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1. Introduction 

1.1 Host-Parasite Co-Evolution 

Genotypes develop into phenotypes that can be selected to produce a next 

generation in the current environment. Whenever this happens changes in the 

frequencies of genotypes in the population will result from selection. This very 

general statement of the evolutionary relationships of genotype, phenotype and 

selection is more complex in host-parasite relationships, because the environment for 

either host or parasite is at the same time a phenotype – produced by the genotype of 

its counterpart, the parasite or the host. Thus, the selection pressure and related to 

this, the success of a phenotype and its genotype is strongly dependent on other 

genotypes. 

Parasites exploit hosts for their own reproduction and the degree they harm the 

host is termed virulence. The virulence of parasites is a flexible trait that is dependent 

on the mode of transmission, competition with other parasites or parasite strains 

during co-infections but also due to features of its host. The host’s reaction towards 

the parasite as well as the availability of susceptible hosts might influence the degree 

of virulence. 

Hosts may use defence mechanisms that reduce the exposure due to anticipatory 

defences. Post-infection mechanisms involve physiological defences that are based 

on immune responses.  

Components that are involved in the virulence of parasites and resistance of hosts 

may show strong signs of co-evolution as the basic genetic mechanisms are not 

independent, but the phenotype they produce is dependent on the phenotype of the 

counterpart they are exposed to. A general model explaining the adaptations and 

counter-adaptations is the Red Queen hypothesis (Van Valen 1973; Bell 1982). Very 

briefly, under this hypothesis it is assumed that parasites adapt to certain host 

genotypes having a high fitness when exposed to them, but reducing the fitness of 

these host genotypes. Due to the high replication rates of parasites these will become 

very abundant infecting host genotypes that are very abundant. Thus, rare host 

genotypes the parasites have not adapted to, will have a higher fitness and increase in 

frequency within a population. Parasites will counteract this by adapting to the new 

most frequent host genotypes. This is a form of negative-frequency dependent 
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selection that will lead to a cycling of frequencies of host and parasite genotypes 

(Salathé et al. 2008). 

1.2 Social Insects and Parasites 

Social insects, e.g. ants, bees and wasps, might be prone to attack by parasites and 

pathogens due to certain features related to sociality (Schmid-Hempel 1998). 

Colonies of social insects are characterized by a high density of individuals 

enhancing parasite transmission. Furthermore, a huge amount of food resources are 

stored as well as the presence of large numbers of brood items (larvae, pupae), 

especially attracting brood parasites. Usually, nest conditions like temperature and 

humidity are regulated and thus are highly homeostatic representing a constant and 

predictable environment with respect to these abiotic factors. Last but not least, 

colonies are groups of highly related family-members enhancing the transmission of 

parasites adapted to certain host genotypes (Schmid-Hempel 1998).  

All the individuals of a colony of social insects possess individual immune 

responses due to the action of humoral and/or cellular immune system activity. 

However, immune pathways seem to be well conserved across invertebrate taxa, 

social insects lack an extensive amount of genes related to the immune repertoire 

(Hultmark 2003, Evans et al. 2006). Two non-exclusive explanations have been put 

forward to explain this lack. On the one hand, other – so far unknown (novel) genes 

might contribute to the immune system or alternatively, group-level defences might 

compensate for this lack of genes (Evans et al. 2006). Defences at the group-level 

might arise from structural and/or organizational features of a social insect colony, 

but also from the advanced behavioural repertoire. This defence based on the 

integrated social activities has been termed “social immunity” (Cremer et al. 2007).  

The social immune system is based on three key features that resemble individual 

immune systems to some extend (Cremer & Sixt 2009). Colonies are discrete units 

within their respective environment as individuals are. Individuals show certain 

behaviours that are related to the avoidance or removal of pathogens similar to whole 

colony units do due to division of labour. Organizational features are the existence of 

waste management with certain areas foreseen for the collection of waste. 

Behavioural features are found in the socially produced fever that honeybee colonies 

show upon attacks by wasps or heat-sensitive pathogens (Starks et al. 2000). 
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Physiological adaptations of group-living, with respect to density-dependent effects, 

have been studied in detail, in two distinct taxa - bees and thrips (minute insects of 

the order Thysanoptera). Both taxa show a huge range of group sizes, ranging from 

solitary to obligatory eusocial species. Evidence for a homologous density dependent 

immune response is given, as for both taxa a positive correlation of antibacterial 

activity in the hemolymph with increasing group size was shown (Stow et al. 2007; 

Turnbull et al. 2011).  

1.3 Introduction to Specific Topics - Hosts 

Social immunity has been proposed to compensate for the lack of immune genes. 

All so far sequenced eusocial insect genomes (honeybee and seven ant genomes) 

show a lack of immune genes when compared to non-social insects (Evans et al. 

2006). The quantity of immune genes does not give information about the quality of 

the present immune genes during infections. We study this effect by determining the 

temporal immune response in the eusocial bumblebee. Therefore, workers were 

either infected with Escherichia coli, sterile buffer only or served as un-manipulated 

control bees. We used a housekeeping gene of E. coli in order to quantify its 

presence in infected bees over the course of the experiment (Chapter 1).    

Social immunity might be based on prophylactic adaptations that are present 

without the presence of a pathogen in order to reduce the infection risk. Other 

responses might be activated in the presence of pathogens (Cremer et al. 2007). The 

degree of activated responses might differ dependent on the pathogen individuals are 

exposed to. As responses of hosts are based on the specific recognition of parasites, 

often due to molecular properties (e.g. chemical volatiles, surface recognition 

molecules etc.), it might be assumed that recognition of familiar pathogens is better 

than of uncommon ones. We will test this hypothesis using foraging bumblebees and 

by manipulating artificially provided food sources with a common bumblebee 

pathogen (Crithidia bombi, a trypanosome gut parasite (Lipa & Triggiani 1988)) and 

an uncommon pathogen (E. coli). Un-manipulated food sources will serve as controls 

for this experiment (see Chapter 2). 

Prophylactic responses involve density-dependent effects. However, their 

occurrence has been shown in inter-species comparisons (Stow et al. 2007; Turnbull 

et al. 2011), but it has been rarely studied whether these responses might be plastic 
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within a species according to the social context individuals are exposed to. One of 

the examples where these effects have been studied comes from migratory locusts in 

which an up-regulation of immune function has been detected in the swarming phase 

(Wilson et al. 2002). However, some social insects also show variation in social 

context. Cyclical phases of growth as can be found in annual social insect societies 

are one of these examples. Usually these colonies are founded in spring by single 

queens carrying for the first brood. After emergence of the first workers these will 

take care of nest maintenance and especially care for the brood. Colonies grow until 

new sexual individuals will be produced and newly mated queens hibernate. 

Throughout the season group size changes dramatically and risk of infection as well. 

Initial studies have been done using bumblebees and social context has been varied 

experimentally. Immune function was determined for antimicrobial activity and 

phenoloxidase activity of the hemolymph. The overall results indicate a plastic 

response of immune function dependent on the social context with an up-regulation 

of phenoloxidase activity in group kept bumblebees and an increase of antimicrobial 

activity in solitarily kept bumblebees (Ruiz-González et al. 2009). However, 

inconsistency in their results with respect to a between colony effect leaves some 

uncertainty about the data. We study the density-dependent immune response by 

exposing individual bumblebee workers to different social contexts (group kept 

versus single kept) and study this effect on the gene expression of selected immune 

genes (Chapter 3). 

1.4 Introduction to Specific Topics - Parasites 

Microparasites (e.g. viruses, bacteria, fungi etc.) usually have much larger 

population sizes and infect individuals rather than colonies. Nevertheless, they can 

have effects at the colony level and defence mechanisms might occur at both the 

individual- and the group-level. High density conditions and frequent social contacts 

between closely related colony members enhance the transmission of these parasites. 

Furthermore, homeostatic nest conditions favour parasite establishment and 

maintenance. 

In bumblebees, a parasite showing condition dependent virulence, occurs - the 

trypanosome gut parasite Crithidia bombi (Lipa & Triggiani 1988). This parasite 

might be transmitted vertically, but also show high frequencies of horizontal 
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transmission due to foraging workers and infections occurring at infected flowers. It 

is relatively benign in individual workers, but causes infected queens to fail during 

colony foundation in spring (Brown et al. 2003). Within natural populations several 

strains can be identified using highly polymorphic microsatellite markers (Schmid-

Hempel & Reber Funk 2004). Different genotypes of strains might be detected; 

knowledge about the resulting phenotypes is scarce. Here we use an in vitro 

cultivation system as well as a newly developed high-throughput cell counting 

system to exactly determine growth rates of different strains (Chapter 4).  

C. bombi infections in natural populations have been estimated based on 

microscopic investigations. However, studies on strain diversity as well as co-

infections by distinct genotypes are scarce. An initial study was done by Schmid-

Hempel & Reber Funk (2004) showing that there is a huge diversity of strains and 

multiple infections are frequent. As bumblebees have annual colonies, that differ in 

their growth throughout the season drastically, it could be assumed that this also 

impacts the parasite population. As colonies grow the higher the probability becomes 

for intra-colonial transmission due to an increase of social contacts. With increasing 

size of colonies the number of foragers that might become exposed to new pathogens 

also increases. Together, this might result in increases of parasitic prevalence with 

proceeding season. However, with an accumulation of strains the probability of 

multiple infections also increases. Thus, interactions between strains are expected to 

occur (Ulrich et al. 2011; Ulrich & Schmid-Hempel 2012). We study the prevalence 

of infection as well as multiple infections in natural populations of two common 

bumblebee species (B. terrestris and B. lapidarius) by repeated sampling throughout 

the season. Polymorphic microsatellites are used to reconstruct changes in the C. 

bombi population genetic structure throughout the season (Chapter 5). 

C. bombi is assumed to be a multi-host parasite with high levels of horizontal 

transmission on flowers (Durrer & Schmid-Hempel 1994). As flower usage is not 

equal between host species (Goulson & Darvill 2004), there is some potential for 

local adaptation towards host species. Within host species strong genotype-genotype 

interactions have been shown to occur (Riddell et al. 2009), but rigorous testing of 

the association of certain host genotypes and parasite genotypes in natural 

populations has not been done. Moreover, genotype by genotype interactions might 
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not only occur within host species, but also between host species resulting in a 

signature of population differentiation of the parasite with respect to its host species. 

Population differentiation might not only occur with respect to host species, but 

also with respect to space and time. Recently, Salathé & Schmid-Hempel (2011) 

have shown that population differentiation of C. bombi with respect to different 

habitats does occur, especially when population sizes of the parasite are low. 

Differentiation of populations within time might be due to either selection acting on 

the parasite population, but also effects due to genetic drift caused by population 

bottlenecks might contribute to temporal divergence of parasite populations. Severe 

bottlenecks occur in the Bombus-Crithidia system due to the hibernation of queens, 

which constitutes the primary agent of transfer to the following year. Local 

adaptation might be hindered by strong genetic drift as well as by frequent horizontal 

transmission between host species. High resolution microsatellite genotyping has 

been applied to samples of C. bombi extracted from several host species collected in 

subsequent years in order to test for local adaptation and interfering factors of 

between host horizontal transmission and temporal population differentiation 

(Chapter 6).  

1.5 Introduction to Specific Topics - Social Parasitism 

A special case of parasitism is social parasitism, which is the exploitation of 

resources derived from the social interactions of others. This form of parasitism is 

mainly based on the use of the work force of colonies by the social parasite in order 

to rear and take care of its own brood. The social parasites might be grouped 

according to their life-history and related to that, their virulence (Brandt et al. 2005). 

Queen-tolerant parasites coexisting with the host queen might represent the only true 

parasites, as they slowly exploit their host without killing it. Queen-intolerant might 

rather be classified as parasitoids as they immediately kill the resident host queen and 

live on the remaining ’somatic‘ body (the workers). Slave making or dulotic ants that 

depend on periodic slave raids might be classified as micropredators (Brandt et al. 

2005).  

Social parasites in most cases are queens invading colonies utilizing host workers 

to rear their own offspring developing into queens and males (Brandt et al. 2005, 

Schmid-Hempel 1998). Usually, the worker caste is absent or reduced in their 
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function. In bumblebees a complete subgenus (Psithyrus) has specialized into this 

social parasitic life style. These queens invade host colonies after these have 

successfully established and the first batch of workers has emerged. Usually, the host 

queen is killed and the Psithyrus queen takes over reproduction forcing the host 

workers to rear their brood (Goulson 2010). However, within a given population not 

all colonies will be parasitized. Thus, the effective population size of Psithyrus might 

be smaller than that of their hosts. This has serious implications for the genetic 

diversity of the parasite population as it will be more strongly exposed to genetic 

drift. Unfortunately, reliable estimates for population sizes and the genetic diversity 

of Psithyrus and their respective hosts within a given population are not available. 

Prevalence has been estimated by artificially placing host colonies in the field, but 

this might overestimate the frequency of infected hosts due to the exposition of 

colonies and hence enhanced host finding by the parasite (Carvell et al. 2008; Müller 

& Schmid-Hempel 1992). Location and excavation of host nests is nearly impossible 

due to the cryptic nests underground (Sladen 1912). Here, we utilized foraging host 

workers and drones, and drones of the parasite population and apply highly resolving 

microsatellite markers and subsequent sibship reconstruction methods in order to 

determine the population structure of both, host and parasite. Thus, we are able to 

determine population sizes as well as estimates for the genetic diversity (Chapter 7).   

Social parasites nearly always are queens that produce few or no workers. 

However, due to some pre-adaptations in a few species also workers might act as 

social parasites. This is the case, when workers have a high reproductive potential, 

sometimes coupled with a special reproductive system - thelytoky (parthenogenetic 

production of female offspring).  

Thelytokous parthenogenesis occurs in a few species of ants (Platythyrea 

punctata, Pristomyrmex pungens) and in Apis mellifera capensis, a subspecies of the 

Western honeybee endemic to the Fynbos region in South Africa (Ruttner 1988). 

Workers of this subspecies show some unique traits distinguishing them from 

workers of other subspecies. Besides the thelytokous parthenogenesis, workers of A. 

m. capensis produce queen-like secretions in their mandibular glands (rich in 9-oxo-

decenoic acid (9-ODA)), usually have higher number of ovarioles and may lay eggs 

even in the presence of the queen (Moritz et al. 1999). These eggs will develop into 

females as they are not cannibalized by other workers, which occur in other 
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subspecies and is known as mutual ‘worker policing’ (removal of worker laid eggs) 

(Ratnieks 1988; Ratnieks & Visscher 1989). These preconditions lead to selfish 

reproductive behaviour and finally to social parasitism (Hamilton 1964; Greeff 

1996). This became most evident, when A. m. capensis colonies had been transported 

into the area of the adjacent subspecies A. m. scutellata for pollination purposes in 

the early 1990’s (Allsopp 1992). A. m. capensis workers  entered colonies of A. m. 

scutellata and established themselves as social parasites. Within a few generations 

this syndrome has spread throughout the whole distribution range of A. m. scutellata 

causing thousands of colonies to die (Greeff 1997). The parasitic workers enter host 

colonies of the adjacent subspecies A. m. scutellata, kill the resident queen (Moritz et 

al. 2003), release queen substance (9-ODA) (Crewe & Velthuis 1980), suppress 

queen rearing and ovary development in the host workers and lay female eggs within 

a few days (Moritz et al. 2004). 

Kin selection theory predicts strong selection for selfish reproduction if workers 

produce female offspring parthenogenetically (Hamilton 1964), because the benefits 

of altruistically rearing offspring due the high relatedness disappear. The relatedness 

between a laying worker and her offspring is much higher (r = 1) than that among 

supersisters (r = 0.75). Additionally, selection for selfish reproduction is driven by 

the higher reproductive value of queen or pseudoqueen offspring, compared to 

worker produced males (Greeff 1996). Here, the genetic basis of thelytokous 

parthenogenesis, 9-ODA production and the speed of ovary development will be 

determined utilizing a double-backcross (see Chapter 8). 

However, the ultimate selective forces that have driven thelytoky nearly to 

fixation in the A. m. capensis population remain unclear. Several hypotheses have 

been stated in the past, as the high queen loss due to harsh environmental conditions 

(Moritz 1986). Colonies with thelytokously reproducing workers might re-queen 

themselves and hence, are not doomed to death when the queen gets lost. Here, this 

hypothesis is tested in ten hopelessly queenless colonies (Chapter 9). 
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Chapter 1 

Dynamics of Immune System Gene Expression upon Bacterial Challenge and 

Wounding in a Social Insect (Bombus terrestris). 

Erler S, Popp M & Lattorff HMG (2011) PLoS ONE 6: e18126. (doi: 

10.1371/journal.pone.0018126) 

 

The innate immune system which helps individuals to combat pathogens comprises a 

set of genes representing four immune system pathways (Toll, Imd, JNK and 

JAK/STAT). There is a lack of immune genes in social insects (e.g. honeybees) 

when compared to Diptera. Potentially, this might be compensated by an advanced 

system of social immunity (synergistic action of several individuals). The bumble 

bee, Bombus terrestris, is a primitively eusocial species with an annual life cycle and 

colonies headed by a single queen. We used this key pollinator to study the temporal 

dynamics of immune system gene expression in response to wounding and bacterial 

challenge. Antimicrobial peptides (AMP) (abaecin, defensin 1, hymenoptaecin) were 

strongly up-regulated by wounding and bacterial challenge, the latter showing a 

higher impact on the gene expression level. Sterile wounding down-regulated TEP A, 

an effector gene of the JAK/STAT pathway, and bacterial infection influenced genes 

of the Imd (relish) and JNK pathway (basket). Relish was up-regulated within the 

first hour after bacterial challenge, but decreased strongly afterwards. AMP 

expression following wounding and bacterial challenge correlates with the 

expression pattern of relish whereas correlated expression with dorsal was absent. 

Although expression of AMPs was high, continuous bacterial growth was observed 

throughout the experiment. Here we demonstrate for the first time the temporal 

dynamics of immune system gene expression in a social insect. Wounding and 

bacterial challenge affected the innate immune system significantly. Induction of 

AMP expression due to wounding might comprise a pre-adaptation to accompanying 

bacterial infections. Compared with solitary species this social insect exhibits 

reduced immune system efficiency, as bacterial growth could not be inhibited. A 

negative feedback loop regulating the Imd-pathway is suggested. AMPs, the end 

product of the Imd-pathway, inhibited the up-regulation of the transcription factor 

relish, which is necessary for effector gene expression. 
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Keywords immune pathways, antimicrobial peptides, gene expression 

Supplementary material 

(http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0018126.s001; 

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0018126.s002; 

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0018126.s003) 

Figure S1.  Effector protein TEP A, gene expression within 24 hours post-

treatment. 

Figure S2.  Relish and prophenoloxidase gene expression within 24 hours 

compared to bacterial growth. 

Table S1.  Primer summary. 
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Chapter 2 

Recognition and Avoidance of Contaminated Flowers by Foraging Bumblebees 

(Bombus terrestris). 

Fouks B & Lattorff HMG (2011) PLoS ONE 6: e26328. (doi: 

10.1371/journal.pone.0026328) 

 

Bumblebee colonies are founded by a single-mated queen. Due to this life history 

trait, bumblebees are more susceptible to parasites and diseases than polyandrous 

and/or polygynous social insects. A greater resistance towards parasites is shown 

when the genetic variability within a colony is increased. The parasite resistance may 

be divided into different levels regarding the step of the parasite infection (e.g. 

parasite uptake, parasite intake, parasite’s establishment in the nest, parasite 

transmission). 

We investigate the prophylactic behaviour of bumblebees. Bumblebees were 

observed during their foraging flights on two artificial flowers; one of these was 

contaminated by Crithidia bombi, a naturally occurring gut parasite of bumblebees 

(in a control experiment the non-specific pathogen Escherichia coli was used).  

For C. bombi, bumblebees were preferentially observed feeding on the non-

contaminated flower. Whereas for E. coli, the number of visits between flowers was 

the same, bumblebees spent more time feeding on the non-contaminated flower. 

These results demonstrate the ability of bumblebees to recognise the contamination 

of food sources. In addition, bumblebees have a stronger preference for the non-

contaminated flower when C. bombi is present in the other flower than with E. coli 

which might be explained as an adaptive behaviour of bumblebees towards this 

specific gut parasite. It seems that the more specific the parasite is, the more it 

reduces the reward of the flower. 

 

Key words prophylactic behaviour, co-evolution, pollinators, social insect, parasite 

Supplementary material 

(http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0026328.s001) 

Figure S1.  Frequency distribution of number of flights.  
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Chapter 3 

Social context dependent immune gene expression in bumblebees (Bombus 

terrestris). 

Richter J, Helbing S, Erler S & Lattorff HMG (2012) Behavioural Ecology & 

Sociobiology (in press, doi: 10.1007/s00265-012-1327-2). 

 

Social insects are prone to attack by parasites as they provide numerous resources of 

food and brood, homeostatic nest conditions and a high density of individuals, 

enhancing the transmission of parasites. The defence of social insects might occur at 

different levels, the individual and the group. Individual defence occurs in part via 

the innate immune system resulting in the expression of antimicrobial substances. 

Group level defences, summarized as 'social immunity', represent a suite of 

behavioural and organizational features. 

Here, all effects contributing to social immunity except for the social context were 

removed from bumblebee (Bombus terrestris) workers, kept either in groups or 

solitarily. The gene expression of 6 effector molecules of the immune system was 

monitored in both groups and in controls from the same source colonies. The social 

treatment has a highly significant effect on immune gene expression; with groups 

exhibiting higher levels of two antimicrobial peptides (AMPs) and two lysozymes. 

Phenoloxidase is affected at the regulatory level, with a strong up-regulation of its 

suppressor Spn27A in groups suggesting a trade-off with antimicrobial activity. 

AMPs are strongly up-regulated in groups, whereas lysozymes are strongly down-

regulated in solitary treatments suggesting another trade-off. Clearly, 'social 

immunity' impacts elements of individual immunity. 

 

Keywords innate immune system, social immunity, quantitative real-time PCR, 

antimicrobial peptide, lysozyme, phenoloxidase 

Supplementary material 

(http://www.springerlink.com/content/5t2t36061133j933/265_2012_Article_1327_ESM.html) 

Material and Methods 

Table S1.  Primer sequences. 
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Chapter 4 

A Quantitative In Vitro Cultivation Technique to Determine Cell Number and 

Growth Rates in Strains of Crithidia bombi (Trypanosomatidae), a Parasite of 

Bumblebees 

Popp M & Lattorff HMG (2011) Journal of Eukaryotic Microbiology 58: 7-10. 

(Erratum 58: 273). 

 

The protozoan parasite Crithidia bombi and its host, the bumblebee Bombus 

terrestris are used as a model system for the study of the evolutionary ecology of 

host-parasite interactions. In order to study these interactions we established a 

method for in vitro cultivation of single parasite strains. Additionally, a high-

throughput method for determining cell numbers in cultures by means of optical 

density (OD) measurements is developed. The protocol for in vitro cultivation 

allowed for growing different strains on agar plates as well as in culture medium. A 

calibration curve for the relationship between cell number and OD has been 

developed. Subsequently, growth rates for different genotypes of C. bombi have been 

recorded. Significant differences in the growth rates and generation times between 

these genotypes were demonstrated. As this might be related to the virulence of the 

parasite, this relationship might be confirmed by in vivo growth rate determination. 

In comparison to conventional cell-counting the application of OD measurements 

allows for high-throughput experiments by reducing the time per sample 30 times. 

The in vitro cultivation method allows for controlled infection experiments in order 

to study host-parasite interactions.  

 

Keywords: host, parasite, Crithidia bombi, Bombus terrestris, infection, 

transmission, cultivation, optical density 

Supplementary material 

(http://onlinelibrary.wiley.com/doi/10.1111/j.1550-7408.2010.00514.x/suppinfo) 

Figure S1.  Light-microscopic picture of Crithidia bombi (20-fold magnification). 

Figure S2.  Correlation between OD600 and cell number/ml.  

Table S1. List of genotypes. 

Table S2. Strain M-A12 (dilution 10
-3

) and strain M-A06 (dilution 10
-2

) with their 

absorbance at 600 nm (OD) and their corresponding cells per ml.  
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Chapter 5 

Seasonal variability of prevalence and occurrence of multiple infections shapes 

the population structure of Crithidia bombi, an intestinal parasite of bumblebees 

(Bombus spp.). 

Popp
 
M, Erler

 
S & Lattorff

 
HMG (2012) Environmental Microbiology (submitted). 

 

Ergonomic growth phases of annual social insect societies strongly influence 

horizontally transmitted parasites. Seasonal fluctuations in prevalence and the 

occurrence of multiple infections of the gut parasite Crithidia bombi were analysed 

in repeatedly sampled populations of two common bumblebee (Bombus spp.) 

species. Prevalence of C. bombi was greatest in the middle of the foraging season 

and coincided with the maximal occurrence of multiple infections. The genetic 

structure of the parasite population also showed strong seasonal fluctuations with a 

drastic decline in effective population size and an increase in linkage disequilibrium 

when infection rates were highest. These effects are mainly attributable to significant 

changes in parasite allele frequencies, leading to selection of specific alleles and 

increasing the frequency of homozygote genotypes in the middle of the season. 

Towards the end of the season, selection appears to relax and we observe a recovery 

in linkage equilibrium as well as an increase in effective population size.  

 

Keywords host-parasite interaction, multiple infections, intensity of infection, 

effective population size, heterozygosity 

Supplementary material 
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Chapter 6 

Sex, horizontal transmission and multiple hosts prevent local adaptation of 

Crithidia bombi, a parasite of bumblebees (Bombus spp.). 

Erler S, Popp M, Wolf S & Lattorff HMG (2012) Ecology & Evolution (in press, 

doi: 10.1002/ece3.250). 

Local adaptation within host-parasite systems can evolve by several nonexclusive 

drivers (e.g. host species - genetic adaptation; ecological conditions - ecological 

adaptation and time -temporal adaptation). Social insects, especially bumblebees, 

with an annual colony life-history not only provide an ideal system to test parasite 

transmission within and between different host colonies, but also parasite adaptation 

to specific host species and environments. Here we study local adaptation in a 

multiple-host parasite characterized by high levels of horizontal transmission. 

Crithidia bombi occurs as a gut parasite in several bumblebee species. Parasites were 

sampled from five different host species in two subsequent years. Population genetic 

tools were used to test for the several types of adaptation.  

Although we found no evidence for local adaptation of the parasite towards host 

species, there was a slight temporal differentiation of the parasite populations which 

might have resulted from severe bottlenecks during queen hibernation. Parasite 

populations were in Hardy-Weinberg equilibrium and showed no signs of linkage 

disequilibrium suggesting that sexual reproduction is an alternative strategy in this 

otherwise clonal parasite. Moreover, high levels of multiple infections were found, 

which might facilitate sexual genetic exchange. The detection of identical clones in 

different host species suggested that horizontal transmission occurs between host 

species and underpins the lack of host specific adaptation. 

 

Keywords host-parasite interaction, co-evolution, population genetic structure, 

bumblebee, Bombus, Crithidia bombi  

Supplementary material 

(http://onlinelibrary.wiley.com/doi/10.1002/ece3.250/suppinfo) 

Table S1.  Overview on diversity of bumblebee samples. 

Table S2.  Population genetic analysis of microsatellite loci. 

Table S3.  Estimated pairwise FST. 
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Chapter 7 

The degree of parasitism of the bumblebee (Bombus terrestris) by cuckoo 

bumblebees (Bombus (Psithyrus) vestalis). 

Erler S & Lattorff HMG (2010) Insectes Sociaux 57: 371–377. (doi: 

10.1007/s00040-010-0093-2) 

 

Host–parasite systems are characterised by coevolutionary arms races between host 

and parasite. Parasites are often the driving force, as they replicate much faster than 

their hosts and have shorter generation times and larger population sizes, resulting in 

higher mutation rates per time interval. This scenario does not fit all host–parasite 

systems. Socially parasitic cuckoo bumblebees (Bombus (Psithyrus) vestalis) 

parasitise colonies of Bombus terrestris share most life history characteristics with 

their hosts. As they parasitise only a subset of all available colonies, their population 

size should be lower than that of their hosts. This might have strong negative effects 

on the genetic diversity of B. vestalis and their adaptability. Here, we study for the 

first time the population structure of a Bombus/Bombus (Psithyrus) system. Highly 

polymorphic DNA markers were used to reconstruct sibships from individuals 

collected in the wild. The analysis of the host and parasite populations revealed a rate 

of parasitism of about 42% (range 33–50%). The population size of B. vestalis was 

lower compared to their hosts, which was also reflected in low within-group genetic 

distance. An analysis of the reconstructed queen genotypes revealed more 

supersisters amongst the B. vestalis queens when compared to the B. terrestris host. 

The data suggest that B. vestalis females and males do not disperse over long 

distances. This shows a potential for local adaptation to their hosts. 

 

Keywords social parasitism, Psithyrus, bumblebee, sibship reconstruction 

Supplementary material 

(http://www.springerlink.com/content/j0813787818g3406/40_2010_Article_93_ESM.html) 

Figure S1.  Distribution of genetic distance values for 1000 replicates of 6 

randomly chosen queens versus 6 other randomly chosen queens for A) 

Bombus terrestris and B) Bombus vestalis. 
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and its parasite Harpagoxenus sublaevis have adapted to each other on a very local 

scale (Fischer & Foitzik 2004; Foitzik et al. 2009). 

Dramatic declines in pollinators have been observed, e.g. Bombus, and also for 

their cuckoo bumblebee parasites (Goulson et al. 2006, 2008; Kosior et al. 2007). 

Many bee species have decreased in their number or have become extinct during the 

last 60 years. The reasons for this phenomenon are a range of both, anthropogenic 

and environmental factors (Goulson et al. 2005, 2008; Kosior et al. 2007; Moritz et 

al. 2007). We have developed the tools and methodology to monitor these 

populations simultaneously. Goulson et al. (2008) asked for the development of 

long-term monitoring of bumblebee populations to increase the knowledge of the 

current status of bumblebee species and their populations, as well as their changes 

over time. Using the combined power of highly polymorphic DNA markers with 

recent developments in sibship reconstruction, we are able to determine the exact 

origin of individuals and hence to estimate the degree of parasitism and population 

sizes in space and time. 
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Chapter 8 

Control of reproductive dominance by the thelytoky gene in honeybees. 

Lattorff HMG, Moritz RFA, Crewe RM & Solignac M (2007) Biology Letters 3: 

292–295. (doi: 10.1098/rsbl.2007.0083). 

 

Differentiation into castes and reproductive division of labour are characteristics of 

eusocial insects. Caste determination occurs at an early stage of larval development 

in social bees and is achieved via differential nutrition irrespective of the genotype. 

Workers are usually subordinate to the queen and altruistically refrain from 

reproduction. Workers of the Cape honeybee (Apis mellifera capensis) do not 

necessarily refrain from reproduction. They have the unique ability to produce 

female offspring parthenogenetically (thelytoky) and can develop into 

‘pseudoqueens’. Although these are morphologically workers, they develop a queen-

like phenotype with respect to physiology and behaviour. Thelytoky is determined by 

a single gene (th) and we show that this gene also influences other traits related to the 

queen phenotype, including egg production and queen pheromone synthesis. Using 

566 microsatellite markers, we mapped this gene to chromosome 13 and identified a 

candidate locus thelytoky, similar to grainy head (a transcription factor), which has 

been shown to be highly expressed in queens of eusocial insects. We therefore 

suggest that this gene is not only important for determining the pseudoqueen 

phenotype in A. m. capensis workers, but is also of general importance in regulating 

the gene cascades controlling reproduction and sterility in female social bees. 

 

Keywords thelytoky, pleiotropy, Apis mellifera 

Supplementary material 

(http://rsbl.royalsocietypublishing.org/content/3/3/292/suppl/DC1) 

Table S1. Characteristics of newly developed microsatellite loci of Apis mellifera 

L. 
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Chapter 9 

Social parasitism of queens and workers in the Cape honeybee (Apis mellifera 

capensis). 

Moritz RFA, Lattorff HMG, Crous KL & Hepburn HR (2011) Behavioural Ecology 

& Sociobiology 65: 735–740. (doi: 10.1007/s00265-010-1077-y). 

 

Workers of a queenless honeybee colony can requeen the colony by raising a new 

queen from a young worker brood laid by the old queen. If this process fails, the 

colony becomes hopelessly queenless and workers activate their ovaries to lay eggs 

themselves. Laying Cape honeybee workers (Apis mellifera capensis) produce 

female offspring as an additional pathway for requeening. We tested the frequency of 

successful requeening in ten hopelessly queenless colonies. DNA genotyping 

revealed that only 8% of all queens reared in hopelessly queenless colonies were the 

offspring of native laying worker offspring. The vast majority of queens resulted 

from parasitic takeovers by foreign queens (27%) and invading parasitic workers 

(19%). This shows that hopelessly queenless colonies typically die due to parasitic 

takeovers and that the parasitic laying workers are an important life history strategy 

more frequently used than in providing a native queen to rescue the colony. 

Parasitism by foreign queens, which might enter colonies alone or accompanied by 

only a small worker force is much more frequent than previously considered and 

constitutes an additional life history strategy in Cape honeybees. 

 

Keywords Cape honeybee, parasitic workers, parasitic queens, queen rearing 

Supplementary material 

(http://www.springerlink.com/content/n86237wl04848784/265_2010_Article_1077_ESM.html) 

Table S1.  Queen genotypes. 

Table S2. Workers genotyped with a subset of five loci to identify the maternity 
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3. Summary / Conclusion 

3.1 Hosts – Flexibility in Immune Responses 

The relatedness asymmetries in social Hymenoptera that create a high intra-

colonial relatedness not only favour cooperation, but also enhance proneness to 

parasites (Schmid-Hempel 1998). Once parasites have adapted to certain host 

genotypes, colonies with low genetic diversity and high densities of individuals 

provide an optimal space for a parasite to establish itself. Moreover, the large food 

store, the presence of large amount of brood, and the nest homeostasis further 

facilitate the establishment of parasites in the colony (Schmid-Hempel 1995).  

Nevertheless, social insects are not helpless as they have mechanisms and 

strategies to counteract parasite attacks (Cremer & Sixt 2009). At the individual 

level, the innate immune system provides a line of defence to combat the intrusion of 

microparasites (Hultmark 2003, Siva-Jothy et al. 2005). Surprisingly, recent genome 

sequencing efforts on social insects revealed that they actually have lower numbers 

of genes which contribute to innate immunity (Evans et al. 2006; Wilson-Rich et al. 

2009), when compared to other non-social insects (e.g. Drosophila, Tribolium, 

Bombyx). Compensation for the effect of a lack of immune genes might come from 

colony level defences - known as ‘social immunity’ (Cremer et al. 2007). These 

might constitute prophylactic and activated defence mechanisms resulting from a 

cooperative action of several individuals.  

Although, the innate immune system seems to lack flexibility, various potential 

pre-adaptations might allow for flexible responses. One indication for such a pre-

adaptation is the transcriptional response of antimicrobial peptides (AMPs) elicited 

by non-septic wounding (Erler et al. 2011). Moreover, a flexible adjustment of the 

immune response can also depend on the social context (Ruiz-González et al. 2009; 

Richter et al. 2012). Individuals within groups show an up-regulation of 

antimicrobial peptides and lysozymes, eventually due to the higher risk of infections 

spreading within groups (Richter et al. 2012). Nevertheless, the immune system of 

bumblebees is not able to completely clear infections, as bacterial growth still occurs 

24h post infection (Erler et al. 2011). This is in contrast to studies on Tenebrio 

molitor, which showed that the beetles could clear bacterial infections within 30 min 
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(Haine et al. 2008). Again, the reduced efficiency of the immune response at the 

individual level might be compensated by group-level defences. 

Selection might also act to reduce the parasite uptake from the environment 

(Cremer et al. 2007). As C. bombi is horizontally transmitted by foraging workers 

due to shared flower use (Durrer & Schmid-Hempel 1994) avoidance of previously 

used flowers might reduce the uptake of parasites at flowers. This avoidance 

behaviour might result from pheromones passively deposited at flowers by foraging 

workers (Goulson 2010), but also from the parasite itself. Avoidance of flowers 

contaminated by C. bombi occurs on a long-distance resulting in less frequent choice 

of the flowers (Fouks & Lattorff 2011). In contrast to that, contaminations caused by 

a pathogen bumblebees have not adapted to – E. coli – did not change the initial 

choice of flowers, but reduced the time of nectar uptake, potentially caused by a 

negative gustatory response to metabolic products of the bacteria (Fouks & Lattorff 

2011).   

3.2 Parasites - Population Level Dynamics 

Flexible adjustments of the immune response might be adaptive, whenever the 

host is exposed to variable threats by a variety of pathogens. At the population level, 

the epidemiological processes are an interaction of several factors in both the host 

and the parasite population. Many factors, including the frequencies of genotypes, 

the availability of susceptible hosts, and their immune status result in highly dynamic 

epidemiology (Anderson & May 1982; Ewald 1983; Ebert & Herre 1996). Social 

insects with an annual life cycle, e.g. social bumblebees, might represent a very 

strong selective force for parasite populations due to the enormous growth rates of 

the worker population after establishment of colonies. This results in a rapid increase 

in the abundance of potential host individuals which might enhance horizontal 

transmission of parasites. However, whenever colonies break down before winter 

and only individual queens hibernate, this not only results in a strong bottleneck for 

the host, but even more so for the parasites (Erler et al. 2012). The prevalence of 

Crithidia bombi, an intestinal gut parasite (Lipa & Triggiani 1988), shows seasonal 

trends following the population development of its host Bombus sp. As the host 

populations grow, more and more individuals become infected not only due to intra-

colonial but also due to inter-colonial transmission resulting from shared flower use 



HMG Lattorff: The Other Side of Sociality                                                                                 Summary 

 

 132 

 

(Durrer & Schmid-Hempel 1994). The population wide prevalence of parasites 

increases, eventually resulting in multiple infections by different genotypes of the 

parasite. These multiple infections might have very different outcomes. Parasite 

strains might either compete or cooperate in exploitation of the host. Depending on 

the relatedness of the parasite strains inclusive fitness concepts might come into play 

resulting in more complex evolutionary scenarios (Schjorring & Koella 2003). C. 

bombi strains seem to compete with each other early in the season, most strongly 

visible by selection on a gene closely linked to an otherwise neutral marker Cri4. 

Popp et al. (2012) found suggestive evidence for selection at this locus. Competition 

among strains leads to drastic reductions in the effective population size of the 

parasite. Initially strong linkage disequilibrium became relaxed later in the season, 

probably as a result from genetic exchange between different parasite strains. 

Genetic exchange certainly occurs under controlled laboratory conditions (Schmid-

Hempel et al. 2011), but it also seems to play a major role in natural populations 

(Schmid-Hempel & Reber Funk 2004; Salathé & Schmid-Hempel 2011; Erler et al. 

2012; Popp et al. 2012). 

3.3 Social Parasitism – When Hosts Turn into Parasites 

Obligate social parasites are most often species that have retained queen-derived 

individuals and lost the worker caste (Bourke & Franks 1995; Brandt et al. 2005). 

Usually, these species are expected to show smaller population sizes compared to 

their hosts. Moreover, it is expected that social species evolve much faster, because 

more meiotic divisions occur until sexuals are produced increasing the likelihood of 

accumulating novel mutations (Bromham & Leys 2005). We confirmed this 

expectation using an approach combining molecular markers and sibship 

reconstruction methods in order to comparatively study the census population sizes 

of host and social parasite under natural conditions. The socially parasitic bumblebee 

(B. vestalis) has a census population size of one third compared to its host species (B. 

terrestris). The genetic diversity of B. vestalis queens was much lower than in the 

host species with respect to allelic richness, observed heterozygosity and the genetic 

distance between queens when compared to the host species (Erler & Lattorff 2010). 

Using six pairs of host-social parasites species within the genus Bombus, we could 

show that the socially parasitic bumblebees show lower levels of adaptive evolution 

than the social host species for some fast evolving anti-viral genes (Helbing 2011), 
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indicating that reduced effective population sizes and the lack of a worker caste have 

a significant impact on the evolution at the molecular level. Small effective 

population sizes, resulting in a higher impact of genetic drift and in the long-term in 

lower levels of genetic diversity, are one of the major problems in socially parasitic 

species. Especially queen-intolerant inquilines species are affected which makes 

them prone to population declines and extinction, a trend that has been observed in 

recent times (Kosior et al. 2007). 

The evolution of a socially parasitic life history in individuals derived from 

workers is an exception. Nevertheless, these rare systems are valuable as they might 

allow studying the factors that allow for the evolution of such a complex behavioural 

syndrome. One of these rare cases is the Cape honeybee, Apis mellifera capensis, 

where workers show a predisposition to social parasitism due to their ability to 

produce diploid female offspring by means of thelytokous parthenogenesis (Onions 

1912). It appears to be a form of clonal reproduction (Baudry et al. 2004) as diploidy 

is restored by automixis with central fusion (Verma & Ruttner 1983). Usually, the 

lack of recombination results in a decrease of the effective population size (Gordo & 

Charlesworth 2001; Charlesworth 2002) which in turn accelerates genetic drift that 

leads to reduced levels of genetic variation (Begun & Aquadro 1992). Thus, the 

ability to reproduce by thelytokous parthenogenesis might not be sufficient in order 

to establish successfully as a social parasite. They have to overcome existing 

mechanisms of nest-mate recognition and acceptance as reproductive individual 

within the host colony and these traits might not evolve that easily under the 

constraint of reduced effective population sizes and clonal reproduction.  

Using a forward genetics approach I could unravel the simple genetic basis for 

social parasitism. A single gene pleiotropically influences a set of traits that 

predispose worker bees to becoming social parasites. The gene was mapped to 

chromosome 13 and identified as a transcription factor (gemini) influencing the type 

of parthenogenesis, the queen-like pheromone production and the onset of egg-laying 

(Lattorff et al. 2007). Especially the pheromonal mimicry of the queen by socially 

parasitic workers (Moritz et al. 2003) is essential getting acceptance in the host 

colony. Subsequent studies showed that this gene acts via alternative splicing 

producing four distinct transcripts, highly correlated to the reproductive state of 

queens and workers (Jarosch et al. 2011).  
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In Cape honeybees not only workers show a predisposition to act as social 

parasites, but also queens might enter, alone or supplemented with a small number of 

workers (Moritz et al. 2011), foreign colonies to reproduce in there. Usually, the 

resident queen will be killed during these takeovers (Moritz et al. 2003) leading to 

the (genotypic) death of the colony. However, successful reproduction of resident 

workers might counteract such takeovers. The speed of ovary activation in Cape 

honeybees is very high and occurs even in presence of the queen (Moritz et al. 1999) 

so that resident workers might start with egg-laying activity immediately after their 

queen gets lost. As these workers reproduce clonally they might preserve their natal 

genotype to a large extend. The predisposition of workers due to the thelytoky gene 

might help them suppress or at least postpone takeovers of foreign workers and 

queens and ultimately prevents the ‘genotypic‘ death of the colony (Moritz et al. 

2011). Hence, this is one of a few systems, where the very same genotype determines 

both, virulence of the parasite and resistance of the host. 

3.4 General Conclusion 

Social insects have evolved a highly cooperative behaviour mainly enforced by 

the high relatedness within colonies. The concept of inclusive fitness and kin 

selection (Hamilton 1964) has been used to explain the genetical evolution of social 

behaviour. However, close genetic relatedness coupled with high density of 

individuals leads to proneness of such colonies to intrusion by pathogens and 

parasites (Schmid-Hempel 1998). In order to counteract these attacks, a suite of 

behavioural and organisational features have been evolved in social insects. A 

number of activated and prophylactic responses based on cooperative activities of 

colony members, summarized under the term ’social immunity‘ (Cremer et al. 2007), 

supplementing the innate immune response of individual workers. However, traits 

related to parasitism and even for resistance do not necessarily be complex, as the 

very simple genetic basis of social parasitism in Cape honeybees shows that a single 

gene with pleiotropic effects (Lattorff et al. 2007) might be sufficient to turn workers 

into parasites and on the other hand, the very same gene might also be responsible 

for resistance to parasitism (Moritz et al. 2011). This simple genetic regulation might 

be surprising, but studies on other social insect species showed similar trends. In the 

lower termite Cryptotermes secundus a single gene was identified to be responsible 

for the reproductive division of labour between queen and workers (Korb et al. 2009) 
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by signalling the absence or presence of a queen to the workers. In the fire ant 

Solenopsis invicta, a single gene is responsible for the complete change of the social 

organisation of a colony with colonies being either mono- or polygynous depending 

on the genotype of workers at the GP9 gene (Keller & Ross 1998; Ross & Keller 

1998). 

Complex phenotypes like the social organisation affecting also the cooperation 

among workers might be under control of quite simple genetic mechanisms as well 

as the other side of social insect colonies – their ability to act as parasites themselves 

and the resistance to parasites may also be under quite simple genetic mechanisms.   
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