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Abstract. In order to gain an insight into the nature of magnetic excitations in complex itin-
erant magnets, an implementation of the linear response density functional theory based on
the Korringa-Kohn-Rostoker Green’s function method was developed and tested. In the first
part of the thesis an outline of the ground state formalism and the linear perturbation the-
ory is provided. Subsequently, the computational scheme is described. First applications
of the code are magnetic excitations in the bulk phases of cobalt, several Heusler alloys
(NiMnSb, Co2MnSi and Cu2MnAl) and thin iron films, both supported on a W(110) sub-
strate and free standing. While qualitatively the spin-dynamics of all these systems can be
understood within the spin-polarized Fermi gas model, quantitatively their behavior can be
quite different. The life-time of moderately long wave-length magnons is very short in the
case of bcc Fe, but in the half-metallic magnets certain important decay mechanisms may
become inoperative. Both the damping and the energies of magnons depend sensitively on
the electronic structure, modified for example by the presence of a substrate, as demonstrated
in the Fe/W(110) example. Special attention is paid to the relation between the dynamic ap-
proach and adiabatic spin dynamics based on the mapping onto the Heisenberg Hamiltonian.
The latter treatment cannot account for the decay of spin-waves but it appears to be in most
cases sufficient to give an estimate of the magnon dispersion relation; nonetheless, there exist
limitations.

Zusammenfassung. Um Einblicke in die Natur magnetischer Anregungen in komplexen
itineranten Magneten zu gewinnen, wurde eine Implementation der Dichtefunktionaltheorie
mitsamt Lineare-Antwort-Formalismus, eingebettet in den Rahmen der Greensche-Funktion-
Vielfachstreutheorie nach Korringa, Kohn und Rostoker, entwickelt und getestet. Im ersten
Teil der vorliegenden Arbeit wird ein Überblick über den Grundzustandsformalismus und
lineare Störungstheorie gegeben, anschließend wird das Berechnungsverfahren beschrieben.
Erste Anwendungen des Codes sind magnetische Anregungen von Cobalt und verschiedenen
Heuslerverbindungen (NiMnSb, Co2MnSi und Cu2MnAl) als Volumenmaterial sowie von
dünnen Eisenschichten, frei oder auf W(110). Obwohl die Spindynamik dieser Systeme quali-
tativ gut durch das Modell des polarisierten Fermigases beschrieben wird, können quantitativ
große Unterschiede auftreten. Die Lebensdauer von Magnonen mittlerer Wellenlängen reicht
von extrem kleinen Werten in bcc Fe bis hin zu unendlich großen in halbmetallischen Mag-
neten. Dämpfung und Energie der Magnonen hängen empfindlich von der elektronischen
Struktur ab. Letztere wird zum Beispiel durch die Anwesenheit eines Substrats beeinflusst,
wie am Beispiel von Fe/W(110) gezeigt wird. Ein weiterer Augenmerk liegt auf der Beziehung
zwischen dem hier beschriebenen dynamischen Ansatz und der adiabatischen Spindynamik,
welche durch Abbilden auf einen Heisenberg-Hamiltonian definiert ist. Letztere kann zwar
nicht das Abklingen der Spinwellen erklären, jedoch gibt sie in den meisten Fällen eine hin-
reichend gute Näherung für die Dispersionsrelation der Magnonen; nichtsdestoweniger ex-
isiteren für sie etliche Einschränkungen.
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CHAPTER

ONE

INTRODUCTION

A sample exposed to an oscillating external field can absorb energy by changing its magnetic configura-
tion. Such transitions are called magnetic excitations and their theoretical understanding is the subject of
this thesis. The absorption can have a sharp resonant character, as presented in Fig. 1.1, and these excited
long-living states have been named spin-waves. They will be of particular interest here.

a) b)

c) d)

Figure 1.1: Four examples of experiments capable of detecting spin-waves: spin-wave resonance (a,
5600 Å permalloy film, Ref. [1]), inelastic neutron scattering (b, Heusler phase Pd2MnSn, Ref. [2]), spin-
polarized scanning tunneling spectroscopy (c, 3 and 4 monolayers of Co on Cu(111), Ref. [3]) and spin-
polarized electron energy loss spectroscopy (SPEELS) (d, 2 monolayers of Fe on W(110), Ref. [4]). The
absorption peaks have a well defined position – corresponding to the excitation energy – and a breadth
larger than detectors’ resolution, which signifies a finite life-time of the quasi-particles.

Not accidentally the thesis begins with a reference to experiment. The condensed matter theory
allows us to believe that magnetism of solids is mainly an electronic property, in the simplest picture
arising from combination of the Coulomb interaction and the antisymmetric Fermionic wave-function.
The experiments involving magnetic excitations offer therefore a probe into the interacting electron gas in
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10 Introduction Chap. 1

solids, allowing the development and testing of models of this intricate physical object. The last five years
witnessed the birth of new experimental techniques like spin-polarized electron energy loss spectroscopy
(SPEELS) [5] and scanning tunneling (microscope) spectroscopy (STS) [3], which joined the time honored
spin-wave resonance [6, 7, 8, 9] and inelastic neutron scattering (INS) [10]. These new methods offer
exciting possibilities to study the magnetic excitations in nanostructures.

Magnetic excitations are indispensable in the theoretical language of magnetism. First of all, the
spectrum of these excitations determines the thermodynamics of the magnetic materials and the magnetic
transition temperature [11]. Furthermore, the magnetic excitations contribute to the electronic specific
heat and the electrical and thermal conductivity. They couple to charge degrees of freedom [12], control
the hot electrons’ mean free path [13] and even are believed to provide a coupling mechanism in high
temperature superconductors [14].

The very dependence of the transition temperature on properties of these excitations makes their
studies interesting from the practical point of view, but other applications have also been suggested, e.g.
the possibility of inter-chip communication based of spin-torque effect [15, 16]. Ever faster magnetic
storage technologies gradually approach the limit where the production of magnetic excited states cannot
be neglected.

A substantial part of this thesis, especially chapters 2 and 3, pertain to a rather general condensed
matter system, but the itinerant magnets [17] are in the focal point of this work. In these materials
spin-waves are identified as collective low-energetic modes. Another type of magnetic excitations are the
particle-hole triplet states called Stoner excitations. The Stoner states are pronounced mostly at higher en-
ergies, corresponding roughly to the exchange splitting of electron states, but they can have non-vanishing
contribution also in the spin-wave energy region and lead to the damping of the spin-wave states. In some
materials, most notably in half-metals, spin-waves can exist in a gap of the Stoner continuum and their
decay to these states is impossible. In our formalism such spin-waves live infinitely long. Of course in re-
ality other – usually smaller – effects are still operative. They could be captured in a language of magnon-
magnon or magnon-phonon interactions, to mention a few. The latter phenomena are not considered in
this thesis. On the other hand, the high-energy magnons usually coexist with high density Stoner states
and can be strongly damped. When the width of the spin-wave peak is comparable in magnitude to the
peak’s energy, the magnon cannot be regarded as a well defined excitations anymore.

Until now the main body of theoretical studies on magnetic excitations has been based on the adiabatic
treatment of magnetic degrees of freedom [18]. In this approach one maps the system onto an effective
Heisenberg Hamiltonian, which is much easier to study. The formalism has been formulated in two major
flavors, namely the frozen magnon approximation [19] or magnetic force theorem [20]. The methods
utilize density functional theory and do not involve adjustable parameters, yielding the dispersion relation
of spin-waves. In this approach the presence of the Stoner continuum is neglected and no prediction
regarding life-times can be made.

Damping can be captured in calculations of wave-vector and frequency-dependent magnetic suscep-
tibility χ, where spin-waves and Stoner states are treated on an equal footing. The position of the sin-
gularities of χ in the complex energy plane determines energies and life times of magnetic excitations.
Cooke et al. in 1980 [21] computed the susceptibility of Ni and Fe using the random phase approximation
to susceptibility starting from an idealized band structure. The dynamic method became particularly pow-
erful after a formulation using the parameter free linear response density functional theory developed in
1985 by Gross and Kohn [22, 23]. (Earlier work of Callaway, Laurent & Wang [24] contains already all
important elements of the magnetic response in local approximation.) From this time on several works
addressing the paramagnetic susceptibility appeared along this line [25, 26, 27, 28, 29]. In 1998 Savrasov
presented the first calculation of the susceptibility for magnetically ordered systems using linear response
density functional theory.

The approach presented in this thesis is formally equivalent to the work of Savrasov, but technically
rather different because of the use of Green’s functions. It is from the very beginning meant to address
complex magnetic structures, including systems with broken translational symmetry like surfaces and in-
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terfaces. In the latter case the damping was predicted to be more severe (e.g. [30]) and lead to a qualitative
failure of adiabatic methods.

The structure of the thesis is as follows. Chapters 2 and 3 outline the formalism of the ground state and
the linear response calculations. Chapter 4 treats the spin dynamics of the uniform polarized Fermi gas;
the model is conceptually very important for understanding spin-waves in itinerant ferromagnets. Being
exactly solvable, it provides us with a benchmark for testing the developed code. Chapter 5 describes
the implementation of the linear response theory within the Hutsepot Korringa-Kohn-Rostoker environ-
ment. The fruit of two years of author’s work on code development is summarized there, but the chapter
is rather technical and can be skipped at first reading, possibly except Sec. 5.5, where several ways of
interpreting the susceptibility matrix are discussed. Subsequent chapters describe first applications of the
computational scheme, namely spin-waves of bulk cobalt (Chap. 6), several Heusler phases (Chap. 7) and
iron in bulk and thin film geometry (Chap. 8). All results presented are new. The accompanying discussion
features several recurring motives, among them the impact of the structural complexity and dimension-
ality on properties of magnetic excitations, the relation between dynamic and adiabatic approaches and
the damping of spin-waves. A reader is encouraged to have a look on the appendices at the end of the
thesis, which contain the conventions rather consistently used here. It is hoped that this work advances
the understanding of dynamics of magnets.



CHAPTER

TWO

FERMI SYSTEMS

We model a solid as an ensemble of Coulomb interacting electrons in an external potential at temperature
T . Along the lines of linear response theory one assumes that the dominant part of the potential, say
V (x), is static but otherwise arbitrary and the time dependent part is small and can be treated in a
perturbative way. As we will see the perturbative procedure requires the knowledge of the eigensystem
of the Hamiltonian including only V (x) and we start therefore with a formalism which allows to describe
systems with time independent Hamiltonians.

In the framework of this thesis the mentioned external potential pertains to the interaction of electrons
with positively charged motionless atomic nuclei; phonons are absent in our formalism. We assume
that Hamiltonian conserves the number of particles in the system. Occasionally an additional external
magnetic field can be introduced. The field couples only to the spin degrees of freedom; the formation
of Landau levels (diamagnetic response) is neglected. Relativistic effects are not taken into account. One
uses atomic Rydberg units (ARU) in this work, as specified in App. A.

The resultant solid state Hamiltonian in its first quantized version reads

H =
∑

i

(T (xi)δαiβi
+ V (xi)δαiβi

− μBB(xi) ·σσσαiβi
) +

1
2

∑
i�=j

U(xi,xj)δαiβi
δαjβj

=

⎛⎝−
∑

i

∇2
i δαiβi

− 2
∑
n,i

Zn

|xi − Rn|δαiβi
− μB

∑
i

B(xi) ·σσσαiβi

⎞⎠+
∑
i�=j

1
|xi − xj|δαiβi

δαjβj

(2.0.1)

i and j run from 1 to the number of particles N , n labels atomic nuclei located at positions Rn, small
Greek letter denote spin components, Pauli matrices σσσ are defined later in this chapter and U is the two
body electron-electron interaction – Coulomb potential.

The material on many-body theory covered here is standard and can be found in many textbooks. I
mostly enjoyed these [31, 32, 33]. Section 2.1 deals with the formalism of second quantization; it is not
meant as a self contained exposition, rather as a slightly extended notation guide. The subsequent section
2.3 exposes the fundamentals of Green’s function formalism. Section 2.4 presents basic notions of density
functional theory and local density approximation (LDA).

2.1 Schrödinger equation in many-particle Hilbert space

Within the formalism of second quantization one introduces an orthonormal set of single particle orbitals
ϕ0

j (αx), where α is a spin variable. Many-particle Hilbert space can be spanned on the following direct

12
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product states

|n1n2 · · ·nN 〉 =
N∏

j=1

(
c†j
)nj |0〉, (2.1.1)

where |0〉 denotes a vacuum state and c†j creates a particle on the orbital j; there are nj of them in
this state. Operator cj removes the particle from the orbital. Our particles are electrons and therefore
Fermions and Pauli principle applies. It is incorporated into the formalism by imposing the Fermionic
anti-commutation rules on creation and destruction operators ([a, b]± ≡ ab± ba)[

ck, c
†
l

]
+

= δkl, [ck, cl]+ =
[
c†k, c

†
l

]
+

= 0. (2.1.2)

This imply that there can be at most one electron occupying each orbital. Direct product states form
an orthonormal basis and a general many-body wave function |Ψ(t)〉 is a superposition of these states
normalized to one.

Operators acting in this space1 are constructed from their first quantized counterparts by means of
field operators (here given explicitly in the Schrödinger picture, see below)

ψ̂(xα) =
∑

j

ϕ0
j(xα)cj , ψ̂†(xα) =

∑
j

ϕ0
j (xα)∗c†j . (2.1.3)

A general one body operator (N denotes the number of particles)

J =
N∑

i=1

J1(xi)αiβi
(2.1.4)

in its second quantized form reads2

Ĵ =
∫
dxψ̂†(xα)J1(x)αβψ̂(xβ). (2.1.5)

The Schrödinger equation in the second quantization language assumes the following form

i
∂

∂t
|Ψ(t)〉 = K̂|Ψ(t)〉, (2.1.6)

where K̂ is a grand Hamiltonian. In this chapter it is assumed that it does not depend on time.

K̂ = Ĥ − μN̂, (2.1.7)

where μ stands for chemical potential, N̂ is the particle number operator

N̂ =
∑

s

c†scs (2.1.8)

and Ĥ is a Hamiltonian.
Very often K̂ is split into non-interacting part K̂0 (which can be treated exactly) and an interacting

part K̂1 usually tractable only approximately. To facilitate a perturbative solution including the effect of
K̂1 one introduces different representations (pictures) of operators and wave functions. In equation 2.1.6
these quantities are in the Schrödinger picture; operators which do not include time explicitly remain time

1Second quantized operators will be consequently denoted with a “hat” in this work.
2Summation over repeated spin indices is assumed throughout the work.
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independent. In the Heisenberg picture the operators – unless they commute with grand Hamiltonian –
acquire time dependence3

ôK(t) = eiK̂tôe−iK̂t, |ΨK(t)〉 = eiK̂t|Ψ(t)〉. (2.1.9)

The interaction picture is defined as follows

ôI(t) = eiK̂0tôe−iK̂0t, |ΨI(t)〉 = eiK̂0t|Ψ(t)〉. (2.1.10)

Below, several of the most important operators are explicitly given in the Schrödinger picture. The
particle density operator reads

n̂(x) = δαβψ̂
†(xα)ψ̂(xβ), (2.1.11)

while the magnetization density operator is given by

σ̂σσ(x) = σσσαβψ̂
†(xα)ψ̂(xβ), (2.1.12)

where σσσ = (σx, σy, σz) stands for the vector of Pauli matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i

i 0

)
and σz =

(
1 0
0 −1

)
. (2.1.13)

The explicit form of the solid state Hamiltonian reads

Ĥ =
∫
d3xψ̂†(αx)(T (x) + V (x))ψ̂(αx)

+
1
2

∫∫
d3xd3x′ψ̂†(αx)ψ̂†(βx′)U(x,x′)ψ̂(βx′)ψ̂(αx). (2.1.14)

For example, the term associated with the magnetic field would read

ĤB = −μB

∫
d3xσ̂σσ(x) ·B(x). (2.1.15)

The expectation value (thermal average) of an operator is defined as

〈ô〉 = Tr [ρ̂Gô] ≡eβΩ
∑

j

〈j|e−βK̂ ô|j〉, (2.1.16)

where Ω is the grand canonical potential

e−βΩ =
∑

j

〈j|e−βK̂ |j〉. (2.1.17)

The one particle orbitals can be conveniently chosen as eigenvectors of K0

K0ϕ
0
j =

(
ε0j − μ

)
ϕ0

j , (2.1.18)

where ε0j is the eigenenergy associated with state j. Let us note that hereK0 is not only in first-quantized
form but also it is a single particle Hamiltonian. In the case of non-interacting particles, the Hamiltonian
of the whole system reduces to the sum of single particle Hamiltonians. With such a choice of ϕ’s the field
operators in the interaction picture assume the following forms:

ψ̂I(xαt) =
∑

j

ϕ0
j (xα)e−i(ε0j−μ)tcj , ψ̂

†
I(xαt) =

∑
j

ϕ0
j (xα)∗ei(ε0j−μ)tc†j . (2.1.19)

In the non-interacting case the grand Hamiltonian K̂0 is readily expressed as

K̂0 =
∑

j

(
ε0j − μ

)
c†kck. (2.1.20)

3Quantities in the Heisenberg picture bear subscript K , while they do not have any in the case of the Schrödinger picture.
The interaction picture is denoted with I .
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2.2 Fermi-Dirac function

The Fermi-Dirac distribution function

fT (z) =
1

eβ(z−μ) + 1
(2.2.1)

is one of the most important tools in this work. In the non-interacting case the occupation of orbital j
depends only on the energy of the state and can be expressed in terms of fT

n0
k ≡ Tr

[
ρ̂G0c

†
kck

]
= fT

(
ε0k
)
. (2.2.2)

In the complex plane, fT (z) is a meromorphic function with poles given by Fermionic Matsubara frequen-
cies

zm = μ+ iωf
m = z∗−m−1, m ∈ Z, (2.2.3)

where ωf
m = (2m+ 1)π

β . One can prove that

Resz=zm [fT (z)] = − 1
β
. (2.2.4)

fT has one more symmetry we are going to exploit, namely

fT

(
ε+ i2m

π

β

)
= fT (ε), m ∈ Z, ε ∈ R. (2.2.5)

The Fermi-Dirac function can be used to evaluate sums over Fermionic frequencies. If h(z) is a
complex function, by means of Cauchy theorem one can write

1
β

∑
m∈S⊆Z

h(zm) =
i

2π

∮
C
dzh(z)fT (z). (2.2.6)

The contour C shall be oriented counter clock-wise (CCW) and contain all zm,m ∈ S (i.e. the zm’s we
want to sum over) and h(z) must be analytic inside C. If we want to set S = Z, h(z) must not have any
branch cut crossing the whole complex plane.

At sufficiently low temperatures one can write∫
R

dzh(z)fT (z) ≈
∫ μ

−∞
dzh(z) +

π2

6
1
β2

dh(z)
dz

∣∣∣
z=μ

. (2.2.7)

This is the first term of so called Sommerfeld expansion.

2.3 Green’s functions

Most of the systems of interacting bodies can be treated only in an approximate manner. One of the most
powerful methods to construct a suitable approximation is Feynman’s diagrammatic technique, which
makes extensive use of a special propagator, the so called Green’s function. From the Green’s function G
of an interacting system one can extract – among other observables – the total energy of the system and
the particle and magnetization density; the poles of the Green’s function determine quasiparticle energies
and life-times. The Green’s function G0 of a non-interacting system can be calculated exactly. When the
interaction is turned on one can express in a systematic manner series of corrections toG by means ofG0.

In this work, this line of treating interactions is not adopted, we work with density functional theory
instead. However the formalism provides several useful tools. Basically, the exposition deals only with
Green’s function formalism for (effectively) non-interacting particles.
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The retarded single particle real-time Green’s function is defined as

ḠR
αβ

(
xt,x′t′

) ≡ −iθ
(
t− t′

)〈[
ψ̂K(xαt), ψ̂†

K

(
x′βt′

)]
+

〉
. (2.3.1)

In the non-interacting case it can be expressed through the eigensystem of H0

Ḡ0R
αβ

(
x,x′, t− t′

)
= −iθ

(
t− t′

)∑
j

ϕ0
j (xα)ϕ0

j

(
x′β
)∗

e−i(ε0j−μ)(t−t′), (2.3.2)

Ḡ0R
αβ

(
x,x′, ω

)
=
∑

j

ϕ0
j (xα)ϕ0

j (x
′β)∗

ω −
(
ε0j − μ

)
+ i0+

≡ Gαβ

(
x,x′, ω + i0+

)
(2.3.3)

and the latter object is so called bare Green’s function

Gαβ

(
x,x′, z

)
=
∑

j

ϕ0
j (xα)ϕ0

j (x
′β)∗

z − ε0j
. (2.3.4)

A perturbative scheme for contructing interacting Green’s functions at finite temperatures can be
devised, if one introduces a notion of imaginary time τ . The interaction picture of an operator in imaginary
time reads

ôI(τ) = eK̂0τ ôSe−K̂0τ . (2.3.5)

while the Heisenberg picture is

ôK(τ) = eK̂τ ôSe−K̂τ . (2.3.6)

One defines so called temperature Green’s function

Gαβ

(
xτ,x′τ ′

) ≡ −Tr
[
ρ̂GTτ

[
ψ̂Kα(xτ)ψ̂†

Kβ

(
x′τ ′

)]]
(2.3.7)

which in the non-interacting case can be explicitly written as

G 0
αβ

(
xτ,x′τ ′

)
= −

∑
j

ϕ0
j (xα)ϕ0

j

(
x′β
)∗

e−(ε0j−μ)(τ−τ ′)(θ(τ − τ ′
)(

1 − n0
j

)− θ
(
τ ′ − τ

)
n0

j

)
. (2.3.8)

(θ(τ) is the Heaviside step function, which is 1 for positive τ and 0 otherwise.) For every application it is
necessary to consider variables τ and τ ′ only in a finite interval of length β and usually τ, τ ′ ∈ [0, β]. In
the time independent case G 0

αβ(x1τ1,x2τ2) depends only on the difference τ = τ1 − τ2 ∈ [−β, β] and it
is antiperiodic with period β in variable τ . One can represent G by means of Fourier series, G is non-zero
only for Fermionic frequencies ωf

m

G 0
αβ

(
x,x′, ωf

m

)
=
∫ β

0
dτeiωf

mτG 0
αβ

(
x,x′, τ

)
=
∑

j

ϕ0
j (xα)ϕ0

j (x
′β)∗

μ+ iωf
m − ε0j

≡ Gαβ

(
x,x′, zm

)
. (2.3.9)

One can see that Ḡ0R and G are analytical continuations of each other and they are related through the
bare Green’s function. A similar statement is valid also in the interacting case, however the G cannot be
simply expressed by means of single particle orbitals and energies.

One can prove that (
zδαβ −H0(x)αβ

)
Gβγ

(
x,x′, z

)
= δ
(
x − x′)δαγ , (2.3.10)
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where z ∈ C. This is the fundamental equation relating every (effectively) non-interacting theory to
the multiple scattering formalism. One can recognize that this is exactly the equation solved in the KKR
method, outlined in Sec. 5.2.

There are several symmetries of G we are going to exploit. First of all the Green’s function is a
Hermitian operator

Gαβ

(
x,x′, z

)
= Gβα

(
x′,x, z∗

)∗
, z ∈ C. (2.3.11)

Let us close this section with remarking that the Green’s function can be directly used to compute
physical observables. In particular the magnetization and charge density are given by

〈σ̂σσ(x)〉 = σσσαβGβα

(
xτ,xτ+

)
=

1
β

∑
m∈Z

eiωf
m0+

σσσαβGβα(x,x, zm)

= − 1
π

∫ ∞

−∞
dεfT (ε)Im

[
σσσαβGβα

(
x,x, ε+ i0+

)]
. (2.3.12)

2.4 Density functional theory

2.4.1 The context of DFT

There are several severe difficulties in calculating physical properties of any real electron system in solid
state theory.

The most fundamental goes back to the very presence of interactions. At absolute zero the Fermionic
non-interacting many body wave functions (in the first quantized form) are Slater determinants built from
occupied single particle orbitals, while real many body wave functions of an interacting system are in
general a superposition of Slater determinants based on many different sets of single particle orbitals. In
the interacting case the single particle picture must be necessarily abandoned, electrons become corre-
lated. One of the systematic ways of including correlations is the Feynman’s diagrammatic technique.
Unfortunately, the Coulomb interaction is strong and long ranged and can hardly be treated as a small
perturbation. To obtain any meaningful results one must often sum infinite subsets of specially chosen
diagrams and there exists no unequivocal choice of these series. The third problem is related to the fact
that solids are usually of rather complicated structure and any method must be rather simple in order to
be practically applicable to them.

To overcome the problem of the strength of Coulomb interaction one could use the Hedin’s GW
technique [34, 35]. In many systems, most notably in metals, electrons effectively do not interact via
bare Coulomb potential, but the force is screened, much weaker. In this case one could build expansion
not in bare Coulomb interaction but rather in W , the screened interaction. There are several problems,
though. First of all in any practical applications one is restricted to – at best – the first few terms in the
expansion. Second, the GW requires a self-consistency cycle, which is computationally too expensive,
even for modern computers. At present GW is mainly used to improve – in a one-shot calculation – the
existing approximate solutions, which should be reasonably close to real ones.

Dynamical mean field theory (DMFT) [36, 37] provides a way to treat exactly interacting particles in
an idealized Hubbard model in the limit of the inifinite dimensions. There the Coulomb interaction is
substituted by a matrix of adjustable parameters U . While DMFT allows for in depth understanding of
strongly correlated systems it is still an oversimplified picture of real materials. It is also computationally
demanding.

One can make a step towards a parameter free description of weakly correlated solids by reinstanti-
ating the single particle picture, i.e. by assuming that particles do not interact and move in an effective
potential which includes an averaged inter-particle interaction. The Hartree-Fock approximation (HFA)
[38] is an example proceeding along this line. One constructs a trial many-body wave-function being a
single Slater determinant and chooses the set of single particle orbitals which minimize the total energy
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of the system, relying on Rayleigh-Ritz variational principle. HFA correctly accounts for Pauli exclusion
principle and in the case of insulating materials and atoms the method gives qualitatively good results. In
the metals however the description fails predicting for example vanishing density of states at the Fermi
level; the main neglected effect here is the presence of the metallic screening partially accounted for in
GWA. HFA is very complicated for solids, the reason being non-locality of the Hartree-Fock effective sin-
gle particle potential. The effective inter-electron interaction in HFA approximation is called “exchange”
and the effects beyond it are customarily named “correlations”. Let us note that the term “correlations” is
sometimes used more generically to describe all the effects arising due to the presence of interaction.

The first relatively easy and versatile scheme for calculating electronic properties of real materials
came along the lines of density functional theory (DFT).

2.4.2 Hohenberg-Kohn theorem

In their seminal paper of 1964 Hohenberg and Kohn [39] managed to reformulate the many body problem
to the determination of the ground state electronic density alone and thus they opened a possibility of
constructing an easy calculational scheme; the density is obviously a much simpler object than a many
body wave function.

One considers a system of N interacting electrons in a non-degenerate ground state in an external
potential V (x). Hohenberg-Kohn (HK) theorem states that the ground state density, n(x), uniquely de-
termines the potential V (x) to within an additive constant. Since together with V (x) the full Hamiltonian
is known, the density determines all the physical properties of the system.

Furthermore, they proved that there exists a functional of the density, F [n′(x)], defined for all non-
degenerate ground state densities such that, for given V (x), the quantity (the total energy of the system)

EV

[
n′
] ≡ ∫ dxV (x)n′(x) + F

[
n′
]

(2.4.1)

has its unique minimum for the correct ground state density, n′ = n. If the functional F is known one
can find the correct ground state density by minimizing it. The HK theory can be readily generalized to
describe degenerate ground states [40].

For finite temperatures the ground state energy is replaced by the grand canonical potential Ω

ΩT
V

[
n′
] ≡ ∫ dx(V (x) − μ)n′(x) + F T

[
n′
]

(2.4.2)

which ought to be minimum.
A generalization important from the point of view of this work is the possibility of formulating DFT

in terms of spin densities. This makes the description of magnetic systems easier.

2.4.3 Kohn-Sham equations

In 1965 Kohn and Sham [41] suggested a method to obtain an exact, single-particle like, description of a
many body problem. The free energy functional

ΩT
V [n] = Ts[n] − TSs[n] +

∫
dx(V (x) − μ)n(x) +H[n] + Ωxc[n] (2.4.3)

is separated into the part corresponding to a non-interacting system with density n, which includes the
kinetic energy Ts, entropy Ss and energy due to the external and chemical potential, in addition to the
Hartree contribution

H[n] =
∫∫

dxdx′n(x)n(x′)
|x− x′| (2.4.4)
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and so called exchange-correlation functional Ωxc[n]. Equation 2.4.3 can be understood as a definition of
the latter; Ωxc[n] includes all the differences the interaction introduces to the energy and entropy of the
system.

By extremizing the functional Ω Kohn and Sham recast the problem in the form of exact single particle
self-consistent equations (−∇2 + veff(x)

)
φj(x) = εjφj(x), (2.4.5)

which are called Kohn-Sham equations. The effective single-particle potential is a sum of an external, the
Hartree and the so called exchange-correlation potential

veff(x) = V (x) + 2
∫
dx′ n(x′)

|x − x′| + vxc(x) (2.4.6)

the latter being defined as a functional derivative of Ωxc with respect to the density

vxc(x) ≡ δΩxc[n(x)]
δn(x)

. (2.4.7)

It is important to note that the Kohn-Sham eigenfunctions and eigenenergies do not have any direct
physical meaning, in particular the ε’s cannot be interpreted as quasiparticle energies (even as their real
parts). They are mathematical tools which are meant to yield the correct ground-state density

n(x) =
∑

j

fT (εj)|φj(x)|2. (2.4.8)

The free energy can be computed using the Kohn-Sham energies as

Ω =
∑

j

fT (εj)εj − TSs − μN −H[n] −
∫
dxvxc(x)n(x) + Ωxc[n], (2.4.9)

where the entropy of the non-interacting system reads [42]

Ss = −kB

∑
j

(fj ln fj + (1 − fj) ln (1 − fj)), fj ≡ fT (εj). (2.4.10)

Ωxc at absolute zero will be denoted by Exc.
For small temperatures one might be tempted to assume that Ωxc ≈ Exc, that is the temperature

effects enter only through the smearing of the Fermi level introduced by fT . A general discussion of
this approximation goes beyond the scope of this thesis, but let us remark briefly that it fails badly for
ferromagnets with large exchange splitting. The ferro-para transition in this so called Stoner picture is
caused by exciting single spin-flips (Stoner states) decreasing gradually band splitting. The deviation of
magnetization’s direction (i.e. low energetic spin-waves) is neglected. In the Stoner picture the Curie
temperature might be overestimated by an order of magnitude.

The KS equations are relatively easy to solve, since they have formally the form of a Schrödinger equa-
tion. Of course, they still retain all the complexity of many body problems buried in the specification of
exchange-correlation functional. The enormous success of KS scheme lies in the existence of a simple and
very practical approximation to Exc based on uniform electron gas, i.e. local spin density approximation
(LSDA).

The success is unexpected, since in real materials the density cannot be even approximately regarded
as slow varying, and many authors argue that its predicting power comes from a certain subtle cancellation
of errors. It is known that L(S)DA fullfils a series of exact sum rules. There are functionals which try to
go beyond LSDA, e.g. the generalized gradient approximation (GGA) or hybrid functionals like Becke-
Lee-Yang-Parr (BLYP). GGA is not clearly superior to LSDA in contrary to hybrid functionals, which
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are however computationally too expensive to be used in electronic band calculations. In the materials
featuring strong correlations LDA+U can be of some use, its disadvantage being introduction of tunable
Coulomb repulsion U . Self-interaction correction (SIC) [43, 44] allows a parameter free description of
correlated systems.

In this work we adopt LSDA mainly for its simplicity. The approximation is presented in the next
subsection.

2.4.4 Local spin density approximation

The simplest formulation of spin density functional theory introduces spin up, n↑, and spin down, n↓,
electronic densities. In the local approximation, at 0 K, exchange correlation functional is given by

Exc =
∫
dxεxc(n↑(x), n↓(x))n(x), (2.4.11)

where n stands for the sum of the both components and εxc is the exchange-correlation energy per particle
of a homogeneous, spin-polarized Fermi gas. m = n↑ − n↓ will denote the value of local magnetization;
its direction may generally vary in space. n↑,↓ pertain to a local quantization axis.

The exchange correlation part of the effective KS potential is now a matrix in spin space and consists
of two terms

vxc(x) = ṽxc(x)I − μBBxc(x) ·σσσ. (2.4.12)

The diagonal part of the xc potential is

ṽxc(x) =
∂

∂n(x)
(εxc(n(x),m(x))n(x)) (2.4.13)

and the exchange-correlation magnetic field reads

Bxc(x) = − 1
μB

∂

∂m(x)
(εxc(n(x),m(x))n(x))m̂ ≡ Bxcm̂ (2.4.14)

pointing along the direction of local magnetization.
εxc is taken from Monte Carlo simulations of uniform electron gas and usually given through a rela-

tively simple parameterizations, e.g. Refs. [45, 46] suggest that

εxc = εx + εc, Bxc = Bx +Bc, (2.4.15)

where the exchange energy per particle (from HFA) and the corresponding magnetic field read respectively

εx = −3
(

3
4π

)1/3n
4/3
↑ + n

4/3
↓

n
, −μBBx = −

(
6
π

)1/3(
n

1/3
↑ − n

1/3
↓
)
. (2.4.16)

The following notation will be used

rs =
(

3
4πn

)1/3

, ζ =
n↑ − n↓
n↑ + n↓

. (2.4.17)

The correlation energy per particle (Perdew-Wang parameterization) is given by

εc = εc(rs, 0) + αc(rs)
f(ζ)
f ′′(0)

(
1 − ζ4

)
+ (εc(rs, 1) − εc(rs, 0))f(ζ)ζ4, (2.4.18)
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where

f(ζ) =
(1 + ζ)4/3 + (1 − ζ)4/3 − 2

24/3 − 2
. (2.4.19)

The corresponding correlation magnetic field reads

−μBBc =
∂εc
∂ζ

= αc(rs)A(ζ) + (εc(rs, 1) − εc(rs, 0))B(ζ), (2.4.20)

where

A(ζ) = 9ζ3 +
3
2
(−1 − 3ζ3 + 4ζ4

)
(1 − ζ)1/3 +

3
2
(
1 − 3ζ3 − 4ζ4

)
(1 + ζ)1/3, (2.4.21a)

B(ζ) =
1

21/3 − 1

(
−4ζ3 +

2
3
ζ3
(
(3 − 4ζ)(1 − ζ)1/3 + (3 + 4ζ)(1 + ζ)1/3

))
. (2.4.21b)

αc(rs), εc(rs, 1) and εc(rs, 0) are as functions of rs given by relatively simple approximating formulas.

❦

This ends the first chapter devoted to the ground state description of interacting Fermion systems in the
presence of an external static potential. We have provided ourselves with necessary tools to address in the
following chapter the weak time-dependent perturbations of quantum mechanical ensembles.



CHAPTER

THREE

LINEAR RESPONSE THEORY

Linear response theory allows to find the response of a system to a weak external perturbation. One
proves that such a response is completely determined by the ground state properties of the unperturbed
ensemble. On one hand the fact simplifies considerably the necessary calculations, on the other it tells
us that small external perturbation probes the “natural” excitations – and fluctuations – of the system.
Indeed, the response function χ, which relates the response of the system to the perturbing force, carries
information about the energies and probabilities of transitions induced by the external field and as such it
can be used to study excited states. The imaginary part of χ is proportional to energy absorbed from the
external field and determines cross-sections in scattering experiments.

This chapter is meant to present the fundamentals of the linear response theory. It opens with a rather
general exposition, where we will focus on the construction, interpretation and general properties of sus-
ceptibilities, including the fluctuation-dissipation theorem, which gives a deep insight into the relevance
of the formalism. Next, we will proceed to the magnetization response to show how it can be used to
study magnetization dynamics. Our starting point will be field theory, but we will mention its techniques
only briefly concentrating mainly on the response functions of noninteracting systems, since they are es-
sential when formulating linear response theory in terms of DFT. Exposition and discussion of the latter
formalism – central in this thesis – will be the last part of the chapter.

The modern form of linear response theory is often attributed to Ryōgo Kubo [47, 48] and called Kubo
formalism. This chapter follow closely the exposition of Fetter & Walecka [31].

3.1 Generalized susceptibility

Let us consider a driving force Ξex
β (t) which couples to the system through an operator ôβS , so that the

perturbation Hamiltonian reads

Ĥex
K (t) = ôβK(t)Ξex

β (t). (3.1.1)

We assume that ôβS is Hermitian and has no explicit time dependence.
Let 〈ô〉 denote the expectation value of an operator ô computed using the unperturbed but interacting

Hamiltonian Ĥ and let 〈ô〉ex(t) stand for the expectation value in the presence of the perturbation.
The linear (leading) response of the operator ôα in field Ξex

β reads

δ〈ôα〉ex(t) ≡ 〈ôα〉ex(t) − 〈ôα〉 (3.1.2)

= −i

∫
dt′Tr

[
ρ̂G

[
ôαH(t), ôβH

(
t′
)]

−
]
θ
(
t− t′

)
Ξex

β

(
t′
)

=
∫
dt′χαβ

(
t− t′

)
Ξex

β

(
t′
)

(3.1.3)

22
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and the retarded correlation function between operators ôα and ôβ ,

iχαβ

(
t− t′

) ≡ 〈[ôαH(t), ôβH

(
t′
)]

−
〉
θ
(
t− t′

)
, (3.1.4)

is called generalized susceptibility. We have used the fact that for time independent operators χ depends
only on the time difference.

The Fourier transform of χ reads

χαβ(ω) =
∑
js

e−β(Ks−Ω)

( 〈j|ôα|s〉〈s|ôβ|j〉
ω − (Ks −Kj) + i0+

− 〈j|ôβ|s〉〈s|ôα|j〉
ω − (Kj −Ks) + i0+

)
, (3.1.5)

where we double sum over all eigenstates of interacting grand Hamiltonian K̂, K̂|l〉 = Kl|l〉. All the
matrix elements are evaluated at t− t′ = 0. This form is sometimes called Lehmann representation and
provides us with clear physical interpretation of the generalized susceptibility. Its poles correspond to
transitions between states which have non-vanishing matrix elements on operators ôα and ôβ .

3.2 Fluctuation-dissipation theorem

In his famous paper from 1928 [49] Harry Nyquist showed that the irreversible dissipation of energy into
heat is related to reversible fluctuations in thermal equilibrium. Nyquist considered specific example of
a current flowing through a resistor. The general quantum-mechanical version of fluctuation-dissipation
theorem was proved by Callen and Welton in 1951 [50]. The central concept of their paper is the loss

tensor

− 1
π
χL

αβ(ω) ≡ i

2π
(
χαβ(ω) − χ∗

βα(ω)
)

=
(
1 − e−βω

)∫
dEe−β(E−Ω)ρ(E)ρ(E + ω)〈E|ôα|E + ω〉〈E + ω|ôβ|E〉, (3.2.1)

where ρ stands for the density of states in energy space, |E〉 is the eigenstate associated with energy E
and the formula was derived starting from Eq. 3.1.5. Let us consider now a correlation function between
operators ôα and ôβ

Aαβ

(
t− t′

)
=
〈
ôα(t)ôβ

(
t′
)〉

(3.2.2)

and its Fourier transformation

Aαβ(ω) =
∫
dEe−β(E−Ω)ρ(E)ρ(E + ω)〈E|ôα|E + ω〉〈E + ω|ôβ|E〉. (3.2.3)

Upon combining the above equations we obtain the fluctuation-dissipation theorem

Aαβ(ω) = − 1
π
χL

αβ(ω)
1

1 − e−βω
. (3.2.4)

The above formula can be used to compute the fluctuations of the observable associated with the
operator ôα 〈

ô2α
〉

= − 1
π

∫ ∞

−∞
dωχL

αα(ω)
1

1 − e−βω
. (3.2.5)

Now one proves that the power P absorbed from the sinusoidally oscillating field associated with the
perturbing Hamiltonian

Ĥex
K (t) = sinωt

∑
α

ôαK(t)Ξex
α (3.2.6)
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reads

P = −ω
2

∑
αβ

(Ξex
α )∗χL

αβ(ω)Ξex
β . (3.2.7)

This is somewhat less general version of the theorem.

3.3 Magnetization and density response

We are particularly interested in transverse fluctuations of magnetization, since it involves spin-flip pro-
cesses which are accessed in SPEELS and many neutron scattering experiments. They can be studied
through the analysis of transverse magnetic susceptibility, therefore in this section we turn our attention
to charge and magnetization density response. First, we consider general density-density susceptibility,
gradually focusing on the transverse magnetic response of a collinear magnet.

We consider time dependent perturbation Hamiltonian including oscillating electrostatic potential and
magnetic field coupled to the spin degree of freedom

Ĥex
K (t) =

3∑
i=0

∫
dxσ̂i

K(xt)Ξi(xt), (3.3.1)

where σ0
αβ ≡ δαβ corresponds to the density operator, σ1,2,3 ≡ σx,y,z are standard Pauli matrices and the

driving potential is defined as a four-vector

Ξ(xt) = (−|e|V(xt),−μBB(xt)), (3.3.2)

where V stands for the external electrostatic potential and B for the external magnetic field.

We look for the susceptibility function which relates the induced charge and magnetization density to
the driving force Ξ

δni(x, ω) =
3∑

j=0

∫
dx′χij

(
x,x′, ω

)
Ξj

(
x′, ω

)
(3.3.3)

and we define δni(x, ω) as FT of

δni(x, t) ≡ 〈σ̂i(xt)
〉
ex

− ni
GS(x), i = 0, x, y, z (3.3.4)

and ni
GS(x) stands for the unperturbed (ground state) density. Using the results of section 3.1 we obtain

the retarded susceptibility

χij
R

(
x,x′, t− t′

)
= −iθ(t− t′)

〈[
σ̂i

H(xt), σ̂j
H

(
x′t′
)]

−

〉
. (3.3.5)

In practice the real time temperature susceptibility is rather hard to compute and one introduces tem-

perature corelation function

χ̃ij
(
x,x′, τ − τ ′

)
= −

〈
Tτ

[
σ̂i

K(xτ)σ̂j
K

(
x′τ ′

)]〉
+
〈
σ̂i(x)

〉〈
σ̂j
(
x′)〉, (3.3.6)

which is much easier to calculate. The susceptibilities χR and χ̃ are analytic continuations of each other.
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3.3.1 Transverse magnetic susceptibility

The retarded correlation functions between raising and lowering magnetic operators defined in the previ-
ous chapter

χ+
R

(
x,x′, t− t′

)
= −iθ(t− t′)

〈[
σ̂+

H(xt), σ̂−H
(
x′t′
)]

−
〉

(3.3.7)

is of natural use when studying transverse spin excitations. The above correlator allows us to follow the
evolution of magnetic disturbance between two time-space points (xt) and (x′t′). At 0 K and in the case
of s uniform system the Lehmann representation of χ+,

χ+
R(q, ω) =

∑
j

(
|〈j|σ̂+(q)|0〉|2

ω − (K0 −Kj) + i0+
− |〈j|σ̂−(−q)|0〉|2
ω − (Kj −K0) + i0+

)
, (3.3.8)

where |0〉 denotes the ground state, is particularly easy to interpret. Its poles determine the spectrum
of states which can be coupled to the ground state by lowering and raising operators, i.e. it allows us to
study excited states involving spin-flip. The q dependence allows us to control additionally the shape of
the magnetization change.

One proves (see e.g. [51]) that in a ferromagnet without anisotropy in the long wave-length limit the
analytic structure of χ+ is dominated by the spin-wave pole

χ+
R(q, ω) ∼ 1

ω −Dq2 + i0+
, (3.3.9)

which means that it diverges for q = 0 and ω = 0, which corresponds to the fact that uniform rotation
of magnetization in the absence of anisotropy does not cost any energy. This is an example of Goldstone
mode.

3.3.2 Scattering experiments

The inelastic neutron-scattering cross section of magnetic excitations is given by [52, 10]

∂2σ

∂Ω∂ω
= − 2

π

1
e−βω − 1

(
2γe2

mc2

)2
k

k′
∣∣∣F (q)2

∣∣∣∑
ij

(
δij − k̂ik̂j

)
Imχij(q, ω), (3.3.10)

where γ is the gyromagnetic ratio of the neutron, m stands for the electron mass, k and k′ are incident
and final wave vectors of the neutron, q ≡ k − k′ stands for the momentum transfer, and F (q) is the
atomic form factor.

Analogous expression [53] is obtained for the cross-section in spin-polarized electron energy loss
spectroscopy (SPEELS) [54, 55, 56, 13, 57, 5]. We remark here that despite this similarity the scattering
of neutrons and electrons is governed by different physical processes. In the case of thermal neutrons
the coupling mechanism is provided by the interaction of the magnetic moment of a neutron with the
oscillating magnetic field of a spin-wave. For SPEELS the interaction is of the exchange type and no
magnetic interaction is involved. Somewhat pictorially this can be presented as follows. A spin-polarized
electron with a spin antiparallel to the majority spin orientation may create a magnon by exchanging with
another electron with majority spin. During the process the sample becomes negatively charged and the
electron is ejected with somewhat smaller energy. The difference is the excitation energy. The means
free paths are different for the scattering electrons and neutrons. Electrons cannot penetrate deeper than
couple of atomic layers into the sample, which makes SPEELS surface sensitive technique. Neutrons probe
essentially the bulk magnetic modes, because of much smaller cross-section of the process.
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3.3.3 Response of a non-interacting system

The response of an ensemble of non-interacting electrons can be determined starting from Eq. 3.3.5

χij
R0

(
x,x′, t− t′

)
=

−iθ
(
t− t′

)∑
km

(
n0

k − n0
m

)
σi

αβσ
j
γδϕ

0
k(xα)∗ϕ0

m(xβ)ϕ0
m

(
x′γ
)∗
ϕ0

k

(
x′δ
)
ei(ε0k−ε0m)(t−t′). (3.3.11)

Its FT reads

χij
R0

(
x,x′, ω

)
=
∑
km

σi
αβσ

j
γδ

(
n0

k − n0
m

)ϕ0
k(xα)∗ϕ0

m(xβ)ϕ0
m(x′γ)∗ϕ0

k(x
′δ)

ω + ε0k − ε0m + i0+
. (3.3.12)

It can be shown that in the non-interacting case the imaginary time susceptibility can be expressed as

χ̃ij
0

(
x,x′, τ − τ ′

)
= G 0

δα

(
x′τ ′,xτ

)
G 0

βγ

(
xτ,x′τ ′

)
σi

αβσ
j
γδ (3.3.13)

and aided by eq. 2.3.8 one obtains

χ̃ij
0

(
x,x′, τ − τ ′

)
= −

∑
km

σi
αβσ

j
γδϕ

0
k(xα)∗ϕ0

m(xβ)ϕ0
m

(
x′γ
)∗
ϕ0

k

(
x′δ
)

(3.3.14)

×e(εk−εm)(τ−τ ′)(θ(τ − τ ′
)(

1 − n0
m

)
n0

k + θ
(
τ ′ − τ

)(
1 − n0

k

)
n0

m

)
. (3.3.15)

As a product of two Fermionic Green’s functions χ̃ij
0 (τ − τ ′) is periodic with period β in variable τ − τ ′;

its imaginary time Fourier transform consists only of bosonic frequencies and reads

χ̃ij
0

(
x,x′, ωb

n

)
=
∑
km

σi
αβσ

j
γδ

(
n0

k − n0
m

)ϕ0
k(xα)∗ϕ0

m(xβ)ϕ0
m(x′γ)∗ϕ0

k(x
′δ)

iωb
n + ε0k − ε0m

. (3.3.16)

Let us introduce the following function of a general complex variable

χij
0

(
x,x′, z

)
=
∑
km

σi
αβσ

j
γδ

(
n0

k − n0
m

)ϕ0
k(xα)∗ϕ0

m(xβ)ϕ0
m(x′γ)∗ϕ0

k(x
′δ)

z + ε0k − ε0m
; (3.3.17)

we see that the temperature and real time susceptibilities are indeed analytic continuations of each other

χ̃ij
0

(
x,x′, ωb

n

)
= χij

0

(
x,x′, iωb

n

)
, (3.3.18)

χij
R0

(
x,x′, ω

)
= χij

0

(
x,x′, ω + i0+

)
. (3.3.19)

By means of eq. 3.3.13, the definition of bare Green’s function 2.3.4 and the convolution theorem B.1.12
we arrive at the following equation

χij
0

(
x,x′, iωb

n

)
=

1
β

∑
m∈Z

σi
αβσ

j
γδGβγ

(
x,x′, zm

)
Gδα

(
x′,x, zm−n

)
, (3.3.20)

which is the base for the numerical construction of the non-interacting Kohn-Sham susceptibility.
χij

0 (x,x′, z) has the following symmetries providing x ∈ R+

χij
0

(
x,x′, ix

) ∈ R, (3.3.21a)

χij
0

(
x,x′,−x+ i0+

)
= χij

0

(
x,x′, x+ i0+

)∗
. (3.3.21b)

They can be also deduced from the general property that χij(x, t) is real.
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3.3.4 Collinear magnetic structures

Collinear magnets are systems for which a one global spin quantization axis can be chosen and Green’s
function can be diagonalized in the same spin basis everywhere in space

G0
(
x,x′, z

)
=
(
G0

↑(x,x
′, z) 0

0 G0
↓(x,x

′, z)

)
. (3.3.22)

If the system is magnetized the direction of magnetization defines the z spin direction. The strong state-
ment that the system is collinear can be made usually only about non-interacting systems.

In this case the density-density response χij
0 features several symmetries, which can be summarized

as follows

χ0 =

⎛⎜⎜⎝
χ00

0 0 0 χ0z
0

0 χxx
0 χxy

0 0
0 −χxy

0 χxx
0 0

−χ0z
0 0 0 χzz

0

⎞⎟⎟⎠ . (3.3.23)

Let us note that the response to the transverse (lying in the xy-spin-plane) magnetic field is transverse
and does not involve charge density response as opposed to longitudinal magnetic field (along z-spin
direction). In the paramagnetic case the whole susceptibility matrix becomes isotropic

χij
0param ∼ δij . (3.3.24)

Generally, in the collinear case the transverse susceptibility matrix is always isotropic, having a struc-
ture of a rotation matrix. This means that if one rotates rigidly the direction of the driving field the
direction of magnetization response will be rotated by the same angle. It is therefore often convenient to
introduce circular coordinates for magnetization response and magnetic field

m± = mx ± imy, B± = mx ± imy. (3.3.25)

It easy to see that they are connected through the following relation

m±(x, ω) =
∫
dx′χ±(x,x′, ω

)
B±
(
x′, ω

)
, (3.3.26)

where the circular components of the susceptibility are defined as

χ± = χxx ∓ iχxy. (3.3.27)

3.3.5 Random phase approximation

Using the methods of field theory [31] one proves that the susceptibility of an interacting system can be
computed as

χ̃(q, ωb
n) =

Π(q, ωb
n)

1 − V (q)Π(q, ωb
n)
, (3.3.28)

where Π(q, ωb
n) is called proper polarization and for simplicity we considered a uniform system and

charge-charge response. A theory of exactly the same structure is obtained for the general density-density
response and inhomogeneous systems. Π is generally not known exactly and can be approximated by a
selected set of Feynman diagrams.

A radical and simple but widely used treatment is to approximateΠ with its non-interacting counter-
part,Π0, which coincides with the non-interacting susceptibility, χ0. This method is called random phase
approximation (RPA).
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3.4 Linear response DFT

Runge and Gross formulated time dependent variant of density functional theory in 1984 [58] proving that
under mild general conditions there is a one-to-one correspondence between the time-dependent charge
and magnetization density

〈
σ̂i(xt)

〉
and the time-dependent external potential v(xt). A time-dependent

analog of KS equations can be devised [59]. The method is in principle capable of describing arbitrarily
large excitations, including non-linear effects like higher harmonic generation.

In 1985 Gross and Kohn laid foundations of linear response time-dependent density functional theory
framework [22, 23], which is applicable when the perturbing Hamiltonian is small. In order to construct
the response functions in the linear response DFT (LRDFT) we must know only the ground state properties
of the system.

The heart of the LRDFT is the assumption that the density perturbation is “non-interacting v-
representable”, that is one can write

δni(x, ω) =
3∑

j=0

∫
dx′χij

KS

(
x,x′, ω

)
δvj

eff

(
x′, ω

)
, (3.4.1)

where χij
KS(x,x

′, ω) the retarded response function of the noninteracting Kohn-Sham ground state corre-
sponding to unperturbed veff(x)

χij
KS

(
x,x′, ω

)
=
∑
km

σi
αβσ

j
γδ(fk − fm)

φk(xα)∗φm(xβ)φm(x′γ)∗φk(x′δ)
ω + (εk − εm) + i0+

, (3.4.2)

where φ’s and ε’s denote KS eigensystem. The effective perturbing potential includes, in addition to the
driving field, “many-body” potentials

δvi
eff(x, ω) = Ξi + 2δi0

∫
dx′ δn0(x′)

|x − x′| + δvi
xc(x, ω). (3.4.3)

The second term in the above expression represents time-dependent Hartree response. The third term,
being a perturbation to exchange correlation potential, is expressed as a functional of δni(x)

δvi
xc(x, ω) =

3∑
j=0

∫
dx′F ij

xc

(
x,x′, ω

)
δnj
(
x′, ω

)
. (3.4.4)

The exchange-correlation kernel is determined by the unperturbed ground-state density. Combining equa-
tions 3.3.3, 3.4.1, 3.4.3 and 3.4.4 we obtain the following self-consistency condition

χij
(
x,x′, ω

)
= χij

KS

(
x,x′, ω

)
+

3∑
k,l=0

∫∫
dx1dx2χ

ik
KS(x,x1, ω)

(
F kl

xc(x1,x2, ω) +
2δk0δl0
|x1 − x2|

)
χlj
(
x2,x′, ω

)
. (3.4.5)

The equation is referred to as “Dyson equation”, because of its characteristic form.
Fxc can be formally obtained as a functional derivative of exchange-correlation potential with respect

to the density

F ij
xc[nGS]

(
x,x′, t− t′

)
=
δvi

xc(x, t)
δnj(x′t′)

∣∣∣∣∣
Ξ=0,n=nGS

. (3.4.6)

If Fxc were known, equation 3.4.5 would allow us to compute the exact response function of the interacting
system. The structure of the above equation resembles strongly random phase approximation discussed in
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the previous section. It is important however to note that equation 3.4.5 is exact, while RPA corresponds
to a specific approximation for proper polarization function. Of course one still has to solve a true many
body problem and some approximations are necessary. They are introduced via specification of Fxc.

The philosophy of Kohn-Sham scheme provides us with an intuitive insight into the LRDFT Dyson
equation. In KS scheme interparticle interaction is mapped into a ficticious effective external potential,
which is determined by the density distribution coming from all particles in the system. Suppose we per-
turb our system with an external potential inducing certain transitions between occupied and unoccupied
KS states. The transitions lead to a change in the density distribution and therefore the effective potential
seen by the electrons is modified; one can say that the non-interacting KS system is exposed not only to
the external potential but also to an additional effective field being a result of the fluctuating environ-
ment. As in the case of ground-state calculations, this philosophy must lead to a self-consistent scheme,
expressed exactly through Dyson equation.

We are going to construct Fxc based on the ground state functional given by LSDA. Before moving
to detailed specification of Fxc let us point several limitations of this line of its construction. We are
essentially unable to describe any retardation effects, since the ground state xc functional is based on time
independent densities. The response of the exchange-correlation potential is necessarily adiabatic, given
by the instantaneous charge and magnetization densities. This is equivalent to neglecting the frequency
dependence of the kernel, Fxc(ω) 
 Fxc(0). Such an approach can be criticized, but one can anticipate it
to work well, when the characteristic energies we want to describe are small, like in the case of magnons.
There have been attempts to introduce the frequency dependence back into the kernel. One possibility is
to use the homogeneous electron gas kernel, making the assumption that the induced density is slowly
varying function of space, i.e. analogous to the approximation made in traditional static LDA [22, 23]. As
stated by Vignale et al. [60] due to the so called “harmonic potential theorem” violation it is impossible to
retain the locality of the kernel, while making it frequency dependent. Onida et al. discuss several other
possibilities [61].

So the kernel is local in LDA, determined by the local values of densities, and adiabatic

Fxc

(
x,x′, t− t′

) ∼ δ
(
x− x′)δ(t− t′

)
. (3.4.7)

It is called adiabatic LDA (ALDA).

3.4.1 Transverse magnetic susceptibility

In the context of this thesis it is not necessary to elaborate further the full structure of Dyson equation.
We focus our attention on the transverse susceptibility with the adiabatic LDA kernel.

When sticking to non-relativistic LDA, the KS system for a ferromagnet, a ferrimagnet or an antifer-
romagnet forms a collinear magnetic structure. The noninteracting KS response to a transverse magnetic
field is therefore transverse and does not involve a charge response. Within the LDA the true interacting
response has the same property.

To see it let us focus on the exchange-correlation kernel. The derivation can be found in [62]. As we
pointed out in the chapter devoted to DFT, the ith component of the exchange-correlation magnetic field
reads

Bi
xc = Bxc

mi

m
(3.4.8)

and its functional derivative with respect to jth component of the magnetization is

δBi
xc

δmj
= Bxc

∂

∂mj

mi

m
+
δBxc

δmj

mi

m
=
Bxc

m

(
δij − mimj

m2

)
+
δBxc

δm

mimj

m2
. (3.4.9)

The first term gives the response in the direction perpendicular to m̂ (the transverse response), while the
second along the direction of ground state magnetization. We see that the induced transverse magnetiza-
tion gives rise to an additional effective exchange-correlation magnetic field, which is also transverse. This



30 Linear response theory Chap. 3

is an important property since it allows us to decouple the Dyson equation for the transverse magnetic
susceptibility from the one for the longitudinal and the charge response.

Summing up, the Dyson equation for the transverse susceptibility reads

χ±(x,x′, ω
)

= χ±
KS

(
x,x′, ω

)
+
∫
dx1χ

±
KS(x,x1, ω)Kxc(x1)χ±(x1,x′, ω

)
. (3.4.10)

The use of circular coordinates allows us to work with a complex scalar equation instead of a matrix one
in spin indices ij. The real exchange-correlation kernel function amounts to

Kxc(x) = −μB
Bxc(x)
m(x)

, (3.4.11)

where Bxc(x) and m(x) are local values of the exchange-correlation magnetic fields and magnetization
density respectively. They can easily be found once a LDA parameterization is given. Care must be exer-
cised for the systems with vanishing magnetization, since in this case Kxc must be determined properly
as a limit.

If one casts the spatial dependence of χ±, χ±
KS and Kxc in an orthonormal basis, the Dyson equation

becomes a matrix one

χ±(ω) = χ±
KS(ω) + χ±

KS(ω)Kxcχ
±(ω) (3.4.12)

with a solution

χ±(ω) =
(
I − χ±

KS(ω)Kxc

)−1
χ±

KS(ω). (3.4.13)

Kxc matrix contains necessary matrix elements corresponding to the integral appearing in the original
Dyson equation.

3.4.2 Spin rotational invariance

In the absence of magnetic anisotropy one expects the system to be rotationally invariant, but in mag-
netically ordered systems the original symmetry in spin space is destroyed by the spontaneous ordering
along the z-axis described by the appearance of a static exchange-correlation field [63, 64]. The original
symmetry is dynamically restored by the appearance of low-frequency Goldstone mode. In this section
we want to show that the LRDFT formalism, exposed in the preceeding sections, exhibits a zero frequency
spin-wave mode, conserving the spin rotational invariance.

We want to prove that there exists an infinitesimal static transverse magnetic field B0(x), pointing
everywhere in the same direction, say along x-axis, for which the magnetic response is macroscopic. This
corresponds to a divergence of susceptibility, i.e. to the presence of Goldstone mode. Physically this means
that applying B0 introduces a magnetic anisotropy to the system; if it is indeed rotationally invariant and
B0 correctly chosen, all spins align along B0, minimizing their energy. For uniform systems, B0 is a
uniform field, but in the general case it varies in space. From the mathematical point of view B0(x)
represents an eigenvector of χ± matrix associated with a diverging eigenvalue.

We guess that B0(x) ∼ Bxc(x), and let us take B0(x) = αBxc(x), where α is small. We first
consider the response of the non-interacting KS system. The problem is static. The sum of xc magnetic
field and the external field is Bxc(x)(α, 0, 1) and one sees that for small α this corresponds to the rigid
rotation of the effective magnetic field without the change of its length. (The change of the length of the
new field is O(α2).) We end up with original KS ground state system rotated in spin-space. The change
of the z component of the magnetization is O(α2), the induced transverse magnetization is along x and
simply equals αm(x), wherem(x) stands for the ground-state value of the magnetization. We obtain the
first important information:

αm = χ0(ω = 0)αBxc. (3.4.14)
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Matrix notation is used for susceptibilities,m andBxc should be understood as vectors in the orthonormal
basis.

Using the same arguments as above, we note that the additional effective exchange-correlation trans-
verse magnetic field appearing as a consequence of the induced transverse magnetization αm(x) is
Bxc(x)(α, 0, 0), i.e.

αBxc = Kxcαm. (3.4.15)

We see that the ground state magnetization is an eigenvector of matrix χ0(0)Kxc associated with an
eigenvalue 1, so the matrix

I − χ0(0)Kxc (3.4.16)

is singular. This is turn means that the response to field of the shape of ground-state xc field, i.e.
Bxc(x)(1, 0, 0), is infinite. This proves that our formalism features Goldstone mode.

A few remarks are now in order. First, the same argument of the existence of a Goldstone mode ap-
plies to ferromagnets, but not to paramagnets, since in the latter case the is no effective xc field and the
argumentation becomes invalid. The biggest eigenvalue of χ0(0)Kxc is essentially the Stoner enhance-
ment factor and is smaller than one. Second, strictly speaking, the linear response theory breaks down
in the vicinity of Goldstone mode, since however small the perturbing field is, the response is macro-
scopic. Finally, when dealing with periodic (uniform) systems Goldstone mode is necessarily associated
with q = 0, because Bxc(x) is a periodic (constant) function of x.

3.5 Adiabatic spin dynamics

3.5.1 Heisenberg Hamiltonian

The characteristic energy ω(q) of long-wavelength magnons is usually small compared to the Stoner spin
splitting Δ and this fact can be used to decouple the slow evolution of the directions of the magnetic
moments and the fast electron dynamics, involving Stoner transitions. Such approach can be regarded as
a time analogue of the WKB approximation [18, 65, 66]. Fast electronic degrees of freedom are integrated
out and one arrives at a semiclassical equation of motion for the orientations of magnetic moments

∂tSp = −γSp × Beff, (3.5.1)

where Sp is an integral of the magnetization density m(r) over the atomic cell around the atomic site p,
γ ≡ gμB, where g is the gyromagnetic ratio of the electron and equal to 2 in Dirac’s theory and Beff is the
effective magnetic field, which in addition to the external magnetic field includes the exchange interaction
between moments. The procedure is effectively a mapping of the many body system onto well known
Heisenberg Hamiltonian (HH)

H = −1
2

∑
pr

Jprep · er, (3.5.2)

where ep ≡ Sp/Sp (Sp is the length of the moment and is always positive) and Jpr are so called exchange
parameters. (We adopt a convention that Jpp = 0.) J ’s are formally proportional to the second derivative
of E with respect to transverse magnetization and explicitly given in Ref. [18]. The approach is called
adiabatic; in this context it means that the electrons relax to a constrained ground state given by the
directions of ep’s essentially instantaneously.

One proceeds now as follows. First, one extracts the effective coupling constants Jpr from preferably
ab initio band structure calculations and in the second step Hamiltonian 3.5.2 is used to study magnetiza-
tion dynamics, including the determination of the spin-wave dispersion relation, the transition tempera-
ture, etc.
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Figure 3.1: Angles determining the state of a magnetic moment. The polar angle θ is measured with
respect to quantization axis z, azimuthal angle φ determines the phase of the moment. In the presence
of the external magnetic field (0, 0, B0) the moment precesses clockwise around the z-axis with Larmor
frequency ωL ≡ γB0. When the moment is tilted such that its z-component changes by θ2S/2 = 2
(effectively one spin is flipped), the energy of the system increases by ωL. It is assumed that S is large, i.e.
one deals with a classical spin.

There are several computational schemes taking advantage of the outlined adiabatic spin dynamics.
Using the so calledmagnetic force theorem (MFT) [20] one can determine directly the exchange parameters
Jpr . The frozen magnon approach (described in detail below) is a formally equivalent technique allowing
to find directly the energies of different magnetic configurations. The matrix Jpr can be also extracted
from the knowledge of the static magnetic susceptibility [66]. Bruno [67] pointed out that the exchange
parameters based on MFT and the susceptibility calculations are not equivalent – J ’s based on MFT
contain a systematic error, which asserts itself once the adiabatic parameter � ≡ ω(q)/Δ ceases to be
small – and suggested an improved version of MFT reproducing correctly the static susceptibility. Later
it was argued [62] that while the “renormalized” MFT better reproduces static properties of magnets, the
“old” exchange integrals should be used to determine spin-wave excitation spectra. It should be stressed
that both approaches are equivalent in the � → 0 regime.

The adiabatic decoupling is exact in the limit of small magnon energy (� → 0), i.e. it allows to
determine correctly the spin-wave stiffness constant D. For the higher energies (larger q’s) one expects
that he coupling to the Stoner continuum, apart from leading to a decay of spin-waves, can also cause
a renormalization of the magnon energy. In the latter case the description of spin dynamics based on
magnetic susceptibility χ(q, ω) is more reliable. On the other hand, the adiabatic approach leads to
computationally inexpensive schemes and is of practical and conceptual importance.

3.5.2 Spin-waves of collinear magnets in the adiabatic approximation

Diagonalization of Heisenberg Hamiltonian

The effective field in the Heisenberg model reads

Bp
molec =

1
μBSp

∑
r

Jprer, (3.5.3)
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so we obtain the following equation of motion (EOM) for the directions of magnetic moments

Sp∂tep(t) = −2ep ×
∑

r

Jprer. (3.5.4)

We assume now that the ground state is collinear. The EOM is non linear, but it can be linearized upon
assumption that the deviations of moments from their ground state directions are small. In this case one
obtains

∂te
+
p (t) = 2iS−1

p

∑
r

Jpr

(
e+p (t)er − epe

+
r (t)

)
, (3.5.5)

where e+p ≡ exp + ieyp measures the deviation of the moment and ep = +1 when the moment in the
ground state points upwards and −1 otherwise. We look now for a steady state solution of the EOM

e+p (t) = e+p eiωt (3.5.6)

and obtain the following eigenvalue problem for the “torque matrix”

ωλe
+
λp =

∑
r

Tpre
+
λr, Tpr ≡ 2S−1

p δpr

∑
l

Jplel − 2S−1
p epJpr. (3.5.7)

The index λ labels eigenvalues. The eigenmodes are spin-waves in our understanding: e+λp are interpreted
as the mode’s amplitudes on different sites and ωλ is the magnon frequency.

The configuration of moments given by e+λp has energy higher than the ground state energy by

ΔEλ =
∑
pr

(
e+λp

)∗Epre
+
λr =

1
4
ωλ

∑
p

Spep

∣∣∣e+λp

∣∣∣2, (3.5.8)

where

Epr ≡ 1
2

(
δpr

∑
l

Jplel − Jpr

)
=

1
4
SpepTpr. (3.5.9)

(The expression for ΔE given by Eq. 3.5.8 is valid for general e+p , not necessarily an eigenvector of Tpr.)
Since the magnon corresponds to an effective flip of one spin

−1
2

∑
p

Spep

∣∣∣e+λp

∣∣∣2 = ±2. (3.5.10)

The − sign corresponds to the decrease of the total moment of the system (ωλ positive) and + to the
decrease (ωλ negative). The latter case arises for example in the antiferromagnetic case as one of the
equivalent solutions. In any case ΔEλ = |ω|λ > 0 as expected for a system excited from the ground
state.

In the case of translationally invariant systems the eigensolutions are plane waves

e+λpR = e+λp(q)eiq ·R, (3.5.11)

where p runs now over the atoms in the primitive cell now and R ∈ L. The amplitudes e+λp(q) are found
as eigenvectors of

Tpr(q) ≡ 2S−1
p δpr

∑
l

Jpl(0)el − 2S−1
p epJpr(q), Jpr(q) =

∑
M

JRp0re
−iq ·R. (3.5.12)



34 Linear response theory Chap. 3

There are so many distinct magnon branches ωλ(q) as there are inequivalent atoms in the cell. One
proves that one of these branches is acoustic, i.e. features quadratic dispersion relation for small q’s. The
energy of this mode vanishes for q = 0; this is the Goldstone mode arising naturally due to the absence
of anisotropy.

It is important to remark that the J ’s obtained from the “magnetic force theorem” of Liechtenstein
[20] are two times smaller than those used in this section.

Let us finally determine the transverse magnetic susceptibility associated with the Heisenberg model.
If one applies a small transverse field B+

p (q)eiq ·Reiωt, the induced magnetization is transverse and

changes as Spe
+
p (q)eiq ·Reiωt and can be found from the following equation∑

r

S−1
r (δprω − Tpr(q))Sre

+
r (q) = γep

1
μB

(−μBB
+
p (q)

)
, (3.5.13)

so the inverse of the dynamic transverse magnetic susceptibility in the understanding of this thesis reads(
χ−1(ω,q)

)
pr

= μBepγ
−1S−1

r (ωδpr − Tpr(q)). (3.5.14)

It corresponds to the enhanced susceptibility. Since the magnon spectrum in the adiabatic approximation
is fully determined by T it can be extracted from the static enhanced susceptibility [66].

Spin spiral calculations

In another but equivalent version of MFT one determines the spin-wave frequency as the additional

energy needed for deformation of the ground state magnetization to the characteristic “spin-spiral” form
specified above. In the electron band calculation the energy is obtained by means of spin-space symmetry
groups [68, 19].

The state of a magnetic moment on a particular site is determined by two angles, see Fig. 3.1. The
polar angle θ is measured with respect to quantization axis z, the azimuthal angle φ determines the phase
of the moment. A frozen magnon configuration is given by specifying polar angles θi on each site in the
unit cell and spin-wave vector q determining in turn the azimuthal angles

φi = q · si, (3.5.15)

where si is the position of the ith atom in the unit cell. To estimate the dispersion relation ω(q) the en-
ergy of frozen magnon configurationE({θi} ,q) is computed and compared to undeformed configuration
E({θi} ,0). The energies of the spin-wave excitations can now be estimated for small θ’s as

ω(q) =
2

ΔM
(E({θi} ,q) − E({θi} ,0)), (3.5.16)

where

ΔM =
∑

λ

θ2
λ

2
Mλ ≈

∑
λ

(1 − cos θλ)Mλ (3.5.17)

can be regarded for small θ as a change of the system’s magnetization. Note that the above normalization
simply counts the number of magnons (each magnon lowers the magnetization by 2μB).

A few remarks are now in order. For systems with many non-equivalent magnetic atoms the choice
of θi is non-trivial. The angles can be guessed or determined self-consistently, separately for every vector
q. In the frozen-magnon scheme based on spin-spiral calculations, it is impossible to incorporate the
magnetic anisotropy directly. Once the dispersion relation is computed one can extract coupling constant
J ’s of the HH and subsequently employ this Hamiltonian to study magnetic properties as described in
previous subsections.

❦

All the necessary formalism has been exposed and in the proceeding chapters we will try to apply it to
evaluation of dynamical susceptibility of itinerant electron systems.



CHAPTER

FOUR

UNIFORM ELECTRON GAS

The model of a uniform electron gas (UEG)1, presented in this chapter, is conceptually very important for
this thesis, since it provides us with a good semi-qualitative picture of the ground state and the dynamics
of an itinerant ferromagnet. It contains all the relevant concepts (like the presence of band splitting,
Stoner states, spontaneous symmetry breaking and Goldstone modes, etc.) being not obscured by the
complex details of unit cells, thus allowing an intuitive insight into the machinery of linear response
density functional theory (LRDFT). Apart from the conceptual aspects, the model is to a great extent
solvable analytically and the results can be used to benchmark numerical implementations, cf. Sec. 5.7.

The Coulomb interacting electron gas even in the absence of spatially varying external potential, is not
exactly solvable. The model of a ground state presented in Sec. 4.1 is believed to be qualitatively similar
to the one found in weakly correlated itinerant magnets. We discuss the major assumptions behind the
picture, remarking briefly that the general ground state of UEG in the whole range of electronic densities
must necessarily be more complex than the one suggested by density functional theory in the LDA.

Based on the ground state, the susceptibility is constructed using the two step LRDFT scheme of the
previous chapter. First, in Sec. 4.2, the Kohn-Sham susceptibility is found and subsequently in Sec. 4.3 one
solves the susceptibility Dyson equation. At the end of the latter section main qualitative differences to
be expected in real materials are mentioned.

Most of the material presented in this chapter is not new and can be found in [11], Chap. 3. The most
important original contributions are the explicit derivation of non-enhanced susceptibility formula (author
is not aware of any textbook containing it) and making connection between PFEG and real itinerant
magnets at the end of Sec. 4.3.

4.1 Ground state

We adopt here a jellium-like picture in which the positive nuclear charges form an uniform background.
We assume that the ground state densities are uniform and that the Stoner condition is satisfied, i.e. it is
energetically favorable for the UEG to become spin-polarized. Furthermore the ground state is assumed
to be collinear and ferromagnetic. The temperature is 0 K.

One immediately sees that essentially it cannot be the most general picture. Even if one assumes the
uniform positive background, the system, could develop (spin-) density wave ground state by decreasing
the electron-electron interaction while gaining on the interaction with the background. Similarly non-
collinearity could be expected. Such viable scenarios are plenty in numbers, but the one chosen seems to
be a good starting point for studying collinear itinerant magnets.

The Hartree potential is neutralized by the interaction with the background. The exchange-correlation
scalar potential is uniform and can be gauged out, serving as a reference (zero) energy. The effective

1It will be sometimes referred to as polarized Fermi gas (PFEG).
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exchange-correlation magnetic field is also uniform and points up along the z-axis. The single particle
energies and orbitals are solutions of the Kohn-Sham equation2(−∇2I + Δσz

)
ψ = εψ, (4.1.1)

where half of the band splitting reads

Δ = −μBB. (4.1.2)

The spatial part of ψ is a plane wave

ψk(x) =
1√
Ω

eik ·x, (4.1.3)

where Ω stands for the volume of the world3. Single particle orbitals are labeled by a composite quantum
number kσ and their energies read

ε(kσ) = k2 + σΔ, (4.1.4)

where the spin index σ = 1 for the electrons with spin up (↑) and −1 for those with spin down (↓). If
B > 0 the down (−1) channel is the majority channel. Without loss of generality we will always consider
this case.

The density of states in k-space is constant and reads

Ω
(2π)3

, (4.1.5)

while in the energy space it depends on σ

ρσ(ε) =

{
Ω

(2π)2

√
ε− σΔ ε ≥ σΔ

0 ε < σΔ.
(4.1.6)

The particle density n and splitting Δ determine chemical potential μ

n = N/Ω =
1
Ω

∑
σ

∫ μ

−∞
fT (ε)ρσ(ε)dε ≡

∑
σ

nσ, (4.1.7)

where nσ is the particle density in the given spin channel and N stands for the number of particles. The
magnetization is defined as

m = −ζn =
∑
σ

σnσ (4.1.8)

and ζ is called polarization.
If B = 0 (Fig. 4.1a) the highest occupied state (paramagnetic Fermi energy, εF) can be expressed in

terms of n as

εF ≡ kF
2 =

(
3π2n

)2/3
. (4.1.9)

As Δ increases there are more and more particles in down the channel (Fig. 4.1b). Th up channel be-
comes empty when the splitting reaches a critical value Δc, which can be determined from the following
condition (Fig. 4.1c)

μ = Δ ≡ Δc = εF/21/3. (4.1.10)

2It is assumed that Δ is the self-consistent value.
3We use Born-von Kármán boundary conditions.
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Figure 4.1: PFEG for different relative values of chemical potential and splitting. For vanishing splitting
the system is essentially paramagnetic (a). Form small Δ it acquires a finite polarization, but both channel
are populated (b). When the critical splitting is reached (c) the up states become unoccupied. For larger
values of splitting we deal with a half-metal (d).

For larger splitting the system is half-metallic, Fig. 4.1d.
The chemical potential is rather complicated function of n and Δ

μ(n,Δ) =

{
μ̃(n,Δ) Δ < Δc

22/3εF − Δ Δ ≥ Δc;
(4.1.11)

for practical purposes μ̃(n,Δ) is evaluated numerically. There are several other handy relations

ζ =

⎧⎨⎩
(

μ+Δ
εF

)3/2 − 1 Δ < Δc

1 Δ ≥ Δc,
(4.1.12a)

μ =
εF
2

(
(1 + ζ)2/3 + (1 − ζ)2/3

)
, (4.1.12b)

Δ =
εF
2

(
(1 + ζ)2/3 − (1 − ζ)2/3

)
. (4.1.12c)

Finally, the highest occupied k state in the given spin channel is given by

kσ = kF(1 − σζ)1/3. (4.1.13)

4.2 Non-interacting susceptibility

Based on the result of the previous chapter we can express the Fourier-transformed susceptibility of the
polarized non-interacting electron gas as

χ∓
0 (q, ω + iη) =

1
(2π)3

∫
k∈R3

d3k
fT (ε↓(k)) − fT (ε↑(q + k))
ω + iη + ε↓(k) − ε↑(q + k)

≡
∑

σ=±1

Iσ, (4.2.1)
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where

Iσ = − σ

(2π)3

∫
k∈R3

d3k
θ(kσ − k)

ω − 2q ·k + σq2 − 2Δ + iη
(4.2.2)

and we used the fact that at 0 K fT reduces to the Heaviside function. The integrals can be evaluated in
spherical coordinates, with z-axis along q

Iσ = − σ

(2π)3

∫ kσ

0
k2dk

∫ 2π

0
dφ

∫ π

0

dθ sin θ
ω − 2qk cos θ + σq2 − 2Δ + iη

. (4.2.3)

The integral over θ reduces to

− 1
2qk

∫ 1

−1

dx

(pσ − iη′)/k + x
= − 1

2qk
ln
pσ − iη′ + k

pσ − iη′ − k
(4.2.4)

by means of substitution x = cos θ, where

pσ =
2Δ − ω − σq2

2q
, η′ =

η

2q
. (4.2.5)

Now we obtain

Iσ =
σ

(2π)2
1
2q

∫ kσ

0
kdk ln

pσ − iη′ + k

pσ − iη′ − k
(4.2.6)

and the integral in the above expression equates to

kσ

(
pσ − iη′

)
+

1
2

(
k2

σ − (pσ − iη′
)2) ln

pσ − iη′ + kσ

pσ − iη′ − kσ
. (4.2.7)

Finally the susceptibility reads

χ∓
0 (q, ω + iη) =

∑
σ=±1

σ

(2π)2
1
2q

(
kσ

(
pσ − iη′

)
+

1
2

(
k2

σ − (pσ − iη′
)2) ln

pσ − iη′ + kσ

pσ − iη′ − kσ

)
. (4.2.8)

In the case of retarded susceptibility (η → 0+) one obtains

χ∓
0

(
q, ω + i0+

)
=
∑

σ=±1

σ

(2π)2
1
2q

(
kσpσ +

1
2
(
k2

σ − p2
σ

)(
ln
∣∣∣∣kσ + pσ

kσ − pσ

∣∣∣∣+ iπθ(kσ − |pσ|)
))

, (4.2.9)

using the following identity (α ∈ R \ {0})

ln
α+ 1 ± 0+

α− 1 ± 0+
= ln

∣∣∣∣α+ 1
α− 1

∣∣∣∣∓ iπθ(1 − |α|). (4.2.10)

The imaginary part remains finite when one of the following conditions is satisfied (Figure 4.2)

ω−1 >ω > ω1, ω2 > ω > ω−2, with (4.2.11a)

ω±1 = (q ∓ k↓)2 − k2
↓ + 2Δ, (4.2.11b)

ω±2 = −(q ∓ k↑)2 + k2
↑ + 2Δ. (4.2.11c)

The imaginary part vanish for ω = 0. For the half-metallic PFEG there appears a gap Δ − μ in the
spectrum of Stoner states.
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Figure 4.2: q-ω plane with regions where Stoner states exist (I, I’ and II). The spin-waves can appear only
in the region III’ for ω > 0. Please see text for the definition of the ω symbols. The picture comes from
[11].

The finite imaginary part of the non-enhanced susceptibility signifies the presence of singularities
(Stoner states), which in this case form a branch cut on the real axis (corresponding to the characteristic
logarithmic behavior). An example of the frequency dependence of the susceptibility for vector q0 <
k↓ − k↑ marked in Fig. 4.2 is presented in Fig. 4.3a. The imaginary part is finite only in a limited domain,
being negative for ω > 0 . (We remind that the spectral power is given by (−1/π)Imχ(ω + i0+).) The
real part changes its sign as it crosses the singular region. The intensity is strongly peaked for q = 0 and
ω = 2Δ.

For vanishing splitting the static susceptibility reduces to the well-known Lindhard dielectric function

χ∓
0Δ=0(q, 0) = − kF

4π2
Lh
(

q

2kF

)
, (4.2.12a)

Lh(x) =
1
2

+
1 − x2

4x
log
∣∣∣∣1 + x

1 − x

∣∣∣∣. (4.2.12b)

The static uniform susceptibility of the paramagnetic non-interacting electron gas equals − 1
4π2kF.

Because of the continuous translational invariance the susceptibility depends only on single wave-
vector q. Additionally the invariance with respect to spatial rotations reduces this dependence to the
absolute value of the vector q.

4.3 Spin-waves in PFEG model

The enhanced susceptibility is readily obtained from the susceptibility Dyson equation

χ(q, z) = χ0(q, z) + χ0(k, ω)Kxcχ(k, ω), (4.3.1a)

χ(q, z) =
χ0(q, z)

1 −Kxcχ0(q, z)
. (4.3.1b)
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The exchange correlation kernel Kxc is a simple scalar constant in adiabatic local density approximation
and to satisfy the spin rotational invariance it must read

Kxc =
1

χ0(0, 0)
∈ R. (4.3.2)

We immediately see that the enhanced susceptibility can develop a singularity beside the Stoner contin-
uum, providing that the denominator vanishes

1 −Kxcχ0(q, ω0(q)) = 0. (4.3.3)

Since Kxc is necessarily real, χ0(q, ω0(q)) must be real, too. This in turn means that ω0(q) ∈ R and it is
located outside the Stoner continuum. The singularity therefore will be a simple pole located on the real
axis. The behavior of the enhanced susceptibility in the small neighborhood of ω0(q) can be determined
as follows

χ(q, z) ≈ χ0(q, ω0(q))
1 −Kxcχ0(q, ω0(q)) −Kxcχ

′
0(q, ω0(q))(z − ω0(q))

= −χ0(q, z)/(Kxcχ
′
0(q, ω0(q)))

z − ω0(q)
. (4.3.4)

(The expression above is −1st term of the Laurent expansion about the spin-wave pole ω0(q).) Figure 4.3b
presents the imaginary part of the enhanced susceptibility for q = q0 from Figure 4.2. The spin-waves can
appear only in the region III’ for ω > 0. For small q’s the spin-waves feature a quadratic dispersion rela-
tion. Their intensity decreases with increasing q and vanishes when they contact the Stoner continuum.
Substantial spectral power is transferred from the Stoner states to the spin-wave peak; the first become
strongly renormalized, featuring enhanced intensity close to their contact point with the spin-waves in-
stead of q = 0 and ω = 2Δ point in the non-interacting case. The model is qualitatively very close to the
picture of magnetic excitations in most ferromagnetic metals, e.g. MnSi is believed to be described well by
the PFEG model [69]. Below we will discuss briefly, what differences might occur.

a) b)

Figure 4.3: Non-enhanced (a) and enhanced (b) retarded susceptibility for wave-vector q0 from Fig. 4.2.
Susceptibility is given in Kb. In figure (a) one can distinguish regions III’, I’, I, II and II (going in the
direction of growing frequency) divided by discontinuities of 1st derivative of Imχ0(q0, ω + i0+). Note
the strong renormalization of Stoner continuum upon the action of the Dyson equation.

The spectral density of (non-enhanced) Stoner states in PFEG model is either zero or substantial (the
imaginary part being comparable to the real part), therefore no well defined spin-waves peaks are expected
in the Stoner region. In real materials however one can imagine that for certain ω0(q) ∈ R

1 −KxcRe
[
χ0

(
q, ω0(q) + i0+

)]
= 0 (4.3.5)
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and in addition the imaginary part of χ0(q, ω0(q) + i0+) is small comparing to its real part. The suscep-
tibility around ω0(q) will assume than the form

χ(q, z) ≈ −χ0(q, z)/(Kxcχ
′
0(q, ω0(q) + i0+))

z − (ω0(q) + Σ(q))
, (4.3.6)

where the magnon self-energy would be

Σ(q) =
1 −Kxcχ0(q, ω0(q) + i0+)
Kxcχ

′
0(q, ω0(q) + i0+)

. (4.3.7)

The function appears to have effectively a new pole at ω0(q) + Σ(q). Since the self-energy has a non-
vanishing imaginary part, the spin-wave features a finite life-time. Additionally, the real part of Σ causes
energy renormalization. In fact there is no additional singularity introduced by the Dyson equation.
Rather, the originally small Stoner continuum becomes strongly enhanced near ω0(q). Where the non-
interacting Stoner states’ density is pronounced such a single pole approximation must fail; the suscepti-
bility retains its logarithmic singular behavior.

In ALDA the hybridization with Stoner states mentioned above is the only mechanism of broadening
of spin-waves. It seems to describe well the collective modes in simple magnetic materials (Fe, Ni, Co)
where broadened but yet well-defined spin-wave peaks exist in the wide range of wave-vectors. In this
materials the density of Stoner states is not the only factor determining the magnons’ life-time. As sug-
gested by Cooke [21] the detailed structure ofKxc matrix, giving the overlap between Stoner and magnon
states, is important as well.

Outside the Stoner continuum spin-waves leave infinitely long. Functionals beyond ALDA could
account for the broadening of the spin-wave peaks also outside the continuum [60], capturing effects
which could be interpreted as magnon-magnon or magnon-plasmon interaction, to mention just the two
examples. Non-electronic degreed of freedom, most notably phonons, provide additional decay channel.

In nearly ferromagnetic paramagnets Stoner continuum can also become strongly enhanced and such
a quasi spin-wave peak acquires even a certain dispersion. These states are called paramagnons. They
were first considered by Doniach [70] in a model system, but they exist in real materials as well, examples
being Pd, V, Y and Sc and Cr95V5 [29, 71, 25, 72].

Let us finally remark that, there is only one spin-wave branch in the PFEG model. In materials with
many non-equivalent magnetic atoms in the unit cell many branches are expected. The effect originates
from the internal dynamics within the unit cell, necessarily absent in the spatially uniform model.



CHAPTER

FIVE

IMPLEMENTATION

This chapter deals with the implementation of the formalism of the linear response density functional
theory using Korringa-Kohn-Rostoker Green’s function method based on Hutsepot environment. First,
the construction of the KKR Green’s function is outlined and subsequently one moves to the description
of susceptibility calculations. A basis set is discussed, the construction of the non-enhanced susceptibility,
solution of Dyson equation and finally, in Sec. 5.5, the possibilities of extracting useful information from
the enhanced susceptibility matrix.

5.1 The structure of space

x or r denotes general spatial coordinate. For our purposes it is convenient to introduce so called cell
centered coordinates. A set of sites {SN} is defined and the position r is measured with respect to the the
site SN , which is the one closest to r

rN = r− SN . (5.1.1)

The site index N = N(r) is determined almost uniquely by r by means of Voronoi tessellation of the set
of all SN

1.
When a systems is periodic the general site coordinates can be decomposed into lattice vector Rn

determining given primitive cell and the position of the basis atom sα

SN = Rn + sα. (5.1.2)

Small Latin letters (m,n, . . .) label lattice vectors, while small Greek letters (α, β, . . .) denote basis vectors
within the cell. The general index N is therefore understood as a pair (n, α).

5.2 The construction of the KKR Green’s function

As it has been mentioned in Chap. 2 the Green’s function of a non-interacting system is the resolvent of
the single particle Schrödinger equation 2.3.10

(z −H0(x))G
(
x,x′) = δ

(
x− x′). (5.2.1)

One of the method to determine the Green’s function is to treat the problem as a genuine scattering of an
electron off the effective potential and this formulation is known as the Korringa-Kohn-Rostoker scheme

1The word “almost” is used to indicate exceptions where a point r may be equally close to two or more sites. This happens
on the boundaries of the Voronoi cells.
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or multiple scattering theory [73, 74, 75]. Any practical implementation of the method is as involved as
any other band technique and its detailed description is not relevant in the context of the thesis, it is
however necessary to sketch how the Green’s function is constructed.

In the multiple scattering theory one divides the space into non-overlapping space-filling polyhedra,
so called atomic cells, since in the most cases their centers correspond to the positions of atomic nuclei.
From the very beginning we resort ourselves to the atomic sphere approximation (ASA) [76], where the
polyhedra are approximated by means of overlapping spheres and it is assumed that the potentials in the
spheres are spherically symmetric. Now, the construction of the Green’s function is split into two parts.
First, the scattering off a single atomic cell is concerned. By solving a radial Schrödinger equation for the
single scatterer one obtains the so called scattering (or t-) matrix and a pair of regular and irregular solu-
tions [77]. Next, the multiple scattering off the centers is taken into account through the construction of so
called “backscattering” operator. There exists an equivalent formulation in which the multiple scattering
effects are described by so called “scattering path operator”, but it is not used in this work.

G is a general matrix in spin space, Gαβ , but in the case of collinear magnetic system it has only
diagonal components and often the notation Gσ will be used, where σ =↑, ↓. The Green’s function is
represented as a sum

G
(
r, r′, z

)
= Ḡ

(
r, r′, z

)
+ G̃

(
r, r′, z

)
. (5.2.2)

G̃ represent the scattering due to a single site, while Ḡ corresponds to the multiple scattering part. Spatial
dependence of the Green’s function is expressed by means of spherical harmonics and the regular and
irregular solutions

Ḡσ

(
r, r′, z

)
=
∑
LL′

GMN
σLL′(z)RM

σL(rM , z)RN
σL′
(
r′N , z

)YL(r̂M )YL′
(
r̂′N
)
, (5.2.3)

G̃σ

(
r, r′, z

)
=

√
z
∑
L

δMNR
M
σL

(
r<
M , z

)
HM

σL

(
r>
M , z

)YL(r̂M )YL

(
r̂′M
)
. (5.2.4)

GMN
σLL′(z) stands for the backscattering operator, R and H are the regular and irregular solutions respec-

tively. r>
M = max (rM , r′M ), while r<

M = min (rM , r′M ). The spatial dependence of radial solutions is
given on a mesh. M is the index of the site closest to r and N of the one closest to r′.

In what follows we use special super-matrix notation: site and angular indices are merged into a single
composite index λ = (M,L). A special notation is used for such entities, e.g. Gσλλ′ stands for GMN

σLL′
and often the λ-indices are not explicitly written. ◦ denotes standard matrix multiplication of two such
super-matrices.

To determine the backscattering operator one introduces a concept of a reference system. A reference
system is a space with a potential chosen in such a way so its backscattering operator Gr and the t-matrices
tr can be easily determined. If

tΔ ≡ t − tr, (5.2.5)

where t stands for the scattering matrix of our original system, then the desired backscattering operator
reads

G(z) = −t−1
Δ (z) + t−1

Δ (z) ◦ (I − tΔ(z) ◦ Gr(z))
−1. (5.2.6)

Gr(z) is called structure constant.
The matrices in the above expressions are in general infinite. First of all, the L index assumes an

arbitrary large values, but L-truncation, although it leads to many complications, can be safely handled.
Now, unless one works with a cluster of atoms placed in vacuum, one must deal with an infinite number
of sites. Let us look closer at the latter problem.
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Up to now a real space formulation was used. One can exploit the discrete translational symmetry of
a system (if there exists one) and use the Fourier transformed backscattering operators

Gαβ
σLL′(k) =

∑
n

e−ik ·RnGnα0β , (5.2.7)

where Rn are the lattice vectors and it sufficient to consider k in the first Brillouin zone. Small Greek
letters (αβ) label atoms, which are non-equivalent taking into account discrete translational symmetry.
Since t-matrices are diagonal in site space, equation 5.2.6 can be rewritten as

G(z,k) = −t−1
Δ (z) + t−1

Δ (z) ◦ (I − tΔ(z) ◦ Gr(z,k))−1. (5.2.8)

In the latter case the composite index λ = (α,L) contains only non-equivalent sites, what solves the
above mentioned problem of infinite matrices for 3D periodic solids. In this case an empty space can be
used as the reference system and one speaks about conventional structure constant and the conventional
KKR method.

For the same reason we see immediately that the scheme cannot be used in a straightforward way
for layered systems or clusters immersed in a matrix of another material, since in the latter case one
faces inversion of an infinite matrix I − tΔ(z) ◦ Gr(z,k). (It is often called KKR matrix.) Obviously
one must content himself with the knowledge of Green’s function restricted to a given finite number of
site pairs (within the film or the cluster). Additionally, there must be some assumptions made upon the
(semi-)infinite system outside the region of interest. Usually we assume that the potential deep within
the substrate or matrix correspond to the potential of the bulk. Under these conditions one can obtain the
backscattering operator in the interesting region, providing that such a choice of the reference system is
made, which reduces the reference backscattering operator GMN

rσLL′ to block tridiagonal form [78, 79, 80,
81]. In other words the GMN

rσLL′ must be screened, that is vanish if sitesM andN are sufficiently far apart
from each other. It turns out that a sufficiently strong repulsive constant potential is a good choice for the
reference system and one can find all the necessary fragments of the inverse of tridiagonal matrices in this
case.

We are going to use similar trick to solve the susceptibility Dyson equation in the case of layered
systems and further details regarding the technique and usage of tridiagonal matrices are presented there.

When a system has a discrete translational symmetry it is convenient to write the Green’s function in
the following form

G
(
x,x′) = G

(
r, r′,R

)
. (5.2.9)

Here x,x′ ∈ R
3 while r and r′ belong to the primitive cell of the system closest to the origin and R ∈ L

is the lattice vector closest to the the difference x − x′. Partially Fourier transformed Green’s function
reads

G
(
r, r′,k ∈ ΩBZ

)
=
∑
R∈L

e−ik ·RG(r, r′,R). (5.2.10)

5.3 Non-interacting susceptibility

The non-interacting susceptibility at Bosonic poles can be calculated from Eq. 3.3.20. Using the Brillouin
convolution theorem one obtains for the partially Fourier transformed quantities the following formula

χ0
ij

(
r, r′,q, iωb

n

)
=

1
β

∑
m∈Z

σi
αβσ

j
γδ

1
ΩBZ

∫
ΩBZ

dDkGβγ

(
r, r′,k, zm

)
Gδα

(
r′, r,k − q, zm−n

)
, (5.3.1)

which is the starting point for the numerical implementation.
One should consider several points. First of all we need to represent the spatial dependence of χ,

i.e. we must choose a suitable basis. Second, we note that the equation involves two convolutions, one
over the energy and the second over the Brillouin zone. In this section these points are addressed from the
numerical point of view and directly implementable formulas are developed.
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5.3.1 Spatial basis

The representation of susceptibility χ(r, r′, z) is like in the case of KKR Green’s function based on the cell
centered coordinates. An approximation similar to ASA is used; atomic cells are substituted by spheres
centered at positions of nuclei. Angular dependence inside every sphere is given by means of spherical
harmonics. The radial dependence is based on Chebyshev polynomials. We will call this basis Y-Ch.

χ
(
r, r′, z

)
=

1
rMr′N

∑
LL′μμ′

χMN
LL′μμ′(z)Chμ

(
ξ[0,RM ](rM )

)
Chμ′

(
ξ[0,RN ]

(
r′N
))YL(r̂M )YL′

(
r̂′N
)
. (5.3.2)

RM stands for the radius of the atomic sphere ascribed to site M and ξ[0,R](r) is the Chebyshev reduced
argument function (cf. App. C). χ(r, r′, z) in the above expression is a matrix connecting all components
of charge or magnetization densities and fields.

Let us note the additional prefactor (rr′)−1 in addition to two Chebyshev polynomials. This con-
vention helps to stabilize the Chebyshev approximation procedure it is also convenient when solving the
Dyson equation. These two points will be discussed later in a greater detail.

The basis is necessarily infinite, in practice one must use a finite number of spherical harmonics and
Chebyshev polynomials. The basis functions are real and energy independent. This properties are help-
ful since all analytic symmetries of the susceptibility are straightforwardly reflected in the susceptibility

matrix
(
χMN

LL′μμ′(z)
)

ij
. Finally, the basis is separable and the fact simplifies greatly the solution of the

susceptibility Dyson equation.
If there exists discrete translational symmetry one can transform the susceptibility matrix to k-space

χαβ
LL′μμ′(q, z) =

∑
n

e−iq ·Rnχnα0β
LL′μμ′(z). (5.3.3)

The construction of
(
χαβ

LL′μμ′
(
q, iωb

n

))
ij

is the ultimate goal of our computations.

5.3.2 Energy convolution

By reshuffling the terms in the sums, using the symmetries of the Green’s function and the fact that the
Pauli matrices are Hermitian one can rewrite the Eq. 5.3.1 as

χ0
ij

(
r, r′,q, iωb

n

)
=

1
β

n−1∑
m=0

Sij

(
r, r′,q, zm, zm−n

)
+

1
β

∞∑
m=0

Sij

(
r, r′,q, zm+n, zm

)
+

(
1
β

∞∑
m=0

Sij

(
r, r′,−q, zm+n, zm

))∗
, (5.3.4)

where

Sij

(
r, r′,q, c1, c2

)
= σi

αβσ
j
γδ

1
ΩBZ

∫
ΩBZ

dDkGβγ

(
r, r′,k, c1

)
Gδα

(
r′, r,k − q, c2

)
. (5.3.5)

Since the spin matrices are Hermitian, the convolution has the following symmetry

Sij

(
r, r′,q, c1, c2

)
= Sij

(
r, r′,−q, c∗2, c

∗
1

)∗
. (5.3.6)

The first sum in Eq. 5.3.4 is finite and is valuated term-by-term. The two infinite sums will be split
and partially summed term-by-term (up toM -th Fermionic pole) and partially transformed to Fermi-Dirac
integrals by means of Eq. 2.2.6.

Let us consider a closed counter clock-wise (CCW) contour C which consists of a straight segment
parallel to real axis stretching from μ−R+ iωb

M+1 to μ+R+ iωb
M+1 and a semicircular closure of radius



46 Implementation Chap. 5

R such that when we let R to approach infinity the contour will enclose all the poles of fT of indices
greater than M . We have

1
β

∞∑
m=M+1

Sij

(
r, r′,q, zm+n, zm

)
=

i

2π

∮
C
fT (z)Sij

(
r, r′,q, z + iωb

n, z
)
dz (5.3.7)

and similarly for the second sum. (It is important that the conjugation operation is performed at the very
end, since S∗

ij in in general not analytic and Cauchy theorem does not hold.) It can be shown that the
contribution to the integrals coming from the semicircular closure vanishes when R→ ∞.

...

Re[z]μdeep lying states

Fermi segment

segment
valence bottom

horizontal
segments

valence band

M

E

BD

C’

A

Im[z]

F
M+1

Figure 5.1: The general scheme of Matsubara energy convolution. The terms in convolution sums, which
are not summed explicitly, are converted to complex integrals. Around the valence band one uses a
rectangular contour BEF which starts close to the real axis below the bottom of valence band at Eb −
iωb

n/2, continues vertically to Eb+ iωb
M+1 and then horizontally up to Fermi energy. Similar box contours

are used around deeply lying states. The contributions from the segments parallel to the real axis below the
valence band (e.g. DB) vanish. For the energies above the chemical potential the Sommerfeld procedure
is used and the integration is performed only up to μ. Arrows mark the orientation of contours.

In the next step the segment parallel to the real axis is deformed continuously to contour C ′ (see
Fig. 5.1), that is below the bottom of valence band it runs parallel to the real axis in the lower complex
semi-plane, containing points of complex parts equal to −iωb

n/2. Around the deep lying poles of Green’s
function it comes back to the upper semi-plane. We show now that the contributions to the integrals
coming from the segments parallel to the real axis vanish. Let us say that the segment stretches from
E1 − iωb

n/2 to E2 − iωb
n/2. The contribution from the first sum reads

i

2π

∫ E2

E1

dεfT

(
ε− iωb

n

2

)
Sij

(
r, r′,q, ε+

iωb
n

2
, ε− iωb

n

2

)
, (5.3.8)
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while the contribution from the conjugated term is(
i

2π

∫ E2

E1

dεfT

(
ε− iωb

n

2

)
Sij

(
r, r′,−q, ε+

iωb
n

2
, ε− iωb

n

2

))∗
(5.3.9)

= − i

2π

∫ E2

E1

dεfT

(
ε− iωb

n

2

)
Sij

(
r, r′,q, ε +

iωb
n

2
, ε− iωb

n

2

)
, (5.3.10)

where the symmetry 5.3.6 and the fact that fT

(
ε− iωb

n/2
) ∈ R were used. The two contributions cancel

each other. Since the energies of single particle states are bounded from below the integration below the
Fermi energy is limited to a finite number of segments around the poles of the KKR Green’s function.

Unfortunately the integration for energies above the Fermi level cannot be reduced to a finite one by
means of the trick since the energies of single particle states are not bounded from above. However for
sufficiently small temperatures the Fermi-Dirac distribution function is still very similar to a step function
and one can use Sommerfeld procedure (eq. 2.2.7). Let Eb be an energy below the bottom of the valence
band and above the deeper lying states. Above Eb we let the contour to be parallel to real axis and we
place it in the middle between two Fermionic poles, so it contains points of the form ε+ iωb

M+1. The part
of the integral stretching from the bottom of the valence band to infinity reads∫ ∞

Eb

dεfT

(
ε+ iωb

M+1

)
Sij

(
r, r′,q, ε+ iωb

M+1, ε+ iωb
M+n+1

)
=∫ μ

Eb

dεfT (ε)Sij

(
r, r′,q, ε+ iωb

M+1, ε+ iωb
M+n+1

)
+ Sommerfeld corrections (5.3.11)

where the periodicity of Fermi-Dirac function was used, cf. eq. 2.2.5.
The general integration scheme is presented in Fig. 5.1. A few remarks are now in order. One could be

tempted to think that the infinite sums could be approximated by summing only up to a certain Fermionic
frequency, but this would lead to an effect similar to Gibb’s ringing. Matsubara formalism boils essentially
down to Fourier series decomposition of a Green’s function in the imaginary time. Around τ = 0 the func-
tion features discontinuity and Fourier series cannot approximate it uniformly and as long as the number
of Fourier components is finite the region around the discontinuity is poorly represented. Therefore it is
important to include all the poles, which is done by converting some parts of the sum into integrals. In
addition the contour is chosen such that to keep away from the singularities of Green’s function, which
lie on the real axis and coincide with the Kohn-Sham energies.

5.3.3 Y-Ch matrix elements

Let us look closer at the product of two Green’s functions in the equation 5.3.5. Upon substituting the
KKR form of G we obtain

1
ΩBZ

∫
ΩBZ

dDkGσ1

(
r, r′,k, c1

)
Gσ2

(
r′, r,k − q, c2

)
=

∑
L1L2L3L4

YL1(r̂α)YL2

(
r̂′β
)YL3

(
r̂′β
)YL4(r̂α) ×

(σ1σ2Cαβ
L1L2L3L4

(c1, c2,q)Rα
σ1L1

(rα, c1)R
β
σ1L2

(
r′β, c1

)
Rβ

σ2L3

(
r′β, c2

)
Rα

σ2L4
(rα, c2) +

δαβδL1L2

√
c1R

α
σ1L1

(
r<
α , c1

)
Hα

σ1L1

(
r>
α , c1

)
Bα

σ2L3L4
(c2)Rα

σ2L3

(
r′α, c2

)
Rα

σ2L4
(rα, c2) +

δαβδL3L4B
α
σ1L1L2

(c1)Rα
σ1L1

(rα, c1)Rα
σ1L2

(
r′α, c1

)√
c2R

α
σ2L3

(
r<
α , c2

)
Hα

σ2L3

(
r>
α , c2

)
+

δαβδL1L2δL3L4

√
c1c2R

α
σ1L1

(
r<
α , c1

)
Hα

σ1L1

(
r>
α , c1

)
Rα

σ2L3

(
r<
α , c2

)
Hα

σ2L3

(
r>
α , c2

)
). (5.3.12)

The first term comes from the convolution of two backscattering operators

σ1σ2Cαβ
L1L2L3L4

(c1, c2,q) =
1

ΩBZ

∫
ΩBZ

dDkGαβ
σ1L1L2

(c1,k)Gβα
σ2L3L4

(c2,k − q) (5.3.13)
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while the next two terms involve diagonal part of it

Bα
σLL′(z) =

1
ΩBZ

∫
ΩBZ

dDkGαα
σLL′(z,k). (5.3.14)

5.3.4 Remarks

The calculation of the non-enhanced susceptibility is based on the direct implementation of the formulae
given in the previous sections. Every energy pair contribution Sij might be seen as a sum of four compo-

nents. Only the one involving the convolution of backscattering operators σ1σ2Cαβ
L1L2L3L4

(c1, c2,q) lead
to the q-dependence of the susceptibility. Only this term is non-local in site space. The other three terms
are local and q-independent and must be computed only once for every Bosonic frequency.

We can anticipate now the general flow of computations. For every necessary energy pair (c1, c2) and
a given spin configuration (σ1, σ2) one performs a Brillouin zone integration (convolution) to obtain the
B and C matrices. The next step involves 2D-Chebyshev approximation of the radial dependence given
by the products of four radial solutions. In the next step one uses Gaunt coefficients to express fours of
spherical harmonics by means of pairs. Then Sij ’s (or rather χαβ

LL′μμ′
(
q, iωb

n

)
matrix corresponding to

them) are constructed by combining different spin configurations and, as it has been mentioned, in the last
stage the energy summations and integrals are performed.

The accurate determination of non-enhanced susceptibility is the most time consuming part of calcu-
lations, due to the necessary Brillouin zone integrations. The number of k-points necessary to achieve
a given level of accuracy, depends strongly on the imaginary parts of c1,2 arguments, decreasing rapidly
as one moves away from the real axis and the Fermi energy. At the beginning of calculations a scan
of complex plane is made. For a set of complex numbers a convolution of backscattering operators is
performed for increasing density of k-mesh. The mesh is made denser until all the elements of array
σ1σ2Cαβ

L1L2L3L4
(c1, c2,0) converge with a specified accuracy (10−3 ÷ 10−5). Similar convergence test is

performed for Bα
σLL′(z). Very close to the real axis one needs typically 8 · 106 k-points (3D case). For the

energy εF + 0.1i this number does not exceed 1000.
At present a uniform k-mesh is used. It is likely however that the integrands might feature strong

peaks in the Brillouin zone and some kind of adaptive integration scheme (for example based on tetrahe-
dron method) would be more preferable.

The 2D-Chebyshev approximation of the radial part might potentially lead to problems. The single
site contribution to the Green’s function is singular close to the center of the atomic cell, what can be
immediately seen when taking into account the asymptotics ofH and R

HL(r) ∼ r−l−1, RL(r) ∼ rl, r → 0. (5.3.15)

This problem is solved in our calculations by including this divergence explicitly in the basis. In this way
one has to perform approximation of a function without singularities. Unfortunately even in this case the
radial dependence still doesn’t not have a continuous first derivative; the single scattering part of Green’s
function feature an essential cusp which gives rise to the Dirac’s delta on the right hand side of Eq. 5.2.1.
Chebyshev polynomials cannot approximate uniformly such functions, but experience shows that the cusp
can still be reasonably well reproduced.

The transformation leading to 5.3.4 was possible only under the assumption that spin matrices σi,j

were Hermitian in spin space. One therefore works usually with χxx,xy and constructs χ± only at the
very end of the calculations.

If the temperature T is small compared to the width of the valence band one can completely neglect
Sommerfeld corrections. All integrals are simply performed up to the Fermi energy and for smaller en-
ergies one takes fT ≡ 1. One must stress that the introduction of temperature is here only a numerical
trick, allowing to move away from Green’s function singularities near the Fermi energy. The smearing of
Fermi level introduces change of order kBT/Δ ≈ 2.1 · 10−3 for T = 50K and Δ = 0.15 corresponding
to the band slitting of Fe. Our calculations describe still essentially low temperature state.
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For sufficiently small frequencies the susceptibility is primarily determined by the transitions within
valence band and complex integration around deeper lying states can be neglected.

The energy dependence of the screened structure constants, t-matrices and radial solutions can be
approximated on the complex plane by means of Chebyshev polynomials, which allows to significantly
reduce the computational time of energy integrations.

5.4 Susceptibility Dyson equation

We want to solve numerically the susceptibility Dyson equation 3.4.10

χ
(
r, r′,q, z

)
= χ0

(
r, r′,q, z

)
+
∫

ΩWS

dr1χ0(r, r1,q, z)Kxc(r1)χ
(
r1, r′,q, z

)
, (5.4.1)

which means we want to construct χαβ
LL′μμ′ representing the interacting susceptibility in Y-Ch basis for

every interesting z ∈ C and q.
The exchange-correlation kernel is represented as follows

Kxc(r) = W(ξ(Rα, rα))
∑
Lμ

KαLμ
xc YL(r̂α)Chμ(ξ(Rα, rα)). (5.4.2)

Let us note additional Chebyshev weight included in order to simplify the solution.
Using Y-Ch representation for susceptibility matrices and the above representation for the xc kernel

the integral Dyson equation is transformed to an algebraic equation

χαβ
LL′μμ′ = χαβ

0LL′μμ′ +
∑

γ1L1μ1γ2L2μ2

χαγ1

0LL1μμ1
Mγ1L1μ1

γ2L2μ2
χγ2β

L2L′μ2μ′ , (5.4.3)

where the matrix M is constructed based on exchange-correlation kernel and overlap integrals

Mγ1L1μ1

γ2L2μ2
= δγ1γ2

∑
Lμ

γ1cLL1L2
μμ1μ2

Kγ1Lμ
xc , (5.4.4)

γ1cLL1L2
μμ1μ2

=
∫

4π
dr̂YL(r̂)YL1(r̂)YL2(r̂)× (5.4.5)∫ Rγ

0
drW(ξ(Rγ , r))Chμ(ξ(Rγ , r))Chμ1

(ξ(Rγ , r))Chμ2
(ξ(Rγ , r)). (5.4.6)

The triples of indices (αLμ) can be combined into one composite index. As a consequence all matrices
appearing in the algebraic Dyson equation become two dimensional and if there is a finite number of
non-equivalent atoms, χαβ

LL′μμ′ can be obtained by matrix inversion

χ = (I − χ0M)−1χ0 ≡ D−1χ0. (5.4.7)

D is called Dyson matrix. This approach is directly implemented in the code.
As we have already discussed in Sec. 3.4.2 the matrix D for z = i0+ and q = 0 is formally singular.

Numerically it features usually one eigenvalue of absolute values very close to zero (≈ 10−3 − 10−2).
Experience showed that the following operation (called “Goldstone correction”) can improve the stability
of subsequent analytical continuation. Matrix D is transformed to a diagonal representation. Subsequently
its lowest eigenvalue is set to a value close to zero (typically 10−6) and the matrix is transformed back to
the original representation. The new matrix is used to correct the M matrix.

The case of infinitely many non-equivalent atoms is more involved. Apparently we must content
ourselves with a knowledge of χ in a finite region of space called interface or center. Nevertheless the
influence of the rest of the world – in the case of 2D calculations this means semi-infinite bulk region(s) –
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must be also properly taken into account. For the purpose of this calculations a new scheme has been de-
veloped, which can address such semi-infinite systems. It is based on a concept similar to those of screened
structure constants. One observes (see discussion below) that Kohn-Sham (non-enhanced) susceptibility
is short-ranged in virtually all systems we deal with

χ0
MN ≈ 0, |SN − SM | > ζ, (5.4.8)

where ζ is called screening range. To be precise χ0
MN stands for Y-Ch blocks of the susceptibility matrix.

χ0 is therefore effectively a tridiagonal matrix and based on this property we can determine enhanced
susceptibility in the interface region by means of inversion of finite matrices. Figure 5.2 presents the
magnetic response of bcc Fe. Magnetic field uniform within atomic sphere around site 1 was applied,
the plot presents uniform component of magnetization induced on sites along (001) direction. We can
see that the response is mainly localized to the given atomic sphere, being much weaker outside and
decaying in an oscillatory manner. There exists a conceptual difference between the screening formalism
for the susceptibility Dyson equation and screened structure constants. In the latter case one introduces
a reference system, which provides screening. In our case we assume the “natural screening”, which
however, as we have seen, is expected.

Figure 5.2: The magnetic response of bcc Fe, arbitrary units. The applied magnetic field was uniform
the within atomic sphere around site 1. The plot presents the absolute value of uniform component of
magnetization induced on sites along (001) direction.

The sites in an infinite system are located in three regions: left (L), center (I) and right (R), see Fig. 5.3.
Additionally in the semi-infinite regions L and R we distinguish finite tangential (Lt and Rt) and extended
(Le and Re) parts. The thickness of tangential parts must be larger than the range of screening of χ0.
Similarly the center part is assumed to be thicker than ζ .

We adopt one more plausible assumption that in the left and right regions the susceptibility are bulk-
like; the tridiagonal structure of χ0 repeats itself periodically deep in the bulk. The left and right regions
can be composed of different bulk materials. One or both of them can be also substituted by the vacuum,
in the case of adsorbed film or slab geometry, respectively. The susceptibility in the vacuum region away
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Figure 5.3: The computational domain used to solve two-dimensional susceptibility Dyson equation. The
sites are grouped in three major regions: two semi-infinite right and left regions and a finite interface
region (I). Four finite subsets of right and left sites are distinguished; they are tangential (Lt and Rt) and
extended (Le and Re) regions. The pairs of sites are grouped in 11 regions. Due to the short-range character
of χ0 there is no need to compute susceptibility for every site pair in the computational domain; only Y-Ch
blocks corresponding to colored pairs are determined. They are determined by the screening range ζ .

Figure 5.4: A schematic representation of DILD
−1
LLDLI multiplications. Due to the short-range character

of χ0 one needs only the “corner” block CL of the semi-infinite matrix D−1
LL.
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Figure 5.5: The self-repeating structure of a) LL and b) RR semi-infinite fragments of D and χ0 allows to
determine CL,R.

from the surface can be simply equated to zero. The computational domain contains 11 finite regions,
depicted in the Fig. 5.3. Under the assumptions listed above (screening and bulk like susceptibility deep
in the bulk regions) the knowledge of χ0 in these regions suffices to determine enhanced susceptibility in
the center region.

A remark on notation. In this section we continue to work with composite block 2D matrices. The
regions mentioned above group pairs of sites. An element of a composite matrix corresponding to such a
pair of sites should be regarded as a Y-Ch block.

Both the non-enhanced susceptibility and the Dyson matrix are tridiagonal infinite matrices

χ0 =

⎛⎝χ0
LL χ0

LI 0
χ0

IL χ0
II χ0

IR

0 χ0
RI χ0

RR

⎞⎠ , (5.4.9)

D =

⎛⎝I − χ0
LLML −χ0

LIMI 0
−χ0

ILML I − χ0
LLML −χ0

IRMR

0 −χ0
RIMI I − χ0

RRMR

⎞⎠ ≡ E−1. (5.4.10)

The enhanced susceptibility in the center region reads

χII = EILχ
0
LI + EIIχ

0
II + EIRχ

0
RI . (5.4.11)

In order to proceed we must learn how to invert the tridiagonal matrix. We put E ≡ D−1

D =

⎛⎝DLL DLI 0
DIL DII DIR

0 DRI DRR

⎞⎠ , E =

⎛⎝ELL ELI ELR

EIL EII EIR

ERL ERI ERR

⎞⎠ (5.4.12)

to obtain

EII =
(
DII −DILD

−1
LLDLI −DIRD

−1
RRDRI

)−1
, (5.4.13a)

EIL = −EIIDILD
−1
LL, (5.4.13b)

EIR = −EIIDIRD
−1
RR. (5.4.13c)
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We see that the above evaluation involves products of infinite matrices, which can however be reduced to
finite multiplications

DILD
−1
LLDLI = DWCLDN , (5.4.14a)

DIRD
−1
RRDRI = DECRDS , (5.4.14b)

DILD
−1
LLχ

0
LI = DWCLχ

0
N , (5.4.14c)

DIRD
−1
RRχ

0
RI = DECRχ

0
S , (5.4.14d)

where CL,R are “corner” blocks of D−1
LL and D−1

RR matrices respectively. Fig. 5.4 presents schematically
multiplicationDILD

−1
LLDLI , please refer to the caption for details. Analogical argumentation can be used

to reduce multiplications in every other case listed above.
The determinations of coupling matrices CL,R poses a bit involved issue. Let us remind ourselves

that DLL and DRR have the characteristic self-repeating form presented schematically in the Fig. 5.5.
Additional short contemplation of Eq. 5.4.13a leads us to the following self-consistent equation for EL

CL = (DL −DLWELDLN )−1, (5.4.15)

where we tookDIR = DRI = 0. By the same token we obtain

CR = (DR −DREERDRS)−1. (5.4.16)

Let us remark at the end of this section that the Dyson equation can be solved directly on the imaginary
axis. The non-enhanced susceptibility can also be first analytically continued to the real axis and the
equation is solved there. The commutation of these two operations follows from the absence of the energy
convolution in the susceptibility Dyson equation. We usually choose the first option, which gives better
numerical accuracy.

5.5 Postprocessing

Once the susceptibility Dyson equation is solved we have determined the enhanced susceptibility matrix

either for a set of Bosonic frequencies or points slightly above the real axis. This information itself is not
very useful. The further analysis can go in two directions.

One can compute the Fourier transformation of the susceptibility

χ
(
q + K1,−q− K2,q

) ≡ ∫∫
Ω2

WS

dr1dr2e
−i(q+K1) · r1χ(r1, r2,q)ei(q+K2) · r2, (5.5.1)

K1,K2 ∈ L−1. This quantity has a direct physical interpretation in the case of bulk systems. Its
imaginary part is directly proportional to the cross-section in the scattering experiments (for K1 = K2,
Eq. 3.3.10).

Extracting the excitations energies from this expression is rather cumbersome when there are many
non-equivalent atoms in the system or we work with a film geometry. In this case one can determine the
eigensystem of χ± and trace the frequency dependence of the corresponding eigenvalues, χλ(q, z). For
a fixed q an extremum of the imaginary part of an eigenvalue signifies strong absorption and thus a spin
excitation. The eigenvector corresponding to this eigenvalue (for the resonant frequency) determine the
shape of the resonant magnetic field.

When the susceptibility Dyson equation is solved on the imaginary axis one must perform the analytic
continuation (AC) to extract the real time dynamics. It has been recognized that AC of data is an ill-posed
numerical problem [82]. The input data (given for Matsubara frequencies) must be highly accurate. The
maximum entropy method [83], widely used by quantum Monte Carlo community, is not of particular
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advantage in our calculations, since it was primarily devised to deal with noisy data (uncorrelated errors).
In our case the errors are expected to be strongly correlated, coming for example from the basis cut-offs.

In most cases we employ a rational function approximation [84, 85, 82], where a complex function
f(z) is represented by a ratio of two polynomials. The procedure works fine providing one imposes the
exact asymptotic behavior of the interpolating function, namely

lim
z→∞χij(z)z2 = 1, i, j = x, y, z. (5.5.2)

Additionally, as discussed in Ref. [28], the coefficients of the rational expansion should be restricted so
certain sum rules (Kramer-Kronig relations) are fulfilled.

Let us note that the asymptotic behavior of the susceptibility χ± given in the circular coordinates is
different; it is governed effectively (as discussed in Sec. 4.3) by a single pole. The behavior of a dominant
eigenvalues χλ(q, z) in the spin-wave region close to the singularity can be represented by a single pole
function

χλ(q, z) ≈ Aλ(q)eiδ(q)

z − ωλ
0 (q) + iβλ(q)

. (5.5.3)

Aeiδ can be regarded as the amplitude, ω0 as the frequency and β as the damping parameter (proportional
to the inverse life-time) of the spin-wave2. These symbols are used consistently in the following chapters.
Summing up, the susceptibility χij is analytically continued using the rational approximation. In the next
step one constructs χ± and determines its behavior near the pole.

The rule of thumb for performing AC is to choose enough Matsubara frequencies (nmax = 9 ÷ 15)
and the temperature such that all interesting feature on the real axis are within the range

[
0, ωb

nmax

]
.

5.6 Remarks on the development of the code

The KKR engine providing us with the Green’s function is based on Hutsepot environment. The Hut-
sepot code is developed in Halle and it is a modern and computationally efficient implementation of the
KKR method. Apart from the standard capabilities like full potential/full charge mode, possibility of the
semi-relativistic calculations and Lloyd counting of states, it features several unique improvements, most
important being self-interaction correction treatment of strongly correlated systems [43, 44]. The code
is particularly well suited for computations of the properties of magnets, including spin dynamics. At
present it features around 105 lines of Fortran95 code.

The part Susc, being an extension of Hutsepot, contains the implementation of linear response DFT
as presented in this and preceeding chapters. The program has been developed since February 2006 and at
the moment has around 22 · 103 lines of Fortran95 code.

Susc is parallelized using Message Passing Interface (MPI) [86, 87, 88], most importantly in the case
of the Brillouin zone convolutions. Similarly constructing Y-Ch matrix elements can be spread over many
processors. The large number of necessary k-points makes the scaling almost linear up to the 64 pro-
cessors (the largest number tested). The calculations of non-enhanced susceptibility for every q-iω pair
are essentially independent from each other and they can be run independently. This “by hand” mode of
parallelization is proffered on machines with smaller or limited number of processors, since it saves the
time for interprocessor communication.

The tracking of code version is facilitated using ���. Build is supported by ���� and since the code
consists of 1693 files the makefile is auto-generated. Some highly repetitive parts of the code (especially
those designed for reading and writing configuration files) are auto-generated as well. This reduces greatly
the development time and increases flexibility.

2We use symbol β also to denote the inverse temperature, but the distinction is always clear from the context.
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5.7 Testing

During a development of a large computer code an attention must be paid to ensure that the code is error
free. In our case it was done on two levels. First, single small pieces of code were tested. For example the
part responsible for calculating overlap of basis function was tested against analytic expression generated
using ��	
���	���. In the second stage the code was tested as a whole, using known analytic expres-
sions for polarized free electron gas. This on one hand allows debugging and on the other establish the
convergence properties.

For the purpose of the test we used polarized electron gas with paramagnetic Fermi energy εF ≈ 0.112
and half-splitting Δ = 0.04. The chemical potential settles in this case to μ ≈ 0.108. BCC lattice with
constant a = 5.41 was used. Test calculations were performed in slab geometry (2D) or for simple cubic
lattice with two atoms mimicking BCC (3D). The temperature used was 400 K. The potential was set to be
constant everywhere, different for every spin channel. Subsequently standard susceptibility calculations
were performed, with l = 2 cut-off for the KKR Green’s function. The results are presented below.

Figure 5.6: Non-interacting static susceptibility of polarized free electron gas computed starting from
constant spin polarized potential using full standard calculation scheme. 8 Chebyshev polynomials were
used. The l convergence to exact value can be clearly seen. Calculations were based on 2D geometry. It
can be see that for larger q vectors a larger number of spherical harmonics must be used.

Figure 5.6 presents static susceptibility computed based on 2D geometry for different l cut-offs. We
see that the increasing size of the basis brings the results closer to its exact value. Similar test (not shown)
was performed in order to check Chebyshev polynomial convergence (8 polynomials was necessary in this
case to provide convergence).

Figures 5.7ab present susceptibility computed for the first 6 lowest Bosonic frequencies, again based on
2D geometry. Once again an agreement (relative discrepancy smaller than 0.1%) between numerical and
analytic result can be seen. The discrepancy arises from several sources: Green’s function l cut-off, Y-Ch
basis cut-off, k integration, energy integration and Sommerfeld expansion, ASA geometry, determination
and approximation of screened structure constant. As we see all this approximation are controlled and the
error can be made arbitrarily small. The computations of susceptibility based on our numerical scheme
pertain to a finite temperature. We compare these results to the susceptibility of the free electron gas
at 0 K, where the Fermi-Dirac function is approximated by a unit step. Such comparison is justified for
temperatures small comparing to εF/kB, as it is the case here.

Similar test was used to prove the correctness of the susceptibility Dyson equation engine. Please refer
to the caption of Fig. 5.8 for details.
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a) b)

Figure 5.7: Real (a) and imaginary (b) part of non-interacting susceptibility of polarized free electron gas
computed starting from constant spin polarized potential using full standard calculation scheme (scatter
points) for different Bosonic frequencies n. 8 Chebyshev polynomials and l = 2 expansion for suscepti-
bility were used. Exact values (lines) are provided for comparison.

Figure 5.8: The enhanced susceptibility of polarized free electron gas computed using Y-Ch basis and
susceptibility Dyson equation solver for 2nd Bosonic frequency. 8 Chebyshev polynomials were used.
The l convergence to exact value can be clearly seen. The susceptibility is in Kb.



CHAPTER

SIX

SPIN-WAVES IN BULK PHASES OF COBALT

Bulk cobalt has been chosen as the first application of our scheme for two major reasons. First, there
exists a rather limited number of theoretical studies devoted to spin excitations in this system. Second,
spin-waves in various phases of Co have been explored using inelastic neutron scattering; owing to the
moderate damping of SWs and the complex unit cell of hcp Co, the latter material is the only known
example, where for certain wave-vector q two spin-wave branches – acoustic and optical – have been
observed. Therefore, despite simplicity of this well known system the study can yield new and non-trivial
results, being partially a confirmation of the present method.

At the ambient pressure and low temperature cobalt is a ferromagnet featuring ε (hcp) structure [89].
As the temperature increases a transition to γ (fcc) structure occurs at around 750 K and above Curie
temperature of around 1400 K the systems becomes paramagnetic. In this chapter we discuss the spin-
wave spectrum of the both mentioned magnetically ordered phases.

6.1 ε(hcp)-Co

The experimental lattice constant of hcp cobalt was used, which reads ahcp = 4.738 Bh [90]. The real

lattice is spanned on vectors (in units of ahcp) (0, 1, 0),
(√

3
2 ,

1
2 , 0
)

and (0, 0, η), where the η ≡ c/ahcp

ratio reads 2
√

2
3 for perfect hcp structure, c being the lattice constant in the z- (or c-) direction. There

are two atoms in the primitive cell at positions (again in units of ahcp)
(

1√
12
, 1

2 ,
η
4

)
and

(
1√
3
, 0, 3η

4

)
.

The reciprocal space is spanned on the following vectors (in units of 2π/ahcp): (1, 0, 0),
(

1
2 ,

√
3

2 , 0
)

and(
0, 0, η−1

)
. The calculated magnetic moment per Co atom is 1.61 μB.

The susceptibility matrix χ(r, r′,q, z) features two dominating eigenvalues for q in the first Brillouin
zone. Their energy dependence close to maximum is analyzed using effective pole scheme, as discussed
in Sec. 5.5. The eigenvalues can be interpreted as acoustic and optical SW branches. Figure 6.1ab presents
respective parameters extracted from the present calculations. The eigenvalues for qz = π

c plane are
degenerated within numerical error. Theoretical SW energies correspond very well to the experimental
results along ΓM direction, but are larger along c-axis (ΓA) direction. For small momentum transfer the
peak position can be very well described by the following experimental biquadratic ansatz

ω0(q) = Dq2
(
1 − γq2

)
. (6.1.1)

Table 6.1 presents results of the fit for q ≤ 0.3 2π
ahcp

along different directions. D can be interpreted as

an approximation to SW stiffness constant. Let us note that the dispersion relation for vanishing q in
the basal plane is isotropic for hcp system. Our parameters D depend on the direction due to the limited
adequacy of the biquadratic fitting function and numerical accuracy.
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a)

b)

Figure 6.1: Energies (a) and half-widths at half maximum (b) of two SW peaks in hcp cobalt. High sym-

metry points in the first Brillouin zone are (in units of 2π/ahcp) Γ (0, 0, 0), M
(

1
2 , 0, 0

)
, K
(

1
2 ,

1√
12
, 0
)

,

A
(
0, 0, 1

2η

)
, L
(

1
2 , 0,

1
2η

)
and H

(
1
2 ,

1√
12
, 1

2η

)
. The experimental energies come from Refs. [91, 92].
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direction D
[
Ry Bh2

]
γ
[
Bh2

]
ΓM 0.14153(72) 0.952(12)
ΓK 0.1366(13) 0.937(12)
ΓA 0.13895(98) 1.147(54)

Table 6.1: Parameters of the biquadratic fit of Eq. 6.1.1 for different direction in Brillouin zone in hcp Co.
To obtain the value of D in meVÅ

2
it should be multiplied by 3809.981748(95) and the value of γ in Å

2

by 0.28002851809(38).

Perring et al. [92] managed to detect spin-waves for q beyond the first Brillouin zone along (00ξ)
direction, thus accessing the optical SW branch of ΓA segment. One sees therefore that the optical SW
modes are indeed a physical reality, even if the present calculations overestimate somewhat the energy
of the mode. It is a rare example, in fact the only one, where an optical SW mode was experimentally
detected. Nickel is sometimes said to exhibit an optical SW branch, but there the effect originates from
complex energy dependence of the susceptibility; in some limited range of wave-vectors SW peak of Ni
is of a complex double-maximum form. The situation in hcp Co is different, as the two branches – up to
the degeneracy – are expected to exist in the whole Brillouin zone. The acoustic mode corresponds to the
moments oscillating in phase and optical to the anti-phase case. Clearly, this cannot be the case in Ni,
since it features only one non-equivalent atom in its primitive cell.

The damping of SWs is moderate in the case of Co. Long wave-length acoustic magnons are, as
expected, long-living. Decay of SW asserts itself for larger q’s. Optical branch is of much shorter life-time
because of much higher Stoner states density expected at higher energies. Characteristic peaks in β(q)
function correspond to peaks in the density of Stoner states.

Theoretical works on spin excitations in hcp cobalt utilize empirical tight binding scheme [93, 94].
They predict correctly the energies of acoustic modes, yielding however much too low values of optical
modes, in fact in a range where they were not detected despite being experimentally observable. Except
for ΓA segment the optical branch energies predicted in this study lie above 0.5 eV, the maximal energy
addressed in the calculations mentioned and one guesses that certain complex structure of SW spectrum
was erroneously identified as the optical mode.

6.2 γ(fcc)-Co

Face centered cubic direct lattice is spanned on vectors (in units of afcc)
(

1
2 ,

1
2 , 0
)
,
(

1
2 , 0,

1
2

)
and

(
0, 1

2 ,
1
2

)
,

while the reciprocal lattice on vectors (in units of 2π/afcc) (1, 1,−1), (1,−1, 1) and (−1, 1, 1). There is
only one Co atom in the primitive cell. The lattice constant was determined from the condition of equal
atomic volumes for hcp and fcc systems, yielding afcc = 81/6ahcp. Ground state magnetic moment is very
close to the one obtained for hcp phase.

Due to one non-equivalent atom in the unit cell the spectrum features only one large eigenvalue,
the parameters of which are presented in figure 6.2. Comparing to the adiabatic study of ref. [95] high
wave-vectors magnons are a bit more energetic in the present calculations, but the shift may be due to SW
self-energy arising from including hybridization with Stoner states. Characteristic kink-like feature along
ΓK is present in both approaches. D and γ parameters of Eq. 6.1.1 are gathered in Table 6.2; parameter
D is significantly smaller (average value D = 492 meVÅ

2
) than the isotropic stiffness constant of the

reference mentioned. Similarly to hcp case the damping is not very much pronounced.
Inelastic neutron scattering experiments revealed clearly softer magnons, characterized by D =

369 meVÅ2 (ref. [96], simple quadratic fit) and D = 384 meVÅ2 and γ = 3.13 Å2 (ref. [97]). One
notes the pronounced deviation from quadratic dispersion law in the latter study. As it has been men-
tioned γ-Co does not occur in nature in 0 K, our calculations therefore pertain to a somewhat ficticious
material. In general the temperature influences the SW spectrum, but owing to the large Curie tempera-
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Figure 6.2: Spin wave mode of fcc Co. High symmetry points in the first Brillouin zone are (in units of
2π/afcc) Γ (0, 0, 0), X (1, 0, 0) equivalent to (1, 1, 0), K

(
3
4 ,

3
4 , 0
)

and L
(

1
2 ,

1
2 ,

1
2

)
.

direction D
[
Ry Bh2

]
γ
[
Bh2

]
ΓX 0.1205(12) 0.423(27)
ΓK 0.1326(12) 0.871(28)
ΓL 0.13419(65) 0.513(25)

Table 6.2: Parameters of the biquadratic fit of Eq. 6.1.1 for different direction in Brillouin zone in fcc Co.
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ture of cobalt the room temperature of experiment is not expected to be of a great importance. There is
however an important factor making any direct comparison difficult; Co must be alloyed with about 6%
of Fe for the sake of stability. It seems that future calculations must take the effect into account. Addi-
tionally there is no information available about the actual lattice constant influenced, among others, by
temperature and composition. Interestingly, the results of SPEELS of thin fcc Co film [5] match rather
well the neutron scattering data mentioned above.



CHAPTER

SEVEN

SPIN DYNAMICS OF SELECTED HEUSLER PHASES

Cubic phases of general composition XYZ and X2YZ, where X and Y stand for d- or f -electron transition
metals and Z denotes a p-electron element, attract much attention ever since they were first considered by
Heusler in 1903 [98], due to their remarkable magnetic and electrical transport properties [99, 100]. Both
structures can be described as four interpenetrating fcc lattices, characterized by positions X (0, 0, 0), Y(

1
4 ,

1
4 ,

1
4

)
, X or void

(
1
2 ,

1
2 ,

1
2

)
and Z

(
3
4 ,

3
4 ,

3
4

)
.

Full Heusler phases (Cu2MnAl or L21 type, space group Fm3̄m) usually show metal like conduc-
tivity. Within the series several superconductors were discovered, most spectacular being ErPd2Sn [101]
and Pd2YbSn [102], where superconducting state was found to coexist with long-range magnetic order-
ing. Equiatomic (or semi-Heusler) compounds crystallize with the MgAgAs type of structure (C1b, space
group F 4̄3m) and feature wide variety of interesting properties as well, including heavy fermion state
[103, 104, 105, 106], shape memory effect [107], giant magnetoresistance [108, 109] and semimetallic and
semiconducting behavior [110]. The vacant site causes smaller overlap between 3d wave functions in
these materials and may lead to even more localized magnetism and narrower bands than in full Heusler
phases [111].

In 1983 de Groot et al. [112] predicted NiMnSb to be half-metallic ferromagnet. In this class of mate-
rials the minority spin electrons are semiconducting while the majority spin electrons feature metallic be-
havior. As a consequence such materials have integer magnetic moment (slight deviations may occur due
to polarization of inner filled shells or off-stoichiometry [111]) and feature full polarization of electrons at
the Fermi level at 0 K. Many full-Heusler compounds were predicted to be half-metallic, too, e.g. Co2MnZ
(Z=Si,Ge) [113, 114]. Materials for which half-metalicity could be combined with high Curie temperature
are attractive for applications in the field of spintronics [115], therefore considerable attention was paid to
the description of magnetic properties of these materials [116, 117, 118, 119, 120, 121, 122, 123, 124]. There
exists both theoretical and experimental evidence that Heusler phases are promising systems also in this
respect.

There are three relevant energy gaps in a half-metal, see fig. 7.1. The effective band splitting 2Δ de-
termines the position of long-wavelength Stoner states. The half-metallic gap γ is the difference in energy
between the bottom of the conduction band and the top of the valence band in the minority spin channel.
Finally, the distance between Fermi level and the bottom of the conduction band in the minority chan-
nel determine the activation energy δ for the Stoner excitations (“Stoner gap”). The electronic structure
implies that the total magnetic moment of a half-metal is an integer.

In the semi-Heusler phases “[t]he [semi-metallic] gap basically arises from the covalent hybridization
between the lower-energy d states of the high-valent transition metal (TM) atom [e.g. Ni] [. . .] and the
higher-energy d states of the lower-valent TM atom [e.g. Mn], leading to the formation of bonding and
anti-bonding bands with a gap in between.” (Citation from Ref. [126].) Somewhat more complex is the
origin of the gap in the full Heusler alloys, since it involves, according to Ref. [127], hybridization of states
between three atoms (Co-Co-Mn in the case of Co2MnSi). The Fermi level must of course be located in
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Figure 7.1: (a) The energy gaps in a half-metal relevant for spin dynamics. Please refer to the text for
discussion. (b) The general structure of magnetic excitations. Somewhat modified, the figure comes from
Ref. [125].

the gap for the half-metalicity to appear. Kübler et al. have shown that magnetism in full Heusler phases
is of localized character, which follows from the exclusion of minority spin electrons from Mn 3d shell
[122].

Heusler alloys are also very interesting from the point of view of spin dynamics. The existence of the
Stoner gap δ allows for a existence of SW branches undamped in the whole BZ. The coexistence of damped
and infinitely-long living SWs modes is possible. Due to the complex unit cell multiple SW branches can
be observed. In what follows, we concentrate on three exemplary systems. First, NiMnSb is considered,
since this material proved to be a quite difficult one to be studied through HH mapping. In subsequent
section we compare and contrast its behavior to Co2MnSi with its rich zoo of SWs modes. The spectrum
of another Heusler phase (Cu2MnAl) is also determined and compared to experiment.

7.1 NiMnSb

7.1.1 General properties

The structure of the unit cell was confirmed by Helmholdt and coworkers [128]. The experimental lattice
constant obtained by them reads a = 11.174 Bh and it is used in this calculations. The reference states
also that “it is rather unlikely that there is much site interchange of the atoms in the atomically ordered
structure of NiMnSb”. In units of a the atomic positions read: Ni (0, 0, 0), Mn

(
1
4 ,

1
4 ,

1
4

)
, empty sphere(

1
2 ,

1
2 ,

1
2

)
and Sb

(
3
4 ,

3
4 ,

3
4

)
.

The average band magnetic splitting is large (2 eV) at low temperatures [125]. LDA calculation predict
half-metallic gap to be around 0.4 eV, which is in a good agreement with experiment [129]. The gap is
indirect. The Stoner gap has been estimated to be 163 meV.

Kübler [130] estimated the Curie temperature of the system be 601 K or 701 K depending on the
approach used. Şaşıoğlu et al. [117] have found TC between 880 K and 1112 K depending on the method
applied and assumptions regarding interactions between moments. Experimentally TC around 730 K was
established [111].

The total magnetic moment at 2 K is an integer equal to 4μB (m0Mn = 3.8μB, m0Ni = 0.2μB, [131]),
as expected for a half-metal. LDA produces values of m0Mn = 3.74μB and m0Ni = 0.26μB. A weak
magneto-crystalline anisotropy favors 〈110〉 axes and no change in the easy axis can be detected up to
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Figure 7.2: The tranverse susceptibility of NiMSb in the magnon energy range. The magnon energy ω0(q)
is compared to the experiment from ref. [133].

120 K, where the anisotropy becomes negligible. NiMnSb does not obey Curie-Weiss law above TC,
having significant upward curvature.

Magnetic and transport properties of NiMnSb were thoroughly studied experimentally [132, 133, 111,
125]. At low temperatures the material was confirmed to be half-metal. With the increasing temperature
cross-over to a normal ferromagnet is believed to occur near 80 K, but this statement is disputable. Strictly
speaking, half-metalicity is lost at any finite temperature, the relevant question being of the density of
states in the minority channel. DFT predicts half-metalicity at 0 K. The study of Ležaić et al. revealed
a collapse of Fermi level polarization at elevated temperatures [134]. At finite temperatures many body
effects are believed to influence electronic structure; e.g. in Ref. [135] a presence of non-quasiparticles
states (a superpositions of spin-up electron excitations and virtual magnons) in the gap near the Fermi
level was predicted.

7.1.2 Transverse magnetization dynamics

The transverse susceptibility matrix χ+(r, r′,q, z) of NiMnSb has one dominating eigenvalue in the
magnon energy range. It is singular and the behavior near the singularity is analyzed using the single
pole scheme of Sec. 5.5. Magnon energy and amplitude are presented in Fig. 7.2. The maximum magnon
energy along the directions considered is 155 meV around K point in BZ. The imaginary part of the pole,
β, is zero within the numerical noise. Magnon states happen to appear for this material in the Stoner gap
δ, which explains why they do not decay into Stoner excitations. The strength of the pole, A(q), varies
weakly with q. According to Goldstone theorem for q = 0 all the spectral strength of the enhanced
susceptibility is contained in the SW pole. The variation of A(q) can be interpreted as the transfer of
the spectral power between SW and Stoner states, signifying that the contribution of the latter is small.
Stoner states have negligible density below 270 meV, even though their presence for lower energies is
not forbidden by the value of δ.
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The theoretical magnon energies are larger than those extracted from neutron scattering experi-
ments [133]. The discrepancy can be partially attributed to the elevated temperature 300 K of the ex-
periment. According to Ref. [111] the spin-wave stiffness decreases from 320 ± 20 meVÅ2 at 25 K to
280 ± 20 meVÅ2 for 300 K. The agreement with experiment can therefore be regarded as satisfactory.

The measurements have shown that the SW states acquire a finite life time for energy transfers larger
than 60 meV; between points K and X, where the most energetic magnons are expected, no SW’s were
found whatsoever. This effect originates from the the finite temperature of the experiment as well. As
it has been discussed, away from absolute zero there are necessarily electronic states appearing in the
half-metallic gap, which in turn close the Stoner gap δ and allow the decay to the low lying Stoner states,
absent at 0 K. Interestingly, the temperature of 300 K corresponds to the onset of the polarization collapse
predicted by Ležaić.

A really striking feature of the spectrum is the presence of only one SW branch. A brute-force mapping
of NiMnSb system onto a Heisenberg model would result in two branches corresponding to the two
magnetic atoms in the primitive cell. The branches would be separated by a gap, a feature unobserved
experimentally. It has been already recognized [136] that the Ni moment, being induced by the d-d
hybridization with neighboring Mn atoms, should not be regarded as an independent degree of freedom.
The present calculation naturally grasps this peculiar aspect of the spin dynamics in the systems with
induced magnetic moments.

The susceptibility matrix has infinitely many eigenvalues, but one shall not expect that there should
be infinitely many SW branches. Strong intra-atomic exchange implies a great stiffness of atomic magnetic
moments; they behave as rigid entities, which results in the wide applicability of adiabatic spin dynamics
based on the Heisenberg Hamiltonian mapping. Somewhat pictorially the situation can be compared to
the system of coupled harmonic oscillators, let us carry on with two for the sake of simplicity. Each mass
is attached to a spring and they are coupled with a third one of strength K . As long as K is finite the
systems features two eigenmodes and two eigenfrequencies. When K becomes large comparing to the
other two elastic constants – two masses become effectively connected by a rod – the system looses one
of its eigenvalues and behaves as a single mass on a spring.

Figure 7.3: The deviation of the Ni moment in NiMnSb follows roughly the molecular field of Mn. A good
fit can already be obtained taking into account only two nearest neighbor shells in equation 7.1.1, with
ratio w2/w1 = −0.0781. The inclusion of the second shell visibly improves the fit.
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Due to the induced character of Ni moments NiMnSb looses one more degree of freedom; the Ni
sublattice is unable to support an optical SW branch. Upon analyzing the shape of the eigenvector
�0(r,q, ω0 + i0+) of χ+(r, r′,q, ω0 + i0+) corresponding to the leading eigenvalue, we see that the
dynamics of this system is dominated by the Mn sublattice. Figure 7.3 presents the transverse deviation
of magnetization associated with �0 integrated over Ni atomic sphere. �0 has been normalized such that
the deviation integrated over Mn sphere centered at r0 = (1, 1, 1)a/4 was (1, 0). The induced transverse
Ni moment mNi

x,y tends to align itself along the molecular field originating from Mn sublattice

mNi
x + imNi

y =
m0Ni

m0Mn

1∑
s nsws

e−iq · r0
∑

s

ws

ns∑
l=1

eiq · rls , (7.1.1)

where s labels the shells of Mn atoms surrounding Ni atom located at r = 0. ws are coupling constants
between Ni and Mn atoms and ns stands for the number of Mn atoms on the given shell. rls are the
positions of the Mn atoms. (First three shells are in the distance

√
3a/4,

√
11a/4 and

√
19a/4, having

multiplicity 4, 12 and 12, respectively.) Such behavior is expected since Ni atoms are almost completely
magnetically decoupled and it is characteristic for acoustic SW modes, in which the most stiff sublattice
dominates and other try to accommodate to its dynamics; we will see it on the example of Co2MnSi. What
distinguishes these two materials is the ability of the secondary magnetic sublattice to support optical SWs.

The analysis favors the so called SF1 scenario of Ref. [136]. A similar picture of the dynamics of the
induced sublattice entirely driven by the primary one has been suggested by Mrasov in the case of FePt
and FeRh [137, 138]. In the latter case the role of the softer sublattice is to alter the effective interaction of
the stiffer sublattice. In the case of NiMnSb this might concern only the small transverse fluctuations; as
suggested by Ležaić et al. [134] the length of Ni moment should be treated as a separate degree of freedom.

shell no. of atoms distance Jm2
0Mn [Ry] Mn-Mn, 4 n.n. shells Jm2

0Mn [Ry] Ref. [20]

1 12 a/
√

2 0.550 0.532
2 6 a 0.473 0.356
3 24 a

√
3/2 0.023 0.033

4 12 a
√

2 -0.056 0.027

Table 7.1: Effective exchange integrals for a simple fcc lattice of NiMnSb. A reasonable fit can be obtained
assuming that only Mn sublattice contributes to the dynamics and the exchange interaction is limited to
the four nearest neighbor shells. The results are compared to the Mn-Mn exchange integrals obtained
from magnetic force theorem of ref. [20].

Since there is effectively only one magnetic atom per cell in NiMnSb it is easy to extract the corre-
sponding coupling constants by fitting the dispersion relation using adiabatic spin dynamics. The results
are summarized in Table 7.1, please refer to the caption for further details. Let us remark that the values
should be taken with a grain of salt. To perform reliably the necessary back Fourier transformation one
should have in disposition more q points in the whole Brillouin zone. The analysis was included to show
that when necessary the results of the susceptibility calculations can be mapped onto classical Heisenberg
Hamiltonian.

7.2 Co2MnSi

Recently the ternary Heusler phase Co2MnSi attracts much attention, since it is the technologically most
promising half-metal, featuring large half-metallic gap (γ = 0.419 eV [114]) and the highest known Curie
temperature among Heusler alloys (exp. 985 K [139], theory 740 K-857 K [117]). It can be grown in the
form of thin films [140] thus offering a possibility of constructing real spintronic devices.
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Figure 7.4: Imaginary parts of three dominant eigenvalues of Co2MnSi for q0 = 0.28(1, 1, 0) 2π
a as a

function of frequency. Other eigenvalues are of negligible magnitude. Only in this figure the eigenvalues
are labeled according to its absolute value, 1 corresponds to the largest one. The apparent width of the
acoustic (the least energetic) mode is a result of artificial broadening 0+ = 10−6 Ry, the mode has
vanishing width.

The lattice constant of this material reads 10.677 Bh [139]. There are three magnetic atoms in the unit
cell. Two Co atoms at positions

(
1
4 ,

1
4 ,

1
4

)
a and

(
3
4 ,

3
4 ,

3
4

)
a are equivalent and carry a magnetic moment

of 1.0 μB. Mn atom at
(

1
2 ,

1
2 ,

1
2

)
a has a moment of 3.0 μB. The moment of Si atom at

(
1
2 ,

1
2 ,

1
2

)
a is

negligible.

All moments in the unit cell are autonomous in the sense they come from the on-site exchange inter-
action. This fact is reflected in the spectrum of the spin-wave excitations. In the low energy regime the
susceptibility matrix features three dominant eigenvalues, other being of insignificant magnitude. They
are well defined SW peaks. An example of spectral function for q0 = 0.28(1, 1, 0) 2π

a is presented in the
Fig. 7.4. The situation should be compared to the NiMnSb system studied in the previous section, where
despite the presence of two non-equivalent magnetic atoms only one SW branch exists.

The acoustic magnons are separated from two optical branches by a gap of almost 350 meV,
cf. Fig. 7.5. The maximum energy in the acoustic branch is slightly less than 200 meV. According to
author’s knowledge, magnons in Co2MnSi have not been studied experimentally.

Similarly to the case of NiMnSb the dynamics of the acoustic mode is determined by the Mn sublattice,
the deviation of Co moments decreases for increasing momentum transfer. One of the optical modes
resembles the acoustic one with Co moments being in the antiphase to Mn moment. The second optical
mode involves Co moments only – the Mn stays parallel to the GS magnetization direction. An example
of these modes can be found in Fig. 7.6.

The calculations of Isida et al. [114] predict the γ gap to be 0.419 eV; the present KKR calculations
give considerably lower value of around 0.2 eV. Both approaches place the Fermi level close to the top of
the gap, resulting in the Stoner gap of δ ≈ 55 meV. Despite being more energetic, the acoustic SWs are
not significantly broadened, their width is smaller than 5 meV. One must note that the δ gap represents
only the lower bound for the Stoner states’ energy. For particular q they may appear at much higher
energies. In the contrary to the acoustic mode the two optical branches are for every vector q immersed in
a dense Stoner continuum and are strongly broadened, cf. Fig. 7.7. Again the behavior close to the center
of the peak was modeled using the single pole scheme.
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Figure 7.5: Positions of 3 SW peaks of Co2MnSi. The enumeration of eigenvalues was introduced to make
correspondence between the energies and peaks’ with from Fig. 7.7 and does not imply any symmetry
properties of them. Note that the optical branches are separated by a significant gap.

It is not very likely that the optical modes could be experimentally detected in typical neutron scat-
tering experiments. First of all they very energetic and of substantial width. Second, long wave-length
neutrons are unable to probe them. Figure 7.8 presents the imaginary part of Fourier transformed suscep-
tibility for q0 +K, where K ∈ L−1. While the acoustic peak is present (with different intensity) for every
K, the optical branches could be resolved only for extremely large momentum transfers.

7.3 Cu2MnAl

Cu2MnAl is a normal ferromagnet of relatively high Curie temperature 630 K. It has been a subject to
inelastic neutron scattering study [141], its structure, lattice constant and magnetic properties were also
investigated [142, 143]. Earlier theoretical studies of spin dynamics were based either on semiempirical
models or adiabatic approximation [144, 145, 146].

Figure 7.9 presents results based on susceptibility calculations compared to experiment and adiabatic
studies. Only one SW branch is present. LDA predicts correctly the energies along [ξ, 0, 0] direction. Small
renormalization of adiabatic energies is observed due to the self-energy arising from the hybridization
with Stoner continuum; the correction brings the results closer to the experimental values. There exists
rather serious discrepancy along [ξ, ξ, 0] direction; both adiabatic and dynamic approach yield similar
results. A deeper understanding of the discrepancy will be subject to a further study. The line-width is
small and increases monotonically with q.

7.4 Summary

Not all Heusler are alloys are half-metallic, but the general tendency to hybridization, outlined in the
introduction of this chapter, implies a small density of low-energetic Stoner states resulting in long-living
acoustic SW mode. In the case of half-metals featuring a Stoner gap δ these states can live infinitely long.
On the contrary the high energetic optical modes appearing as a consequence of the presence of two or
more non-equivalent magnetic atoms in the unit cell are rather strongly damped due to the hybridization
with high density Stoner continuum. The situation is completely different from the one encountered in
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Figure 7.6: The shape of three eigenvectors of Co2MnSi for q0 = 0.28(1, 1, 0) 2π
a . The eigenvectors of the

acoustic branch (EV 1, 5.4 mRy peak of figure 7.4) have typical shape where moments deviate roughly
like eiq0 · ri ; for larger momentum transfers the Co moments’ contribution decreases and vanish for high
symmetry points like X (they stay parallel to the GS magnetization direction). One of the optical branches
(EV 2, 39 mRy) can be regarded as a counterpart to it – Co moments oscillate in the antiphase with
respect to Mn moments. The third mode involves Co moments only (EV 3, 56 mRy). Eigenvectors are
normalized such that the biggest deviation (Mn moment for EV 1 & 2) is (1,0).

simple metallic ferromagnets. Particularly in Fe the Stoner states have pronounced density even for small
energies, leading to a severe damping of SW.
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Figure 7.7: Half-width at half maximum (β(q)) for two optical branches of Co2MnSi. The width of the
acoustic mode is smaller than around 5 meV.

Figure 7.8: The imaginary part of Fourier transformed susceptibility of Co2MnSi for q0 =
0.28(1, 1, 0) 2π

a + K. The triples of numbers represent K in units of 2π/a. Different optical branches
can be resolved only well outside the 1st BZ, while the optical peak is always present.
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Figure 7.9: SW peak of Cu2MnAl extracted from dynamic calculation compared to adiabatic treatment
and experiment [141].



CHAPTER

EIGHT

MAGNONS IN BULK IRON AND ITS THIN FILMS

The stable bulk phase of iron at ambient conditions is bcc and the system is often regarded a prototypical
ferromagnet [17]. Density functional theory with local density approximation can predict very accurately
its magnetic moment but overestimates the binding energy. The appearance of magnetism has a quanti-
tative impact, e.g. if one restricts the bulk iron to be paramagnetic the hcp becomes the most stable phase.
Many body effects may play a role in iron [147].

Modern techniques allow growing of high quality iron nanostructures. In particular, the adsorption of
Fe on (110) tungsten surface has been for nearly two decades one of the most intensively studied model
systems due to its mechanical and structural properties [148, 149, 150, 151] inter-playing with interesting
magnetic behavior, including spin reorientation [152, 153], out-of-plane anisotropy for certain conditions
[154], magnetic frustration [155] and unusual domain wall pinning [156].

Similarly involved is the spin dynamics of iron based systems. Magnetic interactions of the bcc phase
feature “so-called Kohn anomalies [. . .] that are due to long-range [magnetic] interactions mediated by the
RKKY interactions” as reported in Ref. [95]. The latter study is based on adiabatic treatment, formally ex-
act in the limit of the long wave-length regime, and provides magnificent account for spin-wave stiffness,
encouraging the use of ALDA. The mapping to Heisenberg Hamiltonian overlooks of course the damping
of spin-waves, which proves to be severe in this material for larger frequencies, but as we will see, the
dynamic treatment advertised throughout the thesis can account for the latter effect.

One does not expect the situation to be less complicated in the case of thin iron films. It was predicted
that the breaking of translational symmetry in nanostructures should lead to the renormalization and
enhanced damping [30] of the spin-wave states. Therefore for these systems the use of a dynamical
approach is essential. Up to now the study of the dynamic magnetic susceptibility of magnetic thin films
was based on the use of model Hamiltonians [30] and it is necessary to extend the LRDFT studies of
magnetic excitations to the film geometry. Although the model Hamiltonian studies provide important
information on general relation between parameters of the Hamiltonian and calculated observables, the
self-consistent DFT calculations are inevitable for the realistic description of complex systems since the
excitations depend sensitively on the detailed properties of the underlying electron structure.

In this chapter the first attempt of LRDFT calculations for a magnetic film is reported. One considers
bulk bcc Fe, Fe monolayer on W(110) and the corresponding free standing Fe monolayer and finally 2 ML
Fe/W(110) system. The role of low dimensionality in the properties of magnetic excitations is revealed.
The study was stimulated by the SPEELS investigations of magnetic excitations in this system presented
in Ref. [4].

8.1 bcc Fe

Figure 8.1 presents the calculated spin-wave spectrum of bulk bcc iron compared with experimental results
[157]. The agreement of the theory and experiment is excellent. Experimentally it has been established
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that in the bcc Fe the well defined SW excitations are observed only for small q vectors, because the short
wave-length SWs are severely damped. Our calculations confirm this: for q > 0.4 Å−1 the imaginary
part of the SW pole increases and for larger q the damping is so strong that the SW excitations cannot
be considered as well defined. No further discussion is intended here as the dynamic susceptibility of the
system has been already a subject of numerous studies, e.g. [21, 158, 159, 95].

Figure 8.1: Spin-waves of bulk bcc Fe. Squares represent the SW peak positions (ω0(q)), black line the
biquadratic fit to the data with parameters D = 252 meVÅ2 and γ = 0.28 Å2. This should be compared
to the value D = 250 meVÅ2 of Ref. [95]. Triangles stand for the experimental peak centers [157]. The
values of D and γ extracted from the experiment are 260 meVÅ2 and 0.47 Å2, respectively. Circles
present the imaginary part of SW poles (β(q)). The figure presents only about one-half of the interval
between the center and the boundary of the Brillouin zone.

8.2 Fe/W(110)

We turn now to the consideration of Fe(110) thin films. Experimentally it was established that the system
features strong in-plane magnetic surface anisotropy with and easy axis [11̄0] [160], but these relativistic
effects are not included in our model. Despite serious misfit (9.4%, aW = 3.161Å, aFe = 2.866Å) first
monolayer of Fe grows pseudomorphically [161]. Transition from pseudomorphic to nonpseudomorphic
growth occurs at 1.2 ML coverage [151] and at higher coverages a regular array of misfit dislocations sets
in. Also vertical lattice relaxations were observed [162, 163].

In out model the system is translationally invariant in the film plane and the direct lattice is spanned on

the vectors
(
−

√
2

2 ,
1
2

)
and

(√
2

2 ,
1
2

)
(all distances in units aW). The reciprocal space vectors (all reciprocal

space vectors in units 2π
aW

) read
[
− 1√

2
, 1
]

and
[

1√
2
, 1
]
. The system features series of alternating atomic

planes parallel to the interface. In-plane atomic positions are (0, 0) for even layers and
(
0, 1

2

)
for odd

layers. For perfect bcc structure interlayer distance reads aW√
2
, but in our calculations the experimental

distances were taken, as provided in Ref. [162, 163].
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The ΓH direction (H ≡ [0, 3
4

]
) in 2D Brillouin zone (2D BZ) is perpendicular to the easy [11̄0] axis;

q’s along this direction can be probed in SPEELS experiments. The ΓN direction (N ≡
[√

2
2 , 0

]
) is

perpendicular to ΓH.

8.2.1 1 monolayer Fe/W(110)

The vertical lattice relaxations discussed at the beginning of the section were taken into account. The
magnetic moment of Fe monolayer reads 2.17 μB and 3.11 μB for the supported and free monolayer
respectively. The interface layer of W in the supported case has negative polarization of −0.16 μB. The
antiferromagnetic coupling of W interfacial layer agrees with the calculations from Ref. [164].

Figure 8.2: Energies and inverse life-times of magnons of iron monolayer. ω0(q) and β(q) have the same
meaning as in Figure 8.1, cf. Sec. 5.5.

In Figure 8.2, the calculational results for the ΓH direction in the 2D BZ are presented. There is only
one dominating eigenvalue with standard single-pole energy behavior. We begin with the discussion of
supported monolayer Fe/W(110). The estimated SW stiffness assumes the value DΓH = 278 meVÅ2.
The dispersion curve deviates strongly from simple cosine-type behavior characteristic for Heisenberg
models with the exchange interaction between nearest neighbors only. Instead of a monotonous increase
with increasing q the spin wave energy decreases somewhat in the interval of q from 0.4 to 0.6 (unless
differently specified wave-vectors are given in units 2π/aW) staying close to 90 meV. For larger q values
the SW energy increases again assuming the value of 150 meV at the H point. The properties of the
freestanding Fe film are essentially different. In this case the dispersion curve is close to a simple cosine-
form. In the low-q region the SW energies are smaller than for the supported film that gives a lower
stiffness Dfree

ΓH = 102 meVÅ
2
. The curves intersect at about q = 0.25. For larger q the SW energies of

freestanding film exceed considerably the corresponding energies of Fe/W(110).
Also the life time of magnon states depends strongly on the presence of substrate – the damping of the

SW excitations of the supported film is much stronger than in the case of free standing film. The origin
of the effect can be traced back to the Fe-W substrate hybridization. Similarly to the case of (001) surface
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[165] the unsupported (110) film features much narrower bands and larger spin splitting, cf. Fig. 8.3. As a
result the density of low-energy Stoner states contributing to the damping is reduced.

Presently there is no experimental data for 1 ML of Fe/W(110) which could be used for direct com-
parison with our results. The energies we obtain are smaller than the energies observed for 2 ML [4].
This result can be explained by reduced number of neighboring magnetic Fe atoms in the case of 1 ML
compared to the 2 ML film. The SW energies obtained in the model-Hamiltonian approach by Muniz et al.
[30, 166] exceed substantially our values. Also the form of the dispersion curve reported in that paper is
less complex. We relate these differences to the complexity of the Fe-W hybridizations that play crucial
role in the establishing of the properties of magnetic excitations. The details of these hybridizations are
better captured by the parameter-free DFT calculations.

The structural anisotropy of the (110) surface is reflected in the anisotropy of the SW dispersion; the
energy of spin-waves depends on the direction of its wave-vector. The magnons for ΓN direction has
higher energies compared to the ΓH direction. This is valid for both supported and free standing films.
The presence of the substrate enhances this effect. The dispersion curve along ΓN is qualitatively similar
to the curve for ΓH direction discussed above. The values of the stiffness constants are in this case
DΓN = 589 meVÅ2 and Dfree

ΓN = 233 meVÅ2. Similar to the ΓN case the damping is enhanced for
adsorbed film.

Figure 8.3: Density of majority and minority states of monolayer of iron: a) supported on W, b) free
standing. The energies are given with respect to the Fermi level. One notices much narrower bands and
larger band splitting in the case of free standing monolayer, yielding lower density of low energy Stoner
states.
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It is also worth noting that the spin-wave dispersion obtained within adiabatic frozen-magnon calcula-
tions is very close to the dispersion obtained from the calculation of the dynamic susceptibility. This means
that the exchange parameters obtained by the mapping of the one Fe ML on the Heisenberg Hamiltonian
capture important features of the exchange processes in the film although do not allow the estimation of
the life-time of the magnons.

8.2.2 2 monolayers Fe/W(110)

In the following calculations the experimental atomic positions were used [162, 163]. The ground state
atomic magnetic moments read 2.69 μB (top-most Fe layer), 2.16 μB (second Fe layer) and −0.14 μB

(induced moment of interface W layer).
The susceptibility matrix features clearly two dominant eigenvalues; they have been analyzed using

single the pole model and the results are given in Figure 8.4. Along the ΓH direction the two branches
cross at q ≈ 0.6. For small q the mode lower in energy of acoustic character, while the more energetic
eigenvector is characterized by the moments of iron oscillating in anti-phase. Similar situation occurs in
ΓN direction, but the two levels repel each other. Interestingly, the dispersion relation for two monolayers
is almost isotropic1. None of the modes can be regarded as confined to the surface (surface spin-wave
state) for any q, both featuring strong deviations in both magnetic layers.

Similar to the 1 ML case magnons here are well defined in the whole Brillouin zone. As expected,
the acoustic branch live very long close to the zone center and the optical magnons are damped even for
q = 0. For large wave-vectors the damping is more pronounced for the 2 ML case, mainly due to the
fact that the spin-waves are more energetic and thus lie deeper in the Stoner continuum, but the long
wave-length acoustic magnons live somewhat longer than for the thicker film.

The observed magnon energies along ΓH [4] are smaller than predicted by our theory. The reason
of the discrepancy in not clear, especially in the light of good performance of ALDA for bulk iron. Fur-
thermore, the experiment did not reveal any presence of an optical branch. It has been conjectured that
SPEELS could probe only the modes with significant amplitude in the top layer, because of a limited
penetratin depth of electrons. Since we predict no clear surface spin-wave state one should look for an
explanation elsewhere and there exists by now no definitive answer. This discussion will be continued in
the summary of this chapter.

8.3 Summary

Although the damping of the spin-wave states increases with the increasing the wave-vector they remain
well defined throughout the whole 2D Brillouin zone. This property is in a striking contrast to the bulk
case. The effect of the low dimensionality on the life-time of spin-waves obtained in our calculations is
opposite to the effect proposed in the literature [168]. The broken translational symmetry in the direction
perpendicular to the film surface destroys the conservation of the crystal momentum in this direction
and should lead to the increased damping for a given in-plane wave vector. However this consideration
does not take into account the decrease of the number of the Bloch states with the transition from a bulk
system to a monolayer. This leads to the decrease of the number of Stoner excitations contributing to the
damping.

The role of the non-magnetic substrate in the establishing of the properties of magnetic excitations
should be emphasized. The hybridization of the Fe and W states modifies the electronic structure of the Fe
layer leading to a more complex pattern of the effective interatomic exchange interactions between spin
moments of Fe atoms and enhances damping.

The comparison with SPEELS study shows that not the whole physics of in the experiment is ac-
counted for in our treatment. The absence of the optical mode is puzzling. For large momentum transfers,

1A fact noted already by Muniz et al. [167]. The latter study shows that the anisotropy asserts itself again for thicker films
and for 10 ML thick film bulk (isotropic) behavior is still not observed.
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Figure 8.4: Spin-waves of 2 ML Fe/W(110) system along ΓH (left column) and ΓN direction (right column).
The energies of the modes are presented in the first row and the full-widths at half-maximum (FWHM≡
2β(q)) in the second. Experimental points come from Ref. [4]. The last point to the right represents the
boundary of 2D Brillouin zone.
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where the states are close in energy, they are also substantially broadened and might appear as a single
feature in the spectrum especially when one takes into account the finite resolution of SPEELS spectrom-
eter. Nevertheless, close to the center of the zone the optical mode should be discernable. A possible
explanation would be the one, in which the optical mode, being substantially broadened even for q = 0,
is lost in the background of the signal dominated by the acoustic mode.

The difference between the experimental and theoretical magnon energies needs further effort to be
understood, too. First of all, one must make sure that the electronic structure of the sample is correctly
reproduced. As we have seen it can be influenced by the details of the interface, but also by impurities
and lattice imperfections. This seems to be the first direction of joint experimental and theoretical effort.
It should be once more recalled that theory of SPEELS can be much more intricate than the one suggested
by a simple equivalence with inelastic neutron scattering. No attempt is made at this point to give this
remark any quantitative character since the detailed SPEELS theory has not become a leitmotiv of this
work. Finally, one cannot exclude that the adiabatic local density approximation fails for the iron surfaces
because of strongly enhanced or modified correlation effects. This in turn goes quite much beyond the
modern state-of-art realistic electronic calculations.

Despite the limited quantitative agreement with experiment the study proves that LRDFT can be
effectively applied to the systems with reduced dimensionality.
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SUMMARY AND OUTLOOK

A dynamic method of studying the spectrum of spin-flip fluctuations has been presented. It is based on
the numerical evaluation of magnetic susceptibility within the linear response density functional theory
in adiabatic local density approximation. Similarly to the adiabatic spin dynamics based on the mapping
to Heisenberg model it is parameter free, can provide us with the energies of spin-waves and uses realistic
electronic structure calculations, which makes it sensitive to the geometrical boundary conditions (like
surfaces and interfaces), types of atomic species, structural relaxations and – not discussed in this work –
substitutional disorder. Unlike the adiabatic treatment, the dynamic method can account for the decay of
spin-waves into particle-hole triplet states, since these so called Stoner excitations appear naturally in the
theory.

For the long-living magnons the both methods yield similar results, however the dynamic approach
takes into account the energy renormalization due to the hybridization with Stoner continuum and correc-
tions arising from Bruno’s renormalized force theorem [67, 66]. The latter are often not taken into account
in many implementations of the adiabatic scheme. The dynamic treatment captures some aspects of mag-
netization dynamics, which are rather difficult to describe in a mapping to Heisenberg Hamiltonian, an
example being the behavior of induced atomic moments. In the situation when the magnons appear in an
energy region with a high Stoner states density, the adiabatic methods lead to qualitatively wrong results.

The damping of magnons is their inherent property and it seems that the decay into the Stoner states is
the dominant mechanism of broadening in the itinerant magnets, possibly except for the very long wave-
length magnons, when it is necessarily small and other effects might be of similar magnitude. In the case
of spin-wave excitations living in a gap of Stoner continuum the decay into the single particle excitations
is forbidden, but the magnons coexisting with Stoner continuum might be so broad that they could not be
regarded as well defined excitation. Older experimental works very often did not try to quantify the width
of spin-wave peak, partially because of the absence of a quantitative theory allowing an interpretation of
these results. Such quantification is present in the contemporary experimental studies and it is hoped that
the work can serve as a guide for them.

The dynamic formalism was applied to the three mono-elemental bulk systems: bcc iron, and hcp and
fcc phases of cobalt. The method can account very well for the energies of spin-waves in these materials.
Experimentally the magnons were found to be damped, in the case of Fe to a point, where they were
not anymore detectable for high momentum transfers. The calculations presented in this thesis confirm
that this behavior is in a contrast to the cobalt phases, where the magnons were observed in the whole
Brillouin zone. The method presented in this work predicts a possibility of appearance of multiple spin-
wave branches, originating from the the presence of many non-equivalent atoms in the primitive cell or,
equivalently, from the internal dynamics of the cell. Under propitious experimental conditions, the modes
can be experimentally observed, as in hcp cobalt.

Similarly, the present model predicts multiple magnon modes in the Heusler alloys. The example
of NiMnSn teaches us however that the number of branches should not be identified with the number
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of magnetic atoms in the primitive cell. In the discussed case the Ni moment is induced by the Mn
sublattice and cannot support an optical spin-wave branch. As far as the decay is concerned, in the Heusler
phases the covalent hybridization between transition metal atoms, which can lead to the half-metalicity,
generally reduces the density of low-energy Stoner states. When the alloy becomes an actual half-metal,
Stoner modes acquire a finite activation energy and low energy magnons are forbidden to decay into the
single particle states. As discussed above, the long-living modes can, as in the example of Co2MnSi, be
accompanied by short-living high energy magnons.

Spin excitations have been recently experimentally studied in nanostructures. This poses new exciting
questions about the influence of the boundaries and reduced dimensionality on the energy and life-time of
magnons. One can also look at the states localized due to the presence of interfaces or other imperfections.
A new generation of experiments allows a confirmation of theoretical predictions. A part of this thesis
focuses on the thin films of Fe adsorbed on W(110). It was found the magnons in these systems live
longer than in the bulk, even though the broken translational symmetry makes the overlap between spin-
wave and Stoner states larger. One attributes it to the reduced number of single-particle states in the
geometrically confined film. The present calculations confirm the sensitivity of magnons’ energies and
life-times to the underlying electronic structure. The structural anisotropy of the film implies that the
dispersion relation depends on the wave-vector direction.

The spin-dynamics of nanostructures is of growing relevance from the practical point of view. Mag-
netic devices, important for example in the storage technologies or inter-chip communication, will be
faster and smaller just like their electronic counterparts, reaching a moment when exciting of magnetic
states will become significant part of their operation. One sees now the necessity of reliable life-time de-
termination. In the magnetic storage devices one would like these excitations to decay as soon as possible,
leaving a bit after a read-in or a read-out in a steady state. Here the damping due to the coupling to the
Stoner states can effectively transfer the unwanted energy to the electron gas. On the contrary, if we
wished to use the magnons as a medium to communicate two chips, we would look for energies corre-
sponding to small density of Stoner states (“spin-wave windows”), so the signal could travel undistorted
between emitter and antenna. For small frequencies this is easy to achieve since generally Stoner states
are pronounced at higher energies, but as the operational frequency rises one might wish to look for high
energy windows, existence of which is not easily predictable without performing explicit calculations.
Some nano-devices could make use of localized magnon states or their specific shape involving only some
atomic moments, etc. All the necessary physics could be tackled in the dynamic susceptibility calculations.

In the end let us focus on the future. No additional development is necessary to study antiferromagnets
and the first application will be thin antiferromagnetic Mn films. It is rather straightforward to generalize
the computational scheme to include one-dimensional systems and clusters. Through the inclusion of the
coherent potential approximation one paves the way to study disordered systems and ultimately to include
finite temperature effects in disordered local moment picture [169]. Strongly correlated materials can be
now described by means of self-interaction correction (SIC) and the formalism of transverse magnetic
susceptibility can be readily extended to the SIC-corrected systems [170]. Some generalization are not
so straightforward. Non-collinear systems, possibly influenced by relativistic effects, require a careful
reformulation of the formalism, mostly because there is a rather limited understanding, how a spin-wave
should exactly look like in such cases. As far as the immediate applications of the code are concerned one
will try to establish whether there is a well defined surface magnon state for different cuts of iron crystal.
The study of Heusler phases will continue and include their different classes. Certain more exotic magnets
will be concerned, including gadolinium or MnSi.

❦

Our world does not allow us to doubt that the reality is more like the one of Heraclitus than of Zeno.
The condensed matter theory acknowledges it and sets off to discover the lands beyond the ground state.
I had the luck to witness a small part of the road and when the quantum mechanics was still young
D. H. Lawrence gave an account of my wonder
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I like relativity and quantum theories
because I don’t understand them
and they make me feel as if space shifted about
like a swan that
can’t settle,
refusing to sit still and be measured;
and as if the atom were an impulsive thing
always changing its mind.1

1“Relativity”, David Herbert Lawrence: Pansies: Poems. Martin Secker, London, 1929.





APPENDIX

A

RYDBERG ATOMIC UNITS

Rydberg atomic units are used in this work. In this system the numerical values of the following four
fundamental constants are all unity by definition

Coulomb’s constant κ ≡ 1
4πε0

= 1, (A.0.1a)

Planck’s constant � = 1, (A.0.1b)

Bohr radius a0 = 1, (A.0.1c)

Rydberg energy ER = 1, (A.0.1d)

which in turn fix the numerical values of the following constants

electron mass me =
1
2

�
2

ERa2
0

=
1
2
, (A.0.2a)

elementary charge e =

√
�2

κmea0
=

√
2. (A.0.2b)

Table A.1 provides a short comparison of Atomic Rydberg and the International System of Units (SI),
based on CODATA 2006 [171, 172]. In October 2005, the National Physical Laboratory reported initial
measurements of the Planck constant using a newly improved Watt balance [173]

h = 6.62607095(44) · 10−34 J s, (A.0.3)

which is significantly different (statistically) from the 2006 CODATA value.
Few remarks on unit notation and nomenclature are now in order. In ARU system most of the units

do not have widely accepted names and some freedom is left. We will call the unit of length “Bohr” and
denote it with Bh. The unit of time has a symbol of ch (from a Polish word meaning a short interval of
time). Energy is measured in “Rydbergs” (Ry). Magnetic moment is usually given in Bohr magnetons, but
let us note that this is a constant not equal to unity. Generalized density response as defined by equation
3.3.1 has units Bh−6 Ry−1 ch−1. Its time-space Fourier transform has unit Bh−3 Ry−1, which we call
“Kubo” (Kb).

83



84 Rydberg atomic units App. A

Quantity Symbol ARU SI

Length (“Bohr”) [Bh] 1(≡ a0) 0.52917720859(36) · 10−10 m
Mass 1(≡ 2me) 1.82187643 · 10−30 kg
Time [ch] 1(≡ �/ER) 4.8377687 · 10−17 s
Frequency 1 2.0670687 · 1016 Hz
Energy (“Rydberg”) [Ry] 1(≡ ER) 2.17987197(11) · 10−18 J
Charge 1(≡ e/

√
2) 1.132909859 · 10−19 C

Magnetic induction 1(≡ √
2ER/μB) 3.3241336 · 105 T

Planck’s constant � 1 1.054571628(53) · 10−34 J s
2π� h 2π 6.62606896(33) · 10−34 J s
Elementary charge e

√
2 1.602176487(40) · 10−19 C

Energy 1 electron volt eV 1.602176487(40) · 10−19 J
Rydberg energy ER 1 13.60569193(34) eV
Rec. fine structure constant α−1 137.035999679(94)
Electric constant ε0 (4π)−1 8.854187817 · 10−12 Fm−1

Speed of light in vacuum c 2/α 299792458 m s−1

Bohr magneton μB

√
2 927.400915(23) · 10−26 J T−1

Electron mass me 1/2 9.10938215(45) · 10−31 kg
Boltzmann constant kB 6.333631(11) · 10−6 1.3806504(24) · 10−23 J K−1

Gravitation constant G 1.92000 · 10−42 6.67428(67) · 10−11 m3 kg−1 s−2

Table A.1: Conversion table for Atomic Rydberg (ARU) and SI Units. Additionally the values of few
constants are provided. Numbers in brackets denote standard uncertainties. Numerical values without
error should be regarded as approximate with the exception of c and ε0, which are by definition exact
within SI. Data after CODATA 2006 [171].
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B

FOURIER SPACES

Some conventions concerning Fourier transformations are specified here. In addition several useful iden-
tities (mainly sum rules and convolution theorems) are provided. Primarily I follow [31]. The symbol
for function and its transformation is usually the same and they can be distinguished judging by their
arguments.

B.1 τ -time functions

In the standard usage they are functions periodic with period 2β�, i.e.

f(τ + 2β�) = f(τ), τ ∈ R. (B.1.1)

As such they can be naturally expanded in Fourier series with discrete frequencies

ωn =
nπ

β
, n ∈ Z (B.1.2)

and the following holds

f(ωn) =
1
2

∫ β

−β
dτeiωnτf(τ), f(τ) =

1
β

∑
n∈Z

e−iωnτf(ωn). (B.1.3)

If function is periodic with period β�, f(ωn) is non-zero only for even (bosonic) frequencies

ωb
m = 2m

π

β
, m ∈ Z. (B.1.4)

An antiperiodic function with period β� (i.e. f(τ + β) = −f(τ)), f(ωn) is non-zero only for odd

(fermionic) frequencies

ωf
m = (2m+ 1)

π

β
, m ∈ Z. (B.1.5)

ωf
m and ωb

m are usually called Matsubara frequencies. In the both of the above cases the transformed
function for its specific frequencies can be computed like follows

f
(
ωb,f

m

)
=
∫ β

0
dτeiωb,f

m τf(τ). (B.1.6)

Representations of Kronecker delta δnl Dirac’s delta δ(τ) exist

1
2

∫ β

−β
dτei(ωn−ωl)τ = βδnl, n, l ∈ Z, (B.1.7)
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δ(τ) =
1
β�

∑
n∈Z

e−iωb
nτ , τ ∈ [−β�, β�]. (B.1.8)

The following convolution theorem appears to be very useful. Let us put

g(τ) = f1(τ)f2(−τ). (B.1.9)

the τ -transform of g reads

g(ωn) =
1
β�

∑
m∈Z

f1(ωn + ωm)f2(ωm) =
1
β�

∑
m∈Z

f1(ωn)f2(ωn − ωm). (B.1.10)

If f has additional symmetry such that f1,2

(
ωb

n

)
= 0, then

g
(
ωf

n

)
= 0 (B.1.11)

and

g
(
ωb

n

)
=

1
β�

∑
m∈Z

f1

(
ωf

m + ωb
n

)
f2

(
ωf

m

)
=

1
β�

∑
m∈Z

f1

(
ωf

m

)
f2

(
ωf

m − ωb
n

)
. (B.1.12)

Let’s note that

ωf
m − ωb

n = ωf
m−n. (B.1.13)

B.2 Ordinary time Fourier transform

The relations between time and frequency domains are

f(ω) =
∫

R

dteiωtf(t), f(t) =
∫

R

dω

2π
e−iωtf(ω). (B.2.1)

For reference some transformations are explicitly given below; R � Ω > 0. Damped harmonic oscillations
(no motion in the past) ∫

R

dte−iω0te−Ωtθ(t)eiωt =
i

ω − ω0 + iΩ
. (B.2.2)

Heaviside function θ(t) allowing for better future can be represented as∫
R

dtθ(t)eiωt =
i

ω + i0+
, (B.2.3)

while Heaviside function θ(−t) emphasizing the past as∫
R

dtθ(−t)eiωt = − i

ω − i0+
. (B.2.4)

Useful identity involving principal value

1
ω ± i0+

= Pv
1
ω
∓ iπδ(ω). (B.2.5)
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B.3 Space Fourier transform

Transformations between real and reciprocal space have different sign, but the same 2π convention

f(k) =
∫

RD

dxe−ik ·xf(x), f(x) =
∫

RD

dk

(2π)D
eik ·xf(k). (B.3.1)

The following Dirac’s delta representations are often used∫
RD

dxe−ik ·x = (2π)Dδ(k) (B.3.2a)∫
RD

dkeik ·x = (2π)Dδ(x) (B.3.2b)

Let L be a lattice spanned on the basis vectors ai. The lattice L−1 reciprocal to L is spanned on the
basis vectors Ai such that

ai ·Aj = 2πδij . (B.3.3)

The following sum rules are called Poisson summation formulas∑
R∈L

e−ik ·R = ΩBZ

∑
K∈L−1

δ(k− K), (B.3.4a)

∑
K∈L−1

eiK ·x = ΩWS

∑
R∈L

δ(x − R). (B.3.4b)

They can be used to compute Fourier transforms of the functions periodic with the periodicity of L or
L−1. If we put

f(x + R) = f(x), R ∈ L, (B.3.5a)

g(k + K) = g(k), K ∈ L−1, (B.3.5b)

we obtain

f(k) = f(k)
∑

K∈L−1

(2π)Dδ(k− K), g(x) = g(x)
∑
R∈L

δ(x− R), (B.3.6)

where

f(k) =
1

ΩWS

∫
ΩWS

dxe−ik ·xf(x), g(x) =
1

ΩBZ

∫
ΩBZ

dkeik ·xg(k). (B.3.7)

The inverse transform can be computed as

f(x) =
∑

K∈L−1

f(K)eiK ·x, g(k) =
∑
R∈L

g(R)e−ik ·R. (B.3.8)

The following Brillouin zone convolution theorem is of particular importance∑
R∈L

f1(R)f2(−R)e−iq ·R =
1

ΩBZ

∫
ΩBZ

dkf1(k)f2(k − q) =
1

ΩBZ

∫
ΩBZ

dkf1(k + q)f2(k). (B.3.9)
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C

Y-CH BASIS

For the sake of clarity I present here the conventions used throughout this work and in the developed
computer programs. References to ��	
���	��� package in this Appendix pertain to version ����.

C.1 Spherical coordinates

We use the spherical coordinates with polar (θ) and azimuthal (φ) angles and radial coordinate r as
presented in Fig. 3.1

θ ∈ [0, π], φ ∈ [0, 2π], r ∈ [0,∞) . (C.1.1)

The Cartesian components of position vector r = (x, y, z) read

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ (C.1.2)

and this transformation is characterized by the following Jacobian∣∣∣∣∂(x, y, z)
∂(r, φ, θ)

∣∣∣∣ = r2 sin θ. (C.1.3)

In this spherical coordinates the area and volume elements read respectively

da = r2 sin θ dφ dθ r̂, dV = r2 sin θ dφ dθ dr. (C.1.4)

C.2 Spherical harmonics

We define standard (complex) spherical harmonics [77] following ��	
���	���

Ỹlm(θ, φ) ≡ ��
���������������[l,m, θ, φ]. (C.2.1)

The real spherical harmonics are defined as follows ((θ, φ) arguments are suppressed)

Ylm ≡

⎧⎪⎪⎨⎪⎪⎩
i√
2

(
Ỹl,−|m| − (−1)mỸl,|m|

)
m < 0,

Ỹl0 m = 0,
1√
2

(
Ỹl,−|m| + (−1)mỸl,|m|

)
m > 0.

(C.2.2)

Both Ỹ and Y are orthonormal with respect to the integration over the surface of the unit sphere.
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C.3 Chebyshev polynomials

We used Chebyshev polynomials similar to those defined in ��	
���	���; only the definition of zeroth-
order polynomial differ

Chμ(ξ) ≡
(

1 − 1
2
δμ0

)
�
����
���[μ, ξ], (C.3.1)

where Z � μ ≥ 0, ξ ∈ [−1, 1]. Chebyshev polynomials are orthogonal in the latter interval with weight

W(ξ) ≡ 1√
1 − ξ2

. (C.3.2)

The detailed discussion of properties of Chebyshev polynomials is beyond the scope of this short sum-
mary. They were used as a part of Y-Ch basis because it is straightforward to approximate functions using
Ch. Additionally, it is rather easy to obtain many results (like overlap integrals or Fourier transformations
of Ch) analytically.

A sufficiently well behaved complex function f(z) given in the interval [a, b] (if a and b are complex,
[a, b] should be understood as a contour with a and b as a beginning and an end, respectively) can be
approximated by means of Chebyshev polynomials as follows

f(z) =
N∑

μ=0

cμChμ

(
ξ[a,b](z)

)
, (C.3.3)

where

cμ =
2
N0

(1 + δμ0)
N0∑
j=1

f
(
ξ−1
[a,b]

(ξj)
)
Chμ(ξj), ξj = cos

(
π
(
j − 1

2

)
N0

)
(C.3.4)

and N0 and N are non-negative integers such that N < N0. N is the order of approximating polynomial
andN0 is called approximation order. ξ[a,b](z) is an invertible function mapping contour [a, b] into interval
[−1, 1]. In most cases is simply linear function.

C.4 Miscellaneous

Below I present several additional conventions and formulas. One of the spherical Bessel functions, par-
ticularly useful to us, is defined as

jl(z) =
√

π

2z
�������[l + 1/2, z]. (C.4.1)

It can be used to decompose a plane wave into spherical harmonics

eiq · r = 4π
∞∑
l=0

iljl(qr)
l∑

m=−l

Ylm(q̂)Ylm(r̂). (C.4.2)

The above formula is called Bauer’s identity. It can be used to compute the following integral, necessary
when performing Fourier transformation of susceptibility

Aμlm(q) =
∫ R

0
r2dr

∫ 2π

0
dφ

∫ π

0
sin θdθ

1
r
Ch
(
ξ[0,R](r)

)Ylm(r̂)eiq · r = ilπR2ζμl(qR)Ylm(q̂), (C.4.3)

where

ζμl(x) ≡
∫ 1

−1
dξ(1 + ξ)Chμ(ξ)jl

(x
2
(1 + ξ)

)
. (C.4.4)

The latter function was evaluated analytically using ��	
���	��� and subsequently Chebyshev approx-
imated in x. In such form it is directly used in the code.
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