematic subjects of the streaming documents. Topic
models especially extended for learning topics from streams of documents are well suited
for exploratory analyses of the contents of a stream of documents. Beside Adaptive-
PLSA [5], which extends PLSA [18] to streaming documents and which is used in this
thesis, other approaches for dynamic topic modeling have been developed. Examples
include [39�41, 49, 50, 56, 57]. All these approaches have in common that they model
a topic as a distribution over the vocabulary, and that they adapt topics to contents
of newly arriving documents. Some approaches allow for words to become obsolete and
irrelevant while new words emerge [5, 49, 50]. Taking into account the evolution of the
terminology, i.e., the change of vocabulary, is indispensable for learning topics and their
evolution. A reason is that the evolution of thematic subjects is inevitably associated
with the increased importance of some words that were irrelevant or unknown in the
past [5].

Topic models [15, 18] are often accompanied by some simple visualization aids. For
example, Blei et al. [40] list the most likely words for a topic at each point in time,
and further visualize how the probability of a certain word being associated to a topic
changes over time. Contrary to listing most likely words for a topic, Mei et al. [58] and
Boyd-Graber et al. [26] point out that human inspection is facilitated by choosing the
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most descriptive words for a topic rather than the most likely ones. Being based on
document prototypes, TopicTable (i) might present meaningful word lists of any type, for
example the most likely, the most descriptive, or the most discriminative words for each
topic, and TopicTable (ii) might be coupled with di�erent approaches for learning word
patterns re�ecting thematic subjects of streams of documents.

TimeFall [53] has been designed for the visualization of clusters in evolving social net-
works. In contrast to TopicTable, which visualizes topics learned with topic models, the
clusters which are presented by TimeFall are actually communities of words visualized
as boxes. The authors describe an example visualization as follows (cf. [53], p. 1).

�In Figure 1 each box represents a community of words � a user pro�le topic.
Each topic is thus described by a set of keywords that are characteristic for
the corresponding topic. Each line (horizontal group of topics) represents
a time step, and arrows between the topics from the adjacent time steps
represent the evolution of the topics. Notice the splits and merges of the
topics over time.�

Beside the characteristic keywords, the size and weight of each topic are printed inside
the corresponding box.

TextPool, proposed as help for decision makers, provides a summary of streaming
documents [59]. Applied to a stream of documents, TextPool updates a summary for
the latest resources by clustering related terms. Although TextPool deals with streams of
documents, it aims at giving an overview of the most recent contents. In contrast thereto,
TopicTable summarizes the latest and earlier documents for studying their contents and
how these contents change with time.

MemeTracker [57] studies phrases and their frequencies of occurrence in news channels
like blogs or information media portals. For visualizing these frequencies, MemeTracker
uses a ThemeRiver approach [60], which applies a river metaphor to visualize changes
in document contents over time. An example visualization for ThemeRiver is shown in
Figure 4.2. ThemeRiver [60] visualizes the document frequencies1 for prede�ned phrases
over time. The document frequency of a speci�c phrase in each interval is mapped to
the width of a �ow, which �runs through time� from the left to the right side of the
canvas. Flows of prede�ned phrases are plotted in di�erent colors to make perceptual
discrimination possible and are combined on top of each other to a river that �ows
through time. Space of the canvas is wasted (spent for uninformative background)
whenever the total width of the ThemeRiver is small and the integration of text into
narrow �ows is di�cult. ThemeRiver could be adapted to visualize the changing strength
of topics over time as it is done for Topics over Time [41]. But enriching ThemeRiver
with additional pieces of information is di�cult due to space constraints; for example,
the ThemeRiver visualization used in [41] does not provide enough space for printing
topic headlines onto the visualized �ows.

Other sophisticated approaches for visualizing document collections are Topic Map [62]
and Topic Model Browser2. In contrast to TopicTable which aims at presenting topics
and their evolution over time, Topic Map and Topic Browser summarize static collec-
tions. For example, Topic Map helps the reader in identifying sub-groups of similar

1number of documents that contain the word
2http://www.cs.princeton.edu/~blei/topicmodeling.html, section on �Corpus browsers based

on topic models�, March 26, 2012

http://www.cs.princeton.edu/~blei/topicmodeling.html
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Figure 4.2: ThemeRiver on a few selected dot.com company stocks from January 1999
until April 2002 [61]. X-axis is timeline and framed part is printed enlarged at the
bottom.

documents in large document collections. To this end, Topic Map uses topic modeling
for dimension reduction and maps documents as represented by their high-dimensional
word vectors into the 2-dimensional space for inspection. Topic Browser is an interactive
visualization for overviewing learned topics by presenting their word distributions, topic
strengths, and short summaries (headline and most likely words). It extends the sim-
ple box design by enabling the reader to interactively change among di�erent websites.
Each website presents a distinct pieces of information (topic strengths, word lists, topic
distributions etc.).

4.2 Document prototypes

The concept of document prototypes is introduced as an interface between TopicTable
and di�erent approaches for learning patterns of words re�ecting thematic subjects in
streaming documents. TopicTable presents to the reader these document prototypes in
combination with additional pieces of information which are useful for the interpretation
of the presented document prototypes.

Document prototypes are condensed descriptions of the summarized documents. As
such they abstract from speci�c documents. Consequently, the number of prototypes
should be chosen to be substantially smaller than the number of documents. As a result,
the reader has to inspect a few prototypes only instead of inspecting all documents.
For summarizing the contents of documents, prototypes should give the reader hints for
deducing thematic subjects which the documents are about. For example, a document
prototype could be a list of words that often co-occur in documents of the summarized
collection. To make a fast perception possible, these lists should consist of a few tens of
words at most.

The concept of document prototypes makes it possible to separate the visualization
technique from the learning method used to derive document prototypes. In general,
arbitrary dimension reduction approaches might be suited for learning meaningful proto-
types. Examples include principal component analysis, independent component analysis,
non-negative matrix factorization, and topic modeling [62]. Probabilistic topic modeling
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is used in this thesis for learning topics from a document stream. Topics capture pat-
terns of words that often co-occur in di�erent documents. As topics are distributions
over all words of the vocabulary [15, 18] they are less suited for summarizing documents.
Instead, document prototypes which consist of the Ntop most likely words of each topic
are derived from these distributions. As a consequence of deriving document prototypes
from topics, the additional pieces of information which TopicTable visualizes are the
strengths of and similarities among topics.

If one derives document prototypes, for example, from principle components deter-
mined by principle component analysis, the prevalence of a document prototype could
be derived from the eigen value of the corresponding principle component. Similari-
ties among document prototypes then could be determined as similarities among the
underlying principle components.

4.2.1 Streams of documents

As explained in Section 3.2, a stream of documents is given by a sequence of document
IDs ~D that are ordered by date of arrival. Arriving documents are pooled into batches
~D1, ~D2. . . .. Topics are then learned for each batch from all documents that constitute
this batch. These batches are de�ned by a window which slides over the streaming
documents. At its ith position, the sliding window covers some successive documents
which constitute batch ~Di. An example is shown in Figure 3.1.

Parameters of the sliding window are (i) its size, and (ii) how far the window shifts
to its next position. As described in more detail in Section 3.2, the size could be de�ned
in units of either documents or time. For a given problem at hand, the de�nition that
better �ts the problem might be chosen.

4.2.2 Document prototypes over time

Document prototypes are derived from the topics of the topic models which have been
adaptively learned; one model per batch. By inspecting the prototypes of successive
batches, the reader gets an overview of the contents in each of these batches and how
their thematic subjects change with time.

A subtle point of visualizing topics from successive batches is that these topics have
to be meaningfully linked to each other for studying their evolution over time. This is
a prerequisite of TopicTable because it presents prototypes that should be snapshots of
similar thematic subjects over time along each row. In other words, the problem here is
label switching. Three general approaches for coupling topics of successive topic models
are described in the following. The topic model at point in time i is denoted by ζ i and
each model consists of K topics.

Post-hoc coupling means that models are learned for each batch independently of
each other. Topics of subsequent models that are most similar to each other are matched
afterwards. For example, among all topics of the model ζ i+1 the topic 1 ≤ z̄ ≤ K is most
similar to the topic 1 ≤ ẑ ≤ K of model ζ i. Then, topic z̄ is identi�ed as the follow-up
topic of topic ẑ. This approach depends on the similarity measure between topics. An
example of post-hoc coupling is the work of Mei and Zhai [63]. They learn independent
PLSA models and use post-hoc coupling for the de�nition of threads of topics over time.
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Coupling by initialization is taken by AdaptivePLSA [5] and the similar approach
proposed by Chen and Chou [50]. Each topic model ζ i is learned by a learning algorithm.
Often, these learning algorithms are methods for numerical optimization and, hence,
depend on the initialization of the model parameters. Coupling by initialization means
that for learning the model ζ i+1 the start con�guration of its model parameters are set
equal to the learned parameters of the preceding model ζ i. Consequently, the kth topic
in model ζ i+1 evolves from the kth topic of the previous model ζ i.

Coupling by priors is used by the Dynamic Topic Model [40]. Information about
topics of successive models is transferred via priors for model parameters. A state space
model makes the prior for topics of the later model ζ i+1 statistically dependent on the
prior for topics of the preceding model ζ i.

In this work, AdaptivePLSA [5], an extension of Probabilistic Latent Semantic Anal-
ysis to streams of documents, is used. AdaptivePLSA learns a PLSA model with K
topics for each batch of a given sequence of batches. Afterwards, document prototypes
are derived from the Ntop most likely words per topic. The indices of the topics are
associated to the derived document prototypes. Document prototypes with the same
index over time are then presented along one row of TopicTable. The relation among
these document prototypes along one row is meaningful as the underlying topics pos-
sess a meaningful connection. They evolve from each other over time as discussed in
Section 3.6.5. Further details on AdaptivePLSA are discussed in Chapter 3.

4.3 Features of TopicTable

So far N̄ batches ~D1, . . . , ~DN̄ have been constructed from a stream of documents. Ap-
plying AdaptivePLSA to these batches, one obtains N̄ PLSA models ζ1, . . . , ζN̄ . Each
topic model consists of K topics and a document prototype is derived from each topic.

TopicTable visualizes these comprehensible document prototypes in combination with
additional pieces of information. Studying these document prototypes, the reader might
reveal thematic subjects of the streaming documents and their thematic evolution.

TopicTable extends the tabular structure of the simple box scheme which is shown
in Figure 4.1. For K document prototypes at N̄ points in time TopicTable visualizes K
rows and N̄ columns. Rows correspond to document prototypes and columns correspond
to snapshots of these prototypes over time. Hence, the cell (k, i) in row k and column
i corresponds to the kth prototype derived from PLSA model ζ i. By arranging all kth

document prototypes of all batches along the kth row, TopicTable visually establishes a
correspondence among them. Aligning the kth document prototypes over time is justi�ed
as AdaptivePLSA establishes a meaningful correspondence among the kth topics over
time. Arranging snapshots of related prototypes along the kth row makes it easier for
the reader to study these and to deduce their evolution over time.

TopicTable arranges four additional pieces of information. From background to
foreground, these pieces are (i) local similarity between successive topics of each row,
(ii) global similarity among all presented topics, (iii) relative strength of topics in each
batch, and iv) emerging words. Figure 4.3 depicts how these pieces of information are
visually presented by TopicTable. By displaying these pieces of information on top of
each other from background to foreground, TopicTable uses the canvas e�ciently. In
addition, as TopicTable uses always one cell for each document prototype, TopicTable
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Figure 4.3: The cell in row k and column (i + 1) corresponds to the kth topic which

have been learned from the documents ~Di+1 of the stream ~D. Features of TopicTable
are: (a) document prototype (Ntop most likely words of the underlying topic with new
words being highlighted), and (b) the river in the background of each row has at each
border between the (i + 1)th and (i + 2)th column a width that is proportional to the
similarity between the kth topic from batch (i+ 1) and (i+ 2), (c) the background circle
whose radius is proportional to the relative strength (probability) of the corresponding
topic, and (d) the color of the background river indicates similarities among all topics
(similar topics have a similar color).

does not suppress but visually retain less dominant prototypes.

It should be noted that the similarities and relative strengths are determined for the
underlying topics. This is a consequence of the decision to derive prototypes from topics
of probabilistic topic models. If other approaches are used for deriving prototypes, these
similarities and relative strengths will have to be determined in a di�erent manner.

4.3.1 Local similarities between successive topics

First, TopicTable visually depicts how similar topics of one row between two successive
batches are. Time periods in which successive topics of one row are relatively similar to
each other might indicate life-times of thematic subjects. Moreover, if successive topics
of one row are relatively dissimilar to each other, then they refer to relatively di�erent
patterns of co-occurring words. Visualizing local similarities between successive topics
is a help for recognizing possible change of the thematic subjects these topics refer to.

For visualizing local similarities between topics, TopicTable uses the metaphor of a
river that ��ows through time�. To this end, TopicTable associates each row with a river
along that row. Narrow parts of the river are like watergates that strongly separate what
comes before and what afterwards. These watergates indicate transitions during which
the corresponding topic changes much; the similarity between the topic before and after
this gate is low. In other words, the topic strongly evolves. As the width of the river
in row k corresponds to similarities of successive topics with the same index, this river
conveys the evolution of the corresponding kth topic over time. Being drawn along the
rows, background rivers visually connect cells of each row and thereby strengthen the
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perception of the tabular structure of TopicTable.
TopicTable visualizes the rivers as colored straps along each row. The width of each

river changes between successive cells to indicate watergates. Successive cells, say (k, i)
and (k, i + 1), correspond to the kth topic of model ζ i and ζ i+1, respectively. These
topics are generalized Bernoulli distributions, which can be represented by two vectors
of word-topic associations ~xik and ~xi+1

k . The entries are probabilities of words of the

respective vocabularies of batches ~Di and ~Di+1. The more similar these two vectors are
the more stable the corresponding topic is and the less it evolves.

For measuring similarity of two topics, TopicTable uses the cosine similarity between
both vectors of word-topic associations. The cosine similarity takes values between 0
and 1; it is equal to 1 if both vectors point to the same direction (highest similarity)
and it is equal to 0 if the vectors are orthogonal (lowest similarity). For computing the
cosine similarity, both vectors ~xik and ~xi+1

k are embedded into the joint space de�ned

by the union of the vocabularies of batches ~Di and ~Di+1. Missing probabilities in both
vectors are �lled with zeros.

TopicTable maps the cosine similarity of successive topics ~xik and ~xi+1
k to the width

of the background river at the border between cells (k, i) and (k, i + 1). The width of
the river is proportional to the �fths power of the cosine similarity cos5(xik, x

i+1
k ); this

emphasizes small di�erences among values close to 1. Further on, these transformed
similarities are multiplied by 0.7 · h with h being the height of the rows. This has the
consequence that the width of the river is between 0.0 (similarity is 0) and 0.7 (similarity
is 1) times the height of the cell. Keeping the maximal width of the background river
below 70% of the row height enhances the perception of the rows.

4.3.2 Global similarities among all topics

Second, TopicTable visualizes the similarity between di�erent topics at di�erent points
in time. This information eases perception of similar thematic subjects that are present
in several separate periods of time.

Global similarities among topics are mapped to the color of the background rivers such
that similar topics have a similar background color. TopicTable uses multi-dimensional
scaling (MDS) for projecting all N̄ × K vectors of word-topic associations ~xik, with
1 ≤ k ≤ K and 1 ≤ i ≤ N̄ , into a two-dimensional plane of the three-dimensional
RGB color space. This two-dimensional plane is de�ned by all triples (R,G,B) with
R∈ [0; 255], G=161, B∈ [0; 255]. A plot of this plane is shown in Figure 4.5.

MDS is computed with respect to the cosine distances3 between the topics. As done
for computing the local similarities, vectors of word-topic associations of any two topics
are embedded into the space de�ned by joining the corresponding vocabularies. Missing
word-topic associations are �lled with zeros. As a result of MDS, each topic is mapped to
a point in the two-dimensional plane and distances between points re�ect the distances of
the word-topic associations as good as possible. Next, the resulting points are linearly
transformed such that all points lie inside the two-dimensional RGB plane, which is
de�ned as [0; 255] × [0; 255]. The point coordinates (x, y) are then directly mapped to
a RGB color R= x, G= 161, B= y which de�nes the color for the corresponding topic.
The background rivers are colored with these colors such that the determined color for

3cosine distance is equal to 1 minus cosine similarity
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the kth topic of batch ~Di is reached in the middle of the corresponding cell (k, i).

4.3.3 Relative strength of topics

Third, TopicTable visualizes the relative strength of the topics of each batch. This
kind of information might be helpful, e.g., if a reader wants to study those document
prototypes that correspond to the strongest topics, or, if a reader wants to inspect at a
glance temporal changes of the strength of a topic.

For visualization of the relative strength of topics, TopicTable uses the topic probabil-
ities pi(z=k) of each topic k from model ζ i. All topic probabilities extracted from the ith

model sum to 1 =
∑K

k=1 p
i(z=k). A large probability indicates a strongly prevalent topic

of batch ~Di. TopicTable visualizes these probabilities by circles which are depicted in
the center of each cell. For enhancing perception of di�erences in the topic probabilities
these are mapped to the circle areas in a nonlinear manner by the approach suggested
by Cleveland [64]. In detail, the radius of the kth circle in the ith column is proportional
to pi(z=k)5/7/

√
2π.

The circles are depicted in the background of the cell on top of the background river.
Studying all circles of a column top-down gives a fast impression about what topics are
the most dominant ones in a certain batch. Likewise, as each batch corresponds to a
certain period of time, the reader gets an impression which topics are the dominant ones
during which period of time. Inspecting the circles along a row, the reader might deduce
how the relative strength of the corresponding topic changes with time. In addition,
as circles are positioned in the center of the cells, they enhance the perception of the
tabular structure of TopicTable.

4.3.4 Document prototypes

Last, TopicTable presents the document prototypes. In this work, these prototypes
consist of the few most likely words of each topic. TopicTable lists these words in the
foreground of the corresponding cells. Common choices of the number of listed words do
not exceed some tens so that reading the word lists is of little expense. An experienced
reader might deduce the thematic subjects from the top-10 words, a less experienced
reader might need some more. Consequently, when applying TopicTable one can decide
how many words should constitute the document prototypes.

As an additional help for perceiving changes of document prototypes, TopicTable
highlights newly emerging words. Newly emerging word of the kth prototypes in column
i + 1 are those that are not part of the previous kth prototype of column i. Words are
highlighted by printing them in boldface. Many highlighted words might indicate that
the thematic subject the topic refers to changes strongly while few or none highlighted
words might indicate that the corresponding topic is relatively stable.

4.4 In�uence of parameters

Four parameters mainly in�uence TopicTable and AdaptivePLSA. First, the size of the
sliding window determines the number of documents a particular PLSA model is trained
with. Likewise, it determines the time spans for which topics should be learned. These
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time spans are given by the time stamps of the �rst and last document of the batches.
The size of the sliding window needs to be adapted to the particular stream of documents
whose contents should be summarized. For streams whose contents change fast, sliding
windows of smaller size might be appropriate. On the other hand, if the contents do not
change much, sliding windows of larger size might lead to the desired resolution of the
summary.

A second parameter is how far the sliding window shifts to its next position and
whether sliding windows at subsequent positions should overlap each other. If they
overlap, then the learned topics will be more stable between subsequent batches. Topics
between subsequent batches change more when the sliding window is shifted so far that
some documents in between will not be covered by any window.

A third parameter is the number of topics K. This number a�ects the detailedness
of the summarization of the streaming documents (see Figure 2.5). A reasonable choice
is to set the number of topics K considerable smaller than the number of documents of
a batch if a coarse summary of the contents of documents is desired.

Last, the number Ntop of most likely words that constitute a document prototype is
important. Too few words make it more di�cult for the reader to deduce the thematic
subjects from the visualized document prototypes simply because valuable context infor-
mation is neglected. On the other hand, too many words befuddle the reader; resulting
prototypes might represent to many minor thematic subjects.

Other parameters not discussed here are those which are necessary for AdaptivePLSA
such as hyper-parameters or learning iterations of the EM algorithm.

4.5 Case studies

In this section, two case studies are presented which show how TopicTable helps for
studying evolving contents of streams of documents. First, the SIGIR example, which
was initially presented in Section 3.6, is continued. TopicTable was applied to topics
of the PLSA models learned with the conference proceedings of the SIGIR conference
between 2000 and 2007. A second subject of this case study is to investigate how e�ective
the combination of AdaptivePLSA and TopicTable is for summarizing the contents of
streaming documents. In a second case study, TopicTable was applied to documents
published in the conference proceedings of the NIPS4 conference from 1987 to 1999.

4.5.1 TopicTable for SIGIR documents from 2000 to 2007

Data preparation and parameter setting

Titles and abstracts of the documents published at the SIGIR conference between 2000
and 2007 were used. Preprocessing of these data is described in Section 3.6.1. A sliding
window of size one year which was shifted by one year was used for determining batches.
Consequently, each of the eight batches of documents contained all documents published
in one year.

More details on how AdaptivePLSA was applies to the SIGIR batches are given in
Section 3.6. With the help of AdaptivePLSA a sequence of eight PLSA models with

4Neural Information Processing Systems
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K = 5 topics was learned. Document prototypes consisted of the Ntop = 25 most likely
words per topic.

TopicTable

The TopicTable for the SIGIR data is shown in Figure 4.4. The same topics are visualized
with the simple box scheme in Table 3.11.

The �rst topic over time mainly refers to the subject of classi�cation as the words
classif and classi� are present across the whole row. Other subjects seem to be feature
selection, support vector machines and collaborative �ltering. These subjects are closely
related to each other. Support vector machines could be used for collaborative �ltering
and a sub-area of support vector machines is feature selection. Indications for feature
selection are the words featur, and extract and select highlighted in 2001 and 2003, and
in 2005, respectively. The word featur constantly appears from 2003 to 2007 on ranks
4, 3, 3, 4, 1 indicating a strong emphasis on feature selection. As a clue to support
vector machines, the word vector appears in 2000, 2001, 2003, 2006, and in 2007. In
combination with space in 2000 and 2001 vector might indicate the vector space model for
modeling document collections. Later, after a break in 2002 when vector does not appear,
both vector and machin newly appear in 2003. In 2004 we �nd support together with
machin and in 2007 svm occurs. These word combinations might indicate that support
vector machines that are used for document classi�cation is a later thematic subject of
the �rst topic thread. The thematic subject on collaborative �ltering is indicated by
the word �lter that appears �rst in 2000. After a break, this word re-appears and is
present from 2004 to 2007; in 2004 and 2005, it remarkably appears in combination with
collabor. The word combination collabor and �lter is highlighted in 2004 making it an
eye-catcher.

The second topic over time seems to capture thematic subjects mainly about evalua-
tion of information retrieval algorithms. Words like evalu, perform, rank or retriev are
always among the top three words. Additional thematic subjects might be identi�ed by
inspecting highlighted words. For instance, trec is highlighted in 2002 and is present
until 2007 except in 2004. Trec is an acronym for Text REtrieval Conference5 that pro-
vides test data-sets to evaluate approaches for information retrieval. Thus, the presence
of the word trec strengthens the hypothesis that evaluation is a main subject which is
captured by the second topic thread. Next, feedback is present in 2001 and from 2004 to
2007; it is highlighted in 2001 and 2004. The combination of feedback with relev might
indicate that a thematic subject of some documents of the SIGIR stream is about rele-
vance feedback. Another meaningful word is video, which is printed in boldface in 2003
and which additionally appears in 2004. This word might refer to ranking algorithms
for video data.

Document clustering in information retrieval seems to be one main subject of the
third topic thread. The background color between 2001 and 2000 is greenish and turns
to brownish in 2003. This might indicate a change of the third topic from mining in
databases to semantic techniques. Highlighted words between 2001 and 2003, which
indicate data mining in databases, are database, engine, search, and ir. Other words,
which indicate a subject on data mining, are queri, retriev, search, question, and an-
swer. Later, the words document and cluster often appear among the top words of the

5http://trec.nist.gov/, March 26, 2012

http://trec.nist.gov/
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Figure 4.4: TopicTable for SIGIR data from 2000 to 2007. Document prototypes consist
of the 25 most likely words of each topic. Numbers at the bottom indicate the number of
documents per batch. It is recommended to use Adobe Reader for viewing Topic Tables
because other PDF viewers might inadequately visualize shadings.
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Figure 4.5: RGB plane which is used for color mapping of background rivers (the value
of G is �xed at 161/255). High-dimensional vectors of word-topic associations of the
SIGIR data were mapped onto this RGB plane via MDS. Each point belongs to one
topic (cell) of TopicTable 4.4.

document prototypes. Highlighted words that provide clues to semantic techniques for
document clustering are distribut, lsi, techniqu, and latent.

Web seems to be the main thematic subject of the fourth topic thread; web is almost
always among the top-3 words. Boldfaced words that indicate the sub-areas (2001�2003)
information extraction and link traversal are: link, network, detect, extract, cite, and
inform. The following words, which appear from 2003 until 2005, might provide clues to
a subject about user-speci�c web search: user, person, name, web, search, relationship.
Last, in 2006 and 2007, boldfaced words that might indicate a sub-area of web search
by exploiting social networks are: interest, commun, social, interact, and user. These
thematic changes as captured by the fourth topic are emphasized by the changing color
of the background river. The background river takes three di�erent colors: pink (2001,
2002), lavender (2005), and light-blue (2006, 2007).

The �fth topic over time seems to refer to thematic subjects on multilingual IR and
natural language processing. Although the word translat is present along the whole
row, boldfaced words like languag, crosslanguage, chines, and dictioranri (2003) might
indicate multilingual IR as a thematic subject until 2003. Later, natural language pro-
cessing with a sub-area on automatic translation seems to be present (words translat,
word, automat, and languag until 2005). Automatic annotation (automat, manual, imag
between 2005 and 2007 and anot in 2003) and query expansion (queri, retriev, expans
between 2005 and 2007) seem to be other sub-areas.

When overviewing the TopicTable and concentrating on the circles in the middle
of each box, it seems that topics of the second thread are slightly dominating in each
column, especially in the last one. Thus, it seems that evaluation of information-retrieval
approaches is an important subject of documents published at the SIGIR conference.
Obviously, in the metier of SIGIR, new algorithms are proposed and must be evaluated.
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The other topics are often similarly strong. A reason for this equality could be that
SIGIR is organized in tracks, each one having a di�erent focus but their volumes are
balanced. Another possible reason is that PLSA models, if not forced by imbalanced
priors on topic-mixture proportions or by the data themselves, tend to learn topics whose
relative probabilities are similar.

TopicTable visualizes colored rivers along each row. These rivers strengthen the
perception of rows and thereby of the presented topic threads. The width of each river
at transitions between successive cells indicates the similarity of successive topics with
the same index. Some rivers, e.g., of the second or �fth thread, are relatively thick
throughout the entire row. This indicates that these topic threads refer to a main stable
thematic subject, e.g., evaluation of information retrieval algorithms (thread two), and
multilingual IR and natural language processing (thread �ve). The overall smallest
width of a background river is found at the transition of the fourth thread from 2000
to 2001. This indicates that the fourth topic considerably changes from 2000 to 2001.
Consistently, the overall largest number (19) of new words per cell appears in the fourth
prototype in 2001. In 2000, thematic subjects of the fourth document prototype seem
to be di�use; beside web words like metric, statist or �lter are present. It seems that
the fourth topic captures some di�use subjects at the beginning and stabilizes later by
focusing on web and its sub-areas.

The background river in row three indicates another relative strong change of the
third topic between 2002 and 2003. Newly appearing words in 2003 like databas, xml,
realtionship, distribut or system indicate this relative strong change. Hints such as a
slim background river or a large number of newly emerging words are indications for a
strongly changing topic. These indications are a help for determining thematic subjects
and their evolution in a stream of documents.

Another helpful information is the similarity among all topics across time as indicated
by the background color. The �rst, fourth and �fth topic have relative di�erent back-
ground colors. This indicates that these topics refer to speci�c unique thematic subjects.
The background colors of the second and the third topic seem to be closer to each other.
This is a hint that these topics might share some particular thematic subjects. Indeed,
the word distribut appears in the second prototype (in year 2005) and in the third pro-
totype (in years 2000 and 2003). Remarkably, the color of both background rivers is
greenish during these years. These �ndings might indicate that the second and third
topic seem to share a subject on probabilistic modeling. As discussed earlier, the �fth
topics seems to refer to probabilistic modeling, too. Again, the color of the background
river of the �fth topic is greenish and words like estim (in year 2001), statist (in years
2002, 2003, 2005), and probabilist (in years 2003, 2005) are present.

E�ectiveness

To show that reported prototypes are not artifacts but indeed summarize contents of
streaming documents, 5 and 7 alien documents were added to the stream of SIGIR
documents in 2003 and 2004, respectively. These alien documents, which have been
randomly chosen from the journal BMC Plant Biology, account for about 7% of the
documents of the changed SIGIR document stream in 2003 and 2004. As done with the
SIGIR articles, the alien documents were reduced to their titles and abstracts, and they
were subjected to preprocessing (stopword removal, Porter stemmer). Afterwards, eight
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Figure 4.6: SIGIR data with alien documents, which have been added in 2003 and 2004,
from the journal BMC Plant Biology. The �rst topic over time is the only one that is
a�ected by added documents on plant biology (cf. Table 4.4).
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PLSA models were learned from the extended stream with AdaptivePLSA as in case of
the original stream of SIGIR documents.

The resulting TopicTable is shown in Figure 4.6. The �rst topic captures the alien
documents. The background river of the �rst topic is clearly narrower than the other
rivers. This indicates that the �rst topic changes much. The following words with
biological context are present in 2003 and 2004: base, transcript, plant, repres, gene, est,
acid, factor, and protein. These words give clues to the alien documents on plant biology.
The presence of words from biological context within the listed document prototypes
demonstrates the e�ectiveness of the combination of AdaptivePLSA and TopicTable for
summarizing the thematic subjects and their evolution in document streams.

Last, the topics threads of both TopicTables shown in shown in Figure 4.4 (only
SIGIR data) and in Figure 4.6 (with alien documents) should be compared with each
other. The thematic subjects captured by the �rst, second, third, and fourth topic thread,
which indicate main thematic subjects on clustering documents, web, classi�cation, and
language modeling, agree with the subjects as captured by the third, fourth, �rst, and
�fth topic over time in Figure 4.4, respectively. Corresponding topics have di�erent
indices in both TopicTables because re-learning PLSAmodels might exchange indices due
to random initialization. Transient thematic subjects might be captured by other or none
topic thread after re-learning. The comparison of both TopicTables reveals that some
minor thematic subjects appear together with the same main thematic subjects in both
TopicTables. An example is the subject about support vector machines. This subject
appears together with the main subject on classi�cation in both TopicTables. Finding
topics over time which capture the same main thematic subjects in both TopicTables
indicates the robustness of the proposed approach for visually summarizing contents of
document streams.

4.5.2 TopicTable for NIPS documents from 1987 to 1999

In a second case study, AdaptivePLSA was applied to documents from the NIPS confer-
ence proceedings from 1987 to 1999. The learned topics were visualized by TopicTable
for visually summarizing these conference proceedings.

Data preparation and parameter setting

The NIPS data6, which have been downloaded from Sam Roweis' website, were used for
this case study. These data were preprocessed by removing stopwords and by applying
the Porter stemmer. After the most frequent 50 words of the vocabulary were removed,
the data did consist of 1740 documents, a vocabulary of 8621 words and about 1.7 million
word occurrences in total. Sorted by year of publishing, these documents de�ned the
stream of NIPS documents from 1987 to 1999.

A sliding window of size three years, which covered all documents published during
three successive years, was applied for de�ning batches of documents. Successive batches
overlap by one year. The time stamp of the last document per batch was used as a short
annotation for each batch. For example, the batch which covered the time interval
[87, 88, 89] was denoted by 1989 ( ~D1), [89, 90, 91] (1991; ~D2), [91, 92, 93] (1993; ~D3) and
so on.

6www.cs.nyu.edu/~roweis/data.html, �le nips12raw_str602.mat, April 5, 2011

www.cs.nyu.edu/~roweis/data.html
nips12raw_str602.mat
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As it was done in case of the SIGIR data, the number of topics K was set equal to 5
and document prototypes were de�ned to consist of the top Ntop = 15 most likely words
of each topic.

TopicTable

The resulting TopicTable, which summarizes of contents of the NIPS proceedings from
1987 to 1999, is presented in Figure 4.7.

At a �rst glace, the background rivers seem to be broader in relation to the cell heights
when being compared to the background rivers of the SIGIR TopicTable (Figure 4.4).
All background rivers in Figure 4.7 get relatively broad at least at some point in time
whereas only the background rivers of the topic threads two, four and �ve in Figure 4.4
become that broad. The overlapping NIPS batches could be the reason; the SIGIR
batches did not overlap. Overlapping batches might lead to more similar topics with
the same index along each row as these have been learned from data sets that overlap
partially. More similar topics along each row lead to larger widths of the background
rivers. At a second glance, it turns out that each background river has its own particular
color. Hence, the topics along di�erent rows might refer to relative di�erent thematic
subjects.

After closer inspection of the �rst topic thread, one �nds terms like circuit and hop�eld
in 1989 that might stand for speci�c architectures of arti�cial neural networks. Terms
like implement, chip and matrix, which are present from 1989 to 1993, might indicate
research dealing with development of speci�c hardware using concepts of neural networks.
From 1993 to 1999, terms like theorem, theory, minimum, complex, loss, converg, and
bound might refer to research on complexity and learning theorems of neural networks.

The background river of the second topic is narrower at the beginning and gets broader
later on. This might indicate that the second topic changes more during transitions from
1989 to 1991 and from 1991 to 1993 compared to later transitions. In the beginning,
terms like cortex, simul, synaps, and oscillat give clues to biological perspectives on neu-
ral networks. Later, in 1991 and 1993, the terms visu, �eld, eye, object, locat, and region
appear. These terms might indicate research on image preprocessing using arti�cial
neural networks. Later on, terms like motion, movement, activity occur which might
represent research on processing of dynamic images, e.g., recorded by video cameras.
Later, until 1999, TopicTable provides clues to a thematic subject on controlling robots
(head, orientat, motor, spaty and task), and approaches of machine learning that make
the robots respond (human, respons).

A general thematic subject of the third topic thread seems to be signal processing. At
the beginning, terms like synaps, �re, spike, signal are present in 1989 and 1991. These
terms seem to stand for biological research on how synapses process signals. Later, from
1991 to 1999, terms like nois, �lter, channel, and sourc appear that might indicate
research on implementing �lters for signal processing using arti�cial neural networks.
The continual change of the background color from pink/peach in 1989 to lavender
in 1999 visually emphasizes the change of the third topic from a biological toward a
technical perspective on signal processing.

From 1989 to 1999, at least one of the terms class, classify, or recognit is always
among the top-2 words of document prototypes of the fourth topic thread. Hence, this
topic thread seems to refer to pattern recognition with applications of arti�cial neural
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Figure 4.7: TopicTable for NIPS data from 1987 to 1999. Numbers at the bottom
indicate the number of documents in each batch. It is recommended to use Adobe
Reader for viewing Topic Tables because other PDF viewers might inadequately visualize
shadings.
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networks. Minor thematic subjects could be how decision rules are encoded by the
structure of arti�cial neural networks (rule, code, architecture in 1989 and 1991), speech
recognition (speech, word from 1989 to 1999), segmentation tasks (segment in 1991 and
1993), di�erent designs of neural networks for classi�cation (tree, architecture, combin,
hmm present between 1995 and 1999), and face recognition (face, cluster in 1999).

The document prototypes of the �fths topic thread seem to mainly refer to a subject
on learning approaches. Terms like back, propag, optim, converg, energy, grady, and
trajectory are present between 1989 and 1993. These words seem to indicate a subject
on learning neural networks with back propagation and related aspects thereof. Later,
terms (mixtur, cluster, likelihood, compon, sampl density) which might refer to learning
(Gaussian) mixture models occur between 1995 and 1999. In 1999, a subject on Bayesian
learning seems to appear; the terms bayesian, and prior emerge.

Inspecting the gray circles across all cells, it becomes obvious that the fourth and
�fth topic are dominating in 1989 and 1999. These topics refer to subjects on arti�cial
neural networks, which are mainly used for solving classi�cation problems, and learning
approaches of arti�cial neural networks. Their dominance is not surprising as arti�cial
neural networks have been a very active research �eld of the NIPS community in the
early 1990's.

4.6 Conclusions and future directions

TopicTable is a visualization technique for studying the evolution of contents in a stream
of documents. TopicTable presents document prototypes that are lists of a few words
which re�ect thematic subjects of the streaming documents. TopicTable can be used in
combination with any method for the exploratory analysis of streams of documents. Ex-
amples are analytical methods like principle component analysis, discriminative methods,
and probabilistic methods such as topic models which are used in this work.

Beside document prototypes, TopicTable visualizes four pieces of information which
are helpful for deducing the thematic subjects from the document prototypes and their
evolution. These pieces of information are: local similarities between two successive
topics presented in the same row of TopicTable, global similarities among all topics of
the entire TopicTable, strength of topics, and newly emerging words.

In combination with AdaptivePLSA, TopicTable was applied to the SIGIR conference
proceedings from 2000 to 2007. Several thematic subjects like document clustering,
evaluation, web and classi�cation could be identi�ed from the document prototypes.
With respect to time, TopicTable indicates that, for example, support vector machines
are a later subject appearing from 2004 to 2007. TopicTable gave valuable hints on a few
alien documents about plant biology which have been merged into the SIGIR stream
of documents. This demonstrates that TopicTable is indeed e�ective in providing a
comprehensible summary of the contents of streaming documents.

In a second case study, TopicTable was applied to the NIPS conference proceedings
from 1987 to 1999. TopicTable gave clues to di�erent thematic subjects of the NIPS
articles. Examples include image processing with arti�cial neural networks, biological
neural network, mixture modeling, and Bayesian learning. Thematic subjects on learning
arti�cial neural network and applications to classi�cation, regression and prediction are
the most dominant subjects. The background rivers of all topic threads are relatively
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broad what indicates that the thematic subjects of the topic threads do not change
substantially between successive years. A reason could be the small number of �ve
topics. These might focus on di�erent major NIPS subjects which changed only slightly
between successive years. The focus of the learned topics on the di�erent subjects is
visually supported by the di�erent colors of the background rivers. Hence, the additional
pieces of information and their interplay might be helpful for deducing thematic subjects
and their change with time from the presented document prototypes.

As online streams such as news channels or message services will become omnipresent
in the future, tools for the exploratory analysis of these streams will become more im-
portant. TopicTable can be extended in several directions. For example, the diversity
of contents of a stream of documents might change over time. As a result, the optimal
number of topics needed for an comprehensible overview might change as well. Topic
models and visualization techniques need to be extended such that they are capable of
adapting the number of topics to a changing thematic diversity of streaming documents.

Another future direction is to cope with di�erent complexities of thematic subjects.
What is the optimal number of words for deducing a certain thematic subject from a
topic? If methods are available which are capable of determining an optimal number
of words to be presented, visualization techniques might be extended such that they
represent di�erent topics with document prototypes of di�erent sizes. Beside the optimal
number of words, it is also an open question which words should be presented to the
reader in order to ease deducing thematic subjects from these words.

Third, the color mapping used by TopicTable can be optimized for human perception.
Multi-dimensional scaling maps high-dimensional vectors of word-topic associations into
the two-dimensional RGB plane as shown in Figure 4.5. This mapping takes into account
only relative distances of the coordinates of the projected points. For the perception of
di�erences in color, absolute coordinates should be taken into account, too. Two points
with the same distance might result in di�erent perceptions of the di�erence between
colors they refer to. This is true, for example, when the two points lie in the middle of
a green area or at the border between a green and a blue area of the two-dimensional
RGB plane. Thus, color mapping could be enhanced in order to better map di�erences
between topics to perceptual di�erences between colors.

Next, interactive visualizations are especially useful for exploratory analyses as the
reader might better interpret document prototypes by own interactions with the visual-
ization tool. Similar to Topic Browser, TopicTable could be extended into an interactive
visualization application. Interactivity would make the integration of further informa-
tion about the learned topics possible. For example, an interactive TopicTable could
highlight all occurrences of a word over which the user moves the mouse pointer. This
would help to identify terms which several prototypes have in common or terms which
are speci�c for single prototypes. Another useful interaction could be to let the reader re-
set the number of words displayed for particular document prototypes. A larger number
of listed words could be helpful for the interpretation of particular prototypes.

Last, a picture is worth a thousand words. The deduction of thematic subjects from
word lists could be supported by presenting pictures that agree with the thematic sub-
jects to which the word lists refer. To this end, topic models are needed which are capable
of determining pictures that well agree with the thematic subjects of their topics.
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Chapter 5

Exploring the semantic miscellany of

social tags

Social tags are descriptive keywords which are assigned to online resources of the Social
Web such as pieces of music of the online music platform last.fm or photographs of the
online platform flickr.com. The users utilize social tags for managing and organizing
online resources and for expressing opinions about these resources. As social tags are
de�ned by the users themselves and as the same tag might be used by di�erent users,
meanings that the users associate with a particular tag could be a semantic miscellany.
This chapter deals with exploring and clarifying the possibly many meanings of a social
tag with the help of topic models.

Recently emerged Social Web services enable users to upload, manage, and share own
resources. This chapter particularly deals with the two systems Bibsonomy1 and CiteU-
Like2. Both systems are used for managing and sharing bibliographic data sheets which
mainly refer to scienti�c writings such as journal and conference papers. Such biblio-
graphic data sheets, which are called bookmarks, contain di�erent pieces of information
about the documents they refer to, e.g., titles, authors, and abstracts. Bookmarks of
these systems are mainly contributed by the users themselves as depicted in Figure 5.1
(left).

Bibsonomy and CiteULike make possible managing and organizing bookmarks with
the help of social tags. Users of Bibsonomy and CiteULike might assign social tags to own
and others' bookmarks as visualized in Figure 5.1 (right). For example, tags assigned
to the bookmark referring to the paper �Latent Dirichlet Allocation� [15] (bookmark 4
in Figure 5.1, right) could be topicmodeling as this paper is about topic modeling, and
inference as a user might �rstly think about parameter inference, and yet another user
might �rstly think of Bayesian modeling and assigns the tag Bayesian to this bookmark.
As Bibsonomy and CiteULike manage, beside bookmarks, social tags, these systems are
called collaborative tagging systems.

In recent years, the phenomenon of social tagging started being investigated inten-
sively. In collaborative tagging systems, tags are de�ned by the users themselves and
all users might use all tags. This gives users the most freedom for tagging and, hence,
for organizing and managing bookmarks, what is desirable as managing and organizing
are the main purposes of social tags. Quoting Golder and Huberman ([65], p. 200, 203):

1bibsonomy.org, March 29, 2012
2citeulike.org, March 29, 2012
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Figure 5.1: Collaborative tagging system: left) Users supply resources like bookmarks.
All resources are publicly visible. right) Users assign tags to own resources and resources
of other users. Assigning a tag to a resource is called a tagging event which is described
by a tuple of the tag, the user ID, the resource ID, and the date.

�tagging is fundamentally about sensemaking�, it is �an act of organizing through labeling,
a way of making sense of many discrete, varied items according to their meaning.�

Giving users the most freedom for de�ning and using own tags might result in unclear
and semantically ambiguous tags. For e�cient use, an ideal tag has a unique meaning
that users, who take the tag at face value, are able to infer easily. The proliferation
of tags that are semantically overloaded has severe implications: tag recommendation
becomes more challenging, and the relationship between a tag and a bookmark already
annotated with it might become questionable. As such, semantically ambiguous tags
counteract the main purpose of tagging: making sense.

Sources of semantic ambiguity of tags are manifold. Huber and Goldman ([65], p. 199)
state that

�tagging systems [. . .] are beset by many problems that exist as a result of the
necessarily imperfect, yet natural and evolving process of creating semantic
relations between words and their referents. Three of these problems are
polysemy, synonymy, and basic level variation.�

Another source of ambiguity is that a particular tag might be used by many users who
interpret this tag in di�erent ways. Hence, with such a tag they annotate bookmarks
that might refer to thematically di�erent documents. As a result, the tag has multiple
semantics [66].

Furthermore, as tagging is a permanent social activity of di�erent users, semantic
meanings of tags might change with time. Changing meanings could be counterproduc-
tive to an e�cient usage of tags. The ultimate implication is that a user may fail to
�nd the bookmarks associated with a speci�c meaning, including the own bookmarks,
because the tag originally �tting the one meaning well now has multiple meanings, some
of which di�erent to the original meaning could have become the most prominent ones.
Taking as a fact of matter that it is rather unsatisfactory for users to fail in �nding the



75

bookmarks they look for, the following three situations might be disadvantageous for
users of collaborative tagging systems.

1. Tags whose face value makes it hard for a user to infer their semantics. What
could the Bibsonomy tag v1002 3 be about?

2. Tags with multiple semantics, some of which a particular user is not aware of. A
user might want to tag own resources by most speci�c tags but is unaware of the
(many) di�erent meanings of the chosen tags. An example could be the Bibsonomy
tag network, which is used for genetic as well as for social networks.

3. Tags whose semantic substantially evolves with time. A user's bookmark previ-
ously annotated with such a tag might not �t well anymore to the new semantics
of that tag.

On the other hand, semantic ambiguities and yet unknown meanings of social tags
have a value in their own respect. Tags convey meanings about the resources they are
assigned to. For example, by studying tags that have been assigned to a particular
resource by other users, a user might gain new perceptions on this resource as well as
new conceptions of these tags. Enabling the users to perceive di�erent perceptions on
resources and relations among resources helps the users to learn from the implicit col-
laborative knowledge. This knowledge is a great value of collaborative tagging systems:
Golder and Huberman( [65], p. 201) state �there is also opportunity to learn from one
another through sharing and organizing information.� In addition, clashes of interpreta-
tion of tags have the potential for gaining new insight about tags and bookmarks they
are associated with. Again, Golder and Huberman ([65], p. 207) state that �information
tagged by others is [. . .] useful to the extent that the users [. . .] make sense of the con-
tents in the same way [. . .].� For making sense in the same way, a user has to discover
and learn about the potentially many meanings of common tags.

All these situations have in common that particular users are not aware of all seman-
tic meanings and conceptions that the community of users as a whole associates with
a tag. Exploring the semantic miscellany of a social tag, these users might gain collab-
orative knowledge. For example, by (i) extending the own conception of the tag, by
(ii) adapting the own habits of tagging with the tag to the newly discovered meanings,
and by (iii) being able of better interpreting perceptions on resources which other users
have expressed through their tagging activity. Being aware of the many meanings the
community associates with a tag, these users might work with this tag more e�ciently.

The approach, which is described in this chapter, is retrospective in the sense that
it explores the resources to which a social tag in question has been assigned in order to
explore the semantic miscellany of this tag. Tagging activities are temporal processes
and meanings which users associate with tags might change with time, some of which
remain short-lived, while others proliferate because many users �nd them useful. Hence,
the thematic subjects and their evolution associated with a tag in question are modeled
by applying AdaptivePLSA (Chapter 3) to the documents under this tag. In detail,
topic modeling of the documents under social tags is applied in order to explore the
semantic miscellany of social tags in two ways. First, it is used for tag sensemaking by
identifying unobvious meanings of social tags. Unobvious meanings are o�-mainstream

3http://www.bibsonomy.org/tag/v1002, April 19, 2011

http://www.bibsonomy.org/tag/v1002
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thematic subjects under a tag which might originate if a user annotates with this tag
documents, which are, with respect to their content, di�erent from the majority of
documents annotated with this tag. Second, it is used for visual tag sensemaking, i.e.,
summarizing and studying thematic subjects of documents a tag is assigned to.

The rest of this chapter is organized as follows. Related work is discussed in Sec-
tion 5.1. Details about how contents under social tags are modeled are given in Sec-
tion 5.2. Next, in Sections 5.3 and 5.4, the two approaches for detecting minor meanings
under social tags and for visual tag sensemaking are introduced and case studies are
presented. Last, the conclusions are given in Section 5.5.

5.1 Related work

Tagging has gained much interest in the last years since collaborative tagging systems
have become popular. Two main research directions are (i) using social tags and infor-
mation derived from social tagging to enhance Web search engines and recommender
systems, and (ii) studying the structure and the semantics of social tags [67].

Miliceviz et al. have reviewed recommender systems for tag or resource recommenda-
tion in collaborative tagging systems [68]. An example of such research is the work of
Schwarzkopf et al. who discuss how a person's tag space, namely the set of tags used for
annotations, can be exploited to derive the person's pro�le and, in sequel, to personalize
the services o�ered by a provider [69]. Marco de Gemmis et al. consider tags next to
contents to infer user interests for enhancing the content-based recommender of a col-
laborative tagging system [70]. A variety of probabilistic models for modeling data from
collaborative tagging systems is proposed by di�erent research groups. Wu et al. use a
mixture model approach to statistically derive emergent semantics of resources from so-
cial annotations [71]. By that, they enhance, for a given bookmark, recommendation of
semantically related web bookmarks. For utilizing social annotations for recommender
systems, Zhou et al. propose a topic model that models document generation and tag
assignments to documents [72]. A very similar idea is taken by Si and Sun who propose
an extension of the well known topic model Latent Dirichlet Allocation [15] for modeling
social tagging with the goal of enhancing tag recommendation [73].

Most studies assume that tags are representative for users' interests and for thematic
subjects of resources. Recently, this assumption started being questioned. Zanardi and
Capra ([74], p. 51) state that

�as tags are informally de�ned, continually changing, and ungoverned, social
tagging has often been criticized for lowering, rather than increasing, the
e�ciency of searching, due to the number of synonyms, homonyms, polysemy,
as well as the heterogeneity of users and the noise they introduce.�

These authors propose Social Ranking, a method based on recommendation advances;
it combines tags and contents to enhance the performance of a search engine. A more
drastic observation comes from Vatturi et al. [75], who point out that the elimination
of those tags that have been used frequently over a long time improves the performance
of a tag recommender. A similar course of action is taken by Sigurbjornsson and Van
Zwol; their recommendation algorithm assigns lower scores to those candidate tags that
are very frequent, because �tags with very high frequency are likely to be too general for
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individual photos� ([76], p. 331). Hence, it seems reasonable to recommend popular tags
with caution. Nonetheless, shedding light on the semantics that people associate with
such tags can lead to more reasonable decisions on how to treat them in a recommenda-
tion engine. More important, shedding light on semantics of popular tags is part of tag
sensemaking by which users of collaborative tagging systems familiarize themselves with
the di�erent conceptions the community associates with the tags and with the meanings
of tag assignments to resources.

The international Dagstuhl seminar 08391 on Social Web Communities started a
working group on the subject of tag semantics across collaborative tagging systems.
This group studied tags in delicious.com and flickr.com and proposed a measure of
semantic similarity between the co-occurrence vectors of tags [77]. Heymann and Garcia-
Molina build a semantic hierarchy of tags with the help of a hierarchical clustering
algorithm that exploits the co-occurrences of tags on resources and the tag centrality
in the tag similarity graph [78]. Eda et al. explore semantic relatedness among tags for
constructing a taxonomy of social tags [79]. In [80, 81], the authors studied and compared
tag similarity measures that have been proposed in the literature for the identi�cation of
synonyms and for the determination of hierarchical relations among tags. The authors
thereby study di�erent forms of so-called semantic grounding, i.e., the use of resources
like WordNet4, to assess the meaning of individual tags [80, 81]. Ireson and Ciravegna
studied how ambiguous concepts like social tags can be assigned a formal meaning by
considering additional pieces of information to which the ambiguous concepts are linked
via social annotation [82].

Some approaches take the names of the tags at face value. This is obviously necessary
for the consultation of WordNet to do semantic grounding. Assuming that the name of
a tag stands for its meaning is often a reasonable approach. For example, Benz et al.
found that apple is associated with the computer company in Delicious, while users of
Flickr also associate the term with the fruit [77]. However, identifying the meaning of
tags like funny or toread might be less straightforward. The work which is presented
in this chapter less focuses on associations among tags. Its subject is to contribute
to making sense out of single popular tags independently of other tags they co-occur
with. This corresponds to the idea of tag sensemaking, as propagated by Golder and
Huberman [65]. Helping users in making sense out of social tags is also the goal of
Tesconi et al. who derive links among ambiguous tags and contents of the Wikipedia for
the investigation of questionable tags [83]. Another approach for clarifying the meanings
of ambiguous tags is suggested by Yeung et al.. They propose graph-based methods to
disambiguate tags by exploring the tripartite structure of collaborative tagging systems
(resources, users, tags) [84]. Similar to the aim of the methods proposed in this chapter,
De Meo et al. aim at supporting users in their work with tagging systems. They propose
a probabilistic model for measuring similarity among tags and for arranging groups of
semantically related tags in a hierarchy [85]. Visualizing the hierarchical structure among
tags helps users to �nd tags best expressing their needs and interests. A visualization
technique for disambiguation of social tags is also proposed by Hassan-Montero and
Herrero-Solana [86]. Instead of visualizing contents of resources an ambiguous tag refers
to, as is done in this chapter by visual tag sensemaking, Hassan-Montero and Herrero-
Solana extend tag clouds for inspecting relations among tags derived from co-occurrence

4A lexical database for English. http://wordnet.princeton.edu/

delicious.com
flickr.com
http://wordnet.princeton.edu/
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data of social tags.

For the discovery of the meaning(s) associated with a popular tag, the work which is
presented in this chapter exploits the relationship among tags and contents associated
with them. The study of contents to assess tag semantics is not new by itself, and is
of course an intuitive step to follow, even when the resources are not of textual nature.
Examples are the already mentioned works of [72, 73, 84]. Another example is the work
of Moxley et al. who derive the semantics of tags assigned to Flickr pictures by identifying
and analyzing the geographical coordinates of the locations shown in the pictures [87].
However, it should also be considered that the meaning(s) associated with a popular tag
may change over time. Consequently, to help users in making sense out of particular
tags, the here introduced approaches take into account how the contents, to which a tag
has been assigned, change with time.

In this chapter, approaches are proposed for exploiting semantic miscellanies of pop-
ular tags. These approaches build upon the documents which are linked to these tags.
However, contrary to the studies cited so far [76, 80, 81], the here proposed methods
neither resort to tag co-occurrence nor to the face value of the tag names. The names of
popular tags might not be particularly informative and considering only co-occurrences
of di�erent tags seems too restrictive for an exploratory analysis of the meaning of tags.
The intention in this study is to assist a user with a retrospective analysis to explore
the possible many meanings of particular tags. Thus, the proposed methods aim at ana-
lyzing and summarizing documents which are linked to this tag through the annotated
bookmarks.

For monitoring tag semantics over time the here proposed methods build on Adaptive-
PLSA as presented in Chapter 3. Topic models such as PLSA [18] and Latent Dirichlet
Allocation [15] are especially suited for exploratory analyses of document collections.
They consist of topics which are learned in an unsupervised manner from the docu-
ments. These topics, which re�ect patterns of words that often co-occur in documents,
might often be interpreted by humans as thematic subjects of the summarized docu-
ments. AdaptivePLSA, which is an extension of PLSA to streaming documents, takes
the terminology evolution in account. Capturing terminological evolution is indispens-
able for exploring the semantic miscellany of social tags because changes of tag semantics
might be associated with the increasing importance of some words that were irrelevant
or unknown in the past.

5.2 Contents under a social tag

For exploring the semantic miscellany of social tags, a retrospective approach is ap-
plied to the contents to which tags are linked. Resources of Bibsonomy and CiteULike
are bookmarks which refer to documents. By tagging bookmarks, users express their
opinions and perceptions about the documents to which these bookmarks refer. Hence,
bookmarks establish the connection between tags and documents. As the contents of
these documents shall be explored for tag sensemaking, in this work, the referenced
documents are identi�ed with the bookmarks. As a consequence, tags are understood
as being assigned to documents instead of bookmarks. It should be kept in mind that
Bibsonomy and CiteULike actually manage only bookmarks which refer to documents.



79

~D1
τ ~D2

τ
~D3
τ ~D4

τ

Time

tag τ

Figure 5.2: Stream of tagging events (small dots) corresponding to tag τ . By each
tagging event a user has assigned tag τ to a document. The four positions of the sliding
window of length l = 7 tagging events are represented by the horizontal lines. The
sliding window shifts by lnew = 5 new tagging events (tagged documents).

5.2.1 Tagging events

For a given collaborative tagging system, the sets of all user IDs, document (content) IDs
and tags are denoted by U , C, and Υ, respectively. Di�erent document IDs might refer
to the same document. A reason is that bookmarks that refer to the same document
could have been added by several users. The collaborative tagging system then would
assign di�erent (document) IDs to these bookmarks (documents).

Collaborative tagging systems keep track of tagging events. In case of Bibsonomy
or CiteULike, a tagging event is an action of annotating a bookmark � and hence the
corresponding document � with a certain tag by a particular user at some point in time.
Mathematically a tagging event is described by a tuple (τ, d, u, t) of a tag τ ∈ Υ, a
unique document with ID d ∈ C, a user with ID u ∈ U , and a time stamp τ . Data
V, which describe tagging activities of a collaborative tagging system, are a set of N
tagging events V = {(τi, di, ui, ti)}1≤i≤N .

5.2.2 Documents under a tag

The set of documents under a tag τ is Cτ = {di | (τi, di, ui, ti) ∈ V, 1 ≤ i ≤ N, τi = τ}.
The number of documents under tag τ , i.e., the cardinality of the set Cτ , is denoted by
Nτ . By studying the documents Cτ , a user might gain knowledge about the thematic
subjects of documents which are tagged with the tag τ . From these thematic subjects
the user can deduce how other users interpret and use this tag.

5.2.3 Document stream under a tag

A collaborative tagging system is a place of intensive activity, where the community of
users introduces new tags and associates new meanings with tags, while former meanings
may become abandoned. New meanings under a tag emerge if users assign this tag to
documents which are thematically di�erent to former documents under the tag.

Detecting changes of meanings of social tags requires to take into account the dynamic
nature of the tagging activities. For a certain tag, the time stamps of the tagging events
de�ne an ordering of the documents under this tag. Such an ordering of documents
under the tag τ is represented by the sequence of document IDs of Cτ ordered by date.
This sequence is denoted by ~Dτ = (d1, . . . , dNτ ), with ti ≤ tj for all 1 ≤ i ≤ j ≤ Nτ . The
sequence of document IDs de�nes a stream of documents under tag τ whose thematic
subjects re�ect the users' conceptions of this tag τ and their changes with time. An
example of a stream under a tag is shown in Figure 5.2.
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As described in more detail in Section 3.2, a sliding window might be applied to the
stream of documents under a tag. This window covers l successive document IDs of the
sequence of document IDs ~Dτ . The sliding window shifts by lnew documents at a time,
i.e., the least recent lnew document IDs within the sliding window are forgotten when
lnew new tagging events are recorded for tag τ . For the stream of documents ~Dτ under
tag τ the sliding window de�nes N̄τ batches of l document IDs ~D1

τ , . . . , ~D
N̄τ
τ .

5.3 Minor semantics of social tags

One source of semantic miscellany of a social tag might originate from the tag usage of a
particular user. The majority of users of a tag might agree upon their conceptions of the
tag. But a particular user might associate a di�erent, speci�c meaning with the tag. For
example, most users tag documents about web or text search with the tag search. But
a particular user assigns the tag search often to documents about AI search strategies,
and so this user establishes a minor meaning under the tag search. This minor meaning
might be unobvious for the majority of the other users. Being informed about the minor
meaning under the tag search, the users may be interested in studying the documents
that conform to this minor meaning. They may decide to use the tag search themselves
for AI search strategies or to devise a new tag for this meaning.

Detection of minor meanings of social tags is a way of exploring their semantic miscel-
lany. It should be stressed here that diversity in the way a tag is perceived is natural and
often desirable. On the other hand, a user might well be interested in knowing whether
other users consistently associate with a particular tag another meaning than the user
oneself. This may or may not change the user's behavior but will certainly enhance the
user's understanding of the tag.

5.3.1 Detection of minor meanings of tags in static document

collections

Document IDs of documents annotated with the tag τ are denoted by Cτ and the subset
thereof tagged by user u is denoted by Cτ (u). To analyze whether a user u′, who
tagged some documents Cτ (u

′) with tag τ , associates a minor meaning with tag τ , these
documents Cτ (u

′) are compared to all documents Cτ under the tag τ .

A distance function, which is generically denoted by dist(Cτ (u), Cτ ), must be de�ned
for this comparison. Later, in Section 5.3.3, two speci�c distance functions will be intro-
duced. For the explanation of the algorithmic approach now, the generic formulation of
the distance function is used.

The set of all user IDs of users who tagged with tag τ is Uτ which is de�ned as
Uτ = {ui|(τi, di, ui, ti) ∈ V, 1 ≤ i ≤ N, τi = τ}. If a user u′ ∈ Uτ associates a particular
minor meaning with tag τ then it is hypothesized that the distance dist(Cτ (u

′), Cτ ) is
large in comparison to the distances dist(Cτ (u), Cτ ) corresponding to the other users
u ∈ Uτ with u 6= u′. For quantifying how large this distance dist(Cτ (u

′), Cτ ) is in
relation to the other distances, the concept of the p-value is exploited. The p-value is
the probability of observing an even larger distance than dist(Cτ (u

′), Cτ ) for users who
annotate with tag τ . The smaller the p-value for distance dist(Cτ (u

′), Cτ ) is the less
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likely it is to observe an even larger distance and the more likely becomes the conjecture
that user u′ indeed associates a particular minor meaning with tag τ .

The central question is with respect to which reference distribution should the p-value
be determined. As the tag usage of a particular user should be compared to the average
tag usage, the distribution of distances of all users Uτ is used as the reference distribution.
Samples of this reference distribution are collected by the following bootstrap algorithm
which is repeated b times (1 ≤ i ≤ b).

1. draw with equal probability a user ûi from Uτ

2. sample with replacement |Cτ (ûi)| document IDs from Cτ (ûi) and denote the sam-
pled documents by Ĉτ (ûi)

3. compute and store distance dist(Ĉτ (ûi), Cτ )

These sampled bootstrap distances are then used for determining the p-value for the
distance dist(Cτ (u

′), Cτ ) of a particular user u′ ∈ Uτ . This p-value, which is denoted
by pu′,τ , is equal to the fraction of bootstrap distances that are larger than the distance
dist(Cτ (u

′), Cτ ).

pu′,τ :=
|{dist(Ĉτ (ûi), Cτ )| dist(Ĉτ (ûi), Cτ ) > dist(Cτ (u

′), Cτ ), 1 ≤ i ≤ b}|
b

(5.1)

In summary, these p-values are determined for all users u ∈ Uτ in order to detect
minor meanings of a tag τ . Then, the documents Cτ (u

′) are reported for each user
u′ ∈ Uτ for which the corresponding p-value pu′,τ is smaller then 0.05. The thematic
subjects of these documents might represent minor meanings users associate with the
tag τ . Users might inspect the contents of these documents for exploring potential minor
meanings of the tag τ .

5.3.2 Two document representations

Di�erent document representations might be more or less suited for detecting minor
meanings under a tag. Consequently, two di�erent representations are studied for their
e�ectiveness.

The �rst representation is normalized word vectors. When the vocabulary is denoted
byW and its size by |W |, then a normalized word vector ~xd = (x1

d, . . . , x
|W |
d ) for document

d is a vector of dimensionality |W |. Components xjd with 1 ≤ j ≤ |W | are relative
frequencies of the jth word of the vocabulary in document d. The components, which
sum up to 1 =

∑|W |
j=1 x

j
d, de�ne a document-speci�c, generalized Bernoulli distribution

over the vocabulary.
Usually, the size of the vocabulary might exceed several thousands of words. Hence,

word vectors are high-dimensional representations of documents. As not all words occur
in each document, some relative frequencies of words in a document are zero. Zero word
probabilities might become problematic, e.g., if two generalized Bernoulli distributions
should be compared to each other by the KL divergence. Hence, in order to prevent zero
probabilities, a small pseudo count εW is added to each component of the word vectors.
Afterwards, the word vectors are re-normalized.
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word 1

word 2 word 3

dist(Cτ (u), Cτ )

~mτ

Figure 5.3: Scheme of distance functions which are used in this work. This kind of
distance functions measure the mean distance (circle) of documents in Cτ (u) (black
dots) to the mean representation ~mτ of documents Cτ (all dots). Here, documents are
exemplarily represented as word vectors over a ternary vocabulary.

High-dimensional word vectors are sparse; a lot of their components are nearly zero.
This sparseness might improve or worsen detection of minor meanings of tags. Hence,
a second low-dimensional, less sparse document representation is used. To this end, a
PLSA model ζτ (see Section 2.5 for details) is learned with the data of documents Cτ .
Then, the topic-mixture proportions of the documents are extracted from the learned
PLSA model. These low-dimensional vectors are used as a second document repre-
sentation. The entries of each of these vectors de�ne a document-speci�c, generalized
Bernoulli distribution over topic probabilities of the corresponding document.

5.3.3 Two distances

The chosen distance function might a�ect the detection of minor semantics under social
tags as well. Consequently, two distance functions are investigated for their e�ectiveness.
Both determine the mean distances of documents in Cτ (u) to the mean representation of
the reference documents Cτ . A scheme of the distance function is visualized in Figure 5.3.
The mean representation of a document set Cτ is the mean vector ~mτ of documents Cτ .
The jth value mj

τ of ~mτ is de�ned as mj
τ = 1/|Cτ |

∑
d∈Cτ x

j
d.

The �rst distance function utilizes the cosine distance. The cosine distance is de�ned
as follows

cosDist(~x1, ~x2) = 1− cos(^(~x1, ~x2)) . (5.2)

The cosine distance is smallest (equal to 0) if the vectors point into the same direction.
It is largest (equal to 1) if the vectors are orthogonal. The �rst distance function, which
determines the average cosine distance of documents in Cτ (u) to the mean representation
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~mτ of Cτ , is de�ned as follows

distcos(Cτ (u), Cτ ) =
1

|Cτ (u)|
∑

d∈Cτ (u)

cosDist(~xd, ~mτ ) . (5.3)

The second distance function utilizes the KL divergence. The KL divergence comes
from the �eld of information theory and measures the di�erence between two probability
distributions. Formally, the KL divergence is de�ned between two distributions R and
Q which are de�ned over the same discrete event space Y as follows

KL(R||Q) =
∑
y∈Y

R(y) log
R(y)

Q(y)
(5.4)

and Q(y) > 0 for any y for which R(y) > 0. An interpretation of the KL divergence from
information theory is the following. The KL divergence is the expected extra message-
length per event y ∈ Y that must be transmitted if a code that is optimal for a given
(wrong) distribution Q is used, compared to using a code based on the true distribution
R.

The second distance function, which measures the average KL divergence of docu-
ments in Cτ (u) with respect to the mean representation ~mt of Cτ is de�ned as

distKL(Cτ (u), Cτ ) =
1

|Cτ (u)|
∑

d∈Cτ (u)

KL(mτ ||~xd) . (5.5)

5.3.4 Adaption to streams of documents

So far, the detection of minor meanings of social tags has been introduced for static
data collections. The meanings that users associate with a social tag might change with
time. A stream of documents under a tag τ was de�ned. The contents of the streaming
documents re�ect the changing meanings which users associated with a tag. Applied to
such a stream of documents, a sliding window de�nes a sequence of batches of documents
~D1
τ , . . . ,

~DN̄τ
τ .

In the stream scenario, the approach for the detection of minor meanings is applied
to each batch ~Di

τ , with 1 ≤ i ≤ N̄τ . The documents of a user, who has contributed

some documents to this batch, are denoted by ~Di
τ (u). Then, for each set of documents

~Di
τ (u) it is tested whether these documents contribute a minor meaning under the tag

τ in ~Di
τ . The bootstrap procedure is started anew for each batch and the bootstrap

users are sampled from all users who have contributed to the batch ~Di
τ . Documents are

represented either by word vectors computed with respect to the vocabulary of batch
~Di
τ or by vectors of their topic-mixture proportions.

To obtain these topic-mixture proportions, a PLSA model ζ iτ has to be learned for

batch ~Di
τ . This is done by applying AdaptivePLSA (Chapter 3) which learns a sequence

of PLSA models from the sequence of document batches. From these PLSA models,
the low-dimensional document representations are extracted for the detection of minor
meanings.
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5.3.5 Experiments

First, details about the used data sets are given. Next, an evaluation experiment, in
which an arti�cial minor meaning under a tag is induced, is described and results are
presented. Last, in a real-world case study, minor meanings of two tags of the CiteULike
system are explored.

Data from Bibsonomy and CiteULike

The experiments rely on data from the two collaborative tagging systems Bibsonomy5

and CiteULike6. Data from the Bibsonomy system are easily accessible and well docu-
mented. Resources in Bibsonomy are bookmarks in the Bibtex format. For this work
the cleaned dump of the Bibsonomy data set7 was used, which was part of the data
mining contest of the ECML/PKDD8 conference 2009. This dump contains bookmarks
and tagging events from December 31, 2005, to December 31, 2008.

Most bookmarks contain the abstract of the referenced document. These abstracts
are used instead of the complete articles since full articles are often not accessible due
to copyrights. In order to increase the number of bookmarks with abstract, the ACM
Digital Library9 was searched for missing abstracts. A few abstracts, which are written
in German or French, were removed by the following simple heuristic. Bookmarks whose
abstracts contained one of the words der, die, das, ein, einer, eine, diese, dieser, dieses
and sociaux, were omitted. Abstracts of the remaining bookmarks were subjected to
standard preprocessing techniques, i.e., removal of English stopwords and the Porter
stemmer. Afterwards, all bookmarks whose abstract was shorter than 10 characters
were omitted. Last, all tagging events except those that refer to one of the remaining
bookmarks were removed.

A second data set is data10 from the CiteULike system. To enrich this data set,
missing abstracts were searched11 in Medline12, ArXiv13 and CiteSeerX14. To this end,
bookmarks were matched with data from these resources by speci�c CiteSeerX, PubMed,
and ArchivX document-keys which were present in some bookmarks without abstract.
By that procedure, 240.000, 9.000 and 13.000 abstracts from PubMed, ArchivX and
CiteSeerX, respectively, could be matched. All abstracts were subjected to the removal
of English stopwords and to the Porter stemmer. Bookmarks with an abstract shorter
than 10 characters were omitted and all tagging events that referred to bookmarks other
then the remaining bookmarks were neglected. The remaining abstracts of both data
sets are called documents in the rest of this chapter.

5bibsonomy.org, March 29, 2012
6citeulike.org, March 29, 2012
7www.kde.cs.uni-kassel.de/ws/dc09/dataset, downloaded September 25, 2009
8Eurpean Conference on Machine Learning and Principles and Practice of Knowledge Discovery in

Databases
9www.acm.org, search was done in October 2009
10citeulike.org/faq/data.adp, downloaded April 21, 2010
11Data retrieval from the resources CiteSeerX, PubMed, and ArchivX, as well as data preprocessing

was done by Bc. Ricardo Usbeck [88]
12nlm.nih.gov/bsd/pmresources.html, baseline data set from 1970 to 2009, accessible upon conclu-

sion of a license agreement
13arxiv.org/help/oa/index, downloaded March 29, 2010
14csxstatic.ist.psu.edu/about/data, downloaded April 3, 2010

bibsonomy.org
citeulike.org
www.kde.cs.uni-kassel.de/ws/dc09/dataset
www.acm.org
citeulike.org/faq/data.adp
nlm.nih.gov/bsd/pmresources.html
arxiv.org/help/oa/index
csxstatic.ist.psu.edu/about/data
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The popularity of a tag is measured by the number of tagging events by which this
tag was assigned to a bookmark in the reduced data set. Popular tags are likely used by
many users and so are likely semantic miscellanies. Thus, this study concentrates on the
40 most popular tags of Bibsonomy and CiteULike, which are listed in Tables 5.1 and
5.2, respectively. The CiteULike tag no-tag was neglected in the experiments as this is
a technical tag used by the CiteULike system itself for resources without a tag.

Arti�cially induced minor meaning under a tag

For assessing the e�ectiveness of the proposed approach an arti�cial minor meaning
under a tag was induced. The basic idea is to add o�-topic documents to the documents
under a tag. The tag under which a minor meanings should be induced is called the
target tag. The tag from which the documents are take to establish the minor meaning
is called the source tag.

An additional tag bible_test was added to the data sets Bibsonomy and CiteULike.
Documents under this tag are 50 short excerpts from the Old Testament. These docu-
ments were subject to stopword removal and the Porter stemmer. The documents under
the tag bible_test are assumed to be thematically very di�erent to almost all scienti�c
documents of Bibsonomy and CiteULike. Hence, the bible_test tag was used as the
source tag to induce a minor meaning under the target tags listed in Tables 5.1 and 5.2.

In more detail, a test set of 200 documents was constructed for each target tag by
randomly sampling s ∈ {2, 5, 10, 20, 35, 50} documents from the source tag and 200− s
documents from the target tag with equal probability. All s documents from the source
tag are assumed to have been contributed by one arti�cial user. The other users of
the test sets are those who belong to the chosen documents from the target tags. The
approach for the detection of minor meanings under tags was applied to all test sets
individually. This resulted in determined p-values for each user of each test set. Although
the document characteristics under di�erent target tags might di�er, the p-values are
comparable to each other.

The proposed approach for detecting minor meanings under tags was applied to each
of these data sets. In more detail, each combination of a data set (Bibsonomy or Ci-
teULike), a value of s (6 possibilities), a distance function (distcos or distKL), and a
document representation (word vectors or topic-mixture proportions with a number of
topics K ∈ {5, 10, 20, 50, 100, 200}) was investigated. The obtained p-values were pooled
across all 40 target tags for each combination. Each set of pooled p-values was used for
classifying the corresponding users into the two classes of users (i) who contribute a
minor meaning under the target tag (positive class), and (ii) who do not contribute a
minor meaning. The ground truth for the positive class were the arti�cial users (tag
bible_test), which have been added to each target tag. All other users were assumed
not to add a minor meaning (ground truth of negative class). For assessing classi�ca-
tion performance the area under the derived ROC curve (AUC) is reported. This area
measures how well the proposed method discovers the arti�cial users as the users who
have added a minor meaning. The resulting areas under the ROC curves are presented
in Figure 5.4.

By varying s ∈ {2, 5, 10, 20, 35, 50}, it is investigated how the e�ectiveness of the
proposed method depends on the fraction of o�-topic documents. In addition, the e�ects
of the two document presentations as discussed in Section 5.3.2 are assessed. The number
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Table 5.1: 40 most popular tags of the preprocessed Bibsonomy data set.
Tag # Tagging Events First Usage Last Usage

1 algorithms 3688 2006-01-25 2008-12-21
2 genetic 3620 2006-07-07 2008-12-15
3 programming 3595 2006-03-09 2008-12-16
4 statphys23 1030 2007-06-20 2008-01-22
5 learning 768 2006-02-14 2008-12-28
6 web 580 2005-12-20 2008-12-28
7 software 579 2006-03-09 2008-12-27
8 ontology 567 2005-12-20 2008-12-29
9 information 564 2006-01-24 2008-12-27
10 evolution 534 2006-03-09 2008-12-09
11 folksonomy 532 2006-01-19 2008-12-21
12 social 526 2006-02-13 2008-12-27
13 design 520 2006-01-16 2008-12-28
14 tagging 518 2006-03-09 2008-12-27
15 wismasys0809 515 2008-10-22 2008-11-12
16 bibteximport 511 2006-03-07 2008-08-21
17 semantic 503 2005-12-20 2008-12-29
18 networks 480 2006-02-23 2008-12-27
19 theory 464 2006-01-24 2008-12-27
20 analysis 464 2006-01-31 2008-12-27
21 model 437 2006-01-08 2008-12-27
22 mrefs 418 2007-03-28 2008-12-04
23 systems 379 2006-03-09 2008-12-27
24 knowledge 372 2006-01-31 2008-12-27
25 semanticweb 359 2006-04-05 2008-12-20
26 book 358 2006-03-09 2008-12-27
27 network 357 2006-01-24 2008-12-27
28 evolutionary 355 2006-09-29 2008-12-06
29 management 347 2006-03-09 2008-12-27
30 2007 344 2007-01-29 2008-12-29
31 nlp 321 2006-07-26 2008-12-19
32 data 310 2005-12-20 2008-12-27
33 community 310 2006-02-15 2008-12-27
34 juergen 305 2008-02-26 2008-03-11
35 requirements 297 2006-03-24 2008-12-11
36 apob 293 2006-07-07 2006-07-07
37 toread 290 2006-04-05 2008-12-29
38 search 283 2005-12-20 2008-12-21
39 of 280 2006-01-06 2008-12-27
40 computer 277 2006-03-09 2008-12-27
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Table 5.2: 41 most popular tags of preprocessed CiteULike data set. The technical tag
no-tag was neglected in the experiments.

Tag # Tagging Events First Usage Last Usage

1 no-tag 43403 2004-11-05 2010-03-03
2 review 8081 2004-11-04 2010-03-03
3 evolution 3971 2004-11-11 2010-03-03
4 cancer 3274 2004-11-11 2010-03-03
5 network 2135 2004-12-19 2010-03-03
6 microarray 1936 2004-12-06 2010-03-03
7 protein 1935 2004-12-08 2010-03-03
8 bioinformatics 1817 2004-11-14 2010-03-03
9 networks 1781 2004-11-04 2010-03-01
10 structure 1781 2004-12-06 2010-03-01
11 fmri 1769 2005-02-01 2010-03-03
12 human 1608 2005-01-06 2010-03-03
13 model 1542 2004-11-12 2010-03-03
14 cosmology 1427 2004-12-27 2010-02-26
15 statistics 1328 2004-11-24 2010-03-01
16 methods 1274 2004-11-13 2010-03-02
17 expression 1187 2005-03-24 2010-03-01
18 genetics 1179 2004-11-11 2010-03-03
19 mirna 1177 2005-03-10 2010-03-03
20 memory 1123 2005-02-08 2010-02-26
21 software 1121 2004-11-12 2010-03-01
22 physics 1100 2005-03-04 2010-03-02
23 rna 1084 2004-12-06 2010-02-28
24 genomics 1074 2004-11-13 2010-03-01
25 development 1073 2004-11-10 2010-03-02
26 genome 1011 2004-12-21 2010-03-02
27 brain 999 2004-11-11 2010-02-28
28 gene 992 2004-12-19 2010-03-01
29 vision 990 2005-01-31 2010-02-28
30 theory 977 2004-12-30 2010-03-02
31 attention 976 2005-02-02 2010-03-02
32 proteomics 939 2004-11-13 2010-03-01
33 database 923 2004-11-11 2010-02-27
34 learning 905 2004-11-16 2010-02-18
35 breast 873 2004-11-30 2010-02-27
36 yeast 868 2004-11-04 2010-03-03
37 aging 868 2005-01-19 2010-03-02
38 ckd 863 2005-10-11 2010-02-19
39 simulation 861 2005-02-08 2010-03-03
40 quantum 837 2005-02-11 2010-02-23
41 dopamine 834 2005-01-12 2010-02-26
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of topics K ∈ {5, 10, 20, 50, 100, 200} was varied (several PLSA models with di�erent
topics were learned) in order to investigate whether the number of topics a�ects the
e�ectiveness of the low-dimensional document representations. Further on, the e�ect of
the two distance functions proposed in Section 5.3.3 on the detection of minor meanings
is investigated.

Further parameters are the number of bootstrap iterations, which was set equal to
b = 200, and the pseudo count, which was set equal to εW = 1e-6. The hyper-parameters
of the PLSA priors were set to α = 1 and β = 1 (cf. Section 2.5), and the EM algorithm
for parameter learning was run for 20 iterations.

In�uence of number of o�-topic documents

The obtained areas under the ROC curves (AUC) are presented in Figure 5.4. At the �rst
glance it becomes obvious that all curves follow a similar characteristic: they decrease
from left to right. That means, the reported AUCs, likewise the performance of the
detection of the minor meaning, decrease with an increasing fraction of the bible_test
documents. Two e�ects could be responsible for this observation.

First, while the fraction of bible_test documents increases from 2/200 to 50/200, the
fraction of original documents under the target tags decreases from 200−2/200 to 200−50/200.
This might result in a decreasing number of original users which are present in the con-
structed document test sets. Consequently, the arti�cial bible_test user will be selected
more often during the bootstrap procedure and the bible_test documents will a�ect
the bootstrapped reference distribution to a higher degree. This would lead to larger
p-values for the bible_test documents which then are less likely detected as contributing
a minor meaning under the target tag.

Second, all distances are computed in relation to the mean representations of the
entire test sets. As the fraction of bible_test documents increases, their in�uence on this
mean representation becomes stronger. Hence, the average distance of the bible_test
documents to this mean representation might become smaller. Smaller average dis-
tances would result in larger p-values of the bible_test documents which lead to a worse
detection of these documents as contributing a minor meaning under the target tag.

A worse recognition of the arti�cial bible_test user could also be desirable if this user
has added a larger number of documents under the target tag. If this experiment had
been run to its extremes by setting s = 200, then the only documents under the target tag
would have been bible_test documents. These documents would have exclusively de�ned
one main meaning of the target tag, namely a meaning associated to the Old Testament.
In this case, it would have been wrong to detect this meaning as a minor one. The
reason is that the main meanings of a social tag are de�ned by the majority of thematic
subjects of documents associated to this tag. The higher the fraction of documents with
a speci�c thematic subject, the more these documents de�ne the meanings of this tag.
Thus, it makes sense and it even might be desirable that the bible_test documents, if
their fraction under the target tags becomes large, are not found to contribute a minor
meaning anymore. These considerations rise the question, up to which relative size
should a document set under a social tag be tested for contributing a minor meaning
under a social tag.

The results which are presented in Figure 5.4 show that the proposed approach for
the detection of minor meanings seems to work best when the fraction of documents,
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(c) CiteULike, cosine distance
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(d) CiteULike, KL divergence

Figure 5.4: Area under ROC curves. Di�erent plots correspond to di�erent combina-
tions of a data set (Bibsonomy on top, CiteULike at the bottom) and a distance function
(cosine distance left, KL divergence right). #Topics = 0 encodes for representing docu-
ments by word vectors. The other curves correspond to representing documents by their
topic-mixture proportions.
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which contribute a minor meaning, is small. Thus, the proposed approach seems to be
particularly well suited for recognizing sets of a few documents which contribute a minor
meaning under a social tag.

In�uence of document representation

The results presented in Figure 5.4 provide a clear picture about which document rep-
resentation is better suited for the detection of minor meanings under social tags. Rep-
resenting documents by word vector leads almost exclusively to larger AUCs, with two
exceptions. The �rst exception is found for the combination of the Bibsonomy data,
cosine distance, s = 50, and representing documents by topic-mixture proportions for
K = 5 topics (Figure 5.4(a)). This combination gives almost as good results as using
word vectors instead of the topic-mixture proportions. The second exception is found
for the Bibsonomy data in combination with the KL divergence and s ∈ {35, 50} (Fig-
ure 5.4(b)). Again, representing documents by vectors of their topic-mixture proportions
for K = 5 and K = 10 topics gives similar AUCs as when documents are represented by
their word vectors.

Word vectors could be better suited for the detection of minor meanings as they bet-
ter represent occurrences of speci�c words. Stating this di�erently, representing docu-
ments by their topic-mixture proportions might increase the risk of smoothing di�erences
among the documents with respect to their word compositions too much.

Interestingly, 5-dimensional topic-mixture proportions (K = 5) give similar AUCs
compared to word-vector representations for the Bibsonomy data and s ∈ {35, 50}. An
explanation could be that for s = 35 and s = 50 the bible_test documents are responsible
for a fraction of 1/5.7 and 1/4 of all 200 test documents, respectively. These fractions are
similar to 1/K with the number of topics K = 5. Hence, one could speculate that one of
the �ve topics has exclusively specialized on the bible_test documents. The probability
of this topic then should be relatively high for all the bible_test documents. At the
same time, this probability should be relatively low for all other documents of the test
sets. As a result, exploiting this topic as a feature which allows to well discriminate
between the bible_test documents and the other documents could lead to the observed
good classi�cation performance.

To summarize these �ndings, word vectors seem to be better suited for the detec-
tion of minor meanings because the occurrences of speci�c words seem to be important.
Merely by chance could topic-mixture proportions lead to a comparable well detection
performance of minor meanings. The latter might happen when the fraction of docu-
ments, which indeed contribute a minor meaning, is similar to the fraction 1/K with K
being the number of topics of the learned PLSA topic model.

In�uence of distance function

Next, the e�ect of the two distance functions on the performance of discorvering minor
meanings, is investigated. Average AUCs for the cosine distance (Figures 5.4(a) and 5.4(c))
tend to be smaller compared to the corresponding AUCs that are obtained when using
the KL divergence (Figures 5.4(b) and 5.4(d)). These di�erences are more obvious for
the values s ∈ {10, 20, 35, 50}. A reason could be that it is more challenging to detect
minor meanings when the number of o�-topic documents is larger as is the case for
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s ∈ {35, 50}. The di�erences due to the utilized distance function are more pronounced
under these more challenging experimental conditions. The choice of the distance func-
tion has only a minor e�ect on the detection accuracy of the induced minor meaning if
the experimental settings are less challenging, i.e., if the induced minor meaning is more
obvious as in the case of a small value of s ∈ {2, 5}. Over all, these �ndings indicate that
the distance function which is based on the KL divergence seems to be better suited for
the detection of minor meanings. Two reasons could be that the KL divergence seems
to be more sensitive for detecting small di�erences between two probability distribu-
tions (document representations). In addition, the KL divergence was originally de�ned
with respect to probability distributions and so naturally �ts to the chosen document
representations which actually are probability distributions.

In�uence of pseudo count

The �ndings indicate that representing documents by word vectors seems to give best
accuracies of the detection of minor meanings under tags. So far, the pseudo count which
was used for computing the word vectors was �xed at εW = 1e-6. The in�uence of this
pseudo count on the e�ectiveness of detecting induced minor meanings is investigated
with the help of a second experiment. This second experiment was similar to the �rst
experiment but documents were represented exclusively by their word vectors and the
pseudo count was varied εW ∈ {1e-6,1e-5,1e-4,1e-3,1e-2}. The obtained areas under the
ROC curves are presented in Figure 5.5.

The obtained AUCs for pseudo counts in {1e-6,1e-5,1e-4} are often similar. The
corresponding lines overlie each other in the plots shown in Figure 5.5. Further on, the
AUCs for εW ∈ {1e-6,1e-5,1e-4} are larger than those for εW = 1e-4 with the exception
of the combination of the Bibsonomy data, s = 50 and the cosine distance with one
exception. This general pattern is more pronounced for the results which have been
obtained with the Bibsonomy data. Increasing the pseudo count further to 1e-2 leads to
even lower accuracies with the one mentioned exception. An explanation for this general
observation could be that increasing the pseudo count leads to more strongly smoothed
word vectors. As a result, di�erences among documents, which seem to be important
for the detection of minor meanings, are worse represented by the word vectors. In
summary, this experiments indicates that small pseudo counts εW ∈ {1e-6,1e-5,1e-4}
should be preferred in order to keep di�erences among documents well detectable.

CiteULike case study

The contents under the two CiteuLike tags structure and human (cf. Table 5.2) were
exemplarily analyzed. For detecting minor meanings over time, the proposed method was
applied to the streams of documents under these two tags as described in Section 5.3.4.
A sliding window was applied to these document streams such that each batch was of size
l = 600 documents. The sliding window was shifted by lnew = l · 0.75 = 450 documents
such that successive batches overlap by 150 documents. The bootstrap procedure was
repeated b = 200 times, the documents were represented by their word vectors, the
pseudo count was set to εw = 1e-6, and the distance function distKL which is based on
the KL divergence was applied. Document sets were reported as contributing a minor
meaning if their determined p-value was lower or equal than 0.05.
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Figure 5.5: In�uence of pseudo count εW on the detection of minor meanings under
tags. In this experiment, documents were represented only by their word vectors.
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Figure 5.6: Overview of p-values of document sets under the tag structure. The sliding
window de�ned three batches for the stream of documents under this tag.

Minor meanings under tag structure

The empiric distribution of the obtained p-values for all document sets of each of the
three batches under the tag structure are visualized in Figure 5.6. A few p-values are at
most 0.05. The corresponding document IDs are listed in Table 5.3. All but one of these
reported document sets consist of one document only. This agrees with the tendency
that smaller document sets are more likely to be detected as contributing a minor mean-
ing. The titles of the documents of the set (1631098; 7520279) of batch 3 are �Suppressor
mutations in Escherichia coli methionyl-tRNA formyltransferase: role of a 16-amino acid
insertion module in initiator tRNA recognition� (doc ID 1631098) and �Crystal struc-
tures of wild-type p-hydroxybenzoate hydroxylase complexed with 4-aminobenzoate,2,4-
dihydroxybenzoate, and 2-hydroxy-4-aminobenzoate and of the Tyr222Ala mutant com-
plexed with 2-hydroxy-4-aminobenzoate. Evidence for a proton channel and a new bind-
ing mode of the �avin ring� (doc ID 7520279). This �nding indicates that a minor
meaning under the tag structure in the CiteULike data is molecular structures (crystal
structures and formation of secondary structure of tRNAs) from the context of biochem-
istry.

Minor meanings under tag human

The constructed stream under tag human consists of three batches. The empiric dis-
tribution of the obtained p-values are visualized in Figure 5.7. Table 5.4 lists all re-
ported document sets, which are supposed to contribute a minor meaning, in detail.
One reported document set of the �rst batch is the one with document IDs 3548575
and 11785818. The titles of these two documents are �Auditory psychophysics: spec-
trotemporal representation of signals� and �Towards a measure of auditory-�lter phase
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Table 5.3: Summary of reported document sets from the stream of documents under
the tag structure. Each row corresponds to one document set (all but one consist of one
document only).

Batch ID Date User ID P Value Doc ID
1 2007-04-12 - 0.03 11133963

- 0.04 astro-ph/0109350
- 0 11690047
- 0 10.1.1.12.4336

2 2008-02-28 - 0.035 10.1.1.12.4336
- 0.03 10.1.1.14.2630
- 0.05 10.1.1.11.2024
- 0 10.1.1.14.4712

3 2009-02-13 - 0.03 17984963
- 0.03 13898346
- 0 10.1.1.14.4712
- 0.015 17194605
- 0.02 1631098; 7520279
- 0 3680217
- 0.05 0802.0485

response�. These documents seem to induce a minor thematic subject about the human
auditory system under the tag human. One reported document set of the second batch
consists of the three documents 11123839, 15689531, 18046746. Their titles are �The
primate cranial base: ontogeny, function, and integration�, �Neandertal evolutionary ge-
netics: mitochondrial DNA data from the iberian peninsula� and �Paranthropus boisei:
�fty years of evidence and analysis�. Paranthropus boisei was an early hominin which
was �rst discovered by the anthropologist Mary Leakey on July 17, 1959, at Olduvai
Gorge, Tanzania15. These documents seem to contribute a minor meaning about human
ontogenesis and phylogenesis to the tag human. Another document set which consists
of the three documents 10627087, 11153847, 12011790 of the third batch was reported
as conveying a minor meaning. These documents seem to add a thematic subject about
human odor from a social and psychological perspective. Their titles are �Rapid mood
change and human odors�, �Human olfactory communication of emotion� and �The scent
of fear�.

5.4 Visual tag sensemaking

Collaborative tagging systems are highly dynamic with respect to the way how their
users interpret and use tags. Since users might change their interpretations of tags as
well as new users join the system and newly interpret existing tags, meanings associated
with social tags change over time. As the contents of documents a tag is associated
to re�ect the meanings of this tag, studying the evolution of these contents helps to
unravel the semantic evolution of social tags. Motivations of a particular user to study
the semantic miscellany of a tag are diverse. The tag might be totally unknown to the

15wikipedia.org, October 14, 2011
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Table 5.4: Summary of reported document sets from the stream of documents under the
tag human. Each row corresponds to one document set (some consist of one document
only).

Batch ID Date User ID P Value Doc ID
1 2007-08-16 - 0 8710414

- 0.03 16809528
- 0.05 3548575; 11785818
- 0.03 15821430
- 0.045 17652657

2 2008-06-02 - 0.01 17395643; 14596797
- 0.03 2934473
- 0.015 10.1.1.12.7553
- 0.025 9887022; 16452121
- 0 17652657
- 0.01 18096770
- 0.045 17507175
- 0.025 11123839; 15689531;

18046746
- 0.025 17943116
- 0.045 16352667; 16046292
- 0.05 11153153
- 0.025 10.1.1.10.4507

3 2009-07-15 - 0.015 11123839; 15689531;
18046746

- 0.045 17943116
- 0.025 10.1.1.10.4507
- 0.04 16126811; 2214715;

11724665
- 0.005 10.1.1.104.2324
- 0.015 2300263; 1677640
- 0.02 10627087; 11153847;

12011790
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Figure 5.7: Overview of determined p-values for tag human.

user, i.e., the user is incapable of deducing the meaning of the tag from its face value.
Another motivation could be that, although the user has an interpretation of the tag,
the user might want to gain knowledge about further meanings which the community of
users associates with this tag.

To facilitate studying the contents of documents under a tag, these contents and their
changes over time need to be presented to the user in a comprehensible manner. By
visually perceiving and studying the presented information about the contents under a
tag, a user might deduce the diversity of meanings of a tag and their changes over time.
This process of investigating the semantic miscellany of a tag by studying visualized
pieces of information about the contents of documents under the tag is called visual tag
sensemaking.

TopicTable (Chapter 4), which is used in combination with AdaptivePLSA (Chap-
ter 3), is e�ective for summarizing and visualizing contents of document streams and
their changes over time. Thus, this combination is especially suited for visual tag sense-
making. For a stream of documents, TopicTable generates a condensed and compre-
hensible overview of the document contents and their changes over time. Applying
AdaptivePLSA and TopicTable to a stream of documents under a social tag provides
helpful hints to a user for deducing the meanings users associate with this tag.

Beside studying thematic subjects associated with a tag, a user might also be inter-
ested in studying the own in�uence on a particular tag. Knowing which of the sum-
marized and visualized contents are due to the own tagging activity, the user might
concentrate on the other summarized contents for deducing yet unknown thematic sub-
jects. To this end, TopicTable is extended in such a way that it visualizes the in�uence
of a particular user on the presented topics.
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5.4.1 User in�uence on a tag

The documents under a tag have been tagged by the entire community of users. Top-
icTable, which is used in combination with AdaptivePLSA, presents an overview of the
contents of these documents under the tag. Through the own tagging activities, a par-
ticular user in�uences the contents under this tags and so in�uences the meanings of
this tag. Thus, the fraction of documents under a tag contributed by a particular user
is a measure of the user's in�uence on the meanings of this tag. Making perceivable
this in�uence of a user on the semantic miscellany of a tag enhances the usefulness of
TopicTable for visual tag sensemaking.

In the following, it is explained how a user's in�uence on the topics, which are pre-
sented by TopicTable, is measured. A sequence of document batches ~D1

τ , . . . ,
~DN̄τ
τ is

de�ned by a sliding window which is applied to the stream of documents under a tag
as described in Section 5.2.3. Afterwards, AdaptivePLSA (Chapter 3) is applied to

these batches. AdaptivePLSA learns a PLSA model ζ iτ for each batch ~Di
τ . It is made

explicit that the models and their parameters are speci�c of a certain tag τ by adding
the sub-script τ to the corresponding symbols. Each model has K topics which are
indexed by the index variable 1 ≤ z ≤ K. In addition, each model consists of logarith-
mic topic-mixture proportions ~θiτ,d and document probabilities δτ,d for each document

d ∈ ~Di
τ .

TopicTable summarizes the contents of documents by K document prototypes, which
are derived from the K PLSA topics. TopicTable visualizes the relative strength of the
kth prototype in batch ~Di

τ . This strength is equal to the probability P (z = k|ζ iτ ) of
the kth topic from which the kth prototype was derived. This topic probability can be
computed from the model parameters as follows.

P (z = k|ζ iτ ) =
∑
d∈ ~Diτ

P (z = k, d|ζ iτ ) (5.6)

=
∑
d∈ ~Diτ

P (z = k|d, ζ iτ )P (d|ζ iτ ) (5.7)

=
∑
d∈ ~Diτ

exp(θiτ,d,k) exp(δiτ,d) (5.8)

Each document of ~Di
τ has been annotated with tag τ by a particular user. The

document IDs of batch ~Di
τ that have been annotated by user u are denoted by ~Di

τ (u).
The in�uence of user u on the kth topic is measured by the fraction of the topic probability
which is due to the documents ~Di

τ (u). This fraction giτ,u,k is derived as follows.

biτ,u,k =

∑
d∈ ~Diτ (u)

P (z = k, d|ζ iτ )

P (z = k|ζ iτ )
(5.9)

Being fractions, these user in�uences biτ,u,k with 1 ≤ i ≤ N̄τ , and 1 ≤ k ≤ K lie between
0 and 1.
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Figure 5.8: Each cell corresponds to one document prototype as described in the caption
of Figure 4.3. Here, TopicTable is extended such that it visualizes the in�uence of a
particular user u on the topics over time. a) To this end, the dark-gray circle, which
visualizes the relative strength of a topic, is superimposed by a light-gray circle, which
visualizes the in�uence of the user u.

5.4.2 Extending TopicTable for visualization of user in�uence

TopicTable visualizes the relative strength of a document prototype with a dark-gray
circle whose size is relative to the probability of the corresponding topic (see Figure
4.3). In order to visualize a user's in�uence on a topic, these dark-gray circles are
superimposed by a second light-gray circle as shown in Figure 5.8. The relation in size
between the light-gray and the dark-gray circle roughly encodes the user in�uence on
the corresponding topic. If the user is responsible for all contents which are represented
by a topic, then the light-gray circle has the same size as the dark-gray circle. If the
user has contributed none of the contents, then the light-gray circle vanishes.

The size of the light-gray circle for the kth topic of the ith batch is proportional to the
probability fraction P (z = k|ζ iτ ) · biτ,u,k. Taking this probability fraction instead of the
whole topic probability, TopicTable derives the size of the light-gray circle by the same
equation which it uses for determining the size of the dark-gray circle. In more detail,
TopicTable determines the radius of the light-gray circle as (P (z=k|ζiτ )·biτ,u,k)

5/7/
√

(2π) [64].

Computing the size of the light-gray circle in this way gives the desired visualization
e�ects. If the documents ~Di

τ (u) that have been tagged by user u contribute to the topic
only to a minor degree, then the corresponding light-gray circle will be small and the
dark-gray circle will dominate. Contrary, if a topic was de�ned by the documents of
user u to a high degree, then the light-gray circle will be almost as large as the dark-
gray circle. As a result, the light-gray circle will almost cover the dark-gray background
circle. By inspecting the light-gray and dark-gray circles, a user might, at a glance,
deduce relative strengths of the topics and how much these topics were in�uenced by
the own documents under the tag in question.
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Table 5.5: Active users for tag learning of the Bibsonomy system.
User # Docs �rst tagging last tagging

69 301 2006-03-17 2008-12-28
2732 154 2008-06-19 2008-06-19
444 22 2006-10-27 2006-10-27
1771 20 2007-12-16 2007-12-16
3786 14 2008-12-27 2008-12-27

5.4.3 Case study

The extended TopicTable was applied to the Bibsonomy data. As an example, the
semantic miscellany of the tag learning was studied as this tag is popular and, hence,
is likely interpreted in di�erent ways. Table 5.5 lists the �ve users who have annotated
the most documents with the tag learning. In this example, the in�uence of user 69 on
the learned PLSA topics over time is visualized. This user was chosen for the following
two reasons. The user 69 clearly has tagged the most documents with the tag learning,
and this user has been active almost throughout the whole studied period of time.

A sliding window of length 200 documents was applied to the stream of documents
under the tag learning and it was shifted by 75% of its size. The last batch, which
contained less then 200 documents, was omitted. This procedure resulted in four batches
and successive batches overlapped by 50 documents. Each batch is annotated with the
time stamp of its latest document.

Then, AdaptivePLSA was applied to these batches to learn four PLSA models with
K = 5 topics over time. Five topics were chosen to obtain a coarse overview of the
contents in the stream of documents under the tag learning. The hyper-parameters of
the PLSA models were set to α = 1 and β = 1. The result of applying the extended
TopicTable to the learned PLSA models is presented in Figure 5.9. The determined user
in�uences of user u = 69 are listed in Table 5.6.

The TopicTable in Figure 5.9 reveals the following thematic subjects of documents
which have been tagged with the tag learning.

Topic 5
• from 2007-05 to 2008-06: cognitive process of learning; learning math; studies
on in�uence of environment on learning activity; education of teachers; di�erent
ways of learning (via games, or in communities)
• in 2008-08: strong turn to thematic subjects on machine learning (process, model,
learner, image, technology)

Topic 4 this topic changes relatively often as visualized by the small width of its back-
ground river
• in 2007-05: ABLA (Assessment of Basic Learning Abilities)
• from 2008-03 to 2008-6: machine learning; generative learning of statistical mod-
els; models for analyzing programming code
• in 2008-08: learning models (learn, gener) with genetic programming (gp, func-
tion, evolv, �t, genet)

Topic 3
• in 2007-05: learning and education via Web 2.0 (wikis)
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• in 2008-03: machine learning; approaches and algorithms for classi�cation prob-
lems; generative models; automata; feature selection
• from 2008-06 to 2008-08: emerging thematic subject on genetic programming (gp,
genet, perform); learning models for classi�cation (classify); learning in context of
the semantic web (techniques and methods)

Topic 2
• in 2007-05: in�uences of playing video and computer games on learning abilities
with respect to learning languages, and cognitive abilities
• from 2008-03 to 2008-06: cultural aspects of learning; social learning in context
of pedagogy (socy, learn, theory, imitat, dynam); studying the cognitive process of
learning by measuring neural activities; social networks (gaining knowledge out of
modeling social networks)
• in 2008-08: reinforcement learning (agent, robot, interact, complex, algorithm);
evolutionary learning

Topic 1
• from 2007-05 to 2008-06: value of computer applications for learning; design and
development of computer games for learning; collaborative �ltering
• in 2008-08: developing and designing software (in context of machine learning)

These �ndings give clues to several thematic subjects that users of Bibsonomy as-
sociate with the tag learning. Two main thematic subjects are learning as a cognitive
process and learning in the context of machine learning. Some thematic subjects under
the tag learning change with time. For instance, the subject on machine learning with
the help of genetic programming emerges in 2008-06 whereas the subject on ABLA is
present in 2007-05 and quickly vanishes thereafter.

Inspecting the gray circles in the middle of each box of the TopicTable, one �nds that
the �rst and the �fth topic are the dominating topics from the beginning until 2008-06.
Later, in 2008-08, the third topic becomes the strongest one.

The light-gray circles on top of the dark-gray circles visualize the in�uence of user 69
on the learned topics. The documents which this user has tagged with the tag learning
strongly in�uence the �rst and �fth topic from the beginning until 2008-06. In 2007-05,
the documents of user 69 have a strong in�uence on the second and third topic. In
the last column 2008-08, user 69 seems to be responsible for less documents under the
tag learning. The user has an in�uence on the �rst and �fth topic only to a minor
degree. This becomes especially obvious when inspecting Table 5.6. Interestingly, the
strength of the �rst and �fth topic decreases from 2008-06 to 2008-08 as the gray circles
become smaller. At the same time, the background rivers of these two topics become
narrower indicating a thematic shift of the underlying topics. All these observations
lead to the hypotheses that (i) user 69 mainly in�uenced the �rst and �fth topic, that
(ii) the thematic subjects which user u = 69 links with the tag learning diminish in
2008-08 when the user 69 is less active, and (iii) that the �rst and �fth topic start to
focus on di�erent thematic subjects when the user u = 69 is less active. Last, because
of the user's strong in�uence on the �rst and �fth topics until 2008-06, it might be
hypothesized that this user mainly uses the tag learning for tagging documents about
learning as a cognitive process.



101

T
op

ic
1

2007-05

200

design learn
game base chil-
dren develop
pattern model
technology data
knowledg creat
comput paper
process

2008-03

200

learn design
paper process
develop system
gener task
learner pattern
support tech-
nology context
user base

2008-06

200

learn design
research de-
velop context
process support
pattern edu-
cat comput
base collabor
learner paper
theory

2008-08

200

learn design
pattern model
develop soft-
war research
solut context
task machin
problem paper
set user

T
op

ic
2

game learn
video cognit
socy theory
argu comput
play world
present expery
model languag
story

socy learn
theory cog-
nit system
cultur hu-
man function
model pro-
cess mechan
imitat dy-
nam neural
activity

socy learn net-
work imitat
system word
individu hu-
man structur
process knowl-
edg cognit
approach
form model

agent learn
structur evolut
system robot
problem algo-
rithm interact
complex con-
cept result
solut show
evolutionary

T
op

ic
3

learn game
wiky comput
research online
educat paper
gener student
build docu prob-
lem knowledg
process

learn data
algorithm
approach
method clas-
sif problem
docu model
wiky set gener
machin au-
tomat featur

method base
learn data se-
mant problem
algorithm gp
approach web
control pa-
per techniqu
show machin

gp method
approach base
genet pro-
gram learn
data algorithm
problem result
techniqu per-
form system
classify

T
op

ic
4

abla task test
auditory match
learn ability
level discrimin
train assessment
visu result skill
perform

learn model
ability re-
sult predict
gener test level
comput lan-
guag present
analysy agent
support
demonstr

learn level ob-
ject program
result agent
analysy data
code predict
weight repre-
sent test ability
time

program genet
gp problem
tree operat fit
solut function
search evolv
object learn
gener effectiv

T
op

ic
5

mathemat learn
student comput
environ paper
narr web colla-
bor approach
tool design
activity system
study

student math-
emat learn
teacher en-
viron study
comput knowl-
edg research
commun
game activity
school teach
educat

student math-
emat learn re-
search concept
teach activity
study environ
project com-
mun problem
understand
school organiz

learn process
model paper
space re-
search learner
univers frame-
work technol-
ogy educat
image math-
emat study
object

Figure 5.9: Extended TopicTable for tag learning from the Bibsonomy data. Document
prototypes consist of the 15 most likely words for each topics. Light-gray circles on
top of dark-gray circles visualize how strongly the underlying topics are in�uenced by
documents user 69 has tagged with the tag learning.
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Table 5.6: The in�uence of user 69 on social tag learning as measured by biτ,u,k (values
in %).

Topic k 2007-05 (i=1) 2008-03 (i=2) 2008-06 (i=3) 2008-08 (i=4)
5 73 75 82 17
4 23 33 12 0
3 54 11 5 0
2 74 31 21 0
1 76 53 73 21

5.5 Conclusions and future directions

Recently emerged collaborative tagging systems are part of the growing Social Web.
Users of these systems manage and share own resources such as links to music, documents,
and images. Beside managing, users organize resources by assigning tags to them. Often,
any short phrase or word might be used as a tag since tags are not centrally supervised.

Users and researchers became aware of the risk of semantically overloaded tags which
are a consequence of the many di�erent conceptions that users associate with the same
tag. Semantic overloaded tags could reduce the e�ectiveness of organizing resources by
tagging. On the other hand, they are of great value as getting to know which thematic
subjects are associated with a tag is learning about the conceptions of this tag and
thematic subjects of resources this tag is linked to. Learning about thematic subjects
a tag is associated with is making sense out of the many resources this tag is assigned
to. For systems that deal with document-like data, two methods for investigating the
diversity of meanings a tag is associated with are proposed in this chapter. Both methods
complement each other; the �rst method sheds light on minor meanings of social tags
whereas the second method visually summarizes contents of documents under a tag for
deducing main thematic subjects this tag is associated with.

The semantic miscellany of social tags of the Bibsonomy and CiteULike system was
investigated in two case studies. Users of the Bibsonomy system, for example, associate
the tag learning with di�erent thematic subjects such as machine learning and learning
as a cognitive process. Moreover, both proposed methods assist the reader in discovering
changes of the semantic miscellany of tags with time. For instance, users of the CiteULike
system associate with the tag human minor thematic subjects over time as di�erent as
the human auditory system, human ontogenesis and phylogenesis, and human odor from
social and psychological perspectives.

Both proposed methods might be e�ective tools for users who want to learn about the
semantic miscellany of social tags. As such, the proposed methods might complement
existing approaches for tag sensemaking such as tag clouds, collocate clouds or links
from tags to WordNet. The potential of methods for clarifying the many meanings of
social tags is twofold. First, they make the work with collaborative tagging systems
more e�ective. Second, they enable users to gain knowledge from the �wisdom of the
many�. Learning as a social process often is learning from the others. In context of
collaborative tagging systems, learning from the others is learning what other users
associate with particular tags. By that, informed users might be able to understand
better which particular thematic subject of a document is expressed by a certain tag.

The development of sophisticated methods for tag sensemaking is important as the
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Social Web will continually grow in the future. One direction of enhancing the proposed
method for detecting minor meanings under a tag is to remove the following strong
assumption: a user has one unique interpretation of a tag. So far, this assumption is im-
plicitly made by the proposed approach but, obviously, this strong assumption might be
often missed as a user might associate di�erent meanings with the same tag. Removing
this assumption means to explicitly take into account di�erent conceptions that a user
might have about a tag. A second future direction is to take into account the size of
the set of number of documents which should be investigated for contributing a minor
meaning. The characteristic distances of documents to the mean representation might be
di�erent with respect to the size of the investigated document sets. For small document
sets, observed distances might be larger and more disperse than for larger document sets.
These di�erences could be taken into account, e.g., by a bootstrap procedure which is
speci�c for the size of the document set that should be investigated. To this end, the
proposed bootstrap procedure could be restricted to draw only bootstrap users which
have contributed similarly many documents as the size of the investigated document set.
Size-speci�c bootstrap procedures could reduce the number of falsely detected or missed
minor meanings and thereby enhance the detection of minor meanings.

TopicTable could be further extended for visual sensemaking in the following ways.
A close relation between users and tags of collaborative tagging systems exists: users
de�ne tags and get inspired by tags of other users. Hence, in addition to analyzing
topics under tags, learning and presenting topics under users could be another tool for
tag sensemaking. Knowing which user is responsible for which topics under a tag and,
at the same time, inspecting topics under this user might provide additional information
about the semantic miscellany of the tag under inspection. Another extension could be
to take common topics under several tags into consideration. So far, the combination of
AdaptivePLSA and TopicTable learns and visualizes topics under a tag independently of
topics under the other tags. Discovering and presenting topics that are common under
several tags will greatly enhance studying the semantic miscellany of tags by shedding
light on the semantic relationship among tags.
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Chapter 6

Bilingual topic modeling of chemical

compounds

Drug discovery is part of natural-product chemistry, an interdisciplinary �eld between
chemistry and biochemistry with the subject of searching for yet unknown active natural
products for developing new drug leads. Natural products are chemical compounds syn-
thesized by living organisms. Examples are glucose, ethanol and paclitaxel, which are,
for instance, synthesized by plants, baker's yeast and the paci�c yew tree, respectively.
After isolation of a promising natural product, researchers investigate this chemical com-
pound. Beside other investigations, the chemical constitution of the isolated chemical
compound is of great interest. The chemical constitution describes (i) which atoms con-
stitute the compound, and (ii) how these atoms are connected by which chemical bonds.
The chemical constitution of a compound is often represented by drawing a structural
formula as shown in Figure 6.1 for toluene. The process of determining the chemical con-
stitution and the three-dimensional structure of a chemical compound is called structure
elucidation. In this chapter, bilingual topic modeling of chemical compounds is proposed.
Applications thereof might give valuable hints, for example, for structure elucidation of
new chemical compounds.

For investigating the chemical constitution a variety of experimental methods is avail-
able. In combination with other experimental procedures Nuclear Magnetic Resonance
(NMR) spectroscopy, by which researchers might draw conclusions about how atoms
are connected by which chemical bonds, is often applied. NMR refers to the ability of
speci�c atom nuclei to interact with an electromagnetic �eld. For a given chemical com-
pound, NMR spectroscopy records these interactions and visualizes them as peaks in a
NMR spectrum. An example of a 2D NMR spectrum of toluene is shown in Figure 6.1.
The interaction of a single atom and, hence, the position, shape, and intensity of the
corresponding NMR peaks are a�ected by di�erent factors. For example, the chemical
bonds in which this atom participates a�ects the quality of interaction. Another factor
is the neighbor atoms which are connected to this atom via chemical bonds.

For structure elucidation researchers study NMR spectra and draw conclusions about
the chemical constitution from peak positions, shapes, and intensities. Structure eluci-
dation is challenging and laborious as researcher use a combination of di�erent NMR
experiments and other complementing experimental procedures to work out hypotheses
about the chemical constitution of structural fragments of the studied chemical com-
pound. These hypotheses are combined, piece by piece, and the combinations have to
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Figure 6.1: Structural formula and 2D NMR spectrum of toluene. Peaks are projected
onto the two-dimensional plane. Peak positions are de�ned in terms of (chemical) shifts,
whose measurement unit is parts per million (ppm), of the peak with respect to reference
peaks.

be veri�ed by additional experiments to eventually lead to a �nal structure suggestion.

In this work, bilingual topic modeling of chemical compounds is proposed as help for
structure elucidation. To this end, chemical compounds are described in two di�erent
languages. The �rst language describes their chemical constitutions, whereas the second
language describes positions of NMR peaks in their NMR spectra. Describing chemi-
cal compounds with help of these two languages, bilingual topic modeling of chemical
compounds makes possible (i) to predict distributions over peak positions from a known
chemical constitution, and (ii) to predict distributions over structural fragments from
a given NMR spectrum. Fingerprints which consist of the most likely predicted NMR
signals or structural fragments might be derived from these distributions. Applications
of such �ngerprints could be (i) to strengthen or alleviate structural hypotheses during
the process of structure elucidation, and (ii) to use these for information retrieval and for
look-ups in chemical databases. For example, if a researcher is investigating the chemical
constitution of a new compound using NMR, then the researcher might want to search
in structure databases for structurally most similar compounds. In this situation, the re-
searcher could predict structural fragments from the NMR spectrum by bilingual topic
modeling and use these fragments for the database search. In the opposite direction,
a researcher could predict peak positions from a known chemical constitution and use
these predicted positions for search in NMR databases.

It should be emphasized here that this work on bilingual topic modeling of chemical
compounds does not aim at competing with expert systems for structure elucidation of
chemical compounds. As structure elucidation is a complex problem, expert systems
combine a variety of data from di�erent experimental methods and predict a few struc-
ture suggestions.

The rest of this chapter is organized as follows. Next, related work is presented in
Section 6.1. In Section 6.2, the two languages used for describing chemical compounds
are described in detail. The utilized multilingual topic model and the learning approach
are presented in Section 6.3. The experiments and discussions of the results are subject
of Section 6.5. Last, conclusions and future directions are given in the Section 6.6.
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6.1 Related work

Di�erent approaches for the prediction of NMR peak positions from the chemical consti-
tution of chemical compounds have been proposed. Such approaches are speci�c for the
type of NMR signals that should be predicted, e.g., for 1H, 13C, 15N or 31P. In addition,
they are speci�c for the di�erent NMR experiments, e.g., 1D and the many di�erent 2D
NMR experiments. A diversity of computational approaches have been proposed for the
prediction of NMR peak positions. For 13C 1D NMR this diversity is reviewed in the
introduction of the work [89] and it includes empirical methods like linear and multi-
variate regression, arti�cial neural networks, incremental models, genetic programming
approaches, and combinations thereof, as well as quantum-mechanical methods [90]. A
comparison of empirical and quantum-mechanical methods is given in the work [91].
All these methods for the prediction of NMR peak positions use information about the
atoms and chemical bonds of a chemical compound as input. Di�erent approaches di�er
by the way how they encode this information by descriptors. Examples are descrip-
tors for steric and electronic properties derived by the Hückel method [92], functional
group descriptors [93], topological descriptions of magnetic atoms as described in [94],
atom-centered topological, geometric and electronic descriptors as selected by genetic
programming [95], and descriptors based on atomic distance-edge vectors [96]. Beside
this diversity, approaches for the prediction of NMR peak positions di�er with respect
to di�erent research goals. For example, prediction of chemical shifts could be done for
the structure elucidation of one or a few compounds of interest like in [97] where the
chemical constitution of two germacrane derivatives was elucidated by a tight integra-
tion of shift prediction and experimental methods. Other approaches predict NMR peak
positions for members of a speci�c class of chemical compounds like keto-steroids [98]
or monosaccharides [99]. Yet another class of approaches predict NMR peak positions
for a broader class of more diverse chemical compounds like natural compounds. Such
approaches are often part of commercial software for analyzing NMR data like ACD1 or
ChemWindow2.

Multilingual topic modeling, which was originally proposed for modeling multilingual
document corpora, is adapted to modeling chemical compounds in this chapter. Be-
side predicting positions of NMR peaks, the here proposed approach might predict also
structural fragments from a given NMR spectrum. Approaches for structure prediction
might be categorized into those which propose structural fragments and others that pre-
dict complete chemical constitutions. The latter approaches rely on a combination of
di�erent kinds of data such as 1D and 2D NMR spectra. All these data are combined and
used by systems for computer-aided structure elucidation (CASE) which derive hypothe-
ses about the complete chemical constitution of a studied chemical compound. CASE
systems are speci�c for a class of chemical compounds. Examples include the predic-
tion of the tertiary structure of proteins in the �eld of proteomics and the prediction
of the chemical constitution of small chemical compounds in the �eld of metabolomics.
CASE systems for small organic molecules, which rely on 1D and 2D NMR data, are
reviewed by Elyashberg et al. [100]. Examples include StrucEluc [101], the variants of
SESAMI [102, 103], SENECA [104, 105], and the LSD system [106].

Other approaches determine hypotheses about structural fragments instead of coming
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up with suggestions of the complete chemical constitution. Hypotheses about structural
fragments are useful, e.g., for the validation of complete structure suggestions. Often,
prior knowledge about peak positions of speci�c NMR experiments is taken into account.
An example is the application of a Bayesian network [107] to the prediction of structural
fragments from 13C NMR peaks where the graph structure of the Bayesian network was
speci�cally tailored to 13C NMR peak positions of benzene derivatives.

The bilingual topic model, which is used in this work, was originally proposed in
the �eld of multilingual topic modeling of multilingual document corpora. Approaches
for multilingual topic modeling could be categorized into those approaches that rely
on aligned documents and those that do not. Aligned documents are documents that
share the same content and di�er in their language. The protocols of the European
parliament, which are written in di�erent languages and share the same contents, are
an example. For each protocol in one language there is a corresponding document in
another language. Documents might be aligned to di�erent degrees; they might be direct
translations of each other on sentence or even on word level, or they might be about the
same thematic subjects but are not translations of each other. Wikipedia articles which
are about the same subject and which have been written independently of each other
in di�erent languages are an example of the latter kind of multilingual documents. In
contrast, a corpus of unaligned documents is simply a collection of documents which are
written in di�erent languages and which do not share common thematic subjects.

The basic idea of multilingual topic models that rely on aligned documents is to exploit
the information about which documents are translations of each other. An example is the
statistical mixed membership model proposed by Stephen et al. [108]. They apply this
model to PNAS3 articles. The two languages are: words of the abstracts and references
of the bibliographies. Hence, for each PNAS article Stephen et al. derive two correspond-
ing documents: the abstract and the references. The central assumption for learning
topics from these data is that corresponding documents have equal topic-mixture propor-
tions. For each learned topic, Stephen et al. studied which are the articles and references
that are most strongly connected to this topic. Mimno et al. [109] and Ni et al. [110]
have extended LDA to the polylingual topic model4 for inferring topics from aligned
multilingual corpora. The proposed LDA extension models documents which are about
the same subjects but do not have to be word-to-word translations of each other. For
learning the information about the topic mixture is shared among the aligned documents:
corresponding documents are assumed to have the same topic-mixture proportions. Ex-
ploiting this constraint, the polylingual topic learns realizations of the same underlying
topic in di�erent languages. Zhao et al. [111, 112] propose the bilingual topical admix-
ture model (BiTAM) and its extension, the hidden Markov-BiTAM. These models rely
on bilingual corpora of aligned documents and are capable of inferring word-to-word
translations. To this end, the aligned documents have to be translations of each other
and the models exploit the information about which sentences of aligned documents are
direct translations of each other. Another approach for inferring word-to-word trans-
lations is taken by Tam et al. [113]. Again, the corresponding documents have to be
direct translations of each other. Tam et al. learn a single topic model for each language
and couple these models by assuming that topic-mixture proportions of corresponding

3Proceedings of the National Academy of Sciences
4Both groups came up with the same LDA extension at the same time. Mimno et al. call this

extension polylingual topic model.
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documents are equal to each other. Platt et al. [114] propose coupled PLSA for modeling
corpora of aligned documents. In contrast to the polylingual topic model [109], which
directly enforces aligned documents to have the same topic-mixture proportions, coupled
PLSA assumes each of the corresponding documents to have own speci�c topic-mixture
proportions. For inference Platt et al. regularize the posterior of the model [115, 116] in
order to favor similar topic-mixture proportions for corresponding documents.

The popular assumption for aligned documents to have similar topic-mixture propor-
tions is meaningless in case of unaligned documents. Instead, topic models for unaligned
multilingual documents often rely on some kind of dictionary of word-to-word transla-
tions for coupling topics in di�erent languages. Boyd-Graber et al. [117] have extended
LDA for modeling multilingual corpora of unaligned documents. They de�ne tuples of
aligned words; each tuple contains translations of a certain word in each of the di�erent
languages of the document corpus. Di�erent to LDA, a topic is not a distribution over
words of one language but over such tuples. Words of each language without known
translation are drawn from one language speci�c background topic. Tuples of word
translations are partially prede�ned and learned from the data. Word translations are
learned by assuming that the same word in di�erent languages occurs together with the
same context words, e.g., the word Hund should appear in German texts together with
Leine and Bellen, and the translated English word dog should appear in English texts
together with leash and bark. As a consequence of topics being distributions over tuples
of word translations, a word and all of its translations have the same word probability
for a given topic. A similar line of action is taken by Daumé et al. [118] who propose
JointLDA, a generalization of the model proposed by Boyd-Graber et al. [117]. Di�er-
ences are (i) JointLDA is capable of taking into account several translations of a word,
and (ii) JointLDA uses multiple monolingual background distributions for each language
with the help of which it o�ers a richer expressiveness. Zhang et al. [119] have extended
PLSA to Probabilistic cross-language Latent Semantic Analysis (PCLSA). Similar to
Boyd-Graber et al. [117], PCLSA does model unaligned documents. PCLSA uses a
�xed dictionary of word translations for the purpose of determining words and their
corresponding translations in documents which are written in di�erent languages. This
knowledge is exploited to learn topics that are coherent in di�erent languages. In con-
trast to Boyd-Graber et al. [117], word probabilities of a word and its translations might
vary among realizations of a topic in di�erent languages. Because of this capability,
PCLSA might better capture di�erences among realizations of one topic in di�erent
languages.

6.2 Two languages describing chemical compounds

The chemical compounds are described in two languages. The �rst language describes
the chemical constitution of a chemical compound. Words of this language are structural
fragments, which one can think of as building blocks of chemical constitutions. With
the help of the second language, the positions of peaks of a 2D NMR spectrum are de-
scribed. Both languages describe electromagnetic interactions among neighbor atoms of
the chemical compound. The structure language does so by directly encoding neighbor
atoms and electromagnetic properties. The NMR languages does so by describing posi-
tions of NMR peaks. The peak positions encode the electromagnetic interactions among
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Figure 6.2: Atom sequences of length 2 (green) and 3 (blue) for the structural formula
of toluene. The ellipse in the middle symbolizes aromatic π-bonds. The red subset of
connected atoms is not an atom sequence as the participating atoms are not connected
in a linear manner and the corresponding path would contain cycles.

neighbor atoms as measured by NMR spectroscopy. As a result, the two documents
which are constructed from the same chemical compound correspond to each other.

6.2.1 Atom sequences

The chemical constitution of a chemical compound describes the number and kind of
atoms of the compound, and how these atoms are connected via which chemical bonds. A
visualization of the chemical constitution is the structural formula which displays atoms
and chemical bonds in a two-dimensional plane. An example is shown in Figure 6.1
which depicts the structural formula for toluene.

Atom sequences [120] are linear, structural fragments which are derived from the
structural formula. As such, the collection of atom sequences which have been derived
from a structural formula encode local topological properties of the chemical constitution
of a chemical compound.

For the purpose of de�ning atom sequences, structural formulas are described by an
undirected graph G = (V,E) with node set V and edge set E. For each atom of the
chemical compound the node set contains exactly one node which uniquely identi�es
this atom. For each chemical bond between two atoms which are identi�ed by the nodes
vi, vj ∈ V , vi 6= vj, the edge set contains exactly one edge {vi, vj} ∈ E. A path of length
d ≥ 0 in the graph G is a sequence of d+1 nodes v1, . . . , vd+1 such that the following two
constraints are ful�lled. All nodes are element of the node set: vi ∈ V with 1 ≤ i ≤ d+1.
Further on, there must be an edge {vi, vi+1} in the edge set for each pair of successive
nodes (vi, vi+1)), 1 ≤ i ≤ d, of the path.

The set of all atom sequences of length d which are derived from a structural formula
as represented by graph G is the set of all paths in graph G of length d without cycles.
The essential part of this de�nition is that the paths must not contain cycles. Two atom
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Figure 6.3: The three atom descriptors take the same values (6, 2, 1) for all high-
lighted carbon atoms. The atom sequence highlighted in green is described by the
word (6, 2, 1)|(6, 2, 1)|(6, 2, 1).

sequences of length 2 (green) and 3 (blue) are shown in Figure 6.2. Atom sequences5

were proposed by Nilakantan et al. [120] who de�ned atom sequences only of length 3.
The de�nition which is given in this chapter is slightly more general as it de�nes atom
sequences of arbitrary length d ≥ 0.

For constructing an atom-sequence document from a given chemical compound, �rst,
all atom sequences are determined from the structural formula of this compound. Then,
each atom sequence is mapped to one word which describes its electromagnetic charac-
teristics and which is put into the document. This word is constructed by describing
each atom of the atom sequence by the following three atom descriptors that partially
capture their electromagnetic properties.

1. the atomic number, which encodes the atom type, e.g., carbon, oxygen

2. the number of direct neighbor atoms that are di�erent from protons (H)

3. the number of π electrons, which encodes in how many multiple bonds the atom
participates

For example, the atomic number of the carbon atom highlighted in Figure 6.3 (left)
is 6. This carbon atom has two direct, non-proton neighbors and one π electron as
this carbon atom participates in the aromatic bond. Thus, the atom descriptors take
the values (6, 2, 1). Aligning the values of the three atom descriptors for all atoms of
an atom sequence eventually gives the word that represents this atom sequence. For
instance, the green atom sequence in Figure 6.3 (right) is represented by the word
(6, 2, 1)|(6, 2, 1)|(6, 2, 1).

A fourth useful information about an atom is the number of its direct neighbor protons.
This information is implicitly captured by the three descriptors. The reason is that the
sum of the numbers of direct, non-proton neighbors and π electrons is �xed at a value
which is speci�c for each kind of atom. For example, for carbon atoms this value is 4.
Hence, knowing the atom number, the number of direct, non-proton neighbors and the
number of π electrons determines the number of direct neighbor protons. For example,

5Nilakantan et al. use a term di�erent from the term atom sequence.



112

the carbon atom which is highlighted in Figure 6.3 (left) has two non-proton neighbors
and one π electron. Hence, this carbon atom has one (4 − 2 − 1 = 1) direct neighbor
proton.

Following Nilakantan et al. [120], atom sequences are derived after having neglected
all protons from the structural formula. These protons are still represented by the atom
descriptors of the other atoms. An advantage of omitting protons is that the number of
possible atom sequences, i.e., the vocabulary of the atom-sequence language, is reduced.
But in contrast to Nilakantan et al., who additionally neglected some possible atom
sequences, in this work all possible atom sequences are derived once the protons have
been omitted from the structural formula.

6.2.2 2D NMR

The second language encodes positions and the number of peaks of NMR spectra. NMR
refers to the ability of magnetic atom nuclei such as 1H, 13C, or 15N to absorb electro-
magnetic energy in a magnetic �eld. In 1D NMR spectroscopy, an electromagnetic pulse
which is speci�c for one kind of magnetic target nuclei is applied to a probe that contains
the chemical compound for which a NMR spectrum should be recorded. After applying
the pulse, the absorbed energy is radiated from each target nucleus at a speci�c reso-
nance frequency which is recorded by the NMR spectroscope. Eventually, each recorded
frequency is visualized as a peak in a 1D NMR spectrum, where the position and the
height of the peak corresponds to the frequency and its amplitude. Peak positions are
measured in relation to a reference frequency, and so are the coordinates of NMR peaks
called chemical shifts. The resonance frequency, and so the peak position, depends on
the kind of target nucleus. Often, 1D NMR experiments are speci�c for protons and the
recorded spectra are 1H 1D NMR spectra, in short 1H NMR. The resonance frequency
depends on the strength of the local magnetic �eld at the target nucleus, too. This local
magnetic �eld is in�uenced by the chemical bonds, in which the atom participates, and
other factors like magnetic interactions to neighbor nuclei and shielding e�ects of the
electromagnetic neighborhood. In summary, the resulting 1D NMR spectrum contains
peaks of all target nuclei, e.g., protons, of a studied chemical compound. Peak posi-
tions encode structural information about the target nuclei, e.g., chemical bonds they
participate in and neighbor nuclei.

Often, 1D NMR spectra are crowded by many peaks as such spectra contain peaks
for all target nuclei of a chemical compound. As a result, some peaks may overlap
each other and thereby reduce the resolution of 1D NMR spectroscopy. A solution
to this problem is 2D NMR spectroscopy. Peaks, which lie close to each other in a
1D NMR spectrum, might be separated by the additional dimension. A further ad-
vantage of 2D NMR spectroscopy is the capability of speci�cally detecting magnetic
interactions among target nuclei of two di�erent kinds. For example, with the help
of 1H/13C NMR spectroscopy, researchers might speci�cally record interactions among
direct protons and carbon atoms which are connected via one (heteronuclear single quan-
tum correlation spectroscopy, HSQC) or multiple chemical bonds (heteronuclear multiple
bond correlation spectroscopy, HMBC). Such interactions are a useful source of informa-
tion about local structural properties, e.g., groups of connected atoms of an investigated
chemical compound. Consequently, 2D NMR spectroscopy, and in particular 1H/13C
NMR, is of great value for structure elucidation of chemical compounds.
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Figure 6.4: Discretized 1H 13C HMBC spectrum of toluene. Each bin corresponds to
exactly one word of the HMBC (2D-NMR) language.

HMBC spectroscopy is such a 2D NMR experiment for detecting electromagnetic in-
teractions among nuclei of two di�erent types. By 1H/13C HMBC spectroscopy, chemists
are able to detect interactions among protons and 13C carbon nuclei through multiple
(two up to four) chemical bonds. Detected interactions are represented by peaks of a two-
dimensional 1H/13C HMBC spectrum. The 1H/13C coordinate of a peak is speci�c for the
proton/carbon which participates in such an interaction. These coordinates are a�ected
by the electromagnetic neighborhood of the interacting protons and 13C carbon nuclei.
From a 1H/13C HMBC spectrum, researchers might draw conclusions about which pro-
tons of a chemical compound can interact with neighbor (via two up to four chemical
bonds) carbon atoms. Figure 6.1 shows an example of a 1H/13C HMBC spectrum for
toluene. In summary and important for this work: 1H/13C HMBC spectroscopy maps
local interactions among protons and carbon atoms of a chemical compound to positions
of peaks of a two-dimensional 1H/13C HMBC spectrum. This type of 2D NMR spectra
capture useful structural information about groups of connected protons and carbons.
More details on NMR spectroscopy can be found elsewhere [121�123]. To keep notation
uncluttered, 1H/13C HMBC is shortly called HMBC in the rest of this work.

The second language for the description of chemical compounds describes peak po-
sitions of HMBC spectra. In order to derive words from peak positions of such a two-
dimensional spectrum, this spectrum is discretized into regular two-dimensional bins
which are two-dimensional intervals of 1H and 13C chemical shifts. Each bin becomes
one word of the HMBC vocabulary. An example of a discretized HMBC spectrum is
shown in Figure 6.4. For a given HMBC spectrum, the HMBC document is constructed
as follows. For each peak which falls into a two-dimensional HMBC bin the correspond-
ing HMBC word is put into the document. Consequently, each word occurs as often in
the document as peaks fall into the corresponding HMBC bin.

In principle, NMR descriptions of chemical compounds might be deduced from any
kind of NMR experiment. HMBC spectra are used as an example in this work for the rea-
son that these 2D NMR spectra encode information about electromagnetic interactions
of protons and carbons which are connected via multiple chemical bonds. This kind of
information is similar to the kind of electromagnetic information about a few linearly
connected atoms as encoded by atom sequences. Hence, the two languages of atom-
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sequences and HMBC bins seem to be particularly well suited for describing chemical
compounds in order to model these by bilingual topic model.

6.3 Polylingual topic model

The polylingual topic model as introduced by Mimno et al. and Ni et al. [109, 110] is used
in this work. This model learns word distributions over documents which are written
in L di�erent languages. Documents about the same subject but written in di�erent
languages are called corresponding documents. Corresponding documents must be about
the same subjects but do not have to be word-to-word translations of each other.

A polylingual topic model consists of K polylingual topics. Each polylingual topic
has L realizations each of which in one of the L languages. When a word of a document
is drawn from a polylingual topic then this word is drawn from that topic realization
which corresponds to the language of the document. The following fundamental assump-
tion underlies the polylingual topic model. All documents of a tuple of corresponding
documents have the same topic-mixture proportions. This assumption is trivially ful-
�lled if the corresponding documents are translations of each other. In this case the
thematic subjects which are present in one document obviously will be present in the
other corresponding documents, too.

In this work, the polylingual topic model is applied to representations of chemical
compounds in two languages. These representations could be understood as documents
whose languages are atom sequences and HMBC signals. As discussed earlier, the two
corresponding documents describe similar electromagnetic interactions among atoms
of a chemical compound. Whenever a pattern of such interactions is present in the
atom-sequence document then this pattern is likely present in the HMBC document as
well. Since two languages are used in this work, the topic models and topics are also
called bilingual topic model and bilingual topics. The learned bilingual topics capture
patterns of interactions which are described in the two domains of atom sequences and
of HMBC signals. A devised example of one bilingual topic is shown in Figure 6.5 where
the most likely structural fragments as described by atom sequences are shown and the
most likely two-dimensional NMR bins of a HMBC spectrum are highlighted.

Next, the representation of the data is explained in Section 6.3.1. Afterwards, in
Sections 6.3.2 and 6.3.3, the polylingual topic model and its prior are described. Then the
Expectation Maximization algorithm for parameter learning is derived in Section 6.3.4.

6.3.1 Data representation and notation

The L languages are indexed by a language ID l ∈ {1, . . . , L}. The document corpus
consist of tuples of L corresponding documents, each of which is written in one of the
L languages. A tuple of L corresponding documents is called a polylingual document.
Each polylingual document is identi�ed by one document ID d ∈ {1, . . . , N}.

The vocabulary of the lth language consists of Ml words and so are the words of this
language enumerated by word IDs 1 ≤ w ≤Ml. A pair of a word ID and a language ID
(w, l) uniquely identi�es the word w in language l. The same word ID in combination
with di�erent language IDs might refer to di�erent words in di�erent languages.

Documents are assumed to be bag of words, i.e., the ordering of words is neglected.
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Figure 6.5: A bilingual topic has realizations in both languages: atom sequences
and 2 NMR bins of a HMBC spectrum. Highlighted and listed are the most likely
2D NMR bins and structural fragments as described by atom sequences of a devised
bilingual topic.

Consequently, a triple (d, w, l) of a document ID, a word ID and a language ID is added

to the data ~X for each occurrence of a word with ID w from language l in polylingual
document d. The number of triples in data ~X is denoted by | ~X|. This number is equal
to the number of all word occurrences in all documents across all languages.

6.3.2 Likelihood model

In this chapter, the polylingual topic model is de�ned in a slightly di�erent manner as
was done by Mimno et al. and Ni et al. [109, 110]. In more detail, the polylingual topic
model is extended by language IDs.

A plate model representation of the polylingual topic model is depicted in Figure 6.6.
After the model parameters haven been drawn from their priors, the data triples (d, w, l)i
with 1 ≤ i ≤ | ~X| are sampled from a polylingual topic model with K polylingual topics
as follows.

1. sample document ID di from discrete distribution over all document IDs

di ∼ P (d)

2. sample a topic index 1 ≤ zi ≤ K from the topic-mixture proportions P (z|di) of
document di

zi ∼ P (z|di)

3. sample a language ID 1 ≤ li ≤ L from discrete distribution P (l|di) given document
di

li ∼ P (l|di)

4. sample a word 1 ≤ w ≤Mli from the realization of the zthi topic in the lthi language

wi ∼ P (w|zi = k, li)
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Figure 6.6: Plate model representation of polylingual topic model.

All discrete probability distributions are generalized Bernoulli distributions.
The parameters of these generalized Bernoulli distributions constitute the parameter

set of a polylingual topic model ζ. In the following these parameters are de�ned with
respect to document, topic and language IDs, which lie within the ranges 1 ≤ d ≤ N ,
1 ≤ k ≤ K, 1 ≤ l ≤ L, respectively.

1. logarithmic document probabilities ~δ = (δd)1≤d≤N with δd = logP (d)

2. logarithmic topic-mixture proportions for each document ~θ which are de�ned as
~θ = (~θd)1≤d≤N with θd,k = logP (z = k|d)

3. logarithmic language-mixture proportions for each document ~λ = (~λd)1≤d≤N with
λd,l = logP (l|d)

4. logarithmic word-topic associations ~ω = (~ωk,l)1≤k≤K,1≤l≤L, the lth realization of the
kth polylingual topic is ~ωk,l = (ωk,l,w)1≤w≤Ml

with ωw,k,l = logP (w|z = k, l)

The motivation for using logarithmic parameters is that these correspond to the natural
parametrization of the generalized Bernoulli distributions as discussed in more detail in
Section 2.5.

The likelihood, which is marginalized over the unobserved topic-index variables as
given by ~Z = (zi)1≤i≤| ~X|, reads as follows.

P ( ~X|ζ) =

| ~X|∏
i=1

P ((d, w, l)i|ζ) (6.1)

P ((d, w, l)i|ζ) =
K∑
zi=1

P ((d, w, l)i, zi|ζ) (6.2)

=
K∑
zi=1

P (wi|di, li, zi, ζ)P (li|di, zi, ζ)P (zi|di, ζ)P (di|ζ) (6.3)

Given the model parameters, the following two conditional independence assumptions
hold due to the de�nition of the generative process: (i) the probability of a word given
its language ID and topic ID is independent of the document ID, mathematically ex-
pressed as P (wi|di, li, zi, ζ) = P (wi|li, zi, ζ), and (ii) the probability of the language ID
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given the document ID is independent of the topic index, i.e., P (li|di, zi, ζ) = P (li|di, ζ).
Exploiting these independence assumptions, we arrive at the likelihood of the triple
(d, w, l)i

P ((d, w, l)i|ζ) =
K∑
zi=1

P (wi|li, zi, ζ)P (li|di, ζ)P (zi|di, ζ)P (di|ζ) (6.4)

= exp(δdi) exp(λdi,li)
K∑
zi=1

exp(ωzi,li,wi) exp(θdi,zi) (6.5)

6.3.3 Prior

A uniform prior is used for language-mixture proportions and document probabilities.
The prior for the remaining parameters is a product of a prior for logarithmic topic-
mixture proportions ~θ and a prior for logarithmic word-topic associations ~ω.

P (ζ) = P (~θ) · P (~ω) (6.6)

These priors are very similar to those which were de�ned for PLSA in Section 2.5.3. The
prior over logarithmic topic-mixture proportions is a product ofN Dirichlet distributions.

P (~θ) =
N∏
d=1

Dir(~θd|α) (6.7)

Dir(~θd|α) ∝
K∏
k=1

exp(θd,k)
α/K (6.8)

A product of Dirichlet distributions, one Dirichlet Dir(~ωk,l|β) for each topic realization,
is used as prior for logarithmic word-topic associations.

P (~ω) =
L∏
l=1

K∏
k=1

Dir(~ωk,l|β) (6.9)

Dir(~ωk,l|β) ∝
Ml∏
w=1

exp(ωk,l,w)
β/KMl (6.10)

The Dirichlets have been transformed to �t to the logarithmic domain of the model
parameters. As it was done in case of PLSA, the Dirichlet hyper-parameters are deduced
with the help of the principle of equivalent sample-size [19]. As a result, the exponents
of the Dirichlets are α/K and β/KMl. More details about the transformed Dirichlets and
the principle of equivalent sample-size can be found in Section 2.5.3.
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6.3.4 Learning

Parameter learning is done by applying the Maximum-A-Posteriori (MAP) principle.
MAP optimal parameters are those which have a maximal a-posteriori probability.

ζ∗ = argmax
ζ

P (ζ| ~X) (6.11)

The number of word occurrences in polylingual document d is denoted by Nd and the
number of these from language l is denoted by Nd,l. MAP-estimates of document prob-
abilities and language-mixture proportions can be derived directly and read as follows.

exp(δ∗d) =
Nd

| ~X|
(6.12)

exp(λ∗d,l) =
Nd,l

Nd

(6.13)

The EM algorithm is used for learning the remaining parameters. This algorithm is
an iterative procedure that continuously runs through an E step, in which it determines
posteriors for the unobserved topic-index variables, and a M step, in which it re-estimates
model parameters. The derivations of this EM algorithm are very similar to those of the
EM algorithm for PLSA as explained in more detail in Section 2.6. Thus, the derivations
of the EM algorithm for the polylingual topic model are given in the following in a rather
condensed manner.

E step

Posteriors γ
(t+1)
i,k := P (zi = k|(d, w, l)i, ζ(t)) of the hidden variables zi with 1 ≤ i ≤ | ~X|

and 1 ≤ k ≤ K are derived in the E step of the (t + 1)th EM iteration. The current
model parameters ζ(t), which were determined during the last M step, are used for these
computations.

γ
(t+1)
i,k ∝ P ((d, w, l)i|zi = k, ζt)P (zi = k|ζ(t)) (6.14)

P ((d, w, l)i|zi = k, ζ(t)) is the likelihood of the triple (d, w, l)i under the assumption that
the word wi was drawn from topic k. P (zi = k|ζ(t)) is identi�ed with the probability of
topic k in EM iteration (t) and is managed by the EM algorithm.

M step

The model parameters are re-estimated by maximizing the expectation of their a-posteriori
probability.

(ζ∗)(t+1) := argmax
ζ(t+1)

E
[
logP ( ~X, ~Z|ζ(t+1)) + logP (ζ(t+1))

]
P (~Z|ζ(t), ~X)

(6.15)

The expectation is de�ned with respect to the previously computed posteriors γ
(t+1)
i,k of

the hidden variables. The previous model parameters ζ(t) are taken into account through
these posteriors. Applying the method of Lagrange multipliers, one �nds the following
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re-estimates of the model parameters which maximize this expectation.

exp(θ∗d,k)
(t+1) ∝ α

K
+

∑
1≤i≤| ~X|,
di=d

γi,k (6.16)

exp(ω∗w,k,l)
(t+1) ∝ β

KMl

+
∑

1≤i≤| ~X|,
wi=w,
li=l

γi,k (6.17)

The ranges of the word IDs w depend on the language as follows: for each 1 ≤ l ≤ L :
1 ≤ w ≤Ml

Commonly, one lets the EM algorithm run continuously through the E and M steps
until some break condition stops it. Examples for break conditions are the number of
EM iterations already passed or the improvement of the a-posteriori-probability of the
model parameters. The parameters of the last M step are then used to instantiate a
polylingual topic model.

6.4 Folding-in documents

Folding-in of new documents means to determine their topic-mixture proportions. This
is necessary, as, after learning, the polylingual topic model consists of topic-mixture
proportions only for the training documents. To assign a probability to a yet unseen
document, the topic-mixture proportions of this new document have to be determined.
Folding-in a document into a learned polylingual topic model is done as folding-in a
document into a learned PLSA model as described in Section 3.3.1. The procedure is
to hold the word-topic associations of the learned topic model �xed while running the
EM algorithm to determine the topic-mixture proportions of the new document.

6.5 Experiments

The two-dimensional 1H/13C HMBC spectra and bins are shortly called 2D NMR spectra
and bins in the rest of this chapter. The e�ectiveness of the bilingual topic model to
predict atom sequences from 2D NMR spectra and to predict 2D NMR bins from atom
sequences is investigated in a �rst experiment. In a second experiment, it is studied
how well these predicted atom sequences and 2D NMR bins are suited for information
retrieval via look-ups in chemical databases. Before the experimental setup and the
results are presented, the data that were used for these experiments are described next.

6.5.1 Data

The 122917 chemical compounds which are listed in the natural-products part of the
Beilstein database (version 2006) were used. Compounds that contained other atoms
than proton (H), carbon (C), nitrogen (N), and oxygen (O) were omitted to exclude
compounds with a very speci�c chemistry. As these four atom types are by far the most
prevalent building blocks of natural compounds, the number of compounds was reduced
only to a minor degree by this constraint.
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Figure 6.7: Two-dimensional histogram of all simulated 1H/13C HMBC spectra. Each
bin is colored according to the overall number of unit peaks that fall into this bin. Light
blue 0..9, blue 10..99, dark blue 100..999, red > 1000.

First, atom sequences of length 1, 2, 3 and 4 were determined from the chemical
constitution of each chemical compound as described in Section 6.2.1. Each non-proton
was chosen once as start-atom and all atom sequences that begin with this start-atom
were determined. As a consequence of this approach, each atom sequence was collected
twice in forward and backward orientation (order of its atoms). To identify same atom
sequences, all derived atom sequences were put into that orientation which led to the lex-
icographically smaller atom-sequence word. After having determined all atom sequences,
the number of occurrences of each atom sequence was corrected by multiplying it by 0.5.

Second, a 1H/13C HMBC spectrum was simulated6 for each chemical compound with
the help of the 2D NMR predictor software of the ACD7/Labs software (version 10.0.).
Simulated instead of experimentally measured HMBC spectra were used because the
latter procedure would have been practically infeasible for the large number of chemical
compounds.

The 2D NMR spectra contained peaks of unit intensity for each considered interaction
between one proton and one carbon atom. Several equal interactions led to several peaks
of unit intensity with the same position. Figure 6.7 shows a summary of all simulated
HMBC spectra; large parts of the two-dimensional space of the 2D NMR spectra are

6Parameter setting: experiment = HMBC, frequency (MHz) for 1H and 13C = (600.00, 150.87), nu-
cleus = (1H, 13C), Origin ACD/SpecManager (v.10.08), ACD/HNMR Library (v.10.05), ACD/CNMR
Library (v.10.05), points count = (512, 512), sweep width (Hz) = (6900.00, 39225.55)

7Advanced Chemistry Development
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Table 6.1: Sizes of the vocabularies of the two di�erent 2D NMR languages and of the
four di�erent atom-sequence languages (AS: atom sequences).

2D-NMR AS

Bins (1H×13 C) size AS length size

0.05× 3 11898 1 112
0.1× 6 3367 2 645

3 2831
4 11132

populated by simulated peaks. As described in Section 6.2.2, the simulated spectra were
discretized into regular 2D NMR bins. Two di�erent 2D NMR languages were used; bins
of size 0.05× 3 and 0.1× 6 whereby the former/latter values indicate the bin size in the
1H/13C dimension. The 2D NMR bins have di�erent lengths in the two dimensions as
the overall range of peak positions di�er in these two dimensions. The frequency of each
deduced 2D NMR word is equal to the number of unit peaks within the corresponding
2D NMR bin.

The determined four di�erent atom-sequence and two di�erent 2D NMR documents
per chemical compound were further preprocessed as follows. All words with an absolute
document frequency8 smaller than 5 were removed from the vocabularies. Next, docu-
ments with less than 10 di�erent words were omitted. Last, all chemical compounds
(and their documents) were removed from the data if some of their six documents were
lost during this preprocessing. As a result, a number of 104393 chemical compounds
remained in the data. The �nal sizes of the six di�erent vocabularies are listed in Ta-
ble 6.1.

6.5.2 Experimental setup

First of all, the training and test compounds were determined. 70% of all chemical com-
pounds, i.e., 73076, were drawn with equal probability. Their documents were used as
training documents whereas the documents of the remaining 31317 compounds became
test documents. These training and test compounds and documents were held �xed
throughout all experiments.

For each chemical compound, eight di�erent versions of bilingual documents were
de�ned. These resulted from all possible combinations of one 2D NMR document (two
languages) and one atom-sequence document (four languages) which both were derived
from the same chemical compound. As a result, eight di�erent training and test data
sets were obtained, one for each language combination. All experiments were repeated
eight times, and each time one of these (training and corresponding test) data sets was
used, in order to investigate the in�uence of the di�erent language combinations.

The common design principle of all experiments is visualized in Figure 6.8. First, a
bilingual topic model was learned with bilingual training documents which are visualized
as green blocks in Figure 6.8. During learning, the information about which 2D NMR and

8number of documents they occur in
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Figure 6.8: Design principle of experiments. Bilingual topic model is learned with
training data that consist of pairs of corresponding documents (one atom-sequence and
one 2D-NMR document for each chemical compound of the training data). Afterwards,
2D NMR test documents and atom-sequence test documents are folded-in independently
of each other. That means, during folding-in information about which 2D NMR test
documents corresponds to which atom-sequence test document is not exploited. This
information is used afterwards for the computation of mean average precisions (�rst
experiment) and mean ranks (second experiment).

atom-sequence training document describe the same chemical compound was exploited.
The number of topics of the bilingual topic model was varied in {4, 10, 20, 40, 100, 200, 400}.
For parameter learning, the EM algorithm was run 50 iterations, it was restarted 3 times,
and the hyper-parameters were set to α = 1 and β = 1.

After learning, the test documents were folded-in into the model. In contrast to
learning, test documents are folded-in independently of each other. That means, each
document, be it a 2D NMR or an atom-sequence document, is folded-in independently of
its corresponding document written in the other language. Technically, all 2D NMR and
atom-sequence test documents got a unique document ID. But, for the purpose of later
use, the information about which 2D NMR test document corresponds to which atom-
sequence test document was kept. The EM algorithm with unchanged settings (number
of learning iterations, hyper-parameters) was used for folding-in the test documents.
After folding-in, the bilingual topic model contained topic-mixture proportions for the
73076 bilingual training documents, for 31317 2D NMR test documents, and for 31317
atom-sequence test documents.

Prediction of 2D NMR bins from atom-sequences and vice versa

In a �rst experiment, it was investigated how well the bilingual topic model is suited
for predicting 2D NMR bins from atom-sequence documents and for predicting atom
sequences from the 2D NMR documents. For an atom-sequence test document, 2D NMR
bins were predicted as follows. All 2D NMR bins of the whole 2D NMR vocabulary were
ranked according to decreasing probability with respect to the predicted distribution



123

Figure 6.9: Determination of average precision. Example vocabulary is {a,b,c,d,e}.
True hits (framed) in the predicted ranking are those which occur in the true document.
The precision of a word w in the ranking is the fraction of true hits which are found
in the ranking from the beginning until word w occurs. For example, the precision for
word b is 3/4 as the ranking a c d b until word b contains three true hits. The average
precision is the average of all precisions of true hits.

over 2D NMR bins. This predicted distribution was speci�c for each atom-sequence test
document. In more detail, the bilingual topic model contained logarithmic topic-mixture
proportions ~θd for each atom-sequence test document d. The predicted distribution
over 2D NMR bins (language ID is l = 2) for this atom-sequence test document is
P (w|d, l = 2) =

∑K
k=1 exp(θd,k) · exp(ωk,l=2,w) with 1 ≤ w ≤ M2 and M2 is the size of

the 2D NMR vocabulary. The predicted ranking of 2D NMR bins was then compared
to the true 2D NMR bins which were those of the 2D NMR test document that did
correspond to the atom-sequence document. The predicted ranking was assessed by the
average precision of all true 2D NMR bins in this ranking. The determination of the
average precision is illustrated in Figure 6.9. This procedure was applied to all atom-
sequence test documents and the mean over all average precisions was computed. The
mean average precision measures how well, on average, works the prediction of 2D NMR
bins from atom-sequence documents. A similar procedure was applied to all 2D NMR
test documents and the mean average precision of the prediction of atom sequences from
2D NMR documents was determined.

Cross-language retrieval of chemical compounds

The second experiment gives clues about how well the predicted 2D NMR bins and atom
sequences are suited for cross-language retrieval for chemical compounds. Two potential
application scenarios are

1. To search in chemical databases, which store only the chemical constitution but
no NMR data, for chemical compounds that are similar to a newly investigated
compound with yet unknown constitution but known 2D NMR spectrum.

2. To search in NMR databases, which store NMR data but no information about the
chemical constitution, for NMR spectra of chemical compounds which are identical
or similar to a query compound.

The learned bilingual topic models which have been extended by the test documents
in the �rst experiment were used during the second experiment. Randomly chosen
1000 test compounds have been designated as look-up compounds which were used
in this experiment. All other test documents were neglected in order to reduce the
computational costs.
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Figure 6.10: Design of experiment for cross-language compound retrieval. The desig-
nated 1000 look-up documents are visualized as colored blocks (matrices; one document
per row). The visualized task of ranking atom-sequence documents is an example of
cross-language compound retrieval with a 2D NMR query document and the targets are
the atom-sequence documents.
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The experimental design of the second experiment is visualized in Figure 6.10. The
1000 2D-NMR look-up documents and their corresponding 1000 atom-sequence look-up
documents have been folded-in into the model independently of each other. For each of
these 2000 documents, the bilingual topic model (i) approximates their word distribution
(same language), and (ii) predicts a distribution over words of the other language. For
example, for an atom-sequence document d with logarithmic topic-mixture proportions
~θd the approximated distribution over atom-sequence words (language ID l = 1) is
P (w|d, l = 1) =

∑k
k=1 exp(θd,k) · exp(ωk,l=1,w) with 1 ≤ w ≤M1 andM1 is the size of the

atom-sequence vocabulary. The predicted distribution over 2D NMR bins was described
together with the �rst experiment.

The approximated distributions over words of the own language and the predicted
distribution over words of the other language were used to derive �ngerprint representa-
tions for each of the 2000 look-up document. In more detail, the top-5, top-35, top-65,
and top-100 words which are most likely under the approximated and predicted word
distributions are used as �ngerprints. In addition, the topic-mixture proportions of the
2000 look-up documents were used as a second kind of �ngerprint representation.

These �ngerprints were then used for cross-language compound retrieval. That means,
for a query 2D NMR document the goal was to �nd the true corresponding atom-sequence
document among all 1000 look-up atom-sequence documents. This was done by com-
paring the predicted atom-sequence �ngerprint of the query 2D NMR document to all
atom-sequence �ngerprints of the 1000 atom-sequence look-up documents. Top-N �n-
gerprints, which are sets of words, were compared to each other by measuring their
similarity with the help of the Jaccard coe�cient. Formally, the Jaccard coe�cient for
two sets A and B is de�ned as

J(A,B) :=
|A ∩B|
|A ∪B| .

This coe�cient takes values between 0 and 1 and measures how well two top-N �nger-
prints (set of words) agree. All look-up documents of the target language were ranked
according to decreasing Jaccard coe�cients. Topic-mixture proportions were compared
to each other by computing their KL divergence. In this case, the look-up documents
of the target language were ranked according to increasing KL divergences. Each of the
1000 look-up 2D NMR documents was once used as a query document and the rank of the
true corresponding atom-sequence documents was determined. The mean of these 1000
ranks was reported. A similar procedure was applied to all 1000 atom-sequence look-up
documents, which were used as query documents, for the search of the corresponding
2D NMR document.

6.5.3 Results

Prediction of 2D NMR bins from atom-sequences and vice versa

The results of the �rst experiment are shown in Figure 6.11/6.12 for the 2D-NMR lan-
guage of bins of size 0.05 × 3/0.1 × 6, respectively. Figure 6.11 shows results for the
four combinations of the 2D NMR language (bins of size 0.05× 3) with each of the four
atom-sequence languages. Figure 6.11(a) presents the reached mean average precisions
(MAP) for the prediction of 2D NMR words from the atom-sequence test documents. A
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Figure 6.11: Mean average precisions (MAP) for the prediction of 2D NMR words
(2D NMR bins of size 0.05× 3) from atom sequences (AS) (left) and vice versa (right).
A number of one topic stand for the bilingual unigram model (one topic per language).
The gain of MAP was computed with respect to the reached MAP for the unigram model
(bottom).
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Figure 6.12: Mean average precisions (MAP) for the prediction of 2D NMR words
(2D NMR bins of size 0.1× 6) from atom sequences (AS) (left) and vice versa (right).
A number of one topic stands for the bilingual unigram model (one topic per language).
The gain of MAP was computed with respect to the reached MAP for the unigram model
(bottom).
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simple bilingual unigram model was learned as a reference model (one topic). Using this
reference model leads to the worst MAP of about 0.06 for all language combinations.
The curves for the languages of atom sequences of length 1, 2, and 3 have a concave
shape. In contrast thereto, the MAPs for atom sequences of length 4 steadily increase.
The optimal MAPs per curve are 0.112 (20 topics), 0.121 (20 topics), 0.132 (200 topics),
and 0.154 (400 topics) for atom sequences of length 1, 2, 3, and 4, respectively. These
results show that the optimal MAPs increase with the length of the atom sequences. An
explanation could be that longer atom sequences capture the atom topology of chemical
constitutions better. As such, they contain more information which seems to be useful
for the prediction of 2D NMR words. A second trend is that the longer the atom se-
quences are, the more topics are necessary to reach optimal MAPs. A reason could be
that the size of the vocabulary of atom sequences increases with their length. Patterns
of co-occurring atom sequences as captured by the bilingual topics might become more
complex with an increasing vocabulary. As models with a larger number of topics have
a larger statistical expressiveness, these might be better suited for capturing the more
complex patterns.

The same trends of the measured MAPs are found for the prediction of 2D NMR
bins of size 0.1 × 6 in Figure 6.12(a). The most obvious di�erence is that these MAPs
are generally larger compared to the MAPs for the prediction of the smaller 2D NMR
bins. The optimal MAPs per curve are 0.219 (20 topics), 0.226 (20 topics), 0.24 (40
topics), and 0.258 (200 topics) for atom sequences of length 1, 2, 3, and 4, respectively.
A reason for the larger MAPs might be the smaller size of the vocabulary of 2D NMR
bins of size 0.1×6 compared to the language of the smaller 2D NMR bins. As presented
in Table 6.1, the vocabulary size of the latter language is 11898 whereas it is 3367 for
2D NMR bins of size 0.1× 6. Obviously, correctly ranking 2D NMR words is easier, on
average, when the number of di�erent 2D NMR words is smaller.

Next, we focus on the prediction of atom sequences from 2D NMR test documents.
Figure 6.11(b) shows MAPs for the language combinations of 2D NMR bins of size
0.05× 3 and atom sequences of length 1 to 4. The MAPs for the simple unigram model
vary according to the length of the atom sequences. In addition, the shorter the atom
sequences the larger the reached MAPs. A reason for this observation seems to be the
di�erent sizes of the atom-sequence languages; the shorter the atom sequences the smaller
the vocabulary size and the easier it is, on average, to correctly predict atom sequences.
Studying the obtained MAPs in more detail, the optimal MAPs are: 0.85 (400 topics),
0.644 (400 topics), 0.503 (40 topics), and 0.415 (400 topics) for atom sequences of length
1, 2, 3, and 4, respectively. Is seems that the bilingual topic models with the most topics
are often best suited for the prediction of atom sequences from 2D NMR documents. For
comparing these MAPs among each other, the gain of MAP in relation to the reference
models are presented in Figure 6.11(d). It becomes obvious that, in relation to the
reference models, the longer the atom sequences are, the more their prediction bene�ts
from bilingual topic modeling. A reason might be that the number of di�erent atom
sequences increases with their length and so become the patterns of their co-occurrences
more complex. These more complex patterns then might be better modeled by bilingual
topic models that consists of a larger number of topics. Another interesting �nding
is the prediction of atom sequences from 2D NMR documents seems to work better
(higher MAPs) than the reverse prediction. To compare both predictions, we focus on
the optimal MAP of 0.415 for atom sequences of length 4 in Figure 6.11(b). This MAP
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can be compared to the optimal MAP of 0.154 for the prediction of 2D NMR words from
atom sequences of length 4 in Figure 6.11(a). Both optimal MAPs can be compared to
each other as the vocabularies of 2D NMR bins of size 0.05 × 3 and of atom sequences
of length 4 are similar in size (about 11000) as listed in Table 6.1. A reason for the
higher accuracy of the prediction of atom sequences could be that NMR signals are rich
in information about the chemical constitution of a chemical compound. On the other
hand, atom sequences capture only fragments of the chemical constitution. Hence, the
prediction of 2D NMR words from atom sequences is more challenging.

The results for the prediction of atom sequences from the larger 2D NMR bins of
size 0.1 × 6 are presented in Figure 6.12(b). These MAPs show the same trends as
the previous results, and so con�rm the previous �ndings, which were obtained for the
smaller 2D NMR bins. We �nd the following optimal MAPs: 0.854 (400 topics), 0.64
(400 topics), 0.49 (40 topics), and 0.394 (200 topics) for atom sequences of length 1, 2,
3, and 4, respectively. Interestingly, for each length of atom sequences we �nd a similar
best MAP for the prediction from 2D NMR words of size 0.05 × 3 and 0.1 × 6. Hence,
the prediction of atom sequences from 2D NMR bins seems not to bene�t from the
�ner resolution of the smaller 2D NMR bins. This was unexpected as a �ner 2D NMR
resolution would encode the positions of the 2D NMR signals more precisely and, hence,
was expected to result in better predictions of atom sequences. As seen previously, the
prediction of atom sequences seems to work better than the prediction of 2D NMR bins.
The optimal MAP of 0.49 for the prediction of atom sequences of length 3 (vocabulary
size 2831) is larger than the optimal MAP of 0.24 for the prediction of 2D NMR bins
of size 0.1× 6 (vocabulary size 3367) from atom sequence of length 3. An even stronger
indication is that the optimal MAP of 0.394 for the prediction of atom sequences of
length 4 is larger than the optimal MAP of 0.24 for the prediction of 2D NMR bins from
atom sequence of length 3. This is notably as the vocabulary size of atom sequences
of length 4 (11132) is by far larger than the vocabulary size of 2D NMR bins of size
0.1 × 6 (3367). Hence, although it is harder to predict atom sequences of length 4 due
to their larger vocabulary size, this prediction leads to better MAPs than the prediction
of 2D NMR bins of size 0.1× 6.

In summary, the prediction of atom sequences from 2D NMR bins seems to work
better than the reverse prediction of 2D NMR bins from atom sequence documents. The
prediction of 2D NMR bins bene�ts from describing the chemical constitution by atom
sequences of longer length which capture the topology of the chemical constitution better.
On the other hand, the prediction of atom sequences seem not to bene�t from a �ner
resolution of the 2D NMR language. We �nd that the reached MAPs for the prediction
of atom sequences from 2D NMR bins are similar for both 2D NMR languages of bins
of size 0.05× 3 and 0.1× 6.

Cross-language retrieval of chemical compounds

The results of the second experiment are presented in Figure 6.13/6.14 for the 2D NMR
language of bins of size 0.05×3/0.1×6. Both �gures are organized as follows. The results
of the left column are mean ranks for the search with atom-sequence query documents
among 2D NMR documents. The results which are shown in the right column are
those for the reverse cross-language retrieval with 2D NMR query documents. The four
di�erent rows correspond to the four combinations of the 2D NMR language and the
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language of atom sequences of length 1 to 4.

When studying the search with atom-sequence query documents among 2D NMR
documents (left column of Figure 6.13), we �nd the following general pattern. Repre-
senting documents by the top-5 2D NMR words by far leads to worst mean ranks. The
more top N 2D-NMR words are used as document �ngerprints, the better (lower) the
mean rank becomes. Second, using topic-mixture proportions as document �ngerprints,
we obtain the best mean ranks. These statements are true throughout the whole left
column of Figure 6.13. A reason for the good performance of the topic-mixture pro-
portions could be that they represent documents by topic weights instead of predicted
words. Topic weights are a more general document property which abstracts from single
word occurrences. As such, topic weights might be better suited for the detection of
similarities among documents. In addition, the predicted top-N words might be con-
taminated by too many falsely predicted words which hinder cross-language document
retrieval. Further on, the results indicate that a bilingual topic model with a medium
number of topics from 20 to 40 gives best mean ranks. For example, mean ranks for
top-35, top-65, top-100 and topic-mixture proportions are minimal for 20 topics in Fig-
ures 6.13(c) and 6.13(e) and for 40 topics in Figure 6.13(g). These mean ranks seem to
indicate that, if longer atom sequences are used, a bilingual topic model with a slightly
larger number of topics leads to best mean ranks. The reason might be that patterns
of co-occurring atom sequence become more complex if the size of the atom-sequence
vocabulary increases. Consequently, a larger number of topics is necessary for captur-
ing these patterns. Another observation is that mean ranks become better if longer
atom sequences are used. The reason could be that longer atom sequences capture the
topology of the chemical constitution better and so allow to better predict 2D NMR
bins. Document �ngerprints that consist of better predicted 2D NMR bins then might
lead to better retrieval of 2D NMR documents. Interestingly, cross-language compound
retrieval via topic-mixture proportions bene�ts from longer atom sequences, too. This
becomes obvious when inspecting the best reached mean ranks for topic-mixture pro-
portions as listed in Table 6.2. A reason could be that the patterns of co-occurring
atom sequences of longer length are more meaningful as these better encode the chem-
ical constitution. With more meaningful bilingual topics, which span the topic space,
coordinates of topic-mixture proportions, which lie in the topic space, could re�ect simi-
larities among chemical compounds better. Last, the overall best mean rank throughout
the left column of Figure 6.13, is 30 (Figure 6.13(g)). This best mean rank is obtained
when representing documents by their topic-mixture proportions and when using atom
sequences of length 4 for the description of the chemical constitution.

When studying the right column of Figure 6.13, we again �nd, in accordance with
the left column, that 20 to 40 topics often lead to best mean ranks. Further on, topic-
mixture proportions give best overall mean ranks. All best mean ranks for topic-mixture
proportions and the di�erent combinations of the 2D NMR and atom-sequence languages
are listed in Table 6.2. Focusing on the left half (2D NMR bins of size 0.05× 3, column
AS) of this table, we �nd the best mean rank of 28 for the search among atom-sequence
documents with 2D NMR query documents. This mean rank of 28 is reached when
one uses atom sequences of length 4 to encode the chemical constitution of chemical
compounds. Studying the left half of Table 6.2 closer, the following trend becomes obvi-
ous. The retrieval among the atom-sequence documents for a query 2D NMR document
reaches better (lower) mean ranks (column AS) than the reverse retrieval task (column
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Figure 6.13: Mean ranks for the search with atom-sequence query documents among
2D NMR documents (left column), and for the search with 2D NMR query documents
among atom-sequence documents (right column). 2D NMR language are bins of size
0.05× 3. AS1, . . ., AS4 denote atom sequences of length 1 up to 4.
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Table 6.2: Lowest (best) mean ranks for cross-language compounds retrieval when topic-
mixture proportions are used as document �ngerprints. Shown are results for di�erent
combinations of a 2D NMR language and an atom-sequence (AS) language. Target
language is the language (NMR, AS) of the target documents.

2D-NMR bins of size 0.05×3 2D-NMR bins of size 0.1×6
target

language → NMR AS NMR AS

AS length 1 68 62 74 72
AS length 2 52 48 58 51
AS length 3 38 36 45 42
AS length 4 30 28 33 33

NMR). The best mean ranks for the former task, which are 62, 48, 36, 28, are lower than
the corresponding (same atom-sequence language) mean ranks for retrieving 2D NMR
documents, which are 68, 52, 38, 30, respectively. This observation is inline with the
results of the �rst experiment where we found that the prediction of atom sequences
from 2D NMR words works better than the reverse prediction.

These experiments were repeated using the 2D-NMR language of larger bins of size
0.1 × 6. The results are presented in Figure 6.14. These are very similar to the previ-
ous results and, so, approve the previous �ndings. Still are topic-mixture proportions
best suited for cross-language compound retrieval in the context of modeling chemical
compounds. The corresponding best mean ranks, which are presented in Table 6.2
(right half), are often reached when a topic model with a number of 20 to 40 topics is
used. The best mean ranks listed in the right half of Table 6.2 are 33/33 for retrieving
2D NMR/atom-sequence documents. These are obtained for atom sequences of length 4.
When comparing the left with the right half of Table 6.2, one �nds that all mean ranks
which are listed at the left half are lower than the corresponding mean ranks listed at
the right half of Table 6.2. This indicates that cross-language compound retrieval with
the help of topic-mixture proportions bene�ts from a �ner resolution of the 2D NMR
spectra.

In summary, topic-mixture proportions are clearly superior over predicted top-N
words for cross-language compound retrieval. Second, the retrieval of atom-sequence
documents for a query 2D NMR document is accomplished with slightly better perfor-
mance than the reverse retrieval. Third, the best mean ranks are 30 and 28 for the
retrieval of 2D NMR and atom-sequence documents, respectively. Both results are ob-
tained when 2D NMR documents are encoded with a �ner resolution by 2D NMR bins
of size 0.05× 3 and when atom-sequence documents are encoded by atom sequences of
length 4. Further on, these best mean ranks are obtained with a bilingual topic model
with a moderate number of 40 topics.
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Figure 6.14: Mean ranks for the search with atom-sequence query documents among
2D NMR documents (left column), and for the search with 2D NMR query documents
among atom-sequence documents (right column). 2D NMR language are bins of size
0.1× 6. AS1, . . ., AS4 denote atom sequences of length 1 up to 4.
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6.6 Conclusions and future directions

Bilingual topic modeling of chemical compound is an attempt to jointly model two
perspectives on chemical compounds. These perspectives are (i) spectra of NMR exper-
iments, and (ii) the chemical constitution of the chemical compounds. To apply the
bilingual topics model, the 2D NMR spectra are discretized into bins which become
words of the 2D NMR language. A 2D NMR word is observed whenever a 2D NMR
signal falls into a 2D NMR bin. The chemical constitution is broken down to linear
sequences of connected atoms which are called atom sequences. These atom sequences
become the words of the atom-sequence language. A bilingual topic model might be
applied to the 2D NMR and an atom-sequence documents which have been derived from
a training set of chemical compounds. Learning this bilingual topic model means to
learn patterns of 2D NMR bins and atom sequences which often occur in the two dif-
ferent documents which have been derived form the same chemical compounds. For a
test compound, a learned bilingual topic model makes it possible to predict 2D NMR
bins from its chemical constitution and to predict atom sequences from its 2D NMR
spectrum.

In a �rst experiment, these predictions were assessed by the average precision of the
true hits among the predicted 2D NMR bins or atom sequences. It turns out that the
longest tested atom sequences of length 4 give best average precisions for the prediction
of 2D NMR bins. A reason might be that longer atom sequences better capture the
topology of the chemical constitution. As such, they are richer in information about the
electromagnetic interactions among atoms of the chemical compounds. As a result, they
might be more useful for the prediction of the 2D NMR bins. In contrast, the average
precisions for the prediction of atom sequences from 2D NMR documents are not af-
fected by di�erent resolutions of the discretization of 2D NMR spectra. Another general
observation is that the prediction of atom sequences from 2D NMR bins, on average,
works better than the prediction of 2D NMR bins from atom-sequence documents.

In a second experiment, the predicted top-N 2D NMR bins, the predicted top-N atom
sequences and the topic-mixture proportions were used for cross-language compound
retrieval. Topic-mixture proportions of a moderate number of 40 topics lead to best mean
ranks for the search among 2D NMR documents with atom-sequence query documents
as well as for the reverse retrieval. A reason might be that topic-mixture proportions
represent documents by more abstract properties than the predicted top-N words do.
In addition, predicted top-N words might include falsely predicted words which might
reduce the e�ectiveness of the top-N words for cross-language compound retrieval. The
optimal mean rank for the retrieval of 2D NMR documents with atom-sequence query
documents is 30. For the reverse retrieval task, the optimal mean rank is 28. These
optimal mean ranks indicate that the approach of bilingual topic modeling is promising
for supporting chemical research.

An open future route is to closer investigate the rankings of the cross-language com-
pound retrieval experiment. A mean rank of 30 means that, on average, the true com-
pound was ranked on position 30. The other compounds which are ranked before this
true hit could have a totally di�erent chemical constitution. As such, they are correctly
classi�ed as false hits. On the other side, the top-ranked compounds might have a very
similar chemical constitution. For example, the chemical constitutions might be identical
except for a substituted chemical functional group. In this case, top-ranked compounds
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that are very similar to the true hit might not be judged as false hits.
One future direction is to describe the chemical constitution of chemical compounds

by other structure languages. Atom sequences, as used in this work, describe linearly
connected sequences of atoms. Other concepts of structural fragments might be suited
better for capturing groups of connected atoms. An example are subsets of connected
atoms as shown in Figure 6.2 (right). To this end, concepts from other disciplines like
cliques of tightly connected atoms from graph theory could be helpful. The experiments
which are proposed in this chapter might be used in order to assess new proposed lan-
guages for the description of the chemical constitution.

Another future direction is to enhance the modeling of the 2D NMR spectra. In this
work, 2D NMR spectra were discretized such that only those NMR peaks, which lie
exactly in a bin, belong to this bin. Peaks, which lie close to a border of a bin, might
be wrongly separated and put into di�erent bins. Instead of a strict discretization, one
could use a soft discretization where a two-dimensional Gauss distribution is located at
the center of each bin. A sum over all NMR peak intensities which have been weighted
by this Gauss distribution might then be assigned to each bin. Another approach is to
extend the multilingual topic model such that it models 2D NMR spectra as continuous
data. In this case, NMR words could be two-dimensional Gauss distributions over the
plane of the 2D NMR spectra. Then, each NMR topic could be modeled as a speci�c
mixture of these distributions. Another advantage of modeling the NMR spectra as
continuous data might be the reduced number of model parameters.

A third future direction could be to extend the polylingual topic model such that it
models additional kinds of data. Beside modeling 2D NMR spectra and the chemical
constitution of chemical compounds, data from di�erent NMR experiments, mass spec-
trometry, infrared spectroscopy might be modeled as well. Learning the polylingual topic
model with more kinds of data could be bene�cial. For example, exploiting additional
sources of information could help to turn an unspeci�c pattern of 2D NMR signals and
structural fragments into several more speci�c patterns. One challenge of this future
direction is to acquire the additional data as this could be expensive in terms of lab
resources (materials, instruments), manpower, and �nancial aspects.
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